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Editorial on the Research Topic

Towards a Local Realist View of the Quantum Phenomenon

Quantum mechanics (QM) stands apart from other physical theories inasmuch as its elegant and
powerful mathematical formalism conceals the lack of a unique, complete, and coherent conceptual
frame in which to accommodate the physical elements that should be put into correspondence with
the mathematical objects. Excessive mathematization, blurred physics, and the abandonment of
principles on which the remainder of physics rests—such as realism, determinism, locality,
objectivity or descriptiveness—have been a discomforting signature in the legacy of QM as we
know it.

An aim of this Research Topic was to promote discussions of the physics of QM as seen from
different perspectives. Authors were invited to take a closer look beyond the formal apparatus, and
point towards new paths for a more physical and realist reframing of QM. The 15 articles included in
this issue represent different endeavors to identify underlying physical laws and causal connections,
propose a possible “subquantum” theoretical description, revise the rules of correspondence between
theory and observation, or offer logical arguments viz. concrete models that question the
impossibility theorems.

The introductory statement by Gerard ’t Hooft (Hooft) carries the torch for many an article in this
issue: “Without wasting time and effort on philosophical justifications and implications, we write
down the conditions for the Hamiltonian of a quantum system for rendering it mathematically
equivalent to a deterministic system.” The natural flow and simplicity of ’t Hooft’s article are
signatures of great mastership that raises the question why we have considered in the past all these
philosophical justifications. The answer is, of course, that they trace their origin to the writings of
Heisenberg, Bohr, and Einstein. There exists in addition a massive literature on Bell-type inequalities
that claims to go beyond philosophy. Bell’s theorem has been circumvented by extreme
interpretations of experiments with atomic and subatomic entities. One extreme is the
increasingly fashionable inference of superluminal “influences” (not information transfer), and
the other extreme is the super-determinism as discussed in more palatable forms in the article of
Hossenfelder and Palmer (Hossenfelder and Palmer).

Bell’s theorem has come to represent a major stumbling block in the search of local realist and
deterministic descriptions of our world. Several contributions to this issue, however, demonstrate
that it does not constitute the unmovable obstacle that it was thought to be, because it is not only
difficult to relate to any actual experiments but also contains questionable physical assumptions.
Oaknin (Oaknin) demonstrates that the derivation of Bell-type inequalities suffers from deep
physical problems related to the gauging of Bell’s variables, which requires an absolute frame of
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reference.He shows further that the constraint that Bell-type inequalities
supposedly force on the statistics of experimental outcomes may be
removed by considering the involvement of gauge symmetries and
geometric phases. De Raedt et al. (De Raedt et al.) construct a
subquantum model of the Einstein–Podolsky–Rosen–Bohm
experiment. Their work uses a digital computer and a discrete-event
simulation as a metaphor for idealized, realizable laboratory
experiments. All of their variables, including those representing
macroscopic events, have definite values and change in time
according to an Einstein-local, causal process. Willsch et al. (Willsch
et al.) demonstrate further that their Einstein-local simulationmodels in
which particles follow well-defined trajectories, reproduce the results of
quantum walk experiments.

A recurrent idea in the present volume is that realism need not
be abandoned if one gets rid of concepts such as non-disturbing
measurements and non-contextuality. In particular, the evidence
against local non-contextual hidden variables offered by many
spin–polarization correlation experiments may coexist with a
local, causal, realist description of Nature. The possibility of
describing physical phenomena with these cherished principles
has not been ruled out by some clicks on detectors. Kupczynski
(Kupczynski) presents an overview of arguments in support of the
idea that the violation of Bell-type inequalities does not
necessarily imply the existence of spooky actions at a distance,
nor a compulsory renounce to an objective physical reality,
provided contextual setting-dependent parameters are included
in the description. Such violation simply shows us that “entangled
photon pairs cannot be described as pairs of socks nor as pairs of
fair dice.” Jung (Jung) demonstrates that the strong polarization
correlation of entangled photon pairs produced in parametric
down conversion can be calculated from wave-like
considerations, by assuming a fixed relative phase of the two
associated wave packets at the source. As a consequence, the
distance between detectors in the Bell-inequality test of local
realism becomes irrelevant, and the consideration of faster-than-
light communication has no sense at all.

Also Sulis (Sulis) insists in a contextual reality, and proposes an
ontological model that incorporates a minimalistic definition of
generated reality, possesses a non-Kolmogorov probability structure,
and is consistent with nonrelativistic QM. In this scenario,
nonrelativistic QM appears as an effective, approximate theory,
and the Hilbert-space formalism—extraordinarily useful for the
practical purpose of performing calculations—fails in providing
an ontological model of QM, ultimately leading to many of its
conundrums. The problem lies not with reality but rather with the
mathematical tools employed to represent it. All of these facts
reaffirm Gerard ’t Hooft’s enunciation against wasting time and
efforts on perceived obstacles that lie outside the direct mathematical
physics.

A further specific local realistic interpretation of the entangled
photon pairs is offered by Santos (Santos), who studies the generation
of polarization-entangled photon pairs produced in parametric down
conversion using the Weyl–Wigner formalism in the Heisenberg
picture, amore formal approach of quantum optics than the one used
by the author and coworkers in previous articles. The picture that
emerges resembles classical optics by taking into account the zero-
point radiation field entering the nonlinear crystal as a real stochastic

field, and entanglement corresponds to a correlation of fluctuations
between a signal and a vacuum field in distant places. A detailed
discussion ismade about the detection process and the relationship of
this approach to local realism. Further, in a study by Casado et al.
(Casado et al.) theWigner representation in the Heisenberg picture is
used for the study of the quintessential experiment on quantum
teleportation, the Innsbruck experiment. The visible presence of the
zero-point field is stressed, and new physical insights are given that
lead to a deeper knowledge of this experiment. Concretely,
entanglement and the collapse postulate are replaced by the
consideration of the quadruple correlation properties of the field
corresponding to the propagation of two couples of independent
photon pairs. The role of the vacuum inputs in Bell-state analysis is
investigated, with its presence reinforcing the idea of the zero-point
amplitudes as “hidden variables.”

Consideration of the effects of the zero-point field on the
dynamics takes us to the realm of stochastic electrodynamics
(SED), which has been developed to provide a concrete local
realistic explanation of the quantum behavior of matter. Cole
(Cole) uses a new technique based on SED, to successfully
calculate probability–density and n-point correlation functions,
both for the complete Planckian field including the zero-point
component, and for an electric dipole oscillator embedded in it.
The H atom, however, turns out to be far more difficult to deal
with. Cole’s elaborate but transparent methodmakes an interesting
contrast to Feynman’s path-integral approach—where also the H
atom appeared to be intractable for more than 3 decades.
Considering the importance of finding a proper treatment of
SED to describe the H atom, Nieuwenhuizen (Nieuwenhuizen)
makes a renewed attempt to avoid self-ionization by studying the
atom’s ground state perturbed by the zero-point field and using
several renormalization schemes that suppress high-frequency
tails, which however do not lead to a satisfactory solution.
While in the approaches of Cole and Nieuwenhuizen the zero-
point field merely perturbs the classical motion, de la Peña et al.
(Peña et al.) argue that its influence is far more profound and leads
to a nonclassical dynamics. The contact made between SED and
stochastic quantum mechanics serves to demonstrate that
Newton’s second law is modified in an essential way by
stochasticity, which is at the core of the transition to the
quantum dynamics. The interplay of diffusion and radiation
reaction allows the system to converge towards a balance
regime, thus offering an explanation for atomic stability.

The wave element, from the outset present in SED, provides a
natural bridge to the work by Durey and Bush (Durey and Bush),
who ably harness insights gained from the hydrodynamic
walking-droplet system to further develop their de Broglie-
inspired model of quantum dynamics, and thus lay the
foundations for deeper study of what they term hydrodynamic
quantum field theory. A complex and detailed analysis, both
theoretical and numerical, serves to show that the pilot wave is a
combination of short, Compton-scale waves that propagate away
from the moving particle, and a de Broglie-scale carrier
wave—just as envisaged by de Broglie and reaffirmed in SED.
Finally, that the wave–particle duality can be discussed in the light
of a causal and objectively realist model of the electron is
demonstrated by Avner and Boillot (Avner and Boillot). Their
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relativistic electrodynamical model of the subatomic particle at
rest involves charged sub-particles following definite trajectories,
and stands in sharp contrast with the Heisenberg (widespread)
belief that only the abstract (mathematical) description of
particles exists. The authors thus direct their attention to
explore the gears of one of the most emblematic quantum
particles, within an approach that supports the principles of
determinism, causality, and objective reality.
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Deterministic Quantum Mechanics:
The Mathematical Equations
Gerard ’t Hooft*

Institute for Theoretical Physics, Utrecht University, Utrecht, Netherlands

Without wasting time and effort on philosophical justifications and implications, we

write down the conditions for the Hamiltonian of a quantum system for rendering it

mathematically equivalent to a deterministic system. These are the equations to be

considered. Special attention is given to the notion of “locality.” Various examples are

worked out, followed by a systematic procedure to generate classical evolution laws and

quantum Hamiltonians that are exactly equivalent. What is new here is that we consider

interactions, keeping them as general as we can. The quantum systems found, form a

dense set if we limit ourselves to sufficiently low energy states. The class is discrete, just

because the set of deterministic models containing a finite number of classical states,

is discrete. In contrast with earlier suspicions, the gravitational force turns out not to be

needed for this; it suffices that the classical system act at a time scale much smaller than

the inverse of the maximum scattering energies considered.

Keywords: determinism, Hamiltonian, cellular automaton, locality, ontology, interaction, quantum

1. INTRODUCTION: ONTOLOGICAL QUANTUM MECHANICS

Discussions of the interpretation of quantum mechanics [1–20] seem to be confusing and endless.
This author prefers to consider the mathematical equations that make the difference. Having
the equations will make the discussion a lot more straightforward. Here, we reduce the theory
of quantum mechanics to a mathematical language describing structures that may well evolve
deterministically. The language itself is equally suitable for any system with classical or quantum
evolution laws1.

Every state a system can be in is represented by a unit vector. We are interested in distinguishing
“ontological states.” These are unit vectors that are mutually orthogonal and have norm one; they
form an orthonormal basis of Hilbert space. We can distinguish finite dimensional Hilbert spaces
and infinite dimensional ones. A system is said to be deterministic if ontological states evolve into
ontological states [21–23].

We use Dirac’s bra-ket notation [1] both for classically evolving systems and for quantum
mechanical ones. A state is indicated as |n〉, where n stands short for some description of this state.
Often, we simply enumerate all available states, choosing n ∈ Z, the set of integers. Alternatively, we
can have states |x〉, where x takes the values of all real numbers, or we can have vectors, |Ex 〉, |En 〉 , . . ..

The first models we consider will seem to be too simplistic to represent all interesting and
relevant quantum systems in general. These basic models must be looked upon as building blocks
for a more complete theory for deterministic quantummechanics2. At the end they will be coupled
by (deterministic) interaction Hamiltonians. What is produced in this paper is a generic machinery

1Systems that are irreversible in time can also be described this way but require adaptations not considered in this paper.
2The words “deterministic” and “ontological,” or “ontic” for short, are almost interchangeable in this paper.
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’t Hooft Deterministic Quantum Mechanics

to be employed in these constructions. We do realize that
further streamlining will make our fundamental observations
more transparent.

Determinism can be recognized by analysing the eigenvalue
spectrum of the Hamiltonian [21]. At first sight, it seems that
only Hamiltonians that are linear in the momenta can represent
ontological systems, but this happens only if one assumes the
system to be strictly continuous. If we assume the time coordinate
to be on a (very dense) lattice, the Hamiltonian eigenvalues are
periodic, i.e., these eigenvalues can be forced to sit on a finite
interval. If temporarily we limit ourselves to a single, isolated,
elementary building block of a more general quantum system,
allowing for only a finite number of states, we may assume it to
be periodic in time. As we shall observe, deterministic periodic
systems can be identified with quantum harmonic oscillators;
these have quite realistic Hamiltonians complete with one stable
ground state. If time is quantized, we find a useful internal SU(2)
symmetry. In that case, there is not only a vacuum state (the state
with lowest energy), but there is also an “antivacuum,” the state
with highest energy. Antivacua may play an important role in
black hole physics [24].

Special attention is needed for the concept of locality. For
instance, in a free quantum particle in one spacial dimension,
with a fairly general expression of the kinetic energy function
T(p), we can define an appropriate ontological operator, its
“beable,” but it is a non-local function of x and p. Such
models cannot directly be applied to physically realistic scenarios;
instead, they are used as intermediate steps toward more
satisfactory procedures, as will be explained.We claim that locally
ontological and deterministic systems can be constructed that
nevertheless feature quantum mechanical properties, including
models as complex as the Standard Model. These deterministic
systems take the form of “cellular automata” [25–28]. Formally,
there is a limit to the accuracy by which this can be done, but if,
as is suspected, the scale at which determinism becomesmanifest,
is the Planck scale, then we shall have an enormous range of
ontological theories that can reproduce all known data quite
accurately. They will all be fully quantummechanical in the usual
[29–31] sense.

This includes the Born interpretation of the absolute squares
of amplitudes as representing probabilities [32]. Here, we are
still free to use various different definitions of what “probability”
might mean; in all cases, the definition will be passed on to the
wave functions being considered. In our case: probability in =
probability out: the probability for the outcome of an experiment
is directly related to the probability for the initial state that was
chosen. The Schrödinger equation just passes on that concept of
probability from initial to final state.

Second quantization will be a natural ingredient, a process
that restores not only local causality, but also positivity of
the Hamiltonian; in principle, it works just as in Dirac’s
formalism for quantized fields, but in our formalism, the
interactions are taken care of in a way that is somewhat
more complicated than in the Standard Model. We find
that second quantization serves a double purpose: it restores
special relativity without generating negative energy states [33–
36], and it also restores locality without sacrificing ontology.

Second quantization in our formalism has been elucidated
in [21].

Our paper is set up as follows. Deterministic models may be
seen as consisting of elementary cells inside which the data just
oscillate in periodic orbits. We first explain such cells in section
3. We explain and exploit the SU(2) symmetry that shows up
and comes out handy, because this symmetry is so well-known
and studied.

The idea that deterministic systems of this kind can be
described as if they were quantum mechanical, is briefly
illustrated in section 4. Hilbert space is an extremely useful
device, but it should not be taken for granted that Hilbert
space is prerequisite in elementary quantum theory. In contrast
however, the notion that energies, momenta, and even space-time
coordinates, are quantized, is very essential, and consequences of
this are immensely important for our understanding of nature.

We then go into the direction of thinking about particles in an
ontological language. This should be possible, but it seems to give
a serious clash with the most elementary concepts of locality. A
single quantum particle of the kind we frequently encounter in
atomic physics, in solids, and in most of the elementary particles,
behaves in a way that does not seem to allow directly for a
deterministic interpretation. We do describe what happens in
sections 5 and 6. A single, isolated particle can be well described
if its kinetic energy is just a linear function of its momentum;
if the kinetic energy is anything more general than that, we do
have an interesting ontological variable, but it is non-local. This
jeopardizes any attempt to add some kind of ontological potential
term for the particle.

Section 7 sets the stage for what comes next, and then comes
the most important part of this paper. A reader who wants to go
directly into the deep should mainly be interested in sections 8
and 9. Here, we join our elementary cells into a construction
where they interact, again allowing only deterministic interaction
laws. We do things that are normally not considered: allow
for evolution laws that directly exchange ontological states.
Surprisingly perhaps, this leads to interaction Hamiltonians that
are as general and as complicated as what we usually only
encounter in genuine quantum systems. We emphasize that this
proves that the distinction between “quantum interactions” and
“classical interactions” is artificial, and was the result of our lack
of phantasy concerning the interactions that are possible, even
if we limit ourselves to what usually is called “deterministic.” As
will be seen explicitly in section 9, what is normally thought of as
being “quantummechanics” can be attributed to the effect of fast,
almost hidden, variables.

A picture emerges of quantum mechanics being an auxiliary
device, it is a scheme allowing us to perform statistical
investigations far beyond the usual procedures in condensed
matter physics and thermodynamics. What is found can be
referred to as a “deterministic local field theory,” which might be
able to dethrone “quantum field theory.”

Our mathematics may hint at what might be the main
fundamental cause of the apparently true “quantum” nature of
our world. The source of the apparent indeterminism in quantum
mechanics appears to be timing. When two systems, just slightly
separated from one another, are allowed to interact, we have to
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realize that both systems contain internal parts that oscillate at
time scales that are very small even according to time standards
used in elementary particle physics. The only way to register
what happens when they interact, is to project away the ultra
fast time components of both systems. This can only be done by
selecting sufficiently low energy eigen states of the Hamiltonian,
which is a procedure that can only be done by introducingHilbert
space. Today, physicists only have access to the very lowest energy
states, and these can only be addressed in quantum mechanical
language. We leave it to the philosophers to expand on such
observations or suspicions.

2. THE STANDARD QUANTUM
MECHANICAL HAMILTONIAN FOR
CONTINUOUS SYSTEMS

Historically, quantummechanics was first studied for continuous
systems, that is, coordinates and momenta are continuously
defined on R

n spaces. The generic Hamiltonian H is then
written as

H = T(Ep )+ V(Ex )+ EA(Ex ) · p (1)

where Ex and Ep are the usual, continuously defined, coordinates
and momenta, obeying

[xi, pj] = iδij . (2)

the third term is actually the simplest. A Hamiltonian having only
this term, describes a completely deterministic system, since the
Hamilton equations then read:

H = EA(Ex ) · Ep d

dt
Ex = ∂H

∂Ep = EA(Ex) , (3)

while the time derivative of Ep is not directly needed. We point
out that, in some elementary sense, all deterministic evolution
laws can be cast in the form (3), so this is actually a very
important case.

In the usual quantum systems, we have as a central unit the
kinetic term T(Ep ). Usually, but not always, it takes the form
T(Ep ) = 1

2
Ep 2. In that case, the “magnetic” term EA · Ep plays a

more secondary role. This case is already considered “essentially
quantum mechanical,” displaying the characteristic interference
patterns. Still, particles that basically move in straight lines might
not be the most interesting physical things, so the third term,
V(Ex), where the function V can be almost anything, would be
needed to cover almost all systems of physical interest. This is the
most difficult case from the present point of view.

In our discussion, we take one important step backwards:
space, time, and often also momentum, will be kept discrete. The
continuum limit can always be considered at some later stage.
The question is, whether we can handle the interesting case of the
general Hamiltonian (1), as the continuum limit of the models
that will be discussed now. These models typically describe only
a finite-dimensional vector space, for the time being.

3. THE PERIODIC MODEL, AND ITS SU(2)
SYMMETRY

Our elementary building block will be a system or device that
updates itself at every time step, of duration δt, and, after a
period T = N δt, it returns to its initial position. The elementary,
ontological states are |k〉ont, where k is an integer, k = 0, . . .N−1.
Note that, at this stage, there is no quantum mechanics in the
usual sense, but we shall use quantum mechanics merely as a
language [21]. The ontological states considered here are closely
related to the concept of “coherent states” that have a long history
going back to Glauber [37].

The evolution operator over one time step, U(δt), is simply
defined by

|k〉ontt+δt = U(δt) |k〉ontt = |k+ 1 mod N〉ontt .

U(δt) =











0 · · · 0 1
1 · · · 0 0
...
. . .

...
0 · · · 1 0











. (4)

The matrix U is easily diagonalized by using the finite Fourier
transformation:

|k〉ont = 1√
N

N−1
∑

n=0

e−2π ink/N |n〉E

|n〉E = 1√
N

N−1
∑

k=0

e2π ink/N |k〉ont (5)

where |n〉E are the energy eigenstates. We have

U(δt)|n〉E = e−2π in/N |n〉E (6)

and we can define the Hamiltonian matrix H by imposing

Uδt = e−iHδt H|n〉E = 2πn
Nδt |n〉E = nω |n〉E ω = 2π

T (7)

(Note that the ground state energy has been tuned to zero here;
we shall also do this when the harmonic oscillator is discussed;
the reader may always consider “corrected” definitions where the
ground state has energy 1

2ω).
With the Fourier transform (5), one can easily determine how

H acts on the ontological states |k〉ont.
Our mathematical machinery becomes more powerful when

we realize that the energy eigenstates may be regarded as the
eigenstates |m〉 of L3 in a three dimensional rotator. Let the total
angular momentum quantum number ℓ be given by

N ≡ 2ℓ+ 1 n = m+ ℓ H = ω(L3 + ℓ) . (8)

Then define the (modified) operators p and x by

L1 ≡ p
√
ℓ L2 ≡ x

√
ℓ [ x, p ] = −iL3/ℓ = i(1−H/ωℓ) (9)

ℓ(ℓ+ 1) = L21 + L22 + L23 → H = ω
1−H/2ωℓ

1
2 (p

2 + x2 − 1) (10)
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and we see that, when ℓ tends to be large (while the energy H
and the fundamental time step δt are kept small), this reduces
to the standard Schrödinger equation for the harmonic oscillator
(the ground state value 1

2ω has been subtracted from this
Hamiltonian). Both x and p take 2ℓ + 1 values, and they span
the entire Hilbert space, but they are not ontological. We identify
the original states |k〉ont [Equation (4)], as our ontological states.

The operators L± = L1 ± iL2 play the role of creation and
annihilation operators: they add or subtract one unit ω to the
energy of a state. However, in the upper half of the spectrum,
L± interchange their positions: the algebra is such that L+ can
no longer add energy above the limitm = +ℓ, so that the energy
spectrum stretches over the finite interval [0, 2ℓω]. There is an
obvious symmetry H ↔ 2ℓω −H. And therefore,

the vacuum state |0〉E has a counterpart, the “antivacuum”

| 2ℓ 〉E, where the energy is maximal.

Not only in second quantization, but also in black hole physics,
such states play an important role. This is an inevitable
consequence of our desire to find a finite dimensional theory for
quantum mechanics.

Both x and p are discrete operators, just like the Hamiltonian:

H = ωn , x = r/
√
ℓ p = s/

√
ℓ, r, s are integers ∈ [−ℓ, ℓ ]

(11)

but, due to the modification (9) in their commutation rule, the
unitary operator linking the eigen states |r〉x and |s〉p is more
complicated than usual. This happens as long as the elementary
time step δt is kept finite. In the limit δt → 0 we recover the usual
harmonic oscillator. The ontological states then run continuously
along a circle. The unitary operator linking the p basis to the x
basis for finite ℓ can be obtained from the matrix elements of the
operator e

1
2 iπL1 in the basis where L3 is diagonal. Going to the

conventional notation of (ℓ,m) states, one can show that

x〈r|s〉p = 〈m|e 1
2 iπL1 |m′〉 where m = r, m′ = s (12)

this is derived by first noting that L1 is diagonal in a basis that
is rotated by 90◦ in angular momentum space, compared to the
basis where L2 is diagonal, and then interchanging L1, L2 and
L3. The matrix elements x〈r|s〉p can be deduced from recursion
relations 3 such as

2r x〈r|s〉p =
√

(ℓ+ 1− s)(ℓ+ s) x〈r|s− 1〉p

+
√

(ℓ+ 1+ s)(ℓ− s) x〈r|s+ 1〉p (13)

in combination with x〈r|s〉p = p〈s|r〉x ∗ and more. The result can
be pictured as in Figure 1.

We can define beables S± as

S±|k〉ont = e∓ 2π ik/N |k〉ont S±|n〉E = |n± 1 mod N〉E (14)

see Equation (5). They are related to L± as follows:

L+ =
√

(n+ 1)(2ℓ− n) S+ L− =
√

n(2ℓ+ 1− n) S−. (15)

3There is some freedom of phase factors in the definition of the states |r〉x and |s〉p.

FIGURE 1 | The matrix (12), for the case ℓ = 53/2. The values of a real

solution for the matrix elements are shown. Black is maximal, gray ≈ 0, white

is minimal. Notice that, these elements quickly converge to zero outside the

circle m2 +m
′ 2 = ℓ 2 (obtained using Mathematica to integrate Equation (13)).

.

We see here that, due to the factors inside the square roots, the
quantum numbers n are now limited both from below (n ≥ 0)
and from above (n ≤ 2ℓ), but these same square roots imply
that the numbers k for the ontological states do not represent
the eigen states of any of the angular momentum operators Li,
they are superimposed to form such eigen states, so that L± aren’t
beables, and neither are L1 and L2, or p and x (Equation 9).

In the limit ℓ → ∞, the second factors in the square
roots (15) become constants, so that, indeed, L± act as creation
operator a† and annihilation operator a. The square root of H
that one may recognize in Equation (15), relating beables with
the more familiar x and p coordinates, will be encountered again
in section 6.

We elaborated on these mathematical rules in this section, just
because angular momenta are so familiar, and also to emphasize
that the finite periodic model (the system with both δt and the
period T finite) can be examined using this well-known algebra.

The limit δt → 0 turns this system into a point moving
continuously along a circle, which in every respect behaves just
like the standard harmonic oscillator, as we shall see in section 7,
but this limit must be taken with some care.

4. ON THE WAVE FUNCTION GENERATED
BY A PERIODIC ONTOLOGICAL SYSTEM

The periodic ontological system is characterized by a classical
kinetic variable defined on a finite interval with periodic
boundary conditions. No generality is lost if we assume this to
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be an angle ϕ defined on the period [ 0, 2π ], implying ϕ(t) =
2πk/N. In the continuum limit, we define the evolution to be
dϕ(t)/dt = ω, with ω fixed.

To understand what the quantum wave function here means,
we have to assume time to be sliced in small and equal time steps
δt = 2π/Nω, whereN is a large integer. In the previous section, it
was found that the energy Emust then lie in an interval of length
ωN. We do have the freedom to define the phase factors of the
energy eigen states, and those of the ontological states |ϕ〉, such
that this interval is exactly [0, ωN]. The importance of this choice
is that an energy eigen state with energy nω evolves as

ψn ∝ e−iωnt ∝
(

e−iϕ(t)
)n

(16)

and writing z ≡ e−iϕ one finds that all energy eigen states are
positive powers of z. Any wave function expanded in these energy
eigen modes is therefore regular for all z that lie inside the unit
circle. To arrive at this insight it was crucial that we start with
a discrete lattice in the time variable, where the time spacings δt
may be chosen arbitrarily small but not zero.

Our motivation for writing this short section was
to demonstrate how the elementary building blocks
for deterministic models generate the basis elements of
complex-valued wave functions in Hilbert space4.

5. MASSLESS PARTICLE IN A BOX

The harmonic oscillator is closely related to a massless relativistic
particle on a lattice (lattice length δx) inside a box with length
R = ℓ δx, with hard walls at the edges:

H = |p| ≡ σ p x = k̃ δx k̃ ∈ [ 0, ℓ ]. k̃ integer. (17)

Here, the ontological variables are k̃, and σ = ±1; they are related
to the variable k in Equation (4), except that we take the particle
to bounce to and fro:

k(k̃, σ ) = ℓ+ σ (k̃− ℓ) k̃ ∈ [ 0, ℓ ] k ∈ [ 0, 2ℓ ]. (18)

This says that 0 ≤ k̃ < ℓ, while the velocity ∂H/∂p flips when k̃
reaches a wall.

We see that now, in the ℓ → ∞ limit, this becomes a model
for the free, relativistic massless particle on an infinitely fine one-
dimensional lattice, with walls at its edges. The velocity is fixed
apart from its sign σ . Keep in mind that the position operator
x and the momentum operator p used here differ from x and p
that we used for the oscillator (Equation 9), which is why now
the Hamiltonian looks different. This section is merely to point
out that one system can be transformed into the other. A possible
advantage of the description in this section is that, here, x itself
is ontological.

Note that the energy spectrum of a relativistic massless particle
in the box is linear in the momentum p, and the eigenvalues of

4It might be interesting that in the “classical like rewriting” of standard QM by

[38], used in essential ways in [39], the complex-valued wave functions arise as

ψ = x + ip, where x and p are integer valued conjugated “coordinate” and

“momentum” variables for linear cellular automata.

p in the box are equidistant, and this is why this system can be
mapped easily onto the harmonic oscillator5. See also the last
paragraph of this paper.

6. MOMENTUM DEPENDENT KINETIC
TERM

As already stated in section 2, one might wish to find an
ontological interpretation of systems having a Hamiltonian of the
form

H = T(Ep )+ V(Ex )+ EA(Ex ) · Ep. (19)

In the general case, neither x nor p can be considered to be
ontological, since they both evolve as superpositions. However, in
some special cases, a variable y(t) can be found that is ontological.
The general rule is that we should search for operators such that
they commute with themselves at all times, and also with the
commutator of the Hamiltonian and these observables (that is,
their time derivatives).

We now consider the Hamiltonian (19) in the continuum case,
in one dimension (so that we omit the vector symbols) and with
V(x) = 0. In this case, the vector potential field A(x) can be
gauge transformed away, therefore we also put A(x) = 0. Define
accolades to symmetrize an expression:

{A B} ≡ 1
2 (AB+ BA). (20)

Then we define the operator y(t) as

y ≡ {x 1

v(p)
} v(p) = dT(p)/dp. (21)

It can be inverted:

x = {y v(p)}. (22)

One easily derives that, indeed,

d

dt
y(t) = 1. (23)

Demanding both the operator v(p) and its inverse v−1(p) to be
sufficiently regular and unambiguous, forces us to keep the sign
of v(p) constant.

Note that, in the case where T(p) is quadratic in the
momentum p, v(p) is proportional to the square root of the
energy; here again, we observe this square root relating the
ontological variable with the more familiar x coordinate that we
saw in section 3.

5An apparent degeneracy of the Hamiltonian (17) with σ can be lifted by carefully

imposing the boundary conditions needed for realizing the reflections at the edges.

We did not include these here in order to avoid inessential complications, but

the reader can derive them by unfolding the box where k̃ is living, to become the

periodic box for k that has twice that length (see Equation 18).
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It is an interesting exercise to compute the inner product
between the eigenstates of this ontological parameter y and those
of the conventional x operator:

〈x|y〉 =
∫

dp〈x|p〉〈p|y〉 = 1

2π

∫

dp
√

v(p) ei(xp−yT(p)). (24)

It reduces to a Dirac delta function as soon as T(p) is linear in
p. In the more general case, unitarity demands that the function
T(p) can be inverted, since only then the Cauchy integrals needed
to prove unitarity of Equation (24) close. If T(p) can only be
inverted on a finite interval of the values for T (or as the half-
line rather than all values on the real line), then y is restricted to
the values dual to that set.

We decided not to pursue this analysis further since there
seems to be a more imminent problem: the operator y(t), as
defined in Equation (21), in general, seems to be quite non-
local. This is why the ontological variables derived here will
not be used to replace space-like coordinates, but rather field-
like variables, as in second-quantized field theories, which are
explored in sections 7 and 8.

Of course we would also like to understand systems that do
have effective potential functions V(x), and they should apply to
higher dimensions as well. We shall home in to the completely
general Hamiltonian in these last two sections, where we shall
see that extra, high energy degrees of freedom will be needed
in general.

7. BEABLES, CHANGEABLES, AND
SUPERIMPOSABLES

What we call ontological, or deterministic, quantum mechanics
is a particularly interesting subset of quantum systems where
Hilbert space can be set up in terms of operators we call beables,
a phrase that was introduced by Bell [40–42]. These are (a set of)
operators that all commute with one another at all times, so that,
if we have a coordinate frame where at time t = 0 all beables are
diagonalized, they continue to be diagonalized at all times6, and
consequently, the evolution is completely classical. In this basis,
the evolution operator U(t) = e−iHt , at distinct times t = ti,
is a matrix containing only ones and zeros (see Equation 4). We
then refer to operators H and U(t) as changeables: they act on
the eigen states of the beables merely by replacing these eigen
states with other eigen states. Both beables and changeables form
small subsets of all possible operators. The generic operators are
superpositions of different possible beables and changeables, and
so we refer to these remaining operators as superimposables.

In section 3, the beables are the operators k, and their
eigen states are |k〉ontt . The operators U(δt) (where δt may have
to be chosen to form a time-like lattice) and the associated

6A special piece of insight is that measurement devices will also be diagonalized,

so that a measurement will always give unique, “beable” answers. In constructing

models for experimental set-ups, one is free to choose the initial state as any wave

function one likes, but if the beables are not all diagonalized, the final result will

also come as a superposition. However, if we postulate that the universe started in

an eigenstate of all beables, the final measurement will also be unique. This can be

used as a natural explanation for the “collapse of the wave function.”

Hamiltonian H, or L3, are changeables, while operators such as
L1 and L2 are superimposables.

In section 5, k̃, σ , and k are beables, while H and p are
changeables. In section 6, the operator y is the beable. T(p) is the
Hamiltonian, and as such may serve as a changeable. The original
position operator x is merely a superimposable.

Consider in particular the harmonic oscillator. Its
mathematics is exactly as in section 3, if now we take the
limit δt → 0. The equations for the harmonic oscillator are
written in terms of the familiar annihilation operator a and
creation operator a†:

H = 1
2ω(p

2 + x2 − 1) = ω a†a a = 1√
2
(p− ix) a† = 1√

2
(p+ ix)

p = 1√
2
(a+ a†) x = i√

2
(a− a†).

[ x, p ] = i [ a, a†] = 1.

(25)

In conventional quantum mechanics, all known operators are
superimposables, except possibly for the Hamiltonian, which
could be a changeable, if we would have been able to identify
the complete set of beables. According to the cellular automaton
theory of quantum mechanics [21–23], the complete Hamiltonian
of all physics in our universe happens to be a changeable. This
theory can only be verified if we can also identify the ontological
variables, the beables, and in practice this is hard. This paper is an
attempt to pave the way to such a description of our universe.

In the next section, we seek to describe the beables and
changeables in terms of the operators such as x, p, andH of finite,
periodic cells. We are now in the limit N → ∞, which means
that we have ℓ → ∞, so that the ‘angular momenta’ of section 3
are almost classical. In practice, one frequently needs to switch
between the strictly continuous case7 and the case with finite time
steps δt.

In the continuous case, the easiest changeable operator isH =
ωa†a = 1

2ω(p
2+ x2− 1). When δt is taken to be finite, one needs

the evolution operator U(δt) to describe the motion of a beable k
forward by one step (see section 3):

U(δt)|k〉ont = e−iHδt|k〉ont = |k+ 1 mod N 〉ont. (26)

We can also say that the ontological angle ϕ in section 4 is
rotated by an angle 2π/N. Its angular rotation frequency is ω.
This rotation is also generated by L3.

What is the angle ϕ in terms of the standard harmonic
oscillator operators? From Equation (5) in section 3, we see that

eiϕ |n〉E = |n+ 1〉E (27)

and since a†|n〉E =
√

H
ω
|n+ 1〉E, we find8

eiϕ = (H
ω
)−

1/2 a† e−iϕ = (H
ω
+ 1)−

1/2 a. (28)

7From a physical point of view, the distinction between continuous and step-

wise evolution laws is less significant than one might think. One may or may not

be interested in what happens between two distinct time steps, while what really

matters is what happens after longer amounts of time.
8There is no problem here with the zero eigenvalues of H, since in both Equations

(28), the number inverted is always 1 or bigger.
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ϕ is the beable of the harmonic oscillator. By taking powers of the
operators e±iϕ , we get cos κϕ and sin κϕ that, together, contain
all desirable information concerning the ontological state the
oscillator is in. It also applies to the relativistic particle in a box,
section 5.

Next, let us construct a complete list of all changeables.
One changeable is easy to recognize: the Hamiltonian itself.
However, in the next section, we set up the procedures to obtain
all possible interaction Hamiltonians, and for that, we need
different changeables. Consider the basis of all ontological states,
called |k〉ont in section 3. Then a generic changeable operator
interchanges two such elements, say |k1〉 and |k2〉. We write it
as 9

G12 = |k1〉 〈k2| + |k2〉 〈k1|. (29)

The combination of the two terms in Equation (29) will be needed
to preserve hermiticity, as will be clear in the next section. G12

is just one possible changeable. If we combine it with all other
expressions of the same form, Gij, we may obtain the complete
set of all unitary permutations.

One further generalization is conceivable: if we have many
independent harmonic oscillators (or periodic subsystems), we
get a more generalized system with an ontological evolution
law. The interchange operators Gij must then be allowed to
interchange the states of different oscillators.

In practice, we shall need to consider in particular an
operator that only interchanges two states in one given periodic
cell/harmonic oscillator, but only if the beables in a neighboring
cell—or beables in several neighboring cells—take one particular
value. This set is not completely but almost general, so that
we can now perform our next step: construct non-trivial
interaction Hamiltonians.

The harmonic oscillator Hamiltonian H0 itself may be
regarded as the infinitesimal interchange operator for all pairs
of neighboring 10 states |k1〉ont and |k1 + δk〉ont. If we let its
amplitude depend on where we are in k space, we have a small
but very special class of changeables that we shall also need.

8. ONTOLOGICAL INTERACTIONS

So-far, our models were of an elementary simplicity. Now, we
can put them together to obtain physically more interesting
systems. Let us start by having a large class of small, independent,
ontological “cells,” listed by an index i. All of them are so small
that, as soon as the influences of other cells are shut off, their own
internal motion forces them to be periodic.

9We often suppress signs and phase factors, when these have no effect on what

happens physically in the ontological system. In general, adding phase factors will

not help us to describe more general physical systems; at a later stage, however,

phase factors can serve some important mathematical purpose.

A reader might wonder how complex numbers arise in the Hamiltonian? This

“mystery” disappears when complex numbers are treated as pairs of real numbers.

In practice, complex amplitudes are often linked to the conservation of matter, or

more precisely: baryon number.
10to describe the continuum limit, we need to scale the variable k so that the steps

δk are no longer 1, as before, but infinitesimal.

In more advanced future approaches, one might wish to avoid
these elementary cells, but for our present purpose they appear to
be quite useful.

Let the time step δt be 1, and in each cell i we have a variable
k(i), with an associated momentum operator p(i). A Hamiltonian
H0 forces all data k

(i) to make one step forward at every time step,
with periodicity N(i) (allowed to be different for all i):

H0 =
∑

i

pi |k(i)〉ontt+1 = |k(i) + 1〉ontt |N(i)〉ont = |0(i)〉ont.

(30)

The basis elements of the combined states are written as

|Ek〉ontt =
∏

i

|k(i)〉ontt . (31)

The ontological interaction to be considered next is an extra
term to be added to H0 such that the k(i) evolve in a more
complicated way. First, consider just one cell, i = 1, and consider
two special values, k1 and k2, with k2 > k1. We now ask for
an extra term such that, as soon as the value k = k1 or k2 is
reached, it switches to the other value k = k2 or k1 (by adding
the difference,1k = ±(k2 − k1) to the value of k). In addition to
this exchange process, we keep the term H0 in the Hamiltonian,
which ensures that at all times also k → k + 1 (there is a
danger with the non-commutativity of the two terms, but in the
continuum limit this ambiguity disappears, while in the discrete
case one must ensure unitarity by demanding that every state |k〉
evolves into exactly one other ket state |k′〉).

At first sight, this gives a rather trivial effect: either the stretch
[k1, k2] is skipped, or the systemmoves within the stretch [k1, k2]
forever. This means that, physically, we just changed the period
of the motion. Nevertheless this is an important interaction, as
we shall see. We write the Hamiltonian as

H = H0 ± π |ψ〉 〈ψ | |ψ〉 = 1√
2

(

|k1〉 − |k2〉
)

(32)

both signs are allowed. One may derive that11, indeed, the
evolution operator Uδt=1 contains an extra factor e−π i = −1
whenever the (normalized) state |ψ〉 is encountered. The state
|φ〉 = 1√

2

(

|k1〉 + |k2〉
)

is orthogonal to |ψ〉 and is therefore not

effected. One sees immediately that the net effect of Uδt=1 is that
all k values made one step forward, while |k1〉 ↔ |k2〉 .

Thus, we introduce the interaction term Hint = π |ψ〉 〈ψ |
as an ontological interaction. However, its effect is very strong
(it only works with the factor π in front), whereas in general,
in quantum physics, we encounter interaction terms of variable
strengths, whose effects can be much more general.

Therefore, we consider a further modification. Let us impose
the condition that

11The situation becomes more delicate in case more of such terms are added to

the Hamiltonian while δt = 1. To do this right, it will be advisable to keep the

continuum limit δt → 0 and ensure that the exchanges are kept at a well-defined

order. On the other hand we can guarantee that for any ontological (classical)

interaction, a well-defined quantum Hamiltonian exists.
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the interchange k
(1)
1 ↔ k

(1)
2 only happens if in a neighboring cell,

say cell #2, k(2) has a given value, say k(2) = r :

Hint = π |r(2)〉 〈r(2)| |ψ (1)〉 〈ψ (1)|. (33)

Intuitively, one might suppose that this interaction is much
smaller, since in the majority of cases, when k(1) takes the value
k1 or k2, it must be rather unlikely that k(2) equals r. Does this
argument make sense?

Yes, indeed it does, in the following way:
In the real world, δt will be extremely tiny, perhaps as small as
the Planck time, some 10−44 seconds. Suppose that we only know
the interaction Hamiltonian of our ‘Standard Model’ up to some
maximum energy Emax of all scattering processes. In practice,

Emax ≪ 1/δt. (34)

If we limit ourselves to states composed of lower energies only,
we can never make Gaussian peaks much sharper than

〈k(2)|ψ (2)〉 ≈
(

α
π

)1/4
e−

1
2α(k

(2)−r)2 (35)

where α = O(Emax)−2. This implies that the amplitude of
the interaction Hamiltonian (33) will be very tiny indeed. We
can add many such terms to our Hamiltonian before the effects
become sizeable.

We should not be concerned that integrating many of such
interaction terms to obtain the elementary evolution operatorUδt
over one time step, might add terms of higher order in δt that
violate the condition that this term is ontological. Although such
considerationsmaywell be important for actual calculations, they
do not affect the principle that we can generate a large class of
interaction Hamiltonians along these lines.

Which Hamiltonians can we obtain now? the answer may
come as a surprise: All Hamiltonians acting in elementary cells,
and generating interactions between neighboring cells, can be
obtained from ontological interactions along these lines! They
certainly do not need to commute.

Suppose we have been adding ontological interactions of the
type described above, but we still need one matrix element
〈x1|H|x2〉, where |x1〉 and x2〉 are elements of any basis one
may wish to employ. Then all we have to do is take the set of

ontological states |Ek〉 that we started from. Apply the unitary

matrix 〈x|Ek〉 that links the basis of ontological states |k〉ont to the
states |x〉, to rewrite the desired Hamiltonian in the ontological

basis. Consider any of its off diagonal terms 〈k(1)1 |Hint|k(1)2 〉. Then,
according to Equation (33), the missing term can be reproduced
by an ontological exchange contribution of these two states in this
particular cell.

As for the StandardModel itself, we know that its Hamiltonian
does not connect cells far separated from one another, because
the Hamiltonian density of all quantum field theories are known
to be local in the sense of what is called “no Bell telephone”
among philosophers:

The Hamiltonian density H(Ex ) in 3-space Ex, is such that,
at different locations Ex, these Hamiltonian density functions
commute:

[H(Ex ), H(Ex ′ )] = 0 if Ex 6= Ex ′. (36)

If the speed of signals is bounded, this leads to commutation of
operators outside the light cone.

Bell himself [41, 42] called this “local commutativity,”
but insisted that tighter definitions of causality—forward and
backwards in time—are needed if one wants to compare quantum
mechanics with deterministic models. He was criticized on this
point [43, 44], and also the present author disagrees; here we
just remark that further equations that would be tighter than
Equation (36) are not needed. We derive from that equation that
off-diagonal matrix elements of the Hamiltonian vanish when
they refer to states in cells that are separated far from one another
(far meaning far in units of the Planck length!). We connect this
with our interaction Equation (33) to conclude that exchange
interactions between ontological states that are far separated
form one another are not deeded. Our models should violate
Bell’s theorem and the inequalities arrived at by Clauser et al.
[45] simply because our interactions appear to generate quantum
field theories.

We do note that, besides generating one off-diagonal term of
the interaction Hamiltonian matrix, and its Hermitian conjugate,
the interaction Hamiltonian (33) also affects the diagonal terms

at k
(1)
1 and k

(1)
2 . therefore, we might have to readjust all diagonal

terms of the Hamiltonian. In the continuum limit, δt → 0, this is
easy. It just means that the speed at which a given ontological
state may make a transition to the next state, may have to
be modified.

We also obtained a bonus: the ontological theory is local up
to Planckian distance scales, as soon as the commutator rule (36)
is obeyed by the quantum system that we wish to reproduce in
ontological terms.

We find that by including ontological exchange interactions
between the ontological states, and by adjusting the speed of the
evolution, we can create a quite generic quantum mechanical
Hamiltonian. The model we get is a cellular automaton [25–28],
exactly as we described in [21], but now we find the systematic
prescription needed to let this automaton act as any given local
quantum field theory.

It seems now that almost any basic interaction can be
obtained, but there are important questions that we have not been
able to answer:

We started with cells having no mutual interaction at all.
In terms of elementary particle theories, this means that we
start with infinitely heavy elementary particles. Then kinetic
terms can be added that should lead to finite mass particles.
What is the most efficient way from here to realistic quantum
particle theories?

Our difficulty is that we do not quite understand how to
construct ontological free field theories, describing light or even
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massless particles. We need a theory starting from ontological
harmonically coupled oscillators that obey some form of locality.
This seems to be a purely technical problem now, which ought to
be resolved.

Another question:
The theory for the interactions between elementary particles

features quite a few continuous symmetry properties. How can we
reproduce such symmetries? Since our cells tend to be discrete, it
is hard to impose continuous symmetries, in particular Lorentz
invariance. On the other hand, it is generally expected that most
if not all global continuous symmetries cannot be exactly valid.

9. HOW A SIEVE CAN CONNECT
CLASSICAL THEORIES WITH QUANTUM
MECHANICAL ONES

Note that our sieve mechanism can easily be generalized to do the
following:

Given two different ontological theories, with Hamiltonians H1

and H2, which do not have to commute. Then, adding a fast “sieve”
variable enables us to describe a system that, at sufficiently low
energies, is described by a Hamiltonian

H3 = αH1 + βH2 (37)

where indeed quantum effects might lead to quantum
interference, while, at the microscopic level, the theory is
still deterministic.

Such a result seems almost too good to be true. Can we really
re-write quantum mechanical systems in terms of deterministic
ones? How does it go in practice? Which calculations turn
a classical system, with exchange interactions and sieves or
whatever else, into quantum mechanics? We here briefly analyse
how to address this question.

We consider the simplest model of a sieve, giving rise to a
Hamiltonian that generates superpositions as soon as the sieve
is turned on, and then compare the quantum system with the
classical one. The most important feature is that we have two
(time) scales.

Our model is sketched in Figure 2. Its states are described as
|x〉 where the fundamental, ontological variable x sits in a box
with size L and periodic boundary conditions, |x+ L〉 = |x〉.

x starts out being a beable. The unperturbed Hamiltonian is
H0 = px, so the velocity is 1, the system circles around in its

box. Now, we wish to turn it into a real quantum variable as in
the previous section. We add the term απ |ψ〉 〈ψ |, with |ψ〉 =
1√
2

(

|0〉 − |A〉
)

to the Hamiltonian, that had the value H0 = px

in the unperturbed case. If α = 0 we have the original model.
If α = 1, the Hamiltonian generates the exchange |0〉 ↔ |A〉 in
x-space. In that case, the x variable either stays inside the region
[0, A] or inside the region [A, L] This makes it also a beable.

However, if α has any other value, the Hamiltonian contains
a non-diagonal element, together with its Hermitian conjugate,
resulting in quantum interference. According to section 8, we can
mimic the suppression factor α by adding a fast variable y, such
that only in the fraction α of all states y can be in, the exchange
takes place. This we describe by replacing

α =
∑

|r〉 〈r| (38)

in y space. The period of y is here taken to be 1, much shorter
than the period L for x.

Classically, if the variable y takes one of the values r of the
projection operator (38), precisely at the moment when x = 0 or
at the moment when x = A, the exchange |0〉 ↔ |A〉 takes place,
otherwise it does not.

We argued in section 8 that, as long as the variable y stays in
its lowest energy state, the equations of motion for the quantum
system and the classical system are the same. Now, we are in a
position to check this.

The unperturbed Hamiltonian is now H0 = px + py; x and
y move at the same speed v = 1, but y makes many oscillations
during the time x makes one oscillation. Thus, the system moves
in the direction of the arrows in Figure 2.

We claim that, in quantum language, the x variable obeys its
effective Hamiltonian equations, i.e., the Schrödinger equation—
including superposition effects (when α 6= 0 and 6= 1. What
happens classically?

The system evolves along the diagonal arrows in Figure 2. The
boundary conditions are: x is periodic with period L and y is
periodic with period 1. Then, we have the “sieve,” consisting of
two partial walls of length α in the y direction, one at x = 0 and
one at x = A. The rule is that, if x = 0 or x = A while 0 < y < α

then the states |0, y〉 and |A, y〉 are interchanged, after which the
evolution continues in the direction of the arrows. We see that,
classically, an infinite orbit results. If the lengths A and L have an
irrational ratio, the orbit never closes. If we write this in terms of
a wave function 〈x, y|ψ(t)〉, we get some sort of fractal.

FIGURE 2 | The variables x (horizontal, period L≫ 1) and the sieve variable y (vertical, period 1), together moving in the direction of the arrows. See text.
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The same orbit can now be described in quantum notation. In
the bulk region, we have a wave function, which we write as

ψ(x, y, t) = ψ(x− t, y− t, 0) =
∞
∑

n=0

ψn(x, t) e
2π iny−2π int . (39)

We must restrict ourselves to non-negative n, as should be clear
from the earlier sections of this paper: there is a lowest energy
mode, which was tuned to the value n = 0 (a procedure that we
can also apply to the x coordinate, but for the time being, we keep
the x-space notation as is).

Now here is howwe can see the effect of the sieve.We consider
the waves ψ0− near the point x = 0 entering at x < 0 and the
waves ψA− near x = A, entering at x < A. At x > 0 the waves
ψ0+ are leaving, and at x > A the waves ψA+ are leaving. Write

ψ1± = 1√
2
(ψ0± + ψA±) and

ψ2± = 1√
2
(ψ0± − ψA±). (40)

Then, at the sieve,

ψ1+ = ψ1− for all y

ψ2+ = ψ2− if α < y < 1 ψ2+ = −ψ2− if 0 < y < α.

(41)

This is now easy to rephrase in terms of properties of the
functions ψn(x, t). We also split these into functions ψ1±

n and

ψ2±
n . Since

ψn(x) =
∫ 1

0
dy e−2π iny ψ(x, y)

and

∫ 1

0
dy e2π iℓy sign(y− α) = −i

πℓ

(

1− e2π iℓα
)

if ℓ integer 6= 0

= 1− 2α if ℓ = 0 (42)

we derive

ψ1+
n = ψ1−

n

ψ2+
n = (1− 2α)ψ2−

n +
∑

ℓ6=0

i

2πℓ

(

1− e2π iℓα
)

ψ2−
n+ℓ (43)

so that we find

ψ0+
n = ψ0−

n (1− α)+ α ψA−
n

+
∑

ℓ6=n

i

4πℓ
(1− e2π iℓα)(ψ0−

n+ℓ − ψA−
n+ℓ)

ψA+
n = ψA−

n (1− α)+ α ψ0−
n

+
∑

ℓ6=n

i

4πℓ
(1− e2π iℓα)(ψA−

n+ℓ − ψ0−
n+ℓ). (44)

We see that the first terms contain the effect of a quantum
superposition. Only when α = 0 or 1, this represents classical
motion in x-space. For the other values of α (Equation 44)

looks quantum mechanical. Now we know that, provided we
include the extra terms, this is classical motion after all. But the
extra terms only contain the high energy states ψn. We see in
Equation (39) that the n > 0 modes carry a large amount of
energy, so that ignoring them does not affect much the physical
nature of these transitions.

10. CONCLUSIONS

We conclude that an ontological theory for the basic interactions
is quite conceivable. We find that one can postulate the existence
of “cells” that each contain one or more variables; these variables
are postulated each to move in periodic orbits (circles) as long
as other interactions are absent. Then, we carefully postulate
two kinds of interactions, together generating behavior that
is sufficiently general to mimic any fundamentally quantum
structure. One fundamental force is generated when a variable in
one particular cell changes position with a variable in either the
same cell or in its immediate vicinity. This exchange interaction
will be associated with non-diagonal terms in what later will
be our Hamiltonian. To weaken the force, and to make it
fundamentally quantum mechanical, we need a sieve, in one
or more cells, again in the immediate vicinity (or in the same
cell). The ontological variable(s) of the sieve cell will only allow
for the given exchange process if the sieve variable takes some
pre-assigned value(s). Since we can choose which variables to
exchange, as well as the strength of the sieve, this process will
generate almost any Hamiltonian.

To then adjust the diagonal terms of the Hamiltonian, all
that needs to be done is to adjust the velocities of the variables,
depending on their positions in the cells. All taken together, we
have as many degrees of freedom to adjust, as there are terms
in our (Hermitian) Hamiltonian. This gives us confidence that
our procedure will work, regardless the quantum model we are
attempting to “explain” in ontological terms.

Actually, we still have a lot of freedom: we can derive which
exchange interactions between elementary, ontological states will
be needed in order to obtain agreement with today’s Standard
Model, but the details of the sieve, being the constraints imposed
by cells neighboring a given cell, as the ones of the cell # 2
described in Equation (33), will be difficult to derive or even
guess. It is clear however, that the effects of the sieves will
be almost continuously adjustable, depending on the maximal
energies that we allow for our particle-like degrees of freedom
(low energies will imply that most sieves are shut off, so that the
effects of quantum forces get weak at energies very low compared
to the elementary scales of our cells).

Mathematical tools of the kind presented in this paper will
be useful to study the constraints imposed on any “unified field
theory” by the condition that, at some special time- and distance
scale, our world is controlled by ontological forces.

Hopefully, our general strategy (as published during a few
decades by now) is becoming more transparent with these
demonstrations. Our “cells” are labeled by an index i, and we set
up models for particles by arranging such cells in a lattice, called
a “cellular automaton.” The ontological degrees of freedom, k(i)
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are the positions of these points on their orbits. What has been
achieved in this paper is that we identified a way to characterize
generic ontological interactions between the cells, using the
language of quantum mechanics. The generic interactions, of
which one may add a large number at each lattice point, take the
following form:

H = H0 +Hint H0 =
∑

cells i

p(i) (45)

where [k(i), p(j)] = iδij , and

Hint = π
∑ |r〉 〈r| |ψ (i)〉 〈ψ (i)| (46)

|ψ (i)〉 = 1√
2

(

|k(i)1 〉 − |k(i)2 〉
)

. (47)

Here, the notation used was the one describing discrete states.
These must be replaced by the continuous states when the
δt → 0 limit is taken. Hence, for now, the coefficient π has
to be 3.14. . . , since only with this unique strength, the system

exchanges position |k(i)1 〉 with position |k(i)2 〉 in a deterministic
manner. To make the interaction sufficiently small so that it can
be inserted in a perturbative quantum field theory, we use one or
more other state(s) |r〉 as projectors (calling them “sieves”). The
strength of the interaction then reduces by factors O(

√
Emax) in

units where the time step δt is one. This is why we are led to
consider the case where all particle energies are low compared
to the energies associated to the very tiny time scale of δt.

We saw in section 9, that any strength of the off diagonal
terms of the Hamiltonian can be obtained by adding fast variables
to the classical system, and although extra terms do arise,
the fundamentally quantum nature of the interactions is not
jeopardized. We find this result very important, it should be
regarded as a strong indication that this is the way to interpret
what goes on in our quantum world.

We have high energy modes, which are claimed not to
ruin the quantum nature of the results of our calculation.
This is also where thermodynamics may enter the picture: if
we ignore high energy modes, those are exactly what is left
of a fast moving auxiliary variable 12. Today, in practice, we
have too little information to be able to make fundamental
distinctions between quantummechanical and classical behavior:
we only know the outcome of scattering experiments as long
as the total energy is kept below the limit Emax. All our
experiments are at temperatures too low to allow us to do
the timing of dynamical variables sufficiently accurately. We
are too close to just one physical state: the vacuum. Thus, we
must tolerate uncertainties in our descriptions. These are the
quantum uncertainties.

12The question was asked by Hossenfelder and Palmer [20].

Since quantum mechanical language was used throughout,
and since the states |ψ (i)〉 connect different basis elements, we
see that non commuting interaction Hamiltonians emerge. The
only important constraint on |ψ (i)〉 is that it should connect
only nearby ontological states, since only then the resulting
Hamiltonian operator obeys locality, which is expressed uniquely
in terms of commutators vanishing outside the light cone
(Equation 36).

What remains to be done is to achieve more experience in
constructing realistic models along these lines, check how these
models perform, and reach consensus about their usefulness.

The most important message, we believe, is that quantum
mechanics should not be considered as mysterious, it is not
fundamentally impossible to understand it from the perspective
of classical logic, and the origin of the uncertainty relations can
be understood. It all amounts to timing, that is, if fast moving,
space-like separated, variables are involved in an interaction,
it is fundamentally impossible to adjust their time variables
sufficiently accurately.

The question whether time is discrete or continuous is
physically unimportant; as soon as some description of a system
clarifies it sufficiently well, there will be no need to split the
time variable into even smaller segments. There is a practical
difficulty: only one variable needs to be handled as if continuous:
the dynamics of the variable that is used as our clock. All other
variables will be limited in number, as one may conclude from
black hole physics: black holes can only come in a finite number
of quantum states. This implies that, in contrast with our clock,
the other variables may have to be kept on a discrete time lattice.
So where does our clock come from? In our models, we can
choose whatever pleases us, but to guess the right model may be
not easy.

Some of our readers may find it difficult to believe that points
running around on circles are equivalent to harmonic oscillators.
Here, we would like to use an analogy with the science of planets.
We can study distant planets through our telescopes, and detect
many interesting properties, for which we can find equations. Yet
there is one thing we shall never detect: their names. Similarly,
we can never tell whether a harmonic oscillator is actually a point
moving on a circle. The equations are equivalent. Everything else
is name giving.
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Quantum mechanics has irked physicists ever since its conception more than 100 years

ago. While some of the misgivings, such as it being unintuitive, are merely aesthetic,

quantum mechanics has one serious shortcoming: it lacks a physical description

of the measurement process. This “measurement problem” indicates that quantum

mechanics is at least an incomplete theory—good as far as it goes, but missing a

piece—or, more radically, is in need of complete overhaul. Here we describe an approach

which may provide this sought-for completion or replacement: Superdeterminism.

A superdeterministic theory is one which violates the assumption of Statistical

Independence (that distributions of hidden variables are independent of measurement

settings). Intuition suggests that Statistical Independence is an essential ingredient of

any theory of science (never mind physics), and for this reason Superdeterminism is

typically discarded swiftly in any discussion of quantum foundations. The purpose of

this paper is to explain why the existing objections to Superdeterminism are based on

experience with classical physics and linear systems, but that this experience misleads

us. Superdeterminism is a promising approach not only to solve the measurement

problem, but also to understand the apparent non-locality of quantum physics. Most

importantly, we will discuss how it may be possible to test this hypothesis in an (almost)

model independent way.

Keywords: superdeterminism, Bell theorem, causality, free will, quantum measurement, quantum mechanics

1. INTRODUCTION

Until the 1970s, progress in the foundations of physicsmeant discovering new phenomena at higher
energies, or short distances, respectively. But progress in high-energy physics has slowed, and may
have run its course as far as finding solutions to the deep fundamental problems of physics is
concerned. In the past decades, physicists have not succeeded in solving any of the open problems
in the foundations of their field; indeed it’s not even clear we are getting closer to solving them.
Most notably, we have still not succeeded in synthesizing quantum and gravitational physics, or in
unraveling the nature of dark matter, problems that have been known since the 1930s.

In this situation it makes sense to go back and look for the path we did not take, the wrong turn
we made early on that led into this seeming dead end. The turn we did not take, we argue here, is
resolving the shortcomings of quantum mechanics. At the least, we need a physical description of
the measurement process that accounts for the non-linearity of quantum measurement.

The major reason this path has remained largely unexplored is that under quite general
assumptions (defined below) any theory which solves the measurement problem in a form
consistent with the principles of relativity, makes it impossible to prepare a state independently
of the detector that will later measure it. If one is not willing to accept this dependence then—by
virtue of Bell’s theorem [1]—one necessarily has to conclude that a local, deterministic completion
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of quantum mechanics is impossible. This, then, requires
us to abandon the principles on which general relativity is
based and adds to our difficulty reconciling gravity with the
other interactions.

If one is, by contrast, willing to accept the consequences
of realism, reductionism, and determinism, one is led to
a theory in which the prepared state of an experiment is
never independent of the detector settings. Such theories are
known as “superdeterministic.” We wish to emphasize that
superdeterministic theories are not interpretations of quantum
mechanics. They are, instead, theories more fundamental than
quantum mechanics, from which quantum mechanics can
be derived.

Superdeterminism is frequently acknowledged as an
experimentally unclosed loophole (see e.g., [2]) with which one
can explain deterministically the observed violations of Bell’s
inequality. However, for a variety of reasons, many physicists
think Superdeterminism is a non-starter. For example, they argue
that Superdeterminism would turn experimenters into mindless
zombies, unable to configure their experimental apparatuses
freely. A similar argument has it that Superdeterminism implies
the existence of implausible conspiracies between what would
otherwise be considered independent processes. Alternatively,
it would seemingly lead to causes propagating backwards in
time. Above all, so it is claimed, Superdeterminism would fatally
undermine the notion of science as an objective pursuit. In short,
Superdeterminism is widely considered to be dead in the water.

The aim of this paper is to re-examine the arguments against
Superdeterminism. We will argue that, rather than being an
implausible and dismissible loophole, the neglected option of
Superdeterminism is the way forward; it’s the path we did
not take.

2. WHY?

The way it is commonly taught, quantum mechanics has two
ingredients to its dynamical law: the Schrödinger equation and
the measurement prescription. The measurement prescription is
a projection on a detector eigenstate, followed by re-normalizing
the new state to 1.

This measurement prescription (also sometimes referred to
as the “update” or “collapse” of the wave-function) is not a
unitary operation. It preserves probabilities by construction, but
it is neither reversible nor linear. The lack of reversibility is not
a serious problem: one may interpret irreversibility as a non-
physical limit in which one has ignored small but finite residuals
that would otherwise make the measurement process reversible.

Rather, the major problem with the measurement process is
that it is non-linear. If we have a prepared initial state |91〉 that
brings the detector into eigenstate |χ1〉, and another initial state
|92〉 that brings the detector into eigenstate |χ2〉, then a linear
evolution law would bring a superposition (|91〉 + |92〉)/

√
2

into a superposition of detector eigenstates—but this is not what
we observe.

This is problematic because if quantum mechanics was the
correct theory to describe the behavior of elementary particles,

then what macroscopic objects like detectors do should be
derivable from it. The problem is not merely that we do
not know how to make this derivation, it’s far worse: the
observed non-linearity of the measurement process tells us that
the measurement postulate is in contradiction with the linear
Schrödinger equation.

However, there is a simple resolution of this problem of non-
linearity. In its density matrix form, the Schrödinger equation is
remarkably similar to the classical Liouville equation. So much
that, in this form, the Schrödinger equation is sometimes referred
to as the Schrödinger-Liouville or Quantum-Liouville equation,
though the historically more correct term is the von Neumann-
Dirac equation:

Liouville equation:
∂ρ

∂t
= {H, ρ}, (1)

von Neumann-Dirac equation: ih̄
∂ρ

∂t
= [H, ρ] . (2)

Here, H is the classical/quantum Hamiltonian of the system,
the curly brackets are Poisson brackets, and the square brackets
are commutators. ρ is the classical/quantum (probability)
density, respectively.

The classical Liouville equation is linear in the probability
density due to conservation of probability. But this linearity
says nothing whatsoever about whether the dynamics of the
underlying system from which the probability density derives
is also linear. Hence, for example, chaotic dynamical systems,
despite their non-linear dynamics, obey the same linear equation
for probability density. To us, this close formal similarity between
the two equations strongly suggests that quantum physics, too, is
only the linear probabilistic description of an underlying non-
linear deterministic system.

From this point of view, pursuing an Everettian approach
to quantum physics is not the right thing to do, because this
idea is founded on the belief that the Schrödinger equation
is fundamental; that nothing underpins it. Moreover, it does
not make sense to just append non-linear dynamics to the
Schrödinger equation in situations when state decoherence
becomes non-negligible, because it is not the Schrödinger
equation itself that needs to become non-linear. Spontaneous
collapse models do not help us either because these are not
deterministic1. Pilot-wave theories do, in some sense, solve the
measurement problem deterministically. However, pilot-wave
formulations of quantum mechanics are based on an explicitly
non-local ontology, and this non-locality makes it difficult to
reconcile such theories with special relativity and, with that,
quantum field theory.

What, then, does it take to describe quantum physics with
a deterministic, local theory that is reductionist in the sense
that the theory allows us to derive the behavior of detectors
from the behavior of the theory’s primitive elements? The Pusey-
Barrett-Rudolph (PBR) theorem [3, 4] tells us that such a
theory must violate the Preparation Independence Postulate,
according to which the state space of a composite system can

1One may, however, expect spontaneous collapse models to appear as effective

descriptions of a non-linear collapse process in suitable limits.
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be described as a product state whose factors are independent
of each other. Violating Preparation Independence entails that
either the systems making up the product state are correlated
with each other, or that the composite system cannot be described
as a product state to begin with. This lack of independence
between the prepared state and the detector is the hallmark
of Superdeterminism.

3. WHAT?

We define a superdeterministic theory as a Psi-epistemic,
deterministic theory that violates Statistical Independence but is
local in the sense of respecting Continuity of Action [5], i.e., there
is no “action at a distance” as Einstein put it. In the remainder of
this section we will explain what these words mean.

1. Psi-epistemic: That a theory is Psi-epistemic means that
the wave-function in the Schrödinger equation (or the density-
matrix, respectively) does not itself correspond to an object in the
real world, i.e., is not ontic. The Copenhagen interpretation and
Neo-Copenhagen interpretations are Psi-epistemic because they
postulate the wave-functionmerely encodes knowledge about the
state of the system, rather than itself corresponding to a property
of the system. However, a theory may also be Psi-epistemic
because the wavefunction is emergent, for example as a statistical
representation of a more fundamental theory. The theories we
will be dealing with here are Psi-epistemic in the latter sense.

Needless to say, the wavefunction derived in any such
theory should obey the Schrödinger equation up to current
measurement precision and hence reproduce the so-far tested
predictions of quantum mechanics. But of course the point of
seeking a theory from which to derive quantum mechanics is
not to reproduce quantum mechanics, but to make predictions
beyond that.

2. Deterministic: By deterministic we will mean that the
dynamical law of the theory uniquely maps states at time t to
states at time t′ for any t and t′. This map, then, can be inverted.

Since the theory we look for should be deterministic and the
wavefunction derives from it, we are dealing with a so-called
hidden-variable theory. We can ask what exactly are these hidden
variables, which in the following are collectively represented by
the symbol λ. The answer depends on the specific model one is
dealing with, but loosely speaking λ contains all the information
that is required to determine the measurement outcome (except
the “not hidden” variables that are the state preparation). In this
picture, quantum mechanics is not deterministic simply because
we do not know λ.

It is important to realize that these hidden variables are not
necessarily properties intrinsic to or localized within the particle
that one measures; they merely have to determine the outcome of
the measurement. To see the distinction, consider the following
example. You are standing in a newborn ward in a hospital
and look at a room full of screaming infants. On your mind
are two questions: What’s their blood type? and Will they ever
climb Mount Everest? In a deterministic theory, answers to
both questions are encoded in the state of the universe at the
present time, but they are very different in terms of information

availability. A baby’s blood type is encoded locally within the
baby. But the information about whether a baby will go on to
climbMount Everest is distributed overmuch of the hypersurface
of themoment the baby is born. It is not, in anymeaningful sense,
an intrinsic property of the baby. This example also illustrates
that just because a theory is deterministic, its time evolution is
not necessarily predictable.

3. Violation of Statistical Independence: The most
distinctive feature of superdeterministic theories is that they
violate Statistical Independence. As it is typically expressed, this
means that the probability distribution of the hidden variables,
ρ(λ), is not independent of the detector settings. If we denote the
settings of two detectors in a Bell experiment as a and b, we can
write this as

ρ(λ|a, b) 6= ρ(λ). (3)

For example, in the CHSH version of Bell’s Theorem [6], a
and b each take one of two discrete orientations, which we can
represent here as 0 or 1. To derive Bell’s inequality, one assumes
ρ(λ|a, b) = ρ(λ), a requirement that is also often referred as
“Free Choice” (this terminology is profoundly misleading as we
will discuss in section 4.1).

While it is straightforward to write down Statistical
(In)dependence as a mathematical requirement, the physical
interpretation of this assumption less clear. One may be tempted
to read the probability encoded by ρ as a frequency of occurrence
for different combinations of (λ, a, b) that happen in the real
world. However, without further information about the theory
we are dealing with, we do not know whether any particular
combination ever occurs in the real world. E.g., in the case that a
pair of entangled particles is labeled by a unique λ, for any value
of λ only one pair of values for a and b would actually be realized
in the real world.

At the very least, whether these alternative combinations of
hidden variables and detector settings ever exist depends both
on the state space of the theory and on whether dynamical
evolution is ergodic on this state space. It is easy to think of
cases where dynamical evolution is not ergodic with respect to
the Lebesgue measure on state space. Take for example a classical,
non-linear system, like the iconic Lorenz model [7]. Here, the
asymptotic time evolution is constrained to an attractor with
fractal measure, of a dimension lower than the full state space.
For initial conditions on the attractor, large parts of state space
are never realized.

Neither can we interpret ρ as a probability in the Bayesian
sense2, for then it would encode the knowledge of agents and
thereby require us to first define what “knowledge” and “agents”
are. This interpretation, therefore, would bring back the very
difficulty we set out to remove, namely that a fundamental
theory for the constituents of observers should allow us to derive
macroscopic concepts.

We should not, therefore, interpret Statistical Independence
as a statement about properties of the real world, but understand
it as a mathematical assumption of the model with which we

2As is the idea behind QBism [8].
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are dealing. This point was made, implicitly at least, by Bell
himself [1]:

“I would insist here on the distinction between analyzing various

physical theories, on the one hand, and philosophizing about the

unique real world on the other hand. In this matter of causality

it is a great inconvenience that the real world is given to us once

only. We cannot know what would have happened if something

had been different. We cannot repeat an experiment changing

just one variable; the hands of the clock will have moved, and

the moons of Jupiter. Physical theories are more amenable in

this respect. We can calculate the consequences of changing free

elements in a theory, be they only initial conditions, and so can

explore the causal structure of the theory. I insist that [Bell’s

Theorem] is primarily an analysis of certain kinds of theory.”

(emphasis original)

In summary, Statistical Independence is not something that
can be directly tested by observation or by experiment because
it implicitly draws on counterfactual situations, mathematical
possibilities that we do not observe and that, depending on one’s
model or theory, may or may not exist.

4. Locality: Finally, we will assume that the superdeterministic
theory respects Continuity of Action (for extensive discussion
of the term, see Wharton and Argaman [5]). Continuity of
Action (hereafter CoA) means that to transfer information from
one space-time region to another, disjoint, region, the same
information has to also be present on any closed (3-dimensional)
surface surrounding the first region (see Figure 1). Information,
here, refers to quantities that are locally measurable. We make
this assumption because both general relativity and quantum
field theories respect this criterion.

As laid out in Wharton and Argaman [5], the definition of
locality by CoA is not as strong as the locality assumptions
entering Bell’s theorem. Besides Statistical Independence, the
assumptions for Bell’s theorem are

1. Output Independence

This assumption states that the measurement outcome is
determined by hidden variables, λ, and that the hidden
variables are the origin of statistical correlations between
distant measurement outcomes. Formally it says that the
distribution for the measurement outcomes xa of detector
a does not depend on the distribution of outcomes xb
at detector b and vice versa, i.e., ρab(xa, xb|a, b, λ) =
ρa(xa|a, b, λ)ρb(xb|a, b, λ).

2. Parameter Independence

Parameter independence says that the probability distribution
of measurement outcomes at one detector does not depend on
the settings of the other detector, i.e., they can be written as
ρa(xa|a, b, λ) = ρa(xa|a, λ) and ρb(xa|a, b, λ) = ρb(xb|b, λ).

These two assumptions together are also known as
“Factorization.” The observed violations of Bell’s inequality
then imply that at least one of the three assumptions necessary
to derive the inequality must be violated. Quantum mechanics
respects Statistical Independence and Parameter Independence
but violates Outcome Independence. Superdeterminism violates

FIGURE 1 | Continuity of Action. If information from event 1 can influence

event 2, then this information must affect any closed three surface around 1.

Statistical Independence. Bell-type tests cannot tell us which of
the two options is correct.

All three assumptions of Bell’s theorem—Statistical
Independence, Output Independence, and Parameter
Independence—are sometimes collectively called “local realism”
or “Bell locality.” However, Bell’s local realism has little to do
with how the term “locality” is used in general relativity or
quantum field theory, which is better captured by CoA. It has
therefore been proposed that Bell locality should better be called
Bell separability [9]. However, that terminology did not catch on.

The issue of whether Factorization is a suitable way to encode
locality and causality is similar to the issue with interpreting
Statistical Independence: It draws on alternative versions of
reality that may not ever actually occur. Factorization requires us
to ask what the outcome of a measurement at one place would
have been given another measurement elsewhere (Outcome
Independence) or what the setting of one detector would have
been had the other detector’s setting been different (Parameter
Independence). These are virtual changes, expressed as state-
space perturbations. The changes do therefore not necessarily
refer to real events happening in space-time. By contrast,
Continuity of Action, is a statement about processes that do
happen in space-time: its definition does not necessarily invoke
counterfactual worlds.

To make this point in a less mathematical way, imagine
Newton clapping his hands and hearing the sound reflected from
the walls of his College quad (allowing Newton to estimate the
speed of sound). He might have concluded that the reflected
sound was caused by his clap either because:

• if he had not clapped, he would not have heard the sound;
• the clapping led to the excitation of acoustic waves in the air,

which reflected off the wall and propagated back to vibrate
Newton’s ear drums, sending electrical signals to his brain.

The first definition of causality here depends on the existence
of counterfactual worlds and with that on the mathematical
structure of one’s theory of physics. It makes a statement that is
impossible to experimentally test.
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The second of these definitions, in contrast, identifies a causal
connection between the clap and the cognitive recognition: there
is no closed region of space-time surrounding the clap that is not
affected by either the acoustic wave or the electrical signal. It is a
statement about what actually happens.

This tension between space-time based notions of causality
and the assumptions of Bell’s theorem was recently highlighted
by a new variant of Bell’s theorem for temporal order [10]. While
the authors suggest their theorem shows that a quantum theory of
gravity (under certain assumptions listed in the paper) must lack
causal order, the theorem equivalently says that if one wants the
weak-field limit of quantum gravity to have a well-defined causal
order, then Statistical Independence must be violated.

In summary, by relying on Continuity of Action instead of
Factorization we avoid having to make statements about non-
observable versions of our world.

3.1. Retrocausality and Future Input
Dependence
The violation of Statistical Independence, which
superdeterministic theories display, implies a correlation
between the detector and the prepared state (as defined by λ),
typically in space-like separated regions. These regions, however,
are contained in a common causal diamond, so there are events
in the past which have both regions in their causal future, and
there are events in the future which have both regions in the past.

The possibility that both detector and prepared state are
correlated because of a common event in the past is commonly
referred to as the “locality loophole” (to Bell’s theorem). One
can try to address it (to some extent) by choosing the detector
settings using events in the far past. An extreme version of this
has been presented in Handsteiner et al. [11] where light from
distant quasars was used to select detector settings.We havemore
to say about what this experiment does and does not prove in
section 4.3.

The possibility that detector and prepared state are correlated
because of an event in the future is often referred to as
“retrocausality” or sometimes as “teleology.” Both of these terms
are misleading. The word “retrocausality” suggests information
traveling backward in time, but no superdeterministic model
has such a feature. In fact, it is not even clear what this would
mean in a deterministic theory. Unless one explicitly introduces
an arrow of time (eg from entropy increase), in a deterministic
theory, the future “causes” the past the same way the present
“causes” the future. The word “teleology” is commonly used to
mean that a process happens to fulfill a certain purpose which
suffices to explain the process. It is misleading here because no
one claims that Superdeterminism is explanatory just because
it gives rise to what we observe; this would be utterly non-
scientific. A superdeterministic theory should of course give rise
to predictions that are not simply axioms or postulates.

For this reason, it was suggested in Wharton and Argaman
[5] to use the more scientific expression “Future Input
Dependence.” This term highlights that to make predictions with
a superdeterministic model one may use input on a spacelike
hypersurface to the future of system preparation, instead of using
input at the time of preparation. This is possible simply because
these two slices are connected by a deterministic law. Relying

on “future input” may sound odd, but it merely generalizes
the tautologically true fact that to make a prediction for a
measurement at a future time, one assumes that one makes a
measurement at a future time. That is, we use “future input” every
time we make a measurement prediction. It is just that this input
does not normally explicitly enter the calculation.

We wish to emphasize that Future Input Dependence is
in the first place an operational property of a model. It
concerns the kind of information that one needs to make a
prediction. In contrast with the way we are used to dealing
with models, Future Input Dependence allows the possibility
that this information may arise from a boundary condition on
a future hypersurface. Of course one does not actually know the
future. However, drawing on future input allows one to make
conditional statements, for example of the type “if ameasurement
of observable O takes place, then . . . ” Here, the future input
would be that observable O will be measured in the first place
(of course in that case one no longer predicts the measurement of
O itself).

Now, in a deterministic theory, one can in principle formulate
such future boundary conditions in terms of constraints on an
earlier state. The hidden variables at the future hypersurface can
be expressed through those at an earlier time, or, more generally,
the two sets are correlated. But the constraint on the earlier
state may be operationally useless. That is to say, whether or not
one allows Future Input Dependence can make the difference
between whether or not a model has explanatory power (see
section 4.2 for more on that).

Future Input Dependence is related to Superdeterminism
because constraints on a future hypersurface will in general
enforce correlations on earlier hypersurfaces; i.e., future input
dependent theories generically violate Statistical Independence.

In summary, superdeterministic models are not necessarily
either retrocausal or teleological (and indeed we are not aware
of any model that exhibits one of these properties). But
superdeterministic models may rely on future input to make
conditional predictions.

3.2. Disambiguation
The reader is warned that the word “Superdeterminism” has
been used with slightly different meaning elsewhere. In all
these meanings, Statistical Independence is violated and the
corresponding theory should prohibit action at a distance.
But some authors [5, 12] distinguish Superdeterminism from
retrocausality (or Future Input Dependence, respectively).
Further, not everyone also assumes that a superdeterministic
theory is deterministic in the first place. We here assume it
is, because this was historically the motivation to consider this
option, and because if the theory was not deterministic there
would not be much point in considering this option.

4. COMMON OBJECTIONS TO
SUPERDETERMINISM

In this section we will address some commonly raised objections
to Superdeterminism found in various places in the literature and
online discussions.
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4.1. Free Will and Free Choice
The Statistical Independence assumption is often referred to
as “Free Choice,” because it can be interpreted to imply that
the experimenter is free to choose the measurement setting
independently of the value of the hidden variables. This has had
the effect of anthropomorphizing what is merely a mathematical
assumption of a scientific hypothesis. Let us therefore have a look
at the relation between Statistical Independence and the physical
processes that underlie free choice, or free will more generally.

Ever since Hume [13], the notion of free will has been defined
in two different ways:

• as an ability to have done otherwise;
• as an absence of constraints preventing one from doing what

one wishes to do.

As in our previous discussion of causality, these definitions
are profoundly different in terms of physical interpretation. An
ability to have done otherwise presumes that a hypothetical world
where one did do otherwise is a physically meaningful concept.
That is to say, the scientific meaningfulness of the notion of “an
ability to have done otherwise” depends on the extent to which
one’s theory of physics supports the notion of counterfactual
worlds: as discussed below, theories may vary as to this extent.

The second definition, by contrast, does not depend on the
existence of counterfactual worlds. It is defined entirely in terms
of events or processes occurring in spacetime. For example, what
one “wishes to do” could be defined in terms of a utility function
which the brain attempts to optimize in coming to what we
can call a “choice” or “decision.” This second definition is often
referred to as the compatibilist definition of free will.

Statistical Independence relies on the first of these definitions
of free will because (as discussed above) it draws on the notion of
counterfactual worlds. The absence of Statistical Independence
does not, however, violate the notion of free will as given by
the second definition. We do not usually worry about this
distinction because in the theories that we are used to dealing
with, counterfactuals typically lie in the state space of the theory.
But the distinction becomes relevant for superdeterministic
theories which may have constraints on state-space that rule
out certain counterfactuals (because otherwise it would imply
internal inconsistency). In some superdeterministic models there
are just no counterfactuals in state space (for an example,
see section 5.2), in some cases counterfactuals are partially
constrained (see section 5.1), in others, large parts of state-space
have an almost zero measure (5.3).

One may debate whether it makes sense to speak of free will
even in the second case since a deterministic theory implies that
the outcome of any action or decision was in principle fixed at
the beginning of the universe. But even adding a random element
(as in quantum mechanics) does not allow human beings to
choose one of several future options, because in this case the
only ambiguities about the future evolution (in the measurement
process) are entirely unaffected by anything to do with human
thought. Clearly, the laws of nature are a constraint that can
prevent us from doing what we want to do. To have free will,
therefore, requires one to use the compatibilist notion of free
will, even if one takes quantum mechanics in its present form as

fundamental. Free will is then merely a reflection of the fact that
no one can tell in advance what decisions we will make.

But this issue with finding a notion of free will that is
compatible with deterministic laws (or even partly random
laws) is not specific to Superdeterminism. It is therefore not an
argument that can be raised against Superdeterminism. Literally
all existing scientific theories suffer from this conundrum.
Besides, it is not good scientific practice to discard a
scientific hypothesis simply because one does not like its
philosophical implications.

Let us look at a simple example to illustrate why one should
not fret about the inability of the experimenter to prepare a state
independently of the detector. Suppose you have two fermions.
The Pauli exclusion principle tells us that it is not possible to put
these two particles into identical states. One could now complain
that this violates the experimenter’s free will, but that would be
silly. The Pauli exclusion principle is a law of nature; it’s just
how the world is. Violations of Statistical Independence, likewise,
merely tell us what states can exist according to the laws of
nature. And the laws of nature, of course, constrain what we can
possibly do.

In summary, raising the issue of free will in the context of
Superdeterminism is a red herring. Superdeterminism does not
make it any more or less difficult to reconcile our intuitive notion
of free will with the laws of nature than is the case for the laws we
have been dealing with for hundreds of years already.

4.2. The Conspiracy Argument
This argument has been made in a variety of ways, oftentimes
polemically. Its most rigorous version can be summarized as
follows. In any deterministic theory one can take a measurement
outcome and, by using the law of time-evolution, calculate the
initial state that would have given rise to this outcome. One
can then postulate that since this initial state gave rise to the
observation, we have somehow “explained” the observation. If
one were to accept this as a valid argument, this would seemingly
invalidate the science method in general. For then, whenever we
observe any kind of regularity—say a correlation between X-ray
exposure and cancer—we could say it can be explained simply
because the initial state happened to be what it was.

The more polemic version of this is that in a
superdeterministic theory, the universe must have been “just so”
in order that the decisions of experimenters happen to reproduce
the predictions of quantum mechanics every single time. Here,
the term “just so” is invoked to emphasize that this seems
intuitively extremely unlikely and therefore Superdeterminism
relies on an implausible “conspiracy” of initial conditions that
does not actually explain anything.

To address this objection, let us first define “scientific
explanation” concretely to mean that the theory allows one to
calculatemeasurement outcomes in a way that is computationally
simpler than just collecting the data. This notion of “scientific
explanation” may be too maths-centric to carry over to other
disciplines, but will serve well for physics. The criticism leveled at
Superdeterminism is, then, that if one were to accept explaining
an observation merely by pointing out that an initial state and
a deterministic law exists, then one would have to put all the
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information about the observation already in the initial state,
meaning the theory is not capable of providing a scientific
explanation in the above defined sense.

One problem with this argument is that just by knowing a
theory violates Statistical Independence one cannot tell anything
about its explanatory power. For this one needs to study a
concrete model. One needs to know how much information one
has to put into the initial state and the evolution law to find out
whether a theory is or is not predictive.

Let us look at a specific example from Bell himself [14]. Bell
himself realized that free will was a red herring (see section 4.1)
and for that reason his arguments against Superdeterminism are
framed in a completely deterministic setting. He imagines that
the measurement setting (a = 0 or a = 1) is determined by a
pseudo-random number generator whose output is exquisitely
sensitive to its input x in the sense that the setting depends on
the parity of the millionth digit in the decimal expansion of x.
Bell concludes that whilst the millionth digit indeed determines
the measurement settings, it seems implausible to imagine that
it systematically influences, or is systematically influenced by,
anything else in the universe—the particle’s hidden variables
in particular.

Of course “it seems implausible” is not a convincing argument,
as Bell himself conceded, writing [14]:

Of course it might be that these reasonable ideas about physical

randomizers are just wrong—for the purpose at hand. A theory

may appear in which such conspiracies inevitably occur, and

these conspiracies may then seem more digestible than the non-

localities of other theories. When that theory is announced I will

not refuse to listen, either on methodological or other grounds.

But Bell’s intuition rests on the assumption that because worlds
which differ only in the millionth digits of the random numbers
are very similar to each other, they are necessarily “close” to
each other. Such statements therefore implicitly depend on the
notion of a distance in state-space. We intuitively tend to assume
distance measures are Euclidean, but this does not need to be so
in state-space.

Such conspiracy arguments are also often phrased as worries
about the need to “fine-tune”—i.e., choose very precisely—the
initial conditions (see Wood and Spekkens [15] for a quantifiable
definition). The reference to fine-tuning, however, is misleading.
There need be nothing a priori unscientific about a fine-tuned
theory [16]. A fine-tuned theorymay be unscientific if one needs
to put a lot of information into the initial condition thereby
losing explanatory power. But this does not necessarily have to
be the case. In fact, according to currently accepted terminology
both the standard model of particle physics and the concordance
model of cosmology are “fine-tuned” despite arguably being
scientifically useful.

One way to avoid that fine-tuning leads to a lack of
explanatory power is to find a measure that can be defined in
simple terms and that explains which states are “close” to each
other and/or which are distant and have measure zero, i.e., are
just forbidden (see Almada et al. [17] for an example of how this
negates the problem of Wood and Spekkens [15]).

Bell’s and similar examples that rest on arguments from fine-
tuning (or sensitivity, or conspiracy) all implicitly assume that
there is no simple way to mathematically express the allowed (or
likely) initial states that give rise to the predictions of quantum
mechanics. See also section 7 for further discussion on the notion
of “closeness” in state-space and section 5.1 for an example
of a theory where intuitive Euclidean ideas about closeness of
worlds fail.

But assuming that something is impossible does not prove that
it is impossible. Indeed, it is provable that it is unprovable to show
such theories are unscientific because that is just a rephrasement
of Chaitin’s incompleteness theorem [18]. This theorem, in a
nutshell, says that one can never tell that there is no way to further
reduce the complexity of a string (of numbers). If we interpret
the string as encoding the initial condition, this tells us that we
cannot ever know that there is not some way to write down an
initial state in a simpler way.

This is not to say that we can rest by concluding that we will
never know that a useless theory cannot be made more useful.
Of course, to be considered scientifically viable (not to mention
interesting) a superdeterministic theory must actually have an
explanatory formulation. We merely want to emphasize that
the question whether the theory is scientific cannot be decided
merely by pointing out that it violates Statistical Independence.

4.3. The Cosmic Bell Test and the BIG Bell
Test
In the Cosmic Bell Test [11], measurement settings are
determined by the precise wavelength of light from distant
quasars, sources which were causally disconnected at the time
the photons were emitted. It is without doubt a remarkable
experimental feat, but this (and similar) experiments do not—
cannot—rule out Superdeterminism; they merely rule out that
the observed correlations in Bell-type tests were locally caused by
events in the distant past. It is, however, clear from the derivation
of Bell’s theorem that violations of Bell’s inequality cannot tell us
whether Statistical Independence was violated. Violations of Bell’s
inequality can only tell us that at least one of the assumptions of
the theorem was violated.

The belief that such tests tell us something about (the
implausibility of) Superdeterminism goes back, once again, to the
idea that a state which is intuitively “close” to the one realized in
nature (eg, the wavelength of the light from the distant quasar was
a little different, all else equal) is allowed by the laws of nature and
likely to happen. However, in a superdeterministic theory what
seems intuitively like a small change will generically result in an
extremely unlikely state; that’s the whole point. For example, in
a superdeterministic theory, a physically possible counterfactual
state in which the wave-length of the photon was slightly different
may also require changes elsewhere on the past hypersurface,
thereby resulting in the experimenter’s decision to not use the
quasar’s light to begin with.

Similar considerations apply to all other Bell-type tests [19, 20]
that attempt to close the freedom-of-choice loophole, like the BIG
Bell test [21]. This experiment used input from 100,000 human
participants playing a video game to choose detector settings,
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thereby purportedly “closing the “freedom-of-choice loophole”
(the possibility that the setting choices are influenced by “hidden
variables” to correlate with the particle properties)”. Needless to
say, the experiment shows nothing of that type; one cannot prove
freedom of choice by assuming freedom of choice.

In fact, the details of these experiments do not matter all
that much. One merely has to note that measuring violations of
Bell’s inequality, no matter how entertaining the experimental
setup, cannot tell us which of the assumptions to the theorem
were violated.

4.4. The Tobacco Company Syndrome
Finally, let us turn to the claim that the assumption of Statistical
Independence in Bell’s theorem can be justified by what it
would imply in classical physics. This argument is frequently
put forward with the example of using a randomized trial
to demonstrate that lung cancer is linked to smoking. If one
were to allow violations of Statistical Independence in Bell-type
experiments, so the argument goes, tobacco companies could
claim that any observed correlation between lung cancer and
smoking was due to a correlation between the randomization and
the measured variable (i.e., the incidence of cancer). We do not
know where this argument originated, but here are two examples:

“It is like a shill for the tobacco industry first saying that smoking

does not cause cancer, rather there is a common cause that

both predisposes one to want to smoke and also predisposes one

to get cancer (this is already pretty desperate), but then when

confronted with randomized experiments on mice, where the

mice did not choose whether or not to smoke, going on to say

that the coin flips (or whatever) somehow always put the mice

already disposed to get lung cancer into the experimental group

and those not disposed into the control. This is completely and

totally unscientific, and it is an embarrassment that any scientists

would take such a claim seriously.”—TimMaudlin [22]

“I think this assumption [of Statistical Independence] is necessary

to even do science, because if it were not possible to probe a

physical system independently of its state, we couldn’t hope to be

able to learn what its actual state is. It would be like trying to find

a correlation between smoking and cancer when your sample of

patients is chosen by a tobacco company.”—Mateus Araújo [23]

One mistake in the argument against Superdetermism is
the claim that theories without the assumption of Statistical
Independence are unscientific because they are necessarily
void of explanatory power. We already addressed this in
subsection 4.2. However, the tobacco company analogy brings in
a second mistake, which is the idea that we can infer from the
observation that Statistical Independence is useful to understand
the properties of classical systems, that it must also hold for
quantum systems. This inference is clearly unjustified; the whole
reason we are having this discussion is that classical physics is not
sufficient to describe the systems we are considering.

We have already mentioned an example of how our classical
intuition can fail in the quantum case. This example provides
a further illustration. For the tobacco trial, we have no reason
to think that multiple realizations of the randomization are

impossible. For example, two different randomly drawn sub-
ensembles of volunteers (say the first drawn in January, the
second in February) can be expected to be statistically equivalent.
It is only when our theoretical interpretation of an experiment
requires us to consider counterfactual worlds, that differences
between classical and quantum theories can emerge.

It is further important to note that the assumption
of Statistical Independence does not require ensembles of
different, actually occurring experiments (as opposed to virtual
experiments that only appear in the mathematics) to have
different statistical properties. Consider two ensembles of
quantum particles, each measured with different measurement
settings (say the first in January, the second in February). Since
there is no reference to counterfactuals in this description,
we cannot infer that the statistical properties of the hidden
variables are any different in the January and February ensembles,
even in a theory of quantum physics which violates Statistical
Independence. At this level, therefore, there is no difference
between the quantum and classical example. In a theory that
violates Statistical Independence, one merely cannot infer that
if February’s ensemble of particles had been measured with
January’s measurement settings, the result would have been
statistically identical. By contrast, if February’s volunteers had
been tested in January, we would, by classical theory, have
expected statistically identical results. In this sense, the tobacco
trial analogy is misleading because it raises the impression that
the assumption of Statistical Independence is more outlandish
than it really is.

5. HOW?

The history of Superdeterminism is quickly told because the
topic never received much attention. Already Bell realized that if
one observes violations of his inequality, this does not rule out
local3, deterministic hidden variable models because Statistical
Independence may be violated [14]. It was later shown by Brans
that if Statistical Independence is violated, any Bell-nonlocal
distribution of measurement outcomes can be obtained in EPR-
type experiments [24]. It has since been repeatedly demonstrated
that it requires only minute violations of Statistical Independence
to reproduce the predictions of quantum mechanics locally and
deterministically [25–27].

The scientific literature contains a number of toy models that
provide explicit examples for how such violations of Statistical
Independence can reproduce quantum mechanics [24, 28, 29]
which have been reviewed in Hall [9] (section 4.2). Toy models
which violate Statistical Independence through future input
dependence [30–33] have recently been surveyed inWharton and
Argaman [5] (section 6). We will here not go through these toy
models again, but instead briefly introduce existing approaches
to an underlying theory that give rise to Superdeterminism.

These approaches, needless to say, are still in their infancy.
They leave open many questions and it might well turn out that
none of them is the right answer. We do believe, however, that

3In the sense of Continuity of Action, see section 3.
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they present a first step on the way toward a satisfactory solution
of the measurement problem.

5.1. Invariant Set Theory
Invariant Set Theory (IST) [34, 35] arose from an earlier
realization [36] that, suitably formulated, non-linear dynamics
could provide the basis for a deterministic theory of quantum
physics which was not counterfactually complete and therefore
could violate Statistical Independence thus avoiding non-locality.
More specifically, IST is a deterministic theory based on the
assumption that the laws of physics at their most primitive derive
from the geometry of a fractal set of trajectories, or histories,
IU , in state space. States of physical reality—the space-time that
comprises our universe and the processes which occur in space-
time—are those and only those belonging to IU ; other states in
the Euclidean space in which IU is embedded, do not correspond
to states of physical reality. Dynamical evolution maps points on
IU to other points on IU , whence IU is invariant under dynamical
laws of evolution. In this theory, the basic element of IU is a fractal
helix (in the sense that each trajectory in the helix, like a strand of
rope, is itself a helix of finer-scale trajectories).

The link to quantummechanics is made through the statistical
properties of the helices which can be represented by complex
Hilbert vectors and tensor products, where squared amplitudes
and complex phases of the Hilbert vectors are necessarily
described by rational numbers.

IST provides some possible understanding of a key difference
between the Liouville equation and the von Neumann-Dirac
equation: the factor ih̄. Planck’s constant has the dimension of
state space (momentum times position) and hence provides an
inherent size to any geometric structure in state space, such as IU .
This inherent size is provided by the radius of a helix of IU . Based
on the U(1) ∼ SO(2) isomorphism, the square root of minus one
is consistent with a rotational symmetry of the helical nature of
the trajectories of IU .

Since it is formulated in terms of complex Hilbert states, IST
violates Bell inequalities exactly as does quantum theory. It does
this not only because Statistical Independence is violated (the
fractal gaps in IU correspond to states of the world associated
with certain counterfactual measurement settings, which by
construction are not ontic), it also violates the Factorization
assumption of Bell’s theorem and hence is Bell-nonlocal. Because
the set of helices has fractal structure, the p-adic metric, rather
than Euclidean metric is a natural measure of distance in
state space.

Importantly, violation of Statistical Independence and
Factorization only occur when one considers points which do
not lie on IU . From a Hilbert state perspective, they are associated
with Hilbert States where either squared amplitudes or complex
phases of Hilbert States cannot be described by rational
numbers. Hence, the violations of Statistical Independence and
Factorization in IST arise because certain putative counterfactual
states are mathematically undefined; without these violations
there would be mathematical inconsistency. Importantly,
such counterfactual states do not correspond to physically
possible processes in space-time. If Statistical Independence
and Factorization are weakened to only allow processes which

are expressible in space time and hence are physically possible
(“Statistical Independence on IU” and “Factorization on IU”),
then IST is consistent with both free choice and locality.

In IST, the measurement process is described by state-space
trajectories that cluster together near detector eigenstates. In this
approach, the measurement problem has been largely nullified
because the statistical state space of the trajectory segments
that lead to those detector eigenstates is no longer the whole
Hilbert space, but instead the space whose elements have finite
squared amplitudes and complex phases. In this sense, IST does
not “complete” quantum theory. Rather, it is a replacement for
quantum theory, even at the pre-measurement unitary stage
of evolution.

The fractal attractor which defines IU can be considered a
future asymptotic property of some more classical like governing
differential equations of motion: start from any point in state
space and the trajectory will converge onto it only as t → ∞. The
invariant set is therefore operationally incomputable in much the
same way that the event horizon of a black hole is.

5.2. Cellular Automata
The Cellular Automata approach to Superdeterminism [37] is a
model that employs a time-evolution which proceeds in discrete
time-steps on a grid. It uses a language similar to quantum
mechanics, in that the state-space is spanned by vectors in
a Hilbert-space. These vectors can, as usual, be brought into
superpositions. However, it is then postulated that states which
result in superpositions that we do not observe are not ontic.
It follows from this that an initial state which gave rise to an
unobserved outcome was not ontic either. A variety of simple toy
models have been discussed in ’t Hooft [37].

In this approach there is strictly speaking only one ontic state
in the theory, which is the state that the universe is in. The
requirement that the final state must correspond to the classical
reality which we observe induces constraints at earlier times.
These constraints give rise to non-local correlations which result
in a violation of Statistical Independence.

The challenge for this approach is to render this theory
predictive. As was noted in ’t Hooft [37], selecting the ontological
state requires a measure for the initial states of the universe:

“Bell’s theorem requires more hidden assumptions than usually

thought: The quantum theory only contradicts the classical one if

we assume that the ‘counterfactual modification’ does not violate

the laws of thermodynamics. In our models, we must assume that

it does.” (emphasis original)

It is presently unclear from where such a thermodynamic-like
measure comes.

5.3. Future-Bounded Path Integrals
The path integral approach to Superdeterminism [38] rests on
the observation that the Feynman path integral has a future input
dependence already, which is the upper time of the integration.
However, in the usual path integral of quantum mechanics (and,
likewise, of quantum field theory), one does not evaluate what is
the optimal future state that the system can evolve into. Instead,
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one posits that all of the future states are realized, which results
in a merely probabilistic prediction.

The idea is then to take a modified path integral for the
combined system of detector and prepared state and posit that
in the underlying theory the combined system evolves along
merely one possible path in state space that optimizes a suitable,
to-be-defined, function. This function must have the property
that initial states which evolve into final states containing
superpositions of detector eigenstate states are disfavored, in the
sense that they do not optimize the function. Instead, the optimal
path that the system will chose is one that ends up in states which
are macroscopically classical. One gets back normal quantum
mechanics by averaging over initial states of the detector.

This approach solves the measurement problem because
the system does deterministically evolve into one particular
measurement outcome. Exactly which outcome is determined by
the degrees of freedom of the detector that serve as the “hidden
variables.” Since it is generically impossible to exactly know all
the detector’s degrees of freedom, quantum mechanics can only
make probabilistic predictions.

The challenge of this approach is to find a suitable function
that actually has this behavior.

6. EXPERIMENTAL TEST

It is clear that the above discussed theoretical approaches to
Superdeterminism require more work. However, such theories
have general properties that, with some mild assumptions, tell
us what type of experiment has the potential to reveal deviations
from quantum mechanics.

To see this, we first note that typical experiments in
the foundations of quantum mechanics probe physics at low
energies, usually in the range of atomic physics. It is, however,
difficult to come up with any model that equips known particles
with new degrees of freedom accessible at such low energies. The
reason is that such degrees of freedom would change the phase-
space of standard model particles. Had they been accessible with
any experiment done so far, we would have seen deviations from
the predictions of the standard model, which has not happened.

It is well possible to equip standard model particles with
new degrees of freedom if those are only resolvable at high
energies (examples abound). But in this case the new degrees of
freedom do not help us with solving the measurement problem
exactly because we assumed that they do not play a role at the
relevant energies.

If one does not want to give up on this separation of scales,
this leaves the possibility that the hidden variables are already
known degrees of freedom of particles which do not comprise the
prepared state. Moreover, they are only those degrees of freedom
that are resolvable at the energy scales under consideration.

The next thing we note is that all presently known
deterministic, local theories have the property that states that
were close together at an initial time will remain close for
some while. In a superdeterministic theory, states with different
measurement settings are distant in state-space, but changes to
the hidden variables that do not also change the measurement

setting merely result in different measurement outcomes and
therefore correspond to states close to each other.

Since the theory is deterministic, this tells us that if we manage
to create a time-sequence of initial states similar to each other,
then the measurement outcomes should also be similar. This
means concretely that rather than fulfilling the Born-rule, such an
experiment would reveal time-correlations in the measurement
outcomes. The easiest way to understand this is to keep in mind
that if we were able to exactly reproduce the initial state, then
in a superdeterministic theory the measurement outcome would
have to be the same each time, in conflict with the predictions of
quantum mechanics.

This raises the question how similar the initial states have
to be for this to be observable. Unfortunately, this is not a
question which can be answered in generality; for this one would
need a theory to make the corresponding calculation. However,
keeping in mind that the simplest case of hidden variables are
the degrees of freedom of other particles and that the theory
is local in the way we are used to it, the obvious thing to
try is minimizing changes of the degrees of freedom of the
detecting device. Of course one cannot entirely freeze a detector’s
degrees of freedom, for then it could no longer detect something.
But one can at least try to prevent non-essential changes, i.e.,
reduce noise.

This means concretely that one should make measurements
on states prepared as identically as possible with devices as small
and cool as possible in time-increments as small as possible.

This consideration does not change much if one believes
the hidden variables are properties of the particle after all.
In this case, however, the problem is that preparing almost
identical initial states is impossible since we do not know
how to reproduce the particle’s hidden variables. One can
then try to make repeated measurements of non-commuting
observables on the same states, as previously laid out in
Hossenfelder [39].

The distinction between the predictions of quantum
mechanics and the predictions of the underlying,
superdeterministic theory is not unlike the distinction
between climate predictions and weather forecasts. So far,
with quantum mechanics, we have made predictions for
long-term averages. But even though we are in both cases
dealing with a non-linear and partly chaotic system, we can
in addition also make short-term predictions, although with
limited accuracy. The experiment proposed here amounts
to recording short-term trends and examining the data for
regularities that, according to quantum mechanics alone, should
not exist.

Needless to say, the obvious solution may not be the right one
and testing Superdeterminism may be more complicated than
that. But it seems reasonable to start with the simplest and most
general possibility before turning to model-specific predictions.

7. DISCUSSION

The reader may have noticed a running theme in our discussion
of Superdeterminism, which is that objections raised against it are
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deeply rooted in intuition that is, ultimately, based on the classical
physics we experience with our own senses.

But these intuitions can mislead us. For an illustration,
consider Penrose’s impossible triangle (see Figure 2, bottom).
If we see a two-dimensional drawing of the triangle, we
implicitly assume that any two arms come closer as they
approach a vertex. This raises the impression that the object
is impossible to realize in 3-dimensional space. However,
the supposedly impossible triangle can be built in reality.
The object shown in Figure 2, top, seen from the right
direction, reproduces what is shown in the 2-dimensional
drawing. From any other direction, however, it becomes
clear that our intuition has led us to improperly assume
two arms necessarily become close as they approach a
common vertex.

We believe that the uneasiness we bring to considering
Superdeterminism stems from a similar intuitive, but ultimately
wrong, idea of closeness. In this case, however, we are not talking
about closeness in position space but about closeness in the
state-space of a theory.

Faced with trying to quantify the “distance” between two
possible states of the universe our intuition is to assume that it
can be measured in state space by the same Euclidean metric
we use to measure distance in physical space. This indeed is the
basis of Lewis’s celebrated theory of causality by counterfactuals:
of two possible counterfactual worlds, the one that resembles
reality more closely is presumed closer to reality [40]. But is
this really so? In number theory there is an alternative to the
class of Euclidean metrics (and indeed according to Ostrowsky’s
theorem it is the only alternative): the p-adic metric [41]. The
p-adic metric is to fractal geometry as the Euclidean metric is
to Euclidean geometry. The details do not need to concern us
here, let us merely note that two points that are close according
to the Euclidean metric may be far away according to the p-
adic metric.

This means from the perspective of the p-adic metric, the
distance between the actual world where the parity of the
millionth digit of the input to Bell’s pseudo-random number
generator was, say, 0, and the counterfactual world where
the parity was a 1 could be very large, even though it is
small using an Euclidean measure of distance. A theory that
seems fine-tuned with respect to the latter metric would
not be fine-tuned with respect to the former metric. Like
with Penrose’s triangle, the seemingly impossible becomes
understandable if we are prepared to modify our intuition
about distance.

But our intention here was not merely to draw attention
to how classical intuition may have prevented us from
solving the measurement problem. Resolving the measurement
problem with Superdeterminism may open the door to solving
further problems in the foundations of physics. As has
been previously noted [42], our failure to find a consistent
quantum theory of gravity may be due, not to our lacking
understanding of gravity, but to our lacking understanding
of quantization. The same problem may be behind some
of the puzzles raised by the cosmological constant. It is

FIGURE 2 | Penrose’s “impossible” triangle, placed in front of a mirror, turns

out to be not so impossible.

further a long-standing conjecture that dark matter is not a
new type of particle but instead due to a modification of
gravity. We know from observations that such a modification
of gravity is parametrically linked to dark energy [43]. The
reasons for this connection are currently not well-understood,
but completing quantum mechanics, or replacing it with a
more fundamental theory, might well be the key to solving
these problems.

Finally, let us point out that the technological applications
of quantum theory become more numerous by the day.
Should we discover that quantum theory is not fundamentally
random, should we succeed in developing a theory that
makes predictions beyond the probabilistic predictions
of quantum mechanics, this would likely also result in
technological breakthroughs.

8. CONCLUSION

We have argued here that quantum mechanics is an
incomplete theory and completing it, or replacing it with
a more fundamental theory, will necessarily require us to
accept violations of Statistical Independence, an assumption
that is sometimes also, misleadingly, referred to as Free
Choice. We have explained why objections to theories with
this property, commonly known as superdeterministic,
are ill-founded.
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Since the middle of the past century, progress in the
foundations of physics has been driven by going to shorter and
shorter distances, or higher and higher energies, respectively. But
the next step forward might be in an entirely different direction,
it might come from finding a theory that does not require us to
hand-draw a line between microscopic and macroscopic reality.
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The Bell Theorem Revisited:
Geometric Phases in Gauge Theories
David H. Oaknin*
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The Bell theorem stands as an insuperable roadblock in the path to a very desired

intuitive solution of the EPR paradox and, hence, it lies at the core of the current lack

of a clear interpretation of the quantum formalism. The theorem states through an

experimentally testable inequality that the predictions of quantummechanics for the Bell’s

polarization states of two entangled particles cannot be reproduced by any statistical

model of hidden variables that shares certain intuitive features. In this paper we show,

however, that the proof of the Bell theorem involves a subtle, though crucial, assumption

that is not required by fundamental physical principles and, hence, it is not necessarily

fulfilled in the experimental setup that tests the inequality. Indeed, this assumption can

neither be properly implemented within the standard framework of quantum mechanics.

Namely, the proof of the theorem assumes that there exists a preferred absolute frame of

reference, supposedly provided by the lab, which enables to compare the orientation of

the polarization measurement devices for successive realizations of the experiment and,

hence, to define jointly their response functions over the space of hypothetical hidden

configurations for all their possible alternative settings. We notice, however, that only

the relative orientation between the two measurement devices in every single realization

of the experiment is a properly defined physical degree of freedom, while their global

rigid orientation is a spurious gauge degree of freedom. Hence, the preferred frame

of reference required by the proof of the Bell theorem does not necessarily exist. In

fact, it cannot exist in models in which the gauge symmetry of the experimental setup

under global rigid rotations of the two detectors is spontaneously broken by the hidden

configurations of the pair of entangled particles and a non-zero geometric phase appears

under some cyclic gauge symmetry transformations. Following this observation, we build

an explicitly local model of hidden variables that reproduces the predictions of quantum

mechanics for the Bell’s states.

Keywords: Quantum Mechanics, EPR paradox, Bell’s inequality, hidden variables, locality, rotational symmetry,

gauge symmetries, spontaneous symmetry breaking

1. INTRODUCTION

The Bell theorem is one of the fundamental theorems upon which relies the widespread belief
that quantum mechanics is the ultimate mathematical framework within which the hypothetical
final theory of the fundamental building blocks of Nature and their interactions should be
formulated. The theorem states through an experimentally testable inequality (the Bell inequality)
that statistical models of hidden variables that share certain intuitive features cannot reproduce the
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predictions of quantummechanics for the entangled polarization
states of two particles (Bell’s states) [1, 2]. These predictions
have been confirmed beyond doubt by very carefully designed
experiments [3–12].

In these experiments a source emits pairs of particles whose
polarizations are arranged in a Bell’s entangled state:

|98〉 =
1√
2

(

| ↑〉(A) | ↓〉(B) − ei8 | ↓〉(A) | ↑〉(B)
)

, (1)

where {| ↑〉, | ↓〉}(A,B) are eigenstates of Pauli operators σ
(A,B)
Z

along locally defined Z-axes for each one of the two particles.
The two emitted particles travel off the source in opposite
directions toward two widely separated detectors, which test their
polarizations. The orientation of each one of the detectors can
be freely and independently set along any arbitrary direction
in the XY-plane perpendicular to the locally defined Z-axis.
Upon detection each particle causes a binary response of
its detector, either +1 or −1. Thus, each pair of entangled
particles produces an outcome in the space of possible events
P ≡

{

(−1,−1), (−1,+1), (+1,−1), (+1,+1)
}

. We refer to each
detected pair as a single realization of the experiment.

Quantum mechanics predicts that the statistical correlation
between the binary outcomes of the two detectors in a long
sequence of realizations of the experiment is given by:

E(1,8) = − cos(1 − 8), (2)

where 1 is the relative angle between the orientations of the two
detectors. In particular, when 1 − 8 = 0 we get that E = −1,
so that all outcomes in the sequence must be either (−1,+1) or

(+1,−1).
The Bell theorem states that prediction (2) cannot be

reproduced by any model of hidden variables that shares certain
intuitive features. In particular, the CHSH version of the theorem
states that for the said generic models of hidden variables the
following inequality is fulfilled for any set of values (11,12, δ)
[13]:

∣

∣E(11)+ E(12)+ E(11 − δ)− E(12 − δ)
∣

∣ ≤ 2. (3)

On the other hand, according to quantum mechanics the
magnitude in the left hand side of the inequality reaches a
maximum value of 2

√
2, known as Tsirelson’s bound [14], for

certain values of 11, 12 and δ— e.g., 11 = −12 = 1
2δ =

π
4 . As it was noted above, carefully designed experiments have
confirmed that the CHSH inequality is violated according to the
predictions of quantummechanics and, therefore, have ruled out
all the generic models of hidden variables constrained by the Bell
inequality (3).

In this paper we show, however, that the generic models of
hidden variables constrained by the Bell theorem all share a
subtle crucial feature that is not necessarily fulfilled in the actual
experimental tests of the Bell inequality. Indeed, the considered
feature cannot be derived from fundamental physical principles
and may even be at odds with the fundamental principle
of relativity. Moreover, this feature neither can be properly

implemented within the standard framework of quantum
mechanics. We follow this observation to explicitly build a local
model of hidden variables that does not share the disputed
feature and, thus, it is capable to reproduce the predictions
of quantum mechanics for the Bell’s polarization states of two
entangled particles.

Our model puts forward for consideration the possibility that
quantum mechanics might not be the ultimate mathematical
framework of fundamental physics. In fact, it is interesting to
notice that the way how our model solves the apparent “non-
locality” associated to entanglement in the standard quantum
formalism is very similar to the way howGeneral Relativity solves
the “non-locality” of Newton’s theory of gravitation: in our model
quantum entanglement is the result of a curved metric in the
space in which the hypothetical hidden variables live.

2. OUTLINE

Any local statistical model of hidden variables that aims to
describe the Bell’s experiment consists of some space S of possible
hidden configurations for the pair of entangled particles, labeled
here as λ ∈ S , together with a well-defined (density of)
probability ρ(λ) for each one of them to occur in every single
realization. The model must also specify well-defined binary

functions s
(A)
�A

(λ) = ±1, s
(B)
�B

(λ) = ±1 to describe the outcomes
that would be obtained at detectors A and B when the pair
of entangled particles occurs in the hidden configuration λ ∈
S and their polarizations are tested along directions �A and
�B, respectively.

The proof of the CHSH inequality (3) involves two well-
defined possible orientations �A and �′

A for the polarization
test of particle A and two well-defined possible orientations
�B and �′

B for the polarization test of particle B, and assumes
that the considered model of hidden variables assigns to each
possible hidden configuration λ ∈ S a 4-tuple of binary values
[

s
(A)
�A

(λ), s
(A)
�′
A
(λ), s

(B)
�B

(λ), s
(B)
�′
B
(λ)

]

∈ {−1,+1}4 to describe the

outcomes that would be obtained in each one of the two detectors
in case that it would be set along each one of its two available
orientations. Hence, it is straightforward to obtain that for any
λ ∈ S ,

s
(A)
�A

(λ) ·
(

s
(B)
�B

(λ)+ s
(B)
�′
B
(λ)

)

+ s
(A)
�′
A
(λ) ·

(

s
(B)
�B

(λ)− s
(B)
�′
B
(λ)

)

= ±2,

(4)

since the first term is non-zero only when s
(B)
�B

(λ) and s
(B)
�′
B
(λ) have

the same sign, while the second term is non-zero only when they
have opposite signs. The CHSH inequality (3) is then obtained
by averaging (4) over the whole space S of all possible hidden
configurations, since

∣

∣

∣

∣

∫

dλ ρ(λ)
{

s
(A)
�A

(λ) ·
(

s
(B)
�B

(λ)+ s
(B)
�′
B
(λ)

)

+ s
(A)
�′
A
(λ) ·

(

s
(B)
�B

(λ)− s
(B)
�′
B
(λ)

)}∣

∣

∣
≤ 2, (5)
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while
∫

dλ ρ(λ) s
(A)
�A

(λ) · s(B)�B
(λ) = E(11), (6)

∫

dλ ρ(λ) s
(A)
�A

(λ) · s(B)
�′
B
(λ) = E(12), (7)

∫

dλ ρ(λ) s
(A)
�′
A
(λ) · s(B)�B

(λ) = E(11 − δ), (8)

∫

dλ ρ(λ) s
(A)
�′
A
(λ) · s(B)

�′
B
(λ) = E(12 − δ). (9)

In this argument the orientations�A,�
′
A,�B, and�′

B seem to be
fixed with respect to some external frame of reference supposedly
provided by the labs. Nonetheless, the data collected in such an
experimental setup could be alternatively analyzed within frames
of reference aligned, for example, with the magnetic axis of the
Sun or the rotational axis of the Galaxy, with respect to which
the orientations of the detectors for different realizations of the
experiment are not fixed anymore. Obviously, the conclusions of
the analysis must remain the same, independently of the chosen
lab frame. Indeed, the proof of the CHSH inequality actually
requires only three well-defined angles, 11 ≡ 6 (�B,�A), 12 ≡
6 (�′

B,�A), and δ ≡ 6 (�′
A,�A), which correspond, respectively,

to the relative orientations of�B,�
′
B, and�′

A with respect to�A,
which serves as a reference direction. The reference direction �A

serves also to define the hidden configuration λ ∈ S of the pair of
entangled particles in every single realization of the experiment,
since the description of a physical state must necessarily be done
with respect to a reference frame. Otherwise, the orientation with
respect to any external lab frame, either the optical table or the
stars in the sky, of this reference direction �A at different single
realizations of the Bell’s experiment is absolutely irrelevant: it is
an spurious gauge degree of freedom, which can be set to zero
(see Figure 1).

The proof of the CHSH inequality, thus, seems
straightforward and unavoidable. Nonetheless, the main
claim of this paper is that this proof, as well as the proofs
of all other versions of the Bell inequality, involve a subtle,
though crucial, implicit assumption that cannot be derived
from fundamental physical principles and, indeed, it might
not be fulfilled in the actual experimental setup that tests the
inequality. Namely, in each realization of a Bell’s experiment the
polarization of each one of the two entangled particles is tested
along a single direction. Hence, the relative orientation 1 of
the two measurement devices in each single realization of the
experiment is a properly defined physical magnitude, which can
be set to values 11, 12, or any other desired value. On the other
hand, the definition of the angle δ that appears in the proof of
the CHSH inequality requires a comparison of the global rigid
orientation of the measurement devices for different realizations
of the Bell’s experiment and, thus, it requires the existence of an
absolute preferred frame of reference with respect to which this
global orientation could be defined. Otherwise, we could choose
the orientation of, say, detector A as the reference direction
for every single realization of the experiment and define the
orientation of the other detector with respect to it, in which case
the proof of the Bell theorem does not necessarily hold as we

shall show later. Obviously, such an absolute preferred frame of
reference would not be needed if the polarization of each one of
the two entangled particles could be tested along two different
directions at once in every single realization of the experiment,
but this is certainly not the case. Similar concerns regarding the
way how different settings of the detectors are compared within
the framework of the Bell theorem and the crucial role that this
comparison plays in the proof of the inequality are also raised
by Hess in [15, 16], and much earlier in a different but related
context in Hess and Philipp [17, 18] and Hess et al. [19].

The said preferred frame of reference needed to prove the
Bell theorem is supposedly provided by the lab. However, the
conditions that a reference frame must fulfill in order to qualify
as a preferred absolute frame are far from obvious and, in any
case, its existence is an overbold assumption whose fulfillment
has never been explored neither theoretically or experimentally.
In fact, the existence of an absolute preferred frame of reference
would be clearly at odds with Galileo’s principle of relativity.
Moreover, it is straightforward to show that this assumption
cannot be properly implemented within the standard framework
of quantummechanics either. The argument goes as follows. The
Bell’s state (1) that describes the pair of entangled particles is
defined in terms of the bases {| ↑〉, | ↓〉}(A,B) of eigenstates

of the Pauli operators σ
(A,B)
Z along locally defined Z-axes for

each one of the particles. Since these eigenstates are defined
up to a global phase, the phase 8 in expression (1) cannot
be properly defined with respect to a lab frame. In order to
properly define it we need to choose an arbitrary setting of the
two detectors that test the polarizations of the pair of entangled
particles as a reference. This reference setting defines parallel
directions along the XY-planes at the sites where each one of the
two particles are detected. Then, the phase 8 of the entangled
state (1) can be properly defined with respect to this reference
setting with the help of the measured correlations between the
outcomes of the two detectors, E = − cos(8). Furthermore,
we can use this reference setting to properly define a relative
rotation 1 of the orientations of the two measurement devices.
On the other hand, since we must use an arbitrary setting of
the detectors as a reference, their absolute orientation is an
unphysical gauge degree of freedom (see Figure 2). In summary,
in order to describe the setting of the measurement devices in
a Bell’s experiment within the standard framework of quantum
mechanics we need to specify both 8 and 1 with respect
to some otherwise arbitrary reference setting of the detectors.
Nonetheless, only their difference 1 − 8 is independent of the
chosen reference setting and, hence, the correlation between the
outcomes of the two devices can only depend on this difference
(2).

In the absence of an absolute preferred frame of reference the
global rigid orientation of the two detectors is, as we have already
noticed before, an spurious (unphysical) gauge degree of freedom
and, hence, the proof of the CHSH inequality (as well as of all
other versions of the Bell inequality) holds only for models in
which the considered hidden configurations are symmetrically
invariant under a rigid rotation of the two measuring devices.
On the other hand, we shall show below that the proof of
the inequality does not necessarily hold when this symmetry
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FIGURE 1 | The orientation of the reference direction �A with respect to the chosen lab frame is a spurious gauge degree of freedom.

is (spontaneously) broken by the hidden configuration of the
entangled particles, since then a non-zero geometric phase may
appear under cyclic gauge transformations. Indeed, the crucial
role of the angle δ in the proof of the CHSH inequality is
an obvious indication that in order to violate it the gauge
symmetry under a rigid rotation of the two detectors must be
spontaneously broken.

In fact, it is obvious from the correlation (2) that the
entanglement of the two particles explicitly breaks the symmetry
of the system under a rotation of the relative orientation of
the two detectors. Since a reference direction is needed for
this symmetry to get broken, the gauge symmetry under a
rigid rotation of the two detectors must be also spontaneously
broken. From this perspective the phase 8 that appears in
the description of the source (1) seems to play the role of a
Goldstone mode associated to the spontaneously broken gauge
symmetry, that is, the phase 8 appears instead of the spurious
gauge degree of freedom δ that would describe the global rigid
orientation of the two detectors. Under these circumstances, it is
not possible to compare different settings of the detectors with
respect to an external lab frame of reference: they can only be
compared with respect to a frame in which they all share the
same preferred direction, e.g., the reference frame set by the
orientation of one of the detectors. This requirement can be
explained as follows.

In the proof of the CHSH inequality it is implicitly
assumed, as we have already noticed above, that there exists
a preferred frame of reference, which defines a set of
coordinates λ ∈ S over the space S of all possible hidden
configurations that can be used to describe the response
function of each one of the two detectors in each one of its
two available orientations (defined with respect to the said
preferred frame). Above we denoted these response functions as

s
(A)
�A

(λ), s
(A)
�′
A
(λ), s

(B)
�B

(λ), s
(B)
�′
B
(λ). Nonetheless, in general, we should

allow for each one of the two detectors to define its proper set
of coordinates over the space S . Thus, for a given setting of the
detectors we shall denote as λA and λB the sets of coordinates
associated to detector A and detector B, respectively, so that their
responses would be given as s(λA) and s(λB) by some universal
function s(·) of the locally defined coordinate of the hidden
configuration. Since these two sets of coordinates parameterize
the same space of hidden configurations S there must exist some
invertible transformation that relates them:

λB = −L(λA; 1 − 8), (10)

which may depend parametrically on the relative orientation
1−8 between the two detectors. This transformationmust fulfill
the constraint

Frontiers in Physics | www.frontiersin.org 4 May 2020 | Volume 8 | Article 14235

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Oaknin The Bell Theorem Revisited

dλA ρ(λA) = dλB ρ(λB), (11)

in order to guarantee that the probability of every hidden
configuration to occur remains invariant under a change of
coordinates, while the (density of) probability ρ(·) is functionally
invariant for both sets of coordinates. However, these constraints
do not forbid the possibility that the set of coordinates
accumulates a non-zero geometric phase α 6= 0 through certain
cyclic gauge transformations:

(

−L1̄2

)

◦
(

−L1̄2−δ̄

)

◦
(

−L1̄1−δ̄

)

◦
(

−L1̄1

)

6= I, (12)

In such a case there does not exist a single set of coordinates
that can be used to define the response functions of each one of
the two detectors in its two available orientations (defined with
respect to an external frame), as required by the proof of the
inequality (3). Therefore, in order to compare the four different
experiments involved in the CHSH inequality we must choose
the orientation of one of the detectors as a reference direction,
as we do below in (13), so that they all may be described within
a common set of coordinates. The appearance of a non-zero
geometric phase under a cyclic transformation is a well-known
phenomena in physical models involving gauge symmetries [20]
and, therefore, we should not rule out the possibility that it also
occurs in models of hidden variables for the Bell’s states. The Bell
theorem, however, cannot account for such models.

Following these observations we were able to explicitly build a
local model of hidden variables that reproduces the predictions
of quantum mechanics for the Bell polarization states. In our
model the hidden configurations of the pair of entangled
particles are described by a pointer, which sets an arbitrarily
oriented preferred direction and, thus, spontaneously breaks
the symmetry of the setup under rigid rotations of the two
detectors. As we have just noticed, and we shall show later
on in further detail, in order to compare different realizations
of the experiment within the framework of such a model we
must choose a common reference direction, which can be
either the orientation of the hidden configuration of the pair of
entangled particles or, alternatively, the orientation of one of the
detectors, say, detector A. Since the former may not be directly
experimentally accessible, we are left only with the latter option.
Thus, in such a model we only need to specify the binary values
for s(λA), s(λB), s(λ

′
B), s(λ

′′
B), and s(λ′′′B ) for each possible hidden

configuration λA ∈ S of the pair of entangled particles, where
λB = −L(λA;11), λ′B = −L(λA;12), λ′′B = −L(λA;11 − δ),
λ′′′B = −L(λA;12 − δ). It is then straightforward to notice that
the magnitude

s(λA) ·
(

s(λB) + s(λ′B) + s(λ′′B) − s(λ′′′B )
)

, (13)

which comes instead of (4), can take values out of the interval

[−2, 2]. Hence, these models are not constrained by the CHSH
inequality (3). A simplified version of these arguments is
presented in Figure 3 with the help of a toy model.

FIGURE 2 | Two descriptions of the experimental setup required for testing

the Bell inequality. In the description above the lab frame is taken to be fixed,

while in the description below the orientation of detector A is taken to be fixed.

The relative angle between the two detectors is set at four possible values 11,

12, 11 − δ, and 12 − δ. When considering models in which the hypothetical

hidden configurations of the pairs of entangled particles spontaneously break

the symmetry under rigid rotations of the orientations of the two measurement

devices, only the latter choice allows to properly compare the four different

settings.

These arguments can be stated in more abstract terms
as follows. Quantum predictions for the Bell experiment are
commonly described as a set of conditional probabilities
p(a, b|A,B), where a = ±1 and b = ±1 are the two possible
outcomes at each one of the two detectors and A = ±1 and
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FIGURE 3 | Two closely related, though intrinsically different, random games:

the game on the left hand side is constrained by the Bell inequality, while the

one on the right hand side is not necessarily constrained by the inequality. In

both games we have reference unit vectors, labeled, respectively as Ea, Eb, and
Ec, drawn at each one of the vertices, labeled as A, B, and C, of a triangle. In

the game on the left the triangle is drawn on a plane surface and the reference

unit vectors are contained within the plane, while in the game on the right the

“triangle” is defined on the surface of a sphere by segments of three great

circles and the three reference unit vectors lay within the corresponding

tangent planes. Two copies of a randomly oriented unit vector Eλ are generated

at random at the center of one of the three segments of the triangle with

density of probability ρ(Eλ), and detected, respectively, at the two detectors

located at the ends of the segment. In the game on the left the vector Eλ is

contained within the plane surface, while in the game on the right the vector Eλ
is tangent to the sphere. The binary responses of the detectors are locally

defined by parallelly transporting the unit vector Eλ along the segment of the

triangle to its end, and comparing its orientation to the orientation of the

corresponding reference unit vector: A(Ea, Eλ) = sign(Ea · Eλ), B(Eb, Eλ) = sign(Eb · Eλ),
C(Ec, Eλ) = sign(Ec · Eλ). It is then straightforward to prove the Bell inequality for the

game on the left, since for any settings Ea, Eb, Ec and any random vector Eλ the

following equality holds:
∣

∣

∣
A(Ea, Eλ) · B(Eb, Eλ)+ A(Ea, Eλ) · C(Ec, Eλ)

∣

∣

∣
= 1+ B(Eb, Eλ) · C(Ec, Eλ). Therefore, after

integrating over the whole space of possible hidden configurations:
∣

∣

∣

∫

dEλ ρ(Eλ)
[

A(Ea, Eλ) · B(Eb, Eλ)+ A(Ea, Eλ) · C(Ec, Eλ)
]
∣

∣

∣
≤

∫

dEλ ρ(Eλ)
∣

∣

∣
A(Ea, Eλ) · B(Eb, Eλ)+ A(Ea, Eλ) · C(Ec, Eλ)

∣

∣

∣
=

∫

dEλ ρ(Eλ)
∣

∣

∣
A(Ea, Eλ) · B(Eb, Eλ)+ A(Ea, Eλ) · B(Eb, Eλ) · B(Eb, Eλ) · C(Ec, Eλ)

∣

∣

∣
=

1+
∫

dEλ ρ(Eλ) B(Eb, Eλ) · C(Ec, Eλ), and therefore,
∣

∣

∣
EA,B(Ea, Eb)+ EA,C(Ea, Ec)

∣

∣

∣
≤ 1+ EB,C(Eb, Ec). This proof, nonetheless, does not hold

for the random game on the right hand side, since the orientation of a vector Eλ
parallelly transported along the closed contour of the triangle ABC gets rotated

by a geometric phase α due to the curvature of the sphere. In fact, in the

game on the right the three bipartite correlations are constrained by the

inequality
∣

∣

∣
EA,B(Ea, Eb)+ EA,C(Ea, Ec)

∣

∣

∣
≤ 1+ EB,C(Eb, R̂αEc), where R̂αEc denotes the

rotation of vector Ec by an angle α.

B = ±1 describe two possible choices for the setting of each
one of the two detectors. It is then proven that these conditional
probabilities cannot be obtained in terms of a local model of
hidden variables, defined by its configuration space λ ∈ S , its
density of probability ρ(λ) and its local response functions a =
f (λ,A), b = f (λ,B) [2].

This statement can be clearly illustrated with the help of
the toy model described in Table 1 [21], where conditional
probabilities for each one of the four possible results of an
experiment with two binary outcomes a, b = ±1 (columns)
are given for each one of four possible settings, defined by

TABLE 1 | Conditional probabilities for a toy model with two binary inputs and two

binary outcomes that cannot be reproduced by a realistic and local underlying

theory [21].

Outcome

setting

a = +1

b = +1

a = +1

b = −1

a = −1

b = +1

a = −1

b = −1

A = +1

B = +1
p1 0 0 1− p1

A = +1

B = −1
p2 0 0 1− p2

A = −1

B = +1
p3 0 0 1− p3

A = −1

B = −1
0 p4 1− p4 0

TABLE 2 | Conditional probabilities for a toy model with a single input with four

possible values and two binary outcomes.

Outcome

setting

a = +1

b = +1

a = +1

b = −1

a = −1

b = +1

a = −1

b = −1

D = 1 p1 0 0 1− p1

D = 2 p2 0 0 1− p2

D = 3 p3 0 0 1− p3

D = 4 0 p4 1− p4 0

They can be reproduced by an underlying theory.

two independent binary inputs A,B = ±1 (rows). For these
probabilities to be properly defined we require that p1, p2, p3, p4 ∈
[0, 1]. It can be readily checked that for each set of input
values (rows) the sum of the probabilities for all possible
results of the experiment (columns) equals 1. These conditional
probabilities, however, cannot be obtained within the framework
of an underlying local model of hidden variables: the conditional
probabilities listed in the first three rows would imply a = b, that
is, the outcomes of the two detectors in any of their four possible
settings must have the same sign, which is obviously inconsistent
with the conditional probabilities listed in the fourth row.

Nonetheless, it is straightforward to identify in this abstract
reformulation of the Bell theorem the same unjustified implicit
assumption that we have noticed above, namely, that there are
two well-defined choices for the setting of each one of the
detectors. We have noticed above that we can properly define
and measure only the conditional probabilities p(a, b|D), where
a = ±1 and b = ±1 are, as before, the outcomes at each one
of the two detectors and D = 1, 2, 3, 4 defines four possible
relative orientations between them. We did notice also that
quantum mechanics as well makes theoretical predictions only
for these conditional probabilities p(a, b|D). Under these looser
constraints the Bell theorem does not necessarily hold.

Consider, for example, the toy model described in Table 2.
The conditional probabilities are identical to those described in
Table 1 for each one of the four possible results of the experiment,
but the setting of the measurement devices is now described by a
single parameter D = 1, 2, 3, 4. Each input value corresponds to
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a given relative orientation of the two devices. The new model
simply states that when the devices are set at D = 1, 2, 3 their
outcomes must have the same sign, and when they are set at D =
4 their outcomes must have opposite signs. Obviously, this latter
model is not necessarily in contradiction with an underlying local
model of hidden variables.

A straightforward proof of the inequalities that constraint
the correlations that can be obtained in any model of hidden
variables with two binary inputs and two binary outcomes is
presented in Revzen [22] using only Boolean logic. The analysis
relies on the observation that any such model makes a prediction
for the correlations 〈AB〉, 〈AB′〉, 〈A′B〉, and 〈A′B′〉, and also
for the correlations 〈AA′〉 and 〈BB′〉 that would be obtained
in the hypothetical case that the polarization of each one of
the two entangled particles could be tested along two different
orientations at once. It can be immediately noticed that these
constraints do not hold for the model of hidden variables
discussed in this paper, for which the correlations 〈AA′〉 and
〈BB′〉 cannot be jointly bounded.

3. THE MODEL

We shall now build an explicitly local statistical model of hidden
variables that reproduces the predictions of quantum mechanics
for the Bell’s states (1) and, hence, it is not constrained by the
Bell inequality (3). The fundamental ideas of the model were
first discussed in Oaknin [30]. As we have already noticed above,
the crux of the model is the spontaneous breaking of the gauge
symmetry of the experimental setup under global rigid rotations
of the orientation of the detectors. The symmetry is broken
by the hidden configuration of the pair of entangled particles.
Furthermore, we allow for a non-zero geometric phase (12) to
accumulate through cyclic gauge transformations. Under these
circumstances there does not exist an absolute preferred frame,
other than the orientation of one of the detectors, to which we can
refer in order to compare different realizations of the experiment
(see Figure 3).

The gauge symmetry is spontaneously broken because in
the considered model the hidden configuration of the pair of
entangled particles has a preferred direction randomly oriented
over a unit circle S in the XY-plane. This orientation is carried
by each one of the particles of the entangled pair. Each one of the
two detectors defines over this circle S a frame of reference with
its own set of associated coordinates, which we shall denote as
λA ∈ [−π ,+π) for detector A and λB ∈ [−π ,+π) for detector
B. Since the two sets of coordinates parameterize the same space
S , they must be related by some transformation law:

λB = −L(λA; 1 − 8), (14)

where 1 is the relative angle between the two detectors and 8

is the phase that characterizes the source of entangled particles
as defined above. This transformation law states that a hidden
configuration whose preferred direction is oriented along an
angle λA with respect to detector A, it is oriented along an angle
λB with respect to detector B.

The transformation law (14) does not violate neither locality
nor causality: it may well be a fundamental law of Nature. Indeed,
the notions of locality and causality in special relativity stem from
a similar relationship v′ = T(v; V) between the velocities v
and v′ of a point particle with respect to two different inertial
frames moving with relative velocity V . Moreover, (14) is only
a generalization of the Euclidean linear relationship that states
that in a flat space given two detectors whose orientations form
an angle 1, then a pointer oriented along an angle ω with respect
to one of them is oriented along an angle ω − 1 with respect to
the other detector.

In order to reproduce the predictions of quantum mechanics
we define the transformation law (14) as follows:

• If 1̄ ∈ [0,π),

L(λ; 1̄) =















































q(λ − 1̄) · arccos
(

− cos(1̄)− cos(λ)− 1
)

,

if − π ≤ λ < 1̄ − π ,

q(λ − 1̄) · arccos
(

+ cos(1̄)+ cos(λ)− 1
)

,

if 1̄ − π ≤ λ < 0,

q(λ − 1̄) · arccos
(

+ cos(1̄)− cos(λ)+ 1
)

,

if 0 ≤ λ < 1̄,

q(λ − 1̄) · arccos
(

− cos(1̄)+ cos(λ)+ 1
)

,

if 1̄ ≤ λ < +π ,

(15)

• If 1̄ ∈ [−π , 0),

L(λ; 1̄) =















































q(λ − 1̄) · arccos
(

− cos(1̄)+ cos(λ)+ 1
)

,

if − π ≤ λ < 1̄,

q(λ − 1̄) · arccos
(

+ cos(1̄)− cos(λ)+ 1
)

,

if 1̄ ≤ λ < 0,

q(λ − 1̄) · arccos
(

+ cos(1̄)+ cos(λ)− 1
)

,

if 0 ≤ λ < 1̄ + π ,

q(λ − 1̄) · arccos
(

− cos(1̄)− cos(λ)− 1
)

,

if 1̄ + π ≤ λ < +π ,

(16)

where

q(λ − 1̄) = sign((λ − 1̄)mod([−π ,π))),

1̄ = 1 − 8 and the function y = arccos(x) is defined in
its main branch, such that y ∈ [0,π] while x ∈ [−1,+1]. In
Figure 4, the transformation L(λ; 1̄) is graphically shown for
the particular case 1̄ = π/3. It is straightforward to check that
the transformation law (14) is strictly monotonic and fulfills the
differential relationship

∣

∣d
(

cos(λB)
)∣

∣ = dλB
∣

∣sin(λB)
∣

∣ = dλA
∣

∣sin(λA)
∣

∣ =
∣

∣d
(

cos(λA)
)∣

∣ ,
(17)

while the parameter 1̄ plays the role of an the
integration constant.

Locality is explicitly enforced in our model by requiring that
the outcome of each one of the detectors in response to the
hidden configuration of the pair of entangled particles depends
only on its locally defined orientation, that is, s(λA) = ±1 for
detector A and s(λB) = ±1 for detector B, where λB and λA
are related by relationship (14) and s(·) is the binary response

Frontiers in Physics | www.frontiersin.org 7 May 2020 | Volume 8 | Article 14238

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Oaknin The Bell Theorem Revisited

FIGURE 4 | Plot of the transformation law λ → λ′ = L(λ;1) for 1 = π/3 (solid

line), compared to the corresponding linear transformation (dotted line).

function of the detectors, which for the sake of simplicity we
define here as

s(l) =
{ +1, if l ∈ [0,+π),
−1, if l ∈ [−π , 0).

(18)

In order to complete our statistical model we need to specify
also the (density of) probability ρ(l) of each hidden configuration
l ∈ S over the space S to occur in every single realization of
the pair of entangled particles. By symmetry considerations this
density of probability must be functionally identical from the
point of view of both detectors, independently of their relative
orientation. Moreover, the condition of “free-will” demands
that the probability of each hidden configuration to occur in
any single realization of the experiment cannot depend on the
parameterizations of the space S associated to each one of the
two detectors. This condition can be precisely stated as:

dλA ρ(λA) = dλB ρ(λB). (19)

It is straightforward to show from (17) that this condition is
fulfilled if and only if the probability density ρ(l) is given by:

ρ(l) = 1

4

∣

∣sin(l)
∣

∣ . (20)

We can now compute within the framework of this model the
statistical correlations expected between the outcomes of the two
detectors as a function of their relative orientation. The binary
outcomes of each one of the two detectors define a partition of
the phase space S of all the possible hidden configurations into

four coarse subsets,

(s(A) = +1; s(B) = +1) ⇐⇒ λA ∈ [0,1 − 8)

(s(A) = +1; s(B) = −1) ⇐⇒ λA ∈ [1 − 8,π)

(s(A) = −1; s(B) = +1) ⇐⇒ λA ∈ [1 − 8 − π , 0)

(s(A) = −1; s(B) = −1) ⇐⇒ λA ∈ [−π ,1 − 8 − π),

where we have assumed without any loss of generality that 1 −
8 ∈ [0,π). Each one of these four coarse subsets happen with a
probability given by:

p (+1,+1) =
∫ 1−8

0 ρ(λA) dλA = 1
4

(

1− cos(1 − 8)
)

,

p (+1,−1) =
∫ π

1−8
ρ(λA) dλA = 1

4

(

1+ cos(1 − 8)
)

,

p (−1,+1) =
∫ 0
1−8−π

ρ(λA) dλA = 1
4

(

1+ cos(1 − 8)
)

,

p (−1,−1) =
∫ 1−8−π

−π
ρ(λA) dλA = 1

4

(

1− cos(1 − 8)
)

.

These conditional probabilities reproduce the predictions of
quantum mechanics (2):

E(1,8) = p (+1,+1) + p (−1,−1) − p (+1,−1) − p (−1,+1)

= − cos(1 − 8).

Finally, we notice that in spite of the non-trivial transformation
law (14) our model complies with the trivial demand that a
relative rotation of the measurement apparatus by an angle 1

followed by a second relative rotation by an angle 1′ results
into a final rotation by an angle 1 + 1′. Consider, for example,
an initial reference setting T0 in which the outcomes of the
two measurement apparatus are correlated by an amount E =
− cos(8). The angular coordinates of the hidden configurations
with respect to each one of the two measurement devices, λA and
λB, would be related in this reference setting by the relationship:

λB = −L(λA;−8). (21)

We now define a new measurement setting T1 obtained from the
initial setting T0 by rotating the relative orientation of the two
apparatus by an angle 1. The angular coordinates λA and λ′B
defined with respect to this new setting would be related by:

λ′B = −L(λA;1 − 8). (22)

A third measurement setting T2 is obtained from the
intermediate setting T1 by rotating the relative orientation of the
two apparatus by an additional angle 1′. In the intermediate
setting T1, which is now taken as reference to define the second
rotation, the pair of particles appears to be in a polarization state
characterized by a phase 8′ = −1 + 8. Hence, the angular
coordinates λA and λ′′B defined with respect to the setting T2

would be related by the transformation law:
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λ′′B = −L(λA;1′ − 8′) = −L(λA;1′ + 1 − 8). (23)

By comparison of the transformation law (21) for the initial
setting T0 and the transformation law (23) for the setting T2, we
realize that the latter has been obtained from the initial setting by
rotating the apparatus by an angle 1′ + 1, as we had demanded.

In order to complete the description of the Bell’s experiment
we define two new settings T3 and T4, which are obtained,
respectively, from T1 and T2 by canceling the phase 8 in
the reference setting T0. Hence, in these settings the angular
coordinates of the hidden configurations with respect to the two
measurement apparatus are related by the relationships:

λ′′′B = −L(λA;1). (24)

and

λ′′′′B = −L(λA;1′ + 1), (25)

respectively. Thus, we could intuitively think about the four
settings of the detectors involved in a Bell’s experiment as
corresponding to two possible values for the relative angle 1 and
two possible values for the phase 8, while they all four share
the orientation of one the two detectors, say detector A, taken
as reference.

Finally, let us notice that when we substitute the coherent
source of pairs of entangled particles (1) by the incoherent
classical source (where all the mixed coherent sources are defined
with respect to the same arbitrary setting of the two detectors):

µ̂ =
∫

2π
d8 |98〉〈98|

= | ↑〉〈↑ |(A) ⊗ | ↓〉〈↓ |(B) + | ↓〉〈↓ |(A) ⊗ | ↑〉〈↑ |(B),(26)

the broken rotational symmetries are statistically restored and the
outcomes of the two measurement devices become uncorrelated
for all settings. Only then, when the rotational symmetries are
restored, we can safely define separately the orientations of each
one of the measurement devices with respect to some external
reference frame and, thus, describe the phase space of its possible
settings with the help of these two angles (�A,�B).

4. A PROPOSAL FOR AN EXPERIMENTAL
TEST

The statistical model of hidden configurations described in the
previous section reproduces the quantum mechanical prediction
for the correlation (2) between the binary outcomes of projective
polarization measurements performed on each one of the
two particles of every entangled pair, as a function of the
angular parameter 1 − 8 that characterizes the experimental
setting. However, with the help of additional weak polarization
measurements the predictions of this statistical model can still
be experimentally distinguished from those of the standard
framework of quantum mechanics.

Let us consider as before a source of pairs of entangled
particles prepared in a Bell state (1) and a pair of measuring
devices that test their polarizations through projective
measurements at a relative angle 1 − 8 = π/4, so
that the correlation between their binary outcomes is
EA1 ,B2 = E(π/4) = −1/

√
2. For reasons that will be immediately

clear we denote this correlation as EA1 ,B2 . This correlation is only
very slightly modified if we perform on particle B a very weak
polarization measurement before the projective polarization test
[23, 24]. If we design the weak measurement on particle B so
that it is oriented along a relative angle 1 − 8 = −π/4 with
respect to the projective polarization measurement on particle
A, the correlation between their outcomes in a long sequence of
repetitions will be given by EA1 ,B1 = E(−π/4) = −1/

√
2.

We can now ask ourselves what would be the correlation
EB1,B2 between the outcomes of the weak measurement
performed on particle B and the projective measurement
performed on the same particle later on. According to quantum
mechanics their correlation should be

E
QM
B1,B2 = cos(π/2) = 0, (27)

while in the statistical model presented in the previous section
their correlation would be [33]

ESMB1,B2 = 4

(∫ π/2

π/4
ρ(λ) dλ −

∫ π/4

0
ρ(λ) dλ

)

= (28)

=
∫ π/2

π/4

∣

∣sin(λ)
∣

∣ dλ −
∫ π/4

0

∣

∣sin(λ)
∣

∣ dλ =

= − cos(0)+ cos(π/4)− cos(π/2)+ cos(π/4) =
=

√
2− 1 ≃ 0.41 6= E

QM
B1,B2.

5. DISCUSSION

The Bell theorem is one of the pillars upon which relies the
widely accepted belief that quantum mechanics is the ultimate
mathematical framework within which the hypothetical final
theory of the fundamental building blocks of Nature and their
interactions must be formulated. The theorem proves through
an experimentally testable inequality (the Bell inequality) that
the predictions of quantum mechanics for the Bell polarization
states of two entangled particles cannot be reproduced by
any underlying theory of hidden variables that shares certain
intuitive features.

In this paper we have shown, however, that these intuitive
features include a subtle, though crucial, assumption that is not
required by fundamental physical principles and, hence, it is
not necessarily fulfilled in the actual experimental setup that
tests the inequality. In fact, the disputed assumption cannot
be implemented within the framework of standard quantum
mechanics either.

Namely, the proof of the Bell theorem requires the existence
of a preferred frame of reference, supposedly provided by a lab,
with respect to which the orientations of each one of the two
measurement devices can be independently defined for every
single realization of the experiment. This preferred frame is
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required in order to compare the orientations of the detectors
in a sequence of repetitions of the experiment, since in every
realization each particle’s polarization can be tested along a
single orientation.

Notwithstanding, the existence of a preferred frame of
reference is at odds with Galileo’s fundamental principle
of relativity and, indeed, it cannot exist when the hidden
configurations of the pair of entangled particles spontaneously
break the rotational symmetry of the experimental setup under
rigid rotations of the two detectors and a non-zero geometric
phase accumulates through cyclic gauge transformations. In
such a case, in order to compare different realizations of the
experiment, we must pick the orientation of one of the detectors
as a common reference direction, with respect to which the
relative orientation of the second detector is defined. Under these
conditions the Bell theorem does not necessarily hold [see (13),
Figures 2, 3].

Following these ideas we explicitly built a model of hidden
variables for the Bell’s states of two entangled particles that
reproduces the predictions of quantum mechanics. Further
details of the model are discussed in Oaknin [30]. In two
additional accompanying papers we have used these same
ideas to build explicit local models of hidden variables for the
GHZ state of three entangled particles [31] and also for the
qutrit [32].

The derivation of a model of local hidden variables for the
entangled states of two or more qubits means that entanglement,
the quintessential quantum phenomenon, can be fully described
without the quantum formalism. Indeed, the model shows that
entanglement can be described in terms of classical statistical
concepts, with the help of the well-understood classical notions
of curved spaces and gauge degrees of freedom. Thus, the model

proves that there are not mysterious fundamental differences
between classical and quantum correlations.

Furthermore, the model of hidden variables presented here
opens the window to the possible existence of an unexplored
physical reality that might underlay the laws of quantum
mechanics [25] and, thus, it might lead to a whole new area
of research in physics in quest for the fundamental laws of
this underlying reality. The existence of such a reality was
first suggested 85 years ago by Einstein, Podolsky and Rosen
through their famous EPR paradox [26, 27], but following Bell’s
arguments it had been thought that an underlying reality was
incompatible with quantum mechanics [28, 29].

Finally, we wish to notice that our model of hidden
variables is built upon fundamental physical concepts shared
by the formalism of General Relativity and, thus, it might
eventually lead to a unified description of quantum phenomena
and gravitation.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

ACKNOWLEDGMENTS

This manuscript has been released as a pre-print at
https://arxiv.org/abs/1912.06349, DO [34].

REFERENCES

1. Bell JS. On the Einstein-Podolsky-Rosen paradox. Physics. (1964) 1:195–200.

2. Fine A. Hidden variables, joint probability, and the Bell inequalities. Phys Rev

Lett. (1982) 48:291.

3. Hensen B, Bernien H, Dréau AE, Reiserer A, Kalb N, BlokMS, et al. Loophole-

free Bell inequality violation using electron spins separated by 1.3 kilometres.

Nature. (2015) 526:682–6. doi: 10.1038/nature15759

4. Aspect A, Dalibard J, Roger G. Experimental test of Bell’s inequalities

using time-varying analyzers. Phys Rev Lett. (1982) 49:1804.

doi: 10.1103/PhysRevLett.49.1804

5. Tittel W, Brendel J, Zbinden H, Gisin N. Violation of bell inequalities

by photons more than 10 km apart. Phys Rev Lett. (1998) 81:3563.

doi: 10.1103/PhysRevLett.81.3563

6. Weihs G, Jennewein T, Simon C, Weinfurter H, Zeilinger A. Violation of

Bell’s inequality under strict Einstein locality conditions. Phys Rev Lett. (1998)

81:5039–43. doi: 10.1103/PhysRevLett.81.5039

7. Rowe MA, Kielpinski D, Meyer V, Sackett CA, Itano WM, Monroe C, et al.

Experimental violation of a Bell’s inequality with efficient detection. Nature.

(2001) 409:791–4. doi: 10.1038/35057215

8. Giustina M, Mech A, Ramelow S, Wittmann B, Kofler J, Beyer J, et al. Bell

violation using entangled photons without the fair-sampling assumption.

Nature. (2013) 497:227–30. doi: 10.1038/nature12012

9. Christensen BG, McCusker KT, Altepeter J, Calkins B, Gerrits T, Lita T, et al.

Detection-loophole-free test of quantum nonlocality, and applications. Phys

Rev Lett. (2013) 111:130406. doi: 10.1103/PhysRevLett.111.130406

10. Giustina M, Versteegh MAM, Wengerowsky S, Handsteiner J,

Hochrainer A, Phelan K, et al. A significant-loophole-free test of Bell’s

theorem with entangled photons. Phys Rev Lett. (2015) 115:250401.

doi: 10.1103/PhysRevLett.115.250401

11. Shalm LK, Meyer-Scott E, Christensen BG, Bierhorst P, Wayne

MA, Stevens MJ, et al. A strong loophole-free test of local realism.

Phys Rev Lett. (2015) 115:250402. doi: 10.1103/PhysRevLett.115.2

50402

12. Wiseman H. Quantum physics: death by experiment for local realism. Nature.

(2015) 526:649. doi: 10.1038/nature15631

13. Clauser JF, Horne MA, Shimony A, Holt RA. Proposed experiment

to test local hidden variables theories. Phys Rev Lett. (1969) 23:880–4.

doi: 10.1103/PhysRevLett.23.880

14. Cirelson BS. Quantum generalizations of Bell’s inequality. Lett Math Phys.

(1980) 4:93.

15. Hess K. Bell’s theorem and Instantaneous influences at a distance.

arXiv:1805.04797. doi: 10.4236/jmp.2018.98099

16. Hess K. Kolmogorov’s probability spaces for ‘entangled’ data subsets of EPRB

experiments: no violation of Einstein’s separation principle. J Modern Physics.

(2020).

17. Hess K, Philipp W. Bell’s theorem and the problem of decidability between

the views of Einstein and Bohr. Proc Natl Acad Sci USA. (2001) 98:14228–33.

doi: 10.1073/pnas.251525098

18. Hess K, Philipp W. Breakdown of Bell’s theorem for certain objective

local parameter spaces. Proc Natl Acad Sci USA. (2004) 101:1799–805.

doi: 10.1073/pnas.0307479100

Frontiers in Physics | www.frontiersin.org 10 May 2020 | Volume 8 | Article 14241

https://doi.org/10.1038/nature15759
https://doi.org/10.1103/PhysRevLett.49.1804
https://doi.org/10.1103/PhysRevLett.81.3563
https://doi.org/10.1103/PhysRevLett.81.5039
https://doi.org/10.1038/35057215
https://doi.org/10.1038/nature12012
https://doi.org/10.1103/PhysRevLett.111.130406
https://doi.org/10.1103/PhysRevLett.115.250401
https://doi.org/10.1103/PhysRevLett.115.250402
https://doi.org/10.1038/nature15631
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.4236/jmp.2018.98099
https://doi.org/10.1073/pnas.251525098
https://doi.org/10.1073/pnas.0307479100
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Oaknin The Bell Theorem Revisited

19. Hess K, De Raedt H, Michielsen K. From Boole to Leggett-Garg inequality:

epistemology of Bell-type inequalities. Adv Math Phys. (2016) 2016:4623040.

doi: 10.1155/2016/4623040

20. Wilczek F, Shapere A, editors. Geometric Phases in Physics. Singapore: World

Scientific (1989).

21. Popescu S, Rohrlich D. Quantum nonlocality as an axiom. Found Phys. (1994)

24:379–85. doi: 10.1007/BF02058098

22. Revzen M. Kolmogorov proof of the Clauser-Horne-Shimony-

Holt inequalities. Int J Quant Inform (2018) 16:1850013.

doi: 10.1142/S0219749918500132

23. White TC, Mutus JY, Dressel J, Kelly J, Barends R, Jeffrey E, et al.

Preserving entanglement during weak measurement demonstrated with a

violation of the Bell-Leggett-Garg inequality. NPJ Quant Inform. (2016)

2:15022. doi: 10.1038/npjqi.2015.22

24. Dressel J, Korotkov AN. Avoiding loopholes with hybrid Bell-Leggett-Garg

inequalities. Phys Rev A. (2014) 89:012125. doi: 10.1103/PhysRevA.89.012125

25. Ball P. Exorcising Einstein’s spooks Nature. doi: 10.1038/news011129-15

26. Einstein A, Podolsky B, Rosen N. Can quantum mechanical description

of physical reality be considered complete? Phys Rev. (1935) 47:777–80.

doi: 10.1103/Phys.Rev.47.777

27. Bohm D. Quantum Theory. New York, NY: Prentice-Hall (1951).

28. Bell JS. On the problem of hidden variables in quantum mechanics. Physics.

(1966) 38:447–52.

29. Kochen S, Specker EP. The problem of hidden variables in quantum

mechanics. J Math Mech. (1967) 17:59–87.

30. Oaknin DH. Solving the EPR paradox: an explicit statistical local model of

hidden variables for the singlet state. arXiv:1411.5704.

31. Oaknin DH. Solving the Greenberger-Horne-Zeilinger paradox: an explicit

local model of hidden variables for the GHZ state. arXiv:1709.00167.

32. Oaknin DH. Bypassing the Kochen-Specker theorem: and explicit non-

contextual model of hidden variables for the qutrit. arXiv:1805.04935.

33. Oaknin DH. Comment on ’White, T., Mutus, J., Dressel, J. et al., “Preserving

entanglement during weak measurement demonstrated with a violation of the

Bell-Leggett-Garg inequality”. npj Quantum Inf. (2016) 2:15022.

34. Oaknin DH. The Bell inequality revisited: geometric phases in gauge theories.

arXiv:1912.06349. doi: 10.3389/fphy.2020.00142

Conflict of Interest: DO was employed by the company RAFAEL Advanced

Defense Systems.

Copyright © 2020 Oaknin. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org 11 May 2020 | Volume 8 | Article 14242

https://doi.org/10.1155/2016/4623040
https://doi.org/10.1007/BF02058098
https://doi.org/10.1142/S0219749918500132
https://doi.org/10.1038/npjqi.2015.22
https://doi.org/10.1103/PhysRevA.89.012125
https://doi.org/10.1038/news011129-15
https://doi.org/10.1103/Phys.Rev.47.777
https://doi.org/10.3389/fphy.2020.00142
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


ORIGINAL RESEARCH
published: 12 May 2020

doi: 10.3389/fphy.2020.00160

Frontiers in Physics | www.frontiersin.org 1 May 2020 | Volume 8 | Article 160

Edited by:

Karl Hess,

University of Illinois at

Urbana-Champaign, United States

Reviewed by:

Andrei Khrennikov,

Linnaeus University, Sweden

Juergen Jakumeit,

Access e.V., Germany

*Correspondence:

Hans De Raedt

deraedthans@gmail.com

Specialty section:

This article was submitted to

Mathematical Physics,

a section of the journal

Frontiers in Physics

Received: 18 March 2020

Accepted: 17 April 2020

Published: 12 May 2020

Citation:

De Raedt H, Jattana MS, Willsch D,

Willsch M, Jin F and Michielsen K

(2020) Discrete-Event Simulation of an

Extended

Einstein-Podolsky-Rosen-Bohm

Experiment. Front. Phys. 8:160.

doi: 10.3389/fphy.2020.00160

Discrete-Event Simulation of an
Extended
Einstein-Podolsky-Rosen-Bohm
Experiment
Hans De Raedt 1,2*, Manpreet S. Jattana 1,3, Dennis Willsch 1, Madita Willsch 1,

Fengping Jin 1 and Kristel Michielsen 1,3

1 Jülich Supercomputing Centre, Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany, 2 Zernike

Institute for Advanced Materials, University of Groningen, Groningen, Netherlands, 3 RWTH Aachen University, Aachen,

Germany

We use discrete-event simulation to construct a subquantum model that can

reproduce the quantum-theoretical prediction for the statistics of data produced by

the Einstein-Podolsky-Rosen-Bohm experiment and an extension thereof. This model

satisfies Einstein’s criterion of locality and generates data in an event-by-event and

cause-and-effect manner. We show that quantum theory can describe the statistics of

the simulation data for a certain range of model parameters only.

Keywords: subquantummodel, Einstein-Podolsky-Rosen-Bohm experiments, discrete-event simulation, quantum

theory, local realist model

1. INTRODUCTION

The Einstein-Podolsky-Rosen thought experiment was introduced to question the completeness
of quantum theory [1], “completeness” being defined in reference [1]. Bohm proposed a modified
version that employs the spins instead of coordinates and momenta of a two-particle system [2],
and is experimentally realizable [3–10]. A key issue in the foundations of physics is whether there
exist “local realist” models that yield the statistical results of the quantum-theoretical description of
the Einstein-Podolsky-Rosen-Bohm (EPRB) experiment.

In this paper, we take, as operational definition of a local realist model, any model for which

1. all variables, including those representing events which occur at specific locations and specific
times, always have definite values,

2. all variables change in time according to an Einstein-local, causal process.

In the literature, one often finds the statement that Bell’s theorem [11, 12] rules out any local realist
model for the EPRB experiments. In references [11, 12], Bell gives a proof that a correlation C(a, b)
of the form

C(a, b) =
∫

dλ µ(λ)A(a, λ)B(b, λ) , |A(a, λ)| ≤ 1 , |B(b, λ)| ≤ 1 , 0 ≤ µ(λ),
∫

dλ µ(λ) = 1 , (1)

cannot arbitrarily closely approximate the correlation−a · b for all unit vectors a and b. According
to Bell (see reference [12]), this is the theorem. On the other hand, the quantum-theoretical
description of the EPRB experiment in terms of two spin-1/2 particles in the singlet state yields
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the correlation −a · b. Clearly, there is a conflict between
the quantum-theoretical model of the EPRB experiment and
the model defined by Equation (1). While there can be no
doubt about the mathematical correctness of Bell’s theorem, the
physical relevance of the theorem and its applicability to the
data gathered in laboratory EPRB experiments has been under
scrutiny since its conception [13–49]. A fundamental problem
with the application of Bell’s model Equation (1) to this data is
the following.

Evidently, in a laboratory EPRB experiment, before one can
even think about computing correlations of particle properties,
it is necessary to first classify a detection event as corresponding
to the arrival of a particle or as something else. Any laboratory
EPRB experiment with photons employs a specific, well-defined
procedure to identify photons [3–10]. Such a procedure is
definitely missing in the model Equation (1) proposed and
analyzed by Bell [12]. If the aim is to describe the outcome of
a laboratory EPRB experiment, then not incorporating such a
procedure in the model is a fallacy which, logically speaking,
is not much different from trying to model electrodynamics in
terms of electrical phenomena without taking into account the
magnetic phenomena. Although it is good practice to analyze
the most primitive model first, the observation that it does
not agree with experimental results only suggests that it is
too primitive. The failure of the primitive model to account
for the identification process is the fundamental reason why
Bell’s theorem cannot have the status of a “no-go” theorem
for the existence of a local realist model for a laboratory
EPRB experiment.

In this paper, we use the term “subquantum model” to refer
to a local realist model of an experiment which satisfies the
requirements 1 and 2 and

3. themodel can reproduce the statistical results of the quantum-
theoretical description of the experiment in an event-by-event,
cause-and-effect manner.

The main aim of this paper is to present a subquantum model
for the EPRB experiment and an extended version thereof. The
latter, which we abbreviate by EEPRB, differs from the standard
EPRB experiment in that all the measurements for the four
different pairs of settings, required to perform Bell-inequality
tests, can be made in one single run instead of four runs of the
experiment. As such, the EEPRB experiment is not vulnerable
to the contextuality loophole [44]. We adopt the discrete-event
simulation (DES) approach, introduced in reference [50], to
construct a subquantum model for both the EPRB and EEPRB
experiment. This approach has proven fruitful for constructing
subquantum models for many fundamental quantum-physics
experiments with photons and neutrons [51].

2. DISCRETE-EVENT SIMULATION:
GENERAL ASPECTS

DES is a general methodology for modeling the time evolution
of a system as a discrete sequence of consecutive events [52, 53].
DES is used in many different branches of science, engineering,
economics, finance, etc. [52], but has only fairly recently been

adopted as a methodology to construct subquantum models for
basic, fundamental quantum physics experiments [50, 51].

In the following, whenever we use the term DES, we mean
DES modeling applied to quantum physics problems, not DES in
general. The salient features of this particular application of DES
are the following.

• Events are the basic building blocks of any DES model, just
as points are the basic building blocks of Euclidean geometry.
In DES an event is a defined concept, represented by a model
variable taking a particular value (e.g., a bit changing from zero
into one) at a specific point in time. In contrast to quantum
theory, there is no need to invoke the elusive wave function
collapse to “explain” how quantum theory may eventually be
reconciled with the fact that a measurement yields a definite
yes/no answer, or to appeal to Born’s rule.
• It may be difficult to analyze the behavior of a DES model by

means of differential equations, probability theory, or other
mathematical techniques of theoretical physics. Of course, we
may use e.g., probability or quantum theory to model the
statistics of the data produced by a DES.
• It is not practicable to perform a DES without using a

digital computer. A digital computer itself is a physical
device that changes its internal state (all the bits of the
CPU and memory) in a discrete, step-by-step (clock cycle)
manner. Therefore, a DES algorithm running on a digital
computer (which we assume is error-corrected and operating
flawlessly) can be viewed as a metaphor for an idealized
experiment on a physical device (the digital computer) [54].
All aspects of such an experiment are under the control of
a programmer. In the context of EPRB experiments, this
means that any loophole [55] can be opened or closed at
the discretion of the programmer. For instance, the so-called
contextuality loophole, which is impossible to avoid in a
laboratory EPRB experiment [49], can be trivially closed in a
DES (see below).
• The outcomes of genuine laboratory experiments are subject

to unknown influences but in a DES on a digital computer
(operating flawlessly), there are no such influences. If there
were, it would not be possible to exactly reproduce the results
of a DES. Therefore, DES is “the experiment” to confront a
theory with facts obtained under the same premises as those
on which the theory is based.
• Although a DES algorithm changes the state of a physical

device (the digital computer), the events and variables in a
DES are only metaphors for the “real” detector click, etc. On
the other hand, once it has been established that a DES of a
subquantummodel yields the correct results, one could build a
macroscopic mechanical device that performs exactly the same
as DES.
• DES on a digital computer complies with the notion of realism,

meaning that at any time during the DES, the internal state
of the digital computer is known exactly, all variables of the
simulation model taking definite values. Of course, we can
always “hide” an algorithm and data on purpose. For instance,
we can do this to create the illusion that the “visible” data
is unpredictable (a standard technique to generate pseudo-
random numbers).
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• In a digital computer, there are no signals traveling faster
than light. Therefore, on the most basic level, the internal
operation of a digital computer complies with Einstein’s notion
of local causality. However, there is nothing that prevents us
from performing an acausal analysis of the data. For instance,
if we generate and store a sequence of numbers and then
wish to compute the sum, we may do this by summing the
numbers in the reverse order of how they were generated. This
trivial example shows that one has to distinguish between the
generation of the raw data and the processing of this data. For
the purpose of constructing a local realist DES model, it is
essential that the process that generates the raw data complies
with Einstein’s notion of local causality. It is not permitted to
accumulate data, perform e.g., a discrete Fourier transform or
compute acausal correlations, and use the results to describe a
quantum physics experiment. While both these techniques are
very useful for a wide variety of data processing tasks [56], they
are “forbidden” in a DES of a subquantum model.
• Consistency of the DES methodology demands that a

subquantum model for, say, a beam splitter, must be re-
used, without modification, for all experiments in which
this beam splitter is used. Our DES approach seems to
satisfy this requirement of consistency, at least for a vast
number of fundamental quantum-physics experiments with
photons and neutrons [51]. Our motivation for considering
both the EPRB and extended EPRB (EEPRB) experiments is
to scrutinize the consistency of the DES approach for this
category of experiments.

Finally, to head off misunderstandings, the DES models that
we construct do not, in any way, make use of the quantum-
theoretical predictions for the statistics of the data. Instead,

a DES builds up these statistics by an event-by-event, cause-
and-effect, Einstein-local process. Under appropriate conditions,
these statistics can be described by quantum theory, while in
other cases they cannot (see below).

3. EXTENDED
EINSTEIN-PODOLSKY-ROSEN-BOHM
EXPERIMENT: THEORY

3.1. Thought Experiment
Figure 1 shows the layout of an extended Einstein-Podolsky-
Rosen-Bohm (EEPRB) experiment with spin-1/2 particles [26].
A source is emitting a pair of particles in two spatially separated
directions toward beam splitters BS1 and BS2. In this idealized
experiment, all beam splitters are assumed to be identical,
performing selective (filtering) measurements [57, 58]. Selective
measurements allow us to attach an attribute with definite value
(e.g., the direction of themagneticmoment or of the polarization)
to the particle. For instance, assuming that BS1, BS3, and BS4
perform ideal selective measurements, a particle leaving BS1
along path S1 = +1 (S1 = −1) will always leave BS3 (BS4)
along path S3 = +1 (S3 = −1) if c = a. In case of selective
measurements, we can attach an attribute to the particle, the value
of this attribute being given by S1. We use the same procedure for
attaching attributes to particles leaving the other beam splitters.

Particles leaving BS3, . . . , BS6 are registered by detectors.
All detectors are assumed to be identical and to have a 100%
detection efficiency (we relax this assumption later). The binary
variables xi,j = 0, 1 for i = 1, . . . , 4 and j = 1, 2 (see Figure 1)
indicate which of the four detectors at the left (j = 1) and right
(j = 2) fire. For each pair of emitted particles, exactly one of

FIGURE 1 | Layout of the extended Einstein-Podolsky-Rosen-Bohm experiment with spin-1/2 particles emitted by the source S. The observation station OS1 (OS2)

contains three beam splitters BS1, BS3, and BS4, (BS2, BS5, and BS6) and a clock C1 (C2). The directions of the beam splitters BS1, BS2, BS3, BS4, BS5, and

BS6 are represented by vectors a, b, c, c, d, and d, respectively.
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the detectors on the left and exactly one of the detectors on the
right side of the source will register a particle. This implies that
for j = 1, 2, only one of x1,j, x2,j, x3,j, and x4,j can be non-zero.
The four new variables defined by

S1 = x1,1 + x2,1 − x3,1 − x4,1 ,

S2 = x1,2 + x2,2 − x3,2 − x4,2 ,

S3 = x1,1 − x2,1 + x3,1 − x4,1 ,

S4 = x1,2 − x2,2 + x3,2 − x4,2 , (2)

all take values +1 or −1 (see Figure 1). Clearly, S1 and S3 (S2
and S4) encode, in a unique manner, the path that the left (right)
going particle took. In the following, we use the S’s to formulate
the DES model.

For practical reasons, most laboratory EPRB experiments
are carried out with photons [3–10], the polarization of the
photons playing the role of the spin. From a quantum-theoretical
viewpoint, there is no loss of generality in doing so because
mathematically, the description of the photon polarization is
in terms of Pauli-spin matrix algebra. In the following, to
keep the discussion concise and concrete, we only focus on
(E)EPRB experiments that employ the photon polarization as the
“quantum system” of interest.

A source is emitting a pair of photons in two spatially
separated directions toward beam splitters BS1 and BS2. BS1
sends one photon of the pair to either BS3 or BS4. BS2 sends the
other photon of the pair to either BS5 or BS6. In an ideal model,
all beam splitters are identical. Each beam splitter represents a
combination of wave plates, an electro-optical modulator (EOM),
and a polarizing beam splitter (PBS), see for example Figure 1C in
reference [9]. The EOM acts as a switchable (voltage controlled)
polarization rotator, the rotation being characterized by a two-
dimensional unit vector (indicated by the arrow through the
beam splitter), relative to local frames of reference attached to the
observation stations OS1 and OS2, respectively.

It is expedient to introduce the vectors a = (cos a, sin a),
a⊥ = (− sin a, cos a), b = (cos b, sin b), b⊥ = (− sin b, cos b),
c = (cos c, sin c), c⊥ = (− sin c, cos c), d = (cos d, sin d), and
d⊥ = (− sin d, cos d). Photons leave BS1 with linear polarization
along either a (S1 = +1) or a⊥ (S1 = −1). For the other beam
splitters, we have similar relations between the direction of the
linear polarization of the photons that leave the beam splitters
and the value of the corresponding S-variable.

3.2. Classical Electrodynamics
It is instructive to first consider the case in which the detector
signal is linearly proportional to the intensity of the impinging
light. This case is covered by classical optics, described by
Maxwell’s theory of electrodynamics.

According to empirical evidence, the intensity of light passing
through a polarizer is given by Malus’ law I = I0 cos

2(φ − ψ),
where φ is the polarization of the light beam andψ is the rotation
of the polarizer, both relative to a laboratory frame of reference.
I0 is the intensity of the incident light.

We assume that the source emits “special” randomly polarized
light toward BS1 and BS2, special in the sense that the difference

between the polarizations of the two beams φ0 is fixed in time.
Then, using Malus’ law for BS1 and BS2, the correlated intensity
for one particular, random realization of the polarization angle φ
is given by

I1(S1, S2|a, b,φ,φ0)

= I20
1+ S1 cos 2(φ − a)

2

1+ S2 cos 2(φ − b+ φ0)
2

, (3)

where I0 denotes the light intensity of a single beam. Integrating
over all polarizations φ with a uniform density 1/2π yields

I1(S1, S2|a, b,φ0) =
I20
4

[

1+ 1

2
S1S2 cos 2(a− b+ φ0)

]

. (4)

Repeated use of Malus’ law and exploiting the fact that the
polarizations of the two beams leaving a beam splitter are
orthogonal, the correlated intensity of the different beams is then
given by

I(S1, S2, S3, S4|a, b, c, d,φ0) =
I20
16

[

1+ 1

2
S1S2 cos 2(a− b+ φ0)

]

[

1+ S1S3 cos 2(a− c)
]

[

1+ S2S4 cos 2(b− d)
]

. (5)

The moments of the correlated intensity Equation (5) are

̂Ki =
∑

S1 ,S2 ,S3 ,S4=±1
SiI(S1, S2, S3, S4|a, b, c, d,φ0) = 0,

i = 1, 2, 3, 4 ,

̂Kij =
∑

S1 ,S2 ,S3 ,S4=±1
SiSjI(S1, S2, S3, S4|a, b, c, d,φ0),

1 ≤ i < j ≤ 4 ,

̂Kijk =
∑

S1 ,S2 ,S3 ,S4=±1
SiSjSkI(S1, S2, S3, S4|a, b, c, d,φ0) = 0,

i 6= j 6= k 6= i ,

̂K1234 =
∑

S1 ,S2 ,S3 ,S4=±1
S1S2S3S4I(S1, S2, S3, S4|a, b, c, d,φ0)

= I20 cos 2(a− c) cos 2(b− d) . (6)

For φ0 = π/2 (orthogonally polarized beams) and I0 = 1, the
explicit expressions for the two-S correlations are

̂K12 = −
1

2
cos 2(a− b), ̂K13 = cos 2(a− c),

̂K14 = −
1

2
cos 2(a− b) cos 2(b− d),

̂K23 = −
1

2
cos 2(a− b) cos 2(a− c),

̂K24 = cos 2(b− d),

̂K34 = −
1

2
cos 2(a− b) cos 2(a− c) cos 2(b− d). (7)

The factor 1/2 which appears in Equation (4) and in four of the
six second moments ̂Kij is characteristic of the correlation of two
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light intensities. Here and in the following, we use the hat on
top of the symbols to emphasize that the expressions have been
obtained from a theoretical model.

3.3. Quantum Theory
Classical electrodynamics describes the intensity of light and does
not discriminate between individual events. In contrast, quantum
theory can be used to describe the statistics of events, particularly
in cases, such as the EPRB experiment, where detectors can
discriminate between them.

For a pair of photons whose polarizations are described by
the singlet state, Appendix A shows that the joint probability to
observe one photon in the path labeled by S1 and the other one
in the path labeled by S2 is given by De Raedt et al. [59]

P(S1, S2|a, b,Z) =
1− S1S2 cos 2(a− b)

4
, (8)

where Z denotes a valid proposition that represents all conditions
under which the experiment is performed with the exception of
a and b. Note that for φ0 = π/2, Equation (4) differs from
Equation (8) through the factor 1/2 only.

In Appendix A, we show that the joint probability to observe
one photon in the path labeled by (S1, S3) and the other in the
path labeled by (S2, S4) is given by

P(S1, S2, S3, S4|a, b, c, d,Z) =
1

16

[

1− S1S2 cos 2(a− b)
]

[

1+ S1S3 cos 2(a− c)
]

[

1+ S2S4 cos 2(b− d)
]

. (9)

As already mentioned in the introduction, a subquantum model
for the EEPRB experiment must not make use of Equation (9) to
generate the quadruples (S1, S2, S3, S4).

Note that the only non-trivial difference between
Equations (5) and (9) is that in the former case, the absolute value
of the pre-factor of the S1S2 term never exceeds 1/2 whereas in
the latter case, it is equal to −1. The expressions of the second
moments of Equation (9) read

̂E12 = − cos 2(a− b), ̂E13 = cos 2(a− c),

̂E14 = − cos 2(a− b) cos 2(b− d),

̂E23 = − cos 2(a− b) cos 2(a− c), ̂E24 = cos 2(b− d),

̂E34 = − cos 2(a− b) cos 2(a− c) cos 2(b− d), (10)

which are not all equal to the corresponding expressions of the
̂K’s, see Equation (7). From Equation (9) it follows that ̂E1 =
̂E2 = ̂E3 = ̂E4 = ̂E123 = ̂E124 = ̂E134 = ̂E234 = 0 and
̂E1234 = cos 2(a− c) cos 2(b− d).

Clearly, in order to have a subquantum model generate data
that agrees either withMaxwell’s theory Equation (5) or quantum
theory Equation (9), we only have to construct a subquantum
model in which we can control the pre-factor of the S1S2 term
in Equation (5). Thinking of light as a collection of photons, in
sections 3.4 and 4, we explain how this control naturally results
from the simple fact that we have to classify individual events
as photons or something else, whereas in the “classical” case

this classification is not an issue. At this point, it should be
mentioned that within the context of the classical and quantum
theory of light, changing the prefactor 1/2 of the S1S2 term in
Equation (5) is a subtle issue, intimately related to the amount
of second-order coherence one can observe by measuring either
intensities or by counting clicks of a detector [60]. A discussion
of this important issue is out of the scope of this paper and
we refer the reader who is interested in these aspects to the in-
depth analysis given in reference [60]. In our paper, Equations (5)
and (9) are only used to provide the classical/quantum results
which any valid subquantum model for the (E)EPRB experiment
has to reproduce.

An important feature of this EEPRB experiment is that
all the correlations that are required to test for violations
of Bell/Clauser-Horne-Shimony-Holt (CHSH) inequalities [12,
61] are obtained in a single run (instead of three/four
runs) of the experiment [26]. The EEPRB experiment does
not suffer from the contextuality loophole [49]. As 0 ≤
P(S1, S2, S3, S4|a, b, c, d,Z) ≤ 1, it follows directly that all Bell-
type inequalities, including all variants of the CHSH inequality,
can never be violated [62]. This is easily seen by evaluating the
sum

∑

S1 ,S2 ,S3 ,S4=±1 g(S1, S2, S3, S4)P(S1, S2, S3, S4|a, b, c, d,Z) for
various choices of the function g(S1, S2, S3, S4), such as −1 ≤
g(S1, S2, S3, S4) = S1S2 + S1S3 + S2S3 ≤ 3, or −2 ≤
g(S1, S2, S3, S4) = S1S3 + S1S4 + S2S3 − S2S4 ≤ 2, for example.
In words, the quantum-theoretical description of the EEPRB
experiment predicts that all Bell/CHSH inequalities are satisfied,
in stark contrast to the case in which the correlations that enter
the Bell/CHSH inequalities are computed from the quantum-
theoretical description of the EPRB experiment.

3.4. Practical Realization: Photon
Identification Problem
The exposition in subsection 3.1 assumes that each emitted pair
of particles triggers exactly two detectors, namely only one of the
four detectors at OS1 and one of the four detectors at OS2. In a
laboratory experiment with Stern-Gerlach magnets andmagnetic
billiard balls, this assumption may hold true. However, it is not at
all evident to have a source which only creates correlated pairs
of elementary particles, such as photons which upon hitting a
detector, will trigger exactly one detector at OS1 and exactly one
detector at OS2.

With the exception of two experiments [9, 10], EPRB
experiments with photons use time coincidence to identify
photon pairs [3–8]. The two EPRB experiments [9, 10] that do
not rely on time coincidence employ local, adjustable voltage
thresholds to identify photons. This procedure is mathematically
equivalent to attaching a local time tag to each particle, or to
using time coincidence [63]. Therefore, in the following, we
only discuss the subquantum model that uses local time tags as
the vehicle for identifying pairs of photons. The modifications
required to deal with voltage thresholds are trivial [63].

As explained above, a minimal theoretical model of a
laboratory (E)EPRB experiment with photons should include
a procedure to identify (pairs of) photons. Specifically,
not including the data by which the photons and/or pairs
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are identified opens the so-called photon identification
loophole [63]. By design, the EPRB experiments that claim
to be loophole free [8–10] all suffer from this loophole.

As shown in Figure 1, observation stations OS1 and OS2 are
equipped with local clocks C1 and C2, respectively. The time
t1 (t2) at which a detector in OS1 (OS2) fires is read off from
the local clock C1 (C2). The clocks C1 and C2 are synchronized
before the source starts to emit pairs of particles and, being ideal
clocks, remain synchronized for the duration of the experiment.
Similarly, the frames of reference of OS1 and OS2 are aligned
before the source starts to emit pairs of particles and do not
change afterwards.

Concretizing the aim of this paper, in the next section, we
describe a local realist model of the (E)EPRB experiment that
reproduces the statistical predictions of quantum theory given
by Equations (8) and (9). In formulating the DES model, we
call the agents that carry the information from the source to the
observation stations “photons” and use the language of optics.

4. SUBQUANTUM MODEL

Before describing all the components of the subquantum model,
we recall the basic strategy that we adopt in constructing such
a model. As quantum theory describes the most ideal version
of the (E)EPRB experiment and as our aim is to show that
the subquantum model reproduces the results of the former,
we construct a DES of the most ideal version of the (E)EPRB
experiment. The DES model for the EEPRB experiment that
we describe next contains the ideal implementation of EPRB
laboratory experiments.

In concert with our general strategy to set up the subquantum
model, we assume that the source emits pairs of photons only
and this at regular time intervals 1. The time at which the nth
pair is emitted is given by Tn = n1. The time it takes for a
photon to travel from the source to BS1 or BS2 is assumed to be
constant and the same for all photons traveling to OS1 and OS2.
We denote this time of flight by T′TOF. Similarly, the time of flight
from BS1 to BS3 or BS4 (BS2 to BS5 or BS6) and the time of flight
from BS3, BS4, BS5, or BS6 to the corresponding detectors are
denoted by T′′TOF and T′′′TOF, respectively. The total time of flight
is then TTOF = T′TOF + T′′TOF + T′′′TOF.

In the DES model, the polarization of the photon traveling to
BS1 (BS2) is represented by a two-dimensional unit vector x1 =
(cosφ, sinφ)T (x2 = (− sinφ, cosφ)T). The angle φ is chosen to
be uniformly random from the interval [0, 2π). As xT1 ·x2 = 0, the
polarizations of the photons of each pair are orthogonal, that is,
they are maximally anticorrelated and randomly distributed over
the unit circle.

In the following, we specify the DES rules for BS1 only. The
rules for the other beam splitters are identical and are obtained
by a simple change of symbols. In the DES model, the operation
of beam splitter BS1 is defined by the rules

S1 =
{+1 if cos2(φ − a) > r

−1 if cos2(φ − a) ≤ r
, x′1 =

{

a if S1 = +1
a⊥ if S1 = −1 , (11)

where 0 < r < 1 denotes a uniform pseudo-random number.
Here and in the following, it is implicitly understood that a new
instance of the pseudo-random number r is generated with each
invocation of an equation in which r appears. The unit vector
x′1 denotes the polarization of the photon leaving BS1. It is not
difficult to see that the model defined by Equation (11) generates
S1 = +1 (S1 = −1) events with a relative frequency given by
cos2(φ − a) (sin2(φ − a)), i.e., Equation (11) produces data that
is in concert with Malus’ law if the polarization of the incident
photon is constant in time.

Optical components, such as wave plates and EOMs contain
birefringent material which changes the polarization by retarding
(or delaying) one component of the polarization with respect to
its orthogonal component. In the DES, this retardation effect is
accounted for by assuming that as a photon passes through a
beam splitter, it may suffer from a time delay which may depend
on the direction of the beam splitter relative to the polarization
of the photon.

Obviously, the law of retardation in the subquantum model
cannot be derived from Maxwell’s theory or quantum theory.
We can only find the subquantum law of retardation by trial
and error. Fortunately, from earlier work we already know the
subquantum law of retardation for the EPRB experiment [64, 65]
and we only need to extend this law slightly to have the DES
reproduce the quantum-theoretical results for both the EPRB and
EEPRB experiment. Specifically, for BS1, the two DES rules for
the subquantum law of retardation read

τ1 = τEPRB(x1, a)
∣

∣

∣

∣

1− x1 · u1
2

∣

∣

∣

∣

β

= r′Tmax

∣

∣sin 2(φ − a)
∣

∣

α

∣

∣

∣

∣

1− x1 · u1
2

∣

∣

∣

∣

β

, u1 ← x1 ,

(12)

where x1 (or equivalently φ) is the polarization of the incoming
photon, 0 < r′ < 1 is another uniform pseudo-random number,
Tmax is an adjustable parameter specifyingmaximum retardation,
and α > 0 is an adjustable parameter controlling the dependence
of the retardation on the difference between the photon
polarization x1 and the orientation of the beam splitter a. As
indicated by the subscript EPRB, τEPRB = r′Tmax

∣

∣sin 2(φ − a)
∣

∣

α

suffices to reproduce the quantum-theoretical results of the EPRB
experiment [54, 59, 63–65].

The new features are the last factor in Equation (12), β > 0
being an adjustable parameter, and the rule u1 ← x1 which
updates the two-dimensional vector u1. The initial value of u1
can be any vector that has a norm ≤1. This vector is attached to
the beam splitter and may be thought of as representing (on a
subquantum level) the electrical polarization of the material [51].

The purpose of the factor |(1 − x1 · u1)/2|β in Equation (12)
is to turn off the generation of random retardation times if the
polarization of the incoming photons is constant. To see how
this works, first consider the case that the polarization of the
incoming photons is constant, say x1 = x̃1. Then, after the first
photon has passed by, u1 = x̃1 and |(1 − x1 · u1)/2|β = 0 for
all photons that follow. Next, assume that the polarization of the
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photons entering BS1 is randomly distributed over the unit circle.
Then, because x1 and u1 (which is equal to the polarization x1 of
the previous photon) are independent, |(1 − x1 · u1)/2|β is just
a random variable in [0, 1] multiplying τEPRB. The idea to store
and use the value of the polarization of the previous photon has
also been used to reproduce, by DES, the quantum-theoretical
results for a large variety of single-photon and single-neutron
experiments [50, 51]. The capability of the subquantum model
to disable the generation of random retardation times if the
polarization of the incoming photons is constant is essential for
reproducing the quantum-theoretical results of both the EPRB
and EEPRB experiments with the same subquantum model.

At this point, it may be of interest to mention that on the
basis of the statistics (i.e., averages and correlations) only, it is
not possible to make statements about the uniqueness of the
subquantum law of retardation. As a matter of fact, in the case
at hand, replacing Equation (12) by the rules

τ1 = τEPRB(x1, a)
∣

∣

∣

∣

1− u1 · u1
2

∣

∣

∣

∣

β

(13)

= r′Tmax

∣

∣sin 2(φ − a)
∣

∣

α

∣

∣

∣

∣

1− u1 · u1
2

∣

∣

∣

∣

β

,

u1 ← γu1 + (1− γ )x1 , (14)

works equally well.
Equation (14) defines a deterministic learning machine

(DLM) [50, 51], which learns, event-by-event, the time average
of the polarizations x1 carried by the photons. The speed and
accuracy by which u1 approaches the time average of the x1’s is
controlled by the parameter 0 < γ < 1 [51]. The order in which
Equations (13) and (14) are executed is irrelevant. The DLM
defined by Equation (14) is the same as the one that has been used
to reproduce, by DES, the quantum-theoretical results for a large
variety of single-photon and single-neutron experiments [50, 51].
If the polarizations of the incoming photons are constant, say x̃1,
and a certain number (depending on γ ) of photons has passed by,
we have u1 ≈ x̃1 and |(1−u1 ·u1)/2|β ≈ 0. If the polarizations of
the photons entering BS1 are randomly distributed over the unit
circle, u1 → 0 and |(1−u1 ·u1)/2|β ≈ 1. Then, just as in the case
of Equation (12), the factor |(1 − u1 · u1)/2|β in Equation (4) is
used to turn off the generation of random retardation times if the
polarizations of the incoming photons are constant.

In our idealized experiment, all detectors are assumed to be
identical and to have a 100% detection efficiency. After a photon
has passed BS3 or BS4 (BS5 or BS6), it may trigger one and only
one detector in OS1 (OS2), symbolized by one of x1,1, x2,1, x3,1,
or x4,1 (x1,2, x2,2, x3,2, or x4,2) being equal to one and the other
ones being equal to zero. The time t1 (t2) at which a detector
in OS1 (OS2) fires is read off from the local clock C1 (C2).
These local clocks C1 and C2 are synchronized before the source
starts to emit pairs of photons and, being ideal clocks, remain
synchronized for the duration of the experiment. For the nth
emitted pair, the arrival times are given by

t1,n = TTOF + n1+ τ1,n +







τ3,n if S1 = +1

τ4,n if S1 = −1
, (15)

t2,n = TTOF + n1+ τ2,n +







τ5,n if S2 = +1

τ6,n if S2 = −1
, (16)

where we have attached the subscript n to keep track of which

pair of the emitted pairs we are dealing with. For each pair-

emission event n = 1, . . . ,N, Equations (11)–(16) generate the

data (S1,n, S3,n, t1,n) and (S2,n, S4,n, t2,n). Note that OS1 and OS2

only share the angle of polarization φ characterizing the pair of
photons, nothing else.

In each triple in (Si,n, Si+2,n, ti,n), we replace the time variable
by a (local) binary variable wi,n to indicate whether a detection
event is classified as a photon (wi,n = 1) or not (wi,n =
0). Specifically, the rule to decide whether a detection event
corresponds to the observation of a photon or of something else
is given by

wi,n =















1 if 0 ≤ ti,n − TTOF − n1 ≤W,
“a photon”

0 if ti,n − TTOF − n1 >W,
“something else”

i = 1, 2, (17)

where W is the time window (an adjustable parameter). We
emphasize that the decision process defined by Equation (17)
only involves variables that are local to the observation stations.

Equations (11)–(17) define the rules by which the subquantum
model generates the data sets

S1 =
{

(S1,n, S3,n,w1,n) | n = 1, . . . ,N
}

and

S2 =
{

(S2,n, S4,n,w2,n) | n = 1, . . . ,N
}

, (18)

collected by OS1 and OS2, respectively. From the data sets S1

and S2, we compute the single- and two-particle averages

Ki =
1

N

N
∑

n=1
Si,n, Ei =

∑N
n=1 w1,nw2,nSi,n

∑N
n=1 w1,nw2,n

, i = 1, 2, 3, 4

Kij =
1

N

N
∑

n=1
Si,nSj,n,Eij =

∑N
n=1 w1,nw2,nSi,nSj,n
∑N

n=1 w1,nw2,n

,

(i, j) = (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) , (19)

without (K’s) and with (E’s) the photon identification process
in place.

5. SIMULATION RESULTS

Below, we specify the DES parameters that have been used,
discuss the data shown in Figures 2, 3, and provide additional
information about simulation data that we do not show.

• The number of emitted pairs is N = 1, 000, 000 per setting
(a, b, c, d).
• The maximum retardation time was chosen to be Tmax =

5, 000 (dimensionless units). Pairs of particles are emitted with
a time interval1 > 2Tmax. In line with our strategy to perform
an ideal experiment, this choice eliminates the possibility of
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FIGURE 2 | DES results for the correlations between all pairs of the S-variables as a function of θ = a− b, with b = 0, c = a+ π/6, and d = π/3. The source emits

pairs of photons with orthogonal polarizations chosen randomly. Ignoring statistical fluctuations, the averages of all S-variables (not shown) are zero. (A) The

correlations Kij computed without photon identification (markers) are in excellent agreement with the corresponding correlations ̂Kij [see Equation (7)] predicted by

Maxwell’s theory (solid lines) for two light beams with orthogonal, random polarization (φ0 = π/2); (B) The correlations Eij computed with photon identification

(markers) are in excellent agreement with the corresponding correlations ̂Eij predicted by quantum theory [solid lines, see Equation (10)] for two spin-1/2 particles in a

singlet state.

FIGURE 3 | Same as Figure 2 except that the source emits pairs of photons with the same instead of orthogonal polarizations chosen randomly. (A) The correlations

Kij computed without photon identification (markers) are in excellent agreement with the corresponding correlations ̂Kij (solid lines) predicted by Maxwell’s theory for

two light beams with the same, random polarization (φ0 = 0); (B) The correlations Eij computed with photon identification (markers) cannot be obtained from quantum

theory for two spin-1/2 particles (see Appendix B) but are in excellent agreement with the corresponding correlations (solid lines) obtained from the expression

Equation (9) in which the factor [1− S1S2 cos 2(a− b)] is replaced by [1+ S1S2 cos 2(a− b)].

misidentifying pairs and also ensures that at each instant of
time, there is only one photon in transit to OS1 and only one
other photon en route to OS2. For TTOF we can take any non-
negative value. In fact, from Equation (17) it follows that the
actual values of1 and TTOF do not enter in the DES algorithm.
• In Figure 2A, we show the DES results for the case without

photon identification (that is if W > Tmax or α = β = 0).
Then the DES reproduces the results of Maxwell’s theory, by
an event-by-event process [66]. Specifically, if the polarization
of the incoming photon is constant, the DES model of the
beam splitter itself generates data according toMalus’ law. The
DESmodel of the EEPRB experiment with randomly polarized
light produces data that, ignoring statistical fluctuations, is in
excellent agreement with Equation (7) (see Figure 2A).
• Using a local time window W = 1 (dimensionless units)

and for α = 4 and β = 1/2, the event-by-event process

yields results (see Figure 2B) for the E’s which are in excellent
agreement with quantum theory (data for the first, third, and
fourthmoments are not shown). The ratio of identified photon
pairs to emitted pairs depends on a and b and varies between
∼ 11% for a = b and 0.1% for |a− b| = π/4. ForW = 8, this
ratio changes to∼ 18% for a = b and 0.8% for |a− b| = π/4,
while the agreement with quantum theory is still very good
(data not shown).
• The data obtained by identifying photons using time

coincidence instead of local time windows are almost the same
and are therefore not shown. In the limit W/Tmax → 0,
N → ∞, and α = 4, it has been proven analytically that
the DES model of the EPRB experiment yields the correlation
E12 = − cos 2(a− b) exactly [65].
• Using the same pseudo-random sequence for each choice

of settings renders the DES compliant with the notion of
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a counterfactually definite theory. In this case, the DES
results (data not shown) are, for all practical purposes, the
same as those obtained by using different pseudo-random
sequences for each choice of settings. Operating in this mode,
the subquantum model of the EPRB experiment does not
suffer from the contextuality loophole [49] nor of any other
known loopholes [55]. This confirms the conclusion of an
earlier work [54], which adopted a different approach to
realize counterfactually-definite compliant simulations. The
demonstration that there exist both counterfactually-definite
and non-counterfactually-definite compliant computer
models for the EPRB experiments that produce results in
complete agreement with those of quantum theory implies
that, for the case of EPRB experiments, counterfactual
definiteness is not incompatible with quantum physics [63].
• In the DES, it is trivial to account for the detection efficiency

0 ≤ η ≤ 1. For each detection event, we generate a pseudo-
random number r′′ and remove the detection event from the
data set if r′′ > η. We find that the only effect of reducing η
is to increase the statistical fluctuations (data not shown). The
agreement with quantum theory is not affected.
• In Figure 3, we show the DES results for the case in which

the source emits photons with the same polarization chosen
randomly. In this case, the DES reproduces the results of
Maxwell’s theory (Figure 3A). A corresponding quantum-
theoretical result does not exist, see Appendix B. However,
the DES data are in excellent agreement with a non-quantum
probabilistic theory in which the factor

[

1− S1S2 cos 2(a− b)
]

in Equation (9) is replaced by
[

1 + S1S2 cos 2(a − b)
]

(see
Figure 3B).
• Replacing the rules Equation (12) by the rules Equations (13)

and (14), and repeating the DES with the same value of α and

β also yields data (not shown) that are in excellent agreement

with the quantum-theoretical description, for γ in the range
[0.1, 0.98].
• Our DES model also reproduces the theoretical results (see

Appendix C) if the two photons of each pair have a fixed

polarization (results not shown). In Maxwell’s theory, this
case is described by light beams with fixed polarizations. In

quantum theory, this case is described by an (uncorrelated)

product state.

Table 1 gives a compact overview of the agreement between
the DES results and the theoretical descriptions of the
(E)EPRB experiments.

6. DISCUSSION AND SUMMARY

Laboratory EPRB experiments unavoidably require a procedure
to classify a detection event as corresponding to a photon
or as something else. Independent of the precise nature of
this procedure (voltage threshold, local time window, time
coincidence, etc.), any model that aims at describing an EPRB
experiment should, from the start, account for this procedure by
introducing additional variables into the description. In contrast,
Bell’s model, while charmingly simple, does not account for
an essential aspect of laboratory EPRB experiments, namely
the classification of detection events in terms of photons or
something else. Consequently, any subquantum model that aims
at reproducing the results of quantum theory for the (E)EPRB
experiment should have features that are not included in Bell’s
model. As a matter of fact, a quick glance at how the data of
laboratory EPRB experiments are being processed reveals that
it is the photon identification process which is lacking in Bell’s
model. Including this process implies that correlations between
events are calculated only from subsets of the data, in which case
Bell’s theorem does not apply. Using only subsets of the data,
there is only the constraint that the correlation should, in absolute
value, be≤1. Apart from that “almost everything” is possible [20,
67–69], including a subquantum model that, in the appropriate
limit, yields the correlation of the singlet state [64, 65].

Clearly, on the basis of the statistical data alone, it is not
possible to reject subquantum models of the EPRB and EEPRB
experiments presented in this paper. The relevant question is
how a laboratory experiment can rule out or confirm that (i)
a subquantum level description is possible and/or (ii) the rules
by which the DES model of the beam splitter operates provide a
reasonable description.

Regarding (i): If we consider it as irrelevant to ask what kind of
process gives rise to the statistics of events, it seems very difficult
to beat quantum theory in terms of descriptive power [70].
Therefore, it is clear that addressing (i) requires the analysis of
the data on the level of individual events, without being biased by
what quantum theory predicts for the statistics.

Regarding (ii): The DES model defined by Equations (11)
and (12) or Equations (11), (13), and (14) produces data in
concert with Malus’ law, i.e., with the experiment, and therefore
seems solid. The additional feature of the DES model (which
allows us to reproduce the statistics of the EPRB and EEPRB
experiments as given by quantum theory) is the subquantum
law of retardation, defined by Equation (12) or Equations (13)

TABLE 1 | Overview of the agreement between the DES results and the theoretical descriptions of the (E)EPRB experiments.

Without photon identification With photon identification

Photon pair polarization EPRB EEPRB EPRB EEPRB

Orthogonal + random MT [Equation (4), φ0 = π/2] MT [Equation (5), φ0 = π/2] QT [Equation (8)] QT [Equation (9)]

Parallel + random MT [Equation (4), φ0 = 0] MT [Equation (5), φ0 = 0] ? ?

Fixed MT [Equation (C1)] MT [Equation (C2)] QT [Equation (C1)] QT [Equation (C2)]

MT, DES results agree with Maxwell’s theory of electrodynamics; QT, DES results agree with quantum theory of a pair of spin-1/2 particles. Question mark: DES results cannot be

described by quantum theory of a pair of spin-1/2 particles (see Appendix B).
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and (14). At first sight, there is no experimental support for
such a law. However, let us look at the EPRB experiment from
a slightly different perspective, namely, as a setup to characterize
the response of the observation stations to very feeble, randomly
anticorrelated light. Then, our DES data and also the analysis
of experimental data [65] support the hypothesis that the EPRB
experiment demonstrates that the statistics of the detection
events that have been classified as photons depend on the settings.

What if we try to measure the retardation by an experiment
that uses feeble light with fixed polarization? As explained in
section 4, in our subquantum model the retardation time does
not depend on the setting of the beam splitter if the polarization
is constant in time. Only if the polarization is not fixed in time,
our subquantum model yields retardation times that depend
on the setting of the beam splitter. This is precisely what the
EPRB experiment does: through the correlation, it provides
information about the retardation as a function of the setting of
the beam splitter. Therefore, to rule out the subquantum law of
retardation used in our DES, it is necessary to perform both the
experiments with feeble, randomly polarized light and with feeble
light of fixed polarization.

Summarizing, we have proposed a subquantum model
which satisfies Einstein’s criterion of locality and which
generates, event-by-event, data that agrees with the quantum-
theoretical description of the Einstein-Podolsky-Rosen-Bohm
and the extended Einstein-Podolsky-Rosen-Bohm experiments.
This demonstration does not build on the traditional methods
of theoretical physics but instead uses a digital computer and a
discrete-event simulation as a metaphor for idealized, realizable
laboratory experiments.
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APPENDIX A: QUANTUM THEORY OF THE
(E)EPRB EXPERIMENT

For reference, we briefly review the quantum-theoretical
description of the EPRB and EEPRB experiment. In this
appendix, for the sake of generality, we first consider magnetic
spin-1/2 particles passing through Stern-Gerlach magnets.

In the context of (E)EPRB experiments, the case of interest
is a system of two spins in the singlet state, described by the
density matrix

ρ = 11− σ 1 · σ 2

4
= 1

2









0 0 0 0
0 +1 −1 0
0 −1 +1 0
0 0 0 0









=
( |↑↓〉 − |↓↑〉√

2

) ( 〈↑↓| − 〈↓↑|√
2

)

. (A1)

A selective measurement on the spin-1/2 particle is described by
the operator Ballentine [58]

M(S, σ , x) = 11+ S σ · x
2

= M2(S, σ , x), (A2)

projecting a state of the spin-1/2 system onto the eigenstate of
σ · x with eigenvalue S = ±1.

The probabilities to observe the outcomes S1 and S2 in an
EPRB experiment are given by Ballentine [58]

P(S1|a) = Tr M(S1, σ 1, a) ρ M(S1, σ 1, a) = Tr ρ M(S1, σ 1, a) ,

P(S2|b) = Tr M(S2, σ 2, b) ρ M(S2, σ 2, b) = Tr ρ M(S2, σ 2, b) , (A3)

respectively. For two spin-1/2 particles in the singlet state
Equation (A1), we have P(S1|a) = 〈σ 1 · a〉 = 1/2 and P(S2|b) =
〈σ 2 · b〉 = 1/2, The probability to observe the joint event (S1, S2)
is given by Ballentine [58]

P(S1, S2|a, b)
= Tr M(S2, σ 2, b)M(S1, σ 1, a) ρ M(S1, σ 1, a)M(S2, σ 2, b)

= Tr ρ M(S1, σ 1, a)M(S2, σ 2, b), (A4)

where we used the fact that [M(S1, σ 1, a),M(S2, σ 2, b)] = 0
for all a and b. For two spin-1/2 particles in the singlet state
Equation (A1), Equation (A4) becomes

P(S1, S2|a, b) =
1− S1S2 a · b

4
. (A5)

Similarly, the probability to observe the joint event (S1, S2, S3, S4)
is given by

P(S1, S2, S3, S4|a, b, c, d) = Tr
[

M(S4, σ 2, d)M(S3, σ 1, c)

M(S2, σ 2, b)M(S1, σ 1, a)ρ M(S1, σ 1, a)

M(S2, σ 2, b)M(S3, σ 1, c)M(S4, σ 2, d)
]

= Tr
[

ρ M(S1, σ 1, a)M(S3, σ 1, c)

M(S1, σ 1, a)M(S2, σ 2, b)M(S4, σ 2, d)

M(S2, σ 2, b)
]

. (A6)

Performing the matrix multiplications and calculating the trace
we obtain

P(S1, S2, S3, S4|a, b, c, d,Z) =
1

16

[

1− S1S2 a · b
]

[

1+ S1S3 a · c
]

[

1+ S2S4 b · d
]

. (A7)

The derivation of the quantum-theoretical description of an
experiment with photon polarization instead of magnetic spin-
1/2 particles is not much different, for details see reference [71].
The upshot is that we only have to replace a · b by cos 2(a − b)
etc. Thus, in the case of an EEPRB experiment that uses the
polarization of the photons, the probability to observe the joint
event (S1, S2, S3, S4) is given by

P(S1, S2, S3, S4|a, b, c, d,Z) =
1

16

[

1− S1S2 cos 2(a− b)
]

[

1+ S1S3 cos 2(a− c)
]

[

1+ S2S4 cos 2(b− d)
]

. (A8)

APPENDIX B: A LIMITATION OF QUANTUM
THEORY FOR TWO SPIN-1/2 PARTICLES

If the random polarizations of particles that enter BS1 and BS2
are the same instead of orthogonal, the DES generates data which,
within the usual statistical fluctuations, is characterized by E1 =
E2 = 0, and E12 = + cos 2(a−b). In this appendix, we prove that
a two-particle system with single-particle averageŝE1 = ̂E2 = 0,
and pair correlation̂E12 = + cos 2(a− b) cannot be described by
the quantum theory of two spin-1/2 particles. As in Appendix A,
we consider the general case of two spin-1/2 particles and deal
with the case of photon polarization at the end.

Using the Pauli-matrices and the 2 × 2 unit matrix as a basis
of the vector space of 2 × 2 matrices, we can, without loss
of generality, write the 4 × 4 density matrix of the two-spin
system as

ρ̂ = 1

4



11+
∑

k=x,y,z
ukσ

k
1 +

∑

k=x,y,z
vkσ

k
2 +

∑

k,l=x,y,z
σ k
1wk,lσ

l
2



 ,

(B1)

where the u’s and v’s are real numbers and the w’s are the
elements of a Hermitian matrix. According to quantum theory,
we then have

̂E1 =〈σ 1 · a〉 = Tr ρ̂ σ 1 · a = u · a
̂E2 =〈σ 2 · b〉 = Tr ρ̂ σ 2 · b = v · b

̂E12 =〈σ 1 · a σ 2 · b〉 = Tr ρ̂ σ 1 · a σ 2 · b = aT · w · b . (B2)

If for all unit vectors a and b we have 〈σ 1 · a〉 = 〈σ 2 · b〉 = 0
and 〈σ 1 · a σ 2 · b〉 = −q a · b, then u = v = 0 and w = −q 11,
implying that

ρ̂q =
11− q σ 1 · σ 2

4
. (B3)
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The four eigenvalues of σ 1 · σ 2 are 1, 1, 1, and −3. Therefore, ρ̂q
has a negative eigenvalue if q < −1/3 and in this case ρ̂q does not
qualify as a density matrix whereas ρ̂q=1 = (11− σ 1 · σ 2)/4 does
(and represents the singlet state).

In summary, there does not exist a quantum-theoretical
description in terms of a 4 × 4 density matrix that yields ̂E1 =
̂E2 = 0 and̂E12 = +|q|a·b or for all unit vectors a and b and |q| >
1/3. This includes the special case for whicĥE12 = + cos 2(a−b)
and̂E1 =̂E2 = 0.

APPENDIX C: PRODUCT STATE

For completeness, we give the expressions for the probabilities for
the case that the two photons of each pair leave the source with
fixed polarization p and q, respectively. Instead of Equation (8),
we have

P(S1, S2|a, b,Z) =
1+ S1 cos 2(a− p)

2

1+ S2 cos 2(b− q)

2
,

(C1)

and instead of Equation (9), we have

P(S1, S2, S3, S4|a, b, c, d,Z) =
1

16

[

1+ S1 cos 2(a− p)
]

[

1+ S2 cos 2(b− q)
]

[

1+ S1S3 cos 2(a− c)
]

[

1+ S2S4 cos 2(b− d)
]

.

(C2)

Note that Equations (C1) and (C2) also apply to the case of
classical optics with I0 = 1.
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We use discrete-event simulation on a digital computer to study two different models of

experimentally realizable quantum walks. The simulation models comply with Einstein

locality, are as “realistic” as the one of the simple random walk in that the particles

follow well-defined trajectories, are void of concepts, such as particle-wave duality and

wave-function collapse, and reproduce the quantum-theoretical results by means of a

cause-and-effect, event-by-event process. Our simulation model for the quantum walk

experiment presented in Robens et al. [1] reproduces the result of that experiment.

Therefore, the claim that the result of the experiment “rigorously excludes (i.e., falsifies)

any explanation of quantum transport based on classical, well-defined trajectories” needs

to be revised.

Keywords: quantum walk, quantum theory, subquantum models, discrete event simulation (DES), computer

simulation

1. INTRODUCTION

A particle is said to perform a simple random walk (SRW) over a set of lattice points (enumerated
by integers) when at each time step, it jumps to one of its neighboring points, and the direction
of the jump is determined by a random variable [2, 3]. Random walks find applications in many
diverse fields, too many to list them here.

The term “quantum random walk” was introduced in 1993 [4] and emphasizes the analogy to
the simple random walk on a lattice. However, the time evolution of a “quantum random walk” is
deterministic and reversible [5], not random at all, so the term quantum walk (QW) is more apt.
There are various kinds of proposals and implementations of QWs using optical lattices [1, 6, 7],
ion traps [8–10], microwave cavities [11], or optical networks [12–14]. A review covering various
aspects of QWs is given in Kempe [15].

The basic idea of the QW is similar to that of the SRW. Instead of using a random variable
to decide which way to jump, an internal degree of freedom (e.g., spin or polarization) is used to
determine the direction of the jump. This internal degree of freedom changes its state according to
the rules of quantum theory, that is by a unitary transformation.

For simplicity, in this paper, we consider the case where this state is described by a 2-dimensional
Hilbert space (e.g., spin up |↑〉 and spin down |↓〉) and the particle makes nearest-neighbor hops on
a one-dimensional lattice. Compared to the SRW, the new feature is that at each jump, the state of
the spin changes by a unitary transformation, e.g., a Hadamard transformation. The particle moves
to the right if the projection of the spin (along the z-axis by convention) is up |↑〉 and moves to the
left if its spin is down |↓〉.

In symbols, this process is formalized as follows. The basis states of the Hilbert space are |x, s〉,
where x ∈ {−L, . . . , L} labels the position on the one-dimensional lattice of X = 2L + 1 sites, and
s ∈ {↑,↓} labels the eigenstates of the z-component of the Pauli matrices describing the internal
degree of freedom. In terms of the basis states, the wave function at step l reads

56
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|8(l)〉 =
L

∑

x=−L

φ
(l)
x,↑|x,↑〉 + φ

(l)
x,↓|x,↓〉 ,

L
∑

x=−L

∣

∣

∣
φ
(l)
x,↑

∣

∣

∣

2
+

∣

∣

∣
φ
(l)
x,↓

∣

∣

∣

2
= 1, (1)

and is related to the initial state |8(0)〉 = |0,↑〉 by

|8(l)〉 = (SH)l |8(0)〉, (2)

where

S =
L

∑

x=−L+1

|x− 1,↑〉〈x,↑| +
L−1
∑

x=−L

|x+ 1,↓〉〈x,↓| (3)

is the operator that implements the particle jump,

|↑〉〈↑| =
(

1 0
0 0

)

, |↓〉〈↓| =
(

0 0
0 1

)

, |↑〉〈↓| =
(

0 1
0 0

)

,

|↓〉〈↑| =
(

0 1
0 0

)

(4)

are the spin projection operators, and

H = 1√
2

(

1 1
1 −1

)

(5)

is the Hadamard operation, acting on the spin degree-of-freedom
only. We only consider the case that the number of steps is
smaller than or equal to L, meaning that the particle initially
localized at x = 0 never goes beyond the boundaries of the lattice.

QWs are different from SRWs in that the latter cannot display
interference phenomena whereas the former, being described in
terms of the evolution of a wave function, can. In addition, the
probability distribution of a QW (starting from the initial state
|8(0)〉 = |0,↑〉) is not necessarily symmetric w.r.t. x = 0, unlike
the probability distribution of a SRW for a particle initially at
x = 0. Furthermore, the variance of x is non-linear in the number
of steps L [15].

There are two distinct views of the formulation of the QW.
The first uses the particle picture to spell out the rules by which
a particle changes its position and spin. Although the spin is
often regarded as a characteristic quantum feature, if there is
only one spin in play, we can equally well represent this spin by
a unit vector on a Bloch sphere, a genuine classical-mechanical
construct. The quantization of the spin only enters through the
digitalization of its projection on the z-axis, a process very similar
to the tossing of a coin, which during its flight usually rotates.
This pictorial description of the motion of a single particle is as
“realistic” as the one of the SRW. Indeed, at any time the particle
is at a definite position and the measurement of the internal
degree of freedom yields an unpredictable outcome (the mapping
of the unit vector to “spin-up” or “spin-down”), determining the
direction of the jump.

In the second view of the formulation of the QW, use of
wave mechanics is made in order to describe the evolution of a
collection of particles, prepared in the same initial state (position
and spin). The realistic view is lost when we impose that the time
evolution of a single particle and its internal degree of freedom
are to be described in terms of a wave function that evolves in
time according to the rules of quantum theory, Equation (2) in
the case at hand.

2. AIM OF THE PAPER

In this paper, we demonstrate that QWs can be modeled without
ever having to resort to the notion of particle-wave duality, the
wave function of the particle, the update rule Equation (2), etc.
Specifically, we show that it is possible to construct a discrete-
event simulation (DES) that is as realistic as the model of the
SRW, complies with Einstein’s notion of local causality [16],
and reproduces the results of quantum theory without using
expressions, such as Equations (1) or (2). In this respect, DES
constitutes a “subquantum” model that agrees with the statistical
results of quantum theory but additionally gives a description in
terms of individual events in contrast to quantum theory which
only gives collective, statistical predictions.

DES is a general methodology for simulating the time
evolution of a system as a discrete sequence of consecutive events.
In the application at hand, there are four different kinds of events,
namely a particle starting its walk, an operation acting on the
second degree of freedom (e.g., the spin) of a particle, a particle
moving from one lattice site to the next according to the state
of the second degree of freedom, and a particle being counted
and removed by detectors positioned at each of the lattice sites
and activated after a particle made the maximum number of
allowed jumps.

Simulation of a SRW is one of the simplest applications of
DES. In the DES of both the SRW and the QW, each walker
follows a well-defined trajectory but in contrast to the former, the
latter yields distributions of particles over the lattice which agree
with the quantum-theoretical prediction, not with a distribution
originating from a diffusion process.

We also use DES to reproduce the experimental data
of a particular QW experiment with atoms [1], which
“rigorously excludes (i.e., falsifies) any explanation of quantum
transport based on classical, well-defined trajectories,” in blatant
contradiction with the fact that each of the particles in the
DES follows a well-defined trajectory and the DES reproduces
the experimental data. In particular, we show that the DES can
produce data that either violates or does not violate the Leggett-
Garg inequality (LGI) [17], depending on the treatment of the
data [18, 19]. This implies that the QW by itself is not the cause
of a violation of the LGI. Note that in DES it is trivial to perform
non-invasive measurements, an essential requirement for the
application of the LGI [17].

3. DISCRETE-EVENT SIMULATION

For our demonstration, we build on the DES approach
introduced in De Raedt et al. [20], which reproduces the
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experimental and quantum-theoretical results of many
fundamental quantum-physics experiments with photons
and neutrons [21]. In essence, we use DES on a digital computer
as a metaphor for a perfect laboratory experiment [22]. A
salient feature of any DES implementation is that all variables
which enter the model have definite values and are known at
all times. The application of DES to the QW is based on the
following ideas:

1. The moving object is treated as a particle carrying a
unit vector and making nearest-neighbor jumps on a one-
dimensional lattice.

2. There are “processing units” which can be thought of as being
placed on the lattice sites. Depending on the unit vector
that the particle carries when it enters a processing unit, the
latter may rotate the unit vector and tell the particle where to
jump to.

3. Each particle can only take one definite path. In this sense,
our DES of a QW is as “realistic” as the DES of a SRW.

4. A particle can arrive at only one detector. The function of
the detector is to count the particle and to remove it from
the lattice. Each detection event is caused by exactly one
particle making a walk. Of course, being a simulation on a
digital computer, during the DES, the position of the particle
and its unit vector can be “read out” at any time, without
disturbing anything.

5. A particle is not allowed to start its walk as long as there is
another particle present on the lattice, implying that there
can be no direct interaction between particles.

6. Interference results from the adaptive dynamics of the
processing units. In the case at hand, a processing unit
models a beam splitter with two input and two output ports
(see below). Input to such a processing unit are the port
at which the particle enters and the orientation of the unit
vector. The adaptive dynamics changes the internal state of
the processing unit in a deterministic manner. The internal
state determines the output port by which a particle leaves
the processing unit.

7. After processing many particles (100,000 in the case at
hand), the relative frequencies of the detector counts
agree with the probabilities obtained from the quantum-
theoretical description.

In a DES, we can read off, at any time, the value of a physical
quantity without changing the state of the system and we
explicitly exclude from consideration DES implementations that
violate Einstein’s criterion of local causality. Specifically, our DES
models satisfy the locality criteria of category 0, as defined in
Hess [16], that is they are void of interactions (such as those
appearing in the hydrodynamic/Bohm interpretation of quantum
theory [23, 24]) that violate Einstein’s criterion of local causality.
In summary, our DES approach satisfies the criteria for a local
realist model.

Our DES is manifestly “non-quantum mechanical” in the
sense that there is no wave function describing the state
of the particle in space-time but instead there are definite
particle trajectories. Still the rules by which these trajectories
are formed cannot be described by “Newtonian mechanics.”

Clearly, without calling upon magic, one cannot have individual
particles following well-defined trajectories interfere unless there
is a mechanism at work that provides some form of indirect
communication between successive particles starting their walk.
As mentioned in 6 above, in our DES approach, this indirect
communication is the result of the adaptive (non-Newtonian)
dynamics of the processing unit.

At this point of the discussion, we wish to draw attention to
a paper of Duane [25]. Duane proposed that, in addition to the
quantum rules for energy and angular momentum, there is a
similar rule for the linear momentum and then showed that with
this rule one can explain the diffraction of X-rays from a crystal
without reference to interference of waves [25]. In plain words,
the key point of Duane’s work may be formulated as follows:
there is no reason to attach a wave function to a particle if there
is plenty of wave-like motion in the crystal with which the X-
rays interact. At the time of the development of quantum theory,
the latter experiment was generally taken as strong evidence for
the dual particle-wave character. An extensive discussion of the
negative impact of the particle-wave duality and the development
of a deeper understanding of where quantum theory comes from
and what it entails is given by Landé in a series of papers [26–29]
and a book [30].

We mention Duane’s work [25] here because in essence,
a similar idea is also used to construct the rules of operation
for the processing units in our DES. Indeed, a quick glance at
the structure of the DES algorithm for a beam splitter [20, 21]
shows that the internal state of this unit is represented by a
real-valued vector of length two and a complex-valued vector
of length four. The decision about the port at which the particle
leaves the beam splitter involves the combination of these two
vectors and a multiplication by a 4 × 4 unitary matrix. In
other words, we have attached a kind of “wave function” to
the material (of the beam splitter), meaning that this “wave
function” is local to the device. In the case of a beam splitter
for light, the internal state, the “wave function,” is just another
word for the electrical polarization vector of the material [21]
and has little relation to the particle wave function that appears
in quantum theory. An essential ingredient of the processing
unit, its capability of adapting (learning) its state from the
particles that it receives on its input ports, as well as the rule to
send particles out, cannot be inferred from the work of Duane.
They are designed such that the DES is able to reproduce,
event-by-event (particle-by-particle), in a cause-and-effect
manner, the values of the probabilities predicted by quantum
theory [20, 21].

4. DISCRETE-EVENT SIMULATION OF A
QW

In this section, we present the results of a DES for a QW on a
line which can be implemented by a network of beam splitters,
phase shifters and photodetectors [12]. An interesting point of
this implementation is that light waves can be used to simulate
the QW, i.e., we can use Maxwell’s equations for electromagnetic
waves to simulate a quantum system. Of course, this is not really
a surprise as the description of beam splitters, phase shifters etc.,
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FIGURE 1 | Setup of a realization of a QW experiment [12] on a line of L = 4 levels (X = 9 lattice sites). The solid (cyan) boxes represent phase shifters, shifting the

phase of the wave by angles ϕ1 or ϕ2, respectively. Open squares with a diagonal line represent 50:50 beam splitters. Half circles (pink) with a tail denote detectors at

level 4, placed at lattice sites x = −4,−2, 0, 2, 4. Each group of three processing units, marked by a dashed border, causes the particle to jump left or right.

uses Jones-vector calculus which is, in essence, the same as the
quantum-theoretical description in terms of Equations (1)–(5).
As explained earlier, the main point of performing a DES for a
QW is that it uses an event-by-event, particle-based approach
that is as realistic as the description of a SRW and does not rely
on the quantum formalism embodied in Equations (1)–(5).

The layout of the proposed experiment is shown in Figure 1.
The function of the beam splitters is to create the superposition of
the two input modes. In Jones-vector calculus or quantum theory
(see Appendix A), the matrix describing the operation of a beam
splitter is given by

MBS =
1√
2

(

1 i
i 1

)

. (6)

Two phase shifters, with their Jones matrix representation
given by

Mϕ1 =
(

eiϕ1 0
0 1

)

and Mϕ2 =
(

1 0

0 eiϕ2

)

, (7)

respectively, change the phase difference between the two partial
waves leaving the beam splitter.

Table 1 summarizes the theoretical results for the QW and the
corresponding SRW. For both types of walks, detectors with an
odd (even) number x will only register particles if l is also odd
(even). From the expressions in Table 1 it also follows that the
probabilities to observe a particle do not depend on ϕ1. For more
than two steps (l > 2) the dependence on ϕ2 is sinusoidal, a
characteristic feature of interference. Furthermore, the variance
is larger than for the SRW and the peak of the distributions is not
at the center anymore.

Implementing a DES for a network, such as the one shown
in Figure 1 is straightforward. We simply reuse, over-and-over
again and without modification, the event-based algorithms
that have been developed to simulate the beam splitter, phase
shifter, and detector [21] and connect outputs to inputs of these
algorithms strictly according to the diagram in Figure 1. As the
algorithms for all the different components and the method to
stitch them together have been discussed extensively and at great
length elsewhere [21], we omit the discussion of these aspects.
The reader interested in setting up her/his own DES should

Frontiers in Physics | www.frontiersin.org 4 May 2020 | Volume 8 | Article 14559

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Willsch et al. Discrete-Event Simulation of Quantum Walks

TABLE 1 | Quantum theoretical results for the probabilities of the quantum walk after l = 1, . . . , 5 steps (see Appendix A for details on the calculation) for a particle

initially localized at x = 0.

Step Lattice site (detector number) x

l −5 −4 −3 −2 −1 0 1 2 3 4 5

1 0 0 0 0 1
2 0 1

2 0 0 0 0

2 0 0 0 1
4 0 2

4 0 1
4 0 0 0

3 0 0 1
8 0 3

8+
2 cosϕ2

8 0 3
8−

2 cosϕ2
8 0 1

8 0 0

4 0 1
16 0 4

16+
2+4 cosϕ2

16 0 6
16− 4

16 0 4
16+

2−4 cosϕ2
16 0 1

16 0

5 1
32 0 5

32+
6+6 cosϕ2

32 0 10
32− 6

32 0 10
32− 6

32 0 5
32+

6−6 cosϕ2
32 0 1

32

The probabilities only depend on ϕ2, not on ϕ1. For l = 1 and l = 2, the probabilities are identical to the ones of the SRW (the first or only term in each column) which are given by

2−l
( l
(x+l)/2

)

if x+ l is even and are zero otherwise. For more than two steps, the probabilities in each row exhibit a ϕ2 → ϕ2+π symmetry w.r.t. x = 0. Interference leads to the differences

(red) between the probabilities of the SRW and the QW. The case ϕ1 = π/2 and ϕ2 = −π/2 is shown in Figure 1.

consult Michielsen and De Raedt [21] and papers cited therein.
Details of the implementation, specific for the application to
QWs, can be found in Nocon [31]. An example implementation
in PYTHON is given in Appendix B and available online1.

Our implementation of the DES of the QW experiment shown
in Figure 1 allows for more than L = 5 levels (X = 11 sites). In
general, the larger the number of beam splitters in the diagram,
the larger the number of particles has to be in order for the
processors mimicking the beam splitters to adapt sufficiently
well to the ratio of particles arriving at the two input ports, i.e.,
representing the two sides at which photons can enter a beam
splitter [20, 21]. Numerical experiments show that sending N =
100, 000 particles through the network is more than sufficient to
go up to L = 7 levels (X = 15 sites) and to obtain data with good
statistics. Figures 2A–F shows DES results after l = 2 up to l = 7
steps and for the phase shifts ϕ1 = π/2 and ϕ2 = −π/2, as well
as the results obtained from the quantum-theoretical description
(asterisks). Other asymmetric cases are considered below and
in Nocon [31] and can be generated using the program given
in Appendix B.

The DES outcomes are in full agreement with the quantum-
theoretical results. In conclusion, the DES provides a local
realist model that reproduces the quantum-theoretical results of
the QW.

5. DISCRETE-EVENT SIMULATION OF A
QW EXPERIMENT WITH ATOMS [1]

Robens et al. experimentally implemented a four-level QW with
cesium atoms in a state-dependent optical potential [1]. They
made use of the fact that the two hyperfine states of the electronic
ground state of the cesium atom, |F = 4, mF = 4〉 (pseudo-
spin up) and |F = 3, mF = 3〉 (pseudo-spin down), experience a
different lattice potential [1]. A microwave pulse can change the
superposition of these two hyperfine states, and the difference
in sensitivity of the |F = 4, mF = 4〉 and |F = 3, mF =
3〉 states to left- and right-handed polarized light can be used
to manipulate the position of the cesium atoms in the state-
dependent potential [1].

1Available online at: https://jugit.fz-juelich.de/qip/quantum-walk (accessed April

25, 2020).

In the DES, a cesium atom with its two hyperfine states
is represented by a particle carrying a two-state spin system.
Although we should not think of particles in the DES as objects
observed in Nature, to build a mental picture of what the DES is
actually doing, it may, for the present purpose, be very helpful
to think of a particle and its spin as a single photon and its
polarization [32]. Therefore, and also for the uniformity of
presentation, we will formulate the DES model of the cesium-
atom experiment using the language of optics, using terms like
beam splitters, phase shifters, etc. As a matter of fact, as long as
the dimension of the Hilbert space is finite, it is always possible
to reformulate the original problem as a problem of photons
traversing a network of optical components [33] or, equivalently,
as a quantum gate circuit [34].

The basic ingredients of the DES are then the following [31].
Distinguishing the cesium atoms on the basis of their hyperfine
state is implemented as the action of a polarizing beam splitter,
separating h and v polarized photons (relative to the entrance
surface of the first polarizing beam splitter in Figure 3). In the
context of the experiment, h (v) corresponds to the hyperfine
states |F = 4, mF = 4〉 (|F = 3, mF = 3〉). The
creation of the superposition of the hyperfine states is realized
by Hadamard transformations, i.e., a combination of half-wave
plates and π/2 phase shifters [21, 31]. As h and v polarized
photons do not interfere, instead of the 50:50 beam splitters
used in the DES of the QW model studied in section 4, we use
polarizing beam splitters in order to let h and v polarized photons
interfere [31]. A sample implementation of the DES is given
in Appendix B.

The “photonics” DES network that corresponds to the
experiment with the cesium atoms [1] is depicted in Figure 3.
Looking at Figure 3, it is easy to see that some of the polarizing
beam splitters (those that show only one input and one output
line) can be removed without affecting the operation of the
network. However, in our DES, we do not “optimize” the network
for computational efficiency. As a matter of fact, the DES of the
network in Figure 3 is so fast that optimization is not worth the
effort (the original implementation was written in C++ [31], but
even the demonstration in PYTHON given in Appendix B only
takes a few seconds).

Figures 4A–C shows that the DES reproduces the
experimental results of Robens et al. [1]. For convenience,
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FIGURE 2 | Results for the normalized number of detector counts Nx/N as a function of the detector number x, obtained by a DES of the QW for N = 100, 000

repetitions, ϕ1 = π/2 and ϕ2 = −π/2 and for different numbers of steps l = 2, . . . , 7, corresponding to (A–F). The distributions from the DES (bars) match with the

analytical results for the QW (asterisks, see Table 1). For more than 3 steps, the distributions of the QW are broader than those of the SRW (see Table 1) because of

interference effects.

the experimental data have been read off from Figures 3A–C
of Robens et al. [1], normalized, and plotted as striped bars
in Figures 4A–C. Furthermore, we see that the DES produces
the quantum-theoretical results of the asymmetric four-step
QW (asterisks).

The agreement between the DES and experimental data
proves that, in contrast to the claim made in Robens et
al. [1], it is possible, to describe a QW without a particle
wave function, but with particles following individual trajectories
that are as well-defined as in the case of a SRW, and local
“wave functions” attached to each polarizing beam splitter [21].
We remark that the learningrate parameter of the
beam splitters (see Appendix B) can be used to tune the
“quantumness” of the DES such that learningrate = 0
yields the SRW and 0.9 ≤ learningrate ≤ 0.98 yields
the QW.

Obviously, the agreement between the DES and experimental
data seems to be in conflict with the common lore that local
realist models, such as a DES cannot reproduce certain results
of quantum physics. It is therefore of interest to explore whether
this conflict is fundamental or not. Recall that by construction,

our DES model of the QW complies with the category 0 locality
criteria, as defined in Hess [16].

Robens et al. support their claim that the QW experiment
“rigorously excludes (i.e., falsifies) any explanation of quantum
transport based on classical, well-defined trajectories” by
demonstrating a violation of a LGI [1]

K = 〈Q(t2)Q(t1)〉 + 〈Q(t3)Q(t2)〉 − 〈Q(t3)Q(t1)〉 ≤ 1, (8)

where the Q(ti) are real numbers with |Q(ti)| ≤ 1 and ti
denote the position at which the measurements are performed
(equivalent to the time in the original formulation of the LGI).
We demonstrate, by means of a DES of their experiment, that
their claim is unfounded.

5.1. Procedure Applied in the
Experiment [1]
Robens et al. set t1 = 0 (initial state preparation |8(0)〉 =
|x = 0,↑〉, start of a single-particle walk), t2 = 1 (after the
first single-atom jump), and t3 = 4 (after the fourth single-
atom jump). In Figure 3, each single-atom jump corresponds to
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FIGURE 3 | DES setup for the QW with polarized single photons of the same energy. Red horizontal (blue vertical) lines show the path of h (v) polarized photons.

Green lines represent the path of photons with a linear combination of h and v polarization. The input to the network consists of h polarized photons only. Square

(blue/white) boxes represent polarizing beam splitters. The oval (yellow) boxes perform a Hadamard transformation on the photon polarization. Each gray region

corresponds to a single-atom jump operation in the QW experiment [1]. In quantum theory, the H boxes correspond to Equation (5) and the S regions correspond to

Equation (3). Circles with labels t1, t2, and t3 denote the positions of the Q(t1), Q(t2), and Q(t3 ) measurements, respectively.

a transition from one gray region to the next. Circles with the
labels t1, t2, and t3 indicate the corresponding positions in the
DES. Robens et al. proceed by choosing Q(t1) = Q(t2) = 1 and
assign Q(t3) = +1 if at the fourth step, the particle is observed at
x > 0, and Q(t3) = −1 otherwise [1]. With these simplifications,
Equation (8) reduces to

K = 1+ 〈Q(t3)Q(t2)〉 − 〈Q(t3)〉 ≤ 1. (9)

In order to estimate 〈Q(t3)〉, Robens et al. repeat the QW
experiment about 400 times, and compute the average of the
measured Q(t3) [1]. To estimate 〈Q(t3)Q(t2)〉, Robens et al. need
to repeat the same QW procedure two times in addition. In the
first (second) repetition, they measure the position at t2, by what
they believe is an ideal negative measurement, and remove atoms
that are measured at position x = 1 (x = −1). We cannot
question the extent to which they really implemented an ideal
negative measurement in their experiment. In our DES of this
experiment, however, it is trivial to perform an ideal negative
measurement. In both cases, the atoms continue their walk and
are finally measured at t3, yielding either Q(t3) = −1 or Q(t3) =
+1. The average of the Q(t3)’s is then denoted by 〈Q(t3)〉x2 where
x2 ∈ {−1,+1} indicates which atoms are kept at t2.

With this data in hand, Robens et al. compute the left-hand
side of Equation (9) as

K = 1+
∑

x2=±1

P(x2; t2)〈Q(t3)〉x2 − 〈Q(t3)〉, (10)

where P(x2; t2) denotes the probability that the atom was at
position x2 = ±1 at t2, the theoretical values being 1/2 (see the

l = 1 row of Table 1). Plugging in the experimentally obtained
data, Robens et al. find that [1]

K = 1.435± 0.074 > 1, (11)

and conclude that the “reported violation of the LG inequality
proves that the concept of a well-defined, classical trajectory
is incompatible with the results obtained in a quantum-walk
experiment [1].” This conclusion is unjustified, as we now show.

5.2. Refutation of the Claim
Our demonstration consists of two steps. First, we show that
a DES of the QW performed with the same measurement
procedure as the one used by Robens et al. reproduces their
experimental results and therefore also produces a violation of
the LGI. In this case, the DES also reproduces the results of the
quantum-theoretical model in which we block the corresponding
path labeled by t2. Second, because in a DES performing non-
invasive measurements is not an issue, there is no need to
perform three different runs to measure all the quantities which
appear in Equation (9). In fact, one DES run suffices to compute
all the quantities that enter the LGI. In this case, the DES also
reproduces the quantum-theoretical results of the QW.

In the first step, we adopt the same procedure as in the real
experiment [1], namely we perform three DESs for a four-step
QW. In each DES run, the number of particles is N = 100, 000.
In the first run, we compute 〈Q(t3)〉without removing particles at
position t2. For the other two runs, at position t2, we simulate an
ideal negative measurement by removing the particles traveling
to the right (h polarization) and downwards (v polarization),
respectively, as Robens et al. do in their experiment with the
cesium atoms.
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FIGURE 4 | DES results (solid bars) of the normalized detector counts Nx/N as a function of the detector position x. In each run, N = 100, 000 particles were sent

through the network shown in Figure 3. In (A–C), the solid bars represent the distribution where at position t2, (A) no particles, (B) particles at x = 1, (C) particles at

x = −1 have been removed. In (D), the sum of (B,C) is shown to be symmetric and equal to the four-step QW shown in Figure 2C (for x 7→ x/2). (E,F) Show the

distributions resulting from only observing (and not removing) the particle at t2. As their sum yields the distribution in (A), the observation does not affect the result and

is thus non-invasive. Asterisks represent the ideal result obtained from quantum theory, i.e.,
∑

s |〈2x, s|(SH)3|ψ〉|2 where |ψ〉 is given by (A) SH|0,↑〉, (B) | − 1,↑〉/
√
2,

or (C) | + 1,↓〉/
√
2 (see also Equations 2–5). There are no asterisks in (E,F) because this information is only accessible in the subquantum model. The corresponding

experimental data presented in Figures 3A–C of Robens et al. [1] is (up to a normalization factor) indicated by the striped bars in (A–C).

Direct confirmation that the DES reproduces the
experimentally observed results follows from comparing
the data obtained using the removal process (see Figures 4A–C)
with the corresponding data presented in Figures 3A–C of
Robens et al. [1]. Up to normalization factors, all results agree.
Furthermore, the DES reproduces the quantum-theoretical
results for the QW starting at (t1, x = 0), (t2, x = −1), and
(t2, x = +1), shown as asterisks in Figures 4A–C, respectively.

Next, we compute K as given in Equation (10) from the data
of the three different runs. We estimate the statistical error on
the value of K by repeating the three different runs ten times
and obtain

K = 1.497± 0.006 > 1, (12)

violating the LGI by several standard deviations. In fact, the value
of K = 1.497 ± 0.006 is compatible with the theoretical

maximum violation of K = 1.5, achievable by this type of
experiment [1].

For the second step, we use the DES to perform truly ideal
non-invasive “measurements” at t2. Instead of performing three
DES runs (two of them removing certain particles), we perform
a single DES run, and only observe the particle’s position at t2
(see Listing 2 in Appendix B). We emphasize that in DES, this
observation is truly non-invasive.

The resulting counts of the DES are shown in Figures 4E,F.
From a comparison of Figures 4B,C with Figures 4E,F, it
is immediately clear that there is a significant difference
between the counts obtained by the three-run and single-run
procedures. Furthermore, the distributions in Figures 4E,F add
up to the original result in Figure 4A. In contrast, the sum
of the distributions in Figures 4B,C, obtained by the invasive
procedure, add up to the symmetric distribution in Figure 4D,
which is identical to the four-step QW shown in Figure 2C.
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The relevant question is whether Equation (9) can still be
violated. We compute K from the data collected in a single DES
of the QW and obtain

K = 0.999± 0.002, (13)

implying that there is no violation of Equation (9) (up to
statistical fluctuations).

The clear difference between results of the three-run and
single-run procedure proves that the violation of the LGI by
the three-run procedure is not a property of the QW itself.
Instead, in the case at issue, the violation of the LGI is the
result of using three different experimental scenarios with
three different experimental data sets to compute the single
quantity K.

It is worth mentioning that the data analysis used in other
experiments that report violations of Bell-type inequalities shares
similar features, in that correlations are computed from different
subsets of a larger data set [22], which has been discussed in
terms of the contextuality loophole [18]. Such a procedure can,
as Simpson’s paradox nicely illustrates [3], lead to all kinds of
interesting, paradoxical conclusions.

6. DISCUSSION AND CONCLUSION

In this paper, we have proposed a subquantum model for
quantumwalks. Themodel is as realistic as themodel for a simple
randomwalk and satisfies Einstein’s criterion of locality, and uses
a digital computer and a discrete-event simulation algorithm as
a metaphor for realizable quantum walk experiments [1, 12].
The subquantum model generates, event-by-event, data that
agrees with the quantum-theoretical description of a quantum
walk [12].

The subquantum model also reproduces the results of a
quantum walk experiment with cesium atoms [1]. In our
simulation, the trajectories of each individual particle can
be followed. Therefore, the conclusion made in Robens et
al. [1] “that the concept of a well-defined, classical trajectory
is incompatible with the results obtained in a quantum-walk
experiment” is unjustified. The results presented in this paper
can be reproduced with the PYTHON programs provided in
Appendix B and online1.

Our subquantum model based on discrete-event simulation
can reproduce the experimental data of quantum walk
experiments as well as many other optics and neutron-
interferometry experiments [20–22, 31]. This suggests that
standardized software that allows for simulations of single events

observed in (quantum) physics experiments may lead to a new
kind of theory. Whether the discrete-event simulation approach
can be modified/generalized to attain the descriptive power of a
theory, formulated in terms of software (i.e., a well-defined set of
rules stated in terms of a programming language) rather than in
the conventional language of theoretical physics, is a challenging
project for future research.

Being a realistic and Einstein-local model, a salient feature
of our simulation approach is the absence of concepts, such
as particle-wave duality, Born’s rule, and other concepts which
are characteristic of quantum theory. Regarding the foundations
of the latter, it is of interest to mention that one of the
rules by which the discrete-event simulation operates requires
attaching a kind of “local wave function” to some of the
event-based processing units (such as the beam splitters) [20,
21]. This is very reminiscent of a proposal by Duane, who
showed that one can explain the diffraction of X-rays from a
crystal without reference to interference of waves, by adding,
to the quantum rules for energy and angular momentum,
a similar rule for the linear momentum [25]. In essence,
Duane suggested that instead of invoking the particle-wave
character, for model building it may be more effective to let
particles (not waves) interact with the multitude of wave-
like motion that is already present in the crystal [26]. As we
have shown in this paper, this idea can be combined with
discrete-event simulation to yield a local realist model for a
quantum walk.
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Andersson E, et al. Photons walking the line: a quantum walk

with adjustable coin operations. Phys Rev Lett. (2010) 104:050502.

doi: 10.1103/PhysRevLett.104.050502

14. Broome MA, Fedrizzi A, Lanyon BP, Kassal I, Aspuru-Guzik A, White AG.

Discrete single-photon quantum walks with tunable decoherence. Phys Rev

Lett. (2010) 104:153602. doi: 10.1103/PhysRevLett.104.153602

15. Kempe J. Quantum random walks–an introductory overview. Contemp Phys.

(2003) 44:307. doi: 10.1080/00107151031000110776

16. Hess K. Categories of nonlocality in EPR theories and the validity of Einstein’s

separation principle as well as Bell’s theorem. J Mod Phys. (2019) 10:1209–21.

doi: 10.4236/jmp.2019.1010080

17. Leggett AJ, Garg A. Quantum mechanics versus macroscopic realism:

is the flux there when nobody looks. Phys Rev Lett. (1985) 9:857–60.

doi: 10.1103/PhysRevLett.54.857

18. Nieuwenhuizen TM. Is the contextuality loophole fatal for the

derivation of Bell inequalities? Found Phys. (2011) 41:580–91.

doi: 10.1007/s10701-010-9461-z

19. Hess K. Einstein Was Right! Singapore: Pan Stanford Publishing (2015).

doi: 10.1201/b16809

20. De Raedt K, De Raedt H, Michielsen K. Deterministic event-based

simulation of quantum phenomena. Comp Phys Comm. (2005) 171:19–39.

doi: 10.1016/j.cpc.2005.04.012

21. Michielsen K, De Raedt H. Event-based simulation of quantum

physics experiments. Int J Mod Phys C. (2014) 25:01430003.

doi: 10.1142/S0129183114300036

22. De Raedt H, Michielsen K, Hess K. The digital computer as a metaphor for

the perfect laboratory experiment: loophole-free Bell experiments. Comp Phys

Comm. (2016) 209:42–7. doi: 10.1016/j.cpc.2016.08.010

23. Madelung E. Quantentheorie in hydrodynamischer Form. Z Phys. (1927)

40:322–6. doi: 10.1007/BF01400372

24. Bohm D. A suggested interpretation of the quantum theory

in terms of “Hidden” variables. I. Phys Rev. (1952) 85:166–79.

doi: 10.1103/PhysRev.85.166

25. Duane W. The transfer of quanta of radiation momentum to matter. Proc Nat

Acad Sci USA. (1923) 9:158–64. doi: 10.1073/pnas.9.5.158

26. Landé A. Quantum fact and fiction. Am J Phys. (1965) 33:123–7.

doi: 10.1119/1.1971264

27. Landé A. Quantum fact and fiction. II. Am J Phys. (1966) 34:1160–3.

doi: 10.1119/1.1972539

28. Landé A. Quantum fact and fiction. III. Am J Phys. (1969) 34:701–4.

doi: 10.1119/1.9717

29. Landé A. Quantum fact and fiction. IV. Am J Phys. (1975) 43:701–4.

30. Landé A. New Foundations of Quantum Mechanics. Cambridge: Cambridge

University Press (2015).

31. Nocon M. Discrete-Event Simulations of Quantum Random Walks, Quantum

Key Distribution, and Related Experiments. RWTH Aachen (2016). Available

online at: http://juser.fz-juelich.de/record/819152

32. Zhao Z, Du J, Li H, Yang T, Chen ZB, Pan JW. Implement quantum random

walks with linear optics elements. arXiv. (2002) quant-ph/0212149.

33. Reck M, Zeilinger A, Bernstein HJ, Bertani P. Experimental realization

of any discrete unitary operator. Phys Rev Lett. (1994) 73:58–61.

doi: 10.1103/PhysRevLett.73.58

34. Nielsen M, Chuang I. Quantum Computation and Quantum Information.

Cambridge: Cambridge University Press (2000).

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Willsch, Willsch, Michielsen and De Raedt. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Physics | www.frontiersin.org 10 May 2020 | Volume 8 | Article 14565

https://doi.org/10.1103/PhysRevA.66.052319
https://doi.org/10.1126/science.1174436
https://doi.org/10.1103/PhysRevA.65.032310
https://doi.org/10.1103/PhysRevLett.103.090504
https://doi.org/10.1103/PhysRevLett.104.100503
https://doi.org/10.1103/PhysRevA.67.042305
https://doi.org/10.1103/PhysRevA.69.012310
https://doi.org/10.1103/PhysRevLett.104.050502
https://doi.org/10.1103/PhysRevLett.104.153602
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.4236/jmp.2019.1010080
https://doi.org/10.1103/PhysRevLett.54.857
https://doi.org/10.1007/s10701-010-9461-z
https://doi.org/10.1201/b16809
https://doi.org/10.1016/j.cpc.2005.04.012
https://doi.org/10.1142/S0129183114300036
https://doi.org/10.1016/j.cpc.2016.08.010
https://doi.org/10.1007/BF01400372
https://doi.org/10.1103/PhysRev.85.166
https://doi.org/10.1073/pnas.9.5.158
https://doi.org/10.1119/1.1971264
https://doi.org/10.1119/1.1972539
https://doi.org/10.1119/1.9717
http://juser.fz-juelich.de/record/819152
https://doi.org/10.1103/PhysRevLett.73.58
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


REVIEW

published: 23 September 2020
doi: 10.3389/fphy.2020.00273

Frontiers in Physics | www.frontiersin.org 1 September 2020 | Volume 8 | Article 273

Edited by:

Ana Maria Cetto,

Universidad Nacional Autónoma de

México, Mexico

Reviewed by:

Sisir Roy,

National Institute of Advanced

Studies, India

Theo Nieuwenhuizen,

University of Amsterdam, Netherlands

*Correspondence:

Marian Kupczynski

marian.kupczynski@uqo.ca

Specialty section:

This article was submitted to

Mathematical and Statistical Physics,

a section of the journal

Frontiers in Physics

Received: 24 April 2020

Accepted: 18 June 2020

Published: 23 September 2020

Citation:

Kupczynski M (2020) Is the Moon

There If Nobody Looks: Bell

Inequalities and Physical Reality.

Front. Phys. 8:273.

doi: 10.3389/fphy.2020.00273

Is the Moon There If Nobody Looks:
Bell Inequalities and Physical Reality

Marian Kupczynski*

Département d’informatique et d’ingénierie, Université du Québec en Outaouais, Gatineau, QC, Canada

Bell-CHSH inequalities are trivial algebraic properties satisfied by each line of an Nx4

spreadsheet containing ±1 entries, thus it is surprising that their violation in some

experiments allows us to speculate about the existence of non-local influences in

nature and casts doubt on the existence of the objective external physical reality. Such

speculations are rooted in incorrect interpretations of quantum mechanics and in a

failure of local realistic hidden variable models to reproduce quantum predictions for spin

polarization correlation experiments (SPCE). In these models, one uses a counterfactual

joint probability distribution of only pairwise measurable random variables (A, A′, B, B′)
to prove Bell-CHSH inequalities. In SPCE, Alice and Bob, using 4 incompatible pairs of

experimental settings, estimate imperfect correlations between clicks registered by their

detectors. Clicks announce the detection of photons and are coded by±1. Expectations

of corresponding random variables—E (AB), E (AB′), E (A′B), and E (A′B′)—are estimated

and compared with quantum predictions. These estimates significantly violate CHSH

inequalities. Since variables (A, A′) and (B, B′) cannot be measured jointly, neither Nx4

spreadsheets nor a joint probability distribution of (A, A′, B, B′) exist, thus Bell-CHSH

inequalities may not be derived. Nevertheless, imperfect correlations between clicks

in SPCE may be explained in a locally causal way, if contextual setting-dependent

parameters describing measuring instruments are correctly included in the description.

The violation of Bell-CHSH inequalities may not therefore justify the existence of a spooky

action at the distance, super-determinism, or speculations that an electron can be

both here and a meter away at the same time. In this paper we review and rephrase

several arguments proving that such conclusions are unfounded. Entangled photon pairs

cannot be described as pairs of socks nor as pairs of fair dice producing in each trial

perfectly correlated outcomes. Thus, the violation of inequalities confirms only that the

measurement outcomes and ‘the fate of photons’ are not predetermined before the

experiment is done. It does not allow for doubt regarding the objective existence of

atoms, electrons, and other invisible elementary particles which are the building blocks

of the visible world around us.

Keywords: quantum non-locality, counterfactual definiteness, local realism, non-invasive measurability, Tsirelson

bound, EPR paradox, Bell-CHSH inequalities
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INTRODUCTION

External physical reality existed before we were able to probe it
with our senses and experiments. From early childhood, we learn
that the objects surrounding us continue to exist even when we
stop looking at them.

Another notion imprinted in our genes is the notion of a local
causality. If a baby elephant or a baby antelope does not stand up
immediately after their birth, they will die. Several events which
we observe may be connected by causal chains. The amazing
migration patterns and courtship rituals of birds and butterflies
are encoded in their genes.

Our brains, evolved over millions of years, allow us to
understand that the external physical reality should be governed
by natural laws which we can try to discover. We succeeded
in explaining observable properties of macroscopic objects
assuming the existence of invisible atoms and molecules. Later,
we discovered electrons, nuclei, elementary particles, resonances,
and various fields that play an important role in the Standard
Model. Various conservation laws are obeyed in macroscopic and
in quantum phenomena.

Information about the invisible world is indirect and relative
to how we probe it. Invisible charged elementary particles leave
traces of their passage in photographic emulsion or in different
chambers (sparks, bubble, multi-layer, etc.). They also produce
clicks on detectors.

We accelerate electrons, protons, and ions and by projecting
them on various targets we probe more deeply into the structure
of the matter over smaller and smaller distances. We succeeded
in trapping electrons and ions.We constructed atomic clocks and
ion chips for quantum computing.

It is therefore surprising that the violation of various Bell-
type inequalities [1–5] by some correlations between clicks on the
detectors observed in spin polarization correlation experiments
(SPCE) [6–11] may lead to the conclusion that that there is no
objective physical reality, that the electron may be both here and
a meter away at the same time, that a measurement performed
by Alice in a distant location may change instantaneously an
outcome of Bob’s measurement or that apparently random
choices of experimental settings in SPCE are predetermined due
to super-determinism.

The fact that such conclusions are unfounded has been
pointed out by several authors [12–83]. The violation of the
inequalities confirms only that “unperformed experiments have
no outcomes” [84], that one may not neglect the interaction of a
measuring instrument with a physical system and that the “non-
invasive measurability” assumption is not valid. It confirms the
existence of quantum observables which can only be measured in
incompatible experimental contexts.

It also proves that entangled photon pairs, produced in SPCE,
may not be described as pairs of socks (local realistic hidden
variable models- LRHVM) or as pairs of fair dice (stochastic
hidden variable models-SHVM) [1–4].

We are unable to create any consistent mental picture
of a “photon.” We have the same problem with many
other elementary particles, but the lack of mental pictures
does not mean that they do not exist. These invisible

particles are building blocks of the visible world around us,
including ourselves.

A completely new approach is needed in order to reconcile
the quantum theory with the theory of general relativity, and it
is not certain whether we are smart enough to find it. We will
surely not discover it, however, if we accept quantum magic as
the explanation of phenomena which we do not understand.

The question in the title of this article was first asked by
Einstein during his promenade with Pauli, after it was rephrased
in different contexts by Leggett and Garg [85] and Mermin [86].
In this paper, we defend Einstein’s position [87–89] as we believe
that the moon continues to exist if nobody looks at it.

The paper is organized as follows:
In section Experimental Spreadsheets and Bell-Type

Inequalities we show that Bell-CHSH, Leggett-Garg, and Boole
inequalities [34, 70, 78, 90] are trivial arithmetic properties of
some Nx3 or Nx4 spreadsheets containing±1 entries.

In section Local Realistic Models for EPR-Bohm Experiment
we define LRHVM and explain why these models cannot
reproduce quantum predictions for ideal EPRB experiments
which are impossible to implement.

In section Contextual Description of Spin Polarization
Correlation Experiments we show how, by incorporating in an
LRHVM setting dependent parameters describing measuring
instruments, we may explain in a locally causal way correlations
between distant outcomes observed in SPCE.

In section Subtle Relationship of Probabilistic Models With
Experimental Protocols we explain why Bell-1971 model [2, 91]
and Clauser-Horne model [4] are inconsistent with experimental
protocols used in SPCE.

In section Quantum Mechanics and CHSH Inequalities we
define quantum CHSH inequality [92, 93] and Tsirelson bound
[92] and we reproduce Khrennikov’s recent arguments [43] that
the violation of quantum CHSH inequality confirms the local
incompatibility of some quantum observables.

In section The Roots of Quantum Non-locality we show that
speculations about quantum non-locality are in fact rooted in
the incorrect interpretation of von Neumann/Lüders projection
postulates [94, 95].

In section Apparent Violations of Bell-Boole Inequalities in
Elastic Collision Experiments we discuss simple experiments
with elastically colliding metal balls [54] and we explain
an apparent violation of Bell-Boole inequalities in these
experiments. These experiments allow us to better understand
LRHVM and why they fail to describe SPCE.

Section Conclusions contains some conclusions.

EXPERIMENTAL SPREADSHEETS AND

BELL-TYPE INEQUALITIES

Let us examine properties of a spreadsheet with four columns
each containing N entries ±1. We may have N-identical rows
or 16 different rows permuted in an arbitrary order. The entries
may be coded values representing outcomes of some random
experiment (e.g., flipping of four fair coins). Theymay display the
results of some population survey or represent daily variations of
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some stocks. They also may be created by an artist as a particular
visual display. Thus, the columns in the spreadsheet may be finite
samples of a particular discrete time-series of data or they can be
devoid of any statistical meaning.

If each line of the spreadsheet contains measured values (a. a,
b, b′) of jointly distributed random variables (A, A′, B, B′) taking
the values±1 then b= b′ or b= –b′and then:

|s| = |ab− ab′ + a′b+ a′b′|
= |a(b− b′)| + |a′(b+ b′)| ≤ 2. (1)

From (1) we immediately obtain CHSH inequality:

|s| ≤
∑

a,a′,b,b′
|ab− ab′ + a′b+ a′b′|p(a, a′, b, b′)

≤ |E(AB)− E(AB′)| + |E(A′B)+ E(A′B′)| < 2 (2)

where p(a, a, b, b′) is a joint probability distribution of (A, A′, B,
B′) and E(AB) = ∑

a,b

abp(a, b) is a pairwise expectation of A and

B obtained using a marginal probability distribution p(a, b) =
∑

a′ ,b′
p(a, a′, b, b′).

If A′ = B and B′ = C then E(BB) = 1 and we obtain from
(2) Boule and Leggett-Garg inequalities satisfied by three jointly
distributed variables (A,B,B′):

|E(AB) − E(AC)| + 1+ E(BC) ≤2 ⇒ |E(AB)
− E(AC)| ≤ 1− E(BC) (3)

The Bell (64) inequality |P(Ea, Eb) − P(Ea,Ec)| ≤ 1 + P(Eb,Ec) is a

Boole inequality (3) for P(Ea, Eb) = −E(AB), P(Ea,Ec) = −E(AC) and

P(Eb,Ec) = −E(BC).
All these inequalities are deduced using the inequality (1)

obeyed by any four numbers equal to±1. The inequalities (2) and
(3) are in fact necessary and sufficient conditions for the existence
of a joint probability distribution of only pairwise measurable
±1-valued random variables [18, 19].

The inequalities (2) and (3) are of course also valid if |A|≤1,
|A′|≤1|, |B|≤1, and |B′|≤1.

LOCAL REALISTIC MODELS FOR

EPR-BOHM EXPERIMENT

In physics, Bell-CHSH inequalities [2] were derived in an attempt
to reproduce quantum predictions for impossible to implement
ideal EPRB experiments [96].

In EPRB experiments a source produces a steady flow
of electron- or photon- pairs [60] prepared in a quantum
spin-singlet state. One photon is sent to Alice and another
to Bob in distant laboratories where they measure photons’
spin projections in directions a and b (||a||=||b||=1) and the
outcomes “spin up” or “spin down” are coded ±1. There are no
losses and for any pair of experimental settings Alice’s and Bob’s
measuring stations output correlated pairs of outcomes.

If Alice and Bob perform their experiments using four pairs
of settings [(a, b); (a′, b); (a, b′); and (a′, b′)], then outcomes ±1

are the values of corresponding 4 binary random variables Aa,
Aa′ , Bb, and Bb′ . In [1, 2] these values are determined by some
ontic parameters λ (hidden variables) describing pairs of photons
when they arrive at Alice’s and Bob’s measuring stations. Pairwise
expectations of measured random variables, in different settings,
are all expressed in terms of a unique probability distribution
p(λ) defined on an unspecified probability space3:

E(AaBb) =
∑

λ∈3
Aa( λ)Bb( λ)p(λ)

=
∑

λ

A(Ea, λ)B(Eb, λ)p(λ) (4)

E(AaBb′ ) =
∑

λ∈3
Aa( λ)Bb′ ( λ)p(λ)

=
∑

λ

A(Ea, λ)B(Eb′, λ)p(λ) (5)

E(Aa′Bb) =
∑

λ∈3
Aa′ ( λ)Bb( λ)p(λ)

=
∑

λ

A(Ea′, λ)B(Eb, λ)p(λ) (6)

E(Aa′Bb′ ) =
∑

λ∈3
Aa′ ( λ)Bb′ ( λ)p(λ)

=
∑

λ

A(Ea′, λ)B(Eb′, λ)p(λ) (7)

If in (1) we replace a= Aa (λ)= A(a, λ), a′ = Aa′ (λ)= A(a′, λ),
b= Bb (λ)= B(b, λ), and b′ = Bb′ (λ)= B(b′, λ) we obtain:

|S| =
∑

λ

|A(Ea, λ)B(Eb, λ)− A(Ea, λ)B(Eb′, λ)+ A(Ea, λ)B(Eb, λ)

+A(Ea, λ)B(Eb′, λ)|p(λ) ≤ 2 (8)

Therefore, the expectations (4–7) obey the inequality (2).
Bell used the integration over hidden variables instead of

the summation. In agreement with QM, he insisted that one
cannot measure simultaneously or in a sequence different spin
projections of the same photon, thus the expectations E(Aa Aa′

Bb Bb′ ) have no physical meaning. Nevertheless, the existence of
those counterfactual non-vanishing expectations is necessary in
order to prove (8). Namely there exists a mapping:

λ→ (Aa(λ),Aa′ (λ),Bb(λ),Bb′ (λ)) = (a, a′, b, b′) (9)

which defines a joint probability distribution p(a, a′, b, b′) and
a non-vanishing counterfactual expectation E(Aa Aa′ Bb Bb′ )
[56, 97].

If a joint probability distribution p (a, a′, b, b′) does not exist,
the inequalities (2) and (8) cannot be derived. According to QM,
such joint probability distributions do not exist in EPRB, thus, for
some settings, quantum predictions violate CHSH inequalities.

For an ideal EPRB experiment, QM predicts: E(Aa Bb)=

– a · b= – cos θ and E(Aa) = E(Bb) = 0. If b and b′ are arbitrary
orthogonal unit vectors (b·b′

= 0), a = (b′-b)/
√

2 and a′

= (b

+ b′)/
√

2 then S=[(b′-b)·(b′-b)+(b′

+ b)·(b′

+ b]/
√

2 = 4/
√
2

= 2
√
2. This value significantly violates CHSH and saturates the
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Tsirelson’s bound [92], which we discuss in section Quantum
Mechanics and CHSH Inequalities.

According to QM: E(AaBa)= –1 and E(AaB−a) = 1 for any
vector a. Thus, Alice and Bob when measuring spin projections
using the settings (a, a) and (a, –a) should obtain perfectly
anti-correlated or correlated outcomes, respectively. At the
same time, these outcomes are believed to be produced in an
irreducible random way, thus one encounters an impossible to
resolve paradox:

“a pair of dice showing always perfectly correlated outcomes.”

In order to reproduce perfect correlations in LRHVM, one
abandons the irreducible randomness and assumes that Alice’s
and Bob’s outcomes are predetermined before measurements are
done. Therefore, there exists a counterfactual joint probability
distribution of all these predetermined outcomes and CHSH
inequalities may not be violated [86, 97–99].

Fortunately, this paradox exists only on paper because an ideal
EPRB experiment does not exist and in SPCE we neither observe
strict correlations nor anti-correlations between clicks.

In the next section we show how imperfect correlations
between clicks in SPCE may be explained in a locally causal way
without evoking quantum magic.

CONTEXTUAL DESCRIPTION OF SPIN

POLARIZATION CORRELATION

EXPERIMENTS

In SPCE, correlated signals/photons, sent by some sources, arrive
at distant measuring stations and produce clicks on the detectors.
There are black counts, laser intensity drifts, photon registration
time delays, etc. Detected clicks have time tags which are different
for Alice and Bob. One has to identify clicks corresponding
to photons that are members of the same entangled “pair
of photons” which is a setting- dependent complicated task.
Correlated clicks are rare events and estimated correlations
depend on the photon-identification procedure used. A detailed
discussion regarding how data is gathered and coincidences
determined may be found, for example in Hess and Philipp [22],
De Raedt et al. [80, 82], Adenier and Khrennikov [100, 101], and
Larsen [102].

Even if all the above-mentioned difficulties had not existed,
QM would not have predicted perfect correlations for real
experiments. Settings of realistic polarizers may not be treated
as mathematical vectors [47], but rather as small spherical angles;
therefore instead of E(Aa Bb)= –a · b= –cos θ we obtain:

E(AaBb = η(Ea)ηEb
∫

Oa

∫

Ob
−Eu · EvdEudEv (10)

where Oa = {Eu ∈ S(2}; |1 − Eu · Ea| ≤ ε} and Ob = {Ev ∈
S(2}; |1− Ev · Eb| ≤ ε}

In order to estimate correlations, Alice and Bob have to
choose correlated time windows. They retain only pairs of
windows containing two types of events: “a click on a detector
1 and a click on a detector 2” or “a click on only one of

the detectors.” Therefore, in SPCE, random variables describing
outcomes of these experiments have three possible values coded
as±1 or 0.

To make a comparison with the notation used in [60] easier,
where more details may be found, we denote different pairs of
settings by (x, y),. . . , (x′, y′) and E(AxBy) = E(AB|x, y).

Imperfect correlations estimated in SPCE may be reproduced
by the following locally causal contextual hidden variable model
[59, 60]:

E(AxBy) =
∑

λ∈3xy

Ax( λ1, λx)By( λ2, λy)px(λx)py(λy)p(λ1, λ2) (11)

E(AxBy′ ) =
∑

λ∈3xy′

Ax( λ1, λx)By′ ( λ2, λy′ )px(λx)py′ (λy′ )p(λ1, λ2) (12)

E(Ax′By) =
∑

λ∈3x′y

Ax′ ( λ1, λx′ )By( λ2, λy)px′ (λx′ )py(λy)p(λ1, λ2) (13)

E(Ax′By′ ) =
∑

λ∈3x′y′

Ax′ ( λ1, λx′ )By′ ( λ2, λy′ )px′ (λx′ )py′ (λy′ )p(λ1, λ2) (14)

E(Ax) =
∑

λ∈3xy

Ax( λ1, λx)px(λx)py(λy)p(λ1, λ2) (15)

E(By) =
∑

λ∈3xy

By( λ2, λy)px(λx)py(λy)p(λ1, λ2) (16)

where Ax (λ1, λx) = 0,±1, Ax′ (λ1, λx′ ) = 0,±1, By (λ2, λy) =
0,±1, and By′ (λ2, λy′ ) = 0,±1. Please note that Ax (λ1, λx′ ),
Ax′ (λ1, λx), By (λ2, λy′ ), and By′ (λ2, λy) are undefined. The
experiments performed in incompatible settings are described by
dedicated probability distributions defined on 4 disjoint hidden
variable spaces:

3xy = 312 ×3x ×3y ;3x′y = 312 ×3x′ ×3y ;3xy′

= 312 ×3x ×3y′ ;3x′y′ = 312 ×3x′ ×3y′ (17)

where 3x
⋂

3x′ = 3y
⋂

3y′ = ∅. Therefore, counterfactual
expectations E (Ax Ax′ ), E (By By′ ), E (Ax Ax′ By By′ ) do not exist
and Bell and CHSH inequalities may not be derived.

The efficiency of detectors is not 100% and it is difficult
to establish correct coincidences between distant clicks because
of time delays. These two problems, called efficiency and
coincidence-time loopholes, were discussed in detail by Larsen
and Gill [103] in terms of the sub-domains of hidden variables
corresponding to four experimental settings. They found that
CHSH inequality has to be modified:

|E(AxBy|3xy) −E(AxBy′ |3xy′ )| + |E(Ax′By|3x′y)

+E(Ax′By′ |3x′y′ )| ≤ 4− 2δ (18)

where δ ∝ p(3xy
⋂

3xy′
⋂

3x′y
⋂

3x′y′ ). In our model p(∅) =
0, thus the only constraint for S in our model is a no-
signaling bound: |S|≤4.

Our model contains enough free parameters to fit any
estimated correlations. For example, if we start with k values of
λ1, k values of λ2, and m values for each λx, λx′ , λy,, and λy′

we have km pairs of (λ1, λx), 3
km functions Ax(λ1, λx), and

3km functions By(λ2, λy). We also have m-1 free parameters
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for each px(λx), px′ (λx′ ), py(λy), and py′ (λy′ ) and
(

k(k+1)
2 − 1

)

free parameters for p(λ1, λ2). Thus, we have 4 × 3km functions
to choose and 4(m−1) + k (k−1)/2 free parameters to fit
32 probabilities or eight expectations estimated in experiments
performed using four pairs of settings. If instead of four pairs
of settings Alice and Bob use nine pairs of settings, then we
may increase m and k as needed to fit 72 probabilities or 12
expectation values, etc.

In mathematical statistics we concentrate on observable
events: outcomes of random experiments or results of a
population survey. Joint probability distributions are used only
to describe random experiments producing several outcomes
in each trial e.g., rolling several dice or various data items
describing the same individual drawn from some statistical
population. Probabilistic models describe a scatter of these
outcomes without entering into the details of how outcomes
are created.

Hidden variable probabilistic models introduce some invisible
“hidden events” which determine subsequent real outcomes of
random experiments. In Bell model (4–7), pairs of photons
(“beables”) are described by λ before measurements take place.
Because clicks are predetermined by the values of λ there exists
the mapping (9) and the probability distribution of “hidden
events” described by p(λ) which may be replaced by a joint
distribution p(a, a′, b, b′).

In contextual model (11–17), an outcome of “a click” or
“no-click” is not predetermined and is created in a locally
causal way in function of a hidden parameter describing a
signal (“photon”) arriving at the measuring station and a hidden
parameter describing a measuring instrument in the moment of
their interaction. The model (11–17) gives an insight into how
apparently random outcomes are created in SPCE.

In model (4–7) there exists a joint probability distribution of
all hidden events labeled by λ. In the model (14–17), hidden
events form 4 disjoint probability spaces and there exist only
four distinct joint probability distributions (pxy(λx, λ1, λy, λ2)
on 3xy,. . . , px′y′ (λx′ , λ1, λy′ , λ2) on 3x′y′ ). A joint probability
distribution of all possible hidden events (λx, λ1, λy,, λ2, λx′ ,
λy′ , λ2) does not exist because hidden events (λx, λx′ ) and (λy,
λy′ ) may never occur together. This is why one may not prove
CHSH assuming the existence of such probability distribution
and a non-vanishing E(Ax Ax′ By By′ ) used to prove (2–3, 8) does
not exist.

SUBTLE RELATIONSHIP OF

PROBABILISTIC MODELS WITH

EXPERIMENTAL PROTOCOLS

In 1971, Bell [91] pointed out that whilst one may incorporate
into his model additional hidden variables describing measuring
instruments, it does not invalidate his conclusions because after
the averaging over instrument variables the pairwise expectations
still have to obey CHSH inequalities. We reproduce his reasoning
in the notation consistent with (11–17).

If we average over the variables λx and λy we obtain:

E(AxBy) =
∑

λ1 ,λ2

Ax( λ1)By( λ2)p(λ1, λ2) (19)

E(AxBy′ ) =
∑

λ1 ,λ2

Ax( λ1)By′ ( λ2)p(λ1, λ2) (20)

E(Ax′By) =
∑

λ1 ,λ2

Ax′ ( λ1)By( λ2)p(λ1, λ2) (21)

E(Ax′By′ ) =
∑

λ1 ,λ2

Ax′ ( λ1)By′ ( λ2)p(λ1, λ2) (22)

where

Ax( λ1) =
∑

λx

Ax( λ1, λx)px(λx) ; By( λ2)

=
∑

λy

By( λ2, λy)py(λy) (23)

Ax′ ( λ1) =
∑

λx′

Ax′ ( λ1, λx′ )px′ (λx′ ) ; By′ ( λ2)

=
∑

λy′

By( λ1, λy′ )py′ (λy′ ) (24)

Since |Ax (λ1, λx)|≤1, |Ax′ (λ1, λx′ ) |≤1, |By (λ2, λy) |≤1, |By′

(λ2, λy′ )= |≤1 thus |Ax( λ1)| ≤ 1, |Ax′ ( λ1)| ≤ 1,|By( λ2)| ≤ 1,

|By′ ( λ2)| ≤ 1 and:

|Āx( λ1)||By( λ2) − By′ ( λ2)| + |Āx′ ( λ1)||By( λ2)
+B̄y′ ( λ2)| ≤ 2 (25)

Although the expectations calculated using the Equations (11–
14) and (19–22) have the same values, the two sets of formulas
describe different experiments. In the experiment described by
the Equations (11–14), pairs of photons arrive sequentially to
measuring instruments which produce in a locally causal way “a
click” or “no-click,” and a counterfactual Nx4 spreadsheet of all
possible outcomes does not exist and may not be used to prove
CHSH inequalities. Thus, the estimated pairwise expectations
may significantly violate (8), which they do.

The Equations (19–22) describe an experiment,
impossible to implement, which uses the following two-step
experimental protocol:

1. For each arriving pair of photons estimate the
averages (23–24).

2. Display estimated values|Ax( λ1)| ≤ 1, |Ax′ ( λ1)| ≤ 1,
|By( λ2)| ≤ 1,and |By′ ( λ2)| ≤ 1 in four columns of a
Nx4 spreadsheet.

3. Use all entries of this spreadsheet to estimate
expectations (19–22).

Because the entries of each line of this spreadsheet obey
the inequality (1), if we could implement this protocol
the estimated expectations would obey CHSH for any
finite sample.

There is a significant difference between a probabilistic model
and a hidden variable model. If we average out some variables
in a probabilistic model, we always obtain a marginal probability
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distribution describing some feasible experiment. If we average
out some hidden variables in a hidden variable model, we may
obtain a new hidden variable model which does not correspond
to any feasible experiment.

For a similar reason, the experimental protocol of SHVM
is inconsistent with the protocol used in SPCE. A much more
detailed discussion of a subtle relationship of probabilisticmodels
with experimental protocols may be found in [56].

As we demonstrated with Hans De Raedt [104], different
experimental protocols, based on the same probabilistic
model, may generate significantly different estimates of various
population parameters.

If we want to compare the data obtained in SPCE with
quantum predictions, we have to post- select only pairs of
±1 outcomes which correspond to invisible entangled pairs of
photons. Thus, instead of the Equations (11, 15–16) we obtain:

E(AxBy|Ax 6= 0,By 6= 0) =
∑

λ∈3′
xy

Ax( λ1, λx)By( λ2, λy)px(λx)py(λy)p(λ1, λ2)

(26)

E(Ax|Ax 6= 0,By 6= 0) =
∑

λ∈3′
xy

Ax( λ1, λx)px(λx)py(λy)p(λ1, λ2) (27)

E(By|Ax 6= 0,By 6= 0) =
∑

λ∈3′
xy

By( λ2, λy)px(λx)py(λy)p(λ1, λ2) (28)

where 3′
xy = {λǫ 3xy|Ax (λ1, λx) 6= 0 and By (λ2, λy) 6= 0}.

In a similar way, we transform the expectations (12–14) into
conditional expectations. Using these conditional expectations,
we may not derive CHSH; thus our model does not exclude
their violations in SPCE. It may also explain in a rational way an
apparent violation of no- signaling reported in [79, 80, 100, 101,
105–108]:

E(Ax|Ax 6= 0,By 6= 0) 6= E(Ax|Ax 6= 0,By′ 6= 0);
E(By|Ax 6= 0,By 6= 0) 6= E(By|Ax′ 6= 0,By 6= 0) (29)

The setting-dependence of these marginal expectations does not
prove no-signaling because E (Ax) and E (By) defined by (15–16)
do not depend on the distant measurement settings.

Please note that the expectations (26) may not be transformed
into a factorized form (21).

Naïve quantum predictions for a singlet state cannot explain
the correlations observed in SPCE. One has to use much more
complicated density matrices [109] containing free parameters,
and still some discrepancies between the theoretical predictions
and the data persist. A more detailed discussion of how the data
are analyzed in SPCE and how the apparent violation of no-
signaling may be explained may be found in [60].

Since our description of real data is causally local, all
speculations about quantum non-locality are unfounded.

In the next section we explain that, contrary to what is
believed, probabilistic predictions of QM are not in conflict with
local causality.

QUANTUM MECHANICS AND CHSH

INEQUALITIES

According to the statistical contextual interpretation [29, 52,
57, 89, 110, 111], QM provides probabilistic predictions for
experiments performed in well-defined experimental contexts.
In these experiments, identical preparations of physical systems
are followed by measurements of physical observables. A class
of identical preparations is described by a state vector | ψ〉 or
by a density matrix ρ and a class of equivalent measurements
of an observable A is represented by a Hermitian/self-adjoint
operatorÂ. Outcomes of measurements are eigenvalues of these
operators. In general, outcomes are not pre-determined and they
are created as a result of the interaction of measuring instruments
with physical systems. In the same experimental context, only
the values of compatible physical observables, represented by
commuting operators, give sharp values when measured jointly.

In SPCE, “photon pairs,” prepared by a source, are described
by a density matrix ρ and physical observables A and B by
Hermitian operators Â1 = Â ⊗ I and B̂1 = I ⊗ B̂ defined on a
Hilbert space H = H1 ⊗H2. The correlations between measured
values of these observables are evaluated using a conditional
covariance between A and B [56, 58]:

cov(A,B|ρ) = E(AB|ρ)− E(A|ρ)E(B|ρ) (30)

where, E(A|ρ) = TrρÂ1,E(B|ρ) = TrρAB̂1 and E(AB|ρ) =
TrρÂ1B̂1. If ρ is an arbitrary mixture of separable states then
quantum correlations have to obey CHSH:

|E(AB|ρ)− E(AB′|ρ)| + |E(A′B|ρ)+ E(A′B′|ρ)| ≤ 2 (31)

As we saw in section Experimental Spreadsheets and Bell-Type
Inequalities, the inequality (31) may be significantly violated for
entangled quantum states if specific incompatible pairs of settings
are chosen.

The quantum description is contextual because a triplet
{ρ, Â1, B̂1} depends explicitly on a preparation of “photon
pairs” and on observables (A,B) measured using specific
experimental settings. Different incompatible experimental
settings are therefore described in QM by different specific
Kolmogorov models.

In particular, Cetto et al. [73] have recently demonstrated that
expectations E(AB | ψ), for a singlet state | ψ〉 ∈ H, may be
expressed in terms of the eigenvalues of operators Â = Eσ · Ea and
B̂ = Eσ · Eb using specific dedicated probability distributions. We
reproduce below their results in our notation:

E(AB|ψ) = −Ea · Eb =
∑

αβ

αβpab(α,β) = E(AaBb) (32)
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where Â ⊗ B̂|αβ〉ab = αβ|αβ〉ab, pab(α,β) = |〈ψ |αβ〉ab|2 and
α = ±1 and β = ±1. For the remaining settings we obtain:

E(AB′|ψ) = −Ea · Eb′ =
∑

αβ ′
αβ ′pab′ (α,β ′) = E(Aa′Bb) (33)

E(A′B|ψ) = −Ea′ · Eb =
∑

α′β

α′βpa′b(α′,β) = E(Aa′Bb) (34)

E(A′B′|ψ) = −Ea′ · Eb′ =
∑

α′β ′
α′β ′pa′b′ (α′,β ′) = E(Aa′Bb′ )

(35)

If 4 experiments are performed in incompatible (complementary)
contexts then a joint probability distribution p(αα′ββ ′) and the
expectation values E(AaAa′BbBb′ ) do not exist in agreement with
the contextual model (11–14).

In 1982, Fine [18, 19] demonstrated that Bell-CHSH
inequalities are necessary and sufficient conditions for the
existence of a joint probability distribution of ±1-valued
observables (A,A′,B,B′).

As we saw in section Local Realistic Models for EPR-
Bohm Experiment, QM predicts a significant violation of CHSH
inequality: S= 2

√
2.

In 1980, Tsirelson [92] proved that 2
√
2 is the greatest value of

S allowed by QM:

|S| = |
〈

ψ |Ŝ|ψ
〉

| = |
〈

ψ |ÂB̂− ÂB̂′ + Â′B̂+ Â′B̂′|ψ
〉

| ≤ 2
√
2

(36)

where | ψ〉 ∈ H is an arbitrary pure state and all Hermitian
operators on the left hand side are arbitrary elements of C∗

algebra having their norms (
∥

∥

∥
Â
∥

∥

∥
= sup

‖φ‖≤1

〈

φ|À|φ
〉

) smaller or

equal to 1. In order to prove (36), Tsirelson used a following
operator inequality:

Ŝ2 =
(

ÂB̂− ÂB̂′ + Â′B̂+ Â′B̂′
)2

≤ 4I +
[

Â, Â′
] [

B̂, B̂′
]

(37)

From (37) he deduced immediately that
∥

∥

∥
Ŝ2
∥

∥

∥
≤ 4 +

∥

∥

∥

[

Â, Â′
]∥

∥

∥

∥

∥

∥

[

B̂, B̂′
]∥

∥

∥
≤ 4 + 2 × 2 = 8, thus

∥

∥

∥
Ŝ
∥

∥

∥
≤ 2

√
2

proves quantum CHSH inequality (36). Landau [93] defined an
operator Ĉ = 1

2 Ŝ and noticed that if A, A′. B and B′ are ±1-

valued observables (Â2 = I), then the inequality (37) becomes

the equality Ĉ2 = I + 1
4

[

Â1, Â2

]

⊗
[

B̂1, B̂2

]

and
∥

∥

∥
Ĉ
∥

∥

∥
≤ 1.

Recently, Khrennikov discussed various implications of (37).

CHSH inequality may be violated only if both
[

Â1, Â2

]

6= 0 and
[

B̂1, B̂2

]

6= 0. Therefore, the violation of CHSH proves the local

incompatibility of Alice and Bob’s specific physical observables
[43] which has nothing to do with quantum non-locality.

The local incompatibility of some observables allows neither
doubt over the local causality in nature nor the “objective”
existence of elementary particles and atoms.

THE ROOTS OF QUANTUM

NON-LOCALITY

Mathematical models provide abstract idealized descriptions of
physical phenomena and in general are unable to explain, by
detailed causal chains, why such a description is successful.
For example, in Newton’s equations describing the motion of
planets, a small change in the position of one planet at time t
seems to instantaneously change gravitational forces acting on
distant planets. Newton admitted that no intuitive explanation
of this mystery existed, but it did not diminish the value of his
gravitation theory.

According to the special theory of relativity, the physical
influences may not propagate faster than the speed of light c,
thus it became clear that Newton’s theory of gravitation should
be modified. Einstein, by constructing the general theory of
relativity, succeeded in reconciling the special theory of relativity
with Newton’s theory of gravitation which is still used with
success by NASA.

Similarly, in a non-relativistic QM, relativistic effects are
not important. The theory provides algorithms which allow
probabilistic predictions to be made regarding outcomes of
experiments performed in well-defined macroscopic contexts.
A time-dependent Schrodinger equation describes only a time
evolution of a complex valued function (probability amplitude),
which, together with Hermitian/self-adjoint operators, is
used to provide probabilistic predictions for a scatter of
experimental outcomes.

Quantum predictions are consistent with Einsteinian no-
signaling. Quantum field theory (QFT) is explicitly relativistic
and field operators in space-like regions commute.

The speculations about quantum non-locality are only rooted
in incorrect “individual interpretations” of QM according
to which:

1. a pure state vector/wave function |ψ〉 is an attribute of an
individual physical system;

2. a measurement of a physical observable A instantaneously
changes/collapses the initial state vector onto an eigenvector
vector |ai〉 of the corresponding operator Â with a
probability p = 〈ai|ψ〉2;

3. a measurement outcome is an eigenvalue ai corresponding to
the vector |ai〉;

4. if two physical systems, S1 and S2, interacted in the past
and separated, a measurement of the observable A performed
on the system S1 and yielding a result A=ai determines
instantaneously a state vector |φ〉A=ai of the system S2 in a
distant location.

Using (1–4) one concludes that measurements of observables A
and B performed on systems S1 and S2 create in an “irreducible
random way” perfectly correlated outcomes at distant space-like
locations, thus we encounter the same paradox: “a pair of dice
showing perfectly correlated outcomes.”

The statistical contextual interpretation of QM (SCI) [52,
57, 89] is free of paradoxes. According to this interpretation, a
quantum state vector represents only an ensemble of identically
prepared physical systems and, after a von Neumann/Lüders
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projection, a new state describes a different ensemble of physical
systems. Namely: |φ〉A=ai describes all the systems S2 such that
measurements of the observable A on their entangled partners
(systems S1) gave the same outcome A= ai.

The statistical interpretation does not claim that QM provides
the complete description of individual physical systems and the
question of whether quantum probabilities may be deduced from
some more detailed description of quantum phenomena is left
open [46, 52, 59, 61, 87–89, 112, 113].

Lüders projection and its interpretation have been discussed
recently in detail by Khrennikov [44]. We reproduce below a few
statements from the abstract of his article:

“If probabilities are considered to be objective properties of

random experiments, we show that the Lüders projection

corresponds to the passage from joint probabilities describing all

sets of data to some marginal conditional probabilities describing

some particular subsets of data. If one adopts a subjective

interpretation of probabilities, such as Qbism, then the Lüders

projection corresponds to standard Bayesian updating of the

probabilities. The latter represents degrees of beliefs of local

agents about outcomes of individual measurements which are

placed or which will be placed at distant locations. In both

approaches, probability-transformation does not happen in the

physical space, but only in the information space. Thus, all

speculations about spooky interactions or spooky predictions at

a distance are simply misleading.”

In 1998, Ballentine explained in his book that “individual
interpretation” of QM is incorrect: “Once acquired, the habit
of considering an individual particle to have its own wave
function is hard to break. Even though it has been demonstrated
strictly incorrect.” Therefore, talking about “passion at the
distance,” “predictions at the distance,” and “steering at the
distance” may only lead to incorrect mental pictures and create
unnecessary confusion.

In QM, measuring devices always play an active role.
Allahverdyan et al. [110, 111] recently solved the dynamics of
a particular realistic quantum measurement and discussed what
this implies for the interpretation of QM. On page 6 in [110]
they wrote:

“A measurement is the only means through which information

may be gained about a physical system. Both in classical and in

quantum physics, it is a dynamical process which couples this

system S to another system, the apparatus A. Some correlations

are thereby generated between the initial (and possibly final) state

of S and the final state of A.”

Claims that QM is a non-local theory are also based on
an incorrect interpretation of a two-slit experiment. In this
experiment, a wave function (representing an ensemble of
identically prepared electrons) “passes” by two slits, but this
does not mean that a single electron may be in two distinct
places at the same time. If two detectors are placed in front
of the slits, they never click at the same time, thus an electron
(but not the electromagnetic field created by an electron) passes
by only one slit. According to SCI, a wave function is only a

mathematical entity and QM does not provide a detailed space-
time description of how the interference pattern on a screen is
formed by the impacts of individual electrons.

Another root of quantum non-locality is Bell’s insistence that
the violation of Bell-type inequalities in SPCE would mean that a
locally causal description of these experiments is impossible [1]:

“In a theory in which parameters are added to quantum

mechanics to determine the results of individual measurements,

without changing the statistical predictions, there must be a

mechanism whereby the setting of one measuring device can

influence the reading of another instrument, however remote.

Moreover, the signal involved must propagate instantaneously, so

that such a theory could not be Lorentz invariant.”

Consider Alice and Bob, both doing a realistic EPRB-type
experiment. Theo Nieuwenhuizen brought to my attention that
the already nonsensical idea of faster-than-light communication
(i.e., non-locality) becomes evenmore “mind-boggling” when the
experiments have different durations.

Bell’s statement is correct only if one is talking about an ideal
EPRB which does not exist. The violations of various Bell-type
inequalities in real SPCE prove only that these experiments may
not be described by oversimplified hidden variable models. In
SHVM, the outcomes, registered in distant measuring stations,
are produced in an irreducible random way, thus the correlations
between such outcomes are very limited. In LRHVM and in
Eberhard model [5], a fate of a photon/electron is predetermined
before the experiment is performed.

As we explained in section Contextual Description of Spin
Polarization Correlation Experiments, imperfect correlations
in SPCE may be explained in a locally causal way if
instrument parameters are correctly included in a probabilistic
model, closing the so-called Nieuwenhuizen’s contextuality
loophole [65–67].

Bell-CHSH inequalities may also be violated in social sciences
by expectations of ±1–valued random variables, which can only
be measured pairwise but not all together. The violation of
these inequalities in social sciences has nothing to say about the
physical reality and the locality of nature [16, 37, 38, 114–116].
This is why we agree with Khrennikov [43], that we should get
rid of quantum non-locality as it is a misleading notion.

In the next section we discuss simple experiments with
colliding elastically metal balls in which the experimental
outcomes are predetermined but an apparent violation of Bell
and Boole inequalities may be proven [54]. We also discuss
the violation of inequalities by the estimates obtained using
finite samples.

APPARENT VIOLATIONS OF BELL-BOOLE

INEQUALITIES IN ELASTIC COLLISION

EXPERIMENTS

Let us consider a simple experiment with metal balls
colliding elastically:
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1. A 4 kg metal ball and a 1 kg metal ball are placed in some fixed
positions, P1 and P2, on a horizontal perfectly smooth surface.

2. A device D, with a built in random numbers generator, is
imparting on a lighter ball a constant rectilinear velocity with
a speed described by a random variable V taking values v and
distributed according to a probability density fV (v) = 1/10 for
0< v ≤ 10 and the ball is sliding without friction and without
rotating toward the heavier ball.

3. After an elastic head-on collision, the heavier ball starts
moving forward with the speed V1 = 2v/5 and the lighter
ball rebounds backwards with the speed V2 = 3v/5. It is
easy to check that the total linear momentum and energy
are conserved: 1v = 4(2v/5)−1(3v/5) and 1v2 = 4(2v/5)2

+ 1(3v/5)2.
4. After the collision, both balls arrive at two distant measuring

stations, S1 and S2 (treated as black boxes), which for 4
different selected pairs of settings output values (±1) of only
pairwise measurable observables (A, B), (A, C), (B, C), and
(B, B).

5. Before each repetition of the experiment, Alice and Bob
systematically or randomly choose a pair of settings, simply
by pushing appropriate switches on their measuring stations.

6. We assume that boxes function in a locally causal way: the
speed of a ball is measured and setting dependent coded
values ±1 are outputted. Thus, A, B, and C denote physical
observables, which are measured, which means that in the
setting (B, B) the same physical observables are measured by
Alice and Bob.

The observables A, B, and C are functions of hidden random
variables, V1 and V2, which are distributed according to
probability distributions fV1 (v1) = 1/4 and fV2 (v2) = 1/6 on
the intervals [0, 4] and [0, 6], respectively.

Let us now define the specific functions of A(y), B(y), and C(y),
where y = v1 (if Alice is using a setting A) or y = v2 (if (Bob
is using a setting A). We have chosen that, after the collision,
Alice measures the speed of the heavier ball, but it does change
pairwise expectations.

• A(y)=−1 if 0< y ≤ 2 and A(y)= 1 if 2< y,
• B(y)=−1 if 0< y≤ 3 and B(y)= 1 if 3<y,
• C(y)= 1 if 0< y ≤3 and C(y)=−1 if 3<y.

IfV1 = v1 thenV2 = 3v1/2 and the pairwise expectation E(AB) =
4
∫

0

A(v1)B(3v1/2)fV1 (v1)dv1. We see immediately, that E(AB) =

1
4

(

2
∫

0

(−1)(−1)dv1 +
4
∫

2

(1)(1)dv1

)

= 1 and E (AC) = -E (AB)

=-1. In a similar way we evaluate E(BC).

• If v1 ≤ 2 then v2 < 3: B(v1)C(v2)= (−1)(1)=−1.
• If 2< v1 ≤3 then 3< v2 ≤ 4.5: B(v1)C(v2)= (−1)(−1)=1.
• If 3< v1 then 4.5< V2: B(v1)C(v2)= (1)(−1)=−1.

Thus:

E(BC) = −
2
∫

0

fV1 (v1)dv1 +
3
∫

2

fV1 (v1)dv1 −
4
∫

3

fV1 (v1)dv1 (38)

and E(BC)=−2/4+1/4–1/4=−1/2 and E(BB)= –E(BC)=1/2.
We see that Bell (+sign) and Boule (-sign) inequalities (3)

seem to be violated:

|E(AB)− E(AC)| ≤ 1± E(BC) (39)

because |1–(−1)|> 1± 1/2.
The violation of (39) is surprising because the outcomes of our

experiments are predetermined.
However, one has to pay attention before checking Bell-Boole-

inequalities. Despite the fact that in the settings (A,B) and (B,C)
Alice and Bob measure the same physical observable B, the
output values ±1 are the values of 2 different random variables
B(V1) 6= B(V2). Therefore, the inequalities which are violated
are not (39), but inequalities:

|E(A(V1)B(V2))− E(A(V1)C(V2))| ≤ 1± E(B(V1)C(V2)) (40)

Since for each trial, values of random variables [A(V1), B(V1),
B(V2), C(V2)] are predetermined by a value of the initial speed
V imparted on the lighter ball, there exists an “invisible” joint
probability distribution of these random variables and CHSH
inequalities may not be violated:

|S| = |E(A(V1)B(V2))− E(A(V1)C(V2))+ E(B(V1)B(V2))

+E(B(V1)C(V2))| = 1+ 1+ 1

2
− 1

2
≤ 2 (41)

By treating measuring stations as black boxes, Alice and Bob
do not know whether this invisible joint probability exists
and that for each trial the values of measured observables
are predetermined. Therefore they display the data obtained
in different settings using four Mx2 spreadsheets and they
estimate measurable pairwise expectations E(A(V1)B(V2)),
E(A(V1)C(V2)), E(B(V1)C(V2)), and E(B(V1)B(V2)).

These estimates may violate the inequality (41) because, as
we demonstrated in section Introduction, only the estimates
obtained using all ±1 entries of Nx4 spreadsheets strictly obey
CHSH inequality for any finite sample. Alice and Bob do not
know that their outcomes are in fact extracted from specific
lines of invisible Nx4 spreadsheet and that the columns of
Mx2 spreadsheets are simple random samples drawn from the
corresponding complete columns of Nx4 spreadsheet. This is
why, if M and N are large, the estimated pairwise expectations
may not violate the inequality (41) more significantly than is
permitted by sampling errors.

In collision experiments, outcomes are predetermined and
the correlations exist due to the energy and momentum
conservation. In SPCE, the correlations between signals are
created at the source.

There is a big difference between metal balls and photons
in SPCE. In collision experiments, metal balls are distinct
macroscopic objects with well-defined linear momenta.
Measurements of speeds are, with a good approximation,
noninvasive, thus measuring stations in fact register passively
their preexisting values and output specific coded values±1.

In SPCE we cannot observe and follow pairs of photons
moving from the source to the measuring stations. By no means
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can the passage of a photon through a polarization beam splitter
(PBS) be considered as a passive registration of a preexisting “spin
up” or spin down” value. Clicks on the detectors are also the
results of dynamical processes.

In collision experiments all observables are compatible,
therefore Alice’s modifiedmeasuring stationmight output in each
trial values of (A (V1), B (V1)) and Bob’s modified station values
of (B(V2), C(V2)) which might have been displayed using a Nx4
spreadsheet. In SPCE it is impossible because the observables (A,
A′) and (B, B′) are not compatible and their joint probability
distribution and Nx4 spreadsheet do not exist.

The problem of how significantly finite samples, extracted
from a counterfactual spreadsheet Nx4, may violate CHSH
inequalities was studied by Gill [117]. Each pair of arriving
photons are described by a line (±1,±1,±1,±1) from a
counterfactual Nx4 spreadsheet containing predetermined values
of observables (A,A′,B,B′). By randomly assigning setting labels
to the lines and extracting corresponding pairs of outcomes from
these lines, one obtains four simple random samples drawn from
the corresponding pairs of complete columns of Nx4 spreadsheet.
If these simple random samples are used to estimate pairwise
expectations E(AB),E(AB′), E(A′B),E(A′B′) then:

Pr
(〈AB〉obs +

〈

AB′
〉

obs
+
〈

A′B
〉

obs
−
〈

A′B′
〉

obs
≥ 2

)

≤ 1

2
(42)

where 〈AB〉obs is an estimate of E(AB) etc. A more detailed
discussion of various finite sample proofs of Bell-type inequalities
may be found in [57, 117].

Let us see what happens if we display all experimental data
(containing N data items for each pair of settings) in a 4Nx4
spreadsheet and randomly fill the remaining empty spaces by
±1. Pairwise expectations estimated using complete columns of
this spreadsheet strictly obey CHSH inequality. One may ask
a question: why can real data, being subsets of these columns,
violate CHSH more significantly than it is permitted by (42)?
The answer is simple: the outcomes obtained in SPCE for each
pair of incompatible settings are not simple random samples

extracted from corresponding columns of the completed 4Nx4
counterfactual spreadsheet.

In [104] we studied the impact of a sample inhomogeneity on
statistical inference. In particular we generated two large samples
(which were not simple random samples) from some statistical
population and we estimated some population parameters. The
obtained estimates were dramatically different.

De Raedt et al. [82] generated in a computer experiment
quadruplets of raw data (±1,±1,±1,±1). Subsequent setting
-dependent photon identification procedures, mimicking
procedures used in real experiments, allowed the creation
of new data samples containing only pairs (±1,±1) for each
experimental settings. Because these new data sets were not
simple random samples extracted from the raw data, the
estimated values of pairwise expectations, obtained using these
setting- dependent samples, could violate CHSH as significantly
as it was observed in SPCE.

We personally do not believe that the fate of the photons is
predetermined only by the preparation at the source and that

the violation of Bell-CHSH inequalities is the effect of unfair
sampling during a post selection.

For us, clicks registered by distant measuring stations in
SPCE and coded by ±1 are of a completely different nature
than the colors and sizes of socks or the positions and linear
momenta of balls and electrons. Spin projections and clicks
do not exist before the measurements are done. Thus, one
may not describe incoming “pairs of photons” by lines of non-
existing Nx4 spreadsheet containing±1 counterfactual outcomes
of impossible to perform experiments.

CONCLUSIONS

In this article we explained why the speculations about quantum
non-locality and quantum magic are rooted in incorrect
interpretations of QM and/or in incorrect “mental pictures” and
models trying to explain invisible details of quantum phenomena.

For example, a “mental picture” of an ideal EPRB experiment
in which twin photon pairs produce, in an irreducible random
way, strictly correlated or anti-correlated clicks on distant
detectors creates the impossible to resolve paradox:

“a pair of dice showing always perfectly correlated outcomes.”

As we explained in section Local Realistic Models for EPR-Bohm
Experiment, we do not need to worry because the ideal EPRB
experiment does not exist.

In SPCE, setting directions are not mathematical vectors but
only small spherical angles and we neither see nor follow pairs of
entangled photons which produce “click” or “no- click” results on
Alice’s and Bob’s detectors. There are black counts, laser intensity
drifts, etc. Detected clicks have time tags and correlated time-
windows are used to identify and select pairs of clicks created by
the photons belonging to the same entangled pair.

Since various photon- identification procedures are setting –
dependent, final post-selected data may not be described by the
quantum model used to describe the non-existing ideal EPRB.
In SPCE, not only do we not have strict correlations or anti-
correlations between Alice and Bob’s outcomes but marginal
single counts distributions also depend on the distant settings
that seems to violate Einsteinian no- signaling. This violation is
only apparent because single count distributions estimated using
raw data do not depend on the distant settings [60].

Raw and post- selected data in SPCE may be described
in a locally causal way using a contextual model [59, 60] in
which “a click” or “a no-click” are determined using setting
dependent parameters describing a measuring instrument and
parameters describing a signal arriving at the measuring station
at the moment of the measurement. Still, a detailed description
of how “Nature gets this done" is the real mystery underlying
quantum correlations.

In contrast to LRHVM and SHVM, in the contextual
model (11–17) and in QM the outcomes of four incompatible
experiments performed in different settings are described
by dedicated probability distributions defined on disjoint
probability spaces. Only if all the physical observables measured
in SPCE were compatible could these dedicated probability
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distributions be deduced as marginal probability distributions
from a joint probability distribution defined on a unique
probability space.

Khrennikov recently explained in [43, 44] that quantum non-
locality is also rooted in incorrect individual interpretation of QM
and in incorrect interpretation of Lüders projection postulate.

Plotnitsky pointed out in [118] that in QM there is no place
for spooky action at a distance, however his insistence on spooky
predictions at a distance contributes to general confusion [44].

Other convincing arguments against quantum non-locality
have recently been given by Jang [119, 120], Bough [121], Wilsch
et al. [122], and De Raedt et al. [123].

We want also to mention a recent paper of Griffiths [124] in
which he arrives also to the conclusion, that quantum mechanics
is consistent with Einstein’s locality principle and that the notions
of quantum nonlocality and of quantum steering are misleading
and should be abandoned or renamed.

As we mentioned in the introduction, it would be surprising
if the violation of Bell-CHSH inequalities, which are proven
using simple algebraic inequalities satisfied by any quadruplet of
4 integer numbers equal to ±1, might have deep metaphysical
implications. In fact, such metaphysical implications are quite

limited and may be summarized in a few words: “unperformed
experiments have no results” [84].

Therefore, the violation of various Bell-type inequalities may
neither justify the existence of non-local influences nor justify
doubts that atoms, electrons, and the Moon are not there when
nobody looks.
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Entangled photons leaving parametric down-conversion sources exhibit a pronounced

polarization correlation. The data violate Bell’s inequality thus proving that local realistic

theories cannot explain the correlation results. Therefore, many physicists are convinced

that the correlation can only be brought about by non-local interactions. Some of

them even assume that instantaneous influences at a distance are at work. Actually,

assuming a strict phase correlation of the photons at the source the observed polarization

correlation can be deduced from wave optical considerations. The correlation has its

origin in the phase coupling of circularly polarized wave packets leaving the fluorescence

photon source simultaneously. The enlargement of the distances between photon source

and observers does not alter the correlation if the polarization status of the wave packets

accompanying the photons is not changed on their way from the source to the observers.

At least with respect to the polarization correlation of entangled photons the principle of

locality remains valid.

Keywords: Bell’s theorem, violation of Bell’s inequality, non-local interactions, instantaneous influence at a

distance, polarization correlation, entangled photons, quantum statistics

1. INTRODUCTION

In 1935 Einstein et al. [1] initiated a discussion whether quantum mechanics is complete or not. In
the following years one could not find concrete hints for the occurrence of hidden variables. In 1964
Bell [2] showed on the basis of two spin 1/2 particles that local realistic theories can principally not
reproduce the results of quantum mechanics. In 1969 Clauser et al. [3] proposed an experiment
to test local hidden variable theories with entangled photons. Already 3 years later Freedman and
Clauser presented first measurements proving that local realistic theories were not able to describe
the experimental results [4].

More elaborate experiments on the polarization correlation of entangled photons [5–12] showed
that the experimental results are fully reproduced by quantum mechanics.

All experiments providing polarization correlation data with good statistics are performed in
such a way that the detection processes of two distant observers are spacelikely separated. Thus,
the publications on these experiments generally suggest that the results can only be induced by
superluminal signals between the observers. Especially Salart et al. [9] emphasize that the violation
of Bell’s inequality seems to prove that quantum mechanics make use of non-local interactions.

Discrepancies between the results of local realistic theories and quantum mechanics are also
discussed for more complicated quantum systems with more than two particles [13]. Many of these
publications insinuate that faster-than-light communication might be possible. The drawback of
all these attempts to prove the occurrence of non-local interactions is that until now no concrete
results could be presented which reproduce the experimental findings.
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In the last few years several recognized physicists try to prove
that quantum mechanics does not use non-local interactions
[14–21]. The authors show that some mathematical operations
like the reduction of a quantum state seem to have non-local
consequences. On closer examination these operations only cause
changes of the observer’s knowledge on the quantum state. The
changes thus do not take place in physical space but merely in
information space.

In fact, the results of the experiments with parametric
down-conversion photon sources can be derived from wave
optical and quantum statistical considerations without using
superluminal signals. There are good arguments to assume that
the experiments of Aspect and coworkers with entangled photons
emerging from a specific decay cascade of calcium [5, 6] can
also be explained without using non-local interactions. However,
additional tests on the polarization status of the photons would
be helpful in order to conclusively answer the question.

2. PHOTON PAIRS ARISING FROM
DOWN-CONVERSION SOURCES

In the last 22 years several polarization correlation experiments
with parametric down-conversion sources have been performed
[7–12]. If necessary experimental details are taken from the
doctor thesis of Weihs [22]. In a BBO crystal ultraviolet photons
are converted into two phase coupled circularly polarized green
photons with equal energies.

The circularly polarized wave packets are immediately
decomposed into two linearly polarized wave packets with
orthogonal polarization directions. The ordinary beam is
vertically polarized. The extraordinary beam is horizontally
polarized. Due to the different propagation directions the
emission cones of ordinary and extraordinary beam appear
on the exit plane as two off-centered circles which intersect
each other at two points (see Figure 1). After traversing a
compensation plate the reassembled circularly polarized wave
packets leave nearly unchanged the two intersection zones.

In the polarization correlation experiments with parametric
down-conversion sources only the so-called singlet-
configuration has been studied. In this configuration the
polarization planes of associated photons rotate in the same
direction. In statistical average about one half of the photon pairs
rotate clockwisely, the other half counterclockwisely.

3. DETECTION OF POLARIZED PHOTONS
BY ALICE AND BOB

Photons emerging from the two exit sites of the source are
guided by optical fibers to the observers. After leaving the optical
fibers the wave packets traverse an electro-optical modulator
arranged between two suitably oriented quarter-wave plates. In
combination the three optically active elements twist linearly
polarized waves by an arbitrarily choosable angle proportional to
the applied voltage. The detector unit is fixed in space. The twist
of the plane waves by the electro-optical modulator simulates a
virtual twist of the detector unit. For the sake of convenience

FIGURE 1 | Schematic diagram of a simple experimental setup suited to

determine polarization correlations. In the top right corner a BBO source is

shown which provides entangled photons both rotating in the same direction.

The coordinate systems of the observers Alice and Bob shown in the bottom

left corner are both right-handed. The angles α and β indicate the orientations

of the linear polarizations looked for by Alice and Bob, respectively. The thin

lines between source and observers denote optical fibers. The distance

between Alice and Bob is usually chosen large enough to ensure that two

associated photon detection processes are spacelikely separated.

it will be assumed in the following that the twisting units are
omitted and that the detectors are really twisted in space.

By the use of Wollaston prisms Alice and Bob split the
incoming wave packets into two equally large components
with orthogonal polarization directions. The linearly polarized
components hit altogether four detectors which should be highly
sensitive in order to detect nearly all incoming photons [11, 12].
When the apparatus is thoroughly adjusted the count rates of the
detectors should no longer depend on the polarization direction.

In the four detector channels each registered pulse is saved
together with an individual time stamp. After having finished
the measurement the four data lists are compared in order to
determine four coincidence rates namely I(α,β), I(α,β + 90◦),
I(α + 90◦,β), and I(α + 90◦,β + 90◦). Let I0 be the coincidence
rate when the selecting filters are removed on both sides of the
experiment. If the losses in the filters are negligible I0 is also
the coincidence rate summed up in the four channels. The two
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coincidence rates I(α,β) and I(α,β + 90◦) add up to I0/2. The
same is true for the coincidence rates I(α + 90◦,β) and I(α +
90◦,β + 90◦). Thereby one has to bear in mind that coincidence
rates exhibit statistical uncertainties.

In this article particle as well as wave aspects will be addressed
because the correlation of photons detected by Alice and
Bob depends on the relative phase of the circularly polarized
wave packets accompanying the photons. The derivation of the
polarization correlation is mainly based on wave arguments but
if necessary particle aspects will also be considered.

The terms “wave” and “light” are often used for convenience.
In fact, a light beam will always be understood as a stream
of independent wave packets with limited coherence length.
Only wave packet pairs incorporating entangled photon pairs are
strictly phase coupled when they leave the photon source. In the
experiment of Weihs [22, p. 63] the coherence length has been
estimated to be about 0.1 m. Thus, the wave packets leaving the
photon source are very short in comparison with the distance
between Alice and Bob thus precluding wave based non-local
interactions between the observers.

4. FORMAL DERIVATION OF THE
POLARIZATION CORRELATION

In wave optics and quantum mechanics one often asks for the
phase relation of interfering waves in the detection plane in
order to get the interference pattern. In correlation experiments,
however, one has to ask for the phase relation of two associated
wave packets at the source. The relative phase at the source
manifests itself in the overlap integral of the two normalized
wave packets.

The two wave packets simultaneously leaving outputs A and
B have a phase shift of ± 90◦ at the source. The sign reveals
which of the wave packets is leading. In Figure 1 the phase shift
is indicated by twisted rotation vectors. If α 6= β an additional
phase shift of ± (α − β) has to be taken into account. The sign
depends on the rotational direction of the two circularly polarized
wave packets. Thus, the total phase shift of the two linearly
polarized partial waves looked for by the two observers is

ϕ = ± 90◦ ± (α − β). (1)

Neglecting the envelope function one has to evaluate the overlap
integral of the two normalized functions

f (t) =
√

ω/π sin(ωt)

g(t) =
√

ω/π sin(ωt ± 90◦ ± (α − β)).
(2)

The second function divided by the normalizing factor can be
converted by using trigonometrical addition theorems twice

sin(ωt ± 90◦ ± (α − β)) =
sin(ωt)cos(± 90◦ ± (α − β))+
cos(ωt)sin(± 90◦ ± (α − β)) =

± sin(ωt)sin(α − β)

± cos(ωt)cos(α − β)

(3)

By using the definite integrals

ω

π

∫ 2π/ω

0
sin(ωt)sin(ωt)dt = 1

ω

π

∫ 2π/ω

0
sin(ωt)cos(ωt)dt = 0

(4)

one can easily calculate the overlap integral

∫ 2π/ω

0
f (t)g(t)dt = ± sin(α − β). (5)

The (absolute) square of the overlap integral of the two
normalized phase coupled wave packets is proportional to the
coincidence rate. As has been explained in the previous chapter
the coincidence rates I(α,β) and I(α,β + 90◦) add up to I0/2.
Therefore, the proportionality factor must be I0/2.

Thus the coincidence rate is given by

I(α,β) = I0 sin
2(α − β)/2 (6)

and the correlation is given by

C(α,β) = I(α,β)

I(α,β)+ I(α,β + 90◦)
= sin2(α − β). (7)

With this rather simple consideration the experimentally found
correlations of entangled photons have been fully reproduced.

5. WORKING OUT QUANTUM STATISTICAL
ASPECTS

Quantum statistics will become much clearer if each of the two
circularly polarized light beams A and B leaving the source
is formally splitted into two commensurate linearly polarized
beams with orthogonal polarization directions. A circularly
polarized wave can always be understood as the superposition of
two equally sized linearly polarized partial waves with orthogonal
polarization directions. The two partial waves are phase shifted
with respect to each other by± 90◦. The orientations of the linear
polarizations ϑ and ϑ + 90◦ can be freely chosen.

The photons contained in the two partial beams form two
disjunct groups. If a photon has been assigned to a linearly
polarized partial beam it will always stay in that beam. There
is no intermixing between the two photon groups on their way
from the source to the observers even if the photons and the
accompanying wave packets traverse electro-optical modulators
and quarter-wave plates.

All modern experiments are planned with the aim that
selection and detection processes carried out by the two observers
are spacelikely separated. Therefore, the splitting is performed
just in front of the detectors. The rather late fixing of the
angles α and β even concerns photons leaving the source much
earlier. Thus, the splitting of the circularly polarized beams
admittedly needs non-local information but certainly no non-
local interaction because the two streams of photons propagating
toward Alice and Bob are not modified by the repeated change
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of the detection angles. Before the photons reach the associated
Wollaston prism the splitting procedure is a purely mathematical
but not a physical process.

Due to their common origin entangled photon pairs are phase
coupled when they leave the source. In case of parametric down-
conversion processes the two entangled photons are in phase but
the two associated circularly polarized wave packets are phase
shifted by± 90◦.

As the optical pathes from the source to Alice and Bob will
generally not be balanced the initial phase information cannot
be recovered by simply comparing the arrival times of the
entangled photons. This would merely be impossible due to the
limited time resolution of external clocks and to the jitter of the
detection electronics.

Fortunately the two beams are equipped with synchronized
internal clocks which can be easily read off by the observers.
Within one wave cycle the polarization plane performs a full
turn. Thus, the relative phase of the photons at the source up
to multiples of 180◦ can be recovered from the difference of
the polarization angles looked for by the two observers. The
modulo 180◦ term comes from the 180◦ periodicity of the
polarizer’s transmittance.

The polarization correlation with due regard to the particle
aspect will be derived in two steps. At first the case α = β will
be discussed. This step covers the crucial point in the line of
arguments explaining why the entangled photons are statistically
distributed to only two of the four possible coincidence channels.

The two partial beams A(α) and B(α + 90◦) are in phase (or
opposite in phase) at the source. The same is true for the partial
beams A(α + 90◦) and B(α). As the photons are in phase at
the source they must be found either in the coincidence channel
A(α)/B(α+90◦) or in the coincidence channel A(α+90◦)/B(α).
As the two coincidence channels are equivalent the probabilities
to find the entangled photon pairs in these two coincidence
channels must be equal.

In contrast, the partial beams A(α) and B(α) are phase shifted
at the source by ± 90◦. That means they are orthogonal to each
other. The same is true for the partial beams A(α + 90◦) and
B(α + 90◦). Therefore, there will be no coincidences in these two
coincidence channels.

For each angle α the coincidence rates in the four conceivable
channels are thus given by

I(α,β = α + 90◦) = I0/2

I(α,β = α) = 0

I(α + 90◦,β = α) = I0/2

I(α + 90◦,β = α + 90◦) = 0.

(8)

The correlations C(α,β = α), C(α,β = α+90◦), C(α+90◦,β =
α + 90◦), and C(α + 90◦,β = α) are either zero or unity.
That means entangled photons are strictly anticorrelated. This
statement is valid for each single pair of entangled photons, not
only for a statistical ensemble of entangled photon pairs.

The considerations above prove that the two entangled
photons are both contained either in the partial wave pair A(α)
and B(α + 90◦) or in the partial wave pair A(α + 90◦) and

B(α). Whether the photon is detected by detector A(α) or by
detector A(α + 90◦) is purely accidental. One cannot predict
which detector will be hit by individual photons. However, after
the detection of the first photon of a photon pair for example on
Alice’s side it will be clear which one of the two detectors on Bob’s
side will be hit by the second photon.

Only the anti-correlation of entangled photons is predefined
but not the polarization of individual photons [23]. This is why
the polarization direction should not be thought of as an element
of reality.

The phase relation of partial beams at the source thus leads to
the strong polarization correlation although the information on
the polarization status is not a hidden property of the photons.
Einstein et al. [1] had claimed that a property equally found in
two no longer interacting quantum states must be an element
of reality. The pronounced polarization correlation of entangled
photons seems to be a counterexample.

The wrong estimate of Einstein and his coworkers has entailed
the erroneous approach of Bell [2] who assumed that the
polarization directions are real properties of the photons. In
fact, the phase coupling only predefines the interrelationship
but not the property itself. In consequence Bell’s inequalities
are irrelevant.

The extension of the consideration to the case α 6= β is
rather trivial and exclusively rests on an optical law discovered
by Etienne Louis Malus in 1810. Malus’ law says: If light linearly
polarized in direction γ traverses a polarization filter with its
polarization axis oriented in direction δ its intensity is reduced
by the factor

cos2(γ − δ).

One cannot predict which one of the photons will traverse the
polarization filter because Malus’ law has a purely statistical
character. The law is valid not only for light leaving a classical
light source but also for laser light. That means it does not depend
on second-order coherence properties of a photon stream. It is
also experimentally proven in case of low intensity when the
beam intensity is measured by single photon detectors. Brukner
and Zeilinger explicitly show that Malus’ law is also valid in
the quantum regime [24]. In one of his recent publications
Khrennikov has also used Malus’ law when he derived the
polarization correlation of entangled photons starting from
quantum mechanical considerations [16, p. 3].

The first of Equation (8) means that if one of the entangled
photons has been recorded by detector A(α) the associated
photon will certainly be contained in the partial beam B(α+90◦).
Therefore, one has to apply Malus’ law for γ = α + 90◦ and
δ = β . That means the coincidence rate I0/2 is reduced by the
factor cos2(α+90◦−β) = sin2(α−β). Therewith the coincidence
rate I(α,β) is given by

I(α,β) = I0 sin
2(α − β)/2. (9)

in accordance with Equation (6).
The role of Alice and Bob can be exchanged. If the circularly

polarized beams are splitted into partial beams linearly polarized
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in the directions β and β + 90◦ the results presented above will
be reproduced.

For α 6= β Malus’ law with its inherently statistical character
has to be applied on Alice’s or on Bob’s side. In this case the
correlation C(α,β) is larger than zero and smaller than unity.
Thus, the correlation is not defined for a single pair of entangled
photons but only for a sufficiently large group of entangled
photon pairs.

As has been proven above the piece of information responsible
for the emergence of the pronounced correlation is the phase
shift of two associated wave packets when they leave the source.
Traditionally quantum mechanics strictly takes into account
phase differences of wave functions contained in a matrix
element. Therefore, it can be assumed for sure that the phase
difference of the two entangled photons will also be considered
in quantum mechanics.

It is not relevant whether the correlation problem is handled
classically or quantum mechanically. It is only relevant whether
the phase information is used or not.

The calculations based on local realistic theories do not
consider phase relations. They only try to reproduce the
polarization correlation by assuming that the polarization
directions of the entangled photons are encoded in the photons
as hidden variables. In explaining the strong polarization
correlation of entangled photons only their relative phase at the
source is relevant.

6. GENERAL REMARKS

The pronounced correlation of entangled photons is neither
superprising nor mysterious. It solely depends on the initial
phase shift of the circularly polarized waves accompanying
the entangled photons. One only has to make sure that the
polarization directions α and β looked for by the two observers
are associated with corresponding polarization angles at the
source. This condition is fulfilled in each of the experiments.
Hereby it is not relevant at what time the polarization directions
have been chosen. The purely conceptual splitting of the two
partial beams and the detection of the photons have no effect
on the parametric down-conversion process. The relative phase
of the entangled photons has been fixed inside the source. The
observers only decide which polarization directions they look
for. There is no need for a superluminal information transfer
between the observers. The distance between the observers is
absolutely irrelevant.

The relative phase of entangled photons at the source could
be declared to be a hidden variable finally revealed by the
coincidence detection process. Hidden variables of this type can
only be associated with wave packets but not with particles.
The decisive point of the argumentation is that the wave
intensity and thus also the coincidence rate is proportional to the
(absolute) square of the scattering amplitude. Properties are only
manifested after squaring the overlap integral. In particle based
considerations properties directly act upon counting rates.

Bell’s inequality is misleading because it attributes properties
like polarization directions to particles and not to waves.

Therefore, Bell cannot take into account phase differences of
entangled photons. In future one should ignore violations of
Bell’s theorem because Bell’s considerations are not adequate to
describe wave phenomena.

7. CORRELATION OF PHOTON PAIRS IN
TRIPLET CONFIGURATION

A pronounced correlation of entangled photons should also be
observable in triplet configuration. That means that the two
circularly polarized waves are rotating in opposite directions. In
this case the correlation cannot be derived as easily as in the
singlet case. One can figure out that the triplet configuration
arises from the singlet configuration by mirroring one of the
circularly polarized waves at a vertical plane. This can be
performed by a half-wave plate with the optical axis oriented
in vertical direction. If the circularly polarized wave packets are
phase shifted by± 90◦ the correlation should be

C(α,β) = sin2(α + β). (10)

Thereby the origins of the angles α and β have to lie in the
vertical plane. Preliminary measurements of Weihs [22, p. 72]
support this result. For example if the two observers both look
for polarization directions parallel to 45◦ the coincidence rate is
at a maximum.

In a former publication [25] the sign in the correlation
equation for the triplet configuration was minus instead of
plus. The sign change has to do with the fact that Bob’s
coordinate system was left-handed in the previous article. In the
consideration above both coordinate systems are right-handed.

8. PROPERTIES OF PHOTON PAIRS
ARISING FROM ATOMIC SOURCES

In the experiments with parametric down-conversion sources the
two circularly polarized wave packets are phase shifted by ± 90◦

leading to a strict anticorrelation of the linear polarizations.
In contrast, in the experiments of Aspect et al. [5, 6] the two
circularly polarized wave packets are in phase or opposite in
phase. Therefore, the correlation is given by

C(α,β) = cos2(α − β). (11)

The two photons produced by a decay cascade of calcium
have different frequencies. Only if the rotational frequencies are
equal one can define a phase shift. Thus, it should be tested in
future experiments whether the rotational frequencies of the two
entangled photons are equal or not.With respect to the rotational
motion the coherence time of the two photons must be longer
than the life time of the intermediate state of the decay cascade.

9. DOES IT HELP TO POSTULATE
NON-LOCAL INTERACTIONS?

Is it really helpful to postulate a novel interaction which is in
serious conflict with special relativity? Postulating an information
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transfer faster than light entails a wealth of new problems. An
instantaneous influence at a distance requires that simultaneity
can be strictly defined for distant locations in contrast to
corresponding assertions of special relativity.

Even if such principal objections are ignored many practical
problems arise. How could such a postulated interaction
generate correct results? In correlation experiments the
ratio of coincidence rates in two complementary channels
I(α,β) and I(α,β + 90◦) has to be precisely defined.
The newly postulated interaction has to redirect a well-
specified percentage of stochastically arriving photons
from one channel to the other one. The expected ratio of
coincidences in the two channels depends on the difference
of the polarization directions α and β? How does the
postulated interaction get the information on the angles?
In the experiments the twisting angles α and β are generated
by applying voltages to electro-optical modulators. How
could any theory whatsoever associate a voltage to an
angle? The proportionality factor depends on the material,
on the orientation of the crystal axis and numerous other
experimental details.

Actually, in the optical fibers spurious birefringent effects
occur which are manually compensated. How can the postulated
new interaction know whether the apparatus is well-adjusted
or not? By the way all the twisting processes are frequency
dependent. Only light composed of photons like those used in

the experiment can gain the information on the adjustment status
and on the angles α and β .

The experiment of Salart et al. [9, p. 863] shows that
the postulated “spooky” interaction must be at least 50,000
times faster than the speed of light. If the lengthes of the
optical fibers differ distinctly from each other the superluminal
signal has to wait quite a long, but an extremely well-
defined time interval before it redirects individual pulses
from one output to the other one. It will be extremely
difficult to embed such a delayed reaction in a serious
physical theory.
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Several decades of theory and experiment into EPR correlations have led to the widely

held belief that reality is non-local, in spite of the fact that this violates special relativity. To

date, no experiment has shown a violation of special relativity, and EPR experiments do

not demonstrate the existence of superluminal information exchange, merely correlations

which violate certain inequalities. Every “loophole” in these hidden variable theories

has been thought plugged. However, there is much confusion in the literature due

to conflation of the terms “locality,” “realism,” “hidden variables,” “non-contextuality.”

The presence of local hidden variables is thought to necessarily lead to a Kolmogorov

probability structure (hence non-contextuality), but this is an assumption, one which is not

true in general once context effects are taken into account. Treated as an observational

theory, several authors have shown no incompatibility between quantum mechanics

and locality, and that the Bell scenario is actually about whether reality is contextual.

This paper proposes a descriptive theory by assuming a generated reality (following

Whitehead’s Process Theory) which can violate the principle of continuity and possess

non-Kolmogorov probability structure, and reproduce the results of non-relativistic

quantum mechanics, while allowing only causally local information exchange without

hidden variables. A generated reality is thus compatible with both quantum mechanics

and special relativity, reproducing all of the results expected from quantum mechanics

while still maintaining causally local realism. This process model thus appears to be an

ideal candidate for developing theories for the unification of quantum mechanics and

general relativity.

Keywords: local realism, contextuality, process algebra, process model, non-relativistic quantum mechanics

INTRODUCTION

The debate as to whether reality at its fundamental level conforms to the tenets of local realism
has been decided decisively in the negative. Non-locality has won. Locality is dead! Or is it? In
spite of an ever more sophisticated series of hidden variable theorems and dramatic experimental
results, has the issue of local realism truly been laid to rest? In the years following the seminal paper
of Einstein, Podolsky and Rosen (EPR) [1], the concept of local realism has become equated with
the concept of (deterministic) local, non-contextual, hidden variables (LNHV). The assumption
of LNHV leads to inequalities on measurement correlations, which experiments have shown are
violated. The conclusion is that LNHV do not exist.

The restriction of local hidden variables to deterministic LNHV was unnecessary, likewise, the
restriction of local realism to LNHV is also excessive. Arguments in support of this will be provided
and an explicit model of non-relativistic quantummechanics (NRQM), the Process Algebra model,
will be demonstrated. The Process Algebra model is a local, realist, generative, contextual, and
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discrete model of NRQM without hidden variables in which
NRQM appears as an effective theory in the continuum limit as
Planck length and time are taken to zero [2–6]. It has been argued
that the Process Algebra model provides a true completion of
NRQM [4]. The Process Algebra provides a nuanced framework
for representing interactions between fundamental entities which
the standard Hilbert space formulation lacks. It suggests that
the quantum paradoxes and conundrums are due to a failure
of the usual Hilbert space formalism to correctly represent
particle interactions.

THE ARGUMENTS AGAINST LOCAL

HIDDEN VARIABLES

The story against local realism begins with the 1935 EPR paper
[1], which tackled two questions, that of the completeness of
quantummechanics as a physical theory and that of the nature of
reality. As to completeness, they wrote: “Whatever the meaning
assigned to the term complete, the following requirement for a
complete theory seems to be a necessary one: every element of the
physical reality must have a counterpart in the physical theory.”
They later suggested the following as a plausible, sufficient but not
necessary definition of reality: “If, without in any way disturbing a
system, we can predict with certainty (i.e., with probability equal to
unity) the value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity (SIC).”

Nowadays quantum mechanics is considered to be complete
mathematically (or epistemologically), because no addition to
quantum mechanics results in a probabilistically better theory
[7]. Whether or not it is complete ontologically, thus providing
a complete description of physical reality is no longer a
criterion [8].

The EPR argument was not about locality per se but
against contextuality, the inability to perform simultaneous
measurements of incompatible (non-commuting) observables.
Locality was inferred from the requirement that the systems
should not interact with one another in any manner.

Subsequently Bohm [9], Bohm and Aharonov [10], Bell
[11], and Clauser, Horne, Shimony, Holt [12] introduced
refinements to the EPR argument which brought the scenario
(or a version thereof) closer to experimental scrutiny and
explicitly addressed the issues of locality and hidden variables.
The idea of hidden variables refers to the existence of some
unknown parameter space 3, such that all measurements A
and probabilities p associated with an experiment are functions
of values, that is, A(x, λ), p(x, λ), where x refers to all of the
overt variables associated with the experiment. Early papers
focused on deterministic hidden variables, but as Bell pointed
out [11], the question of deterministic, non-deterministic, or
stochastic is irrelevant; the real question is whether or not the
assumption of hidden variables can explain the observations. The
Bell scenario involves two quantum systems, I, II, which interact
to form an entangled state, ensuring that the states of the two
systems are correlated. The systems then propagate to space-
like separated locations, X, Y, which, if special relativity (and
therefore locality) holds, should ensure that they are unable to

interact with one another in any manner. Next two independent
observers, conventionally Alice and Bob, are allowed to carry
out measurements, Alice of system I, Bob of system II, of
(usually non-commuting) observables A,B, respectively, each
parameterized by a,b, respectively. After collecting their data,
Alice and Bob then determine various correlations among their
measurements and then test these results against a specific
inequality, namely −2 ≤ E(a′, b′) + E(a′, b′′) + E(a′′, b′) −
E(a′′, b′′) ≤ 2 where E(x, y) is the expectation value of the product
of the outcomes of measurements of the two systems when Alice’s
observable setting is x and Bob’s observable setting is y ([13],
chapter 8).

Bell [11], Jarrett [14], and Shimony [13] emphasized that one
of the key components of the argument leading to the inequality
is that the probability distribution given by the hidden variables
must satisfy a factorizability condition. Following Shimony
[13] and Jarrett [14], let pi(x/k, a, b) denote the probability
of observer i measuring outcome x given complete state k,
Alice’s setting a and Bob’s setting b. p(m, n/k, a, b) is the joint
probability when Alice obtains measurement m and Bob obtains
measurement n. pi(x/k, a, b, y) is the conditional probability
when the second observer obtains measurement y. Jarrett defined
two independence conditions:

Parameter Independence

pi(m/k, a, b) = p1(m/k, a)

p2(n/k, a, b) = p2(n/k, b)

Outcome Independence

p1(m/k, a, b, n) = p1(m/k, a, b)

p2(n/k, a, b,m) = p2(n/k, a, b)

Jarrett showed that the assumption of both independence
conditions leads to the factorizability condition: p(m, n/k, a, b) =
p1(m/k, a)p2(n/k, b). This condition is an essential component
of most hidden variable arguments [10, 11, 15–18]. When true,
the hidden variables are non-contextual with a Kolmogorov
probability structure, unlike quantum mechanics which has a
non-Kolmogorov probability structure by virtue of the Born
rule. All hidden variable arguments assume factorizability.
Assuming factorizability, Fine [19, 20] showed that the presence
of deterministic LNHV implies the existence of a joint probability
distribution for even non-commuting observables, violating the
predictions of quantum mechanics.

Kolmogorov [21] himself emphasized that probability theory
was fundamentally a contextual theory. Probability distributions
were context dependent. Fine [20] developed some criteria for
when a joint probability distribution exists but years earlier
Vorob’ev [22] had presented a complete set of criteria for the
existence of joint distributions in the general case and several
examples where his criteria failed to be satisfied. This clearly
showed that the factorizability condition is an assumption, not a
necessity. The fundamental question is whether hidden variables
are non-contextual (factorizable) or contextual.
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Another approach to the EPR scenario has focused upon
contextuality directly. EPR [1] and others [23] define realism
to mean that every element of reality possesses, a priori,
a definite value for every possible observable. Contextuality
asserts that not all observables can have pre-existing values.
Realism is then equated with non-contextuality. A succession of
ever more powerful results (von Neumann [24], Gleason [25],
Mackey [26], Kochen-Specker [27], Mermin [28]) have shown
quite conclusively that quantum mechanics, in its Hilbert space
formulation, is a contextual theory. Dispersion-free measures do
not exist, so that it is impossible through acts of measurement
to assign definite values to all possible observables to single
physical entities. If realism is equivalent to non-contextuality,
then quantum mechanics shows that realism does not exist. One
is left with Wheeler’s famous dictum that “no phenomenon is a
phenomenon until it is an observed phenomenon” [29], so that
there is no external reality; the actions of an observer cause reality
tomanifest. The realist perspective attempts to avoid falling down
this particular philosophical rabbit hole.

It took nearly 50 years to develop the technology to allow
testing of these theories. Most experiments have involved
entangled photons although a few have used entangled electrons
[30–38]. Since the first experiments of Aspect and Grangier [30]
showed that the Bell inequality was indeed violated, a number of
possible “loopholes” have been proposed related to experimental
factors such as detector accuracy, propagation losses, detector
distance, superdeterminism, all of which have been eliminated
by subsequent experiments [31–36]. Even free will have been
challenged [39]. Bell’s inequality has been violated in all of these
experiments to a statistical level of at least 11 standard deviations,
and any presumed non-local influence must propagate with a
speed of at least 50,000c. Bell type experiments have now become
school demonstrations [37]. There is now an experiment which
visualizes correlations referred to in Bell’s theorem [38].

For those who accept Bell’s argument and its variations, the
issue would appear to be put to rest. LNHV do not exist and
reality, if it even exists, is non-local.

THE ARGUMENTS AGAINST THE

ARGUMENTS AGAINST LOCAL HIDDEN

VARIABLES

Or is it? As in every walk of life, things are not as simple as they
first appear.

Khrennikov [40], drawing on work of Hertz and Boltzmann,
divides theories into two general kinds: descriptive, and
observational. Descriptive (ontological) theories attempt to
describe the entities (causes) that give rise to observed
phenomena. Observational (epistemological) theories attempt
to merely provide a predictive framework for these same
phenomena. Quantum mechanics is, mostly, an observational
theory. The arguments against local hidden variable described
above are framed within an observational framework.

The Bell scenario involves three distinct stages: interaction,
propagation, measurement. The literature has focused primarily
upon themeasurement stage, simply assuming the first two stages

as given. Nevertheless, the derivation of the inequalities depends
upon assumptions made regarding these initial stages. Quantum
mechanics is not involved in this derivation. Experiments have
been performed which show that the inequalities are violated.
Logically then, there must be errors in the assumptions leading
to the inequalities. This is not necessarily a vindication of
quantum mechanics.

From an observational/epistemological perspective the key
problem is the assumption of factorizability of the probability
associated with whatever variables are assumed to be present
in the description of the measurement situation. A factorizable
probability leads inevitably to a joint distribution for the
measurements, regardless of whether they are compatible or
complementary. Is the assumption of factorizability necessary for
any model of local realism?

Khrennikov [40], following earlier work of Landau [41],
constructed a quantum mechanical analog of the CHSH
inequality. Given 4 observables, A1,A2 for system 1 and B1,B2
for system 2, he considered:

< B >= 1
2 (<A1B1> + <A1B2> + <A2B1> − <A2B2>).

After some algebra he obtained the Landau identity ̂B
2 = 1 −

1
4 [Â1, Â2][B̂1, B̂2]. If either the A or B operators are compatible,
then | < B > | ≤ 1. He then showed that there exists a
quantum state such that ||̂B||2 ≥ (1 + µ) > 1 so that quantum
mechanics violates the above inequality. Khrennikov argued
that the quantum analog of the CHSH inequality measures
the degree of incompatibility among the observables being
measured on each system and is not a reflection of non-
locality. Similarly, Cabello [42] has demonstrated formally that
the generalized Bell inequality and Kochen-Specker contextuality
are equivalent in quantum mechanics. Nieuwenhuizen [43]
also examined the CHSH inequality and showed that the
probability measures required to calculate the various correlation
functions were subject to contextuality effects, so that no
joint probability distribution, required to make meaningful the
resulting inequality, exists. He referred to this as the contextuality
loophole, and also argued for its universality. Kupczynski [44]
advocates for an purely epistemological, ensemble interpretation
of quantum mechanics, and also argues that the Bell argument is
invalid because it fails to take into account the contextual nature
of the probability distributions associated with these ensembles.

Khrennikov has developed an extension of Kolmogorov
probability theory called contextual probability theory
[45]. Contextual probability theory does for probability
theory what non-Euclidean geometry did for geometry.
The point of departure from Kolmogorov probability is the
sum rule, which takes the form pbC(β) = ∑

α

paC(α)pβ|α +

2λ(β|α,C)
√

∏

α

paC(α)pβ|α where

λ is the probabilistic measure of interference and the

p terms are various conditional probabilities over contexts

(C) and observables a,b. In Kolmogorov probability, λ = 0,

otherwise λ can be a trigonometric function or a hyperbolic

function. Contextual probability has been applied to a number of

classical level phenomena in biology, psychology, and economics
[45–51] and to the Bell situation [52, 53]. The appearance of
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non-Kolmogorov probability at a classical level demonstrates
empirically that the assumption that any probability associated
with local hidden variables must be Kolmogorov is prima facie
false. Hidden variables may be non-contextual or contextual
at both classical and quantum levels. This does not necessitate
non-locality or a failure of realism.

Dzhafarov et al. [54], Dzhafarov and Kon [55], and Dzhafarov
and Kujala [56] has presented an alternative approach to that
of Khrennikov termed Contextuality by Default. Following the
notation in [57], each random variable is associated with the
quantity q being measured and the context a within which
the measurement is made, and denoted, Raq. Consider two
measurements, q,q’ and two contexts a,b. For a fixed context a,
the pair Raq,R

a
q′ is termed bunch, representing the collection of

measurements associated to a specific context. It is reasonable
to believe that such a pair is jointly distributed. For a fixed
measurement q, the pair Raq,R

b
q is termed a connection for q.

The most basic form of contextuality occurs when no
joint distribution can be found for a connection. In such a
case they are said to be inconsistently connected. This is the
situation of contextuality by default. Dzhafarov considers this
to be the most trivial form of contextuality since it is so
ubiquitous. Dzhafarov has developed a more restricted notion of
contextuality in line with contextuality in physics. He considers
couplings between bunches. For example, given two bunches
Raq,R

a
q′ and Rbq,R

b
q′ , a coupling is a set of jointly distributed

random variables (A,B,X,Y), subject to certain constraints, such
that (A,B) is distributed as Raq,R

a
q′ and (X,Y) is distributed as

Rbq,R
b
q′ . The constraints involve A,X and B,Y which correspond

to measurements of q and q’, respectively. A measurement q
is considered to be context independent if among all couplings
(A,B,X,Y), we have Pr(A 6= X) = 0. It can be shown
that such a coupling may not exist even if the system is
consistently connected.

Now consider all couplings (A,X) for just the connection
Raq,R

b
q′ and find the minimal value m’ for Pr(A 6= X). Then

consider the global coupling (A,B,X,Y) and again find the
minimal value m for Pr(A 6= X). If m = m’ the system is non-
contextual and ifm>m’ then the system is contextual. This form
of contextuality is analogous to that found in physics and gives
rise to similar types of inequalities.

Contextuality by default has been observed experimentally
[57]. Moreover, two recent studies [58, 59] have demonstrated
the strong form of contextuality in a social psychological
setting [58] and in individuals [59]. Contextuality in the form
observed in quantum mechanical settings is thus not unique
to the quantum domain but can occur in classical settings as
well. Dzhafarov and Kon [55] have analyzed the Bell scenario
within the contextuality-by-default model, and showed that it
can be understood using wholly classical (albeit contextual)
probability theory.

Dzharfarov and Kujala [60] applied Contextuality by Default
analysis to the double slit experiment. They pointed out that
“Contextuality or non-contextuality is a property of a system of
random variables representing an empirical situation rather than
of the empirical situation itself.” They presented a very general

model of the two slit situation, using Kolmogorov probability
together with the addition of a context parameter, much as
Kolmogorov originally argued [21], and obtained the usual
statistics. Dzhafarov argued that the Bell argument is not about
the nature of physical reality but rather about the failure to take
context effects into account when creating a Kolmogorov type
probability model of a situation.

The role of context in probability theory has not always been
ignored. Kolmogorov [21] and von Mises [61] understood that
probability theory was contextual. Pitowski [62, 63] analyzed
the Bell situation and presented a model based on a form of
contextual probability. In his model “The relative frequencies
violate Bell’s inequality the way they do because the locality
principle is true” (SIC) [63]. Later, Pitowski [64] developed a
deterministic model of spin statistics using the concept of non-
measureable sets. He argued [63] that quantum mechanics is
essentially a probability theory, which in Khrennikov’s language
would be viewed as a trigonometric contextual probability theory.
Gudder [65] applied a generalized probability theory similar to
that of Pitowski to the problem of spin statistics and showed
that such a model was compatible with local hidden variables.
Gudder [66] had already shown that a hidden variable model
of the Bell scenario was possible so long as contextual hidden
variables were used, a line of thought supported a few years
later by Ballentine [67]. Local contextual hidden variable models
have also been developed by Durdevic [68, 69]. Recently Griffiths
[70], using a coherent histories approach, has reaffirmed that
quantum mechanics is a local theory, the inequalities are a
consequence of the contextuality of quantum mechanics, and
the correlations that are detected in a typical Bell experiment
arise due to a common quantum cause [71]. These models seem
to have been ignored in the mainstream literature. The belief
that the probability theory of the classical world is necessarily
Kolmogorov and non-contextual has achieved the status of
dogma, and it has proved extremely difficult to disabuse people
of this.

A different approach was proposed by Palmer [72] who
developed a deterministic model of the spin scenario but
where, crucially, there was a non-linear dynamics in place.
The consequence of this was the impossibility of forming
the correlation functions required for the Bell inequality.
Experimentally, correlations can always be calculated but they
need not be meaningful [73]. He suggested that the inequalities
said nothing about the nature of reality, since the correlation
functions involved did not exist.

Remarkably, contextual hidden variable theories have not
gained much traction within the foundations community. In
spite of their ability to reproduce the quantummechanical results
while preserving locality, they have, for the most part, been
ignored in favor of the quasi-mystical notion of non-locality.
Shimony ([13], chapter 10) defined two types of contextual
hidden variables: environmental, which include experimental
conditions, and algebraic, referring to models on quantum logics
or lattices. He rejected both types of contextual hidden variables
of the environmental type ([14], chapter 10), arguing that they
would still satisfy a factorizability condition, but without proof.
Shimony appeared to reject locality, evading special relativity by
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his “passion at a distance.” He argued that a breach of outcome
independence did not imply superluminal signaling, but outcome
dependence reflects contextuality, not necessarily non-locality.

LOCAL REALISM NEED NOT IMPLY

NON-CONTEXTUAL LOCAL HIDDEN

VARIABLES

If the observational approach to theory suffices, then it appears
clear that measurement is a contextual act. Non-disturbing, non-
contextual, “objective” measurements do not exist universally.
The classical notion of objectivity does not hold true. This does
not, however, imply that an act of measurement creates reality,
merely that reality may be altered by such an act. Reality appears
to be interactive, and thus characterized by a weak form of
subjectivity. This appears easier to accept than non-locality, since
evidence for contextuality is all around us, while evidence for
non-locality is profoundly lacking. Griffiths writes [70] “To be
sure, those who claim that instantaneous non-local influences
are present in the quantum world will generally admit that they
cannot be used to transmit information; this is known as the
‘no-signaling’ principle, widely assumed in quantum information
theory. This means that such influences (including wave function
collapse) cannot be directly detected in any experiment. The
simplest explanation for their lack of influence is that such
influences do not exist.”

Pusey, Barrett and Rudolph [74] have argued that the
wave function is ontological, and experiments visualizing Bell-
type non-local behavior [38], quantum jumps [75], quantum
measurement processes [76], quantum trajectories [77], quantum
wave functions [78], and single photons [79] would seem to
support this. Evidence that quantum jumps [75] and quantum
measurements [76] evolve over a period of time suggests that
there is an actual “something” out there corresponding to such
behavior. This suggests that a purely observational theory is
inadequate and a descriptive theory is also needed to explain
contextuality and the presence of long range correlations.

The dominant viewpoint, however, is that the wave function is
merely epistemological, and that quantum mechanics deals only
with the statistics and behaviors of ensembles. The ability to carry
out single photon and single particle experiments demonstrates
that this is not a necessity [80, 81]. The ensemble approach
focuses on the density matrix ρ, defined as ρ = ∑

i
pi|φi >< φi|

where the |φi > are pure states [82]. Moreover, the density matrix
involves two different kinds of probability: an explicit classical
probability in the form of the real valued pi and an implicit
non-Kolmogorov probability in the form of the squared modulus
of the complex valued amplitudes of the pure states. These
two considerations suggest that ensembles should be treated
ontologically as supervening on pure states. Thus, questions of
ontology should reference pure states.

The challenge in finding an ontological model of pure states in
quantum mechanics lies not with the measurement problem (for
which a detailed model within the usual quantum mechanical
framework has been proposed [83, 84]) but rather in providing an

ontological understanding of superposition. A naïve attribution
of measurements to a single particle in a superposition state
leads to confusion and paradox, causing many to abandon an
ontological interpretation of the wave function and sometimes
reality itself.

Norsen [85] has pointed out that dispensing with the idea
of realism, broadly considered, results in the end of scientific
inquiry, because without some notion of a “reality,” what is it that
scientists have to talk about? But must realism be identified with
classical objectivity? Zeilinger et al. write “objects have physical
properties independent of measurement (the assumption of
realism)”([34], p. 250401-1). But this is just the definition
of non-contextuality. This definition of realism seems to beg
the question.

Rosen [86] suggested that physics’ focus on inanimate matter
has resulted in an unnecessarily limited world view. Experience
with emergent systems in biology, psychology, and economics
[87, 88] has demonstrated that many naturally occurring systems
and phenomena are transient, open, multiscale, emergent,
generated and generative, contextual, and subjective. It is
doubtful that anyone seriously considers these systems to be
“real” only as a result of “observation.” It is not realism that needs
to be abandoned—rather concepts such as ideal object, ideal
non-disturbing measurement, and non-contextuality must go.

A metaphysics with subjective elements was proposed by
Whitehead [89] nearly a century ago. It is a process model
of reality which emphasizes its transient, generated, generative,
emergent, and contextual features. Several authors have proposed
process models of physics [2–6, 90–99] and even Shimony [13]
wrote about Whitehead’s idea of process.

Consider an alternative definition of realism. To begin, why
is it necessary that an element of reality possess a priori all of the
properties that can bemeasured on it?Measurement is an act, and
always involves an interaction between a system and a measuring
apparatus. It is generated in the moment as the interaction takes
place. There is no need to assume that something corresponding
to this measurement exists in the system prior to its interaction
with the measurement apparatus. It is only necessary that
the system possesses the potential to determine such a
measurement when it interacts with a measurement apparatus.
It is equally unreasonable to assert that nothing exists prior to
the interaction with the measurement apparatus. The system
must exist or what exactly does the measurement apparatus
interact with? Moreover, the interaction with the system results
in a systematic difference which ensures that only particular
measured values are returned with particular frequencies. If
the measurement apparatus creates the measurement, then why
just these values and no others? The system must possess a
potentiality which becomes realized in any interaction with a
measurement apparatus.

Why too is it necessary that for something to be real it must
be knowable to a human observer. Quantum mechanics appears
obsessed with the idea of measurement, yet events occur in
nature without any obvious “measurement” taking place and
without any “observer.” A theory of natural processes should,
reasonably, describe the evolution of such processes as they occur
“in vivo,” and not merely “in vitro,” in a laboratory. Moreover,
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such a theory should be able to deal with single entities, not
merely ensembles.

At a bare minimum, any entity must possess some propensity
to determine a difference in the state or future history of
at least one of the entities that it interacts with. For, if
something is thought to exist, but in any interaction with
anything whatsoever, in any manner and for all time, it never
determines any difference whatsoever, then it might just as
well not exist, since its existence will never be noted. Of
course an entity may never have an opportunity to interact
with another entity, so it is not essential that a difference
be realized, only that the entity possesses a propensity to
determine a difference, should a suitable interaction occur. These
two considerations suggest the following minimalist definition
of realism:

An entity is real if it exhibits a propensity to determine a
systematic difference. An entity or phenomenon can determine
a difference in only a single interaction for a single time, or
across many interactions over multiple times. It may determine
the same difference at multiple times, or it may determine
different differences on different occasions, but these should be
systematic in some manner. With respect to the same initial
conditions, the difference may be deterministic (fixed single
value), non-deterministic (fixed set of values), or stochastic (fixed
probability distribution). There is no need for an observer,
particularly a human observer. Previous comments aside, if this
potentiality is never realized then its reality is rather moot.
Thus, there is a need for an entity with which it can interact
so as to realize this potentiality and thus register its reality.
It may be that this additional entity is itself, and that self-
interaction might provide the most basic interaction realizing
a potentiality, perhaps that of bare existence. The realization
of other potentialities requires interactions with wholly separate
entities. The minimum requirement for such entities is that they
can register a difference in either state or history, a concept
referred to as salience [100]. There is no need for consciousness
or agency.

The determination of a difference requires interaction; it
is relational. Some differences may be private, specific to
an individual entity (for example quarks and gluons) or
public, accessible to many entities (for example photons). The
idea of reality being a propensity to determine a difference
has much in common with the pragmatism of John Dewey
[101] and the process view of Whitehead [89]. Propensity
drives home the point that it is the capacity to determine
a difference which matters, not which difference it is which
is determined.

A quantum system determines a potentiality to obtain
certain measured values through an act of measurement.
These values are only realized through an interaction with
a measurement apparatus. It is not necessary that the
quantum system possess these measured values, merely that
it possess the propensity to determine them, if only in a
statistical manner. It is a set of dispositions. Since only select
measurements are made possible, it makes a difference, and by
the definition proposed here, it is real. It might be associated
with a particular measurement on one occasion, but this

need not be the same on a subsequent occasion. That will
depend upon the intervening interaction history. Properties
can be real, they can be contextual, they simply need not
be eternal.

Measurements are not specific properties of the system
but propensities, one of which may be realized following
a measurement act. The system does not possess these
properties but rather, together with a suitable measurement
apparatus, acts as a generator of properties. Thus, quantum
systems should not be thought of as “objects” but rather
as “processes.” Since processes make a difference, somewhat,
somewhere, sometime, processes are held to be elements of
reality. They are ontological entities but with characteristics such
as transience, emergence, generativity, agency, contextuality,
and locality.

Some quantum properties have a universal character, such as
whether their wave function is scalar, spinor, vector, tensor, or
their charge, rest mass, and so on. These can be attributed to the
system itself. Many other properties, however, are contextual in
character and thus should be treated as generative propensities.
For example, whether a quantum system is to be considered
wave-like or particle-like is contextual. Indeed, Ionicioiu et al.
[18] showed that the wave-particle distinction is not compatible
with a non-contextual hidden variable representation. The
tracks of fundamental particles are also contextual in that
they do not occur in the absence of a detector. Mott [102]
showed that the formation of particle tracks in a bubble
chamber was an emergent feature of the interaction between
the particle and the atoms in the bubble chamber. There
are no tracks without the bubble chamber. The formation
of tracks is a propensity of the particle, not a property of
the particle.

Consider again the Bell correlations. Reichenbach [103]
formulated the principle of the common cause, which states
that if an improbable coincidence has occurred, there must exist
a common cause. In the Bell scenario, the common cause is
presumed to occur at the time at which measurements on the two
systems take place. However, consider the following Gedanken
experiment. Consider a source which produces a pair of spin-
entangled particles I, II, with opposite momenta p, -p, which are
allowed to move to locations a distance d apart, where there are
placed detectors for Alice and Bob. The detectors of Alice and
Bob are space-like separated. The outcome of each measurement
is sent to a common location at a distance h from each
detector where there is a recording device which measures the
outcome from each detector simultaneously. A common trigger
is established at a distance r from each detector. When a signal
from the trigger is sent, each detector makes a measurement, thus
ensuring simultaneity. In the interval between trigger signals,
Alice and Bob are free to alter the specific measurement being
made by their detector.

The output from the source has a wave function of the form

|9(r1, r2) >= 1√
2
[|φ1 : ρ1(r1, r2) > +|φ2 : ρ2(r1, r2) >].
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The question is: at what point in this situation is the supposed
passion at distance to play out?

The unusual notation for the wave function is intentional. In
part it followsMott’s [102] argument in which he emphasized that
the wave function for the interaction between particle and bubble
chamber fluid possessed a complex, non-separable dependence
on both the particle and the atom with which it is interacting.
It is also meant to emphasis the algebraic aspect of Hilbert
space expressed in the bra-ket notation and the representation
of this algebra by means of the wave function. This will be
important later in the discussion of the Process Algebra. Note
that knowledge of this wave function comes from outside Alice
and Bob. From Alice’s point of view, there is a single particle
whose wave function is |91(r1) >= 1√

2
(|φ1(r1) > +|φ2(r1) >),

while Bob sees a single particle with wave function |92(r2) >=
1√
2
(|ρ1(r2) > +|ρ2(r2) >).

If they were to pool their descriptions they would assume
that the combined wave function is |9(r1, r2) >= |91(r1) >

|92(r2) >, which is clearly inconsistent with the actual case and
also with what is observed by the recorder. Why then are we so
quick to assume that the entangled wave function

|9(r1, r2) >= 1√
2
[|φ1 : ρ1(r1, r2) > +|φ2 : ρ2(r1, r2) >]

= 1√
2
[|φ1(r1) > |ρ1(r2) > +|φ2(r1) > |ρ2(r2)] >?

Alice and Bob will make their measurements simultaneously, at
exactly the same proper times for each particle. If Alice were to
carry out her measurement slightly earlier than Bob, Alice would
presumably collapse the wave function of particle I and cause
the wave function of particle II to collapse to the corresponding
entangled state, and conversely if Bob measures first. Here,
however, the measurements are carried out simultaneously. So
what will happen? If nothing exists prior to the simultaneous
measurements of Alice and Bob, then it is not clear at all
how this is to be resolved. Alice and Bob believe that they
are working with free particles yet the recorder will obtain
correlated measurements. A definite difference will be observed.
Thus, according to the definition of realism being considered
here, a definite something must exist prior to the measurements
taking place.

The entangled system exhibits a propensity to determine two
simultaneous correlated measurements which make a difference,
and thus it is reasonable to consider that the entangled
system represents a single element of reality. The error lies in
assuming that one has two quantum systems which are somehow
correlated. That seems possible only through the passage of
some signal between them, but in the case of simultaneous
measurements, what could such a signal convey? Such a signal
not only must be instantaneous, but it must also effect a choice.
This seems implausible.

A simpler explanation is that there is only one system, but
it produces two measurements. This could occur in one of two
ways. First of all, when the entangled state is created, entangled
particles are emitted in either of the two entangled states,

|φ1 : ρ1(r1, r2) > or |φ2 : ρ2(r1, r2) >, and then propagated. In
that case the wave function is merely epistemological, describing
a statistical ensemble of entangled particles. The second
possibility is more interesting. At the moment of measurement
the entangled system has the propensity to manifest either state
|φ1 : ρ1(r1, r2) > or |φ2 : ρ2(r1, r2) >, never both, with 50–50
frequency. In either of these cases there is no need for quasi-
mystical instantaneous signals to be passing back and forth
between measurement devices.

Now suppose that the experimental situation is rescaled,
so that all distances diminish by a proportion p. The above
argument can be repeated and again, the entangled system
exhibits the propensity to manifest either state |φ1 : ρ1(r1, r2) >

or |φ2 : ρ2(r1, r2) >, never both. It follows that this must hold
true for every moment of time. Since, at every such moment of
time, the entangled system has the propensity to determine a
difference, there must be an element of reality present at each
moment of time. The entangled system is thus the generators of
these momentary propensities.

Since the wave function appears to be at least partially
ontological, the simplest explanation for this propensity is that
at each moment of time, the entangled particle system actually
manifests either state |φ1 : ρ1(r1, r2) > or |φ2 : ρ2(r1, r2) >, never
both, and that the state may change from moment to moment.

If one believes in the principle of continuity then this is
quite problematic and perplexing. If time is continuous then
the evolution of the entangled system must be neither smooth,
nor continuous. For if H is the Hamiltonian and time evolution
is given by the usual operator, U(t) = exp[−itH/h̄], then
assume that there is some time interval [t1, t2] on which the
entangled state is constant. Then U(t)=I for every t ≤ t2 − t1,
and hence U(t)=I for all t. It appears that one must abandon
the principle of continuity. Bancal et al. [17] and Gisin [104]
and colleagues addressed this problem in the context of a
Bell scenario. They studied the case of 4 quantum observers
and, by assuming the principle of continuity and a constant,
finite but unspecified superluminal speed v (c < v < ∞) of
propagation of any hidden signals, were able to find an inequality
involving various correlated measurements, as well as a quantum
state which violated the inequality. They concluded that either
the principle of continuity must be violated, or superluminal
signaling must be possible. Gisin wrote “Note that the finding of
such a speed would falsify both quantum theory and relativity,
a result not many physicists are willing to envisage” [104,
pg 10] thus favoring abandoning the principle of continuity.
Bancal et al. wrote “This gives further weight to the idea that
quantum correlations somehow arise from outside spacetime, in
the sense that no story in space and time can describe how they
occur” ([17], pg. 4).

The theory of special relativity has survived multiple
experimental tests and has yet to be violated. The principle
of continuity, however, is frequently violated at smaller scales,
so why should it not be violated at the smallest scale? This
would appear to provide far less of a shock to our conceptual
system than the assumption of instantaneous transmission of
undetectable signals. Indeed a recent paper argues that there is
an upper limit to the frequency of any physical process, including
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any “clock,” with the shortest temporal interval on the order of
10−33 s [105].

Local realism, according to the new definition, appears to
be perfectly tenable provided one accepts contextuality and
abandons the principle of continuity. The remainder of this
paper is devoted to describing just such a locally realist
model of non-relativistic quantum mechanics (NRQM) without
hidden variables.

PROCESS AND THE PROCESS ALGEBRA

MODEL

One way to implement a descriptive theory together with the
new definition of realism is through the concept of process.
This has its origins in the writings of Heraclitus and Siddhartha
Gautama and its modern version in Whitehead’s process theory.
A propensity to determine differences can be accommodated if
those differences are generated. A process is viewed as a generator
of primitive events called actual occasions, the base elements of
reality. By the new definition of realism, if a process is responsible
for determining differences, manifesting as actual occasions, then
a process must be accorded the same ontological status, that is,
the same degree of reality, as those occasions.

Whitehead considered a process to be a sequence of events
having a coherent temporal structure in which relations between
the events are more fundamental than the events themselves.
Whitehead viewed process as being ontologically prior to
substance and becoming to be a fundamental aspect of being.
Becoming is fundamental to process, and fundamental to
becoming is transience. In process theory events have a transient
existence, coming into being, manifesting briefly, then fading
away. Each actual occasion exists only long enough to prehend the
realities of the previous events and to form a response to them,
thereby immediately passing out of existence and becoming data
for subsequent events. Actual occasions, the basic elements of
reality, are held to be inseparable occasions-in-connection, giving
reality a holistic aspect. The act of prehension underscores that
information plays a fundamental role in the unfolding of reality,
and that in particular, it is meaning that is necessary to give rise to
coherence among events [90]. Reality is emergent, arising out of
a lower level of actual occasions as are the fundamental physical
entities, which are viewed as emergent configurations of actual
occasions [13, 89].

Actual occasions do not occur in space-time, nor do theymove
in space-time. Instead, actual occasions form space-time. They
are the primitive “events” upon which natural entities supervene
and from which they emerge. Processes, being generators
of actual occasions, are thus generators of space-time itself.
Logically, processes do not exist within space-time, they stand
outside of it, thus fulfilling the suggestion of Bancal et al. [17].

In keeping with the descriptive perspective, actual occasions
constitute the signs by means of which processes implement
their propensity to determine differences. An actual occasion
marks a specific expression of this propensity, determining one
of whatever many differences the process may determine. Actual
occasions thus mark whichever difference is being determined,

in the moment, and this difference may vary from moment
to moment.

The idea of process depends crucially upon the idea of
becoming, and that in turn requires a transient now. Such a
concept is thought to be incompatible with special relativity, but
this is a misunderstanding of what special relativity implies. As
Wigner pointed out [106], what special relativity demonstrated
is the non-existence of global frames of reference. All global
frames of reference are mathematical fictions. Simultaneity, and
thus a transient now, can exist, but co-moving observers within
the universe will not agree about this. Denying simultaneity
is another example of misplaced omniscience. Reality may
unfold according to a transient now even if human observers
cannot detect it. Several authors have argued that it is not the
block universe which is a necessity but rather some form of
presentism [107–110].

Similar to the actual occasions that they generate, processes
shift between periods of activity and inactivity. While active,
they express a propensity to determine differences, manifesting
in distinct attributes and functionality. Processes interact with
one another according to their attributes and functionalities and
the actual occasions that they manifest, and these interactions are
triggered by the manifesting of particular actual occasions.

Process ideas can be seen in Finkelstein’s quantum relativity
[92, 95], Noyes’s bit-string physics [94], Bastin and Kilmister’s
combinatorial physics [96], Hiley’s process physics [93], Cahill’s
process physics [97]. Emergent models of physics include Nelson
[111], Adler [112], Levin and Wen [113], and two time models
such as stochastic quantization [114] and Bars’ two time physics
[115].The process algebra model has many roots: Sorkin’s causal
sets [116] (whose basic elements could be reinterpreted as
actual occasions), Lee’s discrete time dynamics [117], Kempf ’s
interpolation model of QFT [118] (which suggested that NRQM
could be emergent from a discrete space). Related models include
the cellular automata models of ‘t Hooft [119] and Elze [120],
which appear to be special cases of process algebra models.
Trofimova [98, 99] has proposed several process algebra based
formalisms for describing the principles of transience which
govern processes in functional constructivism. Her approach to
process algebra uses several functional differentiation classes, a
concept of “performance” and several universal process-trends.
It applies particularly to complex, adaptive, multiscale systems.
Her work has provided much inspiration for the author.

The next few pages describe the process algebra model in terse
detail. A more leisurely discussion can be found in [2, 4]. The
process algebramodel considered here views quantummechanics
as an (incomplete) effective theory, being the asymptotic limit
as spatiotemporal scales become infinitesimal. The Hilbert space
formalism is considered to bemathematically coarse, blurring the
distinction between ontological and epistemological, and leading
to a great deal of unnecessary confusion.

Since von Neumann, the use of the language of Hilbert spaces
for formulating NRQM has become dogma [24]. The Process
Algebra model starts from the realization that the Hilbert space
of NRQM is a reproducing kernel Hilbert space [121]. Given a
reproducing kernel Hilbert space H(X) with base space X, one
can find a discrete subspace Y of X (sampling subspace), and a
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Hilbert space H(Y) on Y, such that each function in H(Y) can
be lifted to a function in H(X) via interpolation. Interpolation
means that if 9(z) is a function in H(X), then for each y ∈
Y there exists an interpolation function 9y(z) on H(X) such
that 9(z) = ∑

y∈Y
9(y)9y(z). In general there are usually an

infinite number of these sampling subspaces. The interpolations
functions are not unique. They are usually chosen by reason of
goodness of fit. In the case that the subspace Y has the form of a
regular lattice the interpolation functions may be taken to be sinc
functions (sin x/x) [90]. If the subspace has an irregular structure
with density matching the Beurling density [122], Fechtinger-
Gröchenik interpolation theory may be used instead [121, 123].
Interpolation does not reproduce all functions on H(X) but
rather a more limited set of band-limited functions, that is,
functions whose Fourier transform is limited to a bounded set,
ensuring the existence of a natural ultraviolet cutoff.

In interpolation theory,H(X) is considered to be fundamental
while H(Y) is derived, a result of a sampling procedure. The
Process Algebra model reverses this relationship. The discrete
subsets Y are considered to be fundamental, their elements
representing the actual occasions of Whitehead’s process theory.
The elements ofH(Y) are the ontological wave functions, and the
elements of H(X) are derived (emergent) through an (arbitrary)
interpolation procedure. The elements of Y are considered to
be generated by process, P, and the value 9(y) assigned to a
point y in Y is also generated by P by causally propagating
specific information from prior actual occasions to nascent actual
occasions by means of a causal propagator, K. The resulting wave
function 9(z) = ∑

y∈Y
9(y)9y(z) is thus emergent. The discrete

subsets are called causal tapestries and their individual points
are called informons. The triad of prior causal tapestry, process,
nascent causal tapestry forms a compound present.

It is essential to understand that all of the physics takes

place on the causal tapestry Y. The space X is treated as

emergent. Interpolation may be used to recover all of the

physics on the emergent space X. The informons represent

the fundamental elements of reality. Information among the

elements is propagated only in a locally causal manner. Note

that these informons do not constitute hidden variables. There is

no additional parameter space associated with these informons.

They constitute the fundamental elements of space-time, and
their causal relationships are space-time. Moreover, they are
the wave function. The wave function 9(z) is not a function

of these informons, it is these informons. The process model
thus possesses local realism without hidden variables. This is an
important distinguishing feature from other contextual hidden

variable models. Moreover, the wave function in the process
algebra framework is both ontological and epistemological. More
about this will be discussed later. As informons are the formal
representation of actual occasions, it is important to note that
informons do not move in space-time. Information propagates,
informons do not. Theymerely come into existence and then fade
away. Informons may be generated in a discontinuous manner.
This does not violate special relativity since no information

is transferred between the informons that comprise a causal
tapestry, only causally from prior to nascent causal tapestry.

A simple visual analogy might help. Think of space-time like
an LED display, with each active LED element representing an
actual occasion. These LED elements are lit at random, but on an
ultrafast, imperceptible time scale. The resulting image represents
our observable reality. Processes are represented by the signal
which determines which elements are lit.

Each informon takes the form: [n]<pn;mn:φn(z);
Ŵn>{Gn} where

1) n is a heuristic mathematical label,
2) pn is a structured set of intrinsic properties,
3) mn :φn(z) is a pair of extrinsic properties,
4) Ŵn is the local coupling effectiveness,
5) Gn is a causally ordered collection of informons, with

causal metric ρ, called the content (based on an idea of
Markoupoulou [124]). The union of content sets over all
informons in the causal tapestry must itself form a causal
set [116, 124, 125]. The causal distance is related to the
depth of the causal structure, and the delay in formation flow
(important in the case of non-zero rest mass).

The brackets [,],<,>,{,} are simply delimiters.
The local process strength at an informon n is given as Ŵ∗

nŴn.
The information residing in the informons of the content is
utilized by the generating process to create the informon. The
intrinsic properties pn are attributed to the generating process
P and imparted to each informon generated by P. The extrinsic
properties are unique to each informon but are frame dependent.
Each informon n is interpreted as a point mn (causal manifold
interpretation or embedding) in some causal manifold M. Its
content set Gn causally embeds into M. Each causal tapestry
forms a causal antichain in M, and thus represents a discrete
sampling of a spacelike hypersurface in M. Each informon n
is associated with a local Hilbert space interpretation of the
form φn(r) = Ŵnfn(r,mm), the Hilbert space H(M) being
that over the causal manifold M. Each causal tapestry I is
associated with two different maps: a tapestry realization (or
allowing a slight misnomer, a tapestry “wave function”) of the
form �(n) = Ŵn, and a global Hilbert space interpretation
over the causal manifold of the form 9(r) = ∑

n∈I
Ŵnfn(r,mn).

When the informons of a causal tapestry embed into the causal
manifold as a discrete lattice, it is possible to replace each
fn(r,mn) by a spatial translation (Tmn f (r) = f (r − mn)) of
a single generic sinc function g(σ , z) = sin σz/σz, so that
9(r) = ∑

n∈I
ŴnTmng(σ , r). The lattice spacing must be consistent

with the Beurling density [122]. Maymon and Oppenheim
[126] have shown that non-uniform embeddings still provide
a highly accurate approximation using sinc interpolation so
long as the spatiotemporal density is large enough. A more
realistic model requires the use of non-uniform embeddings and
more sophisticated interpolation techniques, such as Fechtinger-
Gröchenik theory [121].

A tapestry realization is analogous to a space representation
of a wave function. There is a dual causal tapestry which can be
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formed using the duals of the content sets and which gives rise to
an analog of themomentum representation, but this construction
will not be needed here.

A process generates individual informon in a series of short
rounds, collectively forming a round, in which information
is propagated. A causal tapestry is generated in a series of
rounds, forming a complete generation. Processes possess three
additional intrinsic characteristics:

1) r, the number of prior informons whose information is
incorporated into an informon n. It is also the cardinality of
Gn, and the number of short rounds needed to form n.

2) N, the number of informons in each generation, and thus the
number of rounds and the cardinality of the causal tapestry I.

3) R, the number of informons generated per round. A primitive
process has R=1. Otherwise the process is compound.

Process properties include invariants such as charge, rest mass,
mathematical type (scalar, spinor, vector, tensor, real, complex,
quaternion etc.) as well as conserved quantities such as energy,
momentum, angular momentum. Conserved quantities are not
considered fundamental but rather result from symmetries of the
causal propagator [90, 127]. A process can possess a well-defined
energy or momentum but there is no dispersion free measure
because the informons which are generated by the process are
dispersed in space-time. The Heisenberg Uncertainty relations
still hold.

The action of a process involves:

1) The assignment of a new informon label
2) The assignment of property set pn
3) The assignment of causal relations and distances to

prior informons
4) The assignment of a content setGn

5) The propagation of information from prior informons.
6) Determination of local coupling effectiveness by propagating

the local coupling effectiveness from each informon in Gn

forward to n according to the rule Ŵn = ∑

m∈I
K(n,m)Ŵm

where the propagator K will depend upon the causal distance
ρ(n,m). The propagator will be determined by particle and
interacting potentials.

The dispersion of informons and subsequent causal diffusion
of their information is consistent with the interpretation of the
Schrödinger equation as describing a diffusion process [128].
One particular version of the process algebra model can be
shown to be equivalent to Feynman path integrals [2–4, 129],
but without the interpretation of motion along all possible paths.
Moreover, it can be shown that if the propagator is relativistically
invariant, then the generation of informons is also relativistically
invariant [2–6].

Interactions between processes are conjectured as being

triggered by the generation of informons according to the

compatibility between the processes. Compatibility between

interacting complex systems is an idea first proposed by

Trofimova [130]. In the current context it can be thought of as
a generalization of the idea of coupling factors. Compatibility
4(P,M) is conjectured to be a function of fixed factors such as

mass, charge, coupling constants, and of the local compatibilities.
The probability of an interaction taking place 5(P,M) is in turn a
function of the compatibility, 5(P,M) = χ(4(P,M). The precise
form of these functions depends upon the particular case. The
Born rule is expected to arise from these interactions and from
the compatibility, but a precise derivation is not yet in hand.
If one naively applies the Born rule, then probability will be
proportional to the local process strength. If so then it will be
non-Kolmogorov by virtue of the presence of interaction terms

Ŵ∗
nŴn = ∑

m∈I
K(n,m)∗Ŵ∗

m

∑

m′∈I
K(n,m′)Ŵm′

= ∑

m∈I
K(n,m)∗K(n,m)Ŵ∗

mŴm +
∑

m∈I

∑

m′∈I,m6=m′
K(n,m)∗K(n,m′)Ŵ∗

mŴm′

The global Hilbert space interpretation is an ontological wave
function, in that it describes the informons generated during
one complete action of a process, and so one possible history
of a quantum system. To carry out calculations, however, it is
necessary to consider all possible histories. To do so requires
the use of the process graph defined in the next section. It
essentially is a combinatorial tool which keeps track of every
possible history of the system as it evolves under a process from a
fixed prior causal tapestry. Each possible history yields a distinct
global Hilbert space interpretation. The Process Covering Map
P(I) gathers together these interpretations into a single set valued
map. From this one can form a combinatorial interpretation
which can be used for calculations involving single systems.
When multiple systems are involved, the process graph must
be extended into a configuration space graph together with its
associated configuration space covering map [2–4]. The details
can be found elsewhere and are not needed for the arguments
to follow.

It can be shown [2–4] that for a primitive process P and
prior causal tapestry I, in the asymptotic limit as Planck
length and Planck time tend to 0; r,N → ∞, P(I) {9(r)},
tends to a single function. Thus, in the case of a primitive
process, in the asymptotic limit, the process generates only a
single wave function which corresponds to the usual NRQM
wave function. For a primitive process the wave function
becomes both ontological and computational. This is not true
for compound processes, so that the ontological wave function
(global Hilbert space interpretation) which describes a single
instance of reality, and the computational wave function which
is used for making predictions, are no longer the same [2–
4]. This failure to distinguish between these cases may be
the source of much confusion about the interpretation of the
wave function.

The process covering map gives rise to a correspondence
between processes and (set-valued) operators on the space
of global Hilbert space interpretations. The standard operator
formalism is thus an emergent feature of the Process Algebra
model arising in the asymptotic limit of infinite information and
infinitesimal scale [2, 4, 90].
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An important concept is that of epistemological equivalence.
Epistemological equivalence of two processes P and Q means
that their global Hilbert space interpretations, 9P(r),9Q(r),
respectively, are equal as functions over the causal manifold. In
other words,

9P(r) =
∑

n

Ŵnfn(r,mn) =
∑

m

Ŵmfm(r,mm) = 9Q(r).

If two processes are epistemologically equivalent then the
specifics of informon generation do not matter in so far
as NRQM is concerned. They generate the same emergent
wave functions and therefore will yield the same NRQM
predictions. This is useful because processes can be modeled
heuristically based upon mathematical convenience just so long
as they are epistemologically equivalent to any real processes.
In particular one can use processes based upon combinatorial
games which have particularly valuable characteristics [131–
133]. Epistemological equivalence may also possess ontological
implications in that it might be impossible on principle for
macroscopic observers to be able to access information about this
most fundamental level. To use a computer analogy, it is generally
inadvisable for a computer program to be able to access and
change its own code. Perhaps that is the case for nature as well.

THE PROCESS ALGEBRA

The various paradoxes and conundrums posed by NRQM can be
addressed through the Process Algebra. Processes can interact
in a myriad of ways and the Process Algebra provides the
formal language for describing these interactions. The power of
epistemological equivalence is that it allows for many different
representations of process to be considered based on heuristic,
computational, or conceptual reasons, and it ensures that the
results of calculations will still agree with one another. In this
it is akin to the concept of gauge invariance. The most useful
such representation to date is based upon combinatorial game
theory. These games have been used for decades for generating
mathematical structures [130–132] and are used heuristically as a
model for how processes generate informons.

Processes may influence one another in two different ways.
The first (coupling) involves the generation of individual
informons, their relative timing as well as the sources of
information which enters into their generation. Coupling results
in epistemologically equivalent processes, so properties are
unaltered. The second (interaction) involves the activation or
inactivation of individual processes and the creation of new
processes. Epistemological equivalence is broken and properties
are altered.

Two processes P1,P2 may be independent, meaning that the
neither constrains the actions of the other in any way. This
relationship is denoted simply by the comma “,”. Compound
processes (R >1) can be formed from primitive processes (R
= 1) by various coupling operations. A coupling affects timing
and information flow. Two processes may generate informons
concurrently (products) during each round, or sequentially

(sums), with only one process generating informons during
a given round. Information from either or both processes
may enter into the generation of a given informon (free) or
information incorporated into an informon by a process may
only come from informons previously generated by that process
(exclusive). This leads to four possible operators:

1. Free sequential (free sum): P1⊕̂P2
2. Exclusive sequential (exclusive sum): P1 ⊕ P2
3. Free concurrent (free product): P1⊗̂P2
4. Exclusive concurrent (exclusive product): P1 ⊗ P2

The operation of concatenation is used to denote processes that
act in successive generation cycles. Thus, P1 ·P2 (or simply P1P2)
indicates that P1 acts during the first generation cycle, while P2
acts during the second generation cycle.

Interactions break epistemological equivalence and can do
so in myriad ways. Interactions between processes may activate
an inactive process or inactivate an active process. In addition,
an interaction among processes P1,P2,..,Pn may generate a
new process, P, which can be described in functional form as
F(P1,P2,..,Pn)= P. If 2(P1,P2,..,Pn) describes a coupling among
P1,P2,..,Pn then the functional relation may be described using
the operation of concatenation, as 2(P1,P2,..,Pn) P.

Since there are potentially so many different types of
interactions, a set of generic operators are used to indicate the
presence of an interaction with the specifics to be spelled out if
known. Thus, there are

1. Free sequential (free interactive sum): P1⊞̂P2
2. Exclusive sequential (exclusive interactive sum): P1 ⊞ P2
3. Free concurrent (free interactive product): P1⊠̂P2
4. Exclusive concurrent (exclusive product): P1 ⊠ P2

Independence, sums and products are commutative, associative
and distributive operations. Concatenation is non-commutative
and non-associative in general. The zero process,O, is the process
that does nothing.

An important and special form of interaction is the
coupling interaction. Such interactions respect epistemological
equivalence and thus are potentially reversible through a
subsequent coupling interaction. An example is a rotation to
a different eigenbasis as a result of an engagement with a
measurement apparatus.

If the propagator is spatio-temporal invariant, so is the
associated process. Since processes are independent of space-
time, their actions too are independent of any extrinsic causal
manifold interpretation. They will act in the same manner
regardless of where the embeddings into the causal manifold
occur. Thus, if the propagator is invariant under space and time
translations, so is the associated process.

Another point worth mentioning is that due to the non-
commutativity of concatenation generally, there is an intrinsic
temporal asymmetry within the process algebra model. Temporal
evolution according to the process algebra model is not time
reversible. It is quite permissible for two processes P,Q to be
time reversible individually, but yet their concatenation is not
time reversible. Assume that QP 6= PQ. If T is the time
reversal operator (which means that if P assigns an informon
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the causal manifold interpretation (t, z), then T[P] assigns it
the interpretation (−t, z)), then T[P] = P and T[Q] = Q

but T[PQ] = T[Q]T[P] = QP 6= PQ.
Unlike NRQM where multi-particle systems require tensor

products, and QFT uses the Fock space, the multi-particle
representation of the Process Algebra requires the use of a
categorical co-product space. This space consists of formal, rather
than arithmetic, sums of global Hilbert space interpretations.
Thus, process algebra sums correspond to arithmetic sums
while products correspond to co-product (formal) sums. Tensor
products appear in the configuration space covering map, which
again highlights the difference between the ontological global
Hilbert space interpretation and the epistemological process and
configuration space covering maps.

The impact of these different operations is best demonstrated
using a process graph. The process graph G(P) of a process P

is defined as follows: rounds 0 to N are laid out in order. At
round 0 one places the informons of the prior causal tapestry.
At round k, place each informon n that was generated during
round k and draw a directed line from each prior informon
in its content set Gn to n and label it withthe causal distance
between the two informons. Note that no lines link informons
of the prior causal tapestry to one another or nascent informons
to one another since no information passes among them. Let
G(P)n = {n} ∪ Gn, the subgraph of G(P) consisting of n and
its content set. The process graph is used to determine the
causal manifold interpretation of the nascent causal tapestry and
the global Hilbert space interpretation. If a process acts on the
same prior causal tapestry it may produce a different process
graph, thus a different history. The process covering map gathers
together the global Hilbert space interpretations of these different
process graphs, thus all of the possible histories required for a
sum over histories calculation. A configuration space graph and
configuration space covering map can be defined for products
of processes.

Let |P| denote the total number of informons generated during
the current generation cycle. For any two processes P,Q we have

|P| = NP, |Q| = NQ

|P⊕̂Q| = |P⊕Q| = max{|P|, |Q|}

|P,Q| = |P⊗̂Q| = |P⊗Q| = |P| + |Q|

|P ·Q| = |Q|

In addition we have

G(P, Q) = G(P) ∪ G(Q)

G(P) ∪ G(Q) = G(P⊕Q) ⊂ G(P⊕̂Q)

G(P)× G(Q) = G(P⊗Q) ⊂ G(P⊗̂Q)

G(P ·Q) = G(Q)

This highlights some of the subtle differences between
these operations.

The basic rules for applying these operations in combining
processes are the following:

1 The free sum is only used for single systems and combining
states which possess identical property sets (pure states).

2 The exclusive sum is used for single systems and combining
states which possess distinct property sets (mixed states).

3 The free product is used for multiple systems which possess
distinct character (scalar, spinorial, vectorial, and so on) such
as coupling a boson and a fermion. It is unclear whether two
bosons might couple via a free product.

4 The exclusive product is used for multiple systems which
possess the same character such as coupling two bosons or
two fermions.

The Process Algebra can be represented inmany different ways as
an algebra of processes, as an algebra of combinatorial games in
onemodel of process, as an algebra of causal tapestry realizations,
as a Hilbert space of global Hilbert space representations. Note
that the latter representation is not faithful, that is it does
not possess all of the structure of the Process Algebra. As
stated previously, this results in a loss of causally meaningful
information. To emphasize these different representations,
one can describe Process Algebra elements as |P>, |GP >,
|�P(n) >, |9P(r) >.

CALCULATIONS IN THE PROCESS

ALGEBRA MODEL

To illustrate the difference in Hilbert space and Process Algebra
approaches, consider first how the process algebra approach deals
with superpositions. The linearity of the Schrödinger equation
allows for two solutions 91(r),92(r) to be summed together
to yield a new solution 9(r) = α191(r) + α292(r) of the
same equation, and therefore a possible state. In the Hilbert
space of NRQM note that every space-time point r possesses
wave function contributions from both states 91(r),92(r) and
so if interpreted ontologically this means that the system at
the point r is manifesting both states simultaneously, regardless
of what those states entail. This is not a problem if the
wave function is interpreted epistemologically (statistically) since
in that case it is merely a tool to calculate the probability
of being observed in either of the two states at the point
r. This works for an ensemble of particles, but what of
a single particle? How does one explain fixed probabilities
if, unlike in classical probability, the object being observed
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possesses no definite attributes until after being observed?
How is it that every observer determines the same attributes
and probabilities?

By contrast consider the process algebra approach. Each
component state 91(r),92(r) is generated by its own process
P1,P2, respectively. The superposition process is represented in
the Process Algebra by the exclusive sum, P = α1P1 ⊕ α2P2 so
that each sub-process generates a unique, distinct causal tapestry,
I1, I2 (I1 ∩ I2 = ∅), respectively, and no information from one
process enters into the generation of any informon of the other
process. The two causal tapestries embed into disjoint regions of
the causal manifold. The causal tapestries are thus physically and
informationally isolated from one another. The causal tapestry
for P is I = I1 ∪ I2 and on this causal tapestry the causal
tapestry wave function �(n) for P takes the form �1(n)+�2(n),
where each �i(n) is extended to I by setting �i(n) = 0 for
n ∈ I/Ii, Note that although the algebraic sum is used there is no
ontological confusion since for any n,�(n) receives contributions
from either �1(n) or �2(n) but never both. Note though that
the co-product free sum could also be used. This causal tapestry
wave function describes a single system which manifests in
either of the two states, which remain distinct, yet whose wave
functions are intertwined. The informons that support these
causal tapestry wave functions are generated sequentially, never
concurrently, and so at any given moment only one of the two
states is manifesting, so it only ever appears in a single state. The
intertwining of the wave functions creates the impression of a
mixed reality state at the macro-level, yet that is never the case
at the micro-level.

In a superposition of processes, P = α1P1 ⊕ α2P2 the
effect of each modifier αi is to modify the value of the local
coupling effectiveness (Ŵn → αiŴn for example) so that �(n) =
α1�1(n)+α2�2(n) and the global Hilbert space interpretation is
formed in the usual manner, 9(r) = α191(r)+ α292(r).

The combined global Hilbert space interpretation thus takes
the form

9(r) =
∑

n∈I1∪I2
Ŵnfn(r,mn) =

∑

n∈I1
α1Ŵnfn(r,mn)

+
∑

n∈I2
α2Ŵnfn(r,mn) = α191(r)+ α292(r),

This is a map in the Hilbert spaceH(M) over the causal manifold,
the same Hilbert space where the NRQM wave function resides,
and it constitutes the Process Algebra approximation to the
NRQM wave function. Note that in moving to the Hilbert space,
causal ontological information is lost since now the wave function
is over space-time locations, not informons, and contributions
from the sub-processes are now summed, not intertwined. This
information could be preserved if the algebraic sum above were
replaced by a co-product free sum, but that is not a Hilbert space
property. However, it would not be possible to carry out the usual
NRQM calculations in that case.

The concept of informon being new, there is currently
no direct evidence to suggest a particular model ofr their

generation. Epistemological equivalence, however, allows one to
side step that for the moment, and any strategy resulting in an
epistemologically equivalent model suffices. Several such models
have been presented in the literature [2–6, 90]. Work is underway
to model informon generation as a diffusion process as has
been suggested in the literature for the Schrödinger equation
[111, 114, 128]. The discussion here is meant as an in-principle
demonstration of the Process Algebra framework and not a
final theory.

The causal tapestry wave function is ontological, representing
a single complete action of a process in generating informons
(and thus a region of space-time events). The causal tapestry
wave function represents the outcome of interactions with other
processes only with respect to that single process. Statistical
calculations require the use of the process and configuration
space graphs and covering maps. The compatibility between
processes is conjectured to be a function of the local coupling
effectiveness Ŵn, which in turn reflects the effect of myriad local
interactions. If the effect of these interactions is summarized in a
potential, then it seems reasonable, as an initial approximation, to
assume that the local coupling effectiveness will depend in some
manner upon the Lagrangian. The probability of an interaction,
triggered by the generation of informons, must be positive real
valued and is conjectured to depend on the compatibility. It
seems reasonable, therefore, to conjecture that the compatibility
(hence probability) should depend on the local process strength,
Ŵ∗
nŴn which is both positive real and relativistically invariant.

Therefore, making the simplest assumption, the local probability
is assumed to be given by the Born rule, Pn = Ŵ∗

nŴn. If an
interaction depends upon the presence of several informons
A = {ni}, then the probability depends upon PA = ∑

m∈A
Ŵ∗
nŴn,

the local process strength over A. As in NRQM these local
coupling effectiveness values can be normalized relative to the
global process strength PI = ∑

n∈I
Ŵ∗
nŴn = |�(n)|2. Recall from

a previous section that interaction effects are already encoded
within theŴn. By analogy with Dirac’s bra-ket formalism, one can
introduce a scalar product on the causal tapestry wave function
of the form < �(n)|�′(m) >= ∑

n,m∈I
�∗(n)�′(m)δ(n,m) where

δ(n,m) is akin to a differential. The percentage of contribution
to the strength by the process generating �(n) to the process
generating �′(m) is given by | < �(n)|�′(m) > |2. The global
strength is given as |�(n)|2 = ∑

n∈I

∑

m∈I
�∗(n)�(m)δ(n,m) =

∑

n∈I Ŵ
∗
nŴn.

For example if �(n) = α1�1(n) + α2�2(n) then

<�2(n)|�(n)> = ∑

n∈I2

∑

m∈I1∪I2
�∗

2(n)�(n)δ(n,m) = α2
∑

n∈I2
Ŵ∗
nŴn = α2|�2(n)|2 = α2

assuming suitable normalization of the process strength
These calculations can also be carried out using the global

Hilbert space interpretation with the usual Hilbert space scalar
product < 9(r)|9 ′(r) >=

∫

M 9∗(r)9 ′(r)dr.
Conisder a region Â of the causal manifold containing causal

manifold interpretations of informons in the set A. Then we
may define

Frontiers in Physics | www.frontiersin.org 13 September 2020 | Volume 8 | Article 36098

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Sulis Local Process Model of NRQM

PÂ =
∫

Â
9∗(r)9(r)dr =

∫

Â

∑

n,n′∈I
Ŵ∗
nŴn′ fn(r,mn)fn′ (r,mn′ )dr =

∫

Â

∑

n,n′∈A
Ŵ∗
nŴn′ fn(r,mn)fn′ (r,mn′ )dr

+
∫

Â

∑

n,n′ /∈A
Ŵ∗
nŴn′ fn(r,mn)fn′ (r,mn′ )dr ≈

∫

Â

∑

n,n′∈A
Ŵ∗
nŴn′ fn(r,mn)fn′ (r,mn′ )dr

since the fn decrease in value rapidly away from A. Similarly,

∫

M

∑

n,n′∈A
Ŵ∗
nŴn′ fn(r,mn)fn′ (r,mn′ )dr =

∫

ˆ
A

∑

n,n′∈A
Ŵ∗
nŴn′ fn(r,mn)fn′ (r,mn′ )dr

+
∫

M/
ˆ
A

∑

n,n′∈A
Ŵ∗
nŴn′ fn(r,mn)fn′ (r,mn′ )dr ≈

∫

ˆ
A

∑

n,n′∈A
Ŵ∗
nŴn′ fn(r,mn)fn′ (r,mn′ )dr.

Thus

∫

Â

∑

n,n′∈I
Ŵ∗
nŴn′ fn(r,mn)fn′ (r,mn′ )dr ≈

∫

M

∑

n,n′∈A
Ŵ∗
nŴn′ fn(r,mn)fn′ (r,mn′ )dr =

∑

n∈A
Ŵ∗
nŴn

again since the fn are orthogonal to one another. Likewise

< 92(r)|9(r) >=
∫

r

∑

n∈I2
Ŵ∗
n fn(r,mn)(

∑

m∈I1
α1Ŵmfm(r,mm)

+
∑

m′∈I2
α2Ŵm′ fm′ (r,mm′ ))dr = α2

∑

n∈I2
Ŵ∗
nŴn = α2

Thus, the basic calculations can all be carried out on the
causal tapestry itself and so as stated previously, all of the
relevant physics occurs on the causal tapestry. The global Hilbert
space interpretation provides an observer dependent link to the
NRQM Hilbert space which facilitates some calculations and
comparisons to NRQM but is not necessary for the physics.

Each causal tapestry wave function �(n) provides an
ontological representation of the action of a single process,
and thus the history of one occurrence of that process. This is
insufficient to carry out computations because only N informons
will be generated out of a possible infinitude. The causal tapestry
wave function may suffice for primitive processes under certain
asymptotic conditions, but it fails for compound processes as it
generates only N informon tuples whereas at least NR must be
determined. For computations one must resort to the process
covering graph. There all possible causal tapestry histories are
gathered (by union) into a single causal graph and the causal
tapestry wave function is generated on this graph, as is the global
Hilbert space interpretation. These maps now contain sufficient
information about all possible evolutions to make calculations
possible. However, the process graph and its wave functions are
not ontological; they are merely epistemological structures used
to carry out calculations.

The information incorporated into the local coupling
effectiveness (and local process strength) takes into account
local effects both of and upon the generating process. In the
course of generating informons it is presumed that there will be
interactions with other processes. When these other processes
give rise to relatively persistent macroscopic or classical-like
entities it is convenient to summarize these local effects in terms
of field notions such as the potential field. The local coupling
coefficients should take these effects into account so a natural first
choice is to try a Lagrangian approach.

Assume now that a suitable strategy for generating informons
has been adopted and that the informons are generated so as
to form points on a 4D lattice with lattice spacing (lP)

4 where
lP is the Planck length. For simplicity, assume further that one
has a primitive process (R=1) in some energy eigenstate (so we
need only consider a single causal tapestry) and that N=r=|c|,
the value of c to the nearest integer and stripped of its units.
Assume that each generation of an informon occurs in Planck
time tP and that each complete action of the process generates
|c| informons in time |c|tP. This time interval corresponds to a
length ctP=lP.. Thus, each causal tapestry is separated from the
next by an interval ctP=lP, hence the choice of lattice spacing.
Label each causal tapestry by its generation number n so that
the time coordinate for the nth tapestry is n|c|tP and each causal
tapestry corresponds to a 3D spatial lattice.

Initial states are generally assumed in NRQM. In the Process
Algebra framework, since causal tapestries are generated, so must
initial states, and so the question of initial states is actually rather
important and subtle within the Process Algebra framework.
However, a discussion of this problem would detract from the
main focus and an initial causal tapestry I0 will simply be assumed
with causal tapestry wave function �0(n), global Hilbert space
interpretation 90(r) and corresponding NRQM wave function
9̂0(r) satisfying 90(mn) = 9̂0(mn) on the embedding sites
of informons. Each subsequent causal tapestry is labeled by
its generation number n and denote the corresponding 3D
sublattice as Ln.

An effective space-time approach is due to Feynman [129].
However, this is presented here only to provide an “in-principle”
demonstration. The Feynman propagator allows for long range
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transfer of information (long range “paths”) and is suitable for
NRQM where causal has a different definition but it is not causal
in the relativistic sense. Restricting the number of informons
being generated serves to truncate the calculation and avoid this
problem but then to be precise more definite estimates of the
Kernel approximation are needed to determine the size of the
resulting amplitude error. These details warrant another paper.
If the Lagrangian for a scalar particle of mass m is L = p2/2m−
Vthen on the causal tapestry one might expect it to take the form

L(n, n′) = md(n, n′)2/2|c|2t2P − V(n) where n and n’ refer to
informons on the nascent and current tapestries, respectively,
and d is the causal tapestry distance. Then S[n, n′] = L(n, n′)|c|tP
so the propagator may be written as Pn,n′ = l3P

A3 e
i/h̄S[n,n′] Note

that this is defined entirely on the causal tapestry.
The tapestry wave function can be extended from the tapestry

In to the sublattice Ln by the convention that �m(n) = 0 if n /∈ In
and that Pn,n′ = 0 if no information propagates from n to n’.
Assume that the process has generated tapestries up to generation
m and consider generationm+1. Assume that N informons have
been generated and consider the causal tapestry wave function
�m+1(n). The value of the local coupling effectiveness at the
informon nm+1 is Ŵm+1

nm+1 = ∑

nm∈Im
Pnm+1 ,nmŴm

nm . Expanding

back to the initial state one has

Ŵm+1
nm+1 =

∑

nm∈Lm

· · ·
∑

n0∈L0

Pnm+1nm · · ·Pn1n0Ŵ
0
n0 =

Ŵm+1
nm+1 =

∑

nm∈Lm

· · ·
∑

n0∈L0

Pnm+1nm · · ·Pn1n09̂0(mn0 ) =

∑

nm∈Lm

· · ·
∑

n0∈L0

l3P
A3

e
i
h̄
S[nm+1 ,nm] l

3
P

A3
e

i
h̄
S[nm ,nm−1] · · · × l3P

A3
e

i
h̄
S[n1 ,n0]

9̂0(mn0 ) =

∑

nm∈Lm

· · ·
∑

n0∈L0

e
i
h̄
S[nm+1 ,nm]+S[nm ,nm−1]+···+S[n1 ,n0] ×

m+1
︷ ︸︸ ︷

l3P
A3

l3P
A3

· · · l3P
A3

9̂0(mn0 ) =

(using Feynman’s notation)

∑

nm∈Lm

· · ·
∑

n0∈L0

e
i
h̄
S[nm+1 ,n0]

m+1
︷ ︸︸ ︷

l3P
A3

l3P
A3

· · · l
3
P

A3
9̂0(mn0 ) ≈

∑

n0∈L0

∫

Lm

· · ·
∫

L1
e
i
h̄
S[nm+1 ,n0]

m
︷ ︸︸ ︷

dxm+1

A3
· · · dx

1

A3

l3P
A3 9̂0(mn0 ) ≈

∫

Lm

· · ·
∫

L0

e
i
h̄
S[nm+1 ,n0]

m+1
︷ ︸︸ ︷

dxm+1

A3
· · · dx

0

A3
9̂0(r) = 9̂m+1(mnm+1 )

Thus, we find that the global Hilbert space interpretation

9m+1(r) =
∑

nm+1∈Lm+1

Ŵm+1
nm+1 fnm+1 (r,mnm+1 ) ≈

∑

nm+1∈Lm+1

9̂m+1(mnm+1 )fnm+1 (r,mnm+1 ) ≈ 9̂m+1(r)

The accuracy of the approximation will depend upon N,r
and the value of l

p. Parzen’s theorem [121] can be used to
show that it will become increasingly exact as N, r → ∞
and lP → 0. In the Process Algebra framework, the usual
approximation of h→0 does not lead to the classical realm
but merely to NRQM. This is the reason that NRQM is
considered to be an effective theory in the limit of infinite
information N,r→∞ and continuity or infinitesimal scale h→0

Classicality is thought to be a consequence of the complexity
process interactions.

The causal tapestry wave function is discrete and finite
and so clearly can diverge in values from the corresponding
NRQM wave function. These differences can be due to a
variety of factors: truncation errors due to the finite number
of informon generated, aliasing errors due to the informon
density, amplitude errors due to the discrete approaximation
to the Kernel integral, time-jitter errors due to non-uniform
spacing of informons and information loss if informons are
generated non-contiguously [121]. However, if the density of
informons exceeds the Beurling density for the NRQM wave
function and if the wave function tends to zero at infinity rapidly,
then the difference between these two may be surprisingly
small. In the case of a primitive process generating a single
eigenstate the NRQM wave function can be achieved in one
of two ways—either or by the asymptotic procedure described
above or by resorting to the process graph and covering map.
Both techniques allow for information to divege to infinity,
thus capturing all possibly informon generation sequences and
therefore, information paths. The causal tapestry itself, however,
is always discrete and finite and possesses finite information,
which will result in a disagreement between the global Hilbert
space interpretation and the NRQM wave function. This error
will depend upon the accuracy of the approximation to the
integral

∫

M
K(rj′ , rj)φj(rj)drj, the deviations from uniformity

of the informons, the values of N,r and of tP, lP. Determining
the error in the general case is probably intractable but there
are results for special cases, particularly when the informons
occupy contiguous sites in a regular lattice such as in the
example above. In one dimension, if the NRQM wave function
9̂(t) satisfies |9̂(t)| ≤ M|t|−γ for 0 < γ ≤ 1,
|
∫

M
K(rj′ , rj)φj(rj)drj − 9(rj′)| ≤ ǫ, the discrepancy between

each embedding point and its ideal lattice embedding point
is less than δ, and the truncation number r = 2[W1+1/γ +
1] + 1, then according to a theorem of Butzer [121], the
error E satisfies

||E||∞ ≤ −K(9 , γ , ǫ/lP, δ/lP)lP ln lP
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where

K = (1+ 1

γ
)

{√
5e

[

(
14

π
+ δ/lP +

7

3
√
5π

)||9(1)||∞ + ò/lP

]

+ 6e(M + ||9||∞)

}

Then ||E||∞ ≈ 10−33K if lP is the Planck length.
Ideally, if the discrete approximation to the Kernel integral

and the Kernel integral are equal, the informons lie continguously
on a uniform lattice, and the informons occupy a cubic spatial
region with N1/3 informons on one side, then one can use the
Yao and Thomas theorem [121] to find a rough estimate for the
error E, namely

|8(r)− 9(r)| = |E| ≤ 64maxM′ |9(x, y, z)|
(2π)3N

≈ 1

31N
(m−3/2).

Thus, a value for N of |c| yields an error of ∼10−10 (m−3/2) and
if N=|c|3 then the error is∼10−30 (m−3/2).

Thus, even this relatively simple Process Algebra model can
reproduce, to a high degree of accuracy, any NRQM wave
function which can be calculated using Feynman path integrals
and whose energy is bounded by h/2|c|tP.

THE PROCESS ALGEBRA APPROACH TO

THE PARADOXES

The paradoxes and dualities of quantum mechanics appear to
arise from one of two main factors, either a failure to utilize a
contextual probability model when analyzing an experimental
situation, or an attempt to interpret a wave function in both
ontological and epistemological terms. The former was pointed
out by Dzhafarov [60] in his contextuality by default analysis
of the two slit experiment. The difference in outcomes is a
consequence of contextuality. It can also be seen in the analysis
of wave-particle duality by Ionicioiu et al. [18] who used a Bell
type argument to try to show that the wave-particle distinction
for a particle cannot be non-contextual.

The Process Algebra approach focuses upon the latter factor,
the confusion of ontology and epistemology. Only the causal
tapestry realization is truly ontological, although the global
Hilbert space interpretation preserves ontology at informon
embeddings sites. For epistemology one requires the use of
the process and configuration space graphs and the set-
valued process and configuration space covering maps. These
lead to the usual NRQM wave functions, which are viewed
as being epistemological. The resolution of the paradoxes is
not to be had through an ever more clever or convoluted
elaboration of standard quantum mechanics using the Hilbert
space. It is not a problem of computation. The problem lies
in attempting to use the Hilbert space formalism to provide
an ontological model of quantum mechanics. The Hilbert space
is simply too coarse grained to carefully distinguish between
distinct ontological states. This coarse graining is adequate for
carrying out calculations of quantum mechanical statistics, but

not for the purpose of ontology. The problem is that the
Hilbert space serves as a quotient space relative to the Process
Algebra, which results in a loss of ontological information.
The Hilbert space conflates information relative to distinct
ontological states leading to confusion when attempts are made
to provide an ontological interpretation. This does not occur
in the Process Algebra framework. Thus, the problem is not
with reality, but rather with the mathematical language used to
represent reality.

CONCLUSION

Theoretical and experimental evidence strongly points to the
end of local non-contextual hidden variables. This, however, is
not the end of local realism. The fundamental result is that
reality is contextual. This is entirely compatible with locality.
There is no need to introduce non-locality or “spooky action
at a distance.” There need be no conflict between quantum
mechanics and relativity. The cost, however, is to abandon the
principle of continuity and accept a process generated reality.
A specifc model, the Process Algebra model is presented as
an in-principle demonstration of model which is generated,
causally local, Lorentz invariant, contextual, without hidden
variables and which. can reproduce the results of NRQM to
as high level of accuracy. It is suggested that the paradoxes
that plague quantum mechanics are due to the inability of
the Hilbert space formalism to correctly distinguish between
ontology and epistemology. The Process Algebra model corrects
this deficiency and promises the possibility of a paradox
free quantum mechanics. Hopefully this paper will encourage
further research.
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A polarization correlation experiment with two maximally entangled photons created by

spontaneous parametric down-conversion is studied in the Weyl-Wigner formalism, that

reproduces the quantum predictions. A realistic stochastic interpretation is proposed

suggesting that an analysis of the experiments more detailed than the Bell approach

may be compatible with local realism. Entanglement appears as a correlation between

fluctuations of signal and vacuum fields.

Keywords: local realism, bell inequalities, entangled photons, parametric down-conversion, Weyl-Wigner

1. THE EMPIRICAL REFUTATION OF BELL´S LOCAL REALISM

In 2015, experiments were reported showing for the first time the loophole-free violation of a Bell
inequality [1, 2]. The result has been interpreted as the “death by experiment for local realism,”
this being the hypothesis that “the world is made up of real stuff, existing in space and changing
only through local interactions. . . about the most intuitive scientific postulate imaginable” [3].
This statement, and many similar ones, emphasize both the relevance of local realism for our
understanding of the physical world and the fact that it has been refuted empirically. Nevertheless,
it is worth studying the possibility of a loophole in the empirical refutation via a new definition of
locality weaker than Bell´s. In this article I search for such a weak locality, compatible with the said
experiments [1, 2], that involved photon pairs entangled in polarization produced via spontaneous
parametric down conversion. Thus I will analyze such experiments using the Weyl-Wigner
formalism of quantum optics, rather than the more usual Hilbert-space formalism. Previously I
revisit briefly the origin and meaning of the Bell inequalities [4].

Bell defined “local hidden variables” model, later named “local realistic,” to be any model of
an experiment where the results of all correlation measurements may be interpreted according to
the formulas

〈A〉 =
∫

ρ (λ) dλM (λ,A) , 〈B〉 =
∫

ρ (λ) dλM (λ,B) ,

〈AB〉 =
∫

ρ (λ) dλM (λ,A)M (λ,B) , (1)

where λ ∈ 3 is one or several random (“hidden”) variables, 〈A〉 , 〈B〉, and 〈AB〉 being the
expectation values of the results of measuring the observablesA,B or their productAB, respectively.
Here we will consider that the observables correspond to detection, or not, of some signals
(e.g., photons) by two parties named Alice and Bob, attaching the values 1 or 0 to these two
possibilities. In this case 〈A〉 , 〈B〉 correspond to the single and 〈AB〉 to the coincidence detection
rates respectively. The following mathematical conditions are assumed

ρ (λ) ≥ 0,

∫

ρ (λ) dλ = 1,M (λ,A) ∈ {0, 1} ,M (λ,B) ∈ {0, 1} . (2)
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Santos Local Realism of Entangled Photons

Equation (2) corresponds to a “deterministic model” where the
statistical aspects derive from the probabilistic nature of the
hidden random variables {λ} . More general models may be
constructed where the whole interval [0, 1] is substituted for
{0, 1} in Equation (2). A constraint of locality is included, namely
M (λ,A) is independent of M (λ,B) and ρ (λ) independent
of both M (λ,A) and M (λ,B)[5]. From these conditions it is
possible to derive empirically testable (Bell) inequalities [6, 7].
The tests are most relevant if the measurements performed
by Alice and Bob are specially separated in the sense of
relativity theory.

In the following sections, I shall shortly review the treatment
within the Weyl-Wigner formalism of the polarization
correlation measurement of two maximally entangled photons
produced via spontaneous parametric down conversion
(SPDC). Thus, I continue a theoretical interpretation of SPDC
experiments within the WW formalism in the Heisenberg
picture, that was initiated in the nineties of the past century
[8–18]. In many of those early studies the approach was heuristic
and one of the purposes of this article is to provide a more
formal foundation. The WW formalism suggests an intuitive
picture for photon entanglement and the interpretation of
SPDC experiments in terms of random variables and stochastic
processes. However, there are difficulties with the picture that
will be discussed in section 4 below.

2. THE WEYL-WIGNER FORMALISM IN
QUANTUM OPTICS

2.1. Definition
The WW formalism was developed for non-relativistic quantum
mechanics, where the basic observables involved are positions,
x̂j, and momenta, p̂j, of the particles [19–25]. It may be trivially
extended to quantum optics provided we interpret x̂j and p̂j

to be the sum and the difference of the creation, â†
j , and

annihilation, âj, operators of the j normal mode of the radiation.
That is

x̂j ≡ c√
2ωj

(

âj + â†
j

)

, p̂j ≡
ihωj√
2c

(

âj − â†
j

)

(3)

⇒ âj =
1√
2

(

ωj

c
x̂j +

ic

hωj
p̂j

)

, â†
j =

1√
2

(

ωj

c
x̂j −

ic

hωj
p̂j

)

.

Here h is Planck constant, c the velocity of light and ωj the
frequency of the normal mode. In the following, I will use units
h = c = 1. For the sake of clarity I shall represent the operators

in a Hilbert space with a “hat,” e.g., âj, â
†
j , and the amplitudes in

the WW formalism without “hat,” e.g., aj, a
∗
j .

The connection with the Hilbert-space formalism is made via

the Weyl transform as follows. For any trace class operator M̂ of
the former we define its Weyl transform to be a function of the

field operators
{

âj, â
†
j

}

, that is

W
M̂

= 1

(2π2)n

n
∏

j=1

∫ ∞

−∞
dλj

∫ ∞

−∞
dµj exp

[

−2iλjReaj − 2iµjImaj
]

×Tr
{

M̂ exp
[

iλj

(

âj + â
†
j

)

+ iµj

(

âj − â
†
j

)]}

.

The transform is invertible that is

M̂ = 1

(2π2)2n

n
∏

j=1

∫ ∞

−∞
dλj

∫ ∞

−∞
dµj exp

[

iλj

(

âj + â†
j

)

+ iµj

(

âj − â†
j

)]

×
n
∏

j=1

∫ ∞

−∞
dReaj

∫ ∞

−∞
dImajWM̂

{

aj, a
∗
j

}

exp[−2iλjReaj − 2iµjImaj].

The transform is linear, that is if f is the transform of f̂ and g the

transform of ĝ, then the transform of f̂ + ĝ is f + g.
It is standard wisdom that the WW formalism is unable to

provide any intuitive picture of the quantum phenomena. The
reason is that theWigner function, that may represent a quantum
state, is not positive definite in general and therefore cannot
be interpreted as a probability distribution (of positions and
momenta in quantummechanics, or field amplitudes in quantum
optics). However, we shall see that in quantum optics the
formalism in the Heisenberg representation, where the evolution
goes in the field amplitudes, allows the interpretation of the
experiments using theWigner function only for the vacuum state,
that is positive definite.

The use of the WW formalism in quantum optics
has the following features in comparison with the
Hilbert-space formalism:

1. It is just quantum optics, therefore the predictions for
experiments are the same.

2. The calculations using the WW formalism are generally no
more involved than the corresponding ones in Hilbert space,
and sometimes might be easier because no problem of non-
commutativity arises.

3. The formalism suggests a physical picture in terms of
random variables and stochastic processes. In particular the
counterparts of creation and annihilation operators look like
random amplitudes.

Here we shall use the formalism in the Heisenberg picture,
where the evolution appears in the observables. On the other
hand the concept of photon, as a particle, does not appear in
the WW formalism.

2.2. Properties
All properties of the WW transform in particle systems may be
translated to quantum optics via Equation (3). The transform
allows getting a function of (c-number) amplitudes for any trace-
class operator (e.g., any function of the creation and annihilation
operators of “photons”). In particular we may get the (Wigner)
function corresponding to any quantum state. For instance
the vacuum state, represented by the density matrix |0〉〈0| , is
associated with the following Wigner function
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W0 =
∏

j

2

π
exp

(

−2
∣

∣aj
∣

∣

2
)

. (4)

This function might be interpreted as a (positive) probability
distribution. Hence the picture that emerges is that the quantum
vacuum of the electromagnetic field (also named zeropoint field,
ZPF) consists of stochastic fields with a probability distribution
independent for every mode, having a Gaussian distribution with
mean energy 1

2hω per mode.
Similarly there are functions associated with the observables.

For instance the following Weyl transforms are obtained

âj ↔ aj, â
†
j ↔ a∗j ,

1

2

(

â†
j âj + âjâ

†
j

)

↔ aja
∗
j =

∣

∣aj
∣

∣

2
,

â†
j âj = 1

2

(

â†
j âj + âjâ

†
j

)

+ 1

2

(

â†
j âj − âjâ

†
j

)

↔
∣

∣aj
∣

∣

2 − 1

2
,

(

â†
j + âj

)n
↔

(

aj + a∗j
)n

,
(

â†
j − âj

)n
↔
(

aj − a∗j
)n

, n an integer.

(5)

I stress that the quantities aj and a∗j are c-numbers and therefore

they commute with each other. The former Equation (5) mean
that in expressions linear in creation and/or annihilation operator
the Weyl transform just implies “removing the hats.” However
this is not the case in nonlinear expressions in general. In fact
from the latter two Equations (5) plus the linearity property it
follows that for a product in theWW formalism the Hilbert space
counterpart is

akj a
∗l
j ↔ (âkj â

†l
j )sym, (6)

where the subindex sym means writing the product with all
possible orderings and dividing for the number of terms. Hence
the WW field amplitudes corresponding to products of field
operators may be obtained putting the operators in symmetrical
order via the commutation relations. Particular instances that will
be useful latter are the following

â†
j âj →

∣

∣aj
∣

∣

2 − 1

2
, âjâ

†
j →

∣

∣aj
∣

∣

2 + 1

2
, âj

2 → a2j , â
†2
j → â∗2j

â†
j âjâ

†
j âj →

∣

∣aj
∣

∣

4 −
∣

∣aj
∣

∣

2
, âjâ

†
j âjâ

†
j →

∣

∣aj
∣

∣

4 +
∣

∣aj
∣

∣

2
, (7)

â†
j â

†
j âjâj →

∣

∣aj
∣

∣

4 − 2
∣

∣aj
∣

∣

2 + 1

2
, âjâjâ

†
j â

†
j →

∣

∣aj
∣

∣

4 + 2
∣

∣aj
∣

∣

2 + 1

2
.

Other properties may be easily obtained from well known results
of the standard Weyl-Wigner formalism in particle quantum
mechanics. I will present them omitting the proofs.

Expectation values may be calculated in the WW formalism
as follows. In the Hilbert-space formalism they read Tr(ρ̂M̂), or
in particular 〈ψ | M̂ | ψ〉, whence the translation to the WW
formalism is obtained taking into account that the trace of the
product of two operators becomes

Tr(ρ̂M̂) =
∫

Wρ̂

{

âj, â
†
j

}

WM̂

{

âj, â
†
j

}

∏

j

dReajdImaj.

That integral is the WW counterpart of the trace operation in the
Hilbert-space formalism. Particular instances are the following
expectations that will be of interest later on

〈

∣

∣aj
∣

∣

2
〉

≡
∫

dŴW0

∣

∣aj
∣

∣

2 = 1

2
,
〈

anj a
∗m
j

〉

= 0 if n 6= m.

〈

0
∣

∣

∣
â†
j âj

∣

∣

∣
0
〉

=
∫

dŴ(a∗j aj −
1

2
)W0 = 0,

〈

0
∣

∣

∣
âjâ

†
j

∣

∣

∣
0
〉

=
∫

dŴ(
∣

∣aj
∣

∣

2 + 1

2
)W0 = 2

〈

∣

∣aj
∣

∣

2
〉

= 1, (8)

〈

∣

∣aj
∣

∣

4
〉

= 1/2,
〈
∣

∣aj
∣

∣

n |ak|m
〉

=
〈
∣

∣aj
∣

∣

n〉 〈|ak|m
〉

if j 6= k.

where W0 is the Wigner function of the vacuum (Equation
4). This means that in the WW formalism the field amplitude
aj (coming from the vacuum) behaves like a complex random
variable with Gaussian distribution and mean square modulus
〈

∣

∣aj
∣

∣

2
〉

= 1/2. I point out that the integral for any mode

not entering in the function M
({

aj, a
∗
j

})

gives unity in the

integration due to the normalization of the Wigner function
(Equation 4). An important consequence of Equation (8) is
that normal (antinormal) ordering of creation and annihilation
operators in the Hilbert space formalism becomes subtraction
(addition) of 1/2 in the WW formalism. The normal ordering rule
is equivalent to subtracting the vacuum contribution.

2.3. Evolution
In the Heisenberg picture of the Hilbert-space formalism the
density matrix is fixed and any observable, say M̂, evolves
according to

d

dt
M̂ = i

(

ĤM̂ − M̂Ĥ
)

, M̂ = M̂ (t) ,

where Ĥ is the Hamiltonian. Translated to the WW formalism
this evolution of the observables is given by the Moyal equation
with the sign changed. The standard Moyal equation applies
to the evolution of the Wigner function, that represents a
quantum state being the counterpart of the density matrix in the
Schrödinger picture of the Hilbert space formalism. Thus, in the
WW formalism we have

∂WM̂

∂t
= 2{sin

[

1

4

(

∂

∂Rea′j

∂

∂Ima′′j
− ∂

∂Ima′j

∂

∂Rea′′j

)]

×WM̂

{

a′j, a
∗′
j , t

}

H
(

a′′j , a
∗′′
j

)

}aj , (9)

where {}aj means making a′j = a′′j = aj and a∗′j = a∗′′j = a∗j after
performing the derivatives.

A simple example is the free evolution of the field amplitude
of a single mode. The Hamiltonian in the WW formalism may
be trivially obtained translating the Hamiltonian of the Hilbert-
space formalism, that is

Ĥfree = ωjâ
†
j âj =

1

2
ωj(â

†
j âj + âjâ

†
j )−

1

2
ωj
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→ Hfree = ωj(
∣

∣aj
∣

∣

2 − 1

2
) = ωj

[

(Reaj)
2 + (Imaj)

2 − 1

2

]

,

where we have taken the first Equation (8) into account. This
leads to

d

dt
aj =

1

2
ωj

[

2(Imaj)− 2
(

Reaj
)

i
]

= −iωjaj ⇒ aj (t) = aj (0) exp
(

−iωjt
)

(10)

Another example is the down-conversion process in a nonlinear
crystal. Avoiding a detailed study of the physics inside the
crystal [12, 26] we shall study a single mode problem with the
model Hamiltonian[27]

ĤI = Aâ†
s â

†
i exp (−iωPt)+ A∗âsâi exp (iωPt) , (11)

when the laser is treated as classically prescribed, undepleted,
and spatially uniform field of frequency ωP. The parameter
A is proportional to the pump amplitude and the nonlinear
susceptibility. In the WW formalism this Hamiltonian becomes
(see Equation 5)

HI = Aa∗s a
∗
i exp (−iωPt)+ A∗asai exp (iωPt) ,

whence taking Equation (9) and (10) into account we have

d

dt
as = −iωsas − iAa∗i exp (−iωPt) , (12)

d

dt
ai = −iωiai − iAa∗s exp (−iωPt) .

We shall assume that the vacuum field as evolves as in Equation

(10) before entering the crystal and then according to Equation

(12) inside the crystal, that is during the time T needed to cross it.
In order to get the radiation intensity to second order in AT ≡ C
(see below section 2.4) wemust solve these two coupled equations
also to second order. After some algebra this leads to

as(t) =
(

1+ 1

2
|C|2

)

as(0) exp (−iωst)− iCa∗i (0) exp [i (ωi − ωP) t]

= [

(

1+ 1

2
|C|2

)

as(0)− iCa∗i (0)] exp (−iωst) , (13)

and the latter equality takes the “energy conservation” into
account, that in the WW formalism looks like a condition of
frequency matching, ωP = ωs + ωi, with no reference to
photon energies.

Equation (13) gives the time dependence of the relevant mode
of signal after crossing the crystal, but we should take account of
the field dependence on position including a factor exp (iks · r) ,
that is a phase depending on the path length. Therefore, the
correct form of Equation (13) would be, modulo a global phase,

as(r,t) = [

(

1+ 1

2
|C|2

)

as(0)− iCa∗i (0)] exp (iks·r− iωst) .

(14)

A similar result is obtained for ai (t) , that is

ai(r,t) = [

(

1+ 1

2
|C|2

)

ai(0)− iCa∗s (0)] exp (iki·r− iωit) .

(15)
Equations (14) and (15) may be interpreted saying that the
interaction of the vacuum signal with the pumping laser produces
an additional field that travels in the direction of the idler.
Similarly the vacuum idler produces a field that travels in the
direction of the signal. Therefore, it has sense adding the initial
vacuum signal plus the amplification of the idler.

We may perform a change from C to the new parameter

D =
(

1+ 1
2 |C|2

)−1
C, whence Equation (7) become, to order

O
(|D|2

)

,

E+s =
(

1+ 1

2
|C|2

)

[

as + Da∗i
]

exp (iks·r− iωst) , (16)

E+i =
(

1+ 1

2
|C|2

)

[

ai + Da∗s
]

exp (iki·r− iωit) , |D| << 1,

and I will ignore the constant global factor
(

1+ 1
2 |C|2

)

∼ 1
because we will be interested in calculating relative
detection rates.

Equations (14) and (15) , although good enough for
calculations, are bad representations of the physics. In fact a
physical beam corresponds to a superposition of the amplitudes,
a∗
k
, of many modes with frequencies and wavevectors close to ωs

and ks, respectively. For instance we may represent the positive
frequency part of the idler beam created in the crystal, to first
order in D, as follows

E
(+)
i (r, t) = −iD

∫

fi (k) d
3
ka∗

k
exp [i (k− ks)

·r− i (ω − ωs) t]+ E
(+)
ZPF , (17)

where ω = ω (k) and fi (k) is an appropriate function, with

domain in a region of k around ks. The field E
(+)
ZPF is the sum of

amplitudes of all vacuum modes, including the one represented
by as in Equation (14) . (We have neglected a term of order |C|2
so that E

(+)
i is correct to order |C| or what is equivalent order

|D|). These vacuum modes have fluctuating amplitudes with a
probability distribution given by the vacuum Wigner function
(Equation 4). It may appear that the amplitude as is lost “as a
needle in the haystack” within the background of many radiation
modes, but it is relevant in correlation experiments. In fact the
vacuum amplitude as in Equations (13) or (14) is fluctuating
and the same fluctuations appear also in the signal amplitude a∗s
of Equation (15). Therefore, coincidence counts will be favored
when large positive fluctuations of the fields (Equations 13, 15)
arrive simultaneously to Alice and Bob detectors. In the Hilbert-
space formalism this fact is named “entanglement between a
signal and the vacuum.” In theWW formalism of quantum optics
this entanglement appears as a correlation of fluctuations between
a signal and a vacuum field in distant places.

The mentioned properties of theWW formalism are sufficient
for the interpretation of experiments involving pure radiation
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field interacting with macroscopic bodies, these defined by
their bulk electric properties like the refraction index or the
nonlinear electrical susceptibility. Within the WW formalism
the interaction between the fields (either signals or vacuum
fields) and macroscopic bodies may be treated as in classical
electrodynamics. This is for instance the case for the action
of a laser on a crystal with nonlinear susceptibility, studied
elsewhere [12, 26].

3. PHOTON PAIRS ENTANGLED IN
POLARIZATION

In this section, I will apply the WW formalism to the
description of the polarization correlation of entangled photon
pairs produced via spontaneous parametric down-conversion
(SPDC). I will assume that the experimental set-up is made so
that the fields arriving at the detectors correspond to so called
“photon pairs maximally entangled” in polarization. These fields
are obtained in the outgoing channels of a beam splitter after
sending the signal and idler beams produced by SPDC to the
incoming channels. The electromagnetic radiation is a vector
field with two possible polarizations and I should take into
account this fact including vectors in the description, that we
have omitted till now. Thus, I will write the beams produced
as follows

E
+
A =

(

as + Da∗i
)

exp (−iωst) v+ i
(

ai + Da∗s
)

exp (−iωit) h,

E
+
B = −i

(

as + Da∗i
)

exp (−iωst) h+
(

ai + Da∗s
)

exp (−iωit) v,

(18)

where h is a unit vector horizontal and v vertical. We have
not written explicitly the dependence on position, that could
be restored without difficulty (see Equation 17). Furthermore,
from now on I will ignore all spacetime dependence that usually
contributes phase factors irrelevant for our argument. The
complex conjugate of the above fields will be labeled as follows

(E+A )
∗ ≡ E

−
A , (E

+
B )

∗ ≡ E
−
B

The “two photons entangled in polarization,” represented by
Equation (18) in the Weyl-Wigner formalism, will arrive at the
Alice and Bob polarization analyzers put at angles θ and φ with
the vertical, respectively. Hence the beams emerging from them
will have field amplitudes

E+A =
(

as + Da∗i
)

cos θ + i
(

ai + Da∗s
)

sin θ ,

E+B = −i
(

as + Da∗i
)

sinφ +
(

ai + Da∗s
)

cosφ, (19)

and polarizations at angles θ and φ with the vertical, respectively.
For later convenience I define the partial fields

E+A0 = as cos θ + iai sin θ ,E
+
B0 = −ias sinφ + ai cosφ, (20)

E+A1 = D
[

a∗i cos θ + ia∗s sin θ
]

,E+B1 = D
[

−ia∗i sinφ + a∗s cosφ
]

.

The single, PA, PB, and coincidence, PAB, detection rates in the
WW formalism may be obtained by comparison with the rates

calculated in the Hilbert-space formalism. Thus, in the following
we revisit briefly the Hilbert-space treatment of the entangled
photon pairs. I will start with the quantum fields arriving at
Alice and Bob, respectively, that are the counterparts of the WW
(Equation 19). It is trivial to get them either from Equation (11)
or, taking Equation (5) into account, that is “putting hats” in the
WW (Equation 20). We get the field operators

Ê+A = Ê+A0 + Ê+A1, Ê
+
B = Ê+B0 + Ê+B1, (21)

Ê+A0 = âs cos θ + iâi sin θ , Ê
+
B0 = −iâs sinφ + âi cosφ,

Ê+A1 = D[â†
i cos θ + iâ†

s sin θ], Ê
+
B1 = D[−iâ†

i sinφ + â†
s cosφ],

and similar for the Hermitian conjugates. Alice’s single detection
rate is proportional to the following vacuum expectation (with

Ê−A =
(

Ê+A
)†
)

PA = 〈0 | Ê−A Ê+A | 0〉 = |D|2 〈0 | Ê−A1Ê+A1 | 0〉
= |D|2 〈0 | (âi cos θ − iâs sin θ)(â

†
i cos θ + iâ†

s sin θ) | 0〉
= |D|2 〈0 | âiâ†

i cos
2 θ + âsâ

†
s sin

2 θ | 0〉 = |D|2 , (22)

where in the former equality, I have neglected creation Ê−A0
(annihilation Ê+A0) operators appearing on the left (right). A
similar result may be obtained for the single detection rate of
Bob, that is

PB = 〈0 | Ê−B Ê+B | 0〉 = |D|2 , Ê−B =
(

Ê+B
)†

. (23)

We are assuming ideal detectors, but for real detectors PA and PB
should be multiplied times the detection efficiencies ηA and ηB,
and the coincidence rate PAB times ηAηB.

In order to get the detection rule for single rates in the WW
formalism we should translate Equation (22) taking Equation (8)
into account. We get

PA =
[

(
〈|ai|2

〉

− 1

2
) cos2 θ + (

〈|as|2
〉

− 1

2
) sin2 θ

]

+ |D|2
[

(
〈|as|2

〉

+ 1

2
) cos2 θ + (

〈|ai|2
〉

+ 1

2
) sin2 θ

]

= |D|2
[

cos2 θ + sin2 θ
]

= |D|2 ,
〈

aia
∗
s

〉

=
〈

asa
∗
i

〉

= 0, (24)

that agrees with the result calculated in the Hilbert-space
formalism (Equation 22). Now we compare Equation (24) with
the average of the field intensity arriving at Alice (see Equation
19), that is

〈IA〉 =
〈

∣

∣E+A
∣

∣

2
〉

=
〈|ai|2

〉

cos2 θ +
〈|as|2

〉

sin2 θ (25)

+ |D|2
[〈|as|2

〉

cos2 θ +
〈|ai|2

〉

sin2 θ
]

= 1

2

(

1+ |D|2
)

.

We see that going from Equation (26) to Equation (24) the
signal terms (those of order |D|2) are multiplied times 2, whilst
those coming from the vacuum (of order unity) are eliminated.
This may be seen as a subtraction of the vacuum (ZPF) and
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multiplication of the signal times 2, which leads to the following
rule for the single detection rate in the WW formalism:

PA = 2 〈IA〉−2 〈IA0〉 , IA = E+AE
−
A =

∣

∣E+A
∣

∣

2
, IA0 =

∣

∣E+A0
∣

∣

2
. (26)

The Hilbert-space rule for the coincidence rate is the vacuum
expectation value of the product of four field operators in normal
order. Here we have two terms

PAB = 1

2
〈0 | Ê−A Ê−B Ê+B Ê+A | 0〉 + 1

2
〈0 | Ê−B Ê−A Ê+A Ê+B | 0〉, (27)

that would be equal if Ê+A and Ê+B commute. The former
expectation may be evaluated to order |D|2 as follows

〈0 | Ê−A Ê
−
B Ê

+
B Ê

+
A | 0〉 = 〈0 | Ê−A1Ê−B Ê+B Ê+A1 | 0〉 = 〈0 | Ê−A1Ê−B0Ê+B0Ê+A1 | 0〉

= 〈0 | Ê−A1Ê−B0 | 0〉〈0 | Ê+B0Ê+A1 | 0〉 =
∣

∣

∣
〈0 | Ê+B0Ê+A1 | 0〉

∣

∣

∣

2

= |D|2
∣

∣

∣
〈0 |

(

−iâs sinφ + âi cosφ
)

(

â†
i cos θ + iâ†

s sin θ
)

| 0〉
∣

∣

∣

2
,

where the former equality, similar to Equation (22) , removes
creation operators on the left and annihilation operators on
the right, the second one removes terms of order |D|4 and the
rest is trivial. The latter term of Equation (27) gives a similar
contribution so that we get

PAB = 1

2

∣

∣

∣
〈0 | Ê+B0Ê+A1 | 0〉

∣

∣

∣

2
+ 1

2

∣

∣

∣
〈0 | Ê+A0Ê+B1 | 0〉

∣

∣

∣

2

= |D|2 cos2(θ − φ). (28)

Here the creation operators are placed to the right and those
of annihilation to the left, so that no subtraction is required
in passing to the WW formalism. It is enough to substitute
c-number amplitudes multiplied times 2 for the field operators,
in order to get the rule for the coincidence rate in the WW
formalism. That is

〈

E+A0E
+
B1

〉

+
〈

E+A1E
+
B0

〉

=
〈

E+AE
+
B

〉

= D cos(θ − φ) (29)

⇒ PAB =
∣

∣

〈

E+AE
+
B

〉∣

∣

2 = |D|2 cos2(θ − φ),

where we have taken Equations (20) and (8) into account. Here
the vacuum subtraction is not explicit because the vacuum term
would be zero, that is

〈

E+A0E
+
B0

〉

= 0.
It is interesting to get the coincidence detection rate in

terms of field intensities, rather than amplitudes. To do that we
start calculating

〈IAIB〉 =
〈

E+AE
−
AE

+
B E

−
B

〉

. (30)

In the WW formalism the field amplitudes are c-numbers,
therefore they commute, and the averages should be performed as
in Equation (8). The expectation (Equation 30) may be obtained
taking into account that the fields have the mathematical
properties of Gaussian random variables (see Equation 4)
(although this section is devoted to calculations and for the

moment I am not committed to any physical interpretation).
Thus, I apply a well-known property of the average of the product
of four Gaussian random variables, that is

〈IAIB〉 =
〈

E+AE
−
A

〉 〈

E+B E
−
B

〉

+
〈

E+AE
−
B

〉 〈

E−AE
+
B

〉

+
〈

E+AE
+
B

〉 〈

E−AE
−
B

〉

= 〈IA〉 〈IB〉 +
∣

∣ 〈E+AE−B 〉
∣

∣

2 +
∣

∣

〈

E+AE
+
B

〉∣

∣

2
. (31)

A similar procedure but involving the vacuum intensities, gives

〈IA0IB0〉 = 〈IA0〉 〈IB0〉 +
∣

∣

〈

E+A0E
−
B0

〉∣

∣

2 +
∣

∣

〈

E+A0E
+
B0

〉∣

∣

2
. (32)

Here the third term does not contribute and the second one
equals the second term of Equation (31) to order |D|2 . Hence,
we get the rule for the coincidence rate in the WW formalism
that in the following I write both in terms of fields and in terms
of intensities.

PAB =
∣

∣

〈

E+AE
+
B

〉
∣

∣

2 = 〈IAIB〉 − 〈IA〉 〈IB〉 − 〈IA0IB0〉 + 〈IA0〉 〈IB0〉 .
(33)

4. LOCALITY IN THE EXPERIMENTS WITH
ENTANGLED PHOTON PAIRS

4.1. Realistic Interpretation of the Vacuum
Radiation Field
I emphasize again that theWW formalism provides an alternative
formulation of quantum optics, physically equivalent to the more
common Hilbert-space. But it suggests a picture of the optical
phenomena quite different from the latter, where photon is the
fundamental concept. Indeed the WW picture may provide a
local realistic interpretation in terms of random variables and
stochastic processes. In the following, I present the main ideas of
this interpretation. It rests upon several assumptions as follows.

The fundamental hypothesis is that the electromagnetic
vacuum field is a real stochastic field (the zeropoint field, ZPF).
If expanded in normal modes the ZPF has a (positive) probability
distribution of the amplitudes given by Equation (4). According
to that assumption any photodetector would be immersed in an
extremely strong radiation, infinite if no cut-off existed. Thus,
how might we explain that detectors are not activated by the
vacuum radiation? Firstly the strong vacuum field is effectively
reduced to a weaker level if we assume that only radiation within
some (small) frequency interval is able to activate a photodetector,
that is the interval of sensitivity (ω1,ω2). However, the problem
is not yet solved because signals involved in experiments have
typical intensities of order the vacuum radiation in the said
frequency interval so that the detector would be unable to
distinguish a signal from the ZPF noise. Our proposal is to
assume that a detector may be activated only when the net
Poynting vector (i.e., the directional energy flux) of the incoming
radiation is different from zero, including both signal and vacuum
fields. More specifically I will assume that the detector possesses an
active area and the probability of a photocount is proportional to
the net radiant energy flux crossing that area from the front side
during some activation time, the probability being zero if the net
flux crossing the area is in the reverse direction.
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These assumptions allow to understand qualitatively why the
signals, but not the vacuum fields, activate detectors. Indeed the
ZPF arriving at any point (in particular the detector) would be
isotropic on the average, whence its associated mean Poynting
vector would be nil, therefore only the signal radiation should
produce photocounts. A problem remains because the vacuum
fields are fluctuating so that the Poynting vector also fluctuates.
Hence we may predict the existence of some dark rate even
at zero Kelvin. The problems derived from the fluctuations
diminish taking into account that photocounts are not produced
by an instantaneous interaction of the fields with the detectors
but the activation requires some time interval, a known fact in
experiments. Therefore the effective activating energy flux is a
time average whose fluctuations are plausibly small.

Of course these arguments are qualitative and a quantitative
estimate should be worthwhile. However making such an
estimate is rather involved and in the following I will just sketch
the steps required. We should start calculating the probability
distribution of the Poynting vector P due to the ZPF at a point
r in space at time t. If we expand the ZPF in plane waves as usual,
the probability of the Z component of Pmay be written as a sum
involving all radiation modes, that is

Prob (Pz) =





∑

j

∑

k

ajakProb
(

aj, ak
)

Ej (r,t)× Bk (r,t)



 · uz ,

(34)
where aj (ak) is the amplitude of the mode j

(

k
)

, Ej (Bk) its
associated electric (magnetic) field and uz is a unit vector in
the Z direction. The probability density Prob

(

aj, ak
)

is related
to Equation (4). We assume that only field components with
frequencies in the sensitivity interval (ω1,ω2) are effective for
detection, whence we should restrict the double sum to modes
with frequencies in that interval. Hence we might obtain the
probability distribution of the integrated energy flux,8, crossing
the active area of the detector during the activation time
T. Finally we may assume that a detection event takes place
whenever8 surpasses a threshold80 > 0 related to the detection
efficiency, η, of the detector. If the ZPF is isotropic the flux
crossing the active area of the detector might be positive or
negative with equal probabilities but the ratio 8/T, would be
smaller as T is larger, zero for T → ∞. We may choose 80,
as a function of T, so that the ZPF 8 surpasses 80 very rarely.
However for any finite T there will be a finite probability that
8 > 80 thus producing photocounts even in the absence of
signals. These spurious counts give a dark rate r usually attributed
to thermal fluctuations. Indeed the experimental dark rate is
known to decrease with temperature, but we propose that rwould
remain finite at zero Kelvin. Now we study the case when there
is a signal, superimposed to the ZPF, arriving at the detector.
The signal may be weak with respect to a typical short-time
fluctuation of the ZPF, but it is positive at all times because signals
arrive at the detector in the positive Z direction. Thus, a positive
quantity should be added to the fluctuating energy flux due to
the ZPF, calculated via Equation (34). In a particular experiment
we should choose T, the sensitivity interval and the threshold
80 such that we have high detection efficiency η and small dark

rate r, but there are obvious constraints. For instance in order to
have a small r we need high T and/or high 80, but in this case
some signals will become undetected leading to a decrease of η.
I propose that these constraints are the physical reason for the
difficulty of manufacturing very efficient photon counters.

4.2. Interpretation of the Photon
Experiments
Our aim is to achieve a realistic local interpretation of the
experiments measuring polarization correlation of entangled
photon pairs, that we studied with the WW formalism in the
previous section. Thus, I will consider two vacuum beams
entering the nonlinear crystal, where they give rise to a “signal”
and an “idler” beams. After crossing several appropriate devices
they produce fields that will arrive at the Alice and Bob detectors.
I do not attempt to present a detailed model, that should involve
many radiation modes, in order to represent the signals as
(narrow) beams (see Equation 17). I will study only detection
rates, that may be illustrated with just 2 vacuum modes.

In agreement with our previous hypotheses a photodetection
should derive from a relatively large integrated energy flux
crossing the active surfaces. In actual experiments the pumping
laser is pulsed and it is a fact that the detection rates are far
smaller than the pulsing rate. In our interpretation this means
that only in a tiny fraction of laser pulses, the flux 8 becomes
greater than80. Thus, I will replace the threshold assumption of
the previous subsection, i.e., detection when8 > 80, by another
assumption, more convenient for the simplicity of calculations,
namely that the detection probability is proportional to 8 if
8 > 0, zero otherwise. I believe that the new assumption might
be derived from the old one but I omit the proof. In the following
it will be convenient to write everything in terms of the Poynting
vector EI rather than the integrated flux, 8, assuming that the
single detection probability per time window, T, by Alice is
given by

PA =
〈

[MA]+
〉

,MA ≡ T−1

∫ T

0
EnA · EIAtotal (rA,t) dt, (35)

where [M]+ = M if M > 0, [M]+ = 0 otherwise, and EnA is a
unit vector in the direction of the incoming signal beam, assumed
normal to the active area of the detector. The experimental
time window has a duration of the order of a laser pulse, and
may be different from the activation time of the detector but I
will use the same label T. I shall use units such that both the
intensities and the detection rates are dimensionless defining the
rate as probability of a photodetection within one time window
T. In Equation (35) , I include a positivity constraint that I
will ignore in the following substituting MA for [MA]+. This
approximation underestimate the rate. In fact the quantity MA

defined in Equation (35) will be positive in a fraction, say f < 1,
of the samples and negative in the fraction 1 − f . In the former
case [MA]+ = MA, in the latter [MA]+ = 0. Therefore 〈MA〉 <
〈

[MA]+
〉

, but we assume that the error is small if the activation
time is large as commented in the previous subsection.

In order to provide a quantitative argument, I will consider
a simplified model involving just two radiation modes, as and
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ai, and follow closely the calculation of the section 3. The
fields emerging from the nonlinear crystal, after crossing several
appropriate devices, will arrive at the Alice and Bob detectors.
Each one of these fields consists of two parts, one large, of order
unity and another of order |D| << 1. The former, given in
Equation (20) , is what would arrive at the detectors if there was
no pumping laser and therefore no signal. It is just a part of
the ZPF, whilst the rest of the ZPF consists of radiation that did
not appear explicitly in the equations of section 3 because it was
not needed in the calculations. As discussed above the total ZPF
should have the property of isotropy, therefore giving an energy
flux that may be positive or negative, nil on the average. The
terms of order |D| , given by Equation (20) , correspond to the
signal produced in the nonlinear crystal after the modifications
introduced by beam splitters and polarizers (and other devices
like apertures, filters, lens systems, etc. whose action is not
detailed in our simplified model). In summary the Poynting
vector of the radiation at the (center of the) active area of Alice´s
detector may be written

Alice :EIAtotal (t) = EIAZPF (t)+ EIA (t) . (36)

EIA corresponding to the field EA, Equation (19) and EIAZPF (t)
comes from the rest of the ZPF. EIA (t) has the direction of
EnA, (Equation 35), whence the radiation intensity equals the
modulus of the Poynting vector. Furthermore, its intensity is time
independent (the time dependence of the signal fields derives
from the sum of many modes as in Equation 17), so that we
may write

MA = IAZPF + IA, I
A
ZPF ≡ T−1

∫ T

0
EnA · EIAZPF (rA,t) dt, (37)

and similar for Bob´sMB.
In order to get the Alice single detection rate we need the

average ofMA, that we will evaluate by comparison with the case
when there is no pumping on the nonlinear crystal. In this case
IA becomes the intensity IA0, Equation (26) , and the Poynting
vector of all vacuum fields arriving at the detector of Alice, i.e.,
EIAZPF (t) + EIA0 (t) , should have nil average due to the isotropy of
the ZPF. And similar for Bob. As a consequence the intensities
IA0 and IB0, Equation (26) , should fulfill the following equalities

〈

IAZPF + IA0
〉

=
〈

IBZPF + IB0
〉

= 0. (38)

It would appear that this relation could not be true for all values
of the angles θ ,φ (Equation 20) because the ZPF Poynting vector
ÎAZPF and ÎBZPF should not depend on our choice of angles whilst
IA0 and IB0 do depend. However, this is flawed, the positions of
the polarizers may influence also the ZPZ arriving at the detectors
and it is plausible that the total Poynting vector has always zero
mean. From Equation (35) to (38) we may derive the single rates
of Alice and Bob, that is

PA = 〈MA〉 = 〈IA〉 − 〈IA0〉 , PB = 〈MB〉 = 〈IB〉 − 〈IB0〉 . (39)

The result agrees with the quantum calculation in the WW
formalism except for a factor 2 that derives from a different

definition of field amplitudes. I point out that no dark rate
appears in Equation (39) due to our approximation [M]+ = M,
see comment after Equation (35).

An analysis should be also made for the coincidence detection
rates, but it is more involved and will not be included in the
present paper (for a preliminary approach see [28]). A sketch is
as follows. The coincidence detection probability in a given time
window would be given by an extension of Equation (35), that is

PAB =
〈

[MA]+ [MB]+
〉

.

This will give rise to many correlations between the field
intensities arriving at Alice and Bob detectors. Determining
the correct values of the correlations is a subtle matter, but I
hope that an appropriate choice might reproduce the quantum
predictions and the empirical results. The relevant achievement
in the experiments is the strong correlation, that is the fact that
PAB is of the same order as PA and PB. Such a strong correlation
is crucial for the violation of a Bell inequality. A qualitative
argument for that correlation in our model is the following.
The vacuum fields arriving at the nonlinear crystal are enhanced
by the action of the laser, thus producing the socalled signal
and idler fields. That enhancement is rarely strong enough to
produce detection events in Alice and Bob detectors. However,
from time to time a combination of high values of both relevant
(fluctuating) vacuum fields, as and ai, will give a relatively intense
signal and idler fields that combined in the form of Equation

(18) produce high field intensities arriving at both Alice and
Bob detectors, giving rise to a coincidence count. The point is
that a detection event requires simultaneous high values of as
and ai and in this case the signal intensities arriving at Alice
and Bob are both large, whence detections are most probably
produced in coincidence (provided the angles θ ,φ in Equation
19 are appropriate).

TheWW formalism suggests a quite different picture from the
Hilbert-space one in terms of photons. We should not assume
that the small value of the coupling parameter |D|2 implies that
the production probability of “entangled photon pairs” during
a time window is small, but that the probability of detection,
conditional to the photon production, is of the order of unity.
(The latter probability is defined as the detection efficiency). In
the WW formalism the probability of a photocount by Alice or
Bob does not factorize that way. Furthermore, the concept of
photon does not appear at all, but there are continuous fluctuating
fields including a real ZPF arriving at the detectors that are
activated when the arriving signal intensities are large enough.

Finally I stress that the hypothesis that the quantum vacuum
fields are real allows a more detailed model of the experiments
than Bell´s approach and the model is local. Indeed, as in the
interpretation of single detections rates (Equation 39), the signals
(accompanied by vacuum) travel causally from the source to
the detectors.

5. DISCUSSION

Bell´s work of 1964 put forward an acute conflict in theoretical
physics. The derived Bell inequalities are currently seen as
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necessary conditions for any local realistic theory of physics.
On the other hand the inequalities are incompatible with some
predictions of quantum mechanics. The conclusion is that either
local realism does not hold in nature or that quantum mechanics
is not valid in all circumstances. Both alternatives are hard
to accept.

Realims is a principle that may be stated saying that: In science
we ought to be concerned with what nature does, not just with
predictions of empirical results, so that wemay get a picture of the
natural world. In physics the picture should be quantitative, and
we should interpret the observed phenomena in terms of general
laws. In the microscopic domain the laws are those of quantum
mechanics. The problem is that for some experiments, like those
mentioned in section 1 [1, 2], the evolution of particles and/or
fields, seems to require influences traveling at a superluminal
velocity. This means a violation of “locality.”

Locality (or relativistic causality) was defined and emphatically
supported by Einstein. For instance in his authobiographical
notes [29] Einstein wrote “On one supposition we should, in
my opinion, absolutely hold fast: the real factual situation of
the system S2 is independent of what is done with the system
S1, which is spatially separated from the former.” Thus, the
violation of locality by experiments might look as a contradiction
between quantum theory and relativity. The present wisdom is
that locality has been indeed violated by the recent experiments
but the conflict with relativity is minimized by the fact that
quantum mechanics does not predict the possibility of sending
superluminal signals (no-signaling theorem). However, in the
views of many people including this author, a violation of locality
is highly unsatisfactory.

In this paper, I offer a possible solution, namely that the Bell
analysis sketched in the Introduction section does not apply to
the commented experiments. In fact the standard method to do
with a system of entangled photon pairs, or entangled quantum
subsystems in general, is to start with the quantum representation
of the whole system by a quantum state, that is a vector | ψ〉
of the Hilbert space. In the case of two photons entangled in
polarization a representation of the quantum state may be

| ψ〉 = 1
√

1+ |c|2
(

| V(a)〉 | H(b)〉 − c | H(a)〉 | V(b)〉
)

, (40)

where c is a (nonzero) complex number, V(a)
(

H(a)
)

means
that Alice´s photon has vertical (horizontal) polarization and
similar for Bob. Checking that the representation (Equation 40)

is correct is obtained by several measurements performed, in
particular the single rates and the coincidence rate by Alice
and Bob for detections after the photons cross polarizers at
appropriate angles. The relevant result is that those rates violate a
Bell inequality for appropriate choices of angles. Thus assuming
that Bell analysis was correct (see section 1), people concludes
that local realism has been empirically refuted.

Our criticism to that conclusion is that Bell analysis is not
valid for the commented experiments. It is necessary to study in
detail all elements involved in the production of the entangled
“photon” pairs. (Actually we should speak of entangled radiation
modes rather than photons). In particular the action of the
quantum vacuum electromagnetic radiation. In some sense the
ZPF is taken into account when one studies quantum optics
using the standard Hilbert-space formalism in the Heisenberg
representation, as revisited in section 2, where a comparison
is made with the treatment in the Weyl-Wigner formalism. In
the former the quantum vacuum fields are represented by linear
combinations of creation and annihilation operators of photons.
This abstract treatment leads people to take the vacuum fields
as “virtual,” that is purely formal devices useful for calculations
but devoid of reality. The novelty of the present paper is to
assume that the vacuumfields are real stochastic fields, something
that appears as quite plausible in the Weyl-Wigner formalism.
Thus, I propose that it is possible to interpret the experiments
[1, 2] assuming that all quantum fields involved, including
the vacuum ones, are real fluctuating (stochastic) fields that
propagate causally in space.
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Innsbruck Teleportation Experiment in
the Wigner Formalism: A Realistic
Description Based on the Role of the
Zero-Point Field
Alberto Casado1*, Santiago Guerra2 and José Plácido2

1Departamento de Física Aplicada III, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Sevilla, Spain, 2Grupo de
Ingeniería Térmica e Instrumentación, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain

In this article, an undulatory description of the Innsbruck teleportation experiment is given,
grounded in the role of the zero-point field (ZPF). The Wigner approach in the Heisenberg
picture is used, so that the quadruple correlations of the field, along with the subtraction of
the zero-point intensity at the detectors, are shown to be the essential ingredients that
replace entanglement and collapse. This study contrasts sharply with the standard
particle-like analysis and offers the possibility of understanding the hidden mechanism
of teleportation, relying on vacuum amplitudes as hidden variables.

Keywords: teleportation, parametric downconversion, Wigner representation, local realism, zero-point field, Bell
state measurement

1 INTRODUCTION

Since Bennett et al. proposed teleportation in 1993 [1], quantum state transmission has become
essential for developing quantum computing and quantum communication [2, 3]. The standard
theoretical approach to teleportation is based on the peculiar properties of Einstein–Podolsky–Rosen
(EPR) pairs [4] in the Hilbert space. Entanglement and the projection postulate, along with the
classical communication between the sender and receiver, often called Alice and Bob, respectively,
constitute the fundamental elements of the teleportation protocol.

In the late 1990s, teleportation was achieved in experiments performed by the Universities of
Innsbruck [5] and Rome [6], by using entangled photons generated in parametric downconversion
(PDC). There is a discrepancy regarding who first performed genuine quantum teleportation [7]. On
the one hand, the Innsbruck experiment used two pairs of entangled photons, and one of the four
photons was used as a trigger to generate the single-particle state to be teleported [5, 8]. A remarkable
characteristic of the four-photon source is the first experimental implementation of entanglement
swapping [9, 10]. Nevertheless, given that the four polarization Bell states of two photons were not
distinguishable using entanglement only in one degree of freedom and linear optics [11], the
teleportation protocol described in Ref. 1 cannot be accomplished with 100% success in the
Innsbruck scheme. Moreover, a controversial aspect of this experiment was the postselective or
nonpostselective nature of teleportation [12–14]. On the other hand, in the Rome teleportation
experiment, a pair of downconverted photons was used, and the state to be teleported was encoded in
one of two degrees of freedom of one photon [15], which made a difference with respect to the work
in Ref. 1. In contrast, the Bell state measurement (BSM) was accomplished with 100% success. In Ref.
16, a different implementation of the theoretical proposal given in Ref. 15 was carried out.

TheWigner formalism constitutes a complementary approach to the orthodox formulation in the
Hilbert space for the study of quantum optical experiments implemented with PDC [17–25]. The
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Wigner function of PDC is positive and allows for an intuitive
picture in terms of stochastic processes. In the Wigner
representation within the Heisenberg picture (WRHP), the
dynamics is contained in the electric field and the Wigner
distribution is time-independent, corresponding to the Wigner
function of the vacuum state. In this approach, the linearity of the
field equations of motion in the setup PDC plus linear optics can
be exploited, to achieve relevant conclusions about quantum
versus classical electrodynamics, by looking directly at the
fields and their correlation properties. Recently, a more formal
foundation of PDC has been developed using the Weyl–Wigner
formalism [26].

One of the most interesting features of the WRHP approach is
that the zero-point field (ZPF) appears in a natural form, which
contributes to it being considered as a real stochastic field [27, 28].
The role of ZPF at the nonlinear crystal and idle channels of the
optical devices placed between the source and detectors should be
analyzed for a deeper understanding of the underlying physics. In
this picture, photon entanglement can be understood as an interplay
of correlated modes through the contribution of ZPF amplitudes in
the polarization components of the field. Moreover, collapse is
related to the subtraction of the zero-point intensity at the
detectors, so that this approach clearly emphasizes the wave
nature of light. The fact that detectors have a threshold gives rise
to all nonclassical features of entangled photon pairs generated
by PDC.

The standard analysis of a PDC experiment with the WRHP
approach consists of the following steps:

i. Expression of the electric field amplitude corresponding to
narrow light beams outgoing the nonlinear source is
calculated. These beams are a linear transformation of the
ZPF entering the crystal [17–19].

ii. Propagation of these fields throughout the experimental
setup is conducted, following the rules of classical optics.
At this step, the zero-point beams entering the idle channels
of the optical devices must be considered.

iii. Calculation of the detection rates constitutes the main
difference with respect to classical physics. In the case of
single counts, the zero-point intensity is the threshold for
detection, but the subtraction is more involved in the case of
joint and multiple detection rates.

iv. The detection rates are expressed in terms of the field
correlations mediated by the ZPF, allowing for a picture
in terms of stochastic processes.

v. New physical insights emerge through the analysis of the
different zero-point inputs. The role of the amplitude and
phase of the fields in the light intensity at the detectors
becomes relevant to the description of an internal
mechanism leading to the different results. This analysis
cannot be conducted with the standard treatment in the
Hilbert space.

The combination of the possibility of transmitting and storing
quantum information via the ZPF has revealed that the WRHP
formalism is a very useful tool in analyzing the influence of the
vacuum field in experiments on optical quantum communication

[29–34]. Specifically, this approach has been applied to the
analysis of teleportation experiments, such as entanglement
swapping [32] and the Rome teleportation experiment [33].
The study of the Rome experiment showed the great
importance of the zero-point inputs in BSM [31], in such a
way that the distinguishability of the four polarization-
momentum Bell states of a single photon can be understood
from a sufficient balance between the zero-point inputs at the
source of entanglement and those that intervening in the Bell state
analyzer. More recently, the role of the zero-point amplitudes as
hidden variables on Bell state distinguishability and their
application to teleportation [16] have been investigated [34].

In this article, a new picture of the Innsbruck teleportation
experiment [5] is given, by using the WRHP approach. The
importance of this proposal lies in understanding the physical
properties of ZPF inputs that intervene in the experiment and
emphasizing the wave nature of light and causal propagation of
the fields involved. The article is organized as follows. In Section
2, the Wigner formalism in the Heisenberg framework is briefly
reviewed. In Section 3, a general setup, including the one given in
Ref. 5, is analyzed to investigate the relationship between
teleportation and quadruple correlations. In Section 4, the
relationship between different ZPF inputs at the setup and
optimality of the BSM at Alice’s station is analyzed. Section 5
is devoted to the calculation of the fourfold detection probabilities
in the Innsbruck experiment. Finally, in Section 6, the main
conclusions of this work are presented along with further steps of
this research line.

2 THE WIGNER REPRESENTATION WITHIN
THE HEISENBERG PICTURE APPROACH
FOR PARAMETRIC DOWNCONVERSION
EXPERIMENTS

In this section, the mathematical tools used in the development of
this work are described [17–19]. The field radiated by a nonlinear
crystal is produced from the coupling between the ZPF and a
classical wave representing the laser pumping beam. The vacuum
is represented as a sum of two mutually complex conjugate
amplitudes as follows:

Ev(r, t) � E(+)
v (r, t) + E(−)

v (r, t), (1)

with

E(+)
v (r, t) � i∑

k,λ

(Zωk

2L3
)1/2αk,λuk,λe

i(k·r−ωk t), (2)

E(−)
v (r, t) � −i∑

k,λ

(Zωk

2L3
)1/2α*k,λuk,λe

−i(k·r−ωk t). (3)

The subscripted letter “v” denotes the vacuum field or ZPF. L3 is
the normalization volume, αk,λ(t) is the amplitude corresponding
to a mode whose wave vector is k and polarization vector is uk,λ,
with ωk � c|k|, and λ takes values in the set {H,V}, where H(V)
means horizontal (vertical).

Frontiers in Physics | www.frontiersin.org December 2020 | Volume 8 | Article 5884152

Casado et al Realistic Description of Innsbruck Teleportation Experiment

116

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Stochastic variables α*k,λ and αk,λ follow a distribution given by
the following Gaussian equation:

W(α) �∏
k,λ

2
π
e−2
∣∣∣∣αk,λ∣∣∣∣2 ; α ≡ {αk,λ}. (4)

On the other hand, the beam corresponding to the laser is
represented by a plane wave with wave vector kp and
frequency ωp. We have the following:

V(r, t) � (Vp(t)exp[i(kp · r − ωpt)] + c.c.)u; u⊥kp, (5)

where c.c. denotes complex conjugation. Given that the coherence
time of the laser beam is usually large compared to most of the
times involved, the amplitude Vp(t) will be considered as a
constant.

The electric field corresponding to a (narrow) light beam
emitted by a nonlinear crystal is represented by the following
slowly varying amplitude:

F(+)(r, t) � ieωs t ∑
k ∈ [k]s ,λ

(Zωk

2L3
)1/2αk,λ(0)uk,λe

i(k·r−ωk t), (6)

where ωs represents the central frequency of the beam and [k]s
constitutes a set of wave vectors centered at ks. Amplitude
αk,λ(t � 0) has been calculated elsewhere to second order in a
characteristic coupling constant (g) [17–19]. Type II PDC
contains amplitudes αk,λ (k ∈ [k]s), belonging to the zero-
point beam entering the crystal in the direction of the signal,
and the amplitudes αk′ ,λ′ (k′ ∈ [k]i; λ′ ≠ λ), concerning the zero-
point beam corresponding to the so-called idler photon, fulfilling
the matching conditions ωk + ωk′ ≈ ωp and k + k′ ≈ kp. For t > 0,
there is a free evolution. The concrete expression of the fields
exiting the crystal and the description of entanglement in the
WRHP approach are reviewed in the next section.

Field amplitude F(+) propagates through free space according
to the following expression:

F(+)(r2, t) � F(+)(r1, t − r12
c
)eiωs(r12/c) ; r12 � |r2 − r1|. (7)

Let us now review the theory of photodetection. The single
detection probability at a given detector Da is as follows:

Pa(r, t) � Ka〈Ia(r, t) − Iv,a(r)〉, (8)

where 〈 . . . 〉 represents an average with theWigner density given
in Eq. 4. Ia ∝E(+)

a · E(−)
a � F(+)a · F(−)a , in appropriate units, is the

intensity of light arriving at the detector and Iv,a corresponds to
the average intensity of the ZPF. On the other hand, Ka is a
constant related to the effective efficiency of the detection process
at detector Da.

In experiments involving polarization, the joint detection
probability is calculated by using the following expression:

Pab(r, t; r′, t′) � KaKb ×∑
λ,λ′

∣∣∣∣∣〈F(+)
a,λ (ϕa; r, t)F(+)

b,λ′(ϕb; r′, t′)〉∣∣∣∣∣2, (9)

where ϕA and ϕB, appearing in the cross-correlation 〈F(+)
a,λ F

(+)
b,λ′

〉,
represent setup parameters. In the situation where the operators

corresponding to fields in detectorsDa andDb commute, as in the
case of Bell-type experiments [35], the previous expression is
equivalent to the average of product KaKb(Ia − Iv,a)(Ib − Iv,b).
Nevertheless, in a general situation, the subtraction of the pure
zero-point contribution is more involved.

Finally, in experiments involving fourfold detection, the
detection probability can be obtained as the sum of sixteen
addends. We have the following:

Pabcd(r, t;r′, t′;r″, t″;r-, t-)�KaKbKcKd

× ∑
λ,λ′ ,λ″ ,λ′′′

∣∣∣∣∣〈F(+)
a,λ (ϕa;r, t)F(+)

b,λ′(ϕb;r′, t′)F(+)
c,λ′′(ϕc;r″, t″)F(+)

d,λ′′′(ϕd;r-, t-)〉∣∣∣∣∣2,
(10)

where the quadruple correlation 〈F(+)
a,λ F

(+)
b,λ′

F(+)
c,λ′′

F(+)
d,λ-〉 can be

calculated in terms of the cross-correlation properties of the
fields, by taking into account the fact that the field amplitudes
in PDC are Gaussian. That is,

〈F(+)
a,λ F

(+)
b,λ′

F(+)
c,λ″F

(+)
d,λ′′′

〉 � 〈F(+)
a,λ F

(−)
b,λ′

〉〈F(−)
c,λ″F

(+)
d,λ′′′

〉 + 〈F(+)
a,λ F

(+)
c,λ″〉

× 〈F(+)
b,λ′

F(+)
d,λ′′′

〉 + 〈F(+)
a,λ F

(+)
d,λ′′′

〉〈F(+)
b,λ′

F(+)
c,λ″〉.
(11)

In actual experiments, Eqs 8–10 must be integrated over the
surface aperture of the detectors and appropriate detection
windows.

3 THE MEANING OF TELEPORTATION IN
TERMS OF THE QUADRUPLE
CORRELATIONS
The standard description of teleportation in the Hilbert space [1]
uses three particles, one of them (particle 1) in an unknown
quantum state to be teleported,

∣∣∣∣ϕ〉1 � α|H〉1 + β|V〉1, and two
entangled particles (particles 2 and 3) in a singlet state, |ψ−〉23.
The state of the three-particle system is given by the tensor
product:∣∣∣∣ψ〉123 � ∣∣∣∣ϕ〉1∣∣∣∣ψ−〉23

� − 1
2

∣∣∣∣ψ−〉12(α|H〉3 + β|V〉3) − 1
2

∣∣∣∣ψ+〉12(α|H〉3 − β|V〉3)
+ 1
2

∣∣∣∣ϕ−〉12(β|H〉3 + α|V〉3) + 1
2

∣∣∣∣ϕ+〉12(β|H〉3 − α|V〉3),
(12)

where the four Bell-base states are

∣∣∣∣ψ ± 〉ij �
1�
2

√ [|H〉i|V〉j ± |V〉i|H〉j], (13)

∣∣∣∣ϕ ± 〉ij �
1�
2

√ [|H〉i|H〉j ± |V〉i|V〉j]. (14)

A BSM on particles 1 and 2 leaves particle 3 in a state that can be
modified after classical communication, to reproduce the initial
state of particle 1. If the BSM indicates the detection of a singlet
state of particles 1 and 2, then teleportation is directly achieved.
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In the Innsbruck experiment, two independent pairs of
downconverted photons are “simultaneously” produced in the
state |Π〉1234 � |ψ−〉14 |ψ−〉23. Photon 4 is used as a trigger to
generate the state described in Eq. 12, once a given
transformation is applied on photon 1.

In the WRHP approach, a deep understanding of this
experiment requires the analysis of the quadruple correlation
properties of the field. Let us consider the sketch of the
experimental setup described in Figure 1. The notation used
in this figure is similar to the one given in Ref. 5, with the goal of
an easier reading of this article and the possibility of comparing it
with the original setup. In addition, ZPF inputs are represented
for understanding the original ideas displayed in this work and its
relationship with the standard description in the Hilbert space
formulation. Four two-by-two correlated beams represent two
couples of polarization-entangled photons. The input fields F(+)v1
and F(+)v4 (F(+)v2 and F(+)v3 ), each containing two sets of vacuum
modes, are coupled with the laser, giving rise to the correlated

signals F(+)1 and F(+)4 (F(+)2 and F(+)3 ). The quantum information is
carried out by eight sets of ZPF modes that are amplified at the
source, that is,

NZPF,S � 8. (15)

The exiting fields at the center of the nonlinear source can be
expressed to second order in the coupling parameter using the
following amplitudes (for simplicity, space-time notation is
discarded):

F(+)
1 � [ F(+)

s

F(+)
p
] � [ (1 + g2|V |2J)F(+)

v1,H + gVGF(−)
v4,V(1 + g2|V |2J)F(+)

v1,V + gVGF(−)
v4,H

], (16)

F(+)
4 � [ F(+)

q

eiπF(+)
r

] � [ (1 + g2|V |2J)F(+)
v4,H + gVGF(−)

v1,V

eiπ[(1 + g2|V |2J)F(+)
v4,V + gVGF(−)

v1,H] ], (17)
F(+)
2 � ⎡⎢⎢⎣ F′(+)

s

F′(+)
p

⎤⎥⎥⎦ � [ (1 + g2|V |2J)F(+)
v2,H + gV ′GF(−)

v3,V(1 + g2|V |2J)F(+)
v2,V + gV ′GF(−)

v3,H

], (18)

FIGURE 1 | General setup for teleportation based on the Innsbruck experiment, showing the principles involved in quantum teleportation and all the zero-point
entries for the analysis with the WRHP approach. The number of sets of ZPF modes is written between brackets. (A) Source (NZPF ,S � 8). Each of the vacuum inputs at
the source contains two sets of ZPF modes. (B) Trigger. The first detection is produced at the trigger detection area. The ZPF beam entering the idle channel of PBST
introduces two sets of vacuum modes. (C) Preparer. Beam F(+)

1 is modified through the action of a linear optical device P. In the case of a linear polarizer, a zero-
point contribution F(+)

ZPFP must be considered. (D) Alice’s station. It consists of a balanced beam splitter and two detection areas f1 and f2. Each area includes an
arrangement with a PBS and two detectors fiH and fiV (i � {1, 2}). Each of the ZPF inputs, F(+)

ZPFf1 and F(+)
ZPFf2, introduces two sets of vacuummodes. (E)Bob’s station. The

setup at Bob’s side is intended to check that teleportation has been successful. It consists of an optical device A and a polarizing beam splitter PBSA followed by two
detectors d1 and d2. The optical device C can be used after classical communication between Alice and Bob.
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F(+)
3 � ⎡⎢⎢⎣ F′(+)

q

eiπF′(+)
r

⎤⎥⎥⎦ � [ (1 + g2|V |2J)F(+)
v3,H + gV ′GF(−)

v2,V

eiπ[(1 + g2|V |2J)F(+)
v3,V + gV ′GF(−)

v2,H] ],
(19)

where G and J are linear operators defined elsewhere [17–19] and
are related to the selection of modes fulfilling the matching
conditions. On the other hand, V ′ � −V due to the reflection
of the pumping beam at mirror M1. It will be considered that M1
is in a fixed position, such that the condition of temporal overlap
at the beam splitter is fulfilled [5].

Equations 16–19 correspond to the WRHP description of the
state vector |Π〉1234 � |Ψ−〉14|Ψ−〉23, the crucial point being the
interplay of correlated fields, through the action of the zero-point
amplitudes: the only nonnull cross-correlations are those
concerning the labels (p, q) and (r, s) of beams 1–4 and the
same for the beams 2–3. This can be easily understood by taking
into account the fact that F(+)

vj,X(j � {1, 2, 3, 4},X � {H,V}) is only
correlated with F(−)

vj,X , being a direct consequence of Eq. 4. Any of
the four cross-correlations can be expressed, at any position and
time, in terms of the corresponding one at the center of the
nonlinear source (see Eq. 7). We have the following:

〈F(+)
p (0, t)F(+)

q (0, t′)〉 � 〈F(+)
r (0, t)F(+)

s (0, t′)〉 � gV](t − t′),
(20)

where ](t − t′) is a function that vanishes when |t − t′|> τ, t being
the correlation time between the downconverted photons. Similar
relations hold for the corresponding primed amplitudes. In
addition, the exponential factor (eiπ) in Eqs 17 and 19 gives
rise to a sign difference between the two correlations,
corresponding to orthogonal polarization amplitudes,
involving the couple of beams 1 − 4 (2–3). This sign difference
identifies the physical properties of the singlet state in the WRHP
formalism [29, 30].

Moreover, the amplitude F(+)p verifies the following
autocorrelation property:

〈F(+)
p (0, t)F(−)

p (0, t′)〉 − 〈F(+)
v1,V(0, t)F(−)

v1,V(0, t′)〉 � g2|V |2μ(t − t′),
(21)

where μ(t − t′) is a function that goes to zero when |t − t′|> τ.
Similar relations hold for the rest of the field amplitudes given in
Eqs 16–19.

By taking into account Eq. 20, the two nonnull cross-
correlations concerning beams 1 and 4 can be expressed in the
following compact form:

〈F(+)
4,X (0, t)F(+)

1,U(0, t′)〉 � (−1)n(X)gV](t − t′)[1 − δXU ], (22)

where X and U can take values in the set {H,V}. On the other
hand, n(H) � 2 and n(V) � 1. A similar expression holds for the
correlations involving beams 2 and 3, that is,

〈F(+)
2,X (0, t)F(+)

3,U(0, t′)〉 � (−1)n(X)+1gV ′](t − t′)[1 − δXU ]. (23)

The quadruple correlations representing the fields given in Eqs
16–19 can be calculated using Eq. 11. Given that beam 1 (2) is
only correlated with 4 (3), there are four nonnull correlations:

〈F(+)
4,X (0, t)F(+)

1,U(0, t′)F(+)
2,W(0, t″)F(+)

3,Z (0, t-)〉
� (−1)n(X)+n(W)+1g2VV ′](t − t′)](t″ − t-)[1 − δXU ][1 − δWZ],

(24)

where X, U, Z, and W can take values in the set {H,V}.
From now on, for notation simplicity, an identical distance

between the source and the different detectors will be considered,
so that the phase shift in Eq. 7 will not be considered in the
expression of the fields. Moreover, for the time being, the
dependence of the fields on position and time will be
discarded. Nevertheless, the reader’s attention can be drawn,
wherever necessary, to any reintroduction of space-time
variables.

In the Innsbruck experiment, the first detection is produced at
the trigger detector. Let us suppose that the trigger detection area
involves a polarizing beam splitter PBST that transmits (reflects)
horizontal (vertical) polarization. Two detectors, TH and TV, are
placed at each of the exiting channels. The fields at the detectors
have a noise component coming from the ZPF entering the idle
channel of PBST, that is,

F(+)
TH � ( F(+)

q

iF(+)
ZPFT ,V

); F(+)
TV � ( F(+)

ZPFT,H

−iF(+)
r

). (25)

Let us now consider the action of a linear optical device on beam
1. The transmitted field amplitude F(+)1P is

F(+)
1P � P̂ F(+)

1 � [ LH RH

LV RV
][ F(+)

s

F(+)
p
] � [ LHF(+)

s + RHF(+)
p

LVF(+)
s + RVF(+)

p

],
(26)

where P denotes the word “preparer” and L (R) is the left (right)
column of P̂.

In the case of a circular polarizer of angle θ with respect to
horizontal, LH � cos2θ, RH � LV � cosθsinθ, and RV � sin2θ. In
this situation, a zero-point contribution F(+)ZPFP must be added in
Eq. 26. This ZPF amplitude is uncorrelated with the rest of the
fields. Thus, F(+)1P can be generally expressed as follows:

F(+)
1P � ⎡⎣PH(F(+)

s , F(+)
p )

PV(F(+)
s , F(+)

p ) ⎤⎦, (27)

where

PH(F(+)
s , F(+)

p ) � LHF(+)
s + RHF(+)

p + F(+)
ZPFP,H ,

PV(F(+)
s , F(+)

p ) � LVF(+)
s + RVF(+)

p + F(+)
ZPFP,V .

(28)

The general transformation given in Eq. 28 represents a great
variety of experiments with different preparations so that the
analysis displayed in this article goes beyond the experimental
situation given in Ref. 5, where a linear polarizer acts on beam
F(+)1 . As a matter of fact, the previous analysis of entanglement
swapping given in Ref. 32, where P̂ � Î, can be seen as a particular
case of the results presented in this work.

Using Eqs 17, 20, 27, and 28, we have the following four cross-
correlations concerning beams F(+)1P and F(+)4 :

〈F(+)
4,X F

(+)
1P,U〉 � (−1)n(X)gV](0)F(X,U), (29)
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where the bivariate function F(X,U) is given by

F(X,U) � LUδX,V + RUδX,H . (30)

This leads to a duplication of the nonnull quadruple correlations,
from four to eight. Using Eqs 11, 23, and 29, we have the
following:

〈F(+)
4,X F

(+)
1P,UF

(+)
2,WF

(+)
3,Z 〉�〈F(+)

4,X F
(+)
1P,U〉〈F(+)

2,WF
(+)
3,Z 〉

�(−1)n(X)+n(W)+1g2VV ′]2(0)F(X,U)[1−δWZ].
(31)

Let us now calculate the fields at Alice’s station. Beams F(+)1P and
F(+)2 are superposed at a balanced beam splitter (see Figure 1) so
that the number of sets of amplified modes entering the Bell state
analyzer is as follows (see Eq. 15) [33]:

NZPF,A � NZPF,S

2
� 4. (32)

From Eqs 18, 27, and 28, the exiting beam (F(+)fj j � 1, 2) is given
by the following superposition:

F(+)
fj � −ij(−1)

jF(+)
1P + iF(+)

2�
2

√ � − ij�
2

√ ⎡⎢⎢⎢⎣ (−1)jPH(F(+)
s ,F(+)

p ) + iF′(+)
s

(−1)jPV(F(+)
s ,F(+)

p ) + iF′(+)
p

⎤⎥⎥⎥⎦.
(33)

Now, to get the electric field at the detector fjX (X� {H,V}), a ZPF
component coming from the idle channel of PBSfj must be
included. That is,

F(+)
fjH � − ij�

2
√ [(−1)jPH(F(+)

s , F(+)
p ) + iF′(+)

s ] + iF(+)
ZPFfj,V , (34)

F(+)
fjV � − ij+1�

2
√ [(−1)jPV(F(+)

s , F(+)
p ) + iF′(+)

p ] + F(+)
ZPFfj,H . (35)

In the standard description of quantum teleportation [1], Alice
informs Bob of her measurement result via a classical
communication channel. In this way, Bob can apply a linear
transformation on beam F(+)3 by means of the optical device C
(see Figure 1), to reproduce the prepared state. Then, in order to
verify that teleportation has been successfully carried out, the

signal F′(+)3 � ĈF(+)3 enters an analyzer consisting of a linear
optical device A followed by a polarizing beam splitter, PBSA.
Let F(+)3A be the signal entering PBSA, that is,
F(+)3A � ÂF′(+)3 � ÂĈF(+)3 ; then, we have the following:

F(+)
3A � [ ~LH

~RH
~LV

~RV
]⎡⎢⎢⎢⎣ F′(+)

q

−F′(+)
r

⎤⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
~AH(F′(+)

q , F′(+)
r )

~AV(F′(+)
q , F′(+)

r )
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (36)

~AH(F′(+)
q , F′(+)

r ) � ~LHF′(+)
q − ~RHF′(+)

r , (37)

~AV(F′(+)
q , F′(+)

r ) � ~LVF′(+)
q − ~RVF′(+)

r , (38)

where the matrix ÂĈ is represented by parameters ~LH , ~LV , ~RH ,
and ~RV . It has been considered that neither Ĉ nor Â introduces
additional ZPF modes.

Finally, by considering the ZPF entering the idle channel of
PBSA, the field amplitudes at detectors d1 and d2 are given by

F(+)
d2

� ⎡⎢⎢⎢⎢⎣ ~AH(F′(+)
q , F′(+)

r )
iF(+)

ZPF,AV

⎤⎥⎥⎥⎥⎦; F(+)
d1

� ⎡⎢⎢⎢⎢⎣ F(+)
ZPF,AH

i~AV(F′(+)
q , F′(+)

r ) ⎤⎥⎥⎥⎥⎦. (39)

From Eqs 18, 20, 37, and 38, the following four cross-
correlations, involving beams F(+)

2 and F(+)
3A , are obtained:

〈F(+)
2,WF

(+)
3A,Z〉 � (−1)n(W)+1gV ′](0)~F(W,Z), (40)

where

~F(W,Z) � ~LZδW,V + ~RZδW,H . (41)

3.1 Analysis of the Quadruple Correlations
The quadruple correlations play a fundamental role in the
calculation of fourfold detection probabilities (see Eq. 10). Given
that the zero-point beams entering the idle channels of the PBSs
placed before the detectors are uncorrelated with the signals and
with each other, the understanding of the Innsbruck experiment
requires a detailed analysis of the correlation 〈F(+)

4,X F
(+)
fj,UF

(+)
fk,WF(+)

3A,Z〉
involving the fields given in Eqs 17, 33, and 36. Using Eq. 11 and
taking into consideration that beam 4 (3) is only correlated with 1
(2), the following expression is obtained:

〈F(+)
4,X F

(+)
fj,UF

(+)
fk,WF(+)

3A,Z〉 � 1
2
ij+k+1(−1)j[〈F(+)

4,X F
(+)
1P,U〉〈F(+)

2,WF
(+)
3A,Z〉

+ (− 1)k−j〈F(+)
4,X F

(+)
1P,W〉〈F(+)

2,UF
(+)
3A,Z〉]. (42)

Now, substituting Eqs 29 and 40 into Eq. 42, we get

〈F(+)
4,X F

(+)
fj,UF

(+)
fk,WF(+)

3A,Z〉 � 1
2
ij+k+1(−1)jg2VV ′]2(0)(−1)n(X)+n(W)+1

× [F(X,U)~F(W,Z)
+ (−1)k−j(−1)n(U)−n(W)F(X,W)~F(U ,Z)].

(43)

As will be demonstrated below, a detailed analysis of Eqs 42 and
43 provides an understanding of physics behind teleportation
without the necessity of collapse as a crucial ingredient. Let us
divide this study into two parts: (i) the properties of the quadruple
correlations in terms of the fields at Alice’s station will provide a
better understanding of the indistinguishability of the four Bell
states given in Eq. 12 [11, 32]; (ii) the analysis of quadruple
correlations by looking at beams F(+)4 and F(+)3 , that is, by putting
ÂĈ � Î, will offer a complete comprehension of the Innsbruck
experiment in terms of correlated modes.

3.1.1 Quadruple Correlations and Bell State
Measurement
Let us consider the following situations, according to the values of
the polarizations U and W given in Eq. 42:

(a) First let us focus on the case of U�W. We have the
following:
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〈F(+)
4,X F

(+)
fj,UF

(+)
fk,UF

(+)
3A,Z〉 � 1

2
ij+k+1(−1)j〈F(+)

4,X F
(+)
1P,U〉〈F(+)

2,UF
(+)
3A,Z〉[1 + (−1)k−j].

(44)

a.1. The above expression is equal to zero in the case of j≠ k,
that is when the field amplitudes corresponding to the
same polarization of different beams are considered. This
result justifies that a double detection in detectors f1H and
f2H , or in f1V and f2V , cannot be produced (see Figure 1).

a.2. In the case of j � k, Eq. 44 leads to

〈F(+)
4,X F

(+)
fj,UF

(+)
fj,UF

(+)
3A,Z〉 � i〈F(+)

4,X F
(+)
1P,U〉〈F(+)

2,UF
(+)
3A,Z〉. (45)

This situation corresponds to a joint detection at any of the four
detectors located in Alice’s station and is related to the detection
of one of the two indistinguishable states

∣∣∣∣ϕ+〉12 or
∣∣∣∣ϕ−〉12 [32].

b. Let us now analyze the U≠W situation; that is, the
amplitudes at Alice’s station have orthogonal polarization.

b.1. Let us first consider the case of j�k, where both
polarizations of the same beam, namely, F(+)

fj,H and
F(+)
fj,V , are involved. From Eq. 42, we have the following:

〈F(+)
4,X F

(+)
fj,UF

(+)
fj,WF(+)

3A,Z〉 � i
2
[〈F(+)

4,X F
(+)
1P,U〉〈F(+)

2,WF
(+)
3A,Z〉 + 〈F(+)

4,X F
(+)
1P,W〉

× 〈F(+)
2,UF

(+)
3A,Z〉].

(46)

From the above equation, the following symmetry property is
derived:

〈F(+)
4,X F

(+)
fj,UF

(+)
fj,WF(+)

3A,Z〉 � 〈F(+)
4,X F

(+)
fj,WF(+)

fj,UF
(+)
3A,Z〉, (47)

which implies that the correlation remains invariant under the exchange
U↔W. This property is related to the detection of the state |ψ+〉12 when
a joint detection is produced in f1H and f1V or in f2H and f2V .

b.2. Finally, the cases of U≠W and j≠ k correspond to the
situation in which the orthogonal polarization of different
beams is involved. FromEq. 42, the corresponding quadruple
correlation is

〈F(+)
4,X F

(+)
fj,UF

(+)
fk,WF(+)

3A,Z〉 � 1
2
(−1)j[〈F(+)

4,X F
(+)
1P,U〉〈F(+)

2,WF
(+)
3A,Z〉

− 〈F(+)
4,X F

(+)
1P,W〉〈F(+)

2,UF
(+)
3A,Z〉], (48)

and the following antisymmetric property can be easily deduced:

〈F(+)
4,X F

(+)
fj,UF

(+)
fk,WF(+)

3A,Z〉 � −〈F(+)
4,X F

(+)
fj,WF(+)

fk,UF
(+)
3A,Z〉. (49)

This sign difference under the exchange U↔W is related to the
detection of the state |ψ−〉12 when a joint detection is produced at
detectors f1H and f2V , or in f1V and f2H .

3.1.2 Quadruple Correlations and Teleportation
From now on, let us focus on the situation in which no
transformation is applied on beam F(+)3 , that is, Ĉ � Â � Î, so
that F(+)3A � F(+)3 . In Ref. 32, it is demonstrated that, for P̂ � Î, a
joint detection in f1H and f2V (f1V and f2H) leads to the transfer of
the correlation properties that characterize the singlet state |Ψ−〉12
to the beams F(+)4 and F(+)3 , mediated by the quadruple
correlations of the field, even when F(+)4 and F(+)3 are
uncorrelated (entanglement swapping in the WRHP
approach). The key point in that analysis is the sign flip in the
correlations involving orthogonal polarization components of
beams F(+)4 and F(+)3 , for j≠ k and U≠W, under the exchange
X↔Z (see equations (33)–(36) of Ref. 32).

Let us now address the action of a linear polarizer on beam
F(+)1 , so that F(+)1P represents linearly polarized light. Given that
the correlation properties corresponding to the beams exiting
the crystal (see Eqs 16–19) are rotationally invariant [29],
F(+)4 behaves like a polarized beam with orthogonal
polarization to the one corresponding to F(+)1P , mediated by
the cross-correlation properties given in Eq. 29. As
demonstrated below, once detection is produced at the
trigger area, a joint detection in f1H (f1V ) and f2V (f2H)
gives rise to the teleportation of the polarization properties
from F(+)1P to F(+)3 .

To demonstrate teleportation in the WRHP approach, a sign
flip is required under the exchange X↔Z in Eq. 48, for Ĉ � Â � Î.
In this case, ~LH � ~RV � 1 and ~RH � ~LV � 0, so that ~F(U ,W) �
1 − δUW (see Eq. 41). In this situation, Eq. 43, for j≠ k andU≠W,
leads to

〈F(+)
4,X F

(+)
fj,UF

(+)
fk,WF(+)

3,Z 〉 � (−1)j
2

(−1)n(X)+n(W)+1g2VV ′]2(0)
× [F(X,U)(1 − δWZ)
+ F(X,W)(1 − δUZ)]. (50)

Given that U≠W, one of the two addends must be zero. Let us
take, for instance, Z�U. Then, X�W; that is,

〈F(+)
4,WF(+)

fj,UF
(+)
fk,WF(+)

3,U〉 � (−1)j+1
2

g2VV ′]2(0)F(W,U). (51)

Exchanging X and Z in Eq. 50 and taking U�Z, we get

〈F(+)
4,UF

(+)
fj,UF

(+)
fk,WF(+)

3,W〉 � (−1)j
2

g2VV ′]2(0)F(U ,W). (52)

Now, dividing Eqs 51 and 52, the searched result is found:

〈F(+)
4,WF

(+)
fj,UF

(+)
fk,WF(+)

3,U〉
〈F(+)

4,UF
(+)
fj,UF

(+)
fk,WF(+)

3,W〉
� − F(W,U)

F(U ,W). (53)

The minus sign in the above expression is independent of
the concrete matrix P̂ representing the transformation of
beam F(+)1 .

Equation 53 is only fulfilled in the cases of U≠W and j≠ k. In
the cases of U≠W and j � k, there is no sign flip under the
exchange X↔Z, as it can be easily demonstrated using Eq. 43, by
putting ~F(U ,W) � 1 − δUW . We have the following:
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〈F(+)
4,WF

(+)
fj,UF

(+)
fj,WF(+)

3,U〉
〈F(+)

4,UF
(+)
fj,UF

(+)
fj,WF(+)

3,W〉
� F(W,U)
F(U ,W). (54)

In this case, Alice must only inform Bob about her result via a
classical communication channel, and Bob would modify beam
F(+)3 by applying a phase shift of p between the vertical and
horizontal components of F(+)3 ; that is,

Ĉ � ( 1 0
0 −1)0F′(+)

3 � ĈF(+)
3 � ⎛⎝ F′(+)

q

F′(+)
r

⎞⎠. (55)

In this situation, using Eq. 43 for Â � Î, that is, F(+)3A � F′
(+)
3

, the
following result was obtained:

〈F(+)
4,WF

(+)
fj,UF

(+)
fj,WF′(+)3,U〉

〈F(+)
4,UF

(+)
fj,UF

(+)
fj,WF′(+)3,W〉

� − F(W,U)
F(U ,W). (56)

At this point, a comment is in order. Given that Bob must wait
to receive the classical information coming from Alice’s station,
the description of teleportation in the WRHP formalism admits
a causal interpretation. Let Tcc be the time interval
corresponding to the classical communication. If, for
instance, the field amplitudes F(+)4 and F(+)fj (j � 1, 2) are
defined at time tA, then the signal at Bob’s station, F′(+)3 ,
must be defined at time tB � tA + Tcc. For simplicity, let us
consider an identical path length, dSA, between the source
and any of the detectors TH, TV , fjH , and fjV . And let dSB be
the corresponding path length between the crystal and the
position where Bob applies the transformation given in Eq.
55. From Eqs 7 and 20, the following condition must be fulfilled
to achieve the teleportation protocol [33]:∣∣∣∣∣∣∣Tcc + dSA − dSB

c

∣∣∣∣∣∣∣≤ τ. (57)

4 ZERO-POINT FIELD INPUTS AND BELL
STATE MEASUREMENT IN THE
INNSBRUCK EXPERIMENT
The role of the ZPF inputs in Bell state analysis has been
investigated in previous works [31, 33, 34] by focusing on Bell
state distinguishability of two photons, entangled in n dichotomic
degrees of freedom, which are not mixed at the analyzer, and BSM
of the one-photon polarization-momentum Bell states. The
common denominator is the relationship between
distinguishability of Bell states and an adequate balance
between the number of amplified sets of ZPF modes entering
the analyzer and the number of the sets of ZPF modes entering
the idle channels located inside the analyzer.

The situation described in Figure 1 is more involved. The
information concerning the two couples of downconverted
photos is carried out by the eight sets of ZPF modes entering
the crystal. Two uncorrelated beams, F(+)1P and F(+)2 , are brought
together at the beam splitter for Bell state analysis. Although this

situation needs further consideration, the impossibility of
measuring the four polarization Bell states will be addressed
on the basis of the arguments set out below.

Let us analyze the interference of beams F(+)1P and F(+)2 at the
beam splitter (see Eqs 18 and 26) to give the exiting fields F(+)f 1 and
F(+)f 2 shown in Eq. 33. The intensity corresponding to F(+)fj(j � 1, 2) is

Ij � F(+)
fj · F(−)

fj � IH,j + IV ,j, (58)

where IX,j (X � {H,V}) is the intensity corresponding to the
polarization component X. By putting F(+)

1P,X �
∣∣∣∣∣F(+)

1P,X

∣∣∣∣∣exp(iφ1P,X)
and F(+)

2,X �
∣∣∣∣∣F(+)

2,X

∣∣∣∣∣exp(iφ2,X) , it is immediate that

IX,j � 1
2
[∣∣∣∣F(+)

1P,X

∣∣∣∣2 + ∣∣∣∣F(+)
2,X

∣∣∣∣2 + 2(−1)j+1∣∣∣∣F(+)
1P,X

!!!!F(+)
2,X

∣∣∣∣sin(φ2,X − φ1P,X)],
(59)

where IX,1 and IX,2 contain an identical contribution,
(
∣∣∣∣∣F(+)

1P,X

∣∣∣∣∣2 + ∣∣∣∣∣F(+)
2,X

∣∣∣∣∣2)/2, along with an addend that represents the
interference between F(+)

1P,X and F(+)
2,X , with opposite values for IX,1

and IX,2. This result is similar to the anticorrelation after a beam
splitter described in stochastic optics [28], the only difference
being that, in this case, both input channels contain one photon.

By taking into consideration the zero-point beam entering
PBSfj and Eqs 34 and 35, the intensity at the detector fj,X is

Ifj,X � IX,j +
∣∣∣∣∣F(+)

ZPFfj,Y

∣∣∣∣∣2;Y ≠X. (60)

Given that detection implies noise subtraction (see Eq. 8), the
intensity above the zero-point background is

Ifj,X − (Ifj,X)vac � IX,j − (IX,j)vac, (61)

so that the zero-point contribution coming from FZPFfj and the
pure zero-point contribution coming from the beams entering
Alice’s station are subtracted.

At this point, the following conjecture is applied: for an ideal
detector fjX (KfjX � 1), a detection is produced when a
constructive interference between F(+)

1P,X and F(+)
2,X is produced;

that is, (−1)j+1 sin(φ2,X − φ1P,X) � 1, which necessarily implies a
destructive interference at detector fk,X (k≠ j). For this reason, a
joint detection in detectors f1,H (f1,V ) and f2,H (f2,V ) cannot be
produced. In terms of the quadruple correlations properties of the
field, this result is explained in Eq. 44.

If detection is produced in, for example, f1,H , it is revealed that
φ2,H − φ1P,H � π(1 + 4n)/2, n � 0, 1, 2.... Then, the second
detection event could be produced at the same detector f1,H or
in one of the detectors f1,V and f2,V . The question that arises is
how many sets of ZPF modes, coming from the idle channels
located inside the analyzer, must be subtracted to complete the
phase information at Alice’s station? The answer is as follows: as a
minimum, one of the sets of ZPF modes entering f1,V and f2,V ,
coming from the PBSs placed at Alice’s station, should be
subtracted, so that the different possibilities for the second
detection would be identified.

The classical information that can be obtained in the
measurement entails the subtraction of a sufficient number of
sets of ZPF modes entering the idle channels inside the analyzer
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from the number of amplified sets of modes that enter the
analyzer (see Eq. 32). Hence, the difference 4 − 1 � 3 gives
the maximum distinguishability, which corresponds to the
experimental situation.

5 FOURFOLD COINCIDENCES IN THE
INNSBRUCK EXPERIMENT

Let us consider the experimental arrangement in Figure 2 [5].
The signal F(+)1 is sent to a polarizer P of angle θ � 45°(θ � −45°)
with respect to horizontal. The corresponding expression for F(+)1P
is given by Eqs 27 and 28, where LH � RV � 1/2 and RH � LV �
1/2 (−1/2). In this situation, Eq. 30 leads to F(U ,W) � F(W,U),
so that (see Eq. 53)

〈F(+)
4,WF

(+)
fj,UF

(+)
fk,WF(+)

3,U〉 � −〈F(+)
4,UF

(+)
fj,UF

(+)
fk,WF(+)

3,W〉. (62)

The polarization analyzer consists of a half-wave plate (HWP)
that rotates the polarization plane of F(+)3 by an angle of 45°
around the propagation direction and a PBS that transmits
(reflects) horizontal (vertical) polarization. The field
amplitudes at the detectors d1 and d2 are given by Eq. 39,

where ~AH and ~AV are given by Eqs 37 and 38, respectively,
with ~LH � ~RH � ~LV � 1/

�
2

√
and ~RV � −1/ �

2
√

. In this particular
setting, a fourfold detection in T, f1, f2, and d2 (d1) is produced for
θ � 45° (θ � −45°).

The quadruple correlations can be calculated by using Eq. 43.
We get the following:

Case I (θ � +45°).

〈F(+)
4,VF

(+)
fj,HF

(+)
fk,VF

(+)
3A,H〉 � g2VV ′]2(0)

2
�
2

√ (−1)j, (63)

〈F(+)
4,HF

(+)
fj,HF

(+)
fk,VF

(+)
3A,H〉 � g2VV ′]2(0)

2
�
2

√ i(−1)j, (64)

〈F(+)
4,VF

(+)
fj,HF

(+)
fk,VF

(+)
3A,V〉 � 〈F(+)

4,HF
(+)
fj,HF

(+)
fk,VF

(+)
3A,V〉 � 0. (65)

Case II (θ � −45°).

〈F(+)
4,HF

(+)
fj,HF

(+)
fk,VF

(+)
3A,V〉 � g2VV ′]2(0)

2
�
2

√ (−1)j, (66)

〈F(+)
4,VF

(+)
fj,HF

(+)
fk,VF

(+)
3A,V〉 � g2VV ′]2(0)

2
�
2

√ i(−1)j, (67)

〈F(+)
4,HF

(+)
fj,HF

(+)
fk,VF

(+)
3A,H〉 � 〈F(+)

4,VF
(+)
fj,HF

(+)
fk,VF

(+)
3A,H〉 � 0. (68)

FIGURE 2 | Scheme corresponding to the Innsbruck teleportation experiment. The areas f1, f2, and T consist of single detectors. F(+)
ZPFP represents a ZPF beam

entering the polarizer, which gives rise to a vacuum contribution at the output channel.
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A quick look at Eqs 63–65 shows that only the two correlations
involving the horizontal component of F(+)3A are different from
zero. This situation reveals the teleportation of the polarization
properties of beam F1P (polarized at +45°) to F3A,H (detection in
d2). Similarly, the teleportation from F(+)1P (polarized at −45°) to
F(+)
3A,V can be inferred from Eqs 66–68.
To obtain the fourfold detection probabilities in the WRHP

formalism, Eq. 10 must be used, with a ≡ T , b ≡ f1, c ≡ f2, and
d � di(i � 1, 2). Each summation has sixteen addends. Given that
the vacuum contribution at di(i � 1, 2) coming from F(+)ZPFA is
uncorrelated with the other signals and the quadruple
correlations involving the same polarization at detectors f1 and
f2 are zero (see Eq. 44), the sum is reduced to four addends. By
using Eqs 63–68, the corresponding detection probabilities are as
follows:

• For θ � 45°,

PT ,f 1,f 2,d1 � 0, (69)

PT ,f 1,f 2,d2

KTKf 1Kf 2Kd2
� g4|V |4|](0)|4

8
. (70)

• For θ � −45°,
PT ,f 1,f 2,d1

KTKf 1Kf 2Kd1
� g4|V |4|](0)|4

8
, (71)

PT ,f 1,f 2,d2 � 0. (72)

6 DISCUSSION AND CONCLUSION

In this article, it has been shown that the quintessential
experiment on quantum teleportation, the Innsbruck
experiment, can be understood without the consideration of
collapse and entanglement as necessary ingredients. Compared
to the classical theoretical treatment of this experiment, the
consideration of the ZPF as a real field adds new physical
insights that were not previously discovered. First of all, the
quantum information is carried out by eight sets of ZPF modes
entering the crystal, so that the physical meaning of entanglement
can be found in the correlations that characterize vacuum
amplitudes distributed in the emitted signals. Second, the
projection postulate is closely related to the subtraction of the
zero-point intensity at the detectors, in such a way that the
vacuum inputs located at the idle channels inside the analyzer
limit the distinguishability at Alice’s station. In this sense, the
WRHP formalism provides a more complete description than the
one provided by the standard particle-like image in terms of
photons. This is in consonance with recent approaches to the
quantum jumps, where a deeper insight into the projection
postulate is obtained [36].

In theWRHP approach, the teleportation of the prepared state
once the trigger detector fires, under the condition of a joint
detection in areas f 1 and f 2, is discovered by means of the
quadruple correlation properties of the field and its propagation
throughout the setup. The antisymmetry requirements, fulfilled

in Eqs 49 and 62, constitute the mathematical properties leading
to teleportation in the Innsbruck experiment [5]. In a general
transformation represented by the matrix P̂, teleportation is
explained based on Eqs 49 and 53. Moreover, Eq. 53 is
required for understanding the possibility of reproducing the
prepared state, in the case of a joint detection at separated
detectors in areas f 1 or f 2 (see Eq. 56). In this sense, the
consideration of the classical communication time in the
quadruple correlation (see Eq. 57) reinforces the idea of a
causal interpretation of teleportation.

The role of the zero-point intensity as a threshold for detection
has been applied elsewhere to Bell state analysis [31, 33, 34]. In
this article, new advances have been made in this area. The
maximum Bell state distinguishability of two photons that are
mixed at a beam splitter has been treated in this work for the first
time, in the special situation of two uncorrelated beams entering
the analyzer, of the four two-by-two correlated photons emitted
by the source in the Innsbruck experiment. The possibility of
measuring only three classes of the four polarization Bell states is
based on the subtraction between the four sets of amplified modes
entering the analyzer and one of the four sets of ZPF modes that
enter the idle channels inside Alice’s station. The role of the
phases of the signals entering the analyzer as hidden variables and
the consideration of the ZPF entering the vacuum channels of the
PBSs as a source of noise that limits the capacity for
distinguishing Bell states provide new insights that require
further consideration.

At this point, some comments are in order. The statement
that the information about teleportation is carried out by field
amplitudes and supported by the quadruple correlations
sharply contrasts with the standard description in the
Hilbert space. The collapse of the four-photon state
mediated by detection at the trigger detection area leads to
a three-particle state (see Eq. 12) that constitutes the starting
point of the teleportation protocol [11]. The projection of this
vector via BSM at Alice’s station results in a nonlocal change of
the physical properties of light at Bob’s side, which is identified
throughout the classical communication between Alice and
Bob. This conundrum of the quantum theory, which
conjugates nonlocality and the superposition principle, can
be solved using the WRHP formalism. On the one hand, the
odd-order correlations are identically zero for Gaussian
processes, so that no information about teleportation can
be extracted by looking at the “triple” correlation properties
of the fields F(+)1P , F(+)2 , and F(+)3 . Furthermore, the Wigner
distribution of the four-photon state is positive, so that a
picture in terms of stochastic processes is plausible. In
contrast, the corresponding one to the state given in Eq. 12
is not positive-definite. In this sense, we emphasize that the
physical properties of photon 1 are inherently linked to
photon 4 through the cross-correlation properties of the
light field. Hence, the consideration of the prepared state as
a single-photon state is an oversimplification that hides the
essential nature of teleportation, that is, the possibility of
transferring the physical properties from one location to
another, mediated by the zero-point fluctuations of the
electromagnetic field.
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TheWRHP formalism bridges the gap between quantum optics
and stochastic optics [37] by considering the vacuum field as a real
stochastic field. Moreover, one of the main advantages of using this
approach is the possibility of investigating the role of ZPF
amplitudes as hidden variables to obtain information regarding
the internal mechanism leading to teleportation. This analysis will
be further developed in future studies.
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Several stochastic situations in stochastic electrodynamics (SED) are analytically
calculated from first principles. These situations include probability density functions,
as well as correlation functions at multiple points of time and space, for the zero-point (ZP)
electromagnetic fields, as well as for ZP plus Planckian (ZPP) electromagnetic fields. More
lengthy analytical calculations are indicated, using similar methods, for the simple harmonic
electric dipole oscillator bathed in ZP as well as ZPP electromagnetic fields. The method
presented here makes an interesting contrast to Feynman’s path integral approach in
quantum electrodynamics (QED). The present SED approach directly entails probabilities,
while the QED approach involves summing weighted paths for the wave function.

Keywords: stochastic electrodynamics, probabilistic, classical, multivariate, probability density

1 INTRODUCTION

This article is largely intended for providing a new calculational method for deducing the stochastic
properties of electromagnetic radiation and classical charged particles in the theory called stochastic
electrodynamics (SED). This new calculational method to be described here might well be useful in
some contexts outside of SED; nevertheless, the main focus here will indeed be SED.

Summarizing quickly, SED is a classical physical theory involving classical charged particles and
classical electromagnetic (E&M) radiation, where Maxwell’s classical, microscopic electromagnetic
equations hold. The motion of point charges is assumed to be described by the relativistic
Lorentz–Dirac classical equation of motion. What is particularly interesting about SED is that
the basic assumptions of SED are few, they are not complicated, and their basis makes clear physical
sense. A number of physicists over the years, including the author, have felt that SED might not only
be a substitute for the part of quantum theory (QT) consisting of quantum mechanics (QM) and
quantum electrodynamics (QED), but much more so, provide the basis to derive or deduce QM and
QED, or, at the very least, to provide a deeper physical understanding of QM and QED.

To emphasize this point, many well-known systems traditionally analyzed in QM, such as the
simple harmonic oscillator (SHO) in either one, two, or three dimensions, fluctuating electric dipole
SHOs, including interacting systems of such electric dipoles, plus van der Waals forces, Casimir
forces, the thermal-like behavior of electrodynamic systems uniformly accelerated through the
“vacuum,” diamagnetism, aspects of hydrogen, and blackbody radiation dynamics [1, 2], have all
been analyzed within the classical theory of SED. This range of “QM” phenomena, that has always
been considered outside the domain of classical physics, became understandable in a coherent,
consistent, and logical manner in SED, without needing to draw on any extraneous “physical or
phenomenological” concepts. Moreover, not only did these classical physics, calculations with ZP or
ZPP classical E&M radiation provide close connections with QED results, in some cases, the SED
results also preceded QED calculations, such as pioneered by Boyer in the case of uniformly
electrodynamic system through the “vacuum” [3–7], or even in the case of Casimir and van der
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Waals forces, where the physics in SED seems clearer, and
changing from T � 0 calculations to T > 0 calculations is much
simpler in the case of SED than QED [8].

Recently, Boyer made a strong argument [9] that SED is the
best classical physical theory for describing physical phenomena,
as it contains a range of QM and QED predictions, in addition to
the expected classical physics. Moreover, these QT predictions by
SED are remarkable, not just in their prediction via classical
physics, but also that the supposed faults of classical physics, such
as the collapse of Rutherford’s orbital model of the atom, or no
explanation for van derWaals or Casimir forces, are “repaired” by
taking into account the full interaction between classical charges
and classical electromagnetic radiation.

Some of the key original articles on SED were in the 1960s, by
Marshall [10, 11] and Boyer [12, 13]. As expected for a classical
physical theory, SED recognizes that accelerated and de-
accelerated charges create E&M radiation; in turn, E&M
radiation effects the motion of charged particles via the
Lorentz force term. However, what is significantly different for
SED from classical physics as typically taught, is the recognition
that if classical charged particles can exist in a thermodynamic
equilibrium state, such as for atoms and molecules, then this can
only be done in a stochastic equilibrium between charges and
E&M fields. The E&M fields fluctuate, as expected in blackbody
radiation, but the charges also fluctuate in position, since the two
entities are connected together. Fluctuations of one result in
fluctuations of the other. In other words, the dilemma that
Rutherford immediately recognized after proposing his
“miniature solar system” model of the atom, with electrons
orbiting the nucleus, is addressed in SED. If only classical
charges are present, then Rutherford’s model will result in
E&M energy radiated off as the electrons orbit, and the orbits
will collapse. We now know that the time for decay, for a classical
hydrogen atom, is about 1.3 × 10−11 s, starting from the Bohr
radius [14]. Moreover, if the charges were attempted to be held in
some static configuration (no orbiting), we know from
Earnshaw’s theorem that a stable stationary equilibrium
configuration is also not possible [15]. Thus, classical E&M
radiation and classical charged particles must both be present
if there is any hope for equilibrium, with of course radiation
effecting the particles, and particles creating radiation, and a
stochastic balance resulting.

What the early SED researchers recognized is that to obtain
thermodynamic equilibrium between radiation and charges,
there must be special stochastic properties of the radiation,
and consequently also of the charges. They deduced that these
interesting relationships must logically be deductible at all
temperatures, indeed, even at T � 0, which gave rise to the
notion of classical electromagnetic zero-point (ZP) radiation.

Several good reviews exist on all of this work: Ref. [16]
provides an excellent history on the development of SED.
Other reviews of interest are [9, 17–19]. These reviews discuss
the deductions made by researchers about the properties of
classical electromagnetic ZP radiation, such as Lorentz
invariant [12, 20], and that the fundamental definition of T �
0 must be obeyed by ZP radiation [1, 21, 22]. Some of the more

recent work, such as on hydrogen in SED, is briefly outlined in
Ref. [23].

The outline of this article is as follows. In Sections 2.1 and 2.2,
certain stochastic properties will be calculated for the E&M
radiation fields in SED, first using a new technique that was
covered to a lesser extent in Section 3 of Ref. [23]. Some
comparisons of this approach will also be made to earlier
n-point correlation function approaches by others, particularly
by Boyer [24], as well as Marshall [20], the results of which have
been used extensively, and extended, by others, including this
author. Section 2 has several subsections, including Section 2.3,
which provides checks on the results derived in Section 2.2.
Section 2.4 relates results in Section 2.2 to the multivariate
normal distribution, and why the latter applies to the
stochastic fields described here.

Section 3 ends with some concluding remarks. In particular,
some brief comments are first made about extending this
calculational method to the electric dipole oscillator immersed
in these stochastic fields, meaning either ZP or ZPP fields as
treated in SED. The electric dipole oscillator, one of the first
systems analyzed in SED, is discussed in terms of why this system
“easily” lends itself to the stochastic method discussed here. The
calculations are long with this method, but can be carried out. In
contrast, a system like the classical hydrogen atom is far more
difficult and has not yet been shown to be tractable. The point is
made that a similar situation existed for the Feynman path
integral approach.

2 PROBABILITY DENSITY FUNCTION
CALCULATIONS FOR ELECTRIC AND
MAGNETIC RADIATION FIELDS
2.1 Introduction to the Calculational Method
We will begin the calculations in this article by determining the
probability density functions for various stochastic properties of
the classical electromagnetic ZP radiation fields in SED, as well as
the zero-point plus Planckian (ZPP) fields. Actually, both
situations can be treated at once, with the temperature T in
the expressions allowing the distinction, with 0≤T .

The present Section 2 will address how to determine the
probabilistic functions of the E&M stochastic fields in SED. The
subsequent section, 3, will then turn to calculating the stochastic
properties of a classical electric dipole SHO within ZPP radiation.
The main difference between what will be done in this article and
what is typically done in SED is that normally the mean, the
variance, and correlation quantities of the stochastic E&M fields,
and the position and momentum of the oscillator’s fluctuating
particle are directly calculated. These quantities are sometimes,
although not always, calculated at different times and positions in
SED. For some problems, the correlations at different times and
positions are critical, although this is not the case for many other
types of SED problems. One place where clearly the different
times and positions were essential in the system analysis, had to
do with the uniform acceleration of electrodynamic systems
through the vacuum, such as in Refs. [3–7].
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Of course, given any probability distribution or density
function associated with a single random variable X, one can
calculate an infinite number of moments, such as
〈(X − 〈X〉)N〉 � ∫∞−∞ dxP(x)(x − 〈x〉)N , for N � 1, 2, 3, . . .,
where the angled brackets mean “expectation value,” and
where P(x) is the probability density function associated with
X. However, for a Gaussian probability density distribution of a
single random variable, there are only two defining parameters,
namely, the mean, or μ ≡ 〈X〉, and the variance,
σ2 ≡ 〈(X − 〈X〉)2〉. All other moments 〈(X − 〈X〉)N〉, for
N � 1, 2, 3, . . ., can be expressed in terms of just µ and σ.

For a multivariate Gaussian distribution, which actually
defines the classical ZP and ZPP E&M radiation, each
frequency and polarization component of the radiation is
assumed to be governed by an independent Gaussian process.
Thus, the situation is more complicated. Nevertheless, the
previous paragraph helps to identify the difference between
past work in SED involving stochastic process calculations,
which largely dealt with moment calculations like
〈(X − 〈X〉)N〉, whereas here we will directly calculate
quantities like P(x).

Early on in SED, the “two-point correlation functions” of the
stochastic fields, at different times and positions, were calculated
in detail, and were used to deduce “n point” correlation functions,
again where different times and spatial positions were included
when calculating these correlation functions. An excellent source
for investigating deeply these “n point” correlation functions was
by Boyer in Ref. [24], where not only were the SED correlation
functions determined, but also compared to the expectation
values of the corresponding QED functions, involving
annihilation and creation operators. The quantities were
shown to be in agreement, provided the quantum operators
were symmetrized. In contrast, in this article, the probabilities
of these quantities will be directly calculated, rather than
calculating individual moments of fields and oscillator
coordinates. This same approach can also be used in a similar
manner for the probability distribution for linear nonrelativistic
electric dipole SHOs, although the calculations become even
longer than for the fields. Brief comments will be made on
this topic in Section 3.

As often done in SED, where the ZP and ZPP fields are critically
important to the final physics results, the radiation fields at
temperature T ≥ 0 are characterized by T of course, but must
also be thought of as having a rapid variation in space and time.
This aspect was tackled by Planck using classical physics, covered in
the first half of his famous book [25], “The Theory of Heat
Radiation,” which is still basically represented by the SED theory.
The second half of his book, however, introduces quantum concepts
involving energy and frequency related to what QT now treats as
photons. SED certainly avoids this direction, but the first part of
Planck’s work, which was also used later by Einstein and Hopf [26,
27], still applies to the beginnings of SED. Indeed, the work by
Marshall and Boyer in SED has parallels to this early work by Planck
and Einstein and Hopf, with the important caveat that equilibrium
radiation must exist at T � 0 [12, 13], and the recognition that ZP
radiation is key to getting the stochastic thermodynamic behavior of
classical charged particles and classical E&M correct.

To adequately describe the “radiation dynamics” in SED,
usually a large region of space is considered, where “large”
means compared to the size that any charged particles
representing atomic systems are encompassing or traversing.
Thus, in the same vein as Planck, Einstein, and Hopf, SED
typically considers a rectangular parallelepiped region in space,
with dimensions Lx , Ly , and Lz , along the x, y, and z axes. Other
shapes can in principle be used, but a rectangular parallelepiped
offers mathematical simplicity, without effecting the physical
description if the volume is large. The radiation fields
representing ZP or ZPP conditions are typically expressed as
an infinite sum of plane waves, with periodic boundary
conditions (bcs) imposed. The imposition of periodic bcs
makes use of the Fourier analysis process for representing the
fields, such that if the region is large enough, then the imposition
of periodicity does not affect the physical analysis, but does
simplify the subsequent mathematical analysis.

Thus, the following expressions for the “free” electric E(x, t)
and magnetic B(x, t) radiation fields in this large parallelepiped
volume can be written as the following sum of plane waves [16]:

E(x, t) � 1

(LxLyLz)1/2 ∑∞
nx ,ny ,nz�−∞

∑
λ�1,2

ε̂kn ,λ[Akn ,λcos(kn · x − ωnt)

+ Bkn ,λsin(kn · x − ωnt)],
(1)

B(x,t)� 1

(LxLyLz)1/2 ∑∞
nx ,ny ,nz�−∞

∑
λ�1,2
(k̂n× ε̂kn ,λ)[Akn ,λcos(kn ·x−ωnt)

+Bkn ,λsin(kn ·x−ωnt)],
(2)

where

kn � 2πnx

Lx
x̂ + 2πny

Ly
ŷ + 2πnz

Lz
ẑ, (3)

and nx , ny , and nz are integers, and ωn � c|kn|,
kn · ε̂kn ,λ � kn · ε̂kn ,λ′ � 0, and ε̂kn ,λ · ε̂kn ,λ′ � 0 for λ≠ λ′, where λ
and λ′ indicate the linear polarization direction. Specifically, λ
might be represented by the values 1 or 2, and the same for λ′.
Also, k̂n � kn/|kn|. Equations 1 and 2 satisfy the wave equations
of ∇2E(x, t) � 1

c2
z2

zt2 E(x, t) and ∇2B(x, t) � 1
c2

z2

zt2 B(x, t), which
can be deduced from Maxwell’s equations for free space (charge
density and current charge density both equal to zero). Moreover,
the presence of ε̂kn ,λ and (k̂n × ε̂kn ,λ) in Eqs. 1, 2 respectively, and
the cited relationships of kn · ε̂kn ,λ � kn · ε̂kn ,λ′ � 0, and ε̂kn ,λ ·
ε̂kn ,λ′ � 0 for λ≠ λ′, provide the other needed relationships for
satisfying the four Maxwell’s equations for free fields, such as
Faraday’s law of ∇ × E � − z

czt B.
Following more or less the lead of Planck’s first half of Ref. [25],

the above radiation fields represent the stochastic fluctuations of
thermal radiation, for 0≤T (i.e., including T � 0), with the
following assumptions. The coefficients of the expressions for
E(x, t) and B(x, t) in Eqs. 1 and 2, namely, Akn ,λ and Bkn ,λ,
were assumed to be randomly distributed in the following way
initially, but once fixed, they stay fixed in all physical analysis, such
as in the interaction of charged oscillators and radiation, as in
simulations of [28–31]. In the case of simulations, the physical
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picture is conceptually fairly simple, although of course
computationally intensive. Each time a charged particle system,
such as an “oscillator or atom,” undergoes its motion due to an
atomic binding force, and due to the radiation fields in Eqs. 1 and
2, the subsequent scenario of particle motion and radiation
fluctuations would represent a real situation of say, the classical
atom inside a large cavity kept at temperature T. However,
“redoing” the simulation or “experiment” would be carried out
with a different set of Akn ,λ and Bkn ,λ coefficients, to represent a
similar but different initial set of conditions.

Each time a similar “experiment” of radiation and charges is
considered, the experiment is treated as another member of the
ensemble of similar experiments. This part of SED coincides with
the thoughts in the first half of Planck’s major treatise [25] and later
by Einstein’s and Hopf [26, 27]. Related SED discussions can be
found in Refs. [16, 17]. However, most of the following relationships
make physical sense without even referring to these references.

Specifically, the expectation value of these coefficients
characterizing the ensemble of ZPP radiation fields is of
course zero:

〈Akn ,λ〉 � 〈Bkn ,λ〉 � 0. (4)

Moreover, the “A and B coefficients” are considered to be both
independent and uncorrelated random variables in this
ensemble, so

〈Akn ,λBkn′ ,λ′
〉 � 0, (5)

as are the “A coefficients” with different indices, and the same for
the “B coefficients”:

〈Akn ,λAkn′ ,λ′
〉 � 〈Bkn ,λBkn′ ,λ′

〉 � 0, if n≠n′ or λ≠ λ′. (6)

However, for two “A coefficients” with the same indices, and
similarly for the “B coefficients,” then of course, these quantities
cannot be zero, but are assumed to be functions of the frequency
of the radiation and of the temperature T:

〈Akn ,λAkn ,λ〉 � 〈Bkn ,λBkn ,λ〉 � [σ(ωn,T)]2. (7)

Although Eqs. 4–7 are indeed assumed in SED, the more general
relationship that includes all these relationships, plus more, is that
the A′s and B′s coefficients are assumed to be independent
random variables, with zero mean as in Eq. 4, with variance
[σ(ωn,T)]2, and with probability density distributions
characterizing the ensemble of possible radiation situations
characterizing thermal radiation at temperature T, for 0≤T , as
being Gaussian distributions. Specifically:

P(Akn ,λ) � 1������������
2π[σ(ωn,T)]2
√ exp{ − 1

2
[ Akn ,λ

σ(ωn,T)]
2}, (8)

with the same also holding for P(Bkn ,λ). From these independent
Gaussian distributions, Eqs. 4–7 also follow.

Initial understanding of the importance of the statistical
properties of ZP and ZPP in SED, and how these properties
relate to the resulting fluctuating and equilibrium properties

of charged particles interacting with this radiation, focused a
fair bit on [σ(ωn,T)]2 [16]. The Lorentz invariant property of
ZP found independently by Marshall [20] and Boyer [12], is
due to the functional form connected to this function. Similarly,
the thermodynamic connection of the meaning of T � 0 to
this radiation and interacting particles is also tied to
[σ(ωn,T)]2 [1, 21, 22]. Other work by Boyer deduced
additional symmetry properties of the required classical E&M
nature of ZP and ZPP radiation that involved scaling and
conformal invariances [32].

All of these analyses have led to the following in SED for the
ZPP spectrum:

[σ(ωn,T)]2 � 2πZωn + 4πZωn

exp(Zωn
kBT
) − 1

� 2πZωncoth( Zωn

2kBT
). (9)

Note: lim
T→ 0

coth( Zωn
2kBT
) � 1. Consequently, the term 2πZωn

constitutes the ZP (T→ 0) spectrum contribution, while the
4πZωn

exp(ZωnkBT
)−1 term is the Planckian part. Using Eqs. 9, 1, and 2,

the ensemble average of the net energy due to these thermal
radiation fields for 0≤T , within the Lx × Ly × Lz rectilinear
parallelepiped, can be calculated. Specifically, using the
relationships above, and the usual relationship between
electromagnetic energy in free space and the E&M fields [15], yields

E � ∫​

dV
1
8π

〈E2(x, t) + B2(x, t)〉 �∑
n

⎡⎢⎣Zωn

2
+ Zωn

exp(Zωn
kBT
) − 1

⎤⎥⎦,
(10)

where ωn � c|kn| follows from Eq. 3; n is composed of {nx, ny, nz},
where nx, ny, nz are each integers, ranging from −∞ to ∞. The

term in Eq. 10 of Zωn
2 is considered the ZP radiation contribution,

since as T→ 0, the second term of Zωn

exp(ZωnkBT
)−1 vanishes. This second

term is what Planck concentrated his efforts upon, and of course is
connected to the Planck spectrum. We will refer to Eq. 10 as being
due to the ZP plus Planckian spectrum, or as the ZPP spectrum.

Now, we are in a position to calculate the probability
distributions of E(x, t) and B(x, t) in Eqs. 1 and 2, as well
as consider much more complicated joint probabilities
involving E(x, t) and B(x, t). We will carry this analysis out
now; again, in Section 3, we will apply these ideas to electric
dipole oscillators in SED.

We start by calculating the probability density function of
realizing a specific value of the electric field, for the ZPP situation.
Our ensemble varies of course due to its ensemble members,
meaning by the ensemble distribution of the A′s and B′s in Eqs. 1
and 2 each time a new radiation situation is considered, then new
A′s and B′s are realized according to the probability density
distribution in Eq. 8, that then remain of constant values over
the course of the subsequent physical analysis involving charged
particles and fields.

As a start, the probability density distribution at position x and
time t in Eq. 1 is
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P(E at x, t) � ∫
−∞

∞

dA1/∫
−∞

∞

dAN/∫
−∞

∞

dB1/∫
−∞

∞

dBN/P(A1, . . . ,

AN , . . . ,BN , . . . )δ3[E − EZPP(x, t)], (11)

where A′s and B′s here are symbolically written to represent
the coefficients in Eq. 1, but as labeled there by Akn ,λ and Bkn ,λ.
In Eq. 11, P(A1, . . . ,AN ,B1, . . . ,BN ) represents the
probability density function of all these coefficients. In the
end, we would let N→∞. By EZPP(x, t) in the Dirac delta
function, we mean Eq. 1, but where the ZPP conditions of
Eqs. 8-9 hold.

The key variables being integrated over in Eq. 11 are Akn ,λ

and Bkn ,λ variables. The integrations from −∞ to +∞ cover the
range of their full possible values, while
P(A1, . . . ,AN , B1, . . . ,BN) provides the probability density
associated with those values, and δ3[E − EZPP(x, t)] selects
the values such that the probability density P(E at x, t) arises
from all the possible matches of EZPP(x, t) to the electric field
value in question of E at x, t. As a side comment, in a sense, Eq.
11 has something in common with the Feynman path integral
method in QM and QED, as the latter integrates over all weighted
“path” contributions of a wave function evolving from one state to
another. In contrast, Eq. 11 considers all the “paths,” or allowed
values of the Akn ,λ and Bkn ,λ coefficients in the ensemble of radiation
possibilities, that result in the condition E at x, t. While Eq. 11
directly involves probabilities, the Feynman path integral involves
the QM wave function Ψ, with

∣∣∣∣Ψ|2 more indirectly providing the
probability aspect.

Returning back to our present calculation involving Eq. 11, if
either n≠ n′, or λ≠ λ′, then Akn ,λ and Akn

′
,λ′ represent independent

random variables, as do Bkn ,λ and Bkn
′
,λ′; moreover, Akn ,λ and Bkn

′
,λ′

are also independent random variables, even when n � n′ and
λ � λ′. Using the Fourier representation for the Dirac delta
function in Eq. 11 of

δ3[E − EZPP(x, t)] � 1
2π
∫∞

−∞
dsxe

isx(Ex−Ex,ZPP) 1
2π
∫∞

−∞
dsye

isy(Ey−Ey,ZPP)

1
2π
∫∞

−∞
dsze

isz(Ez−Ez,ZPP), (12)

in addition to the Gaussian distribution in Eq. 8, then Eq. 11
becomes:

P(E at x, t) � ∫
−∞

∞

dA1/∫
−∞

∞

dAN . . .
1�����

2πσ2
n1

√ exp[ − (A1)2
2σ2n1

] . . . 1�����
2πσ2nN

√ exp[ − (AN )2
2σ2

nN

] . . .

×∫
−∞

∞

dB1/∫
−∞

∞

dBN . . .
1�����

2πσ2n1

√ exp[ − (B1)2
2σ2

n1

] . . . 1�����
2πσ2

nN

√ exp[ − (BN )2
2σ2

nN

] . . .

× 1
2π
∫
−∞

∞

dsxe
isx(Ex−Ex,ZPP) 1

2π
∫
−∞

∞

dsye
isy(Ey−Ey,ZPP) 1

2π
∫
−∞

∞

dsze
isz(Ez−Ez,ZPP) ,

(13)
where to simplify notation, ωn and T will be suppressed here:

[σ(ωn,T)]2 ≡ σ2
n . (14)

To evaluate Eq. 13, Eq. 1 needs to be substituted in three places
on the last line. To simplify notation yet again, let us replace Eq. 1 via

EZPP(x, t) �∑
q

AqEcq +∑
q

BqEsq, (15)

where q represents all the indices of nx, ny, nz , λ, with their
appropriate ranges, Aq still represents Akn ,λ, and likewise for Bq

and Bkn ,λ, and we will also refer to σ2n as σ2q from here on, again
to simplify notation. Also, in Eq. 15, the expression has been
abbreviated using

Ecq ≡
1

(LxLyLz)1/2 ε̂kn ,λcos(kn · x − ωnt), (16)

and

Esq ≡
1

(LxLyLz)1/2 ε̂kn ,λsin(kn · x − ωnt). (17)

Hence:

P(E at x, t) � ∫​

dA1/∫​

dAN . . .
1����
2πσ21
√ exp[ − (A1)2

2σ21
] . . . 1�����

2πσ2N
√ exp[ − (AN )2

2σ2N
] . . .

×∫​

dB1/∫ ​

dBN . . .
1����
2πσ21
√ exp[ − (B1)2

2σ21
] . . . 1�����

2πσ2N
√ exp[ − (BN )2

2σ2N
] . . .

× 1
2π
∫
−∞

∞

dsxe
isx(Ex−∑

q
(AqEcq,x+BqEsq,x))

× 1
2π
∫
−∞

∞

dsye
isy(Ey−∑

q

AqEcq,y+BqEsq,y)

× 1
2π
∫
−∞

∞

dsze
isz(Ez−∑

q

AqEcq,z+BqEsq,z)
.

(18)
These integrals can be done by completing the squares of theAq and Bq

variables, then integrating over the resulting Gaussian expressions,
followed by the integrals over s1, s2, s3. For example, completing the
square:

− (Aq)2
2σ2q

− isxAqEcq,x − isyAqEcq,y − iszAqEcq,z

� − 1
2σ2q
[Aq + i(sxEcq,x + syEcq,y + szEcq,z)σ2q]2

− (sxEcq,x + syEcq,y + szEcq,z)2σ2q2

(19)

results in:

∫
−∞

∞

dAq
1����
2πσ2q
√ exp⎡⎢⎢⎢⎣ − (Aq)2

2σ2q
⎤⎥⎥⎥⎦e−isxAqEcq,x e−isyAqEcq,y e−iszAqEcq,z

� ∫
−∞

∞

dAq
1����
2πσ2q
√ exp

⎧⎨⎩ − 1
2σ2

q

[Aq + i(sxEcq,x + syEcq,y + szEcq,z)σ2
q]2⎫⎬⎭

× exp[ − (sxEcq,x + syEcq,y + szEcq,z)2σ2
q

2
]

� exp[ − (sxEcq,x + syEcq,y + szEcq,z)2σ2q2 ],

(20)

since the Gaussian integral in the second line equals unity.
Continuing for each Aq and Bq results in:
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P(E at x, t) � 1
2π
∫
−∞

∞

dsxe
isxEx

1
2π
∫
−∞

∞

dsye
isyEy

1
2π
∫
−∞

∞

dsze
iszEz

× exp⎡⎢⎢⎣ −∑
q

(sxEcq,x + syEcq,y + szEcq,z)2σ2q2 ⎤⎥⎥⎦
× exp⎡⎢⎢⎣ −∑

q

(sxEsq,x + syEsq,y + szEsq,z)2σ2
q

2
⎤⎥⎥⎦.

(21)

Three integrals remain, namely, over sx , sy , sz . The
arguments of the two exponential terms in the second and
third lines of Eq. 21, become, after making use of Eqs. 16
and 17:

(sxEcq,x + syEcq,y + szEcq,z)2 + (sxEsq,x + syEsq,y + szEsq,z)2
� 1(LxLyLz) (s2xε2q,x + s2yε

2
q,y + s2zε

2
q,z + 2sxsyεq,xεq,y

+2sxszεq,xεq,z + 2syszεq,yεq,z). (22)

Still, the three integrals in Eq. 21 are nontrivial to evaluate,
because of the cross terms in Eq. 22. However, the
integrals can be greatly simplified by first summing
over the polarization indices of λ � 1, 2 as part of the “q”
set of indices, and making use of the following
identities for the three perpendicular unit vectors of ε̂kn ,1,
ε̂kn ,2, and kn:

∑
λ�1,2
[(ε̂kn ,λ)i]2� 1 − [(kn)i

kn
]2, (23)

∑
λ�1,2
(ε̂kn ,λ)i(ε̂kn ,λ)j� δij − (kn)i(kn)j

k2n
. (24)

After summing over the λ part of the q indices, one obtains:

∑
q

(s2xε2q,x + s2yε
2
q,y + s2zε

2
q,z + 2sxsyεq,xεq,y + 2sxszεq,xεq,z + 2syszεq,yεq,z)σ2

q

�∑
n

{s2x[1 − (kn,xkn
)2] + s2y[1 − (kn,ykn

)2] + s2z[1 − (kn,zkn
)2]}σ2n

−2∑
n

[sxsykn,xkn,yk2n
+ sxsz

kn,xkn,z
k2n

+ sysz
kn,ykn,z
k2n

]σ2n.
(25)

Although the “cross terms” involving sxsy , sxsz , sysz still remain,
upon summing over n in the last three terms, we obtain

∑
n

kn,ikn,j
k2n

σ2
n � 0 for i≠ j , (26)

since nx , ny , nz each vary as integers symmetrically from −∞ to
+∞, where kn is given in Eq. 3.

Consequently, from Eqs. 21, 25 and 26:

P(E at x, t) � I1I2I3, (27)

where

Ii ≡
1
2π
∫∞

−∞
dsiexp⎛⎝isiEi − 1

2
s2i(LxLyLz)∑n [1 − (

kn,i
kn
)2]σ2

n
⎞⎠.
(28)

Simplifying notation, let

αi ≡
1(LxLyLz)∑n [1 − (

kn,i
kn
)2]σ2n. (29)

By then completing the square in Eq. 28 and carrying out the
integral, yields

Ii � 1
2π
∫
−∞

∞

dsiexp( − s2i αi
1
2
+ isiEi)

� 1
2π

exp( − E2
i

2αi
)∫

−∞

∞

dsiexp[ − αi

2
(si − iEi

αi
)2]

� 1
2π

exp( − E2
i

2αi
)(2π

αi
)1/2,

(30)

resulting in

P(E at x, t) � I1I2I3

� 1

(2π)32
1

(α1α2α3)1/2
exp( − E2

x

2α1
− E2

y

2α2
− E2

z

2α3
). (31)

More insight into Eq. 31 can be gained by relating αi in Eq. 29, to
〈E2

ZPP,i(x, t)〉, using Eqs. 6, 7, and 23:

〈E2
ZPP,i(x, t)〉 �〈⎧⎪⎨⎪⎩ 1

(LxLyLz)1/2 ∑
nx ,ny ,nz�−∞

∞ ∑
λ�1,2
(ε̂kn ,λ)i

×[Akn ,λcos(kn · x − ωnt) + Bkn ,λsin(kn · x − ωnt)]⎫⎪⎬⎪⎭
2〉

� 1(LxLyLz) ∑
nx ,ny ,nz�−∞

∞ ∑
λ�1,2
[(ε̂kn ,λ)i]2σ2n[cos2(kn · x − ωnt)

+ sin2(kn · x − ωnt)]
� 1(LxLyLz) ∑

nx ,ny ,nz�−∞

∞ [1 − (kn,i
kn
)2]σ2

n . (32)

Combining Eqs. 29, 31 and 32 and noting

αi � 〈E2
ZPP,i(x, t)〉, (33)

we obtain:

P(E at x, t) �
exp[ − E2x

2〈E2ZPP,x〉
]���������

2π〈E2
ZPP,x〉

√ exp[ − E2y
2〈E2ZPP,y〉

]���������
2π〈E2

ZPP,y〉
√ exp[ − E2z

2〈E2ZPP,z〉
]���������

2π〈E2
ZPP,z〉

√ .

(34)

Note that the mathematically detailed development of Eq. 34, and
shortly Eq. 37 for the magnetic field case, agree nicely with the less
detailed, but still the same result from Ref. [16].
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In the symmetrical situation, with Lx � Ly � Lz chosen for the
rectilinear parallelepiped, then

〈E2
ZPP,x〉 � 〈E2

ZPP,y〉 � 〈E2
ZPP,z〉 � 〈E2

ZPP,i〉

� 1(LxLyLz) ∑
nx ,ny ,nz�−∞

∞ {1 − [(kn)i
kn
]2}σ2

n �
2

3(LxLyLz) ∑
nx ,ny ,nz�−∞

∞

σ2
n

(35)

and

PLx�Ly�Lz(E at x, t) � 1

(2π〈E2
i 〉)3/2 exp⎡⎣ −

(E2
x + E2

y + E2
z)

2〈E2
i 〉

⎤⎦. (36)

Thus, the probability density for the radiation electric field E at
position x and time t, from either Eqs. 34 or 36, equals the product of
three Gaussian functions. Moreover, the probability density of E is
independent of position x and time t. If material walls existed, as in a
cavity of arbitrary shape, as opposite to this free space situation treated
by periodic bcs, then the probability density function for the fields
could well be dependent on position. In Planck’s original treatment of
blackbody radiation [25], he considered a cavity with smooth walls
and a size that was large compared to the key wavelengths of interest.
Since his work, researchers have probed on variations of these
concerns, including small cavities, often referred to as the areas of
quantum cavity electrodynamics [33, 34]. To treat these problems in
SED, one would need to take into account the precise nodal structure
due to the cavity shape, and likely not take continuum approximation
limits.

Looking back at the calculations, it is fairly easy to show
that when analyzing magnetic fields, but now using Eq. 2,
that:

P(B at x, t) �
exp[ − B2x

2〈B2ZPP,x〉
]���������

2π〈B2
ZPP,x〉

√ exp[ − B2y
2〈B2ZPP,y〉

]���������
2π〈B2

ZPP,y〉
√ exp[ − B2z

2〈B2ZPP,z〉
]���������

2π〈B2
ZPP,z〉

√ .

(37)

Finally, a caution needs to be made upon understanding Eqs.
32–37. When ZP radiation is included in the analysis, which is
indeed a cornerstone of SED, 〈E2

ZPP,i(x, t)〉 is infinite, as the
energy spectrum monotonically grows with larger values of
frequency. If one only considers the Planckian part of the
spectrum, then this infinity does not happen. However, for
calculating quantities like Casimir forces, van der Waals
forces, and prevention of hydrogen collapse, it is absolutely
essential to include the ZP spectrum. Cutoffs of the spectrum
have been considered, but to date, the usual treatment has been to
examine changes in regions between material boundaries, such as
plates or cavity walls, when these are displaced. Such changes in
energy due to wall displacements are finite, even with ZP fields
[2]. Moreover, the results agree with experiments carried out to
date. However, when considering the calculation in the next
section, involving the probability of the electric field at two
different positions and/or times, this infinity problem does not
occur, unless the two points are chosen to be the same point both
in space and time, or if |Δx| � c|Δt|.

2.2 Joint Probability Density for Two Electric
Field Values
The method just used can in principle be carried out for a wide
range of probabilistic situations, with the key starting point
being a similar condition to Eq. 11. A second calculation for a
more complicated situation will be carried out here to
illustrate this point. Before beginning, it is interesting to
note that a number of “two-point” correlation functions of
fields in SED have been calculated before by researchers, with
the key reference being [24], but also [20], as well as by the
present author in Ref. [35] and even for two-point correlation
functions involving points in space and time following
uniformly accelerated trajectories [7]. Clearly, probability
density distributions such as in Eqs. 34 and 37 are more
general, since they can be used to deduce all possible
moments of the probability distribution; however, their
calculation is in general much more involved.

Here, we will calculate the joint probability density function of

P(E1 at x1, t1;E2 at x2, t2)
� ∫ ​

dA1/∫​

dAN/∫​

dB1/∫ ​

dBN/P(A1, . . . ,AN , . . . ,BN , . . . )
(38)

×δ3[E1 − EZPP(x1, t1)]δ3[E2 − EZPP(x2, t2)], (39)

where the semicolon in the first line is intended as a shortened
meaning for the logical “AND” symbol of ∩ ​ .

Again, we make use of the random variable independence of the
A′s and B′s for a normal thermodynamic radiation situation, and
impose the distribution Eq. 8, plus use Eq. 12, to obtain:

P(E1 at x1 , t1;E2 at x2 , t2)

� ∫ ​

dA1/∫ ​

dAN/
1�����

2πσ2n1

√ exp[ − (A1)2
2σ2

n1

]/ 1�����
2πσ2nN

√ exp[ − (AN )2
2σ2nN

]/
×∫ ​

dB1/∫ ​

dBN/
1�����

2πσ2n1

√ exp[ − (B1)2
2σ2

n1

]/ 1�����
2πσ2nN

√ exp[ − (BN )2
2σ2nN

]/

× 1
2π
∫
−∞

∞

ds1xe
is1x(E1x−E1x,ZPP) 1

2π
∫
−∞

∞

ds1ye
is1y(E1y−E1y,ZPP) 1

2π
∫
−∞

∞

ds1ze
is1z(E1z−E1z,ZPP)

× 1
2π
∫
−∞

∞

ds2xe
is2x(E2x−E2x,ZPP) 1

2π
∫
−∞

∞

ds2ye
is2y(E2y−E2y,ZPP) 1

2π
∫
−∞

∞

ds2ze
is2z(E2z−E2z,ZPP) ,

(40)

where the positions x1 and x2 and times t1 and t2 are contained in the
radiation field expressions of Eq. 1 or 15. Thus, in Eq. 40, E1x,ZPP,
E1y,ZPP, and E1z,ZPP refer to EZPP(x1, t1) as in Eq. 15, and similarly for
EZPP(x2, t2). Again abbreviating expressions, as in 16 and 17, with
a � 1, 2, as below:

EZPP(xa, ta) � 1

(LxLyLz)1/2 ∑
nx ,ny ,nz�−∞

∞ ∑
λ�1,2

ε̂kn ,λ [Akn ,λcos(kn · xa

−ωnta) + Bkn ,λsin(kn · xa − ωnta)]
�∑

q

AqEa,cq +∑
q

BqEa,sq. (41)

Collecting the Aq-related terms in Eq. 40 as in the following
manner, then later doing similarly for the Bq terms:
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−(Aq)2
2σ2q

− is1xAqE1,cq,x − is1yAqE1,cq,y − is1zAqE1,cq,z − is2xAqE2,cq,x

− is2yAqE2,cq,y − is2zAqE2,cq,z

� − 1
2σ2

q

[Aq + i(s1xE1,cq,x + s1yE1,cq,y + s1zE1,cq,z

+ s2xE2,cq,x + s2yE2,cq,y + s2zE2,cq,z)σ2
q]2−(s1xE1,cq,x + s1yE1,cq,y

+ s1zE1,cq,z + s2xE2,cq,x + s2yE2,cq,y + s2zE2,cq,z)2σ2
q

2
. (42)

Now integrating over each Aq term, followed later by integrating
over the related Bq term expression, results in:

∫
−∞

∞

dAq
1����
2πσ2q
√ exp⎡⎢⎢⎢⎣ − (Aq)2

2σ2q
⎤⎥⎥⎥⎦e−i(s1xAqE1,cq,x+s1yAqE1,cq,y+s1zAqE1,cq,z+s2xAqE2,cq,x+s2yAqE2,cq,y+s2zAqE2,cq,z)

� ∫
−∞

∞

dAq
1����
2πσ2q
√ exp⎡⎢⎢⎢⎣ − 1

2σ2q
⎡⎢⎢⎣Aq + i⎛⎝ s1xE1,cq,x + s1yE1,cq,y + s1zE1,cq,z

+s2xE2,cq,x + s2yE2,cq,y + s2zE2,cq,z

⎞⎠σ2q⎤⎥⎥⎦
2⎤⎥⎥⎥⎦

× exp[ − (s1xE1,cq,x + s1yE1,cq,y + s1zE1,cq,z + s2xE2,cq,x + s2yE2,cq,y + s2zE2,cq,z)2σ2q2 ]
� exp[ − (s1xE1,cq,x + s1yE1,cq,y + s1zE1,cq,z + s2xE2,cq,x + s2yE2,cq,y + s2zE2,cq,z)2σ2q2 ].

(43)
Integrating over each Aq and Bq results in:

P(E1 at x1 , t1; E2 at x2, t2)

� 1

(2π)6 ∫−∞
∞

ds1xe
is1xE1x ∫

−∞

∞

ds1ye
is1yE1y ∫

−∞

∞

ds1ze
is1zE1z ∫

−∞

∞

ds2xe
is2xE2x ∫

−∞

∞

ds2ye
is2yE2y ∫

−∞

∞

ds2ze
is2zE2z

× exp⎡⎢⎢⎣ −∑
q

(s1xE1,cq,x + s1yE1,cq,y + s1zE1,cq,z + s2xE2,cq,x + s2yE2,cq,y + s2zE2,cq,z)2σ2q2 ⎤⎥⎥⎦
× exp⎡⎢⎢⎣ −∑

q

(s1xE1,sq,x + s1yE1,sq,y + s1zE1,sq,z + s2xE2,sq,x + s2yE2,sq,y + s2zE2,sq,z)2σ2
q

2
⎤⎥⎥⎦
(44)

Six integrals remain, namely, over s1x , s1y , s1z , s2x , s2y , and s2z .
The arguments of the exponential terms in the last lines of Eq.
44, using Eq. 41 as well as Eqs. 16 and 17, and recognizing that
many of the terms below have the simplification factor of

cos2(kn · xa − ωnta) + sin2(kn · xa − ωnta) � 1 , (45)
for either a � 1 or 2, then:

(s1xE1,cq,x + s1yE1,cq,y + s1zE1,cq,z + s2xE2,cq,x + s2yE2,cq,y + s2zE2,cq,z)2
+(s1xE1,sq,x + s1yE1,sq,y + s1zE1,sq,z + s2xE2,sq,x + s2yE2,sq,y + s2zE2,sq,z)2
� 1(LxLyLz) (s21xε2q,x + s21yε

2
q,y + s21zε

2
q,z + s22xε

2
q,x + s22yε

2
q,y + s22zε

2
q,z)

+ 2(LxLyLz) (s1xεq,xs1yεq,y + s1xεq,xs1zεq,z + s1yεq,ys1zεq,z)
+ 2(LxLyLz) (s2xεq,xs2yεq,y + s2xεq,xs2zεq,z + s2yεq,ys2zεq,z)
+ 2s1xεq,x(LxLyLz) (s2xεq,x + s2yεq,y + s2zεq,z)(C1C2 + S1S2)

+ 2s1yεq,y(LxLyLz) (s2xεq,x + s2yεq,y + s2zεq,z)(C1C2 + S1S2)

+ 2s1zεq,z(LxLyLz) (s2xεq,x + s2yεq,y + s2zεq,z)(C1C2 + S1S2)

(46)

The meaning of the abbreviated terms (C1C2 + S1S2) is:
(C1C2 + S1S2) � cos(kn · x1 − ωnt1)cos(kn · x2 − ωnt2)
+sin(kn · x1 − ωnt1)sin(kn · x2 − ωnt2)
� cos[kn · (x1 − x2) − ωn(t1 − t2)] ≡ C12,n. (47)

Again summing over the polarization indices of λ � 1, 2 as part of the
“q” set of indices in the last lines ofEq. 44, andmaking useEqs. 23 and
24, plus noting that the cross terms of εq,iεq,j for i≠ j, will drop out due
to the sum in Eq. 26, results in:

∑
q

(s1xE1,cq,x + s1yE1,cq,y + s1zE1,cq,z + s2xE2,cq,x + s2yE2,cq,y + s2zE2,cq,z)2
+∑

q

(s1xE1,sq,x + s1yE1,sq,y + s1zE1,sq,z + s2xE2,sq,x + s2yE2,sq,y + s2zE2,sq,z)2

� 1(LxLyLz) ∑
nx ,ny ,nz�−∞

∞ ⎡⎢⎢⎣(s21x + s22x)(1 − k2
n,x

k2n
) + (s21y + s22y)⎛⎝1 − k2

n,y

k2n
⎞⎠

+ (s21z + s22z)(1 − k2
n,z

k2n
)⎤⎥⎥⎦ + 2(LxLyLz) ∑

nx ,ny ,nz�−∞

∞ ⎡⎢⎢⎣s1xs2x(1 − k2
n,x

k2n
)

+ s1ys2y⎛⎝1 − k2
n,y

k2n
⎞⎠ + s1zs2z(1 − k2

n,z

k2n
)⎤⎥⎥⎦C12,n .

(48)
Hence:

P(E1 at x1, t1;E2 at x2, t2) � 1

(2π)6 ∫−∞
∞

ds1xe
is1xE1x ∫

−∞

∞

ds1ye
is1yE1y

∫
−∞

∞

ds1ze
is1zE1z ∫

−∞

∞

ds2xe
is2xE2x ∫

−∞

∞

ds2ye
is2yE2y ∫

−∞

∞

ds2ze
is2zE2z

× exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− 1(LxLyLz) ∑∞

nx ,ny ,nz�−∞

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s21x + 2s1xs2xC12,~n + s22x)(1 − k2
n,x

k2n
)

+(s21y + 2s1ys2yC12,~n + s22y)⎛⎝1 − k2
n,y

k2n
⎞⎠

+(s21z + 2s1zs2zC12,~n + s22z)(1 − k2
n,z

k2n
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

σ2q
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� I1x2xI1y2yI1z2z

(49)where

I1x2x ≡
1

(2π)2 ∫
∞

−∞
ds1x ∫∞

−∞
ds2x

exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

is1xE1x + is2xE2x

− 1(LxLyLz) ∑∞
nx ,ny ,nz�−∞

(s21x + 2s1xs2xC12,n + s22x)(1 − k2
n,x

k2n
) σ2n

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(50)

I1y2y ≡
1

(2π)2 ∫
∞

−∞
ds1y ∫∞

−∞
ds2y

exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
is1yE1y + is2yE2y

− 1(LxLyLz) ∑∞
nx ,ny ,nz�−∞

(s21y + 2s1ys2yC12,n + s22y)⎛⎜⎜⎜⎜⎝1 − k2
n,y

k2n

⎞⎟⎟⎟⎟⎠ σ2n
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

(51)
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I1z2z ≡
1

(2π)2 ∫
∞

−∞
ds1z ∫∞

−∞
ds2z

exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

is1zE1z + is2zE2z

− 1(LxLyLz) ∑∞
nx ,ny ,nz�−∞

(s21z + 2s1zs2zC12,n + s22z)(1 − k2
n,z

k2n
) σ2n

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
(52)

Now to evaluate one of these integrals, it does not matter
which we pick, as they all have the same form. Choosing I1x2x ,
we can first complete the square in s1x , then integrate over s1x ,
followed by completing the square in s2x , and then integrating
over s2x .

I1x2x � 1

(2π)2 ∫
∞

−∞
ds1x ∫∞

−∞
ds2x

exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− s21x
1(LxLyLz) ∑∞

nx ,ny ,nz�−∞
K2
n,x

σ2n
2

+s1x⎛⎝iE1x − 2s2x
1(LxLyLz) ∑∞

nx ,ny ,nz�−∞
C12,nK

2
n

σ2n
2
⎞⎠

+is2xE2x − s22x
1(LxLyLz) ∑∞

nx ,ny ,nz�−∞
K2
n,x

σ2n
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(53)

where

K2
n,x ≡ (1 − k2

n,x

k2n
). (54)

Let

Ax ≡
1(LxLyLz) ∑∞

nx ,ny ,nz�−∞
K2
n,xσ

2
n (55)

and

Bx ≡ ⎛⎝iE1x − s2x(LxLyLz) ∑∞
nx ,ny ,nz�−∞

C12,nK
2
n,xσ

2
n
⎞⎠, (56)

where C12,n was defined in Eq. 47. Then:

I1x2x � 1

(2π)2 ∫
∞

−∞
ds1x ∫

∞

−∞
ds2xexp[ − 1

2
s21xAx + s1xBx + is2xE2x − 1

2
s22xAx]

� 1

(2π)2 ∫
∞

−∞
ds2xexp(is2xE2x − 1

2
s22xAx) × ∫

∞

−∞
ds1xexp( − 1

2
s21xAx + s1xBx)

(57)

Completing the square with

−uu2 +Bu � −(uu2 −Bu) � −( ��
u

√
u − B

2
��
u

√ )2 +B2

4u
, (58)

results in:

I1x2x � 1

(2π)2 ∫
−∞

∞

ds2xexp(is2xE2x − 1
2
s22xAx)

×
⎧⎪⎨⎪⎩exp( B2

x

2Ax
)∫

−∞

∞

ds1xexp
⎡⎢⎢⎢⎢⎢⎢⎢⎣ −⎛⎜⎜⎜⎝

���
Ax

2

√
s1x − Bx

2
��
Ax
2

√ ⎞⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎥⎥⎥⎦⎫⎪⎬⎪⎭

� 1

(2π)2 ∫
−∞

∞

ds2xexp(is2xE2x − 1
2
s22xAx)⎡⎢⎢⎢⎢⎣exp( B2

x

2Ax
) ��

π
√

(12Ax)1/2
⎤⎥⎥⎥⎥⎦.
(59)

To now carry out the integration over s2, Bx in Eq. 56 must be
expanded, as Bx contains s2. Also, let

Cx ≡
1(LxLyLz) ∑∞

nx ,ny ,nz�−∞
C12,nK

2
n,xσ

2
n, (60)

so that

Bx ≡ iE1x − s2xCx. (61)
Then:

I1x2x �
���
2π

√
(2π)2

1
A1/2

x

∫∞
−∞

ds2xexp(is2xE2x − 1
2
s22xAx)

× exp[ 1
2Ax

(iE1x − s2xCx)2]
� 1

(2π)3/2A1/2
x

∫∞
−∞

ds2xexp(is2xE2x − 1
2
s22xAx)

× exp[ − E2
1x

2Ax
− s2xiE1xCx

Ax
+ s22xC

2
x

2Ax
]

� 1

(2π)3/2A1/2
x

∫∞
−∞

ds2xexp{ − s22x[12Ax − C2
x

2Ax
]

+ s2x(iE2x − iE1xCx

Ax
) − E2

1x

2Ax
}.

Applying Eq. 58 again:

I1x2x �
exp( − E2

1x

2Ax
)

(2π)3/2A1/2
x

∫∞
−∞

ds2x

× exp
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣s2x(Ax

2
− C2

x

2Ax
)1/2

− (iE2x − iE1xCx
Ax
)

2(Ax
2 − C2

x
2Ax
)1/2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2

+ (iE2x − iE1xCx
Ax
)2

4(Ax

2
− C2

x

2Ax
)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
exp( − E2

1x

2Ax
)

(2π)3/2A1/2
x

��
π

√

[12Ax − C2
x

2Ax
]1/2 exp

⎧⎪⎨⎪⎩ − (E2x − E1xCx
Ax
)2

4[1
2
Ax − C2

x

2Ax
]
⎫⎪⎬⎪⎭

� 1

2πAx(1 − C2
x

A2
x
)1/2 exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−E2

1x − E2
2x + 2E2xE1x

Cx

Ax

2Ax(1 − C2
x

A2
x

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(62)
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As will be discussed in more detail in Section 2.4, our
deduction of Eq. 62 is actually a multivariate normal
(Gaussian) distribution involving E1x and E2x . Moreover,
this distribution depends on the spatial and time
differences, (x1 − x2) and (t1 − t2), between the two space
time points, through the quantity Cx. Moreover, since I1x2x,
I1y2y , and I1z2z will all have the same form as in Eq. 62, and the
final probability density P(E1 at x1, t1;E2 at x2, t2) in Eq. 49 is
just the product I1x2x · I1y2y · I1z2z , then we will have obtained a
multivariate normal distribution involving six field values at
two points in space and time: E1x, E1y, E1z , E2x, E2y, and E2z .
Again, these points will be made clearer in Section 2.4.

2.3 Checks on Behavior of I1x2x
To be a probability density for E1x and E2x , as given by I1x2x , certain
probabilistic properties must hold. We will examine some of them
here, such as

∫∞

−∞
dE2x ∫∞

−∞
dE1xI1x2x

should equal unity. Checking:

∫
−∞

∞

dE2x ∫
−∞

∞

dE1xI1x2x � ∫
−∞

∞

dE2x ∫
−∞

∞

dE1x
1

2πAx(1 − C2
x

A2
x
)1/2

× exp

⎧⎪⎪⎨⎪⎪⎩
−E2

1x − E2
2x + 2E2xE1x

Cx

Ax

2Ax(1 − C2
x

A2
x

)
⎫⎪⎪⎬⎪⎪⎭

� 1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2xexp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ − E2

2x

2Ax(1 − C2
x

A2
x

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× ∫
−∞

∞

dE1x exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−(E1x − E2x

Cx
Ax
)2 + E2

2x

C2
x

A2
x

2Ax(1 − C2
x

A2
x

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2xexp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ −E2

2x

2Ax(1 − C2
x

A2
x

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+E2
2x

C2
x

A2
x

2Ax(1 − C2
x

A2
x

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ × ∫

−∞

∞

dE1xexp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−(E1x − E2x

Cx
Ax
)2

2Ax(1 − C2
x

A2
x

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2xexp( − E2
2x

2Ax
)⎡⎢⎣ ��

π
√

�����������
2Ax(1 − C2

x

A2
x

)
√ ⎤⎥⎦

� 1�����
2πAx

√ ∫
−∞

∞

dE2xexp( − E2
2x

2Ax
) � 1�����

2πAx

√ �����
π2Ax

√ � 1 ,

(63)

so this is fine.

Another check is whether

∫∞

−∞
dE2iI1i2i � P(E1i), (64)

and of course the opposite situation of ∫∞−∞ dE1iI1i2i � P(E2i). In Eq.
64, we have already deduced from earlier work, including Eq. 34, that

P(Ei at x1, t1) �
exp[ − E2i

2〈E2ZPP,i〉
]���������

2π〈E2
ZPP,i〉

√ . (65)

As shown earlier, Eq. 65 turns out to be independent of x1, t1,
where i � 1, 2, 3 refers to x, y, z, respectively. Mathematically,
this independence on x1, t1 arises because 〈E2

ZPP,i〉 is
independent of x1, t1, as seen in Eq. 32. A more “physical”
view of this result is that the stochastic properties of the ZP
and ZPP fields are homogeneous and isotropic in space and
independent of time origin. In any case, from Eqs. 32, 54, and
55, and if we generalize Ax to Ai for i � 1, 2, and 3, to include
all three x, y, z cases, then:

〈E2
ZPP,i〉 � 1(LxLyLz) ∑∞

nx ,ny ,nz�−∞
(1 − k2

n,i

k2n
)σ2n � Ai. (66)

Returning to Eq. 64 and using 50:

∫∞
−∞

dE2iI1i2i �

exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ −E2

1i

2Ai(1 − C2
i

A2
i

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2πAi(1 − C2
i

A2
i
)1/2 ∫∞

−∞
dE2iexp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−E2

2i + 2E2iE1i
Ci

Ai

2Ai(1 − C2
i

A2
i

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ −E2

1i

2Ai(1 − C2
i

A2
i

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2πAi(1 − C2
i

A2
i
)1/2 exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
E2
1i

C2
i

A2
i

2Ai(1 − C2
i

A2
i

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∫

∞

−∞
dE2i

× exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ −
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1����������

2Ai(1 − C2
i

A2
i
)√ E2i −

E1i
Ci
Ai����������

2Ai(1 − C2
i

A2
i
)√ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 1

2πAi(1 − C2
i

A2
i
)1/2 exp[

−E2
1i

2Ai
]
������������
π2Ai(1 − C2

i

A2
i

)
√

� 1����
2πAi

√ exp[−E2
1i

2Ai
] �

exp[ − E2
1i

2〈E2
ZPP,1i〉

]���������
2π〈E2

ZPP,1i〉
√ ,

using Eq. 66 at the end. By symmetry, ∫∞−∞ dE1iI1i2i � P(E2i) then
also holds.
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Another obvious item to check is whether∫∞−∞ dE2x ∫∞−∞ dE1xE1xI1x2x � 0 (or vice versa 〈E2x〉 � 0, by
symmetry):

∫
−∞

∞

dE2x ∫
−∞

∞

dE1xE1xI1x2x � 1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2x

× exp
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ − E2

2x

2Ax(1 − C2
x

A2
x

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠∫

−∞

∞

dE1xE1xexp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−E2

1x + 2E2xE1x
Cx

Ax

2Ax(1 − C2
x

A2
x

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2xexp
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ − E2

2x

2Ax(1 − C2
x

A2
x

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠∫

−∞

∞

dE1xE1x

× exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−(E1x − E2x

Cx
Ax
)2 + E2

2x

C2
x

A2
x

2Ax(1 − C2
x

A2
x

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2x

× exp( − E2
2x

2Ax
)∫

−∞

∞

dE1xE1xexp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−(E1x − E2x

Cx
Ax
)2

2Ax(1 − C2
x

A2
x

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

(67)

In the integral on the far right, bottom line, let E1x − E2x
Cx
Ax

� u
and du � dE1x :

∫
−∞

∞

dE2x ∫
−∞

∞

dE1xE1xI1x2x � 1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2xexp( − E2
2x

2Ax
)

× ∫
−∞

∞

du(u + E2x
Cx

Ax
)exp⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ −u2

2Ax(1 − C2
x

A2
x

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2x

× exp( − E2
2x

2Ax
){0 + E2x

Cx

Ax
[π2Ax(1 − C2

x

A2
x

)]1/2}
�

Cx

Ax

(2πAx)1/2 ∫−∞
∞

dE2xE2xexp( − E2
2x

2Ax
) � 0 ,

(68)

since the integral is odd in E2x .
Now trying a check that is more involved, we will compute a 2-

point correlation function in the fields, using the probability density
I1x2x.Wewill calculate an example, along the lines of Ref. [24], but also
carrying the calculations to a final analytical expression,more along [7,
35]. Hence, this will be an example, with of course many other two
point sets of coordinates in time and space that could be carried out,
but even this single example is nontrivial to carry out. Most
importantly, however, this example shows how to carry out the
analysis in Ref. [24] via the probability density method discussed here.

Following roughly along Refs. [24, 35], and [7], then:

〈EZPP,x(0, 0)EZPP,x(ŷR, t)〉
� ⎛⎜⎝ 1

(LxLyLz)1/2⎞⎟⎠
2

∑
nx ,ny ,nz�−∞

∞ ∑
λ�1,2
(ε̂kn ,λ)x ∑

nx ′,ny ′,nz ′�−∞

∞ ∑
λ′�1,2

⎛⎝ε̂kn
′
,λ′
⎞⎠

x

×

×〈 [Akn ,λcos(kn · 0 − ωn0) + Bkn ,λsin (kn · 0 − ωn0)]×
×[Akn′ ,λ

′cos (kn′ · ŷR − ωn′t) + Bkn′ ,λ′sin (kn′ · ŷR − ωn′t)] 〉
� 1(LxLyLz) ∑∞

nx ,ny ,nz�−∞
λ�1,2

(ε̂kn ,λ)x ∑∞
nx′ ,ny′ ,nz′�−∞

∑
λ′�1,2

(ε̂k
n′ ,λ

′)
x
δnn′δλ,λ′ cos (kn′ · ŷR

− ω~n′ t)σ2(ω~n,T)
� 1(LxLyLz) ∑

nx ,ny ,nz�−∞
λ�1,2

∞ (ε̂kn ,λ)2xcos (kn · ŷR − ωnt)σ2(ωn,T)

� 1(LxLyLz) ∑
nx ,ny ,nz�−∞

∞ [1 − (kn,x

kn
)2]cos (kn,yR − ωnt)σ2(ωn,T) (69)

Making the change of discrete to continuous variables, with
kn � 2πnx

Lx
x̂ + 2πny

Ly
ŷ + 2πnz

Lz
ẑ, for large values of Lx , Ly , Lz , with

Δnx ≈
Lx
2π

dkx,Δny ≈
Ly

2π
dky ,Δnz ≈

Lz

2π
dkz (70)

enables integrals to be carried out. Moreover, although the ZPP
spectrum in the integral could be evaluated, the ZP spectrum is
certainly much easier to do so analytically. Since this is just an
example, we will proceed with restriction to the ZP case,
or [σ(ω,T)]2 → 2πZω � 2πZkc:

〈EZP,x(0, 0)EZP,x(ŷR, t)〉
≈

1

(2π) ∫
∞

−∞
dkx

1

(2π) ∫
∞

−∞
dky

1

(2π) ∫
∞

−∞
dkz[1 − (kn,x

kn
)2]

× cos(kyR − ωt)2πZω
� 2πZ

(2π)3 ∫
∞

−∞
dkx ∫

∞

−∞
dky ∫

∞

−∞
dkzkc[1 − (kxk)

2]
× [cos(kyR)cos(ωt) + sin(kyR)sin(ωt)].

The second term of sin(kyR)sin(ωt) makes the integrand odd in ky .
Hence:

〈EZP,x(0, 0)EZP,x(ŷR, t)〉 � Zc

(2π)2 ∫
∞

−∞
dkx ∫∞

−∞
dky ∫∞

−∞
dkz

× K[1 − (kx
k
)2]cos(kyR)cos(kct).

Next, we will make ky be the axis where the polar angle is
measured from, so that ky � kcosθ. Consequently, kx �
ksinθsinϕ and kz � ksinθcosϕ. Hence:

〈EZP,x(0, 0)EZP,x(ŷR, t )〉 � Zc

(2π)2 ∫
∞

0
dkk2 ∫π

0
dθsinθ

×∫2π

0
dϕk[1 − sin2θsin2ϕ]cos(Rkcosθ)cos(kct). (71)

Since
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1
2π
∫2π

0
dϕsin2ϕ � 1

2
,

then:

〈EZP,x(0, 0)EZP,x(ŷR, t)〉 � Zcπ

(2π)2 ∫
∞

0
dkk3cos(kct)∫π

0
dθsinθ[2 − sin2θ]cos(Rkcosθ).

(72)
Using

∫π

0
dθsinθ[2 − sin2θ]cos(Rkcosθ)
� 2∫π

0
dθsinθcos(Rkcosθ) − ∫π

0
dθsin3θcos(Rkcosθ), (73)

with u � Rkcosθ, du � −Rksinθdθ, the first term in Eq. 73 becomes:

2∫π

0
dθsinθcos(Rkcosθ) � 2∫−Rk

Rk
(−du

Rk
)cos(u)

� − 2
Rk

sinu

∣∣∣∣∣∣∣∣
−Rk

Rk

� 4
Rk

sin(Rk). (74)

The second term in Eq. 73 becomes:

− ∫
0

π

dθsin3θcos(Rkcosθ) � − ∫
−Rk

+Rk
du
Rk
[1 − cos2θ]cos(u)

� − 1
Rk
∫
−Rk

+Rk
ducos(u) + 1

(Rk)3 ∫
−Rk

+Rk
du · u2cos(u)

� − 1
Rk

sin(u)
∣∣∣∣∣∣∣∣
Rk

−Rk
+ 1

(Rk)3 [4Rkcos(Rk) − 4sin(Rk) + 2(Rk)2sin(Rk)]
� + 4

(Rk)2 cos(Rk) −
4

(Rk)3 sin(Rk) . (75)

From Eqs. 73–75:

∫
0

π

dθsinθ[2 − sin2θ]cos(Rkcosθ) � 2∫
0

π

dθsinθcos(Rkcosθ)

−∫
0

π

dθsin3θcos(Rkcosθ) � 4
Rk

sin(Rk) + 4

(Rk)2 cos(Rk)

− 4

(Rk)3 sin(Rk).

Consequently, Eq. 72 becomes:

〈EZP,x(0, 0)EZP,x(ŷR, t )〉 � Zcπ

(2π)2 ∫
0

∞

dkk3cos(kct)

[ 4
Rk

sin(Rk) + 4

(Rk)2 cos(Rk) −
4

(Rk)3 sin(Rk)]
� Zcπ

(2π)2
1
R4
∫
0

∞

dww3cos(w ct
R
)

×[4
w
sin(w) + 4

w2
cos(w) − 4

w3
sin(w)]. (76)

Substituting ct
R � b, and using an integral table [36] (p. 504, No. 8),

also discussed in the limiting sense in Ref. [7], Appendix C:

∫∞

0
dwcos(wb)sin(w) � 1

(1 − b2), (77)

∫∞

0
dwwcos(wb)cos(w) � −[ 1

(1 − b2) +
2b2

(1 − b2)2], (78)

∫∞

0
dww2cos(wb)sin(w) � −2[ 1

(1 − b2) +
5b2

(1 − b2)2 +
4b4

(1 − b2)3],
(79)

enables Eq. 76 to be evaluated:

〈EZP,x(0, 0)EZP,x(ŷR, t )〉 � Zcπ

(2π)2
1
R4

4{ − 2[ 1

(1 − b2)

+ 5b2

(1 − b2)2 +
4b4

(1 − b2)3 ] − [ 1

(1 − b2) +
2b2

(1 − b2)2] − 1

(1 − b2)}
(80)

� Zcπ

(2π)2
1
R4

4
1

(1 − b2)3 { − 2(1 − b2)2 − 10b2(1 − b2) − 8b4

−(1 − b2)2 − 2b2(1 − b2) − (1 − b2)2}
� Zcπ

(2π)2
1
R4

4
1

(1 − b2)3 (−4b2 − 4) � −4 Zcπ
π2

1
R4

[1 + (ctR)2]
(1 − (ctR)2)3

� −4Zc
π

[R2 + (ct)2]
[R2 − (ct)2]3 (81)

As mentioned earlier, unless R � ct, this two-point correlation
function is not singular.

The above calculation has typically been, roughly, the means for
calculating such “two-point correlation” functions in SED, or even “n-
point correlation functions” [24].We will proceed to calculate the same
quantity as in Eq. 81, but by using the joint probability density function
for two electric field values, I1x2x , Eq. 62, deduced in Section 2.2. Of
course the two results should agree, but it is interesting to see the
difference in methods.

〈EZP,x(0, 0)EZP,x(ŷR, t)〉 � ∫
−∞

∞

dE1x ∫
−∞

∞

dE2xE1xE2xI1x2x

∣∣∣∣∣∣∣∣at x1 ,t1 & x2 ,t2

� ∫
−∞

∞

dE1x ∫
−∞

∞

dE2xE1xE2x

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2πAx(1 − C2
x

A2
x
)1/2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−E2

1x − E2
2x + 2E2xE1x(Cx

Ax
)

2Ax(1 − C2
x

A2
x
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

x1 ,t1 ;x2 ,t2

.

Here, the meaning of the subscript at the end of x1, t1; x2, t2 is
that the two electric field points E1x and E2x are to be evaluated
at the two space and time points, x1, t1 and x2, t2, respectively,
in the function C12,n, Eq. 47, contained within Cx , in Eq. 60.
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Thus,

∫
−∞

∞

dE2x ∫
−∞

∞

dE1x(E1xE2x)I1x2x

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2πAx(1 − C2
x

A2
x
)1/2 ∫

∞

−∞
dE2xE2x exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ − E2
2x

2Ax(1 − C2
x

A2
x
)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦×

× ∫∞
−∞

dE1xE1x exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−E2

1x + 2E2xE1x
Cx
Ax

2Ax(1 − C2
x

A2
x
)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
x1 ,t1 ;x2 ,t2

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2πAx(1 − C2
x

A2
x
)1/2 ∫

∞

−∞
dE2xE2x exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−E
2
2x + E2

2x
C2
x

A2
x

2Ax(1 − C2
x

A2
x
)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦×

× ∫∞
−∞

dE1xE1x exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−(E1x − E2x

Cx
Ax
)2

2Ax(1 − C2
x

A2
x
)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
x1 ,t1 ;x2 ,t2

�
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2xE2xexp(−E2
2x

2Ax
)∫

−∞

∞

dE1xE1xexp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−(E1x − E2x

Cx
Ax
)2

2Ax(1 − C2
x

A2
x
)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

x1 ,t1 ;x2 ,t2

The integral over E1x on the right can be broken up as:

∫
−∞

∞

dE1xE1xexp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−(E1x − E2x

Cx
Ax
)2

2Ax(1 − C2
x

A2
x
)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x1 ,t1;x2 ,t2

� ∫
−∞

∞

dE1x

⎧⎪⎪⎨⎪⎪⎩(E1x − E2x
Cx

Ax
)exp⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−(E1x − E2x

Cx
Ax
)2

2Ax(1 − C2
x

A2
x
)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

x1 ,t1;x2 ,t2

+ ∫
−∞

∞

dE1xE2x

⎧⎪⎪⎨⎪⎪⎩
Cx

Ax
exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−(E1x − E2x

Cx
Ax
)2

2Ax(1 − C2
x

A2
x
)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

x1 ,t1 ;x2 ,t2

� ∫
−∞

∞

dx · xexp⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ −x2
2Ax(1 − C2

x
A2
x
)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x1 ,t1 ;x2 ,t2

+
⎧⎪⎪⎨⎪⎪⎩E2x

Cx

Ax
∫
−∞

∞

dE1xexp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−(E1x − E2x

Cx
Ax
)2

2Ax(1 − C2
x

A2
x
)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

x1 ,t1;x2 ,t2

The first integral equals zero, as it is odd in x. Hence:

∫∞

−∞
dE1xE1xexp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−(E1x − E2x
Cx
Ax
)2

2Ax(1 − C2
x

A2
x
)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x1 ,t1;x2 ,t2

� E2x{Cx

Ax
[π2Ax(1 − C2

x

A2
x

)]1/2}
x1 ,t1 ;x2 ,t2

and

∫
−∞

∞

dE2x ∫
−∞

∞

dE1x(E1xE2x)I1x2x

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2xE2xexp( − E2
2x

2Ax
)

× {E2x
Cx

Ax
[π2Ax(1 − C2

x

A2
x

)]1/2}⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x1 ,t1 ;x2 ,t2

�
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2xE
2
2xexp( − E2

2x

2Ax
) Cx

Ax
[π2Ax(1 − C2

x

A2
x

)]1/2
⎫⎪⎪⎪⎬⎪⎪⎪⎭

x1 ,t1 ;x2 ,t2

� 1

(2πAx)1/2
(Cx)x1 ,t1 ;x2 ,t2

Ax
∫
−∞

∞

dE2xE
2
2xexp( − E2

2x

2Ax
)

� 1

(2πAx)1/2
(Cx)x1 ,t1 ;x2 ,t2

Ax

π1/2

2
(2Ax)3/2 � (Cx)x1 ,t1 ;x2 ,t2

� 1(LxLyLz) ∑
nx ,ny ,nz�−∞

∞ (C12,n)x1 ,t1 ;x2 ,t2K2
n,xσ

2
n.

The last expression for Cx came from Eq. 60.
Hence, using Eqs. 47 and 54 replacing the coordinates x1 and

t1 with 0, 0, and x2 and t2 with ŷR and t, respectively, and σ2n with
ZP of 2πZωn,λ:

∫
−∞

∞

dE2x ∫
−∞

∞

dE1x(E1xE2x)I1x2x

� 1(LxLyLz) ∑
nx ,ny ,nz�−∞

∞

cos[kn · (x1 − x2) − ωn(t1 − t2)][1− (kn,x

kn
)2]σ2n

� 1(LxLyLz) ∑
nx ,ny ,nz�−∞

∞

cos[kyR − ckt][1 − (kn,x

kn
)2]2πZωn,λ .

Implementing the same continuum approximation as with the
other method, Eq. 70, then results in:

∫
−∞

∞

dE2x ∫
−∞

∞

dE1x(E1xE2x)I1x2x ≈ 1

(2π) ∫
−∞

∞

dkx
1

(2π) ∫
−∞

∞

dky
1

(2π)

× ∫
−∞

∞

dkzcos(kyR − ckt)[1 − (kx
k
)2]2πZω

� 1

(2π)3 ∫−∞
∞

dkx ∫
−∞

∞

dky ∫
−∞

∞

dkz[cos(kyR)cos(ckt)
+ sin(kyR)sin(ckt)][1 − (kxk)

2]2πZω
The second integral with sin(kyR) is odd in ky and equals zero by
symmetry. Hence:
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∫
−∞

∞

dE2x ∫
−∞

∞

dE1x(E1xE2x)I1x2x � 1

(2π)3 ∫
−∞

∞

dkx ∫
−∞

∞

dky

× ∫
−∞

∞

dkzcos(kyR)cos(ωt)[1 − (kxk)
2]2πZω

(82)

� 1

(2π)3 ∫
0

∞

k2dk∫
0

π

dθsinθ∫
0

2π

dϕcos(kRcosθ)cos(ωt)

× (1 − sin2θsin2ϕ)(2πZkc) � Zc

(2π)2 ∫
0

∞

k3dk∫
0

π

dθsinθ

× ∫
0

2π

dϕcos(kRcosθ)cos(ωt)(1 − sin2θsin2ϕ).
(83)

However, this result agrees exactly with the earlier result, Eq. 71,
obtained partway through the ensemble derivation of
〈EZP,x(0, 0)EZP,x(ŷR, t)〉. Thus, continuing with further steps
in evaluating Eq. 83 will provide a final result, using the joint
probability density approach of ∫∞−∞ dE2x ∫∞−∞ dE1x(E1xE2x)I1x2x ,
that exactly agrees with the ensemble derivation
〈EZP,x(0, 0)EZP,x(ŷR, t)〉 of −4Zc

π
[R2+(ct)2]
[R2−(ct)2]3 in Eq. 81.

2.4 Multivariate Normal Distribution
Much of the work carried out here can be generalized using the
multivariate normal distribution. The two key expressions for
us here are the Fourier decomposition of the radiation fields in
Eqs. 1 and 2 not just because they are Fourier decompositions,
but also that they are a linear sum of the random variables Akn ,λ

and Bkn ,λ. To put this in better perspective, if we imagine an
ensemble of boxes Lx × Ly × Lz , each the same size, but existing
at different points in space and/or in time, then
electromagnetic field fluctuations of EZPP and BZPP will
occur at each point within each box. However, for each box,
there is only one set of coefficients Akn ,λ and Bkn ,λ, as these
coefficients do not change from the initial point of field
evolution. However, as viewed over the entire ensemble of
boxes, the coefficients are assumed to be independent random
variables obeying Gaussian distributions. The mean for each,
over the ensemble, is zero, as in Eq. 4, and the normal
distribution for either Akn ,λ or Bkn ,λ is given by Eq. 8, while
the variance of each is given by [σ(ωn,T)]2, as in Eq. 8.

Thus, EZPP and BZPP can be viewed as the linear
transformation of the random variables Akn ,λ and Bkn ,λ.
However, the coefficients multiplying Akn ,λ and Bkn ,λ in these
linear sums in Eqs. 1 and 2 are not constants, as they depend on
time and space. In particular, 1

(LxLyLz)1/2ε̂kn ,λcos(kn · x − ωnt) and
1

(LxLyLz)1/2ε̂kn ,λsin(kn · x − ωnt) are the coefficients multiplying the
random variables of Akn ,λ and Bkn ,λ for E(x, t) in Eq. 1. An exactly
similar situation occurs for Akn ,λ and Bkn ,λ regarding B(x, t) in Eq.
2, except that ε̂kn ,λ is replaced by k̂n × ε̂kn ,λ. Thus, although the
probabilistic properties for the random variables Akn ,λ and Bkn ,λ

are independent of time and space, as expressed by Eq. 8, the
same is not true for the probabilistic/stochastic properties of EZPP

and BZPP, as seen for example in Eq. 81 and other related results
discussed in this subsection.

Amultivariate normal expression for the probability density of
a set of field values would be represented by:

P(E1 at x1, t1;E2 at x2, t2; . . . ;En at xn, tn;Bn+1 at xn+1, tn+1;
Bn+2 at xn+2, tn+2; . . . ;Bn+m at xn+m, tn+m

),
(84)

where there are n electric field vector values (i.e., 3 × n component
values, as indicated below) and m magnetic field vector values
(3 ×m component values), at respective positions in space and
time, as indicated. However, since this is a multivariate normal
distribution, where all 〈Ei〉 and all 〈Bi〉 ensemble averages equal
zero, then by probability theory, the above would be represented
by [37]:

P(X) � exp[ − 1
2X

TΣ−1X]���������
(2π)n+m∣∣∣∣∣∣∣∣Σ

∣∣∣∣∣∣∣∣

√ , (85)

where X is the vector of

(E1x, E1y , E1z , . . . , Enx , Eny, Enz ,B(n+1)x,B(n+1)y,B(n+1)z , . . . ,

B(n+m)x,B(n+m)y, B(n+m)z)
values. Moreover, Σ is the covariant matrix as expressed by

Σij � 〈XiXj〉, (86)

since 〈Xi〉 � 0 for all Ei and Bi values, due to Eqs. 4, 1 and 2. Also,
|Σ| and Σ−1 represent the determinant and inverse matrix of the
covariant matrix, Σ, respectively.

If we calculated all the components of the covariant matrix,
meaning all combinations Σij � 〈XiXj〉 of pairs of electric and
magnetic field expectation values, then the probability density,
Eq. 85, could be evaluated for any vector X of electric and
magnetic field components at different space and time points.
Two comparisons can immediately be made with work already
covered here. In Section 2.1, the probability density was deduced
for P(E at x, t) in Eq. 34, but this also follows from Eq. 85 with X
being the vector (E1x, E1y, E1z), then using Eq. 86 plus earlier
relations in Section 2.1, and

Σij � ⎡⎢⎢⎢⎢⎢⎢⎢⎣ 〈E
2
1x〉 0 0
0 〈E2

1y〉 0
0 0 〈E2

1z〉
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

which leads to Eq. 34.
Similarly, Eq. 85 can be used to deduce the probability density

function for two electric field points that was covered in Section 2.2.
For a multivariate normal distribution for two field points, although
Eq. 85 is certainly the correct equation to use, it is usually rewritten in
the following simplified form in probability textbooks, and referred to
as the “bivariate” normal distribution [38]:

P(E1x ,E2x) �
exp{ − 1

2(1−ρ21x2x) [(E1x−μ1x)
2

σ21x
+ (E2x−μ2x)2

σ22x
− 2ρ1x2x(E1x−μ1x)(E2x−μ2x)

σ1xσ2x
]}

2πσ1xσ2x

�������
1 − ρ21x2x
√ .

(87)
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Here, μ1x ≡ 〈E1x〉 and μ2x ≡ 〈E2x〉 are both zero for our ZP and
ZPP cases. Also, σ21x ≡ 〈(E1x − μ1x)2〉 � 〈E2

1x〉, for our situation,
and similarly for (σ2x)2 � 〈(E2x)2〉, while

ρ1x2x ≡
〈(E1x − μ1x)(E2x − μ2x)〉

σ1xσ2x
(88)

is called the Pearson’s correlation coefficient of E1x and E2x . With
μ1x � μ2x � 0 for our case, then

ρ1x2x →
〈E1xE2x〉���������
〈E2

1x〉〈E2
2x〉

√ . (89)

Putting these expressions into Eq. 87 results in:

P(E1x, E2x) �
exp

⎧⎪⎪⎨⎪⎪⎩ − 1

2(1− 〈E1xE2x〉2
〈E2

1x
〉〈E2

2x
〉) [

E21x
〈E21x〉

+ E22x
〈E22x〉

− 2E1xE2x
〈E1xE2x〉
〈E21x〉〈E22x〉

]⎫⎪⎪⎬⎪⎪⎭
2π〈E2

1x〉〈E2
2x〉

����������
1 − 〈E1xE2x〉2

〈E21x〉〈E22x〉

√
(90)

This is then readily related to our result of I1x2x in Section 2.2, Eq.
62, since from Eq. 66, Ai � 〈E2

ZPP,i〉 for (i→ x, y, z), and is
independent of space and time, so 〈E2

1x〉 � 〈E2
2x〉, for example.

Moreover, Cx in Eq. 60 can be shown to be the two-point
correlation function of the x component of the electric field at
two different space/time points, or, 〈E1xE2x〉. Thus,

Cx

Ax
� 〈E1xE2x〉���������

〈E2
1x〉〈E2

2x〉
√ ,

which is just ρ1x2x in Eq. 89. Thus, Eq. 90 agrees with I1x2x in Eq. 62.
Extending this result to the discussion at the end of Section 2.2

involving x, y, and z components of two electric field values:

P(E1 at x1, t1;E2 at x2, t2)
� I1x2x · I1y2y · I1z2z

�
exp[−E2

1x − E2
2x + 2E1xE2xρ1x,2x

2(1 − ρ21x,2x)〈E2
1x〉

⎤⎥⎦
2π〈E2

1x〉(1 − ρ21x,2x)1/2

×
exp⎡⎣−E2

1y − E2
2y + 2E1yE2yρ1y,2y

2(1 − ρ21y,2y)〈E2
1y〉

⎤⎥⎥⎦
2π〈E2

1y〉(1 − ρ21y,2y)1/2

×
exp[−E2

1z − E2
2z + 2E1zE2zρ1z,2z

2(1 − ρ21z,2z)〈E2
1z〉

⎤⎥⎦
2π〈E2

1z〉(1 − ρ21z,2z)1/2

(91)

3 CONCLUDING REMARKS

The technique used here in Eq. 11 for one electric field value E, or
three component values Ex , Ey , Ez , or with Eq. 40 for
P(E1 at x1, t1;E2 at x2, t2), for two electric field values, or six

component values, was clearly understood to be extendable to n
electric and/or m magnetic field values. Various tests and
examinations were carried out in Section 2.3 to provide further
understanding of the results derived here. Section 2.4 showed how
to more easily use the multivariate normal distribution to obtain the
same probability densities.

However, although the methods of Eqs. 11 and 40 and the
obvious generalizations to far more electric and magnetic
radiation field values, result in long calculations, there are a
few aspects that should be noted. As briefly discussed in Ref.
[23], these techniques can readily be applied to the electric dipole
simple harmonic oscillator, in either one, two, or three oscillatory
degrees of freedom. For example, for a 1-D oscillator,

P(x1 at t1; x2 at t2) � ∫​

dA1/∫​

dAN . . .∫​

dB1/∫​

dBN . . .

P(A1,/,AN ,/,BN , . . . )δ[x1 − x(t1)]δ[x2 − x(t2)] ,
(92)

represents the probability density of finding an oscillator
extension of x1 at time t1, and extension of x2 at time t2. The
subtle point here is the expressions for x(t1) and x(t2) must be
inserted into Eq. 92, and these depend on the An and Bn values.
Equation 92 is similar to Eq. 40, but more complicated. The
electric dipole oscillator system, often phrased in terms of the
simple harmonic oscillator (SHO), was a key early system that
was studied in SED. However, the drawback is that the oscillator
computations are even longer than in Sections 2.1–2.3, which
only involved the probability states of electric radiation values in
ZP and ZPP conditions.

Another interesting aspect of the present method is that, in
principle, the method can begin to tackle other systems,
particularly one that has not yet been solved analytically in SED:
the classical hydrogen problem. Now, for that system, there is no
simplification, such as themultivariate normal distribution, to provide
a simpler method of solution. The classical hydrogen atom is not a
linear SHO system; it is nonlinear, and the multivariate normal
distribution only becomes possible for linear sums of random
variables that each obey the normal distribution. Possibly, the
classical hydrogen system in SED is intractable with the present
method, but as far as the author knows, this approach has not yet
been tried.

This brings us back to brief comments made in Section 2.1 about
the Feynman path integral for QM andQED, and how there is a slight
connection to the present method for SED. Although Feynman
developed the technique by 1948, it was initially applied only to
some relatively simple systems, such as discussed in [39]. The
hydrogen atom escaped solution by Feynman and others until
about 1979, by Duru and Kleinert. In analogy, at first blush,
although the present method for classical hydrogen in SED may
be too difficult, still it seems an interesting perspective to consider.

Finally, a last comment: many of the computations shown here for
field values could likely be extended to far more field points, simply by
writing the correct code to make a versatile program of n-point
correlation functions, such as with the aid of a symbolic mathematic
program, as has been done in some cases for Feynman diagram
calculations.

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 8 | Article 58086915

Cole Probability Calculations in SED

141

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


DATA AVAILABILITY STATEMENT

All datasets presented in this study are included in the article/
Supplementary Material.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

REFERENCES

1. Cole DC. Reinvestigation of the thermodynamics of blackbody radiation via
classical physics. Phys Rev A (1992) 45:8471–89. doi:10.1103/physreva.45.8471

2. Cole DC. Thermodynamics of blackbody radiation via classical physics for
arbitrarily shaped cavities with perfectly conducting walls. Found Phys (2000)
30(11):1849–67. doi:10.1023/a:1003706320972

3. Boyer TH. Thermal effects of acceleration for a classical dipole oscillator in
classical electromagnetic zero-point radiation. Phys Rev D (1984) 29(6):
1089–95. doi:10.1103/physrevd.29.1089

4. Boyer TH. Thermal effects of acceleration through random classical radiation.
Phys Rev D (1980) 21(8):2137–48. doi:10.1103/physrevd.21.2137

5. Boyer TH. Thermal effects of acceleration for a classical spinning magnetic
dipole in classical electromagnetic zero-point radiation. Phys Rev D (1984)
30(6):1228–32. doi:10.1103/physrevd.30.1228

6. Cole DC. Properties of a classical charged harmonic oscillator accelerated
through classical electromagnetic zero-point radiation. Phys Rev D (1985)
31(8):1972–81. doi:10.1103/physrevd.31.1972

7. Cole DC. Thermal effects of acceleration for a spatially extended
electromagnetic system in classical electromagnetic zero-point radiation:
transversely positioned classical oscillators. Phys Rev D (1987) 35:562–83.
doi:10.1103/physrevd.35.562

8. Boyer TH. Temperature dependence of Van der Waals forces in classical
electrodynamics with classical electromagnetic zero-point radiation. Phys Rev
A (1975) 11:1650–63. doi:10.1103/physreva.11.1650

9. Boyer T. Stochastic electrodynamics: the closest classical approximation to
quantum theory. Atoms (2019) 7(1):29–39. doi:10.3390/atoms7010029

10. Marshall TW. Random electrodynamics. Proc R Soc London, Ser A (1963) 276:
475–91.

11. Marshall TW. A classical treatment of blackbody radiation. Nuovo Cim (1965)
38:206–15. doi:10.1007/bf02750449

12. Boyer TH. Derivation of the blackbody radiation spectrum without quantum
assumptions. Phys Rev (1821) 1374–83. doi:10.1103/phyRev.182.1374

13. Boyer TH. Classical statistical thermodynamics and electromagnetic
zero-point radiation. Phys Rev (1861) 1304–18. doi:10.1103/phyRev.
186.1304

14. Cole DC, Zou Y. Simulation study of aspects of the classical hydrogen atom
interacting with electromagnetic radiation: circular orbits. J Scientific Comput
(2004) 20(1):43–68. doi:10.1023/a:1025846412872

15. Jackson JD. Classical electrodynamics. 2nd ed.. New York , NY John Wiley &
Sons (1975).

16. de la Peña L, Cetto AM. The quantum dice - an introduction to stochastic
electrodynamics. Kluwer Dordrecht: Kluwer Acad. Publishers (1996).

17. Boyer TH. Random electrodynamics: the theory of classical electrodynamics
with classical electromagnetic zero-point radiation. Phys Rev D (1975) 11(4):
790–808. doi:10.1103/physrevd.11.790

18. Cole DC, Lakhtakia A. Compendium book, “essays on formal aspects of
electromagnetic theory. edited. Singapore: World Scientific (1993). p. 501–32.

19. Boyer TH. The classical vacuum. Sci Am (1985) 253:70–8. doi:10.1038/
scientificamerican0885-70

20. Marshall TW. Statistical electrodynamics.Math Proc Camb Phil Soc (1965) 61:
537–46. doi:10.1017/s0305004100004114

21. Cole DC. Derivation of the classical electromagnetic zero-point radiation
spectrum via a classical thermodynamic operation involving van der Waals
forces. Phys Rev A (1990) 42:1847–62. doi:10.1103/physreva.42.1847

22. Cole DC. Entropy and other thermodynamic properties of classical
electromagnetic thermal radiation. Phys Rev A (1990) 42:7006–24. doi:10.
1103/physreva.42.7006

23. Cole DC. Energy considerations of classical electromagnetic zero-point radiation
and a specific probability calculation in stochastic electrodynamics. Atoms (2019)
7(2):50. doi:10.3390/atoms7020050

24. Boyer TH. `General connection between random electrodynamics and
quantum electrodynamics for free electromagnetic fields and for dipole
oscillator systems. Phys Rev D (1975) 11(4):809–30. doi:10.1103/physrevd.
11.809

25. Planck M. The theory of Heat radiation. New York: Dover (1959). This
publication is an English translation of the second edition of Planck’s work
entitled Waermestrahlung, published in 1913. A more recent republication of
this work is Vol. 11 of the series The History of Modern Physics 1800–1950
(AIP, New York, 1988).

26. Einstein A, Hopf L. Über einen Satz der Wahrscheinlichkeitsrechnung und
seine Anwendung in der Strahlungstheorie. Ann Phys (1910) 338:
1096–104.doi:10.1002/andp.19103381603

27. Einstein A, Hopf L. Statistische Untersuchung der Bewegung eines
Resonators in einem Strahlungsfeld. Ann Phys (1910) 338:1105–15.
doi:10.1002/andp.19103381604

28. Cole DC, Zou Y. Quantum mechanical ground state of hydrogen obtained
from classical electrodynamics. Phys Lett A (2003) 317(1–2):14–20. doi:10.
1016/j.physleta.2003.08.022

29. Cole DC. Simulation results related to stochastic electrodynamics. In AIP
Conference Proceedings, USA. 810 99 – 113(.) 2006.

30. Nieuwenhuizen TM, Liska MTP. Simulation of the hydrogen ground state in
stochastic electrodynamics. Phys Scr (2015) T165:014006. doi:10.1088/0031-
8949/2015/t165/014006

31. Nieuwenhuizen TM, Liska MTP. Simulation of the hydrogen ground state
in stochastic electrodynamics-2: inclusion of relativistic corrections.
Found Phys (2015) 45(10):1190–202. doi:10.1007/s10701-015-9919-0

32. Boyer TH. Conformal symmetry of classical electromagnetic zero-point
radiation. Found Phys (1989) 19(4):349–65. doi:10.1007/bf00731830

33. Haroche S, Kleppner D. Cavity quantum electrodynamics. Phys Today (1989)
42(1):24–30. doi:10.1063/1.881201

34. Haroche S, Raimond J-M. Cavity quantum electrodynamics. Sci Am (1993)
268(4):26–33. doi:10.1038/scientificamerican0493-54

35. Cole DC. Correlation functions for homogeneous, isotropic random classical
electromagnetic radiation and the electromagnetic fields of a fluctuating
classical electric dipole. Phys Rev D (1986) 33:2903–15. doi:10.1103/
physrevd.33.2903

36. Gradshteyn IS, Ryzhik IM. Tables of integrals, series, and products. New York:
Academic (1980).

37. Taboga M. Lectures on probability theory and mathematical statistics. 3rd
ed.. Scotts Valley, California, US: CreateSpace Independent Publishing
Platform (2017).

38. Shirazi AN, Fleck I. Bivariate normal distribution for finding inliers in hough
space for a time projection chamber, 150. EPJ Web Conf (2017). 00010.

39. Feynman RP, Hibbs AR. Quantum mechanics and path integrals. New York:
McGraw-Hill (1965).

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Cole. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 8 | Article 58086916

Cole Probability Calculations in SED

142

https://doi.org/10.1103/physreva.45.8471
https://doi.org/10.1023/a:1003706320972
https://doi.org/10.1103/physrevd.29.1089
https://doi.org/10.1103/physrevd.21.2137
https://doi.org/10.1103/physrevd.30.1228
https://doi.org/10.1103/physrevd.31.1972
https://doi.org/10.1103/physrevd.35.562
https://doi.org/10.1103/physreva.11.1650
https://doi.org/10.3390/atoms7010029
https://doi.org/10.1007/bf02750449
https://doi.org/10.1103/phyRev.182.1374
https://doi.org/10.1103/phyRev.186.1304
https://doi.org/10.1103/phyRev.186.1304
https://doi.org/10.1023/a:1025846412872
https://doi.org/10.1103/physrevd.11.790
https://doi.org/10.1038/scientificamerican0885-70
https://doi.org/10.1038/scientificamerican0885-70
https://doi.org/10.1017/s0305004100004114
https://doi.org/10.1103/physreva.42.1847
https://doi.org/10.1103/physreva.42.7006
https://doi.org/10.1103/physreva.42.7006
https://doi.org/10.3390/atoms7020050
https://doi.org/10.1103/physrevd.11.809
https://doi.org/10.1103/physrevd.11.809
https://doi.org/10.1002/andp.19103381603
https://doi.org/10.1002/andp.19103381604
https://doi.org/10.1016/j.physleta.2003.08.022
https://doi.org/10.1016/j.physleta.2003.08.022
https://doi.org/10.1088/0031-8949/2015/t165/014006
https://doi.org/10.1088/0031-8949/2015/t165/014006
https://doi.org/10.1007/s10701-015-9919-0
https://doi.org/10.1007/bf00731830
https://doi.org/10.1063/1.881201
https://doi.org/10.1038/scientificamerican0493-54
https://doi.org/10.1103/physrevd.33.2903
https://doi.org/10.1103/physrevd.33.2903
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


ORIGINAL RESEARCH
published: 23 October 2020

doi: 10.3389/fphy.2020.00335

Frontiers in Physics | www.frontiersin.org 1 October 2020 | Volume 8 | Article 335

Edited by:

Ana Maria Cetto,

Universidad Nacional Autónoma de

México, Mexico

Reviewed by:

Luis De La Peña,

National Autonomous University of

Mexico, Mexico

Yilun Shang,

Northumbria University,

United Kingdom

Daniel C. Cole,

Boston University, United States

*Correspondence:

Theo M. Nieuwenhuizen

t.m.nieuwenhuizen@uva.nl

Specialty section:

This article was submitted to

Mathematical and Statistical Physics,

a section of the journal

Frontiers in Physics

Received: 09 March 2020

Accepted: 20 July 2020

Published: 23 October 2020

Citation:

Nieuwenhuizen TM (2020) Stochastic

Electrodynamics: Renormalized Noise

in the Hydrogen Ground-State

Problem. Front. Phys. 8:335.

doi: 10.3389/fphy.2020.00335

Stochastic Electrodynamics:
Renormalized Noise in the Hydrogen
Ground-State Problem
Theo M. Nieuwenhuizen*

Institute for Theoretical Physics, University of Amsterdam, Amsterdam, Netherlands

The hydrogen ground-state problem is a touchstone for the theory of Stochastic

Electrodynamics. Recently, we have shown numerically and theoretically that the

H-atom self-ionizes after a characteristic time. In another approach, we reconsidered

the harmonic oscillator and renormalized the stochastic force in order to suppress

high-frequency tails so that all frequency integrals are dominated by the physical

resonances. In the present work, we consider the regularization of the noise in the

hydrogen ground-state problem. Several renormalization schemes are considered.

Some are well-behaved, whereas in others the high frequency renormalization induces

pathologies at low frequencies. In no situation did we find a way to escape from the

previously signaled self-ionization.

Keywords: stochastic electrodynamics, hydrogen problem, hydrogen ground state, self-ionization,

renormalization

1. INTRODUCTION

Stochastic electrodynamics (SED) is a classical theory that aims to explain quantum phenomena.
Particles move in classical orbits. The basic assumption is the existence of a physical stochastic
electromagnetic force that fills the universe and acts as an environment on charged particles and
causes their quantum behavior at a statistical level. There is much literature on this field, and it can
be summarized in the excellent books [1, 2].

The two celebrated touchstones of quantum physics, the harmonic oscillator [3–6] and the
hydrogen problem [7–9], have received much attention within SED. The harmonic oscillator
leads to a reasonable agreement, though not all details coincide. While the outcomes of various
frequency integrals were routinely taken from their resonances, we have recently introduced a
renormalization of the stochastic force such that high-frequency pathologies do not occur [10].

Our studies of the H-problem go back two decades. In [11], we showed how a classical phase
space distribution can produce the shape of the quantum ground state, even Dirac’s square-root
shape, including relativistic corrections.

Stability of circular orbits was demonstrated by [12–14]. The numerics of the hydrogen ground
state were performed in 2002 by [15] with amodestly optimistic outlook.With the aim to reconsider
the problem, new simulations were performed in our group in 2016. Various schemes for treating
the stochastic force numerically were formulated analytically. Liska employed video cards and a
modern computer code, speeding up the simulations significantly. They were carried out for the
non-relativistic problem [16] and with the inclusion of relativistic corrections [17]. Many CPU
hours were spent to achieve long run times and to incorporate many frequency modes. Ongoing
findings of self-ionization led to simulation of a variety of formulations of the problem. The bottom
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Nieuwenhuizen Renormalized Noise in SED Hydrogen

line was that there was always self-ionization, suggesting that SED
is not a basis for quantum mechanics.

On another track, Huang and Batelaan [18] reported that
quantum interferences do not show up in the SED version of a
double-slit-like quantum model.

Nieuwenhuizen [19] showed analytically for the H atom that
there is a trend for self-ionization when the energy of the elliptic
orbit is close to zero and the dimensionless angular momentum
lies below a critical value of order unity, thus supporting the
numerics and the non-recurrence of orbits found by [8].

The question of whether a proper definition of SED can
describe the hydrogen atom is of fundamental interest. It is the
purpose of the present work to reinspect stability in the hydrogen
ground-state problem, inspired by our recent renormalization of
the stochastic force for the harmonic oscillator. In section 2, we
recall some properties of elliptic orbits in the Kepler problem.
In section 3, we consider energy absorption from the stochastic
field for various renormalizations of the force. We close with
a discussion.

2. KEPLER ORBITS

We consider an electron bound to a nucleus with charge Ze
and employ the notation of our recent work [19]. Lengths are
expressed in terms of the Bohr radius h̄/αZmec, times in the Bohr
time h̄/α2Z2mec

2, speeds in the Bohr speed of αZc, energy in
the Bohr energy α2Z2mec

2, and angular momentum in terms of
h̄. Here, h̄ is the reduced Planck constant, α ≈ 1/137 the fine
structure constant, Z the atomic number, me the electron mass,
and c the speed of light.

We start recalling the essential details of the dynamics. In Bohr
units the classical Newton equation reads

r̈ = − r

r3
. (2.1)

The Kepler orbit is solved in the parametric forms

r = 1− ε cos a

k2
(cosφ, sinφ, 0)

= (ca − ε, κsa, 0)

k2
. (2.2)

Here, φ is the angle of the orbit with respect to the x-axis, a
is a time-like parameter, ε is the ellipticity, and κ =

√
1− ε2.

Furthermore, ca is a shorthand for cos a and sa for sin a. The orbit
lies on the ellipse

(k2x+ ε)2 + k4

κ2
y2 = 1 (2.3)

Its perihelion lies at r = 0, the location of the nucleus, and the
aphelion at (−2ε/k2, 0, 0).

Time t and a second time s are parameterized as

t = τa

k3
, τa = a− ε sin a, (2.4)

s = τb

k3
, τb = b− ε sin b.

For circular orbits (ε = 0), τa = a is a scaled time. In general,
(2.4) exhibits an oscillation on top of this.

The angle φ is related to the variable a as

cφ = ca − ε

1− εca
, sφ = κsa

1− εca
, (2.5)

and reads explicitly

φ = 2 arctan

(

√

1+ ε

1− ε
tan

a

2

)

. (2.6)

It exhibits the ongoing revolutions; for circular orbits (ε = 0) it
equals φ = a = k3t. For general ε, the orbit and t are thus explicit
in terms of a.

In Bohr units, the energy is E = − 1
2k

2 and κ = kL with
L being the angular momentum in units of h̄. The period reads
P = 2π/k3. While the QM ground state corresponds to k = 1,
in SED, k takes any value between 0 and∞, that is, ranging from
loosely to strongly bound, respectively. In the philosophy of SED,
the time average of E produces the ground state energy E0 = − 1

2
as the average of E over the stationary distribution of E-values.
Presuming that it exists, its form has been determined in [11].

Linear perturbations h to the Kepler orbit satisfy

ḧ(t) = −W(t)·h(t), W = 1− 3r̂r̂

r3
. (2.7)

In [10], we presented a set of eigenmodes in the rotating frame.
A linear combination of these solutions reads, in the laboratory
frame,

h
(1)(t) = 1

ρa
(−sa, κca, 0),

h
(2)(t) = 2(ε − ca,−κsa, 0)+ 3τah

(1)(t),

h
(3)(t) = 1

2ρa
(−κs2a, 3− 4εca + c2a),

h
(4)(t) = κ

2ρa
(3− 2εca − c2a,

2εsa − s2a

κ
, 0),

h
(5)(t) = (0, 0, sa),

h
(6)(t) = (0, 0, ca − ε). (2.8)

The benefit of these modes is that the limits ε → 0 or κ → 0 to
be taken in each of them.

The Greens function satisfies

G̈(t, s)+W(t)·G(s, t) = 1 δ(t − s),

G
′′(t, s)+ G(t, s)·W(s) = 1 δ(t − s), (2.9)

where dots denote derivatives to t and primes to s. Generally, it
holds that

Ġ(t, t−) = −G
′(t, t−) = 1, Ġ

′(t, t−) = 0. (2.10)
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Following the approach of [19], we verify that for s < t, the
Greens function reads explicitly

G(t, s) =
∑

i=1,3,5

h
(i)(t)h(i+1)(s)− h

(i+1)(t)h(i)(s)

k3
.

while causality imposes G = 0 for s ≥ t.

3. STOCHASTIC ELECTRODYNAMICS

In SED the Kepler orbit is perturbed by the stochastic electric field
E and the dampingD,

r̈ = − r

r3
− βE+D, (3.1)

The small parameter β is related to the fine structure constant

β =
√

2

3
α3/2Z ≈ Z

1965
. (3.2)

with charge Z = 1 for hydrogen. The damping D(t) has been
analyzed in full detail in [10]; Here, the standard approximation
D = β2 ...r suffices. The stochastic field satisfies

E(t) = −Ȧ(t) = −C̈(t). (3.3)

It has zero average and correlation functions

CEE(t − s) = 〈E(t)E(s)〉 = ℜ 6× 1

π(t − s− iτc)4
,

CAA(t − s) = 〈A(t)A(s)〉 = ℜ − 1

π(t − s− iτc)2
,

CCE(t − s) = 〈E(t)C(s)〉 = ℜ − 1

π(t − s− iτc)2
,

CCC(t − s) = 〈C(t)C(s)〉
= − 1

π
ℜ logωc(t − s− iτc), (3.4)

where τc = α2Z2 is the Compton time h̄/mc in Bohr units and
ωc ∼ α3 log 1/α is a low frequency cutoff. These correlators are
large at s = t.

The energy radiation is well-understood. Per revolution there
is an energy loss

(1E)rad = −β2k5π
3− κ2

κ5
. (3.5)

The theme of the present work is the average energy gained from
the field. It occurs at the rate

〈Ėfield〉 = β2

∫ t

s0

ds 〈E(t)·Ġ(t, s)·E(s)〉 (3.6)

where we must take s0 → −∞. Integrated over a period P =
2π/k3, it brings

〈1Efield〉 = β2

∫ P/2

−P/2
dt

∫ t

s0

ds I1(t, s) (3.7)

with

I1(t, s) = CEE(t − s) tr Ġ(t, s), (3.8)

This expression has been studied in our previous work. The s-
integral has potentially dangerous behavior at s = t where Ġ = 1

and CEE(0) is very large. But the shape (3.4) of CEE implies
that this high frequency effect has a vanishing contribution. Just
leaving it out corresponds to a motivated short-time (t ≈ s) or
high frequency renormalization. The remaining integrand

ġ(t, s) = tr Ġ(t, s)− 3 = O[(t − s)4], (3.9)

decays rapidly enough to set τc → 0 in CEE so that the integral is
well behaved in this limit.

3.1. Short-Time Regularization
In our recent study of the harmonic oscillator we introduced
a high-frequency regularization of the ultraviolet contributions
[10]. Leaving out the subleading damping D, it amounts to
replace E → E, where the frequency components are related as

Eω ≡ ω2
0

ω2
Eω = ω2

0Cω, (3.10)

with the equality from E(t) = −C̈(t). At the resonance frequency
ω = ω0, the Eω and Eω coincide. For nonlinear potentials this
demands a generalization. The definition of G is G̈ + W · G =
1 δ(t − s) in the hydrogen problem, while W(t) → 1ω2

0 in the
harmonic case. A natural and simple generalization is therefore

E(t) = W(t)·C(t). (3.11)

Indeed, this reduces to (3.10) for the harmonic case. With E

instead of E inserted in (3.1), there will now appear in (3.7) the
renormalized integrand

I2 = 〈E(t)·Ġ(t, s)·E(s)〉 (3.12)

= CCC(t − s) trW(t)·Ġ(t, s)·W(s).

We also consider the expressions with one E and one E, which
result in

I3 = CCE(t − s) tr Ġ(t, s)·W(s),

I4 = CCE(t − s) trW(t)·Ġ(t, s). (3.13)

By partial integration we can generally relate the s-integral over
I1 to one over I4.

∫ t

−∞
ds Ġ(t, s)ℜ 6

π(t − s+ iτc)4
= (3.14)

∫ t

−∞
ds Ġ(t, s)W(s)ℜ −1

π(t − s+ iτc)2
.
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In the boundary terms, we used Ġ
′(t, t) = 0 and inserted

Ġ
′′(t, s) = −Ġ(t, s) ·W(s). But when we do the same to relate

I3 to I2, we cannot omit the boundary terms at large negative s0,

∫ t

s0

dsℜ − Ġ(t, s)

π(t − s+ iτc)2
= Ġ(t, s0)

π(t − s0)

+ Ġ
′(t, s0)

logω1(t − s0)

π
(3.15)

−
∫ t

s0

ds Ġ(t, s)·W(s)
logω1(t − s)

π
,

where we took τc → 0 in the right-hand side. The main reason
for the complication is that G(t, s), as well as its derivatives,
contain an explicit factor t − s arising from the secular part
3k3t h(1)(t) of the h

(2)(t) mode, see (2.8). With the left-hand
side of (3.15) well-behaved for s0 → −∞, it follows that the
integral in the right hand side must have an s0 + s0 log |s0|
divergency in this limit. This is confirmed by inspection and
implies that the short-time regularization (2.8) creates a long-
time divergency. It is related to the 1/ω2 factor in (3.10) and
already led for the harmonic oscillator to a divergency; this was,
however, subdominant. For the hydrogen problem it is more
cumbersome and leads to an ill-defined leading order integral
over I2. Similar computational methods of integral calculation
have been used in other settings (see e.g., [20]).

Though CCC in Equation (3.4) involves a cutoff ωc, Equation
(3.15) is valid for any ω1. But even the awkward choice ω1 ∼
−1/s0 would not eliminate the boundary terms that regularize
the integral.

3.2. Nearing the Self-Ionization
The important question of whether the H ground state is stable in
SED is analyzed for orbits in the limit where E = − 1

2k
2 vanishes.

In our previous works, we showed that this amounts to studying
the orbits in the limit where κ = kL vanishes, at fixed L, in an
order unity. From (3.5), one has the energy loss by radiation per
orbit

(1E)rad ≈ −3π
β2

L5
. (3.16)

To study this limit, the scaling a → κu, b → κv for κ → 0 is
introduced, expressing that the main contribution, described by
u and v of the order unity, comes from the part of the Kepler orbit
near the pericenter at u = 0. Indeed, it holds that

r = L2

2
(1− u2, 2u, 0), r = L2

2
(1+ u2). (3.17)

Clearly, this part of the orbit is in its k → 0 limit, while the
farthest point, lying at ((1 + ε)/k2, 0, 0) ≈ (2/k2, 0, 0), exhibits
a self-ionization for k → 0. For further details of the method we
refer to [19]. We reproduce its equations (2.24)–(2.26) for κ → 0
and multiplied by P,

〈1E
(1)
field

〉 = 144

5π

β2

L6

∫ ∞

−∞
du

∫ u

−∞
dv×

27

2

5+ 3u2 + 4(2+ u2)uv+ (u2 − 1)v2

(1+ u2)2(3+ u2 + uv+ v2)4
. (3.18)

Continuing along these lines, we find that 〈1E
(3)
field

〉 is equal to
this, while 〈1E

(4)
field

〉 comes out with the second line replaced by

15+ 20u2 + 3u4 + 4(5+ 8u2 + u4)uv

(1+ u2)5(3+ u2 + uv+ v2)2
+ (3.19)

5+ u2 + 8u4 + 2(5+ u2)uv+ (u2 − 1)v2

(1+ u2)5(3+ u2 + uv+ v2)2
v2.

Its v-integral is linearly divergent with logarithms, as it is for

〈1E
(2)
field

〉. This all results in

〈1E
(1)
field

〉 = 16
√
3

5

β2

L6

〈1E
(2)
field

〉 = divergent

〈1E
(3)
field

〉 = 16
√
3

5

β2

L6

〈1E
(4)
field

〉 = divergent (3.20)

The equality of the first and third case yields some justification
for the renormalization method we investigated.

In case 1 and 3, the average total energy change per orbit thus
comes out as

1E = 3π
β2

L6
(Lc − L),

Lc = 16

5π
√
3
= 0.588057. (3.21)

Orbits that have achieved a small k and L < Lc will gain energy
on average, which explains the self-ionization observed in all
our numerics.

3.3. Other Renormalization Schemes
The renormalization E → Ē = W(t) · C(t) involves W =
(1 − 3r̂r̂)/r3, of which the numerator has eigenvalues −2 and 1
(twice). One may wonder whether the “absolute value” |W| ≡
(1 + r̂r̂)/r3, with the eigenvalues +2 and 1 (twice), fares better.
Inspection shows that the divergence does not disappear; if
anything, it becomes worse.

A renormalization with a broken power of |W| fares better at
large times. One may replace E = −Ȧ by E(t) = −

√

|W|(t) ·A(t)
with the expression

√|W| = (1 + (
√
2 − 1)r̂r̂)/r3/2 squaring to

|W|. Like (3.11), this approach softens the short time behavior,
but it does not ruin the long time regime. This leads to a
contribution to 〈Ė〉field of the form

∫ t

−∞
dsℜ −f (t, s)

(t − s+ iτc)2
= f ′(t, t)| log τc|

+
∫ t

−∞
ds f ′′(t, s) log(t − s)+ O(τc). (3.22)

Using Ġ = 1 and Ġ
′ = 0 at s = t, the boundary term leads to

δ〈Ė〉field
| log τc|

= β2

2π

d

dt
tr |W| = −6β2

2π

ṙ

r4
. (3.23)
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It expresses energy gain (i.e., the electron becomes less bound,
on the average) on the approach to the pericenter, and loss
(becoming more bound) on departure. This cutoff dependence
is unexpected. Nevertheless, when integrated over a full period,
the effect averages out.

Next, we calculate, in analogy with (3.7), the energy gain per
period. In the scaling limit, the t, s integrals become u, v integrals,
of which the latter can be performed analytically. Its v = u
boundary term vanishes upon u-integration, while the integral
over the v = −∞ boundary term leads to a finite result,

〈1Efield〉 = 2.99842 〈1E
(1)
field

〉. (3.24)

Hence it also leads to self-ionization.
The combination E = (1−x)E−x

√|W| ·A involves from the
AE and EA cross terms, a new contribution of the form

∫ t

−∞
dsℜ −2f (t, s)

(t − s+ iτc)3
= f ′′(t, t) log τc

+
∫ t

−∞
ds f ′′′(t, s) log(t − s)+ O(τc). (3.25)

with a lengthy f having f (t, t) = 0. The log τc again drops out
when integrated over a full period. After scaling, the v-integral
can be performed analytically; now, the primitive for v → −∞ is
odd in u, while the result comes from the v = u term. This ends
up in

〈1E
(x)
field

〉 = 16
√
3

5

β2

L6
× (3.26)

[(1− x)2 − 0.876444(1− x)x+ 2.99842x2].

Its minimum at x = 0.295028 leads to Lmin
c = 0.33855, smaller

than Lc = 0.58808 from (3.21). For all x, this still leads to
self-ionization.

The above “absolute” value |W| looks unnatural, but it was
necessary to define a real valued version of

√
W. The third roots

are real however:

W
1/3 = (1− (21/3 + 1)r̂r̂)/r,

W
2/3 = (1+ (22/3 − 1)r̂r̂)/r2, (3.27)

It is easily verified that (W1/3)2 = W
2/3 and (W1/3)3 = W. They

thus permit the renormalization

E → Ē = (1− x)W1/3 ·B1 + xW2/3 ·B2, (3.28)

for some real valued x, with the stochastic fields

B1 = ∂
−2/3
t E, B2 = ∂

−4/3
t E, (3.29)

defined by having e−iωt frequency components

(B1)ω = Eω

(−iω)2/3
, (B2)ω = Eω

(−iω)4/3
. (3.30)

In the notation of [10], their correlation functions 〈Bi(t)Bj(s)〉 =
1Bij(t − s) emerge as

B11(t) =
∫ ∞

−∞

dω

2π

|ω|3
|ω|4/3 e

−iωt−|ω|τc

= 1

π
Ŵ8/3ℜ

1

(it + τc)8/3
,

B22(t) = 1

π
Ŵ4/3ℜ

1

(it + τc)4/3
, (3.31)

B12(t) = B21(−t) = 1

π
ℜ e−π i/3

(it + τc)2
.

The difficulty is again to deal with the singularities in the limit
τc → 0. To proceed, we perform partial integrations. We

introduce B
(3)
11 and B

(1)
22 to get

B11 =
...
B
(3)
11 , B

(3)
11 (t) = − 27

20π
Ŵ8/3 t

1/3,

B22 = Ḃ
(1)
22 , B

(1)
22 (t) =

3

2π
Ŵ4/3 t

−1/3,

B12(t) = B21(t) = − 1

2π t2
, (3.32)

where we took τc → 0. In view of (3.21) we define

L
ij
c = L6

3π

∫ P/2

−P/2
dt

∫ t

s0

ds Bij(t − s)Ŵij(t, s),

Ŵij(t, s) = trWi/3(t)·Ġ(t, s)·Wj/3(s), (3.33)

for i, j = 1, 2. For L11c we perform a partial integration w.r.t.
s. Next we write the t-integral as the difference between two
integrals starting at s0 and switch the t and s integrals. Then we do
a partial integration w.r.t. t, switch back and do a final one w.r.t.

s. This leads to a t, s integral over −Ŵ̇′′
11B

(3)
11 . One boundary term

at t = s is non-trivial, namely

δL11c = 3Ŵ8/3L
6

10π2 τ
2/3
c

∫ P/2

−P/2
dsŴ′

11(s, s) (3.34)

=−3(1− 2−1/3)Ŵ8/3L
6

5π2 τ
2/3
c

∫ P/2

−P/2
ds

r′(s)
r(s)3

.

This vanishes again since it involves a total derivative
integrated over a full period. But the integrand itself is
moderately large, so that, as before, the average rate of energy
exchange with the field results in gain on approach to the
pericenter and loss on departure. While weakened by the
prefactor and canceling over a period, this cutoff dependence
is unexpected.

For L22c we perform a partial integration w.r.t. s and evaluate
the double integral in the limit τc → 0. The boundary term
at s = t vanishes identically. With Ŵ12 ∼ Ŵ21 ∼ (t − s)2

for s → t, the L12c and L21c integrands are already regular
for τc → 0.
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We are interested in these results in the scaling limit κ =
kL → 0 at fixed L. The resulting integrals are of the type (3.18).
Numerical evaluation yields

L11c = 8.5191, L22c = 2.1944, (3.35)

L12c = 0.3182, L21c = −0.5615.

The combined Lc corresponding to (3.28) reads

L11c (1− x)2 + (L12c + L21c )x(1− x)+ L22c x2.

(3.36)

It has a minimum at x = 0.7886,

Lmin
c = 1.7048, (3.37)

which sets the boundary for self-ionizing orbits because (3.36)
exceeds this for other x-values.

4. DISCUSSION

Previous studies, both analytical and numerical, have pointed
out that the hydrogen problem in Stochastic Electrodynamics
leads to a self-ionization of the electron. The present work
investigates whether “easy fixes” of the stochastic force may
improve the situation. We consider a short time or high
frequency renormalization of the stochastic force that we recently
proposed for the harmonic oscillator problem and generalized
it for the hydrogen ground-state problem. To achieve this,
we consider several options, of which some do, and some
do not, lead to a well-defined approach. We find that the
renormalization does not help to stabilize the situation, and

that its impact on long time behavior actually makes the
situation worse.

Next, we study various further renormalization schemes
which lead to well behaved dynamics, but neither heal the self-
ionization problem. Our approach generally puts forward that
stability of orbits with energy near E = 0 can only be achieved
for a scheme in which the parameter Lc in (3.21) vanishes. On
physical grounds one expects that it can be proven that this
quantity is positive. However, we are not aware of such a proof,
not even in the scaling limit E → 0.

In our view, the problem does not lie in the Kepler orbits but in
the close enough approach to the nucleus where a relatively high
amount of energy is absorbed from the stochastic force. Indeed,
Kepler orbits can be stable in SED. Nieuwenhuizen [19] adds
an L20/2r

2 potential to the −1/r Newton potential. It induces an
effective angular momentum Leff = (L2+L20)

1/2, which, if L0 & 6
is large enough, leads to a stable system without self-ionization.
Then Leff , and with it the distance between the pericenter and the
nucleus, is large enough to prevent orbits that keep on gaining
energy on the average.

In the absence of such an extra potential, we confirm
previous findings that the hydrogen self-ionizes in Stochastic
Electrodynamics. When the orbit has nearly zero energy and
the angular momentum lies below some critical value, then, on
the average, more energy gets absorbed from the field than is
radiated away, making the orbit more and more delocalized
so that ultimately self-ionization occurs. To circumvent this, a
fundamental reformulation of Stochastic Electrodynamics seems
to be necessary.
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The connection is established between two theories that have developed independently

with the aim to describe quantum mechanics as a stochastic process, namely

stochastic quantum mechanics (SQM) and stochastic electrodynamics (SED). Important

commonalities and complementarities between the two theories are identified,

notwithstanding their dissimilar origins and approaches. Further, the dynamical equation

of SQM is completed with the radiation terms that are an integral element in SED. The

central problem of the transition to the quantum dynamics is addressed, pointing to the

key role of diffusion in the emergence of quantization.

Keywords: stochastic theories, foundations of quantummechanics, stochastic electrodynamics (SED), stochastic

mechanics, quantum fluctuations

1. INTRODUCTION

A whole and diverse series of stochastic theories have been developed with the aim to throw
some light on the nature of the quantum phenomenon [for some representative work see
Fényes [1–16]]. In this paper we pay attention to two theories in particular that have developed
separately with the common purpose of describing the quantum phenomenon as a stochastic
process. On one hand we have stochastic quantum mechanics, SQM (also known as stochastic
mechanics), a phenomenological theory initiated by E. Nelson, and further developed and extended
independently by several groups; a sample of related works is provided in Nelson [2], de la Peña
[3], Guerra [4], Gaveau et al. [5], Nelson [6], de la Peña and Cetto [7], and Nelson [8], and
references therein. On the other hand we have stochastic electrodynamics, SED, a first-principles
theory pioneered by Marshall [11, 12] and Boyer [13] and further developed and completed with
the contributions from a number of other authors, as shown in de la Peña and Cetto [7, 16], de la
Peña et al. [17] Claverie [14], and Santos [15], and references contained therein. A common feature
of these two theories is the explicit introduction of stochasticity as an ontological elementmissing in
the quantum theory, with the aim to address many of the historical—and still current—conceptual
difficulties associated with quantummechanics. It is in a way astounding that the two theories have
lived parallel lives for decades, virtually in isolation from one another.

In both SQM and SED the dynamics of a representative particle of mass m is considered, for
simplicity. In the phenomenological approach of SQM the (statistical) concepts of a flux velocity v
and a diffusive velocity u are introduced on an equal footing, without the need to specify the source
of stochasticity. A generic equation of motion is obtained, which serves to describe the dynamics
of two distinct types of stochastic process, in the Markov approximation: the classical, Brownian-
motion type and the quantum one. The mathematics are simple and straightforward, and their
physical meaning is clear.

The approach of SED, on the other hand, is guided by the hypothesis of the existence of the
(random) zero-point radiation field, ZPF1. This rather more elaborate approach goes through a

1In the atomic, non-relativistic case it is sufficient to consider the electromagnetic vacuum; for other particles different kinds

of vacua may have to be considered. A general formulation embracing all kinds of particles could be envisaged, based on a

fluctuating spacetime; the different vacuum fields would then be manifestations of these primordial fluctuations.
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statistical evolution equation (a generalized Fokker-Planck-type
equation, GFPE) in phase space, to arrive at a description
in x-space, in which the dissipative and diffusive terms are
seen to bring about a definitive departure from the classical
Hamiltonian dynamics. The interplay between these two terms
is what allows the system to eventually reach equilibrium and
thus attain the quantum regime; the dynamics is then described
by the Schrödinger equation, and the operators become a
natural tool for its description. Planck’s constant enters into
the picture through the spectral density of the ZPF, and this
allows to determine uniquely the value of the only free parameter
introduced in SED, as well as in SQM.

The purpose of the present work is to establish the connection
between SQM and SED and, by so doing, to identify the
strengths and limitations of the two theories, as well as certain
commonalities and complementarities between them. With this
aim, we first present the basic elements of SQM leading to the
dynamical law that governs both classical and quantum stochastic
processes in the Markov approximation. Secondly, we briefly
review the statistical treatment followed in SED to arrive at a
description in configuration space, and discuss the conditions
under which the system attains equilibrium and thus reaches the
quantum regime as described by the Schrödinger equation, which
corresponds to the radiationless approximation of SED. The
discussion of the connections between the two theories provides
an opportunity to highlight the role played by diffusion in
quantum mechanics. The more complete dynamical description
provided by SED, which includes the radiative terms, serves in
its turn to complete the corresponding dynamical equation of
SQM. The distinct nature of the diffusive terms allows us to
address the central problem of the transition from the initially
classical dynamics with ZPF, to the quantum one. It is concluded
that this more complete ontology which includes the ZPF as
the source of stochasticity, leads in a natural process to the
quantum description.

2. THE UNDERLYING EQUATIONS OF
STOCHASTIC QUANTUM MECHANICS

Stochastic quantum mechanics is a phenomenological theory
that considers a particle of mass m undergoing a stochastic
motion. It is general enough as to accommodate a range of
physical phenomena in which an underlying stochastic process,
considered in the Markov (second-order) approximation, takes
place. The stochastic nature of the dynamics calls for a statistical
treatment, which is carried out in x-space. The basic kinematic
elements for the description are obtained by applying an average
over the ensemble of particles in the neighborhood of x at times
close to t. By taking the time interval∆t small but different from
zero, two different velocities are obtained, namely the flux (or
systematic) velocity [see e.g., [2, 7]]

v(x, t) = x(t +1t)− x(t −1t)

21t
= D̂cx, (1)

with

D̂c =
∂

∂t
+ v · ∇, (2)

and the diffusive (or osmotic) velocity

u(x, t) = x(t +1t)+ x(t −1t)− 2x(t)

21t
= D̂sx, (3)

with

D̂s = u · ∇ + D∇

2, (4)

and

D = (1x)2

21t
(5)

the diffusion coefficient, assumed to be constant. The symbol (·)
denotes the aforementioned ensemble averaging.

By considering the forward and backward Fokker-Planck
equations for the probability density in x-space ρ(x, t) [see, e.g.,
[18]], and combining them appropriately, it follows that ρ(x, t) is
related to the flux velocity through the continuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0, (6)

and to the diffusive velocity according to

u(x, t) = D
∇ρ

ρ
. (7)

This most important relation confirms the diffusive meaning
of the velocity u.

The two time derivatives (2) and (4), applied to the velocities
(1) and (3), give rise to four different accelerations, thus leading to
a couple of generic dynamical equations, which are, respectively,
the time-reversal invariant generalization of Newton’s Second
Law, and the time-reversal non-invariant equation, namely

m
(

D̂cv − λD̂su
)

= f+, (8a)

m
(

D̂cu+ D̂sv
)

= f−, (8b)

where λ is a free, real parameter, and the net force acting on the
particle f decomposes as f = f+ + f−, such that f− and f+ do
and do not change sign, respectively, under time reversal (notice
that v changes its sign whereas u remains invariant).

Since Equations (8) hold simultaneously and together they
describe the dynamics of the system, it is convenient to
combine them into a single equation. This is readily achieved by
introducing the symbol κ = √−λ and multiplying the second
equation by κ ; the result is

D̂κpκ = f κ , (9)

with

pκ = mwκ +
e

c
A, wκ = v + κu, (10)

f κ = f+ + κf−, (11)
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and

D̂κ = D̂c + κD̂s =
∂

∂t
+ 1

m
pκ · ∇ + κ D∇

2. (12)

Equation (9) is the equation of motion appropriate for the
description of an ensemble of electrically charged particles
immersed in an external electromagnetic field A, and subject
to stochastic forces. The Newtonian limit (or equivalently, the
classical Hamiltonian description) corresponds to D = 0 and
hence u = 0, which means no diffusion at all.

For simplicity in the derivations we shall assume no external
electromagnetic field A, so that the momentum is simply pκ =
mwκ and the external force components reduce to

f+ = f = −∇V , f− = 0. (13)

Equations (9)–(12) show that the specific dynamical properties of
the system strongly depend on the sign of the parameter λ, which
in its turn determines whether κ is real or imaginary. Since only
the sign of λ is relevant [its magnitude can be absorbed into the
value of D, as explained in de la Peña et al. and Cetto [17, 19]]
one can take λ = ±1. The value λ = −1 (κ = 1) implies an
irreversible dynamics, of the Brownian-motion type. In contrast,
by setting λ = 1 (κ = −i) one obtains after some algebra the
Schrödinger-like equation

− 2mD2
∇

2ψ(x, t)+ V(x)ψ(x, t) = 2imD
∂ψ(x, t)

∂t
, (14)

and its complex conjugate, where ψ(x, t) is a complex function
such that

ρ(x, t) = |ψ(x, t)|2 (15)

and

v = iD

(∇ψ∗

ψ∗ − ∇ψ
ψ

)

, u = D

(∇ψ∗

ψ∗ + ∇ψ
ψ

)

, (16)

whence

w = v − iu = −2iD
∇ψ
ψ

. (17)

3. THE UNDERLYING EQUATIONS OF
STOCHASTIC ELECTRODYNAMICS

3.1. The Generalized Fokker-Planck
Equation
We recall that the equation of motion of SED for a (non-
relativistic) particle of mass m and electric charge e is the
Langevin equation, also known in SED as Braffort-Marshall
equation [7, 14, 15],

mẍ = f (x)+mτ
...
x + eE0(t), (18)

where τ = 2e2/3mc3, and f = −∇V . The (random)
electromagnetic ZPF is usually taken in the dipole approximation
and is therefore represented by E0(t). With the momentum
defined as

p = mẋ, (19)

Equation (18) transforms into

ṗ = f +mτ
...
x + eE0(t). (20)

Since the dynamics of the system becomes stochastic due to the
ZPF, its evolution can only be described in statistical terms. We
therefore follow a standard procedure [see de la Peña et al. [17];
section 4.2] that leads to the following generalized Fokker-Planck
equation (GFPE) for the phase-space distribution Q(x, p, t),

L̂Q =
(

L̂c + e2L̂r

)

Q = 0, (21)

where

L̂c =
∂

∂t
+ 1

m
∇ · p+ ∇p · f (22)

and

L̂r = ∇p ·
(mτ

c2
...
x − D̂

)

. (23)

The operator L̂c contains the classical (i.e., conservative and
nondiffusive) Liouvillian terms, and L̂r the radiative and diffusive
terms, the latter being represented by the integro-differential
operator D̂ . To lowest order in e2, this operator takes the form

D̂ =
t
ˆ

−∞
dt′ϕ(t − t′)∇p′ , (24)

where

ϕ(t) = 2h̄

3πc3

ˆ ∞

0
dωω3 cosωt (25)

denotes the ZPF covariance, and p′ = p(t′) evolves toward p(t)
under the action of L̂. Notice that it is through this diffusive term
that Planck’s constant appears in the description.

3.2. Evolution Equations in Configuration
Space
From Equation (21) follows the equation of evolution in x-space
for any dynamical variable G(x, p) of interest without explicit
time-dependence, by left-multiplying the equation by G and
integrating over the momentum space. The local mean value of
G is

〈G〉x ≡
1

ρ

ˆ

dpG(x, p)Q(x, p, t), (26)

where ρ = ρx = ρ(x, t) =
´

dpQ(x, p, t) stands for
the probability density. Here we consider only the results
corresponding to G = 1 and G = p. In the first case, a direct
integration of Equation (21) over p gives the continuity equation
for ρ,

∂ρ

∂t
+ ∇ · j = 0, j = ρv, (27)

with v = v(x, t) the flux (or current) velocity,

v = 1

m
〈p〉x. (28)
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For G = p one gets, using (19) and summing over
repeated indices,

∂

∂t
mvρ +m2∂j

〈

ẋjẋ
〉

x
ρ −

〈

f
〉

x
ρ = R, (29)

with

R = mτ 〈...x〉x ρ − e2〈D̂〉xρ (30)

containing the radiative and diffusive terms, which are of the
order of e2.

As is shown in detail in de la Peña et al. [17] (Chapter 4) and
de la Peña et al. [20], the left-hand side of Equation (29) can be
transformed into the Schrödinger-like equation

− 2η2

m
∇

2ψ(x, t)+ V(x)ψ(x, t) = 2iη
∂ψ(x, t)

∂t
(31)

with ψ(x, t) a complex function such that

ρ(x, t) = |ψ(x, t)|2, (32)

η a free (undetermined) parameter, and

v(x, t) = 1

m
Re

(−2iη∇ψ

ψ

)

= − iη

m

(

∇ψ

ψ
− ∇ψ∗

ψ∗

)

. (33)

It is important to note that neither the left-hand side of (29) nor
the resulting Equation (31), contain any element that is explicitly
related with the ZPF nor with radiation reaction. In fact it is
just through the balance eventually achieved between the average
energy lost by radiation reaction and that gained from the ZPF

(the two terms deriving from the action of L̂r , Equation 23),
that the value of the parameter η is determined. It is thus found
that [17, 20]

η = h̄/2, (34)

which transforms (31) into the true Schrödinger equation; the
term on the right-hand side of Equation (29) represents the
radiative corrections. We shall come back to this crucial point
in section 5.4.

4. CONNECTING SED WITH SQM

4.1. Comparing the Dynamical Equations
To explore the connection between the two theories we start by
noticing that (33) relates the flux velocity with the real part of the
complex vector (−ih̄∇ψ)/ψ , while the corresponding imaginary
term, on its part, gives the velocity vector

u(x, t) = − 1

m
Im

(−ih̄∇ψ

ψ

)

= h̄

2m

(

∇ψ

ψ
+ ∇ψ∗

ψ∗

)

= h̄

2m

∇ρ

ρ
. (35)

These expressions coincide precisely with those obtained for the
two velocities of SQM, namely Equation (16), if the diffusion
coefficient appearing in these equations is assigned the value

D = h̄

2m
.

In SED—as in quantum mechanics—v and u represent local
ensemble averages; the SQM expressions (1) and (3) represent
averages over the ensemble of particles in the neighborhood of
x, which is a different way of saying the same.

In terms of these velocities, the full SED Equation (29) reads

m
∂vi

∂t
− mvi

(

2m

h̄
u · v + ∇ · v

)

+m

(

2m

h̄
u ·

〈

ẋẋi
〉

x
+ ∇ ·

〈

ẋẋi
〉

x

)

= fi +
1

ρ
Ri. (36)

For clarity we introduce the tensor Tij, given by the (local)
correlation between the i-th and j-th components of the vector ẋ,

Tij = −2m

h̄

(〈

ẋiẋj
〉

x
− vivj

)

= −2m

h̄

(〈

ẋiẋj
〉

x
− 〈ẋi〉x

〈

ẋj
〉

x

)

, (37)

so that Equation (36) takes the form

m

(

∂vi

∂t
− Tijuj −

h̄

2m
∂jTij + vj∂jvi

)

= fi +
1

ρ
Ri. (38)

Barring the radiative corrections, represented by the last term,
this dynamical equation reduces to

m

(

∂vi

∂t
− Tijuj −

h̄

2m
∂jTij + vj∂jvi

)

= fi. (39)

The SQM dynamical equation (8a), in its turn, reads explicitly

m

(

∂vi

∂t
+ vj∂jvi − uj∂jui − D∂j∂jui

)

= fi (40)

in the absence of an external field, when Equation (13) holds. This
coincides with the (non-radiative) dynamical equation of SED,
Equation (39), with Tij given by

Tij = ∂jui. (41)

Hence, by inserting (41) into (38) we obtain an extended equation
for SQM that includes the radiative contributions represented
by Ri,

m

(

∂vi

∂t
+ vj∂jvi − uj∂jui − D∂j∂jui

)

= fi +
1

ρ
Ri. (42)

On the other hand, the SQM Equation (8b) leads after one
integration to the continuity equation, which is equivalent to the
SED Equation (27).

In this form the connection between SQM and SED is

established. The theories are seen to complement one another:

while SQM offers the advantage of naturally incorporating from

the beginning the couple of velocities v and u to describe

the dynamics due to an (unidentified) stochastic source, SED

recognizes the ZPF as the determining ingredient that serves to
precise the origin of the (quantum) fluctuations, and introduces
Planck’s constant into the ultimate quantum description. The
specific value of D constitutes a postulate in SQM, since in this
theory the nature of the stochastic source remains unidentified.
Things change when making the connection of SQM with SED,
since in the latter theory the ZPF with energy per mode h̄ω/2, is
the natural carrier of h̄.
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4.2. Evidence of Diffusion in Quantum
Mechanics
A significant hint of the direct connection of SED and SQM

with quantum mechanics follows by observing that the quantum
momentum operator is directly related with the velocity wκ for
κ = −i (Equation 17),

p̂ψ = −ih̄∇ψ = (v − iu)ψ . (43)

This result reveals that both velocities v and u are a natural part
of quantum mechanics, even if v is rarely used [see however
Ballentine [21], and u remains virtually ignored]. In terms of
these velocities, the (quantum) expectation value of the squared
momentum reads

〈

p̂
2
〉

= m2
〈

v2 + u2
〉

, (44)

and the quantum variance

σ 2
p̂
=

〈

p̂
2
〉

−
〈

p̂
〉2

(45)

is given by

σ 2
p̂
= σ 2

mv + σ 2
mu, (46)

where the variance of a generic vector b(x, t) is given by σ 2
b =

〈b2〉 − 〈b〉2, with 〈·〉 =
´

dx (·) ρ(x, t).
Since

σ 2
u =

〈

u2
〉

=
ˆ

dx ρ(x, t) u2(x, t) > 0, (47)

momentum dispersion is unavoidable in quantum mechanics—
the single exception being the free particle in a p-eigenstate,
in which case the position dispersion is infinite. A well-known
manifestation of this is the Heisenberg inequality1x1p ≥ h̄/2.

Another distinctive and persisting manifestation of the
diffusive velocity u is the so-called quantum potential,

VQ = −h̄2
(

∇2√ρ
)

/2
√
ρ = −1

2

(

mu2 + h̄∇ · u
)

. (48)

This energy contribution totally due to fluctuations is of
paramount importance in determining much of the quantum
behavior; we recall that it plays a central role in Bohm’s
interpretation of quantum mechanics [22].

Along the present discussion we have met the confluence of
both theories, SQM and SED, with quantum mechanics, through
the equivalence of their statistical nature as being described
by the Schrödinger equation. But there is more, since results
such as (43)–(46) furnish convincing evidence that, along with
the Schrödinger equation, the whole Hilbert-space formalism is
involved in such correspondence.

5. THE MECHANISM OF THE
CLASSICAL-TO-QUANTUM TRANSITION

5.1. Radiation and Diffusion
Let us now pay attention to the radiative contributions,
represented by the term e2L̂rQ in the GFPE (21). For this purpose
we multiply this equation by any constant of motion G(x, p) = ξ

and integrate over p. The terms associated with the classical
Liouvillian, L̂cξ , cancel out automatically, and only the two
terms associated with L̂rξ remain. For equilibrium to be reached,
these terms must eventually balance each other. By resorting to
Equations (24) and (25), one obtains for the balance condition

−
〈...
x · g

〉

x
= h̄

π

ˆ ∞

0
dωω3

ˆ t

−∞
dt cosω(t− t′)

〈

∇p′ · g
〉

x
, (49)

with g(x, p) = ∇pξ (x, p) and p′ = p(t′), t′ < t.
Although the equality in (49) holds only under equilibrium,

each side of it can be analyzed separately for all times. It is clear
that the two terms reflect different dynamical properties of the
system. Whereas, initially (at t = −∞, when particle and ZPF

start to interact and there is no diffusion) the radiation term (left-
hand side) obviously dominates over the diffusive one (right-
hand side), with time the diffusion of the momentum increases
due to the action of the ZPF. Thus, while the system starts
from a non-equilibrium condition, the two dynamical processes
allow it to converge toward a balance regime in which the ξ are
indeed constant.

Fundamental to the analysis is the factor∇p′ ·g, which is at the
core of the mechanism of evolution toward the balance regime.
This coefficient signals the effects on g(x, p), of the diffusion of
the particles activated by the ZPF through its direct action on the
momentum p. In classical mechanics, the quantity ∇p′ · g can be
expressed in terms of a Poisson bracket involving g at time t and
p at time t′,

∂gi

∂p′j
=

[

x′j, gi
]

. (50)

The Poisson bracket represents an abridged description of the
Hamiltonian evolution, controlled by the classical Liouvillian Lc;
in this case the dynamics is purely deterministic. By contrast,
the dynamics contained in Equation (49) is controlled by the
entire Liouvillian, and is therefore deterministic in a statistical
sense only. This means that although the motion of each
particle follows deterministic rules, the fact that it is acted upon
by a stochastic field makes the evolution of the ensemble of
particles statistically deterministic, hence not amenable to a purely
Hamiltonian description. The conforming (modified) Newton
equations of motion are of a nature akin to that discussed in
section 2 and reflected in Equation (9), which appropriately
incorporates the effects of diffusion. As a consequence, the right-
hand side of Equation (49)—and with it the entire equation—
ceases to obey Hamiltonian laws as soon as the diffusion enters
into force.

In conclusion, although initially the dynamics is controlled
by Hamiltonian laws, as the interaction develops diffusion
eventually takes control. At this point Equation (49) acquires
validity, signaling the passage to classical+ZPF physics in the
balance regime. The new laws, which are statistical in nature by
virtue of the action of the ZPF, coincide with those of quantum
mechanics. This means that the Poisson brackets have been
replaced by their corresponding commutator. The presence of h̄
in the commutator provides an important clue—although rarely
appreciated if at all in its daily use: it is a direct result of the
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crucial role played by the ZPF in the dynamics, and evinces the
transition from initially conventional classical to classical+ZPF
physics, and eventually to SED in the balance regime, i.e., to
quantum physics. That this qualitative change stems from an
underlying physical mechanism of transition mastered by the
ZPF, may sound natural to some, radical to others; in fact, it
is both. Interestingly, however, a qualitative change due to a
transition from an initially classical dynamics into one which is
fundamentally quantum in nature, has already been observed in
experiments with open photonic systems [23].

5.2. Two Brands of Stochastic Processes
In the general approach to SQM as briefly discussed in section 2
[and more extensively in, e.g., [3, 17, 19]], the description of the
dynamics involves the undetermined coefficient λ that can take
the values +1 or −1, thereby opening the way to the study of
two essentially different dynamics. Indeed, this parameter defines
the sign of an acceleration related to the diffusion that is to be
either added or subtracted to the drift-related acceleration (as
shown in Equation 8a), so that the dynamical laws differ from one
another, and from the classical (Newtonian) law, due precisely to
the diffusive terms. In the referred works and as discussed above,
it is shown that the selection λ = −1 corresponds to Brownian
motion, whereas λ = 1 leads to quantum mechanics (through
the Schrödinger equation). The close relationship between SQM

and SED shows that, despite their dissimilarities, both stochastic
processes share certain laws, such as Equations (9–13).

A natural question that emerges from the previous discussion
is, how is it that the transition to quantum mechanics occurs
in the SED system but not in the case of Brownian motion,
which is the most characteristic classical stochastic process?
There are several physical features that distinguish the two
stochastic processes, a first obvious one being the scale. Whereas,
Brownian systems are normally microscopic or macroscopic in
size, the quantum ones are of atomic or subatomic size, and
many orders of magnitude more sensitive to the relatively high
intensity of the stochastic background—in this case the ZPF—
which induces significant fluctuations on the dynamical variables
of the system. This difference in the response is so noticeable
that one of the first quantum rules to be established (already
during 1927) were the Heisenberg uncertainty relations, which in
the present understanding express properties of causal stochastic
motions, rather than the familiar “inherent” indeterminism. But
of course the most important difference refers to the source
of the stochasticity, which in the Brownian system is a white
noise, free of any self-correlation, whereas in the quantum case
it is, according to our description, an intense colored field (due
to its ω3-spectrum) with important spatial and temporal self-
correlations. In fact, as has been shown in the relevant literature
[see de la Peña et al. [17] and references therein], it is the
radiation field endowed with these high correlations that can be
identified as the source of the (statistical) wavelike behavior of
quantum particles.

5.3. Precising the Ontology of Quantum
Mechanics
The question of whether the dynamics of a system can
transit from classical to quantum may result misleading or

baffling if taken loosely. A legitimate answer requires that the
starting theory contain already the ontological elements proper
of quantum mechanics. Now, the miscellany of conceptual
problems and difficulties that beset conventional quantum
mechanics, when closely looked at, point toward the possibility
of a common origin, namely some critical component that
has been left aside. Here we are proposing to consider the
zero-point radiation field as the key missing element in the
quantum ontology, and the transition, therefore, not from plain
classical physics but from classical-plus-zero-point-radiation-
field physics to quantum physics. As seen from the above analysis,
this more complete ontology leads in a natural process to the
quantum description.

Equation (31), along with Equations (43–46), imply that once
the balance (or quantum) regime is established, the dynamical
variables can legitimately be treated via the corresponding usual
operators in Hilbert space. This perspective stands in contrast
with the historical one, in which the founders of the theory felt
compelled to introduce operators (in their matrix representation)
to account for the observed facts—just as Newton’s law of
gravitation was proposed to save the phenomenon—without
any acknowledgment (nor knowledge) of the role played by the
underlying cause, the theoretical weight of which remained—and
still remains—largely unrecognized, adding its part to the opacity
of quantum mechanics.

The perspective to be drawn from these results is that the
ZPF not only plays a significant role in explaining quantum
indeterminism as the result of an induced stochasticity, but
that its presence provides the basis for an explanation of the
quantum behavior of matter altogether. [A more extensive
discussion and substantiation of these matters is presented in de
la Peña et al. [17]].

A note about the reverse transition from quantum to classical
seems appropriate at this point. It is usual to consider classical
physics as a limiting case of the quantum description, attained
e.g., by allowing h̄ to go to zero, with the argument that in this
limit all operators commute. This is however a formal transition;
the fundamental difference in the nature of the classical-vs-
quantum dynamics demands a more in-depth consideration of
this apparently simple “change of scale.”

5.4. Some Words About the Radiative
Corrections
Equation (42) is the dynamical law of both SED and SQM,
including the radiative corrections to second order in
e. This more complete description allows one to obtain
several important results pertaining to the realm of quantum
electrodynamics (in the non-relativistic approximation), such
as the formulas for the Einstein coefficients, which determine
in particular the lifetimes of atomic states. The corresponding
calculations and results can be seen in de la Peña et al. [17]
and references therein. In the context of the present work, the
most interesting application has been the determination of the
diffusion coefficient D of SQM.

We recall that according to the SED Equation (49), a balance
must be achieved in the quantum regime between the radiative
and dissipative effects on the dynamics. In particular, for
ξ = p2/2m + V , Equation (49) represents the energy-balance
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condition, meaning that the mean power absorbed by the particle
from the ZPF is compensated by the mean power radiated by the
former. While the radiation reaction term contains parameters
deriving from (classical) electrodynamics only, Planck’s constant
enters into the second term through the spectral energy density
of the ZPF. A detailed calculation of the two terms shows that it
is precisely this balance condition what fixes uniquely the value
of the free parameter η used in section 3.2, and hence of the
diffusion coefficient D in terms of h̄.

6. FINAL REMARKS AND
CONSIDERATIONS

For several decades already, two theories have coexisted which
arrive at quantummechanics from an (assumed) classical context
that includes stochasticity as an essential ingredient. Historically
they were developed by different and virtually independent
clusters of researchers, with little intersection. Hence their
coexistence has been more than peaceful. Also their philosophies
are quite distant, SQM having been conceived of as a Brownian-
type theory for the particle subject to a white noise from an
unidentified source. By contrast, SED has been developed as a
statistical description for the particle subject to the ZPF with a
colored spectrum. As shown here, the two theories complement
each other and both lead to the Schrödinger equation after
appropriate workings; thus, in the global scenario quantum
mechanics emerges from a classical+stochastic context. Leaving
aside the theoretical body here developed, one could ask, why so?

The reason for the success of such parallel constructs is
traced to the role played by diffusion. In SQM the velocity
u is introduced from the very start as a dynamical variable
that encapsulates the diffusive effect of the random force on
the particle motion. Both the diffusive velocity u and the flux
velocity v are of course statistical concepts, and together with the
ensuing four accelerations they modify Newton’s Second Law in
an essential way. Also SED starts by considering the appropriate

statistical description by means of the GFPE, which ensues from
the (stochastic) Langevin-type equation—equally modifying the
Second Law in an essential way.

In this work we have established the equivalence between the
equations of motion derived in SED—a fundamental theory—
and those of SQM—a phenomenological theory. One may say
that SQM becomes thus explained by SED, and completed
by it. This is reinforced by recalling that the value of the
diffusion constant D = h̄/2m—a free postulate in SQM, which
has no natural place for Planck’s constant—is derived from
a consideration of the radiative terms of SED, as explained
in section 5.4.

A final important point is that the coherence between the
SQM and SED theories unravels in the former the presence of
an undulatory element, which it lacks of in its usual strictly
corpuscular treatments [by Nelson and followers; see Nelson
and Guerra [2, 4]]. This provides a natural answer to the well-
known objection against SQM by Wallstrom [24, 25], who deems
the known derivations incorrect, based on the argument that
they require an ad hoc (wave-like) quantization condition on the
velocity potential (the gradient of which gives the velocity v) in
order to derive Schrödinger’s equation; of course such condition
appears artificial in a strictly corpuscular framework, but it
acquires a natural place in a theory that embodies a radiation field
as its substantial source of stochasticity.
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We consider the hydrodynamic quantum field theory proposed by Dagan and Bush,

a model of quantum dynamics inspired by Louis de Broglie and informed by the

hydrodynamic pilot-wave system discovered by Couder and Fort. According to this

theory, a quantum particle has an internal vibration at twice the Compton frequency

that generates disturbances in an ambient scalar field, the result being self-propulsion

of the particle through a resonant interaction with its pilot-wave field. Particular attention

is given here to providing theoretical rationale for the geometric form of the wave field

generated by steady, rectilinear particle motion at a prescribed speed, where signatures

of both the de Broglie and Compton wavelengths are generally evident. While focus is

given to the one-dimensional geometry considered by Dagan and Bush, we also deduce

the form of the pilot wave in two dimensions. We further consider the influence on

the pilot-wave form of the details of the particle-induced wave generation, specifically

the spatial extent and vibration frequency of the particle. Finally, guided by analogous

theoretical descriptions of the hydrodynamic system, we recast the particle dynamics

in terms of an integro-differential trajectory equation. Analysis of this equation in the

non-relativistic limit reveals a critical wave-particle coupling parameter, above which

the particle self-propels. Our results provide the foundation for subsequent theoretical

investigations of hydrodynamic quantum field theory, including the stability analysis of

various dynamical states.

Keywords: Klein-Gordon equation, de Broglie relation, matter waves, Compton scale, hydrodynamic

quantum analogs

1. INTRODUCTION

In his double-solution pilot-wave theory [1–4], Louis de Broglie proposed a physical picture of
quantum dynamics, according to which quantum particles move in concert with a guiding or
“pilot” wave. In its rest frame, a particle of mass m0 was imagined to have an associated vibration
at a frequency prescribed by the Einstein-de Broglie relation, m0c

2 = h̄ωc, an internal clock with
the Compton frequency, ωc = m0c

2/h̄, where h̄ = h/(2π) is the reduced Planck constant and
c the speed of light. This vibration was imagined to be responsible for generating a wave form,
the particle’s “pilot wave,” φ, responsible for propelling the particle. It was hoped, though never
demonstrated, that the resulting particle dynamics would give rise to statistical behavior consistent
with the predictions of the standard quantum formalism, as described by the wavefunction, 9 .
Owing to the distinct forms of φ and 9 in de Broglie’s original conception, this is widely referred
to as his double-solution pilot-wave theory [5].
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De Broglie’s theory had a number of successes, including the
Einstein-de Broglie relation, the de Broglie relation, p = h̄kB,
between particle momentum, p, and its associated wavenumber,
kB, and his prediction of electron diffraction, the experimental
confirmation of which [6] earned him the Nobel Prize in 1929.
Nevertheless, his double-solution theory was incomplete on
several fronts [5]. First, he did not specify the physical nature of
the pilot wave. Second, he failed to specify either the mechanism
for pilot-wave generation or its resulting form. Initially, he
posited that the pilot wave be monochromatic, from which
p = h̄kB follows directly. Subsequently, he followed the lead
of Bohm [7, 8] in asserting that the pilot wave, φ, is linearly
related to the wavefunction, 9 . This concession was made with
the caveat that there is an unspecified singularity in φ in the
vicinity of the particle; however, it otherwise reduced de Broglie’s
double-solution theory to Bohmian mechanics, hence, the two
are often conflated into the so-called ‘de Broglie-Bohm’ theory.
In Bohmianmechanics, themechanism for pilot-wave generation
is also absent: particles move in response to both the classical
potential and the quantum potential, whose form is uniquely
prescribed by the wavefunction, 9 . The possibility of the particle
playing a more active role, specifically acting as the source of
its own pilot wave as originally proposed by de Broglie, was
discussed by Holland [9].

The most substantial efforts to extend de Broglie’s mechanics
have come from workers in stochastic electrodynamics (also
known as SED) [10, 11], according to which de Broglie’s pilot
wave may be sought in the electromagnetic quantum vacuum
field [12, 13]. The geometry of the pilot-wave field in SED is
relatively difficult to characterize, as it requires consideration of
the vector electromagnetic field. Nevertheless, de la Peña and
Cetto [10] assert that the de Broglie wave may be understood in
terms of the Lorentz-transformedDoppler shifting of a pilot wave
with the Compton frequency. Kracklauer [14] also speculated as
to the form of the pilot wave in SED. We here adopt a simpler
approach by following de Broglie in assuming that the pilot wave
may be characterized in terms of a single scalar field. Doing so
allows us to characterize the form of the resulting pilot-wave field,
and somake clear the geometric significance of the de Broglie and
Compton wavelengths on its structure.

In the hydrodynamic pilot-wave system discovered by Couder
et al. [15], a bouncing droplet self-propels along the surface of a
vertically vibrating fluid, guided by the pilot-wave form generated
by its resonant interaction with the bath. This pilot wave is
the superposition of two distinct wave forms generated at each
impact: a traveling disturbance propagating radially outward
from each impact, and an axisymmetric standing Faraday wave
form centered on the point of impact [16]. The spatio-temporal
extent of both the propagating and stationary wave forms is
limited by the fluid viscosity. Consequently, the number of prior
impacts that influence the droplet is limited by viscous damping.
The most striking quantum features arise in the limit of weak
viscous damping, also referred to as the “high-memory” limit,
where the critical non-Markovian nature of the droplet dynamics
is most pronounced [17]. In this limit, the walking droplet is
dressed by a quasi-monochromatic wave form with the Faraday
wavelength; the pilot wave propagates with the particle, as may

be seen by strobing the system at the Faraday frequency [18]. The
quantum-like features of the system emerge owing to the quasi-
monochromatic form of the pilot wave deduced by superposing
the standing wave forms generated at impact, and are only weakly
influenced by the traveling waves [17].

Informed by the walking-droplet system, Dagan and Bush
[19] presented a model of quantum dynamics, the so-
called hydrodynamic quantum field theory (henceforth HQFT),
inspired by de Broglie’s double-solution pilot-wave theory [1,
4]. Specifically, they adopted de Broglie’s notion that quantum
particles have an internal clock, a vibration at the Compton
frequency that interacts with a scalar background field that
satisfies the Klein-Gordon equation. To describe the particle
propulsion, de Broglie considered a guidance equation in which
the particle velocity is proportional to the gradient of the phase of
the monochromatic guiding wave. Dagan and Bush [19] explored
a variant of this guidance equation, according to which the
particle moves at a velocity proportional to the gradient of the
pilot wave. As de Broglie did not specify the precise manner in
which the particle vibration generates its associated pilot wave,
Dagan and Bush [19] followed the physical analogy between
pilot-wave hydrodynamics and de Broglie’s mechanics proposed
by Bush [20]. Specifically, they considered particle vibration at
2ωc to serve as a localized disturbance, acting over the scale of
the Compton wavelength, λc = h/(m0c), of a scalar field, φ, that
evolves according to the Klein-Gordon equation.

Dagan and Bush [19] restricted their attention to a one-
dimensional geometry: the particle motion was restricted to
a line. Nevertheless, their simulations revealed two striking
features. First, the particle moves in concert with its pilot wave
in such a way that its mean momentum satisfies the de Broglie
relation, p = h̄kB. Second, the free particle is characterized
by in-line speed oscillations at the frequency ckB, over a length
scale comparable to the de Broglie wavelength. Here, we shall
rationalize the emergence of the de Broglie relation by elucidating
the precise form of the wave field in the immediate vicinity of
the particle.

In the special case of prescribed particle motion at a constant
speed, the simulations of Dagan and Bush [19] also indicated
the form of the emergent pilot-wave field, which had two
salient features. First, the leading and trailing forms were
significantly different. Second, the relative prominence of the de
Broglie and Compton wavelengths was seen to depend markedly
on the particle speed. These two features, and their analogs
arising for a two-dimensional pilot wave, will be rationalized
through the theoretical developments presented herein. Finally,
our theoretical developments allow us to derive an integro-
differential trajectory equation for the particle motion, which
we analyze in the non-relativistic limit. As in the hydrodynamic
system, this integro-differential form will provide the theoretical
basis for examining the stability of various dynamical states,
including the in-line speed oscillations of the free particle
reported by Dagan and Bush [19].

This paper is arranged as follows: In section 2, we review
the theoretical model proposed by Dagan and Bush [19]. We
also highlight a number of fundamental features of the Klein-
Gordon equation that form the foundations of our analysis. In
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section 3, we derive an analytic solution of the pilot wave for the
kinematic case of steady particle motion at a prescribed speed.
Particular attention is given to rationalizing the salient features
reported by Dagan and Bush [19]. Our theoretical developments
are then extended to describe the two-dimensional pilot wave
generated by rectilinear particle motion in the plane. Finally, in
section 4, we derive an integro-differential trajectory equation
for the particle motion, analysis of which indicates the onset
of self-propulsion for sufficiently strong wave-particle coupling.
This trajectory equation represents the starting point for future
investigations of this new pilot-wave system.

2. HYDRODYNAMIC QUANTUM
FIELD THEORY

2.1. Formulation
We examine the model of one-dimensional quantum dynamics
proposed by Dagan and Bush [19], according to which the pilot
wave, φ(x, t), and particle position, xp(t), evolve according to:

∂2φ

∂t2
− c2

∂2φ

∂x2
+ ω2

cφ = ǫpf (t)g(x− xp(t)), (1a)

γ (x′p)x
′
p = −α

∂φ

∂x

∣

∣

∣

∣

x=xp

, (1b)

where primes denote differentiation with respect to time, t, and
φ satisfies φ → 0 as x → ±∞. The pilot wave, φ(x, t), evolves
according to the Klein-Gordon equation subject to a localized,
periodic forcing, and the particle moves in response to the local
gradient of its pilot-wave field. We note that the novelty of HQFT
is the wave-particle coupling, as manifest in the forcing of the
Klein-Gordon equation and the particle trajectory equation. It
is this coupling that distinguishes our work from the numerous
studies of the Klein-Gordon equation with a potential [21, 22].
The strength of the wave-particle coupling is governed by the
free parameter α. The standard Lorentz factor is defined in terms
of the particle velocity, v = x′p, via γ (v) = (1 − (v/c)2)−1/2.

We define ǫp = φ0ω
2
c /kc, where φ0 is a characteristic value of

φ and kc = 2π/λc is the Compton wavenumber. We recall that
the Compton wavelength, λc, is the distance light travels in one
Compton period, τc = 2π/ωc; thus, λc = cτc and ωc = ckc.

Following the suggestion of Schrödinger [23], and in order
to achieve wave-particle resonance, Dagan and Bush [19]
considered the special case of particle vibration at twice the
Compton frequency, f (t) = sin(2ωct). They further localized
the influence of the particle-induced forcing to the Compton
wavelength by choosing

g(x) = 1√
πa2

e−(x/a)2 , (2)

with a = λc/2. For the numerical examples presented herein,
we adopt these two forms; however, we note that our analysis
is not specific to these forms. In section 3, we investigate the
influence of the forms of f (t) and g(x) on the resultant pilot wave.
Specifically, we consider a more general periodic vibration, f (t),

with dominant angular frequency ω0, and g(x) corresponding
to any symmetric function exhibiting a peak about x = 0 and
decaying as |x| → ∞, normalized such that

∫

R
g = 1.

2.2. The Klein-Gordon Equation
To aid our analysis of the periodically-forced Klein-Gordon
equation (Equation 1a), we first recall some of the fundamental
features of the unforced Klein-Gordon equation,

∂2φ

∂t2
− c2

∂2φ

∂x2
+ ω2

cφ = 0. (3)

The ω2
cφ term in Equation (3) renders this wave equation

dispersive: the propagation speed of a wave depends on
its wavelength. This dispersion relation is derived through
consideration of traveling wave solutions to Equation (3) of the
form φ(x, t) = ei(ωt−kx), where i is the imaginary unit. (As the
wave form is unchanged under the mapping ω → −ω and
k → −k, we consider ω > 0 without loss of generality). We
thus obtain the dispersion relation

ω2(k) = ω2
c + c2k2 ⇒ ω(k) =

√

ω2
c + c2k2,

which relates the wave angular frequency, ω, and the
wavenumber, k.

Since the group velocity, dω
dk
, increases monotonically from

−c to +c as k is increased, for any prescribed particle velocity,

v ∈ (−c, c), there is a unique wavenumber satisfying dω
dk

= v.
This wavenumber is precisely the de Broglie wavenumber, kB(v),
defined as

kB = v/c
√

1− (v/c)2
kc =

v

c
γ (v)kc. (4)

As such, the particle is accompanied by a moving wave packet
with wavelength λB = 2π/|kB| in the vicinity of the particle.
We note that the de Broglie wavelength, λB, and the Compton
wavelength, λc, differ in general, but are identical when the
particle speed is such that |v/c| = 1/

√
2. The dependence of

kB on the particle velocity, v, is illustrated in Figure 1, where
asymptotes are evident as the particle speed approaches the speed
of light. Notably, the de Broglie wavelength is infinite for a
stationary particle. Finally, we remark that the phase speed,

Cp(k) =
∣

∣

∣

∣

ω(k)

k

∣

∣

∣

∣

=
√

(ωc/k)2 + c2,

is superluminal for any wavenumber, k; in particular, the de
Broglie phase speed is Cp(kB) = c2/|v|. However, as the
propagating crests do not carry energy, the principle of relativity
is not violated.

2.3. The Form of the Pilot Wave
Dagan and Bush [19] considered two forms of particle motion:
kinematics, in which the particle motion is prescribed as steady
translation at a fixed velocity, v; and dynamics, where the particle
is free to move in response to the gradient of the pilot wave
according to Equation (1b). Our study of the pilot wave, φ, is
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FIGURE 1 | The wavenumbers excited by a particle moving at a prescribed, constant velocity, v, and vibrating at an angular frequency ω0 = 2ωc. Here kB is the de

Broglie wavenumber (Equation 4) and k± are the wavenumbers of the traveling waves [see Equation (9)]. (A,B) The curve
√

1+ (k/kc)2 and line (ω0 + kv)/ωc intersect

at k+ > 0 and k− < 0, and have equal slope at kB. The dotted line also has slope v/ωc. (A) v/c = 0. (B) v/c = 0.4. (C) Dependence of k± (solid curves) and kB

(dashed curve) on v.

similarly split into consideration of particle kinematics (section
3) and particle dynamics (section 4).

To demonstrate the richness and variety in the form of the
pilot wave, we present snapshots of φ(x, t) for particle kinematics
in Figure 2. These wave forms are similar to those deduced
numerically by Dagan and Bush [19] and possess a number of
intriguing features. First, there is a clear manifestation of the de
Broglie wavelength, λB, most visible in advance of the particle:
however, upon closer inspection, this wavelength modulates
weakly in space, as is most apparent in Figure 2A, and the
amplitude of this wave decreases as the particle speed increases.
Second, we see the emergence of an additional wavelength,
comparable (but not equal) to the Compton wavelength, λc.
Such waves are visible only in the wake of the particle, and
the amplitude of these waves increases with particle speed. We
proceed by rationalizing these wave forms through a systematic
theoretical analysis of the periodically-forced, one-dimensional
Klein-Gordon equation, before demonstrating numerically that
these salient features are also apparent in two dimensions.

3. PILOT-WAVE KINEMATICS

We first consider the kinematic case in which particle motion

is prescribed, so we need not consider the partial trajectory

equation (Equation 1b). Specifically, we consider the particle
trajectory xp(t) = vt, where v > 0 corresponds to motion in
the x-direction. The form of the pilot-wave field is thus described
by the periodically-forced Klein-Gordon equation,

∂2φ

∂t2
− c2

∂2φ

∂x2
+ ω2

cφ = ǫpf (t)g(x− vt). (5)

Example wave forms are presented in Figure 2. We consider the
initial conditions φ = ∂tφ = 0 at t = 0 (for all x) and explore the
dynamics of the waves generated in the vicinity of the particle
after a long time. Our analysis in sections 3.1 and 3.2 is for a

one-dimensional wave form. In section 3.4, we demonstrate that
the salient features of the one-dimensional pilot wave persist in
two dimensions. For simplicity, we consider the forcing f (t) =
sin(ω0t) in the following analysis, but the wave form for a more
general periodic forcing may be derived similarly through the
linear superposition of the harmonics nω0, for any integer n. Our
analysis coincides with the simulations of Dagan and Bush [19]
for ω0 = 2ωc.

As the Klein-Gordon equation is linear, we decompose the
solution of Equation (5) into two parts: the time-periodic
particular solution, φp, which arises due to the periodic
particle forcing; and the homogeneous solution, φh, whose
initial wave form is chosen so that, when combined with the
particular solution, the initial conditions for φ = φp + φh

are satisfied. Our analysis reveals that the particular solution
gives rise to emitted waves that propagate away from the
particle, where the wavelengths in advance of and behind the
particle differ and depend on the particle speed. However,
both the leading and trailing propagating waves oscillate
with the angular frequency, ω0, of the particle vibration.
The homogeneous solution appears as a slowly decaying
carrier wave whose local wavelength and angular frequency
in the vicinity of the particle are precisely the de Broglie
wavelength, λB, and the reduced angular frequency ωc/γ . In
general, the propagating and carrier waves thus oscillate at
different frequencies.

3.1. The Propagating Waves
We first derive the particular solution, φp, to the periodically-
forced Klein-Gordon equation (Equation 5) for a prescribed
particle velocity, v. To allow for generality in the spatial form,
g(x), we first seek the Green’s function, φ̄p, satisfying

∂2φ̄p

∂t2
− c2

∂2φ̄p

∂x2
+ ω2

c φ̄p = ǫp sin(ω0t)δ(x− vt), (6)
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FIGURE 2 | Snapshots of the pilot wave, φ, generated by a particle (black dot) moving at a prescribed velocity, v, such that (A) v/c = 0.1, (B) v/c = 0.4, (C)

v/c = 0.7. The wave field oscillates in time and is sampled at t/τc = 600. The arrow denotes the direction of particle motion. The gray bar (top right of each panel)

indicates the ratio λB/λc, which decreases as the particle speed increases, in accord with Equation (4). The solution was found analytically via a Fourier transform on

an infinite domain (see Appendix 1), where the inversion was performed numerically using a Gauss-Kronrod quadrature routine built into MATLAB.

where δ(x) is the Dirac delta function, yielding the following
spatial convolution for φp:

φp(x, t) =
∫ ∞

−∞
g(x− y)φ̄p(y, t) dy. (7)

We find that this particular solution corresponds to emitted plane
waves that propagate away from the moving particle, and that the
form of g(x) determines the far-field amplitude of these waves.

To derive φ̄p, we first consider periodic solutions to the
unforced Klein-Gordon equation (Equation 3) of the form

φ(x, t) = ei(ωt−k(x−vt)) = ei((ω+kv)t−kx).

In the frame of reference moving with the particle, the angular
frequency shifts according to ω 7→ ω + kv, yielding the
dispersion relation

(ω + kv)2 = ω2
c + c2k2. (8)

When the angular frequency is that of the vibrating particle,
ω = ω0, Equation (8) yields two corresponding wavenumbers,

k± = 1

c2 − v2

[

vω0 ±
√

c2(ω2
0 − ω2

c )+ v2ω2
c

]

. (9)

The dependence of k± on the particle velocity, v, is presented in
Figure 1 for the special case of ω0 = 2ωc considered by Dagan
and Bush [19].

We now utilize the dispersion relation (Equation 8) in order
to determine the wave forms of the particular solution, φp,
when the angular frequency of the particle vibration exceeds
the Compton angular frequency, ω0 > ωc, which encompasses
the special case ω0 = 2ωc explored by Dagan and Bush [19].
(We shall demonstrate in section 3.3 that unphysical wave forms
arise in the case of ω0 ≤ ωc). Equation (9) indicates that
k+ > 0, corresponding to wave propagation in the positive x-
direction, while k− < 0, corresponding to wave propagation

in the negative x-direction. It thus follows that, for the case of
v > 0 considered here, the leading and trailing wavenumbers
are k+ and k−, respectively. Moreover, as k+ > |k−| for v > 0,
the trailing wavelength is longer than the leading wavelength, a
feature characteristic of a Doppler shift. Finally, we note that the
phase speed, ω0/|k±|, of these propagating waves is comparable,
but not precisely equal, to the de Broglie phase speed, Cp(kB) =
c2/|v|, as was evident in the simulations of Dagan and Bush [19].

We demand that the waves propagate away from the vibrating
particle. This radiation condition suggests that φ̄p has the form

φ̄p(x, t) = A+ cos
(

ω0t− k+(x− vt)
)

+B+ sin
(

ω0t− k+(x− vt)
)

for x > vt. When x < vt, the form is similar, but k+ is replaced by
k− (and similarly for A+ and B+). The coefficients, A± and B±,
are determined by the assumed continuity of φ̄p at x = vt and the
jump condition

∂xφ̄p(vt
+, t)− ∂xφ̄p(vt

−, t) = −ǫp

c2
sin(ω0t),

which follows from (6). The Green’s function is then

φ̄p(x, t) =
ǫp

c2(k− − k+)
cos

(

ω0t − K(x− vt)
)

, (10)

where K = k+ for x > vt and K = k− for x < vt.
For a stationary particle (v = 0), Equation (9) determines

k± = ±k0 (where ck0 =
√

ω2
0 − ω2

c ) and the Green’s function

(Equation 10) reduces to

φ̄p(x, t) =
−ǫp

2k0c2
cos(ω0t − k0|x|).

Since k0 6= kc, the wavelength of the propagating waves differs
from the Compton wavelength. Instead, k0 depends on the
vibrational angular frequency, ω0. For the special case of interest,
ω0 = 2ωc, the propagating waves are shorter than the Compton
wavelength, with k0 =

√
3kc.
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When the particle moves at a constant speed, symmetry is
broken and the propagating waves exhibit a Doppler shift: shorter
waves propagate ahead of the particle and longer waves are
emitted in its wake. Since k+/kc → ∞ as v → c, we conclude that
waves ahead of the particle are further compressed as the particle
speed increases. Conversely, the waves behind the particle are
stretched: the wavelength λ− = 2π/|k−| has the limiting form

λ−
λc

→ 2ω0ωc

ω2
0 − ω2

c

as v → c.

In the special case of interest, ω0 = 2ωc, the far-field wavelength
behind the particle approaches 4λc/3 in this limit.

The effect of the convolution (Equation 7) is to diminish rapid
spatial oscillations arising in Equation (10).We define the Fourier
transform of g(x) as

ĝ(k) =
∫ ∞

−∞
g(x)eikx dx, (11)

where the symmetry of g(x) implies that ĝ is a real and
even function of k. Combining Equations (7) and (11), and
applying the convolution theorem, reveals that, far from the
particle, the trailing (−) and leading (+) propagating waves are
approximated by

φp(x, t) ≈ ĝ(k±)φ̄p(x, t)

for v > 0, since φ̄p is sinusoidal and g(x) acts over a localized
region in space. For the case where g(x) is a Gaussian function
[19], ĝ(k) is also a Gaussian; thus, short waves are diminished in
amplitude to a greater extent than long waves. The amplitude of
φp is thus less ahead of the particle, where waves are shorter, than
in its wake, where waves are longer, as is evident in Figure 3.

3.2. The Carrier Wave
We now deduce the accompanying homogeneous solution,
φh(x, t), to Equation (5), from which we demonstrate that the
de Broglie wavelength is the local wavelength of a carrier wave
propagating at the particle speed. As shown in Appendix 1,
the homogeneous solution, φh, may be expressed as the inverse
Fourier transform

φh(x, t) = 1

2π

∫ ∞

−∞

(

a(k) cos
(
√

ω2
c + c2k2 t

)

+ b(k) sin
(
√

ω2
c + c2k2 t

)

)

e−ikx dk, (12)

where the functions a(k) and b(k) are defined in Appendix 1.
Evaluating this integral analytically is intractable. However, we
may proceed by exploiting the highly oscillatory form of the
integrand for ωct≫ 1 in order to derive the integral’s asymptotic
behavior using themethod of stationary phase [24], as outlined in
Appendix 2. By applying this asymptotic procedure to Equation
(12), we obtain that the long-time form of the carrier wave is

φh(x, t) ∼ A(x/ct)
sin(

√

ω2
c t

2 − k2cx
2 + π/4)√

ωct
, (13)
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FIGURE 3 | The propagating waves. (A,B) The Gaussian shape function, g(x),

defined in (2), and its Fourier transform, ĝ(k) = e−a
2k2/4. (C) The Green’s

function, φ̄p, at t = 0 for v/c = 0.3. (D) The particular solution, φp = φ̄p ∗ g,
yields the form of the propagating waves at t = 0. The arrow denotes the

direction of particle motion. The white circles in (B) at k = k± determine the

trailing (−) and leading (+) wavelength of φ̄p, where φp ≈ ĝ(k±)φ̄p far from

the particle.

an approximation valid for |x| < ct and ωct ≫ 1. The form of
the slowly varying envelope,A(x/ct), depends only weakly on the
particle speed [see Appendix 2].

We present the carrier wave, φh, in Figure 4, where its
envelope,A(x/ct), may be seen to exhibit weak asymmetry about
the origin. Notably, the wavelength of the carrier wave varies
significantly in space, with compression ahead of the particle and
elongation in its wake, characteristic of a Doppler shift.Moreover,
we note that φh decays algebraically in time, so the significance
of the carrier wave decreases as ωct → ∞. Nevertheless, this
algebraic decay is sufficiently slow for the amplitude of φh to
remain appreciable at finite time and so be evident in the pilot-
wave forms presented in Figure 2.

We now elucidate the manifestation of the de Broglie
wavelength in the carrier wave, φh. For a particle moving with
velocity v, we define χ = x − vt as the displacement from the
particle. As the envelope, A, is slowly varying, the dominant
spatial oscillations in φh arise from the sinusoid in Equation
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FIGURE 4 | The carrier wave. The asymptotic homogeneous solution, φh [blue

curve, see Equation (13)], for v/c = 0.3 and t/τc = 100, corresponding to a

particle position xp/λc = 30 (black dot). In the vicinity of the particle, waves are

contracted ahead of the particle and elongated behind it. The dotted curve

denotes the slowly varying envelope, ±A(x/ct)/
√

ωct, where A is defined

in Appendix 2.

(13), whose argument we expand in the vicinity of the particle
(|χ/vt| ≪ 1). Specifically, we obtain

√

ω2
c t

2 − k2cx
2 = ωct

√

1− (v/c)2 −K(χ)χ , (14)

where the slowly varying wavenumber is

K(χ) = kc

[

kB

kc
+ χ/vt

2(1− (v/c)2)3/2
+ O((χ/vt)2)

]

, (15)

and kB is the de Broglie wavenumber (Equation 4). The first
term on the right-hand side of Equation (14) corresponds to the
temporal oscillation of the carrier wave at the reduced angular
frequency ωc/γ . At the particle position (χ = 0), the local
wavenumber, K, of the carrier wave is precisely the de Broglie
wavenumber, as might have been anticipated by the relationship
dω
dk
(kB) = v [see Equation (4)]. Moreover, the local wavenumber

varies slowly in space, as described by the correction term of size
O(|χ/vt|) in Equation (15). This variation serves to compress the
wavelength ahead of the particle and elongate it in the particle’s
wake (see Figures 2, 4). This wavenumber modulation decreases
over time, and is also reduced for faster moving particles.

We may also infer why the local amplitude of the carrier
wave decreases as the particle speed increases, a trend evident
in Figure 2. We first recall from Equation (4) that |kB| increases
with the particle speed. Moreover, the variations from the de
Broglie wavelength in the vicinity of the particle become weaker
as the particle speed increases, a trend due to the aforementioned
correction term of size O(|χ/vt|). Consequently, there is a strong
signature of the de Broglie wavelength in the vicinity of the
particle, where the amplitude of this wave is governed by the
value of ĝ(kB), akin to the dependence of the amplitude of the
propagating waves on ĝ(k±) discussed in section 3.1. As |kB|
increases with |v|, and ĝ(k) decreases with |k| (when g(x) is a
Gaussian function), the local amplitude of the carrier wave is
thus diminished with increasing particle speed, consistent with
the trend apparent in Figure 2.

3.3. Summary
By combining the foregoing results, specifically superposing the
propagating (Equation 7) and carrier (Equation 13) wave forms,
we deduce that the one-dimensional wave form generated by
particle motion at uniform speed is

φ(x, t) ∼
∫ ∞

−∞
g(x− y)φ̄p(y, t) dy

+ A(x/ct)
sin(

√

ω2
c t

2 − k2cx
2 + π/4)√

ωct
, (16)

an approximation valid for ωct ≫ 1 and |x| < ct. The Green’s
function, φ̄p, is defined in Equation (10), and the envelope,
A(x/ct), is defined in Appendix 2. As the asymptotic temporal
decay of the carrier wave is algebraic, the signature of the de
Broglie wavelength becomes imperceptible only at very large
times. It is thus apparent why λB is evident in Figure 2 and
the finite-duration simulations of Dagan and Bush [19], but is
expected to vanish in the long-time limit.

In Figure 5, we present an example of the superposition
φ = φp + φh, representing the full pilot-wave field. The
particular solution, φp, describes waves that propagate away
from the moving particle, where the approximate trailing (−)
and leading (+) form is φp ≈ ĝ(k±)φ̄p for v > 0. The
shorter propagating waves ahead of the particle are imperceptible,
but the longer propagating waves in the particle’s wake remain
appreciable. The homogeneous solution, φh, represents a carrier
wave exhibiting local wavelength contraction and elongation
ahead of and behind the particle, respectively. At the particle
position, the local wavelength of the carrier wave is precisely the
de Broglie wavelength. The asymptotic approximation (Equation
16) of the full pilot-wave field, φ, is in excellent agreement with
the numerical solution of Equation (5), lending credence to our
analytic approach.

We proceed by examining the effects of changing the form
of the spatial forcing, g(x). For Gaussian forcing of the form
given in Equation (2), increasing the breadth, a, of the spatial
forcing diminishes the amplitude of the propagating waves, φp,
both ahead of and behind the moving particle, as the far-field
wave amplitudes, φp ≈ ĝ(k±)φ̄p, accordingly decrease due to the

form ĝ(k) = e−a2k2/4. When the particle forcing is localized to
a point (a → 0), we obtain φ̄p = φp, whose form, portrayed in
Figure 3C, has leading and trailing propagating waves of equal
amplitude. When g(x) is other than Gaussian, the far-field wave
amplitudes, φp ≈ ĝ(k±)φ̄p, may vary in a more complex manner
as a function of the localization breadth, a, or particle speed,
|v|. Nevertheless, since k+ → ∞ as v → c, and ĝ(k) → 0 as
k → ∞, the amplitude of the propagating waves far ahead of
the particle approaches zero as the particle speed approaches the
speed of light.

We next examine the influence of the angular frequency,
ω0, of the particle vibration, f (t) = sin(ω0t), on the form of
the propagating waves. We first consider the case in which this
frequency exceeds the Compton frequency, ω0 > ωc, which
incorporates the case of resonant superharmonics of the form
ω0 = nωc for integers n > 1. We recall that Dagan and Bush [19]
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FIGURE 5 | Wave forms accompanying a particle moving at constant velocity

v = 0.1c after a time 600τc. (A) The analytic particular solution, φp [see

Equations (7) and (10)], corresponding to propagating waves. (B) The

long-time asymptotic approximation (Equation 13) of the homogeneous

solution, φh, corresponding to the carrier wave. (C) The total wave field

deduced analytically, φ = φp + φh (blue curve), coincides with the numerical

solution (gray curve) shown in Figure 2A. The gray bar indicates the ratio

λB/λc. The arrow indicates the direction of particle motion.

restricted their attention to the case n = 2. As ω0 is increased,
the wavenumbers k+ and k− both increase monotonically in
magnitude [see Equation (9) and Figure 1], resulting in a
decrease in the far-field amplitude of the propagating waves,
φp ≈ ĝ(k±)φ̄p. Consequently, the inclusion of higher harmonics
results in a relatively small change in the form of the propagating
waves, justifying the decision of Dagan and Bush [19] to consider
only the superharmonic n = 2.

For the special case arising when the angular frequency of the
particle vibration is equal to the Compton angular frequency,
ω0 = ωc, it follows from Equation (9) that k− = 0 and
k+ = 2γ kB for v > 0. In this case, the wavelength of the
propagating wave is infinite in the particle’s wake and at most half
the de Broglie wavelength in advance of the particle, giving rise to
markedly different wave forms from those presented in Figures 2,
5. However, since k− = 0, the propagating waves generated
in this special case of harmonic forcing exhibit the unphysical
feature of an infinite-wavelength oscillation in the particle’s wake.

Finally, we consider the case where the angular frequency of
the particle vibration is less than the Compton angular frequency,

ω0 < ωc, such as for the subharmonic vibration ω0 = 1
2ωc.

Then, Equation (9) indicates that the wavenumbers k± are real
for |v| > v∗, where v∗/c = 1 − ω2

0/ω
2
c , and complex for |v| <

v∗. For fast-moving particles, |v| > v∗, waves thus propagate
ahead of the particle over two distinct length scales and no waves
propagate in the particle’s wake. Conversely, for slow-moving
particles, |v| < v∗, waves grow exponentially in space ahead of
the particle (over a length scale determined by the imaginary
part of k±), which renders the case ω0 < ωc unsuitable for the
generation of a finite-amplitude pilot wave.

As a caveat, we note that our analysis is only valid within
the light cone: the particular solution, φp, extends beyond the
light cone at any finite time since φp is sinusoidal in the
far field. Our analytic results are therefore invalid beyond a
distance O((c − |v|)t) from the particle. Nevertheless, since we
are chiefly interested in the wave form in the vicinity of the
particle, as is necessarily responsible for guiding the particle, this
limitation does not undermine the key results of our study as they
pertain to HQFT.

3.4. The Two-Dimensional Pilot Wave
The approach developed here may be extended to higher spatial
dimensions. We do so here in order to briefly characterize the
two-dimensional pilot wave emerging for rectilinear particle
motion in the plane x = (x, y), with particle velocity v = (v, 0).
We restrict our attention to the case of superharmonic forcing,
ω0 = 2ωc. Notably, the salient features of the one-dimensional
pilot wave, specifically the propagation of waves away from
the particle and the emergence of the de Broglie wavelength
in the carrier wave, persist in two dimensions. In Appendix 3,
we analytically determine the two-dimensional wave form of
the periodically-forced Klein-Gordon equation [the equivalent of
Equation (5)] in Fourier space, before inverting back to physical
space numerically.

Figures 6, 7 both indicate that, as in one dimension, two clear
length scales emerge, comparable to the Compton and de Broglie
wavelengths. The separation in scales between λc and λB is most
evident at low speeds, consistent with Equation (4). Figure 6
illustrates the wave form in the transient case, for which the
particle is initialized at the origin, where the carrier wave forms
about the particle’s initial position. For a stationary or slowly
moving particle, the particle is surrounded by its pilot wave.
However, for faster particles, the amplitude of the waves ahead
of the particle is diminished, as is evident in Figure 6F. Figure 7
illustrates the long-time form of the pilot wave, composed of
propagating waves of characteristic wavelength λc emitted by
the particle, and a carrier wave of the de Broglie wavelength
propagating at the particle speed. Notably, the carrier wave ahead
of the particle approaches a plane wave with the de Broglie
wavelength as ωct → ∞. A more extensive exploration of HQFT
in two dimensions will be left for future consideration.

4. PILOT-WAVE DYNAMICS

We proceed by transforming the coupled system (Equation
1) into an integro-differential trajectory equation governing
the particle position. We do so by following Oza et al.’s [25]
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FIGURE 6 | The two-dimensional wave forms generated by particle motion along the x-axis at a prescribed velocity, v = (v, 0), initiated at t = 0, when φ = ∂tφ = 0.

The normalized wave amplitude, φ/φ0, is color-coded. The cross section of the wave form along the particle path (y = 0) is shown below. (A–C) A particle moves

along the x-axis with v/c = 0.2, with snapshots at (A) t/τc = 10, (B) t/τc = 20, and (C) t/τc = 30. (D–F) The wave field generated at time t/τc = 20, where the

propagation velocity is such that (D) v/c = 0, (E) v/c = 0.3, and (F) v/c = 0.6. The black dot denotes the particle position and the gray bar (top right of each panel)

denotes λB/λc, which is necessarily infinite for v = 0. The wave forms were obtained by numerically inverting the Fourier transform solution of the two-dimensional

periodically-forced Klein-Gordon equation, as described in Appendix 3.

theoretical description of walking droplets, wherein the memory
of the pilot-wave system is manifest in the wave force, and
appears in the form of an integral over the particle path.
This formulation has two principal benefits. First, the integro-
differential equation provides a framework for mathematical
analysis of the particle dynamics, including an assessment of the
stability of various dynamical states. Second, since the influence
of the pilot wave is felt only along the particle trajectory, one
need not solve the Klein-Gordon equation numerically for all
space, which will be particularly beneficial in higher dimensions.
One may thus side-step the requirement of an increasingly
large computational domain when the simulation duration is
increased, a shortcoming of the numerical approach of Dagan
and Bush [19]. We proceed by using the Green’s function of the
Klein-Gordon equation in order to derive a trajectory equation
valid for arbitrary particle speed. We then simplify the resulting

trajectory equation in the non-relativistic limit, |v| ≪ c. Analysis
of the resulting dimensionless equation allows us to deduce the
critical wave-particle coupling parameter required to support
sustained particle self-propulsion.

4.1. The Green’s Function
By definition, the Green’s function, ϕ0(x, t), for the Klein-Gordon
equation is the solution of

∂2ϕ0

∂t2
− c2

∂2ϕ0

∂x2
+ ω2

cϕ0 = δ(x)δ(t).

Its form may be determined exactly using standard analytic
methods. To obtain the solution, φ(x, t), to the forced Klein-
Gordon equation (Equation 1a), one then convolves (in space and
time) ϕ0(x, t) with the right-hand side of Equation (1a). To side-
step the complexity of the resulting double integral, we instead
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FIGURE 7 | The two-dimensional pilot-wave field generated by particle (black

dot) motion along the x-axis at a prescribed velocity, v = (0.1c, 0), after a time

300τc. The dimensionless wave amplitude, φ/φ0, is color-coded.

Compton-scale propagating waves are evident in the particle’s wake, and a de

Broglie-scale, quasi-planar carrier wave propagates at the particle speed.

seek a modified Green’s function (valid for ωct≫1) that accounts
for the form of the spatial forcing, allowing for a convolution in
time only.

Specifically, we seek ϕ(x, t) satisfying

∂2ϕ

∂t2
− c2

∂2ϕ

∂x2
+ ω2

cϕ = ǫpg(x)δ(t), (17)

with ϕ(x, 0) = ∂tϕ(x, 0
−) = 0. For initial conditions φ = ∂tφ =

0 at t = 0, the solution, φ(x, t), of (1a) is then given by the
temporal convolution

φ(x, t) =
∫ t

0
f (s)ϕ(x− xp(s), t − s) ds, (18)

where we have used translational invariance to recenter ϕ about
the particle position.

To determine ϕ, we apply a Fourier transform in
space to Equation (17), yielding an evolution equation for
ϕ̂(k, t), specifically

ϕ̂′′ + (ω2
c + c2k2)ϕ̂ = ǫpĝ(k)δ(t),

with ϕ̂(k, 0) = ϕ̂′(k, 0−) = 0. This equation is readily
solved, yielding

ϕ̂(k, t) = ǫpĝ(k)
sin(

√

ω2
c + c2k2 t)

√

ω2
c + c2k2

.

To obtain ϕ, we must then apply the inverse Fourier transform
to ϕ̂: this process is simplified for ωct ≫ 1, where the highly

FIGURE 8 | The Green’s function. (A) Space-time wave evolution of ϕ,

normalized by φ0ωc, as computed numerically. The dashed lines correspond

to the profiles presented in (B,C). (B,C) ϕ (blue dash-dotted curve) and its

asymptotic approximation (Equation 19) (red solid curve) at times (B) t/τc = 3

and (C) t/τc = 7.

oscillatory integrand may be approximated using the method
of stationary phase [24], akin to the procedure outlined in
Appendix 2. For |x| < ct, the asymptotic result is

ϕ(x, t) ∼ ǫp

c
√
2π

sin(
√

ω2
c t

2 − k2cx
2 + π/4)

(ω2
c t

2 − k2cx
2)1/4

ĝ(k∗),

where k∗ = kc/
√

(tc/x)2 − 1. At any given time, the local
wavelength is longest at x = 0 and decreases as the light cone is
approached (|x| → ct). Moreover, the function ĝ(k∗) modulates
the amplitude of the wave, and the decay of ĝ(k) as |k| → ∞
ensures that ϕ is not singular at |x| = ct.

To further simplify the form of ϕ, we recall that the Bessel
function of the first kind with order zero has asymptotic form
J0(z) ∼

√
2/πz sin(z + π/4) as |z| → ∞. As the large-argument

decay of ĝ diminishes the amplitude of ϕ for |x| . ct (see
Figure 8), we may modify the asymptotic Green’s function to the
more tractable form

ϕ(x, t) ∼ ǫp

2c
J0

(
√

ω2
c t

2 − k2cx
2
)

ĝ

(

kc
√

(tc/x)2 − 1

)

. (19)
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The validity of this approximation is demonstrated in Figure 8,
where we see an excellent agreement between the evolution of
the asymptotic and numerical forms of ϕ.

4.2. The Trajectory Equation
We proceed by combining Equations (1b), (18), and (19) in order
to obtain the following integro-differential trajectory equation
describing the evolution of the particle position, xp(t):

γ (x′p)x
′
p = −α

∫ t

−∞
f (s)∂xϕ(xp(t)− xp(s), t − s) ds. (20)

The only difference between this integral formulation (Equation
20) and the differential formulation (Equation 1) considered
by Dagan and Bush [19] is the approximation of the Green’s
function, ϕ, by its asymptotic form (Equation 19). However, as
in the stroboscopic model of walking droplets [25], the integral
is extended to account for the particle’s entire history, specifically
its trajectory for t < 0.

We next derive a reduced trajectory equation, valid in the non-
relativistic limit, in which |x′p(t)|/c < η for all time, t, where
0 < η ≪ 1. Equivalently,

|xp(t)− xp(s)|
c(t − s)

< η

for all time, t, and all s < t. To derive the non-relativistic
trajectory equation, we expand Equation (20) in powers of η,
where γ (x′p) ∼ 1+ O(η2) and

∂ϕ

∂x
(x, t) ∼ ǫpkc

2c

[

J1(ωct)
x

ct
+ O(|x/ct|3)

]

,

for |x/ct|≪1. In this latter expansion, we have used the symmetry
and normalization of g(x) to exploit that ĝ(k) ∼ 1 + O(a2k2)
for |ak| ≪ 1. As a result, the precise form of the localized
particle forcing, g, only appears as a higher-order correction to
the near-field slope of ϕ.

By combining the foregoing expansions and introducing
the dimensionless variables t̂ = ωct, x̂p(t̂) = kcxp(t) and

f̂ (t̂) = f (t), we reduce Equation (20) to the non-relativistic
trajectory equation

dx̂p

dt̂
= −κ

∫ t̂

−∞
f̂ (s)

(

x̂p(t̂)− x̂p(s)
) J1(t̂ − s)

t̂ − s
ds, (21)

where the resultant terms are all of size O(η) and we have
neglected the correction terms of size O(η3). The dimensionless
parameter, κ = αǫp/2c

3, determines the strength of the wave-
particle coupling, with larger κ resulting in higher particle speeds.
We thus require κ > 0 to be sufficiently small that relativistic
effects remain negligible. The non-relativistic trajectory equation
(Equation 21) represents a convenient form for exploring non-
relativistic pilot-wave dynamics in one dimension: We proceed
by characterizing the onset of motion at the critical threshold
κ = κc.

4.3. The Onset of Particle Motion
For the special case of superharmonic forcing, f̂ (t̂) = sin(2t̂), we
determine the critical wave-particle coupling parameter, κc > 0,
beyond which the particle rest state, x̂p = constant, is unstable
and the system supports sustained particle self-propulsion. We
first recast Equation (21) in the form

1

κ

dx̂p

dt̂
+ x̂p(t̂)

[ ∫ ∞

0
sin(2(t̂ − s))

J1(s)

s
ds

]

=
∫ ∞

0
sin(2(t̂ − s))x̂p(t̂ − s)

J1(s)

s
ds. (22)

By noting that the coefficient of x̂p(t̂) on the left-hand side is
periodic with period π , we deduce that this linear trajectory
equation is of Floquet form. We thus expect, and may verify
numerically, that the onset of motion at κ = κc arises through
lateral particle oscillation that is subharmonic relative to the
particle’s vibration, with a period of 2π corresponding precisely
to the Compton period in our non-dimensionalization.

To determine κc, we expand x̂p(t̂) using the Floquet ansatz

x̂p(t̂) =
∞
∑

n=−∞
n odd

Xne
int̂ , (23)

where the reality condition for x̂p is X−n = X∗
n for all n,

and ∗ denotes complex conjugation. We substitute the Floquet
ansatz (Equation 23) into (22) and evaluate the resultant integrals

analytically, before grouping together powers of eit̂ to form
an infinite-dimensional system of equations for the unknown
coefficients, Xn. The critical threshold, κc, is the value of κ at
which the Xn coefficients have a non-trivial solution, for which
the determinant of the corresponding matrix vanishes. Following
the procedure outlined by Kumar and Tuckerman [26] and
Kumar [27] for the study of the Faraday wave instability, we
then truncate this system to a specified number of leading-
order harmonics, at which we evaluate an approximation of
κc numerically.

After substituting Equation (23) into (22), following the
aforementioned procedure and evaluating integrals using the
identity [28]

∫ ∞

0
e±iµs J1(s)

s
ds = ±i[µ −

√

µ2 − 1] for µ ≥ 1,

we obtain the infinite-dimensional, tridiagonal system

Xn−2(cn − c2)−
2in

κ
Xn − Xn+2(cn + c2) = 0

for all odd n, where cn = sgn(n)[−|n| +
√
n2 − 1]. We

truncate this system to (N + 1) dimensions for the terms
X−N ,X−N+2, . . . ,XN , where N ≥ 1 is an odd integer, and we
set Xn = 0 for |n| > N. We define the corresponding critical
threshold, κN , as the value of κ at which the truncated system is
singular, where κN → κc ∼ 2.97579 . . . as N → ∞. Since a
satisfactory approximation of κc is afforded by κ3 ∼ 2.97894 . . .,
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we deduce that the particle oscillation is dominated by the two

leading-order harmonics, e±it̂ and e±3it̂ , corresponding to lateral
perturbations at ωc and 3ωc, respectively.

As may be confirmed numerically by direct simulation of
Equation (22), the static state is stable for 0 < κ < κc
and unstable for κ > κc. Similar lateral oscillations were
observed in the simulations of Dagan and Bush [19], who
described free particle motion in terms of lateral oscillations at
the Compton frequency, superimposed on a slowly varying net
drift. Our analytic results lend support to their inference that
lateral oscillations at the Compton frequency are a fundamental
feature of particle motion in HQFT. A fruitful avenue of future
research may thus be to exploit the disparity between the time
scale of particle translation and lateral oscillation, with a view to
further simplifying the trajectory equation.

5. DISCUSSION

The wave forms deduced herein have a number of striking
similarities with those arising in pilot-wave hydrodynamics.
The propagating waves arising in HQFT are similar to the
traveling disturbances in the walker system, which typically play
a relatively minor role in the hydrodynamic system, particularly
in the guidance of a single droplet. In both systems, the
moving particle is dressed in a quasi-monochromatic wave form,
which has proven to be the critical feature for the emergence
of quantum-like behavior in the hydrodynamic system [17,
20]. Both systems exhibit a Doppler shift, in which the pilot
wavelength is compressed ahead of the moving particle, and
elongated in the particle’s wake [16, 29–31]. Strobing the carrier
wave in the walking-droplet system at the Faraday frequency
reveals a steady, quasi-monochromatic wave form with the
Faraday wavelength, propagating with the droplet: strobing
the carrier wave in HQFT at the reduced Compton angular
frequency, ωc/γ , reveals a quasi-steady, quasi-monochromatic
wave form with the de Broglie wavelength, propagating with
the particle.

The wave forms explored herein also differ substantially
from those arising in the walking-droplet system [15]. Most
notably, the carrier waves in the two systems take markedly
different forms. For rectilinear particle motion in HQFT, the
carrier wave of local wavelength λB is centered on the particle’s
initial position (see Figure 6) and so may be considered as
a relic of the initial conditions. However, in the vicinity of
the particle, this carrier wave propagates at the particle speed,
qualifying it as a viable candidate for a pilot wave in the
fully dynamic treatment. In two spatial dimensions, the carrier
wave approaches, in the long-time limit, a plane wave whose
wavelength is precisely the de Broglie wavelength at the particle
position. We note that a similar pilot-wave form was deduced by
Andersen et al. [32], who described a quantum particle in terms
of a wave packet solution to the forced Schrödinger equation
subject to Galilean invariance. In the hydrodynamic system,
the quasi-monochromatic carrier wave instead consists of the
superposition of the stationary Faraday wave forms generated
at each impact, giving rise to its characteristic horseshoe-like

form [16]. Finally, the Faraday waves in the walker system
decay exponentially in time owing to the influence of viscosity.
In HQFT, the carrier wave is relatively long lived, exhibiting
algebraic temporal decay; specifically, in one spatial dimension,
the amplitude of the carrier wave decreases over time according
to (ωct)

−1/2. One expects this relatively slow decay to result in a
relatively pronounced influence of the particle’s past trajectory on
the instantaneous wave form in HQFT.

The dependence of the pilot-wave form on the particle
speed elucidated here is both intriguing and encouraging. In
the non-relativistic limit, the pilot-wave form is effectively
monochromatic, with the de Broglie wavelength. Our analysis
has shown that, in the special case of rectilinear motion, the
carrier wave is a transient, dependent on the initialization of
the system, and decays algebraically as ωct → ∞. While the
form of this carrier wave was derived only for the special case
of rectilinear particle motion at a prescribed speed, we anticipate
that similar wave forms will arise for free particle dynamics
[19]. Moreover, for different dynamical configurations, such as
for in-line speed oscillations of the free particle [19] or orbital
dynamics, the carrier wave form may in fact be more persistent
than the case of rectilinear motion, producing a robust signature
of the de Broglie wavelength in the pilot wave. The dynamics
and emergent statistics might then be similar to those arising in
pilot-wave hydrodynamics, where the Faraday wavelength plays a
role analogous to the de Broglie wavelength in numerous settings,
including orbital pilot-wave systems [33–36] and corrals [37, 38].

While the nonrelativistic trajectory equation (Equation 21)
yields a convenient mathematical form, preliminary simulations
have revealed that the particle has a propensity for speed
fluctuations on the Compton time scale, at speeds approaching
the speed of light [19]. These relativistic speed fluctuations are
similar in form to the jittering modes arising in generalized
pilot-wave hydrodynamics [39], the Zitterbewegung predicted
in early models of quantum dynamics [23, 40], and the speed
fluctuations evident in simulations of the free particle in HQFT
[19]. Thus, while the mean particle speed may be slow relative
to the speed of light, relativistic effects may still be significant on
the Compton time scale, necessitating alternative simplifications
of the relativistic trajectory equation (Equation 20). In the
hydrodynamic system, one may average the droplet trajectory
over one bouncing period, giving rise to a stroboscopic trajectory
equation that requires no consideration of the droplet’s vertical
motion [25]. Analogous averaging of Equation (20) over the
Compton period of lateral oscillations might give rise to a
reduced trajectory equation for HQFT, similar in spirit to
the stroboscopic model of pilot-wave hydrodynamics. Another
potentially fruitful direction would be to consider the limit in
which the intrinsic particle vibration, f (t), is characterized in
terms of a periodically applied delta function. One might thus
deduce a discrete-time iterative map similar in form to the
hydrodynamic pilot-wave model of Durey Milewski [29].

Our theoretical developments have shown that, in the
relativistic limit, |v| → c, the pilot-wave form is dominated by the
Compton wavelength, suggesting the possibility of quantization
arising on this scale. A tantalizing possibility thus presents
itself of HQFT being able to capture structure on the scale of
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the Compton wavelength. For example, while hydrodynamic
spin states are known to be unstable in the laboratory [41,
42], their analog in HQFT may correspond to the classical
model of the electron, wherein a charge executes a circular
orbit with the Compton frequency on a radius corresponding
to the Compton wavelength [43]. HQFT thus promises the
possibility of accounting for the emergence of both quantization
and quantum statistics on the de Broglie wavelength for non-
relativistic dynamics, and structure on the Compton scale for
relativistic dynamics.

6. CONCLUSION

We have performed a detailed analysis of the one-dimensional
pilot-wave model proposed by Dagan and Bush [19], an attempt
to advance de Broglie’s double-solution theoretical program [1–
4] by exploiting insights gained from the walking-droplet system
[15, 20]. Particular attention has been given to rationalizing the
forms of the emergent pilot-wave fields reported by Dagan and
Bush [19]. Our analysis has shown that the pilot wave is the
combination of short, Compton-scale waves that propagate away
from the moving particle, and a de Broglie-scale carrier wave.
The wavelength of the carrier wave is precisely the de Broglie
wavelength at the particle position, independent of the particle
speed, which is consistent with the validity of the de Broglie
relation, p = h̄kB. Moreover, in the vicinity of the particle, the
frequency of the carrier wave is ωc/γ and the local wavelength
exhibits a Doppler shift: this carrier wave thus has features
of the pilot wave described by de la Peña and Cetto [10] in
the context of stochastic electrodynamics. Notably, as the local
wavelength is precisely the de Broglie wavelength, the gradient of
the wave phase is simply proportional to the gradient of the wave
amplitude, indicating that the wave-particle coupling considered
by Dagan and Bush [19] is consistent with that proposed by de
Broglie [1–4].

Our study of particle kinematics (section 3.3) has shown
that increasing the spatial extent of the localized forcing of
the particle on its pilot wave decreases the amplitude of both
the propagating and carrier waves, thus presumably decreasing
the efficacy of particle self-propulsion. Furthermore, the form
of the pilot wave also varies significantly with the angular
frequency, ω0, of the particle vibration. In the hydrodynamic
system, resonance between the droplet’s vertical motion and its
subharmonic Faraday wave field is a prerequisite for a quasi-
monochromatic wave field and the concomitant emergence of
quantum-like behavior [17, 20]. We therefore expect that a
similar resonance between particle and wave vibration will be
necessary in HQFT: ω0 must be an integer multiple of ωc. Our
deductions in section 3.3 indicate that the amplitude of the pilot
wave is decreased when ω0 is large compared to ωc. To maximize
the particle’s propensity for self-propulsion, the choice ω0 =

2ωc considered by Dagan and Bush [19] thus appears to be the
most propitious.

Finally, we have laid the foundations for deeper study of
HQFT through the derivation of an integro-differential trajectory
equation (Equation 20) similar in form to that derived for
walking droplets [25, 44]. This formulation will enable more
efficient simulation of the associated pilot-wave dynamics in a
range of one-dimensional settings. Moreover, it will allow for the
analysis of the stability of various dynamical states, including the
free self-propelling state [19] and the oscillatory particle motion
arising in the presence of a harmonic potential [45]. Of particular
interest is the stability of the free self-propelling state to speed
oscillations with the de Broglie wavelength [39], as may result in
a commensurate statistical signature [46]. The extension of our
analysis to two dimensions, as outlined in section 3.4, follows
through a similar procedure, and has allowed for a comparison
between the wave forms in HQFT and those arising in pilot-
wave hydrodynamics. We expect the extension of HQFT to three
dimensions to be straightforward, and to open up exciting new
vistas in pilot-wave modeling.
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Modern physics has characterized spacetime, the interactions between particles, but

not the nature of the particles themselves. Previous models of the electron have

not specified its substance nor justified its cohesion. Here we present a relativistic

electrodynamical model of the electron at rest, founded on natural interpretations

of observables. Essentially intertwined positively and negatively charged subparticles

revolve at light velocity in coplanar circular orbits, forming some coherent “envelope” and

“nucleus”, possibly responsible for its wavelike and corpuscular behaviors, respectively.

We show that the model can provide interpretations of fundamental constants, satisfy

the Virial theorem, and exhibit cohesion and stability without invoking Poincaré stresses.

Remarkably, the stability condition allows predicting electron mass, regarded as being

a manifestation of its total (kinetic and potential) electromagnetic cohesion energy,

and muon mass, directly from the substructure. Our study illustrates the possibility of

constructing causal and objectively realist models of particles beneath the Compton

scale. Finally, wave-corpuscle duality and the relation to quantum mechanics are

discussed in the light of our electron model.

Keywords: electron substructure, fundamental constants, electromagnetic mass, wave-corpuscle duality,

objective reality

INTRODUCTION

Depending on the experiment, the most emblematic subatomic particle, the electron, has been
found to interact as a point-like corpuscle in scattering experiments [1], or to behave as an
extensible wave [2]. Elaborating on Bohr’s interpretation of Quantum Mechanics [3], Heisenberg
concluded that particles could neither be represented nor even apprehended by the human
mind, and that only their abstract mathematical description existed [4]. For de Broglie however,
“abstract presentations have no physical reality. Only the movement of elements localized in
space, in the course of time, has physical reality” [5]. Hence, modern physics has identified
with unprecedented precision the interactions and their underlying principles, has successfully
described its environment, spacetime, but still lacks a characterization of the nature of its “objects,”
the particles themselves.

Consequently, several kinds of electron models have been proposed: extended models [6],
point-like models, andmixedmodels in which a point-like corpuscle follows an extended trajectory
[7]. Early attempts included the spherical models of Abraham [8] and Lorentz [9], which led
to theories of electromagnetic mass [10–13]. Spherical models soon evolved into the so-called
ring models of Parson [14], Webster [15], Allen [16], and Compton [17], constituted of rotating
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infinitesimal charges and verifying the properties of classical
magnetic moment and Compton scattering. Essential constraints
however, such as electron cohesion and stability, could not be
satisfied: new putative forces, denoted Poincaré stresses [18],
were suggested to maintain the cohesion of the negatively
charged electron. The abstract descriptions of quantum
mechanical theories [19, 20] then successfully accounted for
the wave-like behavior of the electron and probabilistically
predicted [21] the values of most observables by considering
a point-like particle, yet failed at interpreting fundamental
constants or explaining how a point-like corpuscle could
have spin or a finite energy density. Paradoxically, quantum
mechanics revived geometric models when Schrödinger noticed
within the Dirac equation itself a rapid oscillatory trembling
motion, which he called Zitterbewegung (zbw) [22], exhibiting
microcurrents arising at light velocity c. Surprisingly, the
electron seemed to follow a helical trajectory of radius ňc, the
reduced Compton wavelength, surrounding the average travel
direction (Figure 1A). Several such zbw models, identifying spin
with orbital angular momentum, were interpreted classically
[27–29]. Subsequent electrodynamical or hydrodynamical
models involved fluids with spin [30], current loops of a certain
thickness [31], Dirac-like Equations [32, 33], moving charged
membranes [34], plasmoid fibers [35], or toroidal geometry
[35, 36]. Wondering whether zbw could be a real phenomenon,
Hestenes emphasized the need to investigate the electron
substructure, suggested zbw could originate in the electron
self-interaction [37], and showed zbw was compatible with the
ring models [38].

With the development of realist models of the electron
emerged theories of electromagnetic mass. At first, the spherical
models of Abraham [8], and Lorentz [9] seemed to fail to
recover Einstein’s relation E = mc2 due to the appearance of a
factor 4/3, but later proved to be compatible, once relativistic
corrections were accounted for [12]. Stability of the sphere

FIGURE 1 | Triolets and the helical trajectory. (A) In Schrödinger’s Zitterbewegung (zbw) model, the wavefunction associated to the electron seems to revolve at light

velocity along a helical trajectory of radius ňc, the reduced Compton wavelength, surrounding the average travel direction, and to exhibit microcurrents. Quantum

mechanics does not specify which forces could cause the electron, which is assumed to be point-like, to follow such a peculiar helical trajectory. (B) Triolets are

colorless particles composed of three sparks, each bearing electric charge ±e/6 and a specific strong interaction color charge. Thus triolets bear electric charge ±e/6
or ±e/2 depending on their combination of sparks. They travel at light velocity c, possess angular momentum Ltrlt, and triolets will thereafter be represented as

upward or downward, filled or hollow triangles depending on their electric charge, as depicted here. (C) In our model, the electron is composed of triolets forming a

nucleus and an envelope. It is conceivable that, in the absence of perturbation, the nucleus of the moving electron attracts envelope triolets and maintains them

bound, thus explaining their helical trajectory. Conversely, envelope triolets would revolve at light velocity on an orbit of radius ňc around the nucleus, exhibiting the

zbw microcurrents, and guide the nucleus, as in pilot-wave theories [23–26], sensing the electromagnetic fields generated by the envelopes of other particles.

however still relied on Poincaré stresses or unknown surface
tension [34], and electron mass could not be predicted from
an objective criterion, but depended on the value taken by an
arbitrary parameter, whose value is unconstrained, i.e., the radius
of the sphere. Of note, the mass of subatomic particles is not
predicted by quantum theories, and their values need to be
inserted in calculations [12]. Most ring models [14–17] are prior
to the discoveries of the spin, anomalous magnetic moment, and
quantum mechanics. The ring model of Bergman and Wesley
[31] exhibited cohesion and stability, but the expression for
mass still involved an arbitrary parameter (i.e., width of current
loop), and the substance constituting the electron remained
indeterminate. More recently, Consa proposed a point-like
electron following a toroidal trajectory [36], recovered mass
independently of any arbitrary parameter, but did not specify
how the trajectory developed nor demonstrated its stability. To
our knowledge, the Virial theorem, which should be satisfied
since the electron is a bound system, has not been considered
in electron models. Potential energy is often equated to +mc2,
although cohesion potential energy should be negative for a
bound system [as it is for the atom for instance [19]]. Kinetic
energy is not usually accounted for, even though Lorentz [9],
Hestenes [38] and others [e.g., [32]] noted the existence of a
rotating motion and wondered whether kinetic energy did not
contribute to rest mass. For Barut and Bracken, rest mass energy
of the particle is the energy of the internal motion in the rest
frame [29].

Hence, several issues remain to be addressed regarding the
electron: for instance, which forces could cause the puzzling
helical trajectory? What could be the nature of the substance
constituting the electron? Could an electrodynamical description
account for electron cohesion and stability? And could Lorentz’
hypothesis advocating the electromagnetic origin of mass be
simultaneously implemented from an objective criterion, instead
of an arbitrary parameter?

Frontiers in Physics | www.frontiersin.org 2 July 2020 | Volume 8 | Article 213173

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Avner and Boillot Electron Mass From Substructure Stability

In this study, we present a relativistic electrodynamical model
of the electron at rest, in which charged subparticles follow
definite trajectories. The model is based on two main hypotheses:
(i) the existence of charged colorless subparticles called triolets,
(ii) the assumption that triolets revolve at light velocity on
coplanar circular orbits, constituting an envelope and nucleus,
depending on their electromagnetic charges. As the electron
is coherent, it is assumed that the model satisfies the Virial
theorem. Constraints capturing the measured values of several
observables (classical and anomalous magnetic moments, spin,
Compton wavelength, kinetic energy) are formulated. Using
Liénard-Wichert potentials, we then determine the specific
kinds and numbers of triolets satisfying envelope and nucleus
stability. Remarkably, we find that these kinds and numbers are
precisely those that allow predicting electron mass and muon
mass electromagnetically directly from the substructure, thus
implementing Lorentz’ hypothesis. Electron mass is effectively
derived from an expression of substructure stability, which
constitutes an objective criterion in our view. Our system also
illustrates the possibility of constructing causal, local, objective,
and realist models of particles beneath the Compton scale.
Finally, we discuss novel perspectives suggested by the model,
relative to the understanding of wave-corpuscle duality and to its
relation to quantum theory.

DESCRIPTION OF THE MODEL AND

HYPOTHESES

In a previous study, we proposed that just six kinds of
indestructible elementary subparticles denoted sparks, bearing
electric charge ±e/6 and a specific strong interaction color
charge, are necessary and sufficient to reconstruct all subatomic
particles, so that sparks are conserved and reorganized
across particle decays and annihilations [Avner, Boillot,
Richard, submitted]. Since sparks are subject to both the
strong and electromagnetic interactions, with the former
dominating at short distances [20], groups of three sparks
could presumably assemble beforehand to form composite
colorless particles, thereafter called triolets, bearing charge
+e/6, –e/6, +e/2, or –e/2 (Figure 1B). Henceforth, we
shall suppose that the electron is exclusively composed
of triolets, which travel at light velocity [7], exhibit some
intrinsic angular momentum Ltrlt , and being colorless,
are submitted to electromagnetic and centrifugal forces
only (hypothesis A).

Following de Broglie’s proposition, we aim at constructing
a plausible electrodynamical model of the electron at rest, in
which positive and negative triolets form an electromagnetically
bound system, exhibit the zbw microcurrents, and account
for all experimentally measured observables. The electron is
considered here as a particle of a certain extension, composed
of revolving charged subparticles, the triolets, thereby exhibiting
magnetic moment and intrinsic angular momentum (its spin)
sensed by other particles. We know that the measured
value of the electron magnetic moment is the sum of Bohr
magneton µB = –eℏ/2m, predicted by both classical physics

and quantum mechanics, where ℏ is reduced Planck constant,
m the electron mass, and e the elementary charge, and
an anomalous magnetic moment [39], which accounts for
a small fraction aanml ⋍ 0.001159 of the previous and is
only predicted by quantum electrodynamics [20]. Remarkably,
the value of the classical magnetic moment of the electron
can be derived by considering a charge (–e) revolving on
a circular orbit of radius ňc [19]. Hence, we reckoned the
classical and anomalous magnetic moments could, respectively,
be produced by two different components of the electron,
namely a negatively charged envelope and a neutrally charged
nucleus, also possibly responsible for the electron’s wavelike
and corpuscular behaviors, respectively. The peculiar helical
trajectory of the electron predicted by zbw could then be naturally
apprehended by considering that zbw describes the dynamics
of envelope triolets, which are attracted and bound to the
nucleus (Figure 1C). Electron spin could correspond to the
sum of angular momenta of envelope triolets. Moreover, we
shall regard electron mass as being a manifestation of the total
electromagnetic cohesion energy E of the particle, as Lorentz
hypothesized [9], through Einstein’s formula m = E/c2. The
latter interpretation of the mass is naturally suggested by the
observation that the muon possesses a mass ∼206.77 times
bigger than that of the electron, while its Compton wavelength
is ∼206.77 times smaller, as would be the case for a mass of
electromagnetic origin, presenting a potential proportional to
inverse distance.

The net electromagnetic forces acting on any particular
envelope triolet should mostly depend on its surrounding
triolets. The envelope could be organized into a complex
structure, with triolets irregularly distributed along the orbits,
or revolving at various radii, or experiencing fluctuations. To
facilitate calculations however, we chose to make approximations
and consider triolets at radial equilibrium rotating in the
same direction on four coplanar circular orbits of different
radii depending on their four different electromagnetic charges
(hypothesis B, Figure 2). In our model, positive and negative
nucleus triolets are intertwined to maintain their cohesion and
could rotate along two close yet separate orbits due to the charged
envelope. This could cause in turn a similar arrangement in
the envelope, which would exhibit predominantly intertwined
triolets, in spite of the excess of negative triolets. We are aware
our model is only an approximation, even if we reckon that a
collection of fluctuating ±e/6 and ±e/2 triolets traveling at light
velocity could possibly converge toward such a configuration.
Because of their stronger charges, ±e/2 triolets could be
more tightly bound and form a condensed nucleus, while
±e/6 triolets would be bound more loosely and constitute
the envelope.

In addition, as the electron is a bound system whose inner
potentials allegedly depend on position coordinates only and
not velocities (justification is given below), the Virial theorem
should be verified [40]: for inverse square law electromagnetic
interactions, one typically has E = U/2 and E = –T, where
T is the total internal kinetic energy and U the internal
potential energy. Therefore, T and U should, respectively,
amount to +mc2 and −2mc2, resulting in total internal energy
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FIGURE 2 | Model of the electron at rest. In our simplified model, triolets

rotate at light velocity in the same direction along four different coplanar

circular orbits depending on their electric charge, constituting an envelope,

and nucleus. Negative triolets are more numerous at the envelope, while the

nucleus is neutrally charged. Due to the charged envelope, nucleus triolets are

separated into two close orbits depending on their charge. Envelope triolets

similarly revolve on separated orbits whose radii are close to the reduced

Compton wavelength. Possible triolet configurations (triolet kinds and

numbers, angular distributions, orbital radii) must fulfill constraints expressing

radial stability and the measured values of charge, spin, magnetic moments,

and mass. Due to consecutive negative triolets in the envelope, intertwined

envelope triolets assemble into stretches separated by a distance denv.

E = T + U = –mc2 corresponding to electron mass, the
minus sign being indicative of a bound system. Finally, we
shall admit that, for the electron at rest, envelope triolets
approximately follow a circular trajectory of radius ňc = ℏ/mc,
as suggested by the classical derivation of Bohr’s magneton, and
by zbw-like models. Interpretations of fundamental constants
associated to the electron, such as reduced Planck constant
ℏ and fine-structure constant α = e2/4πε0ℏc (where ε0
designates vacuum permittivity), should also emerge from
the model.

FORMULATION OF THE MODEL

Our system captures the measured values of charge, magnetic
moments, spin and kinetic energy, and will be validated by
showing that cohesion and stability can be satisfied, and
potential energy (and thus electron mass) can be recovered.
Let us here mathematically formulate the constraints: (i) a
charge –e carried by Nenv = Nenv+ + Nenv− triolets of charge
±e/nenv at the envelope; (ii) a classical magnetic moment
µB generated by envelope triolets rotating at radii ρenv+ =
ηenv+ňc, ρenv− = ηenv−ňc, and producing currents Ienv+, Ienv−;
(iii) an anomalous magnetic moment aanml·µB generated by
Nnuc nucleus triolets (Nnuc+ = Nnuc−) of charge ±e/nnuc
rotating in the same direction as envelope triolets at radii
ρnuc+ = ηnuc+ňc, ρnuc− = ηnuc−ňc, with momentum pnuc+
≃ pnuc− = pnuc and producing currents Inuc+, Inuc−; (iv)
an internal kinetic energy T = ∑

ipic = +mc2; (v) a spin

Senv = +ℏ/2 generated by envelope triolets of momentum
penv+, penv−:

− e = e

[(

Nenv+
nenv

)

−
(

Nenv−
nenv

)

+
(

Nnuc+
nnuc

)

−
(

Nnuc−
nnuc

)]

, (1)

−eℏ

2m
= Ienv+πρ2env+ + Ienv−πρ2env−, (2)

−aanmleℏ

2m
= Inuc+πρ2nuc+ + Inuc−πρ2nuc−, (3)

∑

i

pic =
(

Nenv+penv+ + Nenv−penv−

+ Nnucpnuc
)

c, (4)

ℏ

2
= Nenv+ρenv+penv+ + Nenv−ρenv−penv−. (5)

The fact that the muon has same spin as the electron, despite
possessing a smaller Compton wavelength and the same number
of triolets according to our chemical theory [Avner, Boillot,
Richard, submitted], suggests that the angular momentum of
envelope triolets could be a constant ρenv+penv+ ≃ ρenv−penv−
≡ Ltrlt,env, yielding from (5):

ℏ = 2NenvLtrlt,env. (6)

Ltrlt,env is possibly determined by the triangular substructure of
envelope triolets made of three strongly interacting sparks, and
could be at the basis of Planck’s constant. Further constraints are
also deduced (see Values of Observables) from Equations (1–5):

nenv = Nenv− − Nenv+, (7)

nenv = (Nenv−ηenv− − Nenv+ηenv+) , (8)

aanmlnnuc = Nnuc+ (ηnuc− − ηnuc+) , (9)

Tenv + Tnuc

mc2
= 1 ≃ 1

benv

(

Nenv+
ηenv+

+ Nenv−
ηenv−

)

+ Nnuc

bnucηnuc
, (10)

benv = 2Nenv, (11)

where benv and bnuc are dimensionless numbers. Assuming that
ηenv+ ≃ ηenv− ≡ ηenv ≃ 1, we deduce (in Values of Observables)
from Equations (10–11) that the kinetic energies of the envelope
and nucleus are approximately equal Tenv+ ≃ Tnuc ≃ +mc2/2,
leading to relation:

bnucηnuc = 2Nnuc. (12)

Furthermore, the electromagnetic force acting on a nucleus
triolet due to the envelope charge and current and the
electromagnetic force exerted on an envelope triolet due
to the net nucleus magnetic moment were derived but
found to be negligible when compared to intra-component
interactions. This suggests that each component is only loosely
bound to the other, almost constituting an independent
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system, and thus verifies the Virial theorem independently
(see Values of Observables), yielding for potential energies
Uenv ≃ Unuc ≃ –mc2 and total energies Eenv ≃ Enuc
≃ –mc2/2. The system of Equations (9–11) further allows
to determine ηnuc+ (Values of Observables) for each value
of Nnuc+:

ηnuc+ = Nnuc+
bnuc






2− aanmlbnucnnuc

2N2
nuc+

+

√

√

√

√4+
(

aanmlbnucnnuc

2N2
nuc+

)2





,

(13)

while ηnuc− is then given by Equation (9).
System cohesion and stability can be formulated by ensuring

triolets are at radial equilibrium. As triolets are electrically
charged and travel at light velocity, we use Liénard-Wichert
potentials from relativistic electrodynamics [41] to express the
radial components of electric field Eij⊥ and magnetic field Bij

emitted by triolet Tj of charge qj at retarded time t’, radius ρj and
retarded angle θ ’j, and sensed at distance Rij—electromagnetic
fields traveling at light velocity in vacuum—by triolet Ti arriving
at the vertical (angle 0), radius ρi, at time t (Figure 3A). From
known electrodynamical expressions [41] for these fields, using
cylindrical unit vectors and coordinates, and Figure 3B, we
deduce (Forces and Potentials):

Eij⊥=
qj sin γj

4πε0Rijρi
(

1+ sin γj
)2

ρ̂, (14)

Bij =
−qj

4πε0cRijρj
(

1+ sin γj
)2
ẑ, (15)

where Rij and γj are defined by:

R2ij = ρ2i + ρ2j − 2ρiρj cos θ
′
j , (16)

sin γj =
ρi

Rij
sin θ

′
j . (17)

Note that these fields depend on position coordinates only, not
velocities, thereby justifying the use of the Virial theorem. We
then derive expressions (Forces and Potentials) for the net radial
Lorentz force Fij⊥ due to triolet Tj exerted on triolet Ti belonging
to the same component, and for the centrifugal force Fctfg,i
experienced by triolet Ti:

Fij⊥ = qiqj

4πε0Rij
(

1+ sin γj
)2

[

sin γj

ρi
+ 1

ρj

]

ρ̂, (18)

−→
F ctfg,i =

hc

biρ
2
i

ρ̂, (19)

where bi stands for benv (respectively, bnuc) when Ti belongs
to the envelope (resp. the nucleus). In the electron at rest,
assuming triolets remain at radial equilibrium, the net radial
component of the Lorentz force exerted by other triolets
should compensate the centrifugal force. Neglecting the small
contribution of the envelope onto the nucleus and vice-versa, and
expressing equilibrium for triolet Ti along the radial direction

FIGURE 3 | Geometric diagrams. (A) The influence of electromagnetic fields

due to triolet Tj onto Ti : let triolets Ti and Tj belong to the same component

(envelope or nucleus). Triolet Tj rotates at light velocity along circular orbit of

radius ρj and arrives at angle θj at time t, but was at position Tj ’ at retarded

angle θj ’ and time t’ when it emitted electromagnetic fields that reached triolet

Ti revolving along coplanar circular orbit of radius ρi and arriving at angle 0

(vertical y axis) at time t. The retarded electromagnetic fields can be expressed

using Liénard-Wichert potentials. This figure applies to all envelope and

nucleus triolets. (B) Diagram showing vectors and angles involved in the

demonstration of the expressions of electromagnetic fields and potentials.

(C) Diagram depicting the case ρj= ρi .

and rearranging (Triolets at Radial Equilibrium), we obtain for
the envelope and nucleus:

1

α
≃ −benv

n2env

Nenv−1
∑

j∈env

ρ2i sgn
(

i · j
)

Rij
(

1+ sin γj
)2

(

sin γj

ρi
+ 1

ρj

)

≡ Gi∈env (ηi) , (20)

1

α
≃ −bnuc

n2nuc

Nnuc−1
∑

j∈nuc

ρ2i sgn
(

i · j
)

Rij
(

1+ sin γj
)2

(

sin γj

ρi
+ 1

ρj

)

≡ Gi∈nuc (ηi) , (21)
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where sgn(i·j) is the sign of the product of the charges
of triolets Ti and Tj, and α is the fine-structure constant,
which is found to be related to the ratio between the
centrifugal force and the net radial electromagnetic force
experienced by any single triolet inside the electron. We
assume positive and negative triolets are intertwined and
uniformly distributed along the orbits except—as negative triolets
are more numerous at the envelope—consecutive negative
envelope triolets, which presumably repel to produce stretches
of alternatively charged triolets separated by empty space
(Figure 2). Let denv designate the distance (using the number of
missing triolets as units) between the stretches. The expressions
under the sums in Equations (20–21) can be calculated by first
considering the non-retarded angular positions θj of triolets
distributed along the circular orbit, then by determining the
corresponding retarded angles θ ’j, as illustrated in Retarted
Angles, using Newton’s recursion method for instance onto
transcendental equation:

(

θj − θ
′
j

)2
= 1− 2

ρi

ρj
cos θ

′
j +

(

ρi

ρj

)2

, (22)

and then deriving γj from Equation (17). Equations (20–21) will
help us derive adequate values forNenv,Nnuc, nenv, nnuc, benv, bnuc.

The potential energy due to interactions between the nucleus
and envelope being negligible, the total potential energy of
our system is approximately Utot ≃ Uenv + Unuc, where Uenv,
and Unuc are, respectively, the envelope and nucleus potential
energies, which are evaluated in Potential Energy:

Uenv ≃
2αmc2

n2env

Nenv
∑

i∈env

Nenv−1
∑

j 6=i

sgn
(

i · j
)

Hij

(

1+ sin γj
) , (23)

Unuc ≃
2αmc2

n2nuc

Nnuc
∑

i∈nuc

Nnuc−1
∑

j 6=i

sgn
(

i · j
)

Hij

(

1+ sin γj
) , (24)

whereHij = Rij/ňc. Assuming ηenv+ ≃ ηenv− ≃ 1, we demonstrate
(Potential Energy) from benv=2Nenv (11) and Equation (20),
which expresses the radial stability of every envelope triolet, that
Equation (23) yields Uenv≃ –mc2. Likewise, assuming ηnuc+ ≃
ηnuc−, we demonstrate (Potential Energy) from bnucηnuc = 2Nnuc

(12) and Equation (21), which expresses the radial stability of
every nucleus triolet, that Equation (24) yields Unuc ≃ –mc2.
Hence, we find: Utot ≃ Uenv + Unuc ≃ −2mc2, as expected from
the Virial theorem, and recover electron mass. As substructure
stability implies radial equilibrium for all envelope and nucleus
triolets (20–21), it allows predicting electron mass. We find it
remarkable that the same number of triolets allows to recover
both substructure stability and electron mass.

DETERMINATION OF SUITABLE

CONFIGURATIONS

The problem then reduces to determining triolet configurations,
i.e., sets of values for {nenv, nnuc, Nenv+, Nenv−, Nnuc, benv, bnuc,
ηenv+, ηenv−, ηnuc+, ηnuc−, denv}, that verify radial equilibrium

for every triolet and correctly predict the total energy. We shall
estimate the stability and total energy in three different models
of the envelope successively, each lying at a different level of
approximation. The three models are: the one-orbitmodel, where
all envelope triolets rotate on the same orbit ηenv+≃ηenv−≡ηenv;
the two-orbits model, where positively-charged envelope triolets
revolve on orbit of radius ηenv+ and negative triolets at radius
ηenv−; the n-orbits model where every envelope triolet i rotates
on a circular orbit of specific but fixed radius ηi.

We shall first estimate the number of triolets Nenv present
in the envelope by considering the one-orbit model. Assuming
ηenv+ ≃ ηenv− and ηnuc+ ≃ ηnuc−, we have Rij ≃ 2ρicosγj
(Figure 3C) both at the envelope and nucleus, and Equations
(20–21) can be approximated to:

1

α
≃ −benv

2n2env

Nenv−1
∑

j∈env

sgn
(

i · j
)

cos γj
(

1+ sin γj
) ≃ Gi∈env (ηi) , (25)

1

α
≃ −bnuc

2n2nuc

Nnuc−1
∑

j∈nuc

sgn
(

i · j
)

cos γj
(

1+ sin γj
) ≃ Gi∈nuc (ηi) . (26)

Recalling that benv is related to Nenv via benv = 2Nenv (11), and
setting values for input parameters {nenv, denv}, the iteration over
Nenv values in Equation (25) enabled us to determine values
for benv and Nenv approximately verifying Equations (25) and
(11) simultaneously. Due to the asymmetry in the arrangement
of envelope triolets, we found these Equations were satisfied
for different values of Nenv depending on the triolet Ti under
consideration. In the case nenv = 6, denv = 0 for instance, we
found positive triolets approximatively satisfied these conditions
for Nenv ≃ 108, while negative triolets did so for Nenv ≃ 144,
thus justifying the necessity of considering two distinct orbits
in the envelope. Although these figures should be regarded as
merely indicative, cases denv = 1 and denv = 2 also pointed at
average value Nenv = 126, corresponding to Nenv+ = 60 and
Nenv−= 66, and we shall be considering only this case in the
remainder of our analysis. For the nucleus, in the absence of a
constraint like Equation (11), values for bnuc and ηnuc satisfying
Equations (26) and (12) simultaneously were determined for
every iterated value of Nnuc. However, when accounting for the
correction due to envelope current (first two terms, Triolets at
Radial Equilibrium):

Genv>i∈nuc ≈
bnucsgn (i)

nnuc

[

η3nuc

2
+ 3η4nuc

8

]

, (27)

the best estimate appeared to be Nnuc = 18 (Table 1). Note that
input values other than nenv = 6, nnuc = 2 did not yield any
possible solutions.

Now, considering nenv = 6, nnuc = 2, denv = 2, ηenv+ ≃ ηenv− ≃
1 (one-orbit model), and putting in the value obtained above for
Nenv, we evaluated potential energies Uenv, Unuc using Equations
(13, 23–24) and found Uenv = −0.997·mc2 (Table 2), Unuc

≃ −1.000·mc2 (Table 1). The total potential energy therefore
amounts to Utot ≃ −1.997·mc2, close to our expected result.
Hence, recalling that kinetic energies satisfy Tenv ≃ Tnuc ≃
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TABLE 1 | Stability and energy of various nucleus configurations.

Nnuc bnuc ηnuc+ ηnuc– Gnuc+ Gnuc– Genv>nuc Unuc Tnuc

6 553.42 0.0213 0.0221 127.69 146.51 ±0.001 −0.9996 +0.5001

8 425.49 0.0373 0.0379 132.47 141.62 ±0.006 −0.9998 +0.4999

12 290.89 0.0823 0.0827 135.02 138.21 ±0.043 −1.0000 +0.5000

16 221.03 0.1446 0.1449 136.29 137.78 ±0.186 −1.0002 +0.5001

18 197.35 0.1823 0.1825 136.49 137.58 ±0.340 −1.0005 +0.5000

20 178.27 0.2243 0.2245 136.63 137.45 ±0.588 −0.9999 +0.5000

22 162.55 0.2706 0.2708 136.71 137.35 ±0.970 −1.0003 +0.4999

24 149.39 0.3212 0.3214 136.79 137.29 ±1.538 −1.0000 +0.5000

At the nucleus, setting nnuc = 2, values for bnuc and nucleus radii ηnuc+, ηnuc− are

determined for several values of Nnuc, the number of nucleus triolets, according to

Equations (9, 12, 13, 26), so as to yield Unuc≃ –mc2, Tnuc ≃ +mc2/2 and satisfactory

stability values Gnuc+, Gnuc− (value 137.03 stands for stability). Accounting for first

correction terms Genv>nuc due to envelope current and specified by Equation (27), the

best estimate seems to be Nnuc= 18. Nucleus potential energy Unuc and kinetic energy

Tnuc are expressed in terms of mc
2.

TABLE 2 | Stability and energy of various envelope models.

Model ηenv+ ηenv– Nenv <Gi> K Uenv Tenv

One orbit 1.0 1.0 120 131.4 41.7 −0.949 +0.5000

126 136.7 48.0 −0.996 +0.5000

132 157.5 46.5 −1.139 +0.5000

Two fixed orbits 0.977 1.023 120 124.6 17.3 −0.962 +0.4997

126 130.0 16.1 −1.011 +0.4997

132 148.7 16.1 −1.155 +0.4997

Specific orbits various various 126 137.7 3.2 −0.975 +0.5020

The potential energy Uenv , kinetic energy Tenv , and average absolute stability deviation

K are shown for the three considered envelope models, involving triolets revolving on (i)

a single orbit at reduced Compton wavelength, (ii) two fixed envelope orbits ηenv+ and

ηenv−, (iii) Nenv orbits of specific but fixed radii, with parameters set to nenv = 6, denv

= 2. Energies are expressed in terms of mc2, where m is the mass of the electron and

c is light velocity. It can be seen that for the single orbit and two fixed orbits models,

the solution Nenv+ = 60, Nenv− = 66 yields accurate potential energy values. Although

in the one-orbit or two-orbits models, total energy of the envelope Eenv is close to

–mc2/2, K stability values strongly diverge from 0, indicating that triolets do not verify radial

equilibrium. A configuration of fixed specific orbits yielding overall satisfactory energy and

average stability values (value 137.03 stands for stability) has been determined using our

optimization algorithm.

+mc2/2, then Ttot ≃ Tenv + Tnuc ≃ +mc2, Etot ≃ Ttot+ Utot

≃ –mc2, and the mass of the electron is deduced directly from
our model substructure. Likewise, since the muon is seen as an
excited state of the electron [6] according to our chemical theory
[Avner, Boillot, Richard, submitted], presumably displaying a
similar arrangement of triolets albeit on a smaller scale, muon
mass can also be successfully calculated by replacing m by
muon mass mµ in expressions (23–24), or equivalently ňc by the
reduced muonic Compton Wavelength ňmuon.

We next evaluated the cohesion and stability of individual
triolets. For the symmetric nucleus, we computed the right-hand
side Gnuc of Equation (21) for every triolet; for nnuc = 2, Nnuc

= 18 for instance, accounting for the correction due to the
envelope current, we obtainedGnuc(ηnuc+)≃ 136.83,Gnuc(ηnuc−)
≃ 137.24 (Table 1). For the asymmetric envelope, which can be

TABLE 3 | Stability of individual envelope triolets.

Triolet One orbit Two fixed orbits Specific orbits

# +/– ηi Gi ηi Gi ηi Gi

1 – 1.0 75.4 1.023 108.4 1.761 137.0

2 + 1.0 189.4 0.977 145.4 0.861 114.0

3 – 1.0 105.2 1.023 134.5 0.880 137.0

4 + 1.0 178.8 0.977 134.3 0.931 139.5

5 – 1.0 110.4 1.023 139.7 0.915 137.0

6 + 1.0 176.0 0.977 131.3 0.947 145.3

7 – 1.0 111.9 1.023 141.1 0.925 137.3

8 + 1.0 175.4 0.977 130.7 0.958 137.0

9 – 1.0 111.8 1.023 141.0 0.987 143.6

10 + 1.0 176.0 0.977 131.4 0.974 137.0

11 – 1.0 110.6 1.023 139.7 1.012 142.0

12 + 1.0 177.8 0.977 133.2 0.977 141.7

13 – 1.0 108.2 1.023 137.1 0.968 143.1

14 + 1.0 181.0 0.977 136.5 0.975 137.0

15 – 1.0 103.9 1.023 132.5 1.019 137.5

16 + 1.0 186.7 0.977 142.3 0.998 137.0

17 – 1.0 96.1 1.023 124.0 1.045 137.0

18 + 1.0 198.2 0.977 154.0 1.004 144.0

19 – 1.0 78.0 1.023 104.4 1.017 133.8

20 + 1.0 231.7 0.977 188.2 1.043 137.0

21 – 1.0 −12.0 1.023 1.0 1.130 137.0

K 48.0 16.1 3.2

The stability of individual envelope triolets belonging to the first stretch—the five other

stretches of 21 triolets being identical in the Nenv = 126 case—is evaluated by determining

Gi and comparing it to 1/α ≃ 137.036, in the three envelope models (single orbit, two fixed

orbits, n fixed orbits of specific radii), with input parameters set to nenv = 6, Nenv+ = 60,

Nenv− = 66, denv = 2. The one-orbit model was evaluated at ηenv=1 corresponding to

radius ňc, the reduced Compton wavelength. The two-orbits model was evaluated for

radii ηenv+ = 0.977, ηenv− = 1.023, that yielded acceptable energy value (Table 2). In the

model with specific radii, our optimization algorithm converged toward the 21 different radii

shown here, together with their corresponding individual stability value Gi (value 137.03

stands for stability). The average absolute deviation K to 1/α is supplied for the three

envelope models.

divided into six identical stretches of 21 triolets in the case Nenv

= 126, we computed the right-hand sides Genv of Equation (20)
for every triolet belonging to the first stretch and compared the
results with the left-hand side 1/α ≃ 137.036, which they should
yield if triolets were truly at radial equilibrium. For the one-
orbit model, setting nenv = 6, values of Genv disagreed with the
expected value for all values of denv (the case denv = 2 is given
in Table 3). Clearly, in these conditions at least, the centrifugal
and net electromagnetic forces fail to compensate and to ensure
radial equilibrium, one dominating over the other, and triolets
would be moving radially as well as azimuthally. Therefore,
we considered the two-orbits model with ηenv+≃ 0.977, ηenv−
≃ 1.023, for which we obtained an acceptable energy value
(Table 2). Once again, we found that radial equilibrium was not
verified for many envelope triolets, especially for consecutive
negative triolets or those adjacent to them (Table 3). Hence,
we decided to complicate our model again and considered
envelope triolets orbiting at various but fixed radii ρi (n-orbits
model) instead of the probably too general ρenv+ and ρenv−. We
heuristically determined fixed radii exhibiting reasonable stability
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for all envelope triolets, then used an optimization algorithm,
described in Optimization Algorithm, to make every triolet tend
toward radial equilibrium, minimizing criterion K, the average
absolute deviation from 1/α per triolet:

K = 1

Nenv

Nenv
∑

i

∣

∣

∣

∣

Gi∈env (ηi)−
1

α

∣

∣

∣

∣

, (28)

which effectively constitutes a measure of global stability of
envelope triolets. Our algorithm converged toward a solution
yielding acceptable energy and global stability (Table 2). The
stability values Genv(ηi) of individual envelope triolets belonging
to the first stretch in the n-orbits model are shown in Table 3:
most values appeared to be close to 1/α. We found that our
optimization algorithm nicely converged toward stable solutions.
However, the latter were highly dependent on initial conditions,
and a thorough optimization study is needed to ensure local
minima are avoided.

DISCUSSION

In this study, we presented a relativistic electrodynamical
model of the electron based on natural interpretations of its
associated observables. Our electron model is composed of
triolets that revolve along coplanar circular orbits constituting
an envelope and nucleus, which could be responsible for its
wavelike and corpuscular behaviors, respectively. These two
components would thus constitute a natural solution to wave-
corpuscle duality. Capturing the values of charge, spin, magnetic
moments, Compton wavelength and kinetic energy, we created
a triolet-based configuration that verified cohesion and stability
without invoking Poincaré stresses, and predicted electron and
muon mass, defined as electromagnetic cohesion energy, directly
from substructure stability. Importantly, our model accounts
for kinetic energy and presents a negative cohesion potential
energy, in agreement with the Virial theorem. In our model, the
numbers of triolets in the envelope and nucleus are the adjusting
parameters, and the same numbers are found to account both
for substructure stability and electron mass. Notably, electron
mass can be derived directly from an expression of substructure
stability. Our study therefore implements Lorentz’ hypothesis,
which advocates the electromagnetic origin of mass, from an
objective criterion, even if satisfaction of the criterion itself relies
on two parameters, i.e., the numbers of triolets in the envelope
and nucleus. Noteworthy, these parameters are not arbitrary,
but instead are strongly constrained by several relations (11, 12,
20, 21, 27) that fix their values in our model. Altogether, we
believe our study establishes that deterministic electrodynamical
models of subatomic particles can be constructed beneath
the Compton scale, in agreement with an objectively realist
conception of physics.

Envelope triolets could also fluctuate radially or otherwise
in time, possibly constituting a periodic wave that revolves at
light velocity. This system has not been investigated here, but
is of interest because this periodic wave could correspond to
the wave associated to the electron, first imagined by de Broglie

and later represented by wavefunction |ψ> in Schrödinger’s
wave mechanics or Dirac’s quantum mechanics. It is conceivable
that a wave made of envelope triolets, if it exists, attracts and
drives the nucleus in the manner of the de Broglie-Bohm guiding
wave [23, 24], sensing the electromagnetic fields generated by
the envelopes belonging to other particles. Hence, envelope
triolets could undulate and incarnate wavefunction |ψ>, whose
concrete existence has recently been reconsidered [42]. Note
further that nucleus triolets could also form a wave, reminiscent
of the second wave described in de Broglie’s double solution
theory [23]. Specifically, triolets could propagate in a highly
dynamical manner and experience irregular fluctuations, as in the
hydrodynamical model of Bohm and Vigier [25]. Importantly,
it has been suggested that solutions of this type could account
both for quantum phenomena [26] and for quantum principles
[37]. Bell also wrote that such solutions were compatible with the
predictions of quantummechanics [43]. Further, it is conceivable
that such a complex envelope can exhibit several stable states,
much like modes for a vibrating rope. These could correspond
to the eigenstates of quantum mechanics. In the general case,
the envelope would be in an unstable state, but could converge
toward one of its eigenstates upon measurement, which could be
conceived as the sum of interactions between system subparticles
and apparatus subparticles. Such propositions constitute an
interpretation of von Neumann’s reduction of the wave packet
[44], and would provide a possible solution to the measurement
problem of quantum mechanics [45].

These considerations suggest that quantum theories,
which encompass all subatomic phenomena and whose
standard interpretation states that everything is intrinsically
probabilistic, could eventually emerge [46, 47] from a relativistic
electrodynamical description in agreement with the deterministic
paradigm, which supports the causality principle, objective
reality, and governs macroscopic physics. In this perspective,
Schrödinger and Dirac Equations would constitute high-level
descriptions of the dynamics of envelope triolets. Our study
therefore provides new insight regarding the unification of
the two apparently irreconcilable paradigms in physics: the
deterministic and quantum paradigms.

Now, how exactly does the electron appear to be point-
like in corpuscular interactions? How does our model relate
to the observation that the electron seems spherical [48],
or that its spin, charge and orbital components seem to be
separable [49–51]? How would the moving electron, which
exhibits a wave satisfying de Broglie relation p=h/λ, be described?
Could our description be regarded as an attempt to create a
corpuscular counterpart to wave mechanics? Could analogous
electrodynamical models be similarly constructed for other
subatomic particles [52]? Could our extended model of the
electron bring insight to the nature of molecular bonding, or
to the arrangement of electrons inside atoms? And finally,
what would be the implications for the interpretation of
quantum mechanics [45]? How would quantum properties,
such as the existence of eigenstates, the measurement problem
or entanglement, and quantum phenomena, such as the
two-slits experiment or the one-dimensional potential well,
be understood in the light of our model? We believe the
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aforementioned questions should stimulate discussion and foster
novel investigations.

METHODS

Values of Observables
Charge
The charge of the electron is given by the Nenv+ triolets of
charge (+e/nenv), theNenv− triolets of charge (–e/nenv), theNnuc+
triolets of charge (+e/nnuc) and the Nnuc− triolets of charge
(–e/nnuc):

−e = e

[(−Nenv−
nenv

)

+
(

Nenv+
nenv

)

+
(−Nnuc−

nnuc

)

+
(

Nnuc+
nnuc

)]

.

Assuming the nucleus is neutrally charged (hypothesis B),
implying Nnuc+= Nnuc−, we deduce:

nenv = Nenv− − Nenv+. (A1)

Nucleus and Envelope Orbits
Let us suppose triolets of charges (+e/nenv), (–e/nenv), (+e/nnuc),
(–e/nnuc) revolve along four coplanar circular orbits of radii:















ρenv+ = ηenv+ňC

ρenv− = ηenv−ňC

ρnuc+ = ηnuc+ňC

ρnuc− = ηnuc−ňC

(A2)

where ňc = ℏ/mc is the reduced Compton wavelength, and η’s are
dimensionless real numbers.

Classical and Anomalous Magnetic Moments
Let us express the classical magnetic moment µB= –eℏ/2m =
∑

iIiAi=
∑

iQiAi/ti, where Ii is the current generated by triolet
Ti, Qi its charge, ti = c/2πρi the time taken to go through a full
orbit at light velocity c, and Ai the area formed by this orbit.
The magnetic moment is due to a net charge (–e) made of Nenv

= Nenv++ Nenv− triolets revolving in the same direction along
envelope orbits of radii ρenv+ and ρenv−:

µB = −eℏ

2m
= Qenv+Aenv+

tenv+
+ Qenv−Aenv−

tenv−
,

−eℏ

2m
= Nenv+e

nenv

cπ ρ2env+
2πρenv+

+ Nenv− (−e)

nenv

cπρ2env−
2πρenv−

,

−eℏ

2m
= ec

2nenv
(Nenv+ηenv+ − Nenv−ηenv−)

ℏ

mc
,

(Nenv−ηenv− − Nenv+ηenv+) = nenv. (A3)

As the anomalous magnetic momentµnuc = –aanml(eℏ/2m), with
aanml ≃ 0.001159, is relatively small, let us assume it is produced
by an equal number Nnuc+ = Nnuc− of positive and negative
triolets of charge (±e/nnuc) revolving in the same direction as
envelope triolets along nucleus orbits of slightly different radii
due to the net envelope charge:

µnuc = −aanml
eℏ

2m
= Qnuc+Anuc+

tnuc+
+ Qnuc−Anuc−

tnuc−
,

Nnuc+ (ηnuc− − ηnuc+) = aanmlnnuc. (A4)

Virial Theorem
The virial theorem states that if a system remains bound, and
if its inner potentials do not depend on velocities but only on
positions, then the kinetic and potential energies take on definite
shares in the total energy, depending on the degree n of the
forces that apply. As the electron is a bound system, and as
in our system the magnetic force will be found to depend on
position coordinates ρ and γ only, the theorem applies and, for
electromagnetic interactions in r−2, it stipulates that:







T = mc2

U = −2mc2

E = T + U = −mc2
(A5)

where T, U, and E, respectively, designate the internal kinetic
energy, internal potential energy, and total internal energy of the
system. Note that the potential and total energies are negative, as
they should be for a bound system.

Kinetic Energy
The kinetic energy is given by:

T = mc2 =
∑

i

pic = Nenv+penv+c+ Nenv−penv−c

+ Nnuc+pnuc+c+ Nnuc−pnuc−c, (A6)

suggesting:















penv+ = mc/Kenv+
penv− = mc/Kenv−
pnuc+ = mc/Knuc+
pnuc− = mc/Knuc−

, (A7)

where the K’s remain to be determined, thus yielding from
Equation (A6):

1 = Nenv+
Kenv+

+ Nenv−
Kenv−

+ Nnuc+
Knuc−

+ Nnuc+
Knuc−

. (A8)

Note that we may assume that nucleus triolets possess
comparable momentum pnuc+ ≃ pnuc− = pnuc, and that their
orbit radius is approximately ρnuc+ ≃ ρnuc− = ρnuc, since (ρnuc+–
ρnuc−) is very small according to Equation (A4).

Spin
Since particles as different as quarks and leptons (which possess
different numbers of sparks according to our chemical model
[Avner, Boillot, Richard, submitted]) share same spin, the latter
can be interpreted as being the total angular momentum the
particle conveys to the objects it encounters, i.e., the sum of
the angular momenta of its envelope triolets. For the electron,
assuming all triolets revolve in the same positive direction, it is
written using Equations (A2, A6):

S = +ℏ

2
=
∑

i

ρipi = Nenv+ρenv+penv+ + Nenv−ρenv−penv−, (A9)
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1

2
= Nenv+ηenv+

Kenv+
+ Nenv−ηenv−

Kenv−
, (A10)

Further, as the muon is composed of the same number of triolets
as the electron according to our chemical model and exhibits a
Compton length much smaller than that of the electron [Avner,
Boillot, Richard, submitted], spin ℏ/2 is thus independent of the
radii of triolets’ orbits. A necessary and sufficient condition is
then that variables K’s be proportional to η’s:















Kenv+ = benv+ηenv+
Kenv− = benv−ηenv−
Knuc+ = bnucηnuc+
Knuc− = bnucηnuc−

(A11)

where benv+, benv−, bnuc+, bnuc− are values independent of radii,
in order that the η’s cancel out in Equation (A10), yielding:

1

2
= Nenv+

benv+
+ Nenv−

benv−
. (A12)

The angular momentum of triolet i is given by:

Li = piρi =
mc

biηi
· ηi

ℏ

mc
= ℏ

bi
, (A13)

implying for spin and kinetic energy:

benv

2
= Nenv+ + Nenv−, (A14)

1 = Nenv+
benvηenv+

+ Nenv−
benvηenv−

+ Nnuc+
bnucηnuc+

+ Nnuc−
bnucηnuc−

.

(A15)

Definition of Planck’s Constant
Supposing angular momentum Ltrlt,env is a constant common to
every envelope triolet, the expression for the spin, from Equation
(A9), due to the envelope is:

ℏ

2
= Nenv+Ltrlt,env + Nenv−Ltrlt,env = NenvLtrlt,env,

and thus:

ℏ = 2NenvLtrlt,env, (A16)

meaning that the constant angular momentum Ltrl,env common
to every envelope triolet could be at the basis of Planck’s constant.

Kinetic Energy of the Nucleus and Envelope
From Equations (A6, A7, A11), the kinetic energy of the nucleus
is given by:

Tnuc = Nnuc+pnuc+c+ Nnuc−pnuc−c

= mc2Nnuc+
bnuc

(

1

ηnuc+
+ 1

ηnuc−

)

. (A17)

Likewise, the kinetic energy of the envelope is:

Tenv = Nenv+penv+c+ Nenv−penv−c,

Tenv = mc2

benv

(

Nenv+
ηenv+

+ Nenv−
ηenv−

)

. (A18)

Now, assuming ηenv+≃ ηenv− ≃ 1 according to Schrödinger’s
Zitterbewegung, Tenv becomes, using Equation (A14):

Tenv ≃
mc2

benv
(Nenv− + Nenv+) ≃

1

2
mc2, (A19)

and thus:

Tnuc = T − Tenv ≃
1

2
mc2. (A20)

The forthcoming study of the interactions between the nucleus
and envelope will show that they are negligible compared
to intra-component forces (nucleus onto itself, envelope onto
itself). The two components therefore almost behave as two
bound independent systems, and thus presumably obey the Virial
theorem separately. Hence, since we haveTnuc ≃Tenv≃mc2/2, we
should also obtain Unuc ≃ Uenv≃ –mc2 so that the total energies
amount to: Enuc ≃ Eenv ≃ –mc2/2 and Etot≃ –mc2.

Determination of ηnuc+ and ηnuc-
In order to determine ηnuc+ and ηnuc− , considering Equations
(A17) and (A20), we have:

(

1

ηnuc+
+ 1

ηnuc−

)

≃ bnuc

2Nnuc+
. (A21)

The latter expression, together with Equation (A4), can allow us
to determine ηnuc+ and ηnuc− in terms of Nnuc+, aanml, nnuc,
and bnuc:

bnuc

2Nnuc+
≃ 1

ηnuc+
+ 1
(

ηnuc+ + aanmlnnuc
Nnuc+

) ,

1

ηnuc+

(

bnucηnuc+
2Nnuc+

− 1

)

= 1

ηnuc+

(

1

1+ aanmlnnuc
Nnuc+ηnuc+

)

,

1 =
(

1+ aanmlnnuc

Nnuc+ηnuc+

)(

bnucηnuc+
2Nnuc+

− 1

)

,

η2nuc+

(

bnuc

2Nnuc+

)

+ ηnuc+
(

aanmlbnucnnuc

2N2
nuc+

− 2

)

−
(

aanmlnnuc

Nnuc+

)

= 0,

1 = 4+
(

aanmlbnucnnuc

2N2
nuc+

)2

,

and taking the positive solution, we find:

ηnuc+ = Nnuc+
bnuc






2− aanmlbnucnnuc

2N2
nuc+

+

√

√

√

√4+
(

aanmlbnucnnuc

2N2
nuc+

)2





,

(A22)

and ηnuc− can then be derived from Equation (A4).
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Forces and Potentials
Centrifugal Force of a Triolet
Assuming triolets travel at light velocity, the centrifugal force
[16] of triolet Ti, revolving along orbit of radius ρi = ηiňc, is in
cylindrical coordinates:

Fctf ,i =
pivi

ρi
= mc · c

biηiρi
= ℏc

biρ
2
i

, (B1)

where bi stands for benv (respectively, bnuc) when Ti belongs to
the envelope (resp. the nucleus). This expression applies both to
nucleus and envelope triolets.

Electromagnetic Force Exerted on Nucleus Triolet i

Due to Current at Envelope
The electromagnetic force exerted onto nucleus triolet i is given
by the Lorentz force written using scalar potential V and vector
potential A:

−→
F env±>i =

sgn(i) · e
nnuc

[

−−→∇ Venv±>i −
∂

∂t

−→
A env±>i + cθ̂

×
(−→∇ ×−→

A env±>i
)]

, (B2)

if all triolets revolve in the same positive direction. The
expressions for the scalar and vector potentials and their
derivatives must be determined.

As a net charge (–e) circulates around the envelope, the scalar
potential and vector potential, for rnuc < renv and cos θ = 0 (since
the orbit is in the plane z = 0), are given [41] by:

Venv±>i∈nuc = Qenv±
4πε0renv±

∞
∑

l=0,2,4...

[Pl (0)]
2

(

ρi

ρenv±

)l

, (B3)

Aenv±>i∈nuc = µ0Ienv±
2

∞
∑

l=1,3,5...

[

P1
l (0)

]2

l
(

l+ 1
)

(

ρi

ρenv±

)l

, (B4)

where the Pl(x) and Pl
1(x), respectively, designate the Legendre

polynomials and associated Legendre polynomials, yielding:

Venv±>i∈nuc ≃ Qenv±
4πε0

[

1

ρenv±
+ 1

4

ρ2i

ρ3env±
+ 9

64

ρ4i

ρ5env±

]

, (B5)

∂Venv±>i∈nuc
∂ρnuc±

≃ Qenv±
4πε0

[

1

2

ρi

ρ3env±
+ 9

16

ρ3i

ρ5env±

]

. (B6)

Recalling µ0= 1/(ε0c
2), v= c and Qenv± =±Nenv±e/nenv:

µ0Ienv±
2

= µ0Qenv±
2tenv±

≃ 1

2ε0c2

(±Nenv±e
nenv

)(

c

2πρenv±

)

, (B7)

Aenv±>i∈nuc ≃
±Nenv±e
4πε0cnenv

[

1

2

ρi

ρ2env±
+ 3

16

ρ3i

ρ4env±

]

, (B8)

∂

(

Aenv±>i∈nucθ̂
)

∂tnuc
= −Aenv±>i∈nuc

c

ρnuc
ρ̂

≃ − (±Nenv±e)
4πε0nenv

[

1

2ρ2env±
+ 3

16

ρ2i

ρ4env±

]

ρ̂, (B9)

−→∇ ×−→
A =

∣

∣

∣

∣

∣

∣

ρ̂ θ̂ k̂
∂
∂ρ

∂
ρ∂θ

∂
∂z

0 Aenv±>i∈nuc 0

∣

∣

∣

∣

∣

∣

= ∂ (Aenv±>i∈nuc)
∂ρnuc

k̂

≃ (±Nenv±e)
4πε0cnenv

[

1

2ρ2env±
+ 9

16

ρ2i

ρ4env±

]

k̂. (B10)

The electromagnetic force (B2) exerted on a nucleus triolet Ti by
the envelope is then given by:

−→
F env±>i∈nuc ≃ −sgn (i)

nnuc

(

±Nenv±e2
)

4πε0nenvρ
2
env±

[

1

2

ρi

ρenv±
+ 3

8

ρ2i

ρ2env±

+ 9

16

ρ3i

ρ3env±

]

ρ̂. (B11)

Electromagnetic Force Exerted on Envelope Triolet i

Due to Current Flowing at Nucleus
According to Equation (A3), the magnetic moment due to the
nucleus is:

µnuc =
−aanmleℏ

2m
= Nnuc+ec

2nnuc
(ρnuc+ − ρnuc−) . (B12)

The vector potential and its derivatives are given [41] by:

−→
A nuc>i∈env ≃

µ0

4π

µnuc

ρ2i
θ̂ , (B13)

−→
A nuc>i∈env ≃

1

8πε0c

Nnuc+e
nnuc

(ρnuc+ − ρnuc−)
ρ2i

θ̂ , (B14)

∂

(

Anuc>i∈envθ̂
)

∂ti
= −Anuc>i∈env

c

ρi
ρ̂

= −1

8πε0

Nnuc+e
nnuc

(ρnuc+ − ρnuc−)
ρ3i

ρ̂ (B15)

−→∇ ×−→
A =

∣

∣

∣

∣

∣

∣

ρ̂ θ̂ k̂
∂
∂ρ

∂
ρ∂θ

∂
∂z

0 Anuc>i∈env 0

∣

∣

∣

∣

∣

∣

= ∂ (Anuc>i∈env)
∂ρi

k̂

= (−1)

4πε0c

Nnuc+e
nnuc

(ρnuc+ − ρnuc−)
ρ3i

k̂. (B16)

As the net nucleus charge is zero, and using Equation (A4), the
force is defined by:

−→
F nuc>i∈env = sgn(i) · e

nenv

[

− ∂

∂t

−→
A nuc>i + cθ̂j

(−→∇ ×−→
A nuc>i

)

]

,

−→
F nuc>i∈env = 3

8πε0

sgn (i) e2Nnuc+
nnucnenv

(ηnuc+ − ηnuc−) ňC

ρ3i
ρ̂,

−→
F nuc>i∈env = −3

8πε0

sgn (i) e2

nenv

aanmlňC

ρ3i
ρ̂. (B17)
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Electromagnetic Force Exerted on Triolet i at Radius

ρi Due to Triolet j at Radius ρj

Every triolet experiences the fields emitted by all other triolets
belonging to the same or adjacent orbit in the same component.
Here we estimate the electromagnetic field and force exerted by a
single triolet revolving on the same or adjacent orbit.

Let trioletTj’ (ρjsin θ ’j, ρjcos θ ’j) of charge qj, revolving at light
velocity on circular orbit of radius ρj, be positioned at angle θ ’j at
retarded time t’, and emitting an electromagnetic field received at
time t by triolet Ti(0, ρi) of charge qi revolving at light velocity on
circular orbit of radius ρi, and arriving at angle θi = 0 on vertical
axis y (Figure 3A). We have:

−−→
TjTi

(

−ρj sin θ ′j
ρi − ρj cos θ ′j

)

,

TjTi
2 = ρ2i + ρ2j − 2ρiρj cos θ

′
j ≡ R2ij, (B18)

n̂ji =
−−→
TjTi

TjTi





− ρj
Rij

sin θ
′
j

ρi−ρj cos θ
′
j

Rij



 , (B19)

Rij =
√

ρ2i + ρ2j − 2ρiρj cos θ
′
j . (B20)

The trajectory, velocity and acceleration of triolet Tj are,
respectively, given by:

−→w j

(

t
′) = ρj

(

sinωt
′
x̂+ cosωt

′
ŷ
)

, (B21)

−→v j

(

t
′) = ρjω

(

cosωt
′
x̂− sinωt

′
ŷ
)

, (B22)

−→a j

(

t
′) = −ρjω2

(

sinωt
′
x̂+ cosωt

′
ŷ
)

, (B23)

with ω being the angular velocity, satisfying relations c= ρω and
θ ’ = ωt’. Since v= c, β = v/c= 1, we also have:

ρ̂j







sin θ
′
j

cos θ
′
j

0






, β j







cos θ
′
j

− sin θ
′
j

0






, β̇ j







−c sin θ
′
j /ρj

−c cos θ
′
j /ρj

0







= −c

ρj
ρ̂j, (B24)

g = 1− βj·n̂ji = 1− cos
(π

2
+ γj

)

= 1+ sin γj. (B25)

The electric and magnetic fields emitted by Tj and received by Ti

are given [41] by:

Ej = qj

4πε0





(

n̂ji − β j

)

(

1− β2
)

g3R2ij
+

n̂ji ×
[(

n̂ji − β j

)

× β̇ j

]

cg3Rij



 ,(B26)

Bj = µ0qj

4π





(

vj × n̂ji
) (

1− β2
)

g3R2ij
+

(

β j × n̂ji

) (

β̇ j·n̂ji
)

+ gβ̇ j×n̂ji

g3Rij



 .

(B27)

From Figure 3B, it can be seen that:

β̇ j·n̂ji =
c

ρj
cos γj, (B28)

cos
γ̄ j

2
= 1

2

∣

∣

∣
n̂ji − β j

∣

∣

∣
, (B29)

cos
γ̄ j

2
=
√

1

2

(

1+ cos γ̄ j

)

=
√

1

2

(

1+ sin γj
)

. (B30)

And thus:

n̂ji ·
(

n̂ji − β j

)

=
∣

∣

∣
n̂ji − β j

∣

∣

∣
· cos

γ j

2
= 2 cos2

γ j

2
= 1+ sin γj. (B31)

From Equations (B25, B28) and identity: a×(b×c) = (a·c)b–
(a·b)c, we deduce:

n̂ji ×
[(

n̂ji − β j

)

× β̇ j

]

=
(

β̇ j · n̂ji

) (

n̂ji − β j

)

−
[

n̂ji ·
(

n̂ji − β j

)]

β̇ j,

n̂ji ×
[(

n̂ji − β j

)

× β̇ j

]

= c

ρj
cos γj

(

n̂ji − β j

)

−
(

1+ sin γj
)

β̇ j,

(B32)

implying, since 1–β2 = 0 and using Equations (B24, B25, B32):

Ej =
qj

4πε0





n̂ji ×
[(

n̂ji − β j

)

× β̇ j

]

cg3Rij



 ,

Ej =
qj

4πε0Rijρj

[

(

n̂ji − β j

) cos γj
(

1+ sin γj
)3

+ ρ̂j

1
(

1+ sin γj
)2

]

.

(B33)

From Figure 3B, we also have:

β j × n̂ji = − sin
(π

2
+ γj

)

ẑ = − cos γjẑ, (B34)

β̇ j×n̂ji = − cρ̂j

ρj
×n̂ji = − c

ρj
sin
(

π − γj
)

ẑ = − c

ρj
sin γjẑ, (B35)

yielding, using Equations (B27, B28) and µ0 = 1/(ε0c
2):

Bj =
µ0qj

4π

[− c
ρj
cos γj cos γj − c

ρj
(1+ sin γj) sin γj

(1+ sin γj)3Rij

]

ẑ,

Bj =
−qj

4πε0cRijρj
(

1+ sin γj
)2
ẑ. (B36)

The magnetic force is directed along ρi since Bj is along z. But
to express the equilibrium we need to find the component of Ej
along ρi, and thus we need:

n̂ji·ρ̂i =
1

Rij

(

ρi − ρj cos θ
′
j

)

, (B37)

ρ̂i·
(

−β j

)

= cos
(

θ
′
j −

π

2

)

= sin θ
′
j , (B38)

ρ̂i·ρ̂j = cos θ
′
j , (B39)

yielding from Equation (B33):

Eji⊥=
qj

4πε0Rijρj

[

1

Rij

(

ρi − ρj cos θ
′
j

) cos γj
(

1+ sin γj
)3
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+
sin θ

′
j cos γj

(

1+ sin γj
)3

+
cos θ

′
j

(

1+ sin γj
)2

]

ρ̂. (B40)

This can be rearranged by expressing θ ’j as a function of γj and
vice versa. From Equations (B19, B24):

cos γj = −ρ̂j·n̂ji = − sin θ
′
j

(

− ρj

Rij
sin θ

′
j

)

− cos θ
′
j

(

ρi − ρj cos θ ′j
Rij

)

,

cos γj =
1

Rij

(

ρj − ρi cos θ
′
j

)

. (B41)

Similarly, from Equation (B28):

sin γj ẑ = ρ̂j×n̂ji =

∣

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

sin θ
′
j cos θ

′
j 0

− ρj
Rij

sin θ
′
j

ρi−ρj cos θ
′
j

Rij
0

∣

∣

∣

∣

∣

∣

∣

∣

,

sin γj =
ρi

Rij
sin θ

′
j . (B42)

Relations (B41) and (B42) may be reversed:

sin θ
′
j = Rij

ρi
sin γj, (B43)

cos θ
′
j = 1

ρi

(

ρj − Rij cos γj
)

. (B44)

Then, using these to rearrange Equation (B40) and developing:

1

R2ij

(

ρi − ρj cos θ
′
j

) (

ρj − ρi cos θ
′
j

)

= 1

R2ij

[

ρiρj sin
2 θ

′
j − R2ij cos θ

′
j

]

,

sin θ
′
j

Rij

(

ρj − ρi cos θ
′
j

)

+ cos θ
′
j

(

1+ ρi

Rij
sin θ

′
j

)

= cos θ
′
j +

ρj

Rij
sin θ

′
j ,

we obtain using Equation (B42):

Eji⊥ =
qj sin θ

′
j

4πε0R
2
ij

(

1+ sin γj
)3

[

ρi

Rij
sin θ

′
j + 1

]

ρ̂,

Eji⊥ = qj sin γj

4πε0Rijρi
(

1+ sin γj
)2

ρ̂. (B45)

The Lorentz force is then:

Fij⊥ = qi

(

Eij⊥ + cθ̂i × Bij

)

,

Fij⊥ = qiqj

4πε0Rijρi

[

sin γj
(

1+ sin γj
)2

]

ρ̂

+ qiqj

4πε0Rijρj

[

1
(

1+ sin γj
)2

]

ρ̂,

Fij⊥ = qiqj

4πε0Rij
(

1+ sin γj
)2

[

sin γj

ρi
+ 1

ρj

]

ρ̂. (B46)

The scalar and vector Liénard-Wichert retarded electromagnetic
potentials [41] are:

Vij =
qj

4πε0

(

Rij − β j·Rij

)

rtrd

= qj

4πε0Rij
(

1+ sin γj
) ,(B47)

Aij =
µ0

4π

(

qjvjθ̂j

Rij − β j·Rij

)

rtrd

= qjθ̂j

4πε0cRij
(

1+ sin γj
) .(B48)

Approximation ρi=ρj. When making this approximation (one-
orbit model), from Figure 3C, Rij becomes:

Rij = 2ρi cos γj. (B49)

Note that if ρi= ρj, Equation (B46) then becomes:

Fij⊥=
qiqj

8πε0ρi2 cos γj
(

1+ sin γj
) ρ̂. (B50)

Triolets at Radial Equilibrium
Equilibrium of Envelope Triolets
Envelope triolets are submitted to the centrifugal force (B1), the
magnetic force due to the net nucleus magnetic moment (B17),
and the net electromagnetic force due to the other envelope
triolets (B46). Equilibrium for env– triolets can be written:

0 = ℏc

benvρ
2
env−

+ (−e)

nenv

Nenv−1
∑

j

e

nenv

1

4πε0

sgn
(

j
)

Rij(1+ sin γj)
2

×
[

sin γ

ρenv−
+ 1

ρj

]

+ 3

8πε0

e2

nenv

aanmlňC

ρ3env−
.

And rearranging to isolate the fine-structure constant:

4πε0ℏc

e2
= 1

α
= benvρ

2
env−

nenv





Nenv−1
∑

j

1

nenv

sgn
(

j
)

Rij(1+ sin γj)
2

×
(

sin γ

ρenv−
+ 1

ρj

)

− 3aanmlňC

2ρ3env−

]

. (C1)

Likewise, equilibrium for env+ triolets can be written:

1

α
= benvρ

2
env+

nenv



−
Nenv−1
∑

j

1

nenv

sgn
(

j
)

Rij(1+ sin γj)
2

(

sin γ

ρenv+
+ 1

ρj

)

+ 3aanmlňC

2ρ3env+

]

. (C2)
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Neglecting the term due to the nucleus magnetic moment, the
equations become:

1

α
= −benv

n2env





Nenv−1
∑

j

ρ2i sgn
(

i · j
)

Rij(1+ sin γj)
2

(

sin γ

ρi
+ 1

ρj

)



 ≡ Genv. (C3)

The fine structure constant therefore appears to be naturally
related to the ratio between the centrifugal force and the net
electromagnetic force experienced by a single triolet. Making the
ρi=ρj approximation (B49), we obtain:

1

α
= −benv

2n2env





Nenv−1
∑

j

sgn
(

i · j
)

cos γj(1+ sin γj)



 . (C4)

Equilibrium of Nucleus Triolets
Nucleus triolets are submitted to the centrifugal force (B1), the
electromagnetic force due to the envelope (B11), and the net
electromagnetic force due to the other nucleus triolets (B46).
Equilibrium for nuc– triolets is thus written:

1

α
≃ bρ2nuc−

nnuc

[

ρnuc−
2nenv

(

Nenv+
ρ3env+

− Nenv−
ρ3env−

)

+
Nnuc−1
∑

j

1

nnuc

sgn
(

j
)

Rij
(

1+ sin γj
)2

(

sin γ

ρnuc−
+ 1

ρj

)



 . (C5)

Similarly we have for the nuc+ triolets:

1

α
≃ bρ2nuc+

nnuc

[

ρnuc+
2nenv

(

Nenv+
ρ3env+

− Nenv−
ρ3env−

)

−
Nnuc−1
∑

j

1

nnuc

sgn
(

j
)

Rij
(

1+ sin γj
)2

(

sin γ

ρnuc+
+ 1

ρj

)



 . (C6)

Neglecting the term due to the envelope current, the
equations become:

1

α
= −bnuc

n2nuc





Nnuc−1
∑

j

ρ2i sgn
(

i · j
)

Rij(1+ sin γj)
2

(

sin γ

ρi
+ 1

ρj

)



 ≡ Gnuc.

(C7)

Making the ρi=ρj approximation (B49), we obtain:

1

α
= −bnuc

2n2nuc





Nnuc−1
∑

j

sgn
(

i · j
)

cos γj(1+ sin γj)



 . (C8)

Also, the correction due to envelope current (first two terms) is:

Genv>i∈nuc ≈ −bnucsgn (i) (−nenv)

nnucnenv

[

ρ3nuc

2ρ3env
+ 3ρ4nuc

8ρ4env

]

≈ bnucsgn (i)

nnuc

[

η3nuc

2
+ 3η4nuc

8

]

. (C9)

Retarted Angles
Evaluating the Values of Retarded Angle θj’ From

Non-retarded Angle θj

If we suppose triolets are uniformly distributed along the circular
orbits (this is certainly true of the nucleus since we have Nnuc+
= Nnuc−, but is an approximation in the case of the envelope,
as there are more negative than positive triolets), then angle θj

(expressed in radians) determining the position of the jth triolet
(starting at 1) at non-retarded time t on the orbit is defined by:

θj∈nuc = 2π
j

Nnuc
. (D1)

Note that, for the envelope, we also need to account for the empty
space of length denv (using the number ofmissing triolets as units)
separating the nenv stretches of triolets, yielding for triolets Tj

belonging to the first stretch:

θj∈1stStretch = 2π
j

(

Nenv + nenvdenv
) . (D2)

To evaluate θj’ determining the angular position Tj’ at retarded
time t’ when the electromagnetic field was emitted toward triolet
Ti, which arrives at angle 0 (vertical y axis) at time t to receive the
field, we use the following relation, derived from Figure 3A:

Rij = ρjδθj = ρj

(

θj − θ
′
j

)

. (D3)

Then squaring Equations (B20) and (D3) and equating,
we obtain:

(

θj − θ
′
j

)2
= 1− 2

(

ρi

ρj

)

cos θ
′
j +

(

ρi

ρj

)2

. (D4)

Given ρi, ρj, and θj, the retarded angles θ ’j may be
numerically determined by recurrence, using a computer
program that implements Newton method for instance, to
resolve transcendental Equation (D4) for all triolets of angular
position θj expressed in radians. The corresponding values of γj
are then estimated using Equation (B42).

Potential Energy
Electric Potential Energy
By definition, the electric potential energies at the envelope and
nucleus are defined by:

Uelec,env =
Nenv
∑

i

Nenv−1
∑

j 6=i

qiVij =
∑

i∈env

∑

j 6=i

qiqj

4πε0Rij
(

1+ sin γj
) ,(E1)

Uelec,env = αmc2

n2env

∑

i∈env

∑

j 6=i

sgn(i · j)
Hij

(

1+ sin γj
) , (E2)

where Hij = Rij/ňc. Likewise, we have:

Uelec,nuc =
αmc2

n2nuc

∑

i∈nuc

∑

j 6=i

sgn(i · j)
Hij

(

1+ sin γj
) . (E3)
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Making the ρi = ρj approximation (B49), we obtain:

Uelec,env = αmc2

2n2env

∑

i∈env

∑

j 6=i

sgn(i · j)
ηj cos γj

(

1+ sin γj
) , (E4)

Uelec,nuc = αmc2

2n2nuc

∑

i∈nuc

∑

j 6=i

sgn(i · j)
ηj cos γj

(

1+ sin γj
) . (E5)

Magnetic Potential Energy
The magnetic potential energyUmag and electric potential energy
Uelec are, respectively, the opposite of the magnetic work and
electric work [41] given by:

Wmag = 1

2µ0

∫

all space
B2dτ = −Umag , (E6)

Welec = ε0

2

∫

all space
E2dτ = −Uelec. (E7)

Now, the vector expression relating the magnetic field to the
electric field:

−→
B = 1

c
n̂×−→

E (E8)

holds in relativistic electrodynamics with particles going at light
velocity, yielding:

Wmag =
1

2µ0c2

∫

all space
E2dτ , (E9)

and since we know that c2 = 1/ε0µ0, we have:

Wmag =
ε0

2

∫

all space
E2dτ = Welec. (E10)

Therefore:

Umag = Uelec. (E11)

Total Potential Energy
Neglecting the potential energy of the envelope acting on
the nucleus Uenv>nuc, and the potential energy of the nucleus
acting on the envelope Unuc>env, the electron potential energy
is approximately:

Utot ≃ Uenv + Unuc, (E12)

where Uenv is the envelope potential energy and Unuc

the nucleus potential energy. Using Equations (E2, E11),
we obtain:

Uenv = Uenv,mag + Uenv,elec = 2Uenv,elec, (E13)

Uenv =
2αmc2

n2env

∑

i∈env

∑

j 6=i

sgn(i · j)
Hij

(

1+ sin γj
) , (E14)

where Hij= Rij/ňc. Likewise, using Equation (E.3) we have:

Unuc =
2αmc2

n2nuc

∑

i∈nuc

∑

j 6=i

sgn(i · j)
Hij

(

1+ sin γj
) . (E15)

Compatibility Between Potential Energies and Radial

Equilibrium Equations
It can be shown that Equations (E14, E15) are compatible with
Equations (C4, C8) if we assume ηnuc+≃ ηnuc− and ηenv+ ≃ ηenv−
≃ 1. Indeed, Equation (C4) becomes:





Nenv−1
∑

j

sgn
(

i · j
)

2 cos γj(1+ sin γj)



 ≃ −n2env
αbenv

.

Then, by replacing the relation above into Equation (98), since
ηenv+≃ηenv−≃1, we obtain:

Uenv = 2αmc2

n2env

∑

i∈env

∑

j 6=i

sgn
(

i · j
)

2ηi cos γj
(

1+ sin γj
)

≃ −2αmc2

n2env
Nenv

n2env
αbenv

,

Uenv ≃ −2Nenvmc2

benv
.

Since benv = 2Nenv, this yields:Uenv ≃ –mc2 as expected. Likewise,
Equation (C8) becomes:





Nnuc−1
∑

j

sgn
(

i · j
)

2 cos γj(1+ sin γj)



 ≃ −n2nuc
αbnuc

.

Then, by replacing the relation above into Equation (E15),
we obtain:

Unuc = 2αmc2

n2nuc

∑

i∈nuc

∑

j 6=i

sgn(i · j)
2ηi cos γj

(

1+ sin γj
) ≃ −2αmc2

n2nuc

Nnuc

ηnuc

n2nuc
αbnuc

,

Unuc ≃ −2Nnucmc2

bnucηnuc
.

Since 2Nnuc = bnucηnuc (A21), we obtain: Unuc ≃ –mc2

as expected.

Optimization Algorithm
An optimization algorithm has been devised and implemented
to determine a set of optimum orbital radii for envelope triolets
by minimizing average absolute deviation K, in the n-orbits
model where each triolet possesses a specific radii ηi at the
envelope. An approximate solution is determined heuristically
before applying this algorithm. The algorithm next considers
in turn every envelope triolet belonging to the first stretch,
tries five different radii surrounding the current radius, and
computes for each the stability of all envelope triolets. The
radius yielding best overall stability is then attributed to the
corresponding triolets in all six stretches. Once the procedure
has been applied to all triolets of the first stretch, it is run
again, considering five closer radii this time (thus slowly reducing
the noise), until convergence toward an optimum solution
is reached. The corresponding pseudocode is shown below.
The algorithm was applied with the following values: delta =
0.00201, step = 0.00005, nenv= 6, Nenv+ = 60, Nenv− = 66,
denv = 2.
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Function optimize_env_radii( radius[126], delta, step ):
for d in range( delta to 0.00001 by –step ):

for i in range( 0 to 20 by+1 ):
previous_radius= radius[ i ]
R= previous_radius
best_r= R
best_K= 10000
list_new_radii= { R−2d, R–d, R, R+d, R+2d }
for r in list_new_radii:

set_radius( i to r in all six stretches )
clear( list_inv_alphas )
for j in range( 1 to 20 by+1 ):

G= compute_inv_alpha( i, j )
add( G to list_inv_alphas )

K= compute_error_K( list_inv_alphas )
if K< best_K:

best_K= K
best_r= r

set_radius( i to best_r in all six stretches )
return radius[126]
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34. Barut AO, Pavšič M. Radiation reaction and the electromagnetic energy-

momentum of moving relativistic charged membranes. Phys Lett B.

(1994) 331:45–50.

35. Bostick WH. Mass, charge and current: the essence and morphology. Physics

Essays. (1991) 4:45.

36. Consa O. Helical solenoid model of the electron. Progr Phys. (2018) 14:80–89.

37. Hestenes D. Quantum mechanics from self-interaction. Found Phys.

(1985) 15:63–87.

38. Hestenes D. The zitterbewegung interpretation of quantummechanics. Found

Phys. (1990) 20:1213–32.

39. Odom B, Hanneke D, D’Urso B, Gabrielse G. New measurement of the

electron magnetic moment using a one-electron quantum cyclotron. Phys Rev

Lett. (2006) 97:030801.

Frontiers in Physics | www.frontiersin.org 16 July 2020 | Volume 8 | Article 213187

https://doi.org/10.1103/PhysRevD.64.071701
https://doi.org/10.1002/9783527618460.index
https://doi.org/10.1103/PhysRev.85.166
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Avner and Boillot Electron Mass From Substructure Stability

40. Goldstein H, Poole C, Safko J. Classical Mechanics, 3rd ed. Longman: Addison

Wesley (2002). doi: 10.1119/1.1484149

41. Zangwill A. Modern Electrodynamics. Cambridge: Cambridge University

Press (2013).

42. Pusey MF, Barrett J, Rudolph T. On the reality of the quantum state. Nat Phys.

(2012) 8:475–8.

43. Bell JS. On the impossible pilot wave. Found Phys. (1982) 12:989–99.

44. von Neumann J. Mathematical Foundations of Quantum Mechanics.

Princeton, NJ: Princeton Univ. Press (1955).

45. Wheeler JA, Zurek WH. Quantum Theory and Measurement. Princeton, NJ:

Princeton University Press (1983).

46. Einstein A. Physics and reality. J Franklin Institute. (1936)

221:349–82.

47. Dürr D, Goldstein S, Zanghi N. Quantum equilibrium and the origin of

absolute uncertainty. J Stat Phys. (1992) 67:843–907. doi: 10.1007/BF01049004

48. Hudson JJ, Kara DM, Smallman IJ, Sauer BE, Tarbutt MR, Hinds

EA. Improved measurement of the shape of the electron. Nature.

(2011) 473:493–6. doi: 10.1038/nature10104

49. Kim BJ, Koh H, Rotenberg E, Oh SJ, Eisaki H, Motoyama N, et al. Distinct

spinon and holon dispersions in photoemission spectral functions from

one-dimensional SrCuO2. Nat Phys. (2006) 2:397–401. doi: 10.1038/nphys316

50. Jompol Y, Ford CJB, Griffiths JP, Farrer I, Jones GAC, Anderson

D, et al. Probing spin-charge separation in a tomonaga-luttinger

liquid. Science. (2009) 325:597–601. doi: 10.1126/science.1

171769

51. Schlappa J, Wohlfeld K, Zhou KJ, Mourigal M, Haverkort MW, Strocov VN,

et al. Spin-orbital separation in the quasi-one-dimensional Mott insulator

Sr2CuO3. Nature. (2012) 485:82–5. doi: 10.1038/nature10974

52. Eidelman S, Hayes KG, Olive KA, Aguilar-Benitez M, Amsler C, Asner D.

(Particle Data Group). Review of particle physics. Phys Lett B. (2004) 592:1–5.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Avner and Boillot. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org 17 July 2020 | Volume 8 | Article 213188

https://doi.org/10.1119/1.1484149
https://doi.org/10.1007/BF01049004
https://doi.org/10.1038/nature10104
https://doi.org/10.1038/nphys316
https://doi.org/10.1126/science.1171769
https://doi.org/10.1038/nature10974
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact 

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover

	Frontiers eBook Copyright Statement
	Towards a Local Realist View of the Quantum Phenomenon
	Table of Contents
	Editorial: Towards a Local Realist View of the Quantum Phenomenon
	Author Contributions
	Acknowledgments

	Deterministic Quantum Mechanics: The Mathematical Equations
	1. Introduction: Ontological Quantum Mechanics
	2. The Standard Quantum Mechanical Hamiltonian for Continuous Systems
	3. The Periodic Model, and Its SU(2) Symmetry
	4. On the Wave Function Generated by a Periodic Ontological System
	5. Massless Particle in a Box
	6. Momentum Dependent Kinetic Term
	7. Beables, Changeables, and Superimposables
	8. Ontological Interactions
	9. How a Sieve Can Connect Classical Theories With Quantum Mechanical Ones
	10. Conclusions
	Data Availability Statement
	Author Contributions
	References

	Rethinking Superdeterminism
	1. Introduction
	2. Why?
	3. What?
	3.1. Retrocausality and Future Input Dependence
	3.2. Disambiguation

	4. Common Objections to Superdeterminism
	4.1. Free Will and Free Choice
	4.2. The Conspiracy Argument
	4.3. The Cosmic Bell Test and the BIG Bell Test
	4.4. The Tobacco Company Syndrome

	5. How?
	5.1. Invariant Set Theory
	5.2. Cellular Automata
	5.3. Future-Bounded Path Integrals

	6. Experimental Test
	7. Discussion
	8. Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

	The Bell Theorem Revisited: Geometric Phases in Gauge Theories
	1. Introduction
	2. Outline
	3. The Model
	4. A Proposal for an Experimental Test
	5. Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

	Discrete-Event Simulation of an Extended Einstein-Podolsky-Rosen-Bohm Experiment
	1. Introduction
	2. Discrete-Event Simulation: General Aspects
	3. Extended Einstein-Podolsky-Rosen-Bohm Experiment: Theory
	3.1. Thought Experiment
	3.2. Classical Electrodynamics
	3.3. Quantum Theory
	3.4. Practical Realization: Photon Identification Problem

	4. Subquantum Model
	5. Simulation Results
	6. Discussion and Summary
	Data Availability Statement
	Author Contributions
	References
	Appendix A: Quantum Theory of the (E)EPRB Experiment
	Appendix B: A Limitation of Quantum Theory for Two Spin-1/2 Particles
	Appendix C: Product State

	Discrete-Event Simulation of Quantum Walks
	1. Introduction
	2. Aim of the Paper
	3. Discrete-Event Simulation
	4. Discrete-Event Simulation of a QW
	5. Discrete-Event Simulation of a QW Experiment With Atoms robe15
	5.1. Procedure Applied in the Experiment robe15
	5.2. Refutation of the Claim

	6. Discussion and Conclusion
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References

	Is the Moon There If Nobody Looks: Bell Inequalities and Physical Reality
	Introduction
	Experimental Spreadsheets and Bell-Type Inequalities
	Local Realistic Models For EPR-BOHM Experiment
	Contextual Description of Spin Polarization Correlation Experiments
	Subtle Relationship of Probabilistic Models With Experimental Protocols
	Quantum Mechanics and CHSH Inequalities
	The Roots of Quantum Non-Locality
	Apparent Violations of Bell-Boole Inequalities in Elastic Collision Experiments
	Conclusions
	Author Contributions
	Acknowledgments
	References

	Polarization Correlation of Entangled Photons Derived Without Using Non-local Interactions
	1. Introduction
	2. Photon Pairs Arising From Down-Conversion Sources
	3. Detection of Polarized Photons by Alice and Bob
	4. Formal Derivation of the Polarization Correlation
	5. Working Out Quantum Statistical Aspects
	6. General Remarks
	7. Correlation of Photon Pairs in Triplet Configuration
	8. Properties of Photon Pairs Arising From Atomic Sources
	9. Does It Help to Postulate Non-local Interactions?
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

	Locality Is Dead! Long Live Locality!
	Introduction
	The Arguments Against Local Hidden Variables
	The Arguments Against the Arguments Against Local Hidden Variables
	Local Realism Need Not Imply Non-contextual Local Hidden Variables
	Process and the Process Algebra Model
	The Process Algebra
	Calculations in the Process Algebra Model
	The Process Algebra Approach to the Paradoxes
	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

	Local Realistic Interpretation of Entangled Photon Pairs in the Weyl-Wigner Formalism
	1.  The Empirical Refutation of Belĺs Local Realism
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