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Editorial on the Research Topic
Contact Mechanics Perspective of Tribology

A time to throw stones and a time to gather stones

(Ecclesiastes 3:5)

It is a time to gather stones. . . The Research Topic (RT) “Contact Mechanics Perspective of
Tribology” was planned as a comprehensive overview of recent developments in the areas of contact
mechanics and friction. Much has changed in this field in the last few decades. Contact mechanics
expanded to qualitatively new fields of application which are at the forefront of the global
development tendencies of technology and society, in particular micro- and nanotechnology as
well as biology and medicine. The last decade was the time when vital numerical tools for simulating
complex contacts, such as the FFT-based boundary element method, were created. The goal of the
Research Topic was to review the recently established concepts, tools, and research activities and to
outline the most important open issues for future investigations.

The main conceptual idea behind this Research Topic was to show to what extent one can
understand tribology with macroscopic contact mechanics. By “macroscopic contact mechanics” we
mean any approach based on continuum mechanics, including the corresponding elastic problems,
viscoelasticity, adhesion, hydrodynamic and elasto-hydrodynamic lubrication, etc. In short, the
papers of this Research Topic address the question: What can and what cannot be described in the
framework of the macroscopic continuum mechanics approaches? Certainly, macroscopic
approaches do not go to the ultimate (atomic) scale. Based on the advances of contact
mechanics achieved during the last decades, it should be tracked where such limits are.

In the following, we briefly discuss the 36 papers comprising the RT.

INTERACTIONS ON ATOMIC SCALE AND SUPERLUBRICITY

The article collection is opened by a review “Influence Factors on Mechanisms of Superlubricity in
DLC Films” by Yu et al.. It is devoted to one of the most fundamental achievements of tribology over
the last 25 years (Erdemir and Martin, 2007). It clearly shows that a pure mechanical analysis of a
tribological system is not sufficient to explain superlubricity of DLC films, since chemical aspects play
a major role: passivation of the dangling bonds by hydrogen and formation of an easy-shearing sp2-C
rich interface film. However, even these properties can be partially understoodmacroscopically as the
transfer film still has a thickness of 5–40 nm, which can be considered as “macroscopic” as compared
to the atomic scale. The excellent self-lubrication properties of DLC films seem to relate to the ability
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of carbon to produce both very hard (diamond) and very soft
(graphite) phases as well as self-organization of these phases in
the region of high load and shear.

In the second paper of RT, Zhou et al. discuss the fundamental
question of whether it is possible to use macroscopic contact
mechanics even at the level when thermal fluctuations start
playing an important role. The paper is based on the Green-
functions method extended to account for thermal fluctuations
using the fluctuation-dissipation theorem. The result is simple
and very impressive: for the most usual conditions which can be
awaited in the praxis, the fluctuations are almost equivalent to a
constant shift of the surface. This is approximately 1/1.5 of the
sqrt fluctuation of the free surface. This means that thermal
fluctuations contribute to a sort of repulsion of surfaces which
may essentially influence friction, in particular contributing to the
effect of liquid superlubricity.

The opinion-paper “Contacts with negative work of
“adhesion” and superlubricity” is an attempt to take a general
look on the problem of “adhesion and superlubricity” (Ge et al.,
2019). The main conclusion of this paper could be formulated as
“Ernest Rabinowicz was right!” In his famous book on “Friction
and wear of materials” (Rabinowicz, 1995), he stated that there
are two main properties, which determine friction: adhesion and
“compatibility” of materials. The less the compatibility (that
means the tendency to form alloys) and the less the adhesion,
the smaller the friction. The above opinion paper continues: best
of all, the adhesion should be negative, then one has the effect of
“superlubricity”! Very interesting is also the Rabinowicz’s notion
of “compatibility.” According to the well-known Hume-Rothery
rules, the materials are incompatible if their lattices are
incommensurate, which, however, is a well-established rule for
minimizing friction at the atomic scale! Thus, the concept of
Rabinowicz looks now really “trivial”: incommensurate (and thus
non-intermixable) materials should be combined with the lowest
attraction (or even better, repelling!). The paper of RT by Fang
et al. illustrates this mechanism in the special case of hydration-
lubricated contacts, which e.g., provide the uniquely low
coefficient of friction in natural joints [Klein (2013)].

ANALYTICAL AND SEMI-ANALYTICAL
METHODS IN CONTACT MECHANICS

Despite the rapid development of numerical simulation methods,
analytical and semi-analytical solutions remain of immense
importance. They are employed as benchmark for numerical
methods, to achieve the “analytical understanding” of problems,
or for empirically capturing numerical results in multi-
dimensional parameter spaces. An example of a combination
of exact analytical solutions with a “nearly exact” approximation
provides the localization principle (Goryacheva, 1998) which is
exploited in the paper by Goryacheva and Tsukanov for the
analysis of a great variety of surfaces with regular microgeometry.

The paper by Forsbach shows simple yet numerically efficient
way to determine the complete stress tensor and the hydrostatic
pressure gradient in the half-space beneath the contact of an
arbitrary axisymmetric indenter (under normal and/or tangential

load). The calculation method is based on the same “trick” as is
used in the Method of Dimensionality Reduction [see e.g., Heß
(2011) and Popov et al. (2019)].

Impact tests are an important tool to analyze dynamic material
properties of viscoelastic media in technology and biology. In this
context, rigorous contact mechanical models of the collision
problem are necessary to adequately interpret data from
impact experiments. Willert shows theoretically that the
coefficient of restitution in this type of testing is mainly a
function of one specific material property, namely, the ratio
between the loss and storage moduli of the viscoelastic probe
at the characteristic timescale of impact. This, for the first time,
gives a concise, comprehensive statement about what (regarding
material properties) is actually measured in low-velocity
viscoelastic impact or rebound tests.

For the pure normal contact problem, a closed analytical
solution is possible. For tangentially loaded contacts, on the
contrary, semi-analytical methods must be applied. A review
and application possibilities of such methods is given by Aleshin.
The semi-analytical solutions, such as the Method of Memory
Diagrams or MDR, allows to calculate hysteretic responses to
extremely complex loading histories, such as random vibrations.
As an example, the author shows that a single elastic body with a
frictional contact to the substrate demonstrates rich dynamic
behavior when excited even by a simple harmonic signal.

FFT-ASSISTED BOUNDARY ELEMENT
METHOD

In the last years, the FFT based Boundary Element Method became
the standard tool for contact simulations of real surfaces both in
research and industry. The basic development of the FFT-based
BEM took place in the late 1990s and early 2000s and is associated
first of all with the groups of LeonM. Keer and Q. JaneWang from
the Northwestern University. The paper “FFT-Based Methods for
Computational Contact Mechanics” is a concise and instructive
review of the basics and the current state of the FFT-based BEM.
The FFT-based BEM is, however, restricted to macroscopically
plane geometries. Benad shows a way in which the BEM can be
generalized to arbitrary shapes of contacting bodies without
increasing the computational complexity.

Soft matter attracts ever greater attention of researchers. The
softer the body, the more visible becomes the influence of the
surface tension of the contacting bodies (which is neglected in the
classical contact mechanics of “stiff bodies”). In the paper by
Yuan andWang, a BEM-version is formulated accounting for the
surface tension. Li and Popov generalize this approach further by
considering a non-adhesive contact with different surface tension
inside and outside the contact area.

CONTACT RESPONSE OF ROUGH
SURFACES

Contact mechanics of rough surfaces was one of the most debated
topics in contact mechanics of the last decades. These debates
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seem to come to a consensus summarized in the “contact
challenge”-paper by Müser et al. (2017). The central tool
which is now accepted by the most researchers is the FFT-
based BEM (see previous Section). But even this extremely
efficient simulation method is computationally expensive when
the identification of optimal roughness and texturing of surfaces
is a matter of research, to achieve desired tribological responses
for industrial applications. One further possibility to shorten the
simulation time may be the use of genetic algorithms (Cinat et al.)
or artificial neural network architectures (Kalliorinne et al.) that
open new perspectives in data-driven identification and machine
learning techniques applied to contact mechanics.

While the BEM allows simulating contact with an arbitrary
shaped surface (as long as the half-space-approximation for the
response is valid), most studies on rough surfaces focused on the
so-called randomly rough surfaces. Borodich et al. stress in their
paper that randomly rough surfaces are only a small sub-class of
all surfaces and correlated roughness may completely change the
contact mechanical properties even if the power density of
roughness remains unchanged. A comparative study of the
effect of structural parameters on the contact area for
randomly rough, anisotropic and correlated random surfaces is
undertaken by Zhou and Müser. In particular, the authors show
that the famous parameter κ (coefficient connecting the real
contact area with normal load and rms slope) is not a
function of the Nayak parameter alone [Nayak (1971)]. The
study also attracts attention of researchers to the fact that at
small contact area the statistics of the contact profile is not the
same as that of the full rough surface. This dependence maybe the
reason for the weak dependency of the coefficient of friction of
elastomer materials on the normal load [Popov et al. (2018)].

INFLUENCING FACTORS OF FRICTION

One of the pioneers of the use of Quartz Crystal Microbalances
(QCM) for studies of friction, J. Krim, examines together with her
co-authors the limits of macroscopic continuum mechanics, by
probing where continuum methods break down as the atomic
scale is approached. They find that contacts with water solutions
are very well described by macroscopic theory up to nanometer
scale, but the model failed to adequately describe contacts
lubricated with the suspension of nanoparticles with radius
20 nm. However, its continuum nature did not appear to be
the dominant factor underlying failure, which is most probably
due to other factors not correctly described in the model. Further
investigations are necessary.

Ozaki et al. suggest a loop-type coupled analysis scheme to
bridge the mesoscale and macroscale domains of friction analysis.
Specifically, the mesoscale multipoint contact model was linked
with the macroscale finite element analysis model via the rate-,
state-, and pressure-dependent friction model previously
proposed by the authors.

Kinetics of elastomer friction is an important phenomenon for
dynamic applications. Nakano and Kono show that the character
and the very existence of kinetics do depend on how stiff the body
is fixed normally to the contact surface, which means that the

friction coefficient is not a material constant even in simple
sliding contacts.

An old problem of fundamental importance for the
understanding of friction and its applications is the interplay
between oscillations and friction. Vibrations can strongly
influence friction, which in turn often leads to vibrational
instabilities [Bowden and Tabor (1950)]. Thus, friction should
always be understood as the interplay of dynamics and friction on
different spatial and temporal scales. This interplay has many
aspects which have been studied intensively in the past decades.
The paper by M. Popov gives a high-level overview of active
control of friction by normal, lateral and transverse vibrations
and derives the main properties of friction under oscillation from
a purely macroscopic contact-mechanical model. In addition to
classic influencing factors such as frequency and amplitude, the
key role of contact stiffness is emphasized and the effectiveness of
various oscillation waveforms is discussed. Pohrt extends the
discussion by employing a BEM model to include the effect of
partial slip. Using the same approach, he introduces rotational
oscillations and finds favorable properties to reduce the
observable macroscopic friction.

WEAR

The name of James Greenwood is known to every tribologist, first
of all due to his works on contact mechanics of rough surfaces
[Greenwood and Williamson (1966)]. Even more attention
deserves his appeal “Stop studying the purely normal contact
of rough surfaces!” In his opinion-paper Metal Transfer and
Wear,” he writes: “These thoughts are offered as a reminder that
Tribology is not all about the normal contact of fractal surfaces,
and indeed, not all about elastic contact of rubber and polymers,
or even about dry contact.”

This recalls that wear is one of the most complicated, yet
unexplained, phenomena in tribology. The difficulties start
already by the definition of this notion. Reichelt and Cappella
examine various wear definitions and various experimental
methods to measure wear and estimate the error sources.

Just as in frictional processes, wear can be influenced by
oscillations–both in the cases of partial slip and gross slip.
Oscillations may lead to a specific kind of wear called fretting.
On the other hand, they may lead also to the damage of material
in form of fretting fatigue. In the review paper by Argatov and
Chai, both partial and gross slip situations are considered, and the
authors provide a review of recent works on fretting wear. They
consider such aspects as the force-controlled steady-state regime,
wearing-in period, wear of functionally graded materials, limiting
profile, wear accumulation. The authors also discuss various
analytical approaches including the MDR-based approach.

While the very often used Archard wear law is a very strong
simplification which is not always confirmed by experiments
[Meng and Ludema (1995)], it is still used for qualitative
estimation of wear processes in a limited range of parameters,
as done in the paper by Dimaki. The author provides an analysis
of the wear rate as function of time and compares theoretical
prediction with available experimental data.
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ADHESION

Adhesion has been one of the most debated topics in contact
mechanics in the last years. This interest was driven by many
factors including the bio-medical applications and general interest
to “soft matter.” Adhesion has been incorporated into the FFT-
based BEM. The most simple and straightforward implementation
is available for JKR-type adhesion [Popov et al. (2017)]. In this case,
the inclusion of adhesion not even influence the computation time.
However, adhesive contacts have been studied mostly theoretically
and experimental results are still sparse. Lyashenko and Pohrt
contribute to closing this gap providing a detailed experimental
study of the influence of roughness on adhesion between rigid
indenter and soft rubber layer.

In the context of contact mechanics, only very simple models
of adhesion are considered. For industrial applications, however,
material parameters are important which cannot be reduced to
the work of adhesion but take also into account the propensity of
a material to detach due to cavitation. Material aspects are
considered in the paper by Fuensanta and Martín-Martínez.

Adhesion can also lead to elastic instabilities and formation of
regular patterns with a characteristic wavenumber. Joe et al.
analyze the effect of surface roughness on adhesive instabilities
for the elastic layer and find that for moderate to large RMS
amplitudes, roughness exerts a stabilizing effect, but low RMS
roughness can trigger the instability in ranges where the uniform
layer would be stable.

Another much debated topic related to adhesion is adhesive
contact under tangential loading. This is an example of a topic
where there are as much opinions as are authors. In-depth
experimental studies with accompanying theoretical modeling
started only very recently. The processes occurring at the onset of
sliding of elastomer multicontacts are studied theoretically and
experimentally by Scheibert et al..

BIOTRIBOLOGY

Contact mechanics of cells, in particular their adhesion on
various surfaces has become an important and intriguing part
of contact mechanics. In her review paper “Hallmarks of Life in
Single Cell Contact Mechanics: Outstanding Challenges and
Perspectives,” Moreno-Flores places the focus on cultured
mammalian cells and on experimental techniques that rely on
contact mechanics, in particular scanning-probe and traction
force microscopies. The importance of time as key variable in
theory and experiment is highlighted, together with the cellular
structures and organelles needed to correctly understand the
mechanobiology of cells.

Electrovibration is one of the key technologies in surface
haptics. By inducing controlled electrostatic forces, the friction
within a sliding contact between the human finger and a
capacitive screen is modulated, which in turn gives effective
tactile feedback to the user. Such powerful haptic displays can
be built into mobile phones, tablets, navigation devices, games
consoles and many other devices of consumer electronics.
However, due to the layered structure and complex material of

human skin, the underlying contact mechanical processes have
not yet been fully understood. Heß and Forsbach develop a
macroscopic model for sliding friction of a fingerpad over a
smooth surface under electroadhesion, which is based on new
theoretical approaches as well as finite element simulations using
the Ogden model to account for skin stiffening. It provides
reasonable results for all contact mechanical quantities. In
particular, the predicted friction force and friction coefficient
show excellent agreement with experimental data over the entire
range of relevant voltages and applied normal forces.

In his mini review “Milestones in Natural Lubrication of
Synovial Joints,” Ruggiero focuses on the history of research
related to lubrication of human synovial joints. He carefully
examines existing models of synovial joint lubrication and
their fundamental mechanisms: boundary, weeping,
elastohydrodynamic, squeeze-film, as well as boosted
lubrication and ultrafiltration. The rheology of the synovial
fluid which plays a key role in natural joints, is also described;
various existing laws of its description are given in the historical
vein both in the Newtonian model and in the non-Newtonian
one. As often, such historical view allows highlighting the main
“milestones” of the research which remain the “pillars” of our
present understanding and contribute to scientific cooperation
between tribology, biology and medicine in general, as well as to a
deep understanding of the complex phenomena acting in
biological tribosystems.

One of the central processes in lubrication is cavitation. As a
matter of fact, without cavitation no bearing capacity can exist.
However, cavitation belongs to the most complicated processes
for mathematical modeling. In his mini review, Geike describes
the current state of research in this area.

INFLUENCE OF PLASTICITY AND
INTERNAL STRESSES

Stiff hard coatings, such as TiN or CrN on metallic substrates, are
often used to enhance tribological properties of components. A
mismatch of the Young’s moduli at the coating/substrate interface
can lead to additional stresses in the coated system. To reduce this
effect, functionally graded materials can be used. An even simpler
solution is the usage of a single middle-layer, which has an
intermediate Young’s modulus between the substrate and
coating. Parel et al. show in their paper that both strengthening
and weakening effects can be observed in bilayer coated spherical
contacts, depending onmaterial and geometric parameters of layers.

Pape et al. study the influence of residual stresses on the fatigue
life of rolling bearings in dependence on the production
processes.

Very often, formation of the surface topography during
frictional sliding is attributed to wear. However, another
mechanism of surface roughening is just the volume plastic
deformation of a spatially heterogeneous material. Romanova
et al. simulate how the internal heterogeneity of amaterial leads to
surface roughening during deformation.

The editors thank all authors of this excellent book which
impressively documents the current state of contact mechanics
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and friction theory and discusses the prospects for the future. It
shows clearly that contact mechanics and friction is not only
important but also beautiful branch of science of high
technological and esthetical value.

AUTHOR CONTRIBUTIONS

All authors have contributed equally to this work and share first
authorship.

REFERENCES

Bowden, F. P., and Tabor, D. (1950). The friction and lubrication of solids. Oxford,
United Kingdom: Oxford University Press.

Erdemir, A., and Martin, J.-M. (Editors) (2007). Superlubricity (Amsterdam,
Netherlands: Elsevier). doi:10.1016/B978-0-444-52772-1.X5029-X

Ge, X., Li, J., and Luo, J. (2019). Macroscale superlubricity achieved with various
liquid molecules: a Review. Front. Mech. Eng. 5, 2. doi:10.3389/fmech.2019.
00002

Goryacheva, I. G. (1998). Contact mechanics in tribology. New York, NY: Kluwer
Academic Publishers.

Greenwood, J. A., and Williamson, J. B. P. (1966). Contact of nominally flat
surfaces. Proc. R. Soc. A: Math. Phys. Eng. Sci. 295 (1442), 300–319. doi:10.1098/
rspa.1966.0242

Heß, M. (2011). Über die exakte Abbildung ausgewählter dreidimensionaler
Kontakte auf Systeme mit niedrigerer räumlicher Dimension. Göttingen,
Germany: Cuvillier-Verlag.

Klein, J. (2013). Hydration lubrication. Friction 1, 1–23. doi:10.1007/s40544-013-
0001-7

Meng, H. C., and Ludema, K. C. (1995). Wear models and predictive equations:
their form and content. Wear 181-183, 443–457. doi:10.1016/0043-1648(95)
90158-2

Müser, M. H., Dapp, W. B., Bugnicourt, R., Sainsot, P., Lesaffre, N., Lubrecht, T. A.,
et al. (2017). Meeting the contact-mechanics challenge. Tribol. Lett. 65, 4.
doi:10.1007/s11249-017-0900-2

Nayak, P. R. (1971). Random process model of rough surfaces. J. Lubricat. Technol.
93, 398–407. doi:10.1115/1.3451608

Popov, V. L., Heß, M., andWillert, E. (2019). “Handbook of contact mechanics,” in
Exact solutions of axisymmetric contact problems. Berlin Heidelberg: Springer-
Verlag. doi:10.1007/978-3-662-58709-6

Popov, V. L., Pohrt, R., and Li, Q. (2017). Strength of adhesive contacts: influence of
contact geometry and material gradients. Friction 5, 308–325. doi:10.1007/
s40544-017-0177-3

Popov, V. L., Voll, L., Kusche, S., Li, Q., and Rozhkova, S. V. (2018). Generalized
master curve procedure for elastomer friction taking into account dependencies
on velocity, temperature and normal force. Tribology Int. 120, 376–380. doi:10.
1016/j.triboint.2017.12.047

Rabinowicz, E. (1995). Friction and wear of materials. 2nd Edn. New York, NY:
John Wiley & Sons.1st Edn 1965.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Goryacheva, Paggi and Popov. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Mechanical Engineering | www.frontiersin.org March 2021 | Volume 7 | Article 6497925

Goryacheva et al. Editorial: Contact Mechanics Perspective of Tribology

10

https://doi.org/10.1016/B978-0-444-52772-1.X5029-X
https://doi.org/10.3389/fmech.2019.00002
https://doi.org/10.3389/fmech.2019.00002
https://doi.org/10.1098/rspa.1966.0242
https://doi.org/10.1098/rspa.1966.0242
https://doi.org/10.1007/s40544-013-0001-7
https://doi.org/10.1007/s40544-013-0001-7
https://doi.org/10.1016/0043-1648(95)90158-2
https://doi.org/10.1016/0043-1648(95)90158-2
https://doi.org/10.1007/s11249-017-0900-2
https://doi.org/10.1115/1.3451608
https://doi.org/10.1007/978-3-662-58709-6
https://doi.org/10.1007/s40544-017-0177-3
https://doi.org/10.1007/s40544-017-0177-3
https://doi.org/10.1016/j.triboint.2017.12.047
https://doi.org/10.1016/j.triboint.2017.12.047
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


REVIEW
published: 11 August 2020

doi: 10.3389/fmech.2020.00065

Frontiers in Mechanical Engineering | www.frontiersin.org 1 August 2020 | Volume 6 | Article 65

Edited by:

Valentin L. Popov,

Technical University of

Berlin, Germany

Reviewed by:

Lars Pastewka,

University of Freiburg, Germany

Wenling Zhang,

University of Alberta, Canada

*Correspondence:

Chenhui Zhang

chzhang@tsinghua.edu.cn

Specialty section:

This article was submitted to

Tribology,

a section of the journal

Frontiers in Mechanical Engineering

Received: 21 May 2020

Accepted: 06 July 2020

Published: 11 August 2020

Citation:

Yu Q, Chen X, Zhang C and Luo J

(2020) Influence Factors on

Mechanisms of Superlubricity in DLC

Films: A Review.

Front. Mech. Eng. 6:65.

doi: 10.3389/fmech.2020.00065

Influence Factors on Mechanisms of
Superlubricity in DLC Films: A Review
Qingyuan Yu, Xinchun Chen, Chenhui Zhang* and Jianbin Luo

State Key Laboratory of Tribology, Tsinghua University, Beijing, China

As a kind of self-lubricating material, diamond-like carbon (DLC) film is famous for

its excellent tribological properties. Superlubricity state with nearly-vanishing friction

achieved with DLC film has enormous potential applications in future mechanical

systems. It is pointed out that its superlubricity state is highly related to both the

inherent properties of the DLC film and external sliding conditions. Moreover, the

underlying mechanisms of the superlubricity are complicated, posing uncertainties on

their engineering application. This review provides an overview of the influence factors,

including film composition, ambient, temperature, normal load, and sliding velocity and

their correlations with the anti-friction behaviors of DLC films. These understandings

will enable a more effective engineering application of self-lubricating carbon films with

excellent tribological properties.

Keywords: diamond-like carbon, superlubricity, friction, influence factor, mechanism

INTRODUCTION

Friction is one of the decisive factors affecting the efficiency and service life of a mechanical system.
Statistically, 23% of global energy consumption is due to the friction-related activities, of which 40%
can be prevented through application of advanced surface, material and lubrication technologies
(Holmberg and Erdemir, 2017). With the increasing demand on higher efficiency, power and life
of mechanical systems, studies on reducing friction and wear are becoming increasingly important
both from the economic and environmental perspectives. The discovery of superlubricity provides
a possibility to reduce tribological consumption to an extremely low level, and has triggered
increasingly extensive attention from researchers around the world over the past three decades.

The concept of superlubricity was firstly brought out by Hirano in a theoretical prediction based
on calculations that the friction force could reach zero level when two crystal surfaces sliding in
an incommensurable condition (Hirano and Shinjo, 1990). And it was soon verified by nanoscale
friction test on cleaved mica surfaces with different contact angles (Hirano et al., 1991). Now this
ideal friction vanishing state is generally redefined as structural superlubricity, and the concept of
superlubricity is generally accepted as a sliding state with a kinetic fiction coefficient bellow 0.01
(Erdemir and Eryilmaz, 2007). Around 2000s, with the rapid increase of research investment, more
superlubricity phenomena have been revealed, which can be generally divided into solid and liquid
superlubricity, respectively. In nanoscale or microscale, superlubricity is achievable via a variety
of solid materials such as layered materials like graphite, graphene (Dienwiebel et al., 2004), BN
(Song et al., 2018), and MoS2 (Martin et al., 1993), atomically smoothed crystals including covalent
crystals like Si (001) (Hirano et al., 1997), ionic crystals (Socoliuc et al., 2004) like NaCl, metallic
crystals like Ag (Goto and Honda, 2004). To date, various carbon-based materials have been found
to be capable of achieving superlubricity (Chen and Li, 2020), for instance, C60 intercalated graphite

11

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://doi.org/10.3389/fmech.2020.00065
http://crossmark.crossref.org/dialog/?doi=10.3389/fmech.2020.00065&domain=pdf&date_stamp=2020-08-11
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles
https://creativecommons.org/licenses/by/4.0/
mailto:chzhang@tsinghua.edu.cn
https://doi.org/10.3389/fmech.2020.00065
https://www.frontiersin.org/articles/10.3389/fmech.2020.00065/full
http://loop.frontiersin.org/people/984687/overview
http://loop.frontiersin.org/people/737703/overview


Yu et al. Mechanisms of DLC Superlubricity

films (Miura et al., 2005), carbon nanotubes (Zhang et al., 2013),
graphite or graphene, ultra-nanocrystalline diamond (Kumar
et al., 2011), onion-like/fullerene-like carbon (Gong et al.,
2017), and diamond-like carbon (Erdemir and Eryilmaz, 2014).
Nevertheless, most of these superlubricity behaviors are based
on the incommensurable contact of the ultra-smooth crystalline
surfaces, which is still far from being applicable for engineering
due to the diversified interferences in macroscopic tribo-systems.

Diamond-like carbon (DLC) film is a class of carbon-based
amorphous coating, which exists in the form of a disordered
covalent network of sp1, sp2, and sp3 hybridized carbon
atoms, and has the ability to introduce other elements such
as hydrogen into the film. According to the differences in
structure and doped materials, DLC can be generally divided into
amorphous carbon (a-C), hydrogenated amorphous carbon (a-
C:H), tetrahedral amorphous carbon (ta-C), and hydrogenated
tetrahedral amorphous carbon (ta-C:H) (Robertson, 2002). The
synthesis methods of DLC films can be divided into physical
vapor deposition (PVD) and chemical vapor deposition (CVD).
With the development of these technologies, DLC coatings can
be deposited flexibly on a variety of materials such as silicon,
ceramic, glass, metal, and rubber. Meanwhile, by changing
the deposition conditions, their structure and composition
are adjustable to obtain superior mechanical and tribological
properties for different application conditions.

DLC was first synthesized around the 1950s. Systematic
research on DLC started in the 1970s (Aisenberg and Chabot,
1971). Later in 1981, Enke reported the superlubricity behavior
of DLC films with a friction coefficient of 0.005 in ultrahigh
vacuum (Enke, 1981). In the 1990s, superlubricious capacity of
a-C:H in vacuum was systematically studied by Donnet et al.
(1994) and Donnet and Grill (1997). In 2000, an ultralow friction
coefficient of 0.002 was achieved with self-mated a-C:H tested
in nitrogen and argon atmosphere (Erdemir et al., 2000a), and
an ultra-long superlubricity lifetime of 32 days was achieved
(Erdemir et al., 2000b), as shown in Figure 1A. Recently, an

FIGURE 1 | (A) Superlubricity with extremely long-lasting time of 32 days achieved with a-C:H films in N2 environment. Adapted with permission, Erdemir et al.

(2000b) Copyright 2000, Elsevier Science B.V. (B) Extremely low friction coefficient below 0.0001 achieved with a-C:H films in H2 environment under heavy load.

Adapted with permission from Nosaka et al. (2017) Copyright 2017, Japanese Society of Tribologists.

extremely low friction coefficient of 0.0001 under heavy load
was achieved with a-C:H in hydrogen atmosphere (Nosaka et al.,
2017), as shown in Figure 1B. These results indicate that a-
C:H films are capable of achieving stable superlubricity under
dry inert atmosphere, vacuum and hydrogen, and the underling
mechanism is closely related to friction-induced structural
transformation of the contact area and tribo-chemical interaction
between the sliding surfaces. Further researches have shown
that introducing silicon (Chen et al., 2014, 2017) or sulfur
(Freyman et al., 2006) into a-C:H films can significantly reduce
its sensitivity to oxygen or water vapor, leading to superlubricity
in humid air via novel pathways. Fullerene-like hydrogenated
amorphous carbon (FL-C:H) films also exhibit superlubricious
properties in both nitrogen and air (Wang et al., 2008). Kato et al.
suggested that carbon nitride (CNx,) can achieve superlubricity
in nitrogen atmosphere without the presence of hydrogen (Kato
et al., 2003; Adachi and Kato, 2008). Table 1 shows the timeline
of the research progress on solid superlubricity achieved with
DLC films. As for liquid lubrication, researches showed that
hydrogen-free ta-C can achieve superlubricity with the assistance
of ester additive (Kano, 2006), glycerol (De Barros Bouchet et al.,
2007), unsaturated fatty acids (Kuwahara et al., 2019). DLC
lubricated with nano boron nitride particle dispersed in PAO is
also available to achieve superlubricity (Zeng et al., 2013).

To date, a growing interest in superlubricious DLC is aroused,
and diversified superlubricity pathways have been discovered.
Nevertheless, most of these superlubricity phenomena are
achieved in strictly controlled lab conditions. The influencing
mechanisms of environment and working conditions are
complicated, and are still not fully comprehended, which poses
uncertainties on the effective manipulation of superlubricious
DLC films in mechanical engineering. In recent decades,
numerous researches have been done, aiming at uncovering
these mechanisms and optimizing the performance of DLC
films in complicated environments. In the following sections, a
review of superlubricity of DLC is provided in the perspective
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TABLE 1 | Research progress on the solid superlubricity achieved with different

types of DLC films under various environments.

Published

year

Film

type

Test

environment

Friction

coefficient

References

used

1981 a-C:H Vacuum 0.005 Enke, 1981

1994 a-C:H Vacuum 0.006 Donnet et al.,

1994

2000 a-C:H Nitrogen 0.002 Erdemir et al.,

2000a

2003 CNx Nitrogen 0.009 Kato et al., 2003

2006 a-C:H:S Humid air 0.004 Freyman et al.,

2006

2014 a-C:H:Si Humid air 0.004 Chen et al., 2014

2017 a-C:H Hydrogen 0.0001 Nosaka et al.,

2017

of influence factors as shown in Figure 2. Film composition is
one of the key factors for the establishment of superlubricity. The
influences of different elements, including hydrogen, fluorine,
silicon, nitrogen, and metallic elements are discussed in section
Influence of Film Elements. Stable superlubricity achieved with
DLC films usually needs dry inert gaseous atmosphere or
hydrogen environment. Though the friction of DLC films in
vacuum is extremely low, their wear rate is very high. And it is
still a challenge for DLC to achieve superlubricity in oxygen and
water containing environments. The environmental sensitiveness
and its mechanisms and controlling methods are discussed
in section Influence of Environments. From the perspective
of engineering applications, it is important to understand the
influences of working conditions such as temperature, normal
load and sliding velocity on the superlubricity of DLC films. The
influence rules and their underlying mechanisms are introduced
in section Influence of Testing Parameters. Finally, section
Discussion and Conclusion presents the most prevailing theories
for the mechanisms of superlubricity in the perspective of
origin of friction. The fundamental restrictions of applying
superlubricious DLC films in engineering and the approaches to
combat these deficiencies are summarized.

INFLUENCE OF FILM ELEMENTS

The proper composition of DLC films is generally considered
to be the precondition for achieving superlubricity state.
Understanding the influencing mechanism of the film elements
can enable a more effective manipulation of DLC with excellent
tribological properties. In this section, the influence of film
elements, for example, surface passivation induced by hydrogen
and fluorine and low humidity sensitiveness enabled by silicon
and sulfur, are presented. Superlubricity achieved via novel
mechanisms in carbon nitride and metal-containing DLC films
are also introduced.

Hydrogen is the most common element in DLC film, and its
proportion can be controlled by changing deposition conditions
such as the bias voltage (Chen and Kato, 2014) and the

FIGURE 2 | Major influencing factors of superlubricity achieved with DLC films.

proportion of gas source (Erdemir et al., 2000c). Most of the
hydrogen atoms exist in the form of bonded C-H, while some
of hydrogen atoms are trapped in the interstice of carbon
framework with the forms of unbonded atoms and not fully
decomposed gas source molecules (Erdemir, 2004). During dry
sliding contact, they are released in the forms of H2, CH4, and
so on (Nevshupa et al., 2019). Studies have shown that the
friction property of a-C:H is closely related with the proportion
of hydrogen (Donnet et al., 1998, 1999; Erdemir, 2001; Fontaine
et al., 2005). Generally, in vacuum or inert environments,
hydrogen-rich a-C:H films, or polymer-like carbon (PLC) films
(Casiraghi et al., 2005) with a hydrogen proportion higher than
40% are most favorable for achieving superlubricity (Donnet
et al., 1994, 1999; Gao et al., 2003). Hydrogen-free DLC such
as ta-C or a-C exhibits a very high friction coefficient up to 1
when tribo-tested in vacuum (Andersson et al., 2003). However,
implanting hydrogen ion into the surface of hydrogen-free DLC
can also lead to superlubricity (Eryilmaz and Erdemir, 2008). It
is believed that introducing hydrogen into the film matrix will
increase its void density and sp3 proportion, thereby reducing the
residual stress in the film and softening the material (Chen and
Li, 2020). Most importantly, hydrogen is speculated to passivate
the carbon dangling bonds at the sliding interface, reducing
tribochemical wear and friction caused by the formation of cross-
interfacial carbon bonds and forming an none-adhesive sliding
surface (Erdemir, 2001), as shown in Figure 3, which is proved
by simulations (Pastewka et al., 2008, 2010; Schall et al., 2010).
Meanwhile, simulations (Dag and Ciraci, 2004) also suggest that
due to the low electronegativity of hydrogen, both hydrogenated
surfaces are positively charged and generate repulsive force, thus
reducing friction and wear (Eryilmaz and Erdemir, 2008). In
addition to controlling the hydrogen proportion, introducing
other elements is also an effective approach to improve the
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FIGURE 3 | Schematic of hydrogen-passivated none-adhesive sliding surface. Adapted with permission from Erdemir (2001) Copyright 2001, Elsevier Science B.V.

mechanical and tribological performance of DLC films. Fluorine
is a case in point. Fluorine-doped a-C:H with lower hydrogen
proportion (5 at.% H, 18 at.% F) could also achieve superlubricity
with a friction coefficient of 0.005 in ultrahigh vacuum (Fontaine
et al., 2004). They also exhibited higher thermal stability,
even after annealing at a maximum temperature of 500◦C
(Nobili and Guglielmini, 2013). Fluorine, as another monovalent
element like hydrogen, has the highest electronegativity and
can effectively eliminate the dangling bond on the surfaces,
providing negatively charged surfaces and repulsive force, leading
to ultralow friction coefficients.

Silicon is another common dopant for DLC films, which
could reduce their humidity sensitiveness and improve the
thermal stability. Similar with a-C:H, a-C:H:Si films also exhibit
superlubricious properties in vacuum (Sugimoto and Miyake,
1990), nitrogen, and hydrogen environments (Chen et al., 2014).
As shown in Figures 4A,B, the lowest friction coefficient in
nitrogen could reach 0.001 for self-mated a-C:H:Si (31.9 at.%
H, 9.3 at.% Si), similar with a-C:H (∼40 at.% H) (Chen
et al., 2017). Moreover, under certain conditions, it could
also achieve superlubricity in humid air (Chen et al., 2013),
as shown in Figure 4C, and even under liquid water (Zhao
et al., 2009). The superlubricity behavior of a-C:H:Si films is
closely related to the formation of a softer polymerlike tribo-
film in the contact area (Chen et al., 2017). Silicon is capable
of reducing sp2 proportion and stabilizing sp3 carbon network,
improving thermal stability, and reducing residual stress. During
dry sliding contact, silicon is expected to promote the phase
transformation and the tribo-softening of the interface and
involved in the evolution process of the tribofilm (Chen and
Li, 2020). In humid conditions, the formation of a silica-
like tribo-film and the hydroxyl groups attached to silicon
atoms on the surface is supposed to be an important factor
for their superlubricity behaviors, as they can directionally
absorb water molecules and form layered-like structures under
appropriate conditions.

To some extent, sulfur is similar to silicon in reducing humid
sensitivity of DLC films. Experiments showed that a-C:H:S films
(5.0 at. % S) are capable to realize superlubricity in humid
environments with RH ranging from 0 to 50% (Freyman et al.,
2006). Researchers suggested that sulfur can be involved in the
formation of thiol-like (-C-S-H) groups on the sliding surfaces,
leading to a weaker binding energy between water molecules
and the sliding surface, and hence a low friction coefficient in
humid environments.

Nitrogen doped DLC or CNx, could achieve superlubricity
via a different pathway without the assistance of hydrogen. The
friction coefficient between CNx (12 at.% N, 7 at.% O) and
Si3N4 could reach a superlubricity state when tested in nitrogen
environment, but lost this capacity in other inert ambient such
as CO2, He and vacuum (Kato et al., 2003). The mechanism is
still not fully comprehended, and the formation of a transfer
layer on the counterpart material and the establishment of a
chemical inert surface terminated by nitrogen are thought to be
the key factors.

The incorporation of metal elements such as titanium,
chromium, and tungsten in DLC films could improve their
hardness and toughness (Voevodin and Zabinski, 2000).
However, superlubricity is difficult to achieve in these cases,
mainly due to the abrasive wear effect caused by the
metallic carbide nanocrystals. Generally, in order to achieve
superlubricity, metallic elements should be controlled within a
low proportion to limit the formation of nanocrystals in the film.
Titanium-doped DLC was reported to achieve superlubricity
with a friction coefficient of 0.005 in humid air with a relative
humidity of 40%, and the authors suggested it was attributed
to the anti-oxidation effect of the TiC-rich surface and the
formation of fullerene-like structure with TiO2 cores (Zhao
et al., 2016). Titanium and silicon co-doped a-C:H films are
also capable of achieving superlubricity in air with a friction
coefficient of 0.007 (Jiang et al., 2010). Another study showed
that aluminum and silicon co-doped a-C:H films could realize
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FIGURE 4 | Contact area and extremely low friction coefficient of 0.001 achieved with a-C:H:Si (A) and (B) a-C:H. (C) Superlubricity achieved with a-C:H:Si in humid

air, dry Ar, dry N2, and Dry H2+He. Adapted with permission from Chen et al. (2014) Copyright 2014, American Chemical Society.

a superlow friction coefficient of 0.001 in high vacuum. Self-
assembled nanostructure network and fullerene-like structures
were observed to be the main factors for the superlubricity (Liu
et al., 2012).

INFLUENCE OF ENVIRONMENTS

Previous researches have shown that a-C:H films can reach
ultralow friction in clean, inert environments (such as nitrogen,
carbon dioxide, noble gases, and vacuum) and hydrogen, but it is
much challenging in oxygen or humid air (Erdemir et al., 2000c;
Chen et al., 2014). Although DLC films are capable of achieving
superlubricity in macroscale, their environmental sensitiveness
is still a barrier to limit their engineering application. In this
section, the experimental studies on superlubricious DLC films
in dry inert gaseous atmosphere, vacuum, hydrogen, oxygen, or
water containing environments are presented, respectively, and
the influence mechanisms of these environments are discussed.

Dry Inert Gaseous Atmosphere
Dry nitrogen is the most frequently used environment for
achieving superlubricity with DLC films. Generally, dry nitrogen

is considered as a kind of inert gas that can exclude the
interference of oxygen and water molecules in lab condition,
which is beneficial for the self-lubrication effect of DLC films.
The same is true with carbon dioxide and noble gases like argon.
Simultaneously, the wear rate of a-C:H in dry inert gaseous
environments is very low, sometimes even unmeasurable.
Nevertheless, though superlubricity is available in nitrogen,
carbon dioxide, and argon, the friction coefficient in argon is
higher than that in nitrogen and carbon dioxide (Erdemir et al.,
1991; Zhang et al., 2002; Ji et al., 2009), as shown in Figure 4C.
The researchers suggest that at an appropriate sliding speed,
due to the interaction between π orbital-lone pair electrons on
the film and lone pair of electrons of the molecules, N2 and
CO2 molecules are able to be absorbed on the surfaces to form
a molecule layer with another lone pair of electrons pointing
outside, generating coulomb repulsion forces and preventing the
π-π∗ interactions between the two surfaces (Ji et al., 2009).

Vacuum
Vacuum is another important environment for superlubricious
DLC films due to their superior properties for space applications
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(Vanhulsel et al., 2007). Researchers have shown that hydrogen-
free DLC film exhibit a drastic friction and wear in vacuum with
a fricion coefficient as high as 1 (Erdemir and Eryilmaz, 2014),
while hydrogen-rich DLC films are able to achieve superlubicity
of 0.006–0.008 in vacuum from 10−7 to 10−1 Pa (Donnet
et al., 1994). However, compared with that in dry inert gaseous
environment and hydrogen, the wear rate of a-C:H films is
generally high in vacuum (Fontaine et al., 2001), which is still
a barrier for their effective application in aerospace. Compared
with the inert gas ambient, the vacuum environment mainly
has three distinct characteristics theoretically (Xue and Wang,
2012). Firstly, the protective effects of absorbed gas molecules
mentioned above do not exist, leading to a higher chance for
π-π∗ interactions and hence tribochemical interactions between
two surfaces. Secondly, convection heat transfer enabled by gas
medium is not available, resulting in a higher flash temperature
of the contact area, which facilitates their tribochemical reactions
and hydrogen loss. Thirdly, the main free path of molecules in
vacuum is significantly higher than that in gas ambient, which
could increase the diffusion and loss speed of hydrogen on
the contacting surfaces, and resulting in a higher wear rate.
Improving the hydrogen proportion is an available approach to
prolong the lasting time of superlubricity state in vacuum. For
example, experiments showed that a-C:H films with a hydrogen
proportion of 34% could only maintain the durability of about
40 cycles, while under the same circumstances a-C:H films with a
higher hydrogen content up to 40% could maintain more than
500 cycles (Fontaine et al., 2001). In another experiment, the
superlubricity state of DLC film with 50% of hydrogen lasted for
about 34,000 cycles (Vanhulsel et al., 2007). In addition, another
approach to prolong their lifetime in vacuum is introducing
other elements into the film. For instance, sulfur-containing
DLC films exhibit a higher sustainability but a relatively large
friction coefficients in vacuum (Moolsradoo and Watanabe,
2010). Titanium and silver co-doping can also prolong the
superlubricity lifetime of DLC films in vacuum. It has been
observed that Ag was agglomerated on the sliding surface due
to cold welding effect, and the anti-friction property of Ag
contributed to the superlubricity behavior of the DLC film (Wang
et al., 2012).

Hydrogen Ambient
As mentioned above, hydrogen contained in the film matrix or
implanted at the surface is important for achieving superlubricity
due to its passivation effect. Similarly, hydrogen gaseous
ambient is also an advantageous environment for achieving
superlubricity. The lasting time and friction coefficient of
superlubricity state achieved with same DLC films in hydrogen
is significantly superior than that in helium or vacuum (Fontaine
et al., 2001), and the lasting time increased with the elevating
pressure of hydrogen gas (Fontaine et al., 2005). Furthermore,
hydrogen environment could significantly lower the friction
coefficient of hydrogen-free ta-C films or a-C films, and even
reach the superlubricity state (Erdemir and Eryilmaz, 2014;
Okubo et al., 2015). In the hydrogen environment, an extremely
low friction coefficient of 0.0001 was achieved with the tribo-
couple of hydrogen-rich DLC films and ZrO2 counterpart under

a heavy load of 2.6 GPa, as shown in Figure 1B (Nosaka et al.,
2017). The researchers illustrated that hydrogen molecules in
ambient are able to be involved in the tribochemical interactions
at the surface with the assistance of shear force and flash
temperature in the contact area, leading to the formation of a
hydrogen passivated surface (Chen and Li, 2020). The researchers
suggested that ZrO2 could act as a catalyzer to promote the
disintegration of H2 into dissociative H, which facilitated the
tribochemical process and contributed to the extremely low
friction (Nosaka et al., 2017). It should be point out that during
dry sliding contact, the film itself was observed to release gaseous
molecules such as hydrogen, methane, carbonic oxide, as the
molecules were squeezed out from the carbon framework or
tribo-chemically generated during sliding contact (Nevshupa
et al., 2019). The released gas molecules also took part in
the tribochemical interaction in the contact area, and some
researchers speculated that these released gaseousmolecules were
confined in the contact area, which was possible to act as gas
bearing due to the elasto-hydrostatic effect and reduced the
friction coefficient (Kato et al., 2018).

Oxygen and Water Containing Ambient
Although DLC films are capable to achieve ultralow friction and
wear in dry inert environment, it is still a challenge to optimize
their tribological properties in humid atmosphere. In ambient
air, hydrogen-rich DLC films generally exhibit higher friction
coefficients and it is much harder to achieve superlubricity,
while hydrogen-free DLC films exhibit lower friction coefficient
in humid environment (Ronkainen and Holmberg, 2008). This
difference is mainly induced by the interruption of oxygen and
water molecules in tribochemical-induced structural evolution
on the surface. Experiments have shown that from ultra-high
vacuum to several thousand Pa of dry oxygen, the superlubricity
behaviors of a-C:H films are not significantly influenced (Donnet
et al., 1998). However, when the pressure of oxygen reaches
above this threshold, the friction coefficient increases with it
obviously (Kim et al., 2006). Some researchers believed that an
oxide layer with a depth of several nanometers would be formed
on the top of films due to the exposure to oxygen, which was
one of the factors explaining the high friction coefficient in the
running-in process (Al-Azizi et al., 2015). According to classical
molecular dynamics simulations, oxygen molecules can cause the
breakdown of carbon chains step by step and finally convert
them into carbon dioxide (Moras et al., 2011). Meanwhile, the
formation of C-O-C bonds bridging two contact surfaces can also
induce adhesive effect and result in higher friction coefficients
(Zeng et al., 2018).

Compared to oxygen, water molecules have more
significant impacts on the superlubricity of DLC films, and
the corresponding mechanisms are more complicated. For
hydrogen-free DLC films, humidity usually has a positive
influence, which can reduce the friction coefficient from 0.7 to
a relatively low value below 0.2 (Fontaine et al., 2008). Some
researches even showed that cleaved (111) diamond could
realize superlubricity at 85% relative humidity when sliding
perpendicular to their cleaved lines (Liu et al., 2007). However,
the impacts of water molecules on hydrogen-rich DLC films are
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quite otherwise. When humidity increases above a threshold,
the superlubricity state will be interrupted, and their friction
coefficient would increase above 0.05, approaching that of
hydrogen-free DLC films (Fontaine et al., 2008). More detailed
experiments showed that the threshold of water pressure was
around 10 Pa, which was two orders of magnitude lower than
that of oxygen, as shown in Kim et al. (2006). Several hypotheses
have been proposed to explain this phenomenon. Firstly, water
molecules are involved in the tribochemical interactions in
the contact area. Calculations suggest that water molecules are
energetically favorable to chemically absorb on the carbon chains
(Moras et al., 2011). For hydrogen-free DLC films, this process
can provide hydrogen and hydroxyl terminations, which could
passivate the contact area. However, for hydrogen-rich DLC
films, the oxygen-containing groups would cause hydrogen
bond interactions, leading to higher adhesion force between
the sliding surfaces. Energy dissipation during physical and
chemical interactions between water molecules and the film also
possibly contribute to the increase of friction. Secondly, higher
humidity is also a barrier for the formation of a compact, robust
carbonaceous transferfilm on the counterpart material (Donnet
et al., 1998), which is considered to be a pivotal factor for DLC
films to establish a non-adhesive sliding surface and realize
their self-lubrication function. Thirdly, the physically absorbed
water layer in humid ambient is also an influential factor.
Experiments showed that about 1.5 layers of water molecules will
be absorbed on a-C:H surface when the pressure of water was
around 700 Pa (Shukla et al., 2003), and the adhesive force and
friction force of a-C:H films would significantly increase when
the thickness of absorbed water was higher than 1 monolayer
(Tagawa et al., 2004). It is believed that the dipole-dipole
interactions, the viscous drag effect, and the capillary effect of
water layer absorbed on the film ultimately lead to a higher
friction coefficient. As mentioned above, to combat the adverse
impact of water molecules, introducing other elements such
as silicon (Chen et al., 2013), sulfur (Freyman et al., 2006), or
titanium (Zhao et al., 2016) is an effective approach. In these
cases, water layers absorbed on the surfaces are utilized to
establish the easy-shearing sliding surface. As shown in Figure 5,
when sliding in moderate humid environment, silicon atoms
were involved in the formation of a soft silica-like tribofilm and
provided hydroxylated sliding interfaces with Si-OH termination
and attracted water molecules directionally to arrange on
the surface by hydrogen bond (Chen et al., 2013). Molecular
dynamics simulations suggested that the layered water structure
was robust in a wide range of normal loads and was capable of
providing low shearing stress via boundary lubrication effect
(Washizu et al., 2007).

In summary, the physical and chemical interactions between
gas molecules and surfaces play an important role in the
self-lubricating process of DLC films. The physical influences
of environment are relative moderate, mainly through energy
dissipation during the adsorption and desorption of gas
molecules, heat transformation of contact area, elastic fluid
dynamic pressure effect of gas in high-speed condition. The
chemical reaction between surrounding molecules and surface
material plays a most important role in the formation of

tribolayers and passivation of dangling bonds, which governs the
superlubricity properties of DLC films.

INFLUENCE OF TESTING PARAMETERS

Understanding the performance of DLC films in different
working conditions are important for the engineering application
of these self-lubricating materials with superlubricity potential.
In this section, the influence of temperature, normal load
and sliding velocity are presented, respectively, and the most
prevailing theories explaining their impacts on superlubricity
are discussed.

Temperature
One of the advantages of solid lubricants is that they
are applicable under both cryogenic and high temperature
conditions where liquid lubrication cannot work. DLC is a
case in point, which is capable of achieving ultralow friction
coefficient in a wide range of temperatures. Temperature is
also a core factor influencing physicochemical reaction, phase
transformation and evolution of tribofilm, which fundamentally
affects the superlubricity behavior of DLC films. DLC films
exhibit superior tribological properties with a decreasing friction
coefficient from cryogenic temperature to room temperature in
ultrahigh vacuum (Aggleton et al., 2009). This trend continues
in ambient air until reaching the lowest friction coefficient
around 200–300◦C, and then friction increases with elevated
temperature (Lee and Wei, 2006; Zeng et al., 2015). Generally,
in a moderate extent, the increase of temperature facilitates
tribochemical reaction rate, which is conducive to friction-
induced evolution of tribofilm and self-lubrication of DLC films.
Specifically, more graphitization was observed (Zeng et al.,
2015) and hydrogen emission rate was improved, promoting a
more effective establishment of easy-shearing, highly passivated
tribofilms. Meanwhile, the suppressed adsorption of gas or liquid
layer at higher temperature may also be responsible for lower
friction. Nevertheless, the heat resistance property of DLC films
is confronted with a threshold. As the temperature is being
higher, hydrogen spontaneous emission will become significant
around 400–450◦C (Liu et al., 1996), obvious thermal-induced
graphitization will occur at around 500◦C (Fink et al., 1983;
Zeng et al., 2015), and thermal decomposition of C-H bond
will start around 700◦C (Su and Lin, 1998). These processes
will result in an overquick hydrogen loss and more intensive π-
π interactions, thus leading to higher friction coefficients. The
deterioration caused by oxidation in ambient air also becomes
a dominant factor, resulting in more extensive bond cleavage,
and surface abrasion. As mentioned above, doping silicon or
silicon-oxide into DLC films is an effective method to improve
their thermal stability (Mangolini et al., 2018). Research shows
that the friction coefficient of a-C:Si film is lower than 0.02 at a
temperature ranging from 250 to 450◦C (Jantschner et al., 2014).
Adversely, in cryogenic condition, the tribochemical interaction
and evolution of self-lubricated tribofilm are slowed down, and
the flexibility of carbon network will be limited, leading to a
higher friction coefficient. It should be pointed out that the
friction coefficient of DLC films as well as other materials may
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FIGURE 5 | Friction coefficient of a-C:H:Si under different humidities (A) and its lubricating mechanism: (B) layer-like water absorption on the hydroxylated surfaces at

moderate relative humidity and (C) liquid-like water absorption under high relative humidity. Adapted with permission from Chen et al. (2013) Copyright 2013, IOP

Publishing Ltd.

have a peak around 100K, which is considered to be a common
character possessed by various materials. This phenomenon is
governed by the competition process between thermally activated
formation and rupturing of atomic contact (Barel et al., 2010).

Friction induced temperature rise, or flash temperature of
the contact area should also be considered. In some cases,
the temperature rise could reach above 200◦C (Yamamoto
et al., 2019). Theoretically, temperature rise is depending on
the friction energy and the thermal conductivity of the tribo-
pairs, and is interrelated with other factors, such as applied
normal load, contact diameter, and sliding velocity, which can be
estimated by the following formula (Rabinowicz, 2013):

1T = µFnv/4J (K1 + K2) a (1)

where µ is the friction coefficient, Fn is the normal load, v
is the sliding velocity, a is the radius of contact area, J is a
constant, K1 and K2 are the thermal conductivities of ball and
disk, respectively. Higher friction energy or sliding velocity could
induce more significant temperature rises, while lager contact
area would restrain temperature rise. Thus, it’s possible for other

working condition parameters (such as normal load, sliding
velocity) to influence the friction properties via thermal effect.

Normal Load
Normal load is an important factor influencing the superlubricity
behavior of DLC films. Researches have shown that a-C:H films
generally exhibit lower friction properties under higher normal
load both in air (Zhang et al., 2004; Liu Y. et al., 2019) and
inert gaseous ambient such as argon and nitrogen (Kunze et al.,
2014; Chen et al., 2017). As shown in Figure 6A, the friction
coefficient of a-C:H films decreased from 0.008 to 0.001 as the
normal load increased from 2N to 10N. In vacuum, higher
normal load can significantly shorten the lifetime of DLC films
(Kunze et al., 2014). The influencing mechanism of normal load
is multi-faceted.

Theoretically, the friction coefficient of dry sliding can be
expressed as:

µ =
Ff

Fn
=

Arτ

Fn
(2)
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FIGURE 6 | (A) Friction coefficients of self-mated a-C:H at different normal loads. (B) BF-STEM image of the scar center at 5N (B) and 10N (C). Bonding fraction of

scar center at 5N (D) and 10N (E) calculated from EELS characterations. Adapted with permission from Chen et al. (2017) Copyright 2017, the authors.

where Ff is friction force, Fn is normal load, Ar is real contact
area, and τ is shear stress (Fontaine et al., 2008). Ar can
be approximately replaced by Hertz contact area which is
defended as:

Ar = kA = kπ

(

3R

4E

)
2
3

Fn
2
3 (3)

where k is the ratio of the real contact area to the apparent contact
area, A is the Hertz contact area, R and E are the effective radius
and modulus of two surface materials, respectively. Then, the
friction coefficient µ can be expressed as:

µ = kπ

(

3R

4E

)
2
3

τFn
−

1
3 (4)

When the normal load increases, with the hypothesis that the
DLC surface remains highly passivated (no structure change)
and the shearing force τ generally stays constant, the correlation
between normal load and friction coefficient is negative, which
is believed to be one of the important factor for the lower
friction under heavy load (Xue and Wang, 2012). However, as
k increases with Fn, the negative influences of Fn on µ induced

by contact area should be slighter than F
−

1
3

n , which is lower than
the tendency shown in experiments, indicating that the shearing
force τ is negatively influenced by the increasing normal load.

As mentioned above, friction-induced thermal effect may be
another possible reason for the negative correlation between
normal load and friction coefficient. At the same circumstance,
higher normal load would induce higher friction energy, which
may result in a more significant temperature rise. However,
according to Hertz contact theory, the contact diameter also
increases with the normal load, which would partly restrain the

temperature rise due to more effective thermal conduction. In
formula (1), if we replace a with Hertz contact radius and replace
µ with formula (4), the temperature rise can be expressed as:

1T =
πk

4J (K1 + K2)

(

3R

4E

)
1
3

τFn
1
3 v (5)

Regarding that the shearing stress τ is also negatively affected
by normal load for DLC films, the temperature rise induced by
higher normal load should be lower. And it should be pointed out
that temperature rising is more obvious during the high-friction
state or running-in period. But for a typical superlubricity state,
the friction energy dissipation is every low (for example, no more
than 0.005W in the experiment of Figure 6), and the temperature
rise is supposed to be very small, which is not enough to
individually induce significant structural change of DLC films.
Normal load induced structural evolution of tribolayers should
be the key factor for more superior properties under heavy load.

Experiments and simulations have indicated that friction
induced structural evolution occurred during sliding contact,
which could lead to a lower shearing force τ . During this process,
normal load is a key factor. As shown in Figure 6, an extremely
low friction of 0.001 was achieved with the highest normal load
of 10N. BF-STEM images and EELS results indicated that in
this heavy-load condition, significant phase transformations of
carbon bonds from sp2 to sp3 and local ordering appeared in
the outer-most 3 nm region (Chen et al., 2017). These evidences
suggest that higher normal load could facilitate the graphitization
and hydrogen emission process in the contact area, leading to
a nanostructured sliding surface with lower shearing forces. As
shown in Figure 7, simulation with a-C films shows a similar
trend that a higher normal load could induce more significant
bond rehybridization, reorientation, and structural ordering
within a localized shearing band, and friction state changes from
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FIGURE 7 | Shear localization and phase transformation of a-C films at different contact pressures. (A,C) System snapshots for 80 and 4 GPa. (B,D) Depth profiles of

averaged C-C covalent bonding orientation angle and sp2 fraction. Adapted with permission from Ma et al. (2015) Copyright 2015, the authors.

stick-slip to continuous sliding with ultra-low friction (Ma et al.,
2015).

When DLC films are coupled with other materials, the
establishment of a robust carbonaceous transfer film on the
counterpart material is a fundamental factor for superlubricity
of DLC film, and this process is also influenced by the applied
normal load, especially in the cases that the bonding strength
between the counterpart material and carbon is relatively low
(Xue and Wang, 2012). As shown in Figure 8, when Al2O3 ball
was sliding against a-C:H films in vacuum at a normal load of 1N,
a stable ultralow friction coefficient of 0.002 was easily achieved
and continuous carbonaceous transfer layers were formed on
the ball. However, as the applied load increased to 3N, the
duration of superlubricity became shorter and ended up with
a high friction state without transferfilm observed on the ball
surface. Nevertheless, when these experiments were conducted
in air, the stable state friction coefficient decreased from 0.15
to 0.06 with the normal load varied from 1 to 5N, and an
increasingly condensed transferfilm was developed on the ball
scar (Liu Y. et al., 2019).

Sliding Velocity
Experiments have shown that sliding velocity also has a strong
effect on superlubricity of DLC films. Generally, in ambient air
or water vapor, higher sliding velocity will induce a decrease
of friction coefficient (Kim et al., 2006; Xue and Wang, 2012).
In inert gaseous ambient such as N2, similar trends were
observed (Heimberg et al., 2001). To explain this phenomenon,
multiple theories have been put forward. Friction induced

thermal effect, gas absorption, and establishment of transfer-
films are considered to be the influencing mechanisms for
this trend.

As mentioned above, higher sliding speed will induce a more
intense temperature rise due to higher friction energy, which
is possible to promote the self-lubrication properties of DLC
films. As shown in Formula (5), compared with normal load,
sliding velocity has a more significant influence on temperature
rise. Nevertheless, in most experiments, thermal effect is still not
high enough to induce dramatic structural changes of tribofilm,
as calculations suggest that for a high-friction running-in state
(µ = 0.22, Fn = 1N, v = 700 mm/s), the temperature rise
1T is only 55.3◦C (Liu et al., 2018), let alone the low energy
dissipation of stable superlubricity state with friction coefficients
lower than 0.01.

The most important factor for velocity dependence
of superlubricious a-C:H is gas absorption. In gaseous
environments, a chemical or physical absorbed layer exists
on the surface of tribo-pairs, which will be removed during each
sliding contact, causing energy dissipation, and occurrence of
friction. According to the experiments coupled with the model
based on kinetics of gas absorption (Borodich et al., 2007),
higher sliding velocity will shorten the time interval between
two slides of a single region, shortening the exposure time for
gas absorption and reducing the energy cost for their remove.
The influencing extent of sliding speed is closely related to the
characteristics and density of ambient gases. For example, in
ambient air (RH = 40%), when sliding speed increased from
262 to 2,093 mm/s, the friction coefficient was gradually reduced
from 0.16 to 0.07. In contrast, their friction coefficients in
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FIGURE 8 | (A) Friction coefficient between a-C:H and Al2O3 in air and vacuum with different normal loads. (B) The wear scars of the ball surfaces after the

tribo-testing and their Raman characterization. Adapted with permission from Liu Y. et al. (2019) Copyright 2019, the authors.

nitrogen (RH = 5%) stayed constant around 0.02 for the same
condition due to the relatively inert environment (Xue and
Wang, 2012). Experiments under different pressures of water
vapor showed that friction coefficient dropped faster with an
increasing speed at relatively low pressure (Kim et al., 2006).
Friction test with different reciprocating sliding distances at
the same speed indicated that the exposure time dependence

of superlubricity of DLC in nitrogen or carbon dioxide was
significantly higher than that in argon. Moreover, with the
increase of exposure time, their friction coefficient first decreased
and then increased. Researchers suggested that there existed
an optimized exposure time for nitrogen or carbon dioxide
directionally absorbing with π bonds and leaving lone electron
pair pointing outside, which could reduce friction due to
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repulsive force effect, inducing a minimum friction coefficient (Ji
et al., 2009).

As mentioned above, when a-C:H coated planes slide against
other materials, the establishment of a compact and continuous
carbonaceous transfer layer on the ball side is an important
factor for superlubricity. Likewise, researches have shown that
when Al2O3 ball slides against a-C:H in vacuum, superlubricity
state with friction coefficient of 0.003 can be achieved, as shown
in Figure 9A. However, fluctuation of friction force increased
with elevated sliding speed from 30 to 700 mm/s, and the
proportion of superlubricity state decreased from 78.1 to 3.1%.
According to SEM and Raman characteristics of the contact
area, as shown in Figures 9B,C, the failure of superlubricity is
always accompanied by the loss of transfer films. The authors
believe that for this condition, excessive sliding speed will result
in insufficient tribochemical interactions as well as intensified
impact and vibration of friction interfaces, making it harder for
transferlayers to be generated and tightly attached to the ball site,
and resulting in the failure of superlubricity (Liu et al., 2018).

DISCUSSION AND CONCLUSION

The influencing factors and the mechanisms of superlubricity
achieved with a-C:H films are multifaceted and interrelated.
To date, diversified theories focusing on mechanical properties
(Erdemir, 2004; Fontaine et al., 2004), establishment of transfer
film (Chen et al., 2017; Liu et al., 2018; Liu Y. et al., 2019), surface
passivation (Erdemir and Eryilmaz, 2014), and graphitization
(Ma et al., 2015) have been brought up to explain the mechanism
of solid superlubricity achieved with DLC films, and it seems
that these factors are not working independently. Ultimately,
the superlubricity state originates from the establishment of
a sliding surface with low energy dissipation, meaning that
the major interaction pathways between sliding surfaces are
somehow sufficiently shielded. It is generally believed that the
origin of friction force between solid surfaces can be qualitatively
ascribed to three fundamental phenomena: abrasion, shearing,
and adhesion (Fontaine et al., 2008), as shown in Figure 10.
Abrasion is the plowing or scratching effect caused by micro-
asperities or hard debris trapped between the sliding surfaces.
Shearing is the energy consumption origins from the plastic
or viscous flow of the material between the friction pairs.
Adhesion is the resistance to break the micro-junctions bridging
two sliding interfaces, mainly deriving from bonding force,
electrostatic force, capillary force, and polarization forces. The
realization of superlubricity needs all these friction contributors
simultaneously to be limited at extremely low levels. DLC films
exactly have the potential to accomplish this task owing to their
numerous unique properties. Here, we can use superlubricious
hydrogen-rich a-C:H film as an example for discussing.

From the mechanical perspective, DLC films exhibit special
advantages in avoiding abrasion. Compared with other self-
lubricating soft coatings, DLC films have higher hardness. For
example, a hardness of 13.4 GPa for hydrogen-rich a-C:H film
(Chen et al., 2017), is higher than that of common bearing
steel or tool steel, which is generally around 10 GPa (Fontaine

et al., 2008). Meanwhile, the surface roughness of DLC film
is generally in accordance with their substrate, meaning that
it can be controlled at an extremely low level, even atomically
smooth. For example, the surface roughness of a-C:H film
deposited on silicon wafer was 0.10 nm (Chen et al., 2017).
The high hardness and ultrasmooth surface of DLC films can
reduce the chance of abrasion in most cases. Moreover, due to
the non-porous structure, hydrogen-rich DLC films also have
unusual viscoelastic properties (Fontaine et al., 2004). As implied
by the slow recovery of indents observed in nanoindentation
experiments, a-C:H films may have some “healing” properties
against scratches (Fontaine et al., 2008). These properties of DLC
films can minimize the abrasive effect during sliding, paving the
way for the establishment of stabilized, low-energy dissipation
sliding interfaces.

When a-C:H film reaches a stable superlubricity state, the
shearing behavior generally occurs inside an in-situ formed
tribofilm or transferfilm with different mechanical properties,
rather than in the film matrix (Fontaine et al., 2008). As shown
in Figure 11, after friction against bare SUJ2 ball and Si3N4

ball, tribolayers of 27 and 5 nm thickness were generated on
the balls, respectively. The establishment of these continuous,
stably-attached carbonaceous tribofilms, together with the easy
shearing nanostructure, will be a key factor for the superlubricity
of DLC films (Liu et al., 2018; Liu Y. et al., 2019). High proportion
of sp2 rehybridized carbon phase can be observed within the
tribofilms, and obvious reorientation will be taking place under
heavy normal loads, forming layer-like structure (Chen and Li,
2020). Simulations suggest that the significant drop of friction
during running-in process is also accompanied with shearing
localization, limiting the occurrence of sliding in a thin region
(Ma et al., 2015). Meanwhile, near the sliding surface, the as-
formed carbon rings with higher sp2 proportion are rotated
parallel to the sliding direction, forming an interface with low
proportion of out-of-plane sp3 bonds (Pastewka et al., 2010). The
formation of easy-shearing sp2-C rich sliding interface (or called
graphitization) and locally-ordered nanostructures, as well as the
localization of shearing region, may be the key factors to keep the
shearing resistance in a very low state, contributing to the stable
superlubricious friction state.

Tribological tests with DLC films in microscale have shown
that the friction vs. normal load curve does not go through the
origin, indicating that adhesion cannot be ignored (Shi et al.,
2020). For a well-established carbon-based sliding interface, the
adhesion phenomenon caused by the establishment and breaking
of micro junctions across sliding surfaces is supposed to be
the main contributor for the friction force (Fontaine et al.,
2008). Firstly, σ dangling bonds generated during mechanical
and tribochemical interactions have potential to form strong
covalent bonds bridging the sliding surfaces, causing high
adhesive friction and wear (Schall et al., 2010). This is the
reason for the high friction of hydrogen-free DLC films in dry
inert environment or vacuum and its prevention of friction via
hydrogen gaseous environment or hydrogen contained in the
film. The hydrogen species could react and passivate the dangling
bonds generated at sliding surface timely, and hence eliminate the
high friction caused by cross-linking of the interfacial bridging

Frontiers in Mechanical Engineering | www.frontiersin.org 12 August 2020 | Volume 6 | Article 6522

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Yu et al. Mechanisms of DLC Superlubricity

FIGURE 9 | Velocity dependence of transfer layers in vacuum. (A) Friction coefficient curves for a-C:H against Al2O3 ball in vacuum at various sliding speeds. (B) SEM

images and (C) Raman spectra of transfer layers generated in different sliding speeds. Adapted with permission from Liu et al. (2018) Copyright 2018, Elsevier B.V.

(Robertson, 2002). A self-terminated structure with carbon rings
could be established during running-in process, leading to
a continuous passivated interface with fewer dangling bonds
exposed (Pastewka et al., 2010). Secondly, the interaction between
out-of-plane π-orbitals of sp2 bonded carbon atoms, or π-π
interaction, is another factor contributing to the friction force
of DLC films. Likewise, this interaction can also be shielded
by hydrogen, as they are reactive to carbon double bonds.
Absorption of N2 and CO2 molecules can also restrain this
phenomenon. Thirdly, for hydrogen-rich a-C:H films tested in
humid environment, the hydrogen bond, and capillary force
(mainly in micro-tribological experiments) induced by absorbed
water layer are also contributors of friction force. Dry inert
gaseous environments can prevent this phenomenon, thus
superlubricity of a-C:H films can be achieved. Nevertheless,
for hydrogen-free DLC, water can also act as a passivator
preventing the strong π-π interactions and σ dangling bonds,
leading to a relatively low friction, but has difficulty in achieving
superlubricity. Fourthly, the van der Waals force is the weakest
form for adhesion, and is the dominant factor for superlubricity
state achieved with passivated DLC surfaces sliding in dry and

inert environment. The repulsive coulombic force between two
positively-charged C-H terminated interfaces can also account
for the ultralow friction of DLC films.

To sum up, superlubricity of a-C:H films achieved in
dry issnert environment mainly origins from three unique
characteristics of the film: mechanical properties such as
high hardness and viscoplastic properties and extremely low
roughness, abilities in forming easy-shearing tribofilm or
transferfilm through friction-induced phase transformation and
bonding reorientation, abilities to passivate the sliding surface
through self-contained hydrogen. All these factors work together
to eliminate abrasion, shearing and adhesion effects to extremely
low levels simultaneously, leading to superlubricity state. Basing
on these understandings, involving other elements into the film
is an effective approach to optimize their tribological properties
since they could change the evolution process of tribofilms and
state of sliding surface. As for gaseous ambient molecules, in
addition to chemical involvement in the establishment of transfer
film and passivation of sliding surface, they also influence friction
force physically via thermal conduct and energy dissipation
during desorption. Although the influence mechanisms of
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FIGURE 10 | The origins of friction for DLC films and mechanisms for their elimination.

FIGURE 11 | (A–D) Characterization of tribolayer generated on the ball surface for the friction pair of bare SUJ2 ball and a-C:H films. (A) BF-STEM image showing a

tribolayer of ∼27 nm generated on the SUJ2 ball. (B) False-color displayed BF-STEM images of three individual sublayers marked in (A). (C) The evolution of elemental

composition across the tribolayer marked in (A). (D) Evolution of the calculated EELS C-bonds fractions across the tribolayer as marked in (A). (E–H) Characterization

of tribolayer generated on ball surface for the friction pair of bare Si3N4 ball and a-C:H film. (E) BF-STEM image showing a tribolayer of ∼5 nm generated on the Si3N4

ball. (F) False-color displayed BF-STEM images of (E). (G) The evolution of elemental composition across the tribolayer marked in (E). (H) Evolution of the calculated

EELS C-bonds fractions across the tribolayer as marked in (E). Adapted with permission from Chen et al. (2017) Copyright 2017, the authors.
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temperature, normal load, and sliding velocity are multifaceted,
under the precondition that they are not crossing the threshold of
the mechanical or thermal capacity of the film, their influencing
trends mainly depend on whether they promote or deteriorate
the evolution process of robust easy-shearing tribofilms and
passivation of sliding surfaces.

Since the discovery of DLC films, their application as a self-
lubricating and protective coating in mechanical engineering
is increasingly broadened. For example, their applications in
gearings (Michalczewski et al., 2019), bearings (Okamura et al.,
2019), engine piston rings (Kumar et al., 2019), oil-well tubings
(Liu L. et al., 2019), rubber seals (Liu J. Q. et al., 2019), and
friction pairs in spacecraft (Donnet et al., 1999) have been
testified to be effective and valuable. Superlubricity achieved
with DLC coatings can provide a new concept to meet the
increasing demand for lower energy consumption, longer life
time, and higher power density of future mechanical systems,
which has an enormous potential value from both economic and
environmental perspectives. Nevertheless, it is still a challenge
for engineering applications of superlubricious DLC films. More
efforts should be concentrated on preventing their environmental

sensitivity in humid condition and prolonging their service
life in vacuum. Also, their performance still needs to be
optimized in harsh working conditions such as extremely high
or low temperature, extremely high pressure and velocity,
and contaminated environment. Further researches on their
superlubricity behaviors and mechanism can enable a more
effective manipulation of DLC coatings with excellent self-
lubrication properties.
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Contact problems as they occur in tribology and colloid science are often solved with
the assumption of hard-wall and hard-disk repulsion between locally smooth surfaces.
This approximation is certainly meaningful at sufficiently coarse scales. However, at
small scales, thermal fluctuations can become relevant. In this study, we address the
question how they render non-overlap constraints into finite-range repulsion. To this
end, we derive a closed-form analytical expression for the potential of mean force
between a hard wall and a thermally fluctuating, linearly elastic counterface. Theoretical
results are validated with numerical simulations based on the Green’s function molecular
dynamics technique, which is generalized to include thermal noise while allowing for
hard-wall interactions. Applications consist of the validation of our method for flat
surfaces and the generalization of the Hertzian contact to finite temperature. In both
cases, similar force-distance relationships are produced with effective potentials as with
fully thermostatted simulations. Analytical expressions are identified that allow the thermal
corrections to the Hertzian load-displacement relation to be accurately estimated. While
these corrections are not necessarily small, they turn out surprisingly insensitive to the
applied load.

Keywords: contact mechanics, statistical mechanics and classical mechanics e.t.c., molecular dynamics

simulation, boundary element method, modeling and simulation, Hertzian contact analysis

1. INTRODUCTION

One of several drawbacks when applying continuum theory to small-scale contact problems, as they
occur, for example, in contact mechanics or in colloid science, is that continuum theories often
ignore the effect of thermal fluctuations. This can lead to noticeable errors of continuum-theory
based predictions for the dependence of displacement or indentation on load when two objects
are pressed against each other (Luan and Robbins, 2005, 2006). Temperature can affect mechanical
contacts and their interpretation in numerous other ways. For example, the presence of thermal
noise generally impedes an unambiguous definition of contact area (Mo et al., 2009; Cheng et al.,
2010; Mo and Szlufarska, 2010; Eder et al., 2011; Jacobs and Martini, 2017). In addition, large
standard deviations of experimentally measured depinning forces of atomic-force microscope
tips have been observed, which were accompanied by unexpectedly large reductions of the
depinning force with increasing temperature (Pinon et al., 2016). It is possible that thermal
surface fluctuations, which were not included in the modeling of temperature effects on tip
depinning, are responsible for a significant reduction of effective surface energy and thereby for
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a reduction of the depinning force. In fact, it has been shown
that thermal fluctuations limit the adhesive strength of compliant
solids (Tang et al., 2006). Finally, in the context of colloid science,
it may well be that thermal corrections have a non-negligible
effect on the surprisingly complex phase diagram of Hertzian
spheres (Pàmies et al., 2009). It is therefore certainly desirable to
model the effect of thermal fluctuations in a variety of contact and
colloid problems.

While thermal fluctuations can be incorporated into
simulations with so-called thermostats (Allen and Tildesley,
1987; Frenkel and Smit, 2002), proper sampling can require
a significant computational overhead. In addition, some
contact solvers do not appear amenable to thermostatting.
This concerns in particular those contact-mechanics
approaches that optimize the stress field, as done with the
classical solver by Polonsky and Keer (Polonsky and Keer,
1999; Müser et al., 2017), rather than the displacement
fields in the Green’s function molecular dynamics (GFMD)
method (Campañá and Müser, 2006; Zhou et al., 2019).

The just-mentioned issues motivated us to investigate how
thermal noise affects the mean force F (per unit area) between
surfaces as a function of their interfacial separation, or, gap
g. The pursued idea is to integrate out the internal degrees
of freedom, whereby an areal free-energy density can be
defined. The procedure is similar in spirit to the construction
of interatomic potentials, for which the (quantum-mechanical
ground-state) fluctuations of electrons are integrated out rather
than the (thermal) fluctuations of internal elastic degrees
of freedom.

In our first attempt on constructing effective surface
interactions, we restrict our attention to the oldest, and arguably
most commonly used model for the interactions between
surfaces, namely a non-overlap constraint. Depending on context
and dimension, it can also be called hard-wall, hard-disk, or
hard-sphere repulsion, which, by definition is infinitesimally
short ranged. Since atoms fluctuate about their equilibrium sites
in solids, thermal fluctuations automatically make repulsion
effectively adopt a finite range.

The central goal of this study is to quantify the just-described
effects and to ascertain if constitutive laws obtained for flat walls
can be applied to other systems, in particular to a Hertzian
contact. A secondary goal is to identify an analytical expression
for the thermal corrections to the load-displacement relation in a
Hertzian contact.

2. MODEL AND NUMERICAL METHOD

2.1. Definition of the Model and
Nomenclature
The model consists of a homogeneous, semi-infinite, elastic solid
with an originally flat bottom surface, which is pressed down
against a continuous, perfectly rigid substrate being fixed in
space. The latter, which will also be called indenter, is either
perfectly flat, i.e., h(r) = 0, or parabola, in which case h(r) =

−r2/(2Rc), where Rc is the radius of curvature. In order to reduce
finite-size effects and to simplify both analytical and numerical

treatments, periodic boundary conditions are assumed by default
within the quadratic, interfacial plane.

The elastic surface is subjected not only to an external load
per particle, l, squeezing it down against the indenter but also to
thermal fluctuations, as they would occur in thermal equilibrium
at a finite temperature T. We restrict our attention to frictionless
contacts and small counterface slopes. This allows us to consider
only displacements of the elastic surface normal to the interface.
As such, the elastic energy of the surface can be written as a
functional of the field u(r) according to

Uela[u(r)] =
E∗A

4

∑

q

q
∣

∣ũ(q)
∣

∣

2
. (1)

Here, u(r) states the z-coordinate of the elastic solid’s bottom
surface as a function of the in-plane coordinate r = (x, y). E∗

is the contact modulus, A the (projected) interfacial area, q an
in-plane wave vector, and q its magnitude.

ũ(q) =
1

A

∫

d2r e−iq·ru(r) (2)

denotes the Fourier transform of u(r). The short-hand notation
u0 = ũ(q = 0) will be used for the center-of-mass coordinate.

For flat indenters, only u0 will be used to denote the mean
distance, or gap, between indenter and the solid surface. Here,
we define the displacement d as a function of temperature and
load according to

d(T, L) ≡ hind(r = 0)− 〈u(T, L, r → ∞)〉, (3)

where 〈u(T, L, r → ∞)〉 is the thermal expectation value that
the field u(r) would have (infinitely) far away from the top if the
simulation cell were infinitely large. d is sometimes also called
interference, as it states an effective penetration of the indenter
into the elastic solid.

It is discussed in the literature (Müser, 2014) how to
extrapolate accurately u(L, r) to r → ∞ for all those cases, in
which an indenter acts relatively localized in the center of a finite
simulation cell. However, in the current work, we are interested
mostly in the temperature-induced reductions of d, i.e., in the
term dT defined in the expression

d = d0 − dT , (4)

where d0 denotes the displacement for an ideal, athermal
Hertzian indenter at a given load. In the current work, we
compute dT through the following approximation

dT ≈ 〈u(T, L, rX)〉 − u(0, L, rX), (5)

where rX is the point that is the most distant from the center
of the Hertzian indenter. We found that the first three to four
digits are accurate in this estimate if the athermal Hertzian
contact radius is less than one quarter of the simulation cell’s
linear dimension. This is because the (true) surface displacement
fields converge quite quickly to their asymptotic 1/r form
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outside the (original) contact radius in the case of short-ranged
potentials and because the finite-size corrections to the true
surface displacements are not very sensitive to temperature.

The interaction with a counterface is modeled within the
Derjaguin approximation (Derjaguin, 1934) so that the surface
energy density depends only on the local interfacial separation,
or, gap, g(r) = u(r) − h(r), between the surfaces, i.e., the
interaction potential is obtained via an integration over the
surface energy density γ (g) via

Uint =

∫

A
d2r γ {g(r)}, (6)

In the full microscopic treatment, hard-wall repulsion is
assumed, i.e.,

γ (g) =

{

∞ if g < 0
0 else .

(7)

Finally, the probability of a certain configuration to occur is taken
to be proportional to the Boltzmann factor, i.e.,

Pr[u(r)] ∝ e−β(Uela+Uint), (8)

where β = 1/kBT is the inverse thermal energy.
One central “observable” in this work is the distance

dependence of the mean force per atom, f (u0), for flat surfaces
and finite temperatures. One might want to interpret this
function as a cohesive-zone model, or, in the given context better
as a repulsive-zone model. Because of the so-called equivalence
of ensembles, which is valid for sufficiently large, systems, it does
not matter if the separation is fixed and the force measured, or,
vice versa.

Note that we will go back and forth between continuous
and discrete descriptions of displacement fields. For the
discrete description, the elastic solid is partitioned into atoms,
which are arranged on a square lattice with the lattice
constant 1a. This was done for reasons of simplicity, even
if other discretizations are possible, e.g., into a triangular
lattice (Campañá andMüser, 2006). Transitions between discrete
and continuous representations in real space can be achieved
with the substitutions

∑

n

... ↔
1

1a2

∫

A
d2r..., (9)

while transitions between summations and integrals in the
wavevector domain can be achieved with

∑

q

... ↔
A

(2π)2

∫

d2q... . (10)

To simplify the analytical evaluation of integrals, the square
Brillouin zone (BZ) of the surface will be approximated with a
circular domain. In this case, the upper cutoff for q is chosen to
be qmax =

√
4π/1a as to conserve the number of degrees of

freedom with respect to the original BZ.

2.2. Thermal GFMD
GFMD is a method allowing a linearly elastic boundary-
value problem to be solved efficiently (Campañá and Müser,
2006; Venugopalan et al., 2017; Zhou et al., 2019). The
(discretized) surface displacement field reflects the dynamical
degrees of freedom. Elastic interactions are described in
terms of appropriate elastic Green’s functions, which—in the
case of in-plane spatial homogeneity and infinitely large (or
periodically repeated) systems—are (block) diagonal in the
Fourier representation. The simplest case, which is considered
here, is a frictionless contact and a semi-infinite elastic substrate.
The equations to be solved in GFMD—using the regular tricks of
the trade—are

mq
¨̃u(q)+ ηq ˙̃u(q)+

q E∗

2
ũ(q) = F̃(q, t), (11)

where F̃(q, t) is the Fourier transform of all external forces acting
on the surface atoms. The terms mq and ηq represent inertia
and damping coefficients of different surface modes, which may
depend on the wave vector. For isotropic systems, these terms
only depend on q but not on the direction of q.

The effect of thermal fluctuations can be cast as random
forces, which have to satisfy the fluctuation-dissipation theorem
(FDT) (Kubo, 1957). In the given formalism, random forces must
have a zero mean, while their second moments must satisfy,

〈Ŵ(q, t)Ŵ(q′, t′)〉 = 2 ηq kBT δq,q′ δ(t − t′), (12)

assuming discrete atoms, finite domains but continuous times.
Here, δ(...) is the Dirac delta function, which can be replaced with
δt,t′/1t in a molecular dynamics (MD) simulation, in which the
time t is discretized into steps of size 1t.

At this point, GFMD is only used to generate the correct
distribution of configurations, which—in a classical system—
does not depend on the choice of inertia. As such, the mq

can be chosen at will as far as static observables are targeted.
However, in order to reproduce realistic dynamics, appropriate
choices for mq (see also the discussion on quantum effects in
section 3.3) and ηq have to be made. In fact, realistic dynamics
require the treatment of damping and random noise to have
“memory,” as discussed in Kajita et al. (2010). When being
interested in fast equilibration, themq are better chosen such that
the usually slowly equilibrating long-wavelength modes are made
light so that characteristic times for different modes coincide
as closely as possible (Zhou et al., 2019). In this context, it is
also worth mentioning that significant progress has been made
recently on GFMD to properly reflect not only true (rather than
efficient) dynamics of crystalline solids (Kajita, 2016) but also for
truly visco-elastic materials with broad relaxation functions (van
Dokkum and Nicola, 2019).

2.3. Hard-Wall Interactions in Thermal
GFMD
Non-overlap constraints can be implemented in athermal GFMD
by placing any atom, predicted to have penetrated the rigid solid,
back onto its surface. This procedure no longer works at finite

Frontiers in Mechanical Engineering | www.frontiersin.org 3 December 2019 | Volume 5 | Article 6730

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Zhou et al. Thermal Contact Mechanics

temperatures. It violates the FDT because the damping that is
effectively imposed by this algorithm, is not compensated by a
conjugate random force.

The standard way of treating hard-wall or hard-disk
interactions is to make it make the time step so large that the
next collision between two hard sphere occurs at the end of
it. Before proceeding with the time stepping, an ideal, elastic
collision is then assumed. This course of action does not appear
to be viable for contact mechanics, because it would lead to
prohibitively small time steps for large-scale contacts, where
several (hundred) thousands of grid points are usually classified
as being in contact. Specifically, when doubling the system sizeN,
the typically allowed time step will have to be halved on average
so that the asymptotic computational effort would scale with N2

rather than with N or N ln N.

2.3.1. Effective Hard-Wall Potentials
An alternative to the standard ways of implementing non-overlap
constraints is to allow its violation in a controlled fashion. For
example, the true hard-wall interaction can be replaced with a
finite-range energy density penalty of the form

γ (g) =
κo E

∗ 1a

n

(

−g

1a

)n

2(−g) (13)

where 2 is the Heavyside step function and κo and n are
dimensionless parameters. In lose analogy to a Richardson
extrapolation, an observable of interest O can be computed for
a fixed exponent n but different values of κo. Finally, the results
can be extrapolated to hard-wall interactions by investigating the
asymptotics ofO(1/κ) in the limit of 1/κ → 0. Large values of κo
will limit the time step 1t. However, these limits do not depend
on system size. Thus, the numerical effort will scale with O(1/N)
rather than with O(1/N2) as is the case when dynamics are based
on the more accurate, flexible time-step collision dynamics.

Good numbers for the exponent n and the dimensionless
hard-wall stiffness κo need to be chosen. In order for the
effective hard-wall potential to have a minimal effect on 1t,
the (non-negative) exponent n should be as small as possible.
However, we would like the force to be a continuous function,
for reasons explained at length in any better text book on
molecular dynamics (Allen and Tildesley, 1987; Frenkel and Smit,
2002). While these arguments can be somewhat academic when
the discontinuities are small, we are going to send κo to large
numbers resulting in significant force discontinuities. Thus, n
must be chosen greater equal two. This appears to make n = 2
the optimal choice.

The next question to be answered is: Given a time step 1t
and an exponent of n = 2, what is a good value for κo? Here,
it is useful to keep in mind that we do not need very accurate
dynamics in the “forbidden” overlap zone. The main purpose of
the stiff harmonic potential is to eliminate overlap as quickly as
possible, i.e., to effectively realize a collision of the particles with
the position of the (original) hard wall. However, the stiffness
should remain (well) below a critical value above which energy
conservation is violated in the absence of a thermostat even when
a symplectic integrator, such as the Verlet algorithm, is used. For

Verlet, the critical time step for a harmonic oscillator is 1tc =

T/π , where T is the oscillator period, i.e., for 1t < 1tc, the
trajectory may be inaccurate, but the energy is conserved (except
for round-off errors). This can be achieved by setting the overlap
stiffness to

ko = νo π2 m

dt2
− ks, (14)

where ks = 1u2/(kBT), while m is the inertia of the considered
degree of freedom. νo is a numerical factor, whichmust be chosen
less than unity. At and above the critical value of νo = 1,
energy conservation would be no longer obeyed in the absence
of a thermostat. At the same time, dynamics but also static
distribution functions are very inaccurate, even if a thermostat
prevents the system from blowing up.

The optimum value for ko certainly depends on the specific
investigated problem. However, the analysis of simple models
can provide useful preliminary estimates. This will be done in
section 2.3.3.

2.3.2. Approximate Collision Rules
A second possibility to avoid the poor efficiency of exact collision
dynamics is to use approximate collision rules and to control
the error of the imprecision with the time step. A simple
possibility would be to keep 1t fixed in a simulation and to
make the deflection of the atom after the regular time stepping.
For example, when using velocity Verlet, the following pseudo
code could be invoked after a regular time step, in which the
constraint was ignored:

if (z violates constraint) then
z = 2zconstr-z
vz = -vz (velocity Verlet)
zold = 2zconstr-zold (standard Verlet)

end if

Note that this approach requires extra care to be taken when
dynamics are formulated in a wavevector representation, which
is usually the case in efficient boundary-element methods. If
implemented the following overhead would have to be realized:
old positions (or velocities) in real space will then have to be
kept in memory. Moreover, two additional Fourier transforms
will have to be invoked in each time step, which would double
the number of the (asymptotically) most expensive function
calls. Since approximate collision dynamics turn out to show
similar scaling with 1t in simple models as effective hard-wall
repulsion, see section 2.3.3, we did not pursue approximate
collision rules further at this point of time in the full contact-
mechanics simulations.

2.3.3. Numerical Case Studies
To explore the relative merit of the two proposed hard-wall
methods, we investigate the following single-particle problem: an
originally free, harmonic oscillator with a (thermal) variance of
1u2. This harmonic oscillator is then constrained to have no
negative deflections from its mechanical equilibrium site. The
analytical solution to this problem stating the force F needed
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FIGURE 1 | Mean displacement u0 as a function of time step 1t when using
(a) approximate collision rules (open circles) and (b) harmonic effective
hard-wall potentials (closed diamonds) for two different values of νo, see
Equation (14). Dashed lines show linear fits, the solid line the exact, analytical
solution. The equilibrium site of the spring is placed at us = 0, moreover
1u2 = kBT = 1.

to realize a given constraint is contained in the mean-field
approximation to the full elastic problem, which is presented in
section 3.2.2. The given constraint of the spring sitting exactly on
the hard wall corresponds to a value, where 〈u0〉 crosses over from
its short-range to its long-range asymptotic behavior. Therefore,
we see this case as being representative for both scaling regimes.

In essence, the problem we investigate corresponds to the
choice where kBT, k, and m are used to define the unit system,
which makes 1u2 being unity (in units of kBT/k) as well. The
default time step that we use for the free oscillator is 2π/30,
i.e., 30 time steps per period. The damping coefficient is chosen
to be γ = 1, whereby the free harmonic oscillator is slightly
underdamped. While this choice is not necessarily ideal, it
still tends to be effective for a fast equilibration, irrespective
of whether the temperature is zero or finite. Results for the
convergence of how the estimate for the mean displacement u0
approaches the exact value with decreasing time step 1t are
shown in Figure 1.

At a given value of 1t, the approximate collision rules clearly
outperform the approximate hard-wall interactions. However, u0
has leading-order corrections of order 1t in both approaches.
With the choice νo = 0.1, the asymptotic result for the
parabolic, effective hard-wall potential has an accuracy of better
than 1%, which should be accurate enough for most purposes.
In both approaches, simulations must be run at two different
values of 1t, say e.g., at 1t = 0.25 and 1t = 0.15 in
order to perform a meaningful 1t → 0 extrapolation. In
a full contact-mechanics simulation, the number of required
Fourier transforms doubles when using the approximate collision
rules, which in turn leads to increased stochastic errors given
a fixed computing time contingent. For this reason, but also
because approximate collision rules require significantly more
coding—in particular when averaging wall-surface forces from
collisions when using wavevector dependent inertia—we decided
to use the harmonic, effective hard-wall potential for the full
contact-mechanics simulations.

3. THEORY

The main purpose of this section is to identify an analytical
expression for the thermal expectation value of an interfacial
force per atom f (u0) as a function of their mean separation u0
in the case of a hard wall. This will be done by defining the
partition function Z(N,β , u0) of a fluctuating surface in front of
a wall, which is linked to the free energy through the relation
F(kBT, u0) = −kBT lnZ(β , u0). The mean force between hard
wall and elastic surface can then be calculated from

f = −
1

N

∂F(N, kBT, u0)

∂u0
. (15)

Minor errors in the treatment presented below appear in
numerical coefficients that result, for example, by having
approximated the Brillouin zone of a square with a sphere,
or, by having replaced a discrete set of wave vectors (finite
system) with a continuous set (infinitely large system). However,
these and related approximations are controlled, because errors
resulting from them can be estimated and they could even be
corrected systematically.

3.1. The Statistical Mechanics of a Free
Surface
Since the free surface is the reference state, we start with its
discussion. An important quantity, in particular in a mean-field
approach, is the variance of atomic displacements due to thermal
noise. For a fixed center-of-mass coordinate, it is defined as the
following thermal expectation value:

1u2 ≡

〈

{

u(r)− ũ(0)
}2

〉

. (16)

It can be evaluated in its wavevector representation in a
straightforward manner. Specifically,

1u2 =

∑

q′

〈

|ũ(q′)|2
〉

(17)

≈
A

(2π)2

∫

d2q
2 kBT

qE∗A
(18)

≈
2

√
π

kBT

E∗1a
, (19)

where we made use of equipartition for harmonic modes, see also
Equation (29).

Of course, up to the prefactor of 2/
√

π ≈ 1.1284, which is very
close to unity, Equation (19) follows directly from dimensional
analysis. However, in a quantitative theory, we wish to know and
perhaps to understand its precise value. A numerical summation
over a square BZ assuming a square real-space domain with N
atoms reveals that 1u2 can be described by

1u2 =

(

1.1222−
1.24
√
N

)

kBT

E∗1a
, (20)

with more than three digits accuracy if
√
N > 512. This result

is fairly close to the analytical result based on a BZ, which is
approximated as sphere.
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Assuming discretization down to the atomic scale of 1a ≈

2.5 Å yields a root-mean square (rms) height of

1u ≈ 1.5
√

GPa/E∗ Å (21)

at room temperature. Thus, for soft-matter systems, the effect
of thermal fluctuations is not necessarily non-negligible at room
temperature. The dominant restoring forces to height fluctuation
at short scales will then be due to surface tension rather than
due to elasticity (Xu et al., 2014). However, it might be possible
to suppress those effects when immersing the surfaces into an
appropriate liquid, e.g., crosslinked polyethylene glycol (PEG)
into uncrosslinked PEG.

An outcome of Equation (19) is that the fluctuations are
dominated by the small scales. In the simplest approximation,
which can be made in direct association with the Einstein model
of solids, each surface atom is coupled harmonically to its lattice
site with a spring of stiffness kE = kBT/{(N − 1)1u2}. In reality,
i.e., in less than infinite dimensions, there is always a correlation
of thermal height fluctuations.

To deduce an estimate for the distance over which height
fluctuations are correlated, we calculate the thermal displacement
autocorrelation function (ACF) Cuu(r). It can be defined and
evaluated to obey:

Cuu(1r) =
〈

u(r) u(r+ 1r)
〉

(22)

≈
1

2π2

kBT

qE∗

∫

√
4π/1a

0
dq

∫ 2π

0
dϕ eiqr cosϕ (23)

=
1

π

kBT

rqE∗

∫

√
4πr/1a

0
d(qr)J0(qr) (24)

=
2 kBT

qE∗

√
4π r

1a
1F2

(

1

2
; 1,

3

2
;
−π r2

1a2

)

(25)

≈

{

2 kBT√
π E∗ 1a

+O(r2) for r → 0

kBT/(π q E∗ r) for r → ∞,
(26)

where J0(x) is the Bessel function of the first kind and 1F2(...)
is a generalized hypergeometric function. Unfortunately, the
result obtained analytically this way shows Helmholtz ringing at
intermediate values of r (i.e., within a substantial range of 1u),
which is why the exact analytical solution for Cuu(r) is of little
practical use, except in the two limiting cases r = 0 and r → ∞.
Helmholtz ringing is generally a consequence of sharp cutoffs
in the wave vector domain. Interestingly, it persists even for a
square BZ when the exact expectation values for |ũ(q)|2 are used
and the correlation function Cuu(r) is extended to the continuous
domain between the lattice positions. The validity of these claims
is demonstrated in Figure 2.

A quite reasonable approximation or rather generalization of
Cuu(r) to a continuous function can be made by constructing
the simplest expression with the correct asymptotic behaviors
summarized in Equation (26):

Cuu(r) ≈
2

√
π

kBT

E∗
1

(1a2 + 4π r2)1/2
. (27)
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FIGURE 2 | The radial displacement ACF Cuu(r)—normalized to its value at
r = 0—as a function of distance r: asymptotic approximation given in
Equation (27) (black line), exact correlation function along the [10] direction
with interpolation between non-lattice sites (dashed brown line), numerically
exact results for systems of size 2,048 × 2,048 (red circles), 512× 512 (green
squares), and 128× 128 (blue diamonds). They were also obtained for the [10]
direction, except for the open symbols, which refer to the [11] direction.

As can be seen in Figure 2, this asymptotic approximation is
quite reasonable already at a nearest-neighbor spacing of r =

1a and has errors of less than 5% (in the limit of large N)
for larger values of r. While numerical results for finite systems
in Figure 2 include predominantly data for r parallel to [1, 0],
similar results are obtained for other directions as well, as
demonstrated examplarily for the [1, 1] direction of the N =

128× 128 lattice.
The asymptotic ACF has decayed to approximately 30%

of its maximum value at the nearest-neighbor distance. This
means that the displacements of adjacent lattice sites are
essentially uncorrelated.

The last property of interest used in the subsequent treatment
is the partition function of a free surface (fs):

Zfs(β) =
∏

q

λq
√

2π1u2(q)
(28)

with

1u2(q) =
2 kBT

q E∗A
. (29)

λq = h/
√

2mq kBT represents the thermal de Broglie wavelength
of a surface mode. It reflects the ideal-gas contribution of the
momenta conjugate to the ũ(q) to the partition function. As long
as E∗ is small compared to the ambient pressure and as long
as temperature is kept constant, the sole purpose of including
λq into the calculation is to render the partition function
dimensionless. This is why a precise determination of mq is not
needed at this point, even if it might be an interesting topic
in itself and of relevance for a quantum-mechanical treatment,
which is discussed in section 3.3.
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In themean-field (Einstein solid) approximation, the partition
function simplifies to

Zmf(β) =

(

λmf
√

2π1u2

)N

, (30)

with 1u having been introduced in Equation (19) and λmf being
a mean-field de Broglie wavelength.

3.2. Interaction of a Thermal, Elastic
Surface With a Flat Wall
In this section, we investigate the statistical mechanics of an
elastic surface in front of a flat, hard wall. To this end we
derive expressions for the partition function of the system, from
which the mean force between surface and wall (at fixed mean
separation) can be derived in a straightforward fashion. Different
mean-field strategies will be pursued toward this end. They turn
out to be quite accurate in different asymptotic limits of the
full problem.

3.2.1. First Mean-Field Approximation
The arguably simplest analytical approach to the contact problem
is an adaptation of the so-called Einstein solid, which was already
alluded to in section 3.1, to surface atoms. We first do it such
that a degree of freedom is a hybrid of an atom in real space and
a delocalized, ideal sine wave. Specifically, we first assume that
elastic energy of an individual atom reads

vmf
ela(u) =

kBT

21u2
u2. (31)

In order to maintain a zero expectation value of u, it
is furthermore assumed that the interaction energy with a
counterface placed at a distance u0 from the atom’smean position
is given by

vmf
sub(u) =

1a2

2π

∫ 2π

0
dϕ γ (u0 + u cosϕ). (32)

This means, an oscillation of an atom entails an undulation.
With this assumption, u0 automatically corresponds to the atom’s
mean position.

The excess free energy per particle 1F/N for a fixed center-
of-mass position satisfies

e−βF/N
=

1
√

2π1u2

∫

∞

−∞

du e−β{vmf
ela
(u)+vmf

sub
(u)}, (33)

where the term “excess” refers to the change of the free energy
relative to that of a free surface. For hard-wall interactions, the
integral in Equation (33) can be evaluated to be

e−βF/N
=

1
√

2π1u2

∫ u0

−u0

du e−βvela(u)

= erf

(

u0
√
21u

)

. (34)

Hence,

F

N kBT
= − ln

{

erf

(

u0
√
21u

)}

(35)

≈







− ln
(
√

2
π

u0
1u

)

for u0 < 1u/2

1u
√

πu0
e−u20/(21u2) for u0 > 21u.

(36)

For reasons of completeness, the force predicted from this first
mean-field approximation is stated as:

fmf1(u0) =

√

2

π

kBT

1u

exp{−u20/(21u2)}

erf{u0/(
√
21u)}

. (37)

In the limit of u0 → 0, repulsion diverges proportionally with
1/u0, while it decays slightly quicker than exponentially in u20 for
separations u0 ≫ 1u. Both limiting behaviors are confirmed in
the results section, albeit, with a prefactor of a little less than one
half for large separations.

3.2.2. Second Mean-Field Approximation
Another mean-field approach would be to abandon the
evaluation of the interaction in terms of an undulation and to
introduce a Lagrange parameter, i..e, an external force f divided
by the thermal energy, ensuring u to adopt the desired value of
u0. Thus, the probability of a displacement u to occur satisfies

Pr(u) ∝ e−(u−u0)
2/(21u2)−βf (u−u0)2(u), (38)

where f needs to be chosen such that 〈u〉 = u0 so that the lattice
position of the particle ueq is situated at ueq = u0+βf1u2. At ueq,
there is no elastic restoring force in the spring. The requirement
〈u〉 = u0 automatically leads to the following self-consistent
equation for f :

β f 1u =

√

2

π

exp
{

−
(β f 1u2−u0)

2

21u2

}

1− erf
(

β f 1u2−u0
√
21u

) . (39)

This line of attack leads to similar results for the f (u0) at
small u0 as the first mean-field approach. However, for large u0
the predicted force turns out half that of the first mean-field
approximation. In fact, the second mean-field theory turns out to
be a quite reasonable approximation to the numerical data for any
value of 1u, see the results and discussion presented in section 4.

3.2.3. Probabilistic Approach
The exact expression for the excess free energy of an elastic body
in front of a hard wall can be defined by a path integral,

e−βF(u′0) =
1

ZA

∫

D[u(r)] δ
(

u′0 − u0
)

e−β vtot[u(r)], (40)

where D[u(r)] denotes an integral over all possible displacement
realizations and

ZA =

∫

D[u(r)] δ
(

u0 − u′0
)

e−β vela[u(r)]. (41)
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In the case of hard-wall repulsion, the r.h.s. of Equation (40)
is easy to interpret: It represents the relative number of
configurations that are produced with the thermal equilibrium
distribution of a free surface (fs), whose maximum displacement
is less than u0, i.e.,

e−βF(u0) =
〈

Pr(umax < u0)
〉

fs , (42)

This insight defers the problem of having to solve the path
integral in Equation (40) to an exercise in probability theory:
determine the likelihood of N′

= N1a2/1Ac independent
Gaussian random number with mean zero and variance 1u2

to be less than u0. Here 1Ac is the correlation area for the
displacements. Given that Cuu(1r) has decayed to a few 10%
at nearest-neighbor distances, it can only be marginally larger
than 1 a2.

For large values of N′, the distribution of maximum values
umax = max{u(r)} converges to the Gumbel distribution, also
known as the generalized extreme value (gev) distribution type-
I (David and Nagaraja, 2003). It is given by

Pr(umax) =
1

βgev
e−(e−z) (43)

with

z =
umax − µgev

βgev
, (44)

where µgev is the mode of the Gumbel distribution, i.e., the most
likely value for umax to occur, and βgev a parameter determining
the shape of the distribution. For a normal Gaussian distribution
8G(u/1u), they are given by

µgev

1u
=

√

2 erf−1

(

1−
2

N′

)

(45)

βgev

1u
=

1

N′ · 8G(µgev/1u)
(46)

in the limit of large N′. Here erf−1(...) stands for the inverse
function of the error function (David and Nagaraja, 2003).

In fact, Figure 3 shows that the distribution of umax as
produced with GFMD and by taking the maximum value ofN′

=

0.92N independent random numbers are essentially identical
and that both can be approximated quite well with the Gumbel
distribution. If setting N′

= N, the (open) symbols in Figure 3

would shift by roughly half their symbol size to the right. As
expected, discrepancies between the Gumbel distribution and the
numerical data decrease with increasing N′.

Rather than relying on the Gumbel distribution, one might as
well write down the exact probability of one positive Gaussian
random variable (grv) to be less than u0 and take the result into
the N′/2-th power. (On average, there are N′/2 positive grv’s,
whose value may not exceed u0. The negative grv’s are irrelevant
with respect to the violation of the violation of the non-overlap
constraint.) In this approximation,

Pr(umax < u0) =

{

erf

(

u0
√
2σ

)}N′/2

. (47)
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FIGURE 3 | Distribution of maximum displacements for different system sizes
as obtained from GFMD (closed symbols). Considered system sizes are
N = 128× 128 (diamonds), 512× 512 (squares), 2048× 2048 (circles).
Comparison is made to the distribution of the maximum of N′

= 0.92N
independent random numbers of mean zero and variance 1u (open symbols)
as well as to the corresponding Gumbel distribution.

and therefore

1F = −
N′kBT

2
ln

{

erf

(

u0
√
21u

)}

. (48)

This result turns out to apply to large separations, that is, to
u0/1u ≫ 1. The functional form of F(u) is identical to the one
obtained in the first mean-field variant, except for the prefactor,
which is reduced by a little more than a factor of two.

3.3. Handling Quantum Effects
Throughout this paper, it is assumed that thermal vibrations
are classical. In reality, atoms are quantum mechanical,
which enhances their fluctuations about their equilibrium
sites. Differences between classical and quantum systems can
matter when the Debye temperature is clearly larger than the
ambient temperature. In this section, we briefly sketch how the
quantum-mechanical fluctuations could be modeled rigorously
but also suggest an alternative approach. The latter is easily
implemented and should be reasonably accurate except for very
large squeezing forces.

A rigorous treatment could be based on path-integral
techniques (Berne and Thirumalai, 1986; Müser, 2002), in which
quantum-mechanical (QM) point particles are represented in
terms of classical ring polymers. The course of action would
be an acquisition of the proper Green’s function with similar
fluctuation formulae as in the original GFMD paper (Campañá
and Müser, 2006), while simulating (half) solids and acquiring
elastic tensor or stiffness elements as done, for example, in
Schöffel and Müser (2001). For a harmonic system, the stiffness
of the various modes would be identical in the classical and
the quantum system so that the most important variable to
be determined would be the q-dependent inertia mq of the
surface modes. It would have to be selected such that it yields
the correct zero-point vibration in a path-integral augmented
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GFMD simulation. The latter would benefit from replacing
the free-particle propagator in so-called imaginary time with
one that is symmetry-adopted for hard walls as done in
Müser and Berne (1997).

In classical systems, 1u is dominated by the shortest
wavelength modes. This will be even more so for quantum
systems, because modes show greater quantum effects at short
than at long wavelengths. In other words, the model of an
Einstein solid should provide a reasonable approximation for the
true, quantum-mechanical variance1u2QM of a free elastomer. In
this approximation, the effective stiffness of a spring coupling the
z-coordinate of a surface atom to its lattice site is E∗1a, divided
by a factor very close to 1.12, which we consider negligible
in the present discussion. If m is the mass of a surface atom,
the associated eigenfrequency would be ω0 =

√
E∗1a/m.

Thus, the temperature-dependent internal energy of an Einstein
mode is obtained as U = h̄ω0 coth{h̄ω0/(2kBT)}/2, where h̄
is the reduced Planck constant, see any textbook on statistical
mechanics. Since U = 2〈Vpot〉 for the quantum or classical
harmonic oscillator, it can be deduced that

1u2QM ≈
1u2

2 kBT tanh{h̄ω0/(2kBT)}
. (49)

If quantum effects need to be included, the value of 1u2QM would

have to replace that of 1u2 in any application of the method.
The treatment would not be exact, because the wavefunction and
thus the quantum-mechanical probability density go to zero at
the hard-wall constraint. This would lead to enhanced repulsion,
in particular at large compression, for which we expect repulsion
to divergemore quickly thanwith 1/u0 because of the uncertainty
prinple. Yet, using 1u2QM instead of the classical 1u2 would
be roughly analogous to a first-order perturbation theory and
thereby represent quantum effects accurately for separations
u0 & 1uQM.

3.4. Thermal Hertzian Contacts
3.4.1. Preliminary Considerations
At small temperatures, the relative leading-order corrections to
the zero-temperature displacement u0(T = 0) can be expected to
depend on powers of the variables defining the problem, i.e.,

dT

d0
∝

(

Rc

1a

)α (

E∗R2c
L

)β (

kBT

E∗R3c

)γ

, (50)

where the contact modulus E∗ and the contact radius Rc were
effectively used to define the units of pressure and length,
respectively. With the help of a further dimensional analysis,
which can be conducted in a similar fashion as that in Müser
(2014), the sum rule

α + 3β − 5γ = 0 (51)

follows immediately for the exponents introduced on the r.h.s.
of Equation (50). This relation is valid for a quadratic tip shape,
linear elasticity, assuming the interfacial stress is a function of
u(r)/1u with 1u ∝

√

T.

The r.h.s. of Equation (50) and the sum rule for exponents in
Equation (51) can also be valid at high-temperatures. However,
different exponents will apply. At intermediate temperatures, an
expansion over terms such as those discussed so far are the only
possibility to conform to the dimensional analysis.

3.4.2. Low-Temperature Approximation
At very small temperatures, the stress profile can be expected
to differ only marginally from that of the athermal contact. In
a perturbative approach to the problem, one could therefore
assume that the most important correction to the original
Hertzian gap gH(r) is a constant shift by dT . The latter can be
determined by minimizing the thermal excess energy per atom

eT = −dT L+
1

1a2

∫

d2rFpa

{

gH(r)+ dT
}

(52)

≈ −dT L+
2π

1a2

∫ ac

0
dr rFpa(dT), (53)

whereFpa ≡ F/N denotes the hard-wall, free-energy normalized
to the atom. The approximation in Equation (53) is motivated
by the expectation that the dominant contribution to eT resides
within the original contact area. Minimization of eT w.r.t. dT
leads to

L =
π a2c
1a2

f (dT) (54)

≈
π a2c
1a2

√

2

π

kBT

1u

exp
(

−u20/21u2
)

erf(u0/
√
21u)

(55)

where the last approximation is only valid at small temperatures.
Taylor expanding this last expression leads to

dT

d0
≈

T

T∗
(56)

with

T∗
=

L1a2

π kB Rc
. (57)

3.4.3. High-Temperature Approximation
At very large temperatures, dT is in excess of d0 so that
deformations of the elastic solids are very small. In a first-
order perturbative approach, it then makes sense to assume
the displacement field to be a constant, i.e., to be dT . In that
approximation, individual forces can be simply summed up
with a mean gap of dT + r2n/(2Rc). Recasting the sum as an
integral yields

L ≈
N′

2N

1

1a2

∫

d2r fmf1

(

dT +
r2

2Rc

)

(58)

≈ L0
1u

dT
e−d2T/(21u2) (59)

with

L0 =

√

2

π

N′

N

kBT Rc

1a2
. (60)
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FIGURE 4 | Mean force f , in units of 1/β1u, as a function of normalized mean
separation u0/1u, where 1u represents the height standard deviation of a
surface atom in the absence of a counterface.

Equation (59) can be solved for dT with the help of the Lambert
W functionW(x) ≈ ln x− ln ln x for x ≫ 1:

dT

1u
≈

√

W

(

L20
L2

)

. (61)

4. RESULTS

4.1. Potential of Mean Force for a Flat Hard
Wall
In this section, we investigate to what extent the three approaches
introduced in section 3.1 reproduce accurate, numerical results
for the thermal repulsive-zone model. To this end, we chose units
such that E∗ = 1 and 1a = 1 and consider different values
of u0/1u, which is the only dimensionless variable for the given
problem besides the system size, which is varied as well.

Figure 4 compares GFMD data to the various approximative
approaches introduced in section 3. The first mean-field
approach appears to be asymptotically exact for small u0, while
the approach based on the law of large numbers seems to be
asymptotically exact for large u0. In between these two regimes,
there is a smooth transition between them. This transition
is reflected quite well by the second mean-field approach.
Unfortunately, we did not identify a closed-form analytical
expression for it, which would nevertheless be nice to have
when implementing a potential of mean force into a simulation.
However, as is demonstrated in Figure 4, simple switching
functions introduced next allow one to approximate numerical
data reasonably well.

Since both force-distance asymptotic dependencies have the
same functional form and since the transition between them is
quite continuous, it is relatively easy to come up with switching
functions allowing the numerically determined free energy to
be approximated reasonably well. Defining Fmf1 through the

free-energy expression in Equation (35), this is done via

F(u0) ≈ w1(u0)Fmf1(u0)+ w2(u0)1F (62)

with the weighting functions

w1(u0) =
1

2

{

N′

N
+

(

2−
N′

N

)

e−u20/1u2
}

(63)

w2(u0) = e−u20/1u2
{

1− tanh(u0/1u)
}

(64)

The numerical value for 1F turned out to be 1F = −N′kBT/2.
The forces f (u) in a coarse-grained description are obtained as
negative derivative by differentiating the r.h.s. of Equation (62).
The resulting expression corresponds to the numerical GFMD
data for systems with nx = ny ≥ 128 with maximum errors less
than 10%, at least when taking the exact value for 1 u2.

In terms of an efficient implementation of the method, we
recommend to use tabulated expressions for f (u) for intermediate
values of u and the asymptotic expressions for u ≪ 1u and
u≫ 1 u.

4.2. Hertzian Indenter
We now consider a Hertzian indenter as transferability test
for our effective potential. In addition, the effects that thermal
fluctuations have on the load displacement relation are explored
along with an analysis of how to meaningfully define a contact
area in the presence of thermal fluctuations.

The solution of the continuous displacement field has no
dimensionless number if the contact radius ac is taken to be the
unit of length. However, ac/1a starts to matter as soon as it
is no longer large compared to unity. Since discreteness effects
are a different topic discussed elsewhere (Müser, 2019), ac/1a is
chosen sufficiently large so that the discrete problem reflects the
continuous Hertz contact reasonably well.

To test the applicability of the thermal repulsive-zone model
in the realm of Hertzian contact mechanics, the following
parameters were chosen as useful defaults after some trial and
error: Rc = 2561a and a normal load of L = 131 E∗ 1a2 leading
to ac ≈ 30 1a within regular Hertzian contact mechanics. In the
athermal Hertzian contact, the mean contact pressure turns for
these parameters is p ≈ 0.049 E∗. Results for the stress profile at
a temperature of kBT = 0.2E∗ 1a3 are shown in Figure 5.

An interesting but perhaps also obvious outcome of the data
presented in Figure 5 is that there is no abrupt transition from
finite to zero contact stress, once thermal fluctuations are finite.
This observations is of relevance when discussing the concept of
“true contact area.” Since collisions in a hard-wall potential are
instantaneous, the probability of observing two (finite) surfaces
to be in contact has a statistical measure of zero, so that the
instantaneous contact area could be argued to be (almost) always
zero. Contact exists only in the isolatedmoments of time at which
collisions take place. However, during these isolated moments
of time, the forces between surfaces is infinitely large such that
time averaging yields a distribution which resembles the well-
known Hertzian stress profile; the smaller the temperature the
closer the stress profiles between original and finite-temperature
stress profiles.
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FIGURE 5 | (Left) Interfacial stress σ as a function of distance r from the symmetry axis in a Hertzian contact geometry. The (blue) circles reflect zero temperature
data from the hard-wall overlap potential. The full (blue) line represents the analytical solution to the Hertz problem. The (red) open squares show finite-temperature
data from full simulations, while the (red) dotted line shows zero-temperature simulations, in which, however, the effective potential was constructed to reflect thermal
vibrations at the given temperature. The arrow marks the point of largest slope for the thermal indenter. (Right) Displacement field u(r) as a function of distance r from
the symmetry axis.

The question of how to meaningfully define (repulsive)
contact area when repulsion has a finite range and adhesion is
neglected arises naturally. In a recent paper (Müser, 2019), it
was proposed to define the contact line (or edge) to be located,
where the gradient of the normal stress has a maximum slope.
In the current example, this leads to a reduction of the contact
radius of order 1%, which is significantly less than the reduction
of approximately 30% of the normal displacement in the given
case study.

In contrast to contact radii, force and displacement can
be defined unambiguously. Thermal noise will reduce the
interference d by dT due to the effectively finite range of
the repulsion, as discussed in the definition of the model in
section 2.1. Since the description for an athermal Hertzian
contact is scale free —in the sense that the functional form
for stress and displacement are independent of any parameter
defining a Hertzian contact– the function f (T) ≡ dT/d0
must have a universal shape if 1a ≪ ac. This is because the
thermal repulsive zone model for hard-wall repulsion is a scale-
free function of the gap divided by 1u. Figure 6 reveals that
results on the thermal displacement for different Hertzian contact
realizations can indeed be collapsed quite closely onto a single
master curve 4(T/T̃) defined through

dT = d̃0 4(T/T̃), (65)

where

d̃0 =

(

RcL

E∗1a3

)−
1
3

d0 (66)

and

T̃ =

(

L

E∗R2c

)
2
3 E∗1a3

kB
. (67)

The master curve shown in Figure 6 reveals asymptotic regimes
at low and at high temperatures, respectively. They can be
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FIGURE 6 | Reduced thermal displacement dT/d̃0 as a function of reduced
temperature t = T/T̃ for different Hertzian contact realizations. The default
model (black circles) is defined in the method section. In one case, load was
increased by a factor of two (red squares), and in another case, the radius of
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and L = 200 nN (green triangles). Solid blue and red line show the low- and
intermediate-temperature approximation from Equation (68). The dashed
brown line represents the high-temperature limit of Equation (61).

approximated with power laws. However corrections logarithmic
in temperature need to be made at low temperature to obtain
quantitative agreement over broad temperature ranges. We find
numerically that

4(t) ≈

{

t (1− ln t) for t ≪ 1

1.727
√
t {1+ ln(t)/6} for 0.1 < t < 104

. (68)

Inserting the low-temperature approximation of themaster curve
into Equation (65) and reshuffling terms yields

dT

d0
≈

T

T∗

(

1− ln
T

T̃

)

(69)
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for T ≪ T̃. This means that the low-temperature treatment
presented in section 3.4.2 obtained the correct linear term, but
failed to predict the logarithmic corrections, which become very
large at small ratios T/T̃. Before discussing the origin of those
corrections, we wish to emphasize that there are indeed two
characteristic temperatures for the Hertzian contact, namely T∗

and T̃.
The suspicion that significantly better results at small

T/T̃ are obtained when extending the integration domain
in Equation (53) back to radii beyond the athermal contact
radius turns out incorrect. The main reason for the deviations
lies in the assumption of a constant thermal shift of the
thermal displacement. Figure 7 reveals that the thermal shift
far away from the indenter is noticeably larger than at r = 0
and that discrepancies grow (logarithmically) with decreasing
temperature. Since the simple treatment allows one to rationalize
why dT is (roughly) linear in temperature, we decided to keep the
discussion of the low-temperature limit.

Before investigating the magnitude of thermal displacements
in real units and not just in reduced units, we briefly comment
on the intermediate-temperature behavior. Most importantly, we
wish to emphasize that the approximation made in Equation (68)
for t > 0.1 is only valid on the shown domain and that it does not
extend to t → ∞.

However, from a practical point of view, it appears virtually
impossible to design a real-laboratory experiment, in which the
asymptotic high-temperature regime of t > 103 could ever
be reached. The only possible exception coming to our minds
would involve the use of hagfish slime. It has extraordinarily
small elastic moduli of order 0.02 Pa (Ewoldt et al., 2011), though
the values of 1a to be used in a continuum model would be
clearly in excess of the atomic scale, because hagfish slime stops
being homogeneous well above the atomic scale. Since the contact
mechanics of hagfish slime and related systems is somewhat of
a niche application, we would argue that the analytical solution
given in Equation (61) is merely a nice mathematical result and

that the t > 0.1 approximation made in Equation (68) can be
considered the high-temperature limit for all other purposes.

One may wonder how the master curve shown in Figure 6

translates into a d(T) dependence when real units rather than
reduced units are used. To answer that question, the expansions
obtained previously are represented again for a moderately hard-
matter (E∗ = 1 GPa) and a soft-matter (E∗ = 50 MPa)
system, see Figure 8 and further validated by additional GFMD
simulations. In both cases, a radius of curvature of Rc = 50 nm
was assumed and the load was chosen such that the ratio of
maximum Hertz pressure to E∗ was in the order of 0.1%, i.e., a
load where plastic deformation can be assumed to be minor.

Figure 8 reveals that both studied systems qualify as
being clearly in the intermediate-temperature regime at room
temperature. Relative corrections of the normal displacement
for the stiffer system are rather minor but non-negligible for
the soft-matter system. This observation brings us to the next
and final question, which is addressed in Figure 9, namely to
what extent do thermal correction affect the load-displacement
relation? After all, most indentation experiments are done at
constant temperature and varying load rather than at constant
load and varying temperature. Combining Equations (65–67)
with the intermediate-temperature expansion of Equation (68)
and the analytical solution for the displacement-load relation in
a Hertzian contact, leads to the following relation:

dT = drefT

{

1−
1

9
ln

(

L/Lref
)

}

(70)

with drefT ≈ 1.4261u and

Lref =

(

kBT

E1a3

)3/2

E∗R2c . (71)

In other words, the elastomer surface is effectively shifted by
a little less than 1.5 times the thermal standard deviation of
its smallest-scale surface fluctuations. The effects of load are
minuscule as they enter only logarithmically in the ninth’ root
of the load.

Figure 9 confirms that the thermal fluctuation in most real
Hertzian contacts should lead to corrections that appear as
almost constant shifts to the eye, even for soft-matter systems,
for which the absolute shifts can be relatively large. In the case
study presented in Figure 9, the thermal shift reads dT ≈ 1.2
at a load of L ≈ 16 nN and barely more at a much reduced
load dT ≈ 1.7 at a load as small as L ≈ 0.16 nN In order for
the dT correction to acquire twice the value compared to that
at 16 nN, the compressive force in our example would have to
be as small as L ≈ 20 fN, which is scarcely measurable. For
the reasons of completeness, we state that the range of validity
of the intermediate-temperature approximation of 0.1 < t <

104 demonstrated in Figure 6 translates to a range of loads
of 0.15 < L/nN < 1.5 · 104 for the specific examples studied
here. Upper and lower limits are well beyond loads that could
be meaningfully applied or measured experimentally for the
system of question while measuring the normal displacement
with high resolution.
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5. SUMMARY

In this work, we analyzed the effect that thermal fluctuations
can have on contact mechanics in the case of hard-wall
interactions. To this end, we first demonstrated that thermal
surface fluctuations are dominated by short wavelengths
undulations. They smear out the originally infinitesimally short-
range repulsion to a finite range of 1u ≈

√

kBT/(E∗1a).
The functional form of the repulsive force was derived
analytically and shown to diverge inversely proportionally with
the interfacial separation u0 at small u0 but to decay slightly more
quickly than exponentially in −u20/(21u2) at separations clearly
exceeding 1 u.

To come to these results, the Green’s function molecular
dynamics (GFMD) technique was generalized to include thermal
noise. Particular emphasis was placed on the question how to
handle (the original) hard-wall interactions in the simulations.

We found that replacing the hard-wall overlap constraint
with a stiff harmonic potential produces satisfactory results if
simulations are done at different values for the stiffness and
extrapolation is made to infinite stiffness. The GFMD results are
described very well with different mean-field approximations to
the problem, which made it possible to identify a highly-accurate,
closed-form analytical expression for the distance-force relation
a flat, thermal elastomer interacting with a flat, rigid substrate.

It may be important to note that each microscopic interaction
law requires the coarse-graining to be done for that particular
interaction. For example, if thermal fluctuations were to be
treated in a Dugdale model (Dugdale, 1960) (e.g., hard-wall
constraint plus a constant adhesive stress acting up to a finite
range), results for the hard-wall constraint cannot be simply
incorporated, but a new parametrization of thermal effects has
to be done.

Application of our methodology to Hertzian contacts revealed
that thermal fluctuations can induce non-negligible shifts in
the normal displacement. As a zero-order approximation,
it can be assumed that the thermally induced shift of
a Hertzian indenter is a little less than 1.5 times the
thermal standard deviation of surface positions of a free,
unconstrained surface. Corrections turn out to depend only
logarithmically on the ninth’ root of the normal load. Thus,
thermal noise leads to a shift of the load-displacement curve
that is roughly equal to the root-mean-square fluctuation
of surface atoms but almost independent of the load. As
a referee of this manuscript noticed: This picture is simple
and easily understandable intuitively aposteriori, but by no
means trivial and understandable in advance. The result
of an essentially load-independent displacement shift may, in
part, explain why Hertzian contact models often apply all
the way down to the nanoscale: Essentially constant shifts
remain unnoticed.

We expect similar results for randomly rough and other hard-
wall indenters as for Hertzian contacts, because the thermal
shift for the Hertz contact is relatively insensitive to the
radius of curvature. However, the effect of thermal fluctuations
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will be more important in the case of short-range adhesion.
Given the results from this study, quite noticeable adhesion
reductions may be expected when its range is in the order
of or less than the thermal displacement 1u. Future studies
are ongoing elucidating the reduction of adhesion due to
thermal vibrations.
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INTRODUCTION

Van der Waals forces between solids in vacuum are always attractive and are considered as the
main source of adhesion. However, in the presence of an intermediate medium, they can also be
repelling (Dzyaloshinskii et al., 1961) which means that the “work of adhesion” becomes negative.
Similarly to the case of adhesion, the interaction range of these forces can be either comparable (or
larger) than the minimum characteristic length scale of the contact problem or it can be negligible
compared with all characteristic length scales. We call this latter case the “JKR-approximation,” as
the JKR theory of adhesion (Johnson et al., 1971) is also valid in this limit. The repelling interaction
can also be due to the presence (and squeezing out) of a thin fluid layer between solids as considered
in Müser (2014). In the papers Popov and Hess (2018) and Heß and Popov (2019), it was shown
that the contact of two oppositely charged surfaces at a constant voltage is equivalent to the adhesive
contact with an effective van der Waals interaction. Similarly, the contact of the bodies with the
same charge would be equivalent to repelling van derWaals forces with a negative work of adhesion.
Further kinds of repelling forces may be solvation, structural, and hydration forces (Israelachvili,
2011). In the following, we speak about van derWaals forces, but they are thought as representative
for a larger class of long range repelling forces.

We argue that in the JKR approximation, the Hertz’ solution of the contact problem with a
repelling van der Waals interaction, remains practically unchanged. However, the contact area falls
apart into the area of “weak (van der Waals) interaction” and “strong (rigid wall) interaction.” It is
speculated that if the normal force is smaller than a critical value at which the core region of strong
interaction disappears, a macroscopic superlubricity state of the contact may be observed.

ATTRACTIVE AND REPELLING VAN DER WAALS FORCES

The interaction force between neutral molecules is often modeled as a superposition of the
very sharp increasing “core repulsion” ∝ 1/r13 and a weaker van der Waals “tail” ∝ r−7 (the
corresponding potential is known as Lennard-Jones-Potential), Figure 1A, left:

F(r) =
12 · w

r0

[

( r0

r

)13
−

( r0

r

)7
]

for attractive van der Waals forces, (1)

where r0 is the equilibrium distance, at which the core force and the van der Waals force become
equal and w is the work of adhesion (the work needed to separate the molecules starting with their
equilibrium position).

For two bodies with a plane surface at distance z, Equation (1) is modified to an equation of the
interaction stress:

σ (z) =
8 · 1γ

3z0

[

( z0

z

)9
−

( z0

z

)3
]

for attractive van der Waals forces (2)
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FIGURE 1 | (A) Left: Model intermolecular force in the case of attractive van der Waals force (blue line) and repelling van der Waals force (red line), in relative units. The

distance r = 1 corresponds to the equilibrium in the case of attractive van der Waals forces. At distances smaller than r = 1 the repelling force increases steeply: At

these distances, one can qualitatively speak about a “rigid wall.” At distances r > 1, there exist weak long-range van der Waals force, either positive or negative. The

work needed to separate the surfaces starting from the “rigid wall” position r = 1 are shown by filled areas (blue filled area—positive work of adhesion in an adhesive

contact, red filled area—“negative work of adhesion” in the repelling case). (A) Right: The normal stress (pressure) distribution in a Hertzian contact. If the range of

action of both core “rigid wall” force and van der Waals force are negligible compared with all characteristic length scales of the contact problem, the repelling van der

Waals forces do not influence the contact problem and do not change the stress distribution. However, on the microscopic scale, in the regions where the stress is

larger then a critical stress σ0 (see the text of paper for details), the surfaces are in “direct rigid wall contact” and feel strong atomic corrugation potential. In the regions

where the stress is smaller than σ0, they “levitate” due to van der Waals force and see only weak corrugation. By decreasing the normal force, one can achieve the

state in which the normal stress is smaller than σ0 in the whole contact area. This state corresponds to the state of superlubricity. (B) Schematic illustration of the

contact configuration on the example of a simple model adhesive stress of “Dugdale type” (Dugdale, 1960) with a constant repelling stress σ0 up to the distance hc
(scheme on the left). In the center: Macroscopic shape of a soft sphere in contact with a rigid surface (black line) and the Hertzian stress distribution (brown dashed

line). On the right: Microscopic view of the contact gap in the undercritical and overcritical cases. From the macroscopic point of view, the gap in both cases is zero,

from the micrsocopic point of view, the bodies can be either in direct rigid wall contact (where the local Hertzian pressure is larger σ0 or “levitate” in the distance hc
where the Hertzian pressure is smaller σ0.

where z0 is the equilibrium distance between the bodies (of the
order of r0), and 1γ is the (positive) specific work of adhesion
(work of separation of two surfaces per unit area).

While in vacuum the van der Waals forces are always
attractive, in the presence of an intermediate medium between
two bodies, they can also become repelling—if the dielectric
constant of the intermediate medium lies between the dielectric
constants of the contacting bodes (Dzyaloshinskii et al., 1961).
In this case, Equation (1) for the interaction force is modified by
changing the sign of the van der Waals force, Figure 1A, left:

F(r) =
12 · w

r0

[

( r0

r

)13
+

( r0

r

)7
]

for repelling van der Waals forces. (3)

In this equation, r0 loses its meaning of the equilibrium position
(which without external force does not exist anymore), but can
still be considered as a distance characterizing the transition from
the “core potential” to the “van der Waals potential.” At smaller
distances, the repelling force increase very steeply and can be
qualitatively considered as a “rigid wall,” while at larger distances
it describes long range repelling van der Waals force. For bodies
with plane surfaces, the corresponding modification of Equation
(2) reads

σ (z) =
8 · 1γ

3z0

[

( z0

z

)9
+

( z0

z

)3
]

for repelling van der Waals forces. (4)
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Therein, 1γ is not the work of adhesion anymore but has
to be considered just formally as a coefficient determining the
amplitude of the interaction. However, if we calculate the “work
needed to separate” the bodies starting with the distance z0
(the presumable position of the “rigid wall”), we get the specific
“negative work of adhesion”

1γrepelling = − (5/3)1γ . (5)

In the past, there were only a few attempts to study contact
mechanics in the presence of explicit surface interaction potential
(“soft walls”) (e.g., Hughes and White, 1979; Vinogradova and
Feuillebois, 2003; Müser, 2014). However, these works were
focused on the normal interaction while we would like to discuss
the implications of the surface interactions to the tangential
force (friction).

INFLUENCE OF REPELLING VAN DER
WAALS FORCES ON CONTACT AND
FRICTION

As Martin Müser writes in Müser (2014), “For repulsive
contacts,..., there is obviously no finite contact radius at
zero normal load . . . The repelled rigid tip simply “hovers”
at (infinitely) large distance over an undeformed elastic
manifold . . . ”. Let us consider this absolutely correct statement
more closely. It is correct that the repelling van der Waals forces
will keep the surfaces at “infinite large distance” which physically
means at “very large distance.” However, from the macroscopic
point of view, this “very large distance” may be smaller than
any other characteristic length of the contact problem and thus
can be considered as being zero (JKR-approximation). In the
contact with repelling forces, the smallest characteristic length is
the indentation depth, so the range of van der Waals interactions
is assumed to be smaller than the indentation depth.

Whether the “very large distance” is zero or infinite—depends
on the quantities, which we are interested in. If we consider
the contact problem itself and the range of repelling van der
Waals forces can be neglected, then they have no influence
on the contact problem at all. In particular, all displacements
and stress distributions will remain the same as in the classical
“rigid wall” Hertz contact problem. However, if we consider
the tangential forces (caused by the microscopic tangential
corrugation potential), the “very large distance” can again be
considered as infinite which leads to a vanishing force of friction.
In order for the macroscopic frictional force to disappear, it is not
even necessary that the tangential corrugation potential becomes
zero; it is enough that it becomes smaller than some critical value,
as has been shown theoretically and experimentally in Socoliuc
et al. (2004).

When two surfaces approach each other, the interaction stress
(4) increases monotonously and accepts at the distance z = z0
the value σ0 = (16/5)

(

1γrepelling/z0
)

. If the local elastic stress
in the material is larger than this critical stress, then, roughly
speaking, the bodies are in “rigid wall contact.” If the local stress
is much smaller than this critical stress, then the surfaces “hover”
at “infinitely large distance.” In a Hertzian contact, all parts of the

contact where the stress is larger than the critical one, will be in
“direct rigid wall contact,” and feel strong corrugation potential,
while the areas where the stress is essentially smaller then σ0 will
be held apart by the repelling van derWaals forces and feel only a
very weak corrugation potential. This is illustrated in Figure 1A,
right for the example of a Hertzian contact. The contact area is
divided into two parts: the inner part of “rigid wall contact” and
high friction and the outer part of levitation due to repelling van
der Waals forces and a weak (or zero) friction force. Figure 1B
schematically illustrates the macroscopic and microscopic views
of the contact for the case of a simplified repelling stress of
“Dugdale type” (Dugdale, 1960).

The most interesting conclusion is that if the Hertzian
stress is smaller than the critical stress needed to bring the
surfaces into the “rigid wall contact,” then they “levitate” in
the whole contact area. This inevitably should lead to a small
or vanishing macroscopic frictional force—the macroscopic
state of superlubricity. The critical stress depends on particular
mechanism of repulsion force. A very rough estimation can
be made by assuming the value of 1γ ∼ 4 · 10−2 J/m2 for
the surface energy [which is “typical” for polymers and fluids
(Popov, 2017)] and 1l ∼ 10−9 m as the “levitation” distance
needed for suppressing the tangential corrugation potential. The
critical stress will then be on the order of σc ∼ 1γ/1l ≈

40 MPa. In Ge et al. (2019a), the values up to 600 MPa
were reported.

CONCLUSION

Let us briefly summarize the main points of the above-
sketched picture:

1. If one does not look at the contact so closely, the “adhesive”
repulsion looks just like a hardwall, similarly to the actual hard
wall of the Pauli principle.

2. Therefore, in this “JKR-limit” nothing changes in the solution
of the contact problem.

3. Nevertheless, if one looks more closely, the adhesive repulsion
(as opposed to the hard wall) has some reach, so this long-
range tail of the repelling force can hold the surfaces apart.

4. There is (almost) no friction in the areas that are levitating due
to “negative adhesion.”

5. If the maximum stress in the whole contact area is smaller
then the “critical stress of levitation,” the system transits
into the state of very low (or vanishing) friction—state
of superlubricity.

The key prerequisite of the described mechanism of
superlubricity is the presence of repelling long range interaction
forces which are able to hold the surfaces apart so that they do
not feel the corrugation potential. This repulsion can be achieved
in different ways:

- As repelling van der Waals force due to an intermediate
medium with dielectric constant lying between the dielectric
constancies of both contacting bodies. This mechanics can
only be active for a contact of two bodies having different
dielectric constants.
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- As thermodynamic repulsion due to a layer of free or grafted
macromolecules between the bodies so that the entropy of
the intermediate layer decreases at small distances due to
stronger confinement.

- As electrical repulsion due to external electrical voltage (so that
both surfaces receive the charge of the same sign).

- As repulsion due to electrical double layer (Guldbrand et al.,
1984).

- Possible is also an effective repulsion due to thermal
fluctuations (Müser et al., 2019).

The necessity of an intermediate layer for achieving negative
work of adhesion leads to the conclusion that the kinetic friction
will also be essentially dependent on the rheology or viscosity of
this intermediate medium. The importance of the local pressure
brings the problematics of the surface roughness in play. The
flattening of roughness and lowering local stresses may be one
of the reasons of the necessity of the wearing-in process for
achieving the superlubricity state (Ge et al., 2019a).

In my opinion, the above simple picture can help a lot for
both qualitative and quantitative physical understanding of the

transition into the superlubricity state—both in the case of fluid
superlubricity (Ge et al., 2019b) and solid state superlubricity
(Erdemir and Eryilmaz, 2014) as well of the tuning of friction by
electric fields (Krim, 2019; Figure 1).
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In this study, we propose a numerical model to investigate the contact and friction

behaviors of hydration-lubricated contact in an aqueous solution confined in a gap of

several molecular diameters. A force–distance curve was obtained under different surface

forces, and friction behavior was determined using the modified Eyring thermal activation

model. The results showed that the normal boundary contact pressure and contact gaps

were obtained using the proposed numerical model. In addition, friction force increased

with the logarithm of sliding velocity. Hence, the Eyring model could predict the friction

behavior of hydration lubrication. Moreover, it could capture the underlying physical

principles of the contact and friction behaviors of hydration lubrication.

Keywords: hydration lubricated contact, surface force, friction behaviors, Eyring model, liquid thin film, numerical

model

INTRODUCTION

In nanofilm lubrication, where film thickness is in the range of a few nanometers, the physical, and
chemical properties of surfaces strongly affect the friction behavior of liquid thin films, particularly
of aqueous liquids. The hydration water layer is a particular form of water molecules tightly bound
to ionic or hydrophilic surfaces (Kim et al., 2013, 2015). It plays an important role in specific fields,
such as biolubrication (Hansen et al., 2013), hydration polymer brushes (Raviv et al., 2003; Chen
et al., 2009), and nanofriction.

In the past few decades, numerous studies have investigated the physical processes of
nanoscale thin film lubrication (TFL). The improvement of modern measurement techniques
has considerably facilitated the study of TFL with aqueous liquids. The surface force apparatus
(SFA) and atomic force microscopy (AFM) have significantly improved understanding of the
tribological behavior of thin films by providing techniques for measurement of nanoscale liquid
film thickness and normal and tangential forces. Jadhao and Robbins (2017), Israelachvili and
Pashley (1983), Israelachvili andWennerstroem (1990), and Israelachvili andWennerström (1996)
measured the short-range hydration repulsive force in water containing ionic or polar species. They
found that a water film separates contacting surfaces, and it is not completely squeezed out even
under high pressures. Additionally, they resolved several contradictions and findings that were
inconsistent with hydration models. Horn et al. (2006) and Manica et al. (2008) investigated the
dynamic forces maintaining relative separation between two deformable droplets. They reported
that hydrodynamic and disjoining pressures strongly influence the deformation of droplets. Raviv
and Klein (2002) measured the shear forces between solid surfaces sliding in aqueous salt solutions.
They found strong repulsive hydration forces in these systems. Ma et al. (2015) used surface force
balance to study the hydration lubrication between atomically smooth charged surfaces and found
viscous losses. Diao and Espinosa-Marzal (2018) used AFM to investigate the role of water in
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fault lubrication. They found that a lubricating film remains
confined under high pressure and friction is significantly reduced
at low sliding velocities. Experimental techniques have shown
that the thickness of a water film is in the nanometer range.
Additionally, the film is stabilized by the hydration repulsion
between hydrophilic surfaces rather than by hydrodynamic
lift forces. In nanoconfined water, surface interactions consist
of long-range van der Waals attraction, short-range repulsion
due to hydration force, and electrostatic repulsion with an
intermediate action range (longer than that of hydration
repulsion but shorter than that of van der Waals attraction).
These repulsive forces are effective for achieving negative
adhesion (Popov, 2020).

The above literature review shows that numerous studies
have experimentally examined hydration-lubricated contact.
However, there is no effective numerical model that describes
the hydration contact characteristics and energy dissipation
during sliding. The main experimental difficulty remains
the determination of separation of surfaces under hydration
repulsion because AFM experiments cannot provide accurate
information about surface separation and the shear rate. In this
study, we propose a numerical model for the boundary friction
due to hydration lubrication. This numerical model may provide
a promising method for further improvement of investigation of
hydration lubrication.

GOVERNING EQUATIONS

Contact Theory Considering Hydration
Effect
There are four interacting surface forces based on the interaction
range: electrical double layer (EDL) force, hydration force, van
der Waals force, and the repulsive force between two solid
hydrophilic surfaces under nanoscale separation. Derjaguin and
Landau (1941) firstly proposed the theory that surface force
is the sum of EDL force and van der Waals force under
long-distance interaction. Later, this theory was independently
proposed by Verwey and Overbeek, and it is known as the
Derjaguin–Landau–Vervey–Overbeek (DLVO) theory [also refer
to Israelachvili (2011)]. The DLVO theory can be applied to
accurately describe long-distance interaction forces in correlated
systems. In contrast with the DLVO force, hydration repulsive
force decays exponentially in the subnanometer range. Hydration
repulsive force has a significant effect at subnanometer distances,
and it decreases rapidly with surface separation. Therefore,
different surface forces can prevail depending on the thickness
of the thin film of an aqueous solution.

Based on the Lifshitz–Hamaker approach (Lifshitz,
1956; Israelachvili, 2011), van der Waals interaction and
repulsive contact interaction can be obtained as the Derjaguin
approximation by the integration of the Lennard-Jones
interatomic potential. The contribution of van der Waals
attractive interaction to overall disjoining pressure can be
expressed as

pvdW(h) = −
AH

6πh(x, y)3
(1)

The integration of the repulsive part of the Lennard-Jones
potential yields

prep(x, y)=
AH l0

6

90πh(x, y)9
(2)

where AH is the Hamaker constant of a material, l0 is the
equilibrium separation when the interatomic force between two
molecules is zero (Yu and Polycarpou, 2004), and h(x, y) is the
separation of contact surfaces.

Typically, two similarly charged surfaces electrostatically
repel each other in a solution. However, they may interact at
small separations of several molecular diameters under certain
conditions. The EDL interactions of ionic aqueous liquids can be
expressed as follows:

pEDL(h)=pEDL0tanh
2(zeϕ0/4kT )e−κh (3)

where pEDL0 is the initial EDL pressure defined by pEDL0 =

64kTρ∞[M], k is the Boltzmann constant, T is the absolute
temperature, ρ∞ is the concentration of alkali metal ions, ϕ0

is the electrostatic potential at the midplane, and κ−1 is the
Debye length.

When two hydrophilic surfaces or particles approach each
other up to a distance of a few nanometers, water is arranged in an
ordered manner in the vicinity of the surfaces. This structure can
generate an effective repulsive force to support the external load
between the surfaces. Hydration repulsive force (also referred
to as non-DLVO force) becomes extremely strong in the short
range. Hydration repulsive pressure can be described as a simple
exponential expression (Faraudo and Bresme, 2005).

phyd(x, y) = phyd0e
−h(x,y)/λ0 (4)

where phyd0 is the initial constant hydration pressure and λ0 is
the characteristic decay length of hydration.

As analyzed above, the local distribution of the total contact
pressure between two contact surfaces has four terms, namely,
hydration pressure, EDL pressure, van der Waals attractive
pressure, and repulsive contact pressure.

psf (x, y)=phyd(x, y)+ pEDL(x, y)+ pvdW(x, y)+ prep(x, y) (5)

This study investigates the contact between an elastic sphere with
radius R and a smooth flat surface, as shown in Figure 1. The
contact profile under load can be expressed as

h(x, y) = h0 +
x2+y2

2R
+ u(x, y) (6)

where h0 is the initial gap of contact surfaces and u(x, y) is the
elastic deformation of the contact region. The elastic deformation
can be calculated using the Boussinesq integral (Johnson, 1987) as

δ(x, y) =
2

πE′

∫∫

�c

psf(x
′, y′)

√

(x− x′)2 + (y− y′)2
dxdy (7)

Frontiers in Mechanical Engineering | www.frontiersin.org 2 September 2020 | Volume 6 | Article 56475647

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Fang et al. Hydration Lubricated Contact Analysis

FIGURE 1 | Hydration-lubricated contact and its rupture under increasing load.

where E′ is the effective elastic modulus of contacting bodies,
1
E′ =

1
2 (

1−ν1
2

E1
+

1−ν2
2

E2
) with E1, E2being the Young modulus, and

ν1, ν2 the Poisson’s ratio of two contacting bodies, respectively.
The total external force balanced with the surface pressure on

the contact region is given by,

F =

∫∫

psf (x, y)dxdy (8)

Friction Evaluation Based on the Eyring
Model
If contact surfaces are subjected to relative tangential
displacement, the molecules of a hydration lubrication layer
must be rearranged. This rearrangement is supported by thermal
fluctuations. The Eyringmodel (Eyring, 1935, 1936) describes the
transition state theory of the reaction rate. It is used to evaluate
and analyze the friction force of hydration-lubricated contact.

The Eyring model assumes that, in the absence of tangential
loading, the heights of the energy barrier for the hopping of
molecules to adjacent positions have the same value (E0) in
opposite directions; thus, the net flow is zero. The application
of shear force reduces the height of the energy barrier by 1E
in the direction of flow and increases it by the same amount in
the opposite direction, as shown in Figure 2. When the fluid is
under shear stress τ , the change in the energy barrier can be
approximated as V∗τ , where V∗ is an effective stress-activated
volume. The flow rates in the forward and backward directions

FIGURE 2 | Schematics of the shear stress modify the energy barrier in the

hydration confined liquid.

under shear stress are expressed as follows (Spikes, 2018):

vf = v0e
−(1E-V∗τ )/kT (9a)

vb = v0e
−(1E+V∗τ )/kT (9b)
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FIGURE 3 | Flow chart of the numerical scheme.

where v0 is the frequency of the attempted rearrangements of a
hydration shell. In laminar flow, the rate of relative molecular
motion to a neighboring layer is given by

v̇ = (vf − vb) = v0exp
−1E/kBT sinh(

V∗τ

kBT
) (10)

It is assumed that the shear strain rate is proportional to the rate
of activated molecular motion. Further, based on the definitions
of the Eyring stress, τE = kBT/V∗ , and the Newtonian viscosity,
ηN=

τE
2cv0

exp(1E/kBT), the following expression can be obtained
(Jadhao and Robbins, 2017, 2019):

γ̇ =
τE

ηN
sinh(

τ

τE
) (11)

At a large value of τ/τE , sinh(τ/τE ) ≈ 0.5 exp(τ/τE ). Taking
logarithms on both sides of Equation 11 and rearranging the
terms, the following equation can be obtained:

τ = τE ln(2
ηNγ̇

τE
) (12)

Experimental investigations suggest that this equation should be
extended by an additional term τ0

τ (x, y) = τ0 + τE ln(2
ηNγ̇

τE
) (13)

where τ0 is initial shear stress.
Therefore, when the shear rate is determined, shear stress

can be calculated using Equation 13. The shear force under
hydration-lubricated contact can be expressed as,

f =

∫∫

τ (x, y)dxdy =

∫∫

τE ln(2
ηNγ̇

τE
)dxdy+ constant (14)

NUMERICAL SCHEME

In the numerical scheme, control equations were discretized
and expressed in the dimensionless form using dimensionless

variables as follows: X =
x
a , Y =

y
a , H= hR

a2
, and Psf=

psf
pH

. Here, a

is the Hertz contact radius, and PH is the Hertz contact pressure.
Surface repulsion force, the contact profile, and load balance

were numerically calculated to determine the contact pressure of
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surface force and the contact separation between the two surfaces.
Elastic deformation was determined by utilizing surface force;
this was the most time-consuming step. The discrete convolution
and fast Fourier transform (DC-FFT) technique (Liu et al.,
2000) was used to improve the efficiency of calculating elastic
deformation. The relaxation method was applied to ensure the
robustness of the numerical scheme. The simulated area was five
times larger than the Hertz diameter in the x and y directions. It
was discretized into 257 × 257 nodes. The convergence criteria
for pressure and load were < 10−4. The converged solutions
of thickness and pressure distributions were obtained after the
convergence criteria were satisfied. A flow chart of the numerical
scheme is shown in Figure 3.

RESULTS AND DISCUSSION

We obtained important data on hydration capacity from a
previous study (Ma et al., 2015). Then, we analyzed the surface
force of a thin film of a 0.1 mol NaCl water solution using
following parameters: pedl0 = 15.9×106 Pa, κ−1

= 1.36 nm, ϕ =

70 mV, λ0 = 0.2 nm, phyd0 = 1.00× 109 Pa, AH = −2× 10−20 J,
and l0 = 0.3 nm. The plots of interface pressure as a function of
surface separation hwere obtained using Equation 5, and they are
shown in Figure 4. It can be observed that hydration repulsive
pressure and EDL pressure have remarkable characteristics in
the short and long ranges. Hydration repulsive pressure has a
significant effect in the range of 0.5–1.5 nm, while EDL pressure
may have a significant effect in the range of 2–5 nm in this
case. Further, for the ultrathin gap, interface pressure increases
rapidly and exceeds 1 GPa when the gap is < 0.3 nm. The sharp
increase in repulsive interaction can be interpreted as a sign of
the “direct contact” of the surfaces that are no longer separated
by a lubricant layer. The pressure–distance curve shows that
hydration pressure and EDL pressure could work synergistically
to separate the contact surface, so the liquid film would be not
squeezed out in contact region to produce beneficial results for
TFL. These repulsive pressures could support external load so
that contact surface would not contact directly.

We simulated hydration-lubricated contact under the
conditions of an experiment performed using the SFA.
Atomically smooth mica surfaces were bent in the form of
two crossed cylinders with a radius of curvature (R) of ∼1 cm
in salt solutions. The elastic modulus of mica is ∼60 GPa
(Israelachvili et al., 2004). The contact profile and surface
pressure were obtained using the numerical model, and they
are shown in Figure 5. The surface contact profile is negligibly
affected by elastic deformation under low contact pressure
mainly caused by the EDL effect. The values of pressure are
< ∼2.5 MPa. As contact load increases, contact separation
decreases and becomes < 1 nm when contact load is 10 mN. The
maximum contact pressure is 25 MPa. It can be inferred that the
hydration effect plays a dominant role in contact deformation.
This implies that the hydration effect generates a force to support
external load.

Figure 6 shows normal force as a function of surface
separation under different initial constant hydration pressure

FIGURE 4 | Interface pressure due to surface force as a function of surface

separation in confined aqueous solution.

changing from 1GP to 0.3GP. As surface separation decreases,
normal force sharply increases at several molecular diameters.
This implies that hydration load decreases exponentially when
surface separation is < ∼1 nm. In addition, the surface
separations for the same normal force approach each other as the
hydration effect decreases. The repulsive pressure generated from
the interaction of solid atoms also supports a part of external load.
When the separation distance of surfaces is > 2 nm, the surface
force is mainly caused by EDL force and van der Waals attractive
force to support the external force.

After the separation, h, between contact surfaces is calculated,
the friction force due to the relative tangential motion of
surfaces can be determined. In the following example, the friction
behavior is shown for a load of 1 mN. The initial hydration
pressure is 0.3 GPa. Other parameters remain unchanged. The
minimum separation is 0.63 nm. Based on Figure 6, it can be
inferred that there is hydration-lubricated contact. The effective
stress-activated volume isV∗

= 2∗10−23 m3, and the Newtonian
viscosity of the liquid is 1 mPa s−1. The constant of friction
force is set to 6.5 µN in Equation 14. It should be noted
that the parameters of the Eyring shear force can change in
different contact stages. In this case study, we only applied
the parameters given in Ma et al. (2015). Figure 7 shows the
dependence of friction force on sliding velocity under hydration-
lubricated contact. Friction force increases with the logarithm of
sliding velocity. Energy dissipation predominantly occurs under
hydration-lubricated contact. The maximum friction coefficient
is ∼0.003 at a sliding velocity of 3 µm/s. This reveals that, to
achieve ultralow friction movement, it is extremely important
to utilize surface forces such as hydration force and EDL force.
Friction force mainly depends on the Eyring shear forces when
rubbing surfaces are separated by a liquid hydrated structure.
The hydration ions are not squeezed out and remain localized on
charged surface, once the shear force applied on the hydration
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FIGURE 5 | (A) Contact profile and (B) surface pressure distribution under

different loads.

shells reduces the energy barrier, and thereby, promotes the
thermally activated slip (Ma et al., 2015; Diao and Espinosa-
Marzal, 2018). Conversely, AFM shows a new regime of ultralow
friction in the transition from stick-slip to continuous sliding
(Socoliuc et al., 2004). Based on this phenomenon, in future,
we will consider the coupling of the proposed model with the
Tomlinson model to investigate surface forces and their potential
influence on friction behavior via AFM.

CONCLUSIONS

A numerical model of hydration lubrication was proposed to
evaluate contact and friction behavior at the nanoscale. The
effects of hydration lubrication on contact pressure, surface
profiles, and friction force were discussed. Preliminary numerical

FIGURE 6 | Normal force as a function of surface separation under hydration

contact.

FIGURE 7 | Dependence of friction force on sliding velocity in

hydration-lubricated contact under a load of 1 mN.

studies showed that surface forces significantly influenced
boundary lubrication. Friction behavior was determined using
the modified Eyring thermal activation model. It was observed
that friction force increased with the logarithm of sliding
velocity. This model is a preliminary investigation of the
behavior of hydration-lubricated contact. The model may be
further expanded to consider other factors that affect hydration
lubrication, such as surface roughness, interface viscosity, and
the hydrodynamic effect. The proposed numerical model may
provide a new method of investigating hydration-lubricated
contact at the nanoscale considering surface forces. This may be a
key for understanding superlubricity in ultrathin film-lubricated
contact at the nanoscale. One of the limitations of this study is
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that the influence of the atomic corrugation and the roughness
of surfaces were not considered explicitly. In the future work, we
plan to take these factors into account and expand the prediction
of friction under different surface force effect.
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Formulations of periodic contact problems for an elastic half-plane and an elastic

half-space interacting with a rigid body, having regular microgeometry, and a method

for their approximate solution based on the localization principle are proposed.

General relations, connecting contact characteristics of the interface (contact pressure

distribution and dependence of the real contact area on the nominal pressure) with a

single asperity shape and the distance between them, are obtained. The examples,

illustrating the use of the obtained approximate relations for the contact characteristics

analysis in the case of wavy and wedged profiles, are presented. The comparison of the

obtained results with the available exact solutions is carried out. It was established that

the approximate dependences coincide with the exact solution up to high values of the

nominal pressures. New approximate solutions of 2D contact problems for a periodic

system of parabolic asperities with single and double contact segments within a period

are derived. It is also shown that the ratio of the contact zone size to the distance between

asperities, at which the interaction effect becomes significant, only slightly depends on

asperities shape.

Keywords: regular microgeometry, elastic contact, asperities interaction effect, localization principle, contact

characteristics

INTRODUCTION

In general case, a surface topography is represented by a combination of deterministic and random
functions (Whitehouse, 1994) determined by natural factors or technological treatment of the
surface. Deterministic components are formed either as a result of imperfections in the operation of
technological equipment or in stationary operating conditions (for example, the steady shape of a
worn surface Goryacheva, 1997). In addition, a regularmicrogeometry on the surface can be created
to control the operational properties of friction pairs, in particular their tribological characteristics.
The geometric structure of surfaces has a great significance on the friction processes in an elastic
contact under the condition of minimal wear. Prediction of the contact characteristics of surfaces
with a given regular microgeometry, as well as the control of its optimal microgeometry are the
urgent problems for micro- and nanotribology (Myshkin and Goryacheva, 2016).

The term “regular microgeometry” suggests that on the surface there is a periodic or a
non-periodic system of asperities (or grooves) of a certain shape, mathematically described
by a continuous or a piecewise function. The most common types of microgeometry used in
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tribological applications include isotropic (created in the
transverse and longitudinal directions) and anisotropic (created
in one direction only) ones.

Many operational characteristics of joints, such as stiffness,
thermal and electrical conductivity, tightness, adhesion strength,
etc. are determined by characteristics of normal contact such as
the contact pressure distribution, the real contact area and the
additional compliance caused by the existence of microgeometry.
For their correct calculation, it is necessary to formulate and
to solve a periodic contact problem that takes into account the
density of contact spots and the interaction of asperities. Such
problems and methods for solving them have been extensively
investigated. Most of the results obtained relate to the solution
of the plane periodic problem of the linear elasticity theory,
corresponding to the anisotropic (two-dimensional) geometric
texture. The approaches for solving this class of problems are well
developed. The main analytical ones are based on the methods
using complex potentials (Westergaard, 1939; Kuznetsov, 1976;
Krishtafovich et al., 1994; Manners, 1998; Soldatenkov, 2013;
Xu and Jackson, 2018), the method of superposition of Flamant
solutions (Schmueser and Comninou, 1979; Block and Keer,
2008; Tsukanov, 2018a,b), the dual series equations method
(Dundurs et al., 1973; Carbone and Mangialardi, 2004), and also
their modifications. Based on these methods, problems were also
solved with more complex boundary conditions, for example,
taking friction into consideration, or the influence of adhesion
forces (e.g., see the review of Goryacheva and Martynyak, 2014).
The two-dimensional (2D) periodic problems including ones,
having several segments of integration within one period can be
also effectively solved numerically, e.g., with the use of iterative
methods (Chekina and Keer, 1999; Manners, 2003). Boundary
elementmethod (BEM) (Ciavarella et al., 2005) and finite element
method (FEM) (Paggi and Reinoso, 2018) are also successfully
applied for solving problems of that type. Unlike the problems
for a single contact zone, the close-form solution of a 2D periodic
contact problem commonly contains trigonometric functions
and it can be cumbersome for engineering analysis, particular if
the shape of asperities is not simple.

In contrast to the case of 2D problem, the three-dimensional
(3D) problem corresponding to an isotropic microgeometry was
solved only by using semi-analytical and numerical methods
(e.g., BEM, FEM) due to the lack of a direct inverse of the
corresponding integral equations. The non-periodic contact
problems for a system of asperities, having various shape, location
and height distribution were solved by semi-analytical iteration
methods (Goryacheva, 1997; Shen et al., 2018). The significant
influence of contact spots density, depending on the number
of asperities and relative distance between them, is emphasized.
The numerical methods for 3D periodic contact problems in
linear elasticity are well developed now (Müser et al., 2017).
They usually include the Fast Fourier transform (FFT) technique
to meet the periodic boundary conditions and to reduce the
calculation costs (Stanley and Kato, 1997; Yastrebov et al., 2015).
A rather effective approximate approach for estimating the
distribution of contact pressures on the real contact spots for
the surfaces with regular microgeometry, taking into account
the asperities interaction, is the use of the localization principle

(Goryacheva, 2006). It allows calculating the real contact areas
and pressure distribution on them for periodic systems of
asperities, having equal or different heights. This method was
further developed to analyze the contact pressure distribution
during the indentation of a multilevel periodic system of
spherical asperities into a two-layer half-space and to analyze the
influence of asperities density on the surface layer stress state
and the additional compliance due to the existence of surface
microgeometry (Goryacheva and Torskaya, 2019).

The main purpose of this study is the development of the
approximate analytical method of solution for periodic contact
problems, involving regular surface microgeometry on the basis
of localization principle. This class of contact problems is widely
used in modeling of artificial texture; however, the close-form
solutions are rarely available, especially for 3D problems. In
this paper, the unified approximate method to solve 3D and
2D contact problems for a periodic system of asperities of
equal height is analytically developed. The accuracy of the
method is estimated based on the known exact solutions of the
corresponding contact problems. New approximate solutions of
2D contact problems for a periodic system of parabolic asperities
with single and double contact segments within a period are
obtained. Also, new features of the dependences of contact
characteristics (pressure distribution, contact zone size) on load
are revealed.

LOCALIZATION PRINCIPLE IN SOLVING
THE DISCRETE CONTACT PROBLEMS

In general case, the problem of discrete contact of a nominally
flat surface, having regular microgeometry, with an elastic half-
space can be formulated as follows. There is a finite or an
infinite system of punches with a given shape, loaded with a
constant nominal pressure, which is penetrated into the elastic
half-space. For solving the problem it is necessary to determine
the contact pressure distribution on the real contact spots,
taking into account the curvature of the deformed half-space
surface due to the interaction of punches (asperities). The main
point of the localization principle (Goryacheva, 2006) is that the
real contact pressure on a single contact spot with a sufficient
accuracy is determined by setting the exact contact conditions
only on the fixed spot under consideration and adjacent to
it. The influence of the remaining spots is replaced by the
action of the nominal (averaged over the remaining part of the
surface) pressure. With this approach, the normal displacements
of the half-space surface under an arbitrary fixed asperity from
the action of the remaining asperities are taken into account.
They are approximately calculated from the distributed nominal
pressure acting outside the certain region which depends on the
contact density.

The general formulation of the linear elastic 3D periodic
contact problem for a system of asperities (with equal or different
heights) and its solution using the localization principle are given
in Goryacheva (1998). In particular, the results of a numerical
analysis of the integral relations obtained (Goryacheva, 1998)
show that for a system of periodically arranged axisymmetric
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asperities with equal height, the pressure distribution p(r) on the
real contact spot (for not very intimate contact) with sufficient
accuracy is determined by the expression:

p(r) =
E∗

4π2

a
∫

0

1f (ρ)H1(r, ρ)dρ +
2

π
NPsarctan

( √

a2 − r2
√

A2 − a2

)

(1)

where f (r) is the function describing the shape of the punch
contact surface, 1f (r) is the Laplacian of the function f (r); N̄
is the average number of contact spots per unit area, Psis the
load acting on a single contact spot, a is the contact spot radius,

A = (πN̄)
−1

is the radius of circle outside which the value of
nominal pressure acting on the elastic half-space is taken into
account (Figure 1), E∗ is the reduced modulus of elasticity of the
contacting bodies, determined by the following expression

1

E∗
=

1− ν21

E1
+

1− ν22

E2
, (2)

where E1, ν1 and E2, ν2 are the Young’s moduli and Poisson’s
ratios of the materials of contacting bodies, respectively.

FIGURE 1 | Representation of contact interaction of a system of axisymmetric

asperities with an elastic half-space according to the localization principle.

The kernel of the integral operator in Equation (1) is
determined for the circular contact region in the case of bounded
contact pressure as Goryacheva (1998):

H1 (r, ρ) =

2π
∫

0

2ρ

π
√

r2 − 2rρ cos θ + ρ2
arctan

( √

a2 − r2
√

a2 − ρ2

a
√

r2 − 2rρ cos θ + ρ2

)

dθ . (3)

The total load acting on a single contact spot is determined by the
equilibrium equation

Ps = 2π

a
∫

0

p(r)rdr. (4)

To increase the accuracy of contact characteristics calculation,
especially at high contact density, it is necessary to solve the
inhomogeneous integral equation of the second kind when
determining the contact pressure (Goryacheva, 1998).

This approach was used (Goryacheva and Torskaya, 1995;
Goryacheva, 1998) for calculation of contact pressures and
internal stresses at indentation of a periodic system of
equally high asperities into an elastic homogeneous and an
inhomogeneous (coated) half-space. The calculation results show
a significant effect of the asperities density on the distribution
of contact pressures under a single asperity (Figure 2A) and on
the dependence of radius of a single contact spot on the nominal
pressure p̄ = PN̄ (Figure 2B).

In the case of indentation of periodic system of asperities with
different heights into an elastic homogeneous or layered half-
space the penetration of the highest asperities is calculated firstly.
Then the curvature of the half-space boundary between asperities
is calculated, and the nominal pressure at which the asperities
of the next height level come into contact is determined. The
described method for 3D problems with several height levels of
asperities is suggested by Goryacheva (1997, 1998).

FIGURE 2 | Pressure distribution under a single asperity (A) at p̄ = πP/2E∗R2
= 0.0044; l/R = 1 (1), l/R = 0.25 (2), l/R = 0.2 (3) and dependence of the radius of a

contact spot on dimensionless nominal pressure (B) for l/R = 1 (1,1/), l/R = 0.5 (2, 2/), l/R = 0.2 (3, 3/); curves 1, 2, 3 are calculated from Equations (1–4) and 1/, 2/,

3/—from the Hertz theory.
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DETERMINATION OF THE CONTACT
CHARACTERISTICS OF SURFACES WITH
A MICRORELIEF IN THE CONDITIONS OF
A PLANE ELASTICITY PROBLEM

In the general case, a plane-strain periodic contact problem
without friction involves solving the following integral equation
having a Hilbert kernel (Schtaierman, 1949; Barber, 2018):

E∗

2
h′(x) =

1

2π

a
∫

−a

p(ξ) cot
x−ξ

2
dξ, (5)

here h
′

(x) is the derivative of the initial gap function between
surfaces, p(x) is the contact pressure distribution; a is the half-
width of the contact zone.

In the absence of a direct inversion of Equation (5) on
an arbitrary segment [–a, a] a closed form expression for
determining the distribution of contact pressure is possible only
for certain initial gap functions.

The method to solve the contact problems based on the
localization principle, in the simplest formulation, involves the
contact problem solution for a single asperity (determination of
contact pressure distribution) taking into account the normal
displacements of a half-plane boundary inside the considered
single contact zone from action of the averaged pressure, applied
outside the certain region (see section Localization Principle in
Solving the Discrete Contact Problems).

The contact problem for a single contact segment is
described by the integral equation with the Cauchy kernel
(Muskhelishvili, 1953):

E∗

2
h′(x) =

1

2π

a
∫

−a

p(ξ)

x−ξ
dξ, (6)

having for a symmetric initial gap function and bounded
pressure on both ends of contact segment the following inversion
(Muskhelishvili, 1953):

p(x) =
E∗

2π

√

a2 − x2

a
∫

−a

h′(ξ )
1

√

a2 − ξ 2

1

ξ − x
dξ . (7)

The initial gap function within the contact zone is determined by
the following condition:

h(x) = δ −
(

f (x)+ f2(x)
)

, (8)

where f (x) is the asperity shape function, δ is the contact
approach, f 2(x) is the function, describing curvature of the half-
plane boundary caused by the action of the remaining asperities
except for the one under consideration.

According to the localization principle, the action of the
remaining asperities is replaced by a uniform pressure acting
outside a strip of width 2b. The value of 2b is determined from the
condition of equality of the mean pressure inside and outside of

this strip. The mean pressure in a plane periodic contact problem
is determined as p̄ = Ps/L, where Ps is the total load on a single
contact segment, L is the distance between the peaks of asperities
(period); therefore 2b= L. To determine the total load on a single
contact zone Ps, the equilibrium equation is used

Ps =

a
∫

−a

p(x)dx. (9)

The function f 2(x) can be represented as a difference between
displacements from a uniform load distributed over the entire
half-plane and displacements from the same load inside a strip
of width L (Johnson, 1985):

f2(x) = −
2

πE∗
Ps

L



C −

x
∫

−a

ln

[

L/2+ ξ

L/2− ξ

]

dξ



 . (10)

Displacements from a uniform load distributed over the all half-
plane are constant. This statement can be justified as follows. If
one represents the uniform pressure distributed over a strip of
arbitrary width 2b in the form of Fourier series with a period L as

p(x) = p̄
2b

L
+

2

π
p̄

∞
∑

n=1

1

n
sin

(

2πnb

L

)

cos

(

2πnx

L

)

, (11)

then the derivative of vertical displacements of the half-plane
boundary from the pressure distribution (11) is determined by
the Hilbert transform (Srivastava and Lowengrub, 1970):

ū′z(x) = H
{

p(x)
}

=
4

π
p̄

∞
∑

n=1

1

n
sin

(

2πnb

L

)

sin

(

2πnx

L

)

.

(12)

Taking into account that 2b = L, the right-hand side of Equation
(12) becomes zero, and the half-plane displacements are constant.
After differentiating Equation (10) and substitution the result in
Equation (8), we obtain the expression for the derivative of the
gap function inside the single contact zone:

h′(x) = f ′(x)+
2

πE∗
Ps

L

(

ln

[

L/2+ x

L/2− x

])

= f ′(x)+
4

πE∗
Ps

L
artanh

(

2x

L

)

, (13)

Using Equation (7), one can determine the contact pressure
taking into account the elastic interaction of asperities.

p(x) =
E∗

2π

√

a2 − x2

a
∫

−a

[

f ′(ξ )+
4

πE∗
Ps

L
artanh

(

2ξ

L

)]

1
√

a2 − ξ 2

1

ξ − x
dξ . (14)
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The total load on the asperity, taking into account the symmetry
of the function f (x), is determined directly using Equation (13)
(Schtaierman, 1949; Barber, 2018):

P =
E∗

2

a
∫

−a

f ′(ξ )ξdξ
√

a2 − ξ 2
+

2

π

Ps

L

a
∫

−a

ξ
√

a2 − ξ 2
artanh

(

2ξ

L

)

dξ .

(15)

Calculation of the integral in the second term of Equation (15)
with condition of 2a < L gives the following expression for
the load:

P =
E∗

2

a
∫

−a

f ′(ξ )ξdξ
√

a2 − ξ 2
+

Ps

L

(

L−

√

L2 − 4a2
)

. (16)

Using Equation (16), it is possible to simplify the integration of
the second term in square brackets in Equation (14). For this
purpose the method based on the Abel transform of the function
∂P/∂a (Barber, 2018) was used. Then Equation (14) is reduced to
the following form

p(x) =
1

π

a
∫

x

P′a(ξ )dξ
√

ξ 2 − x2
=

E∗

2π

√

a2 − x2

a
∫

−a

f ′(ξ )dξ
√

a2 − ξ 2 (ξ − x)

+
2Ps

πL
arctan

(

2
√

a2 − x2
√

L2 − 4a2

)

, (17)

where P′a = ∂P/∂a.
It should be noted that in the 2D periodic problem the effect

of elastic interaction on the contact pressure under the central
asperity is characterized by a function similar to the 3D case for
axisymmetric asperities arranged at the nodes of hexagonal lattice
(see Equation 1).

Let us consider some examples of using the localization
principle in 2D periodic contact problems for specific types of
microgeometry, common in engineering applications.

Sinusoidal Profile
A two-dimensional profile described by the function f (x) =

1
(

1− cos(2πx/L)
)

, where 1, L are the amplitude and the
period, is the simplest way to describe waviness or roughness of a
surface formed along one direction (longitudinal or transverse).
Expressions for determining the contact pressure distribution
and the dependence of mean pressure p̄ on a contact zone
half-width were first obtained by Westergaard (1939):

p(x) =

√
2πE∗1

L
cos (πx/L)

√

cos (2πx/L) − cos (2πa/L);

(18)

p̄ = p∗sin2 (πa/L) . (19)

Here p∗ = πE∗1/L is the pressure required to achieve complete
contact between surfaces.

FIGURE 3 | Contact of a wavy surface with an elastic half-plane (A) and the

equivalent scheme in accordance with the localization principle (B).

Consider the solution of this problem using the localization
principle. The initial and the equivalent schemes of the problem
are shown in Figure 3.

An analytical expression for contact pressure distribution
under a single sinusoidal asperity, which is a solution of Equation
(6), was obtained by Tsukanov (2018a) in the form of an infinite
series of Chebyshev polynomials:

ps(x) =
2π1E∗

L

√

1− (x/a)2

∞
∑

k=0

(−1)kJ2k+1 (2πa/L)U2k (x/a), (20)

where Ui(x) is the Chebyshev polynomial of the second kind of
degree i; Jk(x) is the Bessel function of the first kind of integer
order k.

Equations for determining the total force, applied to a single
asperity and the maximum pressure are obtained in closed form
Tsukanov (2018a):

Ps =
π21E∗

L
aJ1 (2πa/L) ; (21)

psmax = ps(x) |x=0 =
π1E∗

L

2πa/L
∫

0

J0(t)dt. (22)

Using Equations (16–17) and (20–22), the approximate
expressions can be obtained to determine the contact
characteristics of a wavy surface indenting into an elastic
half-plane. The expressions for the mean and the maximum
pressure have the following form
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FIGURE 4 | Contact of a wedged profile with an elastic half-plane.

p̄ =
π21E∗

L2
aJ1 (2πa/L)

(

2−

√

L2 − 4a2

L

)

; (23)

pmax =
π1E∗

L

2πa/L
∫

0

J0(t)dt +
2π1E∗

L2
aJ1 (2πa/L)

(

arctan

(

2a
√

L2 − 4a2

))

. (24)

Wedged Profile
This type of microrelief can be found on surfaces after very rough
edge machining. The radius of curvature of asperities is much
smaller than their height, and it can be considered as negligible.
The scheme of the problem is shown in Figure 4. The equivalent
scheme according to localization principle is similar to Figure 3.

For the possibility of applying the methods of the linear theory
of elasticity, the angleβ = arctan(41/L) should be small.

The exact solution of this problem was obtained by Block and
Keer (2008):

p(x) =
E∗ tanβ

π
arcosh

(

tan (πa/L)

tan (π |x| /L)

)

. (25)

In accordance with the localization principle (see Equations 16,
17) and using well-known expressions for determining contact
pressure and total load on a single blunt wedge (Johnson, 1985),
the following approximate equations for determining the contact
characteristics have been reduced:

p(x) =
E∗ tanβ

π
arcosh

(a

x

)

+
2E∗a tanβ

πL
arctan

(

2
√

a2 − x2
√

L2 − 4a2

)

; (26)

p̄ =
E∗a tanβ

L

(

2−

√

L2 − 4a2

L

)

. (27)

Periodic System of Parabolic Asperities
With a Single Contact Segment Within
a Period
A common in practical applications type of texture (e.g., after
laser surfacing) is a periodic system of cylindrical (parabolic)

FIGURE 5 | Contact of a system of parabolic asperities and an elastic

half-plane with a single contact segment within a period.

asperities in which the radius of curvature significantly exceeds
their height. The scheme of the problem is shown in Figure 5.

This problem was previously considered by Kuznetsov (1978).
An exact expression to calculate the contact pressure distribution
in a closed form has not been derived, however the relation
between the half-width a of a contact zone and the total load per
one asperity Ps was found (Kuznetsov, 1978):

a =
L

π
arccos

(

exp

(

−
2πPsR

L2E∗

))

. (28)

Using the well-known equations for determining the contact
characteristics of a single smooth indenter (Johnson, 1985) and
Equations (16, 17), the following expressions for the pressure
distribution and the total load on a single asperity, taking into
account elastic interaction are derived:

p(x) =
E∗

2R

√

a2 − x2 +
E∗a2

2RL
arctan

(

2
√

a2 − x2
√

L2 − 4a2

)

; (29)

Ps =
πE∗a2

4R

(

2−

√

L2 − 4a2

L

)

. (30)

Periodic System of Asperities With Two
Contact Segments Within a Period
The more complicated problem arises, if there are multiple
contact segments within one period. Without significant loss of
generality let us consider the contact problem for a periodic non-
uniform system of parabolic asperities and an elastic half-plane,
with two interacting asperities within a single period. This type of
contact problem has no exact solution, but can be approximately
solved in a close-form using the localization principle.

The problem scheme is shown in Figure 6. Pairs of parabolic
asperities form a periodic system with a period L. The shape of
two interconnected asperities (see Figure 6) can be expressed by
a biquadratic function:

f (x) =
x4

8Rc2
−

x2

4R
. (31)

Here R is a curvature radius of each asperity and 2c is a distance
between asperity centers. The system of asperities is under the
action of the nominal pressure p̄.

For the two contact segments and asperities shape, defined by
Equation (31), the contact pressure and the total load on one
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contact segment are determined by the following expressions
(Gladwell, 1980):

p0(x) =

E∗
√

x2
(

x2 − b0
2
)

(

a02 − x2
)

4Rc2
, a0 ≤ |x| ≤ b0; (32)

Ps =

πE∗
(

b0
2
− a0

2
)2

64Rc2
, (33)

where 2c =
√

2(b0
2
+ a02).

The contact pressure in a general case of multizone 2D contact
problem is determined by the following expression (Schtaierman,
1949; Muskhelishvili, 1953):

p(x) =
E∗

2πX(x)

n
∑

k=1

bk
∫

ak

h′(ξ )X(ξ )dξ

ξ − x
+

2iQn−1(x)

X(x)
. (34)

Here h(x) is an initial gap function; n is a number of contact
segments, k= 1. . .n; ak, bk are the coordinates of the k-th contact

segment; X(x) =

√

(x− a1)
(

x− b1
)

. . . (x− an)
(

x− bn
)

;

Qn−1(x) = D0x
n−1

+D1x
n−2

+. . .+Dn−1; coefficientsD0. . .Dn−1

are determined from the system of equations taking into account
continuity and boundary conditions at the contact segment ends
(Ghanati and Adibnazari, 2019).

According to the localization principle, to obtain a solution of
a periodic problem we must consider the contact of the asperities
at one period taking into account an additional curvature f2(x)of
the half-plane boundary within the contact zones due to the
influence of the other asperities. It follows from Equation (13),
that the derivative of the initial gap function within each contact
zone, can be expressed as:

h′(x) = f ′(x)+ f ′2(x) =
x3

2Rc2
−

x

2R
+

4p̄

πE∗
artanh

(

2x

L

)

.

(35)

Taking into account the boundary conditions within one
period and approximating the hyperbolic arctangent function in
Equation (35) by the cubic polynomial under the assumption that

FIGURE 6 | Contact of a system of parabolic asperities and an elastic

half-plane with two contact segments within a period.

2c< L, from Equation (34) we obtain the following expression for
the contact pressure in periodic problem:

p(x) =
E∗

√
Z(x)

2π

b
∫

a

h′(ξ )dξ

(ξ − x)
√

Z(ξ )
, (36)

Here Z(x) =
(

x2 − b2
) (

a2 − x2
)

(a and b are the ends of
the contact zones in periodic contact problem) and h′(x) is
approximated by the following expression:

h′(x) =

(

1

2Rc2
+

32p̄

3πE∗L3

)

x3 +

(

8p̄

πE∗L
−

1

2R

)

x. (37)

Substituting Equations (35) and (37) in Equation (36) and
following Gladwell (1980), we derive the following expression for
the contact pressure in the periodic contact problem with two
parabolic asperities within the period:

p(x) = E∗
(

1

4Rc2
+

16p̄

3πE∗L3

)

√

x2
(

x2 − b2
) (

a2 − x2
)

.a ≤ |x| ≤ b, (38)

where the ends of the contact zones follow the
relation b2 + a2 = 2c2.

A more general problem, involving multiple contact zones,
can be treated similarly using numerical methods for solution of
Equation (34).

For comparison of the results obtained in the periodic contact
problem with the contact pressure distribution (32) for two
asperities we assume that the distance between asperities 2c and
the nominal (mean) pressure p̄ are the same; the value of the
nominal pressure is calculated from the relation

p̄ =
2Ps

L
, (39)

where Ps is given by Equation (33).

FIGURE 7 | Pressure distribution for sinusoidal waviness contacting with an

elastic half-plane at 2a/L = 0.5 (1) and 2a/L = 0.8 (2): exact solution (solid

line), localization principle solution (dashed line).
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FIGURE 8 | The dependence of the mean (A) and the maximum (B) pressures on a contact zone width: exact solution (solid line), approximate solution (dashed line).

FIGURE 9 | Contact pressure distribution for the wedged profile at 2a/L = 0.5

(1) and 2a/L = 0.8 (2): exact solution (solid line), localization principle solution

(dashed line).

RESULTS AND DISCUSSION

The analytical solutions derived from the method of localization
were used for the analysis of the contact characteristics in the
periodic contact problems and for comparison with the available
exact solutions. The dimensionless pressure distributions for the
contact of a sinusoidal wavy surface and an elastic half-plane
at two values of a dimensionless contact zone width are shown
in Figure 7. The results indicate that the solution based on the
localization principle allows predicting the distribution of contact
pressures with sufficient accuracy up to high loads (high contact
density, characterizing by the ratio 2a/L). The comparison of
the dependencies of the dimensionless mean and maximum
contact pressures vs. contact zone width 2a for the exact and
the approximate solutions is presented in Figure 8. The results
indicate that a significant discrepancy between the exact and the
approximate values of contact characteristics begins only at high
contact density (2a/L ≈ 0.7). Note, that for such high values of
contact density the solution for almost complete contact can be
applied (Johnson, 1985).

The distributions of contact pressure for a wedged profile
indented into an elastic half-plane at two values of dimensionless
contact zone width are shown in Figure 9. Comparison of the
results calculated based on the exact solution and the localization
principle makes it possible to conclude that the approximate

FIGURE 10 | Dependencies of the contact width on the mean pressure for a

wedged profile: numerical integration of Equation (25) (solid line), approximate

solution (dashed line).

pressure distribution is close to the exact one even for the case
with infinite peaks due to angle point in the wedged profile. The
dependences of the dimensionless contact zone width on the
dimensionless mean pressure for the wedged profile, indenting
into an elastic half-plane are shown in Figure 10. For the wedged
profile, as well as for the wavy one, the discrepancy of the
dependencies of the contact width on the mean contact pressure
begins at 2a/L ≈ 0.7. At further increase of the applied pressure
the approximate solution gives overestimated values of contact
zone width.

The pressure distributions calculated for a periodic system
of cylindrical (parabolic) asperities with use of Equation (29)
in comparison with the Hertz theory (in a two-dimensional
formulation) are shown in Figure 11. The asperity interaction
effect is revealed in a decrease in the contact zone size and
an increase in the peak pressure. With a further increase in
load or asperities density, the pressure profile is significantly
different from the Hertzian one. This result is in good agreement
with the 3D case for spherical asperities (see Figure 2). The
comparative graphs of a/L ratio on the dimensionless load for
a periodic system of parabolic asperities with a single contact
segment within a period are shown in Figure 12. The curve
corresponding to the localization principle solution is close to the
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FIGURE 11 | The contact pressure distribution under the cylindrical asperity

for the periodic system (1, 2) and from the Hertz solution (1/, 2/) at p̄/E∗
=

0.05 (1, 1/) and [[Inline Image]] = 0.15 (2, 2/).

FIGURE 12 | The dependence of a/L ratio on the dimensionless load for a

periodic system of cylindrical asperities: exact solution (solid line), localization

principle solution (dashed line), the Hertz theory (dash-dot line).

exact solution up to the value a/L ≈ 0.35 (2a/L ≈ 0.7), as well as
for other considered profiles. The discrepancy with the Hertzian
curve corresponding to non-interacting asperities begins at a/L
≈ 0.125. For the values of a/L < 0.125 the error of calculation
using the Hertz theory is <3%. The last result is similar to the
case of a 3D system of spherical asperities (see Figure 2).
At the large values of load the approximate solution
overestimates the contact zone size in comparison with the exact
Equation (28), however the discrepancy is smaller than for a
wedged profile.

Contact pressure distributions for a periodic system of
parabolic asperities with two contact segments within a period
(L = 2.4c) are shown in Figure 13 in comparison with the
non-periodic double asperity contact. The graphs show, that
as well as for a single contact segment within a period (see
Figure 11) the increase in the density of asperities leads to an
increase in the peak pressure, and also to the reduction of
contact width (b–a) at fixed nominal pressure. The considered
case can be used in the analysis of a short-range and a long-
range elastic interaction between asperities. The short-range
elastic interaction, depending mainly on the distance between

FIGURE 13 | Distribution of contact pressures for a periodic system of

asperities with two contact segments within a period (solid lines) in

comparison with a non-periodic double asperity contact (dashed lines): p̄/E∗

= 0.05; 2c = 0.6.

two asperities, leads to asymmetry of the contact pressure
distribution between the adjacent sides of the asperities. The
long-range interaction is determined by the number and the
shape of asperities within one period and the value of L. Effect
of the long-range interaction is smaller than of the short-
range; approximately it can be considered on the basis of
localization principle. The maximum effect of the long-range
elastic interaction is reached at merging of contact zones between
the asperities (a= 0).

CONCLUSIONS

The unified approximate analytical method to solve 3D and
2D contact problems for a regular surface microgeometry
penetrating the elastic half-space (half-plane) is developed.
The equations derived for 3D and 2D cases, using the
localization principle, show the identical structure for
different dimensionality of the problem. The accuracy of
the obtained method for two-dimensional problems was
estimated for wavy and wedged profiles, by comparison
with the exact solutions. New approximate solutions of 2D
contact problems for a periodic system of parabolic asperities
with single and double contact segments within a period
are obtained.

The results obtained show that the application of the
presented method in a plane contact problem for bodies
with a periodic regular microrelief allows to calculate the
contact characteristics with high accuracy up to large contact
densities (2a/L ≈ 0.7). Further increasing of the applied load
or contact density leads to moderate overestimation of contact
characteristics in comparison with the exact solutions. For all
considered cases the increase in asperities density leads to an
increase in the peak pressure, and also to the reduction of the
contact half-width at a fixed load. Qualitatively, the form of
contact pressure distribution is generally defined by the shape
of asperities.

The advantage of the developed approach is the ability to
separately consider the effects associated with the shape of
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asperities and the relative distance between them. The method
allows to simplify the calculation of contact characteristics for
a complex-shaped regular texture, for which a straightforward
analytical solution does not exist, including more general
multizone contact problems. The approach developed can be also
used for the solution of the 2D and 3D periodic contact problems
with complicated boundary conditions (e.g., with adhesion of
different nature at the interface Makhovskaya, 2003).
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The stress state in the volume of contacting bodies may essentially influence the material

behavior. For evaluating various modes of inelastic behavior and/or failure, such as

plastic deformation, crack initiation, and propagation or fatigue, the complete stress

tensor beneath the contact interface may be of importance. For many geotechnical and

biomechanical applications, the hydrostatic pressure gradient beneath the contact is

of interest as well. However, most theories for normal and tangential contact provide

only few stress components in the contact surface. In the present paper, we show that

the full stress state in the half-space can be easily found for axisymmetric bodies. We

provide expressions in form of one-dimensional integrals for all components of the stress

tensor and the hydrostatic pressure gradient inside the half-space. In terms of numerical

complexity, the proposed method can be advantageous to other elaborate methods.

Keywords: stress state, pressure gradient, normal contact, tangential contact, friction, axial symmetry, method of

dimensionality reduction

INTRODUCTION

Since Huber’s (1904) solution of the Hertzian contact, it is known that the von Mises equivalent
stress and, thus, the endangered region for plastic failure, lies beneath the surface of the indented
half-space. It was later shown that the same holds for the tangentially loadedHertzian contact under
sliding conditions for coefficients of frictions below 0.3 (Hamilton and Goodman, 1966) and for
other indenter shapes (Ciavarella et al., 1998). However, many solutions for contact problems are
limited to few components of surface stresses and, thus, do not allow for predictions with respect
to plastic failure or more complicated failure mechanisms.

Another example, where the stress state inside the half-space or, more precisely, the hydrostatic
pressure gradient is of interest, are natural joints such as knee or hip joints. When layers of
cartilage are in contact, it was found experimentally that dynamic compression that may result
from activities like walking and running promotes regenerative processes. In this loading scenario,
a high rate of in- and outflow of interstitial fluid in the surface zone of the porous, fluid saturated
medium is measured (Wong and Carter, 2003). It is believed that the fluid flow is responsible for
transport of nutrients and waste and is, thus, crucial for cartilage health (Zhang et al., 2009). Hence,
Popov (2019) proposed a growth law for cartilage based on the changing rate of the hydrostatic
pressure gradient. Here, following Darcy’s law for fluid flow in porous media, the hydrostatic
pressure gradient is considered a measure for fluid flow.
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Forsbach Stress Tensor Under Axisymmetric Bodies

The brute force method to obtain the stresses in the half space
is to use superpositions of the point force solutions by Boussinesq
(1885) and Cerruti (1882). However, the resulting numerical
integrations are very expensive in terms of computational
complexity. On a three-dimensional n×n×n grid, the complexity
of this method is (On5). This is inconvenient, whenever the
stresses must be computed repeatedly due to changing indenter
shapes (in case of wear or growth) or due to variations in loading.
Of course, more elaborate methods with lower complexity exist.
An example with the complexity (On3 log n) is the FFT-
based boundary element method (BEM) for the half-space
(Pohrt and Li, 2014).

In the present paper, we employ the superposition idea
first described by Mossakovski (1963) to derive expressions in
form of one-dimensional integrals for the whole stress tensor
in the half-space. Starting point for the frictionless normal
contact problem is the complete analytical solution for the
Hertzian contact by Huber (1904). For the tangential contact
problem, we operate in the Cattaneo-Mindlin approximation
and base our derivation on the Hertzian solution by Hamilton
(1983). The resulting expressions may be used to numerically or
analytically determine stresses and hydrostatic pressure gradients
for arbitrary axisymmetric indenters and arbitrary loading
histories. Employing the same method, Willert et al. (2020)
derived simple analytic expressions for the stresses and the
hydrostatic pressure gradient, but only for contact plane. In
terms of complexity, we show that the proposed method can be
advantageous, even compared to elaborate methods such as the
FFT-based BEM.

The paper is organized as follows: sections Frictionless
Normal Contact and Tangential Contact in the Cattaneo-Mindlin
Approximation are concerned with the normal and tangential
contact problem, respectively. In both sections, we first obtain
the respective solution for the cylindrical flat punch from
the Hertzian solution and then derive expression for arbitrary
indenter shapes by superposition of flat punch solutions. In
case of the tangential contact, we also discuss the states of
partial and full slip and arbitrary loading histories. In the end
of both sections, the von Mises stresses and hydrostatic pressure
gradients are shown for some examples. The paper closes with a
discussion and some conclusive remarks.

FRICTIONLESS NORMAL CONTACT

In this section, we derive expressions for the stress
state and the pressure gradient in the half-space for
the axisymmetric Boussinesq problem. As suggested by
Mossakovski (1963), the solution for arbitrary axisymmetric
profiles can be obtained by superimposing incremental flat
punch solutions.

Conversely, this superposition idea can also be employed to
obtain the flat punch solution from any known axisymmetric
solution. Thus, we first derive the flat punch solution inside the
half-space using the well-known Hertzian solution provided by
Huber (1904) and later use this solution to derive expressions for
arbitrary axisymmetric profiles.

Hence, the stress components for the indentation by a rigid
cylindrical flat punch (superscript FP) with the radius a can be
derived from the Hertzian solution (superscript H) using

σ FP
ij = δ

∂σH
ij

∂δH
= δ

∂σH
ij

∂a

da

dδH
= δ

∂σH
ij

∂a

R

2a
, (1)

with the indentation depth δ and δH = a2 / R in the Hertzian case.
The obtained flat punch solution is presented in Appendix A.

Now, we consider the case of general axisymmetric profiles.
Under the assumption of a convex smooth profile f = f (r),
the relation between penetration depth and contact radius is a
unique function

δ = g (a) . (2)

In the framework of theMDR (Popov andHeß, 2015), it is shown
that this function can be derived from the profile f (r) by the
simple Abel integral transform,

g(x) = |x|

|x|
∫

0

f ′(r)
√

x2 − r2
dr . (3)

By again employing the superposition idea described above,
we obtain expressions for the general axisymmetric profile
(superscript AS) via

σAS
ij =

∫

dσAS
ij =

a
∫

0

∂σAS
ij

∂δ

dg

dã
dã =

a
∫

0

∂σ FP
ij

∂δ

dg

dã
dã. (4)

Thus, we interpret the indentation process as a series of
incremental indentations of flat punches with increasing contact
radii. The obtained expressions read

σAS
zz (r, z; a) = −

E∗

π

a
∫

0

(

z
√
u

)3 (

3−
ãua

2u
− 2

ã2z2 + ãuua

u2 + ã2z2

)

ãu g′ (ã)

u2 + ã2z2
dã,

σAS
rr (r, z; a) =

1− 2ν

2πr2
FN (a) − σAS

zz (r, z; a) +
E∗

π

a
∫

0

{

(1− 2ν)
ã2

r2

(

z
√
u

)3 (

ãua

2u
− 1

)

+
z

2
√
u

[

2ãua

u
− 4+ (1− ν)

(

ã2 − u
)

(ãua − 2u)
(

u+ ã2
)2

+ (1+ ν)
2u− ãua

u+ ã2

]}

g′ (ã)

ã
dã,

σAS
ϕϕ (r, z; a) = −

E∗(1+ ν)

π

a
∫

0

ãz

u

2u− ãua

ã2 + u

g′ (ã)
√
u

dã− σAS
rr (r, z; a) − σAS

zz (r, z; a) ,

σAS
rz (r, z; a) = −

E∗

π

r

z

a
∫

0

(

z
√
u

)3 u

u+ ã2

(

3+
ãua

2u
− 2

ã2z2 + ãuua

u2 + ã2z2

−
2ã2 + ãua

u+ ã2

)

ãu g′ (ã)

u2 + ã2z2
dã, (5)

where u as well as its derivative ua are shortcuts for

u =
1

2
(A+ S) , ua =

∂u

∂ ã
= −ã

(

1+
A− 2z2

S

)

, with
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A = r2 + z2 − ã2 and S =
√

A2 + 4ã2z2 . (6)

In Equation (5), FN is the total normal force,

FN (a) = 2E∗
a

∫

0

(

δ − g (ã)
)

dã , (7)

E∗ = E/
(

1− ν2
)

is the effective Young’s modulus and ν is the
Poisson’s ratio. In the contact plane (z = 0) and in the axis of
contact (r = 0), Equation (5) simplify significantly. The resulting
expressions are presented in Appendices B and C, respectively.
Using the same procedure as described above, the expressions of
the stress components at the surface were already presented by
Willert et al. (2020).

It is elemental that the superposition idea also works with
any linear operation on the stress components. As an example,
the hydrostatic pressure phs =

(

σrr + σϕϕ + σzz
)

/3 and the
components of the gradient of the hydrostatic pressure are
obtained as well. Again, we first calculate the flat punch solutions
from the Hertzian solution (presented in Appendix A) and then
obtain expressions for the axisymmetric case:

pAShs (r, z; a) = −
E∗(1+ ν)

3π

a
∫

0

ãz

u

2u− ãua

ã2 + u

g′ (ã)
√
u

dã,

dpAS
hs

dr
(r, z; a) =

E∗(1+ ν)

3π

a
∫

0

z
√
u

ã2

u+ ã2

(

uar + 3
ur

ã

−
3

2

uaur

u
−

2ãur + uaur

u+ ã2

)

g′ (ã)

u
dã,

dpAS
hs

dz
(r, z; a) =

E∗(1+ ν)

3π

a
∫

0

ã
√
u

ã2

u+ ã2

[

uaz

(

z

ã
+

ãz

u

)

− 2

+
ua

ã

(

1+
ã2

u

)

−
2u

ã2
+

uz z

2u
(

2+
6u− 5ãua

ã2
−

3ã ua

u

)]

g′ (ã)

u+ ã2
dã, (8)

with the derivatives

ur(r, z; ã) =
∂u

∂r
= r

(

1+
A

S

)

,

uz(r, z; ã) =
∂u

∂z
= z

(

1+
A+ 2ã2

S

)

,

uar(r, z; ã) =
∂2u

∂ ã∂r
= −

4ãrz2
(

A+ 2ã2
)

S3
,

uaz(r, z; ã) =
∂2u

∂ ã∂z
=

4ãr2z A

S3
. (9)

The corresponding expressions at the contact plane and at the
axis of contact (r = 0) are, again, presented in Appendices B and
C, respectively.

Examples for the Frictionless Normal
Contact
The two already discussed indenter shapes, the paraboloid
(Hertzian contact) and the cylindrical flat punch, as well as two
more imperfect shapes, the paraboloid with a parabolic cap and
the cylindrical flat punch with rounded edges, serve as examples
for the frictionless normal contact in the following. The profiles
and the relation between penetration depth δ and contact radius
a are listed in Popov et al. (2019):

a) Paraboloid with radius of curvature R (see Figure 1A):

f (r) =
r2

2R
and δ = g(a) =

a2

R
. (10)

b) Cylindrical flat punch (see Figure 1B):

f (r) =

{

0 , r ≤ a
∞ , r > a

. (11)

c) Paraboloid with a parabolic cap with radius of the cap b and
radii of curvature R1 and R2 (see Figure 1C):

f (r) =

{

r2

2R1
, r ≤ b

r2−h2

2R2
r > b

and

δ = g(a) =

{

a2

R1
, a ≤ b

a2

R1
+

a2

R∗

√

a2 − b2, a > b,
(12)

where h2 = b2
(

1− R2

R1

)

and R∗ =
R1R2
R1−R2

.

d) Cylindrical flat punch with rounded edges with radius of the
blunt end b and radius of curvature R (see Figure 1D):

f (r) =

{

0, r ≤ b
(r−b)2

2R , r > b
and

δ = g(a) =

{

0, a ≤ b
a
R

[√

a2 − b2 − barccos
(

b
a

)]

, a > b
(13)

With these relations, the integrals in Equations (5) and (8) and
are evaluated numerically, with exception of the flat punch where
stress components and pressure gradients are explicitly given in
Equations (26) and (28) of Appendix A.

As a common measure for plastic failure, we calculate the von
Mises equivalent stress

σmises =

√

1

2

{

(

σrr − σϕϕ

)2
+

(

σϕϕ − σzz
)2

+ (σzz − σrr)
2
+ 6 σ 2

rz

}

.

(14)

The von Mises stress normalized with the average pressure
in contact is plotted in Figure 1. Of course, the well-known
distribution for the paraboloid with the maximum at z/a = 0.5 is
simply the reproduction of the solution by Huber (1904). For the
paraboloid with a parabolic cap with b/a = 0.5 and R1 = 3R2,
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A B

C D

FIGURE 1 | Von Mises equivalent stress in the half-space normalized with the average pressure p0 assuming ν = 0.3 for different indenter shapes with indentation

depth δ: (A) Parabolical indenter, (B) Cylindrical flat punch, (C) paraboloid with a parabolical cup with b/a = 0.5 and R1 = 3R2, (D) Cylindrical flat punch with rounded

edge with b/a = 0.5.

the maximum is widened and is located below the surface as
well. Due to the small kink at b/a = 0.5 where the curvature
changes, the distribution beneath is distorted toward the surface.
The flat punch produces a stress singularity at the surface owing
to the sharp edge. The lowest maximum with a normalized von
Mises stress of 0.74 is obtained for the Cylindrical flat punch with
rounded edges. It occurs under the rounded outer area of the
indenter at a depth of z/a ≈ 0.3.

In Figure 2, the absolute value of the hydrostatic
pressure gradient,

∣

∣

∣

E∇p
∣

∣

∣
=

√

(

dpAS

dr

)2

+

(

dpAS

dz

)2

, (15)

is plotted. It is normalized by the pressure gradient in the
center of the contact plane produced by the equivalent

parabolical indenter with the same contact radius and
indentation depth,

p′0 =
2E∗(1+ ν)δ

3a2
. (16)

Unlike the von Mises stress, the pressure gradient reaches
its maximum at the surface in all cases. Maxima in form of
singularities are found at the contact edge and at places of
sudden geometrical change. Thus, the paraboloid with a parabolic
cup and the flat punch with rounded edges exhibit additional
singularities at r = b. Furthermore, the comparison of the
pressure gradient under flat and curved section shows that, apart
from the above-mentioned singularities, it is much larger for
small radii of curvature.
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A B

C D

FIGURE 2 | Normalized absolute value of the hydrostatic pressure gradient assuming ν= 0.3 for different indenter shapes with indentation depth δ: (A) Parabolical

indenter, (B) Cylindrical flat punch, (C) paraboloid with a parabolical cup with b/a = 0.5 and R1 = 3R2, (D) Cylindrical flat punch with rounded edge with b/a = 0.5.

TANGENTIAL CONTACT IN THE
CATTANEO-MINDLIN APPROXIMATION

In this section, we consider the stress state and pressure gradient
in the half-space due to tangential surface loads in the form

σyz = 0, σxz 6= 0, r < a. (17)

In the Cattaneo-Mindlin approximation, the tangential
contact can be reduced to superpositions of contact pressure
distributions resulting from the frictionless normal indentation
problem (Jäger, 1995). Thus, we can use the same procedure
as for the frictionless normal contact. Further, we will discuss
the cases of partial slip and complete slip, that is, if the stick
condition |σxz(r)| < µ p(r) is violated.

For the Hertzian contact, the tangential surface loading of a
globally sliding indenter is

σH
xz(r ≤ a; a) = µ

2E∗

πR

√

a2 − r2 , (18)

with the coefficient of friction µ. The resulting stresses were
given by Hamilton and Goodman (1966) as imaginary parts of a

complex function and, later, more conveniently, in explicit form
by Hamilton (1983) (note, that in the equation for σxx it should
be x2z2/S instead of x2z2/3).

With these expression, we, again, obtain the flat punch
solutions via Equation (1). The surface loading for a sliding flat
punch, for example, is

σ FP
xz (r ≤ a; a) =

µE∗δ
√

a2 − r2
. (19)

A flat punch can either completely slip or completely stick (Popov
et al., 2019). The solutions for the case of complete stick, are given
by the substitution

µE∗δ → G∗ux,0 , (20)

in the solutions for the sliding flat punch with the effective
shear modulus G∗

= 4G/ (2− ν) and the tangential rigid body
displacement ux,0. For the sake of brevity, the complete set of
equations for the tangentially loaded flat punch is not explicitly
presented here. It is more convenient to compute and store
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the derivatives in Equation (1) using a symbolic engine such as
Wolfram Mathematica.

For the axisymmetric sliding contact with a convex smooth
profile, we, again, determine the stresses from a superposition
of incremental sliding flat punch indentations with increasing
radii. Hence, the stresses in the half-space, resulting only from
the tangential surface loading, are given by Equation (4) and the
computed flat punch solutions. It should be noted that for the
full stress state, the stresses (5) caused by normal loading must
be added.

For monotonic tangential loading, under constant normal
force, partial slip will occur for convex profiles. Starting with
the tangential loading, slip will propagate from the edge of
contact. Following Jäger (1995, 1998) and Ciavarella (1998), the
surface stresses σxz in the partial slip case can be written as
a superposition

σAS
xz (r; a) = −µ

[

σAS
zz (r; a)− σAS

zz (r; c)
]

, (21)

with the surface stress due to normal loading σAS
zz given in

Equation of Appendix B and the radius c of the stick area, giving

σAS
xz (r; a) = µ

E∗

π

a
∫

max(r,c)

g′ (ã) dã
√

ã2 − r2
. (22)

The radius of the stick area is determined by

G∗ux,0 = µE∗
[

δ − g(c)
]

or
Fx

µFN
=

FN(a)− FN(c)

FN(a)
, (23)

Popov et al. (2019), with FN given in Equation (7). Hence, the
stresses in the half-space for arbitrary profiles resulting from the
tangential loading are given by a superposition of incremental
sliding flat punch contacts with radii increasing from the stick
radius to the contact radius,

σAS
ij (r, z; a) =

a
∫

c

∂σ FP
ij

∂δ

dg

dã
dã, (24)

with ij in
{

xx, yy, zz, xy, yz, zx
}

and the solutions for a sliding
flat punch σ FP

ij .

In the case of arbitrary loading histories, the solution is simply
a finite number of superpositions in the form of Equation (21).
Most conveniently, this can be modeled as one-dimensional
tangential spring deflections ux,1D in the framework of MDR (see
(Popov et al., 2019) for details), yielding

σAS
ij (r, z; a) = −

G∗

µE∗

a
∫

0

∂σ FP
ij

∂δ

d

dã

[

ux,1D(ã)
]

dã. (25)

Obviously, as for the normal contact, the integral Equations
(24) and (25) also hold for the hydrostatic pressure and the
components of the hydrostatic pressure gradient, if the stress
components of the sliding flat punch σ FP

ij are substituted with

hydrostatic pressure phs and the components of the pressure
gradient, respectively.

Examples for Monotonic Tangential
Loading
As examples for the tangential contact, we discuss the parabolical
indenter and the cylindrical flat punch with rounded edges (see
section Examples for the Frictionless Normal Contact for details)
under monotonic tangential loading. For a coefficient of friction
of µ = 0.3 and tangential rigid body displacement of δ/4 and
δ/2, respectively, we obtain the cases of partial slip and complete
slip for both indenter shapes.

Figure 3 shows the von Mises equivalent stress for both
indenters and loading scenarios in the x-z-plane. In all cases, the
tangential surface loading leads to an additional local maximum
at the trailing edge in the contact plane and the maximum
beneath the surface is shifted toward the leading edge. For
the parabolical indenter in the state of partial slip, the global
maximum is beneath the surface as for the frictionless normal
contact. In case of a complete slip, however, both maxima are
of similar magnitude. This corresponds with the statement of
Johnson (1985), that the maximum travels to the contact plane
for µ > 0.3 in the case of a sliding Hertzian contact. For
the flat punch with rounded edges in the partial slip scenario,
both maxima are of similar magnitude, while a distinct global
maximum at the trailing edge in the contact plane is found in
the case of complete slip.

Figure 4 shows the absolute value of the hydrostatic pressure
gradient for the same indenter shapes and loading scenarios.
In the case of complete slip, the gradient is increased at the
leading edge and decreased at the trailing edge compared to
the frictionless normal contact. However, the contribution of the
tangential contact is, at least for µ = 0.3, small in comparison to
the normal contact. In the case of partial slip, the discontinuity
due to the beginning slip area yields an additional minimum at
the leading edge and an additional maximum at the trailing edge.

DISCUSSION

The evaluation of the integral kernels of the one-dimensional
integrals (5) or (6) comes, of course, with some computational
cost. It is thus advantageous to evaluate the analytic expressions
∂σ FP

ij /∂δ numerically on a grid over the half-space domain of

interest and save the resulting matrices. These matrices can then
be used to calculate the stress state for arbitrary axisymmetric
indenters and loading histories.

For a grid of n × n points in the x − z plane, the
one-dimensional integrals can be reduced to n matrix-vector
multiplications of complexity O(nm), where m is the number
of flat punch superpositions. Thus, the overall complexity
simply scales with the number of points (in this case n2)
and flat punch superpositions, O(n2m). As it is not necessary
to compute the stresses in more points than needed, the
proposed formulation can be advantageous compared to other
effective methods such as the FFT-based boundary element
method (BEM) for the half-space (Pohrt and Li, 2014). For
this example, the FFT-based BEM is of complexity O(n3 log n)
because it requires evaluation of stresses on a three-dimensional
n × n × n grid. However, if stresses in n × n points in a
x − y plane beneath the surface are sought for, the proposed
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A B

C D

FIGURE 3 | Von Mises equivalent stress in the half-space at y = 0 normalized with the average pressure p0 assuming ν = 0.3 and coefficient of friction µ = 0.3 for

different indenter shapes with indentation depth δ and tangential displacement ux,0 = δ/4 for (A,C) and ux,0 = δ/2 for (B,D). Indenter shapes: (A,B) Parabolical

indenter, (C,D) Cylindrical flat punch with rounded edge with b/a = 0.5. Dashed red lines mark contact areas with slip.

method still has O(n2m), whereas the FFT-based BEM is only of
complexityO(n2 log ñ).

We used stresses derived with the superposition idea to
calculate the von Mises equivalent stresses for different indenter
shapes and loadings. The examples showed that the endangered
regions with respect to plastic failure often lie beneath the
surface. Further, we provided expressions for direct calculation
of the components of the hydrostatic pressure gradient. In
fluid saturated media like cartilage, pressure gradients promote
fluid flow which can be linked to tissue growth (Popov,
2019). The examples show that the absolute values of the
pressure gradient are higher under small radii of curvature
of the indenting body and singular at the surface, where
discontinuities such as contact radius, stick radius, or sudden
topography changes of the indenting body are located. It
should be noted that the superposition idea is not bound

to homogenous half-spaces, but can, for example, also be
used for layered, graded media like cartilage (Argatov et al.,
2018).

The provided expressions for the stress state and pressure
gradient in the half-space beneath an axisymmetric indenter in
terms of the relation of indentation depth to contact radius δ =

g(a) can, thus, be seen as a useful addition to the framework
of the Method of Dimensionality Reduction (MDR) (Popov and
Heß, 2015). Here, the same function g(x) is interpreted as a one-
dimensional profile pressed into a spring bedding. The MDR
allows for rapid numerical simulations of profile changes due
to wear or growth (in biological joints). However, the presented
method of obtaining the full stress tensor can also be generalized
with regard to other contact solutions for arbitrary loading
histories such as the Method of Memory Diagrams (MMD)
(Aleshin et al., 2015).
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A B

C D

FIGURE 4 | Normalized absolute value of the hydrostatic pressure gradient at y = 0 assuming ν = 0.3 and coefficient of friction µ = 0.3 for different indenter shapes

with indentation depth δ and tangential displacement ux,0 = δ/4 for (A,C) and ux,0 = δ/2 for (B,D). Indenter shapes: (A,B) Parabolical indenter, (C,D) Cylindrical flat

punch with rounded edge with b/a = 0.5. Dashed red lines mark contact areas with slip.

CONCLUSIONS

By exploiting the superposition idea by Mossakovski (1963) and
Jäger (1998), we derived expressions in form of one-dimensional
integrals for the full stress tensor and the components of
the hydrostatic pressure gradient in the half-space beneath
normally and tangentially loaded axisymmetric contacts. These
expressions allow for efficient pointwise numerical evaluation
for arbitrary indenter shapes and are suitable for contact
simulations involving shape change due to wear or growth.
With respect to plastic failure, we showed the importance of
considering the whole half-space for selected indenter shapes and
loadings. Further, we calculated hydrostatic pressure gradient
distributions and discussed the relevance with respect to growth
in biological contacts.
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APPENDIX

Appendix A: Flat Punch Solution for the
Frictionless Normal Contact Problem
The stress components of the cylindrical flat punch are obtained
by Equation (1) with the Hertzian solution by Huber (1904):

σ FP
zz = −

E∗δ

πa

(

z
√
u

)3 a2u

u2 + a2z2

(

3−
aua

2u
− 2

a2z2 + auua

u2 + a2z2

)

,

σ FP
rr =

E∗δ

πa

{

(1− 2ν)
a2

r2

[

1−

(

z
√
u

)3
(

1−
aua

2u

)

]

+

(

z
√
u

)3 a2u

u2 + a2z2

(

3−
aua

2u
− 2

a2z2 + auua

u2 + a2z2

)

+
z

2
√
u

[

2aua

u
− 4+ (1− ν)

(

a2 − u
)

(aua − 2u)
(

u+ a2
)2

+ (1+ ν)
2u− aua

u+ a2

]}

,

σ FP
ϕϕ = −

E∗δ

πa

{

(1− 2ν)
a2

r2

[

1−

(

z
√
u

)3
(

1−
aua

2u

)

]

+
z

2
√
u

[

ν

(

4−
2aua

u

)

+ (1− ν)

(

a2 − u
)

(aua − 2u)
(

u+ a2
)2

− (1+ ν)
2u− aua

u+ a2

]}

,

σ FP
rz = −

E∗δ

πa

r

z

(

z
√
u

)3 a2u

u2 + a2z2
u

u+ a2
(

3+
aua

2u
− 2

a2z2 + auua

u2 + a2z2
−

2a2 + aua

u+ a2

)

, (26)

with the shortcuts

u(r, z; a) =
1

2
(A+ S) ,

ua(r, z; a) =
∂u

∂a
= −a

(

1+
A− 2z2

S

)

, (27)

where A = r2 + z2 − a2 and S =

√

A2 + 4a2z2 . With the
components in Equation (26), the hydrostatic pressure phs =
(

σrr + σφφ + σzz
)

/3 and the components of the hydrostatic
pressure gradient can be obtained as well:

pFPhs = −
E∗(1+ ν)δ

3πa

z
√
u

a2

u

2u− aua

a2 + u
,

dpFP
hs

dr
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E∗(1+ ν)δ

3πu
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u

a2

u+ a2
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ur

a
−

3

2

uaur

u
−
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u+ a2

)

,

dpFP
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dz
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E∗(1+ ν)δ

3π
(

u+ a2
)

a
√
u

a2

u+ a2

[

uaz

( z

a
+

az

u

)

−2+
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a

(

1+
a2

u

)

−
2u

a2
+

uz z

2u

(

2+
6u− 5aua

a2
−

3a ua

u
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, (28)

with the derivatives

ur(r, z; a) =
∂u

∂r
= r

(

1+
A

S

)

,

uz(r, z; a) =
∂u

∂z
= z

(

1+
A+ 2a2

S

)

,

uar(r, z; a) =
∂2u

∂a∂r
= −

4arz2
(

A+ 2a2
)

S3
,

uaz(r, z; a) =
∂2u

∂a∂z
=

4ar2z A

S3
. (29)

Appendix B: Axisymmetric Solution at the
Surface for the Frictionless Normal
Contact
At the surface (z = 0), the non-vanishing stress components in
Equation (5) simplify to

σAS
zz (r; a) = −

E∗

π

a
∫

r

g′ (ã) dã
√

ã2 − r2
,

σAS
rr (r; a) = σAS

zz (r; a) +
1− 2ν

2πr2
FN (a)

−
E∗ (1− 2ν)

πr2

a
∫

r

√

ã2 − r2g′ (ã) dã,

σAS
ϕϕ (r; a) = (1+ 2ν) σAS

zz (r; a) − σAS
rr (r; a) . (30)

The hydrostatic pressure and the pressure gradient components
in Equation (8) simplify to

pAShs (r; a) =
2

3
(1+ ν) σAS

zz (r; a) ,

dpAS
hs

dz
(r ≤ a; a) =

2E∗(1+ ν)

3π







g′(0)

r
+

r
∫

0

g′′(ã)
√

r2 − ã2
dã







,

dpAS
hs

dz
(r > a; a) = −

2E∗(1+ ν)

3π

a
∫

0

ã g′(ã)
(

r2 − ã2
)3/2

dã,

dpAS
hs

dr
(r; a) =

2E∗(1+ ν)

3π







a g′ (a)

r
√

a2 − r2
−

a
∫

r

ã g′′ (ã)

r
√

ã2 − r2
dã







,

(31)

at the surface. All of the above equations except dpAS
hs

/dr were
already derived by Willert et al. (2020).

Appendix C: Axisymmetric Solution in the
Axis of Contact for the Frictionless Normal
Contact
In the axis of contact (r = 0), the non-vanishing stress
components in Equation (5) simplify to

σAS
zz (z; a) = −

E∗

π

a
∫

0

ã3 + 3ãz2
(

ã2 + z2
)2

g′ (ã)dã,
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σAS
rr (z; a) = σAS

ϕϕ (z; a)

= −
E∗

2π

a
∫

0

(1+ 2ν) ã3 − (1− 2ν) ãz2

(

ã2 + z2
)2

g′ (ã)dã. (32)

The hydrostatic pressure and the non-vanishing pressure
gradient component in Equation (5) simplify to

pAShs (z; a) = −
2E∗(1+ ν)

3π

a
∫

0

ã g′ (ã)

ã2 + z2
dã,

dpAS
hs

dz
(z; a) =

4E∗(1+ ν)

3π

a
∫

0

ãz g′ (ã)
(

ã2 + z2
)2
dã, (33)

in the axis of contact.
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Ratio of Loss and Storage Moduli
Determines Restitution Coefficient in
Low-Velocity Viscoelastic Impacts
Emanuel Willert*

Department of System Dynamics and Friction Physics, Institute of Applied Mechanics, Technische Universität Berlin, Berlin,

Germany

Impact tests are an important tool to analyze dynamic material properties of viscoelastic

media in technology and biology. In this context, rigorous contact mechanical models

of the collision problem are necessary to adequately interpret data from impact

experiments. It is shown here theoretically that the coefficient of restitution in these types

of testing is mainly a function of one specific material property, namely, the ratio between

the loss and storage moduli of the viscoelastic probe at the characteristic timescale

of the impact. Explicit dependencies of the restitution coefficient on factors like impact

velocity, impactor shape, general material rheology, and functional grading—beyond the

fact that those may influence the impact duration and the dynamic modulus associated

with it—are weak.

Keywords: impact testing, restitution, viscoelasticity, rheological models, graded materials

INTRODUCTION

Impact tests are considered as a fast and simple method to gain insights about the material
behavior of viscoelastic media—for example, rubber or soft tissues like articular cartilage—under
dynamic loading.

In the simplest case, only the rebound velocity (or some directly related measure, e.g., the
rebound height) of a rigid impactor is determined. In technical contexts, this testing procedure
is often referred to as the determination of the “rebound elasticity” of the material [see, e.g.,
the industrial standard DIN EN ISO, 8307 (2018)]. However, how the so-obtained coefficient of
restitution (COR) generally relates to the viscoelastic rheology, or put bluntly, what kind of material
property the “rebound elasticity” actually represents, remains unclear.

Biological tissues, especially in joints, are often subject to impact loading, for example, during
sporting activities or accidents. Therefore, impact tests are also performed on these tissues to
analyze material properties and to determine damage thresholds. For this purpose, Burgin and
Aspden (2007) constructed a drop tower, which was later developed further by Kang et al. (2017).
In this regard, Burgin et al. (2014) pointed out that the material behavior of articular cartilage
under impact loading is quite different from the one under slow loading conditions. Ozcan
et al. (2011) used the frequency response function in impact tests with a hammer to characterize
frequency-dependent material properties of the human liver.

Contact mechanics models of viscoelastic impacts have a long history. In solving the impact
problem, these models, obviously, heavily rely on the solutions of the contact problem. For
linear materials, the latter ones are obtained based on the correspondence between linearly
elastic and linearly viscoelastic boundary value problems established by Lee (1955). Although the
correspondence principle strictly only holds, if the regions of boundary themselves do not change
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in time (this is generally not the case for dynamic contact
problems, when the contact area is not known a priori), Lee
and Radok (1960) were able to show that the correspondence
solution of the viscoelastic Hertzian problem is consistent
with all boundary conditions, if the contact radius is a non-
decreasing function of time. If the contact radius possesses a
single maximum (this is the case for the impact problem), the
solution needs to be adjusted, as was acknowledged by Lee
and Radok in their paper. The corrected contact solution for
the restitution phase (when the contact radius is decreasing in
time) has been presented by Hunter (1960) (for the Hertzian
case) and Graham (1965) and Ting (1966) (for arbitrary convex,
axisymmetric profile geometries).

Hunter also applied his contact solution to analyze the
respective contact-impact problem. Bassi (1978) was the first
to examine the problem, to which extent impact characteristics
(for the linear impact onto an incompressible Kelvin solid,
see Impact Onto an Incompressible Kelvin Solid) allow for the
determination of dynamic material properties. The linear impact
problem for viscoelastic materials (i.e., the impact of a rigid
flat cylindrical punch onto a viscoelastic medium) has been
also studied by Butcher and Segalman (2000), Schwager and
Pöschel (2007), and Argatov (2013). For the impact of a sphere
onto a Kelvin solid (see Impact of a Paraboloid), Kuwabara
and Kono (1987) proposed a model, later studied in detail
by Ramírez et al. (1999), in which the simple form of the
equation of motion during the compression phase (when the
contact radius is increasing) is also used for the restitution.
This, from a contact mechanics perspective, is slightly erroneous
(as pointed out above) but allows for a mathematically simple
treatment of the impact. A contact mechanically more rigorous
solution of this problem was given by Willert et al. (2017).
Selyutina et al. (2015) and Springhetti and Selyutina (2018)
theoretically studied the impact response of articular cartilage
on the basis of a quasi-linear Kelvin material model. The impact
problem for a quasi-linear standard solid has been analyzed by
Argatov et al. (2016).

In the present manuscript, it is analyzed in detail whether
the primary result of a viscoelastic impact test, the COR,
can be directly related to a specific material property and
how this relation is in turn affected by the shape of the
impactor (flat punch or spherical), the general material rheology,
and functional grading—as biomaterials usually are graded
media. For this purpose, the low-velocity (i.e., quasi-static)
central normal impact of a rigid body with mass m and
initial velocity v0 onto an incompressible viscoelastic half-
space is studied. First, in Impact Onto an Incompressible
Kelvin Solid, the simplest viscoelastic material, the Kelvin solid
with complete decoupling of elastic and viscous properties,
is considered, and the known respective impact solutions
are briefly summed up. To capture the influence of material
rheology, a more general material model is considered in
Influence of Material Rheology, first in a rigorous way and
after that in an approximate sense, which demonstrates that
the COR indeed is bound to a specific material property.
Influence of Viscoelastic Grading is devoted to the effect of
graded viscoelasticity.

IMPACT ONTO AN INCOMPRESSIBLE
KELVIN SOLID

The arguably minimal model of a viscoelastic material is the
Kelvin solid with shear modulus G∞ and shear viscosity η. The
complex dynamic modulus in this case simply reads as

Ĝ (ω) = G∞ + iηω, (1)

with the angular frequency of oscillation ω and the imaginary
unit i. In the following, the known solutions for the impact of a
cylindrical flat punch with radius a, and a sphere (approximated
in the vicinity of the contact as a paraboloid) with radius R onto
such a material, occupying a half-space, are briefly recapitulated.

Impact of a Cylindrical Flat Punch
In case of the impact of a rigid, cylindrical punch, the impact
solution can be looked up in Butcher and Segalman (2000),
Schwager and Pöschel (2007), Argatov (2013), andWillert (2020).
It only depends on a nondimensional damping parameter

2D : =
ηω0

G∞

=

Im
{

Ĝ (ω0)

}

Re
{

Ĝ (ω0)

} , ω0 : =

√

8aG∞

m
. (2)

Note that ω0 is the characteristic angular frequency of the
elastic problem. “Im” and “Re” denote the imaginary and real
parts of a complex quantity, respectively. Hence,D is given by the
ratio of the loss and storagemoduli at the characteristic frequency
scale of the impact problem.

The COR for weak damping is given by Argatov (2013).

ε = exp

[

−
2D

√

1− D2
arctan

(√

1− D2

D

)]

, D < 1, (3)

whereas for strong damping (Willert, 2020)

ε = exp

[

−
2D

√

D2 − 1
artanh

(√

D2 − 1

D

)]

, D > 1. (4)

Impact of a Paraboloid
For a spherical impactor, contact mechanically rigorous
modeling is slightly more complicated than in the previous
case, because the contact radius is not prescribed by the radius
of the flat punch and therefore increasing and decreasing
during the impact. Hence, compression and restitution must
be considered separately. A self-consistent model of the impact
is most conveniently implemented within the framework of
the “method of dimensionality reduction” (MDR; Popov and
Heß, 2015; Popov et al., 2018). In the model by Kuwabara and
Kono (1987), the simple form of the equation of motion for
compression is also used for the restitution phase. It has been
shown recently by the author in the monograph (Willert, 2020)
that both models differ only slightly from each other. Also, both
agree well with experimental results by Van Zeebroeck et al.
(2003) on impacts with rubber and various biomaterials.
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The impact duration and thus the characteristic frequency for
the elastic problem were given by Hertz in his classical paper
(Hertz, 1882). Hence, the nondimensional damping parameter,
in analogy to Equation, reads (omitting numerical factors of the
order of one)

2D = η

(

Rv0

m2G3
∞

)1/5

. (5)

Figure 1 shows the COR as a function of the damping
parameter for the flat punch and the spherical impactor. The
curves are practically the same. Hence, the explicit dependence
of the COR on the impactor shape is very weak. However, the
shape obviously influences the damping parameter and therefore,
implicitly, the impact solution. Especially note that the damping
parameter for the spherical impactor depends on the impact
velocity, so the COR is velocity dependent. This is not the
case for the linear contact with a cylindrical punch, where the
characteristic frequency is strictly a system property.

INFLUENCE OF MATERIAL RHEOLOGY

The fact that model predictions based on the Kelvin solid agree
well with experimental data raises an interesting question: If,
obviously, no real viscoelastic material exhibits such a trivial
rheology, as suggested by the Kelvin model, how is it possible for
the latter to accurately predict real impact behavior? Although the
answer is quite simple, to demonstrate it, we have to briefly look
into more general rheological models.

Rheological Models in Linear
Viscoelasticity
The rheological behavior of “real” linearly viscoelastic materials is
often captured in terms of a Prony series. In case of a generalized

Maxwell model, the time-dependent shear modulus reads

G (t) = G̃∞ +

N
∑

i=1

Gi exp

(

−
t

τi

)

, (6)

with several different relaxation times τi (usually arranged in a
logarithmic scale) and associated moduli Gi. If the problem of
interest itself has an inherent timescale τ ∗ (for impact problems,
this is the impact duration), it seems reasonable to assume that
all relaxation processes faster than τ ∗ run infinitely fast and all
slower than τ ∗ run infinitely slow (note that relaxation times
in a Prony series are usually listed in a logarithmic scale). As
under this assumption a Maxwell element of the Prony series
with very slow relaxation degenerates to a spring, and one with
very fast relaxation degenerates to a dashpot, we arrive at the
following rheological model (see Figure 2): a Maxwell element
in parallel with a Kelvin element. The modulus and viscosity of
the Kelvin element are given by summing up the fast and slow
relaxation processes,

G∞ : = G̃∞ +

∑

τi≫τ∗

Gi,

η0 : =

∑

τi≪τ∗

Giτi. (7)

Hence, the complex dynamic modulus is

Ĝ (ω) = G∞ + G∗
(ωτ ∗)2

1+ (ωτ ∗)2
+ i

[

η0ω + G∗
ωτ ∗

1+ (ωτ ∗)2

]

. (8)

Now, why is the Kelvin solid such a convenient model?
Because for harmonic loading with angular frequency ω, owing to
Equation (1), any linearly viscoelastic material can be interpreted
as a Kelvin solid, with the elastic modulus and viscosity given
by the storage and loss modulus at ω! Loading under impact is
not exactly harmonic but can be approximated well enough by

FIGURE 1 | Coefficient of restitution as a function of the governing damping parameter for the impact onto an incompressible Kelvin solid. (A) Impact of a cylindrical

flat punch. (B) Impact of a paraboloid; solid line, contact mechanically rigorous model implemented within the method of dimensionality reduction (MDR); dashed line,

Kuwabara–Kono model.
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FIGURE 2 | Rheological model for the Kelvin–Maxwell solid. Notations are

given in the text.

harmonic functions; see, for example, the work of Hunter (1957)
on the Hertzian impact problem. Note that exactly sinusoidal
indentation has been studied in detail by Argatov (2012) and that
harmonic loading is also used in models of impact tests (Ruta and
Szydło, 2005).

Solution of the Impact Problem for the
Kelvin–Maxwell Solid
Let us analyze the consequences of this idea in case of the Kelvin–
Maxwell solid introduced above. For simplicity, the impact of
a rigid flat cylindrical punch with radius a and mass m is
considered, as it has been shown before that the impactor shape is
of secondary importance. The system of equations of motion for
the outer and inner degrees of freedom of the rheological element
shown in Figure 2, u and z, reads

0 = mü+ 8η0au̇+ 8G∞au+ 8G∗a (u− z) ,

0 = τ ∗ż + z − u. (9)

Written in proper nondimensional variables, the problem
only depends on the following parameters:

δ0 : = η0

√

8a

G∞m
, δ∗ : = G∗τ ∗

√

8a

G∞m
, γ : =

G∞

G∗
. (10)

In Figure 3 the COR—obtained by explicit solution of
Equation —is shown in contour lines as a function of the
governing parameters for

γ δ∗ ≡ 1 ⇔ τ ∗ ≡

√

m

8G∞a
(11)

in a logarithmic scale.

Approximate Solution via the Solution for
the Kelvin Solid
These results can be reproduced in a very simple way, based on
the idea laid out above: If, for harmonic loading, a viscoelastic

FIGURE 3 | Contour line diagram of the coefficient of restitution as a function

of the governing nondimensional parameters for the impact of a cylindrical flat

punch onto a Kelvin–Maxwell solid.

material can always be considered a Kelvin solid, and loading
during impact is close to harmonic, it should be possible to
obtain the impact solution for an arbitrary viscoelastic rheology
based on the closed-form analytic solution for the Kelvin solid
in Equations (3) and (4). For the Kelvin–Maxwell solid, Equation
(2) suggests the following form for the damping parameter D:

2D =

Im
{

Ĝ (ω0)

}

Re
{

Ĝ (ω0)

} , ω0τ
∗
= 1, (12)

which has been proposed recently by the author in the context of
a three-element standard solid (Willert, 2020), that is, the ratio
of loss and storage moduli at the characteristic frequency of the
elastic problem. This form, however, only provides good results, if
the impact duration does not deviate too strongly from the elastic
case. A significant improvement can be achieved if the actual
timescale of the viscoelastic problem is used, that is,

2D =

Im
{

Ĝ (ω∗)

}

Re
{

Ĝ (ω∗)

} , ω∗
=

π

T
, (13)

where the impact duration T for the calculation has been taken
from the exact solution of the problem (see Solution of the Impact
Problem for the Kelvin–Maxwell Solid).

Figure 4 shows the coefficients of restitution obtained by this
simple procedure—calculating the damping ratio according to
Equation or and applying the analytical solution for the Kelvin
solid—in the same fashion as in Figure 3. Usage of the modified
damping parameter in Equation results in very good agreement
with the exact solution. This strongly supports the idea that the
general material behavior in viscoelastic impacts is of secondary
importance; the main influencing factor is the ratio of loss
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FIGURE 4 | Contour line diagrams of the coefficient of restitution as a function of the governing nondimensional parameters for the impact of a cylindrical flat punch

onto a Kelvin–Maxwell solid; approximate solutions based on the solution for the Kelvin solid. (A) Based on Equation (12) for the damping parameter D. (B) Based on

Equation (13) for the damping parameter.

and storage moduli at the timescale of the impact. Hence, this
quantity can be determined in a stable way measuring only
the COR.

INFLUENCE OF VISCOELASTIC GRADING

Besides viscoelasticity or poroelasticity, most biomaterials exhibit
functional grading. Whether and how this influences the
applicability of the idea described above shall be discussed in
the following.

Correspondence Principle in Graded
Viscoelasticity
All hitherto given viscoelastic contact (or contact-impact)
solutions are based on the elastic-viscoelastic correspondence
principle. Already Hashin (1965), as early as in 1965, considered
the viscoelastic correspondence for heterogeneous (composite)
materials. Only roughly 40 years later did Paulino and Jin (2001)
andMukherjee and Paulino (2003) show that the correspondence
principle applies also to graded viscoelastic materials, if the
spatial and temporal variations of the moduli are separable, that
is, if every point exhibits the same stress relaxation behavior
in time. Additionally, Jin (2006) pointed out that in case of
two-phase graded composites, for the relaxation functions to be
separable, the relaxation behavior in shear and dilatation must be
the same.

Impact Onto a Power-Law Graded Kelvin
Solid
So let us consider the impact of a rigid flat cylindrical punch
onto a power-law graded Kelvin solid with the depth- and time-
dependent shear and bulk moduli,

G (z, t) = G0z
q [1+ τδ (t)] ,

K (z, t) = K0z
q [1+ τδ (t)] , (14)

with exponent q of the power-law grading, some characteristic
time τ and the Dirac δ function. The static Poisson ratio is

ν : =
3K0 − 2G0

6K0 + 2G0
≈ 0.5, (15)

because the material is considered to be incompressible. The
elastic solution of the contact problem was given by Booker et al.
(1985a),

Fel = 2cN
(

q
)

a1+qd : = k
(

q
)

d, (16)

where cN is a lengthy expression, which can be constructed from
the fundamental solution in Booker et al. (1985b).

As the viscoelastic correspondence principle holds for this
problem, the equation of motion reads

md̈ + k
(

q
)

τ ḋ + k
(

q
)

d = 0, (17)

and is thus formally the same as in the homogeneous case. Hence,
also for graded viscoelastic materials, the COR is determined
by the ratio of the loss and storage moduli at the timescale
of the impact—at least, if the relaxation functions in shear
and dilatation are separable and identical in form. Nonetheless,
grading obviously affects the contact stiffness and therefore the
impact duration.

DISCUSSION

As has been shown, the COR mainly depends on a ratio of
moduli. To determine the values of the moduli themselves, one
has to consider at least one dimensional property of the impact,
for example, the impact duration or the maximum indentation
depth. However, the relation between these quantities and
the dynamic modulus seems to exhibit a slightly stronger
explicit dependence on the material rheology than the restitution
coefficient itself. For the flat cylindrical punch, a decent estimate
for the absolute value of the dynamicmodulus (showing a relative
error of <10% for the Kelvin–Maxwell solid with γ δ∗ ≡ 1 and
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not too small values of the restitution coefficient, ε ≥ 0.3) is
given by

∣

∣

∣
Ĝ
(

ω∗
)

∣

∣

∣
≈

π2

T2

m

8a
, (18)

with the impact duration T.
All results presented are strictly valid only for incompressible

media. Although many technological and biological materials
can in good approximation be considered to be incompressible,
there is, of course, no physical necessity to neglect dilatation.
However, it has been shown recently by the author that the
effect of compressibility in viscoelastic impacts is often very
small (Willert, 2020). Moreover, the restriction to quasi-static
processes, which requires the impact velocity to be much smaller
than the smallest speed of wave propagation in the deformable
material, poses a serious constraint of the calculations and
considerations presented above, especially for very soft materials,
as in this case wave propagation can be a significant source of
energy dissipation (Hunter, 1957; Roylance, 1973).

To obtain a general linearly viscoelastic material model, which
is nonetheless manageable in terms of the material parameters
used, the analyzed Kelvin–Maxwell solid neglects the finite
character of the relaxation processes that are either much faster
or much slower than the impact itself. Thus, the results obtained
can probably only serve as a “zero-order” approximation for
“real” general linearly viscoelastic media (whose sets of material
parameters, though, are usually unmanageable with respect to
comprehensive analysis).

In sinusoidal indentation, the behavior is characterized by
incomplete storage and loss moduli (Argatov, 2012). Their
use may well be appropriate also for the analysis of the
impact problem.

CONCLUSIONS

The low-velocity impact of a rigid impactor onto a linearly
viscoelastic flat has been studied within the framework of
viscoelastic contact mechanics. It is found that the COR in
this impact configuration is mainly a simple, unique, decreasing
function of the ratio of the loss and storage moduli at the
impact timescale. The explicit dependencies of the COR on the
profile shape of the impactor, the general material rheology,
and material grading (at least, if the relaxation behavior in
shear and dilatation are the same)—beyond the fact that
all these quantities may influence the impact timescale and
the loss and storage moduli associated with it—are very
weak. Therefore, as a simple and good approximation for the
impact solution, the closed-form analytical solution for the
impact of a flat cylindrical punch on a Kelvin solid can be
used. Contact mechanically semi-rigorous approaches, like the
Kuwabara–Kono model for parabolic impact, can also often be
used. The obtained results will help to appropriately interpret
impact test measurements on soft materials like rubber or
articular cartilage.
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This paper is concerned with possible applications of semi-analytical methods of frictional

contact mechanics. The semi-analytical solutions, such as the Method of Memory

Diagrams, enable the load-displacement relationship for contact of two axisymmetric

bodies with friction to be written as an analytical expression with parameters calculated

via a numerical procedure. As a result, a complex history-dependent solution is obtained

for an arbitrary loading history in a computationally efficient way. This fact allows

one to calculate hysteretic responses to extremely complex loading histories, such

as random vibrations. Another case when complex loading histories appear is in a

harmonic excitation of a dynamic contact system in which inertia is taken into account.

Both examples are considered here. The random excitation case can be used as

a basis for modeling for wear in frictional contacts while the second one may be

extended to describe coupled dynamic contact systems, stick-slip phenomena, or

friction-induced instabilities.

Keywords: contact mechanics, Hertz-Mindlin, friction, semi-analytical contact solutions, method of memory

diagrams

INTRODUCTION

This paper concerns the use of one semi-analytical method of frictional contact mechanics. The
term “frictional contact mechanics” can comprise a large variety of problems. Here it is used in the
following sense: (i) friction is a phenomenon that arises due to tangential interactions of bodies in
contact, and (ii) frictional interaction is governed by the classical one-term law of friction (Coulomb
friction law) originating in the works of Amontons. The second aspect is discussed in more detail
from a historical point of view by Desplanques (2015) or Borodich and Savencu (2017). The first
feature is essential as friction can also appear in a purely compressional loading case [see e.g.,
Borodich and Keer (2004)]. In any situation, friction results in a hysteretic response which depends
not only on instantaneous values of drive parameters, but also on their history.

Further, methods belonging to the semi-analytical class (Dobry et al., 1991; Jäger, 2005; Aleshin
et al., 2015, 2019; Popov and Heß, 2015; Popov et al., 2019) allow one to obtain a frictional contact
response as an analytical solution that depends on parameters determined by an algorithm. For
the price of accepting a certain number of simplifications (such as axisymmetric contact geometry,
neglect for elastic dissimilarity of the bodies, and approximate fulfillment of the Coulomb friction
law) extremely rapid and efficient calculation techniques are developed. The high computational
performance makes these methods suitable for implementation in complex loading histories (e.g.,
random vibrations or acoustic waves).
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Aleshin Applications of Semi-Analytical Methods

In the fourth of the cited methods, the Method of Memory
Diagrams (MMD), the contact characteristics such as local and
global displacements, stress distributions, and contact loads are
calculated via an internal memory fiction or diagram constantly
updated following the excitation protocol. The memory function
is defined on an adaptive grid whose points are dynamically
adjusted in accordance to the applied excitation. In addition to
the mechanical response, the friction-induced energy dissipation
is analytically described. TheMMD is sketched in sectionmethod
of the memory diagrams of this paper preceded by section Hertz-
Mindlin mechanics in which some basic solutions of contact
mechanics are recalled.

In sections friction-induced energy dissipation in spherical
contacts excited by random vibrations and section contact system
with a finite mass dynamically excited by external forces, two
examples of MMD applications are considered. The first example
is concerned with a prestressed axisymmetric contact excited
by random vibrations that represent random displacement
time histories having fractal properties. In such a system, the
mechanical and energetic responses depend on a very restrained
number of parameters, such as the fractal dimension, the normal,
and tangential displacement amplitudes normalized on the
prestress value, and the ratio of the maximum and minimum
frequencies of the excitation spectrum. In particular, it can be
shown that at high amplitudes most of the energy is dissipated
near the contact center while for low amplitudes the energy
dissipation zone represents an annulus located inside of the mean
contact circle. These results can be of use for determining parts
of mechanical systems in which wear or thermal fatigue is most
likely to appear.

The second example is a dynamic (i.e., having a mass
and inertia) frictional contact system excited by a harmonic
tangential force. Even the simplest case of a single contact
with constant compression demonstrates rich dynamic effects.
In particular, various time scales can appear under various
combinations of a system’s parameters. The responses can be
categorized into several classes characterized by growing or
complex oscillatory behavior.

In another case considered elsewhere (Aleshin et al., 2019), a
solid material with a frictional crack is insonified by ultrasound.
It can be shown that rough faces of cracks behave approximately
as effective axisymmetric bodies (Jäger, 1995; Ciavarella, 1998)
having the same normal reaction, thus suggesting the use of
the MMD. The MMD-based contact model has been integrated
with a finite-element environment (COMSOL). Doing so, a
simulation tool called MMD-FEM has been elaborated for
modeling acoustic responses of damaged materials, including
nonlinear acoustic effects that are usually applied in modern
nondestructive testing technologies.

HERTZ-MINDLIN MECHANICS

Similarly to other semi-analytical methods in contact mechanics,
the MMD can be regarded as a direct generalization of
the classical Cattaneo-Mindlin (Cattaneo, 1938; Mindlin and
Deresiewicz, 1953) solution developed for elastic spheres in

contact loaded by a subsequent application of constant normal
and tangential forces. As it was shown, the contact zone consists
of stick and slip areas that represent a central circle, and outer
annulus, respectively. In the stick zone, no relative tangential
displacement between close points belonging to the opposite
surfaces is possible. In the slip zone, the shear stress τ equals the
normal stress σ times the friction coefficient µ, in accordance to
the Coulomb friction law. At the same time, in that zone, the
relative tangential displacement is a nonzero vector that must
be directed as the local shear stress vector. The latter condition
can be called the orientation aspect or property of the Coulomb
friction law.

The most compact derivation (Jäger, 1995) is based on
a superposition of the Bossiness solutions for rigid punches
straining an elastic half-space in both normal and tangential
senses. The smallest punch in the superposition coincides with
the stick circle radius that guarantees the no-slip condition
in the stick zone, and the largest one is the size of the
contact zone itself. By a proper choice of “strengths” of the
punches in the normal and tangential directions it is possible
to satisfy the Coulomb condition τ = µ σ . However, the
orientational property is satisfied only approximately. The issue
is that for punches applied in the x-direction parallel to the
half-space surface, the local vectors Eτ are all directed along
the same x-axis, while the tangential displacement vector has
a non-zero in-plane y-component [Equation (28c) in Jäger
(1995)]. Another simplification is related to the neglect of
the second term in the second line of Equation (28b) in the
cited paper. In addition, the Catteneo-Mindlin approximation
disregards dissimilarity phenomena (Munisamy et al., 1994)
which, if present, can produce local tangential displacement
for purely normal compression, since the Poisson effect can
be of different magnitudes for non-equal spheres of different
materials. However, despite some assumptions in the analysis,
the Cattaneo-Mindlin solution remains a good approximation of
frictional contact interaction of axisymmetric bodies largely used
since 1950’s. For equal bodies with the elastic constants E and ν

having the contact geometry as in Figure 1 (contact forces N and
T, and displacements a and b, contact zone radius c, and stick
zone radius s) the solution has the following form:

N =
4E∗

3R
c3, (1)

a =
1

R
c2, (2)

T =
4µE∗

3R

(

c3 − s3
)

, (3)

b =
µθ

R

(

c2 − s2
)

, (4)

with E∗ and θ defined as

E∗ =
E

2
(

1− ν2
) , (5)

θ =
2− ν

2 (1− ν)
. (6)
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FIGURE 1 | Geometry of the Hertz-Mindlin problem and important parameters.

FIGURE 2 | Illustration for the MMD: loading histories at the left and memory

diagrams at the right, for the simple loading (A), arbitrary loading in 2D (B),

and in 3D (C). Here, s<ρ<c is slip annulus, see also Figure 1.

In this solution, all geometric features of the contact system are
taken into account through the dependences N = N (c) and
a = a (c) in Equations (1, 2). The result can be rewritten using
these functions as

{

b = θµ (a (c) − a (c = s))
T = µ (N (c) − N (c = s))

(7)

where in the last terms of each equation the argument of
functions N (·) and a (·) is the radius of the stick zone s. The
result Equation (7) is frequently referred to as the reduced elastic
friction principle (Jäger, 2005). The principle Equation (7), in
contrast to Equations (1–4), is valid for any axisymmetric contact
geometry, not necessarily spherical.

METHOD OF THE MEMORY DIAGRAMS

The MMD (Aleshin et al., 2015, 2019) develops the principle
described in the previous section by applying it to more general
loading histories which consist in arbitrarily changing oblique
compressions in 2D or in 3D (the former means that the normal
and tangential forces stay in one plane). The calculation is
organized with the use of an auxiliary inter function D (ρ), called
a memory diagram, that encodes all memory information in the
frictional system. In 2D, the solution reads















b = θµ
c
∫

0

D (ρ) da
dc

∣

∣

∣

c=ρ
dρ

T = µ
c
∫

0

D (ρ) dN
dc

∣

∣

∣

c=ρ
dρ

(8)

In the previously considered “simple loading case” (Figure 2A)
[i.e., when the tangential action is added after application of
constant normal compression], the memory diagram has a
simple rectangular shape that corresponds to the classical result
Equation (7) after calculation of the integral in Equation (8).

An arbitrary loading history in 2D corresponds to a more
complex shape of the memory diagram that can consist of
positive and negative horizontal elements as well as from
curvilinear sections (Figure 2B). The algorithm (Aleshin et al.,
2015) keeps track of the evolution of the loading parameters
and updates the diagram shape accordingly, in order to keep
the balance equation (8). This formula does not require any
additional assumptions in comparison to the reduced elastic
friction principle Equation (7). Limitations related to this
principle are discussed by Jäger (2005) and also mentioned in
the paper (Aleshin et al., 2015) where the MMD in described in
more detail.

If the loading parameters are allowed to arbitrarily vary in
3D, the system can be described via a vector counterpart of
Equation (8) which reads,















Eb = θµ
c
∫

0

ED (ρ) da
dc

∣

∣

∣

c=ρ
dρ

ET = µ
c
∫

0

ED (ρ) dN
dc

∣

∣

∣

c=ρ
dρ

(9)

However, the analysis (Aleshin and BouMatar, 2016) neglects the
orientational aspect of the Coulomb friction law and therefore
should be considered as an approximation.

Equations (8) or (9), together with the algorithm governing
the memory diagram evolution, provide the possibility to
calculate the hysteretic tangential load-displacement relationship
through the known normal load-displacement relationship given
by N = N (c) and a = a (c). The method works when the forces
are considered as arguments and displacements are unknown or
vice versa. At the same time, it is important to emphasize that
the MMD introduced above is only valid for partial slip (i.e.,
when some stick zone remains around ρ = 0. If |T| reaches
µN or

∣

∣b
∣

∣ reaches θµa, the stick zone disappears). The force-
driven system excited by a tangential force exceeding µN will
experience accelerated movement which violates the current
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FIGURE 3 | Partial tangential displacements due to shearing of the bodies and due to the shift between contact centers.

FIGURE 4 | Three contact states (contact loss, total sliding, and partial slip) and the corresponding solutions for T obtained via repartition b = b0 + b̃ for loading in 2D

(normal and tangential displacements always stay in one plane).

quasi-static character of description and generally complicates
the problem. Fortunately, in the case where the system is driven
by displacements, there exists a simple way to construct a quasi-
static force-displacement relationship valid in all situations which
may be encountered: partial slip, total sliding, and contact loss.

To do so, we introduce two displacement components of the
total displacement

Eb = Eb0 +
Ẽ
b. (10)

as illustrated in Figure 3;
Ẽ
b reflects deformation of one of the

contacting bodies due to shearing while Eb0 is a tangential shift
between the contact centers that develops due to total sliding.
Since we already consider small displacements in comparison
to all geometric features, the effects of the slight drop of the
upper body because of the tangential mismatch or contact plane
rotation are neglected.

For the 2D case, the algorithm that provides the unknown
tangential force is shown in Figure 4. When the contact is lost,
there is no contact interaction, and the bodies are unstrained
(i.e., N = T = 0). When total sliding takes place, T = ±µN
with the sign depending on the sliding direction. Finally, for
partial slip the MMD algorithm has to be applied, which is

symbolically expressed as T = MMD
(

b̃
)

. In each case, one of

the components, b0 or b̃, is known directly, and the other one is
immediately found since their sum equals the known argument.
Numerically, the algorithm is applied to small increments1b and
1a and updates previous values with small changes calculated
at the current step which become previous values at the next
step, etc.

In the 3D loading case, tangential displacement b, its

components b0 and b̃, and force T in Figure 4 become vectors.
In addition, the formulas for the total sliding case have to be
further modified since sliding does not occur in the positive or
negative direction as in 2D, but in a direction given by the unit

vector El ↑↑ 1Eb0 where 1Eb0 is an infinitesimal slip vector. These

vectors are also collinear with the tangential force, El ↑↑ ET,
since slip is caused by ET (orientational aspect of the Coulomb
friction law). From the previous considerations we also know that
∣

∣

∣

∣

Ẽ
b

∣

∣

∣

∣

= θµa [assume s = 0 in Figure 2A or in Equation (7)]. Then

the repartition Equation (10) takes the form

Eb = Eb0p + 1Eb0 +Elθµa (11)

in which Eb0p is the known component Eb0 at the previous step,

and the two last vectors are collinear. Finally, El is obtained as a
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unit vector collinear to

El ↑↑ Eb− Eb0p, (12)

and then ET = ElµN. The infinitesimal slip vector 1Eb0 becomes

equal 1Eb0 = Eb−Eb0p−Elθµa which means that all components of
the repartition Equation (11) at the current step are determined.

For brevity, the term MMD comprises the extension to the
contact loss and total sliding cases (Figure 4), not only thee
partial slip situation in Equations (8) or (9). The formulation
shown in Figures 2, 4 illustrated the efficiency of the method.
Indeed, instead of considering detailed evolving distributions
of local stresses and displacements, it is enough to introduce
and update one inner memory function (two functions in 3D).
Moreover, the function frequently contains constant segments
thus the memorization of only the beginning and the end of each
segment and not all intermediate points. The MMD algorithm is
based on an adaptive grid whose points are created and deleted
following the loading protocol instead of being predefined at
fixed positions. As a result, the method is especially suitable
to complex loading protocols such as random or acoustical
excitation. At the same time, the contact geometry should remain
relatively simple in order to be imitated by axisymmetric shapes.

In the next sections it is shown how the MMD solution to
the contact problem can be used for an efficient description of
frictional contacts excited by complex loading histories.

FRICTION-INDUCED ENERGY
DISSIPATION IN SPHERICAL CONTACTS
EXCITED BY RANDOM VIBRATIONS

The semi-analytic MMD formulation of the solution to the
contact problem makes it possible to derive an expression
(Truyaert et al., 2019) for the friction-induced energy dissipation
in the incremental form valid for all three contact states,
regardless the shape of the memory diagram:

1W = 2µ
(∣

∣1b
∣

∣ − θµ1a
)

[

N (a) − N
(

q
)

+
(

q− a
) dN

da

∣

∣

∣

∣

a=q

]

.

(13)

Here the normal load-displacement relationship N(a) derived
[e.g., in (Jäger, 1995)] for any axisymmetric contact geometry
is used. Moreover, the same considerations (Truyaert et al.,
2019) enable one to write the surface density of the energy loss
defined by

1W =

c
∫

s

1̟ (ρ) 2πρdρ

in the form

1̟(ρ)=2µ
(
∣

∣1b
∣

∣ − θµ1a
)

σ (ρ)

(

1−
2

π
arcsin

(

s

ρ

))

,

(14)

FIGURE 5 | Dissipated energy W as a function of time for different values of

problems’ parameters. The curves are approximately linear which means that

the average dissipated power P is constant.

FIGURE 6 | Normalized form-factor of the surface density of the dissipated

energy for different values of parameters.

in which the explicit knowledge of the normal stress distribution
σ (ρ) is required.

To reveal general tendencies in the frictional dissipation
behavior, it is meaningful to consider a frictional system with a
very restrained number of parameters. Aleshin and Papangelo
(2020) suggested the use of a prestressed contact of two spheres
excited by random normal and tangential displacements of equal
rms having fractal time dependences in a certain frequency range.
By the proper choice of normalization, it is possible to limit
the number of parameters to three: rms amplitudes ar = br
normalized on the prestress displacement, fractal dimension D,
and higher cut-off frequency fH normalized on the lower one. For
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a fractal curve, the power spectral density is given by

S
(

f
)

∼

{

f−5−2D if fL ≡ 1 < f < fH
0 otherwise

(15)

where D belongs to the interval 1<D<2. It is straightforward to
show (Aleshin and Papangelo, 2020) that extending the range for
D to 0<D<1 and −1<D<0 in Equation (15) will lead to fractal
behavior for the velocity and acceleration time dependences. The
fractal shape for S(f ) is selected since fractality of a random curve
is related to (i) the Gaussian distribution of the random value
which is in turn a consequence of a large number of factors
that impact that value, as well as (ii) the power-law frequency
dependence for S(f ) which means the absence of a characteristic
frequency in the spectrum and reduces the number of free
parameters by one. Certainly, in a real particular contact system,
the statistical properties of the random excitation can differ.

As expected, average power P dissipated during a sizable
interval of dimensionless time normalized on the inverse lower
cut-off frequency is approximately constant (Figure 5). In our
simulation, the number of time points equals 219 = 524288
and is high enough to neglect differences in two particular
realizations which accumulate a lot of random features during
a long observation time of 5,000 normalized units. The stiffness
of curves in Figure 5 having the sense of the dissipated power
depends on all parameters of the problem. Power P growths
with increasing amplitudes ar = br , with increasing frequency
range fH , and with increasing D. The last two effects are due to
the fact that higher frequencies added by extending the range
or amplifying existing HF components additionally generate
loading-unloading cycles. Despite their small amplitude, they
are frequent and therefore significantly contribute to the total
energy loss.

In Figure 5 each curve is primarily characterized by a single
parameter, its slope. More information is contained in the surface
density of the dissipated power. To compare surface densities for
different values of parameters, we calculate the form-factor8 (ρ)

introduced by the relationship

W = Pt

〈 c
∫

s

8(ρ) 2πρdρ

〉

(16)

and normalized in order to have unit integral

c
∫

0

8(ρ) 2πρdρ = 1

for each realization.
Figure 6 shows that form-factors can vary a lot depending

on the problem’s parameters. First of all, for small (such as 0.1
of the prestress displacement) amplitudes of vibrations, most of
the energy is dissipated in a thin annulus located close to the
average contact border. For moderate amplitudes, the annulus in
which most of the dissipation takes place progresses inward and
becomes smeared. Finally, for strong vibrations (of about of 0.8

andmore), the maximum dissipation occurs in the contact center
(i.e., the dissipation zone becomes circular, as the violet curve
in Figure 6 indicates). Frequency content in the spectrum also
influences the form-factor, but to a lesser degree. For instance, for
low D = 1/2 most of the energy is contained in low frequencies,
and increasing the upper frequency limit practically does not
change anything (black and orange curves). At the same time, for
high D = 3/2, extending the frequency range produces a minor
effect (brown and green dashed curves). Generally, enhancing
high frequency content shifts the annulus closer to the contact
center, acting similarly to an amplitude increase, since higher
frequencies make the total traveled path longer.

The fact that the form-factors determining the dissipated
energy density portray the system’s parameters in a finer way
than the almost linearly growing total dissipation curves is
additionally illustrated in Figure 7. By changing the frequency
content of the vibrations spectrum with a simultaneous variation
of the vibrations amplitudes, the slopes of two total dissipation
curves can be matched. Indeed, in Figure 7A the red and blue
curves are close, except that the blue one which represents the
response on low-frequency vibrations can locally differ from
the average inclination to a greater degree. At the same time,
the surface densities of the dissipated energy are essentially
distinct (Figure 7B). For small amplitudes, sharp peaks in surface
densities curves are typically found. In practice, this means that
a profiled joint subject to small but prolonged vibrations will
experience wear in a thin annulus close to the contact border. For
strong vibrations, wear should start near the contact center.

CONTACT SYSTEM WITH A FINITE MASS
DYNAMICALLY EXCITED BY EXTERNAL
FORCES

Another example of a problem that can be successfully solved
with the use of theMMD, as well as by another method belonging
to the semi-analytical class, is the dynamics of a simple system
that consists of an axisymmetric body excited by a horizontal
tangential force. In the considered case, the body is vertically
prestressed on an elastic half-space and has certain mass m.
Below it is shown that this geometrically and physically simple
system has a rich dynamic behavior arising due to the presence
of friction.

The equation of motion for such a body reads:

m
d2b

dt2
= Ta sin 2π ft − µN0TMMD

(

b

θµa0

)

, b (0) = ḃ (0) = 0,

(17)

where b is, as previously, the tangential displacement, Ta is
the external tangential force amplitude, f is the harmonic
frequency, N0 is the constant vertical compression force, and
a0 is the normal displacement caused by that force. Here
TMMD is a dimensionless function of a dimensionless tangential
displacement; TMMD equals the friction force normalized on
µ N0.
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FIGURE 7 | Two total energy dissipation curves can be close once enhanced HF content is compensated for by lowering vibrations amplitude (A), but the surface

energy distributions differ significantly (B).

In the considered case involving inertia, it is meaningful
to distinguish between excitation and loading protocol/history.
Here the former one is the sinusoidal term in Equation (17) while
the latter one is the argument of TMMD function. We will see that
in the considered frictional system the loading protocol becomes
rather complex even for a simple excitation signal (sinewave).
In the previous quasi-static case (section friction-induced energy
dissipation in spherical contacts excited by random vibrations)
this difference did not exist, the same way as the equation
of motion.

It is convenient to rewrite Equation (17) using
dimensionless variables

b∗ =
b

θµa0
, t∗ = ft, m∗

=
θa0f

2m

N0
, T∗

a =
Ta

µN0
(18)

and get an equation in which all variables and parameters
are dimensionless:

m∗
d2b∗

dt∗2
= T∗

a sin 2π t
∗
− TMMD

(

b∗
)

. (19)

Actually, it has only two parameters:m∗ that characterizes inertial
properties for a given frequency, and T∗

a that corresponds to a
relative strength of the external force compared to the friction
force. In order to have comparable tangential responses for highly
different parameters values, it is appropriate to introduce another
dimensionless displacement

b̄
(

t∗
)

= m∗b∗/T∗

a . (20)

When the excitation amplitude is very high, friction is negligible,
and the solution has a simple form

b̄
(

t∗
)

=
1
2π

(

t∗ − 1
2π sin 2π t∗

)

(21)

that does not depend on any parameters. Here the increasing
term ∼ t∗ appears due to the second boundary condition in

Equation (17) and may change once this boundary condition
alters. For lower T∗

a friction becomes important, and the
system has a whole range of different behaviors illustrated
in Figures 8, 9 plotted for heavy (m∗

= 100, Figure 8) and
light (m = 0.01, Figure 9) bodies. The curves represent the
tangential displacements (at the left) and the corresponding
velocities (at the right) for decreasing drive amplitudes T∗

a =

104, 103, 102, 10, 1, 10−2 marked by various colors. Solution
Equation (21) is plotted in black and is labeled T∗

a → ∞.
The principal feature that shows up in Figures 8, 9 is the

presence of very different time scales. All curves always oscillate

with the period of 1 that corresponds to the driving frequency.
Besides the lowest scale of one, characteristic times of about

50 (Figures 8B,C), 20 [(Figure 9C) for T∗
a = 10−2, in blue]

or another can appear. Generally, observation time of 500 is

sufficient to see the character of the dependence. The entire
curves for velocities containing 500 oscillations are shown in gray

for all drive amplitudes, whereas their fragments at the beginning
and at the end of the observation time are plotted in colors
corresponding to the particular amplitudes.

For heavy and light bodies excited by strong tangential forces
of amplitudes T∗

a = 104, 103, displacement’s behavior represents

climbing saturating oscillations [it is expected that the curve for
T∗
a = 104 will finally saturate as it does for T∗

a = 103, only for

T∗
a → ∞ no saturation is present, Equation (21)]. A progressive

decrease in T∗
a leads to a quicker saturation at a lower level;

finally, any climbing disappears. Indeed, blue and orange curves
for heavy and light bodies are generally symmetric so the positive

trend [linear term in Equation (21)] is absent. For small drive

amplitudes, the behavior differs for heavy and light bodies. The
heavy one demonstrates secondary oscillations (Figures 8B,C)

while the orange curve in Figure 9C contains only the smallest
oscillations of a constant level.

The rich behavior illustrated in Figures 8, 9 is difficult
to reproduce without using a semi-analytical method.
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FIGURE 8 | Normalized tangential displacement (at the left) and corresponding velocity (at the right) for different excitation amplitudes T∗

a for m* =100: (A) T∗

a → ∞,

T∗

a = 104, and T∗

a = 103; (B) T∗

a = 102 and T∗

a = 10; (C) T∗

a = 1 and T∗

a = 10−2.

For very high drive amplitudes when a partial slip is not
essential, or for very low amplitudes when the contact
behaves as a linear lossless spring, some asymptotic

analysis is possible. However, for the most important
range of moderate amplitudes only numerical treatment
is appropriate.
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FIGURE 9 | Normalized tangential displacement (at the left) and corresponding velocity (at the right) for different excitation amplitudes T∗

a for m* = 0.01: (A) T∗

a → ∞,

T∗

a = 104, and T∗

a = 103; (B) T∗

a = 102 and T∗

a = 10; (C) T∗

a = 1 and T∗

a = 10−2.

CONCLUSIONS AND PERSPECTIVES

Semi-analytical methods in frictional contact mechanics

enable the efficient calculation of a hysteric tangential force-

displacement relationship of an axisymmetric contact system

for an arbitrary loading history. For instance, in the Method of
Memory Diagrams (MMD), all history-dependent information
is encoded in the internal function that is updated following the
loading history in accordance with certain rules. Updating the
memory diagram is computationally much cheaper than detailed
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calculations of the local stress and displacement fields in the
contact zone. In this paper, two simple examples are considered
which help determine a class of practical problems for which the
semi-analytical solutions can be of use.

The first example concerns the calculation of friction-induced
energy losses in contact with two spheres excited by random
vibrations. Knowledge of the mechanical response of a system
makes it possible to describe its energetic response (i.e., the total
energy dissipated during certain time interval together with a
spatial distribution of this energy over the contact zone). The
former dependence is close to a direct proportionality since
the average dissipated power should be constant as long as the
system is excited by a stationary random process. The latter
one is more informative; in particular, most of the energy is
dissipated in an annulus close to the average contact border
for weak excitation amplitudes, while for stronger amplitudes
the inner border of the annulus propagates inward so that
eventually the annulus becomes a circle. An obvious goal
of this kind of calculation is modeling for wear in contact
systems. Indeed, adding a wear model to MMD simulations
provides an opportunity to predict where and when wear is
most likely to occur for known statistical properties of the
random excitation. In that regard, it would be of interest to
compare a final shape of the profile to known results (Argatov
et al., 2018) obtained without a detailed analysis of energy
dissipation or wear processes, but from the assumption that
the final contact area coincides with the initial stick area for a
harmonic tangential excitation. Besides, the cited paper, as well
as the work by Chai and Argatov (2018), reports generalization
on the Cattaneo-Mindlin theory for transversely isotropic elastic
bodies that can be potentially incorporated into semi-analytical
contact analysis.

The second example is related to a contact associated with
a particular mass. Mass and inertial properties add dynamics
to the contact system and give rise to a very rich behavior
even for a simple harmonic excitation. In particular, for various
combinations of two system’s parameters (normalized mass and
normalized excitation amplitude), a number of different time
scales can be found in the tangential response. Besides the drive
period, characteristic times tens or hundreds of times longer

than the drive period can be found. Depending on the mass and
the drive amplitude, regimes of climbing saturated oscillations,
decaying LF oscillations on top of weak HF ones, and others
show up. The application field for numerical simulations of this
kind can cover coupled frictional systems, stick-slip phenomena,
friction-induced instabilities, or acoustic emission (squealing).

To summarize, three main conclusions can be formed:

• The MMD is especially suitable for modeling responses on
complex loading protocols in frictional contact systems of
simple geometries;

• The MMD allows one to model quasi-static mechanical and
energetic responses on random vibrations and eventually to
make a prediction on a configuration of wear zones;

• A contact system having a certain mass demonstrates rich
dynamic behavior when excited even by a simple harmonic
signal. Several classes of solutions have been identified that do
not exist in the point mass case.
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Computational contact mechanics seeks for numerical solutions to contact area,

pressure, deformation, and stresses, as well as flash temperature, in response to

the interaction of two bodies. The materials of the bodies may be homogeneous

or inhomogeneous, isotropic or anisotropic, layered or functionally graded, elastic,

elastoplastic, or viscoelastic, and the physical interactions may be subjected to a single

field or multiple fields. The contact geometry can be cylindrical, point (circular or elliptical),

or nominally flat-to-flat. With reasonable simplifications, the mathematical nature of the

relationship between a surface excitation and a body response for an elastic contact

problem is either in the form of a convolution or correlation, making it possible to formulate

and solve the contact problem by means of an efficient Fourier-transform algorithm.

Green’s function inside such a convolution or correlation form is the fundamental solution

to an elementary problem, and if explicitly available, it can be integrated over a region,

or an element, to obtain influence coefficients (ICs). Either the problem itself or Green’s

functions/ICs can be transformed into a space-related frequency domain, via a Fourier

transform algorithm, to formulate a frequency-domain solution for contact problems.

This approach converts the original tedious integration operation into multiplication

accompanied by Fourier and inverse Fourier transforms, and thus a great computational

efficiency is achieved. The conversion between ICs and frequency-response functions

facilitate the solutions to problems with no explicit space-domain Green’s function.

This paper summarizes different algorithms involving the fast Fourier transform (FFT),

developed for different contact problems, error control, as well as solutions to the

problems involving different contact geometries, different types of materials, and different

physical issues. The related works suggest that (i) a proper FFT algorithm should be used

for each of the cylindrical, point, and nominally flat-flat contact problems, and then (ii)

the FFT-based algorithms are accurate and efficient. In most cases, the ICs from the 0-

order shape function can be applied to achieve satisfactory accuracy and efficiency if (i)

is guaranteed.

Keywords: contact of materials, fast fourier transform, FFT algorithms, contact pressure, contact stress, tribology

INTRODUCTION

Contact of materials is a common engineering phenomenon, and the solution to a contact problem,
in terms of pressure, deformations, and stresses, as well as flash temperature, is usually among first
steps in the design and analysis of an engineering system or a functional device. A contact problem
is solved first for the information of the contacting interface, such as contact pressure, surface
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interaction, contact area, and interfacial friction, followed by
a boundary-value solution process for the stresses in each
contacting body. At least two sets of convolutions, each for a
group of excitations and Green’s functions, are involved, i.e.,
displacements and stresses, in response to surface tractions, and
the former are calculated first (Conry and Seireg, 1971; Kalker
and van Randen, 1972; Kalker, 1986; Polonsky and Keer, 1999).
When solving the contact of bodies involving an inclusion-
containing material, the mathematical correlation between an
eigenstrain and a Green’s function appears (Liu et al., 2012). In
most cases, the convolution nature makes it possible to formulate
and solve a contact problem by means of an efficient fast Fourier
transform (FFT) algorithm (Ju and Farris, 1996; Stanley andKato,
1997; Ai and Sawamiphakdi, 1999; Hu et al., 1999; Polonsky and
Keer, 1999, 2000; Liu et al., 2000; Liu and Wang, 2002). We will
discuss and summarize the theories, algorithms, and numerical
methods of FFT-based contact modeling approaches.

If the contact body can be treated as a mathematically “semi-
infinite” medium, or a half-space material, analytical influence
coefficients (ICs), or frequency-response functions (FRFs), may
be derived for certain problems. Normally such a simplification
can be made if deformations are small and the radii of curvature
of contact bodies are sufficiently larger than the effective contact
size of these two bodies. In the case of the macroscopic contact
of two spheres, or two cylinders, of the same size and material,
if the contact radius, or half width, a, is 10% of the radius of
the contact body, the maximum error from using the z-direction
deformation to replace the radial deformation at the contact
edge is within 0.5%. However, stresses need more attention. Two
contact problems, (1) two steel spheres of the same radius and
(2) their equivalent sphere and a half space, are analyzed using
the finite-element method (FEM) without considering plasticity.
Figure 1 shows maximum relative errors of the von Mises stress
along the central axis, due to ignoring curvature, as a function
of a/Re. The error is about 7% when a/Re reaching 10%, and this
situation is beyond the “small elastic deformation” assumption.
In the elastic range, using steels as an example, the maximum
error of the von Mises stress is <3% if the half-space solution
is pursued. Similar small errors due to the use of the half-
space assumption in the elastic range have also been reported by
Londhe et al. (2018), in the comparison of the results from the
FEM and Hertz formulas for different types of contacts.

In a contact simulation, the computational complexity of
evaluating a convolution via direct summation of the products
of ICs and surface traction is on the order of O(N2), where N
is the mesh number. If N is large and the convolution has to
be repeatedly calculated in an iteration process, the computation
burden is very heavy. The works by Ju and Farris (1996), Nogi
and Kato (1997), Stanley and Kato (1997), Ai and Sawamiphakdi
(1999), Hu et al. (1999), Polonsky and Keer (2000), and Liu et al.
(2000) are in a chain of studies to apply the FFT to evaluate the
convolutions for elastic deformation and stresses efficiently in
the field of contact mechanics and tribology. Several papers have
reviewed such efforts of solving tribology problems via the FFT
and analyzed the sources of errors (Liu et al., 2000; Wang et al.,
2003; Liu S. et al., 2007; Wang and Zhu, 2019). Although most
of the effort is on solving non-conformal contact problems, the

FIGURE 1 | Maximum errors of the von Mises stress, σVM, along the z axis, or

the central axis in the depth direction, by using the half-space approach to

solve the problem of contact of two equal spheres, without considering

plasticity, calculated with the FEM; a is the half contact width, Re is the

equivalent radii of the contact bodies, and 1/Re = 1/R1 + 1/R2.

FFTmethods suit for certain conformal-contact problems as well
if they involve a convolution and have ICs obtained analytically
or numerically. Actually, the circular nature of a cylindrical
structure fits the circular convolution theorem perfectly. Liu and
Chen (2012) and Liu (2013) reported an FFT-based conformal-
contact model for two-dimensional (2D) problems. Wang and
Jin (2004) conducted the fluid-film lubrication analysis for
artificial joints, which requires the determination of the elastic
deformation of the bearing surface of both the acetabular cup
and the femoral head. They used FFT along with the spherical
distance and numerical ICs from an FEM calculation.

The FFT methods greatly help reduce the computation
burden. For example, for a three-dimensional (3D) point-contact
problems, the FFT operation is on the order of O(12Nlog2 [4N]),
to be discussed in detail later. Its ratio to the operation needed for
calculating the convolution is 12Nlog2 (4N)/N2

= 12log2(4N)/N
= 0.00024, if N is 1024∗1024. This is a significant saving of
computational time. The key issues to be addressed are (1) how
should the Fourier transform (FT) method be properly used to
solve contact problems? (2) Can one solution algorithm be used
for all problems?

Theoretically, the Fourier transform can be used for infinite-
domain and the Fourier series for periodic problems, but most
contact problems do not satisfy these conditions. For example,
a point-contact problem has its pressure only on a small region
of contacting surfaces. If the FFT is directly used to solve
such a problem, the results near the borders have notable
errors. In order to reduce the periodicity error, Ju and Farris
(1996) substantially extended the domain, Ai and Sawamiphakdi
(1999) decomposed the total pressure into a smooth portion
and a zero-mean fluctuating portion, and Polonsky and Keer
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(2000) developed a hybrid algorithm by adding a special
correction procedure. Each of these brings in a certain accuracy
improvement while introducing new complications. We have
investigated the theories of contact mechanics and signal
analyses, and realized that proper convolution theorems should
be considered in solving different contact problems of non-
conformal and conformal configurations (Figure 2) (Liu et al.,
2000; Liu and Wang, 2002; Liu S. et al., 2007; Liu and Hua, 2009;
Liu and Chen, 2012), as summarized by Wang and Zhu (2019,
Chapter 4).

In this paper, we will discuss the basic issues of the
FFT methods for contact analyses from the convolution
theorems and the tree of the Fourier-transform algorithms
for solving different contact problems, such as (1) the
algorithm of discrete-convolution and fast-Fourier-transform
(DC-FFT), with double domain extension in each dimension,
for non-periodic problems, and the discrete-convolution and
fast-Fourier-transform algorithm (DC-FFT) without domain
extension for journal bearing problems, (2) the algorithm
of continuous-convolution and Fourier-transform (CC-FT) for

periodic (or infinite) contact problems, (3) the algorithm
of discrete convolution with duplicated padding and FFT
(DCD-FFT), that of discrete-continuous convolutions and FFT
(DC-CC-FFT), and that of the discrete convolution with IC
summation and FFT (DCS-FFT) for 3D line-contact problems
that are periodic (or infinite) in one direction but non-periodic
in the other direction, (4) the algorithm of discrete-correlation
and FFT (DCR-FFT) for inclusion problems, (5) the FRF-IC
conversion method, as well as the applications of them to solve
the contact problems involving layered materials, anisotropic
elastic materials, and viscoelastic polymers, or those subjected to
multifields, and (6) a non-uniform DCS-FFT method, recently
developed by Sun et al. (2020), for solve large-scale contact
problems. Most of the contents in this paper are based on the
works by Liu et al. (2000, 2002), Liu and Wang (2002), Boucly
et al. (2005), Chen et al. (2008), Liu and Hua (2009), Yu et al.
(2014, 2016), Zhang X. et al. (2017, 2018), Zhang and Wang
(2019), Sun (2020), Sun et al. (2020), Zhang et al. (2020a,b),
and Chapter 4 in the book by Wang and Zhu (2019). Table 1
summarizes the FFF-based approaches and their applications.

FIGURE 2 | Different types of contact problems solved by using a FFT-based method. (A) Line contact, (B) point contact, (C) nominally flat-flat contact, (D) contact

involving an inhomogeneous material, (E) contact involving a layered material or other anisotropic materials, and (F) conformal contact of 2D journal bearings or

rollers. Note that all surfaces can be smooth or rough.
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TABLE 1 | FFT methods for contact analyses.

Name and references Algorithm and method Problem to solve

DC-FFT (Liu et al., 2000; Liu, 2001)

(Liu and Chen, 2012; Liu, 2013)

Discrete-convolution and FFT Point-contact problems

Cylindrical contact problems, counterformal

and conformal

CC-FT (Ju and Farris, 1996; Liu, 2001; Liu

et al., 2002)

DCSS-FFT (Sun, 2020)

Continuous-convolution and FFT Nominally flat-flat contact problems

DCD-FFT (Chen et al., 2008)

DC-CC-FFT (Liu et al., 2006)

DCS-FFT (Liu and Hua, 2009; Sun et al., 2020)

Discrete convolution with duplicated padding

and FFT

Discrete-convolution, continuous-convolution

and FFT

Discrete convolution with IC summation

and FFT

3D line-contact problems

DCR-FFT (Liu and Wang, 2005) Discrete-convolution-correlation and

fast-Fourier-transform

Materials with residual strains, inclusions and/or

inhomogeneities, contact plasticity problems

IC conversion (Liu et al., 2000; Liu, 2001; Liu

and Wang, 2002; Liu S. et al., 2007)

FRFs known, which can be transformed to ICs,

followed by the DC-FFT algorithm or other

proper ones

Layered, viscoelastic, transversely isotropic

materials, coupled-stress problems, multifield

contact problems

Non-uniform DCS-FFT (Sun et al., 2020) Implementation of DCS-FFT, or others, to

segments of different mesh densities

Large-scale problems, 3D line-contact problem

considering defect, crown, and edge effects

SFFT (Wang and Jin, 2004) Discrete-convolution and FFT Sphere-cup contact problems

It should be mentioned that the pressure and contact area that
satisfy the Kuhn-Tucker type complementary conditions can
be solved with different methods, and the conjugate gradient
method (CGM) (Polonsky and Keer, 1999; Jin et al., 2013) is
currently the widely accepted one.

In the following, the elastic field means the distributions of
stresses and displacements, and the target domain means the
physical domain, on which a physical contact problem is defined.
The algorithms and methods will be explained mainly through
deformation calculations; details of the FFT-based computations
of stresses, flash temperature, and other physical fields can be
found in the reports by Liu (2001), Liu and Wang (2002), Chen
et al. (2008), Zhang X. et al. (2018), andWang and Zhu (2019), as
well as those mentioned in the previous paragraph.

CONVOLUTION, FREQUENCY RESPONSE
FUNCTION, AND INFLUENCE
COEFFICIENTS

Convolution and ICs
Let’s use the pressure-displacement relationships, such as the
Flamant and Boussinesq equations (Johnson, 1987), as examples.
Here, an excitation at ξ , or (ξ , η), and a response at x, or (x, y),
are related to each other through a Green’s function defined with
the distance between the two, which is either |x − ξ | or RI =
√

(x − ξ)2 +
(

y − η
)2
.

The surface normal displacement of a cylinder in a line
contact, uz(x), due to pressure p(x) on surface region Sx is

uz(x) = −
4

πE′

∫

Sx

ln |x− ξ |p(ξ )dξ = C

∫

Sx

G(x− ξ )p(ξ )dξ (1)

where C = −4/(πE′), E’ is the effective Young’s modulus and the
corresponding Green’s function is C ln |x|. The integral kernel, G,
is defined as

G(x) = ln |x| (2)

In numerical modeling, the equation above can be discretized
and re-written as the summation of the products of influence
coefficients D(k, i), or Di,j, and nodal pressures pi.

uz(xk) = C

Np
∑

i = 1

D(k, i)pi = C

Np
∑

i= 1

Dk,ipi, (k = 1, 2, 3, ...Nd)(3)

where Np, Nd are the total numbers of nodes for pressure and
deformation, respectively.

A shape function, Ys, may be used to distribute pressure,
or other excitations, around a nodal point, and the commonly
used shape functions are 0-order, 1st-order, and 2nd-order
polynomials. Detailed expressions and use of these shape
functions can be found in the book by Wang and Zhu (2019).

The ICs are from the elementary integration of Green’s
function and shape function Ys, implying unit nodal pressure, or
from G and shape function Ys without including coefficient C.
The latter is used here. In general,

D(k, i) =

xu=xi+11−xk
∫

xl=xi−12−xk

G(xk − ξi)Ys(ξi)dξ =
{

f (xu)− f (xl)
}

(4)

where f is the integration result, and xu and xl are the upper and
lower boundaries of the element integration at xi, with 11 and
12 marking the element size.
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If the zero-order shape function is used, the influence
coefficient expression becomes

D(k, i) =
(

xi+1/2 − xk
) (

ln |xi+1/2 − xk|
)

−
(

xi−1/2 − xk
) (

ln |xi−1/2 − xk|
)

+ (xi−1/2 − xi+1/2) (5)

Note that here the influence coefficients, D, depend only on
the geometric factors of the grid. When a uniform grid is used
with the constant mesh spacing xi+1-xi = xi-xi−1 = 21, the
above becomes

D(k, i) = (xi + 1 − xk)
(

ln |xi + 1 − xk|
)

− (xi − 1 − xk)
(

ln |xi − 1 − xk|
)

−21 (6)

For point-contact problems, surface normal displacement
uz(x, y) due to pressure p(x, y) on surface area � is,

uz(x, y) =
2

πE′

∫∫

�

p(ξ , η)
√

(x− ξ )2 + (y− η)2
dξdη

= C

∫∫

�

p(ξ , η)
√

(x− ξ )2 + (y− η)2
dξdη (7)

where C =
2

πE′ , G is from Green’s function, defined as

G =
1√

x2+y2
.

Likewise, the equation above can be re-written as the

summation of the products of influence coefficients Dk,l
i,j and

nodal pressures pi,j. The ICs are from the elementary integration
of Green’s function and a shape function, Ys, or G and shape
function Ys without including the material properties, and the
latter is used here.

uz(xk, yl) = C

Npx
∑

i = 1

Npy
∑

j = 1

Dk,l
i,j pi,j (k = 1, 2 . . .Ndx, l = 1, 2 . . .Ndy)

(8)

where Ndx, Ndy are the total numbers of nodes for deformation
in the x, y directions, andNpx,Npy are the total numbers of nodes
for pressure in the x, y directions, respectively.

Dk,l
i,j =

xu
∫

xl

yu
∫

yl

G(xk, yl, ξi, ηj)Ys(ξi, ηj)dξdη (9)

Or D =

∑

Elemental−contribution

{

f (xu, yu)+ f (xl, yl)− f (xu, yl)− f (xl , yu)
}

(10)

where f is the integration result, and (xu, yu) (xl, yl) are the upper
and lower boundaries of the element integration.

If the zero-order shape function is
used, the influence coefficient expression is
(Love, 1929),

Dk,l
i,j = (xk − xi + a) ln





(

yl − yj + b
)

+

√

(

yl − yj + b
)2

+ (xk − xi + a)2

(

yl − yj − b
)

+

√

(

yl − yj − b
)2

+ (xk − xi + a)2





+
(

yl − yj + b
)

ln





(xk − xi + a) +

√

(

yl − yj + b
)2

+ (xk − xi + a)2

(xk − xi − a) +

√

(

yl − yj + b
)2

+ (xk − xi − a)2



 (11)

+ (xk − xi − a) ln





(

yl − yj − b
)

+

√

(

yl − yj − b
)2

+ (xk − xi − a)2

(

yl − yj + b
)

+

√

(

yl − yj + b
)2

+ (xk − xi − a)2





+
(

yl − yj − b
)

ln





(xk − xi − a) +

√

(

yl − yj − b
)2

+ (xk − xi − a)2

(xk − xi + a) +

√

(

yl − yj − b
)2

+ (xk − xi + a)2





Replacing xk−i = xk−xi and yl−j = yl−yj leads to the following.

Dk,l
i,j =

(

xk−i + a
)

ln





(

yl−j + b
)

+

√

(

yl−j + b
)2

+
(

xk−i + a
)2

(

yl−j − b
)

+

√

(

yl−j − b
)2

+
(

xk−i + a
)2





+
(

yl−j + b
)

ln





(

xk−i + a
)

+

√

(

yl−j + b
)2

+
(

xk−i + a
)2

(

xk−i − a
)

+

√

(

yl−j + b
)2

+
(

xk−i − a
)2



 (12)

+
(

xk−i − a
)

ln





(

yl−j − b
)

+

√

(

yl−j − b
)2

+
(

xk−i − a
)2

(

yl−j + b
)

+

√

(

yl−j + b
)2

+
(

xk−i − a
)2





+
(

yl−j − b
)

ln





(

xk−i − a
)

+

√

(

yl−j − b
)2

+
(

xk−i − a
)2

(

xk−i + a
)

+

√

(

yl−j − b
)2

+
(

xk−i + a
)2





where a and b are the half length of the rectangular
integration element.

Frequency Response Functions and ICs
The Fourier transform can be applied to the IC matrix, D,
Equation (4), to obtain,

D̃ = G̃ · Ỹs (13)

and G̃ = D̃/Ỹs (14)

where G̃ is the frequency response function excluding the elastic
parameter, C. These two equations show how to obtain one from
the other.

If discrete Fourier transform D̂ has already been obtained
from a set of known ICs via the FFT, G̃ can be solved from G̃ =

D̃/Ỹs once Fourier series coefficients D̃ can be obtained from
D̂. Based on the sampling theorem, the one-dimensional (1D)
relationship between the FT (∼) and discrete Fourier transform
(DFT) (∧) of the ICs, sampled with mesh interval 21, can be
obtained as

D̂i =
1

21

∞
∑

r=−∞

D̃

(

2π i

n · 21
−

2πr

21

)

=
1

21

∞
∑

r=−∞

D̃

(

π i

n1
−

πr

1

)

(i = 0, 1, 2 · · · , n− 1) (15)
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An aliasing control parameter, AL, can be introduced instead of
summation for r from –∞ to ∞, in order to satisfy a required
accuracy while saving computation time.

D̂i =
1

21

AL
∑

r=−AL

D̃

(

2π i

n · 21
−

2πr

21

)

=
1

21

AL
∑

r=−AL

D̃

(

π i

n1
−

πr

1

)

(i = 0, 1, 2 · · · , n− 1) (16)

The above can be simplified if the sampling frequency is
sufficiently high, or the datum interval is sufficiently small.

D̂i ≈
1

21
D̃

(

2π i

n · 21

)

=
1

21
D̃

(

π i

n1

)

(i = 0, 1, 2 · · · , n− 1)

(17)

The above becomes exact if and only if ms > 2mmax (Morrison,
1994) with ±mmax as the band limit (or mmax as the highest
frequency component), beyond which there is no Fourier
transform results (Walker, 1996). Then, only the term at r = 0
is needed.

Likewise, the 2D relationship between the FT (∼) andDFT (∧)
of the ICs is

ˆ̂Di,j =
1

1x1y

rx=AL
∑

rx=−AL

ry=AL
∑

ry=−AL

˜̃D(
2π

nx1x
i−

2π

1y
ry,

2π

ny1y
j−

2π

1y
rx)

(i = 0, 1, 2 · · · , nx − 1, j = 0, 1, 2 · · · , ny − 1) (18)

where1x and1y are the mesh intervals in the x and y directions,
and1x = 1y = 21 if the meshes are uniform in both directions.

This means two operations. (1) Upon knowing D̃ from D̂
via Equations (17) or (18) with a properly chosen discretization
interval, 21 < 2π/ωmax, we can solve G̃ using the
equation below.

G̃i = G̃

(

2π i

n · 21

)

= D̃

(

2π i

n · 21

)

/Ỹ

(

2π i

n · 21

)

≈ 21 · D̂i/Ỹs

(

2π i

n · 21

)

= 21 · D̂i/Ỹs

(

π i

n1

)

(i = 0, 1, 2 · · · , n− 1) (19)

(2) Upon knowing G̃, we can get D̂ from D̃ using Equations
(13) and (17), or (18). In many cases where the solutions
to frequency response functions are more convenient
than those to Green’s functions, and this operation can
be utilized to convert the FRFs to the discrete Fourier
transformed ICs.

CONVOLUTION THEOREMS

Equations (1) and (7) are both convolutions, which can be solved
efficiently via Fourier transform followed by inverse Fourier
transform. However, because the pressure may be in a discrete
form, i.e., rough-surface contact pressure, and its application

domain may be in different sizes, i.e., finite or infinite, accurate
solutions to these equations, and others in the same nature,
require the use of different convolution theorems. The following
explains these theorems with 1D datum series for convenience.

Continuous Linear Convolution
If a set of continuous functions of t, f and G, follows
the convolution in Equation (20), resulting in O, then the
Fourier transform of the convolution results, Õ(ω), satisfies
Equation (21), which convert the integration in Equation (20) to
multiplication of continuous Fourier transforms of f and G.

O(t) =

∫

∞

−∞

G(t − τ )f (τ )dτ ≡ G(t) ∗ f (t) (20)

Õ(ω) = G̃(ω)f̃ (ω) (21)

where O is accounted as the response of the continuous linear
convolution, and symbol “∗” is the convolution operator; Õ(ω),

G̃(ω), f̃ (ω) are Fourier transformed results of O, G, and f, with ω

for frequency corresponding to the domain of variable t. The tilde
(̃), means a 1D Fourier transform. For contact problems, f can be
the excitation force, such as pressure, if it is a continuous function
defined in the entire domain, and G is Green’s function, both are
function of space variable x. Then, frequency ω is corresponding
to the space domain.

Periodic Convolution
If Dp(i) and fp(i) are periodic functions with period N, the

product of their discrete Fourier series (DFS) coefficients,
⌣

Dp(m)

and
⌣

f p(m), with m for the frequency, is
⌣

Op that can be expressed

as (Oppenheim et al., 1999),

⌣

Op(m) =
⌣

Dp(m)
⌣

f p(m) (22)

The periodic sequence, Op, with the same period, N, is the
periodic convolution analyzed in one period, N, shown below.

(

Op

)

j
=

N−1
∑

r=0

(

Dp

)

j−r

(

fp
)

r
0 ≤ j ≤ N − 1 (23)

For contact problems, Dp(i) and fp(i) are Dp(xi) and fp(xi). Here,
the subscript can be negative.

Cyclic (Circular) Convolution
Based on Oppenheim et al. (1999), ifDc(i) and fc(i) are sequences

of finite length N, and their DFT results are D̂c(m) and f̂c(m),
withm for the frequency, then their term-by-term product is Ôc,
expressed as

Ôc(m) = D̂c(m)f̂c(m) (24)
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The finite sequence Oc is actually the circular convolution
analyzed in length N, shown below.

(Oc)j =

N−1
∑

r=0

(Dc)j−r

(

fc
)

r
0 ≤ j ≤ N − 1 (25)

Or (Oc)j =

N−1
∑

r=0

(Dc)j−r+NH(r−j)

(

fc
)

r
0 ≤ j ≤ N − 1 (26)

where H(r-j) is the Heaviside unit step function, which is 1 when
r-j is positive, or 0 otherwise. The termNH(r-j) contributes to the
subscript numbering only when the step function is not zero to
avoid negative subscript. Here, subscript -r reverses the sequence
of the D series and subscript j shifts it in a circular fashion. More
details has been given by Liu et al. (2000).

This means that the Fourier transform operation in Equation
(24) is valid only when the convolution of Dc(i) and fc(i) is in the
form given in Equations (25) or (26). Although Equations (23)
and (25) are for different events, they are expressed in the same
form and lead to the same results in one period (Oppenheim
et al., 1999).

The cyclic (circular) convolution is for series of finite lengths,
and the circular fashion of the D series make it suitable for
problems with either periodic features (e.g., nominally flat
contact with a special IC treatment) or a circular configuration
(e.g., cylindrical and journal bearing problems). Liu and Chen
(2012) and Liu (2013) reported an FFT-based conformal-
contact model for 2D problems with two concentric cylindrical
interfaces, Figure 1F, for which we can directly apply the cyclic
convolution theorem and 1D FFT operations to obtain the
shaft deformation. However, for problems without the periodic
features, such as counterformal line/point contact problems,
special measures are needed tomake theD series in such a needed
circular fashion so that the cyclic convolution can be properly
performed. The ICs and the pressure series can be properly
handled based on the characteristics of the problems, e.g., Liu S.
et al. (2000, 2007), Liu and Wang (2002), and Chen et al. (2008),
so that they fit the need for the circular-convolution analyses.
Because the FFT is a collection of algorithms for fast execution
of DFT, the cyclic convolution of the two datum series (Equation
26) should also satisfy Equation (24) when the DFT is replaced by
the FFT.

FFT ALGORITHMS FOR CONTACT
MECHANICS

Cyclic Convolution and the DC-FFT
Algorithm for Non-periodic Contact
Problems
Consider the general line-contact displacement problem shown
in Equation (3), subjected to a Hertzian pressure, or any localized
pressure in a certain distribution, where influence coefficient
D(k, i) means uz/C at node k caused by a unit pressure at node
i, on a uniform grid of mesh spacing 21. This is a problem
of the convolution of two series of finite lengths; it is not
infinite, nor periodic. Therefore, the cyclic convolution theorem,

Equation (26), should be applied in order to solve it with the
Fourier transform method, for which the IC matrix has to be
a cyclic matrix. This section explains how such a matrix is
constructed from the original IC matrix via wrap-around order,
and how this problem is solved properly and efficiently via the
FFT. The wrap-around order requires one-to-one extension of
the target domain on which the physical problem is defined,
and the pressure on the extended domain should be set to
zero (zero padding).

It should be mentioned that if such a problem were solved
with the continuous convolution theorem, Equation (22), via
FRF and Fourier transform of pressure in the finite target
domain, a noticeable error would appear at the borders because
it periodizes the problem mathematically. Ju and Farris (1996)
depressed this error by five times domain extension. The
analysis by Liu et al. (2000) indicated that a complete error
removal would require 16 times domain extension, as if the
problem were infinite. Error analyses will be discussed in
a later section.

Because influence coefficient D(k, i) only depends on the grid
geometry, or, more specifically, the distance between points k
and i, for a given uniform grid, it relies solely on

∣

∣k− i
∣

∣ no
matter what k or i is. We can define Xk−i as the non-dimensional
distance (normalized by a characteristic length, a) from Xk to
Xi, or Xk−i= Xk to Xi, then the IC component can be expressed
as Dk−i. Subscript k-i marks each element in the IC matrix.
Obviously here for Equation (3),Xk−i = –Xi−k„ andDk−i =Di−k,
or Dj = D−j. Using X̄k−i = Xk−i/1̄, 1̄ = 1/a, Equation (3) can
be expressed as follows in a non-dimensional form,

uz(Xk)

aphC
=

∑

i

1̄
[

(1− X̄k−i) ln
∣

∣1− X̄k−i

∣

∣ + (1+ X̄k−i) ln
∣

∣1+ X̄k−i

∣

∣

]

+
[

2(ln 1̄ + ln a− 1)
]

P(Xi) (27)

For example, if a and ph are the Hertzian contact half width and
maximum pressure, P(X) =

√

1− X2, and the Hertzian pressure
distribution is then p = P ph, and if the problem is digitized with
Np = Nd = N = 5 nodes, k − i = [−4, 4], the non-dimensional
matrix-form displacement for Equation (3), U, becomes,

−uz(Xk)

aphC
=















D0 D−1 D−2 D−3

D1 D0 D−1 D−2

D2 D1 D0 D−1

D3

D4

D2

D3

D1

D2

D0

D1

D−4

D−3

D−2

D−1

D0





























P0
P1
P2
P3
P4















=















U0

U1

U2

U3

U4















= U (28)

The solution requires 5× 5, or NxN, multiplication operations.
The IC matrix above is a Toeplitz matrix, or a diagonal-

constant matrix. This matrix has to be converted to a cyclic
one in order to utilize the cyclic convolution theorem (Liu
and Wang, 2002). This can be done with the operation of the
wrap-around order (Bracewell, 1978; Brigham, 1988; Press et al.,
1992) by adding the reversed first column without the first
element, which is [D4,D3,D2,D1], to the end of the first row,
[D0,D−1,D−2,D−3,D−4]. Then, the extended first row becomes

[

D0 D−1 D−2 D−3 D−4 D4 D3 D2 D1

]

(29)
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The total number of the extended series is Nc= 2N−1 = 9. By
using the Heaviside step function notation, j–r+NcH(r–j), with
H(r−j) =1 for r-j >0, Equation (29) becomes Equation (30).
Series Dc in Equation (26) can be written as [< D >]Nc=2N−1to
show the cyclic nature by < > and the size information by the
subscript.We can also use

[

D
]

2N−1
to express this extended wrap-

aroundmatrix. A short vertical bar is used to separate the original
and extended terms for clarity.

[< D >]Nc = 2N−1 =
[

D0 D8 D7 D6 D5 | D4 D3 D2 D1

]

= [D |EX ]2N−1 (30)

where EX means the extended components.
The nodal pressure vector is also extended by zero padding

as follows

[P]Nc=2N−1 =
[

P0 P1 P2 P3 P4 | 0 0 0 0
]

= [P |EX ]2N−1

(31)

Then Equation (3) becomes

−uz(Xk)

aphC
=

N−1
∑

i=0

(Dc)k−i+NcH(i−k)pi ⇔ [< D >]Nc = 2N−1 ∗ [P]Nc = 2N−1

= IDFT

(

[

< D̂ >

]

Nc = 2N−1
◦

[

P̂
]

Nc = 2N−1

)

= IFFT

(

[

< D̂ >
]

Nc = 2N−1
◦

[

P̂
]

Nc = 2N−1

)

(32)

where “◦” means the operation of term-by-term type complex
multiplication. Note that the equal sign with arrows indicates that
the vector at the right-hand side contains exactly that at the left-
hand side, but the former has extra useless terms in the extension.
This is the expression for the discrete convolution (cyclic
convolution) and fast Fourier transform (DC-FFT) algorithm,
named by Liu et al. (2000), for the deformation calculation.
Similar expressions can be obtained for stress calculations (Liu,
2001; Liu and Wang, 2002). Because the FFT operation of an
N-number series is in the order of Nlog2N, the operation of
Equation (32) is in the order of 3Nclog2Nc, much smaller than
that of the direct summation (DS) operation, which is N×N,
especially when N is large, as shown earlier in Introduction.
Wang and Zhu (2019) offer a detailed numerical example, which
shows that the direct summation, Equation (28), and the DFT-
IDFT operation of the DC-FFT algorithm, Equation (32), lead to
the same results in the analyzed accuracy.

In order to show the cyclic nature of this operation, the fully
extended matrix, or the cyclic matrix, is completely constructed
from [< D >]Nc = 2N−1 by circulating the last element in one row

to the first position in the next row, given below.

















D0 D−1 D−2 D−3 D−4

D1 D0 D−1 D−2 D−3

D2 D1 D0 D−1 D−2

D3 D2 D1 D0 D−1

D4 D3 D2 D1 D0

D4 D3 D2 D1

D−4 D4 D3 D2

D−3 D−4 D4 D3

D−2 D−3 D−4 D4

D−1 D−2 D−3 D−4

EX EX

















=

















D0 D8 D7 D6 D5

D1 D0 D8 D7 D6

D2 D1 D0 D8 D7

D3 D2 D1 D0 D8

D4 D3 D2 D1 D0

D4 D3 D2 D1

D5 D4 D3 D2

D6 D5 D4 D3

D7 D6 D5 D4

D8 D7 D6 D5

EX EX

















=

[

IC EX

EX EX

]

(33)

Only the top portion of the matrix is written out because they
are related to the physical target domain of the original problem
in the matrix operation. When using the DC-FFT algorithm,
only the first row is needed, and only the first N rows of the
IFFT results are the needed solutions while the others should
be discarded.

IC wrap around order and pressure zero padding, shown
in Figure 3, are two important operations for the DC-FFT
algorithm to utilize the cyclic convolution and solve contact
mechanics problems. Different implementation variations can be
made; however, these two operations are necessary. The wrap-
around order for deformation calculation can be done by shifting
the negative side or flip those between 1∼N-1. Caution should
be paid for stress analyses because the shear-stress ICs are anti-
symmetric. Sometimes, ICs also need zero padding, which should
be done at node N where the IC is the smallest.

FIGURE 3 | 1D IC wrap around order and pressure zero padding for 2D

line-contact problems.
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Analogous to the line-contact problem discussed above, the
IC matrix for a 3D point-contact problem can be constructed
by extending the original physical domain in the two lateral
directions, as shown in Figure 4A. Equation (9) becomes the
following for a 3D contact problem, where a is a reference
length, which could be the Hertzian radius of a spherical contact,
and ph a reference pressure, which could be the maximum
Hertzian pressure.

U =
−uz(Xk,Xl)

aphC
⇔ [< D >](2Nx)(2Ny) ∗ [P](2Nx)(2Ny)

= IFFT

(

[

< D̂ >

]

(2Nx)(2Ny)

[

P̂
]

(2Nx)(2Ny)

)

(34)

where Npx = Ndx = Nx and Npy = Ndy = Ny are the numbers of
nodes in the x and y directions, respectively.

The extended circular convolution IC matrix is

[< D >](2Nx)(2Ny) =

[〈

D

EX

∣

∣

∣

∣

EX

EX

〉]

(2Nx)(2Ny)

(35)

where D on the right-hand side means the ICs corresponding to
the physical domain.

It should be emphasized that two domains are involved, which
are (1) the target domain, or the physical domain where the
contact problem is defined, and (2) the extended domain, or the
computation domain. At the end of the calculation, only the data
for the target domain should be retained for the results. It is
worth mentioning that the total lengths of P and D here are the
minimum requirements; longer series than these should work,
simply at a higher cost of computational efficiency. With these
in mind, we can construct certain variations to implement this
extension in order to apply the circular convolution for different
situations, which are not discussed here.

The solution process involves IC matrix calculation, IC wrap-
around order, pressure zero padding, and the FFT–IFFT. Its
procedure is detailed as follow (Liu et al., 2000).

1) Calculate the influence coefficient matrix, [D]2Nx×2Ny
, from

–Nx to Nx − 1 in the x direction and –Ny to Ny − 1 in the
y direction;

2) Apply the wrap-around order and zero padding to convert
the IC matrix into a cyclic matrix, [< D >]2Nx×2Ny

in

the calculation domain, marked as
[

1 : 2Nx, 1 : 2Ny
]

(or
[

0 : 2Nx− 1, 0 : 2Ny− 1
]

), in the x and y directions, as shown
in Figure 4B, and then apply the two-dimensional FFT to

obtain the Fourier transformed IC matrix,
[

< ̂

̂D >

]

;

3) Input pressure, conduct zero padding to convert pressure

[P]Nx×Ny
into[P]2Nx×2Ny

and then apply the two-dimensional

FFT to get
[

< ̂

̂P >

]

;

4) Obtain a temporary frequency series using element-by-

element product of the two, i.e.,
[

< ̂

̂D >

]

◦

[

< ̂

̂P >

]

, where

“◦” means the operation of element complex multiplication;

5) Conduct two-dimensional IFFT
([

< ̂

̂D >

]

◦

[

< ̂

̂P >

])

to

obtain the surface deformation and keep the result data within
the original physical domain.

The error analyses by Liu et al. (2000) andWang et al. (2003) have
convinced that (1) the DC-FFT algorithm generates no additional
inaccuracy beyond the discretization error, (2) its accuracy for
solving elastic contact problems is nearly independent of the
computation domain size accept for the necessary extension, and
(3) the DC-FFT algorithm is the fastest among the commonly
used contact analysis methods. Figure 4B presents a series of
calculation results for the contacts of two honed rough surfaces
subjected to several normal loads. The composite root-mean
square (RMS) roughness is Rq = 0.5 micron. The contact
ellipticity is K = 2.0, radii of curvature of the contact bodies are
Rx = 19.05mm, Ry = 54.165mm, the equivalent elastic modulus
is E′ = 226.4 GPa, and the maximum Hertzian pressure is 2.72
GPa at the load of 7,680N. No plasticity is considered in this set
of analyses. The complementary conditions for contact modeling
are given in the Appendix.

Continuous Convolution and Fourier
Transform (CC-FT) for Nominally Flat-Flat
Contact Problems
The contact of nominally flat but rough surfaces is a problem
with an infinite domain, and it can also be considered as
a periodic contact problem, i.e., the contact characteristics
in a representative finite region repeat periodically in lateral
directions. Since the FRF of Green’s function exists and the
periodic pressure distribution can be made into Fourier series,
the continuous convolution theorem is applicable.

The continuous convolution and Fourier transform (CC-FT)
algorithm has been suggested by Liu et al. (2000) and Liu S. et al.
(2007) for this type of problems, which is so named because in
the theoretical nature, the continuous convolution theorem is
applied. If the FT in Equation (21) and the final IFT are replaced
by the discrete Fourier transform and the inverse discrete Fourier
transform (IDFT), which is actually that the FT divided by mesh
interval is replaced by the DFT and the IFT multiplied by the
mesh interval is replaced by the IDFT, the equation below can
be executed directly. Here, the FFT and IFFT are applicable to
execute the DFT and IDFT efficiently. The CC-FT algorithm is
built upon the frequency response functions (FRFs) G̃ and FFT
of pressure, p̂,

U = IDFT[G̃ ◦ p̂] (36)

The FRFs are singular at the coordinate origin, which can be
processed with the Gauss quadrature integration method. This
CC-FT method is actually what Ju and Farris (1996) and others
used before 2000 for non-periodic contact problems where it
involved periodic errors. With the CC-FT algorithm, the solution
can be computed only in a representative target domain as if this
were one period of the rough surface laterally. Therefore, this
method is highly efficient, as well as accurate, in computation.

FFT Algorithms for 3D Line-Contact
Problems
The 3D line-contact problems involve a limited domain size in
one of the lateral directions but a significantly long length in the
other. Such a problem can be simplified as a 2D plane-strain issue
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FIGURE 4 | 2D Wrap-around order in both x and y directions and zero padding for 3D point-contact problems (A), and elliptical contacts of two rough surfaces under

different normal loads (B). In (A), the arrows show the directions of the IC wrap-around order. In (B), the light-colored patterns inside the blue (middle) and red (top)

contours show asperity contact pressure and area.
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if the contacting surfaces are ideally smooth and the materials
homogeneous. To explore more detail, we are facing 3D problem
with mixed issues. Three FFT-based approaches have been
developed, to be discussed below, which are the algorithms of
mixed discrete-continuous convolution with duplicated padding
and FFT (DCD-FFT) (Chen et al., 2008), the hybrid discrete
convolution, continuous convolution and FFT (DC-CC-FFT)
(Liu and Hua, 2009), and the discrete-periodic convolution with
IC summation and FFT (DCS-FFT) (Liu and Hua, 2009; Sun
et al., 2020) to consider the effect of roughness and material
inhomogeneity. They are mathematically and numerically the
same in the finite direction (x), but different in the other
dimension (y).

DCD-FFT Algorithm
The DCD-FFT algorithm (Figure 5A) modifies the DC-FFT
algorithm with a treatment in the y direction, simply by
duplicating the pressures in the target domain to the extended
region in the y direction, called duplicated padding (Chen et al.,
2008). The length of the extended region should be at least
the same as that of the target domain. This method is not
as accurate as the DC-FFT one for non-periodic problems,
especially when the extended domain in y is not sufficiently long,
because it ignores the deformation influences from the region not
included in the calculation, and the IC truncation error plays a
role. Therefore, this method is mentioned here for a reference
use only. However, the DCD-FFT method can effectively solve
the normal deformation of finite-cylinder surfaces (a quarter-
space problem), if the cylinders are not too short, with pressure
duplication in the extended domain (Liu et al., 2020).

DC-CC-FFT Algorithm
The infinite extension of the problem in the y direction qualifies
the direct use of the CC-FT method. Thus, the DC-CC-FFT
algorithm combines the features of the discrete convolution
theorem in the x direction, and the continuous convolution
theorem in the y direction, shown in Figure 5B, involving hybrid
FRFs and ICs (named ICs-FRF). Because there are two ways to
obtain the FRFs for the y-direction solution, two variations of the
DC-CC-FFT algorithm can be constructed.

DC-CC-FFT with IC-conversion. A simple way, with known
ICs, described by Sun et al. (2020), to build the DC-CC-FFT
algorithm is to process the 2D Fourier transform of the ICs
sequentially in the y and the x directions to obtain ICs-FRF, where
the FRF is from the IC conversion. After the y-direction FFT, the
FRFs are calculated fromEquations (14) and (17). Then the wrap-
around order in the x direction is conducted, followed by the 1D
Fourier transform in x. The calculation can be performed in the
following steps with a slightly different procedure for the wrap
around order.

1) Input the pressure, [P]Nx× Ny
;

2) Extend the pressure [P]Nx×Ny
into [P]2Nx×Ny

with zero-
padding in the x direction only;

3) Transform [P]2Nx×Ny
to

[

<
ˆ̂P >

]

2Nx×Ny

by applying 2D FFT,

note here, the domain has been enlarged;
4) Calculate the IC matrix [D]2Nx× Ny

;
5) Apply 1D FFT to [D]2Nx×Ny

in the y direction to get
[

D̂
]

2Nx× Ny

;

6) Calculate the ICs-FRF,
[

D̃
]

2Nx×Ny
by using Equations (14)

and (17) in the y direction;
7) Treat

[

D̃
]

2Nx×Ny
with the wrap-around order only in the

x direction and get
[

< D̃ >
]

2Nx×Ny
which is only term

flip because the domain has been enlarged in 4). Here,
[

< D̃ >
]

2Nx×Ny
is the ICs after the wrap around order in the x

direction but FRF in the y direction, and the latter is converted
from the ICs done in the previous step;

8) Apply 1D FFT to
[

< D̃ >
]

2Nx×Ny
in the x direction, and the

resultant series is denoted as
[

<
ˆ̃D >

]

2Nx× Ny

;

9) Obtain a temporary frequency series by element-by-element

production between
[

< ̂

̂P >

]

2Nx×Ny

and
[

<
ˆ̃D >

]

2Nx×Ny

,

which can be expressed as
[

<
ˆ̃D >

]

◦

[

< ̂

̂P >

]

, where

“◦” means complex multiplication in an element-by-
element manner;

FIGURE 5 | DCD-FFT (A) and DC-CC-FFT (B) algorithms (based on Sun et al., 2020), Reprinted by permission from Springer, Computational Mechanics. The red

areas mark the target domains, and the light green regions are for the IC wrap around.
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10) Apply a 2D IFFT to
[

<
ˆ̃D >

]

◦

[

< ̂

̂P >

]

;

11) Obtain the surface displacement by keeping values within
the original target domain, and the resultant series are shown

as IFFT
{[

<
ˆ̃D >

]

◦

[

< ̂

̂P >

] }

.

The advantage of the algorithm of DC-CC-FFT with IC-
conversion is that it does not require known FRFs if ICs can be
calculated more easily. It is more accurate than the DCD-FFT
method but still involves some IC truncation and conversion
errors. The IC truncation error can be greatly reduced by using
the IC summation method, to be discussed in section DCS-
FFT Algorithm.

Precise DC-CC-FFT algorithm, presented by Liu and Hua
(2009), is to conduct the analytical Fourier transform of
Green’s function in the length (y) direction, and calculate
the ICs with respect to x, to obtain the hybrid ICs-FRFs,
and then conduct the wrap-around order in x and the one-
dimensional FFT of the new ICs-FRFs. This approach is
theoretically accurate.

Both DC-CC-FFT algorithms only require extending the

domain in the x direction twice the size of the target domain,

while the domain size in y is unchanged, which can be as small as
possible, as long as it is sufficient represent the necessary features
of surfaces and materials.

DCS-FFT Algorithm
Liu and Hua (2009) suggested another approach to deal with
3D line-contact problems, which is to consider the elasticity
effect of the entire domain, or a sufficiently large domain, by IC
summation, and Sun et al. (2020) have extended this method to
solve the contact problems involving inhomogeneous materials.
Figure 6A illustrates this idea. We can include M segments of
equal length on each side of the target domain in the length
direction, while making the target domain size as small as
possible, as long as the main contact features are included. Nx

in the x direction and Ny in the y direction may be different.
The ICs in each segment are the same, periodically shifted

from those in the target domain. The influences of the pressures
in the other segments on the deformation within the target
domain can be included via the IC summation in the target
domain, given below, with the superscripts for the segment
numbers and the subscripts for the y direction coordinates in the

FIGURE 6 | IC summation in the periodic convolution (A) and 3D line contact of a smooth, rigid cylinder, and a flat rough surface calculated by using the DCS-FFT

algorithm (B).
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target domain.

DSum
i,j =

M
∑

r=−M

(

D
(r)
i,j−rNy

)

, 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Ny − 1

(37)

Because the ICs in each segment are the same, only one copy of
the IC, marked with superscript (0), is necessary, shown below
with proper shifts for other copies.

DSum
i,j =

M
∑

r=−M

(

D
(0)
i,j−rNy

)

, 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Ny − 1

(38)

Using DSum
i,j in the DC-FFT algorithm should result in more

accurate solutions to 3D line-contact problems than those by
using the DCD-FFT algorithm. Of course DSum

i,j can be used in

the algorithm of DC-CC-FFT with IC-conversion discussed in
the previous section. The solution procedure of the DCS-FFT
algorithm can utilize the DC-FFT framework, which may involve
the following steps:

1) Calculate the summed IC matrix, DSum
i,j , from the ICs

calculated in the region from –Nx to Nx-1 in the x
direction and from −MNy to MNy-1 in the y direction, and

construct [D] SumNx×Ny
;

2) Apply the wrap-around order, as well as zero padding if
needed, to transfer the IC matrix into a cyclic matrix,

[< D >]Sum2Nx×2Ny
, similar to that in the DC-FFT algorithm,

and then employ the 2D FFT to obtain the Fourier

transformed IC matrix,
[

< ̂

̂D >

]Sum
;

3) Input pressure, conduct zero padding in the x direction and
duplicated padding in the y direction to convert pressure

[P]Nx×Ny
into [P]2Nx×2Ny

, and apply the 2D FFT to get the

Fourier transformed pressure matrix,
[

< ̂

̂P >

]

;

4) Obtain a temporary frequency series from the element-by-

element complex product of the two, as
[

< ̂

̂D >

]Sum
◦

[

< ̂

̂P >

]

;

5) Obtain the surface deformation data from

IFFT

{

[

< ̂

̂D >

]Sum
◦

[

< ̂

̂P >

]

}

and keep the resultant

data within the original physical target domain.

Figure 6B presents the 3D cylindrical contact of a rigid infinite-
length cylinder and an elastic half space material (E = 200 GPa,
υ = 0.3) with a sinusoidal rough surface, analyzed with the
DCS-FFT algorithm. The 3D roughness is periodic in both the
x and y directions, and the load is treated periodically in the y
direction. With the DCS-FFT method, no edge effect appears at
the borders of the target domain, which means that the elasticity
effect of neighboring duplicated domains has been properly taken
into account.

Compared with the DCD-FFT algorithm, the DCS-FFT
method does not require a large target domain because of the

IC summation. As mentioned before, Ny can be very small,
e.g., as small as one period of the pressure variation in the y
direction, or as short as the length of a representative rough
surface area and/or material inhomogeneity region. Among all
the three algorithms for 3D line-contact problems, the DCS-
FFT and the accurate DC-CC-FFT algorithms are recommended,
and the former may be more preferred because it uses the same
DC-FFT solution framework, convenient for programming,
especially when the DC-FFT software is available as a set of
the open-source codes (http://othello.mech.northwestern.edu/
qwang/OpenSourceCodeDCFFT/DC-FFTWeb.htm). It should
be mentioned that the DCS-FFT algorithm can also be used to
construct a mechanism to solve the nominally flat-flat contact
problems, namedDCSS-FFT, which further modifies the ICs with
2D IC summations in both x and y directions (Sun, 2020).

DCR-FFT Algorithm
In comparison to the contact issues involving an excitation
and response defined in a convolution, the relationship between
eigenstrains and the components of the elastic field in a
material involves both the convolution and the correlation
(Liu and Wang, 2005; Liu et al., 2012), and the correlation
theorem should be implemented as well. Here, eigenstrain is a
generic term for various non-elastic strains, defined by Mura
(1993), including thermal strain, plastic strain, fit-induced strain,
phase transformation induced strain, and residual strain in a
general sense. Many inhomogeneity problems can be solved
via the Equivalent-eigenstrain method (EIM) (Eshelby, 1957),
and correlations of functions are involved in the mathematical
expressions of the eigenstrain-induced field.

Correlation Theorem
The Fourier transform of the correlation of two real datum
series is the multiplication of the complex conjugate of Fourier
transform of one function and the Fourier transform of the other.

Correlation

∞
∫

−∞

g(t + τ )f (t)dt = RGf (τ ) (39)

with RGf (τ ) = RfG(−τ ), and the Fourier transform is,

R̃Gf (m) = g̃(m)f̃ (m) (40)

where f̃ is the complex conjugate of f̃ .

DCR-FFT Algorithm
The DCR-FFT algorithm is an analogy to the DC-FFT
algorithm, to be proven below, and it can be combined with
the DC-FFT algorithm for a hybrid convolution-correlation
operation to solve the inhomogeneity problem illustrated
in Figure 1D. Details are given by Liu and Wang (2005),
and applications can be found in the works by Liu et al.
(2012), Wang et al. (2013a,b), Zhou et al. (2016), and Zhang
M. Q. et al. (2018). A set of open-source codes can be
downloaded from http://othello.mech.northwestern.edu/qwang/
OpenSourceCodeEigenstrainFiledHalfSpace/2012Web.htm.

Let’s use deformation as an example. Equation (41) (Liu et al.,
2012) shows the link between eigenstrain [e] in domain � and
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surface deformation ui in the i = x, y, or z direction, via a group
of Green’s functions, Us

i .

ui =
−1

2π

∫

�

Us
i[e]dx

′ (41)

Similar to the expression of convolution related

to potential function RI =

√

(x − ξ)2 +
(

y− η
)2

for the solution to contact elasticity, Equation (41)

involves RI =

√

(x− ξ)2 +
(

y− η
)2

+ (z − ζ )2 and

R =

√

(x− ξ)2 +
(

y− η
)2

+ (z + ζ )2. Here, R has a plus

sign inside the third term, which means a 1D cross correlation
with [e] on z for the solution.

The discrete form of the 1D cross correlation of influence
coefficient D and [e] in Equation (41) is given below

uz =

Ne
∑

i=1

Di+kei (42)

where Ne is the total number of nodes, and IC components Dk+i

involves R.
More generally, for two series of complex numbers, f and g,

Rhg =

∫

∞

−∞

f (t)g(t + τ )dt (43)

where f (t) is the complex conjugate of f (t). Equation (42) is
equivalent to the following correlation,

Rhg =

∫

∞

−∞

f (t − τ )g(t)dt and R̃hg = f̃ (t − τ )g̃(t) (44)

Or Rhg [n] ≡

∞
∑

m=−∞

f[m−n]g[m] and R̂hg = f̂ (t − τ )ĝ(t) (44’)

This means that the convolution theorems should also be true to
Equation (44) or (44’), no matter the series are real or complex.
The numerical calculation of correlation can be done either by
direct use of the correlation theorem (Equations 39–40) or the
convolution given in Equation (44) (or Equation 44’) with proper
treatment of the two series, and the DC-FFT algorithm directly
works for the latter. Caution should be given in conducting the
Fourier transform.

By analogy, the DC-CC-FFT and CC-FT algorithms can all be
extended to include the correlation operation for the analyses of
the field due to eigenstrains.

Figure 7 shows a case of a cylinder in contact with the rough
surface of an inhomogeneous half-space material (Sun et al.,
2020), solved with the DCS-FFT algorithm. The representative
piece of a ground surface is given in Figure 7A) in a mesh
of 128 × 128, and Rq= 1.18µm. A virtual ground rough
surface subjected to the cylindrical contact is formed through
periodically extending this patch along the y direction. The target

domain has the dimensions of lx× ly× lz , and the length are all set

to be lx = ly =
8a
3 , lz =

4a
3 . All the cuboidal inhomogeneities are

identical, with ax = ay = az = 0.3a, and they are distributed in
the subsurface in the x = 0 plane in the depth of zd = 0.45a.
Figure 7B shows the 3D pressure distribution mapped on the
contact surface, where sporadic pressure peaks can be found. The
contours of the pressure and the von Mises stress distributions in
the XOZ and YOZYOZ cross sections are given in Figures 7C,D.
The 3D features of the pressure and stress are captured while their
length-direction periodicities are also retained.

IC Conversion From FRFs
Figure 1E shows the contact involving a multi-layered material.
The core analytical solutions to this type of problems are
obtained, ignoring the body forces, by solving the governing
differential equations in the frequency domain through the
Fourier transform. The Fourier-domain solutions become the
frequency response functions (FRFs) if surface tractions are unit
valued. The conversion through Equations (13)–(18) leads to
influence coefficients for the DC-FFT algorithm (Liu and Wang,
2002; Yu et al., 2014, 2016). Note that here, the direct inverse
Fourier transform of the frequency-domain solution may result
in inaccuracy when solving a non-periodic non-infinite contact
problem (Liu et al., 2000).

The IC conversion method can be used to other contact
cases as well. Our recent studies on the contacts involving
magnetoelectroelastic or viscoelastic materials are all through the
path of FRFs-ICs conversion and then the DC-FFT algorithm.
Two such examples are given in Figures 8, 9.

Figure 8A shows the contact of two magnetoelectroelastic
materials subjected to interfacial contact pressure, surface electric
and magnetic charges. For this type of multifield material
systems, the Fourier-domain solutions can be obtained by
solving the coupled mechanical governing equations and the
Maxwell equations in the frequency domain through the Fourier
transform. The Fourier-domain solutions become the FRFs if the
mechanical tractions, surface electric and magnetic charges are
unit valued. The inverse Fourier transform through Equations
(13) and (18) leads to influence coefficients to construct the DC-
FFT algorithm. Figure 8B shows a case of an ellipsoid in contact
with the surface of a magnetoelectroelastic material. The major
and minor radii of the ellipsoid are Rx = 300mm and Ry =

200mm, and the normal force is Pz = 500N. More details can
be found in the work by Zhang X. et al. (2017, 2018, 2019).

Viscoelastic contact problems have drawn a great deal of
attention (Goryacheva and Sadeghi, 1995; Chen et al., 2011;
Putignano et al., 2015; Stepanov and Torskaya, 2018). It is also
convenient to solve certain viscoelastic contact problems in the
frequency domain. Here, two types of frequencies are involved,
one with respect to time and the other to space. Figure 9A shows
the sliding contact of a layer- substrate system, which actually
represents four cases for each contacting bodies, (1) a viscoelastic
layer on an elastic substrate, as shown, (2) a viscoelastic half
space with the layer thickness = ∞, (3) an elastic half space
with the layer thickness = 0, and 4) an elastic layer on a
viscoelastic substrate by exchanging material properties under
certain conditions, all solvable with the same model (Zhang et al.,
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FIGURE 7 | Contact of a cylinder with inhomogeneous half-space and a rough surface (A) and inhomogeneities, 3D pressure distribution on the contact surface (B),

pressure and von Mises stress distributions in the XOZ plane (C), and pressure and von Mises stress distribution in the YOZ plane (D). The square inhomogeneities

are shown in (D). Note that (C) cuts through the center of the domain, where no inhomogeneity appears.

FIGURE 8 | Contact of magnetoelectroelastic materials subjected to interfacial contact pressure, pz, friction, px , surface electric and magnetic charges, qb and gb,

(A); solutions of pressure and electrical potential on the surface (B).
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FIGURE 9 | Sliding contact of a viscoelastic layer-elastic substrate system (A); and the pressure variations in the case of a sphere sliding on the surface of such a

material set at speed V = 50 mm/s (B). This model includes four cases, (1) a viscoelastic layer on an elastic substrate, as shown, (2) a viscoelastic half space, layer

thickness = ∞, (3) an elastic half space, layer thickness = 0, and (4) an elastic layer on a viscoelastic substrate by exchanging material properties under

certain conditions.

2020a,b). The FRFs can be readily obtained from the elastic FRFs
of elastic layered materials, by replacing the elastic modulus in
elastic FRFs with the viscoelastic complex modulus. The inverse
Fourier transform of the viscoelastic FRFs through Equations
(13) and (18) leads to the viscoelastic influence coefficients
to construct the DC-FFT algorithm in the viscoelastic contact
framework. Figure 9B shows a case of a sphere sliding on the
surface of a viscoelastic layer-elastic substrate system at a contact
speed V = 50 mm/s. The layer thickness is 1mm, the sphere
radius is 10mm, and the normal load is 1.48N. Note that in
Figure 9A, the interface between the layer and the substrate can
be imperfect, and the spatial domain ICs have been solved by
Wang et al. (2017a,b) and Zhang andWang (2020). More studies
related to viscoelastic contact solutions of layered materials with
perfect or imperfect interfaces subjected to steady-state and
transient conditions can be found in the work by Zhang et al.
(2020a,b).

FFT With Non-uniform Mesh
In engineering systems, such as gears, journal bearings, and
manufacturing tools, the contact regions can be large but the
computation scale in a numerical simulation is limited. It is
always a challenge to balance efficiency and accuracy. Take the

line contact in a gear or a roller bearing as an example; the
middle portion of the contact zone can be analyzed accurately
with a coarse mesh, but the edges have to be modeled with a
fine mesh in order to describe the drastic pressure variations
there. The FEM deals with this type of issues with non-
uniform meshes; however, the FFT-based methods built so far,

although efficient in a single mesh, are largely confined by
the requirement of uniform grids. Sun (2020) has developed
a method to extend the FFT-based algorithms to meshes of
different densities, in which a finer mesh system is used in
specific regions involving high pressure peaks while a coarser
one is set in other regions under relatively smooth pressures.
Figure 10A illustrates this non-uniform-mesh idea for a roller
contact problem, where one side of the regions under the edge
effects is meshed denser, while the other side is meshed with
a coarse grid. In this particular example, the density of the
fine grid is three times that of the coarse grid. The solution
on the coarse-grid domain may be run for the entire region,
depending on the size of the problem, but that on the fine-
mesh domain is pursued just in a region somewhat larger than
what it is designated. Extra data are discarded, and the joint
deformations from the two meshes in both designated regions
are used to evaluate the gap. This process involves overlapped
calculations; however, for problems like the roller contact shown
here, the larger the physical domain is, the more the saving of the
computation time.

Figure 10B shows the comparison of the pressure calculated
with a uniform mesh system and non-uniform meshes. The
density of the uniform mesh is the same as that of the fine
mesh of the non-uniform meshes. The pressure obtained on
the effective zone of the fine mesh from the non-uniform mesh
solution well matches that on the uniform fine mesh system.
When the contact region is large and the pressure distribution
is strongly non-uniform, the FFT method with non-uniform
meshes offers a more efficient and flexible way to detail the
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FIGURE 10 | Non-uniform mesh system used in the contact of a bearing roller with an end profile modification (A), and a calculation result (B).

FIGURE 11 | Error comparisons. (A) DC-FFT and CC-FT algorithms in solving a finite-domain problem (Liu et al., 2000), Reprinted by permission from Elsevier, Wear,

γ means the discretization density in the frequency domain and χ the ratio for spatial calculation domain extension, (B) CC-FT and DCD-FFT algorithms in solving the

contact of a 3D sinusoidal wavy surface and a flat (Liu S. et al., 2007), Reprinted by permission from Elsevier, Tribology International; this is an infinite-domain, or

periodic, problem. p means the average pressure.

regions of special concerns, such as edges, interfaces, dents,
and defects.

DISCUSSION AND CONCLUSIONS

Accuracy Comparisons
Figure 11A is for the results of a finite-domain problem with
pressure acting on a region of 2a in length (Liu et al., 2000);
it compares the errors from the DC-FFT algorithm structured
in different routes with respect to the solution from the direct
summation (DS) method. The continuous convolution and
Fourier transform (CC-FT) algorithm is used to solve the same
finite-domain problem, and its result is also compared. In this
figure, the solutionmethods are named routes, which are Route 2:

DC-FFT with ICs from Green’s function, Route 3: DC-FFT with
ICs from conversion of frequency response functions, Route 4:
CC-FT with frequency response functions, Route 5: the classic
DS method with ICs from Green’s function. Route 1 is not
included here, which uses the FEM to calculate the ICs. The
DC-FFT solution method (Route 2) appears to be accurate; its
results overlap with those by the DS method. This means that
the solution is not affected by the calculation domain size. Route
3, however, is different, depending on the discretization density
in the frequency domain. The discrete influence coefficient from
the frequency response function is the key for error control,
the frequency domain sampling intervals, 1m and 1n, should
satisfy Nm≥2Nx and Nn≥2Ny, and Equations (16), or (17), or
(18) should be implemented, followed by a proper wrap-around
order (Liu and Wang, 2002).
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FIGURE 12 | Comparison of the algorithms of DCS-FFT, DCD-FFT and

DC-CC-FFT with IC-sum conversion. The physical domains are marked as

x × y × z, and M = 8 means the number of segments used in the IC

preparation.

Figure 11B shows the behavior of the CC-FT algorithm in
solving the periodic problem of a 3D sinusoidal wavy surface in
contact with a flat; it compares the numerical solution with the
corresponding analytical results results (Liu S. et al., 2007). In
addition, the DCD-FFT algorithm is also evaluated. It is evident
that the CC-FT algorithm yields the solutions of high accuracy
that is within machine precision. The CC-FT algorithm with
either the zero-order or the first-order shape function yields
nearly the same high accuracy. This indicates that a higher
order shape function may be unnecessary if the algorithm is
formulated properly.

The CC-FT algorithm is superb in analyzing the contact of
nominally flat but actually rough surfaces.

Figure 12 compares the 3D cylindrical-contact algorithms of
DCS-FFT, DCD-FFT, and DC-CC-FFT with IC-sum-conversion
in calculating the maximum shear stress τ1, given below:

τ1 =
1

2

√

(σ11 − σ33)
2
+ 4σ 2

13 (45)

The identical target domain (2a× 2a× 2a) is used in all the three
FFT-based methods. A large gap is shown between the result
curves for the analytical and the DCD-FFT results, caused by the
IC truncation error. The utilization of the DC-CC-FFT algorithm
(IC-summation-conversion) greatly reduces the truncation error;
however, some difference is still visible. The advantage of this
DC-CC-FFT algorithm with the summarized ICs is the reduced
computational burden because no duplicated-padding and wrap-
around order are needed in the length direction. The DCS-
FFT algorithm shows its accuracy and efficiency in dealing with
this type of contact problems without knowing analytical FRFs.
Theoretically the precise DC-CC-FT algorithm is more accurate
(Liu et al., 2009), which is similar to the CC-FT shown in
Figure 11B.

Range of Applications of the FFT
Approaches
The FFT-based approaches are efficient. Many publications
have shown the applications of these FFT algorithms on the
contact analyses of elastic fields, plastic transition and yield, flash
temperature, thermal stress, partial slip, and contact electrical
and magnetic fields, dealing with science and mechanics issues
for various systems from traditional mechanical components
to emerging sensors and batteries (Zhang X. et al., 2019;
Zhang et al., 2020c). The FFT algorithms discussed above are
advantageous in solving the problems that are mathematically
described in convolutions, correlations, combined convolutions
and correlations, and in frequency response functions as well.
The last one makes the FFT-based approaches more widely
applicable and powerful because many governing differential
equations can be more easily solved in the frequency domain
through the Fourier transform, such as those for functionally
graded materials (Ke and Wang, 2006), thermoelastically graded
materials (Choi and Paulino, 2008), thermally graded materials
(Zhang H. B. et al., 2018), materials with coupled stresses (Wang
et al., 2020), and magnetoelectroelastic materials (Zhou and Lee,
2013). In addition, because the surface deformation analysis is
an intermittent process of the elastohydrodynamic lubrication
(EHL) calculation and related modeling, the FFT-based solutions
are also building blocks in the models of mixed EHL in general
(Liu et al., 2006, 2009), 3D line-contact EHL (Ren et al., 2009),
finite-roller EHL (Zhang H. B. et al., 2017 with IC-overlapping
DC-FFT, Liu et al., 2020 with DCD-FFT), coating EHL (Liu Y. et
al., 2007 for single coatings, Wang et al. (2015) for multilayered
coatings), plasto-EHL (Ren et al., 2010), EHL of inhomogeneous
materials (Wang et al., 2014), wear in EHL (Zhu et al., 2007), EHL
of transversely isotropic materials (Wang and Zhang, 2019), EHL
of artificial joints (Wang and Jin, 2004), and EHL of 2D bearings
(Liu and Chen, 2012). Moreover, adhesive contact problems can
be solved with the FFT-based methods as well (Pohrt and Popov,
2015; Popov et al., 2017; Rey et al., 2017).

It is important to note that different contact types

require different convolution theorems and thus different
FFT algorithms. As summarized by Wang and Zhu (2019),

contact with nominally flat surfaces should be tackled with
the continuous convolution and Fourier transform (CC-FT)

algorithm. Point-contact problems, either circular or elliptical,
are non-periodic, and they should be formulated with the

cyclic convolution and solved with the discrete convolution

and FFT (DC-FFT) method utilizing zero padding and wrap-
around order. Three-dimensional cylindrical (line) contact

problems involve infinite domain extension in one direction
but a finite domain width in the other, for which the discrete-

continuous convolutions and FFT (DC-CC-FFT) and the discrete

convolution with IC summation and FFT (DCS-FFT) methods
should be used. The DCS-FFT algorithm is recommended if ICs

are already known. Both the CC-FT and DCS-FFT algorithms
are capable of solving periodic problems, and if the latter is

used, the IC summation in the other direction is also needed,
which makes it the DCSS-FFT algorithm mentioned in section
DCS-FFT Algorithm. Figure 13 summarizes the FFT algorithm
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FIGURE 13 | FFT algorithm tree and the application field (light blue) of each. The darker arrow lines indicate the paths of method development while the lighter arrow

lines means IC-FRF conversions and information supplies.

tree and the application field of each. The roots of this tree
are the essential analytical solutions to mechanics and physical
problems in the forms of Green’s functions, ICs, or FRFs.

Recently, the fast Fourier transform method has been
incorporated with the boundary-element method for solving
problems with an arbitrary columnar geometry, not confined
by the half-space assumption (Benad, 2018, 2019). This further
extends the breadth of FFT applications. For the plane-strain
problems associated with a columnar geometry formed by
extruding a 2D shape in the length direction, e.g., the one
solved by Benad (2018, 2019), the FFT solutions have a lower
computational complexity, O(n3 log n1.5), than the inversion of
a standard BEM matrix, O(n4), where n x n is the total number
of surface nodes. These problems are, mathematically, in the
same nature as that in Figure 2F, automatically meeting the
DC-FFT requirement with no need of the domain extension, as
indicated in the first row of Table 1 and Figure 13. Likewise, the
FFT method should also be directly applicable to plane-stress
problems of a disk-like geometry of any shape.

Limitations and Future Developments
The FFT-based methods mentioned here well fit the solutions of
many engineering problems, not limited to mechanical contacts,
as long as their model formulations contain convolution and/or
correlation, or are solvable in the frequency domain, subjected
to the assumptions of small deformation (linear or piecewise
linear). So far, for counterformal contacts, the characteristic body

dimension, such as radius, should be much larger than that of
the contact area; for conformal contacts, bodies involved should
have axisymmetry or columnar geometries. Generally, these FFT-
based solution approaches are confined by uniform meshes.
Although section FFT With Non-uniform Mesh has briefly
discussed the use of non-uniform meshes, more work is needed
to make the non-uniform-mesh FFT algorithms more flexible
and more efficient for contact analyses. Large deformation and
the effect of body forces are also among the challenges to further
developments of FFT-based methods for contact mechanics.
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APPENDIX

Contact Conditions
The contact of two bodies, (1) and (2), should satisfy the
complementary “gap-G” and “flux-F” conditions, shown below,
with 1, 2, 3 for x, y, z.

G3(x1, x2) > 0; F∗33 = 0 if (x1, x2) /∈ Ac

G3(x1, x2) = 0; F∗33 > 0 if (x1, x2) ∈ Ac (A1)

where F∗33 = −p is the contact pressure, and

G3 = B̄(1)(x1, x2)+ u
(1)
3 (x1, x2)+ B̄(2)(x1, x2)+ u

(2)
3 (x1, x2)− ḡ

with g(x1, x2) =

(

B̄(1)(x1, x2)+ u
(1)
3 (x1, x2)

)

+

(

B̄(2)(x1, x2)+ u
(2)
3 (x1, x2)

)

, ḡ =
1
Nc

[

∑

(i,j)∈Ac

g(x1, x2)

]

, where u3

is uz given in Equation (3) or (10), B̄(i)is for the geometry of body
i, and Nc is the total nodes in the contact area Ac.

The contact area adjustment can be made through
the following.

If G3(x1, x2) < 0, make G3(x1, x2) = 0 and

add point (x1, x2) to Ac (A2)

The overall the load balance is

∫

Ac

F∗33dA = P̄M (A3)

where P̄M is the normal load. The contact area and pressure
distributions can be solved by using the conjugate gradient
method (CGM) (Polonsky and Keer, 1999).

In addition, the contact should also satisfy the interfacial
conditions for fluxes.

F∗3J = 0 if (x1, x2) /∈ Ac

F
∗(1)
3J (x1, x2) = −F

∗(2)
3J (x1, x2) if (x1, x2) ∈ Ac J = 1, 2, 3

(A4)

where F
∗(i)
3J (x1, x2) =

{

t̄M1, t̄M2,−p
}

, and t̄Mi means the surface
tangential tractions in the x1 and x2 directions. These conditions
are also applicable to other multifield contact problems (Wang
and Zhu, 2019).
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Calculation of the BEM Integrals on a
Variable Grid With the FFT
Justus Benad*

Department of System Dynamics and Friction Physics, Technische Universität Berlin, Berlin, Germany

In this study, an exemplary application of the pFFT is shown for the 2D Navier equation

for a linear elastic continuum. Using this example, it is illustrated how the pFFT might

be extended in order to decrease the computational complexity of the method. In

the standard pFFT approach, all panel influences which are not calculated directly are

obtained using a single regular grid. In the present study, a variable gird is suggested to

obtain these influences. It is outlined how it is possible to apply the FFT on each level

of this variable grid by rearranging segments of the shape boundary. A brief example is

presented which indicates feasibility of the concept.

Keywords: boundary element method, aerodynamic panel method, pFFT, FFT, variable grid

INTRODUCTION

The Boundary Element Method (BEM) is used in countless engineering disciplines. Among
them is the field of Contact Mechanics where the approach has been applied with great success
in recent years (Putignano et al., 2012; Müser et al., 2017; Popov et al., 2017; Li et al., 2018;
Paggi and Hills, 2020). Another, yet much older example for a very successful application of the
Boundary Element Method is the Aerodynamic Panel Method. Conceived by Hess and Smith
at Douglas Aircraft in the early 1960s (for details, see Smith, 1990), the Aerodynamic Panel
Method was among the first numerical implementations of the Boundary Element Method when
electronic computers became available (for details, see Cheng and Cheng, 2005). Today, more
than 60 years later, the method is still an essential tool in the aircraft industry for initial design
studies (Anderson, 2017; Raymer, 2018). An example is the investigation of entirely new airplane
designs, such as the Flying V (Benad, 2015; Faggiano et al., 2017; Palermo and Vos, 2020;
Rubio Pascual and Vos, 2020). In the very first conceptual design stage of this project, panel
methods were used to assess the aircrafts aerodynamics. While they describe only potential flow
(for details, see Katz and Plotkin, 2001), the two main advantages of such methods are their
ease of use and their computational speed. From a numerical perspective, only the boundary
of the domain needs to be discretized which leads to simple meshing. When no measures
are taken to accelerate the calculation, the computational complexity of a problem with N
surface discretization points is O

(

N3
)

when direct solvers are used, and O
(

N2
)

using iterative
solvers. While an O

(

N2
)

complexity is by current standards considered as expensive, it is still
practical for initial design studies with a low number of surface panels. However, if a high
number of discretization elements is required, or large parameter studies shall be conducted,
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one should consider accelerating the panel method. Several
approaches exist for the reduction of the computational
complexity of the Boundary Element Method (Phillips and
White, 1997; Masters and Ye, 2004; Benedetti et al., 2008;
Lim et al., 2008). An approach which has recently gained
a lot of attention and has been very successful in the area
of Contact Mechanics is to accelerate the calculation of the
boundary integrals using the Fast Fourier Transformation (FFT)
(Putignano et al., 2012; Pohrt and Li, 2014; Popov, 2017). It
is natural perhaps, that this particular success should occur in
the area of Contact Mechanics as one often considers a half-
space surface in this field of research. A half-space surface
aligns perfectly with a two-dimensional FFT-grid. Therefore,
the calculation of the boundary integrals over the half-space
can easily be performed with the FFT which reduces the
computational complexity toO

(

N logN0.5
)

. For arbitrary shapes
however, this process is not as simple because the surface of an
arbitrary shape does not align with a plane FFT-grid. In 1997,
Philips and White developed a method for utilizing the Fast
Fourier Transformation even for the calculation of boundary
integrals on arbitrary shapes (Phillips, 1997). As it is illustrated
in Benad (2018), the boundary integrals can be regarded as
convolutions over a space which is one dimension higher than
that of the boundary of an arbitrary shape. However, there are
two main challenges when this realization is put into practice:
First, even a three-dimensional regular FFT-grid which fully
encloses the surface of an arbitrary shape never cuts through
this surface precisely at its discretization points. Instead, the
nodes of the regular grid lie either outside of the arbitrary
shape, or inside the shape, but in general never directly on the
surface, as it is the case for the half-space in the area of Contact
Mechanics. Second, the computational complexity rises, when
compared to the half-space. While the half-space fully aligns with
a two-dimensional FFT-grid, an arbitrary shape requires a fully
enclosing FFT-grid, that is, a three-dimensional convolution.
This results in a complexity of O

(

N1.5 logN0.75
)

, which is lower
than the O

(

N2
)

complexity of the standard boundary element
procedure, but higher than the desiredO

(

N logN0.5
)

complexity.
Philips and White addressed both these issues in 1997 with their
precorrected FFT method, which has often been referred to as
pFFT. Therein, nearby panel interactions are calculated directly
as in the standard boundary element procedure, and the far field

FIGURE 1 | Left: A rectangular body with uniformly distributed loads. Right: A rectangular beam with an end load.

is computed using the three-dimensional FFT-grid which fully
encloses the surface. This FFT-grid may be much coarser than
the surface mesh since higher order interpolation techniques are
used to project the boundary values of the surface mesh points
onto the nodes of the FFT-grid. This approach further reduces
the O

(

N1.5 logN0.75
)

complexity. At best, it is an O
(

N logN
)

algorithm (Phillips and White, 1997).
It is remarkable how different the fields of application

are, in which the pFFT approach can be used. When it was
introduced by Philips and White, it was applied in the field
of electrostatic analysis. But of course, the method can also be
regarded as amore general FFT-based BEM in the area of Contact
Mechanics which enables not only the calculation displacements
and stresses of a half-space with the FFT, but of any arbitrary
shape: (Masters and Ye, 2004) used the pFFT approach for
the calculation of displacements and stresses in linear elastic
solids of arbitrary shape with the Navier equation achieving
O
(

N logN
)

complexity. This makes the pFFT approach very
appealing in the area of Contact Mechanics since the Boundary
Element Method has proved to be a very robust tool in this
area (Paggi and Hills, 2020), but is in its efficient practical
application still somewhat restricted to the half-space. The
pFFT may provide an opportunity to accelerate Boundary
Element calculations of contact problems with a more difficult
geometry. An exemplary application may be turbine blade fir-
tree connections, a contact problem where the half-space theory
is pushed to its limits (Benad, 2019). Naturally, the pFFT
approach is not restricted to geometries where the domain of
interest is the inner region which is enclosed by the boundary.
Instead, it is also possible to consider the outer region. In 2006,
Willis, Peraire and White utilized the pFFT to accelerate the
Aerodynamic Panel Method achieving O

(

N logN
)

complexity
(Willis et al., 2006). The study investigated complicated shapes,
and even unsteady applications with varying geometries such as
flapping wings.

It seems that many fields of research may benefit from fast
Boundary Element solvers. In the present study, an exemplary
application of the pFFT will be shown for the 2DNavier equation.
Using this example, it is illustrated how the pFFT might be
extended to allow the application of the FFT with multiple
discretization levels. This may lead to a further reduction in
computational complexity to obtain the boundary integrals.
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FIGURE 2 | Raw results for the displacements of an arbitrary shape. The shape is cut out of a rectangular body (see left graph in Figure 1) with uniformly distributed

loads σA = −0.8, σB = 0.1, and σC = 0.7. For the elastic parameters it was chosen ν = 0.3 and µ = 1. The stress distribution on the boundary of the shape is shown

with the red arrows in the left image. The blue circles show the weights which result from the Lagrange polynomials used for the bilinear interpolations necessary for

the convolution (for details see the main text of this section). The colored images on the right show the raw results for the displacements u and v obtained with the

convolution. The red line represents the analytical solution for the displacements on the boundary of the shape. Note that the resolution of both the boundary and the

FFT grid is chosen lower in the image on the left than in the results on the right merely for the purpose of a better visualization.

FIGURE 3 | Raw results for the displacements of an arbitrary shape. The results are displayed as in Figure 2, here however the shape is cut out of a rectangular

beam (see right graph in Figure 1) with an end load F = 0.2 and dimensions a = 1 and b = 0.5. For the elastic parameters it was chosen ν = 0.3 and µ = 1.
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FIGURE 4 | Results for the boundary displacements of three different cutouts from a rectangular body (see left graph in Figure 1) with a uniformly distributed load

σA = 1, σB = 0, and σC = 0. For the elastic parameters it was chosen ν = 0.3 and µ = 1. The given stress distribution on the boundary is displayed with red arrows

(left images), and the numerical results for the displacements on the boundary are shown in the diagrams on the right with black dots plotted over the analytical

solution. l denotes the number of the equally spaced boundary nodes.
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GOVERNING EQUATION AND ANALYTICAL
SAMPLE SOLUTIONS

Navier’s equation is:

1

1− 2ν
uj,ji + ui,jj +

1

µ
bi = 0 (1)

where i, j ∈ {1, 2, 3}, ui are the displacements, ν is the Poisson’s
ratio, µ is the shear modulus, and bi is the force density field
(Hahn, 1985). Note that we choose to denote partial derivatives
with ∂

∂xi
(. . .) = (. . .),i. For simplicity, we will in this work

only consider the case of plane displacements where the Navier
equation simply remains as in (1), but with i, j ∈ {1, 2} (Irgens,
2008). This case can be transformed to the case of plane stress
by replacing ν with ν

(1+ν)
and leaving the value for µ unchanged

(Irgens, 2008), see also (Galin, 2008) and (Kelly, 2013). Before we
proceed, let us introduce analytical solutions for (1) which can
later be used to validate the numerical results.

Uniformly Distributed Loads on
Rectangular Body
A solution of (1) is

u =
1− ν

2µ
σAx−

ν

2µ
σBx+

1

2µ
σCy ,

v =
1− ν

2µ
σBy−

ν

2µ
σAy+

1

2µ
σCx . (2)

(Note that we choose to denote ui=1 = u, ui=2 = v, xi=1 = x
and xi=2 = y.) For plane displacements, the corresponding stress
field is simply:

σxx = σA , σyy = σB , σxy = σC , (3)

which belongs, for example, to a rectangular body with
uniformly distributed loads on the sides, see the left image
in Figure 1. This simple problem, as well as arbitrarily
shaped cut-outs (see the blue dashed line), can be used for
validation purposes.

Bending of a Rectangular Beam by
an End Load
We now turn to another exact solution of (1), which is often used
to approximate the solution for a system as shown in the right
image in Figure 1. A stress field for this problem with boundary
conditions imposed for the stresses in the weak form reads (see
Barber, 2004):

σxx =
3Fxy

2b3
, σyy = 0 , σxy =

3F
(

b2 − y2
)

4b3
. (4)

With the material law of a linearly elastic isotropic solid (Gross
et al., 2014), one obtains:

εxx =
1− ν

2µ

3Fxy

2b3
, εyy = −

ν

2µ

3Fxy

2b3
, εxy =

1

2µ

3F
(

b2 − y2
)

4b3
(5)

for the strains which belong to (4) for the case of plane
displacements. Integration yields:

u =
Fy

8µb

(

6+ (1− ν)
3x2

b2
+ (ν − 2)

y2

b2

)

− C1y+ C3

v =
Fx

8µb

(

− (1− ν)
x2

b2
− ν

3y2

b2

)

+ C1x+ C2 . (6)

Setting u
(

x = a, y = 0
)

= 0 yields C3 = 0. With
u
(

x = a, y = b
)

= 0 one further obtains C1 =

F
8µb

(

4+ (1− ν) 3a2

b2
+ ν

)

and v
(

x = a, y = 0
)

= 0 yields

C2 = −
Fa
8µb

(

4+ (1− ν) 2a2

b2
+ ν

)

.

The result (6) for the displacements is an exact solution

of (1) and may thus be used together with the corresponding

stress field (4) as an analytical reference for comparison with the

numerical results.
Note that at the boundary x = a the strains εyy in

(5) are not zero as we would expect them to be for the
beam which is displayed in the right image of Figure 1.
Imposing the boundary conditions merely for the stresses in
the weak form (see Barber, 2004) only gives an approximate
solution for this set-up. The solution is fully accurate for
a beam which is supported not by a solid wall, but a
parabolic traction.

FIGURE 5 | An arbitrary shape fully enclosed with a grid which is refined in

close proximity to the boundary of the shape. The blue dots represent the

weights of the Lagrange polynomials used for the bilinear interpolation of the

boundary values with the coarse grid.
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BOUNDARY INTEGRAL FORMULATION

For the governing equation (1), Somigliana’s identity (Gaul and
Fiedler, 2013) relates the displacements uj

(

x
)

and stress vector
tj
(

x
)

= σjk
(

x
)

nk
(

x
)

on the boundary S (outward normal vector

nk) to the displacement ui
(

x0
)

at a particular inner point x0. For
bi = 0, it is:

ui
(

x0
)

=

∫

S
u
∗

ij

(

x, x0
)

tj
(

x
)

dS−

∫

S
t
∗

ij

(

x, x0
)

uj
(

x
)

dS (7)

For the case of plane displacements which we consider in this
study, u

∗

ij and t
∗

ij read:

u
∗

ij =
− (3− 4ν) ln (r) δij + (xi − x0i)

(

xj − x0j
)

/r2

8πµ (1− ν)
(8)

and

t
∗

ij = −
1

4π (1− ν) r

((

(1− 2ν) δij + 2
(xi − x0i)

(

xj − x0j
)

r2

)

xk − x0k

r
nk

)

+

(

(1− 2ν)

(

xj − x0j

r
ni −

xi − x0i

r
nj

))

(9)

where r =

√

(x− x0)
2
+
(

y− y0
)2
. Note that we choose to

denote xi=1 as x and xi=2 as y. Relations (8) and (9) can be
obtained from the fundamental solution of (1). For details see
(Benad, 2019).

CALCULATION OF THE BOUNDARY
INTEGRALS WITH THE FFT ON A
SINGLE GRID

We now perform exemplary calculations of the boundary
integrals (7) with the FFT on a single regular grid. Therein, we
follow the procedure described in Phillips and White (1997).
Additional information on the numerical implementation can be
found in Benad (2018). The numerical results are then compared
with the analytical sample solutions which were introduced in
Section Governing Equation and Analytical Sample solutions.

Let us first examine the raw data which is obtained with the
method right after the application of the convolutions. Figures 2,
3 show this data for an arbitrary cut out from the rectangular
body with uniformly distributed loads, and for an arbitrary cut
out from the rectangular beam with an end load. The analytical
solutions for these problems given with (2–4, 6) set the boundary
values on the chosen shape. These are then distributed to the

FIGURE 6 | Segments of the arbitrary shape displayed in Figure 5 aligned one after the other. Each segment (fine bright grid) is chosen with some additional space

around it (fine dark grid) so as to assure that the segments do not influence each other upon convolution with the kernels.

FIGURE 7 | Exemplary raw results for the displacement component u obtained on a grid with two discretization levels for the same problem as it is displayed in

Figure 2 with a single regular grid. The results on the fine grid level close to the boundary (the analytical solution is displayed with the red line) appear similar to the

results which were obtained with the significantly more expensive technique used in Figure 2. The white borders between the two discretization levels are displayed

for the purpose of a better visualization of the two discretization levels.
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FFT grid via bilinear interpolation. The corresponding weights
of the Lagrange polynomials are shown with the blue dots in
Figures 2, 3. The right side of (7) can then be evaluated with
a two dimensional convolution which is performed with the
FFT. This operation then returns the left side of (7), that is the
values ui

(

x0
)

at all points of the regular two-dimensional grid.
This raw data is plotted in the colored diagrams on the right in
Figures 2, 3. Therein, the analytical solution for u and v directly
on the boundary is shown with the red line. While the raw
results are highly accurate at a distance to the boundary, they
begin to oscillate in close proximity to the boundary. For this
reason, nearby panel interactions are evaluated directly in the
pFFT technique.

So far we have used the analytical values of both the tractions
and displacements on the boundary in order to obtain the FFT
raw results. Let us now consider a problem where we only set
the tractions on the boundary and seek a numerical solution for
the displacements on the boundary. Figure 4 shows the results of
such a procedure for different cutouts from the uniformly loaded
rectangular body. A conjugate gradient method with 10 iterations
is used to solve for the displacements on the boundary. Therein,
the projection of the FFT results onto the actual boundary is
performed via bilinear interpolation. Furthermore, nearby panel
interactions were calculated directly in a radius of 7 panels
in order to eliminate oscillations. It can be observed that the
method converges well to the analytical results for all three
exemplary shapes.

VARIABLE FFT GRID

As we have observed in the previous section, the raw FFT data
is highly accurate at a distance to the boundary but begins to
oscillate in close proximity to the boundary. Consequently, the
small number of nearby panel interactions is calculated directly
in the pFFT technique and the larger number of all remaining
panel interactions is computed with the FFT. Let us stress the
point of having these two levels of accuracy. Then the question
arises, why one does not use a hierarchy with even more levels of
accuracy. Examining Figures 2–4, it seems obvious that the large
number of unused discretization points of the FFT grid where
no interpolation weights are placed are a waste of computational
power. There are no numerical values at these points except
zeros, and we have no interest in the results at these points
after the convolution was applied. Philips and White addressed
this by using an FFT grid which is coarser than the actual
discretization of the boundary. This is enabled by using higher
order interpolation techniques. A different or even additional
approach might be a refinement of the grid at the boundary,
see Figure 5. The main question which arises with a variable
grid is how to apply the FFT which requires a regular grid.
In the following, we illustrate that an O

(

N logN
)

algorithm
seems technically feasible with this approach. Consider cutting
the arbitrary shape shown in Figure 5 into segments and aligning
them one after the other as shown in Figure 6. Repositioning
the segments in such a way creates an almost “one-dimensional”
arrangement when compared to the original two-dimensional

shape. It is this reduction in dimension which we seek in order to
lower the computational complexity. This new line of segments
is longer than the circumference of the original shape because
for each segment, we include some additional space around it
(see Figure 6 and compare with Figure 5). This way, it is ensured
that while we convolute the kernels over the line of segments,
the influence of the segments among each other is excluded.
Exemplary raw results from this technique are shown in Figure 7.
First, the convolutions are obtained on the rough grid level. From
these results, we then subtract the influence obtained with the
convolutions on the line of segments using also the rough grid
level. Then, we add the influence of the convolutions over the
line of segments using the fine grid level to our results using
bilinear interpolation. Qualitatively, it can be observed that the
results on the fine grid close to the boundary appear similar to the
results which were obtained with the significantlymore expensive
technique used in Figure 2. This brief example can be regarded as
a first sketch to indicate feasibility of the concept.

CONCLUSION

In this work, the pFFT was applied to solve the 2D Navier
equation on arbitrary two-dimensional shapes. Furthermore, it
was illustrated how the pFFT technique might be extended in
order to decrease its computational complexity. In the standard
pFFT approach, all panel influences which are not calculated
directly are obtained on a single regular grid. In the present
study, a variable gird was suggested to obtain these influences.
It was outlined how it is possible to apply the FFT on each
level of this variable grid by rearranging segments of the shape.
A brief example was presented which indicates feasibility of
the concept. However, more studies will be needed to research
this concept further. Open questions include how to choose the
grid size and number of levels of the variable grid, how high
the order of the interpolation techniques used for projection
onto the variable grid should be, how best to realize the
interpolation between the grid levels, how the variable grid will
influence iterative the solvers, and finally how the computational
complexity and accuracy of the method compare to the standard
pFFT technique and other methods designed to accelerate the
Boundary Element Method.
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In the past decade, the influence of surface tension on contact properties has attracted

much attention, especially in the context of contact of very soft materials (such as gels)

or contacts at the nanoscale. However, in the most current studies it is assumed that

the tension of the surface inside and outside the contact area is the same. In practical

terms, this means that the object considered is an elastic body “coated” with a tensed

membrane. In real contacts, there is no reason why the surface tensions of the “free

interface” and the “contact interface” should be equal. On the contrary, especially in

contacts of soft bodies with hard solid indenters, one can anticipate that they are

completely different. In the present article, we consider an elastic contact taking into

account different surface tensions inside and outside the contact area. However, the

considered contacts are still “non-adhesive.” This means that the three surface energies

in play (two surface energies of both bodies outside the contact and the interface

energy in the contact region) fulfill the criterion that the work of separation vanishes.

A numerical model based on the Fast Fourier transform–assisted boundary element

method is implemented and is illustrated with a few examples.
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INTRODUCTION

It is known that surface tension governs the contact behavior of liquids (Brown, 1974) but it is
hardly seen in contacts of solid bodies at the macro- and mesoscales. It is clear that it should start
to play an essential role if we consider a continuous transition from an elastic solid to a very soft
body such as a gel, soft rubber, and biological tissue (Style et al., 2017). In biological studies, it is
found that surface tension may determine the tissue growth and the kinetics of the regeneration
of organs (Ehrig et al., 2019). Surface tension may become important even in stiff contacts if their
size is very small. In particular, it may influence the function of microelectromechanical systems
(MEMS) (Syms et al., 2003).

There exists a class of contact problems in which the surface energy has been considered already
for almost 50 years; these are adhesive contacts. While non-adhesive contacts of isotropic elastic
bodies are completely characterized by the elastic modulus E and the Poisson’s ratio ν of bulk
material, in adhesive contacts the surface energy plays a key role, as has been shown in the classic
theory by Johnson, Kendall, and Roberts (JKR) in 1971 (Johnson et al., 1971). However, when
talking about the “surface energy,” we have always to specify what surface energy is meant. At the
contact boundary, three interfaces are coming together. The “surface energy” used in the JKR theory
is better characterized as “specific work of separation,” which we will also call “work of adhesion,”w.
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This quantity was introduced already by Dupre in 1869 (Dupré,
1869); it can be expressed as

w = γ1 + γ2 − γ12 (1)

where γ1 and γ2 are specific free surface energies of two
bodies and γ12 interfacial surface energy inside the contact area
(Figure 1).

From a general theoretical point of view, the JKR theory is
incomplete: It makes a step by including surface energy into
consideration but at the same time assumes that the surface
energies of bodies outside the contact area are zero. However,
there are no theoretical reasons why the surface energy of the
interface should be so dominant compared to the surface energies
of the surfaces outside the contact. In a general case, all three
surface energies are different and may have a comparable order
of magnitude.

As academic theoretical models, one can consider various
relations of the three surface energies and corresponding
limiting cases.

(I) If an elastic body is in contact with a rigid body and
the specific surface energy of the elastic body outside the
contact area can be neglected compared with the interface
energy in the contact area, then we have an adhesive
contact with specific work of separation w = γ2 − γ12. It
is this case that is considered in the well-known work by
Johnson et al. (1971). In reality, this case can be realized
only in a contact of a high surface energy solid with low
surface energy polymer but is hardly realizable in a contact
of two materials with comparable surface energies.

(II) If the surface energy of the elastic body outside the contact
area is finite, γ1 6= 0, but the work of adhesion is zero,

γ1 + γ2 − γ12 = 0, (2)

then we have a non-adhesive contact with surface tension.
(IIa) The latter case usually has been further simplified with the

assumption that the surface energies inside and outside
contact are equal:

γ1 = γ12, (3)

FIGURE 1 | (A) Adhesive contact with surface tension. (B) Non-adhesive contact with surface tension. In (B), the contact angle θ = π .

which automatically leads to the conclusion that γ2 = 0.
The corresponding theory was first developed for elastic
foundations (Filonenko-Borodich, 1940; Kerr, 1964) and
generalized to three-dimensional half-space contacts in
Hajji (1978). It attracted much attention in recent years.
However, this case cannot be realized physically, as there
exist no substances with zero surface energy. In particular,
in the cases that motivated consideration of this case—
contacts of a hard indenter with a soft solid—one can
assume that γ2 not only does not vanish but is also the
largest of the three relevant surface energies [(Popov,
2017), Chapter 3]. This popular case can practically be
realized only as a composite consisting of an elastic body
coated with a tensed membrane.

(IIb) If the condition of the absence of adhesion is fulfilled,
but the validity of the usual (and physical completely
unrealistic) condition is not assumed, then we have a
“general non-adhesive contact with surface tension,” which
is characterized by two independent surface energies. It is
this case that will be considered in the present article.

(III) Finally, in the general case both work of adhesion and
surface tension of the free surface are finite. This leads
to a general adhesive contact with surface tension. The
latter attracted much interest in the past two decades in the
context of indentation of soft matter (e.g., gels) (Carrillo
and Dobrynin, 2012; Style et al., 2013; Cao et al., 2014).

It is interesting to note that it took almost 50 years to make the
next necessary (and, as a matter of fact, obvious) step after the
JKR theory. On the other hand, the appearance of the JKR theory,
which is nothing but a direct implementation of the Griffith crack
theory, also took 50 years (Popova and Popov, 2018). For the
sake of historical truth, let us, however, mention that a solution
equivalent to that of JKR was obtained by Sperling already in
1964 in his unpublished doctoral thesis (Sperling, 1964; Borodich,
2014).

In the present article, we will briefly recapitulate the studies
of case IIa and then consider a more general (and more
complicated) case IIb. As already stated above, case IIa can
be physically realized only as an elastic body coated with
a stressed membrane. The fundamental solution determining
vertical displacement of the surface under the action of a
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concentrated force was given for this case by Hajji (1978). In this
contact problem a characteristic length appears, γ12/E

∗ , which is
called “elastocapillary length,” determines the influence of surface
tension: the surface tension effect is significant if the value of
γ12/E

∗ is comparable with the contact radius (Long and Chen,
2017). This leads to a “size-dependent” behavior in indentation
testing (Style et al., 2013).

In the past few years, adhesive and non-adhesive contacts
with surface tension have been studied intensively, for example,
contact of homogeneous elastic half space including spherical
contact (Long and Wang, 2013; Hui et al., 2015), conical contact
(Long and Chen, 2017), and two-dimensional cylindrical contact
(Liu et al., 2015), all based on the Hajji’s fundamental solution,
as well as complicated inhomogeneous coatings based on the
semianalytical modeling of the surface effect (Zhang et al., 2018).

The present article is structured as follows: We start with a
consideration and discussion of the boundary conditions in the
general case of arbitrary values of specific surface energies of all
three interfaces. We then recapitulate the results of the simplest
“membrane model” using a Fast Fourier transform (FFT)-based
boundary element method (BEM) implementation. Finally, we
generalize the FFT-BEM to the case of non-adhesive contact
with different surface energies inside and outside the contact and
illustrate this case with a simulation example.

BOUNDARY CONDITIONS TAKING INTO
ACCOUNT SURFACE TENSION

Analysis of a contact between a rigid body and an elastic
half space taking into account surface tension, carried out in
Karpitschka et al. (2016) and Popov (2020), shows that the
Young’s law determining the contact angle of liquids is also valid
for solids. This leads to the following boundary conditions:

u(x, y) = d − f (x, y), inside the contact area (4)

p(x, y) = γ11u(x, y), outside the contact area (5)

γ1 cos θ = γ2 − γ12, at the contact boundary (6)

where f (x, y) is the profile of rigid indenter and u(x, y) the normal
displacement of the surface of elastic half space, d is indentation
depth, θ is contact angle, 1 is Laplace operator, and p(x, y) is the
normal pressure at the surface immediately below the (infinitely
thin) surface layer. Note that for definitions of the surface profile
we used other direction of the z-axis (out of the elastic half-
space) than for displacement and other quantities (into the half-
space). It is also important to note that Equation (5) is written
in approximation of small slopes of the surface of elastic body,
which, however, is the necessary condition also for application of
the superposition principle used throughout the paper. Equation
(4) states that the surfaces of the indenter and the elastic half-
space coincide in the contact area. Equation (5) determines the
elastic stress at the surface under the tensioned surface layer.
Equation (6) is the equilibrium condition of the contact boundary
under the action of three surface tensions. Similarly to the contact
angle in liquid contacts, θ is a thermodynamic property of
the system. It does not depend on the shape of the body and
deformation of the surface.

Using Equation (1) for the work of adhesion, w, Equation (6)
can be rewritten as

w = γ1 (1+ cos θ) . (7)

This equation is known as Young–Dupre equation (Young, 1805;
Dupré, 1869). For non-adhesive contacts with surface tension it
has w = 0. From Equation (7), it follows that cos θ = −1 and

θ = π . (8)

This equation means that at the boundary the slope of the surface
profile is equal to the slope of the elastic half-space. Thus, in this
specific case the condition (6) can be reformulated as a continuity
of the surface slope at the contact boundary (Figure 1B). In
this article, we focus on this non-adhesive contact with surface
tension and its numerical simulation.

NUMERICAL SIMULATION OF
NON-ADHESIVE CONTACT WITH
SURFACE TENSION

A numerical solution to non-adhesive contact with surface
tension for the case IIa (γ1 = γ12 : = γ ) is based on Hajji’s
equation for the vertical surface displacement u at the position
(

x, y
)

caused by the pressure distribution pc
(

x′, y′
)

:

u
(

x, y
)

=

∫∫

A

pc
(

x′, y′
)

G
(

x− x′, y− y′
)

dx′dy′, (9)

with

G
(

x, y
)

=
1

4γ

[

H0

(

√

x2 + y2

2γ /E∗

)

− Y0

(

√

x2 + y2

2γ /E∗

)]

, (10)

where H0 and Y0 are Struve and Bessel functions of the second
kind of zero order (Hajji, 1978). It should be stressed that the
pressure pc(x, y) is the pressure acting on the surface of the upper
tensed layer and is not equal to the pressure p(x, y) in Equation
(5), which is the pressure under the tensed layer. Qualitatively
speaking, pc(x, y) is the “external pressure” acting on the elastic
body coated with membrane, while p(x, y) is the pressure in the
elastic body immediately under the membrane.

For vanishing surface tension the first term approximations to
(9) and (10) become the classic Boussinesq’s equation

u
(

x, y
)

=
1

πE∗

∫∫

A

p
(

x′, y′
)

√

(x− x′)2 +
(

y− y′
)2
dx′dy′. (11)

In this case, p = pc.
As already stated, according to the theory of surface elasticity

(Gurtin et al., 1998), the contact with surface tension can be
considered as a contact with an elastic body covered by an
(infinitely) thin membrane. The equilibrium and constitutive
equations in the bulk of the elastic body still follow the theory
of elasticity. Therefore, we can find a solution to contact with
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surface tension by use of the fundamental solution for elastic half-
space without surface tension. Using the definitions of pressure
p(x, y) and pc(x, y), as shown in Figure 1B, the equilibrium
condition of the interface in contact the contact region is

pc(x, y) = p(x, y)− γ121u
(

x, y
)

, inside the contact. (12)

The other two boundary conditions (4) and (5) should of course
also be fulfilled. The deformation u

(

x, y
)

is generated by pressure
p(x, y), which can be obtained from the Boussinesq’s equation.

Realization in the Boundary Element
Method
The BEM was developed in the past 30 years and represents
an effective numerical tool for solving various contact problems
including homogeneous material and layered systems, adhesive
and non-adhesive contact, rough contact, and thermal contact
(Nogi and Kato, 1997; Liu et al., 2000; Campañá and Müser,
2006). Some BEM formulations are based on integral equations of
the form of (9) or (11). In a discretized form they can be written as

uij = Kiji′j′p
i′j′

c , (13)

where uij is the displacement of surface element at position
(

i, j
)

in two-dimensional discretization, p
i′j′

c is stress acting on

an element located on
(

i′, j′
)

, andK iji′j′ is the influence coefficient
and its value is calculated analytically or numerically depending
on the form of the fundamental solution. The matrix of influence
coefficients can be found, e.g., in Pohrt and Li (2014). The
convolution nature of integral equations of the form (9) allows
formulating and solving a contact problem using the FFT.
Using this technique increases computing efficiency by replacing
the integration by multiplication and therefore reducing the
complexity fromN4 toN2 logN2 (for a systemwith discretization
of N × N elements). For example, the algorithm of evaluating
Equation (13) can be represented as

u = IFFT
[

FFT (K) · FFT
(

pc
)]

, (14)

where pc is the pressure vector matrix, u is the matrix of
discretized displacements, and K is the matrix of the influence
coefficient. Note that for the non-periodic contact in a finite
domain, the techniques of zero padding and wraparound order
of matrix of pressure and influence coefficient in a doubled
domain should be used to execute cyclic convolution. Thus, the
pc and K should be expanded to dimension 2N × 2N when
FFT is performed. The displacement u is then extracted from
the obtained displacement with the same dimension 2N × 2N
after the IFFT. The details of theories of the linear and cyclic
convolutions and their applications to periodic and non-periodic
contacts as well as numerical procedures can be found in Liu et al.
(2000) and Ju and Farris (1996).

In Equation (14) the fundamental solution (given by the
matrix K) should be first Fourier transformed. Alternatively,
one can directly use the fundamental equation in Fourier space,

which in most cases can be calculated very easily. For example,
for an elastic half-space it is equal to

K =
2

E∗q
, (15)

where q =

√

q2x + q2y . This gives the relation of the Fourier

components of pressure and displacement

u
(

qx, qy
)

=
2

E∗
p
(

qx, qy
)

q
. (16)

Displacement in the coordinate space in then calculated as

u = IFFT

[

2

E∗q
· FFT

(

p
)

]

. (17)

The general form of the fundamental equation in Fourier space
can be written as

u
(

q
)

= C
(

q
)

· pc
(

q
)

, (18)

where the Fourier transform of the kernel of convolution, C
(

q
)

,
depends on a particular system. The only general prerequisite for
this simple form is the lateral homogeneity of the system. In the
direction perpendicular to the surface, it can be heterogeneous
(e.g., a layered system or functionally graded material). C

(

q
)

is of
course also a function of the effective elastic modulus in the case
of a homogeneous material and coating system.

Equations (12) and (5) for non-adhesive contact with surface
tension can be written in Fourier space as follows:

pc(q) = p(q)+ γ12 · q
2
· u
(

q
)

, in contact, (19)

p(q)+ γ1 · q
2
· u
(

q
)

= 0, out of contact. (20)

We first consider the simple case with equal surface energy inside
and outside the contact area, γ1 = γ12 = γ . Substitution
of (18) into (19) gives the relation between pressure pc and
deformation u

u
(

qx, qy
)

=
pc(qx, qy)

1/C
(

q
)

+ γ · q2
. (21)

For the displacement field in coordinate space, it follows

u = IFFT

[

1

1/C
(

q
)

+ γ · q2
· FFT

(

pc
)

]

. (22)

Thus, any available BEM program can be used for simulating this
system covered with a tensed membrane just by adding the term
“γ q2” in the Green’s function. Note that this equation connects
the surface displacement with the external pressure. Therefore,
the boundary condition and numerical procedure can be dealt
in the same way as in all existing BEM: the pressure outside the
contact is zero:

pc
(

x, y
)

= 0, outside of the contact, (23)
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FIGURE 2 | (A) Pressure distribution and (B) contact configuration in a contact between a rigid parabolic indenter and an elastic half-space for two different values of

surface energy. The pressure is normalized by the maximum Hertzian pressure and coordinate by the Hertzian contact radius a0.

while the surface displacement inside the contact area meets
the geometry condition. Of course, the zero padding and
wraparound order are still needed for the non-periodic contacts
as discussed in Liu et al. (2000). For an isotropic homogeneous
material, Equation (22) becomes

u = IFFT

[

1

E∗q/2 + γ · q2
· FFT

(

p
)

]

. (24)

Case Study 1: Isotropic Homogeneous
Elastic Half-Space Coated With a Tensed
Membrane
Let us discuss numerical simulation of a “Hertzian” contact
with surface tension: a contact of a rigid parabolic indenter
with elastic half-space taking into account surface tension,
which we first consider equal inside and outside the contact.
The result obtained using the Hajji’s fundamental solution
was given in Long and Wang (2013). Here we would like
to compare this solution with the above-described solution

based on the fundamental solution (1/C(q)+ γ · q2)
−1

in the
Fourier space. Parameters used in the simulation are as follows:
E∗ = 0.011 MPa; sphere radius R = 1 mm; indentation
depth d = 0.01 mm; and two different specific surface
energies, γ = 0.2 N/m and γ = 0.4 N/m, were considered,
corresponding to the values γ /(E∗a0) = 0.18 and 0.36 of
the parameter γ /(E∗a0) (ratio of the elastocapillary length
and the Hertzian contact radius a0). Figure 2 shows numerical
solution obtained with discretization 512 × 512 points, where
the triangles in Figure 2A are pressure distributions calculated
based on the Hajji’s fundamental equation, and stars are
results based on the alternative approach using the fundamental

solution (1/C(q)+ γ · q2)
−1

. The calculating time by using this
fundamental solution is 12 times smaller than that with the
Hajji’s fundamental solution. The contact behavior found in Long

and Wang (2013) practically coincides with that found with
the above-described procedure. In particular, the pressure at the
contact boundary has a “jump” in the case with surface tension
(Figure 2A), and the surface tension leads to a reduction of
contact area (Figures 2A,B).

Case Study 2: Layered System
As explained above, any existing BEM formulation for a
contact without surface tension can be trivially extended to
include surface tension by a small change in the corresponding
fundamental solution in Fourier space, according to Equation
(21) or (24). Let us illustrate this with an example of an
elastic layer with surface tension. We proceed from the BEM
formulation without surface tension described in Li et al. (2019).
Adding the term “γ q2” in the fundamental solution, we include
the surface tension. Here we show a case of soft layer bounded
on the elastic half space. The layer had elastic modulus E∗1 =

0.011 MPa, specific surface energy γ = 0.2 N/m, and thickness
h0 = 0.03 mm. The elastic modulus of the underlying half-
space is E∗2 = 10E∗1 . The profile of indenter is a sphere with
radius R = 1 mm superposed with a two-dimensional waviness
with wavelength λ = 0.03 mm and a small amplitude of h =

0.0005 mm. The indentation depth was d = 0.01 mm. The
simulation results without and with surface tension are shown
in Figure 3. The color map presents the pressure distribution in
the contact region. Two cross sections of this map are selected to
show the details. Under the above conditions, the contact area
in the system without surface tension is compact (left figure),
while “switching on” the surface tension makes it much more
heterogeneous and even not simply connected (right figure).
This leads to much more intensive oscillations of pressure. Note
that the pressure shown in Figure 3 is the pressure immediately
under the surface of the indenter. This pressure is relevant for
estimating the possible damage of the indenter.
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FIGURE 3 | Pressure distribution in contact between a sphere with wavy roughness and elastic half space coated with a soft layer. The right figure is the pressure

distribution in the contact region and the values at two cross sections are shown with curves below. For comparison, the case without surface tension is present on

the left side.

Different Surface Energies Inside and
Outside of the Contact Area
When surface energies inside and outside the contact are
different, γ1 6= γ12, the FFT of Equations (19) and (20) cannot be
directly carried out for the whole region. However, we can rewrite
Equation (12) in the following form:

p1(x, y) = p(x, y)− γ11u
(

x, y
)

, in the whole area, (25)

p(x, y) = p1(x, y)+ (γ1 − γ12)1u
(

x, y
)

,

in the contact area, (26)

where p1(x, y) is an auxiliary function. In Fourier space, Equation
(25) takes the form

p1
(

q
)

= p
(

q
)

+ γ1 · q
2
· u
(

q
)

=
[

1/C
(

q
)

+ γ · q2
]

· u
(

q
)

.(27)

The computation algorithm is the following. Initially we assume
that the contact area is the geometrical intersection A and the
displacement of the surface of the elastic half-space in this area

coincides with the profile of indenter uA(x, y); the corresponding
FFT (uA) is calculated. Using this FFT (uA) one can obtain the
auxiliary stress function p1

(

q
)

as well as p1(x, y) appearing in
(25). After that, the deformation u

(

x, y
)

can be calculated within
the contact area.With p1(x, y) and u

(

x, y
)

as well as the curvature
of the surface, 1u

(

x, y
)

, one gets the pressure distribution p(x, y)
from Equation (26). After that, the usual correction and iteration
procedure starts: the elements that have negative pressure or
geometrical penetration out of contact are marked as “detached”
so that a new contact area, A′, is generated. With this new contact
area, the above iteration is repeated until both pressure and
geometry conditions for all elements in contact area are met.

Example 1 We give an example with the same parameters
as studied in the case of Figure 2, with the only difference that
the surface energy outside contact area, γ1, is not equal to that
inside, γ12. Surface energy in the noncontact region was equal
to γ1 = 0.2 N/m. Two cases were studied: one with smaller
surface energy inside contact γ12 = 0.1 N/m and the other one
with larger γ12 = 0.4 N/m. The obtained pressure distribution
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and surface displacement are shown in Figure 4. The results with
equal surface energy are also shown with stars for a comparison.
One can see that when the surface tension inside the contact is
larger, the loading needed for generating the same indentation
depth is also higher due to the surface tension effect (curve
with triangles). Interestingly the contact area and the surface
displacement are the same in all three cases. It is clear that the
surface displacement in the contact coincides with the profile
of the indenter shifted by the indentation depth. Displacement
outside the contact is determined by the pressure p and surface
tension γ1, where p is numerically calculated by Boussinesq’s
equation with the given surface deformation inside the contact.

So surface displacement will be the same for unequal surface
energy inside the contact if the contact area is unchanged. The
difference of surface energy changes only the pressure pc with
a constant value in the case of sphere contact because of the
constant mean curvature.

Figure 4 shows that the shape of the surface of elastic body
does not depend on the surface tension inside the contact area.
A posteriori, this seems to be a trivial conclusion. However, it
is trivial only under the assumption of non-adhesive contact,
which guarantees the unchanged condition at the boundary of
the contact area, which does not depend on the interface surface
energy density. The only quantity that is influenced by the

FIGURE 4 | (A) Pressure distribution and (B) surface displacement in contact between a sphere and elastic half space. The surface energy is unequal inside and

outside the contact area.

FIGURE 5 | Solution to the contact problem with different surface energies inside and outside the contact.
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FIGURE 6 | Colormap of pressure distribution and contact area in the case of (A) equal and (B) unequal surface energy inside and outside contact for a rough

surface. The curves of pressure distribution and surface displacement at a cross section marked in the colormap are shown aside.

specific surface energy of the contact interface is the pressure
distribution. This means that the computation procedure in the
case of two different surface energies can be simplified as shown
in Figure 5.

1. In the first step, the contact problem is solved with a constant
specific surface energy equal to the specific surface energy
outside the contact area.

2. In the second step, the pressure distribution inside the contact
area is corrected by the term δp(x, y) = (γ1 − γ12) 1u

(

x, y
)

.

Example 2 Consider a wavy surface similar to that shown in
Figure 3 with the radius of curvature, R = 1 mm; wavelength,
λ = 0.02 mm; and amplitude of waviness, h = 0.0001 mm. The
elastic modulus of the half space is assumed E∗1 = 0.013 MPa
and the indentation depth d = 0.012 mm. In the following two
cases are considered: (1) equal specific surface energies γ1 =

γ12 = 0.1 N/m and (2) two different specific surface energies,
γ1 = 0.1 N/m and γ12 = 0.2 N/m, inside and outside the contact
correspondingly. Numerical results are shown in Figure 6. The
contact area and surface displacement are the same in both cases.

CONCLUSION

Non-adhesive contact with surface tension is usually solved using
the fundamental solution of Hajji. This fundamental solution
has a complicated form in the coordinate space but can be

derived in an extremely simple way in the Fourier space. More
than that, this derivation has a universal character and can be
applied for more complicated situations, as, e.g., for layered
systems or functionally graded materials. With an example of
Hertzian contact this method was validated by comparison with
the fundamental solution in the coordinate space, and it was then
applied to the rough contact of a coated system.

We argue that the approach based on the fundamental
solution can be used only in the case when the surface tension
inside and outside of the contact area are equal. There are no
physical reasons why it should be the case. Therefore, in the
general case, the approach based on the use of the fundamental
solution and superposition principle does not work. We show
how this problem can be reduced to the simpler contact problem
with constant surface tension inside and outside the contact area.

Of course, the case of non-adhesive contact with different
surface energies inside and outside the contact is a little bit
an academic exercise. In a general “dry” contact of two solids,
the condition of non-adhesive contact normally will not be
fulfilled. However, the contact can be made non-adhesive by
introducing an intermediate liquid with dielectric constant equal
to that of one of the bodies. According to the theory of van
der Waals’ interactions by Dzyaloshinskii et al. (1961), this
leads to suppression of van der Waals force (and thus of the
separation energy), while the surface tensions of both bodies
remain generally non-zero.
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This work considers the non-adhesive frictionless contact problem of soft materials

with surface being tensed by equi-biaxial tension. The boundary element method (BEM)

based on Fast Fourier Transform and conjugate gradient algorithm is extended to deal

with this problem. By comparing with existing analytical solutions for the axisymmetric

contact between a rigid parabolic indenter and an elastic half space, our numerical

simulations are validated having great accuracy. Moreover, the developed BEM algorithm

is applied on the calculations of elastic responses of a soft substrate indented by a

smooth indenter with general quadric profile and a rough indenter with self-affine fractal

surface, respectively. Some essential contact behaviors resulted from the presence of

membrane tension are presented and discussed.

Keywords: boundary element method, membrane/surface tension, contact mechanics, elliptical indenter, rough

surface

INTRODUCTION

Many physiological systems can be modeled as the layer-foundation structure, and generally,
the mechanical properties of surface layer differ from those of bulk interior. Early in 1978,
Hajji (1978) investigated the indentation of lung under uniform pressure by considering the
sample as an isotropic elastic half space ideally adhered with a tensed membrane. It is assumed
that the surface membrane thickness is ultimately small so that its bending rigidity can be
neglected. Besides, for small deformation, the membrane tension is assumed keeping constant.
With the same assumptions, Kim and Gouldstone (2008) addressed the axisymmetric spherical
indentation of elastic solid with strain-independent membrane tension. Moreover, the surface
layer of some soft tissues and single cells can be regarded as pre-tensed “plate” or “shell” with
finite thickness, which can also resist bending deformation (Zamir and Taber, 2004; Zhang and
Zhang, 2009). Recently, Argatov and Sabina (2012) treated the surface layer as a reinforced
membrane under generalized plane stress state. They hypothesized that no pre-tension exists in
the membrane, and the flexural stiffness is negligible compared with the in-plane tensile stiffness.
Such modeling method was employed in the deformation analysis of anisotropic articular cartilage
(Argatov and Mishuris, 2016).
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It is interesting to note that the above models originally
developed for the biological materials are analogous to the
well-known surface elasticity theory of Gurtin and Murdoch
(1975), which characterizes the material surface with surface
tension and surface elasticity. As Hajji stated (Hajji, 1978),
the mathematical expressions are basically consistent, although
they have completely different physical natures. The constant
membrane tension in Hajji (1978) and Kim and Gouldstone
(2008) is corresponding to the residual surface tension, and
the superficial layer modeled in Argatov and Sabina (2012) and
Argatov and Mishuris (2016) can be considered as a solid surface
with surface elasticity. Recently, problems of surface loadings and
contacts have been widely studied based on the surface elasticity
theory (He and Lim, 2006; Wang and Feng, 2007; Zhou and
Gao, 2013; Long et al., 2017; Li et al., 2020). It is found that the
deformation behavior would be distinctly different from classical
models when the size of loading is comparable or even smaller
than a critical length, usually at nano/microscale. However, these
analytical works are usually limited to simple cases under a given
surface pressure or for the symmetric situations.

Physically, the surface elasticity theory is based on the concept
of solid surface energy (Gurtin and Murdoch, 1975). For the
general contact between two solid bodies, the surface energy of
each free surface (γ 1, γ 2) and contacting interface (γ 12) should
be taken into account simultaneously. Two simplified cases can
be recognized according to values of these surface energies.When
the energy difference w = γ 1+γ 2-γ 12 (called work of adhesion)
is appreciable and the effect of surface energy outside the contact
can be neglected, adhesive contact model with specific work of
adhesion would be appropriate (Johnson et al., 1971). On the
other hand, if the energy difference equals to zero (w = 0) but
the surface energy of one contact body is much larger than the
other (i.e., γ 1 >> γ 2 and γ 1 ≈ γ 12), the contact problem can
be addressed in the framework of surface elasticity theory (He
and Lim, 2006; Wang and Feng, 2007; Zhou and Gao, 2013; Long
et al., 2017; Li et al., 2020). In this work, we consider the latter
circumstance with constant surface tension or, equivalently, the
non-adhesive contact of solids with tensed surface membrane.

The Fast Fourier Transform (FFT) based methods have been
widely employed to solve the elastic contact problems for its great
advantage on reducing the computation cost. For the efficient
Green’s function molecular dynamics (GFMD) (Campañá and
Müser, 2006; Prodanov et al., 2014), the FFT technique plays an
important role in the determination of substrate elastic response
to external surface forces. In addition, the boundary element
method (BEM) that exploits FFT to accelerate the calculation
of displacements induced by given surface forces has been
also proved fast and robust for the analysis of various contact
problems (Nogi and Kato, 1997; Liu et al., 2000; Polonsky and
Keer, 2000; Pohrt and Popov, 2012, 2015; Pohrt and Li, 2014;
Rey et al., 2017; Bugnicourt et al., 2018). The basic principle
of the FFT-based BEM is to evaluate the linear convolution
of fundamental solution and pressure distribution based on
the convolution theorem. For the classical elastic problem with
half space approximation, the simple Boussinesq’s fundamental
solution or its form in Fourier space is commonly used in the

BEM for normal contact problems. However, when the surface of
elastic half space is equi-biaxially tensed, things will be different.

This paper aims to extend the mature FFT-based BEM for the
calculation of normal contact of material with membrane/surface
tension. Several calculation examples are implemented to
demonstrate the validity and usefulness of this method. This
method provides a potential numerical approach for the study of
contact behavior of some soft structures, which is of particular
interest for the measurement of mechanical properties of
biological tissues (Zhang et al., 2014).

NUMERICAL METHOD

We consider an ideally smooth elastic substrate. The surface is
tensed by a constant, strain-independent tension τ 0, and the bulk
material is homogeneous having elastic modulus E and Poisson’s
ratio ν. The origin of the Cartesian coordinate system (o-xyz) is
located at the surface of half space, and the z-axis is perpendicular
to the surface, as shown in Figure 1A.

With some specified external pressure applied on the surface,
the boundary value problem can be solved in the framework of
classical linear elastic theory, provided that the unconventional
boundary condition associated with surface tension is employed
(Hajji, 1978; He and Lim, 2006; Wang and Feng, 2007; Zhou
and Gao, 2013). For the axisymmetric situation under a uniform
normal pressure p0 within a circular region of radius a, the
boundary condition reads,

{

τ0

(

d2u
dr2

+
1
r
du
dr

)

+ σzz + p0H (a− r) = 0

σzr = 0
(1)

where u(r) is the vertical displacement on the surface, σzz and σzr
are the bulk normal stress and shear stress at z = 0, respectively,
and H is the Heaviside step function.

By using Hankel integral transform and substituting the
boundary condition into the general solutions, the vertical
displacement caused by the uniform pressure p0 can be derived
(Hajji, 1978). Moreover, by implementing a limiting process in
which the radius a decreases to zero with the resultant force
held constant unity πa2p0 = 1, the fundamental solution that
is the vertical displacement at the point (x, y) induced by
unit concentrate force acting at the coordinate origin can be
derived as,

G
(

x, y
)

=
1

2sE
∗

[

H0

(

√

x2 + y2

s

)

− Y0

(

√

x2 + y2

s

)]

(2)

where s = 2τ 0/E
∗ is the characteristic length, E∗ = E/(1–ν2) is

the reduced modulus, Hn and Yn are the Struve function and the
Bessel function of second kind of order n, respectively.

The FFT of this fundamental solution, G̃ (ω), is plotted in

Figure 2, where ω =

√

ω2
x + ω2

y is the magnitude of wave vector

(ωx is the angular frequency in the x-direction and ωy is the
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FIGURE 1 | (A) Normal contact between a rigid indenter and an elastic half space with tensed surface membrane, and (B) the schematic of surface discretization

used in BEM.

FIGURE 2 | The fundamental solutions in Fourier space with different values of

s. Thick dashed lines are the numerical results of the FFT of Equation (2), and

thin solid lines are the theoretical predictions of Equation (3). Note the unit of s

is same as 1/ω.

angular frequency in the y-direction). It is found that the results
are consistent with the theoretical prediction (Li and Popov,
2020),

G̃ (ω) = 2π/
[

πE∗
(

ω + sω2
)]

(3)

which reduces to the Boussinesq’s solution in Fourier space when
the characteristic length s decreases to zero, G̃ (ω) = 2/ (E∗ω ).

For the indentation of a rigid body with known profile f (x, y)
into a depth δ, see Figure 1A, the vertical displacement on the
surface u(x, y) has to fulfill the following condition:

{

u
(

x, y
)

= δ + f
(

x, y
)

,
(

x, y
)

∈ Ω

u
(

x, y
)

> δ + f
(

x, y
)

,
(

x, y
)

/∈ Ω
(4)

where � is the domain of contact.
Assume that the positive contact pressure between the

substrate and the indenter distributes as p(x, y). Then, according

to the superposition principle, the vertical displacement
generated by p(x, y) can be expressed by

u
(

x, y
)

=

∫∫

p
(

x′, y′
)

G
(

x− x′, y− y′
)

dx′dy′ (5)

which is exactly a two dimensional continuous convolution
of fundamental solution and contact pressure distribution. As
a result, substitution of Equation (5) into the displacement
boundary condition Equation (4) leads to

∫∫

p
(

x′, y′
)

G
(

x− x′, y− y′
)

dx′dy′ = δ

+ f
(

x, y
)

,
(

x, y
)

∈ � (6)

Note that the inequality characterizing the non-overlapping
condition outside the contact region is always accompanied
with Equation (6) no matter which expression form is utilized.
The resultant load P acting on the rigid indenter equals to the
summation of the contact pressure over entire contact area. For
a given indentation depth, the corresponding contact area and
contact pressure are to be determined.

Next, this problem will be solved in the light of FFT based
boundary element method. In contrast to finite element method,
only part of substrate surface needs to be discretized. As shown
in Figure 1B, squared elements with side length 1 are used to
mesh the surface. Assuming that the pressure within each single
element distributes uniformly, Equation (6) can be transformed
into linear algebraic equations,

∑

k

∑

l

Kijklpkl = δ + f
(

xi, yj
)

,
(

xi, yj
)

∈ � (7)

where

Kijkl =

∫ xk+1/2

xk−1/2

∫ yl+1/2

yl−1/2
G
(

xi − x′, yj − y′
)

dx′dy′ (8)

Note that the computational domain that is discretized
into surface elements should include all potential contact
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region. If the computational domain contains N×N elements,
the influence coefficients Kijkl have N4 values. Using direct

multiplication method has the complexity of O(N4). Instead,
we prefer to apply the FFT technique to evaluate the vertical
displacement for a given pressure, i.e., the left side of Equation
(7). The complexity is then reduced to O(N2logN). It is
worth mentioning that the multilevel multi-integration method
suggested by Brandt and Lubrecht (1990) allows for the same
computation acceleration.

The basic idea of the FFT based speed-up method is to
interpret the left side of Equation (7) as a two-dimensional
discrete convolution and applying the circular convolution
theorem (Liu et al., 2000; Pohrt and Li, 2014). In this work,
the influence coefficient matrix (Kkl)N×N is first prepared in
real space by performing numerical integration of Equation
(8) with xi = yj = 0. It should be pointed out that
appropriate zero padding and wrap-around order operations to
the original influence coefficient matrix (Kkl)N×N and pressure
matrix (pkl)N×N are necessary for the proper application of
circular convolution theorem, which can avoid the periodic
error (Liu et al., 2000). Next, FFT is implemented on the two
matrices. The results can be easily obtained through element-
wise multiplication of the influence coefficient matrix and
pressure matrix in Fourier space. Then, performing an inverse
FFT (IFFT) yields the vertical displacement caused by the
pressure distribution (pkl)N×N in real space. As a result, the
problem becomes,

IFFT
[

FFT (K) ◦ FFT
(

p
)]

= h, inside � (9)

where ◦ represents the element-wise product, and h is given by
the indenter shape and the indentation depth, hij = δ +f (xi, yj).

With the FFT based acceleration technique, this inverse
problem can be solved using an iteration scheme based on
conjugate gradient method (Liu et al., 2000; Polonsky and Keer,
2000; Pohrt and Li, 2014). The final obtained contact pressure
(pkl)N×N should be positive at all contact elements where the
induced vertical displacement matches with the given rigid
profile, and equal to zero in the non-contact region where the
non-overlapping condition is always satisfied. Finally, the overall
contact responses under a specified indentation loading δ are
ready to be evaluated. The resultant force P applied on the
indenter is obtained by summing up the forces at all discrete
contacting elements. The real contact area A is computed by
multiplying the number of contacting elements with the area
of a single element 12. It should be pointed out that the
contact area obtained by this direct summation method can
be only accurate when the contacting surface is discretized by
sufficiently refined grids. Area correction to continuum limit as
done by Prodanov et al. (2014) is necessary. Inevitably, the BEM
calculation with finer surface discretization would require more
time cost. In addition, it is worth mentioning that Yastrebov
et al. (2017) presented a correction route to compute accurate
contact area with relatively coarse discretization for such kind of
numerical method.

FIGURE 3 | The contact area for δ = 0.05mm with and without correction as

a function of element number.

CALCULATION EXAMPLES

Contact With an Axisymmetric Parabolic
Indenter
To validate the capability of the FFT-based BEM described in
section Numerical method, we first consider a simple case that
an axisymmetric parabolic indenter is pressed into a half space
by a displacement δ. Numerical simulations are carried out for a
soft material (E∗ = 10 kPa), of which the surface is pre-tensed by
a constant tension τ 0 = 1 N/m (with negligible bending rigidity
and in-plane stiffness). A square surface domain of edge length
2aH, where aH is the contact radius predicted by Hertz theory,
is meshed by N×N elements. The profile of the rigid indenter of
curvature radius R= 1mm is given by

f
(

x, y
)

= −
1

2R

(

x2 + y2
)

(10)

At first, the area in contact under different discretization level is
examined to check the meshing dependent error in this BEM.
In Figure 3, the contact area under a normal displacement δ =

0.05mm is plotted as a function of surface element number. It
can be found that the area converges to a stable limit (i.e., the
continuum limit) as the element numberN increases. In this case,
the maximum error is about 4% for the coarsest gridN = 32. The
error gets sufficiently small (< 0.5%) when N is larger than 256.
Moreover, by using the correctionmethod proposed by Yastrebov
et al. (2017), it is found that the grid can be coarser to achieve
same accuracy as that of finer meshing without correction. For
convenience, we use the meshing grid of N = 256 to simulate
the contacts of single asperity, which is already enough to get
accurate results even without correction.

The influence of membrane/surface tension can be reflected
by a dimensionless ratio of the characteristic length s (defined
by 2τ 0/E

∗) to the contact radius a. Figure 4 displays the
distributions of contact pressure for the cases of different
ratio s/a. The variations of indentation load and indentation
depth with respect to the ratio s/a are plotted in Figures 5A,B,
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respectively. It is seen that our numerical results obtained from
BEM calculations coincide well with existing semi-analytical
solutions (Kim and Gouldstone, 2008; Long et al., 2017). The size
dependent contact behavior is reproduced. Apparently, when the
contact size a is comparable or smaller than the characteristic
length, the contact response will essentially deviate from the
classical Hertz contact theory. Compared with the prediction of
Hertz theory, a higher indentation load or a larger indentation
depth is needed to achieve a specific contact area because of the
presence of membrane/surface tension.

Contact With an Elliptical Indenter
Let us further consider a smooth indenter with quadric surface, of
which the principle curvatures (R1, R2) are unequal. By adjusting
the x-axis and y-axis along the axes of principle curvature, the
indenter shape can be expressed by

f
(

x, y
)

= −

(

x2

2R1
+

y2

2R2

)

(11)

FIGURE 4 | Contact pressure distribution along x-axis direction. Solid lines are

the semi-analytical solution from Kim and Gouldstone (2008), and scatter

symbols are the numerical results from BEM.

For a given displacement δ = 0.05mm exerted on the rigid
indenter of R1 = 1mm and R2 = 2mm, the distributions
of normal pressure on the half space with different
membrane/surface tension are shown in Figure 6. Based on the
pressure distribution, the contact region can be determined,
which is identified as an ellipse with semi-minor axis a1
and semi-major axis a2. With the membrane/surface tension
increasing, the elliptical contact area shrinks, and the distribution
of contact pressure tends to be more uniform. According to the
classical Hertz theory, the ratio of a1/a2 depends only on the
ratio of principle curvatures of the indenter R1/R2. However, it
is noticed that the value of a1/a2 no longer keeps constant for
a given indenter, but declines as the membrane/surface tenion
increases. In other words, the contact ellipse will be somewhat
slender if the surface membrane is equi-biaxially tensed. This
phenomenon can be explained by the size-dependent behavior
caused by membrane/surface tension. Because the length along
the minor axis of contact ellipse is smaller than that along major
axis, the size effect on the reduction of contact dimension nearby
minor axis would be relatively more remarkbale.

Contact With a Rough Surface
With the validated BEM, we are also able to calculate the response
of rough surface contact in the presence of membrane/surface
tension. As illustrated in Figure 7, we consider the normal
contact between a square rigid random rough surface and a soft
elastic half space with tensed surface membrane. Assume that the
rough surface is self-affine fractal and has the following power
spectral density (PSD),

C2D

(

q
)

=

{

C0q
−2(H+1), q0 ≤ q ≤ qs
0 , otherwise

(12)

where C0 is a constant, H is the Hurst exponent, q is the
wave vector, q0 = 2π /L and qs are the roll-off and cutoff
wavenumbers, respectively.

Based on this power spectrum, a discrete rough surface can
be generated by using the inverse Fast Fourier Transform (Pohrt
and Popov, 2012). Then, the surface height data f (xi, yj) over
a uniform N×N grid are superimposed onto the bottom of a

FIGURE 5 | Dependences of contact responses (normalized by the prediction of Hertz theory) on the ratio s/a: (A) indentation load; (B) indentation depth.
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FIGURE 6 | Distributions of normal pressure of the contact between an elliptical indenter and a soft substrate with modulus E* = 10 kPa and different

membrane/surface tension: (A) τ 0 = 0 N/m, (B) τ 0 = 0.1 N/m, (C) τ 0 = 0.5 N/m, (D) τ 0 = 1 N/m, (E) τ 0 = 2 N/m and (F) τ 0 = 5 N/m.

FIGURE 7 | (A) Indentation on the elastic half space by a square punch with fractal rough surface, and (B) the detail of generated rough surface.

square flat-ended indenter with length L. Note that the highest
point of rough surface is initially put on the surface of half space.
Accordingly, a square surface region on the half space A0 =

L×L that is corresponding to the projected area of indenter is
meshed by N×N surface elements. Partial contact happens when
the indenter moves downward by a displacement δ.

In general, the elastic contact response of rough surface
should be dependent on the material property E∗ and the

surface topography parameters including the root mean square
(RMS) roughness σ , Hurst exponent H, the system size L
= 2π /q0, and the cut-off wavenumbers qs. In this case with
membrane/surface tension τ 0, the contact response φ for a given
indentation depth δ should be a function of these variables,
φ = φ(τ 0, E

∗, σ , H, L, qs, δ). Dimensional analysis reveals that
the effects of membrane/surface tension can be reflected by a
dimensionless parameter, (τ 0/E

∗)/(σ 2/L). In this work, we would
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FIGURE 8 | (A) Variations of real contact area with respect to the indentation depth for the cases of different membrane/surface tension. Scatter symbols are the real

contact area after correction operation for a specified displacement δ = 10σ . (B) Images of contact regions under the displacement δ = 10σ (black zone is the

contact region).

lay aside the role of surface topography property, which is
controlled by the dimensionless parameters including σ /L, H,
and σqs, and just display the effects ofmembrane/surface tension.

An artificial rough surface (N = 1,024, L = 1mm) with
RMS roughness σ = 0.01mm, H = 0.7, q0 = 2π /L and qs
= 2π /(16L/N) is considered. Calculation examples are carried
out for this rough surface in contact with a soft substrate with
reduced modulus E∗ = 10 kPa and different membrane tensions
τ 0 = 0, 10, 50, 100 mN/m. The real contact area A/A0 and
indentation load P/(E∗σL) are obtained for different indentation
depth δ/σ .

Figure 8A shows the dependence of A/A0 on δ/σ for the
cases of different membrane/surface tension. For a given indenter
displacement, the contact area significantly declines with the
increasing of applied membrane/surface tension. For instance,
when the indenter displacement δ = 10σ , the fraction area
of contact drops from 43.5% for a substrate with un-tensed
surface to 7.95% for that having membrane/surface tension of
100 mN/m. The configurations of contact regions for δ = 10σ are
exhibited in Figure 8B. Note that the real contact area computed
by direct summation of contacting elements has been compared
with that evaluated by the correction technique of Yastrebov et al.
(2017). As shown in Figure 8A, the difference is small. Therefore,
the contact area calculation for this level of discretization should
be proper and accurate. In addition, the variation of A/A0 with
respect to P/(E∗σL) is displayed in Figure 9. The slope of the
curve decreases as the value of τ 0 increases, which means that
to generate a specified contact area needs a higher external
indentation load for the case of larger membrane/surface tension.
As a result, for a given substrate with determined modulus
indented by a specific rough surface, the mean contact stress
defined by the ratio of indentation load to the real contact area,
P/A, can be increased by applying a certain membrane/surface
tension on the substrate surface.

For this problem of rough surface contact, it should be
pointed out that the analytical relations between the contact

FIGURE 9 | Variations of real contact area with respect to the resultant load

for the cases of different membrane/surface tension.

response and the properties of substrate material and indenter
rough surface have not been generalized in this paper. More
numerical calculations for different rough surface and different
substrate with different membrane/surface tension are required
in order to achieve this point, which will be conducted in
the future.

CONCLUSION

In summary, the FFT-based boundary element method is
extended for normal contact of soft material, of which the
surface is tensed by equi-biaxial tension. Three type of
indenters compressing on the elastic half space with constant
membrane/surface tension are considered. The calculation
results show excellent agreement with related available solutions.
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Typical size-dependent contact behavior is demonstrated. In
particular, due to the presence of membrane/surface tension,
the eccentricity of contact ellipse will be slightly increased for
the contact with a rigid elliptical indenter. For a given substrate
indented by a specific rigid indenter, the mean contact pressure
defined by the ratio of indentation load to the real contact area
can be increased by increasing membrane/surface tension on the
substrate surface. This numerical method would be helpful for
the deformation analysis of some soft systems with membrane/
surface tension.
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Artificial intelligence is changing perspectives of industries about manufacturing

of components, introducing emerging techniques such as additive manufacturing

technologies. These techniques can be exploited to manufacture not only precision

mechanical components, but also interfaces. In this context, we investigate the use of

artificial intelligence and in particular genetic algorithms to identify optimal multi-scale

roughness features to design prototype surfaces achieving a target contact mechanics

response. Exploiting an analogy with biology, the features of roughness at a given length

scale are described through model profiles named chromosomes. In the present work,

the mathematical description of chromosomes is firstly provided, then three genetic

algorithms are proposed to superimpose and combine them in order to identify optimal

roughness features. The three methods are compared, discussing the topological and

spectral features of roughness obtained in each case.

Keywords: surface roughness, multivariate Weierstrass-Mandelbrot function, contact mechanics, optimization,

genetic algorithms

1. INTRODUCTION

It is well-established in the literature that surface topology and texture are important for enhancing
the tribological behavior of contacts. Therefore, optimization of topological features is considered
as a research topic of paramount interest for industrial applications. For instance, optimization
of the shape and position of periodic grooved textures has been investigated in Buscaglia et al.
(2007) in relation to lubrication. Even more ambitious are the recent attempts to tailor roughness
of engineering surfaces by controlling end-milling operations, as discussed in Zhang et al. (2007), or
by cutting techniques as in Nouari et al. (2018). Artificial intelligence based on genetic algorithms
(Zain et al., 2008) and artificial neural networks (Moghri et al., 2014) have been recently exploited to
control milling operations and surface roughness manufacturing by material removal. As another
strategy, additive manufacturing (Brettel et al., 2014) is opening new perspectives to produce
surfaces with specified roughness (see e.g., Farina et al., 2016; Ko et al., 2019; Wüst et al., 2020).

In addition to tribology, the role of an interface between material constituents/phases is
becoming progressively dominant over the one of bulk properties, thanks to the increasing trend
in the miniaturization of components, and to the significant progress in the design of mechanical
systems and materials, starting from the sub-micrometer scale. The interface has very different
properties than the bulk, and is important in a variety of mechanical, physical, and chemical
processes. Interfaces can have significant effects also on the properties of composite materials
(Moroni et al., 2013; Guo et al., 2014, 2017; Kwon et al., 2019). Consequently, industrial applications
often require the design of surface textures able to achieve given target responses and/or to enable
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rapid manufacturing andmorphology changes for in-line control
of mechanical components, as in Bora et al. (2005) for Micro-
Electro-Mechanical Systems (MEMS). Nature is also offering
interesting perspectives for the identification of optimal surface
topologies for selected applications, see e.g., the successful
attempts to create artificial super-adhesives like Gecko’s pads
(Sherge and Gorb, 2001; Gao et al., 2005; Nosonovsky and
Bushan, 2008).

In the present study, a theoretical multi-scale description
of roughness is considered in relation to the Multivariate
Weierstrass-Mandelbrot (MWM) function as a model for a
fractal rough profile (Cinat et al., 2019). The aim of the research is
to establish a mathematical and a computational framework for
the robust identification of the profile model parameters that lead
to identified topologies whose contact response is matching any
requested real contact area-load and contact conductance-load
curves that can be specified by the user. Although the authors
are aware that not all the natural and manufactured surfaces do
obey to the fractal scaling, as pointed out by Carr and Benzer
(1991), Wen and Sinding-Larsen (1997), Borri and Paggi (2015),
Xiaohan et al. (2017), and Gujrati et al. (2018), the choice here
is motivated by the fact that the MWM function has been widely
studied in relation to contact mechanics, and, for instance, we
expect to find that optimization in the low frequency range is
the major concern for controlling the thermal/electric contact
conductance, while fine scale features are governing the real
area of contact (see e.g., Ciavarella et al., 2000, 2004; Paggi and
Barber, 2011). However, it has to be highlighted that, although
the MWM model is herein adopted for validating identification
predictions in relation to benchmark results established in the
literature, the overall proposed computational procedure can be
applied also to other profile or surface models as well, without
specific restrictions.

Motivated by an analogy with biology, the expression surface
roughness genome is herein used to denote the ensemble of
parameters, the genes, associated with the set of elementary
waves that describes the main features of roughness over
multiple length scales. Although such a terminology imported
from biology is not usually adopted in the contact mechanics
community, it is introduced here for its common use in the
research area of genetic algorithms. Within this framework,
we optimize the parameters above to identify a suitable
genome that produces a rough profile having a frictionless
elastic normal contact mechanics response close to a requested
target one. To achieve this goal, we propose various genetic
algorithms, combining mechanical considerations and suitable
optimization tools. The contact problem is solved in terms
of the boundary element method (BEM) (Vakis et al., 2018;
Paggi and Hills, 2020), based on the formulation validated in
Bemporad and Paggi (2015). See also Bemporad and Paggi
(2015) for a wide comparison of other BEM techniques
that could also be effectively applied to solve the same
contact problem.

Regarding the genetic algorithm research contribution,
differently from the previous publication by Cinat et al.
(2019) where a single algorithm was proposed to achieve that
task, here we propose an extensive numerical comparison

of the performance of various algorithms with clear
distinct features.

This article is structured as follows. In section 2, we describe
the normal contact problem, the surface roughness genome, the
features of a single length scale of roughness, and the roughness
reconstruction over multiple length scales. In section 3, we
propose three genetic algorithms, whose aim is to generate
prototype profiles able to achieve given target contact mechanics
responses. In section 4, the effectiveness of these algorithms is
tested and discussed through a representative example, based on
an artificial genome database. Finally, section 5 concludes the
paper and discusses possible future work.

2. NORMAL CONTACT PROBLEM AND
ROUGHNESS DESCRIPTION

According to Johnson (2003), the non-conforming contact
problem between two rough surfaces is proved to be equivalent—
under the assumption of linear elasticity—to the contact problem
between a rigid rough surface and an elastic half-plane, provided
with suitable effective elastic parameters. The reader is referred
to Barber (2003) for details and for a proof of this equivalence.
In this work, normal contact is controlled by imposing an
approaching far-field closing displacement1, which corresponds
to a rigid-body motion of the half-plane. Its value is computed
from the tallest summit of the rough surface. Elastic interactions
among asperities deform the half-plane. During the deformation
process, the tallest summit of the profile remains in contact
with the half-plane, while other asperities may loose such
contact. Their deformation produces a normal contact traction
distribution in the contact area A. Then, the average total contact
pressure p is computed as the ratio between the sum of all the
contact forces acting in this area, and the nominal contact area.
Finally, the contact stiffness K is computed as the derivative of
the contact pressure p with respect to the imposed displacement
1. The reader is referred to Bemporad and Paggi (2015) for
more details about the precise problem formulation and for a
comparison of several techniques that can be exploited to make
the unilateral contact constraints satisfied.

In the article, a surface roughness description is provided,
based on several parameters. For each choice of such
parameters, the contact problem above is solved by an
application of the boundary element method (BEM), as in
Bemporad and Paggi (2015).

2.1. Description of Multi-Scale Surface
Roughness
In the following, one-dimensional rough profiles are considered.
Likewise in Cinat et al. (2019), their height Z(x), expressed
as a function of the position x, is described in terms of the
real part of the Multivariate Weierstrass-Mandelbrot function
(MWM), which was proposed in Ausloos and Berman (1985)
to describe stochastic processes having a larger number of
features than in the original 2D formulation proposed earlier in
Mandelbrot (1977). In the work, a rough profile Z(x) is described
parametrically as
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FIGURE 1 | (A) The chromosome C1(x) is visualized by the red line, and corresponds to the sum of the other colored co-sinusoids with n = 1. (B) The chromosome

C2(x) corresponds to the set of co-sinusoids provided by the choice n = 2.

Z(x) =A

√

log10(γ )

M

(

2π

λ

)−H M
∑

m=1

+∞
∑

n=−∞

γ−(n−1)H

[

cos(φm,n)− cos

(

2π

λ
γ n−1x+ φm,n

)]

. (1)

Each co-sinusoid in Equation (1) is defined by a unique
combination of the parameters H, A, λ, γ > 0, and φm,n ∈

[0, 2π), whereas M is a positive integer, which represents the
number of ridges. In this framework, in analogy with biology,
these parameters are also called genes. Thus, the surface roughness
genome is the overall ensemble of genes providing the realization
of a surface over multiple length scales.

2.2. Description of a Generic Length Scale
of Roughness
The multi-scale description of profiles is governed by the genes
H, λ, γ . The gene γ rules the distance of consecutive wavelengths
in the frequency domain, and H their scaling in amplitude.
The gene λ indicates a reference wavelength. The particular
combination of genes associated with a fixed n identifies a rough
profile Cn(x), which is named chromosome, and is associated to
the features of roughness at the fixed reference length-scale λn =

λγ 1−n.
In biology, a chromosome is a structure composed by some

genes identifying specific features of the genome (King et al.,
2006). Here, it identifies the features of roughness at the
wavelength λn, as follows:

Cn(x) =A

√

log10(γ )

M

(

2π

λ

)−H M
∑

m=1

γ−(n−1)H

[

cos(φm,n)− cos

(

2π

λ
γ n−1x+ φm,n

)]

. (2)

A profile Z(x) is realized in an observation length L inN = L
δ
+ 1

nodes, where δ is the distance between two consecutive nodes,
i.e., the resolution, and L is a multiple of δ. Hence, the infinite

series in Equation (1) is replaced by a finite series, according
to the observation scale L and the resolution δ chosen. The
profile Z(x) is realized from its longest to its shortest observed
wavelength by summing a finite number nc of chromosomes:

Z(x) =

nf
∑

n=ns

Cn(x), (3)

where ns (starting index) and nf (final index) refer to
the chromosomes contributing with the longest and shortest
wavelengths to the realization of the rough profile. It holds nc =
nf − ns + 1.

The realization of roughness over multiple length scales of
observation is obtained by selecting different chromosomes, i.e.,
by varying n between ns and nf . The value ns refers to the
longest wavelength considered, and nf refers to the shortest
wavelength observed. In this way, the chromosomes contributing
to a realization at a given length scale depend on ns and nf .
Without loss of generality, the value ns = 1 is assigned to the
chromosome with longest wavelength referring to the coarsest
realization of a surface. In more details, denoting by ⌊·⌋ the
largest integer smaller than or equal to its argument, one has











ns = ⌊logγ

(

λ
L

)

⌋ + 1 ≥ 1 ,

nf = ⌊logγ

(

λ
δ

)

⌋ + 1 ,

nc = nf − ns + 1 = ⌊logγ

(

λ
δ

)

⌋ .

(4)

To visualize the concept of chromosome, a simple example is
presented in Figure 1. Here, two chromosomes are shown for
two different values of n (n = 1, 2). In both cases, the parent
M = 8 co-sinusoids are shown in Figures 1A,B through the
colored lines.

The chromosome C1(x) is assumed to have a wavelength
equal to the sample wavelength, i.e., λ1 = L = 100 µm.
This chromosome, depicted by a thick red line in Figure 1A,
is obtained by summing all the M = 8 co-sinusoids with the
associated value n = 1.

Frontiers in Mechanical Engineering | www.frontiersin.org 3 May 2020 | Volume 6 | Article 29141

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Cinat et al. Multi-Scale Surface Roughness Optimization

The chromosome C2(x), depicted by blue line in Figure 1B, is
obtained as the sum of all the M = 8 co-sinusoids with n = 2.
Then, since it is imposed γ = 1.5, the chromosome C2(x) has
λ2 =

λ1
1.5 = 66.6 µm.

Each of the two chromosomes in Figure 1 maintains a co-
sinusoidal shape with the same wavelength λn as the associated
parent co-sinusoids, and with a phase angle θ . Its height field in
Equation (2) can be also written as

Cn(x) = Gn

{

gn,1

[

1− cos

(

2π

λ
γ n−1x

)]

+ gn,2 sin

(

2π

λ
γ n−1x

)}

.

(5)

In Equation (5), the amplitude parameter Gn =

A

√

log10(γ )

M

(

2π
λ

)−H
γ−(n−1)H has been introduced, together

with the two constants gn,1 and gn,2, which depend on the phases
φm,n of the ridges with first indexm:

gn,1 =

M
∑

m=1

cos(φm,n), gn,2 =

M
∑

m=1

sin(φm,n). (6)

A feasible mathematical model of a chromosome might be one
in a form similar to that of the MWM function in Equation (1)
withM = 1 and a single value of n, obtained by introducing the
parameters Kn, θn,1, and θn,2:

Cn(x) = Kn

[

cos(θn,1)− cos

(

2π

λ
γ n−1x+ θn,2

)]

. (7)

A particular case of Equation (7) is when the angles θn,1 and θn,2
coincide, say, with the same θn. In such a case, a chromosome is
described exactly according to the MWM profile in Equation (1)
with M = 1 and a single value of n. The expressions of Kn, θn
in Equation (7) are obtained equating Equations (5) and (7), and
are given by







Kn = Gn

√

M+ 2gn,3 ,

θn = arccos

(

gn,1√
M+2gn,3

)

,
(8)

where the parameter gn,3 is defined as follows:

gn,3 =

M−1
∑

i=1

M
∑

j=i+1

cos
(

φj,n − φi,n

)

. (9)

For its validity, Equation (8) requires the argument of

arccos

(

gn,1√
M+2gn,3

)

to be between−1 and 1, i.e.,

∣

∣gn,1
∣

∣ ≤

∣

∣

∣

√

M+ 2gn,3

∣

∣

∣
. (10)

In the above, the additional conditionM+2gn,3 ≥ 0 has not been
imposed explicitly, since it always holds. Indeed, one can easily
check that M + 2gn,3 is the square of the Euclidean norm of the

FIGURE 2 | Percentage of validity of Equation (10) over 1,000 random choices

for the phases (uniformly and independently sampled between 0 and 2π ), for

each value of M. The red line depicts the average percentage of validity.

vector with components (
M
∑

i=1
cos

(

φi,n
)

,
M
∑

i=1
sin

(

φi,n
)

). Of course, this

norm is always larger than or equal to 0.
A numerical simulation has been conducted to verify the

validity of condition (10). This has been evaluated for several
values of M, considering each time 1,000 random choices
(uniformly and independently sampled between 0 and 2π) for the
phases. Figure 2 reports, for each such value ofM, the percentage
of cases for which Equation (10) is satisfied. Such percentage
ranges between 88.5 and 98%, with an average value of∼ 95%.

2.3. Roughness Reconstruction Over
Multiple Length Scales
The definition of chromosome allows the reconstruction of
profiles Z(x) over multiple approximate realizations of the
same surface. This can be done by limiting the summation in
Equation (3) to a subset of chromosomes Cn(x).

For both the stiffness-load curve K(p) and the area-load curve
A(p), only one subset of the chromosomes can be considered to
represent the main features of the contact mechanics response.
This is shown in Figure 3 for a representative example coming
from a fractured alloy interface (black line), considering both
the K(p) and A(p) evolutions. The red dashed line is the contact
mechanics response of the profile obtained by summing up
chromosomes that have a K(p) evolution with a correlation
coefficient larger than 0.95 with the complete K(p) one. Both
the K(p) and A(p) evolutions of this profile overlap significantly
with the ones corresponding to the complete profile, which is
obtained when all the chromosomes are taken into account in
the summation. This means that the interaction of chromosomes
composing only one part of the complete genome is sufficient
to approximate the stiffness-load curve K(p) well, as previously
deduced in Paggi and Barber (2011).

The selection of chromosomes outlined above is detailed in
Algorithm 1. From the genome of a surface, one obtains the
K(p) evolution of the profile described by Equation (1) (Step
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FIGURE 3 | Mechanical curve K(p) in (A) and A(p) in (B) for the alloy fractured profile in the one-dimensional case. The red line refers to the contact mechanics

response of the profile obtained summing up all the chromosomes with a correlation coefficient cn larger than 0.95 with the complete K(p) curve. In the legend, “seq”

stands for “sequenced,” and refers to the complete profile (the one identified from the whole set of genes).

1). The mechanical curves Kn(p) of all the nc chromosomes
composing the considered rough profile are iteratively extracted
using the BEM algorithm for the frictionless elastic normal
contact problem, which is solved via the Non-Negative Least
Squares method proposed in Bemporad and Paggi (2015) (Steps
2–7). The correlation coefficients cn between the extracted curves
and the one K(p) of the complete rough profile are calculated (see
Step 6). Only chromosomes with a correlation coefficient higher
than 0.95 are then retained in the final set Uc of chromosomes
(see Step 8).

3. GENETIC ALGORITHMS TO IDENTIFY
OPTIMAL PROFILES TO MATCH TARGET
CONTACT MECHANICS RESPONSES

The goal of this section is to illustrate methods aimed to design
a prototype profile able to achieve a target contact mechanics
response yt(ξ ) of a rough profile, where t stands for “target”.
This contact mechanics response depends on the specific needs of
the frictionless elastic normal contact problem and is discretized
using nt points, where nt is the number of far-field displacements
1 imposed to the frictionless elastic normal contact problem
(see Johnson, 2003; Bemporad and Paggi, 2015). This target
evolution yt(ξ ) can be, e.g., either the stiffness-load curve K(p)
or the contact area-displacement curve A(1). The unknown
rough profile Zt(x) to be identified is discretized using N = 512
nodes for a length L. Then, the values of ns and nf are defined
according to Equation (4). Here, without loss of generality and
for simplicity, it is imposed ns = 1 for each realization. The
frictionless elastic normal contact problem is solved in nt = 20
equi-spaced rigid body displacements from the topmost summit
of the considered profile to its deepest valley.

In the following, the variable ξ is taken as the contact pressure
p. Moreover, the gene Ai of a generic genome (indexed by i in

Algorithm 1 | Chromosome selection

Input: genome of a profile, ns, nf , number nt of far-field
displacements to be imposed in BEM
Output: Uc: set of chromosomes determining the K(p) evolution
of the profile

1: yr ← BEM results (K(p)) for the reference profile given by
the genome, ns, and nf

2: for all n = ns : nf do
3: for all j = 1 : nt do

4: y
j
n ← BEM results (K

j
n(p))

5: end for

6: cn ← corr. coeff.(yr , yn)
7: end for

8: Uc ← Cn(x) with cn > 0.95

the database) is rescaled to match a given pressure requirement,
p ≤ ptmax, as follows:

Ai ←
ptmax

pimax

Ai . (11)

The maximum pressure pimax is computed imposing a far-
field displacement equal to the original profile amplitude. In
such a way, the new profile shows a maximum pressure
ptmax if a far-field displacement equal to the peak-valley
amplitude is considered to solve the frictionless elastic normal
contact problem.

Three different methods to design the prototype profile are
proposed. All these methods start from a known database of
genomes. In the first case, a genome is selected that has the closest
contact mechanics response to yt among all the genomes in the
database. Its genes are then optimized to increase the similarity
with the target contact mechanics response. In the second case,
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two genomes are selected that match the target response in
different imposed ranges 1p. Then, these genomes are combined
using an optimized cross-over mechanism. The third and last
case is similar to the second one but, instead of the complete
genomes, two sets of chromosomes are mixed. These two sets
are contained in two genomes that match the target response in
different imposed ranges 1p.

3.1. Simple Optimization of Genes
In this section, the Simple Optimization of Genes (SOG)
genetic algorithm is presented. Genes to be optimized belong
to a genome producing a rough profile with a contact
mechanics response very similar to the target one. The following
similarity score

si = s(yt , yi) = 1−

∣

∣

∣

∣

∣

∣

∣

∣

yt(ξ )− yi(ξ )

yt(ξ )

∣

∣

∣

∣

∣

∣

∣

∣

∞

(12)

is defined to quantify how much the target contact mechanics
response, yt(ξ ), and the one yi(ξ ) associated with the parent
i-th rough profile, are similar. Here, ‖ · ‖∞ denotes the l∞-
norm, computed on the nt points used to discretize the contact
mechanics response. Due to Equation (12), the i-th curve
coincides with the target one when si = 1 holds. Otherwise, it
is close to the target one when si ≃ 1 holds.

The numerical steps performed to select the best profile from
the set of ND genomes in the given database are described in
Algorithm 2. The similarity score in Equation (12) is computed
for all the ND rough profiles available in the database, rescaled
according to Equation (11) (Step 2). The contact mechanics
response yi(ξ ) is computed via BEM, considering nt different far-
field displacements, from 0 to the new profile amplitude (Steps
3–5). Finally, si = s(yt , yi) in Equation (12) is computed (Step 6).

Algorithm 2 | Similarity score extraction from a database of
genomes

Input: target contact mechanics response yt , database of ND

genomes (genes, pimax, nt)
Output: si(yt , yi) with i ∈ {1, . . . ,ND}

1: for all i = 1 :ND do

2: Ai ← Eq. (11)
3: for all j = 1 : nt do

4: y
j
i ← BEM results at 1

j
i

5: end for

6: si ← Eq. (12)
7: end for

Genes belonging to the three genomes with the three largest
associated values of s(yt , yi) are now optimized using the
Globally Convergent Method of Moving Asymptotes (GCMMA)
(Svanberg, 2002). This is an iterative optimization algorithm,
which is often used in optimal design for mechanical problems
(see Bacigalupo et al., 2016, 2017 for some of its recent
applications to band gap optimization). The GCMMA algorithm
replaces a nonlinearly constrained optimization problem by a
sequence of approximating nonlinearly constrained optimization

subproblems, which are simpler to solve. In the work, the
objective function has been chosen to be the square of the
similarity score, i.e., s2(yt , yi), in order to increase its smoothness.
The GCMMA iterative solution is obtained after a number nit of
steps, starting from an initial choice for the vector of optimization
variables. In the case of the SOG, this initial choice is provided
by Algorithm 2, which provides an initial value of the similarity
score close to 1. In such a way, there is no risk to get a negative
similarity score by locally maximizing its square.

To save CPU time, the number of variables in the optimization
problem is limited as follows. The genes H, λ, and γ

determine the frequency spectrum, i.e., the interaction among
different length scales. Therefore, they are not varied during
the optimization, but fixed to their original values. The gene
A is varied at each optimization step to satisfy the pressure
requirement, according to Equation (11). So, only the phases φm,n

are considered as optimization variables. In the optimization,
their values are constrained in the range between ∓10%
of their initial values, to preserve the main features of the
original chromosomes. Moreover, only the phase genes φm,n

of chromosomes that determine the main features of the K(p)
response are considered. Such genes are selected according to
Algorithm 1.

Finally, the SOG algorithm is summarized in Algorithm 3.
Starting with a profile scouting from the available database (Step
1), the three profiles whose contact mechanics responses are most
similar to the target yt are chosen (Step 2). The genes of each
such genome are then optimized using the GCMMA algorithm
(Steps 3–6), limiting the optimization variables only to the
chromosomes determining the main features of the target yt , as
determined by Algorithm 2. The resulting optimized genomes are
denoted by Û i

1. Finally, among such genomes, the new genome
is chosen as the one with the best (square of the) similarity
score with respect to the target response (Step 7). In this last
step, argmax(fi)i=1,...,n1 denotes the index i associated with the
largest fi.

Algorithm 3 | Simple Optimization of Genes (SOG)

Input: target contact mechanics response yt , genome database
Output: new genome USOG with contact mechanics response
close to yt

1: s from Alg. 2
2: U1 ← the three genomes with the three largest similarity

scores (Eq. 12)
3: for all i = 1 : n1 do (n1 = card(U1))
4: U i

c ← Alg. 1 applied to U i
1

5: fi ← s(yt , yi), Û
i
1, both from GCMAA(U i

c)
6: end for

7: USOG ← Û
argmax(fi)i=1,...,n1
1

3.2. Genome Cross-Over
In this section, the Genome Cross-Over (GCO) genetic algorithm
is presented. In this method, different pairs of genomes are
mixed, to obtain a new genome matching the target response
yt(ξ ). The best pair of genomes is chosen in relation to
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FIGURE 4 | A generic profile y1(p) approximates the target response yt (p)

[here, K(p)] accurately under a certain level of pressure p̄. At the opposite,

another profile y2(p) provides a good approximation of yt (p) only above p̄.

their similarity scores in two specific ranges of the target
response yt(ξ ).

This concept is explained through Figure 4, where a target
response yt(p) is shown by the red line. For the sake of
explanation, two curves y1(p) (dashed black line) and y2(p)
(dashed dot blue line) have been manually generated, which have
a similarity score with respect to yt(p) equal to s1 ≃ 0.89 and
s2 ≃ 0.88, respectively.

However, the curves y1(p) and y2(p) describe quite accurately
the curve yt(p) in different ranges of pressures, if a suitable
threshold pressure p̄ is defined. The value of p̄ can be chosen
arbitrarily, or might be imposed by the particular problem
formulation. In the specific case shown in the figure, in the
interval [0, p̄], the curve y1 represents with good accuracy yt
[s1(yt , y1) ≃ 0.97]. The same happens in the interval [p̄, ptmax]
for the curve y2 [s2(yt , y1) ≃ 0.99].

Then, it is reasonable to expect that a new profile obtained
by combining the two genomes associated with y1 and y2,
respectively, should provide a contact mechanics response closer
to yt over the whole range of pressures. However, mixing
these two genomes may also lead to a very different roughness
organization. For this reason, the GCO iterative scheme checks if
the new genome, obtained by mixing the genome of y1 and the
one of y2, is able to represent accurately yt over the whole range
of pressures, before using the GCMMA algorithm to increase the
value of the similarity score.

The GCO structure is presented in Algorithm 4. According to
the value of p̄, two different sets U1 and U2 are identified from
the database of genomes (Steps 1–2). The first set U1 contains
the genomes with a value of the similarity score (Equation 12)
larger than 0.95 in the interval [0, p̄] (Step 3). The second set
U2 contains the genomes with a value of the similarity score

(Equation 12) larger than 0.95 in the interval [p̄, ptmax] (Step
4). All possible combinations of genomes from the two sets
above are now considered, defining the set U3 (Step 5–11). A
new genome corresponds to each of these combinations, whose
gene A is rescaled according to Equation (11) (Step 8). Then,
the value of the similarity score (Equation 12) is computed
with respect to the target response (Step 9). The three new
genomes showing the three largest values of the similarity score
are used as inputs to the GCMMA algorithm, defining the set
U4 (Step 12). Also in this case, the number of genes to be
optimized is limited, considering only the phases φm,n associated
with the chromosomes that determine the main features of the
K(p) evolution of the parent curve (see Algorithm 1). The new
genomeUGCO with the maximum value of the similarity is finally
identified (Step 17).

3.3. Chromosomes Cross-Over
In this section, the Chromosomes Cross-Over (CCO) genetic
algorithm is presented. We recall that, as observed in section 2,
the main features of the contact mechanics response of a rough
profile are determined by specific chromosomes of the genomes.
This subdivision allows the introduction of a chromosomes
selection step to reduce the number of variables to be optimized
using the GCMMA algorithm, as presented before for the SOG
(section 3.1) and the GCO (section 3.2).

In the CCOmethod, only chromosomes determining themain
features of the contact mechanics responses of two different

Algorithm 4 | Genome Cross-Over (GCO)

Input: target contact mechanics response yt , genome database,
threshold pressure p̄
Output: new genome UGCO with contact mechanics response
close to yt

1: s(1) from Alg. 2, with similarity score computed in the
interval [0, p̄]

2: s(2) from Alg. 2, with similarity score computed in the
interval [p̄, ptmax]

3: U1 ← genomes with s
(1)
i > 0.95

4: U2 ← genomes with s
(2)
i > 0.95

5: for all i1 = 1 : n1 do (n1 = card(U1))
6: for all i2 = 1 : n2 do (n2 = card(U2))

7: U
(i1 ,i2)
3 ← U i1

1 + U i2
2

8: U
(i1 ,i2)
3 rescaled according to Eq. (11)

9: s(i1, i2)← s(yt , y(i1 ,i2)) from Eq. (12) applied

to U
(i1 ,i2)
3

10: end for

11: end for

12: U4 ← the three genomes in U3 with the three largest
similarity scores (obtained from s)

13: for all i = 1 : n4 do (n4 = card(U4))
14: U i

c ← Alg. 1 applied to U i
4

15: fi ← s(yt , yi), Û
i
4, both from GCMAA(U i

c)
16: end for

17: UGCO← Û
argmax(fi)i=1,...,n4
4
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genomes are mixed to match the target response yt . These two
sets of chromosomes come from genomes that have the largest
values of the similarity score in specific ranges of the target
response yt , as done for the GCO method (see section 3.2).
Then, in this case the GCMMA is applied to the complete set
of chromosomes composing this new genomes, since they all
determine its mechanical evolution.

The CCO iterative scheme is summarized in Algorithm 5.
According to the value of the threshold pressure p̄, two different
sets U1 and U2 of reduced genomes are identified, starting from
the given database (Steps 1–2). The first set U1 is obtained as
follows. First, one generates a subset of genomes that show a
value of the similarity score (Equation 12) larger than 0.95 in the
interval [0, p̄] (Step 3). Then, these genomes are reduced, limiting
to those chromosomes that affect theK(p) evolution significantly.
Such chromosomes are selected according to Algorithm 1. The
resulting reduced genomes form the set U1. The second set U2

is obtained in a similar way as U1, but computing the similarity
score in the interval [p̄, ptmax] (Step 4). All possible combinations
of these reduced genomes from the two sets above are now
considered, defining the set U3 (Steps 5–11). A new genome
corresponds to each of these combinations. Its amplitude gene
A is rescaled according to Equation (11), to match the pressure
requirement (Step 8). Then, the value of the similarity score
(Equation 12) is computed with respect to the target response
(Step 9). The three new genomes showing the three largest
values of the similarity score are used as inputs to the GCMMA
algorithm, defining the set U4 (Step 12). Only in the case of
the CCO algorithm, the GCMMA algorithm is applied to all the
genes of this new genome, as the size of the optimization problem
has been already reduced in Steps 3–4. The new genome UCCO

with the maximum obtained value of the similarity score is finally
identified (Step 16).

4. OPTIMAL GENOME TO MATCH A
SPECIFIED CONTACT MECHANICS
RESPONSE

In this section, the genetic algorithms described in section 3
are compared in their application to a representative example.
Before doing that, the characteristics of the numerical genome
database considered in the paper are reported. Then, the set-
up of the numerical experiment proposed is introduced. Finally,
the related results are discussed, focusing the attention on the
characterization of the so-obtained new genomes.

4.1. Database of Genomes
A database of genomes is needed to apply all the genetic
algorithms proposed in the paper. In the following, a small
database is generated numerically, to show a representative
example of this approach. To generate the database, the
amplitude parameter is fixed toA = 1, and the main wavelength
is put equal to λ = 849.42 µm.

The number of ridges is set to M = 1, to save computational
time. This particular case corresponds to chromosomes described
according to Equation (7) with θn,1 = θn,2 = θn. As discussed

Algorithm 5 | Chromosomes Cross-Over (CCO)

Input: target contact mechanics response yt , genome database,
threshold pressure p̄
Output: new genome UCCO with contact mechanics response
close to yt

1: s(1) from Alg. 2, with similarity score computed in the
interval [0, p̄]

2: s(2) from Alg. 2, with similarity score computed in the
interval [p̄, ptmax]

3: U1 ← Cn(x) from Alg. 1, for those genomes with s
(1)
i > 0.95

4: U2 ← Cn(x) from Alg. 1, for those genomes with s
(2)
i > 0.95

5: for all i1 = 1 : n1 do (n1 = card(U1))
6: for all i2 = 1 : n2 do (n2 = card(U2))

7: U
(i1 ,i2)
3 ← U i1

1 + U i2
2

8: U
(i1 ,i2)
3 rescaled according to Eq. (11)

9: s(i1, i2)← s(yt , y(i1 ,i2)) from Eq. (12) applied to

U
(i1 ,i2)
3

10: end for

11: end for

12: U4 ← the three genomes in U3 with the three largest
similarity scores (obtained from s)

13: for all i = 1 : n4 do (n4 = card(U4))
14: fi ← s(yt , yi), Û

i
4, both from GCMAA(U i

4)
15: end for

16: UCCO← Û
argmax(fi)i=1,...,n4
4

in section 2, this can be considered as representative of several
situations for a rough profile. Each profileZi(x) is then discretized
using N = 512 nodes. The elastic modulus is imposed to be
equal to E = 1MPa. Furthermore, nh = 20 different pairs of
values forH and γ are considered. They are generated according
to a Sobol’ sequence (Niederreiter, 1992) (see Figure 5A), with
H ranging between 0.5 and 1.5, and γ between 1.4 and 2.
The value of γ is chosen in such a way to keep small the
number of frequencies composing the profile spectrum (see
Equation 4), thus limiting the computational costs. Also the
phase matrix 8 is generated according to a Sobol’ sequence.
This matrix is made of nφ = 5 columns, corresponding to 5
choices for the set of phases. The number of rows is equal to
the maximum possible number of phases for these choices of the
parameters. According to Equation (4), such number is obtained
in correspondence of the smallest value of γ . Then, ND = nhnφ

rough profiles Zi(x) are generated, combining each pair (H, γ ) to
each column of8, considering only the number of values needed
for the phases.

4.2. Set-Up of the Numerical Experiment
In Figure 6, the contact mechanics response yt = K(p) is
depicted through the black line. All the values are considered
independent from E, as this is equal to unity. Also the K(p)
responses of all the genomes in the generated database are
visualized in Figure 6. The target contact mechanics response
yt has been generated manually, and has a trend similar to
the ones belonging to the database. The maximum pressure
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FIGURE 5 | Genome database: (A) enumeration of all the pairs H and γ generated. (B) First thirteen elements of the first three columns of the matrix 8 (M = 1),

which are common to each combination. A larger number of phases is considered for smaller values of γ (i.e., for γ < 1.6).

FIGURE 6 | (A) Target curve yt = K(p) along with all the corresponding curves associated with the genomes in the generated database; (B) all A(p) curves associated

with those genomes.

reachable is imposed to be ptmax = 1.6× 10−4N/m. This value
is larger than the ones of all the genomes in the database
considering, for each profile, a far-field displacement equal to the
profile amplitude.

For each algorithm, the stage just preceding the application
of the GCMMA algorithm is referred to as “GCMMA (0).”
For the SOG, it corresponds to the selection of the three best
values obtained from the scouting of the database (Step 2 in
Algorithm 3). For both the GCO and the CCO algorithms, it
corresponds to the computation of the similarity scores of the
new genomes determined after the cross-over (Step 12 in both
Algorithms 4 and 5). For the SOG, the GCMMA algorithm
is applied with nit = 5, while for the GCO and CCO, only
with nit = 3. The output of this optimization step is denoted

by “GCMMA (1).” These different choices for nit are made
in order to have comparable computational times of about 1
minute. In such a way, it is possible to observe variations
in the results in a sufficiently small time, enabling in-line
control as a possible successive step. Moreover, in the numerical
experiment, for the SOG and GCO algorithms, the GCMMA
is also applied in a second optimization step, whose output is
denoted as “GCMMA (2),” using nit = 2 iterations. In this
case, the genes to be optimized are the ones referred to the
chromosomes excluded in the selection step (see Algorithm 1).
For the CCO, this second step cannot be applied since these
chromosomes are excluded in the first part of the algorithm
(Steps 1–4 in Algorithm 5). However, to make the notation
uniform for the three algorithms, a fictitious “GCMMA (2)”
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output is introduced for the CCO, by duplicating the results of
“GCMMA (1).”

4.3. Numerical Results
The values of the similarity score s given by Equation (12) for the
genomes obtained by combination and optimization using the
SOG, GCO, and CCO algorithms are reported in Figure 7. The
threshold pressure used for both the GCO and CCO is set equal
to p̄ = 0.08 [1/mm]. For each algorithm, solutions at different
stages are reported in the figure. The first ones correspond
to the three best solutions obtained in the first stage of each
algorithm, before the application of the GCMMA (such solutions
are represented in the figure by the triangle, circle, and cross, in
increasing order). The figure shows that all the algorithms are
quite efficient in matching the target contact mechanics response,
achieving large values for the similarity score. The application of
the GCMMA is beneficial for all the algorithms. However, the

FIGURE 7 | For the outputs of the SOG, GCO, and CCO algorithms, values of

the similarity scores with respect to the target curve yt. The threshold pressure

is p̄ = 0.08 for both the GCO and CCO.

GCO and CCO algorithms might provide even better solutions
by varying the threshold pressure p̄.

4.4. Effect of the Threshold Pressure p̄
A threshold pressure p̄ has been introduced for the GCO and the
CCO, to select individual genomes able to approximate locally
the target curve with a good accuracy. Additional simulations
have been made, to assess the sensitivity of the results with
respect to such a parameter. Both the GCO and CCO algorithms
have been applied with different values of p̄. Such values have
been chosen between 0.5× 10−4N/m and 1.1× 10−4N/m. A
significant variation on the maximum value of the similarity
score is observed for the GCO algorithm (see Figure 8A). On
the contrary, the CCO algorithm seems to be not affected by
the value of p̄, and the new genomes obtained by that algorithm
are composed by the same starting genomes, independently of
the threshold pressure p̄. This may be due to the fact that
our investigation has been conducted starting from a small
database of genomes. In Figure 8B, the cardinality of the set
U3 is presented, for both the GCO and CCO algorithms. This
set contains the new genomes obtained after the cross-over
of genomes/chromosomes. The white part indicates, for both
algorithms, the number of genomes whose value of the similarity
score with respect to the target curve yt is larger than 0.95. The
cardinality of the setU3 varies significantly with p̄, and is the same
for both algorithms. Nevertheless, the GCO algorithm is more
efficient in terms of the obtained similarity with the target curve.

4.5. Description of the Optimized Genomes
Representing yt
The best three new genomes obtained at the end of the three
algorithms presented in this paper have contact mechanics
responses overlapping significantly with the target curve (see
Figure 9A). However, the three genomes present different
evolutions of the bearing area, as depicted in Figure 9B. Only the
A(p) curves obtained by the SOG and GCO are similar. This may
be due to the fact that, in the case of the CCO, high-frequency

FIGURE 8 | Sensitivity of the GCO and CCO outputs with respect to p̄: (A) best similarity scores obtained for each algorithm. (B) Cardinality of the set U3 which

contains the new genomes obtained just before the application of the GCMMA, i.e., at the stage “GCMMA (0)” in Figure 7.
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FIGURE 9 | Mechanical behavior of the best rough profiles (see Figure 10), that approximate the target curve yt: (A) contact stiffness versus contact pressure; (B)

real contact area versus contact pressure.

FIGURE 10 | Topography of the best rough profiles approximating the target curve yt (see Figure 9).

features of the rough profile might have been neglected. This is
clear from Figures 10, 11.

The topography of these rough profiles is presented in
Figure 10. The profiles obtained by the SOG, GCO, and CCO
algorithms are depicted, respectively, through a black dash dot-
line, a red dashed line, and a blue continuous line. All these
profiles have very similar geometrical features, regarding the
locations of peaks and valleys. Moreover, it is interesting to
notice that the profile provided by the CCO algorithm is a good
approximation of the profile given by the GCO algorithm, which
presents more high-frequency features.

To conclude, the discrete Power Spectral Density (PSD) P(ω)
of the new obtained genomes is shown in Figure 11, and is
represented by markers in both sub-figures. For each case, the
continuous PSD function, which is obtained through the Fast
Fourier Transform (FFT) filtering (Berry and Lewis, 1980), is
shown by a continuous line. For the SOG (see Figure 11A), the
peaks of the continuous PSD function match the discrete one
accurately for high frequencies. No good matching is found for
low frequencies. The same remark holds for the case of the GCO

(see Figure 11B). Here, the spectrum is more dense and, only
for high frequencies, peaks of the continuous PSD function are
located in the same positions of the genome. For both the SOG
and the GCO, a consistent difference in the amplitude of P(ω) is
found. Finally, the spectrum of the profile obtained by the CCO
is composed by a small set of frequencies. The high-frequency
part of the PSD is flat. In this case, the discrete power spectral
density is nearly proportional to the one of the SOG in the low-
frequency range. Since the GCO approximation of the target
curve is obtained using a smaller set of chromosomes, it can
be easily controlled for the case of in-line control of the rough
profile morphology. However, in this case, the PSD is almost
flat, and some peaks are found in frequencies where there are no
genome components.

5. CONCLUSION

The main goal of this work was to provide a mathematical and
computational methodology to identify new surface topologies
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FIGURE 11 | Power spectral density of the obtained new genomes, whose associated profiles are shown in Figure 10: (A) case of the SOG algorithm; (B) case of the

GCO algorithm; (C) case of the CCO algorithm.

with given target contact mechanics responses, based on a
multi-scale characterization of roughness. This was described
by a superposition of a finite set of successive length scales
of roughness, where each scale is associated with a particular
form of the MWM function, named chromosome. Based on
this representation, three genetic algorithms were proposed to
combine profiles and identify the best one which meets the given
target contact mechanics response.

The first genetic algorithm (Simple Optimization of Genes,
SOG) optimizes the genes of a known genome. Embedded in
the SOG, an iterative optimization algorithm (the GCMMA)
was used to increase the similarity with the target contact
mechanics response. To save computational time, optimization
was performed only with respect to the dominant chromosomes
of the genome, i.e., the ones for which the correlation coefficient
between the associated contact mechanics response and the target
one is above a given threshold.

The second genetic algorithm (Genome Cross-Over,
GCO) crosses-over two different genomes that show a high
similarity with respect to the target response in two given
intervals determined by a threshold pressure p̄. Also in this
case, only dominant chromosomes were optimized to save
computation time.

The third genetic algorithm (Chromosomes Cross-Over,
CCO) consists in a cross-over of chromosomes that provide
the main features of the contact mechanics responses of two
genomes that well approximate the target curve in two reference
intervals determined by the threshold pressure p̄. In this case,
GCMMA was applied to the complete new genome, since the
number of optimization variables is smaller than for the other
two approaches.

The three genetic algorithms proposed in this work generated
profiles that almost fully reproduce the given K(p) curve, when
this is chosen as the target contact mechanics response. Also, they

have in common similar features regarding their topography,
such as the locations of peaks and valleys. This characterization
might be caused by the fact that a limited number of genomes
was present in the database used for the numerical experiment
reported in the paper. A much wider set of profile topologies
is expected to be obtained by exploiting a significantly larger
database, facilitating the discovery of optimal patterns/textures,
based on the specific needs. Also, the investigation can be
extended to all the genomes that provide a good approximation
of the target curve, in order to identify some geometrical features
that drive the elastic response of a rough profile. Once identified,
these features can be taken into account in the optimization by
adding specific chromosomes, to be controlled in the case of
in-line profile morphing.

Finally, the authors would like to remark that the proposed
approaches could be extended to the two-dimensional case,
although this is expected to require a larger computational
effort. Moreover, the use of micromechanical contact theories
such as those compared in Zavarise et al. (2007) and Paggi
and Ciavarella (2010) could be another interesting research
direction. For instance, one could assume not to have
the surface height field at all, but only a set of relevant
statistical parameter inputs of micromechanical contact theories.
In such a context, the search for the optimal topology
to match a prescribed contact response would reduce to
the identification of the statistical parameters based on the
combination of the initial dataset and of the proposed
genetic algorithms.
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Artificial Neural Network Architecture
for Prediction of Contact Mechanical
Response
Kalle Kalliorinne1*, Roland Larsson1, Francesc Pérez-Ràfols1, Marcus Liwicki 2 and
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Predicting the contact mechanical response for various types of surfaces is and has long
been a subject, where many researchers have made valuable contributions. This is
because the surface topography has a tremendous impact on the tribological
performance of many applications. The contact mechanics problem can be solved in
many ways, with less accurate but fast asperity-based models on one end to highly
accurate but not as fast rigorous numerical methods on the other. A mathematical model
as fast as an asperity-based, yet as accurate as a rigorous numerical method is, of course,
preferred. Artificial neural network (ANN)–based models are fast and can be trained to
interpret how in- and output of processes are correlated. Herein, 1,536 surface
topographies are generated with different properties, corresponding to three height
probability density and two power spectrum functions, for which, the areal roughness
parameters are calculated. A numerical contact mechanics approach was employed to
obtain the response for each of the 1,536 surface topographies, and this was done using
four different values of the hardness per surface and for a range of loads. From the results,
14 in situ areal roughness parameters and six contact mechanical parameters were
calculated. The load, the hardness, and the areal roughness parameters for the original
surfaces were assembled as input to a training set, and the in situ areal roughness
parameters and the contact mechanical parameters were used as output. A suitable
architecture for the ANN was developed and the training set was used to optimize its
parameters. The prediction accuracy of the ANN was validated on a test set containing
specimens not seen during training. The result is a quickly executing ANN, that given a
surface topography represented by areal roughness parameters, can predict the contact
mechanical response with reasonable accuracy. The most important contact mechanical
parameters, that is, the real area of contact, the average interfacial separation, and the
contact stiffness can in fact be predicted with high accuracy. As the model is only trained
on six different combinations of height probability density and power spectrum functions,
one can say that an output should only be trusted if the input surface can be represented
with one of these.

Keywords: artificial neural networks, contact mechanics, surface roughness, average interfacial separation, real
area of contact
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1 INTRODUCTION

Surface topography plays an extremely important role in
processes such as wear, friction, lubrication, sealing, contact
resistance, and heat conduction. This is due to that the
roughness causes local contacts between the surfaces, as in
mixed lubrication, thus governing how the surface deforms
and behaves in contact and defining the boundary friction and
the real area of contact. The surface topography may be
characterized by a number of areal roughness parameters
defined in ISO 25178, see ISO Central Secretary (2012). These
parameters have, however, limited correlation to the real area of
contact, as well as to friction and wear processes, especially if only
a few out of the complete set of field parameters are considered.

By using computational contact mechanics, we can estimate
the real area of contact for a surface with given topography and
also show how the areal roughness parameters change inside the
contact. Notice that, an accurate and reliable result requires a
highly resolved surface topography measurement. Thereby, the
mesh considered in the numerical solution procedure will have to
be of equal resolution, which, in turn, increases the computational
time significantly. From an engineering point of view, a non-
iterative model that swiftly yields relatively exact predictions of
contact mechanics parameters, such as the real area of contact,
would therefore be highly desired.

The Greenwood and Williamson (GW) theory (Greenwood
andWilliamson, 1966; Greenwood and Tripp, 1970) has been and
still is very frequently used. Note that it was Archard (1957) who
laid the foundation for most of the (multi)asperity-based type of
models known of today (Nayak, 1971; Onions and Archard, 1973;
Bush et al., 1975; Bush et al., 1979; Carbone, 2009; Greenwood
et al., 2011). The Persson contact mechanics theory (Persson,
2006; Yang and Persson, 2008) is also a frequently used tool.
Although being highly useful models that provide insight and
yield rapid predictions, they are based on assumptions, making
them not always very accurate. The GW theory assumes that the
asperities at the surfaces exhibit Gaussian probability
distributions. The asperities are also assumed to deform
independently of each other which leads to that GW theory is
applicable only when the contact area is small (compared with the
nominal contact area). Persson’s theory assumes that the surfaces
exhibit Gaussian height probability distributions and it considers
interasperity coupling. Although Persson’s theory might not be
very accurate for small real area of contact, it applies well to study
the complete contact (see e.g. (Almqvist et al., 2011)). The study
by Müser et al. (2017) summarizes findings obtained with various
kinds of models, including asperity-based ones and Persson’s
theory. Moreover, results from numerical brute force methods,
all-atoms–based models, and experiments were presented as well.
It was concluded that 1) rigorous numerical brute force
approaches yield almost identical results on all properties, 2)
Persson’s theory, all-atom simulations, and experiments could be
used to identify the correct trends, and almost exact numbers for
some properties, and 3) asperity models predicted the real area of
contact rather well and provided alternative interpretations for
other properties. It would be very useful if it was possible to obtain
a mathematical model for fast calculation, which is as accurate as

the rigorous models are, when predicting contact mechanics
parameters such as real area of contact.

The ideal situation would be to describe surface topography by
its height probability distribution and its power spectrum, which
constitute the complete description. However, this complicates
the analysis, and if a subset of the areal roughness parameters ISO
Central Secretary (2012) would be sufficient, it would facilitate
the analysis tremendously. In this study, we will present an
artificial neural network (ANN)–based model. This model acts
as a transfer function, taking areal roughness parameters as input
and predicts the real area of contact and other contact mechanics
parameters. A similar ANN-based approach has been used in
contact mechanics before (see (Rapetto et al., 2009)). Other
examples where ANN-based approaches have been used in
tribology are Nasir et al. (2010), Nirmal (2010), Ćirović et al.
(2012), and Moder et al. (2018). If an ANN, which executes much
faster than a computational contact mechanics approach, is well
designed, trained, and tested, it can thus provide reasonably
accurate predictions of tribological performance parameters
very rapidly.

The idea with the present work is to generate thousands of
surfaces by means of the method developed by Pérez-Ràfols and
Almqvist (2019), and to compute parameters, such as the real area
of contact and areal roughness parameters when these surfaces
are pressed into contact with a flat rigid counter surface. To this
end, we will use the computational contact mechanics approach
presented by Almqvist et al.( 2007), which was further developed
by Sahlin et al. (2010).

The ANN is trained to find the relationship between the
surfaces’ original, the in-contact, that is, in situ areal
roughness parameters and the contact mechanics parameters,
for a range of loads, spanning from no load at all to a load that
causes nearly as much as 50% real area of contact.

2 METHODS

This section presents, in a workflow order, the implementation of
the ANN. It starts with describing surface topography generation,
followed by preprocessing and a brief description of the contact
mechanics approach adopted, and it ends with a presentation of
the architecture of artificial neural network that was developed
herein.

2.1 Surface Topography Generation
Training neural networks requires large data sets. Therefore, it is
necessary to generate a wide range of different surface
topographies. The surface randomization algorithm developed
by Pérez-Ràfols and Almqvist (2019) was employed to randomly
generate 2,022 surfaces topographies with given height
probability distribution (HPD) and a power spectrum (PS).
The HPD and PS can be mathematically modeled by classical
distribution and spectrum functions, but they may also be
obtained (and adapted) from measured surface topographies.
In this work, mathematical models for Gaussian, bi-Gaussian
and Weibull functions, and self-affine and exponential PS
functions were used. The reader is referred to Pérez-Ràfols
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and Almqvist (2019) for a precise description of these HPD and
PS. A surface topography generation selection scheme is depicted
in Figure 1, where one type of HPD and PS is selected together
with the corresponding shape-defining parameters, that is, c, k,H,
β, α, q0, and q1. Remark that the HPDs are defined with zero mean
value and unit standard deviation. With these constrains, the
Gaussian HPD requires no input, while the bi-Gaussian and the
Weibull distributions may be defined using one parameter, that is,
c and k, respectively. Specifying the PS requires four parameters,
that is, the Hurst exponentH for the self-affine and the parameter
β, which defines the autocorrelation length 1/β, for the
exponential function, plus α for the anisotropy and the wave
numbers (q0, q1) that specify the frequency bandwidth. A 256 ×
256 mesh was considered affordable for the grand total of 7,602
elastoplastic contact mechanics simulations performed. Themesh
limits the choice of the high frequency cutoff, and in order to
resolve the shortest wavelength with at least eight nodes, it was
chosen as q1 � 32 (in terms of its wave number). This parameter
was also kept constant when generating the sets of surfaces for
training, testing, and validation. Thus, each surface is generated
based on a pair of HPD and PS functions and five corresponding
numerical parameters, except for the Gaussian which needs four.

Figure 2 shows an example of a generated surface, using the
bi-Gaussian HPD model and the self-affine PS model. The
corresponding parameter settings are displayed to the right.

The parameter space for the surface dataset used for training
was defined by four equidistantly spaced values for each of the
seven parameters (q1 was kept constant). In this way, a wide and

dense dataset range was obtained. A surface dataset for testing is
also needed, and it is important that it is different from, but still
within, the same parameter space as the training set. Notice that
the validation set is a subset of the training set. The training and
test sets, for a pair of parameters (k and H), are schematically
illustrated in Figure 3. As the figure shows, the parameters in the
test set are shifted a half step to be placed in the void of the
training set. This ensures that the test set is located at the
maximum Euclidean distance to the training set. The
parameter space for the training range is specified in the table
shown to the right in the figure. The training set contains 1,536
unique surfaces and the test set contains 486 unique surfaces.
From the training set, 20% of the surfaces are transferred to a
validation set, which is used to detect overfitting during training.

2.2 Preprocessing and Contact Mechanics
The areal roughness parameters inTable 1 are calculated for all of
the 2,022 surfaces, which are made dimensionless by scaling to
exhibit unit rms roughness, that is, Sq � 1. This is done, in
connection with the non-dimensionalization of the contact

FIGURE 1 | Surface topography generation scheme.

FIGURE 2 | A randomized surface, generated by following the scheme in
Figure 1, using the settings presented to the right.

FIGURE 3 | The parameter space for the • Training-/⁃Validation set and
+ Test set, illustrating how the + Test set was positioned in the voids of the •
Training-/⁃Validation set.
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mechanics model Almqvist and Pérez-Ràfols (2019), to increase
the applicability of the ANN. The areal roughness parameters are,
in fact, also calculated for the scaled surfaces in situ, that is, as the
surfaces are loaded against a flat counter surface for a range of
loads, spanning from no load at all to a load that causes up to 50%
real area of contact. The loading sequence was defined in terms of
the dimensionless nominal contact pressure pc, and the contact
mechanics simulations were performed using the method
presented by Almqvist et al. (2007); Sahlin et al. (2010) and
the then utilized by Almqvist et al. (2011), Spencer et al. (2011),
Spencer et al. (2013), Pérez-Ràfols et al. (2016), and Pérez-Ràfols
et al. (2018).

The dimensionless areal roughness parameters (for the scaled
surfaces) in Table 1 are calculated according to ISO Central
Secretary (2012). They are grouped as parameters of field type
and of Bearing Area Curve (BAC) type. These parameters are the
input for the ANN described in Section 2.3, with architecture
illustrated in Figure 4. For more details on how to calculate the
areal roughness parameters according to the standard, see
Blateyron (2013). As a result of the contact mechanics
simulations, the surfaces may be plastically deformed, and it is
the hardness pp that limits the maximum pressure the surface can
exhibit before it yields plastically. Therefore, four equidistantly
spaced values for pp in the range [20, 100] were used for the
training set and three different values were chosen for the test set,
in the same way as described for H and k in Figure 3. Thereby,
there are in total 7,602 contact mechanics calculations performed.
Out of these, 6,144 were used to train the ANN and 1,458 were
used for testing.

The output from the contact mechanics calculations are the in
situ, areal roughness parameters, and the six contact mechanics
parameters in Table 2. These are the real area of contact to
nominal contact area ratio Ar � Ae + Ap, the elastic- Ae and
plastic contributions Ap to it, the dimensionless maximum

contact pressure pmax � pmax/E, the dimensionless average
interfacial separation u � u/hr , and the dimensionless contact
stiffness K � Khr/E.

2.3 The Artificial Neural Network
Here, the ANN architecture depicted in Figure 4, which is
engineered to predict the contact mechanical response of
surfaces represented by the areal roughness parameters (given
in Table 1), will be described. The areal roughness parameters in
Table 1 and the dimensionless hardness pp are used as input for
the ANN and it outputs the corresponding, in situ, areal
roughness parameters and the six contact mechanics
parameters in Table 2. As emphasized with double borders in
Figure 4, the ANN consists of five subnetworks. These all have
four fully connected layers, but a different amount of neurons per
layer. The arrows with continuous lines indicate connections that
are fully connected with weights, whereas arrows with dashed
lines indicate just passing the data from one part of the network to
another. A regular MSE loss function was adopted for the training
procedure.

The first subnetwork(1), with 64 neurons, has rectifier (ReLU)
activation functions (f (x) � max(0, x)), and it takes the 14 areal
roughness parameters in Table 1 and the value of the hardness as
input. The purpose of this network is to process the areal
roughness parameters, without the influence of the contact
pressure, to extract suitable input for the second subnetwork(2)

with 128 neurons. This subnetwork has sigmoid activation
functions (f (x) � 1/(1 + e− x)), and it is fully connected to the
14 areal roughness parameters, the hardness, the dimensionless
contact pressure, and the output of the first subnetwork.

The input to the first and second subnetworks and their
output are assembled into one vector with 64 values. This
vector is the input to each of the three parallel
subnetworks(3)–(5), which have softplus (smooth rectifying)

TABLE 1 | Areal roughness parameters calculated according to ISO Central
Secretary (2012).

Field type Sa Sq Ssk Sku Sdq

BAC type Sk Spk Svk Smr1 Smr2 Vmp Vmc Vvv Vvc

FIGURE 4 | Multitask neural network architecture, with pc and the 14 original areal roughness parameters as input and with the 14 in situ areal roughness
parameters and six the contact mechanics parameters as output.

TABLE 2 | Contact mechanics parameters.

Ar Ae Ap pmax u K
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activation functions (f (x) � ln(1 + ex)) and 256 nodes each. As
mentioned previously, the purpose of the ANN is to predict the
14 in situ areal roughness parameters as well as the six contact
mechanics parameters in Table 2. To this end, each of the three
parallel subnetworks output parameters grouped by its origin,
that is, the five in situ areal roughness parameters of field type,
the nine in situ areal roughness parameters related to the
bearing area (or Abbott-Firestone) curve, and the six contact
mechanics parameters.

3 RESULTS AND DISCUSSION

First, in Section 3.1, the performance of the ANN model will be
evaluated with linear regression between predicted values and the
output in the test dataset. Then, in Section 3.2, examples of how
the predictions changes with the load will be presented and
compared to the correct values.

3.1 Predicting Contact Mechanical
Response
Herein, the test set, which contains 1,458 specimens that it has
never seen before, is used to evaluate the ANN’s predictive
performance on surfaces for a whole range of loads. Depicted
in Figures 5, 6 are linear regression of all the predicted parameter
values and the R2-value, that is,

R2 � 1 −∑
i

(yi − ŷi)
2/∑

i

(yi − y)2,

where y is the target output, ŷ is the predicted output, and y is the
mean target output, is used as a measure of the accuracy. Overall,
one can see that some parameters are predicted with
extraordinary high accuracy, whereas a few are predicted with
less precision. Figure 5 reveals that there is a systematic error for
the predictions of Sa and Sq, which both have relatively low
R2-values. The reason for the low R2-values is because the
absolute majority of predictions (for both Sa and Sq) are

underestimated. Among the output shown in Figure 5, the
one with highest accuracy is the mean quadratic slope
parameter Sdq. Visually, the bearing area curve parameter Smr1

shows a quite large spread, while the R2-value is rather high. This
is caused by a relatively small percentage predictions with large
errors.

There is much that can be said about the results presented in
Figure 6. One thing, which is nearly impossible not to notice, is
the regression for the dimensionless maximum pressure pmax,
with wide-spread and a low R2-value. The reason for this is that
the pmax is a local event, while areal roughness parameters are
averaged in some sense. In other words, prediction of a local
quantity based on average terms is a complicated task, and the
low accuracy is, therefore, to be expected. The more important
outputs Ar , Are, Arp, u, and K are, fortunately, predicted with
higher accuracy. For more details on the ANN’s predictability, the
reader is referred to next section.

3.2 Application
In this section, the accuracy of the predictions of the ANN for
three different test specimens, taken from the test set that the
network never has seen before, will be investigated over the whole
range of loads considered when the test set was generated with the
contact mechanics simulations. The test specimens are listed in
Tables 3, 4, and they consist of the areal roughness parameters,
corresponding to the surfaces topographies presented in Figure 7,
combined with a value of the dimensionless hardness.

The predictions of the in situ dimensionless mean square
height Sq and skewness Ssk are depicted in Figure 8, which
also shows the correct values. This figure and Figures 9–12
share the same legend in which the lines (continuous blue,
dashed red, and dotted turquoise) are for the predictions, and
the correct values are represented with the markers (round
blue, round red, and cross turquoise). The ANN predicts
both the Sq and Ssk output parameters for Specimen 1 (bi-
Gaussian and self-affine) with best accuracy. The lowest
accuracy was observed when predicting Sq for Specimen 2
(Gaussian and self-affine), and the lowest accuracy was

FIGURE 5 | Linear regression of target (x-axis) and predicted (y-axis) outputs.
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observed when predicting Ssk for Specimen 3 (Weibull and
exponential).

The predictions of the in situ dimensionless kurtosis Sku and
mean quadratic slope Sdq are depicted in Figure 9. For Sku, to the
left in Figure 9, the accuracy is rather high and approximately the

same for all three specimens. The variation of the in situ kurtosis
is very complex, but still accurately captured by the ANN. To the
right in Figure 9, it can be seen that the predictions of the in situ
Sdq are of very high accuracy, and this can be understood from the
linear regression analysis presented in Figure 5.

FIGURE 6 | Linear regression of target (x-axis) and predicted (y-axis) outputs.

TABLE 3 | Test specimens containing the dimensionless areal roughness
parameters, corresponding to the topographies depicted in Figure 7 and a
value of the dimensionless hardness: part 1—field type parameters.

Sa Sq Ssk Sku Sdq

Specimen 1 0.792 1.000 0.832 3.863 82.254
Specimen 2 0.798 1.000 -0.013 2.967 51.310
Specimen 3 0.829 1.000 0.561 2.701 31.001

TABLE 4 | Test specimens containing the dimensionless areal roughness parameters, corresponding to the topographies depicted in Figure 7 and a value of the
dimensionless hardness: part 2—BAC type parameters and dimensionless hardness.

Smr1 Smr2 Sk Spk Svk Vmp Vmc Vvv Vvc pp

Specimen 1 13.260 95.596 2.499 1.443 0.299 0.069 0.880 0.064 1.355 33.333
Specimen 2 9.877 89.899 2.567 0.937 0.953 0.047 0.911 0.112 1.215 60.000
Specimen 3 15.712 99.890 2.568 1.160 0.010 0.054 1.022 0.039 1.393 86.667

FIGURE 7 | Surface topographies for the three test specimens (A–C) with dimensionless areal roughness paraeters and hardness, listed in Tables 3, 4.
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The predictions of the dimensionless average interfacial
separation u and real area of contact ratio Ar are depicted in
Figure 10. It is observed that the ANN very accurately predicts u
for Specimen 2 over the whole range of loads tested. The accuracy
for Specimen 1 is not so high at low loads but really good for
moderate and high loads, and it is vice versa for Specimen 3.
Overall, the ANN’s accuracy in predicting u is good, which is
required if the ANN would be employed in a mixed lubrication
model like the one in Sahlin et al. (2010). As displayed in the right
of Figure 10, the real area of contact ratio can be predicted with
satisfactory accuracy for all but the lowest load, where it ideally
should extrapolate Ar → 0 as pc → 0. Better performance could
(most likely) have been obtained, by extending the training set to
include more results for lower loads. Note that this would also
require a higher mesh density than the 256 × 256 used presently.

The ANN is trained such that the areal roughness parameters for
pc � 0 remains unchanged. The ANN is also trained such that the
contact mechanics parameters are zero for pc � 0, except for the
average interfacial separation, which is specified as the surface’s
maximum peak height.

The predictions of the elastic part of the real area of contact
ratio Ae (left) and plastic part of the real area of contact ratio Ap

(right) are depicted in Figure 11. When looking at the predictions
for Ae, it is noticeable that there is a large error for Specimen 1;
however, the other specimens are predicted with acceptable
accuracy. From the results for Ap presented to the right in
Figure 11, it seems as if the ANN has qualitatively learned
what the variation of Ap would be. More precisely, that it is
constant for low loads but that it starts to increase at some point.
The reason for that it does not quantitatively capture the variation

FIGURE 8 |Dimensionless root mean square heightSq (left) and skewnessSsk (right) for varying dimensionless nominal pressure pc, predicted (line) and real value
(marker).

FIGURE 9 | Dimensionless kurtosis Sku (left) and mean quadratic slope Sdq (right) for varying dimensionless nominal pressure pc, predicted (line) and real value
(marker).
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correctly has probably to do with that a relative error for a large
Ap is much more significant than it is for a small Ap, during the
training procedure. Notice that the ANN predicts that Specimen
3 exhibits plastic deformation, but that the correct result is that
the deformations are purely elastic for all loads considered
(Ap � 0 is not displayed on the log-scaled axis).

The predictions of the dimensionless maximum pressure pmax
(left) and contact stiffness K (right) are depicted in Figure 12.
When looking at the predictions for pmax, one can see that there is
a quite large error. This was also brought up in connection to the
presentation of Figure 6. Most surfaces will be plastically
deformed, and it seems as it would be fairly easy for the ANN
to learn that the pmax will saturate at pp. Indeed, by looking at the
predictions for Specimen 1 and 2, it is also clear that it has learned
this. Specimen 1 that has the lowest pp is already plastically
deformed at the smallest load in the range and Specimen 3 with

the highest pp is not plastically deformed at all. Specimen 2 does,
however, exhibit pmax for an intermediate load in the range, and it
can be observed that the ANN is able to predict that it will and
that it is capable of capturing the position where it occurs. From
Figure 12, it can also be observed that the contact stiffness, for all
three specimens, can be predicted with quite high accuracy for
moderate and high loads but that the accuracy decreases for
lower loads.

4 CONCLUDING REMARKS

Two datasets containing a total of 2,022 different surface
topographies were generated using the algorithm developed by
Pérez-Ràfols and Almqvist (2019). Three different HPD
functions and two different PS functions were obtained from

FIGURE 10 | Dimensionless average interfacial separation u (left) and real area of contact ratio Ar (right) for varying dimensionless nominal pressure pc, predicted
(line) and real value (marker).

FIGURE 11 | Real area of elastic contact ratio Ae (left) and real area of plastic contact ratio Ap (right) for varying dimensionless nominal pressure pc, predicted (line)
and real value (marker). Note that the correct values for Ap for Specimen 3 is zero for all loads.
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Gaussian, bi-Gaussian, and Weibull HPD functions and self-
affine and exponential PS functions, described with as few shape-
defining parameters as possible. Fourteen areal roughness
parameters were calculated for all surfaces in the dataset.
Together with the surface indentation hardness and a given
applied load, these 14 areal roughness parameters were used as
input for the ANN.

A numerical elastoplastic contact mechanics approach, in which
the hardness limits the maximum pressure the surface can exhibit
before it yields plastically, was then employed to perform simulations
of pressing each of the generated surfaces against a flat rigid counter
surface for a sequence of loads. Since four values for the hardness
were considered for the training set with 1,536 different surface
topographies and three were considered for the test set with 486
topographies, a grand total of 4 × 1536 + 3 × 486 � 7602
realizations were conducted. Out of these, 6,144 specimens were
used for training and 1,458 were left for testing and validation. For
each of the these specimens, 14 in situ areal roughness parameters
and six contact mechanics parameters were calculated for the
sequence of loads that was also used as input for the ANN.

An architecture for an artificial neural network (ANN), which
consisted of five different subnetworks, was designed and trained
on the dataset. Linear regression was applied, and the R2-value
was used to appreciate the correlation between the network
prediction and the correct data. A few parameters were almost
perfectly predicted, whereas other were predicted with large
errors. According to the R2-values, the most important
parameters, that is, the real area of contact ratio Ar , the
dimensionless average interfacial separation u, and contact
stiffness K were all predicted accurately by the ANN.

Summing up, the ANN can be used to roughly appreciate the in
situ behavior of various kinds of surface topographies, if the areal
roughness parameters, the indentation hardness, and the nominal
contact pressure are known. Some parameters, that is, the real area
of contact ratio, the dimensionless average interfacial separation,
and contact stiffness can actually be predicted with high accuracy.
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NOMENCLATURE

α anisotropy coefficient

Sa arithmetic mean height (μm)
1/β auto-correlation length

u average interfacial separation (μm)
c bimodal shape parameter

K contact stiffness (N/m)

Vmc core material volume (μm3/μm2)
Sk core roughness depth (μm)
Vvc core void volume (μm3/μm2)
Sa dimensionless arithmetic mean height Sa/hr

u dimensionless average interfacial separation u/hr

K dimensionless contact stiffness Kxr/E

Vmc dimensionless core material volume Vmc/hr

Sk dimensionless core roughness depth Sk/hr

Vvc dimensionless core void volume Vvc/hr

pp dimensionless hardness pp/(Ehr/xr)
Sku dimensionless kurtosis Sku/hr

pmax dimensionless maximum pressure pmax/(Ehr/xr)
Sdq dimensionless mean quadratic slope Sdqxr/hr

pc dimensionless nominal pressure pc/(Ehr/xr)
Vmp dimensionless peak material volume Vmp/hr

Spk dimensionless reduced peak height Spk/hr

Svk dimensionless reduced valley depth Svk/hr

Sq dimensionless root mean square height Sq/hr

Ssk dimensionless skewness Ssk/hr

Vvv dimensionless valley void volume Vvv/hr

pp hardness MPa

H Hurst exponent

Sku kurtosis (μm)
q0 long wavelength cutoff

Smr1 material ratio 1 –

Smr2 material ratio 2

pmax maximum pressure MPa

Sdq mean quadratic slope (μm/mm)
pc nominal pressure MPa

Vmp peak material volume (μm3/μm2)
Ar real area of contact ratio

Ae real area of elastic contact ratio

Ap real area of plastic contact ratio

Spk reduced peak height (μm)
Svk reduced valley depth (μm)
hr reference height Sq (μm)
xr reference length (mm)

Sq root mean square height(μm)
q1 short wavelength cutoff

Ssk skewness (μm)
Vvv valley void volume (μm3/μm2)
k Weibull shape parameter

t worn shape parameter
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In many engineering fields surface topography is of crucial importance solving problems

of friction and other problems of tribology. A review of mathematical approaches for

description of topography of engineering surfaces is presented. Firstly, we give a brief

introduction to some of statistical parameters used for description of surface roughness.

It is argued that although some of these parameters may be quite useful for specific

engineering problems, a set of finite numbers of parameters cannot describe contact

properties of rough surfaces. Then we discuss various models of surface roughness

based on Gaussian models of the asperity heights. The results of application of various

modern tests of normality for checking whether the distribution of the asperity heights is

Gaussian, are presented. Further fractal models of roughness are discussed. Using fractal

parametric-homogeneous (PH) surfaces, it is demonstrated that tribological properties of

a rough surface cannot be characterized just by the fractal dimension of the surface. It is

also shown that models based solely on the power-spectral density function (PSDF) are

quite similar to fractal models and these models do not reflect tribological properties of

surfaces. In particular, it is demonstrated that different profiles may have the same PSDF.

Keywords: roughness, power-spectral density, fractal, statistics, parametric homogeneity, contact problems

1. INTRODUCTION

The paper deals mainly with surfaces used in engineering practice that will be referred to as
engineering surfaces. It is known that all engineering surfaces are rough (see e.g., Archard et al.,
1975; Whitehouse, 2011) and therefore, contact between engineering surfaces is realized by a
number of contact spots (see e.g., Zhuravlev, 1940, 2007; Holm, 1941; Goryacheva, 1998; Borodich,
2007). If the surface profile z(x) is studied using Fourier decomposition, and the term ’roughness’
is attributed to the short wavelength shapes, while the long wavelength shapes are referred to as
“waviness” of the surface (see e.g., Morales-Espejel et al., 2000; Borodich and Bianchi, 2013). If
the waviness is extracted from the surface profile then the rough surface may be considered as
nominally flat (see e.g., Greenwood and Williamson, 1966). Roughness of engineering surfaces is a
crucial factor for performance of tribological components. The energy dissipation during sliding of
dry engineering surfaces and correspondingly, the friction are enormously influenced by the surface
profile (see e.g., Borodich and Savencu, 2017). Here we present a critical review of some popular
statistical, fractal and related techniques for modeling and analysis of the surface roughness.

One of the first attempts to employ statistical methods for description of surface roughness was
presented by Abbott and Firestone (1933) who calculated the cumulative distribution function of
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the surface heights. In tribology this parameter is called the
Abbott-Firestone curve or the bearing area curve. Independently,
Zhuravlev (1940) employed this parameter in his statistical model
of contact between rough surfaces that were represented as
collection of spherical protuberances having identical radii. He
explained that the number of contacting spheres a specific height
increases as the surfaces approach each other. In the English
language literature this model is usually attributed to Greenwood
and Williamson (1966).

After the bearing area curve parameter was introduced, there
was a period that can be referred to as “the parameter rash”
because a huge number of statistical parameters of roughness
were introduced (Whitehouse, 1982). These characteristics were
related to both the vertical distribution of heights and the
horizontal distribution of the rough profiles (Nowicki, 1985).

The next step in surface roughness characterization was the
idea that it may be modeled using theory of random processes.
In 1953 Linnik and Khusu presented a seminar talk where they
suggested to use graphs of a stationary Gaussian random process
in order to describe surface roughness, see Linnik and Khusu
(1954a) for detail, as well as Linnik andKhusu (1954b) andKhusu
et al. (1975). Linnik and Khusu (1954a) suggested to study the
following correlation function for the Gaussian random process

K(x) = K(0) · e−α|x|, (1)

where K(0) and α are some parameters of the roughness.
Independently, the same idea was introduced later by
Whitehouse and Archard (1970). They presented an absolutely
correct statement that if a profile z(x) of a random rough surface
is Gaussian then it can be fully described by a distribution of
asperity heights and the correlation (auto-correlation) function
of the process R. The auto-correlation is defined as

R(δ) = lim
T→∞

1

2T

∫ T

−T
[z(x+ δ)− z̄][z(x)− z̄]dx

= 〈[z(x+ δ)− z̄][z(x)− z̄]〉 (2)

If one takes the Fourier transform of R(δ) then the power
spectrum G(ω) or the power-spectral density function (PSDF) is
obtained. If the signal frequency is denoted as ω then the PSDF is
defined as

G(ω) =
2

π

∫

∞

0
R(δ) cos ωδ dδ and

z̄ = lim
T→∞

1

2T

∫ T

−T
z(x) dx.

Developing the random signal approach, Sayles and Thomas
(1978) presented experimental relations between wavelength and
the scaled power spectral density for many different surfaces.
They argued that the scaled spectral density functions of many
surface profiles can be approximately presented as G(ω) =

2π3/ω2. Sayles and Thomas (1978) referred to 3 as the surface
topothesy. As Dr. Sayles said to one of the authors (FB), they
never claimed that the real surfaces are fractal; in fact the fractal
terminology to surface roughness description was triggered by

Berry and Hannay (1978) who presented a comment to Sayles
and Thomas (1978) paper where they claimed that geometric
properties of rough surfaces can be characterized by a new
concept ’fractal’ that was described in detail by Mandelbrot
(1977).

Another important step in the promotion of the fractal
approach to surface roughness description was the studies of
the Weierstrass-Mandelbrot fractal function by Berry and Lewis
(1980). Later the Weierstrass type functions were used by many
researchers as a model of rough surfaces (see e.g., Roques-
Carmes et al., 1988; Majumdar and Bhushan, 1990). For some
period of time, the fractal models became very popular, there
were even statements that “fractals are everywhere.” Fractal
approach to surface topography were so popular that one could
say that it became an “emperor” of many research areas. Speaking
about fractal approaches in fracture mechanics Borodich (1999)
argued that instead of careful presentations of the state-of-the-
art, the papers dedicated to fractal analysis are often based on
repetition of common myths about fractals (we call this as vulgar
fractal approaches). Hence, in most of the papers dedicated
to fractal approaches to fracture and surface topography, the
state-of-the-street is ruling. Borodich (2002) listed examples
introduced earlier by Borodich and Onishchenko (1993) and
Borodich (1993) and reminded that “the fractal dimensions
alone cannot characterize the features of contact.” The same
situation is related to the papers dedicated to fractal approaches
to surface topography, nevertheless there is still a stream of
papers based on vulgar interpretation of the fractal approaches.
One could mention here a statement by Mandelbrot (1998) that
“fractals are not a panacea; they are not everywhere.” Using
examples introduced by Borodich and his co-authors, we will
show that quite often there is no meaning in fractal analysis of
surface roughness.

Nowadays another tendency is quite popular, namely to
describe rough surfaces using solely the PSDFs of surface
topography. We argue that these papers are in essence an attempt
to resurrect the fractal approach. Indeed, these papers contain
usually a mixture of correct statements related to Gaussian
processes and wrong statements based on attempts to extend the
power-spectral analysis to non-Gaussian surfaces. In addition,
these papers suffer often by employment of the ill-defined terms,
such as the Hurst exponent, non-accurate statements about self-
affinity of surface roughness and vulgar interpretation of fractal
models. We will show that the power-spectral analysis applied to
non-Gaussian surfaces is a kind of reformulation of the vulgar
fractal approach. Using an analogy to Andersen’s tail about new
clothes produced by cunning weavers, we can say that attempts
to model surfaces solely by the use of the PSDF of its roughness
are “the emperor’s new clothes.”

The paper is organized as follows. In section 2 probabilistic
characteristics of rough surfaces are discussed. In section 3 we
consider some approaches to modeling of surface roughness
using graphs of random processes that in turn, assume that
the asperity heights are normally distributed or they employ
similar assumptions that involve normal distributions. We give
a brief description of statistical methods employed for checking
normality of distributions and some results of application of
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these tests to roughness of engineering surfaces. In section 4
we discuss briefly the fractal approaches to surface roughness,
in particular using a kind of parametric-homogeneous functions
having fractal graphs, e.g., theWeierstrass-Mandelbrot functions,
we clarify some common misinterpretations of statements by
Berry and Lewis (1980). Finally in section 5 we discuss themodels
of surface roughness based solely on properties of the auto-
correlation function or its Fourier transform (the PDSF). We
argue that these models do not reflect tribological properties of
surfaces. In particular, it is demonstrated that rather different
profiles may have the same inclination of the PSDF in logarithmic
coordinates, or they may have even the same PSDF. Thus, there
is very small scientific value (if any) of a number of papers that
model surface roughness only by its PSDF.

2. PROBABILISTIC CHARACTERISTICS OF
SURFACE ROUGHNESS

If one considers a nominally flat surface and a plane
perpendicular to the surface, then the surface profile is the cross-
section between the plane and the rough surface. The rough
profile may be presented as graph of a function z(x). Let z̄
denote the mean profile line. If the origin level of the height
measurements is taken at z̄ then

1

2L

∫ L

−L
[z(x)− z̄]dx = 0.

Let us mention here several popular height parameters: Rmax is
the maximum height of the profile z(x) defined on an interval
[−L, L], Ra is the arithmetical mean deviation of the surface, and
the root mean square (rms) height Rq or σ 2 that is the square root
of the mean square deviation with respect to the mean profile line
z̄ = 0. The mathematical expressions for these parameters are
given by

Rmax = max
x∈[−L,L]

z(x),

Ra =
1

2L

∫ L

−L
|z(x)| dx ≈

∑n
i=1 |z(xi)|

n
,

Rq = σ =

[

1

2L

∫ L

−L
[z(x)]2 dx

]1/2

, (3)

where n is the number of points of measurements on the interval
and z(xi) is the measured height at the interval point xi. In
addition, the arithmetic mean height Rz is often used for practical
applications. This parameter may be calculated as the average
distance between the five highest picks and the five lowest points
of the profile, i.e.,

Rz =
1

5

[

5
∑

i=1

(zi)max −

5
∑

i=1

(zi)min

]

. (4)

One can introduce the density probability function φ(z). This
function shows the probability that the height z(x) at a surface

point x is between z and z+ dz. Then, the expressions for Ra and
σ 2 in (3) is written as

Ra =

∫

∞

−∞

|z|φ(z) dz, σ 2
=

∫

∞

−∞

z2φ(z) dz. (5)

It is natural that the roughness parameters depend on the scale
of considerations. For example, if zi = z(xi) are measured with a
stylus steps h then one can calculate the curvature of the profile
peaks κ(xi)

κ(xi) = −(zi−1 − 2zi + zi+1)/h
2.

However, it was found that the mean curvature varies depending
on the sampling intervals (Greenwood, 1992). There was a hope
that the fractal dimension could provide a scale independent
parameter of surface roughness. It will be discussed later that
actually this assumption was not justified.

Kragelsky (1948) published one of the first papers where
he claimed that the roughness heights distribution is Gaussian
(normal). Although Zhuravlev (1940) presented the general
expressions of his model for arbitrary bearing area curve, his
example that employed linear dependence as an approximation
of the bearing area curve was criticized by Kragelsky (1948) who
wrote that the normal distribution of heights should be used.

We will not list here a number of parameters used in
literature on tribology to describe the surface roughness. Various
attempts to describe surface topography using several statistical
parameters of surface roughness are described in detail in many
books and papers, see e.g., Khusu et al. (1975), Nowicki (1985),
and Whitehouse (2011). Some of these parameters are useful but
most are not (Whitehouse, 1982).

An example of a very useful parameter is the Abbott-
Firestone curve of the surface heights (bearing area curve) or the
cumulative distribution function 8(z)

8(z) =

∫

∞

z
φ(t) dt. (6)

For example, the 8(z) was used by Zhuravlev (1940).
Let us demonstrate that for rough surfaces their contact

properties are correlated with 8(z) that is equal to the length of a
horizontal slice of the surface profile at the level h. Sometimes
this curve can be used to estimate the force acting of a rough
solid penetrating into an elastic foundation. Indeed, it if the
characteristic size of contact region between a blunt punch and
a thin elastic layer is larger than the layer thickness then the
leading term of the asymptotic solution may be modeled as the
Fuss-Winkler foundation (see e.g., Aleksandrov, 1963; Borodich
et al., 2019b; Erbaş et al., 2019; and references therein). The Fuss
foundation can be represented by a collection of independent
springs attached to a rigid flat or as an elastic “mattress” (Winkler,
1867; Johnson, 1985) or as a punch acting on a liquid layer
(Fus, 1801). Of course, there are restrictions on the use of the
Fuss-Winkler foundation (Johnson, 1985; Popov, 2010). As Fus
(more often his surname is written as Fuss) noted himself:
“when a crumbly surface has a rigid substrate and does not
have such depth as it should be for penetration of wheels into
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it by laws of hydrostatic, therefore the angle GOR” (the angle
between the wheel and the surface flat) “should not be determined
just by actual penetration depth but rather by the depth of the
rigid support” (Fus, 1801). The Fuss-Winkler foundation was
employed to model contact between an elastic foundation and
(i) a nominally flat CB profile (Borodich and Mosolov, 1991,
1992); (ii) the rough hierarchical multi-level profile (Borodich
and Onishchenko, 1993, 1999), and (iii) both nominally concave
and convex fractal parametric-homogeneous punches (Borodich,
1998b).

The roughness parameters used may be formally divided in
the following groups (Nowicki, 1985): (i) various parameters
related to the shape of asperities, e.g., the rms curvature of
the asperities; (ii) various parameters related to the asperity
heights; (iii) horizontal parameters; (iv) parameters connected
with amplitude of the asperities and their spatial extend, like the
high spot count.

3. GAUSSIAN RANDOM PROCESSES AS
MODELS OF ROUGH SURFACES

As it has been mentioned above, the surface roughness may be
considered as graphs of random processes. The question if the
process is Gaussian (normal) or not is crucial for estimation of
validity of the models. Indeed, the overwhelming majority of
papers on surface topography use statistical models of surface
roughness based on explicit or implicit assumption of normality
of roughness heights, see e.g., Fuller and Tabor (1975), Galanov
(2011), and a discussion by Borodich et al. (2016).

3.1. Tests for Normality of Surface
Roughness
There are many tests of normality (Thode, 2002). Each of
these tests provides a quantitative estimation of proximity
between the theoretical Gaussian distribution and an observed
sample of measurements by producing the so-called p-value. The
estimations are based on a particular test statistic. Borodich et al.
(2016, 2019a) and Pepelyshev et al. (2018) used the most popular
tests of normality to check normality of roughness of various
surfaces. The afollowing tests were employed: Kolmogorov-
Smirnov (KS), Anderson-Darling (AD), Cramer-von Mises
(CVM), Shapiro-Wilk (SW), Shapiro-Francia (SF), Lilliefors
(LF), and the Pearson. The p-value is a number that characterizes
for the observed measurements, the significance at the scale
[0, 1] that the normality hypothesis is true. It is possible to
nominate the acceptable significance level. In our tests it was
5%. If the p-value is more than this level then the hypothesis
should be accepted. This subject is a current challenging task
in contact mechanics description and comprehension of nano-
related phenomena as highlighted by Carpick (2018).

Let us mention here a model of dry friction developed by
Borodich and Savencu (2017). In this model molecular and
chemical interactions are mainly connected to the nano-scale
asperities, while mechanical interlocking between surfaces are
connected to the micro-scale asperities. According to this model,
for proper modeling of friction, one needs to get data about
the surface roughness at both atomic/nano and at micro-scales.

Using the abovementioned tests of normality some data obtained
for grinding surfaces was tested and results of the normality tests
were negative at both nano and microscales (Borodich et al.,
2016).

Then the test of normality were applied to surfaces of the
epoxy resin replicas of polishing papers of various nominal
asperity sizes. A white light interferometer (Zygo NewView 6000;
Zygo Corporation, Middlefield, CT, USA) at a magnification
of 50 was used for characterization of the surface roughness.
The normality tests showed that the height distribution of the
surfaces of nominal 0.3 and 1 µm are Gaussian (Pepelyshev
et al., 2018). Finally, normality of roughness of carbon-based
coatings deposited by direct current pulsedmagnetron sputtering
at two different substrate bias voltages was checked. The same
as in the case of grinding surfaces, the roughness was measured
at atomic/nano scales by AFM (Atomic Force Microscopy),
while a profilometer was used for measuring of micro-asperity
heights (Borodich et al., 2019b). It was found that surfaces
at micrometer scale are normal. It is interesting to note
that the AFM measurements with the 117 nm steps showed
that the roughness of surfaces was Gaussian, while the AFM
measurements with the 10 nm steps showed that the assumption
of normality of roughness is not satisfied. This means that the
use of the above mentioned statistical models of contact between
nominally flat surfaces are justified only up to nanoscale, while
their applicability at atomic and few nanometers scales may
be questionable.

3.2. Stochastic Models of Surface
Roughness
The normality of roughness is related to vertical distribution of
profile heights. However, it is also very important to consider
the horizontal distribution of the asperities. As it has been noted
by Maugis (2000), two profiles may have the same peak height
(local extrema) distributions, but the roughness may be rather
different in the horizontal extension. If process is Gaussian then
the horizontal properties may be fully described by the auto-
correlation (correlation) function R of the process (2). Instead of
R, one can use the PSDF (3), its Fourier transform G(ω).

Khusu et al. (1975) presented results of very detailed studies
of Gaussian processes in applications to surface roughness. In
addition to (1), they considered three other correlation functions.
An extended list of various correlation functions was presented
by Dette et al. (2015). However, we would like to emphasize again
that the above results are effective if the roughness is Gaussian. If
the roughness is not normal then the properties of the sample
paths are not fully determined by the mean and covariance
functions (see e.g., Ghosal and Van der Vaart, 2017).

It is known (see e.g., Aldous, 1989 and Bibby et al., 2005) that a
non-Gaussian processes can be generated by the mean-reversing
stochastic differential equation

dX(x) = −θ(X(x)− µ)dx+ σ (X(x))dWB(x), (7)

where x ≥ 0 and WB(x) is the standard Brownian motion
(Wiener process). Choosing the appropriate value of the
parameter µ and the function σ (·), we obtain a certain height
distribution of the process X(x), while the auto-correlation
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FIGURE 1 | The simulated profiles X (x): (A) θ = 1, µ = 0, σ (X ) = 2, and the height distribution of X (x) is the Gaussian distribution; (B) θ = 1, µ = 0.5,

σ (X ) = 2X (1− X ), the height distribution of X (x) is the uniform distribution; (C) θ = 1, a = 2.2, b = 1.2, µ = a/(a+ b), σ (X ) = 2X (1− X )/(a+ b), the height distribution

of X (x) is the beta distribution with parameters a and b.

function is ρ(x) = e−θ |x| and the power spectra is G(ω) =
2
π
θ/(θ2 + ω2) for any choice of µ and σ (·). For example,

the height distribution of X(x) has the gamma density with
parameters λ and β if µ = β/λ and σ (X) =

√
2θX/λ and

the beta density with parameters α and β if µ = α/(α + β)
and σ (X) =

√

2θX(1− X)/(α + β). Figure 1 shows simulated
profiles with various height distributions and the same auto-
correlation function R(x) = e−θ |x|.

In general, using (7), one can construct non-Gaussian
processes with flexible auto-correlation function as the sum

h(x) =

m
∑

i=1

Xi(x),

where X1(x), . . . ,Xm(x) are independent and each Xi(x) is the
solution of the stochastic differential equation

dXi(x) = −θi(X(x)− φiµi)dx+ σi(X(x))dWi(x),

φi > 0 and
∑m

i=1 φi = 1, see Bibby et al. (2005). Such the process
h(x) has the auto-correlation function and the power spectra

R(x) =

m
∑

i=1

φie
−θi|x|, G(ω) =

2

π

m
∑

i=1

φiθi

θ2i + ω2
.

The above examples support the statement that the mean and
covariance functions of a random non-Gaussian process do
not determine the finite-dimensional distributions of a random
process (Gusak et al., 2012).

4. FRACTALS APPROACHES TO SURFACE
TOPOGRAPHY

Concepts of fractal, fractal geometry and fractal dimension (FD)

were introduced by Mandelbrot (1975). However, he did not
give any definition of fractals. Later he defined fractal sets in

a metric space saying “a fractal will be defined as a set for

which the Hausdorff-Besicovitch dimension strictly exceeds the
topological dimension” (Mandelbrot, 1977). Finally he withdrew
the definition and suggested to use the term “without a

pedantic definition” (Mandelbrot, 1983). This was the reason
for a comment by Greenwood (1992): “Mandelbrot is somewhat

reluctant to define ‘fractals’ or ‘fractal dimension’ preferring to

offer examples.” A popular description of many self-similar sets
studied by fractal geometry, such as the Cantor staircase, von

Koch snowflake, Sierpinski carpet, Menger sponge, along with
Peano curve and other sets may be found in the book for school

children published by Vilenkin (1968). Definitely Mandelbrot

(1975) wrote his book under influence of Vilenkin’s book. Indeed,
at least 20% of Figures presented by Mandelbrot (1975) had

analogs in the book byVilenkin (1968). The abovementioned sets
are out the scope of mathematical programmes for schools and

for non-mathematical specializations of universities because the
sets are more irregular than sets considered in common courses

on Euclidean geometry. To encourage children for studies of
set theory, Vilenkin used many funny stories and terms, e.g.,
he used the term the Devil staircase to describe the Cantor
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staircase. The Devil staircase term was later used and popularized
by Mandelbrot (1983).

Because there is no generally accepted definition, we will
define fractals as objects with a non-integer FD. Evidently,
the term FD must be defined separately. One of the authors
(FB) and his co-authors have already published several reviews
related to fractals, in particular a review related to the use of
fractal concepts in fracture mechanics (Borodich, 1999). There
are reviews of application of fractal ideas in contact problems
(Borodich and Onishchenko, 1999; Borodich, 2013c) and several
articles about the use of fractal concepts in tribology (Borodich,
2013a,b; Borodich and Evans, 2013). Borodich introduced the CB

profile that is also known as the Cantor set model (Warren and
Krajcinovic, 1996), and as the Cantor-Borodich profile, structure
or fractal, see e.g., Abuzeid and Eberhard (2007), Soldatenkov
(2015), and Thielen et al. (2016). At least two kind of contact
problems can be solved for a punch described by the CB profile
(Borodich and Mosolov, 1991, 1992). The model was developed
further by Borodich and Onishchenko (1993), Warren and
Krajcinovic (1996), Plesha and Ni (2001), and others. Although
Archard (1957) introduced the idea of hierarchical structure of
roughness, there were no papers developing the idea of “bump on
bump” structure of roughness until Borodich and Onishchenko
(1993, 1999) introduced the multilevel hierarchical model of
roughness. Now this idea of hierarchy of surface structures is
quite popular due to discoveries of Gorb and his co-workers
along with other experts in biological objects. In particular,
the hierarchical structures were discovered in adhesive setae of
geckos (Gao et al., 2005) and spiders (Schaber et al., 2019); water-
repellent coatings of whip-spiders (Wolff et al., 2016); attachment
discs of spiders (Wolff et al., 2015), and super-black snake skin
(Spinner et al., 2013). Applications of fractal concepts to surface
roughness were also discussed by Borodich and Galanov (2002)
and by Borodich et al. (2016). Thus, here wewill just remind some
basic features of the fractal approach to surface roughness.

4.1. Mathematical and Physical Fractals
Unfortunately, many papers dedicated to applications of fractals
do not provide definitions of used terminology. Often such
papers are just a mess of vague discussions and non-
justified statements. To clarify the subject, we split fractals
into mathematical and physical (natural) fractals (see e.g.,
Borodich, 1997). Both mathematical and physical fractals use
the concepts of a cover. This means that the object (set)
is covered by cubes of size at most or equal to δ. Fractal
geometry deals with mathematical fractals. The mathematical
methods of fractal geometry are described in many books and
papers (see e.g., Falconer, 1990; Tricot, 1995) where various
FD are studied in application to mathematical objects. Various
FDs are used in the studies, mainly the Hausdorff dimension
and box-counting dimensions usually attributed to Minkowski,
Bouligand, Pontrjagin, Schnirelman, and Kolmogorov. These
FDs can be calculated by taking the limits when δ → 0.
In addition, fractal geometry term is also quite often applied
loosely to a collection of semi-empirical or empirical methods for
estimations of the FDs of objects.

If real world or numerically simulated objects demonstrate the
power-law of the number-radius relation then these objects are
physical fractals. The power-law of the number-radius relation is

N(δ) ∼ δ−D, δ∗ ≤ δ ≤ 1∗, N(R) ∼ (R/δ)D, r∗ ≤ R ≤ R∗
(8)

where N(δ) is the number of cubes of size δ used to cover the
object, D is a FD of the object, 1∗ and δ∗ are the upper and
lower cut-offs of the physical fractal law, respectively. The former
relation of (8) is used when the cover size δ is varied and the
object size R is fixed, while in the latter relation is used when
the cover size δ is fixed and the object size R is varied. In this
latter case R∗ and r∗ are the upper and lower cut-offs. The the
slope of linear approximation of ln(N(δ∗)) against ln(R) is used
to estimate the value of D. The main distinction between these
kinds of fractals is the following: the physical fractal behavior
(8) is observed on a bounded region of scales only, while to
study mathematical fractals one has to scale of consideration to
zero limit.

4.1.1. Self-Similar Sets
Introduction to fractals starts often by presenting self-similar
sets mentioned above (see examples given by Vilenkin (1968)
and Mandelbrot, 1975). Due to such examples, there is a myth
that all fractals are self-similar. However, self-similar sets are a
very specific kind fractals. In general, self-similarity is not related
to mathematical fractals. Their scaling properties are based on
scaling of fractal measure or quasi-measure (see a discussion by
Borodich and Feng, 2010, and Borodich, 2019), while for physical
fractals their scaling properties are reflected by the relation (8).

4.1.2. Some Specific Features of Mathematical

Fractals
Speaking about mathematical fractals, one has to specify the FD
used. It is wrong to say that all FDs are equal to each other.
For example, the Hausdorff dimension dimH S of a set S may be
not equal to its box-counting dimension dimB S. However it is
known that dimH S ≤ dimB S.

The statement that all nowhere differentiable curves are
fractals is wrong. For example, Borodich (1998a) introduced the
Moscow University function UM that is nowhere differentiable,
while it is a non-fractal curve and each finite subinterval of
[1, 2] contains an infinite number of reduced copies of the whole
function, i.e., it is a self-similar curve.

A mathematical fractal curve has an infinite length. Borodich
(1997) formulated the following paradox in application to fractal
fracture: if the crack surface is modeled as a mathematical fractal
and the concept of the Griffith surface energy is used, then the
propagation of the fractal crack is impossible.

If a surface is smooth then it is not a mathematical
fractal (see e.g., Falconer, 1990). Even if a mathematical fractal
curve is continuous everywhere, it is nowherehas differentiable.
Therefore, it is often very difficult to formulate a boundary-
value problem for solids having fractal boundary (see a discussion
by Borodich and Volovikov, 2000). Indeed, such nowhere
differentiable profile do not have even normal vector.
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4.1.3. Some Specific Features of Physical Fractals
If the FD is specified then it is convenient to use the fractional
part of the FD D∗. Then the FDs of fractal profiles and surfaces
are 1+ D∗ and 2+ D∗, respectively.

Sayles and Thomas (1978) presented the experimental
relations between normalized PSDF and wavelength in
logarithmic coordinates as a very impressive united line for
many different surfaces. One could think that the relation spans
from micrometers to many meters. However, Berry and Hannay
(1978) noted that for each individual type of topography the
span was over much smaller ranges. They argued that these
experimental results could be represented as a united line
lg(G) ∼ lg(ω) due to a specific normalization of the results.
Further, researchers from Jerusalem presented results of an
analysis of data published by Physical reviews journals and
showed that in average the physical fractals span about 1.5
orders of magnitude (Avnir et al., 1998). Mandelbrot (1998)
argued that the published limited-range examples of power
law correlations may be explained as unfortunate side effects of
enthusiasm, imperfectly controlled by refereeing. However, the
Jerusalem group disagreed with his arguments and believed that
the limited-range relations for natural fractal are the dominant
fractals observed in Nature (Biham et al., 1998). However, if
the value of the FD is stable for less than two or three decades
then fractal concept is not useful, as it was stated by Whitehouse
(2001).

In general, the FD values obtained by various practical
methods are not reliable (see a discussion by Borodich and
Evans, 2013). For example, the power spectrum method is often
employed for estimation of FD values of self-similar or self-affine
fractals, in particular rough profiles (see e.g., Dubuc et al., 1989;
Schmittbuhl et al., 1995). The method is based on a not very
accurate statement when the power spectrum obeys a power law
G(ω) ∼ c/ωα ... it is reasonable to expect a signal with aω−α power
spectrum to have a graph of dimension (5 − α)/2 (see Falconer,
1990). Normally the exponent α is in the range 1 < α ≤ 3.

As Whitehouse (2001) noted there is a very small spread
of the FD values obtained for surfaces produced by different
manufacturing processes. In addition, there is no well-established
algorithm for estimations of the fractal law cut-offs. Thus, the
physical significance of the fractal approach is very limited. We
can add that if one can attribute the fractal scaling for a small
range that spans for just 1.5 or 2 decades then fractals do not
provide a scale-independent description of surface roughness.

4.2. Parametric-Homogeneity
One of the authors (FB) and his co-authors introduced different
types of fractal profiles that allowed to handle rough fractal
surfaces rigorously. There were introduced : (i) the CB profile
(Borodich and Mosolov, 1991, 1992), (ii) multilevel Hierarchical
profile (Borodich and Onishchenko, 1993, 1999), and (iii)
graphs of parametric-homogeneous functions (Borodich, 1993,
1998a,b). The first two profiles were based on an iterative
procedure and they has been already mentioned above, while
PH-functions will be described below. Note that the general
statements obtained by Borodich and his co-authors about the
contact problems for all these three types of surfaces do not

depend on the statements about their FDs, i.e., they are valid for
both fractal and non-fractal cases.

The same author (FB) introduced also the concept of
parametric-homogeneity. The concept includes parametric
quasi-homogeneous (PQH) transformations (in particular
parametric-homogeneous (PH) transformations), corresponding
functions, and PH- and PQH-sets. The PH and PQH-functions
can be considered as a natural generalization of concepts of
homogeneous and quasi-homogeneous functions. If the latter
kind of functions is based on the use of the classical scaling
with arbitrary positive scaling factor λ, PH-functions and
PQH-functions are based on the use of discrete self-similarity
with a fixed rescaling parameter p. Let Z be the set of integer
numbers. Then one can employ the discrete group of coordinate
dilations (Ŵpαk ) apply the following PH-transformation

Ŵpαkx = (pkα1x1, ..., p
kαnxn), p > 0, k ∈ Z.

4.2.1. Parametric Quasi-Homogeneous Functions
The parametric-quasi-homogeneous function of degree d and
parameter p with weights α = (α1, . . . ,αl) is denoted by
Bd :R

l
→ R and it obeys the following scaling law for a positive

parameter p, p 6= 1 and any k ∈ Z

Bd(Ŵpαkx; p) = Bd(p
kα1x1, ..., p

kαlxl; p) = pkdBd(x; p),

The parameter should be unique in some domain (Borodich,
1998a,b). I α1 = ... = αl then PQH-functions is called a
PH-functions. It is clear that if p is a parameter of the PH-
transformation then pk can be also used as a parameter. Hence,
as the parameter, the least p : p > 1 is taken. The graphs
of these functions can have various properties, in particular
they can be smooth or fractal. The following fractal Weierstrass
type functions and smooth sinusoidal log-periodic functions are
examples of PH-functions

bβ (x, p) =

∞
∑

n=−∞

p−βnf (pnx)

or b0(x; p) = A cos(2π ln x/ln p+ 8),

where A and 8 are arbitrary constants and f is an arbitrary
function. For any point x0, the PH-functions are repeated
bd(p

kx0; p) = pkdbd(x0; p) in scaling form near all points
pkx0, k ∈ Z.

4.2.2. Weierstrass-Mandelbrot Functions
Mandelbrot (1977) generalized the Weierstrass function, whose
graph is continuous everywhere and differentiable nowhere, and
introduced the complex value Weierstrass-Mandelbrot (W-M)
functionW(x) and its particular real case C(x; p)

W(x; p) =

∞
∑

n=−∞

p−βn(1− eip
nx)eiφn ,

C(x; p) =

∞
∑

n=−∞

p−βn(1− cos(pnx)), p > 1, 0 < β < 1 (9)
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where φn are arbitrary phases. Properties of these functions were
studied in detail by Berry and Lewis (1980). The box dimension
of C(x; p) graphs isD = 2−β . There is no rigorous mathematical
proof that its Hausdorff dimension is the same.

It is evident that C(x; p) is a particular PH-function (9) of
degree β . As it has been mentioned above, the graph of C(x; p)
function was used often for modeling rough profiles.

In addition, Berry and Lewis (1980) were first who studied
the discrete power spectrum G(ω) of the W graphs (9) and
approximated it by a continuous spectrum ¯G(ω) ∼ ω−(5−2D).
This is in agreement with the above mentioned statement by
Falconer (1990).

4.2.3. Self-Affine Scaling and the Hurst Exponent

Terms
Many papers dedicated to studies of surface roughness mention
the concept of self-affine fractals without any definition of the
concept. However, one should be very careful using such terms
as self-affine scaling. Actually, it is known from mathematical
courses that mapping on a plane is self-affine if it is a one-
to-one mapping whose images of any three collinear points in
turn belong to a line. Under this mapping the angle between
two straight lines is normally not preserved. A particular case
of such mapping is the quasi-homogeneous (QH) or anisotropic
coordinate dilation

x′ = eα1x, y′ = eα2y (10)

where α1 and α2 are weights, λx = eα1 and λy = eα2 are scaling
factors. This means that if a coordinate system x, y was Cartesian
one then the x′, y′ system is also rectangular. However, papers on
fractals reduce usually the term self-affine mapping to the above
particular QH case.

In 1980 the concept of fractal was very novel. Perhaps for
popularization of the concept, they used some explanations and
statements that were not mathematically rigorous. For example,
studying W-M functions, they wrote The fractal nature of W
implies that repeated magnification of its graph reveals ever-finer
levels of detail.... The levels of detail are self-similar under an
affine scaling in which the x axis is stretched by a factor p and
W axis by p2−D [note we have changed γ and t used by Berry
and Lewis (1980) to p and x, respectively]. Unfortunately, these
statements of Berry and Lewis (1980) were misinterpreted and
used in many papers as generally accepted and mathematically
rigorous statements applicable to all so-called self-affine fractals.

There was an attempt byMandelbrot (1986) to develop further
the concept of self-affinity. He formulated several statements
about self-affine fractals that were not supported by any strict
definition of these fractals. In essence, his statements are: there
are both local and global scaling for self-affine fractals and each
version of FD for self-affine fractals has a local and a global
value, separated by a crossover. However, these statements have
no mathematical meaning.

Schmittbuhl et al. (1995) wrote that the scaling (10) means
that the heights h are homogeneous functions of the scaling
factors (putting λx = λy)

h(λxx, λxy) = λHx h(x, y)

where the homogeneity exponentH is the self-affine exponent, or
theHurst exponent. Unfortunately, the statement by Schmittbuhl
et al. (1995) about the homogeneity of the fractal graphs is not
very accurate, while the meaning of the Hurst exponent is ill-
defined. It would be better if they would say that the fractal
roughness to obey a discrete dilation homogeneity, i.e., it obeys
the PH-law. Indeed, the scaling properties of C(x; p) function are
connected with the discrete group of coordinate dilation

C(pkx; p) = p(2−D)kC(x; p). (11)

Although this scaling is quite often attributed to FD of the
C(x; p) graph, saying that H = 1 − D∗, these statements
are wrong because the scaling properties are governed by the
degrees d of PH-functions. (Borodich, 1998a,b) showed that
he can construct PH-functions with prescribed global trend
h ∼ xd and given value of FD, while the Hausdorff and box-
counting FDs of the Weierstrass type functions preserve their
values under action of quasi-homogeneous transformation. For
example, taking constants A and 0 < ǫ << 1 one can construct
PH-functions bβ (x, p) = C(x; p), b0(x; p), b1(x; p) and b2(x; p)

b0(x; p) = x−βC(x; p), b1(x; p) = Ax
[

1+ ǫb0(x; p)
]

,

b2(x; p) = Ax2
[

1+ ǫb0(x; p)
]

(12)

have the same values of the Hausdorff and box dimensions
and absolutely different trends. On the other hand, if one uses
the above self-affine terminology then bβ (x, p) and b2(x; p) are
self-affine fractals, while b1(x; p) is self-similar fractal because

b1(p
kx; p) = pkb1(x; p).

It follows from the above discussion that Hurst exponent is an
ill-defined term and it is not connected to FDs of the PH-graphs.

A statement by Mandelbrot (1983) is often cited. Mandelbrot
(1983) wrote that coastlines are not circles, clouds are not spheres,
and mountains are not cones, assuming that they have to be
modeled as fractals. Borodich and Onishchenko (1999) extended
Mandelbrot’s statement saying that roughness of real bodies is
not a mathematical fractal and all these geometrical objects:
spheres, cones, circles as well as fractals are only mathematical
idealizations of complex shapes of natural objects. Mathematical
and physical fractals should not be confused. Certainly one can
employ mathematical fractal as a possible model that reflect
the power-law number-radius relation or PSDF of a natural
object within a bounded interval of scales. However, the obtained
problem may be a very complicated.

5. POWER SPECTRAL DENSITY FUNCTION
APPROACHES TO ROUGH SURFACES

The last 20 years or so the PSDF approach became very popular
in tribology community (see e.g., Persson, 2006). In fact, the
authors of the papers reduce the properties of rough surfaces just
to their PSDF G(ω). This approach was criticized by Borodich
(2002). He wrote: two punches having the same fractal surface but
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FIGURE 2 | The power spectra of the profile h(x) = sin(2π ln(x)/ ln(p)) for

x ∈ [0.0001, 1] with p = 2 (black) and p = 1.3 (red).

situated either above or below the surface show usually different
asymptotics in both load-displacement and load-area relations. As
an example he considered CB profile and solutions presented
by Borodich and Onishchenko (1993). Then Borodich et al.
(2016) showed that any surface and its replica have the same
power spectral density, therefore one cannot characterize contact
properties of rough surfaces just by surface “spectrum.” Indeed,
one can consider an absolutely flat smooth surface having many
sharp dents and its complementary replica (an inverted replica):
a surface having many sharp asperities of the surface roughness.
Evidently, they gave absolutely different contact properties (see
e.g., examples by Borodich and Onishchenko, 1993).

Moreover quite often the PSDF approach is reduced to the so-
called self-affine surfaces by employment of the Hurst exponent
term. As we have discussed above the term is ill-defined and such
papers just create “new clothes” for the vulgar fractal approach.

Using examples, we will show below that the many common
statements about rough non-Gaussian surfaces are wrong or
just meaningless.

5.1. Smooth Functions May Have a
Power-Law PSDF
Let us show that connections of FDs and the slopes of PSDFs
in logarithmic coordinates are meaningless. As an example,
consider a very simple and smooth PH-function, namely a sin
log-periodic function. Figure 2 shows the power spectra for
h(x) = sin(2π ln(x)/ ln(p)) with x ∈ [0.0001, 1].

It is clear that the function is non-fractal, nevertheless its
power spectra in logarithmic coordinates located along a straight
line within a bounded range of scales.

5.2. PSDFs Are Almost the Same for
Different Truncated
Weierstrass-Mandelbrot Functions
Let us consider two truncated Weierstrass-Mandelbrot functions

Ct(x; p) =

N
∑

n=−N

p−(2−D)n(1− cos(pnx)),

A(x; p) =

N
∑

n=−N

(−1)np−(2−D)n sin(pnx),

where N is large natural number, p > 1 and D ∈ (1, 2). In
addition, let us consider a function xD−2Ct(x; p). IfN → ∞ then
Ct(x; p) → C(x; p) and D is their box-dimension, however they
have different trends.

Let us fix the values p = 1.5 and D = 1.5 and vary N. Let us
calculate numerically the PSDFs for obtained graphs. The results
are presented in logarithmic coordinates in Figure 3.

One can see that the average PSDFs are approximately the
same while the functions are rather different.

Now let us fix the values p = 1.5, and N = 100 and vary
D and calculate numerically the PSDFs for obtained functions.
The results are presented in logarithmic coordinates in Figure 4.
Note that for N = 100, the graphs of Ct(x; p) and xD−2Ct(x; p)
are very close to graphs of PH-functions of degrees d = 2 − D
and d = 0, respectively. We know that these functions have the
same FD D and different trends (see a discussion above), while
their PSDFs are very similar to each other.

The same procedure can be applied to the profiles A(x; p) and
xD−2A(x; p). The results are shown in Figure 5. The results lead
to the same conclusion as above.

5.3. PSDF Does Not Characterize
Tribological Properties of Polished
Surfaces
It is known that the tribological properties of gears can be greatly
extended by improved surface finish (Krantz et al., 2001). This
fact was employed by Harris et al. in a series of papers dedicated
to the use of modern hard carbon-based coatings. Indeed, these
hard carbon-based films can remove protuberances on the steel
counterparts, reducing the values of high intensity stresses and
the total number the stress concentration points. On the other
hand, due to polishing of the coating asperities, the rate at which
the coatings abrade steel declines as a power-law of the cycle
numbers, i.e., very rapidly. The coated surface become super
smooth even after just 500 cycles (see SEM images by Borodich
et al., 2003). Let us consider the following thought experiment.
An intact surface is modeled by a Gaussian function f1(x) shown
in Figure 1A (this assumption is in accordance with roughness
measurements of intact surfaces by Pepelyshev et al., 2018 and
Borodich et al., 2019a). Then the asperities of the surface have
been polished away and the roughness of the polished parts
are described by 0.1f2(t) where the profile f2(x) is shown in
Figure 1B. Hence, the full polished surface is described by f3(t) =
min[f1(x), 0.1f2(x)] shown in Figure 6.

Figure 7 shows the power spectra for the profile f1(x) (black),
the profile f2(x) (red), and the “polished” profile f3(x) =

min[f1(x), 0.1f2(x)] (blue).
These three profiles have the different outlook and tribological

properties, however have the same exponent 1.9 in the power
spectra, i.e., G(ω) ∼ 1/ω1.9.
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FIGURE 3 | The power spectra of the profile Ct (x;p) (black) and the profile xD−2Ct (x;p) (red) for x ∈ [0, 1] with p = 1.5, D = 1.5 and varying N (A) N = 100; (B)

N = 30; (C) N = 20; and (D) N = 10.

FIGURE 4 | The power spectra of the profile Ct (x;p) (black) and the profile xD−2Ct (x;p) (red) for x ∈ [0, 1] with p = 1.5, and N = 100 for D = 1.3 (left), D = 1.7 (right).

FIGURE 5 | The power spectra of the profile A(x;p) (black) and the profile xD−2A(x;p) (red) for x ∈ [0, 1] for x ∈ [0, 1] with p = 1.5, and N = 100 for D = 1.3 (left),

D = 1.7 (right).
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FIGURE 6 | The “polished” profile f3(t) = min[f1(x), 0.1f2(x)], where the profile f1(x) is shown in Figure 1A and the profile f2(x) is shown in Figure 1B.

FIGURE 7 | The power spectra for the profile f1(x) (black) shown in Figure 1A,

the profile f2(x) (red) shown in Figure 1B, and the “polished” profile

f3(x) = min[f1(x), 0.1f2(x)] (blue).

6. CONCLUSIONS

A review of mathematical approaches for description of
topography of engineering surfaces has been presented. It
has been shown that in spite of huge amount of parameters
used to characterize the surface topography, only some
of the parameters are quite useful. However, their use is
rather bounded, e.g., these parameters may be helpful at
meso or even microscales, however they could be useless at
the nanoscale.

There are many models of random processes, however just
the case of Gaussian processes is well-elaborated. Some statistical
methods employed for checking normality of distributions
of asperity heights are reviewed. The preliminary results
showed that the intact surfaces are quite often Gaussian at
both micro and nanoscales, while the grinding surfaces are
not normal.

Then the fractal approaches to surface roughness are
discussed. Some common misinterpretations of statements by
Berry and Lewis (1980) are also discussed. Some disadvantages of
the fractal approaches and commonly reported wrong statements
about fractals are listed. It is argued that the practical usefulness

of the fractal approaches is rather doubtful. One should not
expect that the employment of a mathematical fractal model
of a rough surface will provide considerable advantages. In
fact, such models may cause many mathematical difficulties.
Thus, a strict approach to fractal modeling may substitute a
difficult problem to another more difficult than the original
one. Further, dimensions of physical fractals cannot be used
as scale independent parameters. One should provide proper
explanations of the fractal concepts used, otherwise this could
lead tomisinterpretation of the results. Unfortunately, quite often
the answer to the question by Jelinek et al. (1998): Is there
meaning in fractal analyses?, is “No.”

Finally the models of surface roughness based solely on
properties of the auto-correlation function or its Fourier
transform (the PDSF) are discussed. It has been noted that the
PDSF approach to non-Gaussian surfaces are in essence the new
clothes for the vulgar fractal approaches. We argue that these
PDSF models do not reflect tribological properties of surfaces.
In particular, it is demonstrated that rough profiles may have
the same slopes of the PSDF in logarithmic coordinates, while
they have rather different tribological properties. Thus, there is a
bounded scientific value (if any) of a number of papers based on
the PSDF approach.
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The relative contact area between an initially flat, adhesion- and frictionless, linearly
elastic body and a variety of rough, rigid counterbodies is studied using Green’s function
molecular dynamics. The indenter’s height profiles range from ideal random roughness
through roughness with a moderate amount of correlation to periodically repeated,
single-asperity indenters having perfect phase coherence. At small reduced pressures,
p∗ ≡ p/(E∗ḡ) ≪ 1, sufficiently large systems are consistent with a linear ac = κ p∗

relation. Here p is the pressure, E∗ is the contact modulus, ḡ the root-mean-square
height gradient, and κ a unitless proportionality coefficient. However, the parameter ḡ
must be evaluated over the real contact area for the linear relation to hold if the random
roughness is correlated or the interfacial dimension reduced. No single unitless structural
parameter—including the Nayak parameter—correlates in a significant fashion with κ.

Keywords: contact mechanics, simulation, theory, random roughness surface, contact area

1. INTRODUCTION

The understanding of how the relative contact area ar depends on pressure in nominally flat,
linearly elastic contacts has made great progress in the past two decades (Persson, 2001; Müser
et al., 2017). Many advanced simulation studies support the view that it increases linearly with
pressure from non-zero but very small ar up to ar ≈ 0.1, at least in the limiting and much
investigated case of randomly rough, self-affine surfaces (Hyun et al., 2004; Campañá and Müser,
2007; Carbone and Bottiglione, 2008; Putignano et al., 2012; Prodanov et al., 2013). The height
spectrum C(q) of a self-affine surface obeys power law scaling with the magnitude of the wavevector
q over several decades (Majumdar and Tien, 1990; Palasantzas, 1993; Persson, 2014; Jacobs et al.,
2017), i.e., C(q) ∝ q−2(1+H), where H is called the Hurst exponent. In the limit of ideal random
roughness, the phases of Fourier transforms of the surface height are independent random numbers
that are uniformally distributed on (0, 2π). In this random-phase approximation, linearity between
contact area and load can be rationalized with Persson’s contact mechanics theory (Persson, 2001;
Persson et al., 2004), which, in addition to predicting the area-load relation reasonably well, finds
a highly accurate pressure-dependence of the interfacial stiffness along with accurate distribution
functions of the interfacial separation (Lorenz and Persson, 2008; Almqvist et al., 2011; Campañá
et al., 2011; Dapp et al., 2012; Prodanov et al., 2013; Afferrante et al., 2018) and correct spatial stress
correlations (Campañá et al., 2008; Persson, 2008), none of which bearing-area models are able
to achieve.
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While it is sometimes argued that there must be a rigorous
linear relation between contact area and load for random surfaces
(in the thermodynamic limit), there are several indications for
this linearity not to be strict. When the load is so small that
contact is made only in a more-or-less connected patch near
the highest point, relations for randomly rough surfaces may
no longer hold (Pohrt et al., 2012). This, however, can be
rationalized as a finite-size effect and be accounted for in Persson
theory (Pastewka et al., 2013). However, even when several
asperities were in contact, deviations from linearity had been
noted by Yastrebov et al. (2015). Unfortunately, their calculations
were conducted at an essentially fixed ratio of system size and
short-wavelength cutoff (with varying roll-off wavelengths) so
that small logarithmic corrections to linear relations between
contact area and load may not be particularly telling. So far,
the strongest support for deviations from linearity were reported
in two carefully conducted simulation studies by Nicola and
coworkers (van Dokkum et al., 2018; Salehani et al., 2020). They
found quite remarkable logarithmic corrections to linear laws in
large, one-dimensional adhesionless contacts (van Dokkum et al.,
2018) as well as clearly sublinear scaling for two-dimensional,
adhesive surfaces (Salehani et al., 2020). However, the latter may
have been in a regime with non-negligible adhesive hysteresis,
in which case non-linearity between ar and p is unavoidable.
Thus, even these two latter works do not explicitly challenge
the view that a linear dependence of contact area on load is
an excellent approximation for linearly elastic, sufficiently large,
two-dimensional elastic bodies squeezed against a randomly
rough, non-adhesive indenter.

An unsolved question is why different Hurst exponents lead to
slightly different proportionality coefficients in the equation

ar =
κ p

E∗ ḡ
, (1)

where p is the nominal contact pressure, E∗ the contact modulus,
and ḡ the root-mean-square height gradient. Yastrebov et al.
(2015) found that the proportionality coefficient κ correlates
with the Nayak parameter (Nayak, 1971), 8N at fixed p∗. As
we will argue in this work, 8N can be seen as the lowest-order
unitless, scalar parameter describing a surface topography other
than ḡ, however, only if the random-phase approximation (rpa)
is satisfied. The Nayak parameter is mentioned in many contact-
mechanics studies. However, none of them that we are aware of
and that claim the proportionality coefficient κ to depend on the
Nayak parameter has the numerical sophistication of Yastrebov
et al.’s works (Yastrebov et al., 2015, 2017). Nonetheless, they only
addressed surfaces with ideal random roughness, i.e., surfaces
obeying the rpa, and, as already mentioned above, the ratio of
system size and short-wavelength cutoff was kept in a relatively
narrow range. Therefore, the Nayak parameter may merely have
strongly correlated with other, relevant (stochastic) quantifiers,
but not have causally determined the κ(H) dependence.

In fact when leaving the realm of ideally rough surfaces, it does
not appear plausible that the Nayak parameter strongly affects κ .
To see why consider the exact solution to a contact problem (no
friction, no adhesion, small-slope approximation) between an

initially smooth, linearly elastic manifold squeezed down against
a rough, rigid substrate fixed in space. In a thought experiment,
modify the substrate’s height profile in the non-contact zones
such that all moved points remain below the elastic body. Its
equilibrium displacement field and contact points at this and
smaller pressures will be the same as for the original substrate,
however, the Nayak parameter can have changed by orders of
magnitude between the original and the modified indenter. In
another thought experiment, consider an indenter with blunt
peaks (facing the elastic body) and steep valleys. At a given load,
it will have a relatively large contact area. If the indenter’s height
profile is flipped around, the Nayak parameter remains the same
but now the contact area is strongly diminished as the elastic
body is now in contact with sharp peaks. Thus, in one thought
experiment, the Nayak parameter changed its value significantly,
while the contact area remained unaffected. In the other one,
the situation reversed: the contact area changed while the Nayak
parameter didn’t. For these reasons, there can be scarcely a
broadly applicable correlation between contact area and Nayak
parameter, at least once the random-phase approximation has
been abandoned.

The two thought experiments reveal that relevant stochastic
topographic quantifiers may only depend on functions that are
defined in the true contact zones. As desired, such a quantifier
would remain unaffected in the first thought experiment when
ar does not change, while both would adopt new values in the
second thought experiment. Dimensional analysis of the specified
contact problem reveals that the root-mean-square gradient plays
a central role for the contact area, even in the absence of the
random-phase approximation (Prodanov et al., 2013). In fact,
one of us (Müser, 2017) demonstrated that Equation (1) also
holds for indenters having a harmonic height profile (asperity
height decreases as a powerlaw with distance from a symmetry
axis) if ḡ is averaged over the true contact area. In this case,
ar is no longer strictly linear in p since ḡ is a function of load
or pressure. Similarly, line contacts between two-dimensional
solids were found to obey Equation (1) but only when ḡ was
averaged over the true contact (van Dokkum et al., 2018). Thus,
the effective κ is a function of the bluntness of the indenting tip,
where bluntness would be defined by the functional form of the
indenters rather than by numerical prefactors.

In this work, we investigate what structural parameters
affect the proportionality coefficient κ , or more generally, the
area-pressure relation. Toward this end, we study the contact
mechanics of height profiles with anisotropy and with phase
correlation in the Fourier transforms of the height profiles. This
correlation is realized by warping rpa height profiles such that
peaks are smoothed and valleys are roughened or vice versa,
whereby the rpa is destroyed. Anisotropy will also be considered.
We then explore to what extent the results on relative contact
area correlate with unitless scalar parameters describing the
topographic features of the surfaces. These parameters include
the Nayak parameter but also a variety of other parameters, which
take constant values for rpa surfaces but not for surfaces with
correlated (random) roughness.

The remainder of this paper is organized as follows: Model
and method are introduced in section 2. The theory is introduced
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in section 3, which includes the systematic construction of
topographic order parameters beyond the Nayak parameter.
Results are presented in section 4, while conclusions are drawn
in section 5.

2. MODEL AND METHOD

As mentioned in the introduction, we are concerned with
contacts between an initially flat, linearly elastic body in
frictionless contact with a rigid, rough counterface indenting
from below. Interactions between the two bodies consist of a
non-overlap constraint. This model has been used extensively
since Hertz.

The contact problem is solved with Green’s function
molecular dynamics (GFMD), which is a frequently employed
and described boundary-value method (Campañá and Müser,
2006; Pastewka et al., 2012; Kajita, 2016; van Dokkum andNicola,
2019). Here we use it in the so-called FIRE-GFMD variant (Zhou
et al., 2019).

Most surfaces simulated in this work are randomly rough.
The default or rather starting surfaces have the isotropic, self-
affine roughness described in the introduction. In addition, it is
assumed that ideal self-affine scaling only exists for wave vectors
qr ≤ q ≤ qs, where qr is the roll-off wave vector and qs is the
short-wavelength cutoff. Thus, the used spectra are

C(q) = C(qr)×







froll if q < qr
(q/qr)

−2(1+H) if qr < q < qs
0 else,

(2)

where froll is a Boolean variable, which takes the value of one if
true and of zero if false. froll is false by default and only set to
true when mentioned explicitly. Thus, by default, λr = 2π/qr
plays the role of a long wavelength cutoff rather than of a rolloff.
In almost all cases, the linear dimension of the simulation cell
L is still chosen larger than λr in order to average implicitly
over different random realizations, which can become relevant
for large Hurst exponents at small relative contact areas.

The elastic body is discretized into elements having a linear
dimension 1a, which is sufficiently small compared to π/qs in
order for the continuum limit to be reached. In fact, different
discretizations are considered and results for all observables are
extrapolated to the continuum limit (εc ≡ 1a/λs → 0), using a
Richardson extrapolation as described in Prodanov et al. (2013).
For the contact area, we find a linear dependence in εc of the

continuum corrections rather than the previously identified ε
2/3
c

dependence (Campañá and Müser, 2007; Prodanov et al., 2013).
Unfortunately, we no longer posses the old configuration files so
that analyzing the origin of the discrepancy cannot be clarified.
While our GFMD code has been rewritten twice after the original
single-authored code by Campana (version 2 by Müser, Dapp,
and Prodanov while version 3 was by Müser with Zhou and
Wang), we now find a linear a(εc) scaling even when using
version 2, which was used, for example, in the contact-mechanics
challenge. Although, corrections turn out differently than before,
the extrapolated values between old and new results matched
whenever tested.

For the so-called fractal correction, i.e., the excess contact
area arising due to the ratio εf = λs/λr being finite, we also
find different scaling than before (Prodanov et al., 2013), i.e.,
the exponent αf of the correction ε

αf
f

is found to vary between
zero (implying approximately logarithmic corrections) and unity.
Precise values are difficult to determine due to stochastic scatter.
One reason for why we no longer find a unique value for
αf is that we now consider contact areas in the continuum
limit before exploring the limit εf → 0. However, since
we find αf to be always equal or less to unity, extrapolation
with αf = 1 from finite εf to zero should never result in
an overcorrection.

Deviations from isotropy are realized by using an effective
“Peklenik” wavenumber

qP =





γ 2
P q

2
x + q2y/γ

2
P

√

γ 4
P + 1/γ 4

P





1/2

(3)

as the variable in the height spectrum rather than the true
wave number q. The Peklenik parameter satisfies 0 < γP <

∞. Surfaces are stochastically isotropic if γP = 1. Anisotropy
increases with increasing (ln γP)

2. The such produced height
profiles reveal preferred directions or “grooves” in Figure 1,
which makes them somewhat more similar to scratched surfaces
than topographies with isotropic random roughness.

Phase coherence can be destroyed through a warping
transformation. A warped height is defined by

hw =







hmin + (h− hmin)
(

h−hmin
hmax−hmin

)w
if w ≥ 0

hmax − (hmax − h)
(

hmax−h
hmax−hmin

)|w|
else,

(4)

where hmin ≤ Min
{

h(r)
}

and hmax ≥ Max
{

h(r)
}

. Here h
indicates the height of the original (rpa) height profile at a given
position r and hw is the height at a given location of the warped
surface. At w = 0, height profiles remain unchanged. For w > 0,
peaks are blunted and valleys sharpened, while the opposite is
achieved with w < 0, as can be seen in the cross-section of the
height-profile shown in Figure 2. In the current study, hmin =

2Min{h(r)} − Max{h(r)} and hmax = 2Max{h(r)} − Min{h(r)}
were used.

Phase correlation through our warping procedure is reflected
by the observation that the height histograms are systematically
skewed for w 6= 0. In contrast, the height histograms of rpa
surfaces are symmetric, except for finite-size effects, because
each height profile has the same likelihood to occur as its
mirror image in which valleys turn to peaks and vice versa.
In addition, the expectation value of the root-mean-square
gradient changes with height, i.e., it is much reduced in the
blunted parts of the surface compared to the roughened parts.
In contrast, for (sufficiently large) rpa surfaces, ḡ is independent
of the height, except near the highest and lowest heights in a
finite sample. In future topographic determinations of random
surfaces with correlation, it would be very interesting to know
to what extent the rms-height gradient changes with height. This
would probably constitute an important quantity to be targeted
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FIGURE 1 | (Left) Topography of a surface satisfying the random-phase approximation characterized by a Peklenik number of γP = 4. (Right) Height-difference
auto-correlation function C(r) for shown topography and r parallel to ex (closed black circles) and ey (closed pink circles).

FIGURE 2 | (Left) Contacts between an elastic body and indenters with different warpings w (top to bottom w = 2, w = 0, w = −2) at approximately 10% relative
contact area. The dashed lines indicate the indenters’ center-of-mass height for the shown cross section. The curves w = ±2 are shifted by a constant to improve
their visualization. (Right) Height histograms for the different surfaces. The number of grid points for each warped surface is fixed to 4, 096× 4, 096.

for computer-generated surfaces. To mimic scratched surfaces
realistically, it will probably be required to assume a scale or q-
dependent Peklenik parameter (Candela et al., 2011) in addition
to warping and to consider additional refinements. However,
our impression is that the w = 2 surface already contains
some features of polished surfaces, i.e., relatively deep valleys and
smoothed tops.

In principle, it would have also been possible to consider

phase correlation by limiting the values of the phases of h̃(q)
to a range −ϕm ≤ ϕ ≤ ϕm defined by a minimum/maximum

allowed phase ϕm for the phases of all h̃(q), while keeping the
height spectra C(q) unchanged. We found this method not to
be helpful, because it lead to indenters with sharp thorns. In the
limit of ϕm → 0, essentially single-point indenters are obtained.
Rather than investigating those, we will consider indenters with

harmonic height profiles satisfying

h(r) =
R

n

( r

R

)n
, (5)

where R is of unit length, while r is the in-plane distance of a
point from the (closest) symmetry axis of an individual indenter,
which we place into the center-of-mass of the simulation cell.
The values of n used in this study were restricted to n = 1.5
(sharp indenter), n = 2 (Hertzian geometry), and n = 4
(blunt indenter). Analytical solution for stress and displacement
fields (in the contact area and its vicinity) and thus for the
dependence of contact area on load are known when the contact
radii are negligibly small compared to the linear dimension of the
simulation cell.
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3. THEORY

3.1. Phenomenological Generalization of
Persson Theory
Persson theory for linear elastic contacts between ideally
randomly rough surfaces predicts a relative contact area of

ar = erf
{√

2 p0/E
∗ḡ
}

, (6)

where ḡ is the root-mean-square height gradient averaged over
the entire surface, i.e,

ḡ2 =

∫

d2qC(q) q2, (7)

which is the expression in the derivation of Persson theory.
One of us noticed that Equation (6) also holds for smooth

indenters with harmonic height profiles if ḡ is replaced with ḡc,
where the latter is not determined over the entire surface but
only over the true contact. Thus, the range of applicability of
Equation (6) appears to extend when re-expressing it through

ar = erf
(√

πκcp
∗

c/2
)

, (8)

where κc is the proportionality coefficient between relative
contact area and the reduced pressure defined by p∗c = p0/(E

∗ḡc).
When omitting the index “c” in κc, we mean to refer to
the proportionality coefficient when the reduced pressure is
normalized to ḡ rather than to ḡc.

In fact, when taking Persson theory literally, it does ask
the question how the rms-height changes in a given point
of contact (described using a small resolution of the surface
topography) when short-wavelength roughness is added to the
description of the contact problem. Using the full spectrum
to estimate this increase in rms-roughness can be seen as an
approximation, which might be possible to correct in future
work. Some possibilities are discussed in the conclusions.

The standard Persson theory predicts a value of κ =
√
8/π ≈

1.596. In the formulation of the theory, it appears to us as if
no distinction is made—or must be made—between κ and κc,
at least as long as pressures lie in a range in which ar ∝ p,
that is, if p is sufficiently large for contact to spread out over
clearly disconnected contact patches but still small enough so
that ar is less than, say, 0.05. Careful simulations of sufficiently
large systems find a relatively weak dependence of κ on the
Hurst roughness exponent, e.g., κ(H ≈ 0.8) . 2 and κ(H ≈

0.3) & 2. (Hyun et al., 2004; Campañá and Müser, 2007; Hyun
and Robbins, 2007; Putignano et al., 2012; Prodanov et al., 2013;
Afferrante et al., 2018). Analytical results for the Hertz contact
result in κc ≈ 1.666, see also Equation (28) and the more
detailed discussion of periodically repeated, smooth indenters in
section 4.5.

3.2. Dimensionless Parameters: Nayak and
Beyond
Since the relative contact area is a number, it can only be
a function of other unitless parameters (p∗,81,82, ...) itself,

where p∗ is a reduced pressure, e.g., p/(E∗ḡ). Moreover, each
variable in the set {8} must obey the law of dimensional
analysis. Specifically, they must remain invariant under the
scaling transformation r → s · r and z → t · z, since the relation
arel = arel(p/E

∗ḡ) already reflects the correct dependencies on s
and t (Prodanov et al., 2013). Moreover, real contact is destroyed
predominantly due to roughness at small wavelengths. Thus, the
8i should not depend on parameters that are defined exclusively
by parameters from the height-distribution also known as Abbott
Feierstone curve.

Before constructing the respective unitless parameters, it is
in place to discuss the square-gradient term. When determining
ḡ over a periodically repeated contact, 〈(∇h)2〉 is identical to
−〈δh1h〉, as can be seen by integration in parts. However, this
equality no longer holds for partial contact. Defining

(

ḡ′c
)2

= −〈δh1h〉c. (9)

the dependence of arel on parameters depending on height
profiles in the contact then becomes

arel = arel[p/(E
∗ḡc), ḡc/ḡ

′

c, {8c}]. (10)

Ultimately, arel is a functional of the height topography. As
such, there should exist a dependence of arel that does not
necessitate parameters averaged over the real contact. However,
those might necessitate non-local terms, or, alternatively, high-
order derivatives of h(r). The latter may not be well defined when
the surface profile or its (higher-order) derivatives are not well-
defined, as is the case, for example, for a conical indenter. Thus,
the following discussion assumes surface height profiles to be
smooth and “well behaved.”

For the construction of relevant parameters, it is useful to
keep in mind three symmetry relations. First, a mirror inversion
(r → −r) leaves the contact area unchanged. This is why
each derivative with respect to a spatial coordinate must appear
an even number of times in the construction of an invariant.
Second, eachmeasure should be rotationally invariant and reduce
to a scalar. This is automatically achieved when representing
derivatives with the Einstein summation convention, which
requires every index (enumerating an in-plane coordinate)
occurring twice in a product to be summed over. To use it
effectively, we use it jointly with the index notation, in which
case h2α indicates the square-height gradient (∇h) · (∇h) and hαα

the Laplacian 1h. However, ḡ will keep indicating the rms height
gradient

√

〈h2α〉. Third, the invariants may not change on a rigid,
vertical translation of the surface h(r) → h(r) + h0. This is why
only δh = h− 〈h〉 can appear in the invariants. The lowest-order
invariant obeying these rules that we could identify are given by

81 =

〈

δh h2α
〉

√

〈

h2α
〉

ḡ2
(11)

82 =
−
〈

δh2 hαα

〉

2
√

〈δh2〉 ḡ2
(12)

83 =
−〈δh2〉 〈hαα〉

2
√

〈δh2〉 ḡ2
. (13)
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Before constructing the next parameters, the allowed values for
the parameter 81 to 83 will be discussed. 81 and 82 are
identical when averaged over a periodically repeated surfaces (as
can be seen again by integration in parts) but not when they
are determined over partial contact, in which case the index “c”
would be added. For periodically repeated surfaces, the parameter
83 is automatically identical to zero but generally different from
zero when averaged over partial contact. This is because themean
curvature disappears for a periodically repeated surface, while the
curvature must average to a negative number for partial contact
(assuming the elastic body indents the profile from above).

The values of 81 and 82 averaged over a single rpa surface
may be finite. However, averaging these means over various
disorder realization will make them disappear, as any surface
realization h(r) has the same probability (density) to occur
as −h(r). Thus, 81 and 82—as well as any other parameter,
in which the symbol h appears an odd number of times as
a factor—should be small when determined over a single rpa
surface realization, in particular when the roll-off domain is
sufficiently large.

When averaged over partial contact and/or over surfaces
violating the rpa,81 and82 may and usually do take finite values.
This is why we call them symmetry allowed in Table 1. For the
remaining parameters, we will no longer state the rationale for
why terms are symmetry allowed or forbidden, as all relevant
arguments have been mentioned or can be easily derived using
the relations for Gaussian random numbers summarized in
section 3.3. Table 1 contains our conclusions on each parameter
constructed in this work.

Additional parameters in which numerator and denominator
are second order in the derivative but higher order in h can
be constructed. They will be considered up to the lowest order
needed beyond the rms-height gradient, in which the parameters
do not disappear in case of the random-phase approximation.
This includes the parameters

84 =

〈

δh2 h2α
〉

〈

δh2
〉

ḡ2
(14)

85 =
−
〈

δh3 hαα

〉

3
〈

δh2
〉

ḡ2
(15)

For rpa-surfaces, 84 is automatically equal to unity and for all
periodically repeated surfaces, 84 = 85.

Finally, we consider parameters in which the order of the
derivatives is increased from two to four while the order in the
height is kept as small as possible. Three of quite a few resulting
(irreducible) possibilities are

86 =
1

ḡ4

〈

δh2
〉 〈

hααhββ

〉

(16)

87 =
2

3 ḡ4

〈

δh2 hααhββ

〉

(17)

88 =
1

ḡ4

{〈

h2αh
2
β

〉

− 3
〈

h2α
〉

〈

h2β

〉

+ 〈hαhβ〉
2
}

(18)

89 =
2

ḡ4

〈

hαhβ − h2γ δαβ/2
〉2
, (19)

where δαβ is the Kronecker-delta symbol.

TABLE 1 | Values of parameters averaged over a full, periodically repeated
surface (prs) if the random-phase approximation (rpa) is valid and when it is not
valid (n-rpa).

Full prs rpa n-rpa

81 ǫ Allowed

82 81 81

83 0 0

84 1− ǫ Allowed

85 84 84

86 allowed Allowed

87 ≈ 86 Allowed

88 ǫ Allowed

89 ǫ ǫ

if isotropic If isotropic

The word “allowed” indicates that a finite value is symmetry allowed. The number ǫ implies

that the result averages to zero after an ensemble average over many surface realizations

and that it should be small for an individual instantiation.

The parameter 86 is nothing but the Nayak parameter 8N,
up to a multiplicative constant of 2/3. It is frequently interpreted
as a measure for the spectral width. We chose the prefactor
such that 86 and 87 are equal to unity for single-wave-vector
roughness. The parameter 87 is a generalization of the Nayak
parameter. For randomly rough, rpa surface, its expectation value
is close to but less than86. Thus, both parameters tend to infinity
as the ratio εf = λs/λr becomes small, that is, with ε−2H

f
.

However, for (strongly) correlated random roughness 87 takes
much greater values than 86, just as 84 starts to substantially
exceed unity, because the factorization of the various terms
(see also section 3.3) no longer holds once the rpa is no
longer obeyed.

The parameter 88 plays the role of a generalized height
gradient cumulant. It is constructed such that it takes the value
of zero when the fourth-order cumulant of the surface slope s
parallel to any in-plane unit vector n takes the value of zero if it is
distributed normally, i.e., when c4,n = 〈s4〉−3〈s2〉2 disappears for
every n. This parameter is implicitly symmetrized with respect to
its mirror images in the xz and yz planes so that 〈s〉 = 0 follows.
Note that 88 being small is a necessary but not a sufficient
criterion for every c4,n to disappear. It is only sufficient if the
surfaces are stochastically isotropic.

Finally, 89 is a measure for anisotropy. It takes the
values of zero and one in the limits of ideal isotropic and
ideal anisotropy, respectively, where, for the latter, surfaces
are perfectly smooth along one spatial direction. Assuming
the Peklenik number to be independent of the wavevector,
89 can be easily shown to be identical to (γ 2

P − 1/γ 2
P )

2/2
As is the case for some other parameters too, 89 is
not identical to zero for an individual surface realization,
but only averages to zero after taking sufficiently many
surface realizations.

We conclude this section by stating that the Nayak
parameter is the lowest-order scalar structural parameter that
the proportionality coefficient κ can depend on if the surface
is isotropic and satisfies the random-phase approximation. All

Frontiers in Mechanical Engineering | www.frontiersin.org 6 August 2020 | Volume 6 | Article 59182

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Zhou and Müser Structural Parameters and Contact Area

other parameters of similar or smaller order in height are either
identical to zero, or their expectation value is zero, or they
strongly correlate with the Nayak parameter.

3.3. Evaluation of Fourth-Order Invariants
For (isotropic) randomly rough surfaces, invariants being
fourth order in height and fourth order in derivatives are the
leading-order, scalar structural parameters that can affect the
proportionality coefficient κ . Of particular interest should be
those that—unlike the Nayak parameter—cannot be reduced to
products of invariants being second order in height. Yet, the
evaluation of fourth-order expressions is commonly done using
Wick’s theorem (Wick, 1950), which, applied to the current
problem, translates to

C4(q1, . . . , q4) ≡

〈

h̃(q1)h̃(q2)h̃(q3)h̃(q4)
〉

≈

〈

h̃(q1)h̃(q2)
〉 〈

h̃(q3)h̃(q4)
〉

+

〈

h̃(q1)h̃(q3)
〉 〈

h̃(q2)h̃(q4)
〉

+

〈

h̃(q1)h̃(q4)
〉 〈

h̃(q2)h̃(q3)
〉

, (20)

whereby expectation values of fourth-order expressions are
reduced to products of height spectra, since

〈

h̃(qm)h̃(qn)
〉

∝ C(|qm|) δ(qm + qn), (21)

where C(q) is the height spectrum. Equation (20) is exact for
Gaussian random variables of mean zero.

4. RESULTS

4.1. On the Accurate Calculation of Contact
Area and the Proportionality Coefficient κ

In Yastrebov et al. (2017), Yastrebov et al. claimed to ensure an
unprecedented accuracy in computation of the true contact. If nc is
the number of contact points, ncl the number of contact or rather
contact-line points, which are in contact but have at least one
non-contact point as nearest neighbor, then the relative contact
area was estimated with

ar =
nc − α ncl

ntot
, (22)

where ntot is the total number of points into which the surface is
discretized and α = (π − 1+ ln 2)/24.

While we find the proposed correction to be quite useful
in order to get an astoundingly accurate first estimate of the
continuum correction for isotropic, rpa surfaces, we believe that
it can at best be on par with a properly executed Richardson
extrapolation even in that limiting case. The reason is that the
numerical coefficient α ≈ 0.11811 can scarcely be universal
even if the special form of writing it as (π − 1 + ln 2)/24
might convey a profound mathematical reason for its specific
value. To argue why the proposed method cannot surpass a
Richardson extrapolation in the asymptotic limit, let us assume

FIGURE 3 | Comparison of different extrapolation schemes for the relative
contact area ar to the continuum limit εc ≡ a/λs → 0 for an rpa surface
specified by H = 0.8, p∗ = 0.05, λr/L = 0.5, and λs/L = 0.008. In the
modified Yastrevob extrapolation, the prefactor α in Equation (22) was chosen
such that the extrapolated contact area at a discretization aλs and at 2aλs

gave the same estimate for the contact area. Dashed lines are drawn to guide
the eye.

that the leading order-correction were indeed proportional to the
number of contact-line points within the contact. This number
would ultimately scale with a/λs, because the fractal nature of
the contact seizes to exist in this limit, so that the contact line
acquires the (fractal) dimension of unity, in which case ncl ∝

λs/a. This linear scaling of the leading-order corrections to the
contact area would be picked up by a Richardson extrapolation
and the proportionality coefficient would automatically adjust to
the exact value and not only to a value, which is very good but
not exact.

The proposed correction scheme can only outperform a
Richardson extrapolation if higher-order corrections happened
to be incorporated into it. This, in fact, might be the case, as is
revealed in Figure 3 by the accurate values from the Yastrebov
extrapolation at large εc. However, since the exact value α must
depend on the specifics of a simulation (artificial geometries can
be easily constructed for which α ≡ 0 at large loads), it can only
be exact in isolated cases of measure zero so that it is generally
asymptotically inferior to Richardson. As such, a claim of having
provided data with unprecedented accuracy with this method is
somewhat hazardous given that previous work used a Richardson
extrapolation while employing ratios of εc = a/λs, εf = λs/λr,
and εt = λr/L, which were simultaneously all greater than the
data having the purportedly unprecedented accuracy.

The ideas of Yastrebov’s extrapolation can be modified by
incorporating the spirit of a Richardson extrapolation into it: if
the numbers of contact and contact-line points are known at
two different values of a/λs, the parameter α could be adjusted
such that the Yastrebov extrapolation gives the same estimate for
both discretizations. Asymptotically, this modification leads to an
improvement, as can be seen in Figure 3, however, it is usually a
disimprovement for a/λs ≥ 1/4. To terminate our discussion
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on the Yastrebov extrapolation, we note that we found it to work
equally well for warped surfaces as for rpa surfaces and that our
final estimates for the relative contact area were always very close,
say, within 0.1%, to using a rigorous extrapolation with the value
that we obtained with a Yastrebov extrapolation using

α = 0.11 (23)

and a discretization of a/λs . 1/4. This value of α typically
deteriorates the quality of the contact-area estimate for a = λs/2
but improves it overall otherwise.

Finally, given that the extrapolation used by Yastrebov and
coworkers may lead to different errors at different pressures, the
following question remains: What is the origin of their observed
logarithmic correction of κ on pressure? Is it the lack of a rigorous
extrapolation to the continuum (εc = a/λs → 0), the fractal
(εf = λs/λr → 0), or the thermodynamic (εt = λr/L → 0)
limit? Or is it actually true? After all and despite our criticism of
their self appraisal, we see their data to be of similar quality as
that of most other cutting-edge works, which had unanimously
come to the conclusion of κ acquiring a constant value at small
p, but which either simply took the values at the smallest value
of εc without further extrapolation or that made Richardson
extrapolations, which we can no longer reconstruct. Moreover,
one-dimensional systems show robust logarithmic corrections in
κ at small p (van Dokkum et al., 2018) even for very large sizes
when contact is also made far away from the highest point. (In
the preparation of this manuscript, we verified those claims on
1D systems for sizes exceeding 220 grid points.)

The last limit that needs to be taken to zero is the pressure
p → 0, i.e., the proportionality coefficient κ should be computed
with the smallest possible errors. To do so, we compute κ as a
pressure-dependent function through the equation

ar = erf
(√

πκp∗/2
)

, (24)

rather than through ar/p
∗ or ∂ar/∂p

∗, because Equation (24)
accounts for some of the low-pressure non linearities, as can be
appreciated in Figure 1 of Dapp et al. (2014). The zero-pressure
limit can only be taken in a meaningful manner in conjunction
with a proper size scaling as will be discussed next.

4.2. Isotropic rpa Surfaces
4.2.1. Does κ Have a Low-Pressure Limit?
κ cannot have a finite low-pressure limit, if it is defined or
computed according to

κ =

(

∏

x

lim
εx→0

)

lim
p→0

κ(p), (25)

where the various limits (defined in the previous section with
x taking the “values” c for continuum, f for fractal, and t for
thermodynamic) are taken in arbitrary order. The reason is that
for any finite system at exceedingly small pressures, only the
highest (meso-scale) asperity is in contact, which (in the realm
of continuum mechanics) will ultimately be Hertzian, in which
case κ tends to infinity.

The interesting question is whether ar can be proportional
to p over an extended range in pressure with no or negligible
logarithmic corrections to the proportionality coefficient κ if
both εt,f are sufficiently small while εc is properly taken to zero at
each pressure. Thus, mathematically speaking, we are interested
in a limit

κ = lim
p→0

lim
εt,f→0

ar

p∗
, (26)

since experimental systems, to which simulations should
compare, tend to have much larger values of εt,f than can be
realized in a computer simulation. This limit is certainly not
approached if the product εtεf is taken to be effectively constant
while having varying discretization errors, as in Yastrebov et al.
(2017). Keeping all but one εt,f,c constant—as done by Prodanov
et al. (2013)—is only an unsatisfactory improvement, because
the discretization corrections probably decrease as εf decreases
due to the increase of the characteristic patch size. The cardinal
mistake made by Prodanov et al. (2013) was to assume that
leading errors to κ are sums of terms cxε

νx
x with x ∈ (c, t, f) and

0 < νx, while they could also be of a more general form and
involve, e.g., products of powers of different εx.

To explore the question raised at the beginning of the
previous paragraph in a somewhat more meaningful way than
before, we ran simulations in which εf and/or εt were decreased
simultaneously with decreasing pressure p according to

ε = εref (p/pref)
1
4 . (27)

Results are shown in Figure 4, for which we chose (arbitrarily)
εf = 1/32 and εt = 1/2 at a reference pressure of p∗ = 0.2. It
reveals that κ increases quite noticeably with decreasing pressure
for all three H = 0.3 systems, while it essentially plateaus for the
two H = 0.8 systems in which εf is decreased as p decreases.
While the H = 0.3 might also plateau at even smaller p∗, a
qualitative difference between H = 0.3 and H = 0.8 would
remain: The curves in which both εt and εf are decreased with
decreasing p∗ lead to small κ for H = 0.8 but to large κ for
H = 0.3, which become even larger for fixed εf.

The reason for the different trends can be potentially linked
to the distribution of contact patch areas and the characteristic
contact patch size Ac, which we define to be the expected patch
size that a randomly picked contact point belongs to. The three
H = 0.3 cases and the H = 0.8 case with fixed εf, all
belong to situations, in which the characteristic contact areas
are rather small: Ac increases only logarithmically with εf for
H < 0.5 (Müser and Wang, 2018) so that large patches are
not possible, even when εf is small. Likewise, only small contact
patches can arise for H = 0.8 at pressures well below the
percolation threshold if εf is fixed to a constant value as large
as εf = 1/32. In contrast, large contact patches can arise even
at small pressures. if εf is small and H > 0.5. Large patches are
needed for a linear ar(p) dependence at small pressures, as can be
rationalized qualitatively from bearing-area models.

In order to explore the question further, if κ can have a well-
defined limit when being deduced with the meaningful limit
defined in Equation (26), we compare the κ(p) relation with two
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sets of εt,f: (i) a small system with εt = 1 and εf = 1/32 and
(ii) a larger systems in which both εt and εf were decreased by
a factor of four to εt = 1/4 and εf = 1/128. Figure 5 reveals
that the pressure sensitivity of κ reduces quite noticeably with
increasing system size for H = 0.8 but not for H = 0.3, which,
however, has a relatively minor logarithmic dependence of κ on
p∗ to begin with.

The trends revealed in Figure 5 are consistent with those of
Figure 4. Increasing system size, i.e., decreasing simultaneously
εt and εf, reduces κ and its pressure sensitivity for H = 0.8 but
not for H = 0.3. Our trends are also roughly consistent with
the observations by Prodanov et al. (2013), who proposed the

FIGURE 4 | Proportionality coefficient κ as defined in Equation (27) for two
Hurst exponents and three different choices of how εf,t change with pressure p.
The term “const” relates to εt = 1/2 and εf = 1/32. These two values are the
reference values at p∗ = 0.2. The term “varying” indicates that the respective ε

is scaled according to Equation (27). To give an example, the scaling makes a
varying εf go down to 1/64 and a varying εt to 1.4 at p∗ = 0.0125. Results
were averaged over up to 100 random realizations per data point.

existence of a well-defined value for κ for H = 0.8 but not for
H = 0.3.

While we already speculatively linked the different trends for
H = 0.3 and H = 0.8 to the way how a characteristic contact
patch size changes with decreasing εf, it remains to be explained
why Ac increases only logarithmically with εf for H < 0.5 but
algebraically for H > 0.5. One possibility could be that most of
the elastic energy (in full contact) is stored in long-wavelength
modes for H > 0.5 but in short-wavelength modes for H < 0.5.
If this argument were true, H = 0.5 could be the dividing line
for the different types of behaviors. We therefore repeated the
analysis shown in Figure 5 for H = 0.5. Unfortunately, the
results leave us somewhat uncertain. Significantly more work
must probably be done to characterize the transition between the
different scaling behaviors rigorously.

To conclude this section on the much investigated isotropic,
rpa surfaces, we expect κ to have a well defined zero-pressure
limit, in the sense of Equation (26), which does not depend upon
how it is approached. For small Hurst exponents, i.e., forH > 0.5,
it might not exist and/or it might depend on how εf → 0 is
approached, e.g., it could take different values when reaching
it with constant εf/εt than with constant εf/

√
εt. At the same

time, we somewhat expect that the value of κ ≈ 2.5 predicted
by the more sophisticated bearing-area models, such as that by
Bush et al. (1975), might provide a (potentially rigorous) upper
bound for κ when the limit εt → 0 is taken before εf → 0.
In this case, the surface roughness on scales exceeding the roll-
off wavelength is white noise so that the underlying mean-field
model of elasticity might not be detrimental.

4.2.2. Effect of Nayak and Related Parameters on κ

Yastrebov et al. (2017) proposed the proportionality coefficient
κ to decrease logarithmically with the Nayak parameter, at least
for self-affine, rpa surfaces. However, two aspects of this claim
and their data strike us as troublesome. First, κ is implicitly
predicted to become negative for very large Nayak parameters,
which is physically meaningless. Second, their data points seem

FIGURE 5 | (Left) Proportionality coefficient κ as function of reduced pressure p∗ for three Hurst parameters and two fixed ratios of εt,f, namely (i) εt = 1 and
εf = 1/32 and (ii) εt = 1/4 and εf = 1/128. (Right) Scaling with εf for H = 0.8 and εt = 0.5. Dashed lines are linear fits to the three lowest values in εf. Results were
averaged over up to 100 random realizations per data point.
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FIGURE 6 | Proportionality coefficient κ as a function of the Nayak parameter
8N = 1.586 at p∗ = 0.02. Full and open symbols relate to H = 0.3 and
H = 0.8, respectively. Different surface realizations were considered: (1) orange
triangles up: cut-off, (2) blue triangles down: smooth roll-off, (3) green triangles
left: hard roll-off. In these three cases, εt and εf were fixed: εt = 1/4,
εf = 1/125, Finally, (4) squares: cut-off with 1/40 ≤ εf ≤ 1/1, 000. The dashed
lines are fits κ = κ∞ + c8−ν

N , where ν turned out to be consistent with ν ≈ 0.5
for H = 0.8 and ν ≈ 1 for H = 0.3.

to be partially inconsistent, e.g., in their Figure 10D, the points
(8N, κ) = (700, 1.93) and (70, 2.05) should be moved to (70,
1.93) and (700, 2.05), respectively. The Nayak parameter 8N

would then be consistent not only with our own calculations
but also with the values that Yastrebov et al. reported themselves
in their Figure 1. Once these two data points are corrected, the
logarithmic relation seems to be much less convincing than with
improperly plotted data.

To provide an independent test of the extent with which the
Nayak parameter affects the proportionality coefficient κ , we
investigated a broader range of surfaces than before and contrast
surfaces with cutoff to those with smooth and abrupt rolloffs.
Figure 6 summarizes the results, which were averaged over up
to 400 random realizations per data point.

Our data appears to be consistent with a κ(8N) =

κ(∞) − cN8
−νN
N relation rather than with a logarithmic κ(8N)

dependence. If the original data had been plotted without taking
averages, the H = 0.3 might have scattered sufficiently much to
make them appear as a continuation of the H = 0.8 data. Two
markedly different dependencies of κ on 8N are obtained for
H = 0.3 andH = 0.8. Thus, κ cannot be reduced to be a function
of 8N (and p∗) alone.

4.3. Anisotropic rpa Surfaces
To address the question how anisotropy affects the relative
contact area, we repeated the simulations presented in Figure 4

with a Peklenik number of γP = 4. Results are shown in Figure 7.
It can be seen that anisotropy enhances the pressure dependence
of κ at fixed values of εt,f compared to stochastically isotropic
surfaces with γP = 1. This may not be particularly surprising
in light of the observation that one-dimensional surfaces have

FIGURE 7 | Same as Figure 4, however, this time for stochastically
anisotropic surfaces with γP = 4. Symbols with faint colors represent results
for κc rather than for κ.

logarithmic corrections to the κ(p) relation, even for H >

0.5. By using a Peklenik number clearly differing from unity,
roughness dominates along one spatial dimension, whereby the
spatial dimension can be argued to have been reduced to a
certain extent.

Figure 7 also finds that κ(H = 0.8) is not very pressure
sensitive when εf is decreased with pressure so that for
macroscopic systems, in which εf is two to three orders of
magnitude smaller than in simulations, the pressure sensitivity
is marginally small. However, due to anisotropy, κ is noticeably
increased with respect to the isotropic case. When Peklenik
numbers differ very much from unity, different laws may apply
as the surface’s dimensionality has effectively changed from two
to one. In the limit of one-dimensional surfaces, the pressure
sensitivity of κ at small p∗ has been convincingly established not
only for small H but also for H = 0.8 (van Dokkum et al., 2018).

As a final comment on the non-isotropic rpa surfaces, we
note that κc, whose definition of reduced pressure uses the root-
mean-square height gradient ḡ averaged over contact only, has a
rather weak dependence on p∗. Values are generally close to 1.8.
Interestingly, the ordering of the points are essentially in reverse
order compared to the analysis in which ḡ was averaged over
entire surfaces.

The smallest κc occurs for the smallest Hurst exponent, which
can be rationalized as follows: For H = 0.3, roughness exists
predominantly at short wavelengths and contact patches are
rather small compared to H = 0.8. The coarse-grained, or
rotationally averaged height profile of an individual meso-scale
asperity is therefore blunter for H = 0.8 (where many valleys
are sampled over) than for H = 0.3 (containing essentially only
high peaks). Neglecting the fact that contact is more and more
partial in such amesoscale asperity with distance from the highest
point, Equation (28) finds that blunter tips have larger κc. The
extreme limit at small p∗ should be a Hertzian asperity, for which
κc ≈ 1.666. The blunter the profile, the larger κc.
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FIGURE 8 | Same as Figure 4, however, this time for a height warped surfaces: (Left) blunt indenting peaks and steep valleys (w = 2) (Right) sharp peaks and
shallow valleys (w = −2).

4.4. Isotropic Height-Warped Surfaces
The assumption of the random-phase approximation is subject
to the serious and legitimate criticism not only of Persson’s
contact mechanics theory but on a large body of simulation
studies using ideal, rpa surfaces. Quite a few numerical studies
use a Weierstrass profile, which has (perfect) phase correlation,
while reproducing a height autocorrelation function (ACF)
being similar to experimental ACFs. However, the Weierstrass
profile lacks any visual similarity to experimental surfaces as
demonstrated in Figure 2 of Müser (2018). We therefore believe
that the warping method proposed in section 2, while probably
still being far from ideal, reproduces the stochastic properties of
correlated surfaces in a significantly more realistic fashion than a
Weierstrass-function based height profile.

Figure 8 reveals that the increase of κ with decreasing
pressure is much accentuated for a positive warping exponent
w, in which case the peaks of the indenting asperities are
flattened compared to the valleys. This times κ(H = 0.8) even
increases with decreasing p∗ when εf is reduced with decreasing
pressure. However, for the opposite case of w < 0 leading
to sharp asperities and shallow valleys, κ is found to decrease
with pressure. This statement also holds in certain pressure
ranges, when εf is not scaled according to Equation (27) but
kept constant.

When defining the root-mean-square height gradient and
thus the reduced pressure with respect to the true contact area,
κc turns out yet again to be rather insensitive to the reduced
pressure and to be around 1.8 for small p∗c . Correlating the
respective values of κc with the structural parameters, which are
symmetry-allowed and finite, has remained unsuccessful so far.

4.5. Periodically Repeated Smooth
Indenters
When indenters are periodically repeated, each indenter carries
the same load. If the linear contact dimension is small compared
to the period, that is, at small applied external pressures p0, a
similar relation between contact area and load or pressure must
be obtained as if the indenter were isolated. As alreadymentioned

in the introduction, it has been noticed recently (Müser, 2017)
that the corresponding asymptotic low-pressure relation for
periodically repeated indenters with harmonic height profiles
can be cast in terms of Equation (8). The prefactor κc can be
calculated analytically, specifically

κc(n) =

√

π

n

Ŵ( n2 +
3
2 )

Ŵ( n2 + 1)
, (28)

where Ŵ(•) represent the gamma function. The numerical
data shown in Figure 9 confirms the analytical results at low
pressures. Errors in the relative contact become noticeable only
once ar exceeds 0.3, but they remain below 25%. The high-
pressure asymptotics can also be described reasonably well with
Equation (8), however, the value for κc needs to be decreased.
Since the approach to full contact is the quite special case of a
conical dimple for the periodically repeated indenters, it will not
be investigated any further in this study.

5. DISCUSSIONS AND CONCLUSIONS

In this study, various structural parameters determining the
relative contact area ar in a contact between a rough surface and
a linearly elastic counterbody were investigated. The focus was
laid on the questions if ar is linear in pressure p and inversely
proportional to the root-mean square height gradient ḡ for small
reduced pressures, defined as p∗ = p/(E∗ḡ), and if yes, what
structural parameters determine the proportionality coefficient κ .

One of the difficulties to determine whether or not ar is linear
in p∗ at small p∗ is that taking the limit p∗ → 0 properly
is not a simple task, because the ratios of roll-off wavelength
and system size, εt = λr/L (size scaling), as well as the
ratio of short-wavelength cutoff and roll-off wavelength, εf =

λs/λr (fractal scaling), have to be made systematically small.
While Prodanov et al. (2013) emphasized the necessity of such
a finite-size and fractal scaling, they failed to take that limit
properly themselves, as they kept the ratio of linear mesh size
and short-wavelength cutoff, εc = a/λs, fixed. In this study,
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FIGURE 9 | Relative contact area ar as function of pressure p normalized to
the contact modulus E∗ for periodically repeated indenters with the height
profile h(r) = R (r/R)n/n, where R defines the unit of length and with n = 4
(blunt indenter), n = 2 (Hertzian indenter), and n = 3/2 (sharp indenter).

we extrapolated results for a specific surface configuration to
εc first and then computed contact area while taking εt and εf
to zero simultaneously or by taking εf to zero while keeping
εt constant.

The last type of analysis, in which effectively εc = 0,
while εt is kept constant and p∗ is set to a (very) small value,
deserves particular attention. When doing so, only a single
meso-scale asperity contact (SMAC) will ultimately remain in
contact for very small εf and Hurst exponents H > 0.5.
This is because typical contact patch sizes increase algebraically
with decreasing εf for H > 0.5 (Müser and Wang, 2018).
In an individual SMAC, which can be described as a single
asperity with microscale roughness added to it, linearity between
load and contact area is well satisfied (Pastewka and Robbins,
2016) and the (complementary) contact area in it can be
well-determined using Persson theory (Müser, 2016). As such,
linearity between load and contact area in a macroscopic system
should arise automatically. However, it remains to be understood
why one-dimensional (1D) interfaces behave differently from
2D interfaces, since 1D interfaces do not obey a linear ar(p

∗)
relationship at small pressures (van Dokkum et al., 2018), even
for very large systems. Moreover, we are not yet certain about
the small-pressure ar(p

∗) relationship for H < 0.5, although our
current analysis supports the finding (Yastrebov et al., 2015, 2017)
that the relationship may have indeed non-negligible logarithmic
corrections in p∗. They might be the consequence of the small,
logarithmic growth of characteristic contact patch sizes with
decreasing εf for H < 0.5. At the same time, we wonder
if κ computed in the thermodynamic limit can systematically
exceed predictions of the more advanced bearing-area models
such as Bush, Gibson, and Thomas (BGT) (Bush et al., 1975).
Thus, although we believe to have furthered the rigor with
which κ is computed, we expect that the final answer to how κ

has to be computed in the thermodynamic limit still needs to
be found.

The discussion in the last paragraph as well as the analysis
conducted in the results section of this works reveals already at
the present level of rigor that the Nayak parameter 8N has no
stringent direct correlation with the proportionality coefficient κ ,
which would allow the function κ(p∗,H, εt, εf) to be reduced to
a smaller number of variables, such as, κ = κ(p∗,8N, εt). This
in turn emphasizes once more that a rigorous understanding of
contact mechanics necessitates a spectral analysis of the height
profiles. Knowledge of the Nayak parameter and even more so of
simple distribution functions of asperity heights and geometries
is unavailing.

While Persson theory cannot (yet) be used either to explain
why different Hurst exponents lead to different κ , it does allow
deviations of κ(p∗) from linearity to be rationalized for both finite
systems and surfaces violating the random-phase approximation.
The basic version of Persson theory assumes that the elastic
body “feels” the full root-mean-square gradient (averaged over
the entire surface) as soon as the elastic body hits the rough
substrate. However, for any finite surface, a certain fraction
must be in contact before the root-mean-square gradient and
other stochastic parameters, such as the kurtosis, approach their
“true” mean values. While this fraction decreases with system
size, ḡ (typically) remains below its asymptotic value for finite
rpa surfaces at small ar so that (according to Persson theory
and simulations presented in this work) ar turns out larger
than in the thermodynamic limit. In the case of correlated
random roughness, the situation is more complex, since the rms-
gradient, kurtosis, etc., can be functions of the height even when
surfaces are in the thermodynamic limit. A possible correction
of Persson theory for this case could be to identify the rms-
gradient of the ar × 100% top- (or bottom) most heights and
use this value to determine the reduced pressure p∗c , which
would then satisfy Equation (8) reasonably well. To some extent,
this would constitute a somewhat dissatisfactory compromise
between Persson theory and bearing-area models, since it is not
the top- (or bottom) most, say, 20% of the peaks that are in
contact at 20% relative contact area, as is implicitly assumed in
bearing-area models. However, this is the simplest correction
that comes to our mind at this point of time. It is certainly
much less tedious to work out than the systematic corrections to
Persson theory relying on a cumulant expansion of the short- but
finite-range repulsive interactions between indenter and elastic
body (Müser, 2008).

In full simulations, ḡ can be averaged over the true contact area
and no compromise between bearing-area models and Persson
theory needs to be made. In all investigated randomly-rough
contacts, we find a close-to-linear relation between ar and p∗c ,
i.e., when averaging the rms height gradient only over the true
contact even if the original ar(p) deviates clearly from linearity.
In these simulations, we find κc to lie in the relatively narrow
range satisfying κc ≈ 1.8 ± 0.1. This value for κc is only slightly
larger than the value of 1.6 predicted by Persson theory but
clearly below the value of 2.5 predicted by BGT (Bush et al.,
1975). Thus, the range of validity of Persson theory could be
substantially expanded if the approximation of using the full rms-
height gradient were replaced with an accurate estimate of the
mean rms-height gradient in the true contact.
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It is certainly justified to consider many parts of this
study to be more of a mathematical exercise rather than
an attempt to model any specific real-world problem. And
anyone wondering why there has to be yet another paper
on κ can be assured to have our full sympathy. However,
if poorly conducted studies of contact problems lead to
the conclusion that a legitimate theory is brought into
discredit and these studies receive many citations as evidence
for the theory to be flawed, it should be in place to
demonstrate that a carefully conducted analysis supports
the theory.
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Continuum Model Analysis of QCM
Nanotribological Data to Obtain
Friction Coefficients for 304SS
Contacts Lubricated by Water and
TiO2 Nanoparticle Suspensions
Caitlin M. Seed, Biplav Acharya and Jacqueline Krim*

Department of Physics, North Carolina State University, Raleigh, NC, United States

We report a study of the response of a Quartz Crystal Microbalance (QCM) to

rubbing contacts in air, water and aqueous suspensions of 40 nm TiO2 nanoparticles.

Measurements were performed with a contact comprised of 3 close-packed 304SS ball

bearings situated symmetrically about the center of a 304SS QCM electrode with 2 nm

rms roughness. Two continuum methods were employed to infer macroscale friction

coefficients µ employing QCM nanotribological data recorded in the Cattaneo-Mindlin

(CM) slip regime at vibrational amplitudes that varied between 1 and 17 nm. The “slope”

Method 1 involved sweeps of the QCM amplitude of vibration as ball bearings were held

in continuous contact with the oscillating electrode. The “contact” Method 2 obtained

µ by analyzing the shifts in frequency and bandwidth that occur at a fixed uo to solve

for µ. when ball bearings were brought in and out of contact with the QCM’s electrode.

The results for dry and water lubricated contacts compared favorably with macroscale

friction coefficients reported in the literature. The model failed to adequately describe

contacts lubricated with the NP suspension, but its continuum nature did not appear to

be the dominant factor underlying failure. The failure was more likely attributable to either

a lack of a CM slip regime when NP were present at the interface and/or the fact that

the amplitude of vibration was close in size to the individual NP contacting regions, in

violation of a key underlying assumption of the model.

Keywords: friction, QCM, cattaneo-mindlin, nanotribology, contact mechanics

INTRODUCTION

Quartz Crystal Microbalance (QCM) studies of tribological contacts (Rodahl and Kasemo, 1996;
Laschitsch and Johannsmann, 1999; Brizmer et al., 2007; Johannsmann, 2007; Dawson et al., 2009;
Krim, 2012; M’boungui et al., 2014; Borovsky et al., 2017) at both the macro and nanoscale are
of increasing importance in a wide range of nano-technological and energy-related applications
(Braiman et al., 2003; Kim and Kim, 2009; Zhang and Li, 2010; Krim, 2012; Hsu et al., 2014).
Literature reports in this area have, to date, focused primarily on either macroscale or nanoscale
contacts, and a remaining challenge in the field of tribology is to establish linkage between studies
performed at wide-ranging length and time scales. One approach to establishing this linkage is to
perform studies that examine the limits of macroscopic continuum mechanics, by probing where
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continuum methods break down as the atomic scale is
approached. Nanoparticle (NP) additives are attractive
candidates for such studies, as they significantly alter friction and
wear at macroscopic length scales when present in a lubricated
contact (Yu et al., 2016).

We report here a study of the response of QCMs with 304
Stainless Steel (304SS) sensing electrodes to rubbing contact with
304SS ball bearings, employing a continuum model to analyze
the response in air, water and an aqueous TiO2 suspensions. The
QCM technique yields real-time nanotribological information
at macroscale contact velocity amplitudes, typically 0.1–1 m/s.
It is comprised of a thin piezoelectric quartz crystal driven
at its resonance frequency by applying an AC voltage to thin
metal film electrodes deposited onto each of its major faces.
Contact forces and/or changes in the environment surrounding
the QCM’s surface electrode produce shifts in both its resonance
frequency f, and quality factor Q, and the response of these
quantities to probes, biological agents, and/or granular materials
has been extensively studied (Borovsky et al., 2001, 2007; Krim,
2012; Dultsev and Nekrasov, 2018; Dirri et al., 2019; Han et al.,
2019; Wang et al., 2019). Analysis approaches for inferring
macroscopic friction coefficients from such measurements (Berg
and Johannsmann, 2003; Berg et al., 2003; Leopoldes and Jia,
2010; Hanke et al., 2013; Vlachová et al., 2015; Borovsky et al.,
2017, 2019) have been largely developed within the context of
continuum contact models. The models must eventually break
down as nanoscale length scales are approached, where systems
become less uniform in nature and/or as contact regions become
more poorly defined (Figure 1).

Vlachová et al. (2015) recently utilized a Cattaneo-Mindlin
(CM) slip scenario to relate contact stiffness obtained from QCM
measurements to macroscale friction coefficients, employing an
analysis approach developed by Johannsmann and coworkers for
QCM’s loaded with spherical contacts (Berg and Johannsmann,
2003; Berg et al., 2003; Hanke et al., 2013). The CM scenario is
an approximation that allows for a simplified analysis framework
for two curved surfaces that are pressed with a normal load FN
into contact and then sheared tangentially (Etsion, 2010; Paggi
et al., 2014; Ciavarella, 2015). Such bodies commonly remain
stuck to each other in one part of the contact while slipping
in other regions. The CM approximation treats the contact as
rigid indenter pressed into a flat elastic surface, and assumes that
sliding friction in the slip region is governed by a “Coulomb”
friction law, Ff = µkFN .

Berg and Johannsmann (2003), Berg et al. (2003), Hanke
et al. (2013), and Vlachová et al. (2015) analysis method is
based on both the linear and non-linear contact mechanics
regimes associated with partially slipping contacts undergoing
small amplitude reciprocal motion. It assumes that the contact
area diameter is both independent of the tangential loading
force and much smaller than the loading sphere diameter.
Vlachová et al. obtained realistic values for friction coefficients
µk by analyzing QCM frequency and bandwidth shifts, ∆f
and ∆Γ = (f/2)∆(Q−1), as a function of the amplitude of

Abbreviations: QCN, Quartz Crystal Microbalance; CM, Cattaneo-Mindlin; SS,

Stainless Steel; BB, Ball Bearing.

vibration for glass spheres in contact with silica or polymer-
coated QCM electrodes. The values were not, however, compared
to conventional macroscopic measurements of µk on the same
materials combinations. Seed et al. (2020) very recently employed
the Vlachová et al. (2015), Berg and Johannsmann (2003), Berg
et al. (2003), and Hanke et al. (2013) analysis approach to infer
macroscale friction coefficientsµ for QCMs loaded with stainless
steel spherical contacts, and also measured µ in conventional
macroscale setups for the same materials combinations. They
found that the values agreed well when the dependence of∆Γ on
vibrational amplitude was utilized. Overall, Seed et al. validated
the combined assumptions of the continuum analysis methods,
and demonstrated that the Vlachová et al. (2015), Berg and
Johannsmann (2003), Berg et al. (2003), and Hanke et al. (2013)
approach was viable for linkage macro and nanoscale tribological
measurements (Seed et al., 2020).

The study reported by Seed et al. was performed in air
on unlubricated stainless steel contacts, and the analysis was
performed from a continuum perspective (Seed et al., 2020). We
employ it here to examine both dry and lubricated contacts, with
a particular focus on the degree to which such a continuum
model can be applied to a complex liquid-nanoparticle-solid
interface. TiO2 suspensions were selected for study, as they
have been reported on extensively in the tribological literature
and are known to reduce friction in stainless steel contacts at
both the nanoscale and macroscale (Glavatskih and Höglund,
2008; Ali et al., 2016; Acharya et al., 2019a; Wu et al., 2020).
TiO2 suspensions are also of interest in tribotronics [“active” or
“smart” control of friction by combining mechanical elements
with electronics (Glavatskih and Höglund, 2008; Zhang and
Wang, 2016; Krim, 2019)], since they are readily repositioned by
external fields for purposed of tuning of friction levels (Acharya
et al., 2019b; Krim, 2019). In addition, the suspensions are of
interest in energy storage applications utilizing flow batteries,
where interfacial tribological properties are of importance (Wang
et al., 2007; Sen et al., 2017).

MATERIALS AND METHODS

Measurements were performed in air, deionized (DI) water, and
DI water with suspensions of 0.67 wt% TiO2 nanoparticles in
an apparatus depicted schematically in Figure 2. The apparatus
was comprised of a Ball Bearing (BB) configuration with three
304SS bearings arranged in a close packed triangular array
centered on the QCM upper (liquid facing) electrode. The BB’s
made contact with the upper electrode at a distance of 2.29mm
from the center, which fell within the perimeter of the lower
electrode and therefore within an area of active oscillation.
The system weighed FN = 0.282N, distributed across the three
contacts so as to load 0.094N onto each of them. This loading
configuration has a Hertzian contact pressure of 245 MPa in
air and a contact radius of 11.05µm under the assumption of a
circular contact (Popov, 2010). Measurements were performed
in reciprocal motion with maximum sliding speed amplitudes
ranging between 0.03 and 0.22m/s (liquid) or 0.53m/s (air) at the
point of contact. Under these conditions, the system falls within
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FIGURE 1 | Nanoscale and Continuum perspectives of one ball bearing on an oscillating QCM displaying Cattaneo-Mindlin slip, with the contact area having an inner

stick zone and an outer slip zone.

the boundary lubrication regime where direct contact between
asperities supports the load (Lu et al., 2006; Yamaguchi and
Hokkirigawa, 2016). The liquid nonetheless penetrates the gaps
in contact associated with roughness, allowing introduction of
NP. For the liquidmeasurements, 0.6mL of either DI water or the
TiO2 suspension was added to evenly cover the QCM, resulting
in the tripod BBs being slightly more than half submerged. The
associated buoyant force of 0.00086N was significantly smaller
than the normal force, but was nonetheless included in the model
calculations. The system components were rigidly attached to
each other, and, in contrast to the system employed by Vlachová’
et al. were close packed. Differences in the results associated with
the different experiment geometries are however expected to be
minimal, as the tangential forces and local contact geometries
were very similar.

Materials
Anatase TiO2 (titania) nanoparticles with density, Zeta potential,
and radius, respectively, =4.23 g/cm3, −32.7mV and 20 nm
were obtained from US Research Nanomaterials (stock number:
US7071 Houston, TX 77084, USA) at concentration ∼ 20
wt% and were diluted to a concentration of 0.67 wt. The
NP suspension, as prepared, had a pH of 7.7 and density of
1.00367 g/cm3. NP aggregation was not observed, but some
sedimentation was observed for samples left unstirred for periods
of 12–24 h. The sedimentation was readily reversible by stirring
and sonication and the suspensions were stirred and sonicated
for 10–15min immediately before each experimental run,
with measurements being completed within 60min thereafter.
All data were recorded within 48 h of initial preparation of
the suspension.

Bulk 0.2 g 5/32” diameter Grade 100 (G100) 304SS bearings
with maximum rms surface roughness 5.0µ in (127 nm) were
attached to the underside of a slider, as depicted in Figure 2. They
were glued onto the holder usingGorilla Super Glue (Gorilla Glue
Company, Sharonville, OH, USA).

The QCM crystals employed for the studies were AT-cut, 5
MHz, one-inch diameter QCM crystals with 304SS electrodes
(FILTECH, Inc. part no. QM1022, Boston, MA). The crystals had
half-inch diameter surface electrodes made of 304SS and quarter
inch backside electrodes made of Au. The 304SS electrodes
consisted of 200 nm 304SS films deposited atop 100 nm thick
Au films deposited on 50 nm thick Ni adhesion layers, with rms
surface roughness 2± 1 nm (Acharya et al., 2018).

Methods
Contact Angle
Contact angle measurements were performed as an independent
indication of NP suspension potential for lubricity. The
measurements were performed on the actual samples used for the
measurements, as contact angles, and also lubricating properties,
are highly dependent on surface roughness, NP concentrations,
NP size and interfacial chemical compositions (Wu et al., 2020).
Contact angles were measured for both DI water and TiO2

suspensions by using a pipette to place a 10 µL drop onto
the 304SS QCM electrode. An image was used to determine
the contact angle on both sides of the droplets by drawing a
right triangle where the base was the surface from the edge of
the droplet to the center, and a line was drawn tangent to the
droplet edge, forming the hypotenuse. The value for contact angle
displayed in Figure 3 is the average of the right and left angles.

The TiO2 suspension exhibited a higher contact angle than
that for pure water, indicating that a significantly larger slip
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FIGURE 2 | Images and schematics of the experimental apparatus employed here to compare friction coefficients inferred from continuum models to data recorded

on QCM 304SS electrodes in contact with 304SS spheres in air, DI water, and DI water + 0.67wt% TiO2 suspensions. Three close-packed 304SS spheres are rigidly

attached to a load (A) and then placed atop an oscillating QCM electrode (B). The lower side electrode (C,D), which is smaller than the liquid-facing electrode where

contacts are established (E–G), defines the active area of oscillation.

FIGURE 3 | Images of sessile droplets of (left) pure DI water, and (right) a 0.67 wt% suspension of TiO2 NP atop the QCM 304SS electrode, along with droplet

tangents drawn to compute the contact angle.

length along with a lower friction coefficient is to be expected
for contacts completely immersed in the liquid (Ellis et al., 2003;
Acharya et al., 2019b). We note that this is distinct from the
wetting and spreading of lubricant droplets, which also play
major roles in the lubrication of dynamic mechanical systems
(Wu et al., 2020).

QCM Continuum Model Analysis
Data recorded here were analyzed according to the methods
described in Berg and Johannsmann (2003), Berg et al. (2003),
Hanke et al. (2013), Vlachová et al. (2015), and Seed et al. (2020),
which are applicable to the CM partial slip approximation in
a small amplitude reciprocal motion (Figure 1). For reciprocal
motion, and as the amplitude of motion increases, the partial slip
regime in this model commences at the contact’s edge in the form
of thin annulus. The annulus progressively grows and the system
transitions to full gross slippage for a sufficiently large applied
tangential force (Figure 4).

Values for µ in the slipping region of the contact are inferred
from the shifts in resonance frequency,∆f, and half bandwidth at

half height (“bandwidth,” for short), ∆Γ , of the QCM oscillating
at MHz resonance frequency upon contact of a sphere with
the surface (We note here that the quality factor Q, damping
parameter Df, and dissipation D, (all unitless) are all in common
use to represent system dissipation. They are related to ∆Γ ,
which has units of Hz, as The model developed by Johannsmann
and coworkers treats the system as a composite mechanical
resonator consisting of a QCM in contact with a fixed load, with
contact comprised of a dashpot in parallel with a spring. On a
basic level, ∆f and ∆Γ are proportional to the in-phase and
out-of-phase component of the area-averaged periodic tangential
stress at the resonator surface (Berg et al., 2003), and can be
inferred from expressions for the tangential force and contact
area. The time dependent tangential force at the contact is written
as Hanke et al. (2013):

Fx (t) = κu (t) + ξv (t) , (1)

where u is the tangential displacement, κ is the contact stiffness, v
is the tangential sliding speed and ξ is a linear drag coefficient.
For a viscoelastic contact small amplitude cyclic motion with
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FIGURE 4 | Schematic of the ∆f and ∆Γ response of a QCM in three distinct idealized continuum contact conditions (A) A non-slipping viscoelastic contact, (B) A

partially slipping contact with slipping regions governed by Coulomb friction, and (C) a fully slipping contact governed by Coulomb friction.

amplitude uo and tangential velocity amplitude vo = iωuo,
the contact area Aeff is constant, all forces depend linearly on
displacement, and the complex frequency shift associated with
the presence of the contact can be expressed as Laschitsch and
Johannsmann (1999) and Hanke et al. (2013):

1f + i1Ŵ =
npκ

2nπ2Aeff Zq
(κ + iωξ ), (2)

where Aeff is the effective area of the resonator, κ is the contact

stiffness, n is the overtone order, FN is the load, and Zq = 8.8∗106

kg/(m2s) is the shear wave impedance. The quantities in Equation
(2) are amplitude independent, and therefore both ∆f and ∆Γ

are constant in amplitude (Figure 4A). For the case of full slip
governed by a velocity independent Coulomb friction law, ∆f
trending linearity upward and ∆Γ trends linearly downward as
the amplitude increases (Figure 4C) (Vittorias et al., 2010).

For the case of a composite contact that is partially slipping,
Fx(t) is not time harmonic, and the analysis must encompass both
linear and non-linear contact mechanics regimes with proper
matching of boundary conditions. The analysis developed in Berg
and Johannsmann (2003), Berg et al. (2003), Hanke et al. (2013),
Vlachová et al. (2015) reveals that in this regime ∆f trends
downward with amplitude while∆Γ trends upward (Figure 4B).
To emphasize the linear trends, the expressions in Vlachová et al.
(2015), Equation 11 can be rewritten as Seed et al. (2020):

1f (uo) = h− buo (3)

1Ŵ(uo) =
4

3π
buo (4)

h =
npκ

2nπ2Aeff Zq
(5)

b =
npκ

2

6nπ2Aeff ZqFN

1

µ
, (6)

Where np is the number of BB contacts, µ is the coefficient of
friction, and uo is the amplitude of oscillation at the center of the
QCM (Vlachová et al., 2015). The latter quantity is inferred from
Hanke et al. (2013):

u0 =
αdq

2ωe26Aeff
i, (7)

where the parameter α is a numerical factor set equal to 1
since the QCM is modeled as a piezoelectric parallel plate, dqis
the thickness of the QCM, e26 = 9.65 × 10−2 C/m2 is the
piezoelectric stress coefficient, i. is the current, and ω is the
angular resonant frequency of the QCM (Hanke et al., 2013). In
addition to the above formulation, a heuristic term representing
losses linear in stress∆Γ off can be added to the term in Equation
(4), which offsets the curve by a constant (Vlachová et al., 2015).

The value for the friction coefficient µ is inferred via two
distinct methods, which were referred to by Seed et al. as
“Method 1” and “Method 2,” referred to herein as “slope Model
1” and “contact Model 2.” The slope Method 1 substitutes the
slope of ∆Γ vs. uo, as determined from an amplitude sweep
measurement, into Equation (4) to solve for b. The y intercept
of a linear fit to the ∆f vs. uo data meanwhile yields a value for h.
The values for b and h are then substituted into Equations (5, 6)
to obtain µ. The contact Method 2 utilizes the ∆f and ∆Γ shifts
that occur at a fixed uo to solve for µ.

Both methods must be evaluated in the CM slip regime, which
is a basic assumption of the model, and predicts a negative
(positive) linear slope in frequency (bandwidth) with amplitude.
Friction coefficients were therefore evaluated only in amplitude
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regions exhibiting these linear trends, and those regions were
denoted as CM slip regimes. The value of h was determined from
the intercept of the∆f vs. uo linear fit in the CM slip regime, while
the value for b was obtained from the∆Γ vs. uo slope in the same
regime. Since Equation 4 has a zero intercept, a requirement was
in general enforced when finding the ∆Γ data fit, with the slope
of this line used as the value of b. This condition was relaxed
however for fits to the contacts lubricated by the NP suspension,
as the nature of the contact geometrymight be expected to change
for low vibrational amplitudes.

The friction coefficient, which is a kinetic friction coefficient
as determined by Seed et al. is obtained by solving Equations (5,
6) for µ in terms of h and b (Seed et al., 2020):

µ =
2π2nAeff Zq

3npFN b
h2 (8)

For the present studies, a value of Aeff = 3.165 x10−5 m2 was
employed for the effective area of oscillation, corresponding to
the area of the smaller electrode, along with f0 = 5 MHz for the
fundamental (n = 1) resonant frequency, np = 3 for the number
of BBs in contact with the QCM, and the acoustic impedance
value Zq = 8.8 x106 kg/(m2s).

For the contact Method 2, the measured values of ∆f and ∆Γ

at a fixed oscillation amplitude in the CM Slip allow evaluation
of µ by direct substitution of Equation (3) into Equation (4),
followed by some rearrangement of terms:

µ =
4βκ2

9πFN∆Ŵ
uo (9)

where β and κ are given by:

β =
np

2nπ2Aeff Zq
, κ =

∆f + 3π
4 ∆Ŵ

β
(10)

It is noted here that the contact Method 2 is straightforward
in that it requires only a single measurement of ∆f and ∆Γ

to obtain a value for µ. The analysis is only valid however if
measurement is performed at an amplitude of vibration where
CM slip is occurring. This can be confirmed by imaging the
contact zone or alternatively performing a local amplitude sweep
that confirms a negative (positive) and linear slope for ∆f (∆Γ )
vs. uo in the region being studied.

Quartz Crystal Microbalance Apparatus and Data

Recording
Measurements were performed with no contacting sphere by
first installing the QCM into a Teflon holder and allowing
the frequency to stabilize in air or, for the case of liquid
measurements, in liquid. The tripod BB contacts were then
loaded onto the QCM electrode while the system response was
recorded, beginning with the minimum amplitude of vibration,
and continuing on as the amplitude of vibration was increased.
Variations in amplitude were achieved by introducing electrical
resistance, ranging from 1,190� to 0�, between the QCM
electrode and the oscillator circuit. This procedure was starting

with 1,190� and subsequently reduced every 60 s until a value of
0� was attained. A baseline resonance frequency was established
by using the same process for changing the QCM amplitude on
the same QCM without the BB load, and for immersed contacts
in the case of the lubricated measurements. Plots of ∆f and ∆Γ

vs. uo were then generated. The values from these curves at equal
values for uo were used to solve for µ via the contact Method 2.
To take into account the fact that the amplitude of vibration at
the contact points was lower in magnitude than at the center of
the electrode, the amplitude at the contacts was a modeled as a
Gaussian decay, and the central maximum was calculated from
Equation 11, according to Martin and Hager (1989), Josse and
Lee (1998), and Lu et al. (2004):

u = uoe
−

ar2

R2e (11)

where a= 2 is an estimated constant, r= 2.29mm is the distance
from the center, and Re = 3.175mm is the radius of the active
oscillation region of QCM electrode. Slopes of the plots were then
utilized to evaluate µ.

AQCM100 (Stanford Research Systems, Sunnyvale, CA, USA)
system with the included oscillator driving circuitry, controller,
and Teflon sample holder was employed to record the QCM
measurements. A frequency counter (HP 53181A, Keysight
Technologies, Santa Rosa, CA) and a multimeter (Keithley 2000
Series, Tektronix, Inc., Beaverton, OR) were used to measure
the QCM frequency and conductance voltage via a LabView
(National instruments, Austin, TX) data acquisition system.
Conductance voltage Vc was converted to motional resistance R
according to R = 10(4−Vc/5)−751, and shifts in R were converted
to shifts in Γ according to Johannsmann et al. (2009):

1Ŵ =
16Aeff f

3
0 Zqd

2
26

π
1R (12)

where f0 is the fundamental resonant frequency (n=1 for these
studies), Zq = 8.8 × 106 kg/(m2s) is the acoustic impedance, and
d26 = 3.1 × 10−12 m/V is the piezoelectric strain coefficient.

RESULTS

Figure 5 presents amplitude sweep data sets recorded for the
response of the QCM in continuous contact with the tripod in the
three environments studied. Values forµ displayed in lower panel
of Figure 5 were evaluated in the respective CM regimes using
the contact Method 2. All data are plotted vs. the amplitude at the
actual contact (i.e., not the amplitude at the center of electrode)
and range from 1 to 17 nm for air and 1 to 7 nm for the liquids,
which, respectively, correspond to velocity amplitudes of 0.03–
0.53 m/s and 0.03–0.22 m/s. Notably, the maximum amplitude
in all cases was <40 nm diameter of the TiO2 NP, >2 nm rms
roughness of the 304SS electrodes but <127 nm maximum rms
roughness of the 304SS BB’s. Regions of the amplitude sweep
that are consistent CM slip are shaded orange and designated

1QCM200 Quartz Crystal Microbalance Digital Controller - QCM25 5 MHz

Crystal Oscillator, Revision 2.
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FIGURE 5 | Plots of ∆f, ∆Γ , and µ vs. QCM amplitude of vibration derived in the CM regime via Method 2, for contacts in (A) air, (B) water and (C,D) the TiO2

suspension. Regions where ∆f (∆Γ ) decrease (increase) linearly are identified as CM Slip (orange), with displayed with dashed lines. The adjacent regions are

designated in purple for regions where the contact is likely to be stuck, and green in regions where the data are consistent with full slippage.

as “CM slip.” The amplitude region falling between zero and
the first CM slip regime is shaded purple and arbitrarily labeled
the “stick regime” since the contacts are likely to transition to
being stuck at the lowest amplitudes For the lubricated contacts,
there are multiple regions that are consistent with CM slip (e.g.,
Figure 4B) that are separated by regions consistent with full slip
(e.g., Figure 4C). For the water lubricated contacts the ∆Γ vs.
amplitude data in the CM slip regimes trend toward zero at zero
amplitude. It is difficult to identify a region of clear CM slip for
the NP suspensions, as there is no extended region where the∆Γ

data exhibits a positive linear slope that extrapolates to zero.
Values for friction coefficients obtained inferred from the

data displayed in Figure 5 in the CM slip regimes are presented
in Table 1, as well as the amplitude of vibration at which the
transition from stick to a CM partial slip condition is designated.
The slope Method 1 values employed the slope and intercept
values from the fits displayed as black dotted lines to the ∆Γ

data in Figure 5. The contact Method 2 value are inferred from
the values of ∆f and ∆Γ at fixed amplitudes, as denoted in the
table. Since the NP suspension ∆Γ data do not trend toward
zero at zero amplitude, the slope Method 1 was also applied by
employing fits that were either required or not required to have a
zero intercept. Relaxing the zero-intercept condition resulted in
a significantly lower value for µ that was also more realistic, as
discussed next.

DISCUSSION

Prior measurements employing the same experimental
configuration have indicated the amplitudes inferred from

Equation 11 may be underestimated, causing the values
for friction coefficients reported in Table 1 to be slightly
underestimated by ∼25% (Seed et al., 2020). Inspection of the
results in Figure 5 and Table 1 for contacts in air, nonetheless
reveals values of µ∼0.3, which are in close agreement in
close agreement with conventional ball on disk macroscale
measurements (Seed et al., 2020). The continuum model
therefore successfully treats this system, irrespective of the fact
that the amplitude of vibration is clearly nanoscale in extent.

For the case of contacts immersed in water, the Method
1 and 2 values of µ ∼ 0.04 in region 1 agree closely, and
are close for the second region, at µ ∼ 0.045 & 0.064. The
values are also of the same order as conventional ball on disk
macroscale measurements for water-immersed 304SS contacts
(Curtis et al., 2017), where µ∼0.1 but falling slightly lower.
Overall, the continuum model can be considered to successfully
treat this system, with the QCM data revealing both a lower
friction coefficient and amplitude of transition from stick to
partial slip that has been reduced to less than half of the value
in air.

The analysis methods yield results that are far more
problematic for contact immersed in the TiO2 suspension.
TiO2 suspensions are known to lower the macroscopic friction
coefficient for pure water by as much as 20–50% (Ali et al.,
2016; Pardue et al., 2018; Acharya et al., 2019a; Wu et al.,
2020), and this is not reflected in the Table 1 values. The
Method 1 and 2 values of µ are moreover in clear disagreement
with each other, and clear regions of CM slip are difficult to
define. Realistic values for the friction are obtained by relaxing
the zero-intercept condition. Without relaxed conditions, the
model clearly fails upon introduction of NPs. The zero-intercept
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TABLE 1 | Friction coefficients inferred from the Figure 5 data by two analysis methods, along with the transition amplitude of vibration from stick to partial slip.

Air DI Water 0.67 wt% TiO2

∆Γ (u = 0) = 0

0.67 wt% TiO2

∆Γ (u = 0) 6= 0

Slope method 1 first region 0.29± 0.01 0.038±0.001 0.47± 0.05 0.054± 0.004

Slope method 1 second region – 0.064±0.001 – 0.092± 0.01

Contact method 2 first region 0.31 @

u = 14.6 nm

0.037 @

u = 2.6 nm

0.21 @

u = 2.7 nm

−0.14 @

u = 3.4 nm

Contact method 2 second region 0.045 @ u =

5.5 nm

0.21 @

u = 6.7 nm

Stick to first CM slip amplitude 12.5 nm 2.6 nm 6nm 3.4 nm

condition ignores viscous dissipation while calculating µ, which
by the fits shown in Figure 5, is an appropriate assumption
to make for air and DI water. However, the fit is poor in the
case of TiO2, suggesting that this assumption may no longer
be applicable. It is possible that the presence of NP lowers the
dissipation at low oscillation amplitudes, replacing the contact
with a more complex granular interface. Once this condition
is relaxed, however, the values still do not show the expected
reductions to friction, indicating that there are still difficulties
with applying the model.

One possible explanation for the continued analysis failure is
that the NPs possibly change themechanics at the contacts, which
may violate some of the underlying assumptions. One possibility
of NPs affecting assumptions is that the CM slip regime as defined
may no longer be present if rolling and/or slipping NP are present
at the interface. Additionally, the amplitude of vibration can no
longer be assumed to bemuch smaller than the size of the contact,
since the contact may be comprised of 40 nm sized objects.
Other model assumptions that could become problematic by
the addition of NPs include the sphere being in contact with a
ridged, flat surface, ignoring surface roughness, and assuming
the contact area and slip annulus are uniform circles (Hanke
et al., 2013). These assumptions could also be exacerbated by the
potential formation of NP film formation at the contact points
and/or the embedding of NPs into the surfaces. A visible residue
was observed on the QCM after the TiO2 trial which remained
even after rinsing the QCM with acetone and DI water, but we
were unable to confirm the presence of embedded NP in the film
by imaging. Complications to the contact introduced by the NPs
could have a notable effect on the model because ∆Γ is equal to
the area under the force-displacements loop divided by uo, where
the force displacement loop will have different shapesdepending
on what slip regime the contact is in Hanke et al. (2013).

The sensitivity of ∆Γ tothe contact shape and conditions
could also explain the behavior observed in ∆Γ in the stick
regime. The small variations in ∆Γ at small amplitudes in
air are likely due to small shifts and departures from the
ideal model of perfect stick. This does not readily explain the
largedepartures from expectation seen in the liquid trials at small
amplitudes. The addition of liquids into the system resulted
in low amplitude ∆Γ being largely negative with the shape
either mostly concave down (DI) or concave up (TiO2). Since

this same behavior was not seen in the air experiments, it
is likely the behavior is caused by the liquids. It is possible
that at low amplitude, the observed ∆Γ behavior may be
dominated by any energy dissipation in the liquid or behavior
such as capillary action which might change the liquid barrier
between contacts.

From another point of view, one might argue that the
continuum model is highly successful even for the case of the
TiO2 suspension. Given that it is only applicable in CM partial
slip regimes, and the lack of a clear CM slip trend in the ∆f
and ∆Γ vs. u data may indicate that there simply is no CM
slip regime present in this complex interface, the model still
manages to produce a value for TiO2 close to water. Since
the CM slip regime will potentially result in the formation of
wear particles (Fouvry et al., 1998), and these wear particles
do not appear to have a negative impact on the model as seen
in the air and water cases, then it is possible that the wear
particles formed in the CM regime are less numerous than the
NPs or that the wear particles were small enough to fall in
the roughness gaps while the 40 nm NPs were not. Therefore,
a follow-up study with varying sized NP would be of interest
to determine the size of the particulate at which, if any, the
modelmight becomemore applicable. In particular, if a collection
of poorly coupled collection of sliding or rolling particles were
pushed into the gaps, then the continuum behavior might be
recovered. In contrast, If the smaller particles formed the contract
itself, then the model assumption of an amplitude of vibration
being far smaller than the NP contact size would be even
less applicable.

SUMMARY AND CONCLUSIONS

Using a continuum analysis model, the response of a QCM to
tripod 3[4SS/304SS rubbing contacts in air, water and a TiO2

suspension has been employed to evaluate friction coefficients.
The results for dry and water lubricated contacts compare
favorably with friction coefficient measurements reported in
the literature for the same materials’ combinations. The model
appears less applicable to the case of contacts lubricates with
the NP suspension. The continuum nature of the model does
not however appear to be the dominant factor underlying its

Frontiers in Mechanical Engineering | www.frontiersin.org 8 September 2020 | Volume 6 | Article 72198

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Seed et al. Continuum Analysis of QCM Nanotribological

failure to apply to NP lubricated suspensions. The failure is
likely attributed to a lack of a CM slip regime when NP are
present at the interface, e.g., in the form of a poorly coupled
collection of sliding or rolling particles, and/or the fact that the
amplitude of vibration is no longer far smaller than the NP
contact size regions.
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To deepen the understanding of the frictional sliding phenomena of rough surfaces,

advances are required in numerical analysis methods at various spatial scales. In this

study, to examine the microscopic behavior of a rough asperity contact corresponding

to a bulk contact on the macroscopic scale, a loop-type meso–macro coupled analysis

scheme is proposed. A mesoscale numerical model and a macroscopic friction model

are required for the proposed multi-scale analysis. A friction model was adopted based

on the multipoint contact model for the mesoscale model, and the pressure- and

state-dependent elastoplastic analogy frictionmodel was used for themacroscalemodel.

In the proposed meso–macro coupled analysis, the parameter set for the elastoplastic

analogy friction model was first identified via a numerical friction test using the mesoscale

multipoint contact model assuming various conditions. Then, a macroscale finite element

analysis incorporating the elastoplastic analogy friction model was performed for the

macroscopic analysis of contact between a rough rubber hemisphere and a smooth

plate. Here, the information from the mesoscale rough surfaces were reflected in

the macroscale finite element analysis. Finally, a mesoscale localization analysis was

performed in which the macroscopic histories of several typical locations were obtained

by finite element analysis and used as boundary conditions for the mesoscale model. It

is suggested that the microscopic sliding process of rough surfaces represented by the

finite element analysis can be examined using the proposed method.

Keywords: multiscale analysis, real contact area, roughness, friction model, FEM

INTRODUCTION

Friction is an important physical phenomenon in mechanical engineering. For example, friction
between sliding parts of machines not only accounts for the majority of energy loss, but also
causes failure. Meanwhile, rubber materials are often used for mechanical components where a
frictional contact occurs. It is widely known that rubber friction can be categorized into two main
components: adhesion friction and hysteresis friction (Tabor, 1960; Schallamach, 1971; Fuller and
Tabor, 1975; Roberts, 1992; Persson, 2001). According to Roberts and Thomas (1975) and Persson
and Volokitin (2006), adhesion friction is reported to be dominant when coarse rubber slides on a
smooth hard surface. The focus of this study was therefore the adhesion friction of rubber.
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For soft rubber, the distance between real contact points
decreases as the contact load increases, and the mutual
interference between the contact points saturates the real contact
area (Johnson et al., 1985; Manners, 2000; Persson et al.,
2002; Hyun et al., 2004; Yang and Persson, 2008; Maegawa
et al., 2015). In this process, since the ratio of the real
contact area Ar to the apparent contact area Aa increases, the
relationship between the frictional force and the contact load
is no longer proportional; thus, the friction coefficient exhibits
a complex pressure dependency (Schallamach, 1971; Persson
et al., 2002; Yang and Persson, 2008; Maegawa et al., 2015).
Therefore, to deepen the understanding of the frictional sliding
phenomena of rubber materials, advances in numerical analysis
methods on various spatial scales are required in addition to
experimental observations.

The invention of the atomic force microscope in the 1985
made it possible to directly measure frictional phenomena
occurring at the atomic (nano) and molecular (micro) scales
(Binnig et al., 1986), and several molecular dynamics methods
were developed around the same time. Meanwhile, macroscale
numerical analysis methods include the finite element and
boundary element methods. At present, many commercial
software packages are equipped with a standard analysis
function for frictional contact problems (Kikuchi and Oden,
1988; Laursen, 2001; Wriggers, 2003). Furthermore, various
phenomenological rate- and state-dependent friction models
have been proposed for more advanced analyses (Dieterich,
1972, 1979; Ruina, 1983; Hashiguchi and Ozaki, 2008; Ozaki and
Hashiguchi, 2010; Ozaki et al., 2012, 2013, 2020). In between
the nano/microscale and macroscale, multipoint asperity level
contact theories take the form of mesoscale models. Thus, studies
focusing on each scale are being actively pursued, and a great deal
of knowledge has already been accumulated as a result.

Meanwhile, multiscale analysis methods that connect analyses
at each scale are also required. A multiscale analysis makes
it possible to examine the elementary behavior of asperities
on a microscopic scale corresponding to macroscopic frictional
contact behavior. However, in practice, contact surfaces that
need to be engineered often have uncertainties due to roughness;
additionally, they have no periodicity or regularity. This makes
it difficult to apply bi-directionally coupled (strong coupling)
multiscale analysis methods, such as the homogenizationmethod
used in computational solid mechanics, to frictional contact
problems. Therefore, it is necessary to use a multiscale analysis
method in another framework that can overcome this issue.

In this study, a loop-type coupled analysis scheme is proposed
that bridges the mesoscale and macroscale domains with
reference to the multiscale uncoupled analysis used in studies of
crystal structures that affect the strength ofmetals (Watanabe and
Terada, 2010). Specifically, the “mesoscale multipoint contact
model” and the “macroscale finite element analysis model” are
linked via the “rate-, state-, and pressure-dependent friction
model" proposed by the authors (Ozaki et al., 2020). Based on
this scheme, the analysis results at each scale can be mutually
expanded, and amultiscale understanding of the frictional sliding
phenomena becomes possible. The procedure for implementing
the proposed analysis method is summarized below. Note

FIGURE 1 | Mesoscale model: frictional sliding between a rough elastic

surface and a smooth rigid surface considering stochastic distribution of

asperity heights.

that in this study, the rate dependency of rubber friction is
not considered in order to investigate the pressure-dependent
behavior and the effect of roughness upon it.

The proposed loop-type coupled analysis method procedure
is as follows:

1. Perform a “numerical friction test” using a mesoscale
frictional contact model (mesoscale analysis) at the scale of the
representative contact area.

2. Carry out parameter fitting of the macroscale friction model
by using the results obtained in Step 1.

3. Implement the macroscale friction model in a finite
element model and perform a “macroscale analysis” of
various frictional contact problems using the previously
determined parameters.

4. Select arbitrary evaluation points (nodes or elements) on the
contact surface of the macroscale finite element model, and
perform a “localization analysis” at the mesoscale using the
histories of contact stress and sliding velocity as boundary
conditions. Then, study the elementary behavior on the
mesoscale corresponding to the macroscale analysis results.

FRICTION MODELS

The mesoscale and macroscale friction models are briefly
explained in this section.

Mesoscale Model
In this study, the statistical model of asperities in contact based on
Greenwood andWilliamson (1966) was adopted as the mesoscale
analysis model. Figure 1 shows a schematic of this analysis
model. This model corresponds to multi-point contact between
an elastic rough surface and a rigid smooth surface. As shown in
the figure, there are N asperities on the upper surface, and the
height of asperity i is zi. Assuming that the distance between the
rough surface and the smooth surface is d, the compression of
asperity i in the normal direction, δi, is given as follows:

δi =

{

zi − d
0

for
for

zi > d
zi ≤ d

(1)
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Here, it is assumed that the deformation of the asperity follows
Hertz’s contact theory. Thus, the radius of contact ai, the contact
area Ai, and the normal load wi supported by the asperity can be
defined in the following manner:

ai =
√

βδi (2)

Ai = πa2i (3)

wi =
4E

3(1− ν2)

√

βδ3i (4)

where E and ν are the elastic modulus and Poisson’s ratio of the
asperity, respectively, and β is the radius of curvature at the tip of
the asperity. Further, the tangential contact stiffness ki is given by
the following equation using the shear modulus, G, and Poisson’s
ratio, v:

ki =
8Gai

2− ν
(5)

The friction force Fi is expressed by the product of the tangential
contact stiffness ki and the tangential displacement u when

TABLE 1 | Conditions of the numerical friction test using the statistical model of

asperities in contact.

Number of trials

[-]

10 Analysis range

[mm2 ]

1×1

Young’s modulus of

Rubber

E [MPa]

1.5 Poisson’s ratio of

Rubber

ν [-]

0.49

Average asperity height

zave [µm]

35 Sliding velocity

v [mm/s]

0.1

Maximum height

Rz [µm]

20.0, 56.5 Shear strength

τ [MPa]

0.5

Asperity radius

β [µm]

10 Interval of asperity

[µm]

20

Normal stress

fn [MPa]

0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50

sticking, and by the product of the shear strength τ and the
contact area Ai when sliding. That is,

Fi =

{

kiu for kiu < Aiτ

Aiτ for kiu ≥ Aiτ
(6)

Macroscale Model
In the proposed loop-type coupled multiscale analysis scheme,
the capabilities of themacroscale frictionmodel are important. In
this study, the rate-, state-, and pressure-dependent elastoplastic
analogy friction model previously proposed by the authors was
used as the macroscale friction model (Ozaki et al., 2020).
This model can rationally describe basic frictional sliding
characteristics such as the smooth transition of static–kinetic
frictions, time-dependent recovery of static friction, velocity-
weakening of frictional resistance, and pressure dependency.

FIGURE 3 | Variation in friction stress with sliding displacement under eight

levels of constant normal stress, where Rz = 20.0µm. The solid lines show

results obtained by a numerical friction test (NFT), while the open circles show

the fitting results from the macroscale friction model.

FIGURE 2 | Example distribution of asperity heights: (A) Rz =20.0µm and (B) Rz =56.5µm.
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As rate dependency was not considered in this study, the state
and pressure dependencies are the focus of this section. The
relationship between the contact stress rate ḟ and sliding velocity
v̄ is defined in the following manner (Hashiguchi and Ozaki,
2008; Ozaki and Hashiguchi, 2010; Ozaki et al., 2012, 2013, 2020):

ḟ = Cepv̄ (7)

where the second-order elastoplastic contact stiffness tensor is
given as:

Cep
≡ αnn⊗ n+ αt(I− n⊗ n)− t⊗

αtαnnRτS
′

r − αtαtt

αt + UτSr
(8)

FIGURE 4 | Relationship between the steady state ratio of stress (friction

coefficient) and normal stress. Here, the closed circles show the results of the

numerical friction test (NFT), while the open circles show the results of the

macroscale friction model (Macro FM).

Here, αn and αt are the elastic contact stiffness moduli in the
normal and tangential directions, respectively; I, n, and t are
the unit tensor, unit normal vector, and unit tangential vector,
respectively; and n and t are defined as follows:

n ≡
fn

||fn||
, t ≡

ft

||ft||
(9)

where fn and ft are the normal and tangential contact stress
vectors, respectively, and hold the relationship of f= fn + ft .

In this study, R(0 ≤ R ≤ 1) is defined as the state variable to
describe the microscopic sliding before gross sliding, and is called
the normal-sliding ratio. The following function was adopted for

FIGURE 6 | Variation of friction force on rubber hemisphere over time obtained

by finite element analysis under two roughness conditions. Here, the vertical

pressing displacement of the rubber hemisphere is 0.25mm.

FIGURE 5 | (A) Finite element model and (B) Sliding condition.
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the evolution law of the normal-sliding ratio:

Ṙ = U(R)||v̄p|| (10)

where

U(R) = r cot
{(π

2

)

R
}

(11)

Here, r is the parameter for microscopic sliding and v̄p is the
plastic (irreversible) sliding velocity.

Meanwhile, to describe the pressure dependency, the variable
Sr = Ar/Aa is introduced in the model. Here, Ar is the real
contact area and Aa is the apparent contact area. The pressure

FIGURE 7 | Relationship between the friction coefficient and normal stress at

the bottom of the rubber hemisphere, obtained by finite element analysis.

dependency of the real contact area is assumed as follows:

Sr = 1− exp(−b||fn||) (12)

S
′

r =
∂Sr

∂||fn||
(13)

where b is the parameter for pressure dependency.

MULTISCALE ANALYSIS

In this study, the contact between a rough rubber hemisphere
made of cross-linked polydimethylsiloxane (PDMS) and a
smooth plate made of polymethylmethacrylate (PMMA)
(Maegawa et al., 2015) was adopted as the analysis target.
Although PDMS hemispheres with different surface roughness
values were assumed in the analysis, a quantitative comparison
is beyond the scope of this study as the purpose of this study
was to propose a meso–macro coupled analysis method. In
the following sections, the details of each step of the proposed
analysis method are described. Note that it was assumed that
the PMMA plate was a rigid body in the analysis because the
Young’s modulus of PMMA is sufficiently large compared to that
of PDMS.

Numerical Friction Test
This section describes the numerical friction test using the
statistical model of asperities in contact, as shown in Figure 1.
The heights of asperity, zi, were assumed to correspond to two
levels of surface roughness. Here, the heights of asperity were set
to follow a normal distribution.

Table 1 lists the conditions evaluated in the numerical friction
tests, in which two levels of roughness were controlled by setting
the maximum height Rz, where the values of Rz correspond
to 6σ of each normal distribution. In addition, eight levels of
normal stress (pressure) were evaluated to examine the pressure
dependency. In the analysis, the target normal stress fn was set,

FIGURE 8 | Results of a meso–macro coupled analysis of the effect of vertical pressing displacement, where the surface roughness of the rubber was Rz =20.0 µm:

(A) History of the normal stress and sliding velocity obtained by the finite element analysis; (B) Localization analysis result of friction stress vs. sliding displacement.
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and the parameters δi and wi were calculated using Equations
(1) and (4), respectively. Then, the distance d was repeatedly
increased by a small amount until the calculated normal stress
reached the target value. Thereafter, the sliding displacement was
given and the tangential stress (friction stress) was calculated
by Equation (6) under a constant normal stress. Figure 2 shows
examples of the asperity height distributions, where the 1 ×

1mm analysis area corresponds to the apparent contact area
Aa, and is the representative contact area. Note that because

random numbers were used, the distributions of asperities shown
in Figure 2 were different for each analysis, and 10 tests were
performed for each condition.

Figure 3 shows an example of the numerical test results for the
relationship between frictional stress and sliding displacement
under eight levels of normal stress. Here, Rz is 20.0µm. The
averaged results of 10 tests are shown for each normal stress
condition. As can be confirmed from the figure, the friction
stress increases with sliding (the tangential movement of the

FIGURE 9 | Results of a mesoscale analysis of the contact area, where the surface roughness of the rubber is Rz = 20.0µm, the pressing displacements are

(A) 0.25mm and (B) 0.45mm, and the analysis area is 1 × 1mm.
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smooth flat plate) and reaches a steady state. In addition,
because the real contact area in the mesoscale model varies
depending on the normal stress, the magnitude of friction stress
also varies.

Figure 4 shows the results of the pressure dependency
of the friction coefficient (as a ratio of stress ft/fn). Plots
in the graph are average values during the steady state of
the 10 tests. It is confirmed that the friction coefficient
decreases as the normal stress increases. The reason for the
tendency shown in Figure 4 is that the distance between the
real contact points decreases as the normal stress increases,
and the mutual interference between these contact points
slows down the increase in the real contact area (Persson
et al., 2002; Yang and Persson, 2008; Maegawa et al., 2015).
Furthermore, the smaller the surface roughness, the larger
the friction coefficient. These tendencies have also been
confirmed in the actual friction tests simulated by these analyses
(Maegawa et al., 2015).

Parameter Fitting of Macroscale Friction
Model
In this section, the determination of the friction model
parameters used for the macroscale finite element analysis is
described. The following parameters were determined: the elastic
contact stiffness moduli αn and αt ; r, which prescribes the
smoothness of the stick-to-slip transition; and b, which prescribes
the pressure dependency. Additionally, the shear strength shown
in Table 1 was adopted.

In the mesoscale model adopted in this study, the initial slope
of the friction stress–sliding displacement relationship differs
depending on the normal stress because the contact radius of
asperity is used for the tangential stiffness [see Equation (5)].
Since the pressure dependencies of the elastic moduli were not
considered in themacroscale frictionmodel, the parameter fitting
was performed by focusing on the result fn= 0.25 MPa. The

determined parameters are accordingly listed below:

Rz = 20.0µm : αn = αt = 65MPa/mm, r = 1400mm−1,

b = 2.03 MPa−1

Rz = 56.5µm : αt = αn = 35MPa/mm, r = 1200mm−1,

b = 1.23 MPa−1

Figures 3, 4 also show an example of the fitting results
by the macroscale friction model (the open circles). By
using an appropriate macroscale friction model, the results
of the mesoscale analysis can indeed be obtained at a low
calculation cost.

Finite Element Analysis
In this section, the finite element analysis of the frictional contact
between a rough rubber hemisphere and a smooth plate is
described. The commercial software package MSC Marc (2020)
and its related user subroutine for the implementation of the
friction model was used in this analysis.

Figure 5 shows the finite element model and boundary
conditions. The rubber hemisphere and the flat plate were
discretized by eight-node solid elements. Note that a fine
mesh was adopted for the rubber contact surface. The rubber
hemisphere was a linear elastic body, and its Young’s modulus
and Poisson’s ratio were set to E = 1.5 MPa and v = 0.49,
respectively, while the flat PMMA plate was considered a rigid
body. The radius of the rubber hemisphere was 11mm. In the
analysis, the upper surface of the rubber hemisphere was fixed
in the in-plane direction and subjected to a prescribed forced
displacement in the vertical direction (normal to the plate) in
order to press it against the plate. Then, a forced velocity (0.1
mm/s) was applied to the plate in the x-direction to slide over
one another. Note that the displacement of the plate was fixed in
all directions except the x-direction.

Figure 6 shows an example of the macroscale analysis results,
in which the vertical pressing displacement of the rubber

FIGURE 10 | Results of a meso–macro coupled analysis of the effect of surface roughness, where the pressing displacement is 0.35mm: (A) History of the normal

stress and sliding velocity obtained by the finite element analysis; (B) Localization analysis results of friction stress vs. sliding displacement.
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hemisphere is 0.25mm. This figure shows the variation in friction
force on the rubber hemisphere over time. From the figure, it
can be seen that the frictional force gradually increases with the
movement of the flat plate before reaching a steady state. In
addition, the magnitude of the frictional force in the steady state
reflects the roughness in the mesoscale model, i.e., the friction
force decreases as the roughness increases. This tendency has also
been confirmed in previous experiments (Maegawa et al., 2015).

Figure 7 shows the relationship between the friction
coefficient and normal stress at the bottom of the rubber
hemisphere. Here, the friction coefficient was evaluated using
the contact stresses at the center contact node. As can be
seen from the figure, the pressure dependence of the friction
coefficient is expressed even in the finite element model
via the macroscale friction model, thereby reflecting the
mesoscale condition.

FIGURE 11 | Results of a mesoscale analysis of the contact area, where the pressing displacement was 0.35mm, the surface roughnesses are (A) Rz =20.0µm and

(B) Rz =56.5 µm, and the analysis area is 1 × 1mm.
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Localization Analysis
In this section, the results of the mesoscale localization analysis
are discussed using the histories of the normal stress and sliding
velocity of arbitrary contact nodes obtained by the macroscale
finite element analysis as boundary conditions. The model used
here is the same as that used in the numerical friction test
described in Section Numerical Friction Test.

Effect of Vertical Pressing Displacement
In this section, the effect of the vertical pressing displacement of
the rubber hemisphere is described. Here, the surface roughness
of the rubber was Rz = 20.0µm, and the vertical pressing
displacement was evaluated at two levels. The node at the bottom

center of the hemisphere was used as the evaluation point.
Figure 8A shows the variation in the normal stress and sliding
velocity over time obtained by the finite element analysis. It is
confirmed that the transition to gross sliding is delayed when the
pressing displacement increases. Further, Figure 8B shows the
results of the mesoscale analysis using the data in Figure 8A as
input conditions; the graph shows the relationship between the
frictional stress and the sliding displacement.

Times A, B, and C in Figure 8A represent the characteristic
states corresponding to the vertical pressing process, the transient
process between stick and slip, and the steady state, respectively.
Figures 9A,B show the results of the mesoscale analysis of
the contact area when the pressing displacement is 0.25 and

FIGURE 12 | Evaluation points: (A) Multi-scale analysis; (B) Experiment (Normal load 3.8N, Ra = 2.11µm).

FIGURE 13 | Results of a meso–macro coupled analysis of the effect of contact location. Here, the pressing displacement is 0.45mm, and the surface roughness is

Rz = 20.0 µm: (A) History of the normal stress and sliding velocity obtained by the finite element analysis; (B) Localization analysis results of friction stress vs. sliding

displacement.
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0.45mm, respectively. Here, the contour range shows the ratio
of contact area when the area πβ2 is set to 1.0. From the result
at time A, it is observed that the magnitude of the normal stress
affects the distribution of the real contact area. In addition,
when the pressing displacement is smaller, the distribution of
the real contact area at time B already shows the same area
as under the steady state at time C. Meanwhile, when the
pressing displacement is larger, sliding has hardly occurred at
time B. Thereafter, gross sliding occurs and the normal pressure
increases, and at time C, the real contact area increases. Thus, by
performing the localization analysis, the microscopic state can be
examined, such as the variation in friction stress and real contact
area corresponding to the macroscale finite element analysis.

Effect of Surface Roughness
Next, the effect of surface roughness is discussed. Here, the
pressing displacement was 0.35mm, and two levels of rubber
surface roughness were adopted (Rz = 20.0µm and 56.5µm).
The node at the bottom center of the hemisphere was used as the
evaluation point. Figure 10A shows the variation in the normal
stress and sliding velocity with elapsed time obtained by the finite
element analysis. Figure 10B shows the results of the mesoscale
analysis using the data in Figure 10A as input conditions. The
graph shows the relationship between the frictional stress and
sliding displacement. From these figures, it is confirmed that the
surface roughness influences the stress and sliding.

Figures 11A,B show the results of the mesoscale analysis of
the contact area under conditions of Rz = 20.0µm and 56.5µm,

respectively. Here, the contour range shows the ratio of contact
area when the area πβ2 is set to be 1.0. The focused times are
shown in Figure 10A. From time A to time B, it can be seen that
the real contact area increases, and its rate of increase is affected
by the surface roughness. In the steady state (time C), the smaller
the surface roughness, the larger the real contact area for the same
levels of normal stress. As a result, as shown in Figure 10B, it
is assumed that the variation in friction stress with elapsed time
is affected.

Effect of Contact Location
This section describes the effect of the location of evaluation
points in the contact zone on the determined friction behavior.
Figure 12A shows the finite element model of the rubber
hemisphere viewed from directly below. In the localization
analysis, nodes (i)–(iii) shown in the figure were used as
evaluation points.

Figure 13A shows the variation in the normal stress and
sliding velocity with elapsed time obtained by finite element
analysis. Figure 13B shows the results of the mesoscale analysis
using data in Figure 13A as input conditions. Here, the pressing
displacement is 0.45mm and the surface roughness is Rz =

20.0µm. It can be seen in the figure that the normal stress at
the bottom center [node (i)] is the largest, and the occurrence
of gross sliding is the most delayed. In addition, it is confirmed
that the normal stress decreases toward the outside of the contact
area. The relationship between the friction stress and sliding
displacement at the mesoscale also reflects the results of the

FIGURE 14 | Results for the contact area obtained by (A) the mesoscale analysis and (B) the experiment, where the analysis area is 1 × 1mm.
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finite element analysis and its boundary conditions. Thus, by
using the proposed meso–macro coupled analysis method, it
is possible to study the microscopic behavior according to the
geometric conditions and contact conditions with a macroscale
finite element analysis.

Finally, the distribution characteristics of the real contact
area obtained by the proposed meso–macro coupled analysis
are qualitatively compared with the results of an experiment.
Figure 12B shows the real contact area using a method for
visualizing real contact regions formed in the apparent contact
zone (Maegawa et al., 2015). Note that the rubbing materials
used in the referenced study were the same as those used in this
study, but their roughness conditions were different. The contour
map in the figure shows the reflected light intensity after image
processing, in which the bright portions correspond to the areas
of real contact.

Figures 14A,B show a visualization of the real contact area
results in steady state sliding obtained by the proposed multiscale
analysis and previous experiment, respectively, corresponding to
regions (i), (ii), and (iii) in Figures 12A,B, respectively. Although
a quantitative comparison is difficult because of the different
roughness profiles, it is confirmed that the relationship between
the contact position and roughness determined by analysis and
experiment reasonably agree. In other words, the ratio of the real
contact area to apparent contact area decreases as the surface
becomes rougher and closer to the outside of the contact area.
However, the results of the mesoscale localization analysis are
averaged over the representative contact area, so the normal
stress distribution is homogeneous. Therefore, please note that
the gradient of the results according to the stress distribution
within the representative contact area is not represented as shown
for the experiment results.

CONCLUSION

This study proposed a loop-type coupled analysis scheme
to bridge the mesoscale and macroscale domains of friction
analysis. Specifically, the mesoscale multipoint contact model
was linked with the macroscale finite element analysis model

via the rate-, state-, and pressure-dependent friction model
previously proposed by the authors (Ozaki et al., 2020). Next,
the proposed method was applied to a contact problem between
a rough rubber hemisphere and a smooth rigid plate. Then,
systematic analyses were conducted, including a qualitative
comparison with the results of a previous experiment, and the
effectiveness of the proposed method in providing multiscale
understanding of frictional sliding phenomena was examined.
The proposed method was observed to enable a finite element
analysis that reflects the characteristics of roughness at the
mesoscale. Moreover, the analysis of elementary mesoscale
behavior corresponding to the finite element analysis under
arbitrary geometric and contact conditions can be performed in
converse. Note that although other mesoscale and macroscale
friction models (laws) can be used in the proposed method,
the ability of the macroscale model to describe the complex
frictional sliding phenomena model is essential. Additionally,
attention must be paid to how the representative contact area
is determined in the proposed method, as the contact area
must be of a size for which the stress distribution in the
macroscale analysis can be considered sufficiently uniform.
Please note that a full quantitative comparison with experimental
results still remains necessary. Thus, the authors intend to
adopt a more advanced mesoscale contact model and use
an actual profile of contact roughness in this model to
perform a quantitative verification of the proposed method in a
future study.
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The sliding friction of elastomers has been investigated numerically and theoretically

for the line contact between a cylindrical rigid indenter and a “frictionless” Kelvin–Voigt

foundation. The onset of sliding under an abrupt increase in the drive velocity has been

simulated with different boundary conditions of the rigid indenter. When the rigid indenter

is not allowed to move in any direction, just an abrupt change in the friction force

appears, which is not accompanied by any transient processes. However, when the rigid

indenter is able to move in the vertical direction, the transient sliding friction including

three different time constants appears, resembling the typical transition from the static

friction to the kinetic friction, in spite of no static friction considered in the simulation.

The aforementioned drastic difference is caused by the “vertical lift” of the rigid indenter,

which is induced by the damping of the Kelvin–Voigt foundation. In addition, the vertical

lift strongly affects the characteristics of the steady sliding friction, which is explained

well by using the critical velocity determined from the asymptotes in the master curve of

friction coefficient.

Keywords: tribology, dynamics, rheology, elastomers, Kelvin-Voigt foundation

INTRODUCTION

It has been well-known that sliding contact of elastomers involves various types of dynamics due
to friction. Physical phenomena such as wave propagations (Schallamach, 1971; Barquins, 1985;
Rubinstein et al., 2004; Maegawa and Nakano, 2010), wear pattern formations (Schallamach, 1957;
Fukahori and Yamazaki, 1994), and nonlinear vibrations (Nakano and Maegawa, 2009; Yamaguchi
et al., 2011; Nakano et al., 2019) have attracted the interest of many scientific and engineering
researchers. Among various elastomers, rubber is the material that has received the most attention
in various practical applications (e.g., tires, seals, and shoes). Since the study done by Grosch (1963)
showing the master curve of friction coefficient according toWilliams–Landel–Ferry (WLF) theory
(Williams et al., 1955), the importance of viscoelasticity has been recognized, and the dependence
of the friction coefficient on temperature and velocity has been investigated [e.g., Popov et al.
(2018)]. More recently, several swollen polymers showing high elasticity and ultra-low friction (e.g.,
hydrogels and polymer brushes) have been found (Gong et al., 2001; Nomura et al., 2011), some of
which are being developed toward practical applications (Belin et al., 2018; Tadokoro et al., 2020),
and their tribological properties have also been discussed in relation to their viscoelastic properties
(Mizukami et al., 2019).

To understand the sliding friction of elastomers, various types of modeling methods have been
proposed. Among them, those with “viscoelastic foundations” are known to have strong advantages
not only of avoiding the difficulties of elastic contact stress theory but also of providing intuitive
pictures of how the energy dissipation occurs inside the contact. The first was the extension of
the elastic foundation (i.e., the Winkler foundation) from stationary contact problems of thin
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films to steady sliding contact problems of elastomers (May et al.,
1959; Johnson, 1985). Then recently, in the novel framework
of the “Method of Dimensionality Reduction” invented by
Popov and his colleagues, the modeling method has progressed,
enabling us to analyze the true three-dimensional contact with
high accuracy (Popov, 2010; Popov and Heß, 2015; Kusche,
2017). For example, Li et al. (2015) numerically and theoretically
studied the kinetics of friction coefficient for the sliding contact
between a flat elastomer (modeled by a Kelvin–Voigt foundation)
and a rough rigid indenter (modeled by a self-affine fractal)
under abrupt change in the drive velocity. As a result, they found
interesting temporal changes (i.e., jumps and relaxations) of the
friction coefficient depending on the drive velocity and the Hurst
exponent of the self-affine fractal, under the consideration of
quasi-static processes.

Based on the foregoing background, the aim of this study
was to find the answer to the following question: What
is the minimum requirement for modeling with viscoelastic
foundations to describe the transient friction appearing in the
onset of sliding between an elastomer and an indenter? In this
article, to provide a possible answer in a minimal situation, we
consider a simple line contact between a flat elastomer and a
cylindrical rigid indenter, focusing on the boundary condition of
the rigid indenter in the vertical direction, under the restriction
that the elastomer is modeled by the conventional Kelvin–
Voigt foundation. Two types of models with different boundary
conditions reveal that the vertical dynamics of the rigid indenter
strongly affects not only the occurrence of the transient sliding
friction but also the characteristics of the steady sliding friction.

Note that the aforementioned idea on the boundary condition
in the vertical direction originates from the typical structure of
sliding systems under the fluid film lubrication, since when the
fluid film lubrication is considered theoretically, it is natural to
assume that the “slider” (corresponding to the “indenter” in this
study) shifts vertically to find the position to balance with the
applied normal load. Also note that in general, it has been known
that the friction of elastomers arises by two different mechanisms.
One is the “adhesion,” the energy dissipation of which occurs at
the contact interface between the elastomer and indenter [i.e., the
adhesive friction (e.g., Moore and Geyer (1972))], and the other
is the “viscoelasticity,” the energy dissipation of which occurs
inside the elastomers [i.e., the hysteresis friction (e.g., Moore and
Geyer (1974))]. Although both mechanisms are important and
should be interrelated, this study ignores the former and focuses
on the latter.

MODELS

Structures
Figure 1 shows the two types of models for sliding friction
of elastomers considered in this study. The left is termed
the “fixed indenter (FI) model,” and the right is termed the
“movable indenter (MI) model.” They are models describing
the two-dimensional sliding contact between a rigid indenter
and a viscoelastic foundation in the xz plane, where the
x and z axes are taken in the horizontal and vertical
directions, respectively.

The rigid indenter (mass per unit width: M) has a cylindrical
shape (curvature radius: R), the bottom surface of which contacts
with the viscoelastic foundation. In the FI model, the rigid
indenter is mounted on the rigid walls, not to be able to move
in any direction. In the MI model, on the other hand, the
rigid indenter is supported by a frictionless linear bearing, to
be able to move only in the vertical direction. Note that the
boundary condition of the rigid indenter is the single difference
between them.

The viscoelastic foundation consists of an infinite number
of viscoelastic elements mounted on a rigid base at regular
intervals in the horizontal direction. Every viscoelastic element
is a one-degree-of-freedom Kelvin–Voigt element consisting of a
vertical spring (stiffness per unit width: k) and a vertical damper
(damping coefficient per unit width: c) with the same natural
length; as a result, its non-disturbed surface is the horizontal
plane z = 0. Note that by using the stiffness per unit area (K)
and damping coefficient per unit area (C) of the viscoelastic
foundation, k and c are given by k = K/N and c = C/N,
respectively, where N is the number of viscoelastic elements per
unit length. Also note that here we assume that the upper end of
every viscoelastic element makes contact with the rigid indenter
surface with no adhesion and with no friction.

Owing to the aforementioned structures, the normal load per
unit width (W) of the FI model is determined by the indentation
depth δ [i.e., W = W(δ), where δ is constant], while that of the
MI model is determined by the gravity [i.e., W = Mg, where g is
the gravity constant]. In addition, in both models, the rigid base
is driven horizontally at the drive velocity V. Therefore, we can
say that the FI model represents a “constant-gap sliding system,”
while the MI model represents a “dead-weight sliding system.”
Or, we can also say that the FI and MI models represent the
two limiting cases corresponding to a “very stiff apparatus” and
a “very soft apparatus,” respectively.

Governing Equations
When the rigid indenter penetrates the viscoelastic foundation by
δ > 0, the indenter surfaces in the FI and MI models are given by

z = h (x) − δ (FI model) (1)

z = h (x) − δ (t) (MI model) (2)

respectively, where t is the time, and h(x) is the indenter
shape function:

h (x) =
x2

2R
(3)

Let us assume that the ith viscoelastic element at x = xi(t)
makes contact with the indenter surface (see Figure 2). The
compression and compression rate of the ith viscoelastic element
in the FI model are given by

ui (t) = −h (xi) + δ (FI model) (4)

u̇i (t) = −h′ (xi)V (FI model) (5)
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FIGURE 1 | Two types of models for sliding contact between cylindrical rigid indenter and flat elastomer (modeled by viscoelastic foundation). (Left) Fixed indenter (FI)

model. (Right) Movable indenter (MI) model.

FIGURE 2 | Local forces on the ith viscoelastic (Kelvin–Voigt) element. (Left)

Local forces acting on subelement PQR in the ith viscoelastic element. (Right)

Local force acting on rigid indenter from the ith viscoelastic element.

respectively, while in the MI model,

ui (t) = −h (xi) + δ (t) (MI model) (6)

u̇i (t) = −h′ (xi)V + δ̇ (t) (MI model) (7)

respectively, where (·) and (′) are the derivatives with respect to t
and x, respectively. Then, as shown in the left of Figure 2, there
are four types of local forces acting on the subelement PQR: the
normal force fNi at P (from the rigid indenter), the restoring force

kui at Q (from the spring), the damping force cu̇i at R (from the
damper), and the horizontal constraint force f Ci (from the spring
and damper). Considering that the subelement PQR is massless,
we obtain the following force balance equations in the vertical
and horizontal directions:

kui + cu̇i = fNi cos θi (8)

fCi = fNi sin θi (9)

respectively, where

tan θi = −h′ (xi) (10)

under –π /2 < θi < π /2, and from Equation (8),

fNi =
kui + cu̇i

cos θi
(11)

Now, as shown in the right of Figure 2, the normal force acts on
the rigid indenter at P from the ith viscoelastic element, which is
the reaction force of the normal force fNi on the left of Figure 2.
Therefore, the vertical and horizontal components of the normal
force are given by

fzi = fNi cos θi = kui + cu̇i (12)

fxi = fNi sin θi = −h′ (xi) fzi (13)

respectively. Note that from Equations (9) and (13), the
horizontal constraint force is determined as f Ci = fxi.
Consequently, the total vertical force Fz and total horizontal force
Fx acting on the rigid indenter from the viscoelastic foundation
are given by

Fz =
∑

i
fzi (14)

Fx =
∑

i
fxi (15)
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respectively. Finally, the vertical position of the indenter bottom
A in the FI model is given by

zA = −δ (FI model) (16)

while in the MI model, it is determined by the equation
of motion:

Mz̈A = Fz −Mg (MI model) (17)

which determines δ and δ̇ in Equations (6) and (7) as follows:

δ (t) = −zA (t) (MI model) (18)

δ̇ (t) = −żA (t) (MI model) (19)

Note that when the ith viscoelastic element is not making
contact with the indenter surface, it is obvious that fNi = 0
and therefore fzi = fxi = 0. Then, the compression rate of the
non-contacting element is given by

u̇i = −
ui

τ
(non-contact) (20)

where τ is the retardation time of the viscoelastic element,
defined as

τ =
c

k
(21)

or, by using the macroscopic properties of the
viscoelastic foundation,

τ =
C

K
(22)

Therefore, when the contacting element violates the
following condition:

ui ≥ h′ (xi)Vτ (FI model) (23)

ui ≥ h′ (xi)Vτ + żAτ (MI model) (24)

it detaches from the rigid indenter surface. Note that the first-
order differential equation (20) for the non-contacting element
has the following solution:

ui (t) = ui (t0) exp

(

−
t − t0

τ

)

(non-contact) (25)

where t0 is the constant.

METHODS

The sets of the governing equations in the previous section
were solved numerically for the FI and MI models. To solve
the second-order ordinary differential equation (17) for the MI
model, the Runge–Kutta method was used, where the time
discretization was determined by 1t = 21x/V = 2/NV.

Standard parameter values for the numerical simulations are
listed in Table 1. Note that both models include six independent
parameters (R, K, τ , N, δ, and V in the FI model; R, M, K,
τ , N, and V in the MI model). However, since N (= 1/ 1x)
is the parameter for the space discretization, the number of

TABLE 1 | Standard parameter values for numerical simulations.

Rigid indenter

Curvature radius R 10mm

Mass per unit width M (for MI model) 1 kg/mm

Viscoelastic foundation

Stiffness per unit area K 10 GN/m3

Retardation time τ (= C/K) 100 ms

Number of elements per unit length N 200 mm−1

Operation

Indentation depth δ (for FI model) 300µm

Drive velocity V 100 mm/s

essential parameters is five for each model. Also note that if
we imagine a “thin” elastic sheet of thickness h = 1mm as the
viscoelastic foundation, it is possible to say that the stiffness per
unit area K = 10 GN/m3 corresponds to the effective elastic
modulus E ∼ Kh = 10 MPa, although it depends strongly on the
boundary condition of mounting the elastomer on the rigid base
[e.g., Popov (2010)].

RESULTS

Figure 3 shows the numerical results of temporal changes
in representative variables for the FI model (left column)
and MI model (right column) under the standard conditions
(Table 1). Note that as shown by the blue lines in the top
row, the drive velocity was abruptly increased from V = 0 to
100 mm/s at t = 0.

First, from the results for the FI model, we find that the
indenter position provided the initial condition (zA = −0.3mm,
Fz ∼ 10 N/mm, and Fx = 0). Then, Fz and Fx were immediately
increased at t = 0 and maintained the increased values (zA =

−0.3mm, Fz ∼ 35 N/mm, and Fx ∼ 5 N/mm).
Then, from the results for the MI model, we find that the

gravity force provided the same initial condition as that of
the previous model. However, the responses were completely
different, showing distinct “transient sliding” toward “steady
sliding.” The rigid indenter started tomove “upward” at t= 0 and
then gradually approached zA ∼ −0.1mm with a time constant
in the order of “10 ms” (second row). The response of Fz was
spiky: it immediately increased to Fz ∼ 30 N/mm at t = 0, then
rapidly decreased to Fz ∼ 9 N/mm with a time constant in the
order of “1ms,” and gradually returned to Fz ∼ 10 N/mm (third
row). The response of Fx was also spiky: it immediately increased
to Fx ∼ 5 N/mm at t = 0, then rapidly decreased to Fx ∼ 2 N/mm
with the time constant “1ms,” and gradually approached Fx ∼ 1
N/mm with the time constant “10 ms” (bottom row). It should
be noted that the response of Fx resembles the typical transition
from the static friction to the kinetic friction, although no static
friction was considered. This transient behavior will be discussed
in the next section.

Figure 4 shows the numerical results of spatiotemporal
changes in the contact pressure p(x,t)= NfN(x,t) under the same
conditions as those of the previous figure, where the abscissa
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FIGURE 3 | Numerical results for fixed indenter model (Left) and movable indenter model (Right): temporal changes in drive velocity V (top row), indenter position zA
(second row), total vertical force Fz (third row), and total horizontal force Fx (bottom row) under standard conditions (see Table 1 for parameter values).

FIGURE 4 | Numerical results for fixed indenter model (Left) and movable indenter model (Right): spatiotemporal changes in contact pressure p(x,t) under standard

conditions (see Table 1 for parameter values). LE, leading edge of contact; TE, trailing edge of contact.
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is the horizontal position x, the ordinate is the time t, and the
magnitude of p is represented by the shade of the red color. The
blue lines show temporal changes in the horizontal positions of
the leading and trailing edges of the contact area, denoted by
xLE(t) and xTE(t), respectively.

First, from the results for the FI model, we again find that
the response was not accompanied by any transient processes.
Regarding the edges, they were located at xLE = −2.4mm and
xTE = 2.4mm as the initial state. After t = 0, the leading edge
maintained the position, while the trailing edge immediately
moved to the left to xTE = 0.3mm at t = 0 and maintained the
position for t > 0 (which is observed as the peeling of the contact
area in the outlet side). Regarding the contact pressure, it was
symmetric for t < 0, showing the maximum pmax ∼ 3 MPa at the
contact center and the minimum pmin = 0 at both edges. After t
= 0, it showed the maximum pmax > 20 MPa at the leading edge
and the minimum pmin = 0 at the trailing edge.

Then, from the results for the MI model, we again find that
the response was accompanied by distinct transient processes.
Regarding the edges, they were located at the same positions as
those of the previous model. However, after t = 0, not only the
trailing edge but also the leading edge moved (which is observed
as the simultaneous peeling of the contact area in both sides).
The leading edge started to move to the right at t = 0 and then
gradually approached xLE = −1.3mm with the time constant
“10ms.” Meanwhile, the trailing edge immediately moved to the
left to xTE ∼ 0 at t = 0, then continued to move to the left to
xTE ∼ −1mm with the time constant “1ms,” and then gradually
approached a limiting value of xTE = 0.1mm with the time
constant “10ms.” Regarding the contact pressure, starting from
the same initial state as that of the previous model, after t = 0, it
showed the maximum at the leading edge and the minimum at
the trailing edge. For example, in the steady sliding, pmax ∼ 14
MPa at the leading edge and pmin = 0 at the trailing edge.

DISCUSSION

Transient Sliding Friction
Through direct comparison of the numerical results for the two
types of models (Figure 1), we have found that the boundary
condition of the rigid indenter is critical for the occurrence of
transient sliding. Letting the rigid indenter be vertically movable
causes its upward motion (termed the “vertical lift” of the rigid
indenter) when the drive velocity is applied (Figure 3), leading to
a drastic spatiotemporal change in the area and pressure of the
contact (Figure 4).

First, in the FI model, the horizontal positions of the leading
and trailing edges are given by

xLE = −a (FI model) (26)

xTE =

√

a2 + lr
2
− lr (FI model) (27)

respectively, where a is the half length of the stationary contact,
and lr is the retardation length, defined as

a =

√

2Rδ (28)

lr = Vτ (29)

respectively. Note that xLE is constant, while xTE is a function
of lr. From Equations (26) and (27), we find that there are two
limiting cases:

(xLE, xTE) = (−a, a) for lr ≪ a (FI model) (30)

(xLE, xTE) = (−a, 0) for lr ≫ a (FI model) (31)

where the former means the “non-peeling” of the entire contact
area, and the latter means the “complete peeling” of the contact
area in the outlet side. Therefore, for example, as the drive
velocity is increased, the contact area changes from “symmetric”
[Equation (30)] to “asymmetric” [Equation (31)]. Note that xTE
given by Equation (27) is immedeately determined when the
drive velocity is applied, which is the reason why the response
of the FI model is not accompanied by any transient processes.

Then, in the MI model, the horizontal positions of the leading
and trailing edges are given by

xLE = −a (MI model) (32)

xTE =

√

a2
(

1+ τ
δ̇

δ

)

+ lr
2
− lr (MI model) (33)

respectively, where δ = δ(t) and therefore a= a(δ)= a(t), which
is the reason why the MI model creates transient processes. In
Equations (32) and (33), we find two sources creating temporal
changes. One is a ∼ δ1/2, which shrinks the contact area
symmetrically by the vertical lift of the rigid indenter. From
the temporal change in xLE in the right of Figure 4, we can
say that under the standard condition, the time constant “10
ms” was caused by this effect. (In addition, the temporal change
in zA on the right of Figure 3 supports this conclusion.) The
other is δ̇/δ located under the square-root sign in Equation (33),
working only for the trailing edge, which deforms the contact
area asymmetrically. From the temporal change in xTE on the
right of Figure 4, we can say that under the standard condition,
the time constant “1 ms” was caused by this effect.

Based on the foregoing, let us consider the spiky response of
Fx on the right of Figure 3. As we saw in the previous section,
the temporal change in Fx in the MI model is quite similar
to the typical transition from the static friction to the kinetic
friction, in spite of no static friction considered in the simulation.
If we saw this type of response in experiments, we probably
believed that this was caused by the typical adhesive friction
consisting of two types of friction. In fact, the spiky response
consists of the following three parts. The first is the immediate
increase responding to the abrupt increase in the drive velocity
at t = 0. This is obviously caused by the damping C of the
Kelvin–Voigt foundation, which is essentially identical to the
response observed in the FI model at t = 0. The second is the
rapid decrease with the time constant “1ms.” Considering the
discussion in the previous paragraph, we can conclude that the
rapid decrease is caused by the rapid motion of the trailing edge
to reduce the contact area. The third is the gradual decrease
with the time constant “10ms.” Considering the discussion in the
previous paragraph, it is natural to say that the gradual decrease
in Fx is caused by the gradual motion of both edges. However,
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also considering that the contact pressure takes the maximum
pmax at the leading edge and theminimum pmin = 0 at the trailing
edge (Figure 4), we can conclude that the gradual decrease in Fx
is mainly caused by the gradual motion of the leading edge. Again
note that the second and third parts of Fx in the MI model never
appear in the FI model, which tells us that the vertical lift of the
rigid indenter is essential to the spiky response.

Steady Sliding Friction
Through the numerical simulations to examine the response
to the abrupt increase in the drive velocity, we have found
that the response of the FI model is not accompanied by any
transient processes (which means that the steady sliding friction
appears immediately), while the response of the MI model is
accompanied by distinct transient processes followed by the
steady sliding friction. In this section, we focus on the steady
sliding friction.

The situation of steady sliding is given by

δ̇ = 0 (steady sliding) (34)

which makes the governing equations for theMImodel reduce to
those for the FI model. For example,

ui (t) = −h (xi) + δ (steady sliding) (35)

u̇i (t) = −h′ (xi)V (steady sliding) (36)

However, as seen in the numerical results for t > 100ms in
Figure 3, the normal loadW (= Fz in steady sliding) and friction
force F (= Fx in steady sliding) for theMImodel are considerably
different from those for the FI model (i.e., W ∼ 35 N/mm and
F ∼ 5 N/mm for the FI model, while W ∼ 10 N/mm and
F ∼ 1 N/mm for the MI model). Note that the difference is
caused by the boundary condition of the rigid indenter: the FI
model represents a “constant-gap sliding system” in which the
indentation depth δ is controlled, while the MI model represents
a “dead-weight sliding system” in which the normal load W
(= Mg) is controlled. Therefore, when one tries to measure
the sliding friction of elastomers, it is mandatory to pay much
attention to the boundary condition of the counter surface:
otherwise, measured values could lose their meaning.

The foregoing discussion is supported by Figure 5, which
shows numerical results in the steady sliding for the FImodel (left
column) and the MI model (right column). The dependences of
δ (top row),W (second row), F (third row), and µ (bottom row)
onV in the steady sliding are summarized, whereµ is the friction
coefficient in steady sliding, defined as

µ =
F

W
(steady sliding) (37)

The τ -values are 10−2 s (black), 10−1 s (blue), and 100 s
(red), and the other parameter values are the same as those
of the standard condition (Table 1). Owing to the difference
of boundary conditions, the velocity dependences of µ for the
FI and MI models are different from each other: under high-
V conditions, the FI model shows the limiting value µ ∼ 0.2,

while the MI model shows a negative dependence of µ on V
with a slope of −0.5. In addition, the three curves in every graph
in Figure 5 are found to be located at regular intervals, which
means that the product of V and τ (i.e., lr = Vτ ) is an essential
parameter for both models.

Through a series of numerical simulations under various sets
of parameters, master curves on µ in the steady sliding for the
two types of models were obtained (see Figure 6). The red curve
in the left graph is the master curve for the FI model, the ordinate
and abscissa of which areµ(R/δ)1/2 andVτ (Rδ)−1/2, respectively,
while the red curve in the right graph is the master curve for the
MI model, the ordinate and abscissa of which are µ(KR2/W)1/3

and Vτ (K/RW)1/3, respectively. It should be stressed that every
quantity assigned to the axes in Figure 6 is dimensionless.

To examine the asymptotes of the master curves, we again
consider the two limiting cases:

(xLE, xTE) = (−a, a) for lr ≪ a (steady sliding) (38)

(xLE, xTE) = (−a, 0) for lr ≫ a (steady sliding) (39)

where again, the former means the “non-peeling” of the entire
contact area, and the latter means the “complete peeling” of the
contact area in the outlet side. First, when lr≪ a,W and F can be
estimated by

W ∼

∫ a

−a
Ku (x) dx = 2αR1/2Kδ3/2 (40)

F ∼

∫ a

−a
−h′ (x)Cu̇ (x) dx = 2αR−1/2CVδ3/2 (41)

respectively, where α = 2
√
2/3. Therefore,µ for the first limiting

case [Equation (38)] is given by

µ =
CV

RK
(asymptotes L1-FI and L1-MI) (42)

Then, when lr ≫ a,W and F can be estimated by

W ∼

∫ 0

−a
Cu̇ (x) dx = CVδ (43)

F ∼

∫ 0

−a
−h′ (x)Cu̇ (x) dx = αR−1/2CVδ3/2 (44)

respectively. Therefore, µ for the second limiting case [Equation
(39)] is given by

µ = α

√

δ

R
(asymptote L2-FI) (45)

or, by using Equation (43),

µ = α

√

W

RCV
(asymptote L2-MI) (46)

The black broken lines in Figure 6 are the above asymptotes.
Now we find that excellent agreement of the asymptotes with the
master curves. Note that Equations (42) and (46) are the same as
those shown by Popov (2010).
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FIGURE 5 | Numerical results in steady sliding for fixed indenter model (Left) and movable indenter model (Right): effects of retardation time τ on velocity

dependences of indentation depth δ (Top), normal load W (second row), friction force F (third row), and friction coefficient µ (bottom row). Black lines, τ = 10−2 s;

blue lines, τ = 10−1 s; red lines, τ = 100 s (see Table 1 for other parameter values).

FIGURE 6 | Master curves on friction coefficient µ in steady sliding for fixed indenter model (Left) and movable indenter model (Right). Red solid lines: master curves

obtained numerically, black broken lines: asymptotes obtained theoretically.
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TABLE 2 | Velocity dependences of friction coefficient in steady sliding

(α = 2
√

2/3 ).

FI model MI model

Critical velocity V* V∗
∼

K
√

Rδ
C

V∗
∼

3√
RK2W
C

Friction coefficient µ for V ≪ V∗ µ =
CV
RK

∼ V1 µ =
CV
RK

∼ V1

Friction coefficient µ for V ≫ V∗ µ = α

√

δ
R
∼ V0 µ = α

√

W
RCV

∼ V−1/2

Velocity Dependences of Friction
Coefficient
In this section, based on Figure 6, let us consider the velocity
dependences of the friction coefficient. In Figure 6, the drive
velocity V is included only on the abscissa. Therefore, from
the intersection of the two asymptotes, we introduce the critical
velocity V∗ defined as

V∗
∼

K
√
Rδ

C
(FI model) (47)

V∗
∼

3
√

RK2W

C
(MI model) (48)

By using V∗, the formulas for estimating friction coefficient are
summarized in Table 2.

First, we consider the case of V ≪ V∗. From the third row
of Table 2, we find that the formulas for both models are the
same, which means that when V ≪ V∗, the vertical lift effect is
negligible, although the rigid indenter could move vertically in
the MI model. In addition, considering the assumption given by
Equation (38), we find that when V ≪ V∗, the peeling of the
contact area in the outlet side is also negligible in both models.
The velocity dependence of µ is µ ∼ V1, which means that it is
caused by the damping of the Kelvin–Voigt foundation.

Then, we consider the case ofV≫V∗. From the bottom row of
Table 2, we find that the formulas for the two types of models are
different, which means that when V ≫ V∗, the vertical lift effect
strongly appears in the MI model. From Equation (43), we find
that the vertical lift effect appears according to

δ ∼ V−1 for V ≫ V∗ (MI model) (49)

which is confirmed by the numerical results shown in the upper
right graph of Figure 5, where a decrease in δ means an increase
in zA (= –δ): that is, the vertical lift of the rigid indenter. In
addition, considering the assumption given by Equation (39), we
find that when V ≫ V∗, the complete peeling of the contact area
in the outlet side occurs in both models. Regarding the velocity
dependence ofµ in the FI model, it isµ∼V0 (i.e.,µ is constant).
This is because when V ≫ V∗, the damping becomes dominant,
and therefore the restoring becomes negligible, which leads to the
situation that both of W and F are proportional to V, as shown
in Equations (43) and (44). Regarding the velocity dependence
of µ in the MI model, on the other hand, it shows the negative
dependence µ ∼ V−1/2, which is caused by the vertical lift of the
rigid indenter.

As a result, we find that in the MI model, the function
µ = µ(V) has a local maximum at V ∼V∗. Note that for
many decades, this type of velocity dependence has been
observed and discussed by a number of researchers for the
sliding friction of elastomers, which seems to be basically
understood as the frequency dependence of viscoelasticity
(Persson, 2001; Momozono et al., 2010; Carbone and Putignano,
2013). However, the MI model produces a qualitatively similar
dependence, although the frequency dependence of the Kelvin–
Voigt foundation has no local maximum, where it is caused by
the vertical lift of the rigid indenter.

Also note that the negative dependence µ ∼ V−1/2 means

µ → 0 for
V

V∗
→ ∞ (MI model) (50)

which gives us an idea of the ultra-low friction. If we try to
embody the situation of Equation (50) in real systems, not only
increasing V but also decreasing V∗ is promising, the method
of which is shown by Equation (48). Probably, the most effective
parameter is the damping C (or the retardation time τ = C/K).
According to the equation, increasing C leads to decreasing V∗,
which leads to approaching the situation of Equation (50). It
should be noted that the concept can never be embodied in the
FI model, because increasing C under a constant δ just linearly
increases F, as shown in Equation (44). Therefore, the key is the
vertical lift effect arising with the movable boundary condition of
the rigid indenter.

Recently, several swollen polymers showing ultra-low friction
(e.g., hydrogels and polymer brushes) have attracted attention,
with inspirations from natural tribosystems in human bodies
(e.g., eyes and joints) (Klein et al., 1994; Lee and Spencer, 2008).
An important aspect is obviously the low-adhesive properties of
surfaces caused by their “microscopic” structures. However, as
another important aspect, proper “macroscopic” structures are
also needed to utilize them properly under various conditions. At
least, recalling the results on the transient sliding (Figure 3), we
can say that in the lubricated sliding of elastomers, macroscopic
structures utilizing the vertical lift effect by viscoelasticity seem
to have strong advantages for smooth transition to the fluid film
lubrication regime, especially at the onset of sliding.

CONCLUSIONS

In this study, the sliding friction of elastomers was investigated
numerically and theoretically for the line contact between
a cylindrical rigid indenter and a “frictionless” Kelvin–Voigt
foundation. The onset of sliding under an abrupt increase
in the drive velocity was simulated with different boundary
conditions of the rigid indenter. The main conclusions are
as follows:

1. When the rigid indenter is not allowed to move in any
direction, just an abrupt change in the friction force appears,
which is not accompanied by any transient processes.
However, when the rigid indenter is able to move in the
vertical direction, the transient sliding friction including
three different time constants appears, resembling the typical
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transition from the static friction to the kinetic friction, in
spite of no static friction considered in the simulation. The
aforementioned drastic difference is caused by the “vertical
lift” of the rigid indenter induced by the damping of the
Kelvin–Voigt foundation.

2. When the drive velocity is sufficiently low, the vertical lift
effect is negligible, where the restoring is more dominant
than the damping, which leads to little peeling of the entire
contact area and the friction coefficient proportional to the
drive velocity. On the other hand, when the drive velocity
is sufficiently high, the vertical lift effect becomes strong,
where the damping is more dominant than the restoring,
leading to the complete peeling of the contact area in the
outlet side. The vertical lift of the rigid indenter strongly
affects the characteristics of the steady sliding friction, which
is explained well by using the critical velocity determined from
the asymptotes in the master curve of friction coefficient.

At the end, it is noted again that the foregoing conclusions are
obtained for the Kelvin–Voigt foundation against a cylindrical
rigid indenter. In general, since behaviors are greatly affected
by the rheology of the viscoelastic foundation or the shape of
the rigid indenter (Popov and Heß, 2015), further investigations
are needed.
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A unified model for active control of static and sliding friction by normal, tangential, and

transverse oscillations is discussed, building on a series of past publications. Themodel in

question is quasi-static, uses Amontons friction and takes into account contact stiffness

in both normal and tangential directions. This makes the model fully macroscopic, which

stands in contrast to Prandtl-Tomlinson-derived microscopic models that seem to be

the currently preferred explanation for the influence of vibration on friction. While many

technical details and numerical simulations based on our model have already appeared

in a series of publications, here we attempt to give a high-level overview and discuss

the main properties of friction under oscillation as generally as possible, while making a

minimum of assumptions.

Keywords: vibration, friction, contact mechanics, active control, stick-slip actuation

1. INTRODUCTION

The fact that vibration can be used to significantly reduce the force of friction has been known since
at least the 1950s (Fridman and Levesque, 1959). Since then, the effect has been studied extensively
and exploited in many practical applications. Classical examples are to be found in wire drawing
(Murakawa and Jin, 2001; Siegert and Ulmer, 2001), press forming (Eaves et al., 1975; Ashida and
Aoyama, 2007), cutting (Thoe et al., 1998; Eggers et al., 2004), and other machining processes. Also
well-known is the use of vibration for stabilization of system dynamics, e.g., suppression of brake
squeal (Müller and Ostermeyer, 2007) and cornering noise (Heckl and Huang, 2000).

There are also a number of advanced applications that move beyond simple reduction of
sliding or static friction, and involve vibration-driven directed transport or exact positioning
(Popov, 2017). The most famous example of this are traveling wave motors (Schmidt et al.,
1996; Storck et al., 2002), which are used to adjust focus in camera lenses, among many other
applications. Similar principles are employed in high-precision linear actuators and positioning
systems (Socoliuc et al., 2006), vibrational conveyors (Gaberson, 1971, 1972), and other types
stick-slip drives.

The above examples are only a small sample of technical applications at the intersection of
friction and vibration. Correspondingly, there is a large body of existing research in this field (see
e.g., Pohlman and Lehfeldt, 1966; Godfrey, 1967; Storck et al., 2002; Chowdhury and Helali, 2008).
Most of it is practical in nature, even though several well-known theoretical models have been
proposed as well (DeWit et al., 1995). However, it is the contention of the author that an important
factor is missing from currently popular models: the compliance of the contact and its interaction
with the applied oscillation. The currently prevailing tendency is to ascribe the reduction of friction
by vibration mostly to processes at the micro-scale (Popov et al., 2010). However, here we will
argue that the primary (but not necessarily exclusive) mechanism is to be found on the macro-
scale, in ordinary contact mechanics. It should be noted that this does not automatically invalidate
previous work. In fact, it seems likely that a truly accurate model will be multiscale, combining both
macroscopic dynamics and microscopic processes.
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Popov Influence of Vibration on Friction

FIGURE 1 | Static friction model. The intrinsic coefficient of friction in the

contact is µ0. The y-axis points out of the plane.

The primary advantage of our model is its simplicity. It
relies only on macroscopic contact mechanics and introduces
no new physics. In fact, it is likely to be the simplest possible
model that is rich enough to describe almost the full range of
behaviors exhibited by friction under the influence of external
vibration. For this reason, the present paper can be seen
as an exercise in minimalism, attempting to cover as much
phenomenological ground as possible with a minimum of
assumptions and variables.

1.1. Contributions
This work draws heavily on results recently published in a series
of papers with participation of the present author (Mao et al.,
2017; Popov et al., 2017; Benad et al., 2018a,b; Popov and Li,
2018). While there is substantial overlap with these papers, the
present work is organized differently, seeking to present a “big
picture” view without getting bogged down in details. Several
results have been generalized from previous publications, while
the discussion of the influence of oscillation waveforms has, to
the best knowledge of the author, not previously appeared in
the literature.

2. STATIC FRICTION

Towarmup, we consider static friction. This case ismuch simpler
than the sliding case and leads to some satisfyingly general results.
The system under consideration consists of a body resting on a
plane (Figure 1). The body is pressed into the plane with a force
Fz and pulled sideways with a force Fx. The coefficient of friction
between the body and the plane is assumed to be constant and
equal to µ0. The body remains at rest while

|Fx| < µ0Fz (1)

where µ0Fz is the critical force at which the body just begins to
slide. The static coefficient of friction is defined as the ratio of this
critical force to the normal load. In the absence of oscillation, it is
equal to µ0:

µs = µ0 (2)

Things get slightly more interesting when we add an oscillatory
force component. If the force oscillation acts normal to the plane,
we denote it by Azg(t), where Az is the amplitude. The stick
condition in that case needs to be amended to:

|Fx| < µ0

(

Fz + Azg(t)
)+

(3)

The (..)+ notation denotes the ramp function, which clips
negative values to zero. It is necessary because the normal force
does not turn negative when contact is lost.

It is easy to see that the critical force is reduced relative to the
non-oscillatory case, since the above inequality must hold at all
times, including the times when the normal force drops below
its mean value Fz . In other words, static friction is limited by
theminimum of normal force encountered during the oscillation.
For the coefficient of static friction under normal oscillation we
thus obtain:

µs,z = µ0 (1− Az/Fz)
+ (4)

In a similar fashion, we can add an oscillatory component Axg(t)
that is aligned with the tangential force Fx. This results in the
stick condition

|Fx + Axg(t)| < µ0Fz (5)

Note that this inequality is only satisfiable when Ax < µ0Fz .
Otherwise the body starts to slide in place and the contact loses
its ability to statically sustain a lateral force. Thus, µs can be
expressed as:

µs,x = (µ0 − Ax/Fz)
+ (6)

Notice the slight difference between this result and Equation (4).
In particular, note that a tangential oscillation will reduce µs by a
larger amount than a normal oscillation of the same amplitude if
µ0 < 1, and by a smaller amount otherwise.

Transverse oscillations are also able to reduce static friction.
This case is qualitatively similar to that of tangential oscillation,
with the difference that we need to use the vector norm of the
in-plane forces instead of adding them directly:

F2x +
(

Ayg(t)
)2

< (µ0Fz)
2 (7)

Once again, stick is impossible if Ay ≥ µ0Fz , and for the static
coefficient of friction we obtain:

µs,y =

√

(

µ2
0 − A2

y/F
2
z

)+

(8)

One particularly useful thing about these results is that they
are quite general, and in particular independent of contact
geometry, frequency of oscillation, and the shape of the
oscillation waveform.

2.1. Static Friction Under Superimposed
Oscillation
Things become considerably less transparent when we consider
simultaneous oscillation in multiple directions. The stick
condition itself does not change much, and in the most general
case can be expressed as:

(

Fx + Axgx(t)
)2

+
(

Aygy(t)
)2

< µ2
0

(

Fz + Azgz(t)
)2

(9)

Unfortunately, actually finding the maximal Fx that still satisfies
this inequality at all times quickly becomes unwieldy, leading to
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FIGURE 2 | A single massless spring, which serves as a minimal model of a

sliding frictional contact. The sliding velocity is constant, while the vertical

coordinate oscillates. Amontons friction with the constant coefficient of friction

µ0 is assumed in the contact point.

a large number of case distinctions—if a closed-form solution is
possible at all. In addition, when the compliance of the contact is
taken into account, the static coefficient of friction may become
negative, in the sense that a constant force needs to be applied
to prevent the contact from sliding. This effect is what frictional
drives and actuators are based on. For an analysis of this case the
reader is referred to Popov and Li (2018). In this paper, however,
we ignore superimposed oscillation.

3. SLIDING FRICTION UNDER NORMAL
OSCILLATION

The key feature of the model that we use to describe dynamic
friction is that the compliance of the contact is taken into account.
In the initial formulation, the contact is modeled as a single
Hookean spring that has an associated normal stiffness kz and a
lateral stiffness kx (Figure 2). This is a reasonable approximation
of a flat-ended cylinder in contact with a plane. The model can
also be extended to cover arbitrary curved contacts with the
help of the Method of Dimensionality Reduction (Popov and
Heß, 2016). However, for a general analysis, a single spring is
quite sufficient.

The model considered here is displacement-controlled and
quasi-static. A force-controlled and/or inertial model can be
formulated within the same framework, which, however, leads to
certain complications (e.g., resonances) that are outside the focus
of the present paper. For an analysis of such a model, the reader
is referred to Mao et al. (2017).

The kinematics of the model is as follows: The contact spring
is pulled over a flat plane with a constant velocity v0, although
for convenience we consider the spring to be stationary, while
the substrate slides underneath it. The normal displacement uz
of the spring is measured relative to the state of unstressed first
contact with the substrate. uz(t) represents the externally applied
oscillation and is thus given explicitly. The lateral displacement
ux, on the other hand, depends on the current state of the system
and is the only unknown variable.

We assume that Amontons’ law of friction (with a constant
coefficient of friction µ0 that is the same for both static and
sliding friction) holds in the contact point. In general, this may
be an unrealistic assumption. However, the use of a constant
coefficient of friction not only simplifies calculations, but also
eliminates all possible micro-scale influences from the model.
Since one of the primary aims of this paper is to advertise
the feasibility of a purely macroscopic theory of friction under
oscillation, making µ0 constant is actually a prerequisite.

The effective coefficient of friction µ̄, which is to be
determined in the sequel, is defined as the average tangential force
exerted by the spring divided by the average normal force:

µ̄ =
〈Fx(t)〉

〈Fz(t)〉
(10)

where 〈..〉 denotes averaging over one period of oscillation.
Previous publications on the topic assumed that the imposed

normal oscillation is harmonic, so as to simplify analysis.
However, this turned out to be an unnecessary restriction, so
here we will work with a general periodic function that is
parameterized as follows:

uz(t) = ūz + Azw(ft) (11)

Here ūz is the mean indentation, Az is the amplitude and f the
frequency of the oscillation. w(ϕ) is a dimensionless function
describing the “shape” of the oscillation, with ϕ = ft. The
waveform w is normalized such that it is zero-mean, with a
period of 1 and a minimum value of −1. Note however, that the
maximum of w is left unconstrained.

3.1. Pure Sliding
While the behavior of a frictional couple under oscillation has
its complexities in general, there are two extreme cases that
lend themselves to easy and precise analysis: One of them, static
friction, was already discussed above. The second, pure sliding,
is briefly discussed here. The most important thing about pure
sliding is that oscillations do not influence the coefficient of
friction in that mode. This can be easily seen from the fact that
the instantaneous tangential force is uniquely defined during slip
(Fx = µ0Fz), from which the effective coefficient of friction is
immediately obtained:

µ̄slip =
〈Fx(t)〉

〈Fz(t)〉
=

〈µ0Fz(t)〉

〈Fz(t)〉
= µ0 (12)

Irrespective of how complex the dependence Fz(t) may be,
it always cancels out—by linearity of sliding friction. While
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this result may seem unimpressive by itself, it establishes an
important “boundary condition” for the more general case of
friction with stick-slip. Also, as in the static case, the coefficient
of friction in pure slip has the important property of not being
dependent on contact geometry and oscillation parameters. The
result µ̄slip = µ0 is also valid for tangential and combined
normal/tangential oscillations. It can also be shown to be valid
in the inertial case (Mao et al., 2017). However, transverse
oscillations do not, strictly speaking, have this limiting case,
although the deviation becomes negligible at high velocities. This
will be discussed in more detail later.

3.2. Stick-Slip
Two extreme points have now been established: pure stick (static
friction) and pure slip (plateau). Reason suggests that there is also
something in between. It would be physically implausible for the
coefficient of friction under oscillation to “snap” from near zero
back to µ0 due to arbitrarily slow sliding. And this is in fact not
observed experimentally: At a given amplitude and frequency,
the static coefficient of friction is lowest, and then smoothly
increases with the sliding velocity until reaching a plateau of
sorts. Fortunately, the transition region can also be described in
our model. Unsurprisingly, it is dominated by stick-slip.

Let us now consider this phenomenon in more detail. During
sliding, we have Fx = µ0Fz , which can also be written as
kxux(t) = µ0kzuz(t). Substituting uz from Equation (11) and
rearranging gives us the lateral displacement and velocity of the
contact point:

ux(t) = µ0
kz

kx

(

ūz + Azw(ft)
)

(13)

u̇x(t) = µ0
kz

kx
Azfw

′(ft) (14)

A transition from slip to stick happens when the relative motion
between the substrate and the contact point vanishes, i.e., when
u̇x(t) = v0. From this condition, the point of stick onset can
be determined:

ϕ1 = ft1 =
(

w′
)−1

(

kxv0

µ0kzAzf

)

(15)

It becomes obvious that ϕ1 is a function of a single compound
variable, which combines all parameters of the system, except
ūz . To simplify further calculations, we introduce some
dimensionless variables, α (corresponding to amplitude), β

(corresponding to velocity), and ϕ (phase):

α =
Az

ūz
(16)

β =
kxv0

µ0kzAzf
(17)

ϕ = ft (18)

Using these variables, the static coefficient of friction (Equation
4) can be expressed as µs,x = µ0(1 − α)+, while Equation (15)
can be written as

ϕ1 =
(

w′
)−1

(β) (19)

Noting that β is a positive quantity and assuming that w
is differentiable (but not necessarily invertible—there can be
multiple stick events), it can be seen that the above equation has
solutions if

β < max
ϕ

w′(ϕ) = βc (20)

where βc denotes the critical value that separates the stick-
slip region from the continuous sliding region. A harmonic
oscillation, for example, has βc = 2π , while a right-leaning
sawtooth function has βc = 2, which is in fact the smallest
possible value. The larger βc, the more effective the waveform is
at reducing friction at high velocities, but more on that later.

Once stick is initiated, the contact point is dragged along by
the substrate with velocity v0, so that the tangential displacement
and force increase linearly with time:

Fstick(t) = µ0Fz(t1)+ kxv0 (t − t1) (21)

This continues while the condition for static friction holds:

Fstick(t) < µ0Fz(t) (22)

Trivial as it is, this inequality lies at the core of reduction of
friction in our model. It serves as the sole source of nonlinearity
that allows the system to break free of the trivial solution
exemplified by Equation (12). With pure slip, the spring force is
always equal to µ0Fz(t), while in stick-slip it is sometimes lower,
which leads to lower average force and coefficient of friction (see
also Figure 3). Another way of looking at it is that the contact
point stands still when the normal force is highest, and covers
more distance when the normal load diminishes. This leads
to lower energy dissipation over the same distance. The whole
process is somewhat similar to walking, where one leg carries the
load without dissipation, while the other is lifted and advanced to
the next position. Something analogous happens in our model,
only there is just one “leg” and it is not necessarily lifted all
the way.

The stick phase ends at time t2 when the condition Fstick(t2) =
µ0Fz(t2) is met. Expanding this condition yields

µ0kzuz(t1)+ kxv0 (t2 − t1) = µ0kzuz(t2) (23)

or, more conveniently,

v0kx

µ0kz
(t2 − t1) = uz(t2)− uz(t1) (24)

Substituting uz and t = ϕ/f , this can be rewritten as:

β (ϕ2 − ϕ1) = w(ϕ2)− w(ϕ1) (25)

Once again ūz cancels out, leaving us with a function of only
β . Unfortunately, the equation is implicit and cannot be solved
symbolically for ϕ2 except in the simplest cases (sawtooth, square
wave, etc). In the case of a harmonic oscillation, for example,
Equation (25) takes the form (cos x = a + bx), which does
not have a closed-form solution in terms of standard functions.
Numerical solution is required in most cases.
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FIGURE 3 | Stick and slip under the influence of a harmonic oscillation. The

dotted line represents the tangential force as it would be in pure slip

[Fslip = µ0Fz (t)]. The solid line is the actual tangential force in the presence of

stick-slip. The stick phases are the straight segments, e.g., between t1 and t2,

while slip phases are the sinusoidal segments, e.g., between t′2 and t1,

repeating periodically. Note that Fx ≤ Fslip everywhere, which is the origin of

friction reduction in our model.

3.3. Effective Coefficient of Friction
We define the “macroscopic” or “effective” force of friction
simply as the tangential force averaged over one period T = 1/f :

〈Fx〉 =
1

T

∫ T

0
Fx(t)dt (26)

However, it will become clear in a moment that it is more
convenient to consider the difference or reduction of the force of
friction relative to the state of continuous sliding:

1Fx = 〈Fslip〉 − 〈Fx〉 =
1

T

∫ T

0

(

Fslip(t)− Fx(t)
)

dt (27)

Since Fx only differs from Fslip during the stick phase, we can
tighten the integration bounds:

1Fx =
1

T

∫ t2

t1

(

µ0Fz(t)− Fstick(t)
)

dt (28)

This form is convenient for numerical solution. However, some
additional properties can gleaned by expanding Fstick and uz(t)
and making the substitution dt = Tdϕ:

1Fx =
1

T

∫ t2

t1

(

µ0Fz(t)− µ0Fz(t1)− kxv0 (t − t1)
)

dt

=
1

T

∫ t2

t1

µ0kz
(

ūz + Azw(ft)− ūz − Azw(ft1)

−
kxv0

µ0kz
(t − t1)

)

dt

= µ0kzAz

∫ ϕ2

ϕ1

(

w(ϕ)− w(ϕ1)− β (ϕ − ϕ1)
)

dϕ

(29)

It becomes apparent that the expression for 1Fx can be split into
the dimensional factor µ0kzAz and a dimensionless function 9w

of a single variable:

1Fx = µ0kzAz9w(β) (30)

where

9w(β) =

∫ ϕ2

ϕ1

(

w(ϕ)− w(ϕ1)− β (ϕ − ϕ1)
)

dϕ (31)

We refrain from integrating this expression, since a closed-form
solution is precluded by the lack of an explicit formula for ϕ2.
We merely draw attention to the fact that 1Fx is invariant
with respect to mean indentation. The same is not true for the
coefficient of friction:

µ̄ =
〈µ0Fz〉 − 1Fx

〈Fz〉
= µ0 −

1Fx

kzūz
(32)

However, the dependence on ūz is incidental, merely reflecting
the fact that 1Fx is subtracted from different baselines of friction
force. Using our dimensionless variables, the above can also be
written in the following compact form:

µ̄ = µ0

(

1− α9w(β)
)

(33)

Further, it can be shown that 9w is a fairly well-behaved function
that has unit range and is monotonously decreasing and convex
for all waveforms and any number of stick events per cycle
of oscillation. However, space considerations prevent us from
including a formal proof of these properties.

3.4. Oscillation Waveforms
The functional dependence (33) presented in the previous section
permits an interesting observation: the overall strength of the
friction reduction effect is primarily governed by the amplitude of
the oscillation and not by the frequency. In principle, the effective
coefficient of friction can be reduced to very low values, but that
requires a force amplitude that is comparable to the mean normal
force. Thus, the technique is not very useful for reducing friction
in highly loaded contacts, e.g., rail-car or truck wheels.

Furthermore, a higher frequency cannot be used to
compensate for small amplitude. However, frequency is
still an important parameter, since it determines the “velocity-
resistance” of the effect: As has been pointed out before, the
largest reduction is always seen in the static case, and becomes
lower with increasing sliding velocity. The frequency determines
the scaling of this decline, and a strong reduction can be achieved
even at high sliding velocities if the frequency of the applied
oscillation is high enough. However, frequency is not the only
factor that determines this “velocity-resistance.” The waveform
of the oscillation is also quite important, which is why we briefly
discuss it here.

By far the most important property of a waveform w is the
maximal positive value of its first derivative, or βc. A right-
leaning sawtooth function, for example, has βc = 2; a harmonic
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oscillation has βc = 2π , which is slightly better; however, a left-
leaning sawtooth function has βc = ∞, which is ideal. An infinite
value of βc implies that the oscillation will provide some measure
of friction reduction at arbitrarily high velocities. While this is
not really possible in practice, the general rule for waveform
selection is nevertheless that the load should increase as fast as
possible and then relax slowly. Thus, approximations of left-
leaning sawtooth or the square wave are preferable to smooth
and symmetric functions like the harmonic oscillation. Naturally,
this recommendation is subordinate to practical technological
constraints. For example, a high-amplitude harmonic oscillation
could be generated by exciting a natural vibrational mode of
the system, while a square wave would likely require more
sophisticated equipment.

We conclude this section by giving 9w for a few common
waveforms explicitly. For both sawtooth variants and the square
wave 9w can be calculated in closed form. However, for most
oscillations, including sinusoidal ones, this is not possible.
Nonetheless, the function can easily be computed numerically
for arbitrary waveforms, and so we include two empirical
approximations for the harmonic oscillation, which were first
obtained in Popov et al. (2017). The first approximation is slightly
more accurate.

9str(β) = 1−
β

2
(34)

9stl(β) =
2

2+ β
(35)

9sqr(β) =

{

1− β/8 , for β < 4

2/β , for β > 4
(36)

9sin(β) ≈
3

4
(1− β/βc)

2
+

1

4
(1− β/βc)

4 (37)

≈ (1− β/βc)
2.4 (38)

For a visual comparison, the dependence of the coefficient of
friction on β is plotted in Figure 4 for all four of the above
waveforms. To keep things simple, only the case of maximal
friction reduction is shown α = 1, in which case Equation (33)
reduces to µ̄ = µ0[1 − 9w(β)]. This is why all curves show
zero static friction. For other values of α the shapes of the curves
would remain the same, but they would start at nonzero values of
µs and would be scaled accordingly.

As a final remark, we note that there is a unique optimal
waveform with regards to reduction of friction. It is given by
the periodic extension of δ(ϕ) − 1, where δ is the Dirac delta
function. This “impulse wave” is −1 everywhere, except for very
short positive spikes (impulses) that occur with a period of 1 and
each integrate to 1, so that the average of the function is zero.
With this degenerate waveform, the system slides most of the
time, with only an infinitesimal stick phase at each spike, which
implies that 9 is very close to 1 for all β :

9imp(β) → 1 (39)

Thus, we conclude that friction can be reduced, in principle, to
an arbitrary degree even at high sliding velocities, by effectively

FIGURE 4 | Coefficient of friction under normal vibration with different

waveforms, computed using Equation (33) and the individual influence factors

Equations (34)–(37). Note that for all curves α = 1, which corresponds to

maximal friction reduction. Legend: dashed line—right-leaning sawtooth

function (Equation 34); solid line—harmonic oscillation (Equation 37);

dash-dotted line—left-leaning sawtooth function (Equation 35); dotted

line—square wave (Equation 36).

hopping over the surface. In practice, this approach will be
limited by plastic deformation, radiation of elastic waves and the
sheer difficulty of generating such an oscillation.

4. TANGENTIAL AND TRANSVERSE
OSCILLATIONS

Most of this paper was devoted to reduction of friction by
normal oscillations. This focus is explained partly by the fact
that the normal case is easiest to analyze, and partly because
normal oscillations are generally the most efficient way to reduce
friction, out of the three possible directions. Nevertheless, both
tangential (in the direction of sliding) and transverse (in-plane,
but orthogonal to sliding) vibration can reduce friction. For
detailed analysis of the tangential case the reader is referred to
Popov and Li (2018) and for the transverse case to Benad et al.
(2018a). Here we only present some highlights and point out
the major differences between normal oscillations and the other
two modes.

In the tangential oscillation case the normal indentation is
kept constant while an oscillatory component is added to the
base of the spring. Sliding friction under such conditions can
proceed in three modes: (I) pure sliding, in which the effective
coefficient of friction is equal to µ0, as argued previously. (II)
simple stick-slip, which occurs for obvious reasons when the
velocity amplitude is greater than the mean sliding velocity
(Axfw

′(ft) > v0). (III) multiple stick-slip, which occurs when
the velocity amplitude is much larger than v0, so that the contact
point slides back-and-forth in each cycle, going through two stick
and slip phases each.
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The most important difference between friction reduction by
normal and tangential oscillations is that normal oscillations
actually reduce the total dissipated energy through a walking-like
mechanism, while tangential oscillations do not. The author is
not aware of a good analogy to visualize the mechanism in the
tangential case. But it is clear that, since the normal load (and
therefore the force of sliding friction) is constant, the dissipated
energy is simply friction force times distance (in mode II).
Although the effective coefficient of friction (i.e., average spring
force) may be lowered, the missing energy must be supplied by
the oscillator. In mode III, when the amplitude is large enough to
cause in-place sliding, the total sliding distance actually increases,
and the total energy expenditure becomes larger than without
oscillations, even though the effective coefficient of friction will
still appear lower than µ0.

Friction reduction by transverse oscillation always operates
in something like mode III of tangential oscillation: it causes
additional sliding in the direction orthogonal to the main sliding
motion, thereby increasing the total path and therefore energy
expenditure. However, the apparent coefficient of friction is
reduced, because the magnitude of the local friction force is still
limited to µ0Fz , but now shared between the force components
parallel and orthogonal to the main sliding direction. Thus,
transverse oscillations are effectively “stealing” the friction vector
from the slider, but at considerable expense of energy by the
oscillator. This also accounts for the fact, mentioned previously,
that the system never formally reaches the “invariant plateau”
(µ̄slip = µ0) even at high sliding velocities, because the
projection of the local friction force onto the sliding direction
is always less than its total magnitude, so long as the transverse
amplitude is non-zero. However, for sufficiently large sliding
velocities this difference becomes very small, so for all practical
purposes the plateau exists in the transverse case as well.

To summarize, normal oscillations are most effective at
reducing dynamic friction and should be used in preference
to the other directions. Not only do they actually reduce the
total dissipated energy, but normal oscillations also act at
right angles (by definition) to the sliding motion. Thus, they
technically do not require energy to keep going. Of course, this
is never quite the case in practice, but by exciting a resonant
frequency the power needed to drive the oscillator can usually

be made quite small. Compared to that, tangential oscillation
requires a powerful oscillator (except in the static case), while
transverse oscillation is even more energetically expensive, and
also less effective overall. There are cases, however, where energy
expenditure is not a primary concern (e.g., stabilization of system
dynamics) and normal oscillations cannot be easily applied due
to technological constraints. In such cases, tangential and even
transverse oscillations are viable alternatives.

5. CONCLUSION

The present paper summarizes and generalizes a series of recent
works that aim to establish a simple macroscopic contact model
as a viable explanation for active control of friction by externally
applied vibration. Despite its apparent simplicity, the model
not only captures the full range of experimentally observed
effects, but is also very flexible, being able to adapt to static
and dynamic friction, oscillations in normal, tangential and
transverse directions, contacts of curved bodies, etc. Apart from
straight-forward reduction-of-friction settings, the model can
also be applied to the study of frictional drives and actuators
under complicated loading scenarios. A similar approach was
also highly successful in modeling positioning systems without
using any modified friction laws such as the elastoplastic model
(see e.g., Teidelt et al., 2012; Grzemba et al., 2014; Teidelt, 2015).
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Friction Influenced by Vibrations: A
Refined Contact-Mechanics View on
Lateral and Rotational Oscillations
Roman Pohrt*

Department of System Dynamics and Friction Physics, Institute of Applied Mechanics, Technische Universität Berlin, Berlin,
Germany

It is known that superposed movements can lower the friction felt at the macroscale. This is
well documented for in-plane and normal translatory oscillations. Contact mechanics are a
suitable approach to model this effect but so far have not gone beyond single-slider
dynamics. In this study, we make use of 3D Boundary Elements Simulations to study
the macroscopic friction reduction. This approach allows us to take into account also partial
sliding of the contact zone. We first revisit the case of transversal in-plane translatory
oscillations. Here, we argue that the behavior at small velocities can best be described when
partial slip is indeed taken into account. Next, we investigate the frictional response of a
Hertzian indenter when the lateral movement is superposed with a rotational bore
movement. An analytical approximation is given for the steady state solution with
constant angular velocity. The third case under investigation is an oscillating bore
rotation. We present numerical results for the reduction of the macroscopic friction. In
two limiting cases, an analytical prediction is given, following the lines used in the translatory
case. For extremely large amplitudes, it is based on the idea that a rotational steady state is
assumed at every instant. For small velocities we adapt our new approach including partial
sliding. We find these predictions to be good but not perfect, slightly underestimating the
reduction that rotational oscillations can provide.

Keywords: friction, vibrations, microslip, fretting, shakedown

INTRODUCTION

When frictional contacts are subjected to external oscillations, the friction felt at the macroscale is
generally reduced. Since this constitutes a relatively simple way to control friction, the effect is used in
countless manufacturing applications (Siegert and Ulmer, 2001a; Siegert and Ulmer, 2001b;
Murakawa, 2001; Egashira and Mizutani, 2002; Ashida and Aoyama, 2007) as well as in noise
control (Thomsen, 1999). On the negative side, it can lead to an error in measurements of the
coefficient of friction (Kado et al., 2014).

The effect has been described experimentally in the middle of the last century (Fridman and
Levesque, 1959; Pohlman and Lehfeldt, 1966; Godfrey, 1967; Lenkiewicz, 1969) but modeling was
not attempted. In 2002, Storck (2002) investigated translatory in-plane oscillations
experimentally and analytically. They argued that the interplay of forward friction and the
superposed vibrations can be modeled using the perspective of contact mechanics with the simple
Coulomb law of friction of a single slider. Kumar and Hutchings (2004) use a comparable
modeling to interpret their experimental data. Tsai and Tseng (2005) employed the Dahl friction
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model to estimate the reduction for in-plane oscillations and
found that rigid slider models overestimate the friction
reduction. Teidelt, (2012) reported an impressive series of
experimental data on the reduction for oscillations in the
two in-place directions as well as the out-of-plane direction
and interpreted the results using a model of rigid sliders.
Starcevic and Filippov also worked on this dataset. They
used the Method of Dimensionality Reduction to study static
friction under the influence of in-plane parallel oscillations.
Their setup consisted of two coupled parabolic sliders and
included micro-slip (Starcevic and Filippov, 2012). The same
method was used by Teidelt et al. (2012) to study the
performance of Microdrive actuators. The simultaneous
acting of normal and in-plane-parallel oscillation was
studied by Popov and Li (2018) using an elastic slider
model. The case of in-plane oscillation transversal to the
macroscopic forward motion was modeled in a recent study
by Benad et al., (2019). They used a coulomb-type frictional
slider attached to a linear spring. In this work, results are given
as a function of normalized input quantities and explicit
dependencies are given for two limiting cases, corresponding
to very low forward velocities (static friction) on the one hand
and very large oscillation amplitudes on the other hand. Their
work can be considered the starting point of the current paper.
“Transverse Oscillations” section of the current paper will build
on their results but will introduce explicit partial slip.

The setup under investigation is the following: We focus
solely on superposed in-plane motion, leaving the normal
contact unchanged. Unless stated otherwise, the indenter is a
sphere with radius R, approximated by a parabola shape. It is
compressed elastically against a non-deformable flat
counterbody. The resulting contact zone and normal stresses
are of the Hertzian type and are assumed to be unaffected by
tangential stresses. The elastic sphere and the rigid counterbody
interact locally with a constant coefficient of friction µ, such that
the effective tangential stress inside the contact zone is always
less or equal to the normal stress at that point. While the
indentation depth in normal direction (z) is held constant,
the sphere is subjected to controlled in-plane displacements.
“Transverse Oscillations” section will start with a constant
velocity in forward (x) direction and harmonic oscillation in
y-direction. In “Continuous Rotation (Bore)” section, the sphere
will also move with constant velocity but will also rotate (bore)
around its central z-axis at constant angular velocity.
“Oscillating Rotation (Bore)” section will cover the case of
oscillatory bore rotation. In all cases, the macroscopic
forward friction will be decreased. The greatest reduction is
generally associated with larger amplitude, frequency or
velocity, respectively, of the superposed motion.

TRANSVERSE OSCILLATIONS

The case of transverse oscillations consists of a frictional indenter
which is moved with constant velocity in x-direction while its
position in y-direction is given by a sine-function

x(t) � ]0 · t
y(t) � y0 sin(ωtransvt) (1)

The simplest approach is to assume that Eq. 1 describe not
only the macroscopic motion of the indenter but also the
exact motion of the contact spot. This approach neglects the
lateral elasticity of the indenter. In contrast, the model of
Benad et al. (2019) consists of a single slider but connected to
the coordinates given in Eq. 1 by a linear spring. They
showed that the stiffness has a considerable influence on
the system behavior, in particular for small oscillation
amplitudes. We agree with this assessment. Because the
system is quasistatic, it makes sense to formulate in
problem in a way that eliminates the time. Similar to
Benad et al. (2019), we employ a set of two dimensionless
variables for such system including elasticity. The amplitude
of the oscillation is described as

~y0 �
y0
ulim

(2)

where ulim � μd Ep

Gp is the maximum unidirectional tangential
displacement of the indenter before full sliding occurs, see
(Mindlin, 1949; Popov, 2019). Here d is the indentation depth
in normal direction, E*, G* are the reduced moduli of shear and
elasticity Eq. 1, ] is Poisson ratio.

Ep � E
1 − ]2

, Gp � 4G
2 − ]

(3)

The forward speed is normalized with respect to the speed
of the oscillation and is expressed as the dimensionless
variable.

~v0 � v0
ωtransv · ulim. (4)

FIGURE 1 | Dependency of the normalized tangential force on the
displacement when transverse oscillations are applied. Here ~v0 � 0.3 and ~y0 �
1.6 were chosen. The resulting effective coefficient of friction is ~μmacro ≈ 0.53.

Frontiers in Mechanical Engineering | www.frontiersin.org October 2020 | Volume 6 | Article 5664402

Pohrt Friction Influenced by Vibrations

233

https://www.frontiersin.org/journals/mechanical-ngineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-ngineering#articles


The definitions ~v0 and ~y0 coincide with those from Benad et al.
(2019) when l0 of their paper equals ulim, which is the most
reasonable interpretation since “l0 is the elongation at which
sliding starts.”

The dependent variable is the apparent coefficient of friction
~μmacro which is determined from the tangential force Fx in
x-direction and the normal force Fz

~μmacro �
〈Fx(t)〉
μFz

. (5)

Here 〈/〉 means averaging over one period of oscillation, after
the system has tuned in.

Results
Figure 1 shows a typical evolution of the resistive tangential force
in x-direction. Such curves were obtained for a variety of
combinations for parameters ~v0 and ~y0. The resulting
macroscopic coefficient of friction is depicted in Figure 2 and
mostly reaffirms known results (Tsai and Tseng, 2005). In Benad
et al. (2019), an almost identical graph is not given in the paper
but can be found on the cover page of the journal’s issue.

Limiting Solution for Large Oscillation Amplitudes
An estimate for the apparent coefficient of friction at large
oscillation amplitudes is given as

~μmacro, large �
2
π
∫

π/2

0

dτ�������������

1 + (
~y0
~v0

sin τ)
2

√ . (6)

In the range covered in this current work, we find the same as
(Benad et al., 2019): We basically confirm (6) and find it slightly
overestimates the reduction in~μmacro for finite ~y0, see the red curve
in Figure 2. This is to be expected, since the turning points in the
oscillation delay the reducing effect.

Limiting Solution for Small Driving Velocities
The limit of small driving velocities can be considered the case of
static friction. From a macroscopic point of view, this describes
simply the value of the tangential force below which the indenter
does not advance. Looking at the situation within an oscillation
cycle, the limit translates into the requirement that at least during
one infinitesimal instant of the cycle, a forward motion is
possible.

In the elastic-single-slider model of (Benad et al., 2019), these
instants coincide with the extremal values of the oscillations and a
value for the tangential force can be associated. For μmacro a closed
form solution at v010 is deduced

~μmacro,static,Benad �
�����
1 − ~y20

√
(7)

This solution is applicable for ~y0 ≤ 1 and is shown in Figure 2. For
any larger values, static macroscopic friction vanishes.

Our numerical simulations show that Eq. 7 overestimates the
macroscopic friction. In other words, the reduction resulting
from the oscillation is underestimated. Here we’d like to argue
that this due to the exclusion of partial slip in the model. Partial
slip does not occur in a single slider element but requires a finite
contact zone and distribution of normal stress.

For a Hertzian indenter in the absence of a forward motion,
the oscillation with amplitude ~y0 ≤ 1 gives rise to the formation of
a ring-shaped slip zone and an inner circle of stick. According to
Mindlin theory, the radius of the stick region c depends on ~y0
according to

c � a
�����
1 − ~y0

√
. (8)

where a is the contact radius. From this state, what condition
must be met in order to achieve a forward motion? Since ~v010,
the oscillations are at high frequency in the outer ring of slip and
are very effective in reducing, even suppressing the friction there.
Therefore it is reasonable to assume that the driving forward
motion only has to overcome the friction inside the remaining
stick zone. With the total normal force Fz and the normal force
only acting inside the stick zone Fz,c, we can conjecture

~μmacro,static �
Fz,c
Fz

� ∫c

0
p(r)rdr

∫a

0
p(r)rdr. (9)

Here p(r) is the distribution of normal contact stress. In the
particular case of a Hertzian stress distribution, Eq. 9 reduces to

~μmacro,static � 1 − (1 − c2

a2
)

3/2

(10)

Furthermore in the particular case of translatory oscillations
using Eq. 8 it reduces to

~μmacro,static � 1 − ~y3/20 (11)

which is also plotted in Figure 2 and coincides much better with
direct simulation results. Thus we see reason that unless the result
is zero or one, ~μmacro,static cannot be predicted by a single slider
approach.

FIGURE 2 |Dependency of the macroscopic coefficient of friction on the
dimensionless velocity and oscillation amplitude for transversal oscillations.
The smallest value of ~v0 is 0.005. Green line represents Eq. (11), red lines
represent Eq. (6) on the right, Eq. (7) on the left.
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CONTINUOUS ROTATION (BORE)

We now investigate a rotationally symmetric indenter which is
rotated around the z-axis while sliding in the x-y-plane.

x(t) � 0
y(t) � v0t
φ(t) � ωt

(12)

Since the problem is quasistatic, it can be reduced to a single
system parameter and dimensionless time

~v � v0
aω

, ~t � t
v0a

(13)

In this configuration, the instantaneous center of rotation in the
undeformed remote parts of the body is situated at

xcenter � −~va, ycenter � v0t. (14)

See Figure 3A. The steady state can be analyzed using the
following simplifications.

• The velocities of all spots on the surface are assumed to be
the same as their corresponding spots in the remote body

• For the calculation of frictional torque, surface stresses are
assumed to act at the undeformed spot.

In particular, the above simplifications are valid for small µ.
The amplitudes of the frictional stresses τ are given by

∣∣∣∣τ(x, y) �
μp(x, y)∣∣∣∣ and they are directed opposite to the velocity in each
surface point. This can be expressed as

τx(x, y) � − y��������������
y2 + (x − xcenter)2

√ μp(x, y)

τy(x, y) � − (x − xcenter)��������������
y2 + (x − xcenter)2

√ μp(x, y)
(15)

See Figure 3B for an example. The resulting tangential forces
and torque can then be calculated as

Fx � 0 (16)

Fy � ∫
o

τydA � μ∫
a

0
p(r)rQY(r/~va)dr (17)

Mz � ∫
o

(τyx − τxy)dA � μ∫
a

0
p(r)r2QM(r/~va)dr (18)

wherein ∫
0
dA means integrating over the contact area and we

introduced

QY(~r) � ∫
2π

0

~rcosφ + 1�������������
~r2 + 2~rcosφ + 1

√ dφ (19)

QM(~r) � ∫
2π

0

~r + cosφ�������������
~r2 + 2~rcosφ + 1

√ dφ (20)

The additional rotational movement eases the forward
movement and effectively reduces the apparent coefficient of
friction. Vice versa, the forward motion eases the rotation.
Therefore, the required torque Mz also depends on ~v. A
macroscopic coefficient of friction can be formulated for both
the lateral movement and the rotation.

~μy(~v) � Fy/μFz �
∫1

0
QY(~r/~v)p(~ra)~rd~r
2π ∫1

0
p(~ra)~rd~r

(21)

~μM(~v) � Mz/μMz,0 �
∫1

0
QM(~r/~v)p(~ra)~r2d~r
2π ∫1

0
p(~ra)~r2d~r

(22)

where Mz,0 is the steady state torque at zero forward velocity.

FIGURE 3 | Hertzian indenter slipped in positive y-direction and rotated. Normalized forward speed ~v � 0.5. Quiver plots of (A) local velocity field, (B) tangential
surface stresses. The stress vector field also rotates around x/a � −0.5 but its amplitude is related to the contact pressure.
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For a Hertzian Indenter the dependencies of Eqs 21 and 22 on
~v are shown in Figure 4. In our transient numerical simulations,
these values are approached after the influence of the initial

conditions has vanished. Typical evolutions of the tangential
forces and torque are shown in Figure 5. It can be seen that
the macroscopic forces and torque approach a steady state which
is indeed well predicted by Eqs 21 and 22.

Interestingly, our simulations never showed zones of stick
when the steady state was reached, even when instantaneous
center of rotation is located inside the contact region.

OSCILLATING ROTATION (BORE)

In this section, we will set a continuous forward motion and the
additional bore rotation will be oscillating. Let us impose a
displacement of the indenter according to

x(t) � 0
y(t) � v0 · t
φ(t) � φ0 sin(Ωt), ω � _φ � φ0Ω cos(Ωt)

(23)

Some normalization is again required for the oscillation
amplitude. In “Transverse Oscillations” section, it was divided
by the maximum tangential deflection before the start of
macroscopic slip, which is when the inner stick region fully
vanishes. In the case of pure rotation of a Hertzian indenter
however, there is no such maximum angle at which the stick
region vanishes. According to Lubkin (1951) (indexed “lk”)
(Popov, 2019), the stick radius c and the torsion angle φ are
related as

FIGURE 4 | Theoretical prediction of the dependency of the
macroscopic coefficient of friction on the dimensionless velocity for added
continuous rotational (bore) movement to a Hertzian Indenter according to
Eqs 21 and 22. The frictional resistances on both the forward motion
and on the rotational torque are reduced.

FIGURE 5 | Coefficient of friction regarding Forces and torque of a Hertzian Indenter which is displaced and rotated simultaneously at ~v � 0.8. Dashed lines
represent theoretical prediction according to Eqs 21 and 22. Initial conditions were (A) full stick without tangential stress, (B) full rotational slip without lateral
displacement and (C) full lateral slip, no rotation.
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φlk(c) �
μEpa
πGR

[K(
�������
1 − c2/a2

√
) − E(

�������
1 − c2/a2

√
)]

� ulim

a
4

π(2 − v)D(c/a) (24)

where we introduced

D(m) � K(
������
1 −m2

√
) − E(

������
1 −m2

√
) (25)

With the complete elliptical integrals of the first and second kind

K(k) � ∫
π/2

0
(1 − k2sin 2φ)−1/2dφ,

E(k) � ∫
π/2

0
(1 − k2sin 2φ)1/2dφ (26)

Indeed Eq. 24 tends to infinity for small c, meaning that the
very center of the contact will always be in stick state.
Normalization of the rotational amplitude will be instead be
done with respect to the angle necessary to achieve a stick radius
of c � a/2 in the absence of lateral displacement.

~φ � φ0

φlk(a/2)
� φ0

a
ulim

π(2 − v)
4D(1/2) (27)

The normalization of the forward velocity is done with respect
to the maximum speed of the contact zone edge at r � a

~v � v0
Ωφ0a

(28)

With these definitions, simulations and evaluation can be done in
analogy to “Transverse Oscillations” section.

Results
Figure 6 shows the results of μmacro for a range of parameters ~v
and ~φ. At first sight, the general appearance resembles the
dependencies shown in Figure 2 of “Transverse Oscillations”

section. For ~φ � 0, no reduction is found and thus ~μmacro � 1.
For large amplitudes of the rotational amplitude, friction is
greatly reduced, especially for small forward velocities ~v. Please
note however, that even in the limit of ~v10, the macroscopic
friction is not reduced to zero.

Limiting Solution for Large Oscillation Amplitudes
For the limiting case of large amplitudes, a similar expression to
Eq. 6 can be found, when it is assumed that the contact is always
in a rotational-transversal steady state such as “Continuous
Rotation (Bore)” section has introduced. Then, the results
found in Eq. 21 can be averaged over one period with
momentary values of ω(t) � φ0Ω cos(Ωt) yielding

~μmacro,largerot �
2
π
∫

π/2

0
μy(

v0
aφ0Ω cos(τ))dτ

� 2
π
∫

π/2

0
μy(

~v
cos(τ))dτ (29)

This finding is shown in Figure 6with the red line. Please note the
resemblance to Eq. 6 in Figure 2.

Limiting Solution for Small Driving Velocities
Following the approach laid out in “Limiting Solution for Small
Driving Velocities,” it is possible to formulate an approximation
for the static friction in the limit of ~v10. Let us take the exact
same steps for the rotational problem.

In a situation without forward motion, the rotational
oscillation will give rise to a zone of constant stick. The
oscillation amplitude φ0 and the static stick radius c are related
by Eq. 24

φ0 � φlk(c) (30)

which we can now write in normalized form, introducing ~c � c/a

~φlk(~c) �
φlk(c)
φlk(a/2)

� D(~c)
D(1/2) (31)

This is a monotonous dependency with D(1/2) ≈ 0.9455. Let
~clk(~φ) be the inverse function

~clk(~φ) � D−1[D(1/2)~φ] (32)

We can then use this stick radius with Eq. 10 to find

~μmacro,static � 1 − (1 − ~clk(~φ0)
2)

3/2
(33)

Which is shown in Figure 6 with the green line. It can be seen
that Eq. 33 constitutes a reasonably good prediction of static
friction, but not an exact one. It appears to accurately predict
the static friction very well for ~φ0 greater than approximately 2.
At this point one should note that our judgment on the
accuracy is limited, because in order to reach a steady state,
the velocities used in the simulation must be strictly positive
and smaller values require more computation time. Therefore,
the minimum value represented in Figure 6 is ~v0 � 0.005. For
~φ0 < 2 however, Eq. 33 clearly underestimates the reduction of
friction.

FIGURE 6 | Dependency of the macroscopic coefficient of friction
(forward) on the dimensionless velocity and oscillation amplitude for bore
oscillations acting on a Hertzian Indenter. The smallest value of ~v0 is 0.005.
Red curve represents the limiting solution according to Eq. 29 green
curve represents (33).
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This means that the forward force does not need to overcome
the entire normal stress inside the oscillatory stick zone
multiplied with μ, but less. This in turn means that during the
forward motion of the indenter, not the entire inner circle slides
forward. Indeed, the time series of these simulations indicate that
at no point in time there is full sliding in the contact zone. Instead,
patches of stick alternate between the left and the right hand side
of the contact zone.

CONCLUSIONS

In this paper, we investigate friction under the influence of
superposed motion using explicit contact mechanics. In all
cases, the superposed motion reduces friction. The stronger
the motion (faster, higher amplitude) the greater the
reduction. Under the influence of any given superposed
motion, the forward friction increases with the forward
velocity, stabilizing the frictional system.

Based on the findings presented here for transversal
oscillations, the spring model given in Benad et al. (2019)
provides satisfactory results, except for very small forward
velocities, so-to-speak for static friction when the oscillations
provoke some partial slip, which should be taken into
account. We postulate that in order to start a forward
motion, only the friction inside this stick region must be
overcome.

For friction under the influence of additional continuous
bore movement, an approximation for the steady state is
identified and given in “Continuous Rotation (Bore)” section.
Both the friction opposing forward motion and opposing the
rotation are reduced.

When the bore movement oscillates, a reduction of the
macroscopic forward friction is again found and the
dependency on forward velocity and oscillation amplitude
resembles the transversal case (Compare Figures 2, 6).
Here, two limiting cases are again identified and analyzed.
At large amplitudes, assuming steady state in every instant
leads to a good approximation. For small velocities near static
friction, a new estimate with good agreement is suggested. It is
again based on the stick zone caused by the oscillations alone.
However, simulations show that the reduction of forward
friction is even greater than predicted, hinting to a more
elaborate mechanism.

Rotational bore oscillations are a promising way to control
static friction or micro-propulsion due to two favorable
properties over transversal oscillations. First, ~μmacro,static does
not sharply saturate at zero for increasing amplitudes but is
instead very well controllable in this region. Second, the
reduction in ~μmacro,static is very effective even at small
amplitudes.

METHOD

We employ the Boundary Elements Method for contact problems
(Pohrt and Li, 2014). The normal contact is solved following
standard procedures. Interaction of normal and in-plane
deformations are not considered. Interactions between the two
in-plane directions are considered. For the tangential contact, an
iterative scheme is employed that ensures each point satisfies the
following conditions in each time step.

• Tangential stress is below the frictional threshold |τ|< μp
(“stick state”) or,

• Tangential stress |τ| � μp and the difference in point
coordinates including deformation, the local velocity, is
directed opposite of tangential stress (“slip state”)

where τ is the tangential stress, having x and y components, p is
the local pressure and μ is the coefficient of friction. For the stress
inequality we typically allowed an error of 0.1% and for the
alignment of local stresses and velocities we typically allowed an
error of 4°. Achieving convergence in the iterative scheme proved
be time-consuming. Furthermore, the investigations of low
forward speeds required the use of up to 8,000 time steps. As
a consequence we limited the spatial resolution of the contact
region to 32 times 32 points in bulk simulations such as those
shown in Figures 2, 6. We used ] � 0 for the Poisson ratio and
μ � 0.2.
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INTRODUCTION

These thoughts are offered as a reminder that Tribology is not all about the normal contact of fractal
surfaces, and indeed, not all about elastic contact of rubber and polymers, or even about dry contact.
Machines do still contain metal surfaces sliding past each other, hopefully separated by an oil film;
and sometimes, when tolerances have been pushed too far, or running with starved lubrication
when the oil or grease supply is inadequate, with somemetal tometal contact. Fortunately this is not
always disastrous: surfaces do often run-in, so that after running with contact and a contribution
of dry-contact friction, there is steady wear and contacts no longer occur. The traditional design
criterion for gears and ball races was, and still is, the 3 − ratio: the ratio of the predicted film
thickness for smooth surfaces to the rms roughness. Certainly a3−ratio of 3 ormore1 usually leads
to full-film lubrication: but to anyone with the slightest background in surface roughness this is an
absurd rule. Assuming, as is usually done, that the predicted smooth-surface film thickness refers to
the distance between the mean planes of the roughness, the rms roughness says nothing about the
how much contact there will be. And if running-in is successful, and the high points of the surface
wear away, the rms (and the 3 − ratio) may hardly change, but there will be successful operation.

But when will running-in be successful? What determines when instead of running-in there will
be scuffing, and disaster?

The traditional picture of the “mixed friction” regime is that when the local film thickness falls
to zero, additives (or perhaps happy accidents) provide a boundary lubricant in the oil: some form
of long chain polymer, which has a reactive end which attaches itself to the metal, and carries
the load on its free ends: with low friction but, more importantly, preventing metal to metal
contact. The Blok scuffing criterion was that the maximum surface temperature must be below
a specific value: and there was the problem, what should it be? In Bowden and Tabor’s laboratory
experiments, using a known, pure, organic compound, clear links with the known properties could
be found; but in engineering practice perhaps all that can be done is to ensure that the calculated
maximum temperature in a new application is no more than in an existing application: the ISO
guide concentrates on the temperature calculation, not on the temperature found.

But what happens when boundary lubrication fails? Fortunately it seems that we do not move
completely into the dry wear scenario. The failure will usually be local, and the dry wear process
interrupted. An earlier work (Sakmann et al., 1944) reported that in a pin on disc experiment,
flooding the surface with a plain mineral oil halved the transfer at a light load, but produced only a
small reduction at a heavier load. But flooding with oleic acid largely eliminated transfer.

Here it seems desirable to review what has been learnt about dry wear, and perhaps, forgotten.

TRANSFER AND WEAR

The obvious starting point is the “Archard” wear equation. This was predicted by Holm in 1938
[Holm (1938)], by postulating that for every encounter of a pair of atoms (within the contact area
found asW/pm) there was a fixed probability of one being pulled out of its parent surface. Detailed

1The “traditional” requirement is 3 > 3. But see Cann et al. (1994), or Greenwood (2020) for alternatives.
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experimental confirmation was provided by Burwell and Strang
(1952), but from electron micrographs of transfer particles they
argue that the unit event is the encounter of two asperities. Both
models predict that the volume of wear V is proportional to the
distance slid L and the load W, and inversely proportional to
the hardness pm: V = k · L · (W/pm). Archard’s contribution
was to show that it is not necessary to assume that the average
size of the contact areas or wear particles is constant, and to
calculate the probabilities k implied by the results of all the
available experimental wear combinations . . . and to go on to
contribute to the great wear research program of Hirst’s group at
AEI (Associated Electrical Industries) Aldermaston (see Archard,
1953; Kerridge, 1955, etc.).

WEAR OF SOFT STEEL AGAINST HARD
STEEL

The natural meaning of the term “wear” is the weight, or volume,
lost from the device concerned: and early researchers merely
noted that this could become either transfer particles attached
to the “wrong” partner, or loose wear debris. The important
distinction between transfer and wear was first made when
Kerridge (1955) found that when a (radioactive) steel pin was
loaded against a rotating hard steel ring (“hollow drum” perhaps
conveys the picture), a radioactive transfer layer built up on the
ring, but the radioactivity (and therefore the amount of transfer)
then became constant. When the active pin was replaced by
an inactive one, the activity reduced, mirroring the path of the
increase: it was not that the transfer layer had a maximum size,
and could build up no further, but that a steady state had been
reached where the transfer to the ring equaled the rate of loss
from the ring. At this point the pin wear rate fell to the steady
rate required by the wear law. The wear fragments were carefully
collected and monitored, little radioactivity being found at first,
but ultimately matching the wear rate of the pin: and consisting
of relatively large, oxidized, particles. The detachment of the
transfer layer, and so presumably its oxidation rate, was the rate-
determining process. Experiments in air at 10−3 mm mercury
found the wear rate reduced to a tenth (or lower at low loads)
of the atmospheric value, confirming this.

Thus, for this combination, wear is amulti-stage process. First,
metallic transfer from pin to ring as submicroscopic particles.
These are then smeared out to form a (harder) transfer layer. The
transfer layer then oxidizes, helped by the temperature produced
by frictional heating, weakening its attachment to the ring, and
finally the oxidized layer is rubbed off as large oxide particles to
form the wear debris.

WEAR OF BRASS AGAINST HARD STEEL
(SEVERE WEAR)

Kerridge and Lancaster (1956) followed this by replacing the soft
steel pin by an irradiated (60/40) brass pin. Initially both wear of
the pin and transfer increased exponentially at almost the same
rate, with nothing left over to form wear fragments. When the
experiment was repeated with a load 5× higher but lubricated

with cetane, the same was true, but the amounts reduced to
one quarter. The significant feature was that as the transfer film
reached its limiting value, the wear rate fell to its uniform rate. As
in Kerridge’s experiments, when the active pin was replaced by an
inactive one, the decrease from the limiting activity rate to zero
mirrored the growth from zero to limiting activity. And when an
inactive pin was replaced by an active one, there was at first no
activity in the wear debris:wear particles are not produced directly
from the pin. Convincing evidence was given that individual wear
particles at a given time after a pin replacement all had the
same activity, i.e., each had the same mix of “new” and “old”
transfer fragments.

The authors emphasize that the term “transfer film” is
misleading; the transfer layer is composed of identifiable
fragments. These grow by accretion of further fragments to
become incipient wear particles, perhaps 50× larger than the
transfer fragments, before becoming detached as wear particles.
But the fragments are themselves much larger than the likely size
of asperity contacts, more approximating to “the total real area
of contact as estimated from the ratio of the load to the flow
pressure of 60/40 brass,” so it seems (although the authors do not
quite say this) that incipient transfer fragments form on the pin
by accretion from individual intermetallic junctions.

Thus, for this combination, wear is again a multi-stage
process: first, transfer fragments are assembled on the pin, which
then transfer from pin to ring, and then become larger by
accretion: these are smeared out to become harder, thicker, flakes,
which finally become detached as wear particles.

The authors, rather as an aside, report that both the transfer
rate and the wear rate are proportional to the load, and that the
same applies to the sizes of transfer fragments and wear particles:
concluding that “the number of individual events occurring . . . is
the same at all loads.” This is a flat contradiction of the Archard
(and Greenwood!) belief, that the typical event is the same at all
loads, and that only the number of events is proportional to load.

The authors also make the very perceptive remark (in view
of the work of Cocks and Antler to be described below), “Once
a fragment has been transferred to the ring, the load will
be concentrated on that fragment during subsequent passages
beneath the pin.”

WEAR OF HARD STEELS AGAINST HARD
STEEL (MILD WEAR)

One might expect mild wear to be the more straightforward
process, but this was not what Archard and Hirst (1957) found.
When rubbing hardened tool steel pins against a disk of the same
material, the initial behavior was as described above (but on a
scale two orders of magnitude less): the pin wore by transfer
to the disk, the transfer fragments then aggregated into larger
(metallic) fragments which became detached as wear particles.
But as the conformity between pin and disk improved, many of
the transferred fragments were worn away by a much smaller
scale process. And then in a final stage the wear rate increased
by a factor of five, and seems to have occurred as abrasion by
large (oxidized) wear particles. At this stage the transfer “layer”
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consisted of areas with no transfer and patches very much thicker
than the average (50–100 Å) thickness.

WEDGES (PROWS)

Tribologists have long regretted the impossibility of directly
examining the area of contact between sliding metals: but in 1962
two researchers reported the results of looking sideways at the
contact2. . . which “of course” could reveal nothing. But it did!

When Cocks (1962) loaded a hemispherically ended copper
rider against the surface of a rotating large cylindrical copper
drum (load 700 g, speed 0.038 cm/s) he found: “This immediately
revealed some unexpected phenomena. Most of the time during
sliding, the drum and rider were separated by a wedge of displaced
metal which emerged from the drum surface and became trapped
between them.”

The same was found for other metal pairs. Rider and drum
were polished up to grade 0000 paper, and then cleaned to be
wettable by water and yielding a high coefficient of friction (1.1–
1.4). The rider was given a slight transverse movement to avoid
repeating the same path on the drum.

Awedge of metal displaced from the drum becomes trapped between

the two sliding members and holds them apart. Thus, the drum

surface slides against the wedge instead of the rider itself. As the

sliding proceeds, the wedge continuously receives more metal from

the drum. At the same time fragments of metal from the wedge

are intermittently redeposited back on the drum, and can be seen

emerging from the contact on the drum surface. From time to

time the wedge itself breaks away from the rider, and is carried

away on the drum surface. However, when this happens a new

wedge immediately begins to form and the surfaces are soon visibly

separated again.

Neither the hardness, nor the relative hardnesses of rider and
drum appeared to matter.

The whole assembly of rider, wedge and part of the drum could
be mounted in a cold-setting plastic without ever separating
them, and then sectioned, polished and etched. Figure 1 shows
a result. The wedge is initiated by transfer from the drum, and
remains bonded to the rider. It is “a relatively compact mass of
metal, not an aggregate of individual fragments . . . .” The wedge
grows by accretion, at the front, where “the material of the wedge
is continuous with that of the drum”: so the relative motion
must cause shearing of the metal, presumably rather similar to
what happens in the formation of a chip in the machining of a
ductile metal.

The life of a wedge is very variable: as short as 20 s
(sliding distance 0.8 cm): often 10–20min (sliding distance 25–
45 cm) and sometimes longer. After perhaps 1min it seems an
equilibrium size is reached where continued accretion at the
front is balanced by fragments breaking of from the rear (and
sometimes the entire wedge breaks away).

Cocks (1964) showed that the wedge formation and
consequent separation of the sliding bodies occurs in the same

2Cocks (1958) reported preliminary results in 1958 (cited by Antler, 1962), so

undoubtedly has priority.

way between two flat surfaces, usually with several wedges in
action at once. The wedge may be formed by accretion from
either disk, and occasionally (see one beautiful micrograph of a
wedge formed by a pair of SAE1020 steel disks at 5 kg load) by
accretion at both ends. These later experiments showed that the
wedge mechanism seemed able to continue indefinitely (copper
on copper), to reduce to a much smaller scale (steel on steel), or
apparently to cease completely (nickel on nickel).

Antler (1962), working with metals suited to electrical
contacts, mostly using lighter loads (100 g) and longer runs (40m
sliding distance) found similar behavior. He emphasizes the
irrelevance of the relative hardnesses of rider and flat, and how
the prow (his term, but also “wedge-shaped prow”) becomes very
much harder than either, making its resemblance to a machining
tool clearer. But he gives many examples of the complexity of
the process: one example being for a gold rider sliding on a
palladium flat:

(a) First pass: gold rider deposits adherent particles on
palladium flat with little palladium transfer to gold;
(b) Second and third passes: rider removes gold from flat;
(c) Subsequent passes: a severely work hardened gold prow
gouges [the] flat, producing palladium particles that adhere to
the rider;
(d) From this point, sliding is identical to the all-palladium
system, regardless of length of run. Practically all debris
is palladium.

Note the hardnesses: Gold, 79 kg/mm2; Palladium, 142 kg/rnm2:
but it is the soft gold which wears away the hard palladium!

Antler (1964) notes that wear by the prow-formation
mechanism tends to change to the rider-wear severe regime on
prolonged sliding in the same track. This was observed with a
variety of metals, including aluminum, copper, gold, palladium,
and silver sliding on themselves. This differs from what Cocks
reports for his pin on disc experiments, but he never ran on the
same track.

RABINOWICZ’S CONTRIBUTION

The first use of radioactivity to study transfer was when Sakmann
et al. (1944) slid an inactive slider over an activated block, and
measured the transfer with a Geiger counter. Gregory (1946) slid
a radioactive lead slider3 over an inactivated flat surface: this
permitted the use of autoradiography to study the transfer. He
noted average film thicknesses between 10 and 100 lead atoms
thick. Rabinowicz and Tabor (1951) modestly state:

This paper describes an extension of Gregory’s autoradiographic

method to a study of the friction and pick-up occurring between

stationary and sliding metal surfaces in the absence and in the

presence of lubricant films.

carrying understatement too far! They established the
proportionality between pick-up and load: that for like metals

3A lead slider containing a radioactive isotope (of radon?); by implication all that

was available in Australia at the time.
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FIGURE 1 | Section through the wedge linking drum and rider, both of oxygen-free high-conductivity copper, after sliding at a speed of 0.038 cm/s with a load of

710 g. (A) Complete wedge. Magnification 100×. (B) Right-hand portion of the section in (A). Magnification 340× [Reproduced from Cocks (1962), with the

permission of AIP Publishing].

there was no correlation between pick-up and hardness: that for
dissimilar metals the pick-up was typically less by a factor 50,
mainly due to the smaller size of the transfer fragments, typically
10−8 g compared to 10−6 g. They conclude that metallic transfer
does not occur as a uniform smear but as a relatively small number
of discrete fragments.

which seems to be the first clear statement of this fact4. But
sadly for the present purpose, the main thrust of the paper
is to study the effect of lubrication, certainly on both friction
and transfer, but really hoping to get some clue to the origin
of friction.

However, Rabinowicz and Tabor make the important
discovery that transfer takes place under purely normal loading,
although on a much reduced scale, with transfer fragments
typically 10−11 g: still enormous by atomic standards (1010

atoms). Rabinowicz (1952) followed this up more carefully,
finding the total transfer (copper to copper: load 4 kg) of 3×10−8

to 3× 10−9 g, but falling to 10−10 g when great care was taken to
avoid lateral motion.

Are such transfer fragments consistent with an atom by atom
transfer process?

We note with interest Rabinowicz (1953) “A quantitative
study of the wear process” –which is entirely about transfer
fragments, with no mention of wear fragments! However,
following Kerridge (1955) and Kerridge and Lancaster (1956),
Rabinowicz (1958) recognized the distinction between transfer
and wear, and propounded a criterion for the size of wear
fragments (The AEI publications contain estimates of the sizes
of transfer and wear fragments, but make no attempt to predict
them). Rabinowicz starts from the basic Bowden and Tabor idea
of a lump of metal torn out of the base and crushed against the
slider so that it adheres and becomes a transfer fragment. When
the crushing load is removed, the fragment relaxes, but remains
stretched because it adheres to the slider, and residual stresses

4But sliding was not completely steady, with some stick-slip. Did this matter?

remain. A fragment of volume V with mean residual stresses σ̄r
will have a strain energy (σ̄ 2

r /2E) · V . Rabinowicz explain that to
separate the transfer particle from the slider involves the creation
of new free surface, so for an area A and a work of adhesion
wab for the pair of materials will require an energy A(wab): the
first introduction of surface energy into Tribology5. Thus, the
minimum size of loose wear fragments will be when (σ̄ 2

r /2E)·V =

A(wab). Accordingly, for a hemispherical fragment of radius r, we
must have r ≥ (3E/σ̄ 2

r ) · (wab).
The maximum possible strain energy density is Y2/2E where

Y is the yield stress in tension, and clearly themean residual stress
after unloading will be less. Rabinowicz (1958) suggests that the
strain energy might be perhaps 10% of the maximum possible [In
his 1961 paper, Rabinowicz (1961) suggests residual stresses are
often found to be σr = ν Y , which when Poisson’s ratio ν = 0.3
gives 9%]6. He goes on to argue that for most metals the elastic
strain at yield may be taken as 3 · 10−3, so sets Y/E = 3 · 10−3,
and takes Y = pm/3 where pm is the hardness, so a simplified,
practical criterion is r ≥ 30, 000 ‘(wab)/pm. But in wear tests to
confirm this, he switches from the predicted minimum fragment
size to the “average” size (total weight of larger particles equals
total weight of smaller ones): despite some scatter, the agreement
is reasonable. But what then do we deduce about the origin of the
multitude of smaller fragments contributing half the total weight?
The size distribution of the wear fragments is not given, but
the Kerridge and Lancaster paper described above, and Figure 2

shows their results.
There is no evidence in these experiments of a minimum size

for wear particles. And it should be noted that in experiments
in which active and inactive pins were interchanged, individual
wear fragments had different specific activities: i.e., each particle
contained a mixture of active and inactive atoms. No particle has
a life history like that postulated in the Rabinowicz model.

5Or should one count Derjaguin’s (1934) estimate of the force of adhesion?
6I find these estimates hard to accept: stresses of order Y may well be found near

the interface, but will these not be very local?

Frontiers in Mechanical Engineering | www.frontiersin.org 4 August 2020 | Volume 6 | Article 62243

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Greenwood Metal Transfer and Wear

FIGURE 2 | Size distribution of wear particles for brass pin sliding on hard

steel (load 22.5 kg).

DISCUSSION

We all know that the underlying problem in studying wear is
the multiplicity of wear mechanisms. Even when considering
a given materials pair, as the mild wear of hard steel against
itself as studied by Archard and Hirst (above) or gold against
platinum as described by Antler, there was a sequence of different
mechanisms. Challen and Oxley (1979) used a slip-line field
solution to model the steady motion when a hard slider traversed
a rigid/perfectly plastic half-space, and found three modes of
deformation; (1) plastic flow of the surface by a wave pushed
ahead of the slider, referred to by Challen and Oxley as “rubbing
mode”; (2) a deformed “prow” which becomes detached from the
surface; (3) a cutting mode in which a “chip” is continuously
cut from the surface. Kayaba et al. (1986) refer to all three
as abrasive wear: the rubbing mode, rather inappropriately, as
plowing (though they do sometimes find a gentle trace). They
experimented with a hard steel pin against brass, mild steel
and stainless steel. All three combinations, when unlubricated,
show each of the three modes, as the parameter

√

W/R2HV

(where R is the pin radius, HV the hardness, and W the load)
increases. They show scanning electron micrographs of prow
formation (with no reference to Cocks or Antler), and similar
pictures for steel against brass, where the prow material passes
under the slider and becomes a chip. When lubricated with a
smear of silicone grease, with the two steels all three modes
are found: however lubricated brass gave just two modes: the
rubbing mode at higher loads but changing at light loads to
flaking: the flakes then forming wear debris. This appears to be
the delamination wear mode studied by Suh (1973), and caused
by incremental plastic flow as the Challen and Oxley plastic
wave moves over the surface and produces below the surface an
almost reversible plastic strain cycle. I cannot resist including
his conclusion (Suh, 1977) “(2) The wear rate of metals may
be predicted in the near future, based on first principles and
fundamental material properties.”

And of course these are just a few wear mechanisms:
one should certainly add metallographic phase transformations
[Welsh (1965) and his demonstration that increasing the load or
speed not only changes wear from mild to severe, but, because of
the frictional temperature rise, there are “three transitions: (1) a
change from mild to severe wear at relatively light loads (T1): (2)
a change from severe wear back to mild wear at higher loads, (T2):
(3) a perturbation in the mild-wear rate at even higher loads, (T3)
with the wear rates of the pin and ring diverging”].

Others emphasize the development of subsurface cracks, or
tribochemistry, or simple corrosion.

I have confined my attention to the largely forgotten
classic contributions.

For they are largely forgotten. Exceptionally, deRooij and
Schipper (2001) and deRooij et al. (2013) know of Cocks and
Antler’s work, so are able to build on it in their investigation
of how hard transfer fragments build up on a deep-drawing
tool and ruin the finish. In contrast, a recent admirable paper
(Tarasov et al., 2017) studies the sliding of a hard steel pin on
an aluminum disk. Their interest is in Friction Stir Welding, so
they contribute new information about the effect of temperature
on the iron/aluminum combination: but they rediscover prow
formation, the formation of a transfer layer, and back transfer to
the disk—all without noticing that it has been discovered already
60 years ago. But no radiography, so they do not learn that
transfer particles are formed by accretion over time, not torn out
bodily as lumps.

Is it all right to forget all this, because prows and riders are
just examples of Godet’s “Third Body,” so need not be treated
separately? There seems no doubt that Antler’s “riders” are indeed
third bodies. It is less clear that Cocks’ prows are: certainly
sometimes they are the very opposite: they are the link which
makes the first and second bodies into one! There are not two
bodies sliding past each other: there is a single body shearing
along a neck. It seems clear that the formation of transfer layers
is not a three body process: and the transfer layer is not itself a
third body any more than the oxide film can usefully be treated
as such: perhaps there has been insufficient study of the five-
body problem, where debris particles on their way out of the
conjunction roll about between two oxide films?

Yes, study the behavior of trapped particles: but if all transfer
and wear is attributed to third bodies, the term has become too
wide to be useful. But at least stop studying the purely normal
contact of rough surfaces.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

FUNDING

This research has received no funding. I hope, and trust,
that the University of Cambridge will provide the open access
publication fee.

Frontiers in Mechanical Engineering | www.frontiersin.org 5 August 2020 | Volume 6 | Article 62244

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Greenwood Metal Transfer and Wear

REFERENCES

Antler, M. (1962). Wear, friction, and electrical noise phenomena in severe sliding

systems. ASLE Trans. 5, 297–307. doi: 10.1080/05698196208972473

Antler, M. (1964). Processes of metal transfer and wear. Wear 7, 181–203.

doi: 10.1016/0043-1648(64)90053-5

Archard, J. F. (1953). Contact and rubbing of flat surfaces. J. Appl. Phys. 24,

981–988. doi: 10.1063/1.1721448

Archard, J. F., and Hirst, W. (1957). An examination of a mild wear process. Proc.

R. Soc. A 238, 515–528. doi: 10.1098/rspa.1957.0015

Burwell, J. T., and Strang, D. C. (1952). On the empirical law of adhesive wear. J.

Appl. Phys. 23, 18–28. doi: 10.1063/1.1701970

Cann, P., Ioannides, E., Jacobson, B., and Lubrecht, A. A. (1994).

The lambda ratio–a critical re-examination. Wear 175, 177–188.

doi: 10.1016/0043-1648(94)90181-3

Challen, J. M., and Oxley, P. L. B. (1979). An explanation of different regimes

of friction and wear using asperity deformation models. Wear 53, 229–243.

doi: 10.1016/0043-1648(79)90080-2

Cocks, M. (1958). Wear debris in contact between sliding metals. J. Appl. Phys. 29,

1609–1610. doi: 10.1063/1.1723007

Cocks, M. (1962). Interaction of sliding metal surfaces. J. Appl. Phys. 33,

2152–2161. doi: 10.1063/1.1728920

Cocks, M. (1964). Role of displaced metal in the sliding of flat metal surfaces. J.

Appl. Phys. 35, 1807–1814. doi: 10.1063/1.1713746

Derjaguin, B. V. (1934). Theorie des Anhaftens kleiner teilchen. Kolloid Zeitschrift.

69, 155–164. doi: 10.1007/BF01433225

deRooij, M. B., and Schipper, D. J. (2001). Analysis of material transfer from a soft

workpiece to a hard tool: part I—lump growth model: part II: experimental

verification: ASME. J. Tribol.123, 474–478. doi: 10.1115/1.1308023

deRooij, M. B., van der Linde, G., and Schipper, D. J. (2013). Modelling

material transfer on a single asperityscale. Wear 307, 198–208.

doi: 10.1016/j.wear.2013.09.006

Greenwood, J. A. (2020). “Elastohydrodynamic Lubrication,” in Encyclopedia of

Tribology, eds Q. J. Wang and Y. W.Chung (Boston, MA: Springer), 51–80.

Gregory, J. N. (1946). Radioactive tracers in the study of friction and lubrication.

Nature 157, 443–444. doi: 10.1038/157443b0

Holm, R. (1938). Wiss. Veroffent. Siemens-Werken 17:43.

Kayaba, T., Hokkirigawa, K., and Kato, K. (1986). Analysis of the abrasive wear

mechanism by successive observations of wear processes in a scanning electron

microscope.Wear 110, 419–430. doi: 10.1016/0043-1648(86)90115-8

Kerridge, M. (1955). Metal transfer and the wear process. Proc. Phys. Soc. B 68,

400–407. doi: 10.1088/0370-1301/68/7/302

Kerridge, M., and Lancaster, J. K. (1956). The stages in a process of severe metallic

wear. Proc. R. Soc. A 236, 250–264. doi: 10.1098/rspa.1956.0133

Rabinowicz, E. (1952). Metal transfer during static loading and impacting. Proc.

Phys. Soc. B. 65:630.

Rabinowicz, E. (1953). On the looseness of wear fragments. J. Appl. Phys. 24:367.

doi: 10.1063/1.1721285

Rabinowicz, E. (1958). The effect of size on the looseness of wear fragments.Wear

2, 4–8. doi: 10.1016/0043-1648(58)90335-1

Rabinowicz, E. (1961). Influence of surface energy on friction and

wear phenomena. J. Appl. Phys. 32, 1440–1444. doi: 10.1063/1.17

28375

Rabinowicz, E., and Tabor, D. (1951). Metallic transfer between sliding

metals: an autoradiographic study. Proc. R. Soc. Lond. A 208, 455–475.

doi: 10.1098/rspa.1951.0174

Sakmann, B. W., Burwell, J. T., and Irvine, W. J. (1944). Measurements of the

adhesion component in friction by means of radioactive indicators. J. Appl.

Phys. 15, 459–473. doi: 10.1063/1.1707457

Suh, N. P. (1973). The delamination theory of wear.Wear 25, 111–124.

Suh, N. P. (1977). An overview of the delamination theory of wear.Wear 44, l−16.

doi: 10.1016/0043-1648(77)90081-3

Tarasov, S. Y., Filippov, A. V., Kolubaev, E. A., and Kalashnikova,

T. A. (2017). Adhesion transfer in sliding a steel ball against an

aluminum alloy. Tribol. Int. 115, 191–198. doi: 10.1016/j.triboint.2017.

05.039

Welsh, N. C. (1965). The dry wear of steels part I. The general pattern

of behaviour. Phil. Trans. R. Soc. A 257, 31–70. doi: 10.1098/rsta.1965.

0001

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Greenwood. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Mechanical Engineering | www.frontiersin.org 6 August 2020 | Volume 6 | Article 62245

https://doi.org/10.1080/05698196208972473
https://doi.org/10.1016/0043-1648(64)90053-5
https://doi.org/10.1063/1.1721448
https://doi.org/10.1098/rspa.1957.0015
https://doi.org/10.1063/1.1701970
https://doi.org/10.1016/0043-1648(94)90181-3
https://doi.org/10.1016/0043-1648(79)90080-2
https://doi.org/10.1063/1.1723007
https://doi.org/10.1063/1.1728920
https://doi.org/10.1063/1.1713746
https://doi.org/10.1007/BF01433225
https://doi.org/10.1115/1.1308023
https://doi.org/10.1016/j.wear.2013.09.006
https://doi.org/10.1038/157443b0
https://doi.org/10.1016/0043-1648(86)90115-8
https://doi.org/10.1088/0370-1301/68/7/302
https://doi.org/10.1098/rspa.1956.0133
https://doi.org/10.1063/1.1721285
https://doi.org/10.1016/0043-1648(58)90335-1
https://doi.org/10.1063/1.1728375
https://doi.org/10.1098/rspa.1951.0174
https://doi.org/10.1063/1.1707457
https://doi.org/10.1016/0043-1648(77)90081-3
https://doi.org/10.1016/j.triboint.2017.05.039
https://doi.org/10.1098/rsta.1965.0001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


ORIGINAL RESEARCH
published: 08 May 2020

doi: 10.3389/fmech.2020.00025

Frontiers in Mechanical Engineering | www.frontiersin.org 1 May 2020 | Volume 6 | Article 25

Edited by:

Marco Paggi,

IMT School for Advanced Studies

Lucca, Italy

Reviewed by:

Andrey I. Dmitriev,

Institute of Strength Physics and

Materials Science (ISPMS SB

RAS), Russia

Alexander Filippov,

Donetsk Institute for Physics and

Engineering, Ukraine

*Correspondence:

Brunero Cappella

brunero.cappella@bam.de

Specialty section:

This article was submitted to

Tribology,

a section of the journal

Frontiers in Mechanical Engineering

Received: 25 February 2020

Accepted: 15 April 2020

Published: 08 May 2020

Citation:

Reichelt M and Cappella B (2020)

Comparative Analysis of Error Sources

in the Determination of Wear Volumes

of Oscillating Ball-on-Plane Tests.

Front. Mech. Eng. 6:25.

doi: 10.3389/fmech.2020.00025

Comparative Analysis of Error
Sources in the Determination of Wear
Volumes of Oscillating Ball-on-Plane
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Manuel Reichelt and Brunero Cappella*

Federal Institute for Material Research and Testing (BAM), Berlin, Germany

The accurate determination of wear volumes is a prerequisite for the study of numerous

tribological phenomena. Wear volumes can be measured with different techniques

(profilometry, confocal microscopy, white light interferometry, atomic force microscopy)

or else be calculated starting from some quantities (usually the width and the planimetric

wear) measured from the wear scar. Advantages and drawbacks of the mentioned

measuring techniques are shown by means of wear scars and calottes resulting from

ball-on-plane tests with 100Cr6 specimens. When measuring wear volumes, white light

interferometry results to be one of the most suitable techniques, since it offers high

accuracy and is not as time consuming as atomic force microscopy. When wear volumes

are calculated, errors result mainly from two sources: (1) the arbitrary choice of one or

few line profiles for the determination of the width and of the planimetric wear, and (2)

approximations in the calculation, which are even necessary when values of the wear

volumes of the single tribological partners, i.e., ball and plane, and not only the total

volume, are of interest. The effect of both the statistical distribution of values of the width

and of the planimetric wear and the propagation of errors due to approximations on

the accuracy in the determination of wear volumes is characterized and elucidated by

examples. It is found that errors due to approximations are negligible when compared to

errors due to the arbitrary choice of one line profile.

Keywords: error sources analysis, AFM,white light interferometry, statistical analysis, planimetric wear, volumetric

wear, oscillating ball-on-disc test

INTRODUCTION

The variation in volumetric wear data from tribological tests is quite large. Volumetric wear is
a value influenced by the whole tribological system (Meng and Ludema, 1995) and its variation
affects seriously the repeatability and reproducibility of tribological measurements and hence the
determination of wear coefficients k. Many properties of the system are unknown and therefore not
predictable. The variation of the material of the specimens due to production process, grinding,
polishing or heat treatment, and properties of tribometers such as stiffness of the mechanical
elements or the accuracy of sensors are only few examples of parameters influencing the volumetric
wear, the wear coefficient and/or their determination. Through additional sources of error in the
determination of the volumetric wear, the chance to identify error sources in the system and to
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recognize correlations with experimental parameters is further
reduced (Reichelt and Cappella, 2020). Therefore, it is essential
to determine and to minimize all possible sources of error in the
method for the determination of the volumetric wear.

The methods for the determination of the volumetric wear
have changed due to novel capabilities of microscopy tools
and technologies. In the past, tactile devices were employed to
measure individual lines perpendicular to the sliding direction,
which in turn are used to calculate the wear volume. Rarely
the entire friction track was recorded using many profile
lines. Rather, the volume was calculated analytically from one
or some of these lines. Today, white light interferometers
(WLI), laser scanning systems, confocal microscopes, atomic
force microscopes (AFM) etc. offer together with their analysis
software a variety of possibilities to determine the wear volume
more precisely within a reasonable measuring time.

Tactile profilometers (Yost, 1983; Wehbi et al., 1986; Kalin
and Vizentin, 2000) for measuring roughness have been on the
market since the 1930s. A diamond tip serves as a scanning probe.
It is brought into contact with the surface and moved over the
surface under contact forces that do not damage or even deform
the sample. The contact force is kept constant by controlling
the deflection of the tip. The electrical voltage required for
the deflection of the tip is recorded and converted into the
corresponding height profile. Distances of a few centimeters
can be recorded with height differences of a few hundred
micrometers. 3D measurements are extremely time-consuming
due to the low scanning speed, so that usually just profile lines
are recorded.

Non-contact optical measuring instruments, which
have been available only since the 1980s and have been
providing scientifically usable results since the 1990s through
standardization, including calibration, are more suitable for fast
surface measurements. White light interferometer microscopes
(WLI) (Guilemany et al., 2001; Cox, 2006) are widely used in
tribology. In these microscopes the interference of broadband
white light is used to measure the topography of surfaces.
The resolution of this optical method is better than that of
profilometers (some hundreds of nanometers instead of 1µm).
However, at maximum resolution, the measuring field is limited
to a few hundred micrometers. This increases the measuring
time and requires stitching (the combination of multiple images
to form an overall topography image), which is subject to errors.
WLI is an indirect measurement of the height.

Atomic force microscopy (AFM) (Bhushan, 2001, 2003; Yu
et al., 2009) is the method with the best resolution and the lowest
susceptibility to errors, since it is a direct measurement of heights.
A deflectable cantilever with a tip at its end serves as a scanning
probe. The radius of the tip is usually in the range 5–20 nm. A
laser beam is focused on the cantilever and the reflected beam
changes its angle when the cantilever deflects. The deflection is
thus detected by a four-quadrant photodiode. The position of
the sample in the z-direction is controlled by means of piezos to
ensure a constant deflection of the cantilever. The piezo voltage
required for this purpose is converted to the corresponding
height z. AFM has a sub-nanometer resolution, both laterally
and vertically. The major disadvantage of this measuring method

is the very small measuring range both laterally (some tens of
microns) and in height (some microns). By time-consuming
stitching these ranges can be theoretically many times larger.
However, the gained accuracy does not justify in most cases the
very long measuring time.

In the present article, the method for the calculation
of volumetric wear in oscillating sliding tests with a ball-
on-plane configuration is described and errors arising from
approximations are analyzed. Furthermore, this method is
exemplarily applied to a tribological test result without
significant anomalies on the wear track and compared with
WLI measurements. Also, the values of volumes determined
throughWLI is compared with AFMmeasurements. In this way,
both errors due to measurement techniques and to calculation
methods can be estimated.

RESULTS

Calculation of Volumetric Wear
The total wear volume Wv is the sum of the wear volume of the
ball,Wv,ball, and that of the plane,Wv,flat :

Wv = Wv,flat +Wv,ball. (1)

When the direct measurement of the volumes is not possible,
they must be calculated using the ball radius R, the planimetric
wear Wq, and the track width d⊥, determined through profile
measurements. This method (Wq method) is exposed in the
following. The analysis of the procedure for the calculation of the
wear volumes is important also for comparison of experiments in
which volumes have partly been measured and partly calculated,
as it is usually the case for old experiments.

In the middle of the wear track of the plane, a profile line
perpendicular to the sliding direction is plotted, from which the
track width d⊥ and the planimetric wear Wq can be determined
(Figure 1). Both d⊥ and Wq depend strongly on the roughness
of the unworn surface and on the roughness of the scar, which
influence significantly the accuracy in the determination of the
zero value of the height and hence the identification of scar
borders. Errors resulting from this issue may vary considerably
due to automated analysis or to individual discretion.

In the following, Figure 2 is used to show how R′ of a wear
scar is calculated.

From the geometry shown in Figure 2 follows:

Wq = R′
2
arcsin

(

d⊥

2R′

)

−
1

2
R′d⊥

√

1−

(

d⊥

2R′

)2

. (2)

If d⊥ ≪ R′, the following approximations result from
Taylor developments:

arcsin

(

d⊥

2R′

)

∼=
d⊥

2R′
+

1

6

(

d⊥

2R′

)3

(3)

and
√

1−

(

d⊥

2R′

)2
∼= 1−

1

2

(

d⊥

2R′

)2

. (4)
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FIGURE 1 | Line profile of a wear track on a 100Cr6 plane taken from a WLI measurement. The picture shows the track width d⊥, the planimetric wear Wq

(cross-sectional area of the wear track, filled in gray), the fitted circumference with radius of curvature R′, the circumference with known sphere radius R, the total

linear wear Wl , and the linear wear of ball and plane, Wl,ball and Wl,flat.

FIGURE 2 | Schematic representation of the geometry of the worn sphere and

plane normal to the sliding direction. The figure shows the quantities used to

calculate the radius of the curved worn surface R′ in the friction test: radius of

the ball R, wear track width d⊥, angle of the circular sector α, planimetric wear

Wq, total linear wear Wl , and linear wear of ball and plane, Wl,ball and Wl,flat.

The original surface profile lines of the sphere and plane are shown as

dashed lines.

Substituting in Equation (2), we get:

Wq
∼=

d3
⊥

12R′
. (5)

If the track width d⊥ and the planimetric wear Wq are known,
the radius R′ of the wear track can be calculated:

R′ ∼= Rapp
′
=

d3
⊥

12Wq
(6)

Hence, the wear volume of the plane is given by:

Wv,flat =
1

3
πW2

l,flat

(

3R′ −Wl,flat

)

+Wq1x

∼=
πd4

⊥

64R′
+Wq1x, (7)

where Wl,flat is the linear wear of the plane and 1x the stroke.
Using the total linear wearWl, the wear volume of the ball can be
written as:

Wv,ball =
1

3
πWl

2 (3R−W l) −
1

3
πW2

l,flat

(

3R′ −Wl,flat

)

=
1

3
π

(

d2
⊥

8R

)2 (

3R−
d2
⊥

8R

)

−
1

3
π

(

d2
⊥

8R′

)2

(

3R′ −
d2
⊥

8R′

)

∼= π

d4
⊥

64

(

1

R
−

1

R′

)

, (8)
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where the higher terms proportional to d6
⊥
have been neglected

both in Equations (7) and (8).
The total wear volume Wv can be calculated without

approximations and is given by:

Wv = πR3



1−

√

1−

(

d⊥

2R

)2




2

−
1

3
πR3



1−

√

1−

(

d⊥

2R

)2




3

+Wq1x. (9)

The approximation

(

1−

√

1−
(

d⊥
2R

)2
)3

∼= 0 yields a slightly

larger value ofWv:

Wv
∼= πR3



1−

√

1−

(

d⊥

2R

)2




2

+Wq1x. (10)

On the contrary, the approximation

√

1−
(

d⊥
2R

)2
∼= 1− 1

2

(

d⊥
2R

)2

reducesWv:

Wv
∼=

1

4
πR3

(

d⊥

2R

)4
(

1−
1

6

(

d⊥

2R

)2
)

+Wq1x. (11)

Using both approximations, we get:

Wv
∼= π

d4
⊥

64R
+Wq1x. (12)

In all cases in which the length of the calotte is different from
its width (d|| 6= d⊥), d⊥ must be replaced by

√

d||d⊥ [e.g., in
Equations (7), (8), and (12)].

It is important to remember that the error in the
determination of R′ does not affect the calculation of the
total wear volume Wv [see Equation (9)]. Nevertheless, it affects
indeed the calculation of the wear volumes of the single partners
[see Equations (7) and (8)]. Therefore, it is important to analyze
the error done through the approximations in Equations (3)
and (4).

FIGURE 3 | Comparison of the exact numerical solution of Equation (2) (upper curve, red) with the approximated solution (lower curve, blue) of the calculation of R′

from Equation (6). The diagram shows the ratio of twice the radius R′ to track width d⊥ over the ratio of the square of the track width d2
⊥
to the planimetric wear Wq.

Frontiers in Mechanical Engineering | www.frontiersin.org 4 May 2020 | Volume 6 | Article 25249

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Reichelt and Cappella Wear Volume Determination: Error Sources

FIGURE 4 | Relative error in the calculation of R′ by using the approximation in Equation (6) over the ratio of twice the radius of curvature R′ to the track width d⊥.

The error due to both approximations is shown in Figure 3

by comparing R′app [Equation (6)] and the numerical solution
of Equation (2) for R′. The approximation always leads to an
underestimation of R′ (R′app < R′).

The error of the approximation of R′ reaches a maximum
when the ball does not wear and the plane wears maximally with
R′ = R = Wl = d⊥/2. The area Wq in this case is half the area
of a circle with diameter d⊥, πd2

⊥
/8, and the approximation in

Equation (6) yields R′app ∼= 2d⊥/3π = 4R/3π = 0.424R. The
maximum deviation (R′−R′app)/R

′ in this extreme case amounts
to 1–4/3π∼= 57.6% and can also be seen in Figure 4, which shows
the relative error of the approximate equation. One can see that
the error is <10% if 2R′/d⊥ > 1.8 (i.e., d⊥ < 1.1R′); for 2R′/ d⊥
> 2.485 (i.e., d⊥ < 0.8R′) the error is even <5%.

As concerns the propagation of the error onR′ in the functions
expressing the volumes, it is easy to show that ∂Wv,flat(∂R

′) =
–∂Wv,ball(∂R

′), sinceWv does not depend on R′.
Further, by neglecting the terms proportional to d6

⊥
as in

Equations (7) and (8), we get:

∂
(

Wv,flat −Wq1x
)

Wv,flat −Wq1x
=









1−
2

√

1−
(

d⊥
2R′

)2









∂R′

R′
. (13)

Hence, the error on Wv,flat due to the error on R′ is
always negative and is between −∂R′/R′ and −2∂R′/R′ for
0 < d⊥ < 1.5R′.

Comparison of AFM and WLI
Measurements
In order to investigate the accuracy of the WLI images,
comparative measurements were carried out after a tribological
test by means of stitched AFM contact measurements on the
surfaces of the 100Cr6 plane and the 100Cr6 sphere (R= 2mm).
WLI images were acquired with a NewView 5022 (Zygo,
Middlefield, Connecticut). For AFM measurements, a Cipher
(Asylum Research, Santa Barbara, California) was used with a
maximum lateral scanning range of 30µm and a vertical range
of 3µm. The AFM tip had a radius of∼15–20 nm.

The WLI image of the wear track of the plane is shown in
Figure 5.

A series of AFM topographies was acquired on the sphere
and on the plane transverse to the sliding direction (26 and 28
images, respectively), and the images were then combined into
two single images. These images, together with the profile lines
extracted from them, are shown in Figure 6. They cover only a
small part of the WLI images. Since the topography of the calotte
perpendicular to the sliding direction is quite uniform, one line
profile is representative of the whole scanned area, whereas five
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FIGURE 5 | WLI image of a wear track on the plane.

FIGURE 6 | Profile lines perpendicular to the sliding direction of sphere (black thick line at the top) and plane (5 thin red lines at the bottom) with corresponding

topography images and arrows indicating the position of the profile lines. The sphere is shown on the top in a gray scale from −2.6µm (white) to 2µm (black). The

plane is shown at the bottom in a gray scale from −2.3µm (black) to 0.5µm (white). The AFM contact topographies were taken in the center of the scars on the

sphere and on the plane.

lines are needed for the plane. For clarity, the profile lines of the
cross-sections of the sphere and plane are shown with a vertical
offset of∼400 nm. The profiles match very well. Apart from a few
defects on the plane and small deviations on the spherical calotte,
the curves deviate very little from each other along the x-axis.
This shows that AFM should be used for the characterization of
the worn surfaces whenever the fine structure of the tracks and
calottes is relevant (Wäsche et al., 2014).

A comparison of the white light measurement data with those
of the AFM is shown using the example of the calotte on a sphere
in Figure 7. The region scanned with AFM is shown in copper
color scale. By superimposing it to the gray scale WLI image,
a calibration error of the white light interferometer was found,
which made it necessary to rescale the lateral dimensions of the
WLI image by ca. 1%. After this rescaling, the volume measured
through WLI differs by <0.5% from the volume determined by
AFM. This shows that the WLI measurement data have a high
accuracy. Similar results could already be shown by Wäsche et al.
(2014).

It can be concluded that the determination of wear volumes by
white light interferometry is recommendable. On the contrary,
the use of AFM stitching is usually too time consuming. Yet, as
shown in previous works (Wäsche et al., 2014; Cappella et al.,
2015), AFMmeasurements are necessary when wear volumes are

very small, i.e., linear wear is in the range of roughness asperities,
or when the fine structure of the tracks is of interest.

Comparison of Measured and Calculated
Wear
The statistical distributions of Wq and d⊥ are useful to assess
the influence of a randomly selected profile line of the wear
track of a plane on the wear indicators calculated from it.
The WLI measurement in Figure 5 is used as an example for
this in the following. The analysis of all 3350 profile lines
along 1x excluding the edge regions results in average values
of 559 ± 16µm for d⊥, 452 ± 36 µm² for Wq and 1135
± 65 nm for Wl,flat . As already stated at the beginning of
section Calculation of volumetric wear, these values are strongly
influenced by the roughness of the specimens; yet this influence
in the determination of e.g. d⊥ cannot be quantified. Using
the maxima and minima of these distributions, the resulting
mean values as well as the deviations for the exact solution of
Wv according to Equation (9) and those for the approximated
solutions according to Equations (10), (11), and (12) were
calculated. The same procedure was used to calculate the ranges
for Wv,flat and Wv,ball according to Equations (7) and (8) and
for the linear wear values. Wl,flat and Wl,ball were determined
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FIGURE 7 | Superposition of two topographic images of a sphere wear calotte (R = 2mm): total image in gray color scale acquired with a white light interferometer,

section in copper color scale stitched from 26 AFM contact images.

through the following equations:

Wl,flat
∼=

3Wq

2d⊥
, (14)

Wl,ball = R−

√

R2 −

(

d⊥

2

)2

−Wl,flat . (15)

All values are listed in Table 1. Since the WLI results have been
verified through AFM measurements, the uncertainty of the
measured values is well below 10−6 mm3.

The mean values of the results of the three approximated
equations for Wv deviate by a maximum of 24·10−6 mm3 from
the exact solution given by Equation (9), corresponding to 0.3%
of the calculated volume. The standard deviation of the exact
solution is 637·10−6 mm3, which, with a factor of ∼27, is
considerably higher than the error due to approximations.

As shown in this example, the error caused by the
approximations in Equations (10), (11), and (12) can be neglected
compared to the error caused by the random selection of the
profile line used for calculations. By using the mean values of
d⊥ and Wq, the volume is only 2.9% smaller than the measured
value. Yet, even if a profile line is selected whose d⊥ and Wq

deviate less than σ from the mean values, the error in volume
can be as high as 12%. The maximum error caused by the
random selection of a profile line is 25% in this example. As
concerns the volumesWv,flat andWv,ball, the error when choosing
a profile line with d⊥ andWq deviating less than σ from the mean
values is 14 and 27%, respectively. In agreement with the analysis

of the error propagation, the errors are in opposite directions
(Wv,ball is underestimated and Wv,flat is overestimated) and they
partially cancel out in the calculation of the total volume. The
error done in the calculation of the linear wear quantities is
about 10%.

The track chosen for this example has a quite regular
shape. Other scars may present significant anomalies. These are
described in the following section. In these cases, significantly
larger standard deviations are to be expected, making the error
due to the approximations even less significant.

With help of experiments performed with 100Cr6 balls
on 100Cr6 planes, in which the wear volumes of the planes
have been measured with WLI, the comparison just shown
for one example can be extended to 102 cases. Figure 8

shows the histogram of the ratios of the calculated wear
volumes of the planes, (Wv,flat)C, to the measured values,
(Wv,flat)M . The calculated values were determined using a
randomly selected profile line with the Wq method according to
Equation (7).

The histogram is not symmetric; hence, the data are not
normally distributed. As in the example previously shown,
the calculated volumes of the planes are usually larger than
the values determined by WLI. The maximum frequency of
the ratios occurs for ∼1.2; the mean value is 1.13. Hence,
the calculation of the volumes engenders an average error of
20%; in some cases, the error is even larger than 200%. The
standard deviation (0.27) is rather large. A correlation between
the deviation of the ratios from the value one and test parameters
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TABLE 1 | Comparison between measured and calculated wear quantities.

Quantity and method Symbol Sphere Plane Total Unit

Track width from WLI d⊥ 559 ± 16 µm

Planimetric wear from WLI Wq 452 ± 36 µm2

Wear volumes from WLI Wv,ball

Wv,flat

2716
4435

10−6 mm3

Wv 7151

Wear volume calculated with Equation (9) Wv 6944 ± 637 10−6 mm3

Wear volume calculated with approximate Equation (10) Wv 6952 ± 638 10−6 mm3

Wear volume calculated with approximate Equation (11) Wv 6920 ± 633 10−6 mm3

Wear volumes calculated with approximate Equations

(7), (8), and (12)

Wv,ball

Wv,flat

2260 ± 282
4674 ± 402

10−6 mm3

Wv 6928 ± 635

Linear wear from WLI Wl,ball

Wl,flat

19.3 ± 0.5
1.135 ± 0.065

µm

Wl 20.5 ± 0.5

Linear wear calculated with approximate Equations (14)

and (15)

Wl,ball

Wl,flat

18.3 ± 1.2
1.2 ± 0.3

µm

Wl 19.5 ± 1.1

FIGURE 8 | Histogram of the ratios of the calculated wear volumes of the planes (Wv,flat )C to the measured wear volumes of the planes (Wv,flat )M.
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or topographic parameters, such as track width, could not
be established.

In case of the ratio of the calculated total wear volumes to the
measured, a similar comparison can be done only for 41 tests,
since wear volumes of the spheres could not always be measured
with WLI. Hence, the significance of the distribution (with a
mean value of 0.964 and a standard deviation of 0.5) is not as
good as for the planes. Nevertheless, it can be noticed that the
error onWv,flat is partially compensated by the error onWv,ball.

Anomalies in the Wear Track
Anomalies in the wear track are strong deviations from the
model of a uniform wear track on the plane with regular shape.
Therefore, for wear tracks with anomalies, it is not possible
to calculate any R′. Anomalies can occur either randomly or
due to varying loading parameters, material inhomogeneities
or irregular movements of the sample. In these cases, 3D
measurements of the wear volume are of great advantage
compared to calculations based on a few profile lines, as
these randomly selected profile lines are very unlikely to be
representative of the mean cross section of the track and can
lead to very incorrect results. The most important anomalies are
described below:

1. Irregularities of the wear calottes in the sliding direction can
occur due to material breakouts or transfers, e.g., as a result
of (micro) welding. Material transfer in general is actually no
wear and cannot be identified, even by 3D measurements.
The material adhering locally in the friction track of the plane
can lead to considerable deviations when calculating volumes
with the Wq method. In some cases, especially with isolated
material transfers, such anomalies can be detected and taken
into account.

2. Pile-ups at the edge of the wear track (e.g., due to plastic
deformation or adhering wear particles) can make a track
appear wider. In this case, the determination of the position
of the edges, which has an important influence on the wear
volume calculation, is particularly difficult.

3. Atypical wear of the ball at the edges, but not or only very
slightly in the middle of the track, can make the friction track
appear narrower on the plane than on the ball.

4. In case of the so-called W-shaped profile, the wear in the
center of the track on the plane is very small. This leads to a
different geometry of the track than the one in Figure 5 and
consequently to larger errors in the calculation of Wv,ball and
Wv,flat .

5. A very small wear in the range of the roughness asperities
can be considered as an anomaly, too. In this case, by
defining the zero value of the height in the cross-sectional
profile, roughness depressions are also assigned to the worn
volume and contribute to its calculated value. A better way to
determine the wear volume in this case is to subtract the 3D

data of an AFM measurement of the worn sample from those
of the unstressed sample.

6. A last kind of anomaly is due to the fact that in some cases the
linear wear Wl,flat depends on the position along the sliding
direction. This may occur due to the wear dependence on the
sliding speed or when the ball is moved not parallel to the
plane, e.g., along a circular arc.

CONCLUSIONS

The current method for the analytical determination of the
volumetric wear (Wv, Wv,ball, and Wv,flat) has been described
in detail. The error due to inevitable approximations has been
analyzed and the error propagation has been calculated, too.
This analytical method (Wq method) is based on the arbitrary
choice of a profile line of the wear track, usually measured with
tactile techniques.

The errors due to the use of a WLI for the measurement
of the profile line, to the approximations in the equations of
the Wq method and to the arbitrary choice of a profile line
have been assessed with help of an example. To this aim, the
samples, namely a 100Cr6 ball and a 100Cr6 plane worn through
an unlubricated oscillating sliding test, have been additionally
measured with an AFM.

The error on the volume due to the use of aWLI resulted to be
smaller than 0.5%. The error resulting from the approximations
is smaller than 0.3% and can be neglected.

The arbitrary choice of a profile line for theWq method turned
out to generate the largest errors. By using the mean values of d⊥
and Wq, the error on the volume is 2.9%. The choice of a profile
line with d⊥ and Wq differing less than σ from the mean values
causes an error, which can be as high as 12%. Higher error values
must be expected for scars with important anomalies, which have
been listed at the end of the article.

As a conclusion, due to the large errors engendered by the
arbitrary choice of a profile line for the Wq method, it is
recommended to measure the volumetric wears of ball and plane
and not to calculate them. For all cases in which the linear wear
is comparable with the roughness of the samples, the quite time-
consuming AFM stitching is necessary. Otherwise the accuracy
of WLI measurements is sufficient.
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Fretting is a special type of wear, which appears at the contact interface between

two solids subjected to constant normal load and periodic tangential forces. Although

most studies on fretting have been executed experimentally, some approaches for

simulating fretting wear have also been introduced during the last decades. In

particular, fretting wear analysis is concerned with the evolution of the surface

profiles of the contacting bodies due to wear, and its modeling was executed using

numerical, finite-element, semi-analytical, and analytical methods, including the method

of dimensionality reduction. In the present review we discuss recent analytical results on

fretting wear contact geometry adaptation.

Keywords: fretting wear, elastic contact, limiting contact profile, steady state, wearing-in period,

wear accumulation

1. INTRODUCTION

Contact of two machine parts established under external compressive loads and subjected to
oscillating shear forces is often accompanied by friction and wear (Ciavarella and Demelio, 2001).
In the case of oscillatory tangential motion of small amplitude, the particular type of wear which
occurs at the sliding interface is called fretting (Vingsbo and Söderberg, 1988). Due to surface
wear and damage, the shapes of the contacting bodies change and this process is called the contact
geometry adaptation. Fretting phenomena, including fretting wear and accompanied variation of
contact geometry, are encountered in many industrial applications, where contact parts experience
oscillating small relative movements. For instance, the fretting wear characteristics of Inconel 690
U-tubes strongly influences the structural integrity of steam generators in nuclear power plants
(Chai et al., 2005; Lee et al., 2009).

The problem of contact geometry adaptation in fretting wear can be formulated as a
spatial-temporal contact problem with a variable contact geometry. In particular, fretting wear
analysis is concerned with the evaluation of the surface profiles of the contacting bodies due to wear.
Mathematical methods of solving elastic contact problems with wear were reviewed in a number of
review papers by Aleksandrov and Kovalenko (1984) and Kovalenko (2001). Numerical simulation
aspects of wear modeling were recently discussed in detail by Huajie and Hongzhao (2018), using
the integration size as a principal characteristic (which is absent in analytical models). Recent
studies on fretting wear damage in coated systems were reviewed by Ma et al. (2019). Fretting wear
mechanisms and modeling were considered by Yue andWahab (2019) and Meng et al. (2020) with
a particular focus on models of debris and third-body fretting wear.

In the present review paper, we discuss different approaches to modeling fretting wear with
the emphasis on analytical and semi-analytical methods, including the method of dimensionality
reduction. It is to note here that though the present review is somewhat biased with the focus on
the recent work of the authors, an up-to-date account of relevant studies is given as well. The aim
of this review paper is to explore the theoretical ideas, analytical models and results relating to the
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concept of contact geometry adaptation in fretting wear to
facilitate their further development (for instance, by extending
the solutions of two-dimensional problems to the three-
dimensional case). For this reason, the term “constructive
review” is emphasized.

One of the things we shall concentrate on is the so-called
wearing-in period in gross-slip fretting wear, when the initial
contact state progresses into a kind of steady-state, in which the
applied contact load is redistributed along the contact area in
accordance with the wear equation. Under partial-slip fretting
wear conditions, no such steady state exists, and, theoretically
speaking, the initial contact state is expected to evolve into
a kind of steady state (called limiting state), characterized by
transferring the contact load primarily through the stick zone,
where no wear occurs. In both cases our particular interest is
focused on estimating the time needed to achieve the steady state
or the limiting state.

1.1. Archard Wear Equation and Its
Generalizations
The local wear is usually characterized by the linear wear rate,
ẇ, where a dot denotes the derivative with respect to time.
According to Archard’s equation of wear (Archard, 1953), which
is adopted in the majority of studies on fretting wear published to
date, we have

ẇ = kwpv, (1)

where p is the contact pressure, v is the absolute value of the
relative sliding velocity, and kw is the coefficient of wear.

A mathematically straightforward generalization of
Equation (1) leads to the Archard–Kragelsky wear equation

ẇ = Kwp
αvβ , (2)

which was considered in a number of studies (Kragelsky, 1965;
Meng and Ludema, 1995; Kragelsky et al., 2013). Recently,
Argatov and Chai (2019a) put the Archard–Kragelsky equation
into an ANN (artificial neural networks) framework, which
allows to account for the dependence of the wear coefficient Kw

on material parameters and operational conditions.

1.2. Reciprocal Sliding Wear
Let 1T denote the period of tangential oscillations. Then,
according to Equation (1), the linear wear resulting from one
cycle will be

1w(x, t) = kw

∫ t+1T

t
p(x, t̄)v(x, t̄) dt̄. (3)

One simplification of the wear relation (3) is that, under certain
conditions (e.g., under constant normal load and relatively small
wear coefficient), the contact pressure may be assumed to not
change appreciably during one cycle. In this way, Equation (3)
simplifies as

1w(x, t) = kwp(x, t)

∫ t+1T

t
v(x, t̄) dt̄. (4)

Another simplification is admissible in the gross slip regime,
when the relative sliding velocity is supposed to become
independent of the position of the point x on the contact
interface, and thus, Equation (4) simplifies further 1w(x, t) =

kwp(x, t)v̄1T, where v̄ is the average absolute value of sliding
velocity, that is

v̄ =
1

1T

∫ t+1T

t
v(t̄) dt̄. (5)

Let now 1x denote the stroke of tangential oscillations. Then,
Equation (5) can be rewritten as

v̄ =
21x

1T
. (6)

In reciprocating sliding, it is convenient to operate both with the
number of cycles, N, and the effective time variable, t, such that
N = ⌊t/1T⌋, where ⌊x⌋ denotes the floor function (that is the
largest integer less than or equal to x).

1.3. Energy Wear Equation
By introducing the sliding distance, s, such that ds = v dt,
Equation (1) can be represented in the differential form as dw =

kwp ds. Moreover, let µ denote the coefficient of friction. Then,
introducing the frictional shear stress is q = µp, the wear
increment can be further rewritten as

dw = αVq ds, (7)

where αV is the energy wear coefficient, such that

kw = µαV . (8)

In fretting wear, by combining Equations (3) and (7), (8), we
arrive at the following wear equation (Mróz and Stupkiewicz,
1994; Fouvry et al., 1996, 2003):

1w(x, t) = αV1Ed(x, t). (9)

Here, 1Ed(x, t) is the frictional dissipated energy during one
fretting cycle, that is

1Ed(x, t) =

∫ s+1s

s
q(x, t) ds. (10)

While, in view of (8), the wear equations (3) and (10) are
equivalent, the energy wear equation incorporates the friction
mechanism and allows to account for variable coefficient of
friction (Cheikh et al., 2007).

2. FRETTING WEAR IN GROSS SLIP
REGIME

2.1. Formulation of the Model Wear
Contact Problem
In the present review, we consider both two-dimensional and
three-dimensional settings, highlighting their similarities and
differences. The analysis of contact deformations is limited to
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the framework of linear elasticity and small strain analysis.
While the Hertzian half-plane or half-space approximation can
be employed in modeling the local stress-displacement field, in
many cases, the developed analytical approach can be directly
generalized to the case of layered elastic bodies with planar
contact interface by utilizing the corresponding surface influence
function. However, the effect of finite geometry on the wear scar
profiles requires a special consideration. In what follows, the
effect of local contact geometry is accounted for by means of the
local gap function.

Let ϕ0(x) denote the undeformed gap between the contacting
surfaces as a function of Cartesian coordinate x. Then, according
to Equation (1), the worn gap under plane-deformation
conditions will be given by the time-continuous equation

ϕ(x, t) = ϕ0(x)+ kw

∫ t

0
p(x, t̄)v(x, t̄) dt̄, (11)

or by the time-increment equation 1ϕ(x, ti+1) =

kwp(x, ti)v(x, ti)1t, where 1t = ti+1 − t1 is the time increment.
Note that, by the definition, the contact pressure p(x, t) is
positive, and, therefore, the value of the integral in (11)
monotonically increases with time, provided v(x, t) 6= 0.

Another simplification which is implicitly or explicitly present
in many studies on contact with wear, is to replace the problem
for two contacting elastic bodies with the wear contact problem
for one equivalent elastic body (whose surface influence function
is composed from the surface influence functions of the given
bodies) and a rigid punch, whose shape function is determined
by the local gap function. Though, this is a usual approach in
studying contact problems (e.g., for elastic bodies with rough
surfaces), the formulation of the wear contact problem requires to
consider the partition of the linear wear between the two wearing
bodies, when the resulting wear scar profiles are determined.

A wear contact problem in gross slip fretting regime can be
formulated as follows (Goryacheva, 1998):

2

πE∗

∫ a(t)

−a(t)
K(x− x̄)p(x̄, t) dx̄ = δ0(t)− ϕ(x, t). (12)

Here, K(x) is the normalized surface influence function, E∗ is the
reduced elastic modulus, δ0(t) is the normal approach between
the contacting bodies, and a(t) is the variable half-width of the
contact interval.

Yet another simplifying assumption is incorporated into the
governing integral equation (12), which implicitly states that the
wear, while changing the contact geometry, does not significantly
affect the surface influence function. In other words, small
changes of the contact shape due to wear are assumed, and their
influence on the contact pressure distribution is neglected. The
geometry dependence of the Green functions was accounted for
by Peigney (2004) using a first-order perturbation approach.

In light of (11) and (6), we have

ϕ(x, t) = ϕ0(x)+
2k1x

1T

∫ t

0
p(x, t̄) dt̄. (13)

Finally, in unilateral contact, the extent of the contact zone is
determined by the condition of vanishing contact pressure at
x = ±a(t).

It is to note here that the gross-slip regime assumes that
the condition of sliding occurs at the entire contact interface.
It is clear that the simple equation of wear (13) is violated
at the turning points of the wear, since the sliding velocity
goes through zero. This aspect, as well as the relative value of
the displacement stroke, should be taken into account when
considering the application of the analytical model to the analysis
of experimental results.

The integral equation kernel K(x) depends on both the global
shapes of the contacting bodies and the boundary conditions.
Using the half-plane approximation, one obtains K(x − x̄) =

− ln[|x − x̄|/H] − d0, where H is the characteristic length of
the contact pair, and d0 is the asymptotic constant (Aleksandrov
et al., 1978; Argatov, 2001). It was Galin (1976) who first
considered a two-dimensional wear contact problem with a
constant area and applied the method of variables separation.
Galin’s method was further developed by Aleksandrov et al.
(1978) and Komogortsev (1985) and extended to three-
dimensional wear contact problems (Galin andGoriacheva, 1977;
Kovalenko, 1985).

Numerical methods for solving the fretting wear contact
problem of the type (12), (13) were developed in a number of
studies, of which we refer especially to the papers by McColl
et al. (2004), Chai et al. (2005), Mary and Fouvry (2007), and Bae
et al. (2009) on finite-element simulations and (Serre et al., 2001;
Sfantos and Aliabadi, 2006) on boundary-element simulations.
Alternatives to finite and boundary element methods were
proposed by Lee et al. (2009), using the influence function
method, and (Nowell, 2010), using a quadratic programming
technique. A general method for the analysis of plane contact
problems for layered elastic structures in the presence of
sliding wear was developed by Aleksandrov and Kovalenko
(1980). Recent modeling results for coated systems, including
functionally graded material (FGM) coatings, are discussed
elsewhere (Ma et al., 2019).

2.2. Force-Controlled Steady-State Regime
In gross slip fretting wear, the following natural assumption
makes sense (Galin, 1976; Komogortsev, 1985):

p(x, t) = p∞ + q(x, t), p∞ =
P

2a
, (14)

where q(x, t) → 0 as t → ∞. In other words, the
contact pressure is equalized during wear, i.e., p(x, t) → p∞
as t → ∞. Of course, formula (14) holds true, provided
the following assumption is fulfilled: both the contact force
P and the contact half-width a are kept constant during the
wear process.

While formula (14) has been proved to hold for a constant
area of contact (Aleksandrov et al., 1978; Komogortsev, 1985),
Argatov and Tato (2012) extended its applicability to the case
of constant contact load P and variable contact half-width
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a(t), when

P =

∫ a(t)

−a(t)
p(x̄, t) dx̄, (15)

by including into q(x, t) the boundary layers appearing near the
ends of the contact interval. However, the problem of explicit
constructing these boundary layers still remains open.

In the steady-state regime, the variation of contact zone
depends on the contact geometry. For a paraboloidal gap ϕ0(x) =
x2/(2R), the following differential equation holds (Argatov et al.,
2011):

a2
da

dt
=

1

2
kwv̄RP. (16)

Observe that Equation (16) states that in quasi steady state the
contact zone evolves being governed by the wear coefficient
kw, the average sliding velocity v̄, and the undeformed contact
geometry, which is characterized by the curvature radius R. This
fact was utilized by Lengiewicz and Stupkiewicz (2013) in their
model of evolution of contact zone and wear accumulation,
without referring to the underlying elasticity problem. The effect
of elastic deformations on the wear scar profiles was accounted
for by Argatov and Tato (2012). The model of fretting wear in
quasi-steady-state gross-slip regime was generalized by Argatov
et al. (2011) for the Archard–Kragelsky wear equation (2), which
assumes a power law dependence of the wear rate on the
contact pressure.

In contrast to the force-controlled loading, when the left-
hand side of Equation (15) is suggested to be known, in the
displacement-controlled loading, the variation of the contact
approach will be specified. In such a case, due to the dissipative
nature of wear accompanied by material removal, the total
contact load should gradually vanish to the end of the fretting
process. Such situation was analyzed by Peigney (2004), who
determined the asymptotically stabilized state reached by an
elastic body subjected to wear contact with a rigid indenter in the
displacement-controlled cyclic loading.

2.3. Steady-State Contact Profile
Apparently, the problem of determining the worn shape in the
operating state, that is the contact shape function ϕ∞(x) that
produces a uniform contact pressure under a constant load was
first solved by Dundurs and Comninou (1980) in the case of an
elastic half-space. In a more general case (12), the steady-state
profile is given by

ϕ∞(x) =
P

πE∗a

{∫ a

−a
K(x̄) dx̄−

∫ a

−a
K(x− x̄) dx̄

}

. (17)

We note that ϕ∞(0) = 0, and this explains the first term
in the curly braces in (17). The steady-state solution in the
case of Archard–Kragelsky model of wear (2) was obtained by
Goryacheva (1998), who also studied its asymptotic stability.

Interestingly, the steady-state profile (17) is shown to be
optimal, if the wear coefficient is assumed to be constant
(Banichuk et al., 2010). The optimal shapes generated by wear
process were evaluated by exploiting the dissipative nature of the

wear process, which can be characterized, e.g., by minimization
of friction dissipation power (Páczelt and Mróz, 2007). Based
on the Hertzian half-space approximation, a three-dimensional
computational method for determining the optimum contact
geometry in fretting under the gross slip regime was developed
by Gallego et al. (2006). Recently, Argatov and Chai (2019c)
considered a practically important question of approximating the
ideal profile (17) with a symmetric smooth profile composed of
three parabolic arcs, which was introduced by Vázquez et al.
(2010), exploiting the idea of compound curvature. The effect
of friction is shown to result in the profile asymmetry, which
depends on the direction of sliding (Argatov and Chai, 2020b).

2.4. Wearing-In Period
Any fretting wear test starts from the initial contact state, which
is fully characterized by the initial contact geometry and loading
conditions. The initial time interval, during which the contact
pressure evolves from the initial one to the steady state pattern,
is called the wearing-in period. Based on the Galin type analysis
of the wear contact problem with a fixed contact zone, Argatov
and Fadin (2011) have estimated the duration of the wearing-in
period, Tin, as follows:

Tin ∼
a

λminkwv̄E∗
. (18)

Here, λmin is the minimum characteristic value of the
corresponding integral eigenvalue problem.

It is to note that the right-hand side of the relation (18)
does not depend on the loading level. It is interesting that the
wearing-in period in the displacement-controlled regime is about
five times greater than that under the force-controlled loading
(Argatov and Fadin, 2011). It is also shown (Argatov and Chai,
2020b) that the effect of friction extends the wearing-in period.

2.5. Wear of Functionally-Graded
Wear-Resisting Materials
A range of wear contact profiles with variable wear resistance
of a sliding punch was considered by Goryacheva (1998) in the
case of the Archard–Kragelsky wear model (2) with a particular
focus on the steady-state solutions. The transient wear contact
problems for composite materials were considered recently using
different approaches, including the method of dimensionality
reduction with application to an axisymmetric heterogeneous
annular cylindrical punch (Li et al., 2018) and a level-set based
shape and topology optimization method with application to
a Pasternak elastic foundation model (Feppon et al., 2017). By
using an appropriate symmetrization of the integral equation
kernel, Argatov and Chai (2019b) extended the Galin method for
analyzing the transient contact pressure distribution and derived
an upper estimate for the wearing-in period. Also, the effective
wear coefficient was represented as

Keff(t) = K∞

eff +
1

P

∫ a

−a
kw(x)

[

p(x, t)− p∞(x)
]

dx, (19)

where kw(x) is a variable wear coefficient, p∞(x) is the steady-
state contact pressure distribution, and K∞

eff
is the steady-state
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value of the effective wear coefficient given by

K∞

eff = 2a

(

∫ a

−a

dx

kw(x)

)−1

. (20)

Moreover, it was shown that the second term on the right-hand
side of Equation (19) decreases exponentially with time during
the wearing-in period, for which the following estimate was
established (Argatov and Chai, 2019b):

Tin ≤
2a

πkmax
w v̄E∗

√

∫ 1

−1

∫ 1

−1
|L̹ (ξ , ξ̄ )|2dξ̄dξ . (21)

Here, kmax
w is the maximum wear coefficient, and L̹ (ξ , ξ̄ ) is the

normalized integral kernel.
Interestingly, Equation (20) represents a generalization of the

mixture rule of Khruschov (1974) for functionally graded wear-
resisting composite materials (Friedrich, 1993; Yen and Dharan,
1996). Observe also (Argatov and Chai, 2019b) that while K∞

eff
is independent of the distribution of the wear resistance, that
is independent of the distribution of the phases in a wearable
multiphase material the duration of the wearing-in period Tin,
in contrast, is sensitive to the phase fraction distribution.

2.6. Three-Dimensional Fretting Wear
Contact Problems
The main difference between the 2D and 3D cases is a higher
variability of the sliding velocity orientation that can occur
in practice, so that the concept of anisotropic wear (Mróz
and Stupkiewicz, 1994; Zmitrowicz, 2006) can be introduced
in the spatial case. Otherwise, many features of the gross slip
fretting wear are similar in the two cases. In particular, in the
axisymmetric case with a constant contact radius a, Equation (14)
still applies with p∞ = P/(πa2). Also, formula (17) for the
steady-state profile can be simply generalized by the appropriate
choice of the integral equation kernel (which is determined by
the corresponding surface influence function) and, of course,
by extending the integration to the whole contact area. For the
Hertzian type contact geometry with the initial gap ϕ0(x) =

(x21 + x22)/(2R) and a variable contact area of radius a(t), the
analog of Equation (16) reads as follows (Argatov, 2011):

a3
da

dt
=

1

π
kwv̄RP. (22)

The axisymmetric model of fretting wear based on the Archard–
Kragelsky wear model (2) was developed by Argatov et al. (2011),
who have observed the phenomenon of the decrease of the
wear coefficient due to the increase of the contact area followed
by decrease of the contact pressure. Apparently, such an effect
depends on the exponent α in Equation (2). In the mentioned
study, it was evaluated to be greater than one.

The general Hertzian type contact with a variable elliptical
contact area was considered by Argatov (2011) in application
to local interwire contact under reciprocal sliding. A special
consideration is required in the case of torsional fretting wear

with an annular contact area, when the relative sliding velocity
varies proportionally to the distance from the axis of symmetry.
The analogous rotational contact problemwith a sliding wear was
analyzed by Galin and Goriacheva (1977), and Kovalenko (1985).
The finite element method study of torsional fretting for a ball-
on-flat configuration was conducted by Liu et al. (2014) under the
assumption of variable coefficient of friction, whose variation due
to the abrasive wear degradation is governed by the local contact
history and the accumulated slip distance.

3. FRETTING WEAR IN PARTIAL SLIP
REGIME

3.1. Stick Zone
Recall that the local contact of two elastically similar bodies
during cyclic loading-unloading by a normal force only (i.e.,
at zero tangential force) is not accompanied by the relative
tangential displacements at the contact interface, whereas some
fretting can occur at the cyclic normal contact of dissimilar
bodies. However, the tangential displacements mismatch appears
for elastically similar bodies even in the case of cyclic tangential
loading with constant normal load.

In a certain regime of fretting, called partial slip regime,
the contact area, ω(t), which may vary in time, contains inside
a stick zone, ω∗, where the contacting surfaces stick one to
another, so that the contact geometry inside the stick zone
remains untouched by wear, whereas wear occurs in a slip
zone, where the contacting surfaces experience relative tangential
movement. The theory of tangential contact with partial slip
for the Hertzian geometry was developed by Cattaneo (1938)
and Mindlin (1949). The 2D theory of tangential contact for
elastically similar semi-infinite solids was developed by Jäger
(1998) and Ciavarella (1998). The 3D Cattaneo–Mindlin model
was extended by Jäger (1996) for the case of stepwise oblique
loading. Further progress in its development is associated with
devising the method of memory diagrams (Aleshin and Van
Den Abeele, 2013; Aleshin et al., 2015). Recently, the 3D
Cattaneo–Mindlin model was outlined for transversely isotropic
materials by Argatov et al. (2018).

In the axisymmetric case, Jäger (1995) generalized the model
of local tangential contact for two elastically similar bodies
with arbitrary gap function. In the general non-axisymmetric
three-dimensional case, Ciavarella (1998) introduced a simplified
version of the Cattaneo–Mindlin theory (without Poisson’s
effect), which was recently extended for the case of transversely
isotropic materials by Chai and Argatov (2018), who also applied
the self-similarity solutions by Borodich (1983, 1989) to derive
explicit tangential force-displacement relations in the case of
self-similar gap between the contacting surfaces.

Further, Hills and Sosa (1999) reviewed analytical solutions
for general elastic contact problems with partial slip, which can
be used, for instance, in estimating frictional energy and the
local wear rate in the initial stage of fretting. Analytical aspects
of fretting fatigue damage were considered by Ciavarella and
Demelio (2001) with application to dovetail joints. Numerical
method for partial-slip frictional contact problems have been
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developed in a number of studies (Chen and Wang, 2008; Wang
et al., 2013).

Let ϕ(x1, x2) be the gap between the surfaces of two elastically
similar transversely isotropic semi-infinite bodies that do not
exhibit the effect of coupling between the distributions of
shearing contact tractions (in the case of identical materials this
assumption implies the zero Poisson’s ratio, see, e.g., Ciavarella,
1998). In many cases it may be assumed that the gap is described
by a homogeneous function of degree d, such that

ϕ(cx1, cx2) = cdϕ(x1, x2), (23)

where c is an arbitrary positive constant.
Let also l and l∗ be the characteristic sizes of the contact

area ω and the stick zone ω∗, respectively. Then, the following
relations hold between the relative size of the stick zone, the ratio
of the tangential to the normal contact force, and the ratio of the
tangential to the normal displacement (Chai and Argatov, 2018):

l∗

l
=

(

1−
F1

µF3

)1/(d+1)

,
l∗

l
=

(

1−
M1

M3

δ1

µδ3

)1/d

. (24)

Here, M1 and M3 are effective elastic moduli. The Cattaneo–
Mindlin model is recovered from Equation (24) for d = 2.

3.2. MDR-Based Approach
It is well-known (De Mul et al., 1986) that for a wide class
of contact geometries, the Hertzian half-space analysis of local
contact gives reliable results. The method of dimensionality
reduction (MDR) developed by Popov and Heß (2015), and
their collaborators, combines the axisymmetric Hertz theory of
normal contact and the axisymmetric Cattaneo–Mindlin theory
of tangential contact into a unified modeling framework by
transforming a given 3D contact problem for two elastically
similar solids into one-dimensional contact problem for an
equivalent rigid punch and the Popov foundation, which is a
linearly-elastic spring-like foundation that possesses both normal
and tangential stiffnesses. The relation between the gap function
ϕ(r, t) and the equivalent 1D profile g(x, t) represents the direct
mapping rule from the original 3D contact problem into the
1D equivalent contact problem. Since the Popov foundation is
spring-like, its normal reaction is given by qz(x, t) = E∗

(

δ(t) −
g(x, t)

)

, where |x| ≤ a(t) and a(t) is a root of the equation
g(a, t) = δ(t). The integration of the 1D normal contact reaction
over the contact interval

(

−a(t), a(t)
)

yields the total normal
force, F3 (Note that in the displacement controlled mode, the
contact approach δ(t) is assumed to be known).

The Popov foundation can be discretized by introducing
a discretization step 1x, so that the normal and tangential
stiffnesses of every individual spring element will be1kz = E∗1x
and 1kx = G∗1x, respectively, where G∗ is the effective shear
modulus. Correspondingly, if an individual elastic spring element
with a coordinate x receives normal, uz(x, t), and tangential,
ux(x, t), displacements, the values of normal and tangential
reaction forces, respectively, will be 1fN(x, t) = uz(x, t)1kz
and 1fT(x, t) = ux(x, t)1kx (with compression-positive sign
convention taken into account).

In a stick zone, the tangential displacement ux(x, t) is

determined by the punch’s tangential displacement, u
(0)
x (t),

whereas in a slip zone1fT(x, t) = ±µ1fN(x, t), as it is prescribed
by Coulomb’s law, where µ is the coefficient of friction. It is
suggested (Dimaki et al., 2014, 2016) to consider the fretting

wear as an incremental process, such that 1u
(0)
x (t) = u

(0)
x (t +

1t) − u
(0)
x (t) is the tangential displacement increment of the 1D

equivalent punch, which exactly corresponds to the increment
of the relative tangential displacement of the contacting solids.
According to the Archard wear equation (1), the linear change of
the 3D profile is given as follows (Dimaki et al., 2016):

1ϕ(r, t) = kwp(r, t)
(

1u(0)x (t)− 1u(3D)x (r, t)
)

. (25)

Here, u
(3D)
x (r, t) and 1u

(3D)
x (r, t) are the relative tangential

displacement at the contact interface and its increment.
Thus, the numerical implementation of the MDR-based

approach using Equation (25) will require the application of
the inverse mapping (from the 1D contact problem to the

3D contact problem) for evaluating u
(3D)
x (r, t) and the normal

contact pressure p(r, t). The corresponding numerical procedures
have been developed for both the gross-slip (Dimaki et al., 2016)
and partial-slip (Dimaki et al., 2014) regimes.

3.3. Limiting Profile
Evidently, in the partial slip fretting wear, by the definition,
there is a stick zone which remains untouched by wear for
the entire periodic loading process. For instance, in the force-
controlled mode with a constant normal contact load and a
constant amplitude sinusoidal tangential force, the effect of wear
on the contacting surfaces will exhibit itself in an increase of the
contact approach as well as in an increase of the contact area.
However, as it was observed by Ciavarella and Hills (1999), this
process eventually leads to some limiting contact geometry that is
characterized by the absence of wear outside the stick zone. In the
case of the Archard wear model, the latter means that the contact
pressure vanishes in the final slip zone.

In the axisymmetric case under displacement-controlled
loading (when δ = const), the solution for the limiting profile
can be easily obtained in terms of the limiting profile for the
equivalent punch as follows (Popov, 2014):

g∞(x) =

{

g0(x), |x| ≤ c,
δ, c < |x| ≤ a∞.

(26)

Here, g0(x) is the initial equivalent profile, c is the radius of
the stick zone, which depends on the tangential displacement

amplitude u
(0)
x , δ is the contact approach, a∞ is the limiting

radius of the contact area, which is determined by the equation
ϕ∞(a) = ϕ0(a). Finally, the function ϕ∞(r) itself is determined
by the inverse transform applied to g∞(x).

Of course, formula (26) can be easily extended to the case
of force-controlled loading by replacing δ with δ∞, where δ∞
is the limiting contact approach, and expressing c in terms of
the normal and tangential contact loads F3 and F1, e.g., using
Equation (24). However, it is instructive to distinguish the two
cases, especially since it makes sense in the 3D case.
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Table 1 shows the state of the art of the analysis of the final
(limiting or asymptotic) contact geometry. We note that the
solutions of Heß (2019) and Willert et al. (2019) were obtained
for the case of power-law graded materials with Young’s modulus
varying with depth as E(z) = E0(z/z0)

k, where k ∈ (−1, 1).
The MDR-based approach (Popov, 2014) was generalized by

Chai and Popov (2016) for fretting wear in an adhesive contact in
the Dugdale approximation when the adhesive (attractive) stress
outside the contact area is assumed to be constant up to some
critical distance and vanishing beyond this range. Recently, the
analytical approach developed by Popov (2014) was extended by
Dmitriev et al. (2016) and Mao et al. (2016) (see also Li, 2016)
to a dual-mode fretting under the influence of superimposed
normal oscillations (with amplitude 1u0z and frequency ωz)
and tangential oscillations (with amplitude 1u0x and frequency
ωx). It is interesting that Dmitriev et al. (2016) also provided
experimental evidence for the correctness of the theoretically
predicted limiting shape. We note also that recent experimental
aspects of fretting wear were discussed in an extensive review by
Meng et al. (2020).

3.4. Wear Accumulation
A number of numerical methods have been devised for
simulating the contact geometry adaptation during fretting wear
in the partial slip regime (Gallego and Nelias, 2007; Dimaki et al.,
2014; Wang et al., 2015; Cardoso et al., 2019), when both the
contact profiles (outside the stick zone) and the contact pressure
distribution evolve in relation to each other.

Interestingly, a special focus on modeling of the evolution of
the worn volume, V , was not shown until recently (Kasarekar
et al., 2007). A simple mathematical model of wear accumulation
in the case of initial Hertzian contact was developed by Chai
and Argatov (2019) based on the dissipation energy model for
the volume wear rate (Fouvry et al., 2003). The following one
fitting parameter formula was suggested for the non-monotonic
variation of the volume wear rate:

dV

dN
= w0

(

1+ β1
N

N1

)

exp
(

−
N

N1

)

. (27)

TABLE 1 | Limiting shapes of profiles in fretting wear.

Initial

profile

Displacement-

controlled

regime

Froce-controlled

regime

2D case Hertzian Goryacheva et al.,

2001; Hills et al.,

2009

Arbitrary Goryacheva and

Goryachev, 2006

3D axisymmetric Hertzian Popov, 2014 Dini et al., 2008

Arbitrary Popov, 2014 Argatov and Chai,

2018

3D non-axisymmetric Hertzian Argatov et al.,

2018

3D axisymmetric FGM Hertzian Willert et al., 2019 Heß, 2019

Arbitrary Willert et al., 2019

Here, w0 is the initial volume wear rate, which can be evaluated
using the Cattaneo–Mindlin theory (Johnson, 1955), N is the
number of cycles, N1, is an auxiliary parameter, which is related
to the total worn volume V∞ = w0(1+ β1)N1, and β1 is the only
fitting parameter.

The analytical model (27) implies that the wearing-in period
is proportional to N1, which, in turn, is estimated as

N1 ∼
G∗

(E∗)5/3
R2/3

µkwP1/3
n1(χ), (28)

where χ = c/a0 is the relative stick-zone radius, and a0 is the
initial (Hertzian) contact radius. In contrast to Equation (18),
formula (28) shows that the duration of the wearing-in period
(measured in number of cycles) in partial-slip fretting wear
depends on the load level.

4. DISCUSSION AND CONCLUSIONS

The obtained results for wearing-in period (18), (21), and (28)
merit comment. First, as we might intuitively expect, the larger
the initial contact zone, the larger the wearing-in period. Second,
as it could be foreseen from the physical dimension of the wear
coefficient, the duration of the wearing-in period is inversely
proportional to the characteristic value of the coefficient of wear.
Third, in the gross-slip and partial-slip regimes, the wearing-in
period is inversely proportional to E∗ and (E∗)2/3, respectively,
so that the elasticity effect weakens in the second case.

4.1. Limitations of the Analytical Approach
It goes without saying that analytical methods are not so
flexible as numerical ones, especially in applications to specific
engineering problems. In contact mechanics, the success of
analytical approach is critically dependent on the possibility
to approximate the surface influence function, which, in turn,
strongly depends on the contact geometry. The phenomenon of
wear manifests itself in the variation of the latter, and, generally
speaking, the main limitation of the current state-of-the-art
analytical techniques is in their inability to effectively deal with
varying geometry due to wear loss.

Perhaps, another reason for the slow progress in solving
transient wear contact problems is the difficulty which may
arise with the introduction of non-linear equations of wear.
However, a further rapid advance can be achieved, for instance,
in estimating the duration of wearing-in period, provided the
problem formulation admits the existence a steady-state regime.

4.2. Open Problems
First, observe that Table 1 has a few empty cells, which indicate a
number of still unsolved problems on limiting shapes of profiles
in fretting wear. The limiting profile problem formulation
assumes that in the limiting state the contact pressure vanishes
outside of the stick zone. It makes sense to investigate whether
a threshold model of wear, which assumes no wear below
certain level of contact pressures, is suitable for describing the
limiting state in practical fretting problems. Second, we point
out that the analytical solutions (16) and (22) were obtained
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for the Hertzian local gap, though the method with which
they were derived allows such generalizations. By the way, it
is still interesting to analyze the boundary-layer problem in
the wear contact problem with variable contact zone. Third,
it is to note here that the effective wear coefficient (20) for
functionally-graded wear-resistingmaterials was evaluated under
the simplifying assumption of homogeneous elastic properties,
which is implicitly or explicitly present in a majority of studies
of wear contact problems for composite materials. Further, as it
was already mentioned in section 1.3, the energy wear equation
allows to account for variable coefficient of friction, which can be
done in a straightforward manner in the gross slip regime.

It should be noted that the wearing-in period in gross-
slip fretting wear is associated with the redistribution of the
macroscopic contact pressure from the initial pattern, which
is caused by the intact contact geometry (e.g., the Hertzian
contact pattern in ball-on-plate contact), to an approximately
uniform distribution, which reproduces the steady-state shape
profile. In the case of non-conforming contact, there is still
uncertainty regarding the experimental relation between the
wearing-in period and the running-in period, which is primarily
associated with the evolution of surface topography and shows
the exponential evolution of the wear rate as well (Zhang et al.,
2018). It is to note here that the recently developed artificial
neural network modeling framework (Argatov and Chai, 2020a)
can be utilized in analysis of experimental studies of wearing-in
period and the so-called true wear coefficient. It is also apparently
an open question as to whether the duration of the wearing-in
period in periodic contact is longer than that in the wear contact
problem for a single contact.

It was shown (Argatov and Chai, 2020b) that the eigenvalue
problem associated with the wear contact problem with friction,
generally speaking, may possess the complex-valued spectrum,
and therefore, the contact pressure is predicted to approach
the steady state exponentially decaying and oscillating. Such an
oscillating behavior of the contact pressure during the wearing-
in period, if exists, would be experimentally observed for large
values of the friction coefficient.

4.3. Directions for Future Research
Based on the above review, one can suggest that further
progress is expected in studying transient wear contact problems

for functionally-graded wear-resisting materials. Also, further
attention needs to be paid to the optimization problems in
fretting wear, while combining different strategies for optimizing
contacting parts, including geometrical (shape optimization) and
material grading.

Observe that Archard’s equation of wear or the work rate
model are usually adopted in the majority of analytical studies
to date. Further progress is needed in extending the results
obtained for these linear wear models to other models, including
non-linear, like the Archard–Kragelsky equation, or models
which account for the effect of debris formation and third-body
fretting wear.

Further, it is well-known and practically important that the
Archard equation (1) as well as the Archard–Kragelsky equation
(2) treat wear as a local process. In this respect, it would of interest
to investigate what role the non-local nature of wear damage
plays in the partial lip regime of fretting, especially near the
boundary of the stick zone.

Lastly, caution is urged when the simple analytical models are
applied for analyzing practical problems. For instance, one may
argue that the analytical solutions for limiting profiles outlined in
Table 1 do not predict the final state that is practically achieved in
partial-slip fretting, since they assume complete removal of worn
material. Nevertheless, the limiting shape profiles are useful, as
they allow to upper estimate the differences in contact behavior
that can be observed both in practice and experiment (Dini et al.,
2008). An important asset of the developed analytical solutions is
their explicit dependence on the model parameters, which can be
effectively used for solving design and optimization problems.
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Theoretical Study of Fretting Wear
Rate Evolution in Axi-Symmetrical
Elastic Contact Using the Method of
Dimensionality Reduction
Andrey V. Dimaki*

Laboratory of Computer-Aided Design of Materials, Institute of Strength Physics and Materials Science of Siberian Branch of

Russian Academy of Sciences, Tomsk, Russia

We simulated wear in elastic tangential contact in partial-slip mode using the method
of dimensionality reduction. The obtained numerical dependencies of wear rate on the
number of loading cycles were approximated with existing analytical dependencies;
at that, the estimated values of parameters of approximating equations are close to
analytical estimates given before. The present results demonstrate the possibility of
application of the method of dimensionality reduction to the theoretical study of fretting
wear rate evolution.

Keywords: fretting, wear rate, elastic contact, method of dimensionality reduction, numerical simulation

INTRODUCTION

Fretting represents a specific kind of wear in contact zones appearing under multi-cycle tangential
loading with relatively small amplitude providing no gross sliding to take place. The mentioned
loading conditions are typical for a wide range of machine parts and joints subject to vibrations.
Wear mode is determined by many parameters and conditions, including physical–mechanical
properties of a material, sliding velocity, contact pressure, local, and ambient temperatures, etc.
(Odfalk and Vingsbo, 1990; Goryacheva et al., 2001; Matikas and Nicolaou, 2009; Leonard et al.,
2012). Variation of these parameters may lead to wear rate change by orders of magnitude (Lim
and Ashby, 1987). This underlines the complexity of the problem as well as the actuality of the
application of theoretical methods allowing its efficient parametric study that is difficult to carry
out in full-scale experiments (Kasarekar et al., 2007).

The theoretical solution of a wear problem requires a calculation of normal and tangential
stresses in contact area as well as the evolution of the shape of contacting bodies during the
wear process (Dimaki et al., 2014). An equation, describing the local rate of irreversible contact
shape change., represents a local wear law. This equation postulates a dependence of local
wear rate on material parameters, stress–strain state, and loading conditions in a local area of
contact (Popov, 2017).

The well-known assumption of wear rate proportionality to the ratio of dissipated energy
to material hardness σ0 was first proposed by Reye (1860). In the present paper, we use
the wear law, given in Archard and Hirst (1956) and Rabinowicz (1995) and based on the
hypothesis of direct proportionality between the wear rate and work of frictional forces.
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The local form of this wear law for an axially symmetrical contact
area reads

1f (r) =
kwear

σ0
τ (r)

(

1u(0)x − 1u(3D)x (r)
)

. (1)

where 1f (r)—local change of the contact profile f (r); r—polar

radius in the contact plane; u
(0)
x —relative tangential displacement

of the contacting bodies; σ0—hardness of a material; u
(3D)
x (r)—

a portion of relative displacement due to elastic deformation
of the medium; τ (r)—shear stress in the contact plane; and
1–indicates an increment of a corresponding value during a
time step. Note that Equation (1) contains a non-dimensional
wear coefficient kwear that includes a combination of material
parameters determining the local wear rate.

As a rule, the wear process described by Equation (1) is steady
because contact pressure distribution tends to uniform in the
course of wearing. This is because the wear rate is higher in
contact patches subject to higher normal pressure. At that, it is
necessary to explicitly take into account the evolution of contact
area and size (Dimaki et al., 2016).

In the paper, we use a theoretical model of wear based on the
method of dimensionality reduction (Popov and Hess, 2015) and
wear law (1). The model allows obtaining an exact solution to the
wear problem that agrees with the analytical solutions of Galin
(1961) and (Sneddon, 1965).

As it is seen from Equation (1), wear intensity varies over
contact radius and time. The latter is due to time variation (as
the number of cycles increases) of distributions of shear stress
and strain in the contact area. Theoretical and experimental
studies show that wear rate changes non-monotonically—in the
beginning of the wear process, the wear rate increases, then
reaches a maximum and gradually decreases to zero (as a contact
profile approaches so-called “limiting” profile (Popov, 2014).
In the present paper, we obtained theoretical dependencies of
wear rate on the loading cycle number for different profiles of
contacting bodies of revolution. The results of the theoretical
study are compared with known analytical estimations.

MODEL AND SETUP

Let us briefly describe the keystones of the method of
dimensionality reduction (Popov and Hess, 2014, 2015).
Consider the contact of a three-dimensional body of revolution
having the profile z = f (r) and an infinite elastic foundation.
The given three-dimensional profile is transformed into a one-
dimensional profile g(x) based on the multifactor dimensionality
reduction (MDR) rules (Popov and Hess, 2014, 2015):

g(x) = |x|

|x|
∫

0

f ′(r)dr
√

x2 − r2
(2)

A transformation of the one-dimensional profile back into a
three-dimensional one reads

f (r) =
2

π

r
∫

0

g(x)
√

r2 − x2
dx (3)

The one-dimensional profile (2) is pressed to a certain depth d
into an elastic foundation that represents a set of non-interacting
springs having a spatial size 1x. The normal and tangential
stiffness of the springs are given by Popov and Hess (2014):

kz = E∗1x
kx = G∗1x

(4)

where E∗ is the effective elastic modulus

1

E∗
=

1− ν21

E1
+

1− ν22

E2
(5)

and G∗ is the effective shear modulus

1

G∗
=

(2− ν1)

4G1
+

(2− ν2)

4G2
(6)

To satisfy the rules of MDR, we assume the contacting materials
satisfy the “elastic similarity” condition:

1− 2ν1

G1
=

1− 2ν2

G2
(7)

that provides an ability to solve the normal and tangential
contact problems independently (Johnson, 1987). The vertical
displacement of an individual spring in the contact area reads

uz(x) = d − g(x) (8)

and the resulting normal force in a spring is given by

Fz(x) = E∗1x
(

d − g(x)
)

. (9)

The linear force density is therefore

qz(x) =
Fz(x)

1x
= E∗uz(x) = E∗

(

d − g(x)
)

. (10)

The contact radius a can be estimated from the
following equation:

g(a) = d. (11)

Having the value of a, it is possible to calculate the total normal
force over the contact area:
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FIGURE 1 | Profiles of contacting rigid bodies and a flat elastic foundation: (A) parabolic indenter; (B) conical indenter.

TABLE 1 | Estimated values of the parameters of Equation (21), obtained based
on the approximation of the numerical simulation results.

Indenter shape β1 N1

Parabolic 3.05 0.34

Conical 2.73 0.21

Ftotalz = 2E∗
a

∫

0

(

d − g(x)
)

dx. (12)

According to the MDR rules, the distribution of normal pressure
p in the initial three-dimensional problem can be calculated using
the following integral transformation (Popov and Hess, 2014):

p(r) = −
1

π

∞
∫

r

qz
′(x)

√

x2 − r2
dx =

E∗

π

a
∫

r

g′(x)
√

x2 − r2
dx (13)

Assume the indenter moves to displacement u
(0)
x in a tangential

direction. A one-dimensional spring of the half-space remains
in a contact state with the indenter until a tangential force

fx = kxu
(0)
x in the spring reaches a critical value µfz where µ

denotes the friction coefficient. After that, the spring becomes
in sliding state, and the tangential force equals to µfz . This
behavior is independent of an initial stress state of a spring and
results in the following equations describing the relation between
tangential deformation and reaction force of a spring:

1ux(x) = 1u
(0)
x , if

∣

∣kxux(x)
∣

∣ < µfz

ux(x) = ±
µfz(x)
kx

, in the sliding state
(14)

The sign in Equation (14) depends on the direction of the motion
of the indenter. The sign “minus” corresponds to motion along
the contact plane in a positive direction of axis oX; the sign
“plus” corresponds to motion in the opposite direction. Having
a given time dependence of the indenter position, it is possible to

calculate its increment 1u
(0)
x and thus to determine a tangential

deformation of a one-dimensional spring in each point of a
contact area. Obviously, the tangential reaction force can also be
determined as follows:

fx = kxux(x) = G∗1x · ux(x). (15)

Three-dimensional radial distributions of tangential stresses τ (r)

and displacements u
(3D)
x (r) can be calculated by means of the

integral transformations similar to (3):

u(3D)x (r) =
2

π

r
∫

0

ux(x)dx
√

r2 − x2
, (16)

τ (r) = −
1

π

∞
∫

r

qx
′(x)dx

√

x2 − r2
= −

G∗

π

∞
∫

r

ux
′(x)dx

√

x2 − r2
, (17)

where qx(x) is a tangential force density:

qx(x) =
fx

1x
= G∗ux(x). (18)

The distributions of stresses and displacements obtained above
represent exact solutions of the corresponding three-dimensional
problem, which is one of the main advantages of the MDR
(Dimaki et al., 2014; Li et al., 2014). The transformation (2)
represents a relationship between the full three-dimensional
contact problem and a one-dimensional contact with an
elastic foundation (Galin, 1961). Stresses and displacements in
the three-dimensional contact problem with a linearly elastic
foundation can be obtained using the corresponding integral
transformations given earlier. The obtained solution is “exact”
and can be applied to contact problems that reduce to a normal
contact problem.

In this paper, we consider a contact of parabolic and
comical rigid indenter with a flat elastic foundation (see
Figure 1). The choice of these two shapes is conditioned
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FIGURE 2 | (A) Development of the shape of an initially parabolic profile due to fretting wear. Curve “1” shows the initial profile; further curves correspond to the
following normalized number of oscillation cycles: (2) Ñ = 0.04; (3) Ñ = 0.16; (4) Ñ = 0.36; (5) Ñ = 0.64; (6) Ñ = 1. (B) Dependency of normalized wear rate on a
dimensionless number of cycles for a parabolic indenter under constant normal load. Points indicate the results of numerical simulation, and solid line indicates the
approximation with Equation (21).

FIGURE 3 | (A) Development of the shape of an initially conical profile due to fretting wear. Curve “1” shows the initial profile; further curves correspond to the
following normalized number of oscillation cycles: (2) Ñ = 0.1; (3) Ñ = 0.4; (4) Ñ = 0.9; (5) Ñ = 1.6; (6) Ñ = 2.5. (B) Dependency of normalized wear rate on a
dimensionless number of cycles for a conical indenter under a constant normal load. Points indicate the results of numerical simulation, and solid line indicates the
approximation with Equation (21).

by the fact that many theoretical approaches use these
shapes for describing an asperity shape in single-asperity
and multi-asperity models of rough surfaces [see, e.g., Popov
(2017)]. For a parabolic indenter with f (r) = r2/2R, the
corresponding one-dimensional profile is g(x) = x2/R. For
a three-dimensional conical indenter with an initial profile
given by f (r) = r tan θ , the corresponding MDR-image is
g(x) = π

2 |x| tan θ .
If the indenter is subject to tangential oscillations with an

amplitude U(0), the characteristic wear volume per one cycle of

oscillation can be roughly estimated as follows:1f ≈ k
σ0

µFN
πa20

U(0),

where a0 is the initial contact radius. At that, an estimation of

several cycles needed to reach the wear depth of the indenter of
an order of magnitude of d0, which reads:

N0 =
d0

1f
=

πa20d0σ0

kµFNU(0)
. (19)

In the results presented later, an actual number of cycles will be
normalized to the characteristic value (19) as follows:

Ñ =
N

N0
. (20)
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Further, we operate with the normalized number of cycles (20) to
provide universality of the obtained results.

SIMULATION RESULTS AND DISCUSSION

We carried out a theoretical study of the dependence of
normalized volume wear rate on normalized cycle number Ñ for
parabolic and conical indenters in partial slip mode. We assume
that both bodies in contact are elastic, but only the indenter is
subject to wear. It is known that for oscillations with a magnitude
< µd0, the contact area separates into “stick” and “slip” regions
(Jäger, 1995; Hills et al., 2009; Lengiewicz and Stupkiewicz, 2013).
Wear takes place only outside the “stick” area. At that, in the
absence of “gross slip” motion, the wear process finishes at the so-
called “shakedown” state. After achieving the “shakedown” state
(in other words, after achieving some “final” contact profile), the
wear rate becomes equal to zero (Ciavarella and Hills, 1999) and
after oscillations proceed in the “absence” of wear. This allows,
in particular, to estimate a total wear volume for a given initial
contact shape, material parameters, and loading conditions. It is
necessary to note that in the mentioned conditions, wear occurs
at lower spatial scales (Gnecco and Meyer, 2015).

The results of the performed numerical simulations (see
Figures 2, 3) show that the wear rate initially grows, approaches a
maximum value at a certain value of Ñ, and then decreases to zero
that corresponds to the “shakedown.” The similar character of the
dependence of wear rate on cycle numberw(N) = dV

dN
is obtained

in experimental and theoretical studies (Kasarekar et al., 2007).
In this connection, it is interesting to compare the quantitative
estimations of parameters of the dependence w(N), obtained in
the developed MDR-based model, with analytic estimations.

Chai and Argatov (2019) give an analytic equation for wear
rate against cycle number based on the results of numerical
simulation by Kasarekar et al. (2007), which reads:

w(N) = w0

[

1+ β1
N

N1

]

exp

(

−
N

N1

)

, (21)

where the initial wear rate w0 is defined as follows (Chai and
Argatov, 2019):

w0 = αV1ξ0 (22)

where αV = kwear/µ and 1ξ0—energy dissipation per first wear
cycle. The parameter N1 can be estimated as follows (Chai and
Argatov, 2019):

N1 =
V∞

w0(1+ β1)
, (23)

where V∞ is a total worn volume (assuming that wear rate tends
to zero with an increasing number of cycles).

Simulation results for a parabolic indenter are shown in
Figure 2. The obtained numerical dependence of wear rate on

the number of cycles was approximated with Equation (21). The
values of parameters w0 β1, and N1 were estimated by means
of the non-linear least-squares method (Marquardt, 1963). It
is seen that Equation (21) represents a good approximation of
the numerically obtained results. The estimated values of the
parameters β1 and N1 are given in Table 1. In the paper by Chai
and Argatov (2019), estimation of the parameter β1 is given:
β1 = 3.11. In the present study, estimation of β1 is about β1 ≈ 3
for a parabolic indenter, which is in good agreement with the
given analytically obtained quantity earlier.

Simulation results for a conical indenter are presented in
Figure 2. In this case, Equation (21) also allows performing a
good approximation of the numerically obtained dependence of
wear rate on cycle number. However, for a conical indenter, the
estimated value of β1 is β1 = 2.73.

The shape and estimated values of the parameters of the
dependence of wear rate on cycle numbers are in agreement
with previously obtained analytic estimations (Chai and Argatov,
2019). In general, the results of performed simulations show that
the method of dimensionality reduction allows us to adequately
describe the dynamics of wear of arbitrary bodies of revolution.

CONCLUSIONS

We have performed numerical simulations of the evolution of
wear rate of elastic bodies of revolution within a theoretical
model based on the method of dimensionality reduction. It
was shown that numerical dependencies of wear rate on a
normalized number of cycles coincide with analytical equations
for such dependencies. For a parabolic indenter, estimations of
the parameter β1 ≈ 3.05 obtained in the present study and the
paper (Chai and Argatov, 2019) agree. For a conical indenter,
the estimation of β1 is β1 ≈ 2.73. A detailed description
of the indenter shape that influences on wear rate evolution
requires further studies. Summarizing, we can confirm that
the present results demonstrate the applicability of the method
of dimensionality reduction for analysis of wear dynamics,
including quantitative prediction of wear rate and a total volume
of worn material.
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We report a series of experiments on the indentation of steel indenters into a soft layer

of transparent rubber with relatively high adhesion. The roughness properties of the steel

indenters are varied by undergoing preparation using sandpaper with different grain sizes.

Starting from a smooth surface, additional roughness increases the adhesive strength

up to a critical roughness value, after which it significantly decreases. Furthermore, we

look at the evolution of the contact area during slow indentation and detachment. It

was found that, during indentation, the contact area changes more sharply compared to

detachment (pull-off).

Keywords: surface energy, contact area, adhesive contact, indentation experiments, hysteresis, rough surfaces

INTRODUCTION

Roughness plays a significant role for the adhesive strength of contacts between materials. The
roughness of many surfaces in nature is of the fractal type (Persson, 2014). When such surfaces
approach one another, the highest asperities are first to come into contact. For hard materials,
such as metals or rocks, the load is then carried by a few peaks alone. As a result, the real contact
area is much smaller than the apparent contact area (Persson, 2006). Because adhesive interactions
are extremely short-ranged, they effectively only act in the vicinity of real contact patches. For
that reason, the observed adhesion force between hard objects is very small even at high values
of surface energy. When at least one of the materials is very soft, like rubber, and the roughness
is not too high, a much larger real contact area can be realized, with the rubber partially filling
the gaps between roughness peaks. When compared to a perfectly smooth surface, one with mild
roughness was shown to increase the adhesive toughness. This can be explained by the increased
effective surface in contact or by the instability of the detachment process, when roughness peaks
effectively hinder the advancing of the detachment front. In Guduru (2007), this was evidenced
by choosing a special roughness in the form of axisymmetric waviness on the indenter surface.
Indeed during detachment, multiple stable configurations of the contact succeed one another. The
load–displacement curve is not monotonous and not continuous (Guduru, 2007; Jin et al., 2013).
A similar effect can be observed when otherwise flat surfaces are equipped with shallow dimples.
Introducing a moderate superposed roughness here can affect the total adhesive strength in both
positive and negative ways (Papangelo and Ciavarella, 2017, 2018).

The existence of an adhesive enhancement for moderate roughness leads to the conclusion that
there should be optimal surfaces with roughness properties, at which the adhesive strength of the
contact has the highest value. Due to the importance of rough contacts for industry and daily life,
there are many works done by different scientific groups with investigations of the particularities
of contact between rough surfaces in the presence of adhesion. There are different experiments
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(Benz et al., 2006; Tiwari et al., 2017; Liu et al., 2018; Sahli
et al., 2019), theories (Johnson, 1995; Persson, 2006; Persson
and Scaraggi, 2014; Ciavarella, 2015; Papangelo et al., 2019), as
well as computer simulations (Pastewka and Robbins, 2014; Rey
et al., 2017; Li et al., 2019). A short historical review of the
development of adhesion theories can be found in Popova and
Popov (2018). The majority of theories for rough contacts are
based on JKR-type adhesion interaction model (Johnson et al.,
1971). For smooth spherical contacts, the JKR model predicts the
dependency of the normal force FN on the indentation depth d
to be a single universal curve, independently from whether the
motion takes place in the direction of approach or detachment.
In reality, an adhesive hysteresis (Deng and Kesari, 2019) is
typically observed. This hysteresis leads to energy dissipation in
any indentation–detachment cycle.

In the present paper, we experimentally investigate the
behavior at indentation and at detachment of spherical surfaces
with different parameters of roughness.

PROBE PREPARATION

In our experiments, we used spherical steel indenters with
radius R = 30, 40, 50, and 100mm. With each indenter, we
conducted 12 experiments with different roughness values of its
surface. The roughness was changed with sandpaper Matador
with different grit numbers, which correspond to the different
sizes of grains. For the first experiments, the surfaces were
prepared using P2000 sandpaper and had almost mirror-like
properties. After processing with sandpaper, the indenter was
cleaned in the chemical solution EMAG EM-404 for 16min,
using the ultrasonic cleaner Codyson CD-4800, before going into
the adhesion experiment.

After each experiment, we measured the 3D topography of the
indenter surface using a KEYENCE VK-100 series microscope,
at ×10 magnification. We measured 200–300 single images
separately, with size of 1,398mm × 1,048mm each. These
parts had resolution of 1,024 × 768, with fixed horizontal
distance between points 1x = 1y = 1,365 nm. To exclude the
macroscopic curvature in our roughness characterization, we
subtracted from each part a polynomial shape of power four,
which we obtained by the least square method. Figure 1 depicts
a typical view of the measured inclined surface (left panel) and
after substraction of the polynomial shape (right panel).

After completion of the experiments for one roughness value,
we used the next sandpaper with bigger corn size and repeated the
same for all sandpapers listed in Table 1. After the last sandpaper
P40 treatment, we conducted two additional experiments with
even greater roughness. This was obtained by manual treatment
with a hacksaw and the subsequent removal of some features.
(“P0” refers to the hacksaw surface; “P0+180” is for additional
processing of indenter P0 after experiment with sandpaper P180).

EXPERIMENTAL SETUP

The freshly prepared indenter is pushed into the rubber base
to a maximal indentation depth of 0.4mm (0.3mm for R =

100mm). Then, it is pulled off until full detachment, when

complete vanishing of the contact is realized. The rubber base
consists of a 5-mm-thick layer of optically smooth, clear rubber
TARNAC CRG N3005, located on a surface of silicate glass.
No special measures were taken to fixate the rubber to the
glass due to its good adhesive properties. Throughout the
experiment, the contact was observed from below with a digital
camera [see Figure 2A (pos. 8)]. The indenters were moved in
normal direction with linear actuator PI M-403.2DG (pos. 1
in Figure 2A), controlled by controller PI C-863 (pos. 7). The
experiments were done with distance control, not force control,
and a constant velocity of v = 1 µm/s was used in all the
experiments. The normal force was measured by the force sensor
ME K3D40 (pos. 3) with amplifier GSV-1A4 SubD37/2, which
was connected to a PC with 16-bit NI USB-6211 analog to a
digital converter. While the rubber layer can be tilted in two
horizontal axis (with tilting mechanism on pos. 5) for use in
flat-indenter experiments (Popov et al., 2017), such adjustments
were not necessary for the current investigation with spheres.
All measurements and saving of the obtained displacement,
normal force, and contact area were done within a LabVIEW
computer program.

The lighting of the contact area was realized using 80 LEDs,
which illuminated the contact zone from all four sides (see
Figure 2B). Because the light enters the rubber at a low angle,
a good contrast between contact and non-contact zones is visible
in the camera image. We employed a computer algorithm based
on differences in pixel intensity to differentiate the two. Even
though from the analysis of the digital pictures we technically
obtained the visible contact area, we assume that it represents the
real contact area with reasonable accuracy.

While the experimental equipment is capable of investigating
contact phenomena in the presence of tangential motion (see 2nd
linear stage in Figure 2A, pos. 2 and 6), this capacity was not used
in the current work.

We investigated the situation with a very slow vertical
indenter velocity v = 1 µm/s. This was done to best
achieve a quasi-static situation and allowed to use theories
for static contacts (Hertz, JKR) to describe the contact
properties. For faster motion, the velocity affects the
obtained results critically, for instance, via viscoelastic
properties. The effect of different velocities was investigated
in Waters and Guduru (2010) for tangential contact and
in Lyashenko and Popov (2019) for the setup covered in
this paper.

EXPERIMENTAL RESULTS

Adhesive Strength
After preparation of the indenter for each roughness, we did three
cycles of indentation in a series, without cleaning or changing the
indenter properties between these cycles.

During each cycle, a series of digital images was recorded.
In Figure 3, sample pictures of the contact area at different
roughness of the indenter are shown.

For each experiment, the dependencies of the normal force
FN and contact area A on the indentation depth d followed
the general behavior as shown in Figure 4. The blue curves
with negative values of the indentation depth and normal
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FIGURE 1 | Indenter surface processed with sandpaper P40 (A) as from microscope measurement and (B) after substraction of a polynomial shape to eliminate

macroscopic curvature. Values on all axes are in millimeters.

TABLE 1 | Average size of the grains of sandpaper according to standard ISO-6344.

No. P2000 P1500 P1000 P800 P400 P320 P180 P80 P60 P40

Size (µm) 10.3 12.6 18.3 21.8 35 46.2 82 201 269 425

FIGURE 2 | Photograph of the experimental device: (A) entire device and (B) contact zone between steel indenter and 5-mm-thick layer of transparent rubber located

on the glass plate.

force correspond to the detachment process (pull-off). At this
phase, adhesion plays a significant role; otherwise, FN < 0
cannot be observed. The absolute value of minimal force FN
is called adhesion strength of the contact. In a force-controlled
experiment, this value would have to be exceeded in order to
separate the surfaces (Johnson et al., 1971).

During indentation (dashed red lines), the normal force FN
has practically only positive values because the influence of
adhesion at indentation is very weak. This phase can thus be
approximated by the Hertz contact theory (Hertz, 1881) and
the normal force can thus be calculated with the well-known
formula FN = 4E∗a3/(3R). Here a = (Rd)1/2 is the contact
radius, R is the radius of spherical indenter, E∗ = E/(1–ν2) is
the reduced value of elastic modulus, E is the elastic modulus,

and ν is the Poisson ratio. However, these formulas are correct
only in half-space approximation. In our experiments, we used
a rubber layer with thickness h = 5mm. Therefore, the normal
force is always higher compared to the half-space solution. It
is necessary to do additional simulations to obtain the correct
dependencies FN(d). We did such simulations in the framework
of boundary elements method (BEM) for layered systems (Li
et al., 2020) based on JKR-type interaction between contacted
bodies. For our rubber material, we assumed Poisson ratio ν

= 0.47 (near ratio 0.5 for incompressible elastomers). From a
comparison between the experimental results and the theory
for different cylindrical and spherical indenters, we have found
the approximate value of the rubber elastic modulus to be E
≈ 0.324·106 Pa (Lyashenko and Popov, 2019). Our experiments
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FIGURE 3 | (A) Pictures of the contact area at different roughness of indenter with radius R = 100mm and zero indentation depth d = 0mm during phase of

detachment. (B) Visible contact area as determined by the computer program.

FIGURE 4 | General behavior of main macroscopic parameters during indentation (dashed red lines) and pull-off (solid blue lines): (A) dependence of normal force FN

vs. indentation depth d, (B) dependence of contact area A vs. indentation depth d, (C) dependence of contact area A vs. normal force FN. These dependencies were

obtained in real experiment in the case of P2000 for the indenter of the radius R = 100mm. With symbols, the results of the computer simulation are shown: triangles

for absence of adhesive interaction γ 12 = 0 J/m2 and stars for the value γ 12 = 0.9 J/m2.

show that, during the indentation phase, adhesion does not
play a significant role, and in the point of the first contact, the
contact area barely spreads. The normal force FN shows small
negative values near zero at the beginning of the indentation
phase. In all plots in Figure 4, the results of BEM simulations
are shown by triangles. In these simulations, the value of specific
work of adhesion γ12 was set to zero during indentation, so
the contact shown is effectively adhesionless. What remains is
the Hertz contact, but generalized to the situation of a finite
elastic layer. From this figure, it can be seen that a fairly
good coincidence between simulations and experiment results
is realized. In the phase of detachment, we approximated the
experimental results with the curve, obtained in BEM simulations

with the value γ 12 = 0.9 J/m2. These results are shown in
Figure 4A with stars. The situation of indentation without
adhesion and detachment with adhesion is similar to the case
presented in Figure 3 in Ciavarella et al. (2019). When the
direction of motion is changed from indentation to pull-out,
the contact area remains constant for some time, similar to
what was observed in Waters and Guduru (2010). Such type of
experimental behavior can be explained within the framework
of the approach of “chemical heterogeneity” of the contact area
(Popov, 2020).

In Figure 5, the dependencies of normal force FN vs.
indentation depth d for indenters with different roughness are
shown (see also Supplementary Video 1). As can be seen, all
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curves show a similar behavior in the indentation phase, but not
in the detachment phase. Some curves at the indentation phase
decline from universal behavior, for example, curves P0 and P0
+ 180 for the case of indenter R = 50mm. Since we set d = 0 at
the point of the first contact, this corresponds only to the contact

of the highest roughness peaks at a large roughness amplitude.
For the detachment phase, a simple trend in the dependency on
the roughness is not immediately visible. In Figure 6, we show
the adhesive strength (absolute value of minimal normal force at
phase of detachment) for all indenters as a function of sandpaper

FIGURE 5 | Dependencies of normal force FN vs. indentation depth d for all experiments (only first indentation cycles), with indenters of radii at 100, 50, 40, and

30mm. Each plot has 12 dependencies for different roughness. The solid red lines in all figures correspond to the situation with smallest roughness P2000.

FIGURE 6 | Dependencies of adhesive strength measured in experiments vs. grit number of sandpaper for indenters with radius R = 100, 50, 40, and 30mm. The

symbols with numbers 1, 2, and 3 in the figure are first (diamonds), second (triangles), and third (circles) cycles of indentation.
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number. Please note that the far-right case at −180 corresponds
to our “P0+ 180” sample.

In Figure 6, we show the normalized values of normal forces
Fmin/FJKR. In the case of the half-space, JKR theory gives the

value of minimal adhesive force with the simple formula FJKR
= −3πRγ 12/2, and for the cases R = 100, 50, 40, and 30mm,
we obtained the critical forces FJKR = −0.424, −0.212, −0.170,
and−0.127N, respectively. To find these values, we used surface

FIGURE 7 | Dependencies of energy dissipation 1E (mJ) due to adhesion in the full cycle of indentation vs. grit number of the sandpaper for indenters with radius R =

100, 50, 40, and 30mm. The symbols with numbers 1, 2, and 3 in the figure are first (diamonds), second (triangles), and third (circles) cycles of indentation.

FIGURE 8 | Dependencies of calculated C(q) for all indenters and roughness. The curves with different colors correspond to the curves in Figure 5 with the same

colors and line styles (solid and dashed lines). The solid red lines in all figures correspond to the situation with smallest roughness P2000.
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energy γ 12 = 0.9 J/m2 (see Figure 4 and the explanation of
this figure). However, we did all experiments with the rubber
layer of thickness h = 5mm, so we need to obtain proper
values of critical forces directly from BEMmodeling (for the case
R = 100mm, the results of modeling are shown in Figure 4).
In modeling, we obtained other critical values of the forces
−0.522, −0.226, −0.178, and −0.131, in comparison with half-
space results. In all situations under consideration, the adhesive
strength was bigger in the case of the layer. As can be seen,
with a decrease of the indenter radius R, the difference between
results for half-space and layers decreases also because when the
thickness of the layer is much bigger than the indenter radius,
we are in the limit of half-space approximation. The values of
Fmin in Figure 6 were found directly from the experiment (see
Figure 5). With the exception of R = 30mm, it can be seen
from Figures 5, 6 that an increase in the roughness first leads
to increased adhesive strength. At big roughness values, the
adhesion strength significantly decreases. Consequently, there
must be an optimal value of roughness, at which the adhesive
strength takes maximal values. In our case, the greatest adhesive
strength corresponds to processing of the surface with sandpaper
around P320. In Figure 6, for the cases R = 100mm and R
= 50mm, the normalized strength for P2000 corresponds to
the value Fmin/FJKR ≈ 1, but for another 40 and 30mm, it is
Fmin/FJKR ≈ 1.5 for the cases of flat surfaces with roughness of
P2000. It happens because surface energy γ 12 can significantly
vary in value in different experiments. Surface energy is a
function of the contact duration, temperature, surface chemical
composition, and so on. However, we used the same value of
surface energy to find the FJKR for all experiments. Because of
this, we observe such deviations.

Comparing the different repetitions of the experiment, we
found that the strength of the contact has maximal values at first
detachment and is slightly reduced at the next contact cycles.
We assume that this is due to the freshly cleaned surface of the
indenter. In the subsequent indentations, the indenter surface
may already contain traces of rubber, and surface energy is
potentially decreased. Also note that our indenter with radius
R = 30mm did not show a very clear dependence of adhesive

strength vs. roughness (see Figure 6). We assume that this is
due to the very small contact area at this radius. Here individual
stochastic particularities in the center of the indenter determine
the adhesive strength.

Figure 7 shows the calculated values of energy dissipation 1E
during the indentation cycle for all situations as a function of
sandpaper number. These dependencies are similar to Figure 6:
with an increase of adhesive strength, dissipation also increases.
This is to be expected since an increase of the adhesive strength
leads to the growth of the hysteresis loop width. Note that the
indenter with radius R = 100mm had an indentation depth of d
= 0.3mm, while it was 0.4mm in all other cases.

Surface Topography Measurements
After subtraction of the polynomial approximation of the
macroscopic shape, we calculated the power spectra density C(q)
of the surface topography in a standard way (Persson, 2014)
and averaged this dependency for all sub-areas of the indenter.
Figure 8 shows curves C(q) for all indenters.

Based on C(q), both the averaged root mean square roughness
hrms and the averaged slope κ using standard definitions
(Persson, 2014) were calculated:

h2rms=2π

∫ qmax

qmin

qC
(

q
)

dq,

κ2
=2π

∫ qmax

qmin

q3C
(

q
)

dq.

Figure 9 shows these values for all indenters and cases that we
studied. In Liashenko and Lyashenko (2020), we described the
numerical algorithm for calculating C(q) in detail.

Evolution of the Contact Area
Furthermore, we analyzed the area of contact vs. indentation
depth for a different roughness of indenter with radius R =

40mm because, for this radius, the obtained pictures had the best
contrast.We chose to normalize the contact areaAwith its largest
value Amax, which was different for each experiment. The contact

FIGURE 9 | Measured values of hrms and κ for all the cases that we considered, obtained by using C(q). We showed the last value “P0+180” as a negative value

“−180” because “P0 + 180” is not a number.
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FIGURE 10 | Dependencies of normalized contact area A/Amax vs. indentation

depth d at indentation and detachment processes for different types of

roughness of indenter with radius R = 40mm. The lines correspond to the

different values of the sandpaper (see Figure 5).

FIGURE 11 | Dependencies of the change in the contact area 1(A/Amax) vs.

indentation depth d at indentation and detachment of indenter R = 40mm for

small (P1500) and big (P0) roughness.

areas were monitored for both indentation and detachment
phases. The biggest area corresponds to the maximal indentation
depth d = 0.4mm (0.3mm for R = 100mm). In Figure 10,
the dependencies of the normalized contact area A/Amax vs.
indentation depth d are shown. For all curves, a very pronounced
hysteresis of the contact area for the two different directions
is observed.

Figure 10 depicts the dependencies for all indenters except
P2000 because the mirror-like properties of these surfaces (in
the case R = 40mm) prevented us from using the analysis
tool. It can be seen that, during the indentation phase, only
the cases P0 (dashed blue lines) and P0 + 180 (black solid
lines) deviate from universal behavior. During the detachment
phase, P0 has a significantly smaller A/Amax, while the difference
is less pronounced for P0 + 180. Note that the case of very
large roughness has already shown deviations from universal
behavior of the normal force as a function of indentation depth
(see Figure 5).

FIGURE 12 | Dependency of the variable σ characterizing the typical jumps in

contact area vs. sandpaper grit number for indenter with radius R = 40mm.

As we noted before, the indentation process is described well
by the Hertz theory (Hertz, 1881), where contact radius is a
= (Rd)1/2 and contact area A = πa2, therefore A = πRd. We
should thus expect to see a clear linear behavior in the A/Amax(d)
dependency. However, the two lower curves in Figure 10 at
indentation significantly decline from this behavior. This is
also expected since the extreme roughness dominates over the
spherical shape in small d (Pohrt and Popov, 2013).

Local Stability of Indentation and
Detachment
Let us now have a closer look at the way new contact spots appear
during indentation and how they are lost during detachment. We
investigated the change in the contact area 1Ã = 1(A/Amax)
for each time step 1t = 1 s, corresponding to 1d = 1µm. Such
dependencies are shown in Figure 11 for small (P1500) and big
(P0) roughness. It can be seen that, in these two cases, the contact
area increases with the appearance of new areas at the boundary
of the contact. For the rougher surface, the new contact areas
tend to have significantly bigger sizes, in comparison with the
smoother indenter. During detachment, the contact area of P0
decreases much more homogeneously. This can be explained by
the local instabilities of asperities (Li et al., 2019; Popov, 2019).

To quantify this, we calculated standard deviation σ =
〈

(1Ã−
〈

1Ã
〉

)
2
〉1/2

in each case. We chose to only look at 0.2

< d < 0.4 for the indentation phase and at 0 < d < 0.2 for
detachment. In these regions,1Ã only fluctuates around a certain
value but has no global trend. For the dependency of σ on the grit
number, see Figure 12.

Here we can clearly see that detachment is more homogeneous
than indentation for all cases under consideration. Interestingly,
the value σ does not change significantly with the grit number
of sandpaper, except when this number exceeds a critical value.
Starting from approximately P320, σ increases strongly when the
grit number is decreased. Please note that this value coincides
with the maximum adhesion strength, as shown in Figure 6.

CONCLUSIONS

We have tested the adhesive strength of rough steel indenters
in contact with soft rubber using different radii and different
sandpapers to produce roughness. We found that, in contrast
to JKR theory, adhesive hysteresis was always observable. The
maximum value of the attractive force (adhesive strength) was
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found to depend on surface roughness. The increase over a
smooth indenter reaches 25% for the case R = 40mm, 32% for
R= 100mm, and 90% for R= 50mm, respectively. Observations
of the contact area evolution showed that, for rough surfaces,
the attachment and the detachment of surface patches happen
more abruptly, especially during the indentation phase.When the
sandpaper grit number used for surface preparation is below 320,
this effect is very pronounced.
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Supplementary Video 1 | Movies of two experiments for indentation of steel

parabolic indenter with radius R = 40mm in the elastic layer of transparent rubber

TARNAC CRG N3005. The velocity of indenter motion for both cases is v = 1

µm/s. Panels from left to right show real pictures of the contact area,

dependencies of normal force FN vs. indentation depth d, and dependencies of

normalized contact area A/Amax vs. indentation depth d. The three upper panels

correspond to indenter with surface processed by sandpaper P1500. The lower

three panels correspond to indenter with highest roughness “P0”. In the pictures

of contact area, the time of experiment duration in seconds is shown. Three

consistent cycles of indentation are shown. For the first cycle, in the case of

P1500, the adhesion strength (absolute value of minimal normal force at phase of

detachment) FN = 0.307N is 2.52 times bigger value than in the case P0, where

the corresponding value is FN = 0.122N. For bigger roughness as in P0, the

contact disappears earlier than for the case P1500. These two movies correspond

to Figure 11 in the article.
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New thermoplastic poly(ether-urethane) (TPUs) pressure-sensitive adhesives (PSAs) have
been synthesized with the prepolymer method by reacting methylene diisocyanate,
different blends of polyether diols—poly(propyleneglycol) (PPG) and poly(tetramethylene
ether glycol) (PTMEG)—and 1,4-butanediol chain extender; different NCO/OH ratios have
been used. The properties of the TPU PSAs depended on both the NCO/OH ratio and
the PTMEG content in the blend. The addition of PTMEG polyol produced semicrystalline
regions in the soft segments of the TPUs and inhibited the mobility of the polymeric
chains; this led to improved cohesion of the TPU PSAs; however, similar degrees of
phase separation were obtained in all TPUs synthesized with different PTMEG contents.
The increase of the PTMEG content in the polyols blend improved both the cohesion and
the adhesion but decreased the tack of the TPU PSAs. The optimal balance between
the adhesion and cohesion properties was found in the TPU PSA synthesized with 50
wt% PPG + 50 wt% PTMEG and an NCO/OH ratio of 1.20.

Keywords: polyurethane, pressure-sensitive adhesive, viscoelastic properties, probe tack, peel, shear under creep

INTRODUCTION

Pressure-sensitive adhesives (PSAs) are able to bond different substrates by applying light pressure
for a short time, and they must be removed without leaving any residue. Therefore, the viscoelastic
properties of the PSAs determined their performance; that is, the viscous component must be
balanced for allowing adequate wettability and bonding, and the elastic component must be
sufficient for allowing clean debonding from the substrate surface (Feldstein and Siegel, 2012).
Pressure-sensitive adhesives are used as labels, tapes, protective films, and so on, and they
are common in medical products (patches, surgical bandages, biomedical electrodes, medical
plasters, etc.), in which good biocompatibility with human skin, excellent reversible adhesion, and
permeability to water and air are important properties (Satas and Satas, 1989).

The main properties of the PSAs related to their viscoelastic properties are the tack, shear, and
peel adhesion. The tack is the initial immediate bond of a PSA with a substrate upon applying light
pressure. The shear adhesion is the resistance of the PSA to flow under creep and is essential to
ensure an adequate easy debonding from the substrate without leaving adhesive residues; that is, it
is related to the cohesion of the PSA. The force required to separate a PSA from a substrate surface
is the peel adhesion. In general, the PSA for medical applications requires a careful reversible
application to the clean skin surface, so medium–low tack is necessary.
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The PSAs for medical applications are made of natural and
synthetic rubbers, polyisobutylene (PIB), acrylates, or silicones
(Czech et al., 2011). Because of allergic issues, the acrylic and
silicone PSAs were replaced by PIBs, but PIB PSAs oxidized easily
and showed limited permeability to water and air (Higgins et al.,
1989). Polyurethane-based PSAs are scarcely used for medical
devices but polyurethane PSAs intended for transdermal drug
delivery have been developed (Chen et al., 2009), and more
recently, novel solvent-free poly(ether-urethane)-silicone cross-
linked PSAs have been synthesized for drug reservoir (Tombs
et al., 2018).

Thermoplastic polyurethanes (TPUs) have a great potential
for designing PSAs because of their segmented structure
constituted by hard and soft segments. The hard segments
are formed by reacting a diisocyanate and a short diol (chain
extender), and they are polar and short, whereas the soft segments
are made of the polyol chains, and they are less polar and
have higher length than the hard segments. Therefore, the hard
and the soft segments are incompatible and tend to segregate
in immiscible domains, and the hard segments determine the
cohesion properties of the TPUs, whereas the soft segments
are related to their tack and adhesion properties (Yilgör and
Yilgör, 2015). Thus, the structure of the TPUs can be designed
by changing the composition and the extent of the interactions
between the hard and the soft segments; this may allow finding
the right balance between their adhesion and cohesion properties;
however, typically the TPUs do not show tack, an important
property for PSAs.

Recently, different TPU PSAs synthesized with blends of
polypropylene glycols (PPGs) of different molecular weights and
4,4′-diphenylmethane diisocyanate (MDI) showed good tack at
10–37◦C but low peel strength and cohesion (Fuensanta and
Martín-Martínez, 2018). In order to improve the cohesion of the
TPU PSAs, the hard segments content of the TPUs was changed
by using different blends of PPGs of different molecular weights
(Fuensanta and Martín-Martínez, 2019), and it was shown that
the TPU PSAs synthesized with lower hard segments content had
poor shear strength but high tack and peel strength, whereas the
increase of the hard segments increased the shear strength and
the peel strength values, but tack was low.

In this study, the segmented structure and the degree of
phase separation of the TPUs have been modified by changing
the extent of the interactions between the soft segments
(blends of polyether polyols with and without alkyl pendant
groups; Scheme 1) and the hard segments content (NCO/OH
ratio = 1.05–1.35). The absence of the methyl pendant group
in the poly(tetramethylene ether glycol) (PTMEG) will allow
more net van der Waals interactions between the soft segments
in the TPU reducing the mobility of the polymer chains,
but increasing its cohesion and mechanical properties. The
mixing of PTMEG with PPG, which has no pendant group,
during the synthesis of the polyurethanes will modify the
extent of interactions between the soft segments. The structure
of the TPUs synthesized with different blends of PPG and
PTMEG polyols of similar molecular weights was determined by
infrared spectroscopy, differential scanning calorimetry (DSC),
and thermal gravimetric analysis (TGA), and their viscoelastic

properties were obtained by plate–plate rheology. Thermoplastic
polyurethane PSAs were prepared by placing TPU coatings on
PET (polyethylene terephthalate) film (Fuensanta and Martín-
Martínez, 2018), and the tack, shear under creep, and peel
adhesion properties were measured.

MATERIALS AND EXPERIMENTAL
TECHNIQUES

Materials
The TPUs were synthesized by reactingMDI [Desmodur R© 44MC
flakes supplied by Covestro (Leverkusen, Germany)], different
blends of PPG of molecular weight 2,000 g/mol [Alcupol R©

D2021 supplied by Repsol (Madrid, Spain)], and PTMEG of
molecular weight 2,000 g/mol (PTMEG) supplied by Sigma-
Aldrich (St. Louis, MO, USA). The polyols were melted and dried
at 80◦C under reduced pressure (300 mbar) for 2 h before used.
Dibutyl tin dilaurate (DBTDL) was used as catalyst, and 1,4-
butanediol (BD) was used as chain extender; both were supplied
by Sigma-Aldrich. Methyl ethyl ketone (MEK) supplied by Jaber
S.A. (Almansa, Spain) was used to dissolve the TPU for allowing
adequate coating on PET films (TPU PSAs).

Synthesis of the Thermoplastic
Poly(Ether-Urethane)s
The thermoplastic thermoplastic poly(ether-urethane)s were
synthetized by using the prepolymer method in 500mL glass
reactor under inert atmosphere (dried nitrogen), and an anchor
shaped stirrer coupled to Heidolph overhead stirrer RZR-2000
(Kelheim, Germany) was used (Fuensanta and Martín-Martínez,
2018). MDI was melted at 80◦C in the reactor, and PPG, PTMEG,
or PPG + PTMEG blends were added under stirring at 250
revolutions/min (rpm) for 30min. Afterward, 0.04 mmol catalyst
(DBTDL) was added, and the stirring was decreased to 80
rpm. The reaction lasted for 2 h, and the amount of free NCO
content was determined by dibutylamine titration. Then, the
chain extender (BD) was added under stirring at 80◦C and 80
rpm for 5min. The scheme of the synthesis of the TPUs is shown
in Figure 1.

Poly(ether-urethane) PSAs (TPU PSAs) were prepared
according the procedure described in Fuensanta and Martín-
Martínez (2019). One hundred milliliters of MEK solution
containing 40 g TPU was spread on PET film (50µm thick), and
the thickness of the TPU coating was adjusted with a metering
rod of 400µm. The solvent evaporated at room temperature for
72 h for obtaining the TPU PSAs. The thicknesses of the TPUs on
the PET films were 40 to 50 µm.

Experimental Techniques
Attenuated Total Reflection Infrared Spectroscopy
Attenuated total reflection infrared (ATR-IR) spectra of the
TPUs were obtained in absorbance mode in a Tensor 27 FT-IR
spectrometer (Bruker Optik GmbH, Erlinger, Germany) by using
Golden Gate single reflection diamond, recording 64 scans with
a resolution of 4 cm−1 in the range of wavenumbers from 4,000
to 400 cm−1 (Fuensanta and Martín-Martínez, 2018).
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SCHEME 1 | Chemical structures of the polyether polyols.

FIGURE 1 | Scheme of the synthesis of the thermoplastic poly(ether-urethane)s.

Differential Scanning Calorimetry
Differential scanning calorimetry was used to obtain the
structural properties of the TPUs, a DSC Q100 calorimeter (TA
Instrument, New Castle, DE, USA) under nitrogen atmosphere
(flow rate = 50 mL/min) was used. Seven- to 8-mg sample was
heated in hermetic sealed aluminum pan from −80 to 150◦C,
cooled at −80◦C, and heated again from −80 to 200◦C by
using heating and cooling rates of 10◦C/min (Fuensanta and
Martín-Martínez, 2018). The glass transition temperatures and
the thermal events of the TPUs were obtained from the second
DSC heating run.

Thermal Gravimetric Analysis
Thermal gravimetric analysis was also used to obtain the
structural properties of the TPUs, a TGA Q500 equipment
(TA Instruments) under nitrogen atmosphere (flow rate = 50
mL/min) was used. A 10-mg sample was placed in platinum
crucible, and it was heated from 35 to 800◦C by using a heating
rate of 10◦C/min (Fuensanta and Martín-Martínez, 2018).

Plate–Plate Rheology
The viscoelastic properties of the TPUs were assessed in a DHR-2
rheometer (TA Instruments) using parallel plate–plate geometry;
a stainless-steel plate of 20-mm diameter and a gap of 0.40mm
were used. Temperature sweep experiments were carried out
from −5 to 120◦C, by using a heating rate of 5◦C/min and a
frequency of 1Hz. Furthermore, frequency sweep experiments
were carried out at 25◦C by using 2.5% strain amplitude in the
angular frequency range from 0.01 to 100 rad/s (Fuensanta and
Martín-Martínez, 2018).

Adhesion Properties
The adhesion properties of the TPU PSAs were assessed at
25◦C by probe tack, 180◦ peel strength, and creep test under
shear (Figure 2).

The probe tack of the TPU PSAs was measured at 25◦C
by using a flat-end cylindrical stainless-steel probe of 3-mm
diameter in a TA.XT2i Texture Analyzer (Stable Micro Systems,
Surrey, UK) (Figure 2) (Fuensanta and Martín-Martínez, 2018).
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The probe was approached slowly to the TPU PSA surface
applying a load of 5N for 1 s, and it was pulled out at 10
mm/s. The maximum of the stress–strain curve was taken as the
tack of the TPU PSA. At least five replicates were carried out
and averaged.

A 180◦ peel strength of aluminum 5754/TPU PSA joints was
carried out in an Inston 4411 universal testing machine (Instron
Ltd., Buckinghamshire, UK); the pulling rate was 152 mm/min
(Fuensanta and Martín-Martínez, 2018). The TPU PSA strips
have dimensions of 30 × 300 × 0.5mm, and they were joined to
clean aluminum 5754 pieces of dimensions 30 × 150 × 1.5mm;
the joints were made by passing 30 times a 2-kg rubber-coated
roller (Figure 2). Five replicates were tested and averaged for
each joint.

The creep tests under shear of the TPU PSAs were carried
out in a Shear-10 equipment (ChemInstruments, Fairfield, OH,
USA). Thermoplastic polyurethane PSA strips of 2.4 × 20 cm
were attached to the center of a clean polished stainless-steel 304
piece. Thermoplastic polyurethane PSA area of 2.5× 2.5mmwas
joined to the stainless steel, and a 2-kg rubber-coated roller was
passed over the joint. The, the TPU PSA stainless-steel joint was
placed on the holder of the equipment hanging a weight of 1 kg
at the bottom (Fuensanta andMartín-Martínez, 2019). The creep
resistance at 25◦C of the TPU PSAs is related to their cohesion
and was obtained as the “holding time,” that is, the time needed

FIGURE 2 | Scheme of the probe tack, creep test under shear, and 180◦ peel
strength of aluminum/TPU PSA joints.

TABLE 1 | Nomenclature and composition of the poly(ether-urethane)s
synthesized with 50 wt% PPG + 50 wt% PTMEG blend and different NCO/OH
ratios.

Nomenclature PPG

(wt%)

PTMEG

(wt%)

NCO/OH

ratio

HS (%)a

1.05-50PPG50PTMEG 50 50 1.05 11.7

1.10-50PPG50PTMEG 50 50 1.10 12.5

1.20-50PPG50PTMEG 50 50 1.20 13.8

1.35-50PPG50PTMEG 50 50 1.35 15.8

aHard segments content. HS = 100 × [weight (MDI) + weight (BD)]/[total weight].

for the TPU PSA strip to fall down. Three replicates were tested
for each TPU PSA, and the results obtained were averaged.

RESULTS AND DISCUSSION

The innovative strategy of this study is the synthesis of TPUs by
using blends of two polyether polyols of different structure for
being used as PSAs. According to Scheme 1, PPG is a polyether
withmethyl pendant groups that disturb the interactions between
the chains, whereas PTMEG has no pendant groups that allow
more net interaction between the chains. In the Supplementary

FIGURE 3 | (A) ATR-IR spectra, (B) carbonyl region (1,800–1,600 cm−1 ) of
the ATR-IR spectra, and (C) variation of the free and hydrogen-bonded
urethane groups as a function of the NCO/OH ratio for TPUs synthesized with
50 wt% PPG + 50 wt% PTMEG blend and different NCO/OH ratios.
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Materials (Figures S1–S3, Tables S1, S2), the characterization
of the two polyether polyols is shown. Poly(propyleneglycol)
shows one glass transition temperature at −69◦C and one
thermal decomposition at 350◦C, whereas PTMEG shows more
intense C-O-C band at 1,101 cm−1 in the ATR-IR spectrum
and one melting process at 26◦C with noticeable enthalpy due
to the interaction between the chains; furthermore, PTMEG
shows two thermal decompositions at 280 and 417◦C (the
main); the higher temperature of the main decomposition
than in PPG can be associated to the interactions between
the chains. The use of blends of PPG and PTMEG should

FIGURE 4 | (A) DSC traces (second heating run) and (B) variation of the
derivative of the weight as a function of the temperature for TPUs synthesized
with 50 wt% PPG + 50 wt% PTMEG and different NCO/OH ratios.

change the interactions between the soft segments, which will
modify the degree of phase separation and the properties of the
TPU PSAs.

Modification of the Hard Segments
Content by Changing the NCO/OH Ratio of
the Poly(Ether-Urethane)s
For increasing the cohesion of the TPUs, their hard segments
content was increased from 11.7 to 15.8% by synthesizing
different TPUs with 50 wt% PPG + 50 wt% PTMEG blend and
different NCO/OH ratios (1.05–1.35) (Table 1).

The chemical structure of the TPUs was analyzed by ATR-IR
spectroscopy (Figure 3A). All ATR-IR spectra were normalized
with respect to the most intense absorption band of the C-
O-C group at 1,099 cm−1. The absorption bands at 3,506 to
3,498 and 3,296 to 3,292 cm−1 are attributed to the N-H
stretching of the urethane group; the N-H bending band appears
at 1,534 cm−1, and the C-N stretching is found at 1,222 to 1,221
cm−1. The main characteristic bands of the polyols (PPG and
PTMEG) appear at 2,976 to 2,856 cm−1 (C-H stretching of the
CH3 and CH2 groups), 1,449 to 1,448 cm−1 (C-H bending),
1,372 cm−1 (C-H rocking of the methyl group), and 1,099 to
1,098 cm−1–the most intense—due to C-O-C stretching. The
C=O stretching band of the urethane group is located at 1,730
cm−1, and the absorptions bands at 1,599 and 1,412 cm−1

correspond to C-C and C-H stretching of the aromatic ring of
MDI, respectively.

The ATR-IRs of all TPUs are quite similar, but they differ
in the carbonyl region (Figure 3B) in which the percentages of
the associated by hydrogen bonding urethane (bonded urethane)
groups are different depending on the NCO/OH ratio. The
free urethane and the ether groups bonded to N-H hydrogen
appear at 1,730 to 1,729 cm−1, whereas the hydrogen-bonded
urethane group appears at 1,711 to 1,710 cm−1 (Strikovsky and
Zharkov, 1993; Mattia and Painter, 2007). In order to quantify
the percentages of the free and bonded urethane groups in the
TPUs, the carbonyl region was curve fitted, assuming a Gaussian
function (Fuensanta and Martín-Martínez, 2019). According to
Figure 3C, the percentages of the free and bonded urethane
groups are similar is all TPUs, except in the one synthesized with
NCO/OH ratio of 1.10 in which the free urethane groups are
dominant. Therefore, 1.10-50PPG50PTMEG shows the highest

TABLE 2 | Temperatures and weight losses of the thermal decompositions of the TPUs synthesized with 50 wt% PPG + 50 wt% PTMEG blend and different NCO/OH
ratios.

TPU PSA 1st degradation 2nd degradation 3rd degradation

T1 (◦C) Weight loss1
(%)

T2 (◦C) Weight loss2
(%)

T3 (◦C) Weight loss3
(%)

Residue

(wt%)

1.05-50PPG50PTMEG 283 4 337 18 393 76 2

1.10-50PPG50PTMEG 297 9 325 8 383 83 0

1.20-50PPG50PTMEG — — 315 16 385 83 1

1.35-50PPG50PTMEG — — 333 28 387 70 2

DTGA experiments.
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degree of phase separation between the hard and soft segments,
whereas similar degree of phase separation is found in the
other TPUs.

The structure and thermal properties of the TPUs made
with different NCO/OH ratios have been assessed by DSC and
TGA. The DSC traces (Figure 4A) show the glass transition
temperature of the soft segments (Tg) between −55 and −62◦C;
the lowest and similar Tg corresponds to 1.05-50PPG50PTMEG
and 1.35-50PPG50PTMEG indicating lower degree of phase
separation than in the other TPUs. Thus, one of the requirements
in the adhesive in PSAs is obeyed; that is, the Tg must be
substantially lower than the temperature of use. Furthermore,
1.10-50PPG50PTMEG shows a cold crystallization of the soft
segments at 3◦C followed by a melting peak of the soft
segments at 18◦C, which derives from the interactions between
the PTMEG chains. This confirms the different structure of
1.10-50PPG50PTMEG with respect to the other TPUs, in
agreement with the results of ATR-IR spectroscopy. On the
other hand, the DTGA plots of the TPUs (Figure 4B) show
three thermal degradations due to the decomposition of the
free urethane hard domains (283–297◦C), hydrogen-bonded
urethane domains (315–337◦C), and soft domains (383–393◦C)
(Ferguson and Petrovic, 1976). Because the amounts of PPG
and PTMEG are similar in all TPUs, the differences in their
structure and thermal properties can be ascribed to different
interactions due to the hard segments. The existence of free
urethane domains can only be distinguished in the TPUs made
with NCO/OH ratios of 1.05 and 1.10, and in general, the
percentage of by hydrogen-bonded urethane domains increases
by increasing the NCO/OH ratio; 1.10-50PPG50PTMEG is
an exception (Table 2). The percentages of the soft domains
are more noticeable in the TPUs made with NCO/OH ratios
of 1.10 and 1.20. Therefore, 1.35-50PPG50PTMEG shows the
highest percentage of hydrogen-bonded urethane domains and
the lowest percentage of soft domains, indicating less mobility
of the polymeric chains and higher cohesion than in the
other TPUs. On the contrary, 1.10-50PPG50PTMEG and 1.20-
50PPG50PTMEG have the highest percentages of soft domains,
indicating higher mobility of the polymeric chains, particularly
for 1.10-50PPG50PTMEG in which dominant free urethane
domains are distinguished.

The extent of mobility of the polymeric chains in the TPUs can
be estimated from their rheological and viscoelastic properties.
Figure 5A shows a decrease of the storage modulus (G′) by
increasing the temperature in all TPUs; the decrease is more
noticeable in 1.35-50PPG50PTMEG, and the rheological curves
are quite similar in all TPUs except in 1.35-50PPG50PTMEG,
likely due to the thermal rupture of higher amounts of
hydrogen bonds between the hard domains. On the other
hand, all TPUs show a crossover of the storage and loss
moduli (Figure S4), and the values of temperature (Tcrossover)
and modulus (Gcrossover) at the crossover are given in
Table 3. Similar values of Gcrossover (1.2 105-1.6 105 Pa)
are obtained in all TPUs indicating that they fulfill the
Dahlquist criterion at room temperature (Dahlquist, 1969),
one of the requirements in PSAs. However, the values of
Tcrossover of the TPUs decrease by increasing the NCO/OH

FIGURE 5 | (A) Variation of the storage modulus (G′) as function of the
temperature and (B) variation of the storage modulus (G′) as a function of the
frequency for TPUs synthesized with 50 wt% PPG + 50 wt% PTMEG blend
and different NCO/OH ratios.

TABLE 3 | Values of temperature and modulus at the crossover of G′ and G′′ of
the TPUs synthesized with 50 wt% PPG + 50 wt% PTMEG blend and different
NCO/OH ratios.

TPU Tcrossover (
◦C) Gcrossover (Pa)

1.05-50PPG50PTMEG 40 1.2 · 105

1.10-50PPG50PTMEG 27 1.6 · 105

1.20-50PPG50PTMEG 33 1.4 · 105

1.35-50PPG50PTMEG 10 1.3 · 105

Plate–plate rheology experiments (temperature sweep).

ratio; 1.10-50PPG50PTMEG is an exception because of its
particular structure. Furthermore, 1.35-50PPG50PTMEG shows
a temperature at the crossover lower than 25◦C, indicating that
at room temperature the elastic properties are dominant, and
lower mobility of the polymeric chains than in the other TPUs
can be expected.

The most common typical applications of the PSAs are at
room temperature, and therefore, the viscoelastic properties of
the TPUs were also determined at 25◦C by oscillatory frequency
sweep rheological experiments. It has been shown elsewhere
(Derail and Marin, 2009) that the tack and the shear strength
of the PSAs correlated well with their storage moduli (G′)
values at lower frequency, whereas the peel strength was related
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TABLE 4 | Probe tack at 25◦C, holding time at 25◦C, and 180◦ peel strength at
25◦C of aluminum 5754/TPU PSA joints.

TPU PSA Probe tack

(kPa)

Holding time

(min)

180◦ peel

strength

(N/cm)a

1.05-50PPG50PTMEG 278 ± 17 27 ± 5 0.63 ± 0.03

1.10-50PPG50PTMEG 874 ± 18 188 ± 27 9.25 ± 0.35

1.20-50PPG50PTMEG 576 ± 17 1,518 ± 167 9.91 ± 0.56

1.35-50PPG50PTMEG 185 ± 8 331 ± 71 1.75 ± 0.03

Thermoplastic polyurethane PSAs synthesized with 50 wt% PPG+ 50 wt% PTMEG blend

and different NCO/OH ratios.
aCohesive failure of the adhesive was always obtained.

TABLE 5 | Nomenclature and composition of the poly(ether-urethane)s
synthesized with different PPG + PTMEG blends.

Nomenclature PPG

(wt%)

PTMEG

(wt%)

NCO/OH

ratio

HS

(%)a

1.20-100PPG 100 0 1.20 13.9

1.20-75PPG25PTMEG 75 25 1.20 13.8

1.20-50PPG50PTMEG 50 50 1.20 13.8

1.20-25PPG75PTMEG 25 75 1.20 13.8

1.20-100PTMEG 0 100 1.20 15.8

NCO/OH ratio = 1.20.
aHard segments content. HS = 100 × [weight (MDI) + weight (BD)]/[total weight].

to their G′ values at high frequency. Figure 5B shows that
1.35-50PPG50PTMEG should exhibit excellent tack but poor
cohesion due to its low G′ value, and the rest of TPUs have
similar rheological plots and higher G′ values at lower frequency,
anticipating lower tack but higher cohesion. On the other hand,
all TPUs should show good peel strength because of the high
values of G′ at higher frequency.

The adhesion properties of the TPU PSAs made with different
NCO/OH ratios were evaluated by probe tack, 180◦ peel strength,
and creep test under shear (Table 4). In general, the TPU PSA
made with NCO/OH ratio of 1.05 has low tack, low cohesion,
and low peel strength due to its lower degree of phase separation,
whereas 1.35-50PPG50PTMEG has good cohesion and peel
strength, but low tack, likely due to the high content of the
hydrogen-bonded urethane domains and low G′ value at lower
frequencies in the rheological curves. Excellent tack and peel
strength values are obtained for 1.10-50PPG50PTMEG, but the
cohesion is moderate because of its particular structure, and
1.20-50PPG50PTMEG shows good tack, high cohesion, and high
peel strength.

Modification of the Interactions Between
the Soft Segments by Changing the
PTMEG Content in the
Poly(Ether-Urethane)s
In this study, the interactions between the soft segments in the
TPUs have been changed by mixing different amounts of PPG

FIGURE 6 | (A) Carbonyl region (1,800–1,650 cm−1) of the ATR-IR spectra
and (B) variation of the free and hydrogen-bonded urethane groups as a
function of the PTMEG content in the TPUs synthesized with different PPG +

PTMEG blends. NCO/OH ratio = 1.20.

and PTMEG polyols during their syntheses; an NCO/OH ratio
of 1.20 was used; this NCO/OH ratio was selected because of
the adequate properties of the TPU PSAs, shown in Table 4.
Table 5 summarizes the composition of the TPUs PSAs in which
the hard segments content is similar (∼14%); 1.20-100PTMEG is
an exception.

The structural characterization of the TPUs was assessed by
ATR-IR spectroscopy, DSC, and TGA. All ATR-IR spectra of
the TPUs show similar absorption bands, but the intensities
of the C-H bands due to the polyols-−2,970 to 2,940 and
2,868 to 2,854 cm−1 (C-H stretching), 1,454 to 1,447 cm−1

(C-H bending), 1,372 to 1,370 cm−1 (C-H rocking of methyl
group)—and 1,098 to 1,099 cm−1 (C-O-C stretching) (Figure S5)
change. On the other hand, the carbonyl region of the ATR-
IR spectra (Figure 6A) is similar in all TPUs synthesized
with PPG + PTMEG blends, although the wavenumber in
the maximum shifts slightly from 1,728 to 1,731 cm−1 by
increasing the PTMEG content. The percentages of the free
and hydrogen-bonded urethane groups obtained by curve fitting
of the carbonyl bands (Figure S6) are shown in Figure 6B,
the percentages of free urethane are slightly higher than
the ones of the hydrogen-bonded urethane groups in all
TPUs, irrespective of the PPG + PTMEG blend, except in
1.20-100PPG in which the hydrogen-bonded urethane groups
are dominant.

The DSC traces of the TPUs (Figure 7A) show the Tg of
the soft segments between −66 and −50◦C, and the increase
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of the PTMEG content decreases the Tg value of the TPU.
Furthermore, the DSC traces of the TPUs synthesized with
PTMEG and 25 wt% PPG + 75 wt% PTMEG blend show
the melting of the soft segments indicating the existence
of semicrystalline domains due to the interactions between
the PTMEG soft segments. On the other hand, the TGA
thermograms of the TPUs (Figure S7) and the temperatures
at which 5 and 50 wt% are lost increase by increasing
the PTMEG content (Table 6). Furthermore, the amounts of
the soft domains in the TPUs made with PPG + PTMEG
blends are similar, but the temperature of decomposition

FIGURE 7 | (A) DSC traces (second heating run) and (B) variation of the
derivative of the weight as a function of the temperature for TPUs synthesized
with different PPG + PTMEG blends. NCO/OH ratio = 1.20.

of the soft domains increases by increasing their PTMEG
content, indicating higher interactions in the TPUs. The
thermal decomposition of the hydrogen-bonded urethane hard
domains can only be distinguished in the TPUs synthesized
with more than 50 wt% PTMEG, and the percentages of free
urethane hard domains in the TPUs decrease by increasing
their PTMEG content, indicating stronger interactions between
the hard domains. Additionally, the temperature at which
the free urethane hard domains of the TPUs decomposes
decreases by increasing the PTMEG content because of the
stronger interactions between the hydrogen-bonded urethane
hard domains.

The viscoelastic properties of the TPUs synthesized with
PPG + PTMEG blends were studied by temperature sweep
plate–plate rheology experiments (Figure S8), and the
storage modulus (G′) increases by increasing the PTMEG
content, although the viscoelastic curves of the TPUs
made with PPG or PTMEG only show different trend. All
TPUs exhibit a crossover between the G′ and G′′ moduli
(Figure S9), and Table 7 shows that the temperatures at the
crossover of the TPUs increase by increasing their PTMEG
content, but the moduli at the crossover are similar in
all TPUs.

Frequency sweep plate–plate rheology experiments were
carried out to assess the viscoelastic properties at 25◦C of
the TPUs (Figure 8A). The rheological experiment of 1.20-
100PTMEG could not be done because of the sliding of the
plates during the experiment. The storage moduli (G′) of

TABLE 7 | Values of temperature and modulus at the crossover of G′ and G′′ of
the TPUs synthesized with different PPG + PTMEG blends.

TPU Tcrossover (
◦C) Gcrossover (Pa)

1.20-100PPG 1 1.2 · 105

1.20-75PPG25PTMEG 25 1.2 · 105

1.20-50PPG50PTMEG 33 1.4 · 105

1.20-25PPG75PTMEG 49 1.5 · 105

1.20-100PTMEG 25 1.6 · 105

NCO/OH ratio = 1.20.

Plate–plate rheology experiments (temperature sweep).

TABLE 6 | Temperatures at which 5 (T5%) and 50 wt% (T50%) are lost, and temperatures and weight losses of the thermal decompositions of the TPUs synthesized with
different PPG + PTMEG blends.

TPU PSA T5% (◦C) T50% (◦C) 1st degradation 2nd degradation 3rd degradation

T1 (◦C) Weight loss1 (%) T2 (◦C) Weight loss2 (%) T3 (◦C) Weight loss3 (%)

1.20-100PPG 287 365 — — — — 371 99

1.20-75PPG25PTMEG 289 371 317 18 — — 378 80

1.20-50PPG50PTMEG 291 379 314 16 — — 385 82

1.20-25PPG75PTMEG 298 388 287 5 332 13 396 80

1.20-100PTMEG 311 391 299 5 342 15 401 79

NCO/OH ratio = 1.20.
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FIGURE 8 | (A) Variation of the storage modulus (G′) at 25◦C as a function of
the frequency and (B) Chang’s viscoelastic windows at 25◦C of the TPUs
synthesized with different PPG + PTMEG blends. NCO/OH ratio = 1.20. The
four regions of Chang’s viscoelastic window are shown as dotted lines, and
the dashed line corresponds to the Dahlquist criterion.

TABLE 8 | Probe tack at 25◦C, holding time at 25◦C, and 180◦ peel strength at
25◦C of aluminum 5754/TPU PSA joints.

TPU PSA Probe tack

(kPa)

Holding time

(min)

180◦

peel strength

(N/cm)a

1.20-100PPG 438 ± 20 5 ± 0 0.21 ± 0.03 (CA)

1.20-75PPG25PTMEG 661 ± 39 240 ± 0 4.62 ± 0.60 (CA)

1.20-50PPG50PTMEG 576 ± 17 1,518 ± 167 9.91 ± 0.56 (CA)

1.20-25PPG75PTMEG 148 ± 13 > 3 days 12.03 ± 2.45 (AF)

Thermoplastic polyurethanes synthesized with different PPG + PTMEG blends. NCO/OH

ratio = 1.20.
aCA, cohesive failure of the adhesive; AF, adhesion failure.

the TPUs increase by increasing their PTMEG content, as a
consequence of the existence of semicrystalline domains of
PTMEG soft segments, which decrease the molecular flexibility
and the mobility of the polymeric chains (Inescu, 2005).
The kind of PSA can be assessed by means of Chang’s
(1991) viscoelastic windows, which are built from the values
of the storage (G′) and loss (G′′) moduli at low (10−2

rad/s) and high (102 rad/s) frequencies. Chang proposed the
existence of four quadrants to classify the different types of
PSAs, depending on their location of the viscoelastic window.
Chang’s viscoelastic windows of the TPU PSAs are shown
in Figure 8B, in which all them are below the Dahlquist
criterion line indicating a good contact efficiency. By increasing
the PTMEG content of the TPU PSAs, Chang’s viscoelastic
windows shift from the lower left quadrant characterized by low
storage modulus and low dissipation (removable PSA) (1.20-
100PPG), to the central region characterized by medium storage
modulus and medium dissipation (general purpose PSA) (1.20-
25PPG75PTMEG).

The adhesion properties of the TPU PSAs are summarized
in Table 8. The increase of the PTMEG content increases the
cohesion (or holding time) and the peel strength of the TPU
PSAs, but decreases the tack. This trend can be ascribed to
the interactions between the PTMEG soft segments, which
produce semicrystalline domains and reduce the mobility of
the polyurethane chains. However, 1.20-50PPG50PTMEG PSA
shows an excellent compromise between tack, holding time, and
180◦ peel strength, and it can be used as removable PSA in labels
and medical patches.

CONCLUSIONS

Different TPUs intended for PSAs have been prepared by using
blends of polyols with and without methyl pendant groups. The
NCO/OH ratio was varied for increasing the hard segments
contents, and the structure of the TPUs was similar, except
in the one made with NCO/OH ratios of 1.10 and 1.35. The
increase of the percentage of PTMEG polyol produced an
increase of the thermal stability and the storage moduli of
the TPUs due to the creation of semicrystalline regions due
to the interactions between the soft segments. Excellent tack,
shear strength, and peel strength were obtained in 1.20-50P
PG50PTMEG PSA.
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If an incompressible elastic layer bonded to a rigid plane is placed close to a second

rigid plane, adhesive interactions between the surfaces can cause elastic instabilities.

These lead to spatially non-uniform traction and gap distributions which exhibit a regular

pattern with a characteristic wavenumber. However, real surfaces are never completely

plane. In this paper, we consider the influence of surface roughness on the instability, with

particular reference to the force-displacement relation. With random roughness profiles,

the traction distributions are always spatially irregular, so the onset of instability is more

difficult to define. One approach is to monitor the amplitude of the power spectrum of

the distribution near the characteristic wavenumber. Since surface roughness generally

reduces the mean adhesive traction, we might expect it to exert a stabilizing effect.

Numerical results confirm this for moderate to large RMS amplitudes, but show that low

RMS roughness can actually trigger the instability in ranges where the uniform layer would

be stable. The resulting traction-displacement relation is then found to be approximately

linear with a slope close to that at the point where the uniform solution loses stability.

Keywords: contact mechanics, surface roughness, adhesion, elastic layers, patterning

INTRODUCTION

If two bodies with plane surfaces are placed close together, they may experience attractive [e.g.,
van der Waals’] forces, or forces involving both attractive and repulsive ranges (Jones, 1924;
Maugis, 2013). Since the attractive forces must eventually decay with increasing separation, they
have the character of a “negative spring,” which can trigger an elastic instability. If the bodies are
incompressible [Poisson’s ratio ν = 0.5], or if a body comprising a thin elastic layer bonded to a
rigid plane surface is attracted to another rigid plane surface, the instability may result in a non-
uniform [typically periodic] pattern of alternating regions of contact and separation. Patterns of
this kind have been observed experimentally (Mönch and Herminghaus, 2001; Gonuguntla et al.,
2006a), and predicted theoretically, based on energetic arguments (Shenoy and Sharma, 2001;
Sarkar et al., 2004). In particular, the characteristic length scale of the pattern correlates with the
unstable wavelength in a linear perturbation of the uniform state. The patterning instability also
modifies the mean traction-separation characteristic for the layered system, generally leading to
different behavior during approach and separation and consequent hysteresis losses (Ciavarella
et al., 2019).

The instability permits self-assembly processes such as elastic contact lithography [ECL], where
the pattern in a polymer film is fixed by UV curing or by lowering the temperature (Sarkar and
Sharma, 2010; Ghosh et al., 2016, 2017). In ECL, the periodicity and size of the pattern are critical
parameters and various methods have been proposed to control them, including the use of a curved
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FIGURE 1 | A rigid body with a plane surface that may contain some surface

roughness is placed near to an elastic layer bonded to a rigid foundation. The

mean gap is ḡ and u(ξ , η) is the local elastic displacement of the layer surface.

substrate (Ghosh et al., 2018), an imprinted stamp (Gonuguntla
et al., 2006b; Mukherjee et al., 2007; Bhandaru et al., 2017), or a
pre-strained substrate (Davis-Purcell et al., 2018). Also, electric
fields can be used to extend the range of attraction relative to van
der Waals’ forces and to provide greater control of the process,
whilst retaining a similar morphology (Arun et al., 2006; Sarkar
et al., 2008; Sahoo et al., 2019).

Real surfaces are of course never perfectly smooth, and
surface roughness generally reduces both the maximum pull-
off traction, and the maximum negative slope of the effective
traction-separation law (Joe et al., 2018). This should reduce
the tendency for patterning in the contact of layered bodies.
However, sufficiently small amplitude roughness might also serve
as an initial perturbation to trigger an instability. In this paper,
we shall therefore use a numerical solution to examine the effect
of roughness on both the generation of patterns and the mean
traction-separation relation. In particular, we shall examine the
extent to which the effect of roughness can be captured by using a
modified adhesive traction law developed for the contact of rough
elastic half spaces.

DEFORMATION OF A THIN LAYER

We consider an elastic layer of thickness h bonded to a rigid
plane, and define Cartesian coordinates (x, y) in the plane of
the layer surface and corresponding dimensionless coordinates
ξ = x/h, η = y/h. If a second rigid plane is placed a distance
ḡ away from the undeformed surface of the layer as shown in
Figure 1, the local gap between the surfaces will then be

g(ξ , η) = ḡ − u(ξ , η) (1)

where u(ξ , η) is the local outward normal elastic displacement of
the layer surface.

Interface Energy
We assume that the adhesive tractions between the surfaces can
be described by a traction law σ (g), where g is the local value of
the gap. We can then also define the mean interface energy per
unit area as

Ŵ =
〈

γ (g(ξ , η))
〉

where γ (g) = −

∫

∞

g
σ (s)ds (2)

and a stable final configuration will be one that minimizes the
total potential energy 5 = U + Ŵ, where U is the mean elastic
strain energy per unit area.

Elastic Strain Energy
The normal traction σ (ξ , η) at the free surface of the layer needed
to produce a sinusoidal normal elastic displacement u(ξ , η) =

uζ cos(ζ ξ ) is

σ (ξ , η) =
Ef (ζ )uζ

h
cos(ζ ξ ) (3)

where

f (ζ ) =
ζ

[

(3− 4ν) cosh(2ζ )+ 2ζ 2
+ 5− 12ν + 8ν2

]

2(1− ν2)
[

(3− 4ν) sinh(2ζ )− 2ζ
] (4)

(Hannah, 1951), and we recall that ξ = x/h, so ζ is a
dimensionless wavenumber.

In this paper, we shall restrict attention to incompressible
layers [ν = 0.5], for which the corresponding dimensionless
compliance 1/f (ζ ) is shown as a function of dimensionless
wavenumber ζ in Figure 2. The curve exhibits a maximum of
∼0.482 at a wavenumber ζ ≈ 2.1, and zero compliance for
uniform loading

[

f (ζ ) → ∞ as ζ → 0]. One consequence of
this is that with general loading σ (ξ , η), the mean value of u is
zero and hence ḡ is determined by the rigid-body approach which
is a controlled parameter.

The mean elastic strain energy per unit area associated with
the deformation (3) is

U(ζ ) =
1

2

〈

σ (ξ , η)uζ (ξ , η)
〉

=

Ef (ζ )u2ζ

4h
(5)

The elastic strain energy for more general displacement
distributions can be obtained by writing u(ξ , η) as a double
Fourier series or Fourier transform and convoluting the resulting
transform with (5).

Stability Criterion
If both surfaces are plane [i.e., smooth], the state u(ξ , η) =

0, g(ξ , η) = ḡ, σ (ξ , η) = σ (ḡ) is clearly an equilibrium state,
but it will be unstable to small sinusoidal perturbations of
dimensionless wavenumber ζ if there exists any ζ such that

−

(

∂σ

∂g

)

g=ḡ

>
Ef (ζ )

h
(6)

The critical wavenumber is defined by the maximum of the curve
in Figure 2, from which we deduce that the uniform solution will
be unstable if and only if−σ ′(ḡ) > E/0.482h.
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FIGURE 2 | Dimensionless layer compliance as a function of wavenumber for an incompressible elastic layer bonded to arigid foundation. For a given value of

E/h[−σ ′(ḡ)] satisfying condition (6), wavenumbers in the range ζA < ζ < ζB are unstable.}.

Solution Method
More general displacement distributions for a square domain
0 < x < L, 0 < y < L can be written in the form

u(x, y) = ℜ

N
∑

m=−N

N
∑

n=−N

Amn exp

[

2π ı(mx+ ny)

L

]

, (7)

and equation (5) can then be used to obtain the mean strain
energy per unit area U as

U =

N
∑

m=−N

N
∑

n=−N

E|Amn|
2f (ζmn)

4h
(8)

where

ζmn =
2πh

√

m2 + n2

L
(9)

Adding the corresponding interface energy from equation (2), we
obtain the total potential energy 5, which must be a minimum at
a stable equilibrium state. We used the gradient descent method
to identify the values of the Fourier coefficients Amn for a local
energy minimum. Notice that the upper limit N must be chosen
so as to provide an adequate number of integration points in the
evaluation of Ŵ.

RESULTS FOR SMOOTH SURFACES

If the two surfaces are smooth, the uniform state is always an
equilibrium solution at which energy gradients are zero, and since
the material is incompressible [ν = 0.5], this corresponds to
u(ξ , η) = 0. Even when the criterion (6) is satisfied, the numerical
solution may remain at the uniform state unless some small
perturbation is introduced.

We used the traction law

σ (g) =
81γ

3ε

[

(

ε

g

)3

−

(

ε

g

)9
]

(10)

(Maugis, 2013) derived from Lennard-Jones molecular force law
(Jones, 1924), where ε is an interatomic length scale and 1γ =

γ (ε) is the interface energy per unit volume at the equilibrium
spacing g = ε. The maximum tensile traction occurs at g = 31/6ε
and is of magnitude σ0 ≈ 1.061γε.

If the maximum negative slope [−σ ′(g)]max satisfies
the condition

h

E

[

−σ ′(g)
]

max
>

1

0.482
(11)

there will exist a bounded range g1 < ḡ < g2 in which the
uniform solution is unstable. Also, for a value of ḡ strictly within
this range, there will exist a range of unstable wavenumbers ζA <

ζ < ζB, including but not limited to ζ ≈ 2.1. This range can be
identified by drawing a horizontal line at the height E/h[−σ ′(ḡ)]
in Figure 2 as shown, and finding its intersection with the curve.

We start the solution procedure with a value of ḡ outside the
unstable range and then change ḡ by small increments, using the
solution at the previous step as an initial guess for the gradient
descent solution. This is expected to mimic the behavior of
the physical system under controlled displacement conditions.
Numerical noise might also be expected to emulate the effect of
noise [e.g., vibration] in an experimental system.

We characterize the inverse thickness of the layer by the
dimensionless parameter

β =
Eε2

h1γ
(12)
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Figure 3 compares a typical relation between the mean traction
σ̄ =

〈

σ (x, y)
〉

and the mean gap [approach] ḡ with the local
traction law (1) for the case where β = 0.25. The domain

FIGURE 3 | Mean traction σ̄ as a function of mean gap ḡ for a smooth layer

for β = 0.25 and domain size L = 8πh, showing instabilities during approach

and separation. The Lennard-Jones law (1) is shown in black. The dashed

lines A, B define the region in which the uniform traction solution is unstable.

size was chosen so as to define a fundamental wavenumber
[e.g., ζ01] equal to 0.25, so that L = 8πh. Results are shown
for both separation dḡ/dt > 0 and approach dḡ/dt < 0. In
each case, the uniform state is preserved up to the appropriate
stability boundary [denoted by A and B, respectively], but the
non-uniform solution then persists significantly beyond the point
at which the uniform solution reverts to stability. We deduce
that even in the stable range there exist local energy minima
corresponding to non-uniform states, and that these states are
separated from the lower energy uniform state by energy barriers.

Notice that both the approach and separation curves in
Figure 3 are approximately straight lines with slope close to the
critical slope defined by (6).

The non-uniform deformation states are characterized by the

development of regular patterns. Figures 4A–C shows contours

of local gap g(x, y) corresponding to the points on the approach
curve labeled (a), (b) and (c) in Figure 3. A “labyrinth” [i.e., a

connected system of passageways (high g) separated by walls of
“contact” (low g)] develops at the onset of instability (a) and

FIGURE 4 | Contour plot of the gap g(x, y) during approach at points (A–C) in Figure 3.

FIGURE 5 | Fourier transform of g(x, y) from Figures 4A–C.
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then morphs into an inverse labyrinth at (b) and into an array
of isolated regions of separation [“holes”] at (c).

Figures 5A–C shows the same results in Fourier transform
space. In all cases we see high values clustered near the
most unstable wavenumber ζ = 2.1 and the distribution is
axisymmetric within the limits of statistical variance, indicating
that the pattern is statistically isotropic.

EFFECT OF SURFACE ROUGHNESS

We assume that the surface is rough with a power spectral density
[PSD] of the form

P(ζ ) = Bζ−2−2H
; ζ1 < ζ < ζ2, (13)

where B is a constant,H is the Hurst exponent, here taken asH =

0.2, and ζ1, ζ2 define the range of dimensionless wavenumbers in

FIGURE 6 | Mean traction σ̄ as a function of mean gap ḡ for a layer with

fine-scale roughness defined by equation (14) with

β = 0.35, ζ1 = 6.5, ζ2 = 8.0 and m0 = 10−1.8ε2. The solid lines correspond to

a direct numerical solution for the rough surface using the Lennard-Jones

traction law, whilst the circles were obtained by approximating the effect of

roughness through a modified traction law σM (g) (Joe et al., 2018). [shown

here as a dashed line].

the spectrum, outside which the spectral content is zero. For the
finite domain L× L, a realization of this PSD can be written as

u0(x, y) = ℜ

∑

m

∑

n

Bmn exp

[

2π ı(mx+ ny)

L

]

(14)

where u0(x, y) describes the deviation of the surface from the
mean plane in the undeformed state, and

ζ1L

2πh
<

√

m2 + n2 <
ζ2L

2πh
(15)

The magnitudes of the coefficients |Bmn| were chosen so as to
ensure that the resulting surface PSD was of the form (13) and
the corresponding arguments [phases] were chosen randomly.

With this definition, the gap can be written

g(x, y) = ḡ + u0(x, y)+ u(x, y), (16)

where u(x, y) is given by (7). Notice that we arbitrarily assign the
value B00 = 0, so that the roughness makes no contribution to
the mean gap. The interface energy is then determined from (2)
and the constants Amn are chosen so as to minimize 5 as in the
smooth surface case.

A Two-Scale Approximation
We anticipate that the wavelengths in the roughness spectrum
will generally be significantly smaller than the layer thickness,
and this suggests the possibility of a scale-separation approach.
Compared with the roughness scale, the thickness of the layer
is large, so local effects can be approximated by those in
a corresponding half space. The effect of the roughness, as
compared with a corresponding smooth surface, can therefore be
described in terms of a modified traction law.

An inductive method for estimating this law is described in
(Joe et al., 2018). If the modified traction law σM(g, ζ0) is known

FIGURE 7 | (A) Contour plot of gap g(x, y) at a point in the unstable range for β = 0.5 and roughness defined by ζ1 = 6, ζ2 = 8 and m0 = 10−2.5ε2. (B) The

corresponding plot for a smooth surface using the modified traction law.
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for a surface with spectral content only in ζ0 < ζ < ζ2, where
ζ0 > ζ1, the corresponding law for σM(g, ζ0−δζ ) can be obtained
by convoluting σM(g, ζ0) with the additional roughness tranche
ζ0 − δζ < ζ < ζ0. Successive applications of this technique
allow us to determine themodified law for the entire spectrum. In
Joe et al. (2018), this procedure was implemented using discrete
tranches of the spectrum, but the same approach can be used to
develop a partial differential equation for σM(g, ζ ), following the
methodology of Persson (2001). The modified traction law for
the complete roughness spectrum is then defined by σM(g) =

σM(g, ζ1).
On the scale of the layer thickness, the effect of the surface

roughness can then be approximated by using σM(g) in place of
equation (1), and treating the layer surface as smooth.

Results

The two-scale approximation is likely to be most accurate when
the most unstable wavenumber ζ ≈ 2.1 is much smaller than
the smallest wavenumber ζ1 in the PSD [recall that wavenumbers
are normalized by the layer thickness h]. However, this degree
of scale separation is difficult to achieve in a direct numerical
simulation. Figure 6 shows the relation between mean traction
and mean gap for an incompressible elastic half space with
roughness of the form (13) with ζ1 = 6.5, ζ2 = 8.0 and
height variance

m0 = 2π

∫ ζ2

ζ1

ζP(ζ )dζ = 10−1.8ε2 (17)

FIGURE 8 | (A) Contour plots of gap g(x, y) in the unstable range for β = 0.5 and roughness defined by ζ1 = 4.5, ζ2 = 8 and m0 = 10−2ε2. (B) Fourier domain plot for

the gap distribution g(x, y) from (A).

FIGURE 9 | Normalized spectral content [mu
0/ε

2 ]
max

for the gap g(x, y) in the unstable wavenumber range as a function of the maximum negative slope of the modified

traction law [−σ ′

M (ḡ)]max. Consistency between several roughness spectra shows that [−σ ′

M (ḡ)]max is a good indicator of the effect of roughness on instability. The point

at the top right defines [mu
0/ε

2 ]
max

for a smooth layer.
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Barber (2018). In this figure, we compare two methods of
solution: (i) a direct numerical solution of the problem [solid
line] by minimizing the total energy for a gap defined by (16)
using the Lennard-Jones traction law and (ii) a solution in which
the layer is smooth [u0(x, y) = 0], but the traction law is modified
to describe the effect of roughness [circles]. The agreement is
clearly extremely good. The advantage of using the modified
traction law is that the deformation of the layer can then be
adequately described on a much coarser grid, or equivalently, by
a more severely truncated Fourier series, and this is particularly
useful if the spectral range [ζ1, ζ2] is broad.

Identifying Instability Effects
The argument of the previous section suggests that pattern
instabilities should occur if and only if the maximum slope of the
modified traction law [σM(ḡ)] satisfies the condition (11) — i.e.,

h

E

[

−σ ′

M(g)
]

max
>

1

0.482
(18)

The modified traction law σM(ḡ) is independent of h, so
instabilities are more likely for thicker layers, always assuming
the finite linear dimensions of the interface are sufficient to
accommodate a wavelength in the unstable range.

In some cases, pattern instabilities can be detected by
examining the corresponding contour plots for g(x, y). For
example, Figure 7A shows the contour plot for the actual rough
surface during separation at a mean gap ḡ = 1.4, and Figure 7B

shows the corresponding pattern predicted for a smooth surface
with the modified traction law. There is some blurring of the
observed patterns, but the overall morphology is clearly similar.

However, if the roughness amplitude is larger, patterns
become more blurred, a typical example being shown in
Figure 8A. In this case, detection of instability from gap contours
is more difficult, but the corresponding Fourier plot of Figure 8B
clearly shows substantial spectral content in the unstable range
near ζ = 2.1. This suggests that we might quantify the extent
of pattern formation in the numerical solution for the rough
surface using the dimensionless parameter mu

0/ε
2, where mu

0 is
the variance of that part of the gap PSD that lies in the unstable
range in the “smooth” solution, identified in Figure 2. We assume
here that the roughness PSD has no content in this wavenumber
range, since otherwise it would be difficult to distinguish the
separate effects of instability and roughness.

In Figure 9 we plot [mu
0/ε

2]max, obtained from the numerical
solution, as a function of the maximum negative slope of
the modified traction law [−σ ′

M(ḡ)]max, normalized by the
corresponding expression for the Lennard-Jones law. Each set of
points corresponds to a different value of the lower wavenumber
of the roughness ζ1 = 4.5 : 0.5 : 6.5 and a range of roughness
variances −2.7 < log10(m0/ε

2) < −1.6. Results were

obtained under both approach and separation conditions, but no
significant difference was observed. The vertical dashed line in
Figure 9 corresponds to the criterion (18), below which the two-
scale approximation would predict mu

0 = 0, though the direct
numerical results exhibit a level of noise as one might expect.
However, the results exhibit a remarkable level of consistency,
showing that [−σ ′

M(ḡ)]max is a very good indicator of the
effect of roughness on the instability, and more generally that
the two-scale approach to the layer problem defines a good
approximation to important features of the system behavior.

CONCLUSIONS

If a smooth elastic layer is placed close to a plane surface, elastic
instabilities due to adhesive tractions lead to the development of
patterns, and to a modification of the traction-separation law.
However, roughness with RMS amplitude comparable with the
range of the adhesive force law can have a significant effect
on this process. Here we have described a model for analyzing
the contact of both rough and smooth surfaces using a double
Fourier series.

We also developed a two-scale approximation to the rough
contact behavior, by (i) estimating the effect of roughness on
the mean traction between two half spaces, using a previously
published method (Joe et al., 2018), and then (ii) using this
modified traction law in the analysis of a smooth elastic layer.
Results show that this gives a very good approximation to the
traction-separation law obtained by direct numerical simulation.
In particular, the development of patterns is predicted if the
maximum slope of the modified traction law satisfies the
inequality (18) and the corresponding results correlate extremely
well with a criterion based on the spectral content in the unstable
range from the numerical solution.

Local layer deformations decay spatially at a rate linked
to the layer thickness, so this method is expected to give
good predictions for bodies of finite size sufficient to support
wavelengths in the unstable range.
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Modeling of rough frictional interfaces is often based on asperity models, in which the

behavior of individual microjunctions is assumed. In the absence of local measurements

at the microjunction scale, quantitative comparison of such models with experiments

is usually based only on macroscopic quantities, like the total tangential load resisted

by the interface. Recently however, a new experimental dataset was presented on the

onset of sliding of rough elastomeric interfaces, which includes local measurements of

the contact area of the individual microjunctions. Here, we use this more comprehensive

dataset to test the possibility of quantitatively matching the measurements with a model

of independent asperities, enriched with experimental information about the area of

microjunctions and its evolution under shear. We show that, despite using parameter

values and behavior laws constrained and inspired by experiments, our model does not

quantitatively match the macroscopic measurements. We discuss the possible origins of

this failure.

Keywords: rough contact, elastomer friction, onset of sliding, asperity model, shear-induced area reduction,

stick-slip, elastic interactions

1. INTRODUCTION

The mechanical behavior of contact interfaces between rough solids is crucial to understand their
tribological properties. The rough contact mechanics community has been developing models in
two main directions (see Vakis et al., 2018 for a recent review). First, asperity models in which
the contact interface is divided into well-defined microjunctions actually carrying the normal and
tangential loads applied to the contacting solids (Braun and Röder, 2002; Ciavarella et al., 2006;
Violano and Afferrante, 2019). Each microjunction is ascribed a set of individual properties (e.g.,
its height, radius of curvature or friction coefficient) necessary to apply some assumed behavior laws
[e.g., any contact (Johnson, 1987) or friction law (Le Bot et al., 2019)] when submitted to an external
stimulus. The macroscopic behavior of the interface is then the emerging, collective response of the
population of microjunctions (Trømborg et al., 2014; Braun and Peyrard, 2018; Costagliola et al.,
2018). Second, continuum models in which the input quantity is the full topography of the rough
surfaces, and an exact solution of the unilateral contact and friction problem is seeked (Pastewka
and Robbins, 2014; Yastrebov et al., 2017; Ponthus et al., 2019), again under some assumptions on
the interfacial behavior, concerning, e.g., elasticity, friction, and adhesion.
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Each approach can be used to produce two types of results,
either deterministic or statistical. Deterministic results are
obtained for a given topography (for continuum models) or a
given set of model parameters (for asperity models, including
the properties of each microjunction) and are thus specific to
those input data. They are relevant for quantitative comparison
with a particular experiment. In contrast, statistical results
are the expected results of a large number of deterministic
calculations performed on statistically similar random surfaces.
In asperity models, statistical results are obtained when using
probability density functions (pdfs) of the microjunction
properties (Greenwood and Williamson, 1966; Braun and
Peyrard, 2008; Thøgersen et al., 2014). In continuum models,
they are usually obtained using the power spectrum density (psd)
of the topographies under study (Persson, 2001). In the following,
we aim at finding a quantitative match with a specific set of
measurements, so we will consider deterministic results.

Both asperity and continuum models have been widely
explored in the context of rough contacts under purely normal
load, with a recent study explicitly comparing the relative merits
of the two approaches (Müser et al., 2017). Several studies
aimed at a quantitative comparison between deterministic model
results and local, microjunction level measurements (see e.g.,
McGhee et al., 2017; Acito et al., 2019). In contrast, to our
best knowledge, such comparisons have not been reported in
the case of sheared multicontacts. Here we will attempt to
build an asperity model able to quantitatively match recent
measurements performed on the incipient tangential loading
and onset of sliding of a rough elastomer slab in contact with
a smooth glass plate (Sahli et al., 2018, 2019) (Figure 1A).
Those measurements (see a typical example in Figures 1C,D)
are particularly interesting and constraining for models because,

A B

C

D

FIGURE 1 | Experiments that our model attempts to reproduce. (A) Sketch of the experimental setup. (B) Typical segmented image of the interface showing individual

microcontacts in white, for P = 6.40 N. (C) Concurrent time evolutions of the tangential force Q (red) and the area of real contact (blue), for P = 3.10 N. (D) Area of

real contact as a function of the tangential force, for the same data as in (C).

in addition to the macroscopic loads on the interface, they
include the evolution under shear of the individual contact areas
and shapes of the many microjunctions forming the interface
(Figure 1B).

The philosophy of this work is to start with a model of
independent asperities like the earthquake model of Braun
and Peyrard (2008), enrich it with the recently identified
phenomenology of shear-induced area reduction, and genuinely
ask the question whether such a model is sufficient to
quantitatively match a particular experimental dataset. In other
words, we do not aim at a definitive model of the incipient
tangential loading and onset of sliding of rough elastomer
contacts. Rather, we make one single step ahead compared
to the models in the literature, and try to conclude whether
this step (including shear-induced area reduction) is sufficient
or not. Such an approach can only be fruitful if the values
of the model parameters are sufficiently constrained by the
experimental dataset, so that one avoids fortuitous agreement.
This can be achieved (i) by limiting to the strict minimum
the number of parameters that cannot be directly measured
experimentally, and (ii) by performing a thorough exploration
of the parameter space for those remaining, unconstrained
parameters. In this work, we did our best to apply this strategy,
which in our case leads to an unsatisfactory agreement. This
result is nevertheless a progress in the sense that it clarifies the
range of assumptions that remain to be questioned and improved
in future studies.

In section 2.1, we describe the asperity model and provide the
experimental constraints on the model parameters in section 2.2.
Quantitative comparisons between the model and measurements
are given in section 3, while in section 4 we discuss the possible
reasons for the absence of good matching between the two.
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2. MATERIALS AND METHODS

2.1. Model Description
We consider the frictional interface between a slider of mass M
and a track. The tangential displacement of the slider, X(t), is
assumed to obey the following equation of motion:

MẌ +MηẊ = kL(vt − X)− F, (1)

where M is the slider’s mass, kL is the stiffness of the
loading spring through which the slider is pulled at constant
velocity v, η is an effective viscous parameter accounting for
dissipation, e.g., in the air or in the loading spring, the dot
indicates the time derivative, and F is the resistive force due to
interfacial/adhesive friction.

We assume that the interface is a multicontact made of N
independent individual microjunctions, each resisting a force fi,
so that F =

∑N
i=1 fi. Each microjunction can be in either of

two states. First, a pinned state during which the junction acts
like a (time-evolving) elastic spring of stiffness ki, so that fi =

ki(X(t) − xi), with xi the slip displacement of the junction with
respect to the track (e.g., xi = 0 as long as junction i has never
been slipping). When a threshold force fsi is reached, the junction
enters a slipping state, during which fi = ǫ fsi. Note that ǫ < 1,
so that fsi and ǫ fsi are the analogs, at the junction level, of a static
and a dynamic friction force, respectively.

Themechanical behavior of individual junctions is inspired by
experimental observations made on the same setup andmaterials
in contact as in Figure 1A, but when the rough slab is replaced
by a single smooth sphere (Sahli et al., 2018, 2019; Mergel
et al., 2019). The resulting sphere/plane contact is assumed
to be representative of an individual microjunction within a
multicontact like that of Figure 1B. Those experiments, carried
out both for large normal loads (Sahli et al., 2019) and for small
(even negative) normal loads (Mergel et al., 2019), have shown
that, under increasing shear, the initially circular contact shrinks
anisotropically and becomes increasingly ellipse-like. As shown
in Sahli et al. (2019) the shrinking minor axis of the ellipse is
parallel to the shear loading direction, while the variations of the
major axis (in the direction orthogonal to shear) can be neglected.

Defining ℓ‖i and ℓ⊥i the sizes of an elliptic microjunction
along and orthogonal to shear, respectively, we can define its area
as Ai =

π
4 ℓ‖iℓ⊥i. Following Mindlin (1949), the stiffness of such

an elliptic contact along the shear direction is, assuming no-slip
contact conditions:

ki =
π
2 ℓ⊥iE

(1+ ν)
[

K(e)− ν
e2

(

K(e)− E(e)
)] , (2)

with E and ν being the Young’s modulus and Poisson’s ratio of

the material that constitutes the microjunctions, e =

√

1−
ℓ2
‖i

ℓ2
⊥i

is

the excentricity of the junction, K and E are the elliptic integrals
of the first and second type, respectively. Note that assuming that
microjunctions are elliptic is the simplest increment of realism
compared to a circular assumption, in order to account for the
complex shapes observed for microjunctions in the experiments.

Assuming that each microjunction is initially circular, we can
define the common initial value, ℓ0i, of ℓ⊥i and ℓ‖i from its initial

individual area A0i as ℓ0i =

√

4A0i
π

. As already mentioned, ℓ⊥i

varies negligibly under shear, so we will consider that ℓ⊥i = ℓ0i
at all times. The evolution of each ℓ‖i is then deduced from the
shear-induced area reduction reported in Sahli et al. (2018):

Ai = A0i − αb
1

A
p
0i

f 2i , (3)

with αb and the exponent p two constant parameters of the
model. The size of junction i along the shear direction is
thus simply ℓ‖i =

4Ai
πℓ0i

. Note that there is currently no
rigourous contact mechanics theory for the evolution of the shear
stiffness of a sheared sphere/plane contact that would incorporate
anisotropic contact area reduction. Here, such a behavior is
approximated at all times by the combination of Equation (2),
which is valid under no-slip assumption, and of Equation (3),
which was empirically found at macroscale. Doing so, we assume
that Equation (3) also applies at microscale, as suggested by the
existence of common values of αb and p for both the macro- and
micro-scales (Sahli et al., 2018).

For each microjunction, Equation (3) is used from the
beginning of the experiment, when fi assumed to be 0, up to when
the junction first starts to slip (when fi = fsi). At that instant, Ai

takes the value Asi = A0i−αb
1

A
p
0i

f 2si . For later times, based on the

observation of the typical behavior of Ai during the experiments
of Sahli et al. (2018) (see Figure 2), we assume that Ai always
remains equal to Asi.

In contrast, the force resisted by amicrojunction can vary with
time after the first onset of slipping. When the slider’s velocity,
Ẋ(t), gets smaller than a minimum value Ẋmin = cmin × v, with
cmin a scalar parameter, we assume that all the slipping contacts

2 4 6 8 10 12
0

1

2

3

4

5

6

7
10

-8

0

1

2

3

4

5

1

2

3

4

5

FIGURE 2 | Left axis: time evolution of the contact area Ai of five typical

microjunctions in the experiment at P = 4.01 N. Right axis: concurrent

evolution of the macroscopic tangential force Q.
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will repin, with a position xi = X−ǫfsi/ki. Doing so, at repinning,
there is no force discontinuity, as the repinning force ki(X − xi)
is equal to the slipping force ǫfsi.

Following Sahli et al. (2018), the threshold force fsi at which
the microjunction starts to slip is assumed to be proportional to
its area at the same instant, i.e., fsi = σAsi, with σ the frictional
shear strength of the contact.

The algorithm used to solve themodel numerically is provided
in Appendix 1.

2.2. Experimental Constraints
In order to quantitatively compare the model results with the
multicontact experiments reported in Sahli et al. (2018, 2019),
we need to feed the model with parameter values based on the
measurements. In the following list, we first provide all constant
parameter values that are directly accessible experimentally, with
the error bars when relevant.

• M = M0+M1, whereM0 = 100 g is the mass of the slider and
M1 = 0, 55, 111, 215, 308, 552 g an additional mass, for the six
experiments performed. All masses are given at±1g.

• kL = 9,200± 200 N/m (Sahli et al., 2018).
• v= 0.1 mm/s.
• E = 1.6 ± 0.1 MPa (Sahli et al., 2018). This value and the

associated error bar are the mean value and standard deviation
over 32 estimates using 5 different spherical PDMS samples
prepared in the same conditions.

• ν is assumed to be equal to 0.5, as is classically done
for elastomers.

• the individual values of the initial areas of all microjunctions,
A0i, are extracted from the initial image (for Q = 0),
segmented as described in Sahli et al. (2018). The fact that
all microjunctions have different areas is the result of the
random nature of the elastomer surface topography (see a
typical Power Spectrum Density in Supplemental Material of
reference Sahli et al., 2019) and of its elastic contact interaction
with the rigid glass plate.

• N is also extracted form the same segmented image.
• σexp = 0.23± 0.02 MPa (Sahli et al., 2018), is the experimental

value of the frictional shear strength of the interface,
determined from a linear fit of (As,Qs) for the 6 experiments.
Qs is the macroscopic static friction (peak) force and As is the
total area of real contact at the same instant. We will discuss
below how the value of σ in the model is related to σexp.

There are three model parameters which cannot be directly
measured in experiments: η, ǫ, and cmin.

η is introduced to enable energy dissipation in the system, thus
avoiding spurious oscillations of the slider. However, the value of
η should not be too large, because it would prevent the possibility
of stick-slip in the model. We found that stick-slip exists up to
η between 180 and 200, but for those large values, the initial
stick-slip cycles are significantly different from the experiments.
In practice, we found that

η = 100 (4)

is a good compromise between oscillation reduction and a
reasonable reproduction of the stick-slip sequence. The results
are rather insensitive to the precise value of η, since η = 50 gives
virtually identical results.

ǫ has a leading order control on the amplitude and period of
the tangential force fluctuations during stick-slip. Systematic tests
of the model for various values of ǫ led us to choose

ǫ = 0.90. (5)

In particular, this value is sufficiently small to enable stick-
slip for all six normal loads (as observed experimentally), while
reproducing reasonably well the amplitude and period of the
stick-slip sequences in all cases.

Note that in the model, if there was no stick-slip, the
steady-state sliding friction force would be

∑N
i=1 ǫσAsi (all

microjunctions are in their slipping state). In order for this value
to match the macroscopically measured value Qs = σexpAs, one
has to impose that

σ =
σexp

ǫ
, (6)

and this is what we do in the following.
Our tests showed that the value of cmin has no impact on the

results as far as it is sufficiently small. For instance, simulations
with cmin =10−5 are essentially undistinguishable from those
using 0.01. The reason is that, when

∣

∣Ẋ(t)
∣

∣ crosses the value
cmin × v, the velocity drop is so fast that the time at which the
crossing occurs is almost independent on the value of cmin. In
our calculations, we will use

cmin = 0.01. (7)

Extracting values for p and αb in Equation (3) requires fitting
the power law relationship between the individual area reduction
parameters, αi, and the initial areas, A0i, presented as purple
squares in Figure 3 of Sahli et al. (2018). Such a fitting is actually
difficult due to the large dispersion of the data, as can be inferred
from the large difference in total area decay of microjunctions 1–
3 in Figure 2, although they start with almost identical areas. A fit
letting both αb and p as fitting parameters gives 95% confidence
error bars as large as 600% for the optimum value for αb, which
is not a viable option. We then tried to fix the value of p and fit
the data with αb being the only fitting parameter. We found that
the quality of the fit (quantified by its R2 value) was essentially
independent of p (as long as it is not too different from the
value 3/2 proposed in Sahli et al., 2018), preventing any objective
choice of p.

Based on those observations regarding the determination of p
and αb from experimental data, in our model studies we decided
to fix p and, for each value of p, we determined the value of αb

that gives the best agreement between the area decay predicted
by the model and that measured in the experiments. To do that,
we fitted both the experimental and model version of the curve
A(Q) by a quadratic function of the form A = A0 − αQ2.
A0 being the same in the model as in the experiment (because
A0 =

∑N
i=1 A0i), the fitting procedure enables identification of
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an αb which provides an exact match between the two quadratic
decays. Importantly, we found that, for all tested values of p
close to 3/2 (the value suggested in Sahli et al., 2018), the model
results (when using the corresponding fitted αb) were almost
undistinguishable. So, in practice, we chose p = 3/2, for which
the model studies give an optimal αb = 0.45 10−15 m5/N2 for
the experiment with the smallest normal load, and αb = 1.00
10−15 m5/N2 for the experiment with the largest normal load.We
then adopted the average value between both, αb = 0.725 10−15

m5/N2, as a constant to be used for all experiments.

3. RESULTS: QUANTITATIVE COMPARISON

We run the model of section 2.1 with the parameter values
described in section 2.2, for the six different PDMS/glass
multicontact experiments reported in Sahli et al. (2018). Figure 3
compares, for two different normal loads, the measured time
evolution of the area of real contact and tangential force to
their corresponding model predictions. Note that the initial real
contact area is essentially proportional to the normal load, as
widely discussed in the contact mechanics modeling literature
[see e.g., the reviews (Persson et al., 2005; Vakis et al., 2018)]
and confirmed in the experiments discussed here (see Figure S2
of Sahli et al., 2018). To facilitate comparison between model
prediction and measurement, the time origin of the experimental
data has been offset by the amount necessary to superimpose the
measured and predicted force curves in the central portion of
their initial increase. Note that the initial non-linear increase of
the measured force is due to the non-vanishing bending stiffness
of the steel wire used to pull the slider, when it first bends around
a pulley before a significant tension arises along the wire. The
apparent difference between the measured and predicted values
of the initial area of real contact is due to the above mentioned
time offset: the initial predicted value exactly corresponds to
the measured value from the first image, but the latter image
now corresponds to a negative time and is thus not shown in
the figure. The observed difference is of the order of the area
measurement noise, presumably due to temporal fluctuations in
the illumination and noise in the camera’s sensor.

Figure 4 then shows, for all normal loads, the evolution of
the area of real contact as a function of the tangential force, for
both the measured and predicted data. This figure is similar to
Figure 2A in Sahli et al. (2018), but shows all measurements
points rather than just 1 of 130. Note that stick-slip is responsible
for the accumulation of nearly horizontal cycles close to the
minimum area/maximum force point of each curve. Also note
that the model forces can transiently exceed the value σexpA, but

always remain smaller than σA =
σexp
ǫ
A, as expected.

4. DISCUSSION

Although other combinations of model ingredients may have
been proposed, we believe that our model incorporates all of
the currently available knowledge on the system that we tried to
reproduce. As such, it can be seen as the most comprehensive
independent asperities model of shear multicontacts so far, to be

A

B

FIGURE 3 | Direct comparison between measurements and model

predictions, for two typical experiments with either P = 1.53 N (A) or P = 3.10

N (B). Time evolutions of the measured (dashed, black) and predicted (solid,

blue) area of real contact, and of the measured (dashed, magenta) and

predicted (solid, red) tangential force.

used for deterministic comparison with the experiments of Sahli
et al. (2018, 2019).

Most of the model parameters (M, kL, v, E, ν, A0i, N,
σexp) take their value directly from the measurements. Three
adjustable parameters have been systematically varied to choose
the most relevant value: cmin has no effect on the results, while
η and ǫ have been adjusted to reproduce at best the stick-
slip regime. Ideally, p and αb should not be adjustable, but the
dispersion in the experimental estimates of αi is such that their
values were not sufficiently constrained. In practice, the value
of p was chosen equal to the one suggested from experiments
incorporating not only microjunctions within multicontacts, but
also millimetric smooth sphere/plane individual contacts (Sahli
et al., 2018). The value of αb was then adjusted to best match the
overall decay of real contact area during the incipient loading of
the interface.

With those values, the time evolution of the tangential load Q
is quite well-reproduced (see Figure 3). In particular, the slope of
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FIGURE 4 | Real area of contact vs. tangential force for the six experiments.

Black (blue) curves show the measured (predicted) data. The red line has slope
1

σexp
and passes through the origin.

the incipient loading is correct, which suggests that the stiffness
used for the individual microjunctions is also correct. In contrast,
the time evolution of the real contact area is not satisfactory.
Of course, the total amplitude of the real area decay, from the
initial contact to macroscopic sliding, is correct, because we start
from the measured initial value (

∑N
i=1 Ai0), and we adjusted αb

to get the correct final value. So we argue that the quality of
the comparison between the model and experimental results can
only be assessed through the shape of the real area decay. And as
can be seen from Figure 4, while the shape of the experimental
curves A(Q) is essentially quadratic, that of the model curves
is much more linear [except from the very beginning, when
all microjunctions are pinned and thus decay quadratically
according to Equation (3)]. We emphasize that this quasi-linear
shape is a very robust feature of our model, because we found
that the predictions are essentially unaffected by changes in the
model assumptions (elliptic vs. circular microjunctions, Equation
(3) applied at all times or only before the first depinning event)
and in the parameter values (for values of η and ǫ enabling
stick-slip or not).

The shape of the curve A(Q) results from a sum of a
large number (N) of complex individual behaviors (non-linear
area decay while pinned, constant area while slipping) with
distributed parameters (initial area, stiffness, threshold), and
is therefore unlikely amenable to a simple explanation. We
can however mention an instructive particular case where
all microjunctions would have the same initial area. In
those (unrealistic) conditions, all microjunctions would behave
identically when submitted to a common displacement X and
thus depin at the same instant. The total area decay would
be the sum of N identical quadratic decays, and thus be itself
quadratic with the total shear load, until macroscopic sliding.
With those specific (but wrong) initial conditions, we would

recover a macroscopic area curve with the correct quadratic
shape and a simple adjustment of the value of αb would allow
us to provide a good matching with the measurements. This
example illustrates the major influence of the distribution of
initial areas on the final shape of A(Q). It also clearly shows
that the fact that we did not succeed in reproducing a quadratic
area decay is not a generic problem of our model, but partly
relates to the initial conditions (through the A0i) imposed by the
experimental dataset.

Could there be other reasons for the failure of our model
to reproduce the evolution of the real contact area? The main
model ingredient responsible for this evolution is Equation (3).
The first possibility is that, despite the evidence brought in Sahli
et al. (2018, 2019), the anisotropic area reduction under shear
would not follow a single behavior law at all junction scales,
from millimeter- to micrometer-sized junctions. This possibility
is indeed suggested by a recent adhesion-based model of sheared
sphere/plane junctions (Papangelo et al., 2019), where the
authors find that the exponent p varies systematically, for a given
sphere, with the normal load applied, and hence the initial area.
Here we did not try to apply the model of Papangelo et al. (2019),
because it would require the knowledge of the characteristic
radius of curvature of, and normal load on, each individual
microjunction. In contrast, experimental measurements only
provide a combination of both quantities, through the area of
the microjunction.

We now argue that the solution to the failure of our model will
presumably be much more complex than a mere improvement
of the form of Equation (3). The problem may very well be
that the predicted individual force fi is significantly different
from the one that really applies on the microjunction. This is
substantiated by Figure 2 which shows the time evolution of
the contact area of various microjunctions. Two of them (4 and
5) were selected to show that the time window over which the
area decay occurs can be very different: microjunction 4 has
not started to shrink yet when the decay of microjunction 5 is
already complete. This observation suggests that the individual
tangential forces f4 and f5 evolve very differently during the
experiment, although they have very similar initial areas and
are submitted to the same tangential displacement by the glass
substrate. We speculate that such a difference may be the result
of elastic interactions between microjunctions, with junctions in
a crowed neighborhood evolving differently from those far from
neighboring junctions1.

Those interactions are ignored in our model of independent
microjunctions. We thus believe that, in order for an asperity
model to have a chance to quantitatively match experiments
like those considered here, tangential elastic interactions must
be accounted for to describe the shear behavior of individual
microjunctions. Such improved models may incorporate those
tangential interactions in ways similar to models already
developed for the normal interactions during normal loading of
rough surfaces (see e.g., Ciavarella et al., 2006; Afferrante et al.,

1The slight initial increase in area of junction 4 in Figure 2may be due not only to

elastic interactions but also to a slight aging due to viscous creep.
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2012) or for the friction of multicontacts (see e.g., Braun and
Scheibert, 2014; Trømborg et al., 2014; Braun and Peyrard, 2018).

5. CONCLUSION

We developed an independent asperity model for the incipient
shear loading and onset of sliding of dry multicontact interfaces
between a rough elastic solid and a smooth rigid surface.We used
it to attempt the first deterministic comparison with experiments
which, in addition to the macroscopic loads and displacements,
also considers the individual areas of the many microjunctions
forming the interface.

The main outcome is that, although we did our best
to incorporate experimentally-based behavior laws, parameter
values and initial conditions into the model, it fails to
quantitatively reproduce the measurements of Sahli et al.
(2018, 2019). Based on observations at the microjunction
scale, we suggest that an interesting starting point for
future attempts to improve the quantitative deterministic
comparison between asperity models and experiments, may be
to incorporate a description of the tangential elastic interactions
between microjunctions.

Nevertheless, we anticipate that asperity-based friction
models, although accounting for tangential elastic interactions,
may suffer from the same limitations as their counterparts for
purely normal contact (in particular the difficulty to define
asperities when a continuum of length scales is involved in
the topography, see e.g., Müser et al., 2017; Vakis et al., 2018),
and may still be unsuccessful to quantitatively match friction
experiments. We thus urge for the concurrent development of

continuum models suitable to reproduce friction experiments
like those of Sahli et al. (2018, 2019).
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APPENDIX 1: INTEGRATION OF THE
EQUATION OF MOTION OF THE SLIDER

Integration Scheme for the Differential
Equation Giving X(t)
Equation (1) is integrated by a second order Leapfrog algorithm.

γ (t) = Ẍ(t) =
1

M

[

kL(vt − X)−

N
∑

i=1

fi

]

− ηẊ (A1)

is the acceleration of the slider at the beginning of an integration
step. γ (t = 0) has to be calculated at the start of the simulation.
In our case, we start with X(t = 0) = 0 and Ẋ(t = 0) = 0 so
that γ (t = 0) = 0.

Let dt be the time step. The algorithm first updates X(t)
according to:

X(t + dt) = X(t)+ dt Ẋ(t)+
1

2
dt2 γ (t). (A2)

With this updated value of X we calculate the new acceleration
γ (t + dt). In the second stage of the algorithm Ẋ is updated
according to

Ẋ(t + dt) = Ẋ(t)+
1

2
dt

(

γ (t)+ γ (t + dt)
)

, (A3)

and then everything is ready for the next step starting at t + dt.

To properly select dt we calculate the elasticity constant ki for
each contact at the start of the simulation. The angular frequency
of oscillation of the slider of mass M under the total force of the

contacts is �0 =

√

(
∑N

i=1 ki)/M and the corresponding period is

T0 = 2π/�0. The calculation uses dt = T0/Ct with Ct = 104.
The exact value of dt depends on the experiment, but a typical
value is dt = 1µs. This value is sufficiently small with respect
to all the frequencies entering in the dynamics of the slider so
that even a second order algorithm gives a very good numerical
accuracy. We have however run some calculations with a 4th
order Runge-Kutta method (Carnahan et al., 1969), which is
significantly slower, but has errors that decay as dt4, to check the
accuracy of our calculations.

Algorithm of the Subroutine Which
Calculates γ
To compute γ (t + dt), X(t + dt) and xi are known. The
main point is to compute all the forces fi on the junctions.
The state of each junction is recorded with two flags: θi
records its instantaneous state, θi = 1 for a pinned junction,
θi = 0 for a slipping junction, and hi keeps track of its
history, hi = 1 for a junction which has never been slipping
switches to hi = 0 the first time the junction starts to slip,
when fi ≥ fsi.

The program scans all the junctions and performs the
following steps:

• Compute fi for each junction

⋆ if hi = 1 the area of the junction depends on fi according
to Equation (3), which determines ℓ‖i and then ki

[

Ai(fi)
]

according to Equation (2). Thus

fi = ki
[

Ai(fi)
] (

X(t + dt)− xi
)

(A4)

gives an equation for fi. It is too complex to be solved

analytically. We solve it by an iterative process, using a

dichotomy method starting from the value of fi from the

previous step. Once fi is known we update Ai(fi), ki(Ai) and

fsi = σAi for further steps.

⋆ if hi = 0
- if θi = 1 the junction is pinned but Ai is fixed, as

well as ki(Ai), and they are known from previous

iterations so that fi = ki
(

X(t)− xi
)

.
- if θi = 0 the junction is slipping. fi = ǫfsi.

• Check for transitions in the junction state
⋆ if θi = 1 (pinned junction) then if fi ≥ fsi the junction

starts to slip so that θi switches to 0, fi = ǫfsi. hi switches to 0 if

it was still equal to 1.

⋆ if θi = 0 (slipping junction), if |Ẋ(t)| < cmin ×

v the junction repins, θi switches to 1 and we set xi =

X − ǫfsi/ki so that the junction starts in the pinned state

with fi = ǫfsi.

Once all junctions have been scanned and all fi are determined,
we can compute γ from Equation (A1).
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Challenges and Perspectives
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Cell mechanics is a fascinating subject that has witnessed a boost of scientific interest

in the most diverse disciplines. Evidence of its biological relevance is continuously

mounting, unveiling a real-life scenario ever more intricate and complex, and ever

less universal. This review revisits the topic at the same time that appraises routine

approaches and the synchronous combination of experimental methodologies to tackle

cell mechanics in all its dimensionality and complexity. The focus is placed on cultured

mammalian cells and on highly sensitive experimental techniques that rely on contact

mechanics, namely scanning-probe and traction force microscopies. The importance

of time as key variable in theory and experiment is particularly highlighted, together

with the need to unambiguously identify the active and physiological contributions to

cell behavior, and provide suitable mechanisms that dynamically interconnect relevant

events, cellular structures and organelles to thoroughly understand the mechanobiology

of cells. A special consideration is given to the role of friction and the importance of

cell-cell interactions in scaling up the mechanical behavior from single cells to tissues.

The topic is in constant demand of crossdisciplinarity, and in that sense, this review

also serves the purpose of bringing the subject nearer to the mechanical physics and

engineering community.

Keywords: cell mechanics, scanning probe microscopy, traction force microscopy, mechanotransduction,

mechanosensing, mechanobiology, cell viscoelasticity, combined micro-mechanical techniques

INTRODUCTION

Cells are the smallest living units/machines engineered by Nature. In a volume that may vary from
30 to 4 106 µm3 they comprise the most refined machineries for self-division, molecular synthesis,
assembly and metabolism, that on the whole regulate their development and secure their survival
(Alberts et al., 2008). But all those activities would not be possible if the cells were not capable of
interacting with their surroundings. Many of these interactions, like cellular adhesion, are mediated
by mechanical cues (Schwarz and Safran, 2013), the mechanisms of which are so important and
complex, and yet mostly unknown. It is for that reason that Cell Mechanobiology has become
a major focus of continuous research and review, with (Kamm et al., 2017; Dufrene and Persat,
2020; Hallou and Brunet, 2020; Miller and Hu, 2020) being just a few of the most recent and
multiple examples.

Indeed, cells can sense and generate forces and other mechanical stimuli as a result of the
interaction with their surroundings, which usually trigger a functional response or are triggered
by a cellular activity (Huang et al., 2004; Vogel and Sheetz, 2006). The response or activity can
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be physiological, transformative or motional (Figure 1) and
involve the interplay of intracellular and exocellular components
at different spatio-temporal scales. The mechanisms that convert
mechanical cues into biochemical responses or viceversa, define
the capacity of the cell to transduce mechanical signals and, in
doing so, regulate its physiological activity and maintain the
chemical balance. Cell mechanotransduction is hence key in
sustaining life.

Mechanics is intertwined and evolves in parallel with cellular
activity in these highly dynamic systems. This fact, together
with the relatively high variability in cell behavior, adds a
level of complexity that is not present in inanimate materials.
Notwithstanding, the mechanical tests traditionally employed in
the study of material properties have also been the experimental
approach of choice for cells. Those methods became routine
in their mechanical characterization, even though the results
produced by different groups and with different techniques may
differ from one another (Nawaz et al., 2012). The reason for
this lack of consensus has been subject of thorough discussion
(Hoffman and Crocker, 2009), but mainly attributed to the
specifics of the technique used and the experimental conditions,
which on the whole prompt the manifestation of a particular
behavioral aspect above others. Therefore, it has been difficult
to identify a universal behavior, even for cells of the same type.
A particularly illustrative example of the latter is the work of
Wu et al. (2018). The result of a large-scale, multi-institutional
cooperation, a total of seven different techniques were put in
place to measure the mechanical properties of MCF-7 cells, only
to demonstrate the discrepancy between the experimental data.
In stating the variability in cell behavior, even for those of the
same type, the work actually evinces the fundamental issue of
characterizing cells by a unique set of mechanical parameters,
on the one hand. On the other hand, it demonstrates the
limited capability of single techniques and routine experimental
protocols for the detection and qualitative assessment of cell
mechanical behavior as a complex whole. Does this/the above
mean that we might require an arsenal of techniques for a
complete assessment of the cell mechanics? In a way, it does. If
the purpose is to find a thorough description of general validity.

Despite the continuous effort of the last few decades to
understand the mechanical behavior of cells, there are still
many open questions and the scientific challenge remains
high. In the context of theory, we might be facing a similar
situation, if not more severe: “. . . cell mechanics is but the
tip of the iceberg, while a more profound approach would have
to consider inelastic or plastic rather than elastic deformations
and kinematic hardening rather than differential stiffening as the
most salient mechanical characteristics of live cells.” (Kroy, 2008).
Similarly, from the experimental perspective, a study concluded
that: “. . . the mechanical properties of a cell are not static but
dynamic and responsive to environmental conditions. Therefore,
mechanical models of a cell must include a dependence on time and
physiological conditions” (Pelling et al., 2007). These statements
are now more than 10 years ago, and yet has as much validity as
if they were made yesterday.

This review does not aim to describe as to build up on the
state of the art in single cell mechanics, scrutinizing common

scientific approaches and pinpointing current issues, outstanding
challenges and directions worth further exploring.

STATE OF THE ART

Experimental Techniques and the
Importance of Combined and Synchronous
Detection
In comparison with inanimate matter, cells are a very special kind
of materials; they possess a unique architecture of interconnected
membrane compartments and molecular networks that are in
constant evolution and physiological activity, ready to respond to
intra and exocellular cues of the most diverse kind, via multiple
processes that may occur sequentially or simultaneously, and at
different locations in a three-dimensional space.

Methods exist that allow to exert the smallest mechanical
perturbations with great precision and sensitivity, as well as
quantitatively detect and/or visualize the mechanical response at
different times and precise locations. Most of them make use
of microsized or nanosized probes, either mechanical, optical,
electric or magnetic, to apply and/or quantitatively detect,
even map, forces or deformations, and some kind of optical
microscopy to precisely locate the application of stimuli and
visualize the mechanical response. But none of the experimental,
state-of-the-art techniques can, separately, apply and detect any
mechanical perturbation, anytime and anywhere, in ways and
magnitudes that can be relevant for cells (Figure 2). In this
context, relevant to define cellular behavior as completely and
thoroughly as possible.

It is for that reason that the behavioral complexity of
cells demands a proportionate and suitable combination of
measuring setups for the in-situ detection of relevant mechanical
phenomena, in two and three dimensions, and at the relevant
mechanical, spatial, and temporal scales.

In the context of single cells, probe-based microscopies
deserve special mention (Figure 3A). Collectively, this family of
techniques can precisely apply and register mechanical forces in
the pico- and nanonewton range, deformations of the order of
nano and micrometers, as well as optically track phenomena at
the nano and micrometer scales, ranging from the millisecond
to the hour. The atomic force microscope (AFM) can nominally
apply compressive and tensile loads and detect the normal
and horizontal components of forces and vertical deformations
at the upper surface of the cells. These should be preferably
attached to a substrate, meaning that the technique is sensitive
to phenomena occurring at or at the vicinity of the apical
membrane and, in any case, close enough to the cantilever-
probe. The in-plane spatial resolution is hence determined,
and limited, by the size of the probe as it applies tensions or
compressions across the cell surface. But the major limitation
is that the technique alone cannot provide a direct measure of
the contact area, let al.one the geometry of the contact region
between cell and probe. To that end, the integration of an optical-
interference technique may be required, such as total reflection
interference contrast microscopy (RICM). The combined set-
up has been earlier applied to study ligand-receptor interactions
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FIGURE 1 | Landscape of cellular mechanobiology. The discipline revolves about single cell behavior and encompasses phenomena involving supracellular,

intracellular and exocellular bioassemblies.

at the molecular level (Stuart and Hlady, 1999), leveraging the
capacity of AFM and RICM to detect forces and separation
distances, respectively, with sub-nanoscale precision. Previously,
RICM had been proven effective in measuring gap distances
between cell basal membranes and the underlying substrate, in
the calculation of contact areas (Curtis, 1964; Verschueren, 1985),
and of their changes in cells under stress, either in a stand-
alone configuration (Hategan et al., 2003), or in combination
with the method of micropipette aspiration (Heinrich et al.,
2001). But despite its high measuring potential, the tandem
AFM-RICM has not been so much applied in the study of cell
mechanics as in the investigation of inert materials (Dubreuil
et al., 2003). Instead, contact areas are calculated based on
geometrical assumptions, which restrict the probes to a limited
range of sizes and geometries of high symmetry, and in turn
limits the measuring potential of the technique. The cantilever
itself, poses a limitation in the rates at which forces and
deformations can be applied: loading rates should be fast enough
to minimize the instrumental drift, and slow enough to avoid
the dominance of the hydrodynamic drag, and to quantise its
effect in the measurement of forces (Alcaraz et al., 2003; Mahaffy

et al., 2004). Also, the amplitudes of oscillatory stimuli are kept
relatively low so that it is possible to reasonably assume that cells
behave as linearly viscoelastic materials, which in turn allows
for the determination of meaningful dynamic elastic moduli. As
a result, the maximal forces and deformations applied are of
the order of hundreds of pN or a few nanometres (2–50 nm),
respectively, with frequency windows between 0.1 and 102 Hz,
which limits the overall detection range of the technique (Alcaraz
et al., 2003; Mahaffy et al., 2004; Hiratsuka et al., 2009). On
the other hand, Traction Force Microscopy (TFM) (Figure 3B)
heavily relies on optical microscopy to detect cell deformations,
primarily, through the lateral displacement of fluorescent probes
embedded in the substrate onto which the cells are adhered
(Polacheck and Chen, 2016). The optical device is usually an
inverted microscope that provides bottom-side views of cells at
a particular (focal) plane or set of planes (should a confocal
or a structured illumination microscope be used). Hence, the
technique is particularly appropriate to detect and track lateral
deformations and obtain in-plane components of cell-generated
forces at the vicinity of the basal membrane of adherent cells.
In comparison with AFM, TFM is faster in optically detecting
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FIGURE 2 | Experimental techniques most commonly used in single cell mechanics (A) Detection ranges in the mechanical, spatial and temporal scales of relevance.

(B) Main characteristics. OM, Optical Microscopy; AFM, Atomic Force Microscopy; TFM, Traction Force Microscopy; OT, Optical Tweezers; MT, Magnetic Tweezers;

AT, Acoustic Tweezers; OS, Optical Stretcher. Particle-based techniques may comprise optical or magnetic drag, tweezers or traps, and twist cytometry. Sources:

(Thoumine and Ott, 1997; Hochmuth, 2000; Lau et al., 2003; Wottawah et al., 2005; Basoli et al., 2018; Septiadi et al., 2018; Wu et al., 2018).

Frontiers in Mechanical Engineering | www.frontiersin.org 4 July 2020 | Volume 6 | Article 58312

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Moreno-Flores Single Cell Contact Mechanics

concurrent mechanical events at different cell locations, and
the hydrodynamic drag nor the obtention of contact areas
poses critical issues. However, the spatial resolution lies at its
best in the (sub)micrometer range, and the data processing,
including the computation of traction forces from observed in-
plane displacements, is highly laborious, challenging and time-
consuming. Henceforth, the technique is particularly responsive
in detecting displacements at the (sub)cellular level, but not in
tracking events that occur at the molecular scale and cannot
generate mechanical maps on the fly. Also, the technique is
not most appropriate to track out-of-plane events, i.e., normal
components of forces or concurrent out-of-plane deformations.
The limitations of TFM are common to other similar techniques
that trace external deformations (i.e., by means of micropillars),
or particle-based techniques that trace internal displacements of
cell structures and organelles.

Other techniques, such as optical tweezers or the recently
developed molecular tension fluorescence microscopy (MTFM)
(Liu et al., 2017), are sensitive to mechanical events at the
molecular scale, and in that sense have the highest spatial and
temporal resolution. But also in these cases, the information
they provide is restricted to one or, at the most, two
spatial dimensions, and lack comparable significance at the
(sub)cellular level.

As shown above, there is indeed a panoply of high-end
technologies from which to define suitable combinations that
allow a thorough investigation of the mechanical behavior of
cells in the widest detection range. These combinations should
assist in finding missing links between mechanics, structure and
physiology, going beyond purely observational correlations into
the causal relations and underpinning mechanisms.

To date, some promising efforts to combine techniques have
been recently reported and to some extent, provided significant
evidence in that sense. For example, Schierbaum et al. (2019)
recently employed a combined AFM-TFM setup to find statistical
correlations between viscoelastic parameters and contractile
stresses in endothelial cells (Figure 4). Although the observations
clearly indicate that, on average, stiffer cells exert higher traction
forces, at a subcellular scale this does not seem to be the case.
Indeed, for a given cell, the highest traction forces were located
mainly around the more compliant and fluid regions. This
apparent discrepancy of results across length scales questions the
significance of such correlations, especially if the specifications
of each measuring technique, their synchronized use, and the
underlying mechanism(s) of force transmission inside cells are
not sufficient considered. In this particular case, stiffness and
fluidity were obtained from creep maps at the apical region
of the cells, whereas traction moments were computed from
local displacements of fluorescent beads in proximity with the
basal membrane. The set-up combination was not so much
used synchronously as sequentially, at different unspecified times,
and given the disparate spatial resolution of the techniques
employed, most presumably on different subcellular regions of
dissimilar size.

A significant step in achieving synchronicity of mechanical
and optical data, has been made by Beicker et al. (2018). In
their combined set-up, they were able to laterally visualize

the morphology of a single cell as it was mechanically tested
with an AFM (Figure 5). The integration of vertical light sheet
illumination and sideways microscopy in an AFM literally
introduces a new perspective and makes it possible to directly
observe the influence of the mechanical stimuli and the nature
of the response in relation to the cell morphology, structure
and behavior alongside the lateral region and as a function of
time. Through this combination, the authors show evidence of
structural and mechanical coupling between the cell membrane
and the nucleus, an unprecedent finding of significant relevance
that potentially shows the interplay of cell organelles in the
transmission of forces within the cell.

More recently, the work of Skamrahl et al. (2019) has
provided further evidence of dynamical mechano-adaptation of
cells by a suitable combination of AFM and optical fluorescence
microscopy (Figure 6). Indeed, the report shows alterations
in the turnover rate and length of basal F-actin stress fibers
as cells are subjected to apical loads between 0.1 and 1 nN.
The findings constitute a clear evidence of apical-basal force
transmission or “action at a distance,” whereby the application
of local mechanical stress at the top of a cell results in the
modulation of cytoskeletal activity and remodeling, i.e., an
active response, at the bottom. In this respect, the work adds
to the pioneering findings (Mathur et al., 2000), and follows
the experimental approach of Charras and Horton (2002a).
Marthur et al. had reported on a similar manifestation of apical-
basal force transmission, whereby apical loads applied on single
HUVEC cells induce the reorganization of focal adhesions at the
immediacy of their basal membranes within minutes. Charras
and Horton on the other hand, combined AFM and confocal
microscopy to unveil for the first time the effect that mechanical
strains have in modulating Ca-mediated mechanotransduction
pathways in osteoblasts. Through this approach, they were able
to identify threshold cellular strains triggering the chemical
response, to precisely define the experimental timeframe for
the whole process within seconds, to assess the contribution of
the cytoskeletal structures, and to propose a sensible model for
the mechanism by which bone cells sense mechanical strains.
Although Skamrahl et al. provide characteristic time scales of
stress fiber dynamics, they do not propose a molecular model
or mechanism in line with their results and those reported by
Mathur et al. (2000), nor do they provide a measure of the
timeframe for the force transmission and transduction events.
The question remains open, as to when and how, in the interval
of 2min between the application of the mechanical stress and the
time when the observation begins, force propagates and triggers
the physiological response.

Although a complete mechanistic picture remains elusive at
the cellular scale, it may not be the case at the subcellular
level. A remarkable example of the latter is the work of
Bouissou et al. (2017), which provides a detailed mechanism
of the way podosomes work in motile cells. Built upon the
podosome architecture, and consistent with the experimental
results, the authors manage to relate mechanical function to
key molecules and structures. The work is exemplary in that it
manages to obtain a mechanism of how a subcellular structure
mechanically works, via an original experimental approach that
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FIGURE 3 | Two of the most common contact-based technique to study cell mechanics. (A) Scanning probe-based techniques. Microbeads, pyramidal tips, needles,

cells or pipettes are usually employed as stand-alone probes or attached to microcantilevers. (B) TFM-based techniques. Rigid materials or non-degradable silicone

or polyacrylate are used as substrates, featuring micropillars, embedded fluorescent particles or spectroscopic rulers, i.e., fluorophore-quencher pairs attached to

unfolding molecule (a repetitive protein construct, DNA hairpin, or PEG) that acts as a force sensor (Liu et al., 2017). Both sets of techniques heavily profit from or rely

on the combination with optical microscopies. Green arrows: forces exerted by the cell; Blue arrows: exocellular forces.

comprises the combination of AFM, super-resolution optical
microscopy with numerical simulations and protein expression
knock-down techniques (Figure 7, see also section Experimental
Approaches and Protocols). Though the work eludes discussing
the podosome as a dynamic structure that emerges and
disappears with time, as the time-lapse AFM experiments show,
studies of such nature and caliber very well deserve to be
considered as gold standards in the study of cell mechanics.

Outside the AFM context, a recent study combining TFM
and arrays of micropillar actuators particularly stands out (Shi
et al., 2019). Unlike the classical micro-rheological techniques,
the experimental set-up allows to obtain rheological maps of
cell basal regions, along with spatial distributions of cellular
fluctuations (Figure 8). Such a configuration was applied
to thoroughly describe the cytoskeletal dynamics of single
fibroblasts as a function of time and space. Via a sound and

comprehensive statistical analysis of the experimental data, the
authors were able to detect and locate distinctive behavioral traits
of the cell cortex and stress fibers, and establish meaningful
spatial correlations in the observed displacements, which showed
on the one hand, the highly cooperative dynamics of the
actomyosin network, and on the other hand, the avalanche-like
dynamics of the actin cortex. The results were not discussed in
comparable depth, and although they seemed to be in agreement
with the theoretical predictions of Ferrero et al. (2014) and
Hwang et al. (2016), they are based on different dynamic
mechanisms, neither of which could be ruled out.

The existing reports reveal the great measuring and detection
potential of combining state-of-the-art techniques, and the
incipient effort in that direction. But also, that their application
in cell mechanical studies is far from being fully exploited. Other
relevant aspects to consider are the simultaneous determination
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FIGURE 4 | Example of a scientific study based on the combination of an AFM and an TFM to find spatial and statistical correlations between cell mechanical

parameters. The framed inset on the left outlines the experimental approach. (A) Multiparametric maps of a fibroblast showing examples of colocalization of areas of

high traction activity with regions of high fluidity. (B) The average results show however that stiffer cells exert higher traction moments than more fluid cells. (Figures

reproduced from Schierbaum et al., 2019 with permission of the Royal Society of Chemistry).

of contact areas and the influence of lateral forces in cell
behavior. AFM, being one of the most versatile techniques in
its diverse operational modes (Figure 9), can also detect the
lateral component of forces, but these are usually ignored in
non-rheological studies, most of the time under the assumption,
not fully justified, that the forces are applied normally and
hence the horizontal component is negligible or irrelevant.
This assumption may appear valid when the experiment is
performed at the apex of the cells, but not necessarily, and
much less elsewhere. The reason is simple: the cell surface is not
horizontally flat, its curvature profile is complex, adaptive and
site-dependent. Experimentally, this magnitude is not directly
measurable, and can only be assumed a-priori, or, at its best,
indirectly inferred from optical cross sections of limited spatial
resolution and asynchronously obtained. As a consequence, the
experimental study of friction at the cellular scale remains as
challenging as unexplored, with a potential biological relevance
still in process of being discovered.

Methodologies and Protocols
As in the case of inert materials, mechanical assays alone do
not suffice to understand the relation between behavior and
structure in cells. To ascertain the relative influence of individual
variables, the usual approach has consisted in manipulating the
material, either chemically or physically, in a controlled manner

and in such a way that either the nature of its constituents,
relative composition, or a particular environmental condition
during its synthesis or treatment is selectively altered. The
effect of such manipulation can be visualized optically, via the
use of molecular dyes (i.e., fluorophores) that selectively label
specific cellular structures or organelles. In the case of cells,
mechanical assays are often accompanied by chemical or genetic
interventions, whereby the cells are subjected to the action of
certain drugs of known effect or to manipulation treatments
of their genetic material or gene expression machinery. In
both cases, the interventions are mostly focused on causing
alterations of diverse nature in their cytoskeletal structure, and
most recently, dynamics. The interventions are mainly used to
test molecular hypotheses, usually with a substantial biological
background, whereby the molecule or structure believed to play a
decisive role in the process is selectively altered. The mechanical
essay is then used to either confirm or refute the working
hypothesis and draw conclusions in this regard. How generally
valid this conclusion might be, depends on the level of statistical
significance of the observation (reproducibility or repeatability
of a particular behavior) across cells of the same type and across
cell types. Unlike inanimate materials, making generalizations
on cellular behavior or on their mechanical properties from
experimental results is audacious: cell-to-cell variability is an
intrinsic feature that is far more superior and depends on far
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FIGURE 5 | Example of a scientific study based on a combination of AFM, pathway rotated imaging for sideways microscopy (PRISM) vertical light sheet illumination

(VLS) for the synchronous detection of optical and mechanical events of single ovarian cancer cells (SKOV3). Inset on the top: experimental set-up. (A) The

compression tests reveal two regimes, I and II, where the cell displays a stiffness of 2.9 and 3.9 kPa, respectively, and associated with the deformation of the

cytoplasm (I) and the nucleus (II). (B) The decompression tests reveal a series of adhesion signatures (B–F) that can be associated to snap-off events between the

membrane and the fibronectin-coated bead (B–E) and the membrane, nucleus and bead (E,F). The results evince a mechanical coupling between cell membrane and

nucleus, a type of interconnection that mediates cell adhesion. [Figures reproduced from (Beicker et al., 2018) with permission1].

more numerous factors as batch-to-batch variability in inanimate
matter. Hence, reproducible behavior must be interpreted in
statistical terms, and based on a proportionate number of
experiments on comparably numerous cell strains and cell types.

The vast majority of studies have been mainly focussed
on unveiling the connection between mechanics and certain
components of the cellular architecture and/or the cellular

1Granted by the terms and conditions of the Creative Commons CC BY License

(https://creativecommons.org/licenses/).

membrane; in other words, the main structural elements.
In this regard, and in the context of chemical interventions,
the use of disruptive or stabilizing agents of actin filaments
and microtubules in the experimental protocols has become
commonplace ever since the early works of Rotsch and
Radmacher (2000) and Charras and Horton (2002a).
Drugs such as cytochalasin B, D or latrunculin A are often
employed to inhibit the formation of actin fibers, whereas
nocodazole, colchicine and colcemide exert a similar effect
on microtubules. Paclitaxel, on the other hand, has been the
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FIGURE 6 | Combined AFM-FRAP for the detection of a physiological response in the immediacy of the basal membrane of cells subjected to apical stress. (A) The

experimental set-up. The inset features a real-life cross-section of an adherent cell. (horizontal scale bar = 10µm, distance between planes = 4µm). (B) Experimental

protocol. Force is kept constant and applied at least two minutes before acquisition of fluorescence recovery data. (C) Typical fluorescence recovery curves as a

function of applied force. The turnover rate is indicated in relation with the characteristic recovery time. (D) Statistical results of turnover rates (**, level of significance p

<0.01). (Figures reproduced from Skamrahl et al., 2019 with permission2 ).

drug of choice to stabilize microtubules. Less common, but
important if the purpose is to disrupt cytoskeletal activity or
mechanotransduction pathways, is the employment of enzyme
or pathway inhibitors. Blebbistatin and ML-7 disrupt the activity
of enzymes associated to the actomyosin network, whereas

2According to the terms of Creative Commons Attribution 4.0 International

License: http://creativecommons.org/licenses/by/4.0/.

gadolinium ions, verapamil or thapsigargin supress the calcium
entry pathway, each in a different way (Charras and Horton,
2002a). Interestingly, these chemical agents do not disrupt
cellular structures so much as physiological processes in a
selective manner. In the first case, it is the mechanism of
cytoskeletal contractility as example of active cellular response
or hallmark of dynamic cellular behavior. In the second, the
trafficking of Ca ions as part of a mechano-transducing pathway.
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FIGURE 7 | Experimental study of the podosome structure and working mechanism. (A) AFM measurements: Topology of a pair of podosomes from fingerprint

tracks left on a Formvar membrane. Simulation results: Protrusion-traction model of a single podosome in agreement with the experimental results. The stability of the

podosome at a certain time is the result of a mechanical balance between protrusion forces (Fp) at the center of the podosome (red) and peripheral traction forces (Ft)

(gray). (B) DONALD measurements. Spatial distribution of key structures and molecules (F-actin, talin, paxillin and vinculin) in a single podosome (left), and their

corresponding probability density distributions (center). The immunofluorescence images (right) show the distribution of F-actin and vinculin in single podosomes and

evince the contribution of talin in co-maintaining the annular structure. (C) Proposed general model of a podosome, featuring the molecular structure and the

mechanical configuration of exerted forces. (Figures reprinted and adapted with permission from Bouissou et al., 2017). Copyright 2017 American Chemical Society.
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FIGURE 8 | Example of combining TFM and actuator arrays to obtain microrheological data and map cell-generated fluctuations at the basal membrane of adherent

cells. (A) Image of cells on the microstructured substrate. (B) Typical experimental output of a non-actuated (upper graph) and an actuated micropillar driven by a

double-sinusoidal magnetic field at 1 and 7Hz (lower graph). (C) Dynamic stiffness as a function of frequency for micropillars situated in the central (blue) and the

peripheral (red) regions of the cell, exhibiting different power-law dependences. (D) From left to right: mean square displacements of passive micropillar deflections

and MSD exponents that differ in the central (cortical) and the peripheral (dense in stress fibers) regions and show superdifusive behavior. Spatial distributions of MSD

exponents, mean square displacements and traction forces across the cell and according to the regions rich in actin cortex and stress fibers. MSD values and traction

forces according to type of micropillar (level of significance: **p < 0.01; ***p < 0.001). The effect of cytoskeletal disrupting agents on the cellular fluctuations reveal that

the structure involved is the actomyosin network. (Figures reproduced from Shi et al., 2019).

In this sense, those substances and similar others with tuneable
and controllable effects and well-known mechanisms of action
at the single cell level, hold great scientific potential and hence
are much in need. They enable to ascertain the relevance
and influence of physiologically active processes, and hence to
understand the mechanical behavior of cells as living entities.

Chemical intervention can be easily incorporated in the
mechanical assays; drugs can be added or removed in-situ

without major practical complications, allowing the study of
their effect on the same cells and in one single experiment. A
major objection to the use of drugs is that these may cause
perturbations on cells that may not be controllable, measurable,
reproducible or selective enough at the cellular scale. Besides,
a substantial knowledge of their effects and mechanism of
action, also in the appropriate dose(s), is required prior to
their utilization. Factors such as the extent of drug intake or
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FIGURE 9 | Operational modes and technologies employed in the experimental study of cell mechanics with scanning probe microscopies (SPM, left-hand side) and

optical microscopies (OM, right-hand side), the latter in combination with the former. Some references are included of pioneering or outstanding works. M,

microscopy; F, fluorescence; FRAP, fluorescence recovery after photobleaching; TIRF, total internal reflection fluorescence; DONALD, direct optical nanoscopy with

axially localized detection; sr, super-resolution.

resistance at the single cell level are critical but likely to vary
among cells, resulting in an added variability of behavior that
cannot be experimentally controlled. In this regard, the physical
investigation heavily relies on (and lags behind) the biological
and pharmaceutical investigations pertaining drug development
and associated effects in-vitro. As positive as this interaction may
be in enhancing cross-disciplinarity, it also limits the gain in
physical knowledge in that it restricts the nature and number of
hypotheses to test.

Genetic manipulation may be more precise and a method
of choice when it comes to modulate the presence of key
molecules inside cells. These molecules are proteins, and usually
constituents of the cellular skeleton or of molecular complexes
putatively relevant in determining the mechanical characteristics
of cells, such as cell-substrate (e.g., focal adhesions) and cell-
cell anchors (e.g., cell-cell junctions. The manipulations, which
usually occur at the DNA level, aim at the up-regulation,
down-regulation or suppression (knock-out) of the expression of
the corresponding target protein. Correspondingly, the process
usually results in the increase, decrease or absence of intracellular

protein, with the corresponding alterations in the processes
or structures the protein is part of. In this sense, the genetic
approach introduces a higher level of control and versatility in
the type and number of processes it can modify. However, the
manipulations are complicated and laborious, which rules out
a simple, in-situ implementation, require numerous materials
and dedicated equipment, not to mention the expertise and
know-how of geneticists and biologists. Also in this case,
the biological and genetic knowledge is key in defining the
appropriate course of action (i.e., choice of relevant proteins
and genes to manipulate and how) for the intended outcome
(alteration of cellular activity or structure).

Data Analysis and Interpretation
Despite the advancement in the measuring technologies and
the level of sophistication of the experimental methodologies,
the analysis and interpretation of (opto-)mechanical data
have not witnessed a comparable development. Indeed,
the current techniques can generate big sets of data
with relative ease, but only a relatively small portion can
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be easily explained or is susceptible of routine analysis
and interpretation.

Also in the context of living matter, a typical mechanical
experiment allows to obtain the relations between forces and
deformations, also as a function of time or of frequency.
Reports abound in which the behavior of many types of cells
have been investigated via “indentation” tests3, which have
become a routine procedures, or through stress relaxation,
creep or rheological experiments at the microscale. In all these
cases, the results have been analyzed in analogous ways as for
inanimate materials, borrowing the traditional models of contact
mechanics, in particular of the theory of linear viscoelasticity
(Figure 10). It is hence not uncommon to find elastic or complex
moduli (usually tensile or shear), as characterizing parameters
for various cell types or subcellular regions. The models range
from those of purely elastic and homogeneous bodies, tension-
basedmodels whereby cells are considered as pre-stressed entities
characterized by a homogenous membrane tension, to those of
linear viscoelastic bodies, either homogeneous or not. When
the cells are treated as viscoelastic bodies, the models employed
vary according to the type of mechanical assay performed;
in the case of transient-type experiments (stress relaxation,
creep), the spring-dashpot-based representation and its variants
is usually the model of choice, with Kelvin-type or Voight-
type elements representing the contribution of cell components
to the observed behavior. Whichever cell components these
may be, remain a matter of data interpretation, usually in
the form of hypotheses that may or not be confirmed by
chemically intervention experiments of the type described
above. In dynamic microrheological tests, the power-law model
is predominantly applied, whereby the elastic component of
the shear modulus (G’) is expected to depend linearly on
the logarithm of the frequency. The slope, denoted as β, is
taken as a measure of the fluidity of the material, a value
between 0 (linear elastic solid) and 1 (linear fluid). Typical β

values for cells are 0.1–0.3 at low frequencies, increasing with
frequency toward the value of 0.75 (Hoffman and Crocker,
2009).

The significance of giving mechanical constants as intensive
magnitudes is relative in the sense that they allow to easily
compare and classify cell types based on their mechanical
characteristics, as for any other kind of material. But, to which
extent these values are a faithful and complete representation of
the cellular mechanical behavior is a matter that, surprisingly, has
not been settled or discussed extensively enough. And it should,
for various reasons:

Calculation of moduli and compliance. The problem of the
contact area. The fundamental relations are based on intrinsic
magnitudes, stress and strains that, in order to be properly
and accurately calculated, require the knowledge of the contact
area between the cell and the surface, or surfaces, where forces
and deformations are applied. A parameter that cannot be
obtained experimentally via the techniques usually employed

3Although the term indentation could be in this case misleading, as this may not

be what it actually occur when cells are subjected to normal loads, and especially if

these forces are non-local.

and previously described. Indeed, the geometry of the contact
region is either unknown or poorly defined, and prone to vary
among locations on the cell surface, if local probes are used in
the mechanical tests. For the sake of simplification, the type of
mechanical probes for the experiments are intently chosen to be
highly symmetrical or geometrically simple, mainly flat planes
or spheres. But still assumptions need to be made that concern
the contact mechanical behavior of cells, including values for
parameters such as the Poisson’s ratio, with typical values ranging
between 0.35 and 0.5 (Trickey et al., 2006; Liu et al., 2019). This
is nothing other than paradoxical, as that is precisely what one
wants to find out through the experiment. The procedure appears
at times inconsistent, especially when contact areas or Young’s
moduli are calculated from indentation-type experiments under
the assumption that cells behave elastically, while, at the same
time, transient data, from force relaxation or creep compliance
tests, are being analyzed with viscoelastic models (Gullekson
et al., 2017; Liu et al., 2019). Another challenge related to
the contact area is, particularly in the case of cells and in
long experiments, its dependence with time. This aspect is most
frequently overlooked, but its relevance can compromise the
validity of the assumptions and the analysis approach as a whole.

The intentional search for simplicity. The use and abuse of
Hertzian models. Many experimental studies have been done
under conditions, usually small deformations (i.e., few nm)
and/or forces (i.e., < 1 nN) and during short periods of
time (i.e., < 1–2 s), whereby the instantaneous response of
cells is registered and found to be similar to that of linearly
elastic, even rigid and semi continuous bodies. As much as
this approach simplifies the data treatment and interpretation, a
question remains regarding the actual relevance and significance
of the results and the calculated parameters. The treatment
has become routine to an extent that it is now possible to
obtain stiffness maps of whole cells automatically (Figure 11),
without so much as a simple calculation of slopes, or of
Young’s moduli, mostly according to the Hertz model (Hertz,
1882). The Hertzian approach for a spherical indenter, and to
a less extent the later modifications introduced by Sneddon
and Bilodeau for axisymmetric (Sneddon, 1965) and pyramidal
indenters (Bilodeau, 1992), have gained widespread acceptance
and use in cellular studies, although their validity is far
from evident in this experimental context. Indeed, the issue
of applying Hertz-based models in cell mechanics has been
discussed as early as 2002 (McElfresh et al., 2002): these models
work on the assumption that the material is relatively hard,
linearly elastic, and represented as a continuous, isotropic and
homogeneous half-space. Besides, the material should have a
flat and non-adhesive surface for test and analysis. But the vast
experimental evidence on cells amassed in the last 30 years clearly
indicates that, in rigor, none of these assumptions can faithfully
approximate the nature and behavior of cells. More realistic
contact mechanical models have been reported that consider
the effect of surface (Ding et al., 2018), i.e., membrane tension
(references in Figure 10) and glycocalyx (Sokolov et al., 2013;
Guz et al., 2014) and that have been applied to cells. Despite
their good performance, they have not gained the widespread
popularity of the hertzian models. In the same line of thought
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FIGURE 10 | Summary of the phenomenological descriptions most commonly used to analyse experimental data of living cells. The methods are traditional of

Contact Mechanics and used to characterize at least the passive behavior of materials. Representative references are included in brackets. sph, cone, py stand for

spherical, conical and pyramidal indenter, respectively.

and to the author’s knowledge, classical models that consider the
effect of adhesion, such as the Johnson-Kendall-Roberts (JKR)
model (Johnson et al., 1971), the Derjaguin-Muller-Toporow
(DMT) model (Derjaguin et al., 1975) or the generalization of
Maugis and Pollock (1984), their solutions for different contact
geometries and approaches for viscoelastic materials (Popov
et al., 2019), as well as derived models (e.g., Hui et al., 2015; Long
et al., 2016) have so far not been applied to cells.

Passive vs. active responses. Influence of structure and
physiology. Cells are active and living materials, and in
this sense, they constitute a special kind of smart matter.

Irrespective of the categorization in elastic or viscoelastic
materials, the mechanism of the response may be active
or passive, a mixture of both and non-linear. In this
sense, the experiments have not been conclusive enough,
and the methods for data analysis routinely employed
do not allow making distinctions of such kind. Although
chemical and genetic interventions can throw some
light on the influence of certain structural elements and
molecular roles, the issue lacks sufficient experimental
evidence. Instead, it remains a subject of interpretation and
hence, debatable.
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FIGURE 11 | Multiparametric imaging on the fly. (A) Generation of multiplexed data from AFM force-displacement curves. Stiffness are computed as slopes from

linear fits of parts of the loading curve contact region (traces in shides of orange). The fitting limits are either preset or readjusted a posteriori (graphics adapted from

Moreno-Flores and Toca-Herrera, 2013, fig. 7.9). (B) Height and stiffness maps of motile bacterial leaving a trace of, presumably, slime of distinctive softness (figure

reproduced from Dhahri et al., 2013 with permission2 ). (C) Time-lapse topological and mechanical maps of single bacteria (E. Coli) undergoing cell division. The Young

moduli were calculated according to the Hertz model via a data analysis software of the AFM manufacturer (figure reproduced from Bhat et al., 2018 with permission2 ).
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Cell heterogeneity. Influence of the immediate environment
and time. As mentioned before, a contact-based technique such
as AFM can map the viscoelastic properties of whole cells by
systematically and sequentially probing their local response to
an applied force or deformation at specific locations across the
cell body. Cells are not homogeneous materials nor do they have
a defined shape, and in this respect, the maps reveal certain
spatial variability of themechanical behavior. This variabilitymay
be attributed to multiple factors, such as local variations in the
morphology and structure, variations in cell thickness (i.e., cell
height) and cell adherence. But neither are cells inert, and their
dynamics and interactions with their immediate surroundings
can play a significant role in the observed behavioral diversity.
In this sense, the underlying substrate, its nature and mechanics,
as well as the presence of neighboring cells (cell confluency) are
relevant aspects that should be considered. In particular, whether
these factors are intrinsic or extrinsic to the cellular behavior are
issues worth debating, as only in the latter case, and depending
on the technique employed, may constitute an environmental
factor that should be at least considered in the analysis (Managuli
and Roy, 2017; Ding et al., 2018), rather than corrected. In the
case of tissue-forming adherent cells, such as epithelial cells, for
which the contact with substrates and other cells is essential
in order to properly develop function, both cells and substrate
are constitutive of the system and their role an integral part of
the cellular response. Contrarily, suspension cells, such as blood
cells, reproductive cells or certain types of bacteria, the existence
of which does not depend on contact with substrates or with
other cells, those factors may not be part of the system but can
influence the response in one way or another. It remains to
consider if this response has any biological significance, and in
this sense, the cellular response should be correctly identified
and interpreted.

Cells as in vitro samples. Reproducibility of cell behavior.
Cells are no ordinary materials, and this also extends to the
ways in which the cells samples are produced, which should
also be considered. Animal cells for in vitro studies can be
purchased as batches of cell lines, or obtained from primary
cultures. The former are “modified versions” of naturally-
occurring cells, which can be maintained at the laboratory, in
principle indefinitely (Freshney, 2005). This is possible due to the
capability of these cells to continuously grow and proliferate, if
cultured with the appropriate growing medium and in suitable
amounts. The cell lines, called immortal for that reason, share
characteristics with and originate from tumors. Cell lines are
maintained in-vitro via a procedure named cell passaging, in
which the cells, when reaching a certain limiting confluence,
are detached from the old substrate, dispersed, diluted and
transferred to a new substrate, in a fresh medium. Cell passaging
is a routine practice, but relative aggressive to cells, which
in practice limits the number of times it can be performed
without irreversibly and uncontrollably altering the integrity of
cultured cells. The frequency at which cells should be passaged,
as well as maximum number of cell passages vary with each cell
line, and when applicable, are recommendations determined by
biological practice and integrated in the experimental protocols
of cell culture. Though expected to bring changes, the variability

in biological behavior and cell function, also phenotype and
genotype, between cells of the same type but from different
passages is not well determined. This includes the physical
behavior. Contrarily, primary cells are directly extracted from
living tissue, tumor or not, and have limited capacity to survive.
They are much more sensitive to passaging, and hence do not
stand in-vitro maintenance. Also in this case, primary cells may
display different behavior depending on the tissue, the subject
they have been extracted from, as well as the procedure of
preparation andmaintenance of the integrity of the samples prior
to experiment. Taking the above into account, it is reasonable
to ask the extent to which the parameters experimentally
obtained are actually influenced by the preparation method and
in-culture pre-treatment.

Different experimental methodologies and models of
analysis. As suggested before, different technologies have
distinctive experimental sensitivities and hence likely to
provide divergent perspectives of the cellular mechanical
behavior. Therefore, it is reasonable to expect that the
respective results may not be necessarily coincident or
comparable in quantitative terms. Besides, the mechanical
parameters are likely to differ if disparate methods of data
analysis and interpretation are chosen for the same kind of
experimental data.

Theory and Simulation
Theoretical models. Just as with notions of the theory of
linear (visco)elasticity to obtain mechanical properties of cells,
single cell biophysics has also borrowed pre-existent theories
and models of material science to explain and understand
the mechanical behavior (see the summary of Figure 12).
Among the latter, rigid scaffolds and various types of soft
matter such as polymer-based gels, soft glassy (foams and
emulsions) or biphasic (sol-gel) materials have been considered
as references with which to compare the behavioral features
of certain cell components, especially the cytoskeleton. Indeed,
the theories/models employed so far have been able to explain
particular aspects of the cellular behavior, but none of them has
stood out as a “theory for everything” in cell mechanics; a model
that can account for the behavior of cells in all its experimental
manifestations and complexity.

Ingber’s theory of Tensegrity (Ingber, 1993) explains the
static mechanics of structural scaffolds. In this sense the model
accounts for the passive behavior of cells, as long as these
are viewed as pre-stressed structures with capacity to maintain
their mechanical and structural stability under loads. In the
model, the cytoskeletal network is the resilient structure that
sustains the mechanical forces and preserves the mechanical
equilibrium, with the actin microfilaments and microtubules the
elements supporting tensions and compressions, respectively.
The disruption of either of these elements disturbs the force
balance between the cells and their surroundings, increasing
tractions on the substrate (MT) or in the cell (MF). The
theory provides a macroscopic view of the passive behavior of
biopolymer fibers and cytoskeletal networks and in this sense, it
can explain strain-induced stiffening exhibited by some type of
cells. But it fails to explain their dynamics and hence the active
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FIGURE 12 | Summary of some of the theories to understand the behavior of living cells, in particular cell components, under mechanical stress or deformation.

[Artworks of tensegrity, dynamic models and poroelasticity reproduced from (Ingber, 2003), (Hoffman et al., 2007), and (Hasse and Pelling, 2015), respectively, with

permission].

behavior to compensate the mechanical unbalance, the strain-
softening behavior of other cells, also from a microscopic point
of view (Hoffman and Crocker, 2009; Hasse and Pelling, 2015).

The mechano-dynamic aspects of cellular behavior have
been usually identified with those of the cytoplasm. From a
macroscopic point of view, the interior of cells can be considered
as made of a (homogeneous) material capable of dynamically

responding to transient stimuli. In this case, cells have been
found to behave as soft glassy materials when subjected to
periodic shear4, but also relax under steady loads as though
they were poroelastic (Moeendarbary et al., 2013). In each case,

4An enlightening summary of experimental and theoretical works supporting the

statement can be found in Hwang et al. (2016) and Shi et al. (2019).
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the mechanical response could be described by a power-law
behavior in frequency and time, in qualitative agreement with the
predictions of Sollich, or of the poroelasticity theory (Biot, 1941),
respectively. Indeed, the SGR theory of Solich (1998) predicts
a power-law-like behavior, whereby the availability of non-
thermal5 free energy, rather than temperature, is the determining
factor that elicits the dynamic response. This is defined by
the parameter x, with values lower than 1 characteristic of a
glassy state, of frozen dynamics, and values between 1 and
2 defining the dynamic range. x is related to the power-law
exponent, β , by a simple relation (β = x + 1). In this sense,
the SGR theory can be useful in explaining the mechanical
behavior of cells driven by ATP-dependent processes. Although
able to explain some relevant experimental observations such
as strain-induced softening or non-trivial rheological behavior,
the quantitative predictions do not seem to square with the
observations (Hoffman and Crocker, 2009). More successful
in its quantitative predictions has been the poroelastic model
(Moeendarbary et al., 2013). In it, the cytoplasm is coarsely-
grained modeled as a bicomponent material; an elastic, porous
mesh embedded in an aqueous fluid. The dynamics is determined
by the movement of liquid through the mesh pores in response
to an applied load, resulting in characteristic times defined by the
pore size, the elasticity of themesh, and the properties of the fluid.

Neither of these models take into consideration the
microscopic dimension, and cannot provide a mechanistic
view that integrates, at least, the most relevant molecular
components. Consequently, they cannot fully explain the
dynamic heterogeneity observed in single cells, as well as among
cells and cell types. The microscopic models such as the sol-gel
hypothesis, the glassy worm like chain model (GWLC) or
active gels, consider the interior of cells as dynamic networks
of protein fibers, interconnected or not, in a fluid medium.
In each respective model, the dynamic response is viewed as
a consequence of reversible molecular processes of fibrillar
assembly and disassembly, of hindered fibrillar motion and, in
the case of active gels, either of cross-link formation/disruption,
or of the activity of motor proteins/binding proteins (Lau et al.,
2003; Mizuno et al., 2007). However, these models can only
explain a relatively narrow range of non-universal cellular
behavior, strain-softening (Kroy, 2008) or strain-stiffening
(Mizuno et al., 2007), provide a partial view of the structural
dynamics and heterogeneity of the cytoskeletal network, and
they are structure-specific6, which limits their validity. Besides,
the sol-gel hypothesis cannot provide a rational explanation
of non-thermally driven dynamics and fails to describe cell
crawling (Hoffman and Crocker, 2009; Hasse and Pelling, 2015).
Also, the GWLC model and the model of an active biopolymer
gel differ notably in their fundamental assumptions despite
their structural similarity, with one attributing the dynamic
molecular response to equilibrium fluctuations and the other
to non-equilibrium fluctuations. And in all cases, the influence

5Meaning chemical and ATP-dependent.
6The sol-gel hypothesis relies on the dynamics of the fibre assembly/disassembly

to explain a particular type of active response of cells (cell migration, cell

deformation), whereas the behaviour of cross-linked gels is determined by the

polymer composition, the nature of the cross-linker or the active molecule.

of non-cytoskeletal and non-cytoplasmic constituents in the
mechanical response is either overlooked or not considered.
This might result in an oversimplification, taking into account
that organelles such as the nucleus accounts for 10–20% of the
total cell volume (e.g., 16% in NIH/3T3 fibroblasts), exhibit
distinctive mechanical characteristics of singular physiological
relevance and responsiveness (Guilak et al., 2000; Lherbette
et al., 2017; Stephens et al., 2017), are actively involved in
mechanotransduction processes (Burridge et al., 2019) and
mechanically coupled with other structural elements, as
suggested by the work of Beicker et al. (2018).

Simulations. Computational approaches such as the Finite
Element Method (FEM) have been regularly employed to
reproduce the response (i.e., force and deformations) of materials
to mechanical stimuli. Basically, these materials are modeled
as/discretized as bi- or tridimensional meshed objects with a
specific geometry and material properties, and a well-defined set
of boundary conditions or assumptions. In the context of cell
mechanics, this type of simulations has provided a “proof of
model,” confirming or refuting the working hypotheses of the
wet-bench (experimental) studies. Cells have been represented
as axisymmetric constructs (Unnikrishnan et al., 2007), spheres
or ellipsoids (Liu et al., 2019), with or without structural
components (Bursa and Fuis, 2009). The former are the structural
models, whereby some of the cell constituents, namely the
membrane cortex, cytoplasm and nucleus, are modeled as
homogeneous continua or discrete elements. The non-structural
models were relatively simple and the first to be developed;
these represented the cell as a homogeneous, isotropic continuum
(Charras and Horton, 2002b). Both the structural and non-
structural models have been combined in the so-called bendo-
tensegrity model (Bansod et al., 2018). The model combines
continuous and discrete elements to simulate the nucleus and
cytoplasm on the one hand, and the cytoskeletal fibrillar network
(actin filaments, microtubules and intermediate filaments) on
the other hand. In all the previous cases, calculations have been
made under the assumption that the mechanical characteristics
of the object or of its critical components are known, and
they focus on simulating the structural response based on an
assumed architecture. Something that, in the case of cells and
in view of the above and the observed behavioral variability,
is still a matter of discussion and speculation, as is the
identification and contribution of those critical components.
Other assumptions include the nature of the contact region, the
interaction between simulated components, and the Poisson’s
ratio. In this sense, simulations rely heavily on experimental
background data, and mechanical parameters obtained through
experiment. Consequently, the simulation results may be as
reliable or questionable as the experimental data, and hence
subjected to a similar kind of discussion.

DISCUSSION

Single cell mechanics has undergone a considerable and
significant development, that continues today. The non-stopping
effort and intensive research have led to numerous and significant
findings as regards the importance of mechanics in shaping cell
type and behavior. Although with certain lack of consensus in
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the quantitative details and important questions still open, it
is generally agreed that, from the materials point of view, cells
are heterogeneously complex, viscoelastic materials, that exhibit
linear and non-linear behavior depending on the environmental
conditions. Indeed, the mechanical behavior of cells highly
depends, among other factors:

• on the time during which the mechanical stimulus is applied,
and on the speed with which this is applied

• on the integrity and dynamics of interconnected
structural elements

• on cell type, topology and density (confluency).

Likewise, the cellular elasticity and adherence have proved
mechanical signatures of cell type, tumor cell malignancy, and
cell-cell communication, that are mainly determined by the
cytoskeletal network, in particular the microfilaments, or F-
actin. Also, the substrate stiffness and the mechanical state of
the cell can affect its shape, pre-stress, adhesion on substrates,
differentiation, and motility.

The body of work supporting the statements above is
considerable. If anything, it evinces the high complexity and
variability of cellular behavior, including the interaction with
its surroundings, and the interconnection between external
and internal, structural and non-structural factors. It has
enabled to stablish statistical correlations between cellular
structure, behavior and function, but without hardly providing
a mechanistic view or proof of mechanisms that can account
for all the observations as yet. How could one tackle the
outstanding challenges?

Time matters in cell mechanics. In principle, many of
the experimental methodologies available today are capable of
capturing events occurring in different locations inside and
outside the cell, as well as in the course of time (Figure 2).
Given that cells are highly dynamic systems, this kind of
experiments can be paramount in finding causal correlations
out of the time sequence of physical, chemical and physiological
events that take place inside the cell, and in identifying the
agents (molecules, organelles and structures) actually involved.
This type of information may prove valuable in discovering
the mechanisms by which cells sense, generate, transduce
and transmit mechanical cues. So far, the efforts have been
mainly focussed in finding statistical correlations between
cell mechanical parameters and the functionality of the cell
cytoskeleton, particularly the actin-actomyosin network. In most
of these works, time is not considered as experimental variable,
and hence the degree of interconnection between the different
behaviors is missing in those studies.

Time may also be behind the question of how important
the cytoskeletal microtubules are in shaping the mechanical
response of cells. The pivotal work of Rotsch and Radmacher
(2000) set an influential precedent in experimentally showing
that microtubules are not particularly relevant in defining cell
elasticity of fibroblasts, as much as the microfilament network
is, and quite a number of later reports have supported this
idea. The conclusions are mainly based on loading tests under
conditions—low compressive loads (of the order of 102 pN),
short times (barely tens of seconds to seconds)—where cells

may mostly reveal an elastic response of structural nature,
mainly determined by the actin cortex. A discussion in terms
of dynamics and the interconnectivity of the microfilament and
microtubular networks are in most cases, if not in all, missing.
And yet, there is sufficient evidence of the importance that the
architecture and dynamics of the microtubular network has in
cell division7, polarization and locomotion (Alberts et al., 2008),
in sensing sound-induced vibrations (Schwander et al., 2010),
as well as in sustaining high compressive loads (Brangwynne
et al., 2006), in determining the response to mechanical strains
(Charras and Horton, 2002a), or in maintaining local stiffness
(Pelling et al., 2007). Likewise, there is an established importance
that intermediate filaments have in shaping mechanics of cells
and tissues (Broussard et al., 2020). It is thus reasonable to
suppose that, as the works described in the previous section,
the mechanical role and dynamics of microtubules as well as
intermediate filaments manifest at larger mechanical and spatio-
temporal scales that have been either scarcely or not thoroughly
explored on the experimental ground, nor have they been studied
in mutual interconnection, or in relation to other molecular
complexes and cell organelles.

Is Cell Plasticity Actually Plasticity? The
Passive, Active or a Physiological
Contributions
Cells are living entities, and unlike inanimate matter, have an
added level of behavioral complexity. The structural, dynamical
and physiological nature of the cell mechanical response is
ever-present and intertwined in yet unknown ways. Although
experiments can be devised in such a way that cell responsiveness
is predominantly inert and hence determined by structure, any
conclusions that may be drawn from these studies may have very
limited, if not questionable, validity.

It is therefore essential to include the dynamical and
physiological aspects of cell behavior in the study of cell
mechanics, if the purpose is to gain a solid and comprehensive
knowledge. In this respect, some fundamental questions arise: to
what extent is the mechanical behavior of cells a consequence
of dynamics or physiology? How all these contributions
interconnect to one another and deployed? Is it possible to
identify them experimentally? All this boils down to prove
the following hypothesis: that the physiological processes have
their own mechanical fingerprint, and this is dependent on the
timing and duration of each process. As far as cytoskeleton
remodeling is concerned, it has been evinced that stem cells are
particularly sensitive to shear oscillations of low frequency (i.e.,
0.1–0.5Hz) at the basal membrane, modulating their adherence
and triggering their differentiation accordingly (Kang et al.,

7Though not explicitly shown (Matzke et al., 2001) hints at the relevance that

microtubules may well have in shaping cell shape and stiffness prior cell division

by the following brief remark: “Adding of 10 µM nocodazole blocked the increases

in both height and stiffness that occur before furrowing and cell division (data not

shown)”. The comment appears even though the discussion uniquely revolves

about actin microfilaments being key in the process. Nocodazole does not disrupt

microfilaments so much as microtubules (see section “Experimental Approaches

and Protocols”), and yet has such a distinctive effect that nonetheless is left out

from the discussion.
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2017); oscillations of slightly higher frequency, i.e., 2Hz, have not
such effect, which suggests a possible frequency window for the
manifestation of such physiological response. For the particular
case of cell mitotic division, the proof of concept of the hypothesis
mentioned above, was early reported by Matzke et al. (2001),
and only much later was it further explored by Stewart et al.
(2011) and Cattin et al. (2015). At the level of molecules, the
outstanding work of Guo et al. (2014) and particularly their
original experimental approach, deserves special mention. The
authors smartly leveraged themeasuring potential of optical traps
and tweezers and combined active and passive microrheology,
in order to obtain force spectra out of spatial fluctuations of
intracellular particle tracers. In this way, they were capable of
identifying the active forces caused by motor proteins in the
cytoskeleton and detect differences in the cytoplasm activity
between normal and cancer cells of the same type. From
this perspective, the work sets a remarkable precedent and
evinces once more the great benefit of combining experimental
capabilities and analytical resources in gaining fundamental
knowledge of the active mechanics of cells. In consequence, it
is to be expected that the integration of multiple techniques for
synchronous detection, measurement and data analysis holds
great potential in providing qualitative and quantitative evidence
of interrelated processes, as well as in identifying mechanical
signatures and characteristic time scales.

Cell confluency: the role of cell-cell interactions in the

mechanical response. Cells that form tissues need to establish
connections with other cells in order to develop properly.
Therefore, it is rational to expect that the mechanical behavior of
these cells be different if studied in isolation or in the presence
of other neighboring cells. In this respect, the cell density can
be an important parameter to consider in the study of cell
mechanics (Brückner and Janshoff, 2018; Broussard et al., 2020).
In the context of two-dimensional in-vitro cell culture models,
cell confluency, or the percentage of substrate area covered by
a monolayer of cells, has proven to be an influential factor
in determining the mechanics of healthy epithelial cells, as
compared to invasive tumor cells of the same type (Schierbaum
et al., 2017), in enhancing membrane tension (Pietuch et al.,
2013a,b) or in modifying the cell elasticity, although with
quite different results in the latter case (Efremov et al., 2013;
Schierbaum et al., 2017). In the context of 3D in vitro cell culture
models, recent attempts have been reported to characterize
the elasticity and cell-cell interfacial tensions of multicellular
spheroids by cavitation rheology (Blumlein et al., 2017), as well
as the overall viscoelasticity of epithelial cysts (Shen et al., 2017)
and elasticity of multicellular spheres of mesenchymal stromal
cells by AFM (Tietze et al., 2019). Both latter works provide
evidence of characteristic relaxation dynamics and indentation
mechanics that differ substantially to those of single cells. It
is thus reasonable to expect “transitions” in the mechanical
behavior as cell proliferate and develop into mature spheroids
(Moreno-Flores and Küpcü, 2015).

These findings are in line with the underlying idea that
the mechanical signatures of cells evolve as they network
and eventually develop into tissues and organelles, or in
case of cancer cells, as they develop tumors with a certain

invasiveness. Stablishing the connection between mechanics and
cell development at the fundamental level (Hallou and Brunet,
2020), can thus be critical in gaining a deeper understanding
of morphogenesis (Keller, 2012), as well as tumor development
and metastasis (Kumar and Weaver, 2009; Wirtz et al., 2011).
In this regard, the clinical application of the cell mechanotype
and of micromechanical techniques in cancer detection does no
longer seem to be a far-fetched possibility (Nautiyal et al., 2018;
Stylianou et al., 2018).

The 3D view. Cell anisotropy is a property that varies
according to cell type and may evolve in the course of time, i.e.,
cell life cycle and physiological activity. The basal-apical polarity
of epithelial cells, and the dendrite-to-axon transmission of
electrical signals in neurons are two classical examples. Likewise,
cells in vivo are subjected to, and exert, a characteristic set
of mechanical cues that determine their development, function
and shape in a three-dimensional space. The in-vivo scenario
heavily contrasts with most of the experimental studies in
cell mechanics, whereby the application of stimuli and the
observation of the response are limited to a single direction
or plane. Hence, technologies enabling 3D visualization and
mapping of micromechanical interactions between cells and their
environment in a dynamic manner would be much needed.
These in combination with 3D scaffolds of controlled structure—
pore size, fiber length and diameter—dynamic behavior and
degradability, capable of active sensing and responsiveness,
fluidization and remodeling (Kennedy et al., 2017; Lemma et al.,
2019), may prove promising in defining the new state of the art
in the methodology for cell mechanobiology.

Single cell tribology. Friction can cause or aggravate tissue
damage and inflammation, induce bone, tooth wear and blister
formation, and lead to commonplace pathologies such as
osteoarthritis. Therefore, a considerable effort has been put
in place to understand tissue resilience and degradation, as
well as to investigate restorative treatments or, alternatively
and whenever applicable, replacement materials for implants
(Gebeshuber et al., 2008; Correa and Lietman, 2017; Pina et al.,
2018). A recurrent model material in the characterization and
engineering studies has been the articular cartilage, for which
a wealth of reported research exists (Correa and Lietman,
2017; Pina et al., 2018). However, much is still unknown
at the level of single cells, in particular about the relation
between cell rheology and cell tribology and the impact
that friction may have on the mechanical and physiological
behavior. A significant contribution in that direction suggests a
relation between cell deformability and surface friction, and that
both characteristics may determine the metastatic potential of
cancer cells (Byun et al., 2013). Just recently, friction-induced
mechanisms for cellular inflammation and cellular death have
been proposed for corneal epithelial cells and chondrocytes
from multicellular experiments (Bonnevie et al., 2018; Pitenis
et al., 2018), and, in view of the relevance of the findings,
this type of investigations are expected to gain momentum. In
this respect, active microrheological techniques able to apply
and detect shear stress and strains inside and outside single
cells, in combination with microfluidic approaches can make a
significant difference.
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CONCLUSIONS AND OUTLOOK

Despite the impressive record of research work, single cell
mechanics has still a long way to go in reaching consensus
and thorough understanding. There is great need in putting
the reported findings in relation to one another, and from
this perspective, revise the vast knowledge amassed so far.
On the other hand, tackling the questions still open in the
field requires integrative approaches and methodologies on a
par with the still unfathomed cell complexity. The search for
a complete and universal mechanistic view of cell mechanics
remains to be a formidable task and an outstanding challenge
that absolutely depends on extensive crossdisciplinarity to be
fruitful. A roadmap toward such aim should consider the
variable time as key experimental and theoretical parameter,
the development of rigorous gold standards for the routine

mechanical characterization of cells, and the conception of
dynamic models that integrate the biological, physical and
chemical knowledge, as well as resources in computation and
engineering. Synchronous or combined multi-instrumental and
multidimensional methods of cell manipulation and detection
emerge as key experimental approaches to ascertain and
identify the plausible active and physiological contributions
to the overall cell behavior, the anisotropic nature, the
relevant structural and functional interconnections, the role
of friction, as well as the implications to cell communication
and development.
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Friction Under Electroadhesion:
Possibilities and Limitations
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Electrovibration is one of the key technologies in surface haptics. By inducing controlled
electrostatic forces, the friction within a sliding contact between the human finger
and a capacitive screen is modulated, which in turn gives effective tactile feedback
to the user. Such powerful haptic displays can be built into mobile phones, tablets,
navigation devices, games consoles and many other devices of consumer electronics.
However, due to the layered structure and complexmaterial of human skin, the underlying
contact mechanical processes have not yet been fully understood. This work provides
new continuum-based approaches to macroscopic modeling of the electro-adhesive
frictional contact. A solution of pure normal contact between a human finger and a
rigid, smooth plane under electroadhesion is derived by applying Shull’s compliance
method in the extended regime of large deformations. Based on these results and
assuming pressure-controlled friction, a model for the sliding electro-adhesive contact
is developed, which adequately predicts the friction force and coefficient of friction over
the whole range of relevant voltages and applied normal forces. The experimentally
observed area reduction caused by the tangential force is incorporated in a more
empirical than profound contact mechanical way. This effect is studied with the help of a
two-dimensional finite element model of the fingertip, assuming non-linear elastic material
for the skin tissue. Although the simulations are restricted to non-adhesive tangential
contacts, they show a significant reduction of the contact area, which is caused by
large deformations of the non-linear elastic material around the distal phalanx. This result
indicates that adhesion is only of secondary importance for the area reduction.

Keywords: friction, adhesion, electrovibration, surface haptics, finite element method—FEM, compliance method,

hyperelastic material

INTRODUCTION

Understanding contact mechanics and friction of human skin is a great challenge for the
tribological community. Human skin is characterized by a complex layered structure of non-linear
viscoelastic material and a specific surface topography. In addition, its hydration level as well as
moisture at its surface can strongly influence grip and touch properties. Especially with regard
to tactile perception skin tribology is not yet fully understood (Derler and Gerhardt, 2012; van
Kuilenburg et al., 2015). In this respect, improved knowledge is urgently needed as it plays a major
role in the rapidly growing field of robotic and haptic applications. One key technology in surface
haptics is electrovibration, which is based on the polarization of a fingerpad pressed in contact
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FIGURE 1 | Schematic representation of the electromechanical frictional
contact between the index fingertip and touchscreen.

with an AC voltage supplied surface coated by an insulating
layer. When the fingerpad is moved over the substrate, the
user perceives a characteristic feeling which can be altered
by controlling the shape, amplitude and frequency of the
voltage (Vardar et al., 2017). In this way, the user can get
effective tactile feedback. A schematic representation of such an
electromechanical frictional contact between the fingerpad and
touchscreen under electrovibration is depicted in Figure 1.

Despite numerous experimental studies in this area, several
effects are not yet sufficiently understood (Sirin et al., 2019b).
Above all, there is a lack of well-founded models that
correctly reflect the interaction between contact mechanics and
electrodynamics. These models should not only provide good
results for a single measured quantity like the friction force, but
rather all other contact mechanical quantities, particularly the
contact area, must also be correctly mapped on the way there.
Excellent modeling from an electrodynamic point of view can be
found in the works by Shultz et al. (2015) and Shultz et al. (2018)
as well as Nakamura and Yamamoto (2017). From the point of
view of contact mechanics, however, the simplest approaches
are chosen. Promising multiscale approaches that cover both
electrodynamics and contact mechanics in a suitable manner
include the works by Persson (2018) and Sirin et al. (2019a).

Following the current Research Topic “contact mechanics
perspective of tribology,” we focus exclusively on macroscopic
modeling. We define a model as “macroscopic” if it is based
on the apparent or ridge contact area. Smaller scales are not
taken into account! On this macro scale some effort has been
made to map voltage-induced friction as well. In this context,
reference is made to Vodlak et al. (2016), Heß and Popov
(2019) as well as Argatov and Borodich (2020). The work
by Vodlak et al. focus on the assessment of two analytical
models of electrovibration based on the parallel-plate capacitor
by comparisons with experimental results published in literature.
The approach proposed by Heß and Popov exploits the close
analogy of electroadhesive contacts to classical adhesion theories
based on van der Waals forces. However, this model provides
insufficient results with respect to the contact area as a function
of the normal force, since the original theory by Johnson et al.

(1971) is applied. The interesting extension in the work by
Argatov and Borodich is that it also takes non-linear elastic
material behavior into account. However, a simple Winkler-Fuss
model is mainly used, which is why it should generally be checked
whether the three-dimensional contact mechanical behavior of
the adhesive fingerpad contact can be mapped correctly. During
the preparation phase of this manuscript another work on the
same topic was published by Basdogan et al. (2020). Their model
is based on the original theory of Johnson, Kendall and Roberts
applicable for parabolic contacts of linear elastic materials.
Therefore, the inhomogeneous, non-linear elastic finger material
is replaced by a (fictive) homogeneous linear elastic one. A
further characteristic approach of the model is the assumed
proportionality between the real and apparent contact area,
which is chosen in accordance with the results of recent multi-
scale calculations (Ayyildiz et al., 2018; Sirin et al., 2019a).

As stated above, the aim of the present work is to
develop a “macroscale” model which correctly reproduces all
contact mechanical quantities and effects arising from the
electro-adhesive frictional contact between the fingerpad and
touchscreen. Since the tangential contact model is based on the
solution of the pure normal contact, it is necessary to derive a
robust model for the normal contact under electroadhesion.

Therefore, the present manuscript is structured as follows:
First a novel model for the pure normal contact under
electroadhesion is developed by application of the compliance
method in the extended regime of large deformations and non-
linear elastic materials. The integration of electroadhesion is
realized by an idea of Popov and Heß (2018). Based on the
resulting function of the ridge contact area in terms of applied
voltage and normal force, an extended model for the sliding
electro-adhesive contact is developed in Chapter Tangential
Contact with Electroadhesion. This chapter begins with a study
of the origins of the experimentally observed area reduction
in frictional contact by means of adhesion theory and a non-
adhesive two-dimensional finite element model of the fingertip
accounting for the large deformations and non-linear elastic
material behavior. In agreement with the FE results and recent
studies, the area reduction is then incorporated in a model
for pressure-controlled sliding friction in an empirical way.
Finally, the developed model is compared to recent experimental
results. Some conclusive remarks and a short discussion close
the manuscript.

NORMAL CONTACT WITH
ELECTROADHESION

Although the main objective of this study is to develop a
model for sliding friction of a fingerpad over a smooth surface
under electroadhesion, the preliminary investigation of pure
normal contact is mandatory. The solution of the normal
contact problem must be reproduced correctly in the limit of
a vanishing tangential force, for both cases, with and without
electroadhesion. In particular, the model for calculating the
reduction of the contact area in the state of full slip requires
precise knowledge of the contact area under pure normal loading
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with switched-on electroadhesion. While section Theoretical
Background is devoted to the repetition and discussion of the
theoretical principles to be applied, in section Application to
Fingerpad in Contact with Capacitive Screen they are used to
solve the normal contact between finger and capacitive screen
under electroadhesion.

Theoretical Background
The model for normal contact under electroadhesion is
essentially based on two fundamental principles, which are briefly
repeated here. From a contact mechanical point of view, the focus
lies on Shull’s compliance method, which was originally designed
for linear elastic material behavior. Its extended application to
non-linear elastic material is not very well-known. According
to Heß and Popov (2019), the incorporation of electrostatic
attraction into the model is done by calculating the work of
electroadhesion as well as the electrostatic force per unit area,
which also includes the concept of the equivalent air gap.

Shull’s Compliance Method—Generalized Version of

the JKR-Theory
In analogy to the energy-based derivation of the original theory
by Johnson et al. (1971), Shull and coworkers (Shull et al., 1998;
Shull, 2002) developed a method which enables obtaining the
solution of a more arbitrary adhesive normal contact problem
from the known solution of the corresponding non-adhesive one.
This method is called “compliance method” and represents a
generalized version of the JKR-theory. Its applicability is neither
restricted to homogeneousmaterials nor to circular contact areas,
but linear material behavior is required. The main results of the
compliance method are the following expressions for the elastic
energy release rate G:

G =
(F1 − FN)

2

2S2
dS

dA
and G =

(δ1 − δ)
2

2

dS

dA
, (1)

where FN and δ are the normal force and indentation depth
of the adhesive contact. F1 and δ1 refer to the values of the
corresponding non-adhesive contact and S denotes the contact
stiffness defined by:

S : =
dF1

dδ1
. (2)

After equating the energy release rate G with the thermodynamic
work of adhesion w, Equation (1) leads to:

FN (A) = F1 (A)− S (A)

√

2w/
dS

dA
, (3)

δ (A) = δ1 (A)−

√

2w/
dS

dA
. (4)

Recently Equations (3) and (4) have been rediscovered and
more precise restrictions concerning their applicability have been
added (Ciavarella, 2018; Popov, 2018). The main assumption
is that the sequence of contact configurations in an adhesive
contact should be the same as that of contact configurations
in a non-adhesive one. For this reason, the method cannot be
generally applied to rough contacts. However, in some cases it

seems to provide a good approximation of the adhesive solution.
Furthermore, it should be stressed that the application to non-
linear elastic material behavior, which characterizes human skin
tissue, is only permitted under certain conditions, which are
addressed at the beginning of section Application to Fingerpad
in Contact with Capacitive Screen.

Application to power-law relationships between non-adhesive

quantities
Typically, experimental results of the non-adhesive fingerpad in
normal contact with a smooth rigid plane predict the following
power-law relationships between the contact area and normal
force as well as indentation depth:

A (F1) = αFm1 , (5)

A (δ1) = βδn1 . (6)

The corresponding adhesive solution can be obtained from
Equations (3) and (4). From Equations (5) and (6) we first
determine the stiffness according to Equation (2) by using the
chain rule and its derivation with respect to the contact area:

S (A) =
n

m
β1/nα−1/mA1/m−1/n, (7)

dS

dA
=

n−m

nm

S (A)

A
. (8)

After inserting Equations (7), (8) in (3), (4) and taking into
account the non-adhesive relationships, the solution of the
adhesive normal contact is found:

FN (A) = α−1/mA1/m
−

√

2wn2

n−m
β1/nα−1/mA1+1/m−1/n, (9)

δ (A) = β−1/nA1/n
−

√

2wm2

n−m
β−1/nα1/mA1−1/m+1/n. (10)

In particular, Equation (9) is used in section Application to
Fingerpad in Contact with Capacitive Screen to calculate both
the apparent contact area and the ridge contact area when
electroadhesion is switched on. It should be noted that the
exponentsm and n are generally not independent of one another
but are related due to the geometric and material properties
of the contact. For instance, for axisymmetric normal contact
problems of linear elastic homogeneous half-spaces (with a
compact contact area) the exponents are connected by:

m =
2n

n+ 2
(11)

and Equation (7) yields the well-known relationship S ∼
√
A.

The classical JKR-theory
As an example, let us rederive the Equations of the classical JKR-
theory. For this purpose, we take the solution of the non-adhesive
contact between two parabolically shaped elastic bodies with
elastic moduli E1 and E2, Poisson’s ratios ν1 and ν2 as well as radii
of curvature R1 and R2 from Hertz theory. The contact radius is
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FIGURE 2 | Parallel-plate capacitor model; the dashed line marks the
integration domain used for calculation of the electrostatic force.

denoted by a. By a comparison with the predefined relationships
(5) and (6) the following parameters can be identified:

m = 2/3, n = 1, β = πR
∗

, α = π

(

3R
∗

4E
∗

)2/3

, (12)

where 1
R
∗ =

1
R1

+
1
R2

and 1
E
∗ =

1−ν21
E1

+
1−ν22
E2

. Inserting these

parameters into Equations (9) and (10) results in:

FN (a) =
4

3

E
∗

a3

R
∗

−

√

8πE
∗

wa3, (13)

δ (a) =
a2

R
∗
−

√

2πwa

E
∗

, (14)

which indeed represent the classical JKR solution.

Electrostatic Force and Work of Electroadhesion
The most common approach to modeling the electrostatic
contact between the fingerpad and the touchscreen is based on
the parallel-plate capacitor shown in Figure 2. The conductive
tissue of the skin as well as the conductive layer of the screen form
the electrodes of the capacitor. Its space is filled by the stratum
corneum, an air layer and the insulating layer of the screen. Here,
the stratum corneum is assumed to be a perfect non-conducting
layer, although it generally has a finite resistivity. However, if we
focus on the AC case and the frequency of the applied alternating
voltage is high enough, the assumption is justified. For extended
approaches from the electrodynamic point of view, which study
the frequency-dependence of the frictional force, the reader is
referred to the works of Meyer et al. (2013), Vezzoli et al. (2014),
and Shultz et al. (2015).

The electrostatic force onto the upper part of the capacitive
system consisting of the upper plate and the stratum corneum
(see Figure 2) can be calculated from the general definition, that
is, by integration of the Maxwell stress tensor T over the surface
of the enclosed volume:

−→
F el =

∮

∂V
T · d

−→
A , (15)

with T = ε

[

−→
E
−→
E −

1

2

(

−→
E ·

−→
E
)

I

]

, (16)

where
−→
E denotes the electric field, I is the unit tensor of second

order and ε the absolute permittivity. In our simple capacitive

system, the only contribution to the electrostatic force on the

upper part comes from the electric field of the air gap
−→
E a, which

points in the z-direction and thus perpendicular to the relevant
surface. Therefore, only the zz-component of the Maxwell stress
tensor is required to calculate the electrostatic force according to
Equation (15), which leads to

−→
F el =

∫

A
Ta,zzdAz

−→e z =

∫

A

1

2
εaE

2
adAz

−→e z =
1

2
εaAE

2
a
−→e z . (17)

From the continuity of the normal component of the electrical
displacement at the interfaces between stratum corneum and air
as well as air and insulating layer of the screen, the following
relationships hold:

εscEsc = εaEa = εiEi, (18)

where the abbreviations “sc” and “i” stand for “stratum corneum”
and “insulating layer,” respectively. In addition, the voltage
between the plates can be determined from the line integration
of the electrical field, which leads to the following result:

U = Escdsc + Eada + Eidi. (19)

Herein, dsc, da, and di represent the thicknesses of the stratum
corneum, air gap and insulating layer of the screen. From
Equations (18) and (19) the electric field in the air gap can be
determined and after substituting the result into Equation (17)
the magnitude of the electrostatic force yields:

Fel : =

∣

∣

∣

−→
F el

∣

∣

∣
=

U2A

2εa

(

dsc

εsc
+

da

εa
+

di

εi

)−2

=
ε0U

2A

2εr,a

(

dsc

εr,sc
+

da

εr,a
+

di

εr,i

)−2

, (20)

where we have introduced the relative permittivities εr,sc, εr,a, and
εr,i as well as the permittivity of free space ε0 on the right side.
After dividing Equation (20) by the plate area, the electrostatic
force per unit area is found:

σel : =
Fel

A
=
ε0U

2

2εr,a

(

dsc

εr,sc
+

da

εr,a
+

di

εr,i

)−2

. (21)

Analogous to the work of adhesion that comes from the van der
Waals forces, the work of electro-adhesion was introduced by
Popov and Heß (2018). It represents the required work per unit
area to separate the plates and can be calculated by:

w =

∫

∞

da

σel

(

d̃a

)

dd̃a =
ε0U

2

2

(

dsc

εr,sc
+

da

εr,a
+

di

εr,i

)−1

. (22)

Let us briefly take a closer look at the limiting case of
“direct contact,” i.e., a disappearing air gap. The corresponding
electrostatic force results from Equation (20) taking into account
da = 0:

Fel
(

da = 0
)

=
ε0U

2A

2εr,a

(

dsc

εr,sc
+

di

εr,i

)−2

. (23)
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If we make use of the usual estimation εr,a ≈ 1, then Equation
(23) exactly agrees with the formula proposed by Strong and
Troxel (1970) in their pioneering work:

Fel
ST

=
ε0U

2A

2

(

dsc

εr,sc
+

di

εr,i

)−2

. (24)

It should be noted that alternative approaches to Equations
(24) and (20) were proposed by Kaczmarek et al. (2006) and
Vodlak et al. (2016), which are supported by several authors
(see e.g., Radivojevic et al., 2012; Giraud et al., 2013; Vezzoli
et al., 2014; Liu G. et al., 2018). It goes without saying that
these approaches can alternatively be integrated into the new
model. Nevertheless, this work makes use of Equations (20–
22). It is assumed that there is always an air gap even in the
in-contact state, which includes not only the interstitial spaces
between the ridges but also non-contacting areas on smaller
length scales resulting from roughness. It is well-known that even
the ridges themselves are far away from being smooth. They
are punctuated by many concave shaped sweat pores openings.
According to measurements by Liu et al. (2013), the number of
sweat ducts considerably varies between subjects and lies between
300 and 1,000 per cm2. Therefore, some authors have recently
introduced the junction area as a measure of the real contact area
(Dzidek et al., 2016). Current purely theoretical investigations
using mean-field models based on multiscale contact mechanics
take even smaller scales into account which results in a further,
significant decrease of the predicted real contact area. A ratio
A/A0 < 10−3 is given by Ayyildiz et al. (2018) for instance.

Concept of an equivalent air gap
As mentioned above, the real contact area is made up of various
micro-asperity contacts and is generally much smaller than the
apparent or ridge contact area. This results in a non-uniform
interfacial air gap between the surfaces of the stratum corneum
and insulating screen layer. As part of a macroscopic model, we
want to capture the whole influence of the non-uniform air gap
on the electrostatic force by introducing an equivalent air gap of
constant thickness. It is worth noting that the real non-uniform
interfacial air gap and thus also the thickness of the equivalent air
gap strongly depends on both the normal force and the applied
voltage. If the real non-uniform air gap corresponding to a given
normal force and voltage were known, the equivalent air gap
would be obtained from:

σel
(

da,eq
) !
=

1

A0

∫∫

A0

σel
(

da
(

x, y
))

dxdy, (25)

where da,eq denotes the equivalent air gap. Unfortunately, it
is impossible to determine the non-uniform air gap. However,
the equivalent air gap concept can be used in another way.
Some scientists calculate the equivalent air gap from accessible
experimental data on the frictional force in electroadhesive
contacts to incorporate it into a suitable substitute model. For
example, Guo et al. (2019) measured the friction force of the
finger sliding on a 3M touchscreen at different normal forces
but under a fixed apparent contact area. From their experimental
results they estimated the electrostatic force, which increased

significantly with increasing normal force. The authors explain
this effect through an existing (equivalent) air gap between the
fingertip and screen, whose thickness decreases with increasing
normal force by a power function. At 150V peak-to-peak voltage,
the thickness decreased from 2.5 to 1.5 micrometers when the
normal force has been increased from 0.5N to 4.5N. Nakamura
and Yamamoto (2016) have proposed a multi-user visuo-haptic
system, which integrates an additional rubber-like pad between
the fingertip and touchscreen surface that has a surface-insulated
electrode on its bottom. By means of an electrically activated
and insulated screen electrode an electrostatic force acts on
the pad and is then transferred to the fingertip placed on the
pad. The electrostatic component to the friction force obtained
from measurements showed different behavior at small and
large voltages. Thus, they included an equivalent air gap in
their parallel-plate capacitor model that varies between 0 and
6 micrometers depending on the applied voltage. We would
also like to highlight the work of Shultz et al. (2015), who
succeeded in unifying the DC based Johnson Rahbek and AC
based electrovibration force models. They clearly show that
Coulombic attraction force across the very small interfacial air
gap is the origin of both. An alternative possibility is to calculate
the thickness of the air gap from knowledge of the measured
capacitance, as implemented by Nakamura and Yamamoto
(2017) or Shultz et al. (2018). In summary, all the above-
mentioned works predict a thickness of the equivalent gap in the
order of a few micrometers. Keeping this order of magnitude, the
equivalent air gap as a function of the normal force is used in
section Sliding Friction to fit the friction force resulting from the
tangential contact model onto experimental data.

Application to Fingerpad in Contact With
Capacitive Screen
In the following, the developed theoretical principles are applied
to the normal contact between the fingerpad and the screen under
electrovibration. Therefore, the solution of the corresponding
non-adhesive contact is required, whereby “non-adhesive” means
that the voltage is turned off. Adhesion due to van der Waals
forces are excluded. One critical point must be discussed in
advance. The compliance method is based on the principle
of superposition, hence its application is restricted to linear
elasticity. Human skin, however, shows non-linear material
behavior and the contact between finger and screen is associated
with large deformations. Although these non-linearities indicate
a breakdown of superposition, Lin and Chen (2006) have
demonstrated that under comparatively weak adhesion the
compliance method can still be applied in the large-deformation
regime assuming non-linear elastic materials. In this case,
the adhesive part of the solution to be superposed must be
understood as a linear perturbation of the non-linear non-
adhesive one. Hence, the applicability of this so-called large-
deformation JKR (LDJKR) theory is linked to the validity of
the assumption:

FN − F1 (A)

δ − δ1 (A)
≈

dF1

dδ1

∣

∣

∣

∣

A

. (26)
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By using the finite element method, Lin and Chen (2006) studied
two adhesive contact problems involving hyperelastic material:
the contact between a hyperelastic hemisphere and a smooth
rigid substrate as well as the contact between a smooth rigid
spherical indenter and a hyperelastic half-space. In both cases
they checked the accuracy of Equation (26) which actually
coincided with the simulation results. Further applications of
the LDJKR to Neo-hookean layers can be found in the work
by Lin et al. (2008). Without further proof, but based on the
above explanations, it is assumed that the compliance method
can be applied to the contact between the fingerpad and the
screen, too.

The solution of the non-adhesive normal contact between the
index finger and screen is required as input for the compliance
method. For this purpose, experimental results from accessible
literature are used. We focus on the range of small normal forces
between 0 and 2N, which are relevant regarding electrovibration.
Although some reported experimental data in literature vary
significantly, there is general consensus that both the dependence
of the apparent contact area A0 and the ridge contact area
AR on the normal force can be fitted to power functions
according to Equation (5). Given exponents corresponding to
the apparent contact area in the low force regime range between
0.36 and 0.42 and those corresponding to the ridge contact area
range between 0.42 and 0.58 (Warman and Ennos, 2009; van
Kuilenburg et al., 2013a; Lin et al., 2015; Dzidek et al., 2017;
Liu X. et al., 2018). Taking into account that the relationship
between area and load depends onmany things like the fingerpad
inclination angle, measurement methods (ink printing or optical
method), environmental conditions (temperature and humidity)
and individual properties of the finger (influenced by age and
gender of subjects) the differences in exponents are still relatively
small. Soneda and Nakano (2010) determined slightly higher
exponents from measurements with an optical method, 0.52
for the apparent and 0.68 for the ridge contact area, but they
consider a different range of forces lying between 0.1 and 5N.
For further investigations, values from the work by Dzidek et al.
(2017) are taken, since it also provides the required relationship
between the contact area and indentation depth according
to Equation (6).

Approach Based on Apparent Contact Area
The measurement results of Dzidek et al. (2017) stem
from the left index finger of a 27-year-old female subject.
With regard to the power functions according to Equations
(5) and (6), at a finger inclination angle of 30 degrees
relative to the smooth countersurface, the following parameters
were determined:

m0 = 0.37,α0 = 91.9 mm2N−m0 , n0 = 1,β0 = 64.4 mm2−n0 ,

(27)

where the subscript “0” signifies parameters corresponding to
the apparent contact area. After inserting these parameters
into Equations (9) and (10), the corresponding solution of
the electroadhesive contact is found. In Figure 3, the apparent
contact area as a function of the normal force is plotted for

different values of the work of electroadhesion. Curves over the
entire loading range are shown on the left, whereas the plot on
the right gives an enlarged view of the pull-off region associated
with negative loads. The solid black lines represent the original
power-law fits to the experimental measurements by Dzidek et al.
(2017). The other two solid lines illustrate the solutions under
electroadhesion corresponding to different values of the work
of adhesion, w = 0.132 J/m2 and w = 0.532 J/m2. Both are
calculated from Equation (22) considering a voltage of 200V
but in one case a realistic equivalent air gap thickness of 1µm
is assumed whereas the other one takes into account unlikely
complete contact, characterized by an disappearing equivalent
air gap. At first glance, especially if one assumes a moderate air
gap thickness, the change in the contact area when switching
on the voltage appears so small that one tends to neglect it.
However, it can be clearly seen from Figure 3 on the right
that this is not permitted for the range of very small normal
forces (combined with higher voltages), which is definitely still of
interest for electrovibration. The curve associated with w= 0.132
J/m2 predicts a pull-off force of 6.74 mN. In addition, the pure
voltage-induced contact (no external normal force is applied)
creates a contact area of 24.14 mm2. Unfortunately, to the best
of the authors’ knowledge, no experimental data are available in
this interesting range.

The percentage change in the apparent contact area decreases
with increasing normal force. At a normal force of 0.5N, the
change is still around 9 %. Nevertheless, in recent measurements
by Sirin et al. (2019b) for characteristic normal forces of 0.5N,
1N, and 2N, no significant difference was observed between the
(initial) apparent contact areas with andwithout electrovibration.
Thus, it can be assumed that switching on the voltage only results
in an enlargement of the ridge contact area. This is the main
reason why we decided to develop a model based on the ridge
contact area instead of the apparent one.

Approach Based on Ridge Contact Area
Under the assumption that the LDJKR theory remains valid
for applications to contact problems involving non-linear elastic
human skin material, we were able to derive a solution for the
electro-adhesive contact between the finger and the screen. It
was tacitly assumed that the apparent contact area is compact
and approximately circular. The applicability of the LDJKR
theory to the ridge contact area requires an additional, very
strict assumption. As previously mentioned, each contact area
configuration under electroadhesion must be the same as
that of the corresponding non-adhesive contact loaded by an
appropriately chosen higher normal force (Ciavarella, 2018;
Popov, 2018). This condition is definitely not fulfilled here!
However, since more suitable simple methods do not exist, the
compliance method is used once again to obtain a (rough)
approximate solution.

In the following, we proceed in exactly the same way as in
the last section. First, the parameters for the power functions are
taken from the work by Dzidek et al. (2017).

mR = 0.52,αR = 54.9 mm2N−mR , nR = 1.41,βR = 33.3 mm2−nR ,

(28)
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A B

FIGURE 3 | Apparent contact area as a function of normal load for different works of electroadhesion; black curves represent the non-adhesive solution; (A) Plot over
the whole loading range; (B) Enlarged view of the pull-off region associated with negative loads.

where the subscript “R” indicates parameters corresponding
to the ridge contact area. Subsequently, these parameters
are inserted into Equations (9) and (10) which yields the
solution under electroadhesion. The ridge contact area as
a function of the normal force is plotted in Figure 4, again
distinguishing between the three characteristic cases: non-
adhesive contact, contact under electroadhesion taking
into account an equivalent airgap of 1µm as well as
complete contact associated with a vanishing equivalent
air gap.

In the latter two electroadhesive cases, pull-off forces of 2.3
and 11.7 mN are obtained, as illustrated by Figure 4B. The
change in the ridge contact area at a normal force of 0.5N
reads 11.2% for an air gap of one micron and 23.8% for
complete contact.

As already stated, there appears to be no experimental data
in the literature to evaluate the quality of our model and adjust
the equivalent air gap thickness from it. In this context, however,
we would like to point out that models based on Hertz or the
original JKR theory assuming a parabolic profile and a constant
equivalent elastic modulus cannot map the apparent or ridge
contact area as a function of the normal force correctly. To show
this, the apparent contact area for the cases of Hertz and original
JKR [see Equation (13)] are included in Figure 3. The effective
radius was estimated with R

∗

≈ 1 cm and an effective elastic
modulus of E

∗

≈ 47.4 kPa is chosen such that the apparent
contact areas for the non-adhesive normal contact agree at FN =

1N. The values for the work of (electro-)adhesion are chosen as
for the new model. The Hertzian prediction differs significantly
from the experimentally verified non-adhesive curve by Dzidek
et al. (2017). Of course, these large differences are inherited in the
JKR cases. At most, Hertz based models that take into account an
equivalent effective elastic modulus that varies with the contact
area (or indentation depth) would be qualified for modeling
(van Kuilenburg et al., 2013a,b). Nevertheless, such models
would still have to be suitably expanded to include the effect
of electroadhesion.

TANGENTIAL CONTACT WITH
ELECTROADHESION

A suitable, macroscopic model for mapping the electroadhesive
frictional contact between the fingerpad and screen should fulfill
three main characteristics:

I. It should be based on a model for normal contact
under electroadhesion.

II. It must be able to reproduce the experimentally observed
contact area reduction caused by the frictional force in the
state of full slip.

III. It requires a macroscopic approach for the frictional force.

Regardless of these specifications, the quality of a model can
only be ensured by experimental verification of all relevant
correlations. To meet the first point, the normal contact model
based on the ridge contact area presented in section Application
to Fingerpad in Contact with Capacitive Screen is applied. It is
essentially described by Equation (9) with exponents mR = 0.52
and nR = 1.41 originating from the experiments by Dzidek et al.
(2017). The occurring work of electroadhesion w is defined by
Equation (22).

To satisfy requirement II, most current studies exploit
adhesion theories based on fracture mechanics concepts. For this
reason, section Tangential Contact under Full Stick assumption—
Peeling starts with a discussion about peeling. However, by
means of simulations with a two-dimensional FE model of the
fingertip in section Transition from Stick to Slip—the Evolution
of Contact Area in the Non-adhesive Case, it is shown, that the
area reduction is mainly caused by large deformations of the
non-linear elastic material around the distal phalanx. Therefore,
in consistence with the FE results and available experimental
investigations by Sahli et al. (2018) the area reduction is
incorporated empirically [see Equation (43)].

On the defined macroscopic scale, a pressure-controlled
friction law is assumed in section Sliding Friction. In connection
with the specific parameter optimization, this leads to a good
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A
B

FIGURE 4 | Ridge contact area as a function of normal load for different works of electroadhesion; black curves represent the non-adhesive solution; (A) Plot over the
whole loading range; (B) Enlarged view of the pull-off region associated with negative loads.

agreement of the friction force and the friction coefficient
with experimental data. However, the incorporation of extended
approaches consisting of both a pressure-based and an adhesion-
based term is in principle possible.

Tangential Contact Under Full Stick
Assumption—Peeling
Most current theoretical studies on tangential contacts of soft
materials try to explain the experimentally observed contact
area reduction by fracture mechanics concepts. They focus
on the adhesive contact between elastically similar materials
loaded by a small tangential force that does not cause any
slip in the contact area. Under this full-stick condition all
material points within the contact area undergo the same
tangential displacement δT with respect to points remote from
the contact area. In this case, the compliance method can easily
be extended by including corresponding energetic terms to the
elastic strain energy as well as the mechanical potential energy
of the external load. This results in an energy release rate
given by:

G =
(F1 − FN)

2

2S2
dS

dA
+

FT
2

2ST
2

dST

dA
and

G =
(δ1 − δ)

2

2

dS

dA
+
δT

2

2

dST

dA
(29)

where ST : = dFT/dδT denotes the tangential contact stiffness.
After setting the energy release rate G equal to the work
of (electro)adhesion w the general solution of the (no-slip)
tangential contact under electroadhesion is obtained. Note,
that the applicability of the extended compliance method is
neither restricted to homogeneous materials nor to the half-
space approximation or circular contact areas, but linear material
behavior is required. In principle, the same requirements apply
as for the theory of pure normal contact with adhesion. In this
context, Equation (29) represents a novelty to the best of the
authors’ knowledge. Unfortunately, its applicability to non-linear
elastic materials is constrained by very small tangential forces.

Since the tangential stiffness of the contact does not emerge
from any literature, a direct extension of the promising results
for the normal contact with adhesion from section Application
to Fingerpad in Contact With Capacitive Screen is not readily
possible. In order to discuss the influence of the tangential
force on the apparent contact area between the finger and the
screen, the (homogenized) Hertzian-based contact model is used
as a rough approximation instead. In this case the normal and
tangential contact stiffness read (Popov et al., 2019).

S (A0) = 2E
∗

√

A0

π
, ST (A0) = 2G

∗

√

A0

π
with

1

G
∗

: =
2− ν1

4G1
+

2− ν2

4G2
. (30)

By substituting the results of Equation (30) into Equation (29)
and taking into account G = w, the apparent contact area
as a function of the applied external forces is determined after
some rearranging

A0 (FT , FN)=π





3R
∗

4E
∗



FN+3πR
∗

w+

√

6πR
∗

wFN + 9π2R
∗ 2
w2 −

E
∗

G
∗
FT

2









2/3

. (31)

According to Equation (31), the contact area decreases with
increasing tangential force. Since the tangential force causes a
mode I separation, this effect is termed “peeling.” Stable peeling
proceeds until the critical tangential force FT,c is reached:

FT,c =

√

G
∗

E
∗

(

6πR
∗

wFN + 9π2R
∗2
w2
)

. (32)

Note, that the expressions given in Equations (31) and (32) are
equivalent to results of the pioneering work by Savkoor and
Briggs (1977). As a rough estimate, the effective values for the
radius, R

∗

≈ 1 cm, and the elastic modulus, E
∗

≈ 47.4 kPa, that
are already used in section Approach Based on Ridge Contact
Area are again used and the work of electroadhesion is taken as w
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FIGURE 5 | Apparent contact area as a function of tangential load for different
normal forces.

= 0.132 J/m2 which corresponds to an equivalent air gap of one
micron (see section Approach Based on Apparent Contact Area).
Since the insulating layer of the screen is much stiffer than the
soft finger material the effective elastic modulus is determined by
the latter. In addition, incompressible skin material is assumed
to meet the requirement of elastic similarity which prescribes
G

∗

/E
∗

= 2/3. The apparent contact area as a function of the
applied tangential force for different normal forces is illustrated
in Figure 5. The values of the tangential forces at the end points of
the curves correspond to the critical tangential forces according
to Equation (32).

The reduction is clearly too small compared to experimental
results by Sirin et al. (2019b). The theory also significantly
underpredicts the maximum tangential load, i.e., the reduction
of the contact area cannot be explained satisfactorily by means
of this simplified theory. It could be remedied by appropriate
modeling of the transition regime from peeling to complete
sliding. Peeling itself represents only the initial stage of static
friction. However, the transition regime itself has not been
sufficiently understood until today and is beyond of the scope
of this work. Instead, we would like to briefly address another
option. In the model by Savkoor and Briggs (1977), the work
of adhesion is assumed to be constant throughout the loading.
However, from experimental results it is known, that the work of
adhesion can significantly increase under combined normal and
tangential loading. In this case, the constant work of adhesion
for pure mode I loading w must be replaced by a mode-mixity-
dependent w̃:

w → w̃ = w · f (ψ) with

ψ : = arctan

(

KII

KI

)

= arctan

(

FT

F1 − FN

)

, (33)

where KI and KII denote the mode I and mode II stress intensity
factors. It is common to use one of the three phenomenological
functions for interface cracks proposed by Hutchinson and Suo
(1991) as normalized interfacial toughness function f (ψ). They

include only one empirical parameter which can be used to fit
onto measurement results (Johnson, 1996; Waters and Guduru,
2010; Papangelo and Ciavarella, 2019). The same procedure could
now be followed to improve the adaptation of the model to the
measurement data concerning the apparent area reduction in
the electroadhesive tangential contact between the finger and the
screen. However, this should be deliberately avoided because the
main cause for the reduction of the contact area when applying
a tangential force is not adhesion! In the next section, this claim
is supported by a simplified FEM calculation for a non-adhesive,
tangential contact between a finger and smooth rigid plate, taking
into account non-linear elastic material behavior. Note, that very
recently a similar finding concerning a smooth contact between
a soft cylindrical cap and a rigid plate was made by Mergel et al.
(2020). They have shown that the contact length decreased under
tangential shear even in the absence of adhesion.

Transition From Stick to Slip—the Evolution
of Contact Area in the Non-adhesive Case
Several experimental studies report a significant decrease of
apparent contact area when a tangential force is applied to the
fingerpad under constant normal loading (Delhaye et al., 2014;
Sirin et al., 2019b). This area reduction is already significant
without electroadhesion, but is further increased under the
influence of electroadhesion (Sirin et al., 2019b). Contrary to the
peeling mechanism described in the previous section, this much
larger reduction is accompanied by the development of local slip
in the contact zone. It is further shown that the contact area
does not shrink uniformly, but that primarily the length parallel
to the tangential loading is reduced. Sahli et al. (2018) studied
the apparent contact area as well as the real contact area and
found that both reduce with the same reduction mechanisms.
The investigated real contact area is of the order of magnitude
of the ridge contact area discussed in section Approach Based on
Ridge Contact Area.

As already stressed in the previous section, we believe that
adhesion is not the decisive factor for the area reduction. It
is known from experiments that the measured macroscopic
adhesion for the contact of skin and dry glass is negligibly small
(Wang et al., 2020) and cannot explain the significant reduction
without any influence of electroadhesive forces.

Delhaye et al. (2014) make the non-linear elastic properties
of skin responsible for the area reduction. The originally coiled
collagen fibers in the skin become oriented and straightened in
the direction of stress. This results in a significant stiffening under
a tangential force. However, we believe that the large deformation
of the finger and the complex layered structure contribute to
the observed effect as well. Without further investigation, this
assumption was already expressed by Wang et al. (2020).

We conducted a simple two-dimensional plane strain finite
element study using ABAQUS to study the origin of the area
reduction further. Following Wu et al. (2006), a cross-section
of the finger depicted in Figure 6A is modeled with layers for
skin, subcutaneous tissue, bone and nail in non-adhesive contact
with a rigid smooth plate. The friction properties of the contact
are modeled by the local form of the Amontons-Coulomb law.
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A B C

FIGURE 6 | Layered finite element model of the cross-section of the fingerpad. (A) Undeformed mesh. (B) Deformed mesh prior to tangential displacement with
FN = 0.8 N/mm. (C) Deformed mesh in the state of full slip with the coefficient of friction µ = 0.35 and FN = 0.8 N/mm.

A B

FIGURE 7 | Evolution of the contact length parallel to the tangential displacement of the two-dimensional finite element model with the coefficient of friction µ = 0.35.
(A) contact length against tangential force per unit width. The dashed gray lines are fits in the form of Equation (34). (B) Contact length against normal force per unit
width prior to tangential loading and at the onset of sliding.

Both, geometrical and material parameters, were taken from
Wu et al. (2006). Skin and subcutaneous tissue are modeled as
hyperelastic materials using the Ogden model (Ogden, 1973).
In contrast to commonly used hyperelastic models such as
the Mooney-Rivlin or the Neo-Hookean model, the Ogden
model may accurately describe the skin stiffening behavior
(Shergold et al., 2006).

In a first step, the modeled cross-section is pressed against the
rigid plate by applying a normal force per unit width to the inner
bone layer (see Figure 6B). Then, the cross-section is moved
tangentially while keeping the applied normal force constant
until the whole contact length is slipping (see Figure 6C). At
the onset of the tangential displacement, the skin layer behaves
similar to a fluid filled membrane. It is generally much stiffer
than the subcutaneous tissue and begins to “roll” around the
bone (notice the marked node in Figure 6 that moves into
contact). As the finger is further displaced, the soft tissues
begin to stiffen and slip propagates from the trailing edge. At

the onset of full slip (Figure 6C), the geometry has drastically

changed due to the large deformations and the contact length is
decreased significantly.

The evolution of the contact length from the onset of

tangential loading to the onset of full slip is shown in Figure 7.
The total reduction of contact length is small for low normal
forces and increases for higher normal forces. Owing to the
finite geometry, the contact length and the observed reduction

are not increasing at the same rate for higher normal forces.
The contact length during tangential loading can be described
by a simple quadratic function of the tangential force per
unit width,

L
(

fT
)

= L0 − ξ fT
2, (34)

where L0 is the initial contact length prior to tangential loading.
Fits of this form are included as dashed gray lines in Figure 7A,
where ξ is a function of the normal force per unit width with
ξ ∼ (fN)

−1.1.
The conducted finite element analysis supports the

assumption that the observed contact area reduction under
tangential loading is not caused by adhesion, but a result
of large deformation and strain stiffening behavior of skin
and subcutaneous tissue. However, due to the plane strain
assumption and the negligence of fingerpad ridges, it is difficult
to compare the results to experimental data quantitatively.
Collecting the tissue layers of the epidermis and dermis in a
homogeneous “skin” layer with smeared properties is a further
limitation. Thus, in the present form, the model can only be used
as a rough estimate. Nevertheless, similar to Equation (34) for
the contact length and in accordance with Sahli et al. (2018) an
empirical formula for the reduction of the ridge contact area is
employed in section Sliding Friction.
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Sliding Friction
Now the question arises which friction law is suitable for
mapping the sliding contact between the finger and the screen
under electroadhesion on the defined macroscopic scale. For
this purpose the well-known approach of Bowden and Tabor is
chosen as a starting point:

FT = τ · Areal, (35)

where τ denotes the interfacial shear strength and Areal is the
“real” contact area. Usually, for many polymeric materials as well
as human skin, the interfacial shear strength itself is composed
of a constant intrinsic term τ0 and a second term that is linearly
dependent on the mean contact pressure p (Briscoe and Tabor,
1975; Adams et al., 2007).

τ = τ0 + α̃p, (36)

where α̃ is constant. Substituting Equation (36) in Equation
(35) yields:

FT = τ0Areal + α̃FN. (37)

Depending on whether the friction force according to Equation
(37) is dominated by the first or second term, the friction is called
adhesion-controlled or pressure-controlled, respectively. Note,
that in this context adhesion refers to the rupture of interfacial
junctions and has nothing to do with our electroadhesion. In
order to include electroadhesion in the approach above, it is
assumed that electroadhesion only contributes to the normal
contact pressure associated with an increased contact area. Then,
the following extension replaces Equation (36):

τ = τ0 + α̃
(

p+ σel
)

, (38)

and from Equation (35) the friction force results in:

FT = τ0Areal + α̃ (FN + σel · Areal) = τ0Areal + α̃ (FN + Fel) .

(39)

From a microscopic or atomic point of view, the real contact
area is made up of the sum of the micro-asperity contact areas
and thus only a very small fraction of the apparent contact
area. Associated with this small-scale multi-asperity contact
model, values of the shear strength are typically in the order
of a few Megapascal (Persson, 2018). From experimental results
by Adams et al. (2007), the intrinsic interfacial shear strength
between wet human skin and glass lies in the range of some
Kilopascal which indicates that the assumed real contact area
is of the same order as the ridge contact area. By using this
information, the real contact area can be replaced by the ridge
contact area:

FT = τ0AR + α̃ (FN + σel · AR) = τ0AR + α̃ (FN + Fel). (40)

From our macroscopic point of view, Equation (40)
shall represent the central law of sliding friction under

electroadhesion. In the following, focus is only on pressure-
controlled friction which might be a strong assumption.
An investigation considering the complete approach in
Equation (40) should be part of a future work. Under the
pressure-controlled assumption, Equation (40) reduces to

FT = µ0 (FN + σel · AR) = µ0 (FN + Fel) , (41)

where α̃ has been replaced by the “real” friction coefficient µ0,
as it was termed by Derjaguin (1934). Equation (41) represents
the generalized Amontons-Coulomb law of friction, which is
often used to model friction within problems of electrovibration
(see e.g., Kaczmarek et al., 2006; Shultz et al., 2018; Heß
and Popov, 2019). From Equation (41) the “apparent” friction
coefficient reads:

µ : =
FT

FN
= µ0

(

1+
Fel

FN

)

. (42)

Note, that the electroadhesive force per unit area σel in the sliding
friction law according to Equation (41) is given by Equation (21).
For pure normal contact under electroadhesion, the ridge contact
area (in the following renamed to AR,0 ) is calculated from the
model introduced in section Approach Based on Ridge Contact
Area described by Equation (9) with exponents mR = 0.52 and
nR = 1.41. For the sliding contact, however, we further must
account for the area reduction described in section Transition
From Stick to Slip—the Evolution of Contact Area in the Non-
adhesive Case that depends on the tangential force. Similar to the
empirical formula (34) that we found for the contact length of
the finite element model, the empirical quadratic law proposed
by Sahli et al. (2018) for the ridge contact area:

AR (FT) = AR,0 − ηFT
2 (43)

is employed, where AR, 0 is the ridge contact area prior to
tangential loading and the parameter η is a function of the normal
force of the form:

η = c2
(

AR,0

)−1
, (44)

where the constant c2 is yet to be determined. Here, the exponent
-1 is adopted, which is experimentally determined by Sahli et al.
(2018) for the real contact area. It should be noted that in the
current work of Basdogan et al. (2020) an analogous empirical
approach was adopted for the apparent contact area, but η was
assumed to be constant. Inserting Equation (43) into Equation
(41) and solving for the tangential force yields:

FT = − (2µ0ησel)
−1

+

√

(2µ0ησel)
−2

+ (ησel)
−1 FN + η−1AR,0. (45)

In the following, the proposed model for sliding friction is
verified by comparison to the experimental data presented by
Sirin et al. (2019a). In this experimental study, the tangential
force of a sliding fingerpad on a 3M touchscreen was measured
for different voltages applied to the conducting layer of
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FIGURE 8 | Contact area in terms of the normal force. The symbols represent
measured apparent contact areas given by Delhaye et al. (2014) and Sirin et al.
(2019b) and the solid lines are power-law fits for the apparent contact area.
The dashed lines are power-law relations for the ridge contact area.

the touchscreen. The experimenter was trained to keep the
normal force at a constant value during the measurements.
Unfortunately, neither apparent nor ridge contact area were
measured during this series of experiments.

In order to obtain adequate relations for the non-adhesive
ridge area in the form of the power-law functions (5, 6), we again
make use of the functions proposed by Dzidek et al. (2017) that
are fitted to measurements of the finger of a female experimenter.
In Figure 8, Dzidek’s functions are compared to the measured
apparent contact areas of four different subjects by Delhaye
et al. (2014) and the averaged measurements by Sirin et al.
(2019b). Obviously, Dzidek’s original relations underestimate the
apparent contact area of the other studies significantly. Under
the assumption that the exponents remain the same, a scaling
of the power-law functions for the apparent contact area as well
as the ridge area was performed to obtain a better agreement
with the experimental results. The exponents of the best fits for
each subject vary considerably, but the exponent provided by
Dzidek et al. represents a good compromise. The parameters of
the adjusted relations for the non-adhesive ridge contact area are
listed in Table 1.

It should be noted that many authors simply employ the
Hertzian relation with the exponent m =

2
3 to model the

non-adhesive normal contact. A corresponding fit is included in
Figure 8. As expected, the Hertzian relation is inadequate owing
to the finite size and the complex layered structure of the finger.

With the non-adhesive ridge contact area, the ridge contact
area for the electroadhesive contact prior to tangential loading
AR, 0 can be determined by inversion of Equation (9). The work
of adhesion w is given in Equation (22). The electromechanical
parameters needed for the electroadhesive force per unit area σel
and the work of adhesion are listed in Table 1. Most parameters

TABLE 1 | Parameters used for the model of sliding friction.

Symbol Parameter name Value and unit

µ0 Friction coefficient 0.26

εr,sc Relative permittivity of stratum corneum 3,000

εr,i Relative permittivity of insulating layer 3.9

εr,a Relative permittivity of air 1

ε0 Permittivity of free space 8.854 ·

10−12 As/Vm

dsc Thickness of stratum corneum 250 µm

di Thickness of insulating layer 1 µm

U Applied voltage 0–200 V

FN Applied normal force 0–2.3 N

mR, nR Exponents of power-law relationships
(Equations 5, 6)

mR = 0.52,
nR = 1.41

αR,βR Factors of power-law relationships
(Equations 5, 6)

αR = 74mm2/NmR ,
βR = 43.5mm2−nR

da,0, c1 Empirical parameters for the air gap
(Equation 46)

da,0 = 3.1µm,
c1 = 0.5µm/N

c2 Empirical parameter for the area reduction
(Equation 44)

c2 = 5000mm4/N2

are taken from Sirin et al. (2019a) and the thickness of the
stratum corneum for the fingerpad in contact is taken from
Lee et al. (2020).

The concept of the equivalent air gap is discussed in section
Theoretical Background. For the model of sliding friction, it is
assumed that the thickness of the equivalent air gap da is a linearly
decreasing function of the normal force,

da = da,0 − c1FN, (46)

where the parameters da,0 and c1 are yet to be determined.
The three unknown parameters for the area reduction and the

air gap and in Equations (44) and (46), respectively, are found by
fitting the model to the experimental results. However, the curve
fitting is closely confined by the requirement that both, the area
reduction and the air gap, remain within realistic ranges known
from experiments.

The fitted parameters are included in Table 1 and the ridge
contact area reduction as well as the air gap thickness are
shown in Figures 9A,B, respectively. Prior to tangential loading,
the ridge contact area at constant normal loading increases up
to 20% due to the electroadhesion. At the onset of sliding,
the ridge contact area is reduced significantly for high initial
contact areas and only marginally for smaller initial contact
areas. Furthermore, the reduction is increased significantly for
high voltages. Sirin et al. (2019b) investigated the reduction
of apparent contact area without electroadhesion and with
electroadhesion at 100V applied voltage. They report an average
reduction of 8% without and 13% with electrovibration at
an applied normal force of 1N as well as 15 and 20%,
respectively, at 2N. Our model predicts a similar ridge area
reduction of approximately 5% without electrovibration and
10% with 100V at 1N as well as 12 and 19% at 2N. It is
valid to compare these results, because the apparent contact
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A B

FIGURE 9 | (A) Modeled reduction of the ridge area according to Equation (43) due to tangential loading. Circles mark the ridge area prior to tangential loading and
squares mark the onset of sliding. (B) Air gap against normal force according to Equation (46).

FIGURE 10 | Model predictions (lines) and experimental results (symbols) of
Sirin et al. (2019a) of tangential force against normal force for voltages of
25–200 V.

area and the real contact area follow analogous reduction
mechanisms and the relative reduction is very similar for
both (Sahli et al., 2018). It should further be noted that
Sirin et al. (2019b) measured a higher coefficient of friction
presumably due to the oil they needed for image analysis.
Thus, we expect a slightly increased relative area reduction for
this study.

The thickness of the equivalent airgap shown in Figure 9B

reduces from 2.85µm at 0.5N to 2.1µm at 2N. The thickness
is thus in the range reported by other studies (see also
Section Concept of an equivalent air gap) and agrees with
<0.5µm difference especially well with the predictions by
Guo et al. (2019).

FIGURE 11 | Model predictions and experimental results by Sirin et al. (2019a)
of the apparent coefficient of friction against normal force for voltages of
25–200 V.

Figure 10 shows the tangential force of the sliding fingerpad
in terms of the applied normal force. The symbols represent
the measurements by Sirin et al. (2019a) and the solid lines
the results of the model described above. Especially for applied
voltages above 50V, the tangential force is increased significantly
in the whole range of applied normal forces. Apart from small
differences for low voltages, the model is in very good agreement
with the experimental results. The apparent coefficient of friction
(COF)µ = FT/FN depicted in Figure 11 reaches a constant value
for normal forces larger than 1N. In this range, the apparent
COF increases almost linearly with the applied voltage and
is more than doubled for 200V. Again, the model is in very
good agreement.
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The apparent COF increases significantly with decreasing
normal forces in the range of normal forces lower than 0.5N.
This behavior is characteristic for adhesive contacts. Here,
the model predictions are lower than the experimental results
for voltages smaller than 150V. We believe these deviations
can be at least partly explained by classical van der Waals
adhesion: Sirin et al. (2019a) also measured the tangential
force for a sliding fingerpad without electroadhesion and show
that the curves for 25 and 0V are not distinguishable. Thus,
mainly classical adhesion or capillary bridges are responsible
for the small increase in apparent COF for 25V. However,
we believe the effect of electroadhesion is predominant in
most cases justifying the negligence of classical van der
Waals adhesion. Other inaccuracies may be found in the
power-law relations for the ridge contact area at low normal
forces. In this range very little experimental data is available
and contact area has a very steep slope making it prone
for errors.

Sirin et al. (2019a) also describe a model of sliding
friction based on multiscale contact mechanics which agrees
reasonably well with the experimental results. In this model,
the real contact area is described by microasperities of
skin in contact and is several orders of magnitude smaller
than the apparent contact area. However, our much simpler
macroscopic modeling approach based on the ridge contact
area and the concept of an equivalent air gap is equally
suited and yields, in fact, even better agreement with the
experimental results.

CONCLUSION AND DISCUSSION

A new macroscopic model for sliding friction of a fingerpad
over a smooth surface under electroadhesion has been developed.
One of the cornerstones of the modeling is the application of
Shull’s compliance method to large deformations. In this way,
a solution was first obtained for pure normal contact under
electroadhesion, which in particular includes the dependence
of the ridge contact area on the normal force as well as the
applied voltage. To account for the experimentally observed
reduction of the ridge contact area during transition from stick
to slip, an empirical formula is employed according to which
the area reduction is proportional to the square of the applied
tangential force. This is consistent with experiments by Sahli et al.
(2018) as well as results of our finite element simulations. After
incorporating the developed solution for the pure normal contact
and the empirical formula of area reduction into a pressure-
based approach for the frictional force, the new macroscopic
model for voltage-induced friction has been found. A comparison
with recent experimental data has shown that the model
adequately predicts both the frictional force and the coefficient
of friction over the entire range of relevant voltages and applied
normal forces.

A further important outcome with regard to the reduction
of the contact area results from our finite element study

with a two-dimensional model of the fingerpad, where skin
and subcutaneous tissue were considered as hyperelastic
materials using the Ogden model to accurately describe
skin stiffening. Although the simulations are restricted to
non-adhesive tangential contacts, they show a significant
reduction of the contact area, which is mainly caused by
large deformations of the non-linear elastic material around
the distal phalanx. This result challenges numerous recent
studies on tangential contacts of soft materials that attempt to
describe the experimentally observed area reduction caused by
the frictional force using adhesion theories based on fracture
mechanics concepts. Obviously, adhesion plays only a minor
role for the area reduction. Hence, completely new theoretical
approaches are required to model this effect in a physically
meaningful way.

One uncertainty in the proposed modeling concerns the
calculated ridge contact area under normal loading with
electroadhesion. Since the influence of electroadhesion on the
ridge area has not yet been investigated, the corresponding
results obtained are currently still purely theoretical. Appropriate
measurements should be part of a future task. The experimental
results could as well be used to quantify the equivalent air
gap more precisely. In addition, contributions to adhesion
due to van der Waals forces have so far been completely
ignored in the model. The same applies to capillary forces,
although it is known that they cause a further increase of the
coefficient of friction at low normal loads under wet conditions
(Morales-Hurtado et al., 2017).

Furthermore, it should be noted that the proposed model
requires the solution of the non-adhesive normal contact a
priori. Although it is irrelevant for the application of Shull’s
method, whether this solution originates from experiments (like
here), a simulation with the finite element method or something
similar, the claim should be to find a suitable theoretical
model also for the ridge contact area as a function of the
normal force.
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Milestones in Natural Lubrication of
Synovial Joints
Alessandro Ruggiero*
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For years, the physical and mathematical modeling of tribological phenomena in natural
human synovial joints has been a great challenge for researchers and scientists. This
short review aims to summarize the main findings on lubrication modeling of human
synovial joints over the years, starting from first insights and then underlining the evolution
of the proposed theories. The complexity of natural human synovial joints, in which
biological, fluid dynamic, and tribological phenomena takes place, makes this research
area fascinating for scientists from several investigation fields. This manuscript underlines
the necessity of deep scientific cooperation between researchers from different branches
of the involved disciplines to achieve complete knowledge of these tribo-systems by
taking in to account different points of view.

Keywords: biotribology, lubrication, joint, synovial fluid, cartilage

INTRODUCTION

The framework of biotribology, the science devoted to the study of “those aspects of tribology
concerned with biological systems” (Dowson, 2012), offers the possibility to understand and to
model the complex lubrication phenomena acting in natural synovial joints. This field has attracted
interest from researchers and scientists for years, and assumes particular significance this year,
as Duncan Dowson passed away in January 2020 (Jin et al., 2020). Synovial joints, also called
diarthrosis, are freely movable joints that possess a cavity bounded by a synovial membrane (Khan
et al., 2007). From a kinetics point of view, synovial joints can be viewed as a sophisticated bio-
bearing which allows for wide movements and supports high loads, of up to 10 times the body
weight, in the presence of very low friction due to the biological lubricant, named synovial fluid.
From an anatomical point of view, the constitution of a synovial joint is complex: the joined
bones are covered by the hyaline articular cartilage which plays a key role in load supporting
and joint lubricating. These are lined by a fibrous capsule, which also provides stabilization to
the joint and is covered by a synovial membrane devoted to synovial fluid secretion. Setting
aside the complexity of the biological phenomena acting in the synovial joints, the possibility of
a complete understanding of their tribological performances, accounting for the possibility of a
detailed mathematical description of the contact and lubrication phenomena, could be useful to
the scientists involved in both the medical or pharmacological treatment of joint diseases and also
in the optimal biomechanical and tribological design of artificial joints (Popov, 2019; Ruggiero and
Zhang, 2020).

Even if this topic remains under investigation, this short review aimed to summarize and
highlight the scientific progress made through the years in the understanding and modeling of
lubrication mechanisms in natural human synovial joints, covering more popular and relevant
theories from earlier research in this field up to the latest ones, introducing briefly some milestones
from the 1930’s to today.
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LUBRICATION MODELS THROUGH THE
YEARS

The first coherent theory about human joint lubrication dates to
1932, when MacConaill stated that human joint comportment
was regulated by a hydrodynamic action (MacConaill, 1932).
Before his studies, Walmsley (1928) recognized and investigated
the similarities between articulating surfaces in human joints
and the physical wedge shown by Reynolds to be necessary
for hydrodynamic or fluid-film lubrication. Between 1932 and
1960, MacConaill (1932, 1956, 1960) suggested that the intra-
articular cartilage (for example, the meniscus in the knee joint)
assumes a slight inclination of the coupled surfaces in order to
create wedge-shaped lubricant films analogous to those observed
in Michell tilting pads. Four years after MacConaill’s earliest
paper, Jones (1936) concluded that the joints can be viewed as
hydrodynamically lubricated systems. Moreover, he performed
one of the first detailed experiments on friction in natural
joints, observing a horse stifle mounted as the fulcrum in a
pendulum machine. He noticed that if the joint was lubricated
by synovial fluid, a very low coefficient of sliding friction f= 0.02
arose. Furthermore, an unlubricated joint evidenced an audible
creaking noise after 8,000 cycles when a constant load of 445N
was applied. After 4 h, Jones noticed effects such as joint heating,
steam rising, debris being thrown out, bone grating, etc. In his
investigation, Jones highlighted the essential role of lubricant in
natural joints. Moreover, according to a study on human finger
joints dating back to 1936 (Jones, 1936), Jones observed that
decay in amplitude of the pendulum swing was exponential.
From this, he concluded that viscous damping is present in
the joint and the mode of lubrication was fluid film. In 1959,
Charnley (1959) measured, with reference to the human knee
joints, the friction in lubricated conditions at a very low rubbing
speed and found a value no larger than 0.02. Hydrodynamic
theory was at that time the first concept chosen in the study of
natural human joint lubrication.

Boundary Lubrication
It was not until 1959 that both Charnley (1959) and McCutchen
(1962) started to question MacConaill’s concept. According to
Charnley, hydrodynamic action could not exist due to low
sliding velocities under the heavy loads acting in the human
joints. This conclusion was based on several pendulum tests
with dissected ankle joints, in which a linear decay in amplitude
was observed. Charnley imputed Jones’ exponential decay to the
lack of congruity in the joint and to the contribution, at high
amplitudes, from the capsule and the ligaments which Jones left
intact in his study on the finger joint. Charnley proposed, as an
alternative toMacConaill’s theory, a boundary lubrication action.
From several experiments on articular cartilage, Charnley (1959)
recorded friction coefficients values, finding values between f
= 0.005 ÷ 0.023 in dissected ankle joints. In 1962, Barnett
and Cobbold (1962) commented upon Charnley’s theory. They
proved that a linear decay in amplitude was attributable to the
dissection of the joint. However, when they replaced the joint in
the pendulum fulcrum with a hydrostatic bearing, it was found
that the decay still showed an essentially linear relationship with

FIGURE 1 | Weeping lubrication scheme.

time. In 1967 and 1968, Linn (1967, 1968) and Linn and Radin
(1968) performed experiments on animal joints at a constant
load and the results suggested that an extraneous dynamic force
component, generated by the eccentricity of the joint, had to be
added to the friction force. Linn concluded that animal joints
operate within the mixed film region of lubrication.

Weeping Lubrication
An in-between solution to the problem of joint lubrication was
proposed in 1966 by McCutchen (1966). For the first time,
he considered the porosity and elasticity of articular cartilage.
McCutchen stated that, due to the load, the pressurized synovial
fluid flows through the porous cartilage which behaves as sponge-
like material, in a similar way to a self-pressurized hydrostatic
bearing. The term weeping suggested that the lubricant film
was sweated into the high-pressure region between opposing
cartilages, while the boundary lubrication effect between the
contact surfaces was still present. McCutchen used the term
“weeping lubrication” because bearing materials which perform
it weep liquid when compressed.

In several manuscripts (McCutchen, 1966, 1973, 1983) both
weeping and boundary lubrication were discussed. A simple
experiment was performed by using the sawn-off shoulder end
of a pig which was pressed with a known force against a smooth
glass surface, measuring the required force to make it slide.
The friction of cartilage against glass increased over time and
consequent squashing down of the cartilage was observed. If the
cartilage was left in a fluid for 1 s, a lower friction force was
observed for a brief period, while for a period of 10 s the cartilage
swelled visibly and friction decrease was more marked, with the
conclusion drawn that the cartilage is able to lose and regain
water, like a sponge, through its fine pores. Friction is very low at
the beginning and rises as the wringing out of the water permits
the cartilage to be squeezed down (Figure 1).

Later, in 1994, Ateshian et al. (1994) and Ateshian and Hung
(2006) proved that cartilage interstitial fluid plays a key role in
the load support during the first 100–200 s after contact loading.

Elastohydrodynamic Lubrication
In 1963, a similar time to which weeping lubrication was
hypothesized, Dintenfass (1963) provided new insights on
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FIGURE 2 | Example of human joint tribological scheme.

human joint lubrication. Firstly, he showed the failure of
the hydrodynamic lubrication mode, in which deformations
were completely neglected. His studies took into account
the deformability of articular cartilage and led to the
elastohydrodynamic lubrication theory (EHD, see Popova
and Popov, 2014). The main result was that in highly loaded
lubricated contacts the operating film thickness may be up to 100
times greater than those predicted by conventional lubrication
theory, since the human joint requires the correct operating
conditions for the cartilage to be separated by a synovial film,
and the boundary lubrication therefore does not exist. In 1966,
Tanner (1966) calculated the film thickness in hip joints at
normal walking speeds to be h = 10–5 cm. Even though the
correct values of the loading pattern during gait were not yet
available at the time, a mathematical incorporation of non-
Newtonian lubricant properties was omitted. Tanner’s theoretical
values suggested that in the joints a lubricating film is possible
when the lubricated surfaces are subject to relative motion.
However, the question remained over what the lubricating
mechanism is after a period of time under constant load with no
motion (e.g., in human standing position).

Later, Medley et al. (1984), Dowson and Jin (1986), and
Dowson (1995) confirmed EHD lubrication as the dominant
mode of lubrication of many highly deformable or “soft” bearing
systems, such as synovial joints.

Squeeze-Film Lubrication
In 1966, Dowson (1966) and Popova and Popov (2014)
suggested a squeeze-filmmechanism of lubrication. He based this
assumption on the analysis concerning a loaded rigid cylinder
approaching a rigid plate. A schematic representation of a generic
model of a human joint is provided in Figure 2, in which a rigid
plane opposes a rigid bone, covered by a layer of porous, elastic
articular cartilage lubricated by synovial fluid. The considered
relative velocities are both sliding and squeezing.

Dowson applied for the first time in tribology’s history the
main results of hydrodynamic and EHD theories in a simplified
model for human joints.

The study demonstrated that EHD lubrication, caused by
sliding and/or squeezing motions of the porous surfaces, seems
to be the most common lubricating mechanism during usual

body movement, while classical hydrodynamic lubrication is
inadequate in knee and hip joints.

Similar conclusions were obtained by Fein (1966), Higginson
and Norman (1974), and Higginson (1977), who considered a
pair of compliant surfaces, between which the lubricant was
squeezed out. However, the calculations did not consider the
non-Newtonian behavior of the synovial fluid.

In 1966, Fein (1966) investigated and supported the
squeeze-film lubrication between contact lubricated surfaces and
performed optical experiments to validate his theory. Excellent
agreement between theoretical and experimental values of film
thickness was found.

In 1992, Hou et al. (1992) performed an asymptotic analysis
of a lubrication problem for a model of articular cartilage and
synovial fluid under the squeeze-film conditions, while more
recently in 2011 and in 2013, Ruggiero et al. (2011, 2013)
proposed an original analytical approximate model for the
synovial pressure field determination in the ankle joint in a pure
squeeze motion, accounting for the non-Newtonian behavior
of synovial fluid and porosity of the cartilage. In 2000, very
interesting research was published by Hlaváček (2000, 2001)
on the squeeze-film lubrication of the human ankle joint with
synovial fluid filtrated by articular cartilage.

Boosted Lubrication, Ultrafiltration, and
Hydration Lubrication
Maroudas’ ultrafiltration theory (Maroudas, 1968; Maroudas
et al., 1968), as well as the boosted lubrication theory from
Walker et al. (1968, 1969) introduced the attractive idea that
the lubricant is retained between the loaded surfaces due to
some specific properties of both synovial fluid and the articular
cartilage. In 1967–69, Maroudas removed, by ultrafiltration,
the water from the synovial solution, obtaining a jelly-like gel;
this prompted them to consider the joint cartilage as a “filter,”
permeable to water but not to the macro-molecules, allowing
the gel formation under specific conditions. However, the stable
thickness of the gel was estimated to be h = 0.01µm, which
is too small to provide separation between the surfaces. In
1968, Walker et al. (1968) noticed that during the loading the
liquid component of the fluid becomes preferentially squeezed
out, leaving the lubricant film enriched by the macromolecular
components. In 1970, Dowson et al. (1970) observed that, due to
the rising viscosity of the enriched synovial fluid, the squeezing
times were greatly increased. Moreover, it was observed that
macromolecules from the lubricant showed an affinity for the
cartilage surface, allowing the formation of a skin-like protective
gel. Investigations by Radin and Paul (1969), Radin et al.
(1970), Swann and Radin (1972), Swann and Mintz (1979), and
Swann et al. (1981) demonstrated the presence of an adsorption
mechanism onto articular cartilage and identified the component
in synovial fluid which was responsible for it. In 1975, new
evidence on human joint lubrication was published by Unsworth
et al. (1975). The authors studied friction coefficients in human
joints using a pendulum machine. They examined six cadaveric
human joints, one of which came from a patient affected by
rheumatoid arthritis. They tested them both in dry conditions
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and with synovial lubricant. Used loads were between 135 and
1,500N. The initial amplitude of swing was 0.0785 rad. Authors
increased loads by 220N after each test cycle. The main result
was that, in human joints during the walking cycle, squeeze
phenomena can be found, which occur under high load and
high squeeze velocity without sliding. Moreover, it was observed
that elastohydrodynamic lubrication takes place when the sliding
velocity is quite high, so the formation of an EHD fluid film
is possible. The results from this research enabled a description
of the phenomena which occurs during the walking cycle in
human joints.

More recently, Raviv et al. (2001, 2003), Briscoe et al. (2006),
and Klein (2013) introduced the novel concept of a hydration
lubrication mechanism as a new framework for understanding
boundary lubrication processes in aqueous media. Schmidt
and Sah (2007) investigated the connection between synovial
fluid and the articular cartilage by means of the boundary
lubrication mode, while Greene et al. (2011) stated that the
tribology of synovial joints needs to be investigated considering
the synergistic effect of several modes of lubrication. Other
recent investigations (Hui et al., 2012) were also devoted to the
connections between synovial lubrication and the system biology.

THE RHEOLOGY OF SYNOVIAL FLUID

Synovial fluid’s (SF) rheological properties play a key role in the
lubrication modeling of the joints. SF contains the molecules
hyaluronan, proteoglycan 4 (proteins also known as lubricin,
superficial zone protein, and megakaryocyte-stimulating factor),
and surface-active phospholipids, each of which interacts with
and adsorbs to the articular surface (Schmidt et al., 2007).

The non-Newtonian character of the viscosity was proposed,
among others, by Ropes et al. (1947). Ogston et al. (1950) related
changes in viscosity to the variations of both the concentration
and conformation of the hyaluronic acid molecules, and in 1953
Ogston and Stanier (1953) qualitatively stated that synovial fluid
also possesses elastic properties.

Until the year 1966, research on rheological properties of
synovial fluid did not make any noticeable progress. From
1967, new interesting results succeeded each other very quickly,
probably due to the improvement of experimental equipment.

Through the years several non-Newtonian models were
proposed (Lai et al., 1978). The most common are:

• Power Law Model: The so-called “power-law equation,” or
Ostwald–de Waele relationship, was mentioned. It relates the
viscosity µ to the shear rate γ̇ in a steady shear flow:

µ = Kγ̇ n−1
= K

(

∂u

∂y

)n−1

with K and n representing two coefficients obtained by the
process of curve fitting.

• Generalized Newtonian fluid
The shear-thinning fluid described by Ostwald–de Waele
relationship is a type of generalized Newtonian fluid that, in

general, satisfies the rheological equation:

τ = µ(γ̇ ) γ̇

A generalized Newtonian fluid is an idealized fluid for which
the shear stress is a function of shear rate at a particular time,
but not dependent upon the history of deformation. For the
power-law fluid, the rheological equation becomes:

τ = Kγ̇ n
= K

(

∂u

∂y

)n

• Cross-WLF Model
The empirical equation to describe the shear thinning behavior
of synovial fluid gained wide acceptance in the literature and it
can be written as:

µγ̇ − µ∞

µ0 − µ∞

=
1

1+ (Kγ̇ )1−n

where:
µ0 is the zero shear rate viscosity
µ∞ is the infinite shear rate viscosity
K is a time constant
n is the Power Law index

• Stokes Couple stress fluid (Stokes, 1966)
According to this theory used in some cases to model synovia,
the momentum equation and the continuity equation of
synovial fluid are:

ρ
DV

Dt
= −∇p+ ρF+

1

2
ρ∇ × C+ µ∇2V− η∇4V

∇ · V = 0

The vectors V, F, and C represent, respectively, the velocity,
the body force, and body couple per unit mass while ρ is
the density of the oil, µ is the viscosity, and η is a “couple
stress constant.”

CONCLUSIONS

This short review was focused on the development of
understanding and modeling lubrication phenomena in natural
synovial joints, highlighting some relevant research through the
years. The topic is particularly interesting since it represents
a fascinating research field connects both tribological and
biological issues which are necessary for a deep understanding
of the complex phenomena acting in the investigated bio-
tribosystems. It is acknowledged that the topic is very wide
and hence difficult to summarize in in a short manuscript,
highlighting the “milestones” may be an interesting read and
also a useful support for researches and scientists who are
approaching this research field for the first time. It could
stimulate the scientific community toward stronger cooperation
between researchers from different scientific areas, resulting
in new insights, and also allow for insights in the optimal
tribological design of modern artificial joints, which requires
more accurate models to be used in their in-silico pre-
clinical testing.
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Lubricated Contacts
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Simulation models for the cavitation dynamics in lubricated contacts can be roughly

clustered into two groups: either without or with bubble dynamics, the first one being

the standard case for most fluid film bearing calculations. The approach with bubble

dynamics has been introduced to the lubrication community about 20 years ago by

Someya, and it is based on the coupling of Reynolds equation and Rayleigh–Plesset

equation. It has been used for journal bearings, squeeze film dampers, and it is essentially

required for correct numerical calculations of the negative squeeze motion (i.e., the

separation of two plates) or the oil stiction problem. More than a decade ago, in

2009, the first paper on the negative squeeze motion with bubble dynamics—allowing

numerical calculations of tensile stresses in the lubricant—had been published. The

application in mind is the simulation of mixed lubrication for rough surfaces. The negative

squeeze motion is then understood as the motion of asperities (on smaller length scales).

The paper at hand summarizes some of the research on the dynamics of cavitation

in lubricated contacts from different research groups from the last 10–15 years and

sketches key topics for further research on the topic. The roadmap is centered around

the three key issues that remained from the previous research of the author: (a) numerical

stability of the calculations for curved plates, (b) characteristic time scale for separation

of plates, and (c) experimental evidence for validating the calculation results.

Keywords: cavitation,mixed lubrication, oil stiction, negative squeezemotion, bubble dynamics, negative pressure

1. INTRODUCTION

Cavitation is a typical phenomenon in lubricated contacts and appears in different forms. For
journal bearings, film rupture and reformation is typically connected to air ingestion respectively
feeding new oil. In squeeze film dampers, oil stiction problems or mixed lubrication on the other
hand, pressure induced growth and collapse of bubbles is most relevant.

In most simulations of lubricated contacts (e.g., journal bearings) tensile stresses (negative
pressure) are neglected. With respect to pressure p cavitation is then characterized by p = pv or
even simpler p = 0 (pv being the vapor pressure at the given temperature).

Nonetheless, negative pressure appears even in journal bearings. To the authors knowledge,
Someya (2003) was the first to do numerical calculations for journal bearings that included
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FIGURE 1 | Setup: negative squeeze motion of flat circular plate.

negative pressure1. He used a bubble dynamics approach
including a dilatational viscosity. For discretization, he used the
Finite Difference method. Someya reports a good agreement
between experiment and calculations based on bubble dynamics.

Tensile stresses cannot be neglected when simulating the
negative squeeze motion of lubricated contacts (i.e., the
separation of two plates, see Figure 1). At first sight, the
negative squeeze motion of a macroscopic plate does not seem
relevant for practical purposes. Far from it! An important
practical application is the oil stiction, which is highly relevant
for the performance of reed valves in compressors or of
switching valves in hydraulic applications (e.g., Resch and
Scheidl, 2014; Yoshizumi et al., 2018). Switching times as low
as 1 ms require sophisticated models for the lubricant’s behavior
in valves.

Certainly the negative squeeze motion is also relevant when
looking at smaller length scales. Then we look at asperities
moving relative to each other and thereby again and again
separating from each other. Tensile stresses on the microscopic
level resulting from negative squeeze motion can contribute to
fatigue and wear in mixed lubrication. Indeed, the simulation of
rough surfaces including negative pressure was the application
in mind when the author started his research work on
lubricated contacts.

There is experimental evidence for tensile stresses in
lubrication films for the setup under study for more than five
decades. But it was only in 2009 that calculations with tensile
stresses have been reported for the negative squeeze motion
Geike and Popov (2009a). To reproduce tensile stresses in
numerical simulations bubble dynamics needs to be taken into
account. Traditional methods based on Reynolds equation and
static cavitation conditions do not yield tensile stresses. Bubble
dynamics is also required for getting the relevant time scale for
the separation of plates.

The key question is which system of equations shall constitute
the numerical simulation model. The answer was and still is the
coupling of Reynolds equation for compressible fluid flow and
Rayleigh–Plesset equation for bubble dynamics.

In order to identify the key topics for further research, it is
worthwhile to look at the three questions that remained when the
author’s research came to a temporary end in early 2008.

1First published in 2000 in Japanese only. Unfortunately the authors had not been

aware of Someya’s work when they started to work on the topic.

1. How can the numerical stability problems be solved for the
case of spherical plates (finite radius of curvature)?

2. What is the correct time scale for the plate separation?
3. What experimental evidence is available for a quantitative

validation of numerical calculations?

The paper at hand looks at relevant contributions to the topic,
particularly in the last 12 years2, and suggests potential corner
stones for future research on the topic. The papers is organized
along the three questions from above.

2. SOLVING THE NUMERICAL STABILITY
PROBLEMS

2.1. The Authors Approach to the
Cavitation Dynamics for the Negative
Squeeze Motion
To the author’s knowledge, the papers from January 2009
Geike and Popov (2009a,b) are the first to report on numerical
calculations of the negative squeeze motion based on Reynolds
equation and bubble dynamics, thereby allowing tensile stresses
to develop in the lubricant.

The author used Reynolds equation
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as the basis of the simulation model. pv is the vapor pressure, γ
is the surface tension constant, ηliq is the viscosity, and ρliq the
density of the lubricant (liquid).

Reynolds equation is the partial differential equation for the
pressure in the lubricant and can be obtained from Navier–
Stokes equation and continuity equation on assumptions such as
negligible inertia, Newtonian fluid of constant viscosity and thin
film geometry. Rayleigh–Plesset equation describes the growth in
radius of a spherical bubble in an incompressible fluid of infinite
extent. It is used to approximately calculate the vapor fraction
and thus the density, which is needed in the Reynolds equation. It
is important to understand that the simulation does not consider
single bubbles in the lubricant. Instead, the simulation is based on
a characteristic bubble radius at each location r that is connected
to the vapor fraction. Rayleigh–Plesset equation is used to derive
a partial differential equation for vapor fraction, which is then
used in the simulation model.

For the published results the first term with the second
derivative of R had been neglected. Further simulations with the
full Equation (2) yielded almost the same results.

2Many papers that cite the author’s previous work study journal bearings and

do not take the bubble dynamics into account. These contributions will not be

discussed here. However, papers on journal bearings as the ones by Someya

or Snyder et al. are considered as they provide helpful insight for the mixed

lubrication problem at hand.
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The partial differential Equation (1) had been transformed
into a system of ordinary differential equations based on the
Differential Quadrature method (Shu, 2000). The final system
of equations is a differential-algebraic system of differentiation
index 1. One of the challenges in solving the problem numerically
is the strong transient behavior. Within a short time interval
significant negative pressure appears and disappears again, while
vapor fraction increases quickly.

The numerical solution converged for flat plates (infinite
radius of curvature) for a variation of grid types. The results
are—at least qualitatively—correct. Husen et al. (2016) came
in their paper from 2015 to the same results using a Finite
Element method, thereby validating our discretization method
and computer implementation of the numerical calculations.

For spherical plates (finite radius of curvature) numerical
simulations did not converge for no obvious reason. The
numerical integration of the initial value problem (that results
from the spatial discretization) fails to converge. However, for
the mixed lubrication of rough surfaces it is key to master the
spherical plate problem.

From first-hand experience, the author knows that in
the Differential Quadrature method stability of numerical
calculations sometimes depend on the grid type used (e.g.,
uniform grid vs. Chebyshev–Gauss–Lobatto grid), but the
stability problems remained no matter which grid had been used.
The stability issue’s root cause and appropriate countermeasures
have not been identified yet.

2.2. Calculations for Squeeze Film
Dampers With Dilatational Viscosity Term
Fewmonths later, in April 2009, a paper by Gehannin et al. (2009)
was published on a quite similar topic—cavitation modeling
based on the coupling of Reynolds equation and Rayleigh–Plesset
equation. The setup and the application in mind is however quite
different: they study squeeze film dampers, i.e., they look at a
tangential motion instead of the vertical motion (separation).
Bubbles contain vapor and undissolved gas thus the pressure
inside the bubble is the sum of the partial pressure of the gas and
the vapor pressure. Consequently, they write pB instead of pv in
equation (2), with

pB = p0

(

R0

R

)3

+ pv . (3)

In addition, following Someya (2003), Gehannin et al. used an
additional term on the right-hand side of the Rayleigh–Plesset
Equation (2) with the dilatational viscosity,

−
4κ

ρliqR2
dR

dt
. (4)

They finally solve the system of equations using a Finite Volume
approach and conclude that for the squeeze film damper the
bubble pressure term and the dilatational viscosity term are
most relevant. The agreement between their calculations and
the experimental results from Adiletta and Pietra (2006) will be
discussed below.

Gehannin et al. do not report on stability issues in their
numerical approach. This might be caused by one of the three
major differences.

• The setup is different (tangential instead of vertical motion).
• Additional terms have been used in the Rayleigh–

Plesset equation.
• A different method for discretization has been used (Finite

volume instead of Differential Quadrature).

In future research, the relevance of the additional terms for the
negative squeeze motion may be studied first.

2.3. Calculations for Bearings With
Dilatational Viscosity Term
Snyder et al. (2015) apply the coupling of Reynolds equation and
Rayleigh–Plesset equation to bearings. In accordance with the
work of Someya (2003) and Gehannin et al. (2009) they include
the dilatational viscosity term in the Rayleigh–Plesset equation
and emphasize its importance.

A later paper from the same group (Braun et al., 2017) reports
on a simulation model for journal bearings that is extended by an
energy equation to model temperature effects and heat transfer.

2.4. Mathematical Studies on the
Well-Posedness of
Reynolds–Rayleigh–Plesset Coupling for
Journal Bearings
Jaramillo et al. (2018) study the coupled equations from the
mathematicians perspective, i.e., they study the existence and
stability of stationary solutions. They study the case with
zero vertical relative velocity (e.g., the standard procedure for
journal bearing simulation) and take the dilatational viscosity
into account. For journal bearings they perform numerical
experiments based on the Finite Volume method and a backward
Euler scheme. They conclude that for the eccentricity ǫ < 0.41
the transient solution converges toward the stationary solution;
for higher values of ǫ time-convergence is no longer obtained.
One of the hypothesis for stability identified by Jaramillo et al. is
indeed violated for ǫ > 0.41. This hypothesis is centered around
the term

f1(R) =
1

ρliq

(

pB −
2γ

ρliqR

)

. (5)

Even though the setup under study is different, this result is
understood as an additional hint to look at the additional terms
in the Rayleigh–Plesset equation when doing further research on
the the negative squeeze motion.

2.5. The Way Forward: Extend the Model
Equations
For further numerical simulations, it seems most promising to
include the dilatational viscosity term and extend the pressure
term to allow for other pressure than the vapor pressure inside
the bubble. The stability issue can be revisited based on the
extended model. In case that stability issues remain, the method
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of discretization can be changed, from Differential Quadrature
method to Finite Volume method or Finite Element method.

In addition to numerical experiments it would be beneficial
to partner up with mathematicians to study the negative squeeze
motion from the mathematical perspective. This could result in
statements on the parameter values for which stable numerical
calculations can be expected.

3. GETTING THE TIME SCALE RIGHT

3.1. The Authors Results Based on Bubble
Dynamics
The numerical results published in 2009 are qualitatively
reasonable. The pressure distribution starts at the onset ofmotion
with the distribution that is expected without cavitation. Thus,
significant tensile stresses can be observed for a very short time.
Tensile stresses quickly drop while vapor fraction increases.
However, the characteristic time scale for plate separation seems
rather short and needs attention.

3.2. Calculations of the Oil Stiction Force
Without Bubble Dynamics
As mentioned above, an important practical application for the
plate separation is the oil stiction in technical devices as valves in
hydraulic applications or reed valves in compressors. Oil stiction
influences the opening time and therefore the performance of
valves in hydraulic or pneumatic applications.

Roemer et al. (2015) state that for small initial distances the
assumption of negligible tensile strength of the liquid is not
applicable. They propose a model with a fluid tensile strength
as additional material property to deal with the tensile stresses
that develop when two plates quickly separate. Also, a distinct
cavitation zone is modeled. The cavitation zone appears in the
event of the tension exceeding the threshold. Roemer et al. report
of one example where a time of about 12 ms is required before a
cavitation zone is formed.

Scheidl and Gradl (2016) study the problem of two separating
plates based on Reynolds equation and cavitation. Their
calculation is based on static cavitation conditions, i.e., is without
bubble dynamics, and disregards tensile stresses3. Another paper
from the research group (Resch and Scheidl, 2014) reports
tensile stresses for short periods of time—in the range of tenth
of milliseconds.

3.3. Calculations With Bubble Dynamics
and Experiments for the Oil Stiction of
Reed Valves
The paper by Yoshizumi et al. (2018) from 2018 reports on
experiments and numerical calculations for the opening of a reed
valve. As reed and valve seat are flat and the motion is vertical
this situation is relatively close to the negative squeeze motion.
However, reed and valve seat are parallel only at the beginning.

3Having a design optimization in mind, the authors focus on relatively simple

models to speed up the optimization process.

As the reed bends while opening, the motion of the two parts is
not parallel.

The authors include the elastic deformation of the reed as well
as the dynamics of the oil film. For the latter, they use a coupling
of Reynolds equation and Rayleigh–Plesset equation. Again,
the dilatational viscosity is included and the inertia terms are
neglected. The Finite Volume method is used for discretization.
For comparison, not only the dynamic cavitation model with
bubble dynamics is used for calculation but also two othermodels
(one with static cavitation, one without cavitation). They do not
report any stability issues in their calculations.

For the reed valve delay time (a very relevant performance
indicator) Yoshizumi et al. got similar results from experiments
and from numerical calculations with the dynamic cavitation
model4. As one would expect, the delay time is far too high for
the model without cavitation and far too small for the static
model. This is a wonderful hint that the dynamic cavitation
model with bubble dynamics is just the right choice—it yields
correct results, and simpler choices for modeling are insufficient
for a full understanding.

3.4. The Way Forward: Extend the Model
Equations
The results for reed valves from Yoshizumi et al. indicate a
dependency between delay time and the cavitation model used
for calculations (see above). Even more important and not as
obvious: the delay time significantly depends on the dilatational
viscosity. In particular, the lower the value of the dilatational
viscosity the lower the delay time. Therefore, a model without
dilatational viscosity might be insufficient for a correct modeling
of the time scale.

Using the above mentioned extensions to the simulation
model, first of all including the dilatational viscosity, the time
scale needs to be looked at closely again. Based on the results
from Yoshizumi et al. it is quite save to assume an increase in
the characteristic time for the negative squeeze motion.

Having the simulation of mixed lubrication of rough surfaces
in mind, Roemer et al.’s (2015) approach with a tensile stress
should also be considered. The advantage of this approach is the
lower computational effort.

4. GETTING FURTHER EXPERIMENTAL
EVIDENCE

Geike and Popov (2009a) give an overview on experimental
evidence for tensile stresses in the negative squeeze film motion
and discuss why the published data are not sufficient for model
validation. In particular, they point to the work of Hays and
Feiten (1964), Parkins and May-Miller (1984), Chen et al.
(2004), and Wang et al. (2005), who had studied the time-
dependent cavitation experimentally in a simple parallel-plate
squeeze film configuration.

4For the reed valve under study, the delay time is 25 ms.
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It seems that no experimental results for the negative
squeeze motion of spherical plates—sufficient for a quantitative
validation of simulation models—have been published yet. The
work of Sun et al. (2008) seems promising for the model
validation for flat plates in oscillatory motion. The experiments
from Yoshizumi et al. (2018) are also relevant as their setup
is somewhat close to the negative squeeze motion and a
characteristic time scale is studied. It is also worthwhile to study
other contributions on the oil stiction topic to find further
experimental data.

Most experimental studies, however, focus on other setups5.
The focus is mostly on journal bearings or squeeze film dampers.
As an example, the paper by Adiletta and Pietra (2006) from 2006
studies the squeeze film damper. Their results show that negative
values for the absolute pressure appear in squeeze film dampers
too. There seems to be still a difference between numerical
results from Gehannin et al. (2009) and the experimental results
from Adiletta and Della Pietra with respect to the absolute
pressure inside the cavitation zone. Gehannin et al. conclude
that it is essential to include the dilatational viscosity to get
negative pressure in the studied squeeze film damper. They also
emphasize that a model based on Reynolds and Rayleigh–Plesset
equations relies on many parameters, temperature dependent
lubricant properties and also initial conditions on bubble size and
vapor fraction.

For the future, a joint research between partners who on the
one side undertake the necessary experimental studies and on
the other side work on the numerical simulation model seems
beneficial to answer the open questions.

5Someya’s paper on journal bearings Someya (2003) shows a diagram for the

negative squeeze but does not give any background information, which would be

needed for the validation of computational results.

5. WHAT IS NEXT?

In the author’s opinion the research on the cavitation
dynamics for mixed lubrication should be centered around
the above mentioned key topics—stability of numerical
calculation, clarifying time scale and finding further
experimental evidence.

As mentioned above, it seems most promising to set the focus
on extending the Rayleigh–Plesset equation (bubble dynamics).
Hopefully, the questions around the stability issues and the
characteristic time scale can then be answered. Involving partners
for (i) the mathematical study on the stability issue and (ii) for
further experiments would be beneficial for future research.

From todays perspective, the next leap forward would be
the simulation of the elasto-hydrodynamic problem of rough
surfaces including the cavitation dynamics. For this the boundary
element method (BEM) seems the right choice for modeling the
elastic part. Only the surface is discretized in the BEM. Hence the
method allows to model surface roughness with very fine meshes
and it is often more efficient for contact problems than methods
that require the discretization of the entire volume. The tool and
experience of Popov’s research group Pohrt and Li (2014) could
be used here.
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The effect of a middle-layer of thickness t1 with intermediate Young’s modulus and yield

strength in between a hard coating of thickness t2 and a softer spherical substrate of

radius R on the yield inception of a coated system is investigated. Finite element method

is used to model bilayer-coated spheres flattened by a rigid flat. It is found that the

addition of the middle-layer can enhance or reduce the resistance to yield inception

depending on its dimensionless thickness t1/t and t/Rwhere t is the total thickness of the

two coating layers. Some practical results are presented, to enable optimum selection

of bilayer coated system and prevention of undesired weakening effect.

Keywords: contact mechanics, yield inception, coatings, bilayers, strengthening and weakening

INTRODUCTION

Stiff hard coatings, such as TiN or CrN onmetallic substrates, are often used to enhance tribological
properties of components (Kot, 2012). Goltsberg et al. (2011) studied the yield inception of a coated
sphere pressed by a rigid flat. They found that a coated sphere can bemore resistant to yielding than
a homogenous sphere made of the hard coating material. However, ultrathin hard coatings can
cause a weakening effect (Goltsberg et al., 2011; Huang et al., 2012; Goltsberg and Etsion, 2013), by
which the yield resistance of the coated sphere is lower than that of a homogenous sphere made of
the soft substrate material. (Komvopoulos, 1988, 1989) and Sun et al. (1995) also demonstrated this
weakening effect of ultrathin hard coatings in the case of a coated half-space subject to indentation.

A mismatch of the Young’s moduli at the coating/substrate interface can lead to additional
stresses in the coated system (van der Zwaag and Field, 1982; Komvopoulos, 1988, 1989; Chai et al.,
1999; Piao et al., 2010; Goltsberg et al., 2011; Goltsberg and Etsion, 2013), which can reduce the
resistance to yield inception of the system. To alleviate this effect, the mismatch of the Young’s
moduli at the interface should be reduced. This can be achieved by using functionally graded
material (Stephens et al., 2000; Liu et al., 2016) or by applying multilayers of coatings (Djabella
and Arnell, 1994). A simpler solution is to insert a single middle-layer, which has an intermediate
Young’s modulus between the substrate and coating.

Fontalvo et al. (2010) showed experimentally that such bilayer coatings can enhance
wear resistance. Finite element studies (van der Zwaag et al., 1986; Djabella and Arnell,
1993a,b) have modeled the spherical indentation of an elastic half-space with a bilayer
coating, assuming a Hertzian pressure distribution. These studies show a reduction of
adverse stresses within the coating material compared to single-layer cases. However, the
assumption of Hertzian pressure loading is valid only for small mismatch values (Gupta and
Walowit, 1974). More accurately, Lardner et al. (1992) and Guo and Zhao (2019) modeled a

361
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bilayer coated half-space indented by a rigid sphere, relaxing
the Hertzian pressure distribution assumption. Lardner et al.
(1992) identified which interface (the contact interface, the outer-
coating/middle-layer interface or the middle-layer/substrate
interface) had the greatest shear and tensile stresses for different
total coating thicknesses and the Young’s moduli ratio of the
two coating layers. Guo and Zhao (2019) showed that a middle-
layer of intermediate Young’s modulus can reduce the stress
discontinuities in the coated system (and lower the chances of
delamination at the coating/substrate interface). Yu et al. (2016)
recently identified the location of the maximum von Mises stress
for the bilayer coated half-space during indentation, for different
coating thicknesses and material properties. The half-space was
subjected to both normal and tangential loading with a spherical
indenter. However, little attention has been paid to the yield
resistance of the bilayer coated system. The aim of the present
study is to investigate the yield inception of a bilayer coated
sphere flattened by a rigid flat.

Modeling with the flattening approach is chosen over the
indentation one, because it is more relevant for good tribological
designs associated with mild adhesive friction and wear, when
asperities indentation is avoided (Goltsberg et al., 2011). The
results from this study are expected to be relevant in the
design of mechanical components that involve stiff-hard coatings
(such as TiN or CrN on metallic substrates) to enhance
load carrying capacity and component lifetime (Kot, 2012).
These include applications such as bearings, mechanical tools,
electromechanical switches and bio-implants.

THEORETICAL BACKGROUND

The yield resistance of a single-layer coated sphere flattened by
a rigid frictionless flat was intensively investigated in Goltsberg
et al. (2011) and Goltsberg and Etsion (2013). The relevant
results are summarized in Figure 1, which schematically presents
the dimensionless critical load, Pc/Pc_co, as a function of
dimensionless coating thickness, t/R, for the case of Pc_co > Pc_su.
Here t is the coating thickness and R is the substrate radius. Pc is
the critical load at yield inception for the coated sphere, and Pc_co
and Pc_su are the critical loads for a homogenous sphere of radius
R+t made of coating or substrate materials, respectively. Values
for Pc_co and Pc_su are given by the following expression for the
critical load for the flattening of a homogenous sphere of radius
R (Brizmer et al., 2006).

Pc =
π3

6
C3
vY[R(1− ν2)

Y

E
]
2

(1)

where E, Y, and ν are the Young’s modulus, yield strength, and
Poisson’s ratio of the relevantmaterial of the homogenous sphere,
respectively, andCv = 1.234 + 1.256ν. Yield inception was noted
to occur always along the central axis of symmetry.

In the figure at t/R = 0, Pc = Pc_su and at very large t/R,
Pc approaches Pc_co as expected. At ultralow t/R, a weakening
effect exists such that Pc is lower than Pc_su. Maximumweakening
occurs at t/R = (t/R)MW, and the location of yield inception is
at the substrate side of the coating/substrate interface (Goltsberg

FIGURE 1 | Schematic of the dimensionless critical load, Pc/Pc_co, vs.

dimensionless coating thickness, t/R, for a single-layer coated sphere flattened

by a rigid flat.

FIGURE 2 | A bilayer coated sphere pressed by a rigid flat.

and Etsion, 2013). As argued by Goltsberg and Etsion (2013), the
contribution to the equivalent von Mises stress, σ eq, due to the
external normal loading is maximum slightly below the contact
interface. The contribution due to the Young’s moduli mismatch
is maximum at the coating/substrate interface. At t/R= (t/R)MW

the above two locations coincide and the maximum weakening
occurs. Under a given normal load P, when t/R is different than
(t/R)MW, the coating/substrate interface moves away from the
location of maximum contribution from the external loading.
This results in lower equivalent von Mises stresses and a higher
Pc is needed for yielding as seen in Figure 1. The critical load
Pc/Pc_co reaches a maximum at t/R = (t/R)p, when the location
of yield inception moves to within the coating. Near (t/R)p, a
strengthening effect is observed as Pc is greater than Pc_co.

METHODOLOGY

Figure 2 schematically presents a bilayer coated sphere
compressed by a rigid flat under normal load P. The radius
of the spherical substrate is R. The bilayer coating has a total
thickness t, and consists of a middle-layer and outer-coating
of thicknesses t1 and t2, respectively (t = t1+t2). The bottom
surface of the sphere is restricted from normal displacement
[further restriction of tangential displacement has negligible
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FIGURE 3 | Finite element model of the bilayer coated sphere pressed by a rigid flat (A). Close-up of the mesh zone with highest element density (B). ML/S and

OC/ML interfaces are highlighted in (B).

effect on the results of the contact problem (Goltsberg et al.,
2011)]. To simplify the problem, the following assumptions are
adopted:

1. Perfect slip contact condition (frictionless) is assumed at the
contact interface to avoid shear stresses there.

2. Perfect bonding is assumed at the outer-coating/middle-layer
(OC/ML) and middle-layer/substrate (ML/S) interfaces.

3. The outer-coating, middle-layer and substrate materials are
isotropic, free of residual stresses and obey linear elastic
constitutive law prior to yielding.

4. The Poisson’s ratio for outer-coating, middle-layer and
substrate materials are equal, i.e. νco = νm = νsu = ν = 0.32.
Note that the subscripts ‘co’, ‘m’, and ‘su’ refer to the outer-
coating, middle-layer and the substrate materials, respectively.

These simplifying assumptions help in providing a good physical
insight of the problem but, if needed, can be relaxed in
future work.

The contact problem shown in Figure 2 was solved by
using the commercial package ABAQUS CAE 2017, with a 2D
axisymmetric finite element model presented in Figure 3A. The
bilayer coated sphere was modeled with a quarter circle and
the rigid flat as a line. The quarter circle was meshed with
4-node bilinear quadrilateral elements (CAX4R) and the rigid
flat was modeled with an ‘analytical rigid’ element. The densest
mesh was applied in a zone of 0.2t width and 1.2t depth at the
sphere summit (see Figure 3B), where yield inception occurs.
The element length in this zone is 0.005t. Outside this zone the
mesh density is decreased gradually as seen in Figure 3A. In
total, around 30,000 to 40,000 elements were used depending on
the thicknesses of the outer-coating and middle-layer. To define
the contact pair, the rigid flat surface was chosen as the master
surface and the outer-coating surface as the slave surface, with
“small sliding” formulation as the tracking approach [see section
38.1.1 of (Dassault Systémes, 2016) for details]. Loading of the

coated sphere is accomplished by displacement control of the
rigid flat, in increments of 4 × 10−7 R. Yield inception occurs in
the bilayer coated sphere once the equivalent vonMises stress σ eq

(see Equation 2) at a certain location reaches the yield strength of
the relevant material.

σeq =
{

0.5
[

(σ1 − σ2)
2
+ (σ2 − σ3)

2
+ (σ1 − σ3)

2
]}0.5

(2)

where σ 1, σ 2, and σ 3 are the principal stresses. For all the cases
studied here, yield inception was noted to occur along the axis of
symmetry (x = 0), at which this expression becomes (Goltsberg
et al., 2011)

σeq = |σ1 − σ2| (3)

where σ 1 and σ 2 are the normal and radial principal
stresses, respectively.

In order to validate the accuracy of the numerical model, mesh
convergence was tested by running models with greater mesh
density in all zones until no significant change (<1%) in the
critical load at yield inception in the coated system is observed
(see Appendix A for details). To validate the accuracy of the
numerical model, identical material properties were applied to
both the outer-coating and the middle-layer, corresponding to a
single-layer coated sphere. The critical load as well as the load-
displacement relation from such cases showed good agreement
(within 10%) with the results reported by Goltsberg et al. (2011)
and Goltsberg and Etsion (2015).

RESULTS AND DISCUSSION

For studying the yield inception of a bilayer coated sphere,
models were constructed such that Eco > Em >Esu and Yco >

Ym >Ysu. In the models, Rwas fixed at 100mm and Esu at 1 GPa.
However, changing these dimensional values do not affect the
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TABLE 1 | Material property ratios to study the strengthening effect in bilayer

coated spheres.

Eco/Esu Em/Esu Esu/Ysu Yco/Ysu Ym/Ysu ν

10 5.5 1500 10 5.5 0.32

results when presented in non-dimensional form. Simulations
to study both the weakening and strengthening zones were
run for t1/t from 0 to 1 in increments of 0.1, and t/R from
0.001 to 0.02 in increments of 0.0005. Since the value of peak
critical load near the maximum strengthening is sensitive to t/R
(see Figure 1), additional simulations were run near the peak
strengthening with smaller t/R increments of 2 × 10−5. Note
that the coating thickness in the present study is normalized by
the substrate radius R, which is different from that normalized
by half-width of the contact area, e.g., Komvopoulos (1988).
Since R is known a priori, contrary to the unknown half width
of contact area, which depends on load and coating thickness,
the current normalization approach enables easy selection of
the optimum coating thickness. The practicality and validity of
this normalization approach was demonstrated experimentally
in Bar-Hen and Etsion (2017). Moreover, this normalization
approach was also used successfully in the study on the electrical
conductance of a bilayer coated spherical contact (Korchevnik
et al., 2018) and enabled a concise interpretation of the results
for the application of electromechanical switches.

Strengthening Effect of Bilayer Coated
Spheres
The material property ratios used in the models to study the
strengthening effect are shown in Table 1. An extreme Eco/Esu
= 10 was chosen to allow a substantial reduction in the Young’s
moduli mismatch by adding the middle-layer with Eco/Em =

1.82 and Em/Esu = 5.5. Figure 4 shows the dimensionless
critical load Pc/Pc_co vs. the dimensionless coating thickness
t/R for two typical bilayer cases of relatively small and large
dimensionless middle-layer thicknesses t1/t = 0.4 and t1/t = 0.8,
respectively. For comparison, results are also shown for t1/t =
0 corresponding to a single-layer case with coating made of the
same outer-coating material (Eco/Esu = 10).

For the small t1/t = 0.4, Pc/Pc_co increases monotonically
with t/R until a maximum value (Pc/Pc_co)p at a certain t/R =

(t/R)p and then reduces approaching unity, like the single-layer
case. A similar behavior is shown for the large t1/t = 0.8, but
this case involves an additional small peak at relatively small
t/R. From Figure 4, it is noted that compared to the single-layer
case with t1/t = 0, (Pc/Pc_co)p is greater for the bilayer case
with t1/t = 0.4 but lower for the bilayer case with t1/t = 0.8.
This suggests that the dimensionless middle-layer thickness, t1/t,
can enhance or reduce the maximum strengthening of a coated
sphere. Hence, there is an optimum t1/t at which the ultimate
maximum strengthening effect is obtained.

Further, there is a transition thickness, (t/R)tr_S, for any t1/t at
which the bilayer coated sphere has the same value of Pc/Pc_co
as the single-layer coated sphere (see vertical dashed lines in

Figure 4 for the cases with t1/t = 0.4 and t1/t = 0.8). While
for t/R below its (t/R)tr_S, the bilayer coated sphere experiences
lower critical loads than the single-layer coated sphere, for t/R
above (t/R)tr_S the bilayer coated sphere experiences higher
critical loads.

Figure 5 shows, for the strengthening zone, the effect of
dimensionless middle-layer thickness, t1/t, on the peak critical
load, (Pc/Pc_co)p, the dimensionless coating thickness at peak
critical load, (t/R)p, and the dimensionless transition coating
thickness, (t/R)tr_S. In Figure 5A, at t1/t = 0, which corresponds
to a single-layer case, the peak dimensionless critical load is
around 1.8 (see also Figure 4). As can be seen from Figure 5A,
(Pc/Pc_co)p hardly changes up to t1/t = 0.3. Therefore, the
bilayer effect in this range is negligible. An increase is noted for
t1/t≥0.3 and the ultimate peak critical load is at an optimum
dimensionless middle-layer thickness t1/t = 0.5. The optimum
t1/t value may be different for other material properties and this
will be explored in a future study. Beyond the optimum t1/t,
(Pc/Pc_co)p decreases and can even become lower than that for
the single-layer case.

Further, from Figures 5B,C both (t/R)p and (t/R)tr_S become
significantly large for t1/t larger than the optimum value. Hence,
bilayer coatings with large values of t1/t are undesirable since the
required total coating thickness, t, to obtain peak strengthening
becomes very large, while the resulting peak strengthening is
lower than the ultimate peak critical load at optimum t1/t.

In the present model, yield inception always occurs along the
symmetry axis (x = 0 in Figure 2). From the many simulations
performed in this study it was found that the location of yield
inception in the bilayer cases depends on t1/t and t/R. With t1/t
up to the optimum value (≤0.5) the yield inception is at the
substrate side of theML/S interface when t/R<(t/R)p, and within
the outer-coating when t/R≥ (t/R)p. This is similar to the location
of yield inception for single-layer coated cases as described in
Goltsberg et al. (2011).

With t1/t greater than the optimum value (>0.5), the yield
inception is also at the substrate side of the ML/S interface for
low t/R. However, when t/R starts increasing the yield inception
location jumps to the middle-layer side of the OC/ML interface.
This jump corresponds to the first peak for the case with t1/t
= 0.8 in Figure 4. When t/R further increases to its (t/R)p the
yield inception location jumps to within the outer-coating. This
corresponds to the second peak for the case with t1/t = 0.8 in
Figure 4.

As seen in Figure 5A, for t1/t up to the optimum t1/t (≤0.5),
an increase in t1/t leads to an increase in the dimensionless
critical load (Pc/Pc_co)p, obtained at (t/R)p, when the yield
inception location jumps to within the outer-coating. As
explained in Goltsberg et al. (2011), at a given load, Young’s
moduli mismatch between the outer-coating and the substrate
causes additional stresses within the outer-coating that is
stretched by the substrate. As found from the present simulations,
these additional stresses are reduced by increasing the thickness
of the middle-layer and hence, (Pc/Pc_co)p is increased.

The two main sources for maximum contribution to the
von Mises equivalent stress (Goltsberg and Etsion, 2013) were
explained in the discussion of Figure 1 at the end of the
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FIGURE 4 | Dimensionless critical load, Pc/Pc_co, vs. dimensionless coating thickness, t/R, for bilayer coated spheres. Material properties as in Table 1.

Theoretical Background section. In the present study of bilayer
coated spherical contact under a normal load P, the center point
(x = 0) of the OC/ML interface is the location of maximum
contribution to the vonMises equivalent stress due to the Young’s
moduli mismatch at this interface. For any given t/R, when t1/t
increases, this location becomes closer to the contact area (see
Figure 2) and the location of maximum contribution due to the
normal loading. Hence, if the increasing von Mises equivalent
stress at the OC/ML interface reaches the lower yield strength
of the middle-layer, yield inception will occur at this point and
the load P will become the critical one Pc. As we found from
our simulations this occurs for a range of t/R values below
(t/R)p whenever t1/t is greater than the optimum value (>0.5).
For these values of t1/t, yield inception for a range of t/R is at
relatively low critical loads, compared to the case with optimum
t1/t. This results in a reduction of the (Pc/Pc_co)p value as seen in
Figure 5A.

As discussed in relation to Figure 4, a bilayer coated
case has lower critical loads than the corresponding single-
layer case with same outer-coating (Eco/Esu = 10) and
t/R, when t/R< (t/R)tr_S and greater critical loads when
t/R>(t/R)tr_S. To investigate the reasons for this, comparisons
were made between the dimensionless von Mises equivalent
stresses, σ eq/Y, along the axis of symmetry (at x = 0)
in bilayer cases and corresponding single-layer cases. Y is
the yield strength of the relevant material. The comparisons
were done for each bilayer case and its corresponding

single-layer case subjected to the lower critical load of the
two cases.

The comparisons showed that the maximum σ eq/Y in the
outer-coating is typically lower in a bilayer case than in its
corresponding single-layer case (except for locations next to the
OC/ML interface at z/t = t2/t). The parameter z is the axial
distance from the contact interface of the coated sphere as shown
in Figure 2. However, the σ eq/Y at the middle-layer side of the
z/t = t2/t interface is typically significantly higher in a bilayer
case than the σ eq/Y at the same z/t location in its corresponding
single-layer case. Further, the σ eq/Y at the substrate side of
the z/t = 1 interface is also typically higher in a bilayer case
than in its corresponding single-layer case. This suggests in the
strengthening zone, reducing the mismatch at z/t = 1 interface,
by inserting a middle-layer, increases the σ eq/Y at the substrate
side of this interface.

The lower σ eq/Y within the outer coating in a bilayer
case compared to the corresponding single-layer case is due
to the reduction of stresses within the outer-coating with the
presence of the middle-layer, as discussed earlier. The bilayer case
experiences additional stresses at z/t = t2/t due to the mismatch
at the OC/ML interface at this location, which is not present in
the corresponding single-layer case. Further, the material at the
middle-layer side of the OC/ML interface in the bilayer case has
lower yield strength than the outer-coating material at this z/t
location in the single-layer case. Due to both of these reasons,
σ eq/Y at the middle-layer side of z/t = t2/t interface is higher in
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FIGURE 5 | Peak dimensionless critical load, (Pc/Pc_co )p (A), dimensionless coating thickness at peak critical load, (t/R)p (B), and dimensionless transition coating

thickness, (t/R)tr_S (C), for different middle-layer dimensionless thickness, t1/t. Material properties as in Table 1.

the bilayer case than the σ eq/Y at the same z/t location in the
corresponding single-layer case.

From the many simulations, it was observed that small
mismatch at the z/t = 1 interface increases (makes more
compressive) σ 1 more than σ 2 at the substrate side of the
interface. From Equation (3) we can see that this increases σ eq

in the bilayer case compared to the single-layer case.
When t/R<(t/R)tr_S, high σ eq/Y at either z/t = t2/t

or z/t = 1 results in lower critical loads for a bilayer
case compared to the corresponding single-layer case. When
t/R >(t/R)tr_S, high σ eq/Y within the outer-coating of the
corresponding single-layer case results in smaller critical
loads for this case compared to the bilayer case as seen
in Figure 4.

TABLE 2 | Material property ratios to study the weakening effect in bilayer coated

spheres.

Eco/Esu Em/Esu Esu/Ysu Yco/Ysu Ym/Ysu ν

10 2 350 10 2 0.32

Weakening Effect in Bilayer Coated
Spheres
Weakening occurs for coated spheres when Pc/Pc_su <1. As
per Equation (12) in Goltsberg and Etsion (2013), weakening
for single-layer coated spheres occurs for small coating
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thickness when

t

R
<

1.417

(Esu/Ysu)
0.9587

(4)

Hence, to avoid constructing models with very low t/R, which
would require a very dense mesh, models were constructed with
a lower value of Esu/Ysu to study the weakening effect in bilayer
coatings. Table 2 shows the material property ratios used in these
models. The value of Esu/Ysu was chosen to be within the range
analyzed by Goltsberg and Etsion (2013) for the weakening effect

in single-layer coated spheres. Esu was kept the same as the value
used in strengthening (1 GPa) and the Esu/Ysu ratio was reduced
by increasing Ysu.

As noted by Goltsberg and Etsion (2013), the weakening
effect in the single-layer case is due to additional stresses in the
substrate due to the mismatch at the z/t = 1 interface. Hence, for
more effective bilayer, Em/Esu = 2 was selected in Table 2 instead
of 5.5 in Table 1. The yield strengths values of the outer-coating
and the middle-layer materials were changed so that Yco/Ysu =

Eco/Esu, and Ym/Ysu = Em/Esu as in Table 1.

FIGURE 6 | Dimensionless critical load, Pc/Pc_su, vs. dimensionless coating thickness, t/R. Material properties as in Table 2.

FIGURE 7 | Dimensionless critical load at maximum weakening, (Pc/Pc_su)MW, for different t1/t. Material properties as in Table 2.
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Figure 6 presents Pc/Pc_su vs. t/R in the weakening zone for
the same two typical cases of bilayer coated spheres, t1/t =

0.4 and t1/t = 0.8, as in Figure 4. Plots are also provided for
single-layer coated cases with t1/t = 0 and t1/t = 1, which
correspond to single-layer coatings with Eco/Esu = 10 and
Eco/Esu = 2, respectively.

As shown in Figure 6, the single-layer case with higher
mismatch (Eco/Esu = 10) has greater maximum weakening than
the case with less mismatch (Eco/Esu = 2), consistent with
Goltsberg and Etsion (2013). However, it is interesting to note
that beyond a transition thickness (t/R)tr_W = 0.0030 the single-
layer case with highmismatch Eco/Esu = 10 shows less weakening
than the single-layer case with small mismatch Eco/Esu = 2. The
two bilayer cases with t1/t= 0.4 and t1/t= 0.8 also exhibit greater
weakening than the single-layer case t1/t = 0 for t/R beyond
respective (t/R)tr_W values.

Further, in Figure 6 it is noted that the extension of the
weakening zone, in terms of t/R, is smaller in the single-layer case
with greater mismatch (Eco/Esu = 10) than for the two bilayer
cases and the single-layer case with less mismatch (Eco/Esu = 2).
This suggests that while a lower mismatch at the z/t = 1 interface
is beneficial in reducing the maximum weakening, it adversely
extends the weakening zone to higher t/R values.

Considering the results in the Strengthening Effect of Bilayer
Coated Spheres section, a bilayer coated sphere has a higher
critical load than a single-layer case with the same outer-coating
when t/R is either above (t/R)tr_S or below (t/R)tr_W. Since the
second case has to be avoided as being inside the weakening zone,
the preferred selection for the total coating thickness of a bilayer
case would be t/R>(t/R)tr_S.

Figure 7 shows dimensionless critical load at maximum
weakening, (Pc/Pc_su)MW, for bilayer coated spheres with
different t1/t. As can be seen from Figure 7 (Pc/Pc_su)MW hardly
changes up to t1/t= 0.4. Therefore, the bilayer effect in this range
is negligible. For t1/t>0.4, the bilayer cases show less maximum
weakening than the single-layer case with t1/t = 0 but greater
weakening than the single-layer case with t1/t = 1.

In the weakening zone, at very low t/R, yield inception is
within the substrate. For t/R≥ (t/R)MW, yield inception is at the
substrate side of the ML/S interface. This behavior was noted for
all bilayer coated spheres with different t1/t, and is similar to the
behavior for single-layer coated spheres as described in Goltsberg
and Etsion (2013).

In a previous study (Goltsberg et al., 2011) it was assumed that
the Young’s moduli mismatch is detrimental, in the weakening
zone, due to a reduction in the compressive stresses at the
substrate side of the coating/substrate interface. However, as seen
in Figure 6, the single-layer case with high mismatch Eco/Esu =

10 exhibits less weakening than the other cases (that have less
mismatch) at t/R beyond each relevant (t/R)tr_W. From the many
simulations, it was observed that above (t/R)tr_W reducing the
mismatch at the z/t = 1 interface increases σ 1 more than σ 2 at
the substrate side of the interface (at x = 0). From Equation (3)
we can see that this increases σ eq in the bilayer case compared to
the single-layer case.

This suggests reducing the mismatch at the z/t = 1 interface
reduces the σ eq /Y at the substrate side of the interface only for
low t/R (when t/R is less than the relevant (t/R)tr_W).

TABLE 3 | Range of parameters for which similar behavior as described in the

Strengthening Effect of Bilayer Coated Spheres section was observed (Yco/Y su =

Eco/Esu and Ym/Y su = Em/Esu).

Eco/Esu (Em/Esu-1)/(Eco/Esu-1) Esu/Ysu ν

3 to 8 0.3 to 0.6 600 to 1200 0.32

Effect of Different Material Properties
Additional simulations were run for a range of material
properties described in Table 3. Within this range, it
is noted

1) The bilayer coated sphere exhibits greater strengthening than
the corresponding single layer case only when t/R is greater
than a transition thickness (t/R)tr_S.

2) There exists optimum values of t1/t and t/R for ultimate
peak strengthening.

Hence, the general observations made here are likely to be
applicable for the design of real coating systems, particularly
those with Eco/Esu ratios within this range. For example, Eco/Esu
for TiN outer-coating on Ti substrate is 3.33, and TiN outer-
coating on Al substrate is 5.71 (Sun et al., 1995). Likewise, the
ratio E/Y for most engineering metallic materials ranges from
100 to 2000, so the cases covered by Table 3 are in line with
practical applications.

Due to the large number of material and dimensional
parameters, finding quantitative expressions between the
material properties and the optimum values of t1/t and t/R
is beyond the scope of this paper. It shall be attempted in a
future study.

CONCLUSION

Yield inception of bilayer coated spheres, with a middle-layer of
intermediate Young’s modulus and yield strength, flattened by
a rigid flat was studied for a range of dimensionless thicknesses
of the two layers. Both the strengthening and weakening effects
were observed for bilayer coated spheres. It was expected that the
gradual reduction of the Young’s moduli mismatch in the bilayer
coating would enhance the critical loads for yield inception
over a single-layer coated sphere with the same outer-coating.
However, the results show that within the strengthening zone, the
presence of a middle-layer leads to an increase in the critical load
only when the total dimensionless coating thickness is above a
certain transition value, (t/R)tr_S, which depends on the material
properties and the dimensionless thickness of the middle-layer,
t1/t. Further, there is an optimum dimensionless middle-layer
thickness t1/t, which maximizes the peak critical load (Pc/Pc_co)p
of a bilayer coated sphere.

In addition, it is shown that there exists a (t/R)tr_W within the
weakening zone above which the bilayer coated case experiences
lower critical loads than the single-layer case with the same outer-
coating. This implies that bilayer coatings are undesirable when
(t/R)tr_W <t/R<(t/R)tr_S.

It is therefore recommended to select t/R>(t/R)tr_S for
beneficial effect of bilayer coated spheres. Finding the expressions
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for the optimum t1/t and optimum t/R as functions of material
properties requires a complex parametric analysis, which is out
of the scope of the present paper but will be attempted in a
future study.
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NOMENCLATURE

E Young’s modulus

P Normal load applied to the rigid flat

R Radius of the substrate

t Total thickness of the two layers combined

t1 Thickness of the middle-layer

t2 Thickness of the outer-coating

(t/R)tr_S Transition t/R value in the strengthening zone at which two

different cases have the same dimensionless critical load, Pc/Pc_co

(t/R)tr_W Transition t/R value in the weakening zone at which two different

cases have the same dimensionless critical load, Pc/Pc_su

Y Yield strength

z Distance along the axis of symmetry from the contact interface

ν Poisson’s ratio

σeq Equivalent von Mises stress

σ1, σ2, σ3 Principal stresses.

Subscripts

co Outer-coating material

c_co Value at critical load for homogenous sphere made of the

outer-coating material

c_su Value at critical load for homogenous sphere made of the substrate

material

m Middle-layer material

MW Value at maximum weakening

p Value at peak critical load

su Substrate material
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The production process significantly influences the surface properties of rolling element

bearings raceways. Deep rolling can induce a depth dependent residual stress state.

Previous numerical and experimental studies have shown that rolling bearings fatigue life

can be positively influenced by high compressive residual stress to a depth of around

300µm from the surface. By extending the components life, the resource efficiency of

machine components can be increased. In order to determine the influence of the residual

stress state in bearing fatigue life, a calculation method was developed for predicting the

bearing fatigue life. This method was validated for hard-turning and subsequent deep

rolling by experiments on a test rig in four-bearing configuration under radial load. An

increase of the L10 bearing life by a factor of 2.5 has been achieved by inducing residual

stresses on the bearing’s inner ring. Due to similar process control, the manufacturing

steps turning and deep rolling were combined. Bearings were manufactured combining

the processes hard-turning and deep rolling (called turn-rolling). The heat from the

hard machining has an effect on the residual stresses in the bearing subsurface, thus

further altering the magnitude and maximum depth of the residual stress influencing

the microstructure. With these bearings, the additional fatigue life was determined

experimentally and compared to the results of the bearings produced by hard-turning

and subsequent deep rolling. It could be shown, that the process of hard turning and

subsequent deep rolling has highest potential to achieve improved bearing fatigue life.

These findings were transferred to a “Tailored Forming” shaft with integrated raceway in

a second step. In this case, a shaft made of mild steel is combined with a cladding layer

of high strength bearing steel to be used as a bearing raceway.

Keywords: cylindrical roller bearing, fatigue life, residual stresses, deep rolling, turn-rolling

INTRODUCTION

A high reliability of machine elements under relative motion is of main importance. The
dimensions of machine elements are calculated for reliability. Bearings properties as typical
highly loaded machine elements are based on proven conventional production techniques. During
operation bearings have to resist very high cyclic stresses. The fatigue life of rolling bearings
is influenced in particular by the raceway properties. Böhmer provides an overview of the load
conditions and material behavior of rolling contacts in Böhmer (1998). The author defines a large
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number of influencing variables on component fatigue life:
surface micro topography, especially under mixed lubrication,
lubricant and its contamination, residual stresses, and
temperature effects as well as the material and the heat treatment
processes. The cyclical rolling of the rolling elements over the
raceways of inner and outer ring causes alternating stresses in the
material volume of the contact partners. This can finally result
in the nucleation of fatigue cracks in the very high cycle regime,
which is known as rolling contact fatigue (RCF). If the alternating
stress continues, crack growth processes occur on the boundary
layer resulting in the separation of particles from the surface.
Under ideal lubrication conditions the resulting chips, known as
pittings, are one of the main causes of rolling bearing failure in
practical applications (Glaeser and Shaffer, 1996).

Zwirlein and Schlicht (1989) describe the development of
residual stresses due to the actual over-rolling process. They
also describe the resulting equivalent stresses in the Hertzian
contact zone as a function of existing residual stresses and friction
occurring at the transition from full film lubrication to mixed
lubrication. Under the influence of friction, the maximum of the
equivalent stress of the multi-dimensional stress state below the
running surface shifts increasingly in the rolling direction and
toward the surface.

According to Voskamp, the material zone beneath the
overrolled raceway goes through three phases over the period of
the bearing’s fatigue life in which a change of the microstructure
takes place (Voskamp, 1985). In the first phase, named
“shakedown phase,” which is occurring within the first 1,000
revolutions, plastic micro-deformations take place in the area
below the raceway surfaces, leading to work hardening of the
bearing material. It is characterized by the rapid reduction
of residual austenite trapped in the martensitic structure of
the bearing material and the build-up of residual compressive
stresses. The extent of the changes depends on the load acting
on the bearing. In the subsequent stationary second phase, also
called steady-state phase, practically no plastic deformation and
no structural change takes place. The duration of the stationary
phase depends on the level of the load. For loads exceeding the
“shakedown limit,” there is a direct transition from the first to
the third phase. For small loads, the fatigue process remains
in the second phase and no transition to the third phase takes
place, and thus no component failure due to RCF occurs. In
the third phase, the so called “instability phase,” the component
subsurface can no longer absorb the acting loads in the form of
elastic deformation. As a result of the cyclic contact conditions,
a further change in the complex residual stress state of the
microstructure occurs. The micro plastic deformations evolve
to macro plastic deformations and result in component failure.
Hollox et al. were able to detect the course and magnitude of
the residual stresses below the raceways as a function of the
running times for radially loaded deep groove ball bearings by
X-ray diffraction (XRD) (Hollox et al., 1987). The alignment of
the crystal structure as a result of the rolling stress and thus the
formation of a texture in the subsurface of the rolling bearing
was also determined and recognized as a characteristic feature
of the third phase of the fatigue process. The development of
residual stresses in near-subsurface areas of the raceways during

cyclic over rolling was also proven by theoretical investigations
by (Hills, 1983).

Voskamp later experimentally determined an increase in
bearing fatigue life by subjecting the inner rings to a running-
in process (Voskamp, 1996). During this running-in process,
the bearings were subjected to high loads for a short time of
over rolling. In the subsequent fatigue life experiments under
normal load, the fatigue life was increased by a factor of three
in comparison to standard bearing inner rings (which were
not run-in) could be determined. Voskamp carried out these
investigations under full film lubrication.

Poll and Hacke investigated the effect of a short time of
overload during the running in on cylindrical roller bearings
of the size NU206 and NJ206 (Poll and Hacke, 2010). The
bearings were subjected to two different loads: a short phase of
high load (C/P = 2.5 Hertzian pressure pm = 3,000 N/mm²)
as an overloading and subsequent operation under normal load
(C/P = 4, pm = 2,500 N/mm²). In the statistical evaluation
of the tests, it was determined that the running times of the
collective tests with run-in at increased load were higher than
those of the pure single-stage tests. The increased bearing fatigue
life is assumed to be the result of residual compressive stresses
introduced in the running-in phase.

Besides a preloading of the bearings, there is also the
possibility of applying pre-induced residual stresses by the
manufacturing process. A relatively new method is laser shot
peening (Montros et al., 2002). By usage of a high energy
laser pulse, a plasma shock wave is generated on a metallic
surface. When the shock wave is transmitted into the steel
surface, a plastic deformation results, which leads to residual
compressive stresses.

Altenberger emphasizes the positive influence of temperature
on SAE 1045 and AISI 304 during deep rolling (Altenberger,
2005). In case of AISI 304 a much higher fatigue lifetime
improvement compared to ultrasonic shot peened, deep rolled,
and laser shock peened samples could be achieved. In similar
investigations it could be shown that by means of mechanical
surface treatments, especially deep rolling, also for non-steel
materials such as aluminum-7075-T6 (Majzoobi et al., 2009) and
titanium Ti-6Al-4V (Nalla et al., 2003) an increase in fatigue life
could be achieved.

Pabst was also able to prove an increase in the bearing fatigue
life of rolling bearings which had been modified by deep-rolling
in order to induce compressive residual stresses (Pabst, 2018).
Additional shot peening was investigated. Pabst assumed that
the residual stress state did not increase the bearing fatigue life
as much. Rather, the subsequent induction hardening process
and its influence onmaterial microstructure increased the fatigue
life. He mentioned that the magnitude of the measured residual
stresses can serve as an indirect assessment criterion. The
machining processes results in a finer-grained microstructure
with positive properties with regards to deformation and fracture.

The effect of an enhanced induced residual stress state by deep
rolling of cylindrical roller bearings (CRB) was investigated by
Neubauer (2016). The deep rolling process can be enhanced in
the depth of the achieved residual stresses by using the effect of
heat. In this case the heat from the turning process can be used
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if the rolling ball is placed directly behind the turning tool (Pape
et al., 2017).

METHODOLOGY

The aim of this study is to provide guidelines for optimized
manufacturing processes for so called “Tailored Forming”
machine elements such as multi-material shafts with integrated
raceways for CRBs, as used in Coors et al. (2018). Thus, the
here presented results based on a former project on the influence
of production processes on the fatigue performance of machine
elements are elaborated and transferred. The scheme of a Tailored
Forming shaft is shown in Figure 1. In this case, a novel process
chain for the production of load-adaptedmachine elements using
steel-steel multi-material systems has been developed. A bearing
steel with a high resistance to wear and fatigue like 100Cr6
(material number: 1.3505/SAE 52100) or better, is applied by
plasma powder deposition welding on low-cost steel shafts, c.f.
(Golovin et al., 2019). This allows for the local deposition of high
strength steel, which serves as the raceway for a rolling element
bearing and covers the fatigue life-determining material volume
regarding rolling contact fatigue, c.f. (Behrens et al., 2019). The
base material allows for basic requirements regarding structural
load-bearing capacity, thus serving as a support structure and
for the mechanical connection to other components. This hybrid
workpiece is then formed by cross wedge rolling to achieve a
fine grained microstructure, c.f. (Kruse et al., 2019). The finishing
process is carried out by local induction hardening and hard-
turning, and will be extended by deep rolling, c.f. (Denkena et al.,
2019). In order to optimize the finishing process, the production
steps and their effect on the bearing service life will be examined
more closely.

TEST SPECIMEN PREPARATION AND
TEST EQUIPMENT

For the investigations, CRB type NU206 were used as exemplary
object of investigation for fatigue life effects of residual
compressive stresses regarding RCF. Bearing inner rings were
machined at the Institute of Production Engineering and
Machine Tools, Leibniz University Hannover, Germany as shown

in Denkena et al. (2016a). The bearings are made of 100Cr6
steel, and feature a hardness of 62 HRC. For the hard-turning
process, carbide inserts with Al2O3 + Ti(C,N) coating were
chosen. A hydrostatic rolling tool was used for the deep rolling
process. In this case the bearings were prepared in a first step
by hard-turning and subsequently the bearings were deep rolled.
The combination of hard turning and deep rolling leads to an
improved surface quality (Maiß et al., 2017). Due to the high
hardness of the bearing material, the surface roughness from
the turning process is not completely eliminated by the deep
rolling process. Both processes influence each other and must be
coordinated. In the deep rolling process, the roughness peaks are
plastically deformed. This reduces the maximum profile height
of the roughness, which in turn is advantageous for surfaces
subject to tribological load. For the process, rolling pressure,
ball diameter, and rolling feed are taken into account. The main
process control variable is the degree of coverage, i.e., partial
rolling over the same material area several times.

Additionally, a combination of the turning and deep rolling
processes was developed, as shown by Denkena et al. (2016b) and
Maiß et al. (2016). In this case, a deep rolling tool is combined
with a cutting insert in one tool, merging the aforementioned
sequential steps in one to increase efficiency (Maiß et al., 2016).
The process was compared to hard turning and subsequent
deep rolling by Denkena et al. illustrating the feasibility of the
approach (Denkena et al., 2016b). The tool additionally allows a
more precisely alignment of the deep rolling ball on the surface
toward the cutting insert. The so called turn-rolling concept for
machining of the inner rings is shown in Figure 2. The ball
diameters (dk = 3.175 or 6.35mm) and the insert corner radius
(rβ = 1.6mm) have been adjusted to achieve the positioning
of the deep rolling ball in or on the turning grooves in the
feed direction. The pressure on the rolling ball (rolling pressure
pw) is supplied by oil. The rolling tool allows the induction
of subsurface residual stresses. In combination with the heat
generated by the cutting insert, the depth of the residual stresses
can be increased.

To study the influence of the production processes on fatigue
life, bearing inner rings of type NU206 were manufactured with
the aforementioned turn-rolling process. These were mounted
in a test rig for rolling bearings in four-bearing configuration
and operated until failure, see Figure 3. The load is applied

FIGURE 1 | Tailored Forming shaft.
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FIGURE 2 | Hybrid process tool for turn-rolling.

via disk springs, which act on a hollow shaft onto the both
inner bearings. The symmetrical arranged outer bearings transfer
the load toward the housing. The applied load is measured
with a load cell during the tests. The radial load was chosen
with C/P = 4, which is equivalent to a Hertzian pressure of
pm = 2,500 MPa. The bearings are directly supplied with oil. The
oil is tempered by a process thermostat to achieve permanently
constant lubrication conditions. The tests were carried out under
fully flooded lubrication conditions at 60◦C. Synthetic oil of the
viscosity ν40 = 68 mm2/s was used. The bearing ran with a
rotational speed of n= 4,050min−1. The lubrication parameter is
calculated as λ = 3. Piezoelectric vibration transducers measure
the vibrations and structure-borne sound in the load direction.
By means of a self-developed condition monitoring system, an
envelope curve analysis is carried out during the runtime of the
experiment. If a fatigue damage in the rolling bearing develops to
the point of surface chipping, the evaluation of the shock pulse
repetition frequencies in the envelope curve spectrum allows
conclusions to be drawn about bearing damage that has occurred.
The test is aborted by a previously defined switch-off criterion of
exceeding the steady state signal by 150%.

The bearings were investigated regarding the subsurface
residual stress state. Doing so, X-ray diffraction measurements
were performed at the Institute of Production Engineering and
Machine Tools, Leibniz University Hannover, Germany. A two
circle Bragg-Brentano-Diffractometer System (Type GE XRD
3003TT and Seifert XRD 3000P) with CrKa radiation was used
for the measurement. For the depth profiling, the material on the
surfaces was removed by electrolytical polishing.

RESULTING RESIDUAL STRESS FOR
DIFFERENT FINISHING PROCESSES

Part of the current investigation is focused on how favorable
boundary zone properties can be adjusted with respect to
the residual stress state. For this purpose, the methods
hard-turning, hard-turning with subsequent deep rolling, and
turn-rolling were in the scope. To quantify changes of the
boundary zone properties as a function of the test duration,

FIGURE 3 | Scheme of four bearing test rig head.

the bearings were investigated in terms of XRD after defined
running times.

In order to form a reference, standard bearings of the type
NU206 C3 with increased internal clearance were examined. The
raceways of the bearings were honed in the final machining
process; the inner rings have a crowned profile. The maximum
pressure in crowned roller contact between inner ring and
rolling element is pm = 2,500 MPa. In new condition, residual
compressive stresses of about σcircumference = −500 MPa are
present on the surface, which are almost eliminated at a depth
of about z = 20µm as shown in Figure 4A. Within the first
3.9 million revolutions, the rolling bearings investigated show
significant changes in the surface and subsurface properties
during operation, the roughness peaks on the surfaces were

Frontiers in Mechanical Engineering | www.frontiersin.org 4 July 2020 | Volume 6 | Article 56374

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Pape et al. Fatigue Life of Rolling Bearings

FIGURE 4 | Comparison of residual stress depth profiles at different running times depending on the respective production strategy for NU206 inner rings and a

bearing load of C/P = 4. (A) Reference from conventional large series production, (B) Hard turning, (C) Hard turning with subsequent deep rolling, (D) Combined

turn-rolling.

plastically deformed and residual stresses were built up in the
depth. Figure 4 also depicts the development of the residual
stress state over the bearing test duration. The residual stresses
have developed at the depth of the maximum shear stresses and
then remain constant at this level after 106 to 108 revolutions
(Pape et al., 2017).

For the hard-turned bearings, the process had to be
advanced to achieve bearings of a sufficient low surface
roughness to allow for the bearing tests (Neubauer et al.,
2013). It was shown that a low surface roughness is
required in order to avoid surface-induced early bearing
failures. With bearings manufactured with a sufficiently
low roughness, results comparable to standard bearings
could be achieved. It could be shown that in the running-
in period the roughness has been reduced and residual
stresses have increased. The changes of the residual stress

over test duration are shown in Figure 4B. Due to hard
turning process, the surfaces of the bearing inner rings
do not have a crowned surface, so that a lower maximum
Hertzian pressure of pmax = 2,300 MPa is present. As a result,
slightly lower residual stresses were induced in the bearings
(Denkena et al., 2016b; Pape et al., 2017).

In comparison, hard-turned and subsequent deep rolled
bearing rings were examined; the residual stress depth curves
after production and after varied running times were compared
(Figure 4C). The manufacturing process induced a higher
residual stress state than a running in phase would have.
For the first 29 million revolutions, the residual stresses
up to a depth of z = 120µm are comparable to those
directly after deep rolling. At greater depths, there is a slight
increase in residual stresses. After 378 million revolutions,
a reduction of the residual stresses can be observed in the
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near subsurface area (Denkena et al., 2016b; Pape et al.,
2017).

The development of the residual stresses for the turn-rolled
bearings are presented in Figure 4D. After manufacturing the
residual stress state is shifted to a higher depth and, compared
to the deep rolled bearings, the magnitude of the residual stresses
could be increased. It can be seen that, within the first 18 million
and 125 million revolutions, the residual stresses remain stable.
After 328 million revolutions, a reduction of the residual stresses
can be observed in the near-surface area.

BEARING FATIGUE LIFE REGARDING
MODIFIED RESIDUAL STRESS STATES

The bearings underwent endurance tests. For the evaluation the
slightly different contact pressure due to the hard-turning process
has to be regarded. A bearing fatigue life of L10 = 274 h and
a Weibull slope of 0.6 could be determined for the standard
bearings. In this case the bearing inner rings feature a crowned
profile and thus higher Hertzian pressure in the contact between
inner ring and rollers. In case of the hard-turned bearings a
lifetime of L10 = 771 h was determined. The hard-turned and
subsequently deep rolled bearings exhibit a bearing fatigue life
L10 = 1,924 h. Due to the deep rolling process, the service
life could be increased by a factor of 2.5 (Neubauer, 2016).
This increase can be explained by the induced residual stresses,
which reach their maximum approximately at the depth of the
highest load induced stresses. The turn-rolled bearing feature a
L10 = 471 hwhich is even below the fatigue life of the hard-turned
bearings. Although in a first view, the pre-induced residual stress
state should allow an increased bearing fatigue life, so the process
was not beneficial. The Weibull distribution at a load of C/P = 4
are shown for the hard-turned, deep rolled, and turn-rolled
bearings in Figure 5.

The results of the bearing fatigue tests show that the bearings
can be significantly influenced by changes of the production
step properties. The test results of the hard-turned bearings
prove that this alternative machining process to the standard
honing process allows the achievement of comparable fatigue
lives. However, it should be noted that the hard-turned bearing
rings have a different bearing clearance and profile than the
reference bearings. A direct comparison can be done to the deep-
rolled bearings as well as the turn-rolled bearings due to the
comparable turning process with the same bearing clearance and
the same profile. The steel rods of the hard-turned, deep-rolled,
and turn-rolled bearings, in contrast to the reference bearing
rings, come from the same material batch.

To obtain influences on the fatigue of the surface of the
bearings, the development of the direction of the residual stresses
before and after testing was inspected as shown in Figure 6. In
case of the hard-turned bearing after production, only the first
10µm experience a measurable residual stress condition. Due to
RCF loading, after 18 million revolutions a residual stress state is
induced to the material. For the first 25µm, the circumferential
and axial residual stress state differs, for higher depths both values
deviate slightly. In comparison, the stress state for a deep rolled

FIGURE 5 | Weibull plot for inner ring failure of CRB NU206 in dependence of

the manufacturing strategy.

bearing in circumferential and axial direction remained equal
even after 290 million revolutions. Even for very long running
times (595 million revolutions) the circumferential and axial
residual stress state remained equal.

For the turn-rolled bearing, the circumferential and the
axial residual stress states before test are nearly equal. For a
bearing inner ring removed at an early stage of 18 million
revolutions, the circumferential and axial residual stress states
differ significantly. Also the induced residual stress state in axial
direction is increased up to magnitudes of more than −1,200
MPa. The distribution and difference between circumferential
and axial residual stresses could also be proven for longer
bearing running times. It could be shown that the material
of the turn-rolled bearing inner ring exhibits anisotropic
behavior regarding the orientation of the residual stress state.
It is assumed that the heat influence causes an alignment of
the surface structure which compensates the positive effect
of the rotary rolling process. Additional a cross section
for the turn rolled bearing was investigated (Figure 7). The
cross section of a turn rolled bearing inner ring before test
shows martensitic texture (Figure 7A). After test (125 million
revolutions) the textures features darker spots due to carbon
redistribution (Figure 7B).

FATIGUE LIFE CALCULATION REGARDING
RESIDUAL STRESSES

To consider the influence of residual stresses on the fatigue
life of bearings, a finite element model of a bearing inner
ring segment was prepared and combined with a calculation
routine. The external bearing load is added to the bearing
ring as three-dimensional Hertzian pressure. The profile of
the bearing inner ring is measured and taken into account in the
modeling. It allows the three-dimensional stress state under the
raceway surface to be determined. In doing so, the external loads
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FIGURE 6 | Measured residual stresses in circumferential and axial directions for various manufacturing strategies after different phases, (A) hard turned bearing in

new state, (B) hard turned bearing after test, (C) deep rolled bearing in new state, (D) deep rolled bearing after test, (E) turn rolled bearing in new state, (F) turn-rolled

bearing after test.

are superimposed with an additional residual stress state. The
procedure is described by Neubauer (2016). The determines the
von Mises equivalent stresses, the orthogonal shear stresses, and
the hydrostatic stresses as a result. The resulting stresses are used
as input to the lifetime model based on Ioannides and Harris
(1985). This approach regards a stress fatigue limit as well as

a fatigue stress criterion. The probability of survival S can be
obtained by the following equation (Ioannides et al., 1999):

ln

(

1

S

)

≈ Ne

∫

V

(τi − τu)
c

z′h
dV
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FIGURE 7 | Cross section of turn-rolled inner ring, (A) before test, (B) after 125·106 revolutions.

The concept considers the magnitude and depth of the load
induced stresses as well as the stressed volume V. In the formula
S is the probability of survival: N stands for the number of
load cycles, and z’ is the stress-weighted depth from the surface.
The exponents e, c, and h can be obtained from the literature
(Ioannides et al., 1999): e = 9/8 (for line contact), c = 1/3
(exponents of Lundberg and Palmgren Lundberg and Palmgren,
1947 and h = 7/3. Tu represents the stress fatigue limit of
the raceway material. For the stress related fatigue criterion,
Ti, the Dang Van criterion Dang Van et al., 1989 is inserted:
τi = τOmax − khyd · p′hyd.This can be computed with the

max. shear stress τOmax, khyd as a weighting factor for the
hydrostatic stress p′hyd, which includes compressive stresses. This

model was evaluated with tests and allows the calculation of the
bearing fatigue life with consideration of the residual stresses
(Denkena et al., 2016b; Pape et al., 2018). The calculated bearing
fatigue life L10,mod are nearly equal for the deep-rolled and turn-
rolled bearing rings or the same rolling tool (dk = 6.35mm).
In both cases similar residual stress states are induced below
the surface of the bearing inner ring. As in the Dang Van
criterion, the orthogonal shear stresses are corrected by the
residual stress state and, in both cases, an increase in the bearing
fatigue life can be expected. The calculation does not regard any
material anisotropy of the subsurface zone due to the turn-rolling
process. Due to the modified process of turn-rolling involving
a subsurface heat profile, it can be expected that the subsurface
features anisotropic material behavior which should be regarded
in future investigations.

CONCLUSION

Pre inducing a subsurface residual stress state in rolling bearings
allows achieving an increased bearing fatigue life. This could be
shown by experimental validation and in terms of a calculation
approach based on Ioannides and Harris regarding the Dang Van
fatigue criterion. By hard-turning and subsequent deep rolling
a beneficial residual stress state in the depth of the highest load

induced stresses was achieved. The residual stress state remains
constant for very long bearing running times and the bearing
fatigue life could be extended.

Despite this, a combined tool with the combination of hard-
turning and deep rolling resulted in disadvantageous subsurface
structure and slightly reduced bearing fatigue life compared
to hard-turned bearings. It can be concluded that, due to
the anisotropic heating during turn-rolling, the surface fine
structure features anisotropic material behavior, resulting in
an increased modification of the residual stresses. On the
one hand, the residual stress state with a value higher than
−1,200 MPa results in surface degradation. On the other hand,
the differences in the residual stress direction can result in
undesirable stress superposition in case of cyclic over rolling.
There is demand to investigate this modification by ongoing
studies and investigations on grain size.
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The mechanical aspects of deformation-induced surface roughening inherent in

microstructural inhomogeneity are studied numerically using single inclusion models.

Three-dimensional finite-element calculations of uniaxial tension are performed for a

set of single inclusion models where a cubic-shaped inclusion is embedded into a

homogeneous matrix. The inclusion-to-surface distance, tilt angle about the axis of

tension, and the ratio between the matrix and inclusion elastic-plastic properties are

varied in different combinations to study the effects which these parameters have on

the development of out-of-plane surface displacements under uniaxial tension. It has

been shown that all stress and strain tensor components in the vicinity of inclusions take

on non-zero values, including those directed across the load axis. Thus, the free surface

becomes rough under the action of internal forces originated from the inhomogeneous

stress-strain fields. Some illustrative examples of surface roughening under uniaxial

tension are shown for multiple ellipsoidal inclusions periodically arranged in a subsurface

layer of an elastic-plastic material.

Keywords: deformation-induced surface roughening, stress-strain analysis, numerical simulation, microstructure,

uniaxial tension

INTRODUCTION

Deformation-induced surface roughening is a common feature for many materials (Raabe et al.,
2003; Stoudt et al., 2011; Yoshida, 2014; Shi et al., 2017; Ma et al., 2019a,b). Being flat in
the undeformed state, the material free surface roughens under deformation in the absence of
external forces applied across its plane. Generally, roughening develops throughout all length scales
from micro to macro (Anongba et al., 1993; Raabe et al., 2003) with roughness characteristics
depending onmany factors (crystal lattice, grain size and shape, texture, interface geometry, loading
conditions, mechanical properties, etc.) (Raabe et al., 2003; Stoudt et al., 2011; Yoshida, 2014; Shi
et al., 2017; Ma et al., 2019a,b; Solhjoo et al., 2020).

For the most part, deformation-induced roughening is thought to be undesirable feature
impairing cosmetic and functionalmaterial properties, such as reflectivity, lubricant transport, wear
resistance, yield strength and the like (Raabe et al., 2003; Stoudt et al., 2011; Yoshida, 2014; Shi et al.,
2017; Ma et al., 2019a,b; Cinat et al., 2020; Joe et al., 2020; Ozaki et al., 2020).
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On the other hand, the roughness pattern can be used for
non-destructive testing of the material stress-strain state. In our
recent studies (Romanova et al., 2017a, 2019, 2020), we gave a
special consideration to themesoscale processes where roughness
patterns were formed by grain groups involved in cooperative
out-of-plane surface displacements. Experimental and numerical
results obtained for a titanium alloy (Romanova et al., 2017a,
2019, 2020) suggested us that it is the mesoscale roughness which
might be used as an early precursor of macroscale plastic strain
localization and fracture.

In tribological applications, surface roughening acquires a
special significance. Being one of essential factors influencing
friction and adhesion [see, e.g., Popov and Li, 2018; Popov
et al. (2017)], this phenomenon can be treated as positive or
negative effect depending on the requirements to operative
conditions. A comprehensive review of the related phenomena is
provided by Popov (2010). Along with other methods to control
adhesion and friction behavior (see, e.g., Popov and Li, 2018),
the idea of controllable deformation-induced surface roughening
sounds attractive.

The development of efficient methods to suppress or
control deformation-induced surface roughening requires a
deep understanding of the roughening mechanisms operative
at different scales. While abundant experimental evidence has
been produced and numerous theoretical studies have been
performed, the problem of identifying the mechanisms involved
and the factors responsible for the surface roughening in
plastically deformed materials is the subject of considerable
controversy and further investigations along these lines are
clearly necessary.

Experimental and numerical studies have shown that it is
structural inhomogeneity which is responsible for free surface
roughening in the absence of external forces. Classical mechanics
considering a homogeneous solid fails to provide an adequate
description of this event. On a flat free surface of a homogeneous
material there are no stresses likely to cause out-of-plane
displacements. It is, therefore, reasonable to describe the related
phenomena in terms of micro- and mesomechanics where
material microstructure is taken into account.

In our earlier studies of micro- and mesoscale deformation-
induced surface roughening in polycrystalline and coated
materials (Romanova et al., 2017a,b, 2019, 2020), three-
dimensional finite difference and finite element calculations
were performed for microstructural models with realistic
morphological features. The calculation results well-agreed with
the experimental evidence and provided new insights into the
roughening mechanisms, but the amount of the information
gained with the use of the complex models was too vast
and nearly as difficult to analyze as the data obtained from
real experiments. Therefore, it is thought to be reasonable to
examine the roughening mechanisms using simplified models
to avoid the effect of the set of parameters used in the
complex models. In this contribution, the mechanical aspects of
deformation-induced surface roughening under uniaxial tension
are studied numerically, using single inclusion models. While a
large number of papers offer analytical and numerical solutions
to a single inclusion mechanical problem (see, e.g., Eshelby, 1959;

Mori and Tanaka, 1973), the discussion of the related free surface
out-of-plane displacements has but a little attention.

In this paper, out-of-plane surface displacements developing
in a homogeneous material under uniaxial tension in the
presence of a cubic-shaped inclusion in a subsurface layer are
studied numerically. The inclusion orientation and position
and the matrix and inclusion mechanical properties are varied
in different combinations to study the effects which these
parameters have on the surface geometrical characteristics.
Some calculation results are presented for deformation-
induced roughening in a multiple inclusion model where
ellipsoidal inclusions are arranged in a subsurface layer in a
regular manner.

SIMULATION OF SURFACE ROUGHENING
IN SINGLE INCLUSION MODELS

Geometry, Constitutive Description, and
Loading Conditions
Three-dimensional calculations for uniaxial tension were
performed for a set of single inclusion models where a cubic-
shaped inclusion was embedded into a homogeneous matrix in
a subsurface layer. The inclusion-to-surface distance, inclusion
tilt angle about the axis of tension, and the ratio between the
matrix and inclusion elastic-plastic properties were varied in
different combinations to investigate their effects on the free
surface out-of-planeness.

Six representative geometrical models with the inclusions
tilted at an angle of 0, 22, and 45 degrees about the axis of tension
are shown in Figure 1. The depth of the inclusion position
below the free surface was varied from 0 (Figures 1A–C) to
a value equal to the inclusion linear size (Figures 1D–F). The
models measuring 400 × 200 × 400µm were approximated by
tetrahedron finite-element meshes.

Calculations were performed for two sets of the matrix and
inclusion properties. In the first case referred to as a hard
inclusion model the matrix was aluminum and inclusion was
ceramic. In the second case referred to as a soft inclusion
model the inclusion was aluminum and the matrix was ceramic.
The elastic-plastic model with a linear strain hardening was
used to describe the constitutive behavior of the aluminum
alloy. Ceramics was calculated in terms of elasticity. A perfect
mechanical contact at the matrix-inclusion interface was kept
throughout the entire loading process. The material constants
applied in the calculations are given in Table 1.

Three-dimensional boundary-value problems in a quasistatic
formulation were solved numerically by the finite element
method using ABAQUS/Standard (Dassault Systèmes Simulia,
2011). The boundary conditions in all calculations were set
to simulate uniaxial tension along the X-axis, as shown
schematically in Figure 1D. For doing so, the displacements
were assigned in the nodal points of the two opposite faces
perpendicular to the X-axis to reach 1% tensile strain. This degree
of strain is reasonable to study the mechanical factors responsible
for the roughness formation. The other two lateral faces and
the top surface, which was the main object of our interest, were
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FIGURE 1 | Geometrical models of cubic-shaped single inclusions tilted at an angle of 0 (A,D), 22 (B,E), and 45 degrees (C,F) about the load axis and positioned at

different depth d below the surface.

TABLE 1 | Material constants used in the calculations.

Material Young

module

[GPa]

Poisson’s

ratio

Yield

strength

[MPa]

Strain

hardening

module [MPa]

Aluminum 70 0.25 100 50

Ceramics 400 0.2 – –

free of external forces, and the bottom surface was taken to be a
symmetry plane about the Y-direction.

Stress and Strain Fields
In order to identify the mechanisms of deformation-induced
surface roughening in single inclusion models, let us analyze the
relationship between the processes operative on the free surface
and in the bulk of the material. For the sake of illustration,
calculation results are presented for six models where inclusions
are positioned near the surface (Figures 1A–C) and at a distance
below the surface (Figures 1D–F), with the general conclusion
being supported by the whole set of numerical data including
intermediate inclusion positions. For each geometrical model, the
mechanical properties were assigned in two combinations: the
elastic inclusion - elastic-plastic matrix and vice versa.

The stress and equivalent plastic strain fields developing
in the vicinity of hard inclusions embedded in the elastic-
plastic matrices are presented in Figures 2, 3 for the regions
bordered by dashed lines in Figure 1. Similar results for elastic-
plastic inclusions embedded in the elastic matrix are given in
Figures 4, 5.

Inside the hard inclusions, the vonMises stress exhibits strong
inhomogeneity with the highest values developing near the
inclusion boundaries (Figures 2A–C, 3A–C). Correspondingly,
the elastic-plastic matrix demonstrates strain localization near
the matrix-inclusion interfaces (Figures 2G–I, 3G–I). Common
features of plastic strain fields in the vicinity of the inclusions
are the appearance of cross-shaped regions of lower strains (blue-
colored regions) and spherically-shaped regions of higher strains
(red-colored regions) where the strains deviate from the average
strain level (green-colored regions in Figures 2G–I, 3G–I).While
the position of the low and high strain localization regions is
mainly controlled by the loading conditions, the strain values in
the interfacial regions are affected by the inclusion orientations.
The most pronounced stress concentration develops in the
inclusions with faces parallel to the axis of tension (Figures 3A,
4A) which have a higher ability to resist deformation.
Accordingly, extensive regions of low plastic strains are formed
in the matrix near the inclusion faces (Figures 2G–I, 3G–I). At a
short distance from the faces perpendicular to the axis of tension,
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FIGURE 2 | Von Mises stress (A–C), normal stress σyy (D–F), and equivalent plastic strain fields (G–I) in the vicinity of a hard inclusion positioned in an elastic-plastic

matrix near the surface (dash-bordered regions in Figures 1A–C).

the regions of high plastic strains are formed to compensate
the low strains in the interfacial regions. Different plastic strain
pattern is formed in the vicinity of the inclusions whose faces
are tilted at an angle of 45 degrees to the load axis where
high plastic strains localize along the whole matrix-inclusion
interface (Figures 2I, 3I).

In the soft inclusion models (Figures 4, 5), the von Mises
stresses developing in the elastically deformed matrix take on the
highest values near the inclusion top and bottom boundaries and
low values in the regions symmetrical about the inclusion vertical
centerlines (Figures 4A–C, 5A–C). In the plastically deformed
inclusions, the strains mainly localize near boundaries; the plastic
strain patterns are controlled by the inclusion orientation relative
to the axis of tension. It is a common tendency for all orientations
that the inclusions positioned close to the surface exhibit higher
strains than those located at a distance (cf. Figures 4G–I, 5G–I).

It is interesting to note that the inclusion whose faces are parallel
to the load axis demonstrates less pronounced localization among
all models when it is positioned at a distance from the surface
(Figure 5G) and the highest strain level when it is exposed on the
surface (Figure 4G).

The calculation results exemplify the fact that it is the
material inhomogeneity which is responsible for the surface
out-of-plane displacements. From the mechanical viewpoint,
in a homogeneous material subjected to uniaxial tension, all
components of the stress and strain tensors are equal zero except
for those associated with the load direction. In this case, the
free surface undergoes uniform deformation along the loading
axis and remains flat throughout the entire loading process. The
material inhomogeneity, however, gives rise to a complex stress-
strain state with all stress and strain tensor components being
non-zero in the near-interface regions.
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FIGURE 3 | Von Mises stress (A–C), σyy (D–F), and equivalent plastic strain fields (G–I) in the vicinity of a hard inclusion embedded in an elastic-plastic matrix at a

distance below the surface (dash-bordered regions in Figures 1D–F). Color legends are given in Figure 2.

Out-of-Plane Surface Displacements
From the viewpoint of surface roughening, particular attention
should be paid to the stress tensor components associated with
the direction normal to the free surface (hereinafter referred
to as normal stresses). The normal stress fields σyy are shown
in Figures 2D–F, 3D–F for the hard inclusion models and in
Figures 4D–F, 5D–F for the soft inclusion models. Again, these
stresses in the case of a homogeneous isotropic material must be
zero due to the absence of external forces directed normal to the
surface. Due to the presence of inclusions, the normal stresses
take on non-zero values near the matrix-inclusion interfaces with
the positive and negative stress regions bordering each other.
The negative normal stresses develop inside the hard inclusions
and in the matrix above and below the inclusion boundaries
to resist compression across the load direction (Figures 3D–F).
As dictated by the stress equilibrium condition, the regions of
positive normal stresses are formed in the matrix symmetrically
about the inclusion vertical centerline. The positive and negative
stresses compensate each other so that the average normal stress

values are zero. A similar conclusion is held for the soft inclusion
models with the positive and negative normal stress regions
reversing their positions (Figures 4D–F, 5D–F). The stresses
σyy are associated with the forces directed normal to the free
surface. Acting from the inside, these forces give rise to the
out-of-plane surface displacements in the form of the humps
above the hard inclusion (Figures 6A–C) and dimples above the
soft inclusion (Figures 6D–F). These conclusions are supported
experimentally. For instance, Solhjoo et al. (2020) have reported
formation of surface humps in a stainless steel under uniaxial
tension due to the presence of hard particles in a subsurface layer.

In correspondence with the stress and strain patterns, the
surface undulations are affected by the inclusion geometry,
position below the surface and mechanical properties of the
matrix and inclusion. Let us evaluate the effects which these
parameters have on the surface displacement fields in the models
with hard and soft inclusions (Figure 6). In both cases, the tilt
angle of inclusions positioned below the surface at a distance
equal or longer than the inclusion linear size has no significant
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FIGURE 4 | Von Mises stress (A–C), normal stress σyy (D–F), and equivalent plastic strain fields (G–I) in the vicinity of a soft inclusion positioned in an elastic matrix

near the surface (dash-bordered regions in Figures 1A–C).

impact on the shape and height of the surface humps and valleys.
Contrastingly, calculation results for the inclusions located close
to the free surface reveal a profound effect of the inclusion
orientation on the surface roughness characteristics. The hard
and soft inclusions with edges parallel to the free surface give rise
to the formation of rectangular-shaped humps (Figure 6A) and
dimples (Figure 6D), respectively. When the inclusions are tilted
at an angle of 22 degrees about the loading axis, the hump and
dimple shapes become asymmetric (Figures 6B,E). The sharpest
humps and dimples are caused by the inclusions tilted at an angle
of 45 degrees about the loading axis (Figures 6C,F).

Figure 7 demonstrates a combined effect of the inclusion
orientation and inclusion-to-surface distance on the surface
humps and dimples. In these plots, the height, depth, and
inclusion-to-surface distance values are normalized to their

largest values. A common tendency for all models is that the
heights and depths of the humps and dimples non-linearly
increase with decreasing the inclusion-to-surface distance, which
is judged from the curves plotted in Figure 7. It is interesting
to note that the curves for hard inclusions demonstrate a
specific behavior within a narrow subsurface region (Figure 7A).
Particularly, an inverse dependence of the hump height on the
inclusion-to-surface distance is observed for the inclusions with
faces parallel to or tilted at an angle of 22 degrees about the load
axis and a horizontal portion for that oriented at 45 degrees.
In order to explain the mechanical cause of this non-linear
behavior, let us analyze the normal stress fields in the vicinity
of the inclusion top parts (Figures 3D–F). The non-zero normal
stress regions formed in the matrix above the inclusion top
strongly depend on the inclusion orientations. The larger the
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FIGURE 5 | Von Mises stress (A–C), normal stress σyy (D–F), and equivalent plastic strain fields (G–I) in the vicinity of a soft inclusion embedded in an elastic matrix at

a distance below the surface (dash-bordered regions in Figures 1D–F). Color legends are given in Figure 4.

inclusion tilt angle about the loading axis, the wider the matrix
region exhibiting negative normal stresses. The smallest region
of compressive normal stresses is formed near the top of the
inclusion whose faces are tilted at an angle of 45 degrees to
the load axis (Figure 3F). As the inclusion moves close to the
surface, the out-of-plane surface displacements become higher
until the region of non-zero normal stresses reaches the surface.
At a shorter distance, the stress concentration area is partially
terminated by the surface and the humps are getting smaller.

DEFORMATION-INDUCED SURFACE
ROUGHENING IN THE PRESENCE OF
MULTIPLE INCLUSIONS IN A
SUBSURFACE LAYER

While the stresses acting across the free surface are much
lower than those associated with the load direction and,
correspondingly, the out-of-plane surface displacements are

much smaller than the displacements in the direction of tension,
the deformation-induced surface roughness is thought to be
a useful characteristic for evaluating the material stress-strain
state. In contrast to calculating the stress and strain fields from
the in-plane surface displacements or using methods of indirect
estimations (e.g., measurements of dislocation density, X-ray
diffraction, etc.), the out-of-plane surface displacements are a
measurable quantity which can be directly compared with the
reference (undeformed) surface configuration.

As an example, calculations for deformation-induced surface
roughening in the presence of multiple hard inclusions in a
subsurface layer are presented in this section. The geometrical
model measuring 2 × 1 × 2mm with ellipsoidal inclusions
in a subsurface layer is shown in Figure 8A. The major and
minor axes of the inclusions are 0.26 and 0.13mm, respectively.
The inclusions are arranged in a periodical manner at a depth
of 0.11mm below the surface. The shortest distance between
inclusions is 0.37mm, which reduces their interinfluence to a
minimum. Thus, the roughness is not affected by the inclusion
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FIGURE 6 | Normal surface displacements in the hard (A–C) and soft inclusion models (D–F) shown in Figures 1A–C at 1% tensile strain.

FIGURE 7 | Normalized heights (A) and depths (B) of the surface humps and dimples vs. inclusion orientations and positions d below the surface.

interaction but controlled by their individual contributions. The
model is approximated by a regular 200 × 100 × 200 mesh
with hexahedral elements. Thematrix and inclusions are assigned
aluminum and ceramic properties, respectively; the material
constants are given in Table 1. The boundary conditions are set
in a similar way as for the single inclusion models to simulate
uniaxial tension along the X-axis up to a strain of 20% to examine
the roughness evolution in a wide range of plastic strains.

Similar to the case of single inclusions, all components
of the stress and strain tensors are inhomogeneous, with the
highest non-zero values taking place in the interfacial regions.
The surface roughness develops in the form of periodically

arranged extruded and intruded regions (Figure 9A) and,
correspondingly, plastic strain localizes in periodical bands
going across the surface perpendicular to the axis of tension
(Figure 9B).

Let us estimate the roughness evolution in terms of a
dimensionless roughness parameter proposed in Romanova et al.
(2017a, 2019) to quantify surface roughening in plastically
deformedmaterials. By analogy with the strain quantification, the
dimensionless roughness Rd is calculated as

Rd =
Lr

Le
− 1, (1)
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FIGURE 8 | Model with ellipsoidal inclusions (A) and the strain-dependent roughness curve (B).

FIGURE 9 | Roughness pattern (A) and plastic strain field (B) in the model shown in Figure 8A at 20% tensile strain.

where Lr is the rough profile length and Le is the profile
evaluation length. Expressed in this way, the roughness
parameter is clearly interpreted: the larger is the Rd value, the
rougher is the surface and themore inhomogeneous are the stress
and strain fields developing in the material. Note again, in an
idealized case of a homogeneous isotropic material subjected to
uniaxial tension, the material free surface remains flat as long
as no external forces act perpendicular to the tensile axis. In
real materials, the displacement fields, inhomogeneous due to
the present microstructure, give rise to the formation of rough
patterns on the material free surface. Thus, the dimensionless
parameter Rd shows to which extent the material is deformed
in comparison with an ideal homogeneous material and can be
treated as a relative roughness characteristic.

The dimensionless roughness parameter was calculated for
a set of surface profiles measured along the model centerline
in the range of tensile strains up to 20%. The strain-dependent
roughness curve plotted in Figure 8B demonstrates non-linear
growth in the course of plastic deformation, which agrees
with previous experimental and numerical results obtained
in (Romanova et al., 2017a, 2019, 2020). The dimensionless
roughness parameter estimated for roughness profiles in
plastically-deformed titanium alloy appeared to be rather

sensitive to the local plastic straining. What is more important,
the Rd value grew non-linearly with the degree of plastic
deformation in contrast to the commonly used roughness
characteristics linearly dependent on the strain value. Thus, the
Rd estimations would be promising tool for non-destructive
material testing.

CONCLUSION

The mechanical cause of deformation-induced surface
roughening under uniaxial tension has been analyzed
numerically using single inclusion models. The effects of the
inclusion orientation, position below the surface, and the matrix
and inclusion elastic-plastic properties on the out-of-plane
surface displacements were studied under uniaxial tension.

It has been shown that all stress and strain tensor components
take on non-zero values in the vicinity of inclusions, including
those directed across the load axis. Under the action of
internal forces originated from the inhomogeneous stress-
strain fields, the free surface becomes rough with humps and
dimples formed above the hard and soft inclusions, respectively.
The height of the surface undulations is affected by the
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inclusion-to-surface distance while their shape (extrusion or
intrusion) is controlled by the inclusion-to-matrix mechanical
property ratio.

The roughness evolution in a multiple inclusion model was
analyzed in terms of relative roughness estimations. It was found
that the dimensionless roughness parameter calculated for the
multiple inclusion model non-linearly increases in the course
of plastic deformation, which agrees with earlier estimations for
polycrystalline and coated materials.
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