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Editorial on the Research Topic

The Biological and Clinical Aspects of HLA-G

In this Research Topic, we hosted eight in-depth reviews, mini reviews, and original research
articles on the biological and clinical aspects of HLA-G. This could be unattainable without the
enthusiastic involvement of all contributing authors, participating reviewers and the assistance
from the staff of Frontiers in Immunology.

HLA-G belongs to the non-classical HLA class I family. HLA-G features limited genetic
variation, very restricted tissue expression, and immune tolerogenic functions, being a ligand of
immune inhibitory receptors. HLA-G is now recognized as an important immune checkpoint.
Moreover, at least seven isoforms (membrane-bound isoforms: HLA-G1∼HLA-G4; soluble
isoforms: HLA-G5∼HLA-G7), can be generated due to its primary transcript alternative splicing.
Since HLA-G gene had been identified in 1987 (1) and HLA-G protein expression first observed
in extravillious cytotrophoblasts in 1990 (2), both genetic and molecular characteristics, and
biological functions of HLA-G have been thoroughly investigated. Even thoughHLA-Gmain site of
expression it the fetal cytotrphoblast, physiological expression in adults was reported in stem cells

and some progenitor cells, somatic cells within immune provoleged tissues, and some immune
cells. Furthermore, HLA-G ectopic expression is induced in a variety of pathological conditions.
The immune suppressive functions of HLA-G are mediated by the signaling between HLA-G and
the ILT-2 and ILT-4 receptors. The importance of this interaction has been well-described in a
broad range of clinical settings such as reproduction, infection, autoimmune disease and cancer.
HLA-G/ILT is a promising immune checkpoint, and the first phase I clinical trial for a new anti-
HLA-G antibody started in 2020 in advanced solid cancer patients (3). In the context of pregnancy,
HLA-G interacts with another receptor, KIR2DL4, that is principally expressed by uterine NK cells.
Interaction of HLA-G with KIR2DL4 is clearly different from that with ILT-2 and ILT-4, and its role
in pregnancy is currently emerging.

In this Research Topic, different aspects of the latest advances regarding HLA-G have been
reviewed and explored including the significance ofHLA-G genetic variability in HLA-G expression
and disease predisposition, the roles of HLA-G in fetal-maternal immune tolerance, the neo- and
heterogeneous expression of HLA-G in cancers, and the cellular and extracellular HLA-G
expression in the regulation of various immune cell functions.

The regulation of HLA-G expression is multifactorial which can be affected by HLA-G genetic
variability, post-transcriptional regulation and intracellular and extracellular microenvironmental
signals. The predictive, diagnostic, and prognostic significance of HLA-G genotype and/or protein
expression has been investigate in a wide range of clinical settings. Amodio and Gregori elaborate
how HLA-G protein expression regulated by the polymorphisms in the 5′-upstream regulatory
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region (5′-URR), coding region and in the 3′-untranslated region
(3′-UTR) through transcriptional and posttranscriptional
regulation, and discussed the most studied HLA-G
polymorphism 14-bp INS/DEL in association with diseases.
They also recommend future approaches for the HLA-G
polymorphism/protein expression/disease association studies.
Xu et al. illustrate certain HLA-G polymorphisms as risk factors
for the human papillomavirus infection and HLA-G expression
in cervical cancer carcinogenesis. Signaling between HLA-G
and its receptor engagement is the key requirement for the
immune regulatory function of HLA-G. HLA-G and its receptor
signaling can exert immune suppression with detrimental effects
which favors cancer and virus infected cells by allowing them to
escape from immune surveillance and attack, while beneficial in
promoting immune tolerance for fetal-maternal or transplants
acceptance. Contini et al. review the HLA-G expressing immune
cells in physiological conditions, and both in autoimmune and
non-autoimmune diseases, indicating potential roles of HLA-G
positive immune subsets involvement in the pathogenesis of
immune mediated diseases. Wu et al. report that HLA-G, and
HLA-G-expressing tolerogenic DC-10 through ILT-2 pathway
inhibit both human andmurine invariant natural killer T (iNKT)
cell activation. Schwich et al. explore the functions of two
different soluble HLA-G forms, the purified sHLA-G1 protein
and extracellular vesicles with or without HLA-G molecule,
on the ILT-2 positive and negative CD8+ T cells. sHLA-G1
and HLA-GEV differentially induce immune-exhausted or
immune-suppressive phenotye in ILT-2 positive CD8+ T cells
and ILT-2 negative CD8+ T cells, respectively. This finding
indicate that sHLA-G1 and HLA-GEV affect ILT-2 positive
and ILT-2 negative CD8+ T cells complementary. Xu et al.
showcase three important roles of extravillous trophoblast
expressed HLA-G on the regualtion of immune cell subsets.

First, HLA-G/ILT-2 and HLA-G/KIR2DL4 signaling induces
immune cell producing proangiogenic cytokines to promote the
spiral artery remodeling. Second, HLA-G/ILT-2/4 and HLA-
G/KIR2DL4 signaling supresses the cytotoxicity of immune
cells to maintain the fetal-maternal immune tolerance. Finally,
HLA-G/ILT-2 and HLA-G/KIR2DL4 signaling induces the
production of growth-promoting factors to favor fetal growth.
Clinical significance of HLA-G neo-expression in cancers and
its relation to advanced disease stage, tumor metastasis and
poor prognosis in many tumors has been well-established,
and a clinical trial with a monoclonal anti-HLA-G antibody
to block the HLA-G/ILTs interaction was initiated recently
(3). Zhang et al. demonstrate that intratumor heterogeneity
of HLA-G expression is a common phenomenon in cancers,
and that the degree of HLA-G expression detection varies
dramatically with different antibodies used to probe. Loustau
et al. discuss the advance of HLA-G neo-expression and clinical
relevance in various tumor types, and point out the limitation
such as more specific anti-HLA-G antibodies are extremely
necessary for future in-depth studies on neo-expression of
HLA-G in cancers.

In summary, this special issue highlights the current
advances regarding the biological and clinical importance of
HLA-G in various physio-pathological situations. Undoubtedly,
HLA-G is a promising biomarker and therapeutic target for
different diseases, even though isoform-specific antibodies are
still lacking, which prevents advances in characterizing their
clinical significance.
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Human leukocyte antigen (HLA)-G, a non-classical HLA-class I molecule, has a low

polymorphism frequency, restricted tissue distribution and immunoinhibitory property.

HLA-G expression in tumor cells and cells chronically infected with virus may enable

them to escape from host immune surveillance. It is well-known that the HLA-G molecule

is a novel biomarker and potential therapeutic target that is relevant in various types

of cancers, but its role in cervical cancer has not been fully explored. In this review,

we aim to summarize and discuss the immunologic role of the HLA-G molecule in

the context of HPV infections and the process of cervical cancer carcinogenesis.

A better understanding of the potential impact of HLA-G on the clinical course

of persistent HPV infections, cervical epithelial cell transformation, tumor growth,

recurrence and metastasis is needed to identify a novel diagnostic/prognostic biomarker

for cervical cancer, which is critical for cervical cancer risk screening. In addition,

it is also necessary to identify HLA-G-driven immune mechanisms involved in the

interactions between host and virus to explore novel immunotherapy strategies that

target HLA-G/immunoglobulin-like transcript (ILT) immune checkpoints.

Keywords: human leukocyte antigen G, human papillomavirus, viral infection, carcinogenesis, cervical cancer,

immunotherapy

INTRODUCTION

Cervical cancer ranks as the fourth most common female cancer worldwide, with an estimated
569,847 new cases and 311,365 deaths in 2018 (1). Persistent infection with high-risk human
papillomavirus (hrHPV) is necessary but not sufficient to induce cervical cancer (2). Most HPV
infections are transient and are cleared within months by host innate and adaptive immune
responses (3). Failure to clear the virus leads to infection persistence, and only a minority of
HPV-infected and transformed cells eventually avoid host immune surveillance, which leads to
tumor growth and lymph node metastasis (4, 5). This host-dependent immunological status and
HPV-induced immune escape are reflected in persistent infection and the subsequent progression
of precancerous lesions to invasive cervical cancer, which indicates the complexity of host-virus
interactions. Therefore, the roles of the immune system, not only in viral elimination but also in
tumor antigen recognition, are extremely relevant in the process of cervical cancer carcinogenesis.

Accumulating evidence has supported the idea of a critical role for immunosuppressive
mechanisms in promoting HPV-induced carcinogenesis, either by suppressing the capacity of the
host to overcome HPV infection or by preventing the elimination of HPV-transformed epithelial
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cells (3–7). Human leucocyte antigen (HLA) complex is located
on chromosome 6p21.3. Several HLA molecules with different
functions can be broadly divided into classical HLA-class I (HLA-
A, -B, -C), non-classical HLA-class I (HLA-E, -F, -G), classical
HLA-class II (HLA-DR, -DQ, -DP), and classical HLA-class III
(8). The HLA system influences the host immune response by
mediating antigen presentation (9). HLA-G has been termed
“non-classical” due to its low frequency of polymorphisms,
restricted tissue distribution and immunoinhibitory properties,
which are different from the properties of classical HLA-class
I molecules (10, 11). It has become increasingly evident that
the HLA-G molecule is involved in modulating both innate
and adaptive immune responses and in promoting immune
escape in various types of cancers (10–13) and infectious
diseases (14–16). However, to date, the possibility that HLA-
G gene polymorphisms and/or protein expression affecting
HPV infection persistence and cervical cancer risk remains to
be explored.

MOLECULAR STRUCTURE OF HUMAN

LEUKOCYTE ANTIGEN-G

The HLA-G gene consists of eight exons, seven introns, a
5′upstream regulatory region (URR) that extends at least 1,400
bp from the initial ATG start codon, and a 3′untranslated region
(UTR), with a total length of 6,000 bp (12, 17). It is widely
accepted that the HLA-G primary transcript is alternatively
spliced into seven mRNAs, which encode four membrane-bound
(HLA-G1, -G2, -G3, -G4) and three soluble (HLA-G5, -G6, -G7)
protein isoforms (18, 19). Each unique HLA-G isoform contains
one to three extracellular globular domains (α1, α2, α3) encoded
by exon 2, exon 3, and exon 4, whereas the presence of intronic
sequences are variable (IMGT/HLA Database).

The overall structure of HLA-G1 and that of its soluble
counterpart HLA-G5 is similar to the structure of the classical
HLA-class I antigens, which contain a heavy chain non-
covalently bound to β2-microglobulin (β2m) (18). Peptide is
bound in the antigen-binding cleft formed by the α1 and α2
domains (11, 20), whereas the α3 domain can bind co-receptors
such as CD8 (21). Both HLA-G1 and HLA-G5 isoforms can
also exist as β2m-free antigens (22). Other HLA-G isoforms
lacking one or two extracellular globular domains (α2, or α3,
or both) are smaller than HLA-G1/-G5 isoforms and are not
associated with β2m (23). HLA-G1 to HLA-G4 are membrane-
bound isoforms due to the presence of the transmembrane region
encoded by exon 5 and a short cytoplasmic tail encoded by
exon 6, which contains a stop codon. HLA-G5 and HLA-G6
are soluble isoforms due to the presence of intron 4, which
contains a premature stop codon to prevent the translation of
the transmembrane and cytoplasmic tail. HLA-G7 is a soluble
isoform due to the presence of intron 2, which contains a
premature stop codon and results in the expression of a soluble
protein (18–20). All seven reported HLA-G isoforms contain the
extracellular α1 domain.

In addition to the seven HLA-G monomers reported, the
molecular structure of HLA-G is even more complex. A study

on its crystal structure demonstrated that HLA-G can exist as
a dimer with the intermolecular Cys42-Cys42 disulphide bond
(24). In vitro and in vivo studies have shown that HLA-G dimers
are observed for all isoforms except HLA-G3 (25). Moreover,
β2m-associated and β2m-free dimers of HLA-G1 or HLA-G5
also exist (26–28). Dimer formation affects the specificity of
receptor-HLA-G binding, as dimers exhibit a higher overall
affinity to immunoglobulin-like transcript (ILT)2/4 receptors
than monomers due to significant avidity effects (24, 28, 29).

Notably, unidentified HLA-G isoforms without an α1 domain
were predicted based on RNA sequencing (RNA-seq), and several
previously undescribed HLA-G isoforms have been identified
in renal cancer samples (30). According to the nucleotide
sequence of the HLA-G gene listed in the Ensembl database
(ENST00000376828), this gene may possess a supplementary
exon at the 5′-end, but this is absent from the sequence in
the IMGT/HLA database. A novel HLA-G isoform named
HLA-G1L was predicted by Tronik-Le Roux et al. (30); this
isoform has five additional amino acids (MKTPR) located
at the N-terminal end. Analysis of RNA-seq data indicates
that some sequence reads may be initiated at exon 4, and
thus could predict the existence of novel α1-deleted HLA-
G isoforms that contain α2 and α3 domains or only the α3
domain. Other novel soluble HLA-G isoforms can be generated
by the skipping of exon 6 coding for the transmembrane
domain (30, 31). Lin et al. (32) indicated the existence of
novel α1-deleted HLA-G isoforms containing intron 4 in 11.6%
(44/379) of colorectal cancer lesions that exhibited negative
staining with mAb 4H84 but that exhibited positive staining
with mAb 5A6G7 (4H84neg5A6G7pos). Moreover, patients with
4H84neg5A6G7pos HLA-G isoforms had a better survival than
patients with 4H84pos5A6G7neg, and thus suggests a functional
role for the novel α1-deleted HLA-G isoforms (31). However,
the specific function of these novel HLA-G isoforms remains
to be determined. The development of specific antibodies for
these novel HLA-G isoforms is urgently needed and even
inevitable (33).

HLA-G-MEDIATED IMMUNE

SUPPRESSION

HLA-G expression was initially observed on cytotrophoblasts
at the maternal-fetal interface (34), where HLA-G modulates
the response of maternal immune cells that contribute to
maintenance of tolerance to the fetus (35–37). HLA-G has
a physiological tissue-restricted distribution property, as it
is expressed by cytotrophoblasts (34), cornea (38), thymus
(39), nail matrix (40), pancreatic islets (41), and erythroblasts
(42). However, aberrant upregulated expression of HLA-G
molecules has been detected in pathological conditions such
as malignancies (43–45), infections and inflammatory diseases
(14, 46–49), transplant grafts (50, 51), and autoimmune disorders
(16, 52–54). In malignancies, aberrant HLA-G expression was
preferentially detected in tumor tissues but was rarely detected
in normal or adjacent non-tumorous tissues, which indicates that
HLA-G might play a key role in tumor development (44).
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Functionally, HLA-G has comprehensive immunosuppressive
properties exerted in multiple steps to weaken anti-
tumor immune responses by acting on immune cells
through its inhibitory receptors: ILT2(CD85j/LILRB1),
ILT4(CD85d/LILRB2), and KIR2DL4(CD158d) (11, 12, 55–
59) (Figure 1). HLA-G inhibits the cytolytic function of natural
killer (NK) cells (60, 61), cytotoxic T lymphocyte (CTL)-
mediated cytolysis (62), macrophage-mediated cytotoxicity (63),
allo-proliferative response of CD4+ T cells (64, 65), maturation
and function of dendritic cells (DCs) or B lymphocytes
(66–69), stimulation of antigen-presenting cells (APCs) to
secrete functional cytokines TGF-β and IL-10, and induction
of apoptosis of CD8+ T cells and CD8+ NK cells (70, 71).
In addition, HLA-G-receptor interactions could also exert
long-term immunomodulatory effects by inducing immune
suppressor/regulatory cells, such as regulatory T cells (Tregs)
(72, 73), tolerogenic DCs (tDCs) (74, 75), mesenchymal stem cells
(MSCs) (76), and myeloid-derived suppressor cells (MDSCs)
(77, 78), among others. In addition to the interactions between
HLA-G and its receptors, HLA-G-mediated immunosuppression
by intercellular transfer mechanisms such as trogocytosis,
exosomes, or tunneling nanotubes (TnTs) also represents
another important complementary mechanism through which
cancer cells escape destruction by the host immune system
(11, 12, 79–81).

HLA-G POLYMORPHISMS IN THE

CONTEXT OF HPV INFECTIONS

To date, 69 alleles that encode 19 proteins have been discovered
(IMGT/HLA Database, February 2020). Polymorphic sites along
the HLA-G gene may change the affinity of gene-targeted
sequences for transcriptional or post-transcriptional factors
(82, 83). In particular, the 14bp Insertion/Deletion (Ins/Del)
(rs66554220) in the 3′UTR is associated with HLA-G alternative
splicing andmRNA stability (84, 85). The+3142C/G (rs1063320)
located 167 bp downstream from the 14bp Ins/Del polymorphic
site may be a target for HLA-G-specific miRNAs (86), which
could directly downregulate HLA-G expression through post-
transcriptional regulation (87, 88).

Accumulating evidence has supported the concept that
HLA-G polymorphisms are genetic susceptibility and/or
protection-relevant factors for cervical HPV infections and
viral persistence (89–101). Many studies have primarily focused
on polymorphisms in the 3′UTR of the HLA-G gene (89–95),
while few have assessed its promoter region (96). Studies by
Xu et al. (89, 90) showed that HLA-G 14bp Ins or +3142G
alleles are risk factors for HPV infections, especially hrHPV
infections, compared with the alleles found in healthy women
and that these alleles affect the progression of HPV18-associated
cervical lesions in Chinese women. A similar finding was
reported in a study performed in Brazilian women from
São Paulo, Brazil; this study showed that the HLA-G 14bp
Ins/+3142G haplotype was related to increased risk of high-
grade cervical lesions, especially in smokers (91). Inconsistent
results were obtained in Italy (92) and Taiwan (93), where

increased risk for squamous cell carcinoma (SCC) was found
to be associated with the 14bp del or +3142C alleles, especially
in SCC patients infected with the HPV16 genotype (93).
Moreover, some have focused on the association between
HLA-G 3′UTR polymorphisms and HPV infection among
HIV-positive women who have a higher risk of developing
HPV co-infection. The combination of the +3142CX (CC or
CG) and +3187AA genotypes conferred the highest risk of
HPV-induced aneuploidy in cervical cells among Brazilian
women with HIV/HPV co-infections (94).A SNP (rs1633038) in
the 3′UTR of the HLA-G gene was significantly related to higher
HPV clearance rates among African-Americans with HIV/HPV
co-infection, but this association was not observed in Hispanics
or European-Americans (95).

Further evidence for the role of genetic factors in HPV
infections and the carcinogenic process was provided by studies
that showed an association with specific HLA-G coding region
polymorphisms (96–104). Among the Canadian population, the
HLA-G∗01:01:02 and HLA-G∗01:03 alleles were found to be
related to an increased risk of HPV16 infection and persistent
infections (96), while the HLA-G∗01:01:03 and HLA-G∗01:01:05
alleles were identified as significant predictors of cumulative
coinfections over the follow-up period (97). In the same cohort,
the HLA-G∗01:01:02, HLA-G∗01:04:01 and HLA-G∗01:06 alleles
were related to high-grade cervical intraepithelial neoplasia
(HG-CIN) (98). The HLA-G∗01:01:02, HLA-G∗01:06 and 3′UTR
14bp Ins alleles were associated with disease progression from
preinvasive to invasive cervical cancer among HPV-positive
Canadian women (99). The homozygous HLA-G∗01:04:01
genotype was related to a significantly decreased risk of HPV
infection (98), and the heterozygotic form of theHLA-G∗01:01:01
allele conferred significant protection against cancer (99). Among
Brazilian women, the HLA-G∗01:04/14bp Ins haplotype as well
as HPV16 and HPV18 co-infection were preferentially related
to HG-CIN, while the HLA-G∗01:03 allele was related to
protection against HPV-related cervical lesions (100). Among
HPV-positive pregnant women in Brazil, a protective effect of
the HLA-G∗01:01:02 allele against the occurrence of CIN was
observed in a cohort of HPV/HIV co-infected pregnant women
(101). In a study that focused on the role of host factors in
the vertical transmission of HPV infection from mother to
offspring, the results showed that the HLA-G∗01:01:01/01:04:01
genotype increased the risk of hrHPV infection in both cord
blood and the infant’s oral mucosa; moreover, the mother-child
concordance of HLA-G∗01:01:02/01:01:02 increased the risk of
oral hrHPV infection both in the mother and offspring (102).
In addition, a pilot analysis of HLA-G promoter methylation
and HPV infection status showed no association between HLA-G
methylation and HPV infections in healthy women (103, 104).

Overall, the discrepancy among these studies could be
explained by differences in the study designs, ethnicity, sample
sizes, and cancer types. Current data suggested that HLA-
G gene polymorphisms (mainly located in the coding region
or 3′UTR region) appear to be independent risk factors for
HPV infection and cervical carcinogenesis, which supports the
biological role of HLA-G molecules in shaping the tumor
microenvironment (105).
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FIGURE 1 | Mechanisms of both membrane-bound and soluble HLA-G-mediated immune suppression in tumor immune evasion. NK, natural killer cells; DC,

dendritic cells; MDSC, myeloid-derived suppressor cells; Tregs, regulatory T cells; DC-10, IL-10-differentiated dendritic cells.

HLA-G EXPRESSION IN CERVICAL

CARCINOGENESIS

HLA-G expression may be induced after HPV infection, which
leads to escape from host immunosurveillance. This evidence
is derived from the results of a study that showed that HLA-G
expression was significantly higher in CIN and cancer patients
with HPV16/18 infections than in CIN patients without HPV
infection (106). Several studies have investigated the relationship
between HLA-G isoform expression and clinicopathologic
features in patients with precancerous lesions and invasive
cervical cancer (45, 90, 106–117).

Another study focused on HLA-G mRNA expression in
cervical cancer in Korean patients using RT-PCR (15 normal
tissues and 40 cervical cancer tissues) and found that high
HLA-G mRNA expression was related to the early stages of
cervical cancer (108). These results are consistent with the
report by Rodriguez et al. (109), which showed upregulation
of HLA-G protein expression in the early stages of cervical
cancer in Colombian patients using immunohistochemistry
(IHC) with mAb 4H84 (9 CIN III and 54 cervical cancer
cases). Both studies supported a possible role for the HLA-
G molecule in early cervical carcinogenesis (108, 109). The
results of both studies further showed that Interleukin-10
(IL-10) expression was also significantly increased in cervical
cancer tissues (108, 109), which supports a shift toward a
Th2 cytokine microenvironment; this in turn may promote
local immunosuppression by upregulating HLA-G expression
(111, 118). Consistent with this, the results also revealed
the inverse relationship among HLA-G expression levels and

estimated numbers of tumor infiltrating lymphocytes (TILs) and
CD57+ NK cells, which favors an escape from host anti-tumor
activity (115). Moreover, three independent studies have reported
evidence of a positive correlation betweenHLA-G expression and
cervical carcinogenesis in a Chinese population (45, 106, 107).
The results of all three studies indicated that HLA-G expression
was negative in normal or adjacent non-tumorous tissues but
was significantly increased along with CIN grade and cervical
cancer metastasis. HLA-G expression may play an important
role in determining the risk for cervical carcinogenesis. These
clinical studies also analyzed clinicopathological parameters
and demonstrated significant correlations between HLA-G
expression and unfavorable prognosis, poor overall survival,
and lymph node metastasis. However, inconsistent results were
obtained in only two studies that showed that HLA-G expression
was not related to cervical carcinogenesis (112, 113). Zhou et al.
(112) described that in all normal epithelium, HLA-G expression
was strong and uniform but was statistically down-regulated in
CIN and SCC. Gonçalves et al. (113) reported that HLA-G was
not expressed in any CIN or SCC. Futhermore, in experimental
model of cervical cancer research, Real et al. (119) reported that
low expression of HLA-G in Hela cell line (HPV18 infection).
Thus, the role of HLA-G in malignancies has gained considerable
clinical interest due to the possibility of exploiting it as a novel
diagnostic/prognostic biomarker to identify cervical cancer and
to monitor disease stage.

Additionally, three studies focused on soluble HLA-G (sHLA-
G) isoform expression using different detection technologies
(107, 110, 114). Guimarães et al. (110) analyzed sHLA-G
expression in cervical cancer tissues from Brazilian patients using
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IHC with the specific mAb 5A6G7 (27 with metastasis and
52 without metastasis). Low expression of sHLA-G isoforms
was detected in all HPV-positive tissues, and the sHLA-G
expression level was similar in both groups (110). Zheng
et al. (107) investigated the sHLA-G expression level in the
plasma of patients with cervical lesions using ELISA kit
(sHLA-G, Exbio) with mAb MEM-G/9 (20 normal cervical
tissues, 15 CIN I, 22 CIN II, 35 CIN III, and 80 cervical
cancer tissues). sHLA-G expression levels in the plasma were
significantly increased in CIN II-III and SCC patients, and their
expression levels were also associated with differentiation and
metastasis. Therefore, sHLA-G molecules may have significance
in early cervical cancer screening (107). However, inconsistent
results obtained in the Netherlands (366 cervical cancer)
using ELISA kit (sHLA-G, Exbio) reported that sHLA-G levels
were not associated with clinicopathological parameters or
survival (114).

Overall, the discrepancies in these studies that examined
HLA-G expression in cervical cancer patients are partly due
to tumor heterogeneity (31). In the future, there will be a
need for additional studies to obtain deeper insight into the
association between HLA-G expression levels and advanced
cervical cancer.

HLA-G AS A NOVEL TARGET FOR

IMMUNOTHERAPIES

Cervical cancer accounts for 6.6% of all female cancers and
is thus a major global health challenge, as ∼90% of cervical
cancer deaths occur in less developed countries (1). High-risk
HPV causes almost all invasive cervical cancers, and therefore,
HPV screening and vaccination are needed to improve cervical
cancer control (2). Despite significant advances in effective
screening and preventive vaccination during the past decade,
substantial regional and global disparities in the prognosis
of cervical cancer patients still exist (120). Unfortunately,
∼30% of patients experience recurrence and metastasis after
primary treatment, with an expected 5-year survival of <

10%. Few effective therapeutic strategies have been developed
that specifically target recurrent or metastatic cervical cancer,
particularly advanced-stage disease. Thus, novel therapeutic
strategies, such as immunotherapy, are urgently needed in
clinical settings (121, 122).

In recent years, an improved understanding of the molecular
mechanisms of the interactions between HPV-associated
cervical cancer and the host immune responses has driven
the exploration of immunotherapy as one of the new
therapeutics targeting immune checkpoints (123). HLA-G
has comprehensive immunosuppressive properties that are
exerted in multiple steps to weaken the anti-tumor immune
responses by acting on immune cells through its inhibitory
receptors. Fortunately, HLA-G expression can be downregulated
through RNA interference or antibody blockade, which can
allow recovery of the functions of immune effectors and
prevent tumor reoccurrence. Thus, HLA-G could serve as
a novel immune checkpoint molecule and play a key role

in novel immunotherapy approaches that offer a promising
perspective for tumor progression and advanced- stage
cervical cancer.

It has been confirmed that miR-148a negatively regulates
HLA-G expression by binding to the 3′UTR of the HLA-G
gene (88). The long non-coding RNA HOX transcript antisense
RNA (HOTAIR) may also serve as a competing endogenous
RNAs (ceRNAs) to regulate HLA-G expression by sponging
miR-148a in cervical cancer cells (116). Targeting the HOTAIR-
miR-148a-HLA-G axis or HLA-G-specific miRs could represent
a novel therapeutic strategy in cervical cancer. Intra-tumor
heterogeneity of checkpoint molecule expression in cervical
cancer is related to a poor chemo/radio-therapy response,
lymph node metastasis and tumor recurrence. HLA-G has
been identified as a cervical cancer stem cell (CCSC)-specific
marker, and targeting HLA-G and its related signaling pathways
may offer a novel strategy for CCSC-targeted therapy (124).
Moreover, the HLA-G/ILTs axis has been recently recognized
as a new immune checkpoint in addition to other immune
checkpoints such as programmed cell death 1 (PD-1)/PD-L1 and
cytotoxic T lymphocyte-associated protein 4 (CTLA-4)/B7 (125).
Different responses to checkpoint inhibitor therapy could be a
consequence of heterogeneous intra- and inter-tumor expression
of different types of checkpoint molecules, although data on the
expression status of HLA-G, CTLA-4 and PD-L1 in cancers are
rather limited (13, 125, 126). PD-1 is a major immunotherapeutic
checkpoint target in various cancer types, but until now, few
data have been available on the clinical efficacy of blocking this
checkpoint protein in cervical cancer (2, 126). The expression
of PD-1 was found to be heterogeneous in tumors and could
be co-expressed with the immune checkpoint protein HLA-
G (127). A recent study focused on tumor-infiltrating CD8+
T cells that express the HLA-G receptor ILT2 in renal-cell
carcinoma (RCC), and the results emphasize the potential of
therapeutically targeting the HLA-G/ILT2 checkpoint in HLA-
G+ tumors (127). Overexpression of the immune checkpoint
HLA-G molecule by tumor cells profoundly affects tumor-
specific T cell immunity in the cancer microenvironment. In
this regard, targeting multiple checkpoints, especially potential
antagonists of the HLA-G/ILT-2/4 pathway, is urgently needed
to target the entire tumor.

CONCLUSIONS

Considering the above studies that were reviewed, we propose
thatHLA-G gene polymorphisms have an impact on the immune
response and likely determine those in specific populations
who are at higher risk for cervical HPV infections and viral
persistence. Aberrant HLA-G expression in cervical lesions could
generate inhibitory signals in the cancer microenvironment,
which would ultimately help tumor cells escape from
immunosurveillance and reshape tumor progression and
metastasis. The checkpoint molecule HLA-G with immune
tolerance contribute to cervical carcinogenesis, but HLA-G could
also represent a good immunotherapeutic target for cervical
cancer treatment.
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The non-classical HLA-G is a well-known immune-modulatory molecule. In physiological

condition, HLA-G surface expression is restricted to the maternal–fetal interface and

to immune-privileged adult tissues, whereas soluble forms of HLA-G are detectable

in various body fluids. HLA-G can be de novo expressed in pathological conditions

including tumors, chronic infections, or after allogeneic transplantation. HLA-G exerts

positive effects modulating innate and adaptive immune responses and promoting

tolerance, or detrimental effects inducing immune escape mechanisms. HLA-G locus,

in contrast to classical HLA class I gene, is highly polymorphic in the non-coding 3′

untranslated region (UTR) and in the 5′ upstream regulatory region (5′ URR). Variability

in these regions influences HLA-G expression by modifying mRNA stability or allowing

posttranscriptional regulation in the case of 3′ UTR or by sensing the microenvironment

and responding to specific stimuli in the case of HLA-G promoter regions (5′ URR).

The influence of genetic variations on the expression of HLA-G makes it an attractive

biomarker to monitor disease predisposition and progression, or response to therapy.

Here, we summarize the current knowledge, efforts, and obstacles to generate a general

consensus on the correlation between HLA-G genetic variability, protein expression, and

disease predisposition. Moreover, we discuss perspectives for future investigation on

HLA-G genotype/expression in association with disease predisposition and progression.

Keywords: HLA-G, immune regulation, autoimmune diseases, pregnancy, cancer, HLA-G polymorphisms

INTRODUCTION

HLA-G, a non-classical HLA class I molecule, was first described to play a critical role in
maintaining fetal–maternal tolerance (1). Later, it has been shown that HLA-G modulates innate
and adaptive immune responses and promotes tolerance in different clinical settings. HLA-G
function is favorable during pregnancy or after transplantation since it protects from rejection, and
in autoimmune disease as it prevents autoreactive responses, or it is detrimental when expressed by
tumors or during chronic infections, inducing immune escape mechanisms (2).
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Because the HLA-G gene has a limited number of
polymorphisms within the coding region, relatively few
distinct molecules are coded. Nevertheless, seven different
HLA-G isoforms have been described: four membrane-bound
(HLA-G1 to -G4), and three soluble (HLA-G5 to -G7) (3–5).

The magnitude of HLA-G gene and protein expression is
controlled by polymorphisms in the promoter [5′-upstream
regulatory region (5′ URR)] and in the 3′ untranslated region (3′

UTR), and several association studies between these polymorphic
sites and disease predisposition, response to therapy, and/or
HLA-G protein expression have been reported. However, results
from these studies often have been weak and inconclusive (6–
10). Here, we summarize efforts to generate a general consensus
on the correlation between HLA-G genetic variability, protein
expression, and disease predisposition. Moreover, we highlight
and discuss limits hampering the possibility to define a unique
framework in the correlation betweenHLA-G genetic and disease
predisposition or HLA-G genetic and protein expression, or
HLA-G genetic/protein expression and disease predisposition.

HLA-G HAPLOTYPES

The HLA-G gene has 74 alleles encoding for 24 different full-
length proteins, and four null alleles encoding for truncated
form of the protein (IPD78/IMGT/HLA; March 2020). HLA-G
locus, similar to other classical HLA class I locus, is composed
of eight exons and seven introns, but it presents a stop codon
in exon 6, resulting in a short cytoplasmic tail (4) and in an
extended 3′ UTR, mainly composed by the exon 8 (11). Since
HLA-G discovery in 1987 (12), HLA-G locus has been accurately
analyzed, and the variability detected at the HLA-G regulatory
regions (e.g., 3′ UTR and 5′ URR) is relatively higher than that
observed in the coding region (13, 14).

The first identified and most studied polymorphism of
the HLA-G locus is a 14-base-pair insertion/deletion (14-bp
INS/DEL) landing in the 3′ UTR (15). More detailed and
large genetic studies identified 16 additional single-nucleotide
polymorphisms (SNPs) in the HLA-G 3′ UTR, of which only
nine—the 14-bp INS/DEL polymorphism, +3003 C/G, +3010
G/C, +3027 C/A, +3035 C/T, +3142 C/G, +3187 A/G, +3196
C/G, and +3227 G/A—were recognized as true polymorphisms
(13). The discovery that some of these polymorphisms are in
strong linkage disequilibrium allowed the identification of 41
3′ UTR haplotypes, designated from UTR-1 to UTR-41, with
only nine UTRs accounting for more than 95% of all haplotypes
worldwide (13, 14, 16, 17).

The HLA-G locus presents also several variations in the 5′

URR and in the coding region. SNPs in these regions are in
linkage disequilibrium, and a limited number of haplotypes,
clustering in few families, have been identified and studied, alone
or in combination with 3′ UTR alleles (18–20). In detail, the
analysis of 35 SNPs within the 5′ URR revealed 64 different
haplotypes (named PROMO), of which only nine representing
the 95% of alleles worldwide, clustering in four major groups
(PROMO 010101, 010102, 0103, and 010104) (13, 20, 21).
Similarly, 81 variations were identified in the coding region, the

majority landing in introns, arranging in 93 different haplotypes,
of which only 11 having a frequency higher than 1% (13),
including a null allele G∗0105N encoding for a non-functional
protein (22, 23). Interestingly, when the 5′ URR, the coding
region, and the 3′ UTR haplotypes have been combined in the
“extended haplotypes,” it was clear that, also in this case, among
the 200 haplotypes identified, the majority of them was scarcely
represented (13). Moreover, 5′ URR, coding region, and 3′ UTR
haplotypes are in linkage disequilibrium; thus, a given PROMO
haplotype is preferentially associated with one specific 3′ UTR
and coding region haplotype (11, 20, 21).

HLA-G GENETIC FOOTPRINT AND

CORRELATION WITH DISEASE COURSE

HLA-G protein levels can be associated with specific genotypes;
thus, a number of studies have been performed trying to correlate
HLA-G haplotypes with disease susceptibility and morbidity or
to use them as a predictive factor for response to therapy or in
transplantation outcome (24).

The most studied HLA-G variation is the 14-bp INS/DEL
polymorphism. In the field of pregnancy, there is a quite good
consensus on the association of the 14-bp INS/INS genotype
with recurrent pregnancy loss (RPL); however, a number of
caveats have been identified in these correlations, including the
heterogeneity of the studies, the sample characteristics, and non-
comparable measure of the genotypes (23–25). A recent meta-
analysis considering only women of European countries not only
corroborated the association of 14-bp INS/INS genotype and
RPL, but also highlighted and confirmed that the discrepancies
observed in previous studies could be due to ethnic diversity of
the cohort analyzed (26).

In autoimmunity and cancer, results on the association of
14-bp INS/DEL genotypes with disease development or with
response to therapy reported contradictory and/or inconclusive
results. In the context of type 1 diabetes (T1D), the analysis
revealed the association of the 14-bp DEL/DEL genotype with
the development and the early onset of the disease (27, 28).
Conversely, in Crohn’s disease, a high frequency of the 14-bp
INS allele has been associated with an increased risk of early
disease onset (29). A meta-analysis performed considering 11
case–control studies from different autoimmune diseases showed
the absence of a direct correlation between 14-bp INS/DEL
genotypes and susceptibility to autoimmune diseases, including
systemic lupus erythematosus, rheumatoid arthritis multiple
sclerosis, ulcerative colitis, Crohn’s disease, idiopathic dilated
cardiomyopathy, pemphigus vulgaris, and non-segmental vitiligo
(7). The discrepancies observed might be attributed to the
etiological mechanisms of the autoimmune disease in which
gene-to-gene and gene-to-environment interactions are involved
(see below), to the age of disease onset, and to the sample sizes.

A meta-analysis carried out to solve the 14-bp INS/DEL
genotype association with cancer, including a large sample
size, a wide variety of cancer types, and a more diverse
sample population, overall revealed that HLA-G 14-bp INS/DEL
polymorphism is significantly associated with the cancer
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susceptibility (30). However, these results are inconsistent with
previous meta-analysis (8, 9, 24, 31), which concluded the
absence of relationship between the HLA-G 14-bp INS/DEL
polymorphism and the risk of cancer. Despite the positive
correlation between 14-bp INS/DEL genotype and cancer
susceptibility, some weaknesses of the latter study, linked to
sample size, ethnicity, types of cancer, and sources of controls,
have been reported. Indeed, stratified analysis accounting for
the abovementioned variables failed to find a significant risk
association (30).

In the context of allogeneic hematopoietic stem cell
transplantation (HSCT), it has been shown that patients
with better outcome carried 14-bp DEL/DEL and 14-bp
INS/DEL genotypes, suggesting 14-bp INS/DEL genotype
as potential biomarker of transplantation outcome (32, 33).
Overall, the association between 14-bp INS/DEL genotypes and
disease susceptibility provided some positive, but not conclusive,
association. This might be attributed to a number of reasons,
including high variability in the etiology of the diseases analyzed
and to the relative limited number of patients enrolled in single
correlation studies.

The discovery of 3′ UTR haplotypes and genotypes prompted
investigators to reconcile the heterogeneity of the results obtained
in studies on the association between 14-bp INS/DEL and
diseases. We and other groups reported the protective role of
specific UTRs in preventing RPL, with UTR-1, UTR-3, and UTR-
4 present at low frequency in women with RPL (34–36). These
studies indicate that analysis of 3′ UTR provided an improvement
beyond the use of 14-bp INS/DEL genotypes in the association
with pregnancy. UTR-1, UTR-3, and UTR-4 indeed contain 14-
bp DEL, but they differ from other UTRs for additional specific
SNPs (13, 14, 16, 17). Similar results were reported in T1D,
showing that UTR-3 is present at low frequency in patients
(37). In the context of allogeneic HSCT, only a weak association
of the UTR-2, containing the 14-bp INS, with protection from
acute graft-versus-host disease was reported, and the authors
indicated that the study of the entire 3′ UTR, copamred to the sole
analysis of the 14-bp INS/DEL, did not improve the prediction of
transplant outcome (38).

Thus, far, few groups have investigated the impact of
polymorphisms landing in the PROMO or the coding region
of HLA-G with disease predisposition, and the most significant
association has been found with the G∗0105N null allele that is
present with high frequency in RPL (19, 39, 40) and preeclampsia
(41, 42). In celiac disease (CD), starting from the demonstration
that 14-bp INS confers an increased risk factor for the disease
in conjunction with the HLA-DQ2.5 (43), an extended analysis,
including polymorphisms located in the PROMO and 3′ UTRs,
showed the association of the haplotype containing PROMO
010102a and UTR-2 with CD susceptibility (44).

In conclusion, these results indicate that the correlation
between HLA-G genotypes, and specifically those containing
the 14-bp INS allele, and pregnancy loss or susceptibility to
specific types of cancer has been achieved. Drawing conclusion
on the association between HLA-G genotypes and susceptibility
for other diseases is highly difficult because of the heterogeneity
of the pathogenesis of the diseases analyzed, the age of disease

onset, the cohorts of patients and controls used, and, in some
cases, the limited number of case–control included in the study,
disabling the statistical analysis.

ASSOCIATION HLA-G

GENOTYPE/PHENOTYPE

Several groups integrated the knowledge on HLA-G genetic with
the detection of the HLA-G protein, both as soluble (s) (HLA-G5
and shed-HLA-G1) and as membrane-bound (HLA-G1) form,
with the aim to useHLA-G as biomarker of disease predisposition
and progression, or response to therapy.

In 2001, Rebmann et al. (45) reported the first evidence
that HLA-G genotype influences the amount of sHLA-G in
circulation. The study performed in healthy individuals defined
some alleles (G∗01013 and G∗0105N) being associated with low
levels, and other (G∗01041) with high levels of sHLA-G. Later,
the identification of HLA-G 3′ UTR polymorphic sites prompted
investigators to correlate HLA-G genetic variation at 3′ UTR
and protein expression. The presence of the 14-bp INS allele has
been associated with lower HLA-G production for most HLA-
G5 and shed-HLA-G1 in plasma or serum, and HLA-G1 in
trophoblast samples [reviewed in Carosella et al. (2)]. However,
the presence of the 14-bp sequence leads to alternative splicing
and the generation of a more stable mRNA associated with high
HLA-G1 expression in trophoblast cell lines (46).

Correlation studies performed in autoinflammatory and
autoimmune diseases revealed that the 14-bp INS allele was
associated with low plasma levels of sHLA-G in Crohn’s disease
patients (29). In relapsing–remitting multiple sclerosis, the 14-
bp DEL/DEL genotype correlated to high levels of HLA-G in
cerebrospinal fluid; however, it did not associate with disease
duration and clinical symptoms (47). On the same line, in chronic
lymphocytic leukemia, the 14-bp DEL allele has been associated
with high levels of sHLA-G and HLA-G1, but only sHLA-G
correlated with patient survival, possibly as a consequence of the
high metalloproteinase activity involved in shedding HLA-G1
(48). A comprehensive analysis, performed to correlate HLA-G
genotype/phenotype and disease outcome, showed a link between
the 14-bp INS/INS genotype with pretransplant low sHLA-G
levels and severe adverse events after HSCT (49). Similarly,
the 14-bp DEL haplotype correlated with high sHLA-G serum
levels and reduced episodes of heart transplant rejection (50).
Despite the variety of the disease investigated, 14-bp INS and
DEL alleles have been confirmed to be associated with low and
high HLA-G, respectively, and in most cases high HLA-G with
positive outcome of the disease.

More recently, investigators have studied the correlation
of HLA-G 3′ UTR and protein expression. Haplotypes and
diplotypes containing UTR-1 have been associated with high
levels of plasma sHLA-G, those containing UTR-5 and UTR-7
with low levels of sHLA-G, and finally, alleles containing UTR-
2, UTR-3, UTR-4, and UTR-6 with medium levels of sHLA-
G (51). These results were confirmed in other biological fluids
as the highest levels of HLA-G in seminal plasma have been
detected in the presence of homozygosis for UTR-1 and UTR-3
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(52). Our group defined the association of specific UTRs with
the expression of HLA-G1 in a specific subset of tolerogenic
DC, termed DC-10, inducible in vitro in the presence of IL-10
(53) and present in vivo (54). We showed higher frequency of
UTR-2, UTR-5, and UTR-7 haplotypes and diplotypes in donors
with DC-10 expressing low HLA-G1 and of UTR-3 in donors
expressing high HLA-G1 (55). More recently, we confirmed that
the UTR-3 haplotype is associated with high levels of HLA-G1 on
circulating DC-10 (Amodio et al., submitted).

In conclusion, these results indicate a general consensus on
the association between 14-bp INS and DEL allele and low
and high expression of HLA-G, either soluble or membrane-
bound isoforms, respectively. However, the 14-bp INS allele
encodes for a transcript with a 92-bp deletion leading to a more
stable mRNA fragment than that generated by the 14-bp DEL
(56), suggesting that 14-bp INS might be also associated with
high levels of HLA-G expression. Correlation studies including
additional variations in the 3′ UTR improved the correlation
between HLA-G genetic and protein expression partially solving
the mRNA stability issue. Moreover, HLA-G protein expression
is driven by genetic variations in the 3′ UTRs, but also by
those landing in the promoter region; thus, variability of the
microenvironment associated with specific disease could affect
the HLA-G protein expression.

INTRACELLULAR AND EXTRACELLULAR

MECHANISMS REGULATING HLA-G

EXPRESSION

Genetic variations in the 3′ UTR, which contain several target
sites for microRNAs (miRNAs), regulate at post-transcriptional
level the HLA-G expression. Being miRNA cell-specific, this
regulation may affect the expression of HLA-G at cell and
tissue levels. Six miRNAs have been reported to regulate HLA-
G expression: miR-148a, miR-148b, miR-152, miR-133a, miR-
628-5p, and miR-548q (57). The direct effect of these miRNAs
in HLA-G protein expression has been mainly demonstrated
in vitro, using cell lines (Figure 1). However, several indirect
evidences prompted investigators to correlate the presence of
specific miRNA with HLA-G protein expression in vivo. In
placenta, miR-148a and miR-152 are poorly expressed, whereas
the HLA-GmRNA levels are high (58). Since miR-148a and miR-
152 down-regulate HLA-G1 protein expression in cell lines, a
possible inverse relationship between these molecules in placenta
has been postulated (58). Similarly, miR-133 reduced HLA-
G protein expression in trophoblast cell lines (59), and its
low expression in primary colorectal cancer samples, in which
the HLA-G levels are high (60), suggested a possible inverse
correlation of these molecules. As anticipated avobe, thus far
direct evidence of the role of specific miRNA on the expression
of HLA-G in vivo is scanty.

An additional layer of posttranscriptional regulation of
HLA-G protein expression is mediated by a specific RNA-
binding protein (RBP) (Figure 1), the heterogeneous nuclear
ribonucleoprotein R (HNRNPR), which binds the 3′ UTR of the
transcripts, stabilizes them, and allows HLA-G1 expression in
transduced cell lines (61). More recently, a distinct and unique

region in the 3′ UTR of HLA-G has been identified, but neither
miRNAs nor RBPs seem to bind to this site and to control
HLA-G1 expression in cell lines (62). Thus, additional studies
are warranted to define the relevance of this sequence into the
regulation of HLA-G protein expression in vivo.

The HLA-G protein expression is regulated not only by allelic
variability and posttranscriptional regulation, but also by specific
regulatory regions present in the HLA-G promoter. Nucleotide
variability in the promoter region may indeed influence HLA-G
protein levels by modifying transcription factor–binding affinity.
In the HLA-G locus, the enhancer A (EnhA) region, which
allows the interaction with nuclear factor k-light-chain-ehnancer
of activated B cells (NF-κB) family of transcription factors,
binds only p50/p50 homodimers (63). Moreover, the binding
of interferon regulatory factor 1 and 2 (IRF-1 and IRF-2) to
interferon-stimulated response element in the HLA-G promoter
is not present in HLA-G (64, 65). The presence of this unique
HLA-G promoter region indicates that HLA-G expression is not
influenced by NF-κB or by interferon α (IFN-α), IFN-β, and
IFN-γ (Figure 1).

Despite the unresponsiveness to interferons, HLA-G
transcriptional rate is increased by a number of anti-
inflammatory cytokine and mediators, as the HLA-G promoter
region presents specific regulatory elements. The presence in the
HLA-G promoter of a heat shock element allows response to heat
shock proteins (HSP) (Figure 1), essential for regulating the state
of intracellular folding, assembly, and translocation of proteins,
potent modulators of the immune responses, and necessary for
placental development. HLA-G transcription is induced upon
heat shock in tumor cell lines, via the heat shock transcription
factor 1; however, the consequent HLA-G protein expression has
not been investigated (66).

Glucocorticoids (dexamethasone) and progesterone, a
hormone fundamental for endometrium maintenance and
embryo implantation, increase the secretion of soluble HLA-G5
andHLA-G6 by trophoblasts (67–69). Themolecular mechanism
underlying this protein expression was proposed to be induced
via the interaction of progesterone receptor complex binding to
a unique progesterone response element (PRE) sequence present
in the HLA-G promoter (13) (Figure 1). Classical HLA class I
genes have neither a classical PRE nor the unique PRE identified
in HLA-G, thus suggesting that progesterone may be involved in
cell-specific regulation of the HLA-G protein expression (70, 71).

Hypoxia modulates different processes, and it is associated
with induction of HLA-G. Low oxygen increases HLA-G mRNA
expression in trophoblasts (72) and in tumor cell lines (73), but
its effect on the expression of HLA-G protein is still undefined.

Finally, the HLA-G protein expression can be modulated
by granulocyte–macrophage colony-stimulating factor
(GM-CSF) in cell lines (74) and by IL-10 in monocytes
(75) and DC-10 (53, 55). Although the mechanisms
underlying the induction of HLA-G protein expression by
the above cytokines have not been completely elucidated
(Figure 1), these evidences support the role of HLA-G
in promoting an anti-inflammatory and in inducting a
protolerogenic microenvironment.

Overall, HLA-G protein expression is driven by specific alleles,
and it is regulated by intracellular and extracellular signals.
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FIGURE 1 | Extracellular and intracellular regulatory mechanisms of HLA-G expression. Variability in the HLA-G promoter region influences HLA-G expression by

sensing and responding to the extracellular signals. Variations in the 3′ UTR region may modify mRNA stability or allow posttranscriptional regulation. HLA-G is not

responsive to proinflammatory signals acting on the NF-κB pathway and to IFN-mediated stimulation. The HLA-G promoter region is unique among the HLA class I

genes as it interacts with specific transcription factors activated by extracellular stimuli induced by hypoxia and heat shock, hormones such as glucocorticoids and

progesterone, and cytokines including IL-10 and GM-CSF. HLA-G expression is posttranscriptionally regulated by genetic variations in the 3′ UTR, which contain

several target sites for miRNAs and can bind specific RNA-binding proteins. These different regulations concur in the induction or inhibition of the expression of the

HLA-G protein, which by alternative splicing of the mRNA can be produced in different isoforms: membrane-bound or soluble. 5′ URR, 5′ upstream regulatory region;

3′ UTR, 3′ untranslated region; CSF2RA, colony-stimulating factor 2 receptor subunit alpha; IL-10R, IL-10 receptor; IFNs, interferons; GR, glucocorticoid receptor;

PR, progesterone receptor; HSP, heat shock protein, IRF-1, interferon regulatory factor 1; NF-κB, nuclear factor κ-light-chain-enhancer of activated B cells; RBP,

RNA-binding proteins; miRNAs, microRNAs.

Despite results obtained in cell lines, only putative correlations
between the presence of specific miRNAs and HLA-G protein
levels in vivo have been suggested. Moreover, is has to be taken
into account that the microenvironment (e.g., the presence of
specific molecules, hormones and/or cytokines) might affect
HLA-G protein expression. These considerations are particularly
important when HLA-G genotype/protein association is studied
in specific diseases.

CONCLUDING REMARKS

The discovery that HLA-G genetic variants represent target
of gene expression regulation led to intensive research for
the identification of HLA-G genetic association with disease
predisposition or progression and HLA-G protein expression.
Despite several good genotype/protein correlations have been
reported using in vitro model, when these observations have
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FIGURE 2 | Proper selection of targets to perform HLA-G genetic/protein and disease development association studies. Different layers of complexity, both cell

specific and disease specific, have to be taken into account to reliably define the role of HLA-G in disease development. (1) To select the HLA-G polymorphisms to

include in the analysis; (2) to include in the analysis the evaluation of disease-specific features such as the expression of specific miRNAs or RBP and the presence of

proinflammatory and anti-inflammatory mediators that can modulate the expression of HLA-G, and the target cells or tissues to study that can be affected by the

presence of HLA-G; (3) to identify the most appropriate HLA-G isoforms to be investigated. 3′ UTR, 3′ untranslated region; PROMO, variations in the promoter region;

miRNAs, microRNAs; RBP, RNA-binding proteins.

been translated in disease setting, the diagnostic/prognostic
relevance of these findings in some cases appeared weak. A
number of issue should be considered: (i) in the majority of
the studies, conclusions have been based on results from small
patient cohorts and in subjects from different ethnicity; (ii)
only few studies performed a complete assessment of HLA-
G genotyping, protein expression, and diseases outcome; (iii)
the mechanisms regulating HLA-G expression can be distinctly
active in different diseases; (iv) excluding the well-studied 14-
bp INS/DEL polymorphism, there is a high heterogeneity of the
genetic variations investigated, hindering the possibility to claim
univocal conclusions.

The specific intracellular signaling and the microenvironment
characterizing a given disease have to be considered for a
proper selection of the polymorphisms to be investigated. As
an example, the use of the entire 3′ UTR could be relevant,
but other regulatory elements (e.g., the expression of miRNAs)

should be investigated in parallel, to have a comprehensive
picture; otherwise, the analysis of 14-bp INS/DEL polymorphism
could be sufficiently informative. Indeed, the expression of
miRNAs can vary among different pathological conditions and
in different cells, thus affecting the expression of HLA-G if
present. Similarly, the observation that haplotypes comprising
3′ UTR, coding regions and PROMO are mainly defined by
the 3′ UTR region suggested that the analysis of PROMO
and coding regions of HLA-G gene should be considered for
improving a better correlation between HLA-G genetic and
disease predisposition if disease-specific mediators are also
analyzed in parallel; otherwise, the sole analysis of the 3′ UTR
might be sufficient. Finally, in several studies, the presence of
HLA-G has been evaluated at mRNA but not at protein levels,
being the most reliable indicator of activity. Another important
aspect to consider in the analysis HLA-G proteins is the selection
of the isoform, the site or cell population to be evaluated.
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The recent discovery in renal carcinoma cells of new HLA-
G transcripts, characterized by previously not described intron
retention or exon skipping events, which cannot be recognized by
the available antibodies (76) increases the complexity in the field.
However, whether these transcripts encode for novel isoforms,
are specifically produced by cancer cells, or have regulatory
functions, remain to be defined. Based on these premises, it
can be envisaged that a more sophisticated selection of the
parameters to be investigated is critically important to improve
the HLA-G genotype/expression/disease association studies. We
propose that the following steps should be taken into account: the
selection of the HLA-G genetic variations (e.g., 14-bp INS/DEL
or 3′ UTRs, the coding region and/or the PROMO), which might
depend on the type of diseases under consideration, on the tissue
or the specific subset of cells analyzed; the possibility to analyze in
parallel other specific parameters (e.g., the expression of miRNAs
or RBP, soluble mediators including hormones or cytokines);
the selection of the most relevant HLA-G isoform (e.g., soluble
HLA-Gs or HLA-G1 or other isoforms) (Figure 2).

In conclusion, up to now a clear and univocal HLA-
G genotype/expression/disease association has not been yet
identified, with the exception for 14-bp IND/DEL allele. A more

specific and “disease-oriented” analysis, meaning the selection
of the relevant polymorphisms, isoforms, and regulatory factors

that could impact on HLA-G expression, would be more helpful
and affordable for better defining the interplay among HLA-G
genetic variations, protein expression, and disease predisposition
or response to therapy.
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HLA-G is known to modulate the immune system activity in tissues where physiological

immune-tolerance is necessary (i.e., maternal-fetal interface, thymus, and cornea).

However, the frequent neo-expression of HLA-G in many cancer types has been

previously and extensively described and is correlated with a bad prognosis. Despite

being an MHC class I molecule, HLA-G is highly present in tumor context and shows

unique characteristics of tissue restriction of a Tumor Associated Antigen (TAA), and

potent immunosuppressive activity of an Immune CheckPoint (ICP). Consequently,

HLA-G appears to be an excellent molecular target for immunotherapy. Although the

relevance of HLA-G in cancer incidence and development has been proven in numerous

tumors, its neo-expression pattern is still difficult to determine. Indeed, the estimation

of HLA-G’s actual expression in tumor tissue is limited, particularly concerning the

presence and percentage of the new non-canonical isoforms, for which detection

antibodies are scarce or inexistent. Here, we summarize the current knowledge about

HLA-G neo-expression and implication in various tumor types, pointing out the need

for the development of new tools to analyze in-depth the HLA-G neo-expression

patterns, opening the way for the generation of new monoclonal antibodies and

cell-based immunotherapies.

Keywords: HLA-G, immune checkpoint, hematopoietic tumors, solid tumors, immunotherapy

INTRODUCTION

Fetus and tumor development are closely related since they are both characterized by a rapid tissue
proliferation, associated to a high expression of telomerase (1, 2) and expression of anti-apoptotic
factors like survivin (3, 4). Placenta and tumor development is accompanied by angiogenesis
induced by proteins of the VEGF family (5, 6) and favored by hypoxia (7). Strikingly, placenta and
tumors are protected from the immune system through common immune escape mechanisms.
Particularly, the induction of a tolerogenic microenvironment was demonstrated, involving the
expression of inhibitory immune checkpoints inducing suppressive macrophages, dendritic cells
(DCs) and regulatory T cells (Tregs). Among the pool of inhibitory checkpoints shared between the
placentation process and the tumor development, HLA-G is emerging as a potent immune escape
mechanism (Figure 1).

HLA-G is a non-classical MHC class I molecule first determined to be expressed on extravillous
trophoblast that invade the decidua (8–11), similarly to the invasive growth process observed
for tumors (12). Despite being restrictively expressed on healthy tissues, HLA-G was reported to
be neo-expressed in several pathological contexts, especially during tumor development (13, 14).
HLA-G neo-expression is always associated with a bad prognosis for patients.

Contrary to the classical MHC, HLA-G is characterized by a low polymorphism and tolerogenic
functions. HLA-G can be expressed under, at least, seven isoforms. These are the product of

24
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FIGURE 1 | HLA-G is a potent immune escape mechanism, whose main physiological role is to protect the semi-allogenic fetus from mother’ immune system, being

expressed on extravillous trophoblast that invades the decidua.

alternative splicing of a single primary transcript of RNA (15):
four membrane isoforms (HLA-G1, HLA-G2, HLA-G3, and
HLA-G4) and three soluble isoforms (HLA-G5, HLA-G6 and
HLA-G7). HLA-G1 and HLA-G5 isoforms present the typical
structure of MHC classical class I molecules: one heavy chain
composed of three globular domains, associated or not to β-
2-microglobulin (β2M). The other isoforms are shorter, with
one or two globular domains and none is associated with the
β2M (16–18). HLA-G exert its biologic tolerogenic function as a
ligand by binding its specific receptors: ILT2 (LILRB1, CD85j),
ILT4 (LILRB2, CD85d) et KIR2DL4 (CD158d) (19). HLA-G
is the ligand of highest affinity for ILT2 and ILT4 receptors.
Concerning the KIR2DL4 receptor, it is mostly expressed in
NK cells, but its interaction with HLA-G and its inhibitory
function remain controversial (20, 21). ILT2 and ILT4 belong to
the leukocyte immunoglobulin (Ig)-like receptor family (LILRs),
particularly to the inhibitory group: LILRBs, composed of 2
to 4 extra-cellular globular domains and 2 to 4 cytoplasmic
inhibitory domains “ITIM” (Immunoreceptor tyrosine-based
inhibitory motifs). ILT2 is expressed in all immune cell subsets
(22), whereas ILT4 expression is limited to antigen presenting
cells (APCs) like monocytes, neutrophils, DCs or macrophages.
PIR-B is the ortholog of LILRBs inmice, expressed in B cells, DCs,
granulocytes and macrophages, exerting the same inhibitory

functions (22). ILT2 binds the HLA-G α3 domain, associated
with β2M simultaneously (23) while ILT4 binds the α3 domain
independently of β2M. Also, HLA-G can form dimers, which
increase the avidity of the receptors ILT2 and ILT4 for this
molecule (23).

In physiological conditions HLA-G expression has been
described in the cytotrophoblast where it plays a major role
by protecting the semi-allogenic tissues of the fetus from the
maternal immune system. Otherwise, HLA-G is constitutively
expressed in immune-privileged tissues like thymic epithelial
cells (24, 25), cornea (26), pancreatic islets (27), mesenchymal
stem cells (28, 29), erythroblasts or endothelial precursors (30,
31), and some peripheral tolerogenic T and dendritic cells
(DC) subsets (32–34). Soluble isoforms have been detected in
thymus (24), human first trimester and term placentas in situ
and in vitro (35), plasma (36, 37), cerebrospinal fluid (CSF)
(38, 39), in the male reproductive system, in seminal plasma
(40), and in the cell culture supernatant of embryos (41–43).
However, HLA-G expression can be induced or up-regulated
in pathological contexts like (i) cancer (44–46), (ii) auto-
immune and inflammatory diseases (47–49), (iii) viral infections
(50–52), and (iv) allo-transplantations (53, 54). Indeed, many
publications showed the high frequency of HLA-G expression
in tumor cells, correlated with clinical background associated
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with tumor immune escape and bad prognosis (45, 55). HLA-
G expression, then, seems to be key for tumors to evade the
immune system, even at low rates of expression. Although
most of HLA-G immunosuppression function and role in tumor
escape studies were performed in vitro, HLA-G involvement
in tumor escape mechanism was studied and demonstrated
in vivo in immunocompetent mice through the induction of
MDSC (56). Furthermore, Lin et al. evidenced in vivo that HLA-
G expression was associated with tumor metastasis and with
poor survival (57). Inhibition of immune response by soluble
HLA-G was also demonstrated in vivo (58). Noteworthy, HLA-
G expression is induced by hypoxia, typical of solid tumor
microenvironment (59). Because HLA-G is found on tumor cells
and is rarely observed in healthy tissue, it appears to be an
excellent tumor associated-antigen (TAA) to target in immune
therapy. Furthermore, HLA-G has been recently defined as a
major immune checkpoint (ICP). This molecule is capable of
inhibiting not only cytolytic uterine NK cells in the context of
pregnancy, but also: (i) cytolytic functions of peripheral NK
(60, 61), (ii) cytolytic functions of antigen-specific cytotoxic
T lymphocytes (CTL) (62), (iii) alloproliferative response of T

CD4+ cells (63), (iv) peripheric NK and T cell proliferation
(64, 65), (v) B cell maturation and antibody production (66),
phagocytic function of neutrophils (67), chemotaxis of NK, T and
B cells (66, 68, 69), and (vi) maturation and function of DCs (70).
Also, HLA-G was shown to induce the generation of suppressive
immune cell subsets (64, 71, 72) (see Figure 2).

Although HLA-G is an MHC class I, it presents rare
characteristics combining features of both TAA and ICP, playing
a major role in the fine tuning of the immune system equilibrium
into a tolerogenic or suppressive microenvironment. HLA-G
turns to be a major advantage for tumor cell survival and
development. In fact, HLA-G expression has been reported in
numerous types of cancer, always associated with more advanced
stage and aggressive development of the tumor.

HLA-G NEO-EXPRESSION IN
HEMATOPOIETIC TUMORS

The role of HLA-G in hematopoietic malignancies is complex
and remains unclear since HLA-G and its inhibitory receptors

FIGURE 2 | HLA-G is a tolerogenic molecule that broadly regulates the immune system, inhibiting effector cells, or generating regulatory subtypes.
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could be expressed on hematopoietic tumor cells and could
inhibit proliferation in such tumors (45). Non-Hodgkin
lymphomas (NHL) is a large group of cancers of lymphocytes.
There are many different types of NHL which can be divided
into aggressive (fast-growing) and indolent (slow-growing)
types, composed by either B-cells or T-cells. In NHL, classical
MHC molecules and HLA-G expression patterns were shown
to be completely altered and correlated to a tumor relapse
or transformation (73). It has been postulated that this
phenomenon was associated to a deep genetic disorder and
rearrangement, inducing HLA-G neo-expression in tumor cells.
Chronic lymphocytic leukemia (B-CLL) is a mature lymphoid
neoplasm currently categorized as an indolent type of malignant
lymphoma. Nuckel et al. reported HLA-G expression on 1–54%
of leukemic cells in B-CLL. They determined that patients
with 23% or fewer HLA-G-positive cells had a significantly
longer progression-free survival (PFS) time than patients
with more than 23% of positive cells. Indeed, patients with a
weak HLA-G expression showed a higher survival rate (120
months) than those with high HLA-G expression with a survival
average of 23 months. Furthermore, humoral and cellular
immunosuppression were significantly more prominent in the
HLA-G-positive patients’ group in comparison to the HLA-G-
negative group. Indeed, the survival rate decrease was associated
to an immune response deficiency, a CD4/CD8T cells ratio and
immunoglobulins (IgG) reduction and to an increase of secreted
soluble HLA-G proteins (74–76).

B-CLL can progress slowly over years, but it eventually
transforms into a more aggressive lymphoma such as the diffuse
large B-cell (DLBCL) type. The diffuse large B-cell lymphoma
(DLBCL) is a B cells cancer and is the most common type of
NHL. DLBCL is characterized by its aggressiveness, which can be
developed in the lymph nodes or in extranodal sites. DLBCL is
the most frequent lymphoma and the most severe. In this type
of lymphoma, the expression of HLA-G was determined to be
relatively weak. However, the survival rate was directly correlated
to the HLA-G expression, increasing from 47.5%, when HLA-
G is expressed, to 73.3% in absence of HLA-G expression (77).
Expression of HLA-G in classical Hodgkin lymphoma was also
independently determined by the groups of Diepstra and Caocci.
They both determined a relatively high expression of HLA-G
(>54% of expressing tumor cells) in the Reed-Stenberg cells,
with particular higher expression in nodular sclerosis (78, 79).
However, their results on the HLA-G expression levels were
different in the tumor microenvironment (TME).

Cutaneous lymphomas represent the second most frequent
extranodal lymphomas and are cancers of lymphocytes primarily
involving the skin. Cutaneous lymphomas are classified based
on whether they are cancers of B or T lymphocytes, and,
respectively, designated as cutaneous T cell lymphoma (CTCL)
and cutaneous B cell lymphoma (CBCL). Although being mostly
a benign disease, skin clonal lymphocytes can migrate to the
nodes resulting in a more severe disease. These cells can persist
mostly because of HLA-G and IL-10 secretion (80). All the T or
B skin cells were determined to be HLA-G1 mRNA positives,
but protein expression level was weaker. A strong correlation
between IL-10 and HLA-G expressions was evidenced with

a co-expression of these molecules in 73% of the cutaneous
lymphoma investigated (81). Furthermore, for T cells, HLA-G
protein expression was directly correlated with the tumor grade
and stage.

HLA-G NEO-EXPRESSION IN SOLID
TUMORS

Tumor development is dependent on its capability to escape from
the immune response. According to Dr. Schreiber’s 3E theory,
three stages define the immune response and the interaction
between tumor cells and their microenvironment: elimination,
equilibrium and escape (82). The first phase of elimination is
characterized by the production of new molecules, derived from
oncogenic modifications of the brand-new tumor, and expression
on their surface, known as neo-antigens, that are able to induce
an efficient response by the immune system. In accordance
with the classic immune surveillance theory, those new tumor
cells that aren’t destroyed in the initial stage, will proliferate,
create a primitive tumor and will set up an equilibrium with
the immune cells. This equilibrium phase can last months or
years, until the tumor becomes able to engage the escape phase,
where the plasticity of its genome allows it to evolve, change the
environment, evade the immune control and spread. At the same
time, the immune system might become tolerant or exhausted.

Actually, HLA-G can be involved in these three phases.
During the elimination phase, HLA-G can inhibit T and B
cells activation, proliferation, cytotoxic function of T and NK
cells and can block the DCs and neutrophils functions (60,
62, 68, 76, 83, 84). Throughout the equilibrium phase, HLA-
G can downregulate the MHC class II expression on DCs and
induce suppressive myeloid cells, favoring the regulatory cell
subsets (85). Finally, the escape phase is characterized by a
high cell proliferation and, afterwards, a hypoxic environment
(86). Hypoxia induces upregulation of V-EGF and HIF-1, and
with the latter, HLA-G expression. Also, it was determined that
immunosuppressive cytokines, such as IL-10 and TGF-β, are
secreted and could favor HLA-G expression and maintenance by
positive feedback (87).

HLA-G expression in multiple types of primary tumors has
been demonstrated (88). HLA-G can be detected either on
the cell-surface of tumor cells or on tumor infiltrating cells
(TILs) particularly on lymphocytes, monocytes, macrophages
and dendritic cells (DCs) (89–94). HLA-G was demonstrated
to be crucial for the tumor development and its expression
was specifically associated to malignant transformation (59).
HLA-G expression in surrounding healthy tissue has never been
detected but its expression in solid tumors has been described,
particularly in advanced clinic stages (95, 96). Soluble HLA-G
isoforms (sHLA-G) have been detected in patient’s plasma with
advanced stages and reserved prognostic (91, 95–99). Therefore,
the role and functions of HLA-G in tumor immune escape
and tumor development is beyond a hypothetical mechanism,
its involvement and relevance has been widely documented.
This tolerogenic molecule has been described in a plethora of
solid tumors.
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What brings another level of complexity in the detection
of HLA-G and the understanding of its role in cancer
progression is the existence of micro-vesicles bearing HLA-
G, firstly described in the supernatant of HLA-G positive
melanoma cells in vitro (100). Intercellular communication
through extracellular vesicules (EV) released in the extracellular
space or in body fluids is a known mechanism involved in
healthy tissues as well as malignancies (101). These structures
originate from the cell membrane or are exosomes, and can
carry surface proteins, cytokines or growth factors (amongst
others). Their role in the immune response modulation has
been shown by Abusamra et al. by in vitro experiments
that evidenced the induction of CD8+ T-cells apoptosis by
exosomes expressing Fas ligand (102). This observation and
the known mechanism of action of EVs suggest that EVs
harboring HLA-G could play a role in cancer immune escape,
by inhibiting immune cells in the tumor microenvironment
or at distal sites. The inhibition of monocyte differentiation
and maturation into dendritic cells (DCs) by HLA-G1-bearing
EVs originating from kidney cancer cells has been reported
(103). Several clinical studies carried out with breast and
ovarian cancer patients also support this hypothesis. High
levels of HLA-G-EVs in breast cancers patients treated with
neoadjuvant chemotherapy (NACT) correlates with a bad
prognosis, whereas patients with high levels of free soluble
HLA-G had better outcome. Moreover, the level of total
circulating HLA-G molecules is not a predictable marker of
patient’s outcome (104). Similar findings were reported in a
study with epithelial ovarian cancer (EOC) patients in which
high levels of HLA-G EVs was a marker of inferior clinical
outcome (105). Deciphering HLA-G EVs from free soluble
HLA-G molecules seems thus to be of crucial importance
to improve patient’s diagnosis and the understanding of
EVs mechanism of action, and investigate their relevance as
immunotherapy target.

Renal cell carcinoma (RCC) affects 3% of occidental adults,
with an increasing incidence in the last years. There are
several subcategories of RCC, the principal being clear cell
RCC (ccRCC) that represents 80% of RCC, followed by the
papillary and chromophobe carcinoma, 10 and 5%, respectively.
Frequently, this cancer is at an advanced stage presenting
metastasis at the time of diagnosis, with a low rate of 5
years survival (<15%). In ccRCC, HLA-G mRNA and protein
expressions have been strongly described (106–108). These
expressions in patients seem to be age or sex independent
but are highly related to the ccRCC sub-type. Frequently,
there is no correlation between mRNA and protein expression
which might be explained by a postranscriptional regulation
that blocks translation (109). HLA-G loss of expression at the
tumor cell-surface during cell culture could be explained by
(i) the absence of transcription factors related to the hypoxic
microenvironment or (ii) the lack of several cytokines such as
IFN-γ, IFN-α, and IL-10 (110), but (iii) could also be related
to a HLA-G isoform switch that could not be detected since
antibodies detecting all the isoforms of HLA-G are missing,
particularly for those that lack the α1 domain (111). Recently,
a heterogeneous expression of immune checkpoints including

PD-L1, B7H3, ILT2, and HLA-G in RCC was reported (112).
This intratumor heterogeneity was found both at tumor cell
and infiltrating immune cell levels in primary RCC (113).
Interestingly, target cells’ HLA-G expression specifically inhibited
cytotoxicity of CD8+ILT2+ T-cells, but not their CD8+ILT2−

(PBMC) or CD8+PD-1+ (TIL) counterparts. HLA-G inhibition
was counteracted by blocking the HLA-G/ILT2 interaction
showing that CD8+ILT2+ TILs may therefore constitute a
subset of fully differentiated cytotoxic T cells within the tumor
microenvironment, independent of the PD1+ TILs targeted
by immune therapies, and specifically inhibited by HLA-
G (114).

Colorectal cancer (CRC) is the 3rdmost frequent cancer in the
world and the 2ndmortality cause related to cancer.Most of them
(96%) are present under the adenocarcinoma form associated to
a transformation of luminal epithelial cells of the mucosa of the
intestine. It affects mostly aged population (>50 years). It was
determined that HLA-G expression was detected in 64% of the
tumor samples in the primary site of the carcinoma but HLA-
G expression was absent in the surrounding tissue, evidencing
HLA-G as a malignant transformation marker (92, 96). HLA-
G expression was correlated with advanced stages of the
“tumor-node-metastasis” (TNM) classification and a diminution
of the survival rate (<3 years) for HLA-G positive patients.
However, HLA-G expression in CRC remains controversial.
Due to the heterogeneity amongst techniques and technic tools,
discordant results were obtained for HLA-G expression in CRC.
Furthermore, HLA-G neo-expression was shown to depend on
the microenvironment of the primary lesions, yet, absence of
TME on metastases cannot be linked to HLA-G neo-expression
(115). Thus, primary tumors are mostly associated to an active
response expressing immunomodulatory molecules like HLA-
G, whereas secondary or metastatic tumors favor a “hiding”
strategy, avoiding being detected by the immune system. Co-
expression of HLA-G and HLA-E has been described in CRC.
Downregulation of expression of the classical MHC class I
molecules allow tumor cells to escape from cytotoxic T cells
(CTLs) despite rendering them sensitive to the NK response.
Inhibition of the NK response is related to the upregulation
of HLA-G and HLA-E which mediates the inhibition of NK
cells through ILT2 and NKG2A receptors, respectively (83,
116).

Esophageal carcinoma is the 8th most frequent cancer in the
world and the 4th cause of death related to cancer. The most
frequent type is the esophageal squamous-cell carcinoma (ESCC)
(90%). HLA-G expression extended from 65 to 90% of ESCC
cases and was related to advanced stages of TNM (117–119).
The lower survival rates were shown to be related to tumor cell
infiltration in the lymph nodes and to the HLA-G expression.
The mRNA studies performed indicated that the most frequent
isoforms present were HLA-G1 and -G5 in the primary tissue, but
were absent from surrounding tissue, and HLA-G5 was detected
in patients sera (118).

Gastric cancer is the 5th most frequent cancer and causes
more than 700 000 deaths per year in the world, being the 3rd
cause of death in cancer. Usually, at the time of diagnosis this
cancer is advanced and frequently presenting metastasis. 90–95%
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of gastric cancer are adenocarcinoma with a gastric superficial
mucosa cells origin. High HLA-G expression was reported with
73% of cases, from which 75% presented high expression levels
(>50% of cells expressing HLA-G) (97). This expression is
exclusive to the primary tumor, without no expression detected
on the environmental tissue, and is related to the localization of
the tumor, with higher expression in the cardia. Higher HLA-
G expression is correlated with advance stage of the disease,
the tumor lesion depth, the node invasion and the decrease
of the survival rate. Several other groups have demonstrated
corresponding results that HLA-G expression in tumor cells
correlates with sHLA-G in patients’ sera and higher infiltration
of Treg CD4+ CD25+ FoxP3+ (120, 121). Also, Du et al.
demonstrated that co-culture of PBMCs and SGC-7901 (a gastric
cell line), transfected with HLA-G1, can induce an immune
regulatory phenotype with an increase of IL-4 and IL-10 secretion
and a decrease of IFN-γ secretion (121).

Pancreatic cancer is a relatively rare cancer (<2% of cancers).
This adenocarcinoma is very aggressive, associated with a very
bad prognosis. Pancreatic cancer is generally of endocrine origin,
but it metastases easily, frequently to the liver, stomach and
lungs. Zhou et al. have studied HLA-G expression in this
cancer, and they have determined that 39.2% are HLA-G positive
(122), depending on the tumor grade, increasing from T1-2 to
T3 stages. HLA-G expression is correlated with a decrease of
infiltrating T cells (TILs) CD3+. Other groups confirmed the
HLA-G expression in pancreatic adenocarcinoma ranging from
63 to 66% of tumors (123, 124). Xu et al. correlated the HLA-G
expression with more aggressive characteristics, a more advanced
stage (TNM II), an extra-pancreatic infiltration (T3 stage) and
a lymphatic nodes engagement (124). Also, plasmatic sHLA-G
was higher in pancreatic cancer patients in comparison to the
controls and inversely proportional to CD8+ CD28+ peripheral
T cells.

Hepatocellular carcinoma (HCC) is the most common type
of primary liver cancer in adults and the fourth most common
cause of cancer-related death worldwide. HCC is usually caused
by a chronic disease (infection or cirrhosis). HLA-G expression
was determined to be present in 66.7% of the cases and correlates
with a more advance TNM stage: 41.9% in stage II to 71.4% in
stage III (125). HLA-G expression is associated with an increase
of the Treg/CD8

+ ratio and relapse occurs after ablation or
resection. Other groups observed similar results (126, 127). Cai
et al. indicated that the HLA-G expression remained diffuse and
intracellular, detected HLA-G isoforms were essentially the HLA-
G1 isoform (detection through WB) without the presence of the
HLA-G5 isoform. Yet, sHLA-G was detected in patients’ sera
(125). This could be explained by the shedding of the HLA-
G1 membrane isoform or by the expression of this molecule by
other cells like monocytes as previously observed in melanoma
and lung cancer. It was hypothesized that the expression of
HLA-G could be sustained by the microenvironment of the
primary tumor in agreement as observed in other type of cancers
(107, 109, 115, 128) and with the 3E theory that points out that
the metastatic sites of a cancer should present a totally different
microenvironment from that of the primary tumor (82).

Thyroid nodes are cancers of the thyroid affecting 50 to
70% of the adult population which are mostly benign. This
neoplasia presents a variable evolution and is constituted by
3 histologic sub-types: papillary thyroid carcinoma (PTC),
follicular thyroid cancer (FTC) and anaplastic thyroid cancer
(129). It has been demonstrated that HLA-G expression is
crucial for the development of these cancers. Indeed, HLA-G
expression is absent in non-pathological histologic tissue (130)
whereas HLA-G expression is determined to be present in all
thyroid tumors. A strong expression of HLA-G (>50% of HLA-
G+ cells) was observed in 80% of PTC and 79% of FTC but
also in benign lesions. However, HLA-G expression was not
correlated with cancer relapse, metastasis, node invasion or
with mortality rate. It was proposed that HLA-G was necessary
for cancer genesis given its pre-tumoral expression. Other
groups confirmed this expression (131), although the different
assays used to determine HLA-G expression, and the lack of a
diagnostic methodology, induced some discrepancies between
the results.

Melanoma is developed in melanocytes and its incidence is
11 in 100,000 (132). This cancer is not very aggressive, with
a survival rate of 5 years in 81% of men and 87% of women
(133). The expression of HLA-G in melanoma has been studied
and demonstrated to be increased compared to melanocytic nevi
(90), correlating HLA-G expression with cell transformation.
HLA-G expression was also demonstrated to be increased on
inflammatory infiltrating cells within the melanomas compared
to nevus (134). sHLA-G was also increased in patients’ sera
seemingly being boosted by the IFN-α treatment applied (135).
HLA-G expression was further shown to be associated to
the malignant transformation and to bad prognosis, in case
of metastasis or relapse, in different studies (128, 134, 136).
Other groups demonstrated in vitro the immune-tolerogenic
properties of HLA-G, protecting melanoma cell lines from the
NK cells cytotoxicity (137), which were confirmed in vivo on
xenogeneic melanoma models (56). Also, it was demonstrated
that the tumor cells were able to modify their HLA-G isoform
expression profile in order to modify their susceptibility against
NK cells (44).

Gliomas represent 70% of the cerebral tumors, and
their capability to modulate the immune response has been
documented (138). The prognostic is usually bad since only
9.8% of the patients attain 5 years of survival after diagnosis.
Wang et al. have reported that almost 70% of gliomas were
HLA-G+ independently of their nature: oligodendroglioma,
astrocytoma or oligoastrocytoma (139). Those results were
confirmed by other groups (140). Wiendl et al. have widely
studied the expression of HLA-G in cell lines derived from
glioblastomas. They have demonstrated that 4 of 12 tumor
cell lines constitutively expressed HLA-G mRNA. Following
IFN-γ treatment, the number of gliomas expressing HLA-
G mRNA dramatically increased since 10 out of 12 tumor
cell lines were then HLA-G positive. Similar observations
were stated for the HLA-G cell-surface expression (141).
Other groups confirmed such results on gliomas using the

demethylating agent 5-Aza-2
′

-Deoxycytidine (140). Strikingly, it
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was demonstrated that only 10% of glioblastoma cells expressing
HLA-G were sufficient to inhibit the PBMCs alloresponse
against the whole tumor (141). It has been widely demonstrated
that an external stimulation is necessary to induce HLA-G
expression at a transcriptional or translational level. In the
context of glioblastomas, HLA-G expression was demonstrated
to be influenced or regulated by environmental factors,
particularly hypoxia or cytokines. Usually this environment
is difficult to maintain ex vivo, where primary cells or cell
lines loose rapidly their HLA-G expression, implying that the
real expression levels of HLA-G in tumor cells are frequently
underestimated (44).

Breast cancer represents 25.1% of female diagnosed cancers,
and the 2nd most frequent of all cancers, with higher incidence
in developed countries (142). There are three subtypes of
breast cancer depending on the presence of 3 receptors for
estrogen (ER), progesterone (PgR) and human epidermal growth
factor (ERBB2/HER2). These different subtypes are mostly
treated with chemotherapy or hormonal therapy. Ogiya et al.
demonstrated that immune escape strategy of primary tumors
is different from metastatic tumors in breast cancer. Primary
tumors strategy involves higher infiltration of T cells expressing
PD-L1 (143). Other studies indicate that secondary tumor
focus present less immunoregulatory cells and weak expression
of chemoattractants like CCL19/CCR7, CXCL9/ CXCR3, and
IL15/IL15R (144). Nonetheless, the genomic and immune profile
of a patient with triple-negative breast cancer that progressed
during neoadjuvant chemotherapy plus PD-L1 blockade, showed
a low level of expression of programmed cell death protein
1 (PD1) and a high level of expression of HLA-G at the
time of diagnosis. This expression was associated with an
immune evasive phenotype, increased cell motility and invasion,
suggesting that HLA-G could be involved in tumor escape (145).
Indeed, He et al. have studied the HLA-G expression in breast
cancer and have determined that 66% of breast cancer cases
are HLA-G positive, with a low HLA-G expression (<25% of
tumor cells) in 64% of cases (146). This HLA-G expression
on tumor cells is accompanied by the presence of sHLA-G
in the sera and is associated with bad prognosis. It was also
shown that there was an increase of circulating CD4+ CD25+

FoxP3+ Treg cells in HLA-G+ patients compared with HLA-
G− patients (147). Other groups have shown that >60% were
HLA-G+, from which >23% of cases co-expressed HLA-E (148,
149). Besides the loss of classical MHC class I expression, HLA-
G and HLA-E expressions remained protecting tumor cells
against NK cells cytotoxic response. Ishibashi et al. have reported
higher expression rates with 94.1% of HLA-G+ tumor cells.
They have demonstrated that a peptide derived from HLA-
G1 (26–40 amino acid residues) was presented in the MHC
class II context, inducing a CD4 response with consequent
anti-HLA-G CTL detection. This was the first time that an
anti-HLA-G cell response was ever reported (150). However,
these results were never confirmed by other groups. Another
study demonstrated that HLA-G expression was correlated to
the double positive ER+/PgR+ tumors in 80% of cases (147).
Previous studies had reported that HLA-G expression can be
regulated by progesterone in mesenchymal cells, cytotrophoblast

and choriocarcinoma cell line JEG3 (151, 152). Yet, the regulation
via estrogens has never been reported.

Cervix cancer is the 2nd most frequent malign gynecologic
cancer in the world representing 12% of female cancers
(153). Pathogenesis is characterized by a progression of a
cervical intraepithelial neoplasia (CIN) to cervix cancer (CC).
Miranda et al. demonstrated that HLA-G is detected in 80.2%
of CIN cases and in 64% of CC cases. Since the HLA-G
expression level is higher in CC (48%) than in CIN (27%),
it was suggested that HLA-G expression was correlated to
the tumor development (154). HLA-G expression has also
been correlated with IL-17 expression that could, on one
hand, inhibit tumor progression by increasing the immune
response, and on the other hand increase angiogenesis (155,
156). These results were confirmed by other groups who
investigated HLA-G expression during the different stages
of CIN. They concluded that HLA-G expression increased
from 54% at CIN-I to 100% at CIN-IV, pointing out HLA-
G as a good marker of the disease progression (157). Other
groups also confirmed these results but percentages of HLA-G
expression determined were weaker (158, 159). Guimaraes et al.
demonstrated that HLA-G expression was highly correlated to
human papilloma virus (HPV) in CC and inversely correlated
to the MHC class I expression (158), confirmed by other
group (159).

Serous epithelial ovarian cancer is the most common subtype
of ovarian cancer (50–70% of ovarian cancer cases), followed
by endometrioid carcinoma (10–25% of ovarian cancer cases).
Diagnosis is frequently late given a mild symptomatology during
first stages. This cancer is a serious carcinoma characterized
by an aggressive development and bad prognosis. Endometrial
carcinoma is the 3rd most frequent female cancer. This cancer
is usually diagnosed at early stages and presents a favorable
prognostic. HLA-G expression was demonstrated to be frequent
in ovarian cancer (55%) with progression during disease
development (160). HLA-G expression was evidenced at the
transcriptional (qPCR) and translational levels (WB and IHC)
with an increase from early stages (grade I/II) to late stages (grade
III/IV) and a drop of survival rate of 5 years. Other groups have
shown similar results, with higher HLA-G expression in serous
carcinoma (161). HLA-G expression in endometrial cancer was
studied by Barrier et al., who showed an expression of HLA-
G mRNA in 55% of the cases of endometrioid cancers, mainly
localized in the glandular epithelium with no expression was
observed in the stromal tissue (162, 163), and the percentage of
HLA-G+ lesions was also correlated with an advanced stage of
the cancer.

Lung cancer is the most frequent malign cancer in the
world, with an average of 800 000 deaths per year. There are
two categories of lung cancer, (i) the small cell lung cancer
(SCLC) which represents 10–15% of the cases, and (ii) the
non-small cell lung cancer (NSCLC) that represents 85–90% of
lung cancer cases. Despite some improvements in treatment,
NSCLC remains a disease with bad prognosis. Indeed, the
survival rate of 5 years is <15%. The most significant criteria
to define the gravity and advanced stage of this cancer is the
TNM state. Clinical observations and markers are still variable,
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so new markers are required to better define the stage of
the disease. HLA-G expression has been proposed as one of
such novel markers. Until now, all studies have been carried
out in NSCLC for determining HLA-G expression. Yie et al.
have demonstrated that 75% of the tumoral lesions they tested
expressed HLA-G (164). HLA-G expression was considered as
important (>50% of cells expressing HLA-G) in 80% of patients
and was associated to the disease stage but independently of
the histologic type lesion. HLA-G expression has also been
correlated to a decrease in the survival rate. Other groups have
confirmed these results not only by IHC, but also through
sHLA-G dosage in patients’ sera by ELISA (127). Western blot
(WB) analysis demonstrated that the main HLA-G isoforms
expressed were HLA-G1 and -G5. However, it seemed that sHLA-
G origin was not from the tumor cell, but from peripheral
blood monocytes (135, 165). Other authors demonstrated that
sHLA-Gwasmore frequently observed in adenocarcinoma (73%)
than in epidermoid carcinomas (7%) or in adenosquamous
carcinoma (10%). High HLA-G expression was determined in
monocytes by in flow cytometry (166). In this context, Schütt
et al proposed that membrane-bound HLA-G as well as sHLA-
G were excellent progression markers (167) to be included as
diagnosis markers.

DISCUSSION

The expression pattern of HLA-G on tumors is difficult
to determine. The detection of HLA-G expressing cells, the
nature of HLA-G isoforms and their impact on the immune
system remain uncertain and challenging. Indeed, specific
monoclonal antibodies are insufficient to define the isoforms
concerned in the different type of tumors and involved in
their developments. Furthermore, HLA-G expression tends to
disappear after surgical excision of tumor lesion requiring to
develop new culture approaches to maintain HLA-G expression
ex vivo (44).

HLA-G mRNA expression can be determined by RT-PCR
as previously reported (59, 168). However, mRNA expression
is not directly correlated or associated with HLA-G protein
expression (109), limiting the estimation of HLA-G actual
expression in tumor tissue, particularly concerning the presence
and percentage of the non-canonical isoforms, for which the
antibodies (169) are scarce or inexistent (111). Indeed, regarding
the detection of membrane-bound or secreted HLA-G isoforms
(respectively, HLA-G1 to -G4 and HLA-G5 to -G7), few
antibodies against HLA-G have been generated (Table 1). To
overcome this limitation, a workshop to establish and standardize
anti-HLA-G in vitro detection assays was initiated by the group
of ED Carosella et al. (170, 171) and a wet workshop was
organized for quantification and identification of soluble HLA-G
(172). This allowed to determine HLA-G expression by immuno-
histochemistry (IHC) western blot (WB), flow cytometry or
ELISA assays in a more coordinated manner among laboratories.
IHC and WB are essentially based on the utilization of the
anti-HLA-G specific 4H84 and 5A6G7 monoclonal antibodies,

TABLE 1 | Summary of the current available monoclonal antibodies raised against

HLA-G isoforms.

Designation Specificity Immunogen References

MEM-G/1 Denaturated heavy

chain (α1 domain?)

Denaturated HLA-G1

heavy chain

(1–3)

MEM-G/2 Denaturated heavy

chain (α1 domain?)

Denaturated HLA-G1

heavy chain

(4)

MEM-G/4 Denaturated heavy

chain of HLA-G1,

HLA-G2 and HLA-G5

Denaturated HLA-G1

heavy chain

(5)

MEM-G/9 Conformational

HLA-G1/HLA-G5

isoforms associated

with β2m

HLA-G recombinant

protein refolded in

presence of β2m and

peptide

(5, 6)

G233 Conformational

HLA-G1/HLA-G5

isoforms associated

with β2m

Murine cells transfected

with HLA-G1/β2m

associated isoform

(7–9)

4H84 Denaturated heavy

chain (α1 domain) of

HLA-G1 to HLA-G7

isoforms

Peptide encompassing

the amino acids 61-83

of HLA-G α1 domain

(4, 5, 10, 11)

5A6G7 Soluble isoforms

HLA-G5 and HLA-G6

Peptide derived from

intron 4 (SKEGDGGIM

SVRESRSLSEDL)

coupled with ovalbumin

(3, 12, 13)

2A12 Soluble isoforms

HLA-G5 and HLA-G6

Peptide derived from

intron 4 (SKEGDGGIM

SVRESRSLSEDL)

coupled with ovalbumin

(14, 15)

87G Conformational

HLA-G1/HLA-G5

isoforms associated

with β2m and reported

as blocking antibody

Murine cells transfected

with HLA-G1/β2m

associated isoform

(10, 16, 17)

HGY Denaturated heavy

chain (α1 domain?)

HLA-G purified proteins

from placenta of

pregnant women

(18, 19)

whereas flow-cytometry and ELISA assays rely on 87G, MEM-
G/9 and G233 monoclonal antibodies (mAbs). 4H84 mAb binds
to the α1 domain (present in HLA-G1 to HLA-G7 isoforms)
and the 5A6G7 mAb was raised against the intron 4 only
present in secreted HLA-G isoforms (HLA-G5 to HLA-G7).
Another antibody generated against denatured HLA-G is MEM-
G/1, which can specifically detect denatured forms of HLA-G1
and -G2. Noteworthy, because MEM-G/1 targets an extracellular
domain of native HLA-G which might be partially intrinsically
disordered, this antibody not only can detect native forms of
HLA-G2, but also competes with the LILRB2 binding of HLA-
G2. These results provide novel insight into the functional
characterization of HLA-G isoforms, pointing out its potential
as ICP inhibitor (173). 87G, MEM-G/9 and G233 mAbs bind
to conformational HLA-G α1 domain associated to the β2M
(HLA-G1 and HLA-G5). However, immunoprecipitation assays
on trophoblast surface demonstrated that G233 could detect a
residual band of 39 kDa, either β2m-associated as well as a
β2M-free heavy chain (174). Thus, determination of the HLA-G
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isoforms expressed is dependent on the combination of these
different techniques. It must be pointed out that none of the
anti-HLA-G antibodies generated were raised against the α2 or
α3 domains. HLA-G sequence is strongly homolog to classical
HLA molecules, particularly for the α2 and the α3 domains,
and less for the α1 domain (175). This explains the bias for
the α1 specificity of anti-HLA-G antibodies. Furthermore, the
limited mAb development is also related to the fact that murine
B cells express the PIR-B receptor, homolog to ILT2 or ILT4
human receptors, which inhibits murine B cell maturation and
Ab secretion upon binding to HLA-G protein (66). Due to
these limitations, experiments related to HLA-G expression and
functions on tumor cells are not trivial. We have to point out that
HLA-G expression studies are mainly performed on transfected
or transduced tumor cell lines since HLA-G expression is rapidly
loss after ex vivo culture or primary tumors. Conformational
anti-HLA-G mAbs are limited to the HLA-G1/β2M or HLA-
G5/β2M associated isoforms and to date, no mAb specific
for the other HLA-G isoforms is available. Furthermore, the
single blocking mAb to date against HLA-G is the 87G that
only inhibits the function of HLA-G1/β2M or HLA-G5/β2m
through ILT2 receptor. HLA-G2 and HLA-G6 isoforms are of
interest since they are demonstrated to be immunosuppressive.
Indeed, HLA-G2 and HLA-G6 isoforms encompass the α3
domain of HLA-G that mediates the interaction with the ILT4
inhibitory receptor expressed by APCs. Beyond this expression
by immune cells, ILT4 was described on breast, lung and
kidney tumor cells (113, 176, 177). Such site of expression,
quite unexpected for ILT4, is of great interest with respect
to how it affects the phenotypic and functional characteristics
of tumor cells that express it (178). Neo-expression of ILT4
in breast cancer and in non-small cell lung cancer (NSCLC)
is associated with metastasis in lymphatic nodes and poor
prognostic (179). ILT4 expression is associated with an increase
of cell proliferation and motility in vitro of tumor cells and
promotes metastasis in vivo (180). Indeed, even if ILT4 is an
inhibitory receptor, expressed on cancer cells, ILT4 inhibits
mechanisms that repress proliferation, growth, and spread of
cancer cells. Upon binding to its ligand, the ILT4 receptor
inhibits the pathways that represses proliferation, growth and
dissemination of tumor cells (181, 182). Since HLA-G is the main
ligand of ILT4, HLA-G binding to ILT4 expressing cells, either
by soluble HLA-G6 or membrane-bound HLA-G2 isoforms,
could promote tumor growth. This heterogeneous expression
of different ICPs within tumors, showed in the context of RCC
(113), emphasizes the redundant or cumulative mechanisms
developed by tumor cells to promote their immune escape and
their expansion. Yet, mAbs capable of binding and/or blocking
the ILT4 interaction with the conformational HLA-G2 and HLA-
G6 isoforms are strongly lacking. Due to these drawbacks,
tumor cell lines are essentially transduced with either HLA-G1
or HLA-G5 isoforms. Several tumors downregulate their MHC
class I molecules expression at their surface by inhibiting the
β2M expression to escape from the immune system (183–185).
HLA-G cell surface expression on such tumors, even HLA-G1,
could be unaffected by the loss of β2M association through
the formation of HLA-G multimers as determined during

pregnancy (186). Resulting β2M-free HLA-G isoforms could
still be immunosuppressive and inhibit the immune response,
particularly the NK immune response that should lyse MHC
class I negative tumor cells. However, mAbs raised specifically
against β2M-free HLA-G isoforms are lacking. In consequence,
determination of the panel of HLA-G isoforms expressed by
tumor cells is severely limited and the implications of β2M-
free HLA-G isoforms in the tumor immune escape mechanisms
are misestimated. Furthermore, Tronik-Le Roux et al. recently
reported the expression of new HLA-G isoforms, devoid of α1
domain, but encompassing α2-α3 or α3 domains. As a fact,
these new isoforms cannot be detected by the existing anti-HLA-
G antibodies (111). Although HLA-G neo-expression has been
proven in numerous tumors, it remains underestimated in most
of the cancer lesions.

Here we emphasize the requirement of new tool development
to analyze the HLA-G expression by tumor cells, especially
the generation of new anti-HLA-G monoclonal antibodies to
determine the expression pattern of HLA-G isoforms expressed
by tumor cells.

It was suggested that HLA-G2/G6 may comprise an adequate
substitute in women carrying the null allele (G∗0105N) (187,
188). Also, it was demonstrated that melanoma cells can rapidly
switch from cell-surface HLA-G1 to intra-cellular HLA-G2
expression, restoring tumor sensitivity to NK lysis (189). One
can hypothesize that a switch betweenHLA-G isoforms expressed
occurred following the development of the tumor. At the initial
development stages, tumor cells would inhibit APC maturation
and functions through ILT4 receptors by expressing HLA-G2 and
HLA-G6 isoforms. Then, following angiogenesis and the tumor
vascularization, effector cells that infiltrate the tumor would
be inhibited by HLA-G1 and HLA-G5 isoforms through ILT2
receptors expressed on effector cells. This implies that depending
on the stage of the tumor, different immunotherapies against
HLA-G should be applied.

Since HLA-G/ILT2 and HLA-G/ILT4 are ICPs, inhibiting
the interaction between immunosuppressive HLA-G isoforms
and its receptors should restore the immune response as
demonstrated for anti PD-1 and anti-PD-L1 monoclonal
antibodies. Therefore, developing blocking antibodies against
HLA-G/ILT4 and/or HLA-G/ILT2 interaction would restore the
immune response. Wiendl et al. demonstrated that only 10%
of tumor cells expressing HLA-G were enough to protect the
whole tumor against the immune response (141). Thus, even
if HLA-G expression is weak or diffuse within the tumor,
the administration of anti-HLA-G blocking antibodies should
dampen the immune-protective effects of HLA-G. LeMaoult et al.
recently demonstrated that ccRCC tumors strongly expressed
HLA-G and that the cytotoxic effector TILs were ILT2+ and
PD-1− (114). In this context, inhibiting the HLA-G/ILT2
interaction should restore the TILs cytotoxic function against
HLA-G positive ccRCC tumors. As listed previously, HLA-G
is an excellent TAA since HLA-G expression in healthy tissues
is highly restrained, but strongly neo-expressed on tumors.
As HLA-G expression level is correlated with an advanced
stage of the disease, implying a decrease of the number of
cytotoxic effector cells and their function, blocking antibodies
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would be insufficient in advanced stages. In this scenario, the
cell therapies would be more adequate. Indeed, monoclonal
anti-HLA-G antibodies could be used to develop anti-HLA-
G CAR-T cells. These anti-HLA-G CAR-T cells would target
directly and specifically the HLA-G expressing cells to eliminate
the tumor.

Despite evidences that HLA-G expression is spread among
hematopoietic and solid tumors, HLA-G expression is still
largely underestimated. Insufficiency of biologic tools, in
particular a wider specificity variety of anti-HLA-G monoclonal

antibodies, make it difficult to determine and characterize
HLA-G isoforms expressed, de facto limiting anti-HLA-G
immunotherapies development.
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Tumor immune escape is associated with both, the expression of immune checkpoint
molecules on peripheral immune cells and soluble forms of the human leukocyte
antigen-G (HLA-G) in the blood, which are consequently discussed as clinical biomarker
for disease status and outcome of cancer patients. HLA-G preferentially interacts with
the inhibitory receptor immunoglobulin-like transcript (ILT) receptor-2 in the blood and
can be secreted as free soluble molecules (sHLA-G) or via extracellular vesicles (EV).
To investigate the contribution of these two forms to the expression of checkpoint
molecules in peripheral blood, we primed peripheral blood mononuclear cells with
purified soluble sHLA-G1 protein, or EV preparations derived from SUM149 cells
transfected with membrane-bound HLA-G1 or control vector prior to anti-CD3/CD28
T cell activation. Our study demonstrated that priming of PBMC with sHLA-G1
protein prior to 48 h activation resulted in enhanced frequencies of ILT-2 expressing
CD8+ T cells, and in an upregulation of immune checkpoint molecules CTLA-4, PD-
1, TIM-3, and CD95 exclusively on ILT-2 positive CD8+ T cells. In contrast, when
PBMC were primed with EV (containing HLA-G1 or not) upregulation of CTLA-4,
PD-1, TIM-3, and CD95 occurred exclusively on ILT-2 negative CD8+ T cells. Taken
together, our data suggest that priming with sHLA-G forms induces a pronounced
immunosuppressive/exhausted phenotype and that priming with sHLA-G1 protein
or EV derived from HLA-G1 positive or negative SUM149 cells affects CD8+ T
cells complementary by targeting either the ILT-2 positive or negative subpopulation,
respectively, after T cell activation.

Keywords: HLA-G, ILT-2, immune checkpoint, extracellular vesicles, exosomes, breast cancer

INTRODUCTION

The human leukocyte antigen-G (HLA-G) belongs to the non-classical class I HLA molecules and
can exist in different isoforms expressed either as membrane-anchored structures or as secreted
molecules (1–4). Additionally, HLA-G can be released as membrane-anchored molecules from
various cell types via extracellular vesicles (EV) (5). EV are phospholipid bilayer-enclosed vesicles
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that are present in biofluids and cell culture media (6).
Assembly of EV depends on their cell of origin and differs
remarkably encompassing a broad spectrum of antigens, cell
surface-expressed receptors and/or ligands, metabolites, and
nucleic acids (7). Generally, the unique molecular signature
of EV guides their biodistribution, uptake and internalization
(7). As multifactorial vehicles, EV orchestrate various systemic
processes, triggering changes of the state of the recipient cell (8).
In malignancies, EV play a critical role in the establishment and
maintenance of the tumor microenvironment (TME) (6), which
enables tumor development by continuous crosstalk between
tumor cells and their microenvironment and by providing the
tumor with cellular and soluble components including nutrients,
oxygen, metabolites, and several other soluble factors (9). EV
can either directly fuse with a target cell enabling the transfer
of bioactive molecules to both, adjacent and distant sites, or be
internalized via phagocytosis, endocytosis or micropinocytosis,
thereby contributing to an intracellular signaling mechanism
(10). Of note, fusion depends on an acidic micro-environment
which naturally occurs inside tumors (11–14), while uptake
and internalization of EV are primarily receptor-mediated via
adhesion molecules (15). Thereby, tumor-derived EV (TEV)
may represent an alternative mechanism of immunosurveillance
deficiency impairing diverse immune cell lineages (6).

HLA-G preferentially serves as a ligand for inhibitory
receptors present on different immune cells including
the immunoglobulin-like transcript (ILT) receptor-2
(LILRB1/CD85j), ILT-4 (LILRB2/CD85d) and the killer
immunoglobulin-like receptor 2DL4 (KIR2DL4/CD158d). ILT-2
is broadly expressed on monocytes, B cells, dendritic cells,
and a subset of natural killer (NK) and T cells, whereas ILT-4
expression is myeloid-specific (16). Thus, HLA-G is able to
impair functions of effector cells of both, the adaptive and the
innate immune system. The ILT-2 receptor interacts with HLA-G
molecules associated to β2-microglobulin and HLA-G dimers
bind to ILT-2 with a higher affinity and avidity than monomers
(17). Of note, similar to classical soluble HLA class I, soluble
HLA-G (sHLA-G) can interact with the CD8 T cell co-receptor,
which increases surface expression and secretion of FasL – the
ligand of the Fas (CD95) receptor – inducing cell apoptosis (18).

Physiologically, HLA-G has a restricted tissue expression,
whereas neo-expression of HLA-G and its diverse structures
is induced in various pathological situations (2). Due to the
role of HLA-G in tumor immune escape, it is proposed to be
an immune checkpoint (IC) molecule (19). Indeed, expression
of HLA-G or sHLA-G has been associated with poor survival,
prognosis, therapy response, clinical status, and outcome in
various malignancies [reviewed in Carosella et al. (19)]. Lately,
HLA-G bearing EV (HLA-GEV) originated from liquid biopsies
of blood samples derived from breast and ovarian cancer patients
have been introduced as novel cancer biomarker (20, 21).
Strikingly, in these studies exclusively HLA-GEV, but not sHLA-
G, were of prognostic relevance suggesting self-contained effects
of both structures. However, the structural diversity concerning
monomers, dimers, and HLA-G expressing EV in liquid biopsies
such as peripheral blood samples makes it difficult to implement
HLA-G as a meaningful clinical biomarker with its functional

consequences for peripheral immune effector cells (22). In this
context, it is of note that the ILT-2 receptor is the sole inhibitory
HLA-G receptor being expressed on peripheral blood cells, albeit
only a minority of blood effector cells express ILT-2 (23). Thus,
it has been proposed that the functional consequences of HLA-
G and its soluble forms for immune cells in the blood should be
focused on HLA-G sensitive effectors, namely the ILT-2 positive
ones (23).

Besides HLA-G and ILT-2, additional IC molecules
such as programmed cell death protein-1 (PD-1),
cytotoxic T-lymphocyte-associated protein (CTLA-4), T-cell
immunoglobulin and mucin-domain containing-3 (TIM-3),
and CD95 are associated in tumor-driven immune escape
mechanisms acting locally at the tumor site or systemically
in the peripheral blood (24–26). The continuous up-
regulation and co-expression of multiple IC, being often
observed in cancer and chronic infections, are indicative
for an immunosuppressive/exhausted phenotype of T cells
and are associated with loss of effector functions and
immunosurveillance (27, 28). Hitherto, no data exists on
the relation between sHLA-G or HLA-GEV and the expression of
ICs on peripheral blood cells. Hence, the aim of this study was
to analyze the contribution of soluble forms of HLA-G to the
surface expression of IC molecules. Purified sHLA-G1 molecules
(29) and EV preparations derived from the human breast cancer
(BC) cell line SUM149 either stable transfected with HLA-G1
or with a control vector served as antigen sources in functional
assays. To model whether presence of sHLA-G1 or HLA-GEV in
the peripheral blood modulates immune effector cells regarding
their expression of ICs, peripheral blood mononuclear cells
(PBMC) were primed with sHLA-G1 or with HLA-G1 positive
or negative EV preparations overnight prior to T cell activation
with anti-CD3/CD28. As EV harbor multiple types of molecules,
structures, and genetic information, we placed emphasis on both,
the ILT-2 positive and ILT-2 negative T cell population.

MATERIALS AND METHODS

Cell Culture
Human BC cell line SUM149 was stable transfected with a
GFP construct targeting HLA-G G1 (SUM149 LV2 G1-GFP)
or with a control vector encoding GFP only (SUM149 LV2
N3-GFP). Cells were cultured in RPMI-1640 supplemented
with 1% Penicillin/Streptomycin (both Thermo Fisher Scientific,
Darmstadt, Germany) and 10% FBS Good Forte (PAN-
Biotech GmbH, Aidenbach, Germany) at 37◦C and 5% CO2.
Conditioned media (CM) were collected for EV enrichment and
frozen at−20◦C.

Isolation and Characterization of
Extracellular Vesicles Derived From
Conditioned Media
To isolate EV derived from CM of HLA-G1 transfected SUM149
cells (G1 EV) and the respective control cells (N3 EV), CM
were thawed and centrifuged at 2,800 × g for 30 min at 4◦C
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and concentrated by tangential flow filtration (Repligen, Breda,
Netherlands) with a 750 kDa/115 cm2 mPES filter (D02-E500-
05-N). The concentrate was subjected to ultra-centrifugation
at 100,000 × g for 2 h at 4◦C in a swinging bucket SW40
Ti rotor (Beckman Coulter, Krefeld, Germany). The pelletized
EV were resuspended in 0.9% NaCl supplemented with 1%
Penicillin/Streptomycin (Thermo Fisher Scientific).

EV fractions were analyzed as previously recommended
as a minimal requirement for the definition of EV (30,
31). Nanoparticle tracking analysis (NTA) on the ZetaView
Laser Scattering Video Microscope (Particle Metrix, Meerbusch,
Germany) and its corresponding software (version 8.03.08.02)
revealed a size distribution (mean ± SD nm) of 136.7 ± 3.3 and
133.4± 3.3 for the G1 EV or N3 EV preparation (Supplementary
Table S1), which corresponds to the known size of EV, ranging
between 30 and 150 nm (32). Particle concentration was
determined by NTA and protein concentration was defined
by protein assay (Thermo Fisher Scientific) (Supplementary
Table S1). Expression of components associated with EVs
and classical HLA class I was verified by SDS PAGE and
western blot (Supplementary Figure S1A). 15 µg of EV
suspensions were used for immunoblotting and 10 µg cell
lysate derived from the respective cells served as control. Both
preparations showed the typical EV marker profile including
presence of TSG101 (clone: T5701; Sigma-Aldrich, St. Louis,
MO, United States), classical HLA class I [α-heavy chain HLA
class I; (33)], Syntenin (clone EPR8102; Abcam), and CD81
(clone: 5A6; BioLegend, Koblenz, Germany) and absence of
Calnexin (Abcam) excluding cellular protein contamination.
Additionally, western blot analysis revealed that HLA-G (clone
4H84; Exbio, Praha, Czechia) present in both, cell lysate and
EV fraction of SUM149 LV2 G1-GFP cells and absent in cell
lysate and EV fraction of the control SUM149 LV2 N3-GFP cells
(Supplementary Figure S1B). Both, the NTA results and the EV
marker profile fulfill the minimal requirement for the definition
of EV (30, 31).

Stimulation of Peripheral Blood
Mononuclear Cells
Frozen PBMC of healthy donors [for isolation and storage of
PBMC see Kordelas et al. (34)] were thawed in complete medium
consisting of RPMI-1640, 1% Penicillin/Streptomycin, 10%
human AB serum (Transfusion Medicine, University Hospital
Essen, Germany), and 0.556 µg DNAse (Roche, Mannheim,
Germany). In a 96-U-bottom plate 6 × 105 PBMC/well were
cultured in 200 µL of DNAse-free complete medium at 37◦C
and 5% CO2 alone (control), in the presence of 1.2 ng purified
HLA-G1 (sHLA-G1) protein (29) or in presence of 40 µg EV
either derived from HLA-G1 transfected SUM149 cells (G1 EV)
or from the respective control cells (N3 EV). 40 µg G1 EV
corresponds to a mount of 1.2 ng HLA-G1 defined by HLA-G
ELISA as previously described (20, 21, 35, 36). After 24 h, primed
and unprimed PBMC were stimulated with beads coated with
CD3/CD28 (Thermo Fisher Scientific) in a bead to cell ratio of
1:3 for 48 h. Influence of stimulation on the expression of IC
molecules on T cells was assessed (Supplementary Figure S2).

Additionally, viability of T cells upon stimulation and priming
was analyzed (Supplementary Figure S3).

Flow Cytometric Analysis
LIVE/DEAD VioletTM Dead Cell Stain Kit was used according
to manufacturer’s instructions (Thermo Fisher Scientific) to
analyze cell viability. Surface expression was analyzed by staining
with fluorchromes-conjugated mononuclear antibodies targeting
CD3 (BV510 clone OKT3), CD8 (PerCP-Cy5.5 clone SK1),
PD-1 (AF488 clone EH12.2H7), CD95 (BV510 clone DX2),
TIM-3 (PerCP/Cy5.5 clone F38-2E2), or CTLA-4 (BV605 clone
BNI3). All antibodies were provided by BioLegend (Koblenz,
Germany) with the exception of CD3 (Beckman Coulter). Isotype
matched antibodies served as negative controls (BD Bioscience,
Heidelberg, Germany). Samples were subjected to multicolor
flow cytometry using a CytoFlexS cytometer (Beckman Coulter).
Data acquisition of at least 200.000 events was performed with
CytExpert Version 2.1 software (Beckman Coulter) and analyzed
with Kaluza Analysis 2.1 software. General gating strategy
for flow cytometric analysis is visualized in Supplementary
Figure S4. Analysis strategy for multiple-positive T cells is given
in Supplementary Figure S5.

Statistical Analysis
Data is presented as median with the 10th and 90th percentile.
Frequencies of a certain cell population are either expressed
as% or as fold change (FC). For FC, frequencies of sHLA-
G1- or EV-primed cells were normalized to the corresponding
stimulations obtained without priming. After testing for
Gaussian distribution, statistical significance was determined by
paired t-tests or Wilcoxon test for testing of two groups or by
two-way ANOVA for comparison of multiple groups. Statistical
analysis was performed by using GraphPad Prism V8.3 software
(GraphPad Software, San Diego, CA, United States). p-values
<0.05 were considered to be statistically significant.

RESULTS

Priming With sHLA-G1 Modulates the
ILT-2 Expression of CD8+ T Cells
To mimic whether the expression of ICs on T cells can be
modulated by the presence of sHLA-G1 in the peripheral
blood, PBMC (n = 6) of healthy individuals were primed with
sHLA-G1 overnight prior to stimulation with anti-CD3/CD28.
Flow cytometric analysis (Supplementary Figure S2) revealed
similar frequencies of ILT-2 positive CD4+ and CD8+ T
cells [median (range) in%: 19.6 (14.8–24.5) and 22.7 (11.5–
39.6), respectively] in unprimed PBMC upon stimulation
with CD3/CD28. However, priming with sHLA-G1 resulted
in a significant increase of ILT-2 on the CD8+ T cell
subpopulation [53.8 (22.2–64.9)], while ILT-2 on CD4+ T cells
was only marginally increased [23.8 (14.4–41.8); Supplementary
Figure S6A]. In contrast to ILT-2, pre-incubation with sHLA-G1
did not influence the frequency of the IC molecules CTLA-
4, PD-1, TIM-3, or CD95, neither in CD4+ nor CD8+ T cell
subpopulations (Supplementary Figures S6B–E).
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Priming With sHLA-G1 Modulates the
Expression of Immune Checkpoint
Molecules Exclusively on ILT-2 Positive
CD8+ T Cells
As the immunomodulatory effect of sHLA-G1 is preferentially
mediated via its interaction with ILT-2, CD4+ and CD8+ T

cells were stratified according to their ILT-2 expression. Focusing
on the ILT-2 positive CD4+ subpopulation, frequencies of IC
molecules were not significantly altered by priming with sHLA-
G1. However, among the ILT-2 positive CD8+ T cells, priming
with sHLA-G1 resulted in a significant increase of CTLA-4,
PD-1, TIM-3, and CD95 (Figures 1A–D) frequencies. For the
comparison of ILT-2 positive and negative CD8 subpopulations,

FIGURE 1 | Priming with sHLA-G1 significantly increases surface frequency of immune-modulatory molecules of ILT-2 positive CD8+ T cells, but not that of CD4+ T
cells. Flow cytometric analysis of (A–D) ILT-2 positive CD4+ and CD8+ T cell populations and comparison of (E–H) ILT-2 positive and negative CD8+ T cells
regarding the immune checkpoint molecules CTLA-4, PD-1, TIM-3, and CD95. PBMC of six healthy donors were primed with (+) or without (-) sHLA-G1 overnight
followed by stimulation with anti-CD3/CD28 beads for 48 h. (A–D) Population frequencies of the CD4+ or CD8+ ILT-2 positive parent population are given. (E–H) For
comparison of ILT2 positive and negative CD8+ subpopulation, frequencies obtained after stimulation of sHLA-G-primed cells were normalized to the corresponding
stimulation obtained without priming and expressed as fold change (FC). Data is presented as median with the 10th and 90th percentile. Statistical significance was
determined by two-tailed paired t-test. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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frequencies of a certain cell population obtained after stimulation
of sHLA-G1-primed cells were normalized to the corresponding
ones obtained without priming. Strikingly, analysis revealed that
the FC of CTLA-4, PD-1, TIM-3, and CD95 (Figures 1E–H) was
significantly elevated on ILT-2 positive CD8+ T cells compared
to ILT-2 negative ones. Comparison of ILT-2 negative and
positive CD4+ T cells showed no statistically different FC of
any IC molecules. Combined these data evidence that sHLA-G
-priming mediates an increase in IC molecules specifically on
ILT-2 positive CD8+ T cells, but not on ILT-2 negative ones.

Priming With EV Preparations Modulates
Immune Checkpoint Molecules
Exclusively on ILT-2 Negative CD8+ T
Cells
To elucidate the immune-modulatory effect of the different
EV preparations compared to sHLA-G1, PBMC were primed
either with sHLA-G1 protein or with 40 µg of G1 EV, which
corresponded to a mount of 1.2 ng HLA-G1 or with 40 µg N3
EV prior to CD3/CD28 stimulation. For comparison, frequencies
of a certain cell population obtained after stimulation of sHLA-
G1- or EV-primed cells were normalized to the corresponding
ones obtained without priming. Priming with sHLA-G1 or EV
did not significantly result in an altered FC of ILT-2 positive
or negative CD4+ T cells (Figure 2A). However, compared
to sHLA-G1-treated cells, EV-priming lead to a significantly
reduced FC of ILT-2 positive CD8+ T cells, while the FC
of its negative counterpart increased significantly (Figure 2B).
Concerning the IC molecules CTLA-4, PD-1, and CD95, sHLA-
G1- and EV-priming showed opposing effects: among the ILT-2
positive cells, EV-treatment mediated a decline of the FC of
CTLA-4+, PD-1+ and CD95+ CD8+ T cells compared to sHLA-
G1, while among the ILT-2 negative cells, priming with EV
resulted in an enhanced FC of CTLA-4+, PD-1+ and CD95+
CD8+ T cells compared to sHLA-G1 (Figures 2C,D,F). Further,
although not reaching significance, priming with G1 EV induced
a substantially elevated (p = 0.07) FC of CTLA-4 in ILT-2 negative
CD8+ T cells compared to N3 EV-primed cells. Considering
TIM-3, FC was significantly increased among the ILT-2 positive
CD8+ T cells upon priming with sHLA-G1 compared to EV-
treatment, while among the ILT-2 negative CD8+ T cells FC of
TIM-3 was not differentially altered by priming with sHLA-G1 or
EV preparations (Figure 2E).

Priming With sHLA-G1 or EV
Preparations Drives ILT-2 Positive or
Negative CD8+ T Cells, Respectively,
Toward an
Immunosuppressive/Exhausted
Phenotype
As co-expression of multiple IC molecules is a feature of
an immunosuppressive/exhausted phenotype, we analyzed the
influence of sHLA-G- or EV-priming on the co-expression
of CTLA-4, PD-1, TIM-3, and CD95 on ILT-2 positive and
negative CD8+ T cells (Figure 3). Strikingly, FC of at least

two co-expressed IC was significantly increased upon sHLA-
G1-priming compared to EV treatment in ILT-2 positive
CD8+ T cells, while among the ILT-2 negative CD8+ T
cells EV-priming led to significantly elevated FC of at
least two co-expressed ICs compared to sHLA-G1-priming.
Thus, sHLA-G1-priming and priming with EV originated
from HLA-G1 positive or negative SUM149 cells appear to
act complementary toward an immunosuppressive/exhausted
phenotype by targeting either ILT-2 positive or ILT-negative
CD8+ T cell subpopulations, respectively.

DISCUSSION

Immune effector cell dysfunction in the periphery of cancer
patients can tremendously shape the evolution of tumors by
mediating a suppressive/tolerogenic immune microenvironment
impeding successful tumor elimination. Both, the expression of
IC molecules on peripheral immune cells and soluble forms of
HLA-G in the blood are associated with tumor immune escape
and consequently discussed as clinical biomarker for disease
status and outcome of cancer patients (19). Considering that
HLA-G can be secreted as free sHLA-G molecules or via EV,
we investigated the contribution of these two forms to the
expression of the checkpoint molecules PD-1, CTLA-4, TIM-
3, and CD95. In our experimental design we primed PBMC
with purified sHLA-G1 protein or with EV preparations derived
from the BC cell line SUM149 either HLA-G1 transfected or
not prior to T cell stimulation with anti-CD3/CD28 to mimic
the situation in peripheral blood. The results of our study
demonstrate that priming with purified sHLA-G1 protein before
T cell activation resulted (i) in enhanced frequencies of ILT-2
positive CD8+ T cells, and (ii) in enhanced frequencies of the
IC molecules CTLA-4, PD-1, TIM-3, and CD95 exclusively on
ILT-2 positive CD8+ T cells. (iii) Priming with HLA-G1 positive
or negative EV preparations prior to T cell activation lead to
enhanced frequencies of CTLA-4, PD-1, and CD95 exclusively
on ILT-2 negative CD8+ T cells. (iv) Accordingly, the co-
expression of at least two IC, being indicative for a pronounced
immunosuppressive or exhausted phenotype, was enhanced on
ILT-2 positive CD8+ T cells upon sHLA-G1 priming and on
ILT-2 negative CD8+ T cells upon EV priming. (v) Combined,
priming with sHLA-G1 and EV derived from HLA-G1 positive
or negative transfected SUM149 BC cells seem to affect CD8+
T cells complementary by targeting either the ILT-2 positive or
ILT-2 negative subpopulation, respectively.

We demonstrated that priming with sHLA-G1 significantly
increased the frequency of ILT-2 on CD8+ T cells, while
frequencies of classical immune-modulatory molecules such as
CTLA-4, PD-1, TIM-3, and CD95 were not altered. In fact,
it has already been demonstrated that HLA-G1 is capable of
signaling transcriptional and phenotypical changes in immune
cells as described by the upregulation of ILT-2, ILT-3, ILT-4, and
KIR2DL4 in antigen presenting cells, NK cells, and T cells (37).
ILT-2 expression is considered to be more prominent on CD8+ T
cells compared to CD4+ T cells with almost exclusive presence
on previously activated cells (38–40). Our data, however,
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FIGURE 2 | Continued
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FIGURE 2 | Priming with EV preparations derived from SUM149 cells significantly increase immune-modulatory molecules on ILT-2 negative CD8+ T cells compared
to sHLA-G-priming. Flow cytometric analysis of (A) CD4+ and (B–F) CD8+ T cell populations regarding (A,B) ILT-2 and the immune checkpoint molecules
(C) CTLA-4, (D) PD-1, (E) TIM-3, and (F) CD95. PBMC of six healthy donors were primed with either sHLA-G1, or EV derived from SUM149 LV2 G1-GFP cells (G1
EV) or SUM149 LV2 N3-GFP (N3 EV) overnight followed by stimulation with anti-CD3/CD28 beads for 48 h. For comparison of ILT2 positive and negative CD8+

subpopulation, frequencies obtained after stimulation of sHLA-G-primed cells were normalized to the corresponding stimulation obtained without priming and
expressed as fold change (FC). Data is presented as median with the 10th and 90th percentile. Statistical significance was determined by two-way ANOVA.
**p ≤ 0.01, ***p ≤ 0.001, ****p < 0.0001.

FIGURE 3 | Priming with sHLA-G1 or EV preparations drives ILT-2 positive or
negative CD8+ T cells, respectively, toward an immunosuppressive/exhausted
phenotype. Flow cytometric analysis of the ILT-2 positive and negative CD8+

T cell populations regarding the multi-positivity of immune checkpoint
molecules (IC) including CTLA-4, PD-1, TIM-3, and CD95. IC greater or equal
two was considered as multiple-positivity. PBMC of six healthy donors were
primed with or without sHLA-G1 or EV derived from SUM149 LV2 G1-GFP
cells (G1 EV) or SUM149 LV2 N3-GFP (N3 EV) overnight followed by
stimulation with anti-CD3/CD28 beads for 48 h. For comparison of ILT-2
positive and negative CD8+ subpopulation, frequencies obtained after
stimulation of sHLA-G-primed cells were normalized to the corresponding
stimulation obtained without priming and expressed as fold change (FC). Data
is presented as median with the 10th and 90th percentile. Statistical
significance was determined by two-tailed paired t-test. *p ≤ 0.05, **p ≤ 0.01.

showed similar frequencies of ILT-2 in CD3/CD28 stimulated
unprimed CD4+ and CD8+ T cells, whereas ILT-2 frequencies
were more pronounced within the CD8+ subpopulation upon
sHLA-G1-priming.

Although generic analysis of CD4+ and CD8+ T cells did not
reveal any sHLA-G-mediated alteration of tolerogenic molecules
despite ILT-2, stratification of CD4+ and CD8+ T cells into ILT-
2 positive and negative subpopulations revealed that sHLA-G1
predominantly and preferentially influences the IC molecule

profile on ILT-2 positive CD8+ T cells as compared to their ILT-2
negative counterpart. This is in line with Jacquier et al. (23) who
requested that functional analyses of the immunosuppressive
potential of HLA-G on PBMC should be refined toward ILT-2
positive, and thus, HLA-G-sensitive, cells.

A major mechanism by which tumor cells can impair immune
effector function is hijacking of ICs as that mediated by the
PD-1/PD-L1 pathway (41). Probably, different ICs (e.g., PD-1,
CTLA-4) and HLA-G influence each other as it has been reported,
for instance, for TIM-3 expression on CD8+ tumor infiltrating
lymphocytes that is closely associated with PD-1 expression (42).
Indeed, this is the first study describing a synergy of sHLA-G1
and the frequency of IC molecules on certain T cell subsets. In
this context, Contini et al. (18) have already reported that sHLA-
G can bind CD8 without T cell receptor interaction inducing
apoptosis in activated CD8+ T cells through upregulation of
FasL expression. Further, up-regulation of the expression of cell
surface molecules such as FasL in cancer cells may mediate the
dampening of cytotoxic T cell attacks (41). Thus, upregulation
of the corresponding receptor CD95 (Fas) on sHLA-G1-primed
CD8+ T cells – as observed in our study – may increase the
probability of apoptotic T cell death as both, the ligand and
the corresponding receptor are upregulated. Similarly, cancer
cells express high levels of inhibitory ligands such as PD-L1
and PD-L2, which, upon binding to PD-1 on T cells inhibits
response of T cells toward cancer cells (41). Again, sHLA-G1
priming resulted in elevated frequency of PD-1 on CD8+ T cells,
potentially contributing to the establishment of immune escape
via the PD-1/PD-L1 axis. Hence, sHLA-G1-priming reinforces an
immunosuppressive TME rendering ILT-2 positive cytotoxic T
cells unresponsive to cancer cells. Similarly, Dumont et al. (43)
have demonstrated that CD8+ tumor infiltrating lymphocytes
(TIL) expressing ILT-2 showed a higher cytotoxicity and IFNγ

production compared to their ILT-2 negative or PD-1 expressing
counterparts and that cytotoxicity of ILT-2 positive TIL, but not
that of ILT-2 negative or PD-1 positive TIL could be inhibited by
HLA-G. Combined, Dumonts study and our study suggests that
various IC pathway act concomitantly in the TME.

Hitherto, the majority of clinical studies analyzed sHLA-G
molecules as a prognostic marker in various malignancies (19).
Previously, we established that discrimination of sHLA-G forms
represents diametric prognostic impacts on the clinical outcome
of BC patients (21) and that only HLA-GEV, but not the total
amount of sHLA-G is an independent predictor for progression
in ovarian cancer patients (20). Thus, we compared the effect of
sHLA-G1 with that of EV derived from CM of SUM149 cells,
transfected with (G1 EV) or without (N3 EV) HLA-G1. In our
study we demonstrated that (iv) sHLA-G1 and EV impact CD8+
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T cells complementary: while sHLA-G predominantly influenced
ILT-2 positive cells, ILT-2 negative cells were highly affected
by EV. Thereby, the surface expression pattern of immune-
modulatory molecules on CD8+ T cells was substantially
influenced toward an immunosuppressive/exhausted phenotype
by both, sHLA-G and HLA-GEV in an ILT-2-dependent or -
independent manner, respectively. Of note, ILT-2 positive cells –
and thus, per definition HLA-G-sensitive cells – represent only
a minority of immune subsets (23). Hence, it is tempting to
speculate that HLA-GEV have a larger pool of cells to interact
with, potentially explaining the prognostic relevance of HLA-
GEV, but not of total sHLA-G, in breast and ovarian cancer
patients (20, 21). However, the prognostic potential of sHLA-
G or HLA-GEV might be changed in situations with increased
frequencies of ILT-2 positive CD8+ T cells such as during aging or
chronic viral infections. Additionally, we demonstrated that our
EV preparations carry classical HLA class I molecules. As classical
HLA class I molecules are generally not expressed as a dimer,
it is unlikely that they interact with the ILT-2 receptor which
preferentially binds HLA-G dimers (44) rationalizing sHLA-G’s
preference to bind to the ILT-2 receptor on T cells. On the
other hand, CD8 is the cognate receptor of classical HLA class I
molecules explaining the preference of EV to interact with ILT-2
negative CD8+ T cells.

Moreover, these results raise questions concerning the
relation between these HLA-G structures in physiological and
pathological situations. How does priming with a combination of
sHLA-G1/HLA-GEV affect the phenotype of T cells? Is the effect
of sHLA-G1 and HLA-GEV in the periphery additive, synergistic
or competitive? Does one of the structures dominate? What is
the ratio of sHLA-G1 to HLA-GEV structures in the periphery of
cancer patients in comparison to healthy individuals?

Despite these open questions, our data underline that EV
are soluble carriers enhancing the immunosuppressive properties
of the TME. As EV represent multifactorial vehicles, it should
be acknowledged that the composition of the applied EV
preparations is not restricted to HLA-G. In fact, TEV may
expose ligands or antigens on their membrane that interact
with cellular HLA receptors, thereby altering immune function
(45). Moreover, TEV can carry immunosuppressive molecules
such as FasL, TGF-β1, TRAIL, PD-L1, and NKG2D ligands,
which are involved in immunosuppression (46, 47). Of note,
TEV can affect the behavior of immune cells through receptor-
ligand binding interaction or by internalization (10). Recently,
it has been reported that the modulation of T cell function by
TEV is not exerted via internalization by T cells, but rather
via signaling molecules that they carry and deliver to the cell
surface (46). Accordingly, we demonstrated that EV – irrespective
of their composition – modify ILT-2 negative cells, while ILT-
2 positive cells are unaffected. Notably, EV preparations are
a heterogeneous group of diverse EV subsets. Comprehensive
analysis of the EV preparations, especially considering classical
IC molecules, might shed further light on the functionality of
the EV-driven immunological modifications. In this context,
elucidating the structural diversity of HLA-G on EV with regards
to the monomeric vs. dimeric conformation, may explain the
affinity toward ILT-2 negative CD8+ T cells observed under

our experimental conditions. Of note, another open, but highly
interesting question is the sensitivity of CD8+ T cells toward
priming followed by anti-CD3/CD28 stimulation. Two major
mechanisms by which TEV can contribute to tumor evasion are
the initiation of apoptosis in cytotoxic CD8+ T cells and the
conversion of conventional CD4+ T cells into regulatory T cells
(48). Thus, the sensitivity of CD8+ T cells to priming with sHLA-
G forms observed in our study might be explained by our lack
of emphasis on the regulatory phenotype of CD4+ T cells biasing
the analyses toward the CD8+ T cell subpopulation.

A limitation of our study is the lack of blocking experiments
demonstrating HLA-G specificity of the G1 EV preparation and
the lack of functional assays demonstrating the functionality of
T cells with an immunosuppressive phenotype. Generally, the
capability of G1 EV and N3 EV to modify the surface expression
of immune-modulatory molecules was similar. Nevertheless, our
data clearly show an EV-driven effect compared to sHLA-G-
priming or compared to T cell stimulation without priming.
Moreover, FC of CD95+ CD8+ T cells was tentatively increased
upon priming with G1 EV compared to N3 EV. Here,
homogeneous HLA-GEV preparations might enhance the effects
observed in our study; however, due to the current technical
limitations in the EV field, purification of homogeneous EV
fractions is impossible.

Concluding, our data elucidate that priming of immune
effector cells by discrete sHLA-G forms, including purified
sHLA-G1 protein as well as HLA-G1 positive and negative EV,
differentially modifies the phenotype of these cells. Here, we
report that sHLA-G1 preferentially influences ILT-2 positive
CD8+ T cells, while HLA-GEV mediate phenotypic alterations
in ILT-2 negative CD8+ T cells. Thus, it seems that discrete
soluble HLA-G structures affect ILT-2 positive and ILT-2 negative
CD8+ T cells complementary suggesting that HLA-G-mediated
inhibition of effector immune cells is not restricted to cells
expressing the corresponding receptor ILT-2. Further, we provide
first evidence that immune-modulation by soluble HLA-G might
involve other IC molecules toward an immunosuppressive or
exhausted phenotype. Combined, our data highlight that analyses
of HLA-G functionality should be extended to discrete structures
reinforcing its complexity in the periphery of cancer patients.
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FIGURE S1 | EV characterization by western blotting. Marker expression analysis
for (A) Calnexin, Tsg101, classical HLA class I, Syntenin, and CD81, and (B)
HLA-G in EV fractions derived from SUM149 cell lines either transfected with a
control vector (N3) or with HLA-G (G1) and their respective cell lysates. Cell lysates
were used as positive control for Calnexin. Cell culture supernatants were
collected and EV were purified by Tangential Flow Filtration and
Ultra-centrifugation.

FIGURE S2 | Stimulation of PBMC with anti-CD3/CD28 beads increases
frequency of surface expression of several markers on CD4+ and CD8+ T cells.
Flow cytometric analysis of CD4+ and CD8+ T cell populations regarding (A) the
HLA-G receptor ILT-2, and the immune checkpoint molecules (B) CTLA-4, (C)
PD-1, (D) TIM-3, and (E) CD95. PBMC of six healthy donors were stimulated with
(+) or without (-) anti-CD3/CD28 beads for 48 h. Population frequencies of the
CD4+ or CD8+ parent population are given. Data is presented as median with the
10th and 90th percentile. Statistical significance was determined by two-tailed
paired t-test. ∗p ≤ 0.05, ∗∗p ≤ 0.01.

FIGURE S3 | Effects of pre-incubation of PBMC on the viability of CD4+ and
CD8+ T cells. Flow cytometric analysis of T cell populations regarding (A) the

viability of CD4+ and CD8+ T cells and (B) the expression of CD95 on dead
CD4+ and CD8+ T cells and (C) the expression of CD95 on dead ILT-2 positive
and negative CD8+ T cells. PBMC of six healthy donors were pre-incubated (A,B)
with (+) or without (-) sHLA-G1, or (C) with sHLA-G1, G1 EV or N3 EV prior to
stimulation with anti-CD3/CD28 beads for 48 h. (A,B) Population frequencies of
the CD4+ or CD8+ parent population are given. (C) Data was normalized to
stimulation without pre-incubation and is given as fold change. Data is presented
as median with the 10th and 90th percentile. Statistical significance was
determined by (A,B) two-tailed paired t-test (∗p ≤ 0.05) or (C) two-way ANOVA
(∗p ≤ 0.05, ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.001).

FIGURE S4 | General gating strategy of flow cytometric analysis to characterize T
cell subpopulations in PBMC. Total lymphocytes were first gated on forward
scatter (FSC)/side scatter (SSC) plot. After gating on single cells, dead cells were
dismissed via the fluorescent dye Live/DeadTM. T cells were identified by the
expression of the T cell receptor CD3. T cells were classified as CD8+

(CD3+CD8+) or CD4+ (CD3+CD8−) T cells. (A) Within the CD4+ and CD8+

population expression frequencies of ILT-2, CTLA-4, PD-1, TIM-3, and CD95 were
determined. (B) CD4+ and CD8+ population were distinguished by ILT-2. Within
the ILT-2+ and ILT-2− CD4+ or CD8+ T cell populations expression frequencies of
CTLA-4, PD-1, TIM-3, and CD95 were assessed. Data were analyzed using the
Kaluza software and population frequencies expressed as percent of the CD4+

and CD8+ parent population or the CD4+ or CD8+ and ILT-2+ or ILT-2− parent
population.

FIGURE S5 | General analysis strategy of multi-positive T cells. A tree analysis
including gates of ILT-2, PD-1, CTLA-4, TIM-3, and CD95 was performed based
on the CD4+ or CD8+ T cell population divided into ILT-2 positive and negative
subpopulation resulting in 32 receptor combinations (16 for ILT-2 positive and
ILT-2 negative CD4+/CD8+ T cells, respectively). Due to low numbers of recorded
frequencies for multi-positive cells, frequencies of cells with more than 1 receptor
were added up for further analysis. A representative analysis of the CD8+

population is shown.

FIGURE S6 | Priming with sHLA-G1 significantly increases frequency of ILT-2 on
CD8+ T cells, while frequency of immune checkpoint molecule is not altered by
priming with sHLA-G1. Flow cytometric analysis of CD4+ and CD8+ T cell
populations regarding (A) the HLA-G receptor ILT-2, and the immune checkpoint
molecules (B) CTLA-4, (C) PD-1, (D) TIM-3, and (E) CD95. PBMC of six healthy
donors were primed with (+) or without (-) sHLA-G1 overnight followed by
stimulation with anti-CD3/CD28 beads for 48 h. Population frequencies of the
CD4+ or CD8+ parent population are given. Data is presented as median with the
10th and 90th percentile. Statistical significance was determined by two-tailed
paired t-test. ∗p ≤ 0.05, ∗∗p ≤ 0.01.

TABLE S1 | EV characterization by Nanoparticle Tracking Analysis and protein
assay. Particle concentration and particle size of EV fractions derived from
SUM149 cell lines either transfected with a control vector (N3) or with HLA-G (G1)
was determined by Nanoparticle Tracking Analysis, while total protein
concentration was assessed by MacroBCA. Cell culture supernatants were
collected and EV were enriched by Tangential Flow Filtration and
Ultra-centrifugation.
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HLA-G Expressing Immune Cells in
Immune Mediated Diseases
P. Contini, Giuseppe Murdaca, Francesco Puppo* and Simone Negrini

Department of Internal Medicine, University of Genoa, Genoa, Italy

HLA-G is a HLA class Ib antigen that possesses immunomodulatory properties. HLA-
G-expressing CD4+ and CD8+ T lymphocytes, NK cells, monocytes, and dendritic
cells with immunoregulatory functions are present in small percentages of patients with
physiologic conditions. Quantitative and qualitative derangements of HLA-G+ immune
cells have been detected in several conditions in which the immune system plays an
important role, such as infectious, neoplastic, and autoimmune diseases as well as in
complications from transplants and pregnancy. These observations strongly support the
hypothesis that HLA-G+ immune cells may be implicated in the complex mechanisms
underlying the pathogenesis of these disorders.

Keywords: HLA-G, immune mediated diseases, lymphocytes, dendritic cells, monocytes, NK cells, regulatory
cells

INTRODUCTION

HLA-G is a HLA class Ib antigen characterized by a restricted tissue expression, low polymorphism
and seven isoforms (HLA-G1 to HLA-G7) (1, 2). In both membrane-bound and soluble form, HLA-
G exerts several immune-modulatory effects. It inhibits allogeneic proliferation of CD4+ T cells
(3), natural killer (NK) and CD8+ T cells cytotoxicity (4), maturation of dendritic cells (DC) (5),
and activation of B cells (6). In addition, soluble HLA-G molecules (sHLA-G) are able to trigger
apoptosis in antigen specific CD8+ T lymphocytes (4, 7, 8).

HLA-G also seems to be involved in the tuning of immune responses. The incubation of
peripheral blood mononuclear cells (PBMC) with HLA-G-expressing cells, favors a shift toward
a Th-2 cytokine profile; whereas incubation with sHLA-G may have a counterbalancing effect,
creating an anti-inflammatory environment due to the release of interleukin (IL)-10 (9, 10). Based
on these findings, it has been recently proposed that HLA-G should be categorized as an “immune
checkpoint” molecule (2).

HLA-G+ IMMUNE CELLS IN PHYSIOLOGIC CONDITIONS

T and NK Cells
Immune tolerance is based on a complex series of mechanisms that ultimately facilitate the
elimination of foreign antigens, preventing collateral damage to host tissues. Immune tolerance is
broadly classified into central and peripheral tolerance. Central tolerance occurs during lymphocyte
development in the primary lymphoid organs, namely thymus (T cells) and bone marrow (B cells).
Peripheral tolerance takes place in the peripheral tissues and lymph nodes, and consists of different
immunologic mechanisms capable of controlling self-reactive lymphocytes that have escaped from
central deletion (11). Immune regulation is crucial in the maintenance of peripheral tolerance
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and is mediated by the action of T regulatory (Treg)
lymphocytes (12). Several subsets of Treg lymphocytes with
distinct phenotypes and mechanisms of action have been
described within both CD4+ and CD8+ T lymphocytes, and
it has been clearly demonstrated that these cells play an
important role in physiological and pathological conditions such
as autoimmune, infectious, or neoplastic diseases (12, 13).

In 2007 Feger et al. described novel subsets of T cells that
express the immunomodulatory molecule HLA-G, identifying
them as distinct subpopulations of Treg lymphocytes (14). In
recent years, many other studies have confirmed the importance
of HLA-G+ Treg lymphocytes in physiology and disease.
Similar to the classical CD4+CD25+FoxP3+Tregs, human
HLA-G+ Treg cells originate from thymus and are present in
variable percentages in the peripheral blood of healthy subjects
(0.1–8.3%). However, HLA-G+ Treg cells can be differentiated
from classical CD4+ Tregs on the basis of their distinctive
phenotype, lacking Forkhead Box P3 (FoxP3), CD39, and CD25
expression (14). CD4+HLA-G+T cells have a low proliferative
capacity that, differently from classic Tregs, cannot be overcome
by the addition of exogenous IL-2 (14). In vitro, CD4+HLA-
G+ Tregs inhibit T-cell responses mainly through cell-to-cell
contact and independent mechanisms (15); whereas classical
CD4+CD25+FoxP3+ Tregs exert their suppressive function
mainly through cell-to-cell dependent mechanisms (13, 16). In
both Tregs subpopulations suppressive activity depends on an
optimal TCR stimulation. CD4+HLA-G+ Tregs and classical
CD4+CD25+FoxP3+ Tregs share common intracellular
down-stream signaling events, following T cell receptor (TCR)
ligation (17, 18). They show altered activation of the linker
in activation of T cells (LAT) molecules involved in proximal
TCR signaling, leading to reduced intracellular calcium influx
when compared to non-regulatory T-cells (16). CD4+HLA-G+
Treg cells seem to exert their suppressive function via the
secretion of various tolerogenic molecules such as sHLA-G5,
IL-10, IL-35, and transforming growth factor (TGF)-β (15, 16).
In this context, IL-10 and sHLA-G5 are the most important
molecules responsible for the immunoregulatory activity of the
CD4+HLA-G+ Treg (15, 16). Transforming growth factor-β and
IL-35 do not seem to have a direct role in the immunomodulation
exerted by CD4+HLA-G+ Treg, nevertheless, these cytokines
may indirectly promote an immunosuppressive milieu,
influencing the local differentiation of peripherally induced
Tregs and/or supporting the survival of thymus-derived natural
Tregs (19–21).

In vitro, CD4+HLA-G+ Tregs display a less efficient
suppressive activity than classical CD4+CD25+FoxP3+ Tregs;
whereas in vivo the immunosuppressive capacity of the two Treg
subsets is comparable (16). This notion suggests that CD4+HLA-
G+ Tregs may modulate tissue inflammation within the target
organs, in close proximity to effector T cells (16, 22).

Besides thymus-derived HLA-G+ Tregs, some normal resting
and activated CD4+ and CD8+ T cells may acquire through
trogocytosis the HLA-G1 molecule from antigen presenting
cells (APCs), thus changing their function from effectors to
regulatory cells capable of inhibiting alloproliferative responses
(23). Interestingly, the acquisition of HLA-G via trogocytosis has

also been described for monocytes and NK cells (24, 25). A non-
cytolytic subset of HLA-G+ NK cells (NK-ireg) can be generated
in vitro from peripheral blood CD34+ hematopoietic progenitors
expressing membrane-bound IL-15. NK-ireg cells display a
mature NK cell phenotype, release suppressive molecules (HLA-
G, IL-10, and IL-21), and through these factors are capable of
suppressing the cytotoxicity of DC and NK cells (26).

It has been recently reported that neutrophil gelatinase-
associated lipocalin seems to be capable of upregulating
HLA-G expression and expansion of Tregs cells in healthy
donors (27). This observation is consistent with the knowledge
that lipocalin family members act as modulators of many
different physiological and pathologic processes, including cell
differentiation, proliferation and apoptosis (28). Moreover, HLA-
G expression is strongly regulated by methylation, and it has
been recently observed that hypomethylating agents such as
azacytidine and decitabine, can induce de novo expression of
HLA-G on conventional T cells thus converting the latter
into HLA-G+ Tregs (29). This data suggest the possibility of
modulating the expansion of HLA-G-expressing T cells in vivo
or generating them in vitro for adoptive immunotherapy in
transplant patients or for other immunological disorders.

Monocytes
The expression of HLA-G in human mononuclear phagocytes
and APC has been known for many years (30, 31). HLA-G cell
surface expression has been detected at variable percentages in
peripheral blood CD14+ monocytes from healthy individuals
(32–36). HLA-G mRNA and intracellular HLA-G levels as well as
surface HLA-G expression are selectively increased after in vitro
treatment of monocytes with interferon (IFN)-β, IFN-γ, and
IL-10 (30, 32).

As far as the functional role of CD14+HLA-G+ cells is
concerned, it has been reported that they have limited in vitro
immunostimulatory function and are able to inhibit T-cell
alloproliferation when added in mixed lymphocyte cultures. The
suppressive function of CD14+HLA-G+ cells is related to the
expression of the HLA-G molecule, which can be antagonized
by blocking HLA-G with specific monoclonal antibodies, and
may also be mediated through sHLA-G, as suggested by transwell
experiments. Further in vitro experiments have shown that co-
incubation of CD4+ and CD8+ T cells with CD14+HLA-G+
cells decreases the surface expression of CD4 and CD8 molecules
and inhibits both Th1 and Th2 cytokine production by antigen-
stimulated autologous CD4+ T cells (37, 38).

Monocytes can differentiate into a range of functional subsets
including pro-inflammatory (M1) and anti-inflammatory (M2)
cells. Recently published data indicates that M2 cells obtained
from peripheral blood monocytes after in vitro activation with
IL-4, express high amounts of HLA-G and drive upregulation
of the HLA-G ligand immunoglobulin-like transcript (ILT)-2 on
NK cells. This leads to the generation of hyporesponsive CD56dim

NK cells with limited degranulation and cytotoxic activity (39).

Dendritic Cells
Peripheral blood DCs are APCs that regulate innate and
adaptive immune responses. Different DC subsets have been
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identified that can drive immune responses toward immunity
or tolerance, including conventional monocytoid DCs that
maintain immunological homeostasis and can induce tolerance,
plasmacytoid DCs that present foreign antigens, activate Tregs,
and tolerogenic DCs which promote tolerance.

The expression of HLA-G on DC may be regulated by
cytokines. In vitro experiments have shown that TGF-β increases
HLA-G expression by DC and that HLA-G+ DC down-regulate
activation of CD4+ T cells and production of IL-6 and IL-
17, suggesting the possibility that HLA-G+ DC plays a role in
immunoregulatory in vivo (40).

Recently, a subset of human DC has been characterized.
Termed DC-10, these human DC have the ability to secrete
IL-10. DC-10 are found in peripheral blood and the spleen of
healthy individuals. They can be generated in vitro by culturing
peripheral monocytes in the presence of IL-10. Furthermore, DC-
10 are highly represented in the decidua of pregnant women
when compared to peripheral blood, suggesting that these cells
may accumulate at the fetal maternal interface to promote
tolerance to the semi-allogeneic fetus (41). DC-10 have a mature
phenotype and express CD11c, CD14, CD16, CD141, and CD163.
DC-10 also express HLA-G and ILT-4 and are able to induce T
regulatory type 1 (Tr1) cells. The amount of HLA-G expression
on DC-10 is genetically driven and is associated with specific
variations in the 3’ untranslated region of the HLA-G gene.
Of particular interest are findings on the capacity of DC-10
to induce Tr1 cells, which correlates with the level of HLA-G
expression. These data indicate that HLA-G expression plays a
fundamental role in the tolerogenic activity of DC-10 and suggest
a potential clinical use of DC-10 as an immunomodulatory
treatment (42–44).

Collectively, results of in vitro and in vivo experiments indicate
that HLA-G positive DC can affect the activity of NK cells,
modulate the response of effector CD4+ and CD8+ T cells,
and induce Tregs. These findings strongly support the notion
that HLA-G expression by DC plays a central role modulating
innate and adaptive immune responses in a healthy state and in
pathological conditions.

HLA-G-EXPRESSING IMMUNE CELLS IN
NON-AUTOIMMUNE DISEASES

T and NK Cells
Lymphocytes expressing HLA-G have been reported in several
diseases in which the immune system plays a pivotal role, such as
neoplastic, infectious, and autoimmune/inflammatory disorders.

An increase in the percentage of CD8+HLA-G+ T cells and
the presence of HIV-1-specific CD8+HLA-G+ T lymphocytes
have been described in HIV-1 patients, although their exact
pathophysiologic role in the disease is still elusive (36,
45, 46). Other authors observed that HLA-G+ Treg may
reduce harmful bystander immune activation, while minimally
inhibiting antiviral T cell-mediated responses, thus suggesting
the positive role of these cells in the natural history of HIV
infection (47).

Reduced percentages of HLA-G expressing T cells and
monocytes have been observed in pre-eclamptic patients,
compared with women with a healthy pregnancy or healthy
control subjects (48). By analogy with these results, Hsu and
colleagues reported that CD4+HLA-G+ T cells are significantly
expanded in the peripheral blood of pregnant women compared
with non-pregnant controls and pre-eclamptic women (49). In
addition, CD4+HLA-G+ T cells tend to accumulate in the
decidua of healthy pregnant women; whereas this phenomenon
is impaired in pre-eclamptic patients (41). A small subset of
NKp46+HLA-G+IL-10+ NK cells has been described in vivo
among the decidual NK cells of pregnant women, but the exact
role of this cell subset requires further investigation (26).

Recently, a novel population of CD4lowHLA-G+ T cells,
identified as IL-4-expressing Th17 cells, has been described in
prostate cancer and their expansion seems to correlate with
the increase of tumor aggressiveness (50). Increased percentages
of HLA-G+CD3+ cells have been observed in the peripheral
blood of breast cancer patients, suggesting that these cells
may contribute to tumor development by down-modulating
antitumor immunity (51). Moreover, it has also been reported
that a subset of HLA-G+NK cells possessing suppressive activity
are considerably increased in the peripheral blood of breast
cancer patients (52).

It is well-known that, in order to escape immune-surveillance,
various malignant cells can aberrantly express HLA-G and/or
secrete sHLA-G (53, 54). In addition, cancer cells can
induce HLA-G-expressing immune cells (e.g., transferring
HLA-G to T cells through trogocytosis) within the tumor
microenvironment. This mechanism may increase the number of
local immunosuppressive cells, thus facilitating tumor immune-
escape (23, 55, 56).

A similar mechanism of immune-evasion has also been
described for microbial infections, in fact Pseudomonas
aeruginosa seems to be capable, at least in vitro, of inducing
HLA-G expression in immune cells, creating a protected niche
and facilitating bacterial survival (57).

In the context of kidney transplants, it has been reported
that HLA-G expression on T cells increases after the transplant,
but significantly decreases in subjects experiencing an acute
rejection. This data suggests that HLA-G might be involved in
the protection of transplants against rejection and the levels of
HLA-G on CD4+may represent a potential marker in predicting
episodes of renal rejection after kidney transplantation (58, 59).

In patients that experience an allergic reaction, HLA-G
expression as well as sHLA-G secretion are increased in CD4+
cells and monocytes after in vitro stimulation by the causal
allergen, but not by non-specific stimuli and non-causal allergens
(60). This data suggest that HLA-G may be involved into the
pathogenetic mechanisms underlying allergic inflammation and
allergen specific immunotherapy (60, 61).

Monocytes and Dendritic Cells
Several in vivo data-sets support the immunomodulatory
properties of HLA-G+ monocytes. In fact, a high frequency of
CD14+HLA-G+ cells have been detected in patients undergoing
allogeneic hematopoietic cell transplantation. These HLA-G+
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monocytes appear early post-transplant and remain at high levels
for up to one year after the transplant. It is of interest that
HLA-G+ monocytes have also been detected in skin biopsies of
transplanted patients who developed graft-versus-host disease. It
may be hypothesized that the increase of HLA-G+ monocytes
could be related to an alloreaction occurring after transplant (37).

Elevated numbers of HLA-G+ monocytes have been found
in the peripheral blood of HIV-1-infected individuals. The
expression of HLA-G might either be directly caused by the HIV-
1 virus infection or indirectly related to increased levels of IL-10,
which is known to induce HLA-G expression in monocytes.
By decreasing the antigen-presenting capacity of monocyte, the
upregulated expression of HLA-G could be one of the strategies
used by the HIV-1 virus to evade immune surveillance (36).

Collectively, in vitro and in vivo data suggests that monocyte
activation by cytokines, infectious agents, and allogeneic stimuli
induces HLA-G expression. Taking this into account, HLA-
G+ monocytes may exert immunosuppressive effects on CD4+,
CD8+, and NK cells, playing a role in down-regulation of the
immune response.

Concerning DCs, it has been reported that monocytoid DC
expressing high HLA-G levels can be found in the peripheral
blood of stable and tolerant liver transplant recipients. The
number of HLA-G+ DC correlates with the percentage of
CD4+CD25highCD127- Tregs and with the intensity of Foxp3
expression, thus supporting the hypothesis that HLA-G+ DC
may play a tolerogenic role in alloimmune reactivity (62).

Mast Cells
Mast cells are bone marrow derived cells that circulate in an
immature form and become mature after migration in a tissue
site. Mast cells have been mostly viewed as effectors of IgE-
mediated allergic diseases and host defense against parasites. The
role of mast cells in both innate and adaptive immunity has
been recognized recently. In addition, mast cells are involved
in tissue repair through the secretion of several cytokines
and growth factors that enhance fibroblast proliferation and
collagen deposition, and inhibit degradation of the extra cellular
matrix (63).

To our present knowledge it is not known whether mast
cells express HLA-G in physiological conditions, and emerging
research on the role for HLA-G+ mast cells in liver diseases
is of interest (64, 65). It has been reported that mast cells
infiltrating the livers of patients infected with hepatitis C virus
(HCV) express HLA-G and secrete HLA-G in soluble form. The
number of HLA-G+ mast cells is significantly associated with
the areas of connective tissue and liver fibrosis located close to
the hepatic arteries, veins and bile ducts of the portal tracts (66,
67). The presence of mast cells in the liver can be related to
the production of TGF-β, a potent mast cell chemoattractant, by
hepatic stellate cells (HSC)(68, 69). Then, HLA-G+ infiltrating
mast cells promote HSC proliferation that, in turn, induces
liver fibrosis (70). The expression and secretion of HLA-G by
mast cells in HCV infected patients can be explained by the
elevated amounts of IFN-α and IL-10 produced during HCV
infection (71, 72). Accordingly, in vitro and in vivo data indicate
that these cytokines strongly modulate HLA-G up-regulation in

monocytes and other cells including trophoblasts, fibroblasts,
and neoplastic cells (32, 73–78). The function of HLA-G+
mast cells during HCV infection remains to be clarified. It
may be suggested that HLA-G expression may promote viral
escape from the immune system by inhibiting both adaptive
and innate immunity, thus protecting HCV-infected cells and
favoring viral progression.

In summary, this data supports the assumption that HLA-
G+ immune cells are implicated in the pathogenesis of a
wide array of disorders. The role of HLA-G+ immune cells in
the context of autoimmune diseases will be discussed in the
following paragraphs.

HLA-G-EXPRESSING IMMUNE CELLS IN
AUTOIMMUNE DISEASES

Multiple Sclerosis
Multiple sclerosis (MS) is an immune-mediated disorder of the
central nervous system (CNS) leading to demyelination as well
as axonal and neuronal damage, with progressive neurological
impairment (79). The course of MS can follow four clinical
patterns that include relapsing remitting MS (RRMS, which
accounts for 80–90% of MS cases at onset), secondary progressive
MS (SPMS), primary progressive MS (PPMS), and progressive
relapsing MS (PRMS) (80). Although the pathogenesis of MS is
still not completely understood, it is known that central tolerance
may be defective leading to the development of self-reactive T
cells that transmigrate into the CNS where they can be activated
by APCs and determine brain damage (79). The brain has long
been considered an immunologically privileged site. This idea
is based on the observation that tissue transplants in the CNS
are not commonly rejected by the immune system. Commonly
accepted explanations for the lack of an effective immune
response to antigens in the brain are an anti-inflammatory
and, with regard to invading immune cells, pro-apoptotic
environment in the brain, the limited access of brain-derived
antigens to the lymphoid organs, the presence of the blood–
brain barrier, low major histocompatibility complex (MHC)
expression in the brain parenchyma, and the absence of DCs (81,
82). However, numerous studies in infectious, autoimmune and
tumor models have challenged this view by showing that potent
immune reactions can and do occur in the CNS (83).

The main aspect favoring the autoimmune etiology of MS
consists of the presence of activated IFN-producing T helper
1 (Th1) cells, that recognize peptides of the myelin sheath,
including myelin basic protein (MBP), proteolipid protein
(PLP), and myelin oligodendrocyte glycoprotein (MOG) (80).
HLA-G immunoreactivity was detected in the transition zone
between the plaque center and the perilesional areas as well
as in both acute and chronic active plaques. In proximity
of MS lesions the adjacent normal appearing gray matter
remained predominantly negative for HLA-G, whereas HLA-
G expression in adjacent normal appearing white matter was
similar to the expression levels of the lesion borders (83).
Notably, in early and highly inflammatory MS lesions, HLA-G
expression was abundant and detected on macrophages/activated
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microglia cells. Similarly, perilesional activated microglia cells
were immunoreactive for HLA-G. Furthermore, endothelial cells
and meningeal vessels as well as arachnoidal cap cells show
HLA-G immunoreactivity (83). However, expression of the
inhibitory receptors for HLA-G, belonging to immunoglobulin-
like transcript family ILT2 and ILT4, have been described in
chronic active MS plaques. ILT2 immunoreactivity could be
observed in the plaque center and the plaque border and
paralleled HLA-G immunoreactivity. The main cellular sources
for both molecules were macrophages and microglia (83). The
cerebrospinal fluid (CSF) compartment has been proposed to
partially constitute a functional equivalent of the lymphatic
system for the CNS. Interestingly, the levels of HLA-G on
CD14+ monocytes were significantly elevated in the CSF of
patients with MS compared with peripheral blood. Of note is the
fact that HLA-G expressed by monocytes was identified as an
important negative immune-regulatory factor, down-regulating
the production of Th1 as well as Th2 cytokines, inhibiting
antigen-specific and autologous CD4+ T-cell activation, and
inducing anergic T cells (37, 38). Furthermore, a small
number of both CD4+ and CD8+ T cells, including CD4+
Tregs, expressed HLA-G in the CSF of MS patients (83).
Interestingly, CSF-derived HLA-G+CD4+ Tregs show high
expression of the C-C chemokine receptor 5 that might
favor their selective migration into the nervous system of
MS patients, counteracting the activity of autoreactive T cells.
The frequency of CSF-derived HLA-G+CD4+ Tregs correlates
positively with the disease status in MS patients with active
disease (22). Increased levels of HLA-G+CD4+ Tregs have
been detected in MS patients responses to IFN or natalizumab
treatment (80).

Taken together, these findings, seem to confirm that HLA-G
expression on immune cells infiltrating CNS and detectable in
CSF, may contribute to immune-regulation in MS.

Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) is an autoimmune
inflammatory disease that can affect virtually any organ system,
including skin, joints, kidneys, brain, and blood vessels (84).
The development of SLE is dependent on a complex interplay
between genetic, environmental, and immunological factors (85,
86). Among these, defective function of regulatory T cells and
polyclonal activation of B lymphocytes leading to the production
of auto-antibodies seems to play a major role (87–89).

Limited literature data are available on the expression of
HLA-G in immune cells from SLE patients. Monsivais-Urenda
et al. reported that monocytes from SLE patients as well as
mature CD83+ DC showed a reduced expression of HLA-G
compared with healthy controls (35). In addition, monocytes
from SLE patients showed a diminished induction of HLA-G
expression in response to stimulation with IL-10, and when
pre-treated with IFN-γ they exhibited an impaired capability to
inhibit the proliferation of autologous lymphocytes. Interestingly,
lymphocytes from SLE patients seem to display a lower
capability to acquire HLA-G molecules by trogocytosis from
autologous monocytes as compared to lymphocytes from normal
subjects (35). By contrast, our and other groups reported that

the percentage of HLA-G expressing cells among PBMC is
significantly higher in SLE patients than in healthy controls (33,
90). In particular, the percentages of HLA-G-positive monocytes
and HLA-G-expressing CD4+, CD8+, and CD4+/CD8+ double
positive (DP) cells are significantly higher in SLE patients
than in controls. Moreover, within the population of DP
cells a subpopulation of CD4dullCD8high cells displayed a high
proportion of HLA-G+ cells, while HLA-G was virtually absent
in the same subpopulation of healthy subjects (33). The function
of circulating HLA-G+ DP cells is not known, however, it is
worth noting that DP cells seem to exert a suppressive role
in the production of autoantibodies in SLE patients (91). In
summary, it may be proposed that the up-regulation of HLA-G
membrane expression by PBMC could reflect an effort to regulate
the hyperactive immune status occurring in SLE.

Systemic Sclerosis
Systemic sclerosis (SSc) is a chronic connective tissue disease
of unknown origin, more frequently affecting women. It is
characterized by diffuse fibrosis, vasculopathy and immune
dysregulation. In addition to skin involvement, SSc can
affect multiple organ systems, including the musculo-skeletal,
pulmonary, cardiac, gastrointestinal, and urinary systems (92,
93). Complex alterations of the normal functional balance within
immune cells sub-populations, in particular Th17 lymphocytes
and Tregs, including both CD4+ and CD8+ Tregs subsets, have
been demonstrated in patients affected by SSc (94–97).

Our research group analyzed the role of both membrane HLA-
G and sHLA-G in SSc patients. In particular, we recently reported
that the percentage of HLA-G-positive monocytes, CD4+ T
cells, CD8+ T cells and DP cells are significantly higher in
SSc patients as compared to healthy subjects (34). Among DP
cells a subpopulation of CD4dullCD8high lymphocytes highly
expressing HLA-G was detected. The function of circulating
DP cells in SSc is under investigation, however, it is worth
noting that these cells, which may exert potent suppressive
effects, are present in the inflamed tissues of patients affected
by immune mediated disorders and in the skin of patients
with early active SSc. This may contribute, through IL-4
secretion, to the enhanced extracellular matrix deposition by
fibroblasts (98). Plasma sHLA-G levels were higher in SSc
patients when compared to healthy controls. Notably, plasma
levels of sHLA-G1 and sHLA-G5 isoforms were comparable
and no significant differences were detected in total sHLA-
G, sHLA-G1 and sHLA-G5 levels between limited and diffuse
SSc forms. The total sHLA-G plasma levels correlated with
the elevated TGF-β levels circulating in SSc patients (34). This
finding is in agreement with in vitro data demonstrating that
the production of TGF-β by myelomonocytic cells is strongly
increased after incubation with recombinant sHLA-G (99). In
summary, it may be proposed that there is a possible involvement
of HLA−G in SSc pathogenesis, as the elevated HLA−G
membrane expression by PBMC and the increased sHLA−G
plasma levels may reflect an attempt to control the immune
derangement occurring in this disease and concur, through
TGF-β up-regulation, with fibroblast activation and fibrosis
development (34).
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Skin Diseases
Psoriasis (Ps) is a common inflammatory, chronic, and disabling
skin disease that affects 1–3% of the population (100). Distinct
clinical phenotypes may be observed in this disease, including
chronic plaque (Ps vulgaris), guttate, and pustular variants. At
least 10% of patients can develop arthritis (101). In many cases,
a marked infiltration of mononuclear leucocytes (T lymphocytes
and DC) into the dermis and elongated/hyperplastic blood vessels
in the papillary dermal region can be observed (102). Because
Ps is considered to be an organ-specific autoimmune disease,
Cardili et al. analyzed HLA-G expression in skin specimens
obtained from patients with Ps and observed the presence
of HLA-G molecules on lymphomononuclear cells within the
dermis and to a higher extent, in the epidermis. The intensity
of HLA-G expression was not correlated with Ps variants or
severity. By contrast, skin specimens obtained from healthy
individuals were negative for HLA-G expression (103). Other
authors have reported HLA-G expression in CD68+ CD11c+
macrophages lining the dermo-epidermal junction in patients
with Ps vulgaris (104). In addition, NK cells and CD4+ T
cells expressing the IL2 inhibitory receptor have been described
in Ps skin infiltrates, suggesting that HLA-G may act as an
inhibitory molecule to down-regulate the activation of effector
cells (104). These findings lead to the assumption that HLA-
G+ macrophages could represent an internal control system that
counteracts auto-reactive expression of T-cell cognate receptors
for HLA-G.

Atopic dermatitis (AD) is another chronic T-cell mediated
skin disorder which, in contrast to Ps, exhibits a Th2 type
cytokine profile including over-production of IL-10, which
is known to up-regulate HLA-G (105). Khosrotehrani et al.
investigated the role of HLA-G in patients with AD. They found
that HLA-G was mainly expressed by infiltrating T cells and to a
lesser extent, by macrophages and even DC (106). The epidermis
was consistently negative for HLA-G expression, suggesting that,
analogously to Ps, HLA-G up-regulation may either be the
consequence of the permissive cytokine environment in AD or
it may be a part of an internal regulatory system to control
excessive inflammation.

DISCUSSION

Data in recent literature indicates that small percentages of HLA-
G positive immune cells can be detected in the peripheral blood
of patients with physiological conditions. In these conditions
HLA-G positive immune cells seem to play an emerging
role in maintaining immune homeostasis. However, increased
percentages of circulating and tissue infiltrating HLA-G positive
immune cells occur in various pathological conditions like
infections, cancers, transplants, and immune-mediated diseases.
Taking into account the immunoregulatory role of HLA-G, it may
be suggested that T lymphocytes, NK cells and APCs that express
HLA-G molecules are potentially involved in the pathogenesis of
immune mediated diseases.

HLA-G positive cells can modulate both the priming and the
effector phases of the immune response, thus contributing to
peripheral immune tolerance. It may be proposed that HLA-
G expressing immune cells represent an attempt to create an
immune-suppressive milieu, as a way of controlling immune
derangement in systemic autoimmune disorders. However,
several important issues still need to be clarified in this context.
A better understanding of the HLA-G gene regulation will greatly
improve the possibility of manipulating this emerging immune
check-point, which could alter the course of immunological
diseases. Moreover, the role played by different molecular HLA-
G isoforms and the contribution of specific HLA-G expressing
subpopulations in each clinical situation needs to be better
defined. Therefore further pre-clinical and clinical investigations
are required in order to provide more detailed information on
the role played by HLA-G expressing cells in the mechanisms
underlying the onset and progression of immune-mediated
diseases. These future studies are crucial for the development of
potential HLA-G strategies of therapy.
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During pregnancy, the maternal uterus and fetus form a special microenvironment at the
maternal-fetal interface to support fetal development. Extravillous trophoblasts (EVTs),
differentiated from the fetus, invade into the decidua and interact with maternal cells.
Human leukocyte antigen (HLA)-G is a non-classical MHC-I molecule that is expressed
abundantly and specifically on EVTs in physiological conditions. Soluble HLA-G (sHLA-G)
is also found in maternal blood, amniotic fluid, and cord blood. The abnormal expression
and polymorphisms of HLA-G are related to adverse pregnancy outcomes such as
preeclampsia (PE) and recurrent spontaneous abortion (RSA). Here we summarize current
findings about three main roles of HLA-G during pregnancy, namely its promotion of spiral
artery remodeling, immune tolerance, and fetal growth, all resulting from its interaction with
immune cells. These findings are not only of great significance for the treatment of
pregnancy-related diseases but also provide clues to tumor immunology research since
HLA-G functions as a checkpoint in tumors.

Keywords: human leukocyte antigen G, pregnancy, extravillous trophoblasts, immunology, natural killer cells, spiral
artery remodeling, fetal development
INTRODUCTION

The HLA-G gene was first discovered in 1982 (1) and was denominated HLA-G in 1990 (2). HLA-G
is a class I histocompatibility antigen, but unlike the classical class I major histocompatibility
complex (MHC-I) HLA-A, HLA-B, and HLA-C genes, HLA-G displays limited polymorphism.
Seven different HLA-G mRNA transcripts have been identified, with this variety attributed to
alternative splicing of its seven exons. HLA-G2, G3, and G4 transcripts are translated into
membrane-binding isoforms; HLA-G5, G6, G7 into soluble HLA-G (sHLA-G) isoforms; and
HLA-G1 into both types of isoforms (3–6).

HLA-G appears to be especially relevant to pregnancy. After ovulation, the uterine stromal
fibroblasts of the endometrium differentiate into decidual cells. In addition, uterine spiral arteries
are formed. In early pregnancy, steroid hormones, progesterone, and b-estradiol act on maternal
vascular endothelial cells and increase vascular permeability, promoting angiogenesis (7–9).
Immune cells, especially natural killer (NK) cells, are recruited though maternal vessels.
Extravillous trophoblasts (EVTs) of the embryo invade into the decidua and replace the
endothelial cells (10). Together, these processes remodel spiral arteries and form the maternal-
fetal interface to support the provision of oxygen and nutrients for fetal development.
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HLA-G has been reported to be expressed on the surfaces of
preimplantation embryos (11–13) and EVTs (14–16), while
sHLA-G has been detected in culture medium of in vitro-
fertilized (IVF) embryos (17, 18), maternal blood (19–21),
amniotic fluid (22, 23), and cord blood (24, 25). HLA-G plays
critical roles in the remodeling of spiral arteries, fetal
development, and immune tolerance (10).

Considering these findings involving HLA-G, it is not
surprising to also find relationships between HLA-G and
complications associated with pregnancy. Specifically, HLA-G
gene polymorphisms and decreased levels of sHLA-G have been
found to be related to embryo implantation failure (18, 26–30),
recurrent spontaneous abortion (31–36), placental abruption
(37) and pre-eclampsia (38–48). For example, a multicenter
study showed that the presence of soluble HLA-G in the
culture medium of the embryo is significantly associated with
increased pregnancy rates after assisted reproduction technique
(ART) (26). Furthermore, Nowak et al. observed that soluble
HLA-G level in the serum of patients is correlated with
pregnancy outcome after ART. In addition, they revealed
significantly association of G-C-ins (-725G>C SNP in the
promoter region of HLA-G) haplotypes with infertility (27).
HLA-G plasma level in women with placental abruption was
significantly decreased (37). It is therefore critical to achieve a
comprehensive understanding of the roles of HLA-G in
pregnancy in general, and in maternal-fetal interactions
specifically. Herein, we review three such major identified roles.
HLA-G PROMOTES THE REMODELING
OF SPIRAL ARTERY

Fetal development in the uterus requires nutrients and oxygen
provided by the maternal blood. Spiral artery remodeling is
essential for accelerating and stabilizing placental blood flow
during pregnancy. This remodeling begins with decidua-
associated remodeling and involves the initial swelling and
disorganization of the vascular smooth muscle of spiral artery.
Next the vascular endothelium becomes liquefied and the elastic
membrane disintegrates. These changes are mainly induced by
angiogenic growth factors, which have been found to be
produced by decidual NK cells and macrophages (49–53).

NK cells constitute less than 20% of human peripheral
lymphocytes, but account for about 70% of lymphocytes in the
first-trimester decidua (54), and are hence the most abundant
lymphocytes in the early maternal-fetal interface. NK cells
recognize MHC-I proteins on target cells by expressing
receptors such as killer cell immunoglobulin-like receptors
(KIRs). And then NK cells decide whether to kill target cells
upon signals from inhibitory or activating receptors.

KIR2DL4 (also called CD158d), a member of the KIR family,
has a structure, localization, and function that differs from that of
other KIRs (55–57). KIR2DL4 is expressed by NK cells and
activates the production of IFN-g but does not promote
cytotoxicity of resting peripheral NK cells (58, 59). One variant
of KIR2DL4, 9A is unstable on the surface because of its
Frontiers in Immunology | www.frontiersin.org 260
truncated cytoplasmic tail (60). In addition, KIR2DL4 has been
reported to be mainly localized in intracellular endosomes
containing Rab5 (61) and this localization requires the Ig
domain of KIR2DL4. The localization and function in
endosomes is specific to KIR2DL4. Because the expression of
other members of the KIR family on the cell surface is very high.

The ligand of KIR2DL4 is HLA-G. Rajagopalan et al. (57)
reported that soluble KIR2DL4, a fusion protein composed of the
extracellular region of KIR2DL4 and the IgG Fc region, binds to
LCL 721.221 cells that express HLA-G but not HLA-Cw3 or
HLA-B7. Furthermore, soluble HLA-G or HLA-G on the surface
of target cells was observed to be endocytosed into vesicles of NK
cells after interacting with KIR2DL4. Soluble HLA-G has been
shown to act ivate the secret ion of proangiogenic/
proinflammatory cytokines and chemokines (i.e., IL-6, IL-1b,
IL-8, IL-23, MIP-1-a, and MIP-3-a) by NK cells. In addition, the
secretion of IL-8 was shown to require the cytoplasmic tail of
KIR2DL4 (61). Rajagopalan et al. (62) later described the
molecular mechanism involved in this process. In NK cells,
KIR2DL4 was found to interact with DNA damage signaling
kinase DNA-PKcs and trigger phosphorylation of Akt at position
Ser473 fo l lowing st imulat ion with soluble HLA-G.
Phosphorylated Akt activates the NF-kB pathway and hence
results in the production of proinflammatory and proangiogenic
cytokines (62). In addition, Rajagopalan et al. (63) identified a
mutation of the TRAF6-binding motif in the KIR2DL4
cytoplasmic tail that caused decreased IL-8 secretion in
transfected 293T cells. A co-immunoprecipitation assay using
NK cells demonstrated an association between TRAF6 and
KIR2DL4. And the TRAF6 binding site was shown to be
required for the NF-kB signaling pathway. Specifically,
KIR2DL4 recruits TRAF6, which in turn phosphorylates TAK1
at position T187. TAK1 participates in the production of IL-6,
IFN-g, CXCL1, and P2RX5 in NK cells (63).

When peripheral NK cells were stimulated with soluble HLA-
G (sHLA-G) or KIR2DL4 agonist antibody, DNA-PKcs was
activated and induced the expression of cyclin-dependent
kinase inhibitor p21. At the same time, heterochromatin
protein 1-g (HP1-g) was phosphorylated at position Ser-83.
These events are related to cell senescence. NK cells activated
by KIR2DL4 and sHLA-G acquired senescence features, in
particular they became enlarged and showed increased b–
galactosidase (SA-b-gal) activity. However, proliferation and
apoptosis were not induced. Supernatants from peripheral NK
cells stimulated with agonist antibody of KIR2DL4 could
enhance HUVEC vascular permeability and tube formation.
This observation is consistent with the stimulation by TNF-a
and IL-1b (64). These data acquired by Long et al. showed that
sHLA-G can stimulate the production of senescence-associated
secretory phenotype (SASP) in NK cells by binding to KIR2DL4,
and hence promote vascular permeability and angiogenesis (65).
Thus, in this way, HLA-G can facilitate spiral artery remodeling
(Figure 1).

KIR2DL4 mRNA has been detected in peripheral NK cells of
every donor tested (66). Nonetheless, protein levels of KIR2DL4
were reported to be very low on the surface of resting peripheral
October 2020 | Volume 11 | Article 592010
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NK cells and decidual NK cells (67). In addition, the
investigations, which sHLA-G and KIR2DL4 are endocytosed
into endosomes and induce secretion of proangiogenic cytokines
that promote vascular permeability, were verified in peripheral
NK cells. Peripheral NK cells are quite different from decidual
NK cells, and hence whether this process and mechanism occur
in decidual NK cells remains to be determined. Furthermore, Fu
et al. (68) observed the expression of intracellular KIR2DL4 in
first-trimester decidual NK cells. This observation is consistent
with the findings that KIR2DL4 resides in endosomes of decidual
NK cells.

HLA-G has been reported to be selectively expressed on the
cell surface of extravillous trophoblasts (14, 15). In addition,
Apps et al. (69) found a significant percentage of HLA-G
expressed as a homodimer on the surfaces of trophoblast cells
in first-trimester placenta. This HLA-G homodimer is
disulphide-linked and b2m-associated (69, 70). LCL 721.221
cells that express homodimeric HLA-G could stimulate CD14+

decidual macrophages or decidual NK cells to secrete cytokines
such as IL-6, IL-8, and TNF-a (53). This stimulation is activated
when homodimeric HLA-G binds to immunoglobulin-like
transcript 2 (ILT2, also called LILRB1) on macrophages or to
KIR2DL4 on NK cells. Macrophages differentiated from
peripheral monocytes could exhibit the phenotype of decidual
Frontiers in Immunology | www.frontiersin.org 361
macrophages when stimulated by soluble HLA-G5. These
macrophages were observed to secrete more IL-6 and CXCL-1
and to induce trophoblast invasion (71). In addition, soluble
HLA-G5 could also form a homodimer (69). Although, it
remains to be determined whether sHLA-G in decidua and
maternal serum exists as a homodimer or monomer.

sHLA-G induces the secretion of IL-8 in NK cells and
homodimeric HLA-G on EVTs can stimulate decidual NK cells
and macrophages to produce IL-8. Hanna et al. (72) found that
decidual NK cells highly express IL-8, which can bind to CXCR1
and CXCR3. In addition, a transwell assay showed that IL-8
neutralizing antibody could reduce invasiveness of trophoblasts
induced by decidual NK cells. Furthermore, neutralizing
antibody to IL-8 could inhibit trophoblast invasion induced by
decidual NK cells in Matrigel on nude mice. Therefore, IL-8
secreted by decidual NK cells was determined to participate in
trophoblast invasiveness. In addition, a population of ILT2hi

pregnancy-trained decidual NK cells has been identified in
repeated pregnancies. HLA-G-expressing LCL721.221 cells
could enhance the secretion of more VEGFa in decidual NK
cells of women with multigravid pregnancies. VEGFa secreted
by decidual NK cells promotes vascularization (73).

In addition, HLA-G1+ APCs have been shown induce the
differentiation of CD4+ peripheral T cells into suppressive CD4+
FIGURE 1 | Proposed interaction of HLA-G with decidual NK cells to promote spiral artery remodeling. HLA-G on EVTs or sHLA-G secreted by EVTs binds to
KIR2DL4 on NK cells, and HLA-G and KIR2DL4 are then endocytosed into Rab5+ endosomes of NK cells. The endocytosed KIR2DL4 binds to TRAF6, induces
phosphorylation of TAK1 at Thr187 and activates the NF-kB pathway. In addition, KIR2DL4 interacts with DNA-PKcs, triggering phosphorylation of Akt at Ser473
and upregulating p21. Phosphorylated Akt then activates the NF-kB pathway and results in the expression of the senescence-associated secretory phenotype
(SASP) and production of, for example, IL-6 and IL-8. The SASP promotes vascular permeability, angiogenesis and invasion of EVT.
October 2020 | Volume 11 | Article 592010
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T cells (74). It has been reported that decidual Treg cells can
increase trophoblast invasiveness. This effect is inhibited by anti-
IL-10 neutralizing antibody and is increased by anti-TGF-b
antibody (75).

The remodeling of spiral artery in women with pre-eclampsia
is impaired (76). In patients with pre-eclampsia, the level of
soluble HLA-G in serum was detected to be decreased whether in
the first, second or third trimester of pregnancy (41, 50). In
addition, HLA-G3 transcript was significantly reduced in the
placenta of mild pre-eclampsia (42). Furthermore, the frequency
of +14 bp/+14 bp genotype (14 bp insert in exon 8 of the HLA-G
gene) in pre-eclampsia offspring was higher than in control
offspring. In addition, fetal HLA-G*0106 in combination with
maternal KIR2DL4*006 allele was reported to be associated with
pre-eclampsia risk among multigravid pregnancies (51).
Therefore, it will accelerate the treatment and prevention of
preeclampsia to investigate the role of HLA-G in spiral
artery remodeling.
HLA-G PARTICIPATES IN THE
FORMATION OF MATERNAL-FETAL
IMMUNE TOLERANCE

In the uterus, the fetus expresses paternal histocompatibility
antigens, which are foreign antigens for the mother, yet the fetus
is neither rejected nor attacked by the maternal immune system.
This phenomenon is related to the specific immune tolerance
microenvironment at the maternal-fetal interface. In the first
trimester, immune cells account for up to 40% of the decidua.
NK cells, macrophages, and T cells make up, respectively, about
70%, 15%–20%, and 5%–15% of decidual leukocytes (77). In
addition, myeloid dendritic cells (DCs) have also been detected.
Fetal-derived EVTs invade into the decidua and come into direct
contact with maternal leukocytes. EVTs express classical MHC I
HLA-C molecules and non-classical MHC I HLA-G and HLA-E
molecules, and interact with leukocytes expressing receptors
(such as KIR) to provide immune tolerance conditions (78).

NK cells are the most abundant leukocytes in the decidua
during the first trimester. Expression of HLA-G has been
suggested to protect NK-cell-sensitive cells from lysis by NK
cell lines or decidual NK cells (79, 80). Moreover, NK cells in the
maternal uterine blood were observed to not kill cytotrophoblast
cells, whether the cytotrophoblast cells were isolated from the
same mothers from whom the NK cells were derived or from
other mothers. Cytotoxicity of NK cells was restored if an
antibody that blocks both HLA-G and HLA-C was added into
the co-culture medium. But an anti-HLA-C antibody did not
reverse the protection against NK lysis. Therefore, HLA-G
protected embryo-derived cytotrophoblast cells from being
lysed by NK cells from the maternal uterine blood (81).
However, cells overexpressing HLA-G have been reported to
upregulate the surface expression of HLA-E, another
nonclassical MHC molecule (82) since HLA-E can be loaded
with HLA‐G‐derived peptide, the HLA-G leader sequence (83).
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Therefore, it is the HLA-E-NKG2A/CD94 interaction that
inhibits cytotoxicity of NK cells to cell lines expressing HLA-G.

NK cells have been reported to express two HLA-G receptors:
KIR2DL4 (57) and ILT2 (69). Co-culture of NK cell lines with
HLA-G-expressing melanoma M8 cells restored the expression
of KIR2DL4 or ILT2 on NK cells (84), and NK cells could use the
trogocytosis to acquire HLA-G from tumor cells (85). Following
co-culture with HLA-G1-expressing M8 cells or LCL 721.221
cells, IL-2-activated NK cells or IL-2-activated peripheral NK
cells could acquire HLA-G1 on their cell surfaces and lose their
cytotoxicity. Similarly, trogocytosis could transfer HLA-G to
decidual NK cells from EVTs (86). While HLA-G mRNA was
not detected, cell surface and intracellular HLA-G molecules
were found in decidual NK cells after NK cells were co-cultured
with EVTs. A transwell separation demonstrated NK cells
obtaining HLA-G through direct cell contact. Therefore,
decidual NK cells were shown to obtain HLA-G and then
endocytose the HLA-G when in contact with EVTs. As
mentioned above, HLA-G binds KIR2DL4 and is endocytosed
by NK cells. Trogocytosis may play a role in NK cell tolerance.

Apps et al. (87) found that decidual NK cell degranulation
was not affected when co-culturing with LCL 721.221 cells
expressing HLA-G. The CD107a level in decidual NK cells was
unchanged as a result of the stimulation of LCL 721.221 cells that
express HLA-G. In addition, van der Meer et al. (88) reported
that soluble HLA-G did not affect cytotoxicity of uterine
mononuclear cells towards K562 cells and lytic activity of
peripheral NK cells towards K562 cells was not affected by
soluble HLA-G. However, soluble HLA-G could stimulate
peripheral NK cells to produce interferon (IFN)-g. Further,
Poehlmann et al. (89) found that soluble HLA-G1 could
inhibit cytotoxicity of term placentae NK cells towards K562
cells, NK cell sensitive cell lines, even when the NK cells were
pre-stimulated with IL-2. And soluble HLA-G1 induced
reduction of perforin in term placentae NK cells. Therefore, it
is necessary to use a system of decidual NK cells and EVT to
study the effects and underlying mechanism of HLA-G on
decidual NK cells tolerance to EVTs. Du et al. (75) reported
that lytic activity of decidual NK cells towards K562 cells was
reduced when decidual NK cells were pre-cocultured with
trophoblasts. Trophoblasts pre-incubated with Treg cells
showed a greater downregulation effect, attributed to decidual
CD4+CD25+ Treg cells upregulated HLA-G expression in the
trophoblasts. Furthermore, a neutralizing antibody to HLA-G
could rescue the cytotoxicity of decidual NK cells. Thus, Treg
cells could promote the expression of HLA-G in trophoblasts
and inhibit cytotoxicity of decidual NK cells, and hence facilitate
the production of IL-4 and IL-10 by decidual NK cells. In
addition, de Mendonça Vieira found that HLA-G expression
on term placenta EVTs is higher than that on first trimester
EVTs. Increased HLA-G could provide increased interaction
with term pregnancy dNK cells through KIR2DL4 and ILT2.
However, term pregnancy dNK cells showed increased
degranulation capacity in response to PMA/ionomycin and
K562 cells (90). Therefore, HLA-G may have different effects
on dNK cells in different stages of pregnancy.
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In first-trimester decidua, 10%–15% of leukocytes are T cells.
This proportion has been shown to rise up to 70% at the end of
pregnancy (77). At the same time, HLA-G expression has been
observed to be higher in term pregnancy EVT cells than in first-
trimester EVTs (91). Decidual T cells have been reported to
express the HLA-G receptor ILT2. In 1999, Le Gal et al. (92)
found that HLA-G specifically inhibited cytolytic T cell function.
M8 cells were sensitized with influenza virus peptide and the
cytotoxicity of peripheral antigen-specific CD8+ CTL towards
M8 cells was specifically decreased when M8 cells expressed
HLA-G1. This inhibition could be rescued by anti-HLA-G1
mAb. In addition, Bainbridge et al. (93) reported that
expression of HLA-G on C1R B-lymphocyte cells inhibited
CD4+ T cell proliferation when peripheral blood mononuclear
cells were stimulated by C1R. Furthermore, HLA-G1 was
reported to induce upregulation of ILT2 and KIR2DL4 mRNA
in peripheral CD4+ T cells when peripheral blood mononuclear
cells (PBMCs) were co-cultured with HLA-G1-expressing LCL
721.221 cells (84). A proportion of peripheral CD4+ T cells and
CD8+ T cells express ILT2 on their surfaces. Further, addition of
anti-ILT2 mAb was observed to enhance cytotoxicity of CD8+

CTL towards target cells (94). Soluble ILT2 and ILT4 could
competitively inhibit binding of soluble recombinant CD8aa to
solubleMHC-Imolecules includingHLA-G1 (95). LeMaoult et al.
(96) found that peripheral CD4+T cells andCD8+T cellswere able
to acquire HLA-G1 by trogocytosis from LCL 721.221 cells, which
express HLA-G1. This process did not require any interaction
between HLA-G1 and receptors since addition of anti-HLA-G1
mAb or anti-ILT2 mAb did not affect the trogocytosis capability.
Acquired HLA-G1 inhibited proliferation of peripheral CD4+ T
cells stimulated by IL-2 or allogeneic PBMCs. In addition, CD4+ T
cells that acquired HLA-G1 turned into regulatory cells and
inhibited activation and proliferation of autologous T cells.
Furthermore, peripheral T cells could also use trogocytosis to
acquire ILT2 (97). Given that EVTs express high levels of HLA-G,
and that Treg cells account for a high proportion of T cells in
decidua, decidual T cells may also obtain HLA-G from EVTs and
transform into Treg cells. Interestingly, Tilburgs et al. (98)
reported that the co-culture of T cells with EVTs could increase
the percentage of CD4+CD25hiFOXP3+CD45RA+ Treg cells in a
population of decidual T cells or peripheral T cells. Recently,
Salvany-Celades et al. (99) identified three types of Treg cells in
decidua: CD25hiFoxp3+, PD1hi, and TIGIT+ Treg cells. In their
experiments, all these Treg cells suppressed proliferation of
decidual CD4+ or CD8+ T cells stimulated with anti-CD3 and
anti-CD28 beads. CD25hiFoxp3+, PD1hi Treg cells could inhibit
IFN-g, TNF-a production of decidual CD4+ or CD8+ T cells. In
addition, co-culture with EVTs was observed to increase the
proportion of CD25hiFoxp3+ and PD1hi Treg cells but not of
TIGIT+Treg cells thatmake up the population of CD4+ peripheral
T cells. This process would be expected to require cell-cell contact.
However, addition of blocking antibody against HLA-G had no
effect on the increase of the proportion of Treg cells in the
population of peripheral T cells. Whether HLA-G mediates an
increase in the quantity of Treg cells in decidua remains to
be investigated.
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CD14+ macrophages constitute the second largest population
of leukocytes in the decidua and express HLA-G receptors ILT2
and ILT4. Decidual macrophages in the first trimester consist of
two distinct populations: CD11chi and CD11cloCD209hiCD206hi.
These two subsets have been shown to constitutively produce IL-
6, TNF-a, and TGF-b, whereas IL-10 and MIP-1b have been
shown to be mainly secreted by CD11chi decidual macrophages
(100). Expression of ILT2 and ILT4 were increased in peripheral
monocytes stimulated with M8 cells expressing HLA-G1 or
HLA-G5 (95). In addition, HLA-G1-transfected antigen
presenting cells (APC) lines could inhibit proliferation of
CD4+ T cells, which was not mediated by the release of HLA-
G1 in the medium. Further, APCs expressing HLA-G1 induced
the differentiation of CD4+ T cells into suppressive T cells (74).
The inclusion of decidual macrophages was observed to increase
the percentage of Treg cells in the population of peripheral CD4+

T cells (99). However, it is still unclear whether HLA-G
participates in immune tolerance mediated by macrophages.

DC-SIGN+ (CD11c+CD1c+) cells make up about 3% of
decidual leukocytes (101). IL-10-producing DCs have been
reported to be present in PBMCs, and are termed DC-10. DC-
10 has been indicated to be able to induce a differentiation of
naïve CD4+ T cells into IL-10-producing Tr1 cells when
subjected to an ILT4/HLA-G signal. And this interaction
induced the expression of HLA-G on CD4+ T cells (102). Guo
et al. (103) found that trophoblasts express thymic stromal
lymphopoietin (TSLP) and secret soluble TSLP. Decidual
CD1c+ DCs were observed to secrete a lot of IL-10 and CCL-
17 when stimulated with soluble TSLP, thereby promoting the
differentiation of decidual CD4+ T cells into Th2 cells. In
addition, decidual DCs stimulated by TSLP could induce
dec idual CD4+CD25- T ce l l s to di fferent ia te into
CD4+CD25+FOXP3+ Treg cells through TGF-b1 (75).

In addition, granulocytic myeloid-derived suppressor cells
(GR‐MDSCs) were found to accumulate in the term placenta
(104). GR-MDSCs in the peripheral blood of pregnant woman
express ILT2 and ILT4. Soluble HLA-G can increase the
suppressive activity of placental GR-MDSCs on T cell
proliferation (105). Therefore, GR-MDSCs contribute to the
formation of immune tolerance in placenta.
HLA-G FACILITATES FETAL GROWTH

In addition to promoting remodeling of spiral arteries and
immune tolerance, HLA-G has been found to facilitate fetal
growth by stimulating secretion of growth promoting factors
(GPFs) in NK cells, according to recent studies (68, 106, 107).

Fu et al. (68) found that decidual NK cells in the first trimester
expressed high quantities GPFs such as pleiotrophin (PTN),
osteoglycin (OGN), and osteopontin (OPN) at the mRNA and
protein levels. Most GPF-positive NK cells were CD49a+Eomes+

tissue resident NK (trNK) cells. However, a smaller percentage of
the decidual NK cells in the first trimester from recurrent
spontaneous abortion (RSA) patients were trNK cells, and
these first-trimester decidual NK cells from RSA patients
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showed decreased secretion of GPFs, while expression of GPFs in
trNK cells from patient decidua was decreased. In order to
explore whether the defect of trNK cells and GPFs could affect
fetal development, Fu et al. constructed a pregnancy model of
NK cell knockout mice, pregnant Nfil3-/- mice. In the uteruses of
pregnant Nfil3-/- mice, the number of trNK cells and the GPF
levels were decreased. In addition, the average weight of fetuses
from pregnant Nfil3-/- mice was decreased and the development
of the embryonic skeletal system was defective. Fetal growth
restriction (FGR) in pregnant Nfil3-/- mice could be rescued by
transferring induced CD49a+ uterus-like trNK cells (108).
Furthermore, pregnant GPF knockout mice showed the same
fetal growth defect as did Nfil3-/- mice. CD49a+ uterus-like trNK
cells differentiated from GPF knockout mice could reach the
uterus but could not rescue the fetal development defect in
pregnant Nfil3-/- mice. Moreover, injection of anti-PTN or
anti-OGN antibody caused significantly reduced fetal weight.
And injection of PTN could restore the fetal weight defect in
pregnant Nfil3-/- mice. These findings revealed that decidual
trNK cells promote fetal development by secreting growth-
promoting factors.

When co-cultured with EVTs in vitro, decidual NK cells
expressed higher levels of GPFs. Since HLA molecules on
EVTs and their receptors on NK cells are important for the
maternal-fetal interface, Fu et al. co-cultured decidual NK cells
with LCL 721.221 cells, which expressed HLA-G or HLA-C. The
co-culture assay revealed that HLA-G promote expression of
PTN, OGN, and OPN in dNK cells. TrNK cells expressed HLA-
G receptors ILT2 and intracellular KIR2DL4. In the co-culture
assay, HLA-G antibody and ILT2 antibody reduced GPF
secretion significantly in decidual NK cells stimulated by EVTs.
At the same time, GPF expression levels in decidual NK cells
transfected with KIR2DL4 siRNA also decreased when the NK
cells were co-cultured with EVTs. Therefore, HLA-G in EVTs
could promote GPF secretion in trNK cells by acting on the
receptors ILT2 and KIR2DL4 (68). Zhou et al. (109) analyzed the
changes of signaling pathways in decidual NK cells stimulated
with EVT and found that the PI3K-Akt signaling pathway was
significantly altered. Phosphorylation of AKT1 at Ser-473 and
the expression of PDK2 were increased in decidual NK cells co-
cultured with EVTs. In addition, transcription factor PBX1,
which is already expressed in high quantities in decidual NK
cells, showed even higher levels of expression in EVT-stimulated
first-trimester decidual NK cells. SiRNA and phosphorylation
inhibitor of AKT1 or PDK2 could reduce the levels of expression
of PBX1 in decidual NK cells stimulated with EVTs. HLA-G and
ILT2 blocking antibody were each shown to reduce the levels of
phosphorylation of AKT1 at Ser-473 and reduce the levels of
PBX1 expression in decidual NK cells co-cultured with EVTs.
Therefore, HLA-G in EVTs could stimulate the PDK2-AKT1
signaling pathway and increase PBX1 expression by interacting
with ILT2 in decidual NK cells. Zhou et al. also demonstrated
that PBX1 could enhance the expression of growth-promoting
factors PTN and OGN by directly binding to their promoters.
PBX1 gene was mutant and protein level of PBX1 was reduced in
decidual NK cells of RSA patients. In addition, trNK cell number
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and PTN and OGN levels were decreased and fetal development
was impaired in mice having PBX1 knocked out specifically in
NK cells. Therefore, these results indicated that HLA-G in EVTs
interacts with ILT2 in decidual NK cells and activates the PDK2-
AKT1 signaling pathway in NK cells, and in turn PBX1 promotes
fetal growth by upregulating PTN and OGN (Figure 2).

Imbalance of maternal-fetal immune tolerance and fetal
growth embryo development can lead to miscarriage. Plasmatic
levels of soluble HLA-G, both sHLA-G1 and HLA-G5, in women
with abortion was much lower than those in pregnant women. In
addition, sHLA-G1 was absent in the serum of women with RSA
(31). Furthermore, Nowak et al. found that women who were
heterozygous in −716 HLA-G (−716 T>G SNP in the promoter
region of HLA-G) had a lower possibility of spontaneous
miscarriage (110). In the promoter region of HLA-G, -1573
T>C SNP and -1746 C>A SNP were also reported to be
associated with RSA (33). Therefore, studying the role of HLA-
G during pregnancy could be beneficial to the understanding
of RSA.
CONCLUSIONS

To summarize the above reports, three roles of HLA-G have been
found during pregnancy. HLA-G interacts with ILT2 and
KIR2DL4 on macrophages and NK cells to enhance the
production of proangiogenic cytokines and to enhance the
EVT invasion of decidua, thereby promoting spiral artery
remodeling. In addition, HLA-G binds to ILT2, ILT4, and
KIR2DL4 on NK cells, T cells and macrophages, inhibits the
cytotoxicity of NK cells and CD8+ T cells, and causes an increase
in the percentage of Treg cells in the population, and thereby
contributes to immune tolerance. Furthermore, HLA-G on EVTs
could induce the production of growth-promoting factors by
decidual NK cells, thereby regulating fetal growth (Figure 3).

Since mice do not express HLA-G, samples are difficult to
obtain and in vitro culture cannot be maintained for a long time,
thus, it is difficult to study the function and mechanism of HLA-
G without functional experimental models. Interestingly, Turco
et al. (111) constructed, from first-trimester villi, long-lasting
genetically stable trophoblast organoids that could differentiate
into EVTs. Experiments deploying this system are expected to be
used to further investigate the role and mechanism of HLA-G in
pregnancy and to test the current models.

HLA-G has been reported to be abnormally expressed in
many kinds of tumor tissues and has been detected in the plasma
of cancer patients. In addition, the expression of HLA-G was
found related to the outcome in various tumors (112). Since
HLA-G is abnormally and specifically expressed in tumor tissues,
it may represent a checkpoint in tumor immunology (113). At
the maternal-fetal interface, HLA-G has been found to inhibit
the cytotoxicity of T cells and NK cells and increase the
proportion of Treg cells. It may also perform similar functions
in tumor microenvironment. Therefore, the roles of HLA-G in
pregnancy may provide clues for further understanding of
tumor immunology.
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FIGURE 3 | The currently identified roles of HLA-G in the pregnancy microenvironment. 1) HLA-G on extravillous trophoblasts (EVTs) binds to KIR2DL4 on NK cells or
ILT2 on macrophages, and in this way stimulates the production of IL-6, IL-8, and VEGFa. Soluble HLA-G binds to KIR2DL4 on NK cells and induces the production of
IL-6 and IL-8. Thus HLA-G promotes vascular permeability, angiogenesis and EVT invasiveness, and thereby participates in the remodeling of spiral arteries. 2) HLA-G on
EVTs binds to ILT2 on NK cells, ILT2 and ILT4 on macrophages, and ILT2 on Treg cells, and reduces levels of cytotoxicity towards fetal tissues. 3) HLA-G on EVTs binds
to ILT2 and KIR2DL4 on NK cells and promotes the secretion of growth-promoting factors PTN and OGN, thereby facilitating fetal growth.
FIGURE 2 | Mechanism of HLA-G interacting with decidual NK cells to promote fetal growth. HLA-G on EVTs binds to ILT2 on NK cells, activates the PI3K-AKT signal
pathway and induces expression of transcription factor PBX1. PBX1 upregulates the secretion of growth-promoting factor PTN and OGN, facilitating early fetal growth.
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Signaling pathway between human leukocyte antigen (HLA)-G and immune inhibitory
receptors immunoglobulin-like transcript (ILT)-2/4 has been acknowledged as one of
immune checkpoints, and as a potential target for cancer immunotherapy. Like other
immune checkpoints, inter- and even intratumor heterogeneity of HLA-G could render a
rather complexity for HLA-G-target immunotherapy. However, little information for
intratumor heterogeneity of HLA-G is available. In this study, HLA-G expression in a
serial section of colorectal cancer (CRC) lesions from three CRC patients (each sample
with serial section of 50 slides, 10 randomized slides for each antibody), three different
locations within a same sample (five CRC), and three case-matched blocks that each
includes 36 esophageal cancer samples, were evaluated with immunohistochemistry
using anti-HLA-G antibodies (mAbs 4H84, MEM-G/1 and MEM-G/2 probing for all
denatured HLA-G isoforms, 5A6G7, and 2A12 probing for denatured HLA-G5 and
HLA-G6 isoforms). Our results revealed that, in addition to the frequently observed
inter-tumor heterogeneity, intratumor heterogeneous expression of HLA-G is common
in different areas within a tumor in CRC and esophageal cancer samples included in this
study. Moreover, percentage of HLA-G expression probed with different anti-HLA-G
antibodies also varies dramatically within a tumor. Given HLA-G has been considered as
an important immune checkpoint, intratumor heterogeneity of HLA-G expression, and
different specificity of anti-HLA-G antibodies being used among studies, interpretation and
clinical significance of HLA-G expression in cancers should be with caution.

Keywords: HLA-G, tumor, heterogeneity, isoform, antibody, colorectal cancer, esophageal cancer
INTRODUCTION

Immune suppressive functions induced by the interaction between human leukocyte antigen-G
(HLA-G) and its immune inhibitory receptors, the immunoglobulin-like transcripts (ILTs), have
been widely acknowledged (1). Receptors ILT-2 and ILT-4 express on various immune cells, the
immune tolerogenic effects induced by HLA-G are comprehensive (2). Due to alternative splicing of
its primary transcripts, seven confirmed HLA-G isoforms (HLA-G1~HLA-G7), and recently
predicted novel isoforms such as lacking a transmembrane region and a1 domain have been
reported (3).
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In the context of cancers, different degree of inter-tumorHLA-G
expression has been observed in most histological types of cancers
studied, and the significance of HLA-G/ILTs signaling pathway as
an immune checkpoint in cancer biology has been highlighted (4).
Look back to its expressionfirstly observed in cancer, themelanoma
lesions in 1998 (5), immune tolerance induced byHLA-G has been
solidified by large numbers of studies both in vitro and in vivo
preclinical experimental animal models (6–8).

HLA-G/ILTs binding can inhibit the proliferation of natural
killer cells (NK), T and B lymphocytes andmaturation and antigen
presentation of dendritic cells (DC), suppress NK and T cell’s
cytotoxic function, B cell’s immunoglobulin production and
neutrophils’ reactive oxygen species production and phagocytosis
capability (9–11). To the contrary, HLA-G/ILTs binding can
promote myeloid-derived suppressor cells (MDSC) proliferation
and polarize M1 macrophages towards to M2 type (12, 13).
Moreover, immune tolerance can be induced by HLA-G-bearing
exosomes between cells at long-distance, and by cellularmembrane
fragments containing HLA-G through trogocytosis in a close cell-
to-cell contactmanner (14, 15). Inpreclinicalmurinemodels,HLA-
G could promote tumor immune escape and growth through
murine MDSC proliferation and Th2 cytokine production, or
reduce T and B cell tumor infiltrate, impair B cell immune
responses in immunocompetent mice (8, 16). Findings also
revealed that HLA-G expression in ovarian cancer cells could
enhance the tumor cell migration and metastasis in tumor-
bearing immunodeficient nude mice through induction of matrix
metalloproteinase-15 (MMP-15) expression (7, 17). Moreover, a
recent study showed that depletion ofCD4lowHLA-G+T cells could
favor the castration-resistance prostate cancer therapy (18).
Echoing the above mentioned in vitro and in vivo preclinical
experimental observations, lesion HLA-G expression was
observed to be closely associated with tumor metastasis, poor
Frontiers in Immunology | www.frontiersin.org 271
tumor cell differentiation, advanced disease stage and worse
survival in a variety of cancers in clinical settings (14).

Inter- and intratumorheterogeneity of immune checkpoints is the
main obstacle for immune checkpoint inhibitor (ICI)
immunotherapy. Consequently, the benefits of the ICI therapy
varies dramatically among patients (19). As a new immune
checkpoint, the inter-tumor heterogeneous pattern of HLA-G
expression is well evidenced; however, information for the
intratumor heterogeneity of HLA-G is very limited. Previous
studies revealed that the degree of HLA-G or its receptors ILT2/4
expression varies markedly among different locations in a primary
renalcell cancer tumor lesion, indicating thecomplexityof intratumor
heterogeneity of HLA-G and its receptor expression (3, 20).

In this study, inter- and intratumor heterogeneity of HLA-G
expression was evaluated with immunohistochemistry using a
panel of anti-HLA-G antibodies (mAbs 4H84, MEM-G/1 and
MEM-G/2 probing for all denatured HLA-G isoforms, 5A6G7
and 2A12 probing for denatured HLA-G5 and HLA-G6
isoforms) in a serial section of colorectal cancer lesions from
three CRC patients, three different locations within a same
sample from five CRC patients, and three case-match blocks
that each includes 36 esophageal cancer samples, and our
findings solidify the heterogeneity of HLA-G in cancers.
MATERIALS AND METHODS

Tumor Lesion Specimen
Tumor lesion specimen and clinical records were retrospectively
reviewed. In this study, three CRC lesions #598937 (Female, 65
years, AJCC stage IIIA), #624267 (Female, 72 years, AJCC stage I
A) and #681878 (Female, 80 years, AJCC stage I A; Table 1), and
each sample was serially sectioned for 50 slides. Slides from three
TABLE 1 | Percentage of HLA-G expression in serial section of colorectal cancer lesions.

Samples Antibodies Percentage of HLA-G positive tumor cells (%) p

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Mean

CRC #598937
Female, 65 years, AJCC stage IIIA
Group 1
(All isoforms)

mAb 4H84 88.8 86.9 81.9 88.1 85.0 86.3 91.9 91.3 85.6 91.3 87.71 <0.001
mAb MEM-G/1 65.0 55.0 65.0 61.3 62.9 62.5 67.5 72.5 76.3 62.5 65.05
mAb MEM-G/2 57.5 65.0 68.8 57.5 77.5 77.5 70.0 67.5 75.0 77.5 69.38

Group 2
(HLA-G5/6)

mAb 5A6G7 55.0 45.0 60.0 45.0 41.3 53.8 58.3 50.0 60.0 76.3 54.47 0.108
mAb 2A12 47.5 48.8 50.0 41.3 53.8 46.3 43.8 50.0 57.5 35.0 47.40

CRC #624267
Female, 72 years, AJCC stage IA
Group 1
(All isoforms)

mAb 4H84 94.5 94.1 95.0 94.1 94.1 92.7 94.1 94.1 94.5 92.3 93.95 0.453
mAb MEM-G/1 94.5 89.1 94.1 93.6 94.5 94.1 94.5 93.6 91.8 94.1 93.39
mAb MEM-G/2 93.6 92.7 93.2 94.1 95.0 93.6 93.6 92.7 92.7 94.5 93.57

Group 2
(HLA-G5/6)

mAb 5A6G7 92.7 90.2 90.9 86.8 78.2 92.7 90.0 88.6 93.2 88.6 89.19 0.190
mAb 2A12 91.1 93.2 80.0 89.8 89.9 85.9 89.5 82.3 77.3 84.1 86.31

CRC #681878
Female, 80 years, AJCC stage IA
Group 1
(All isoforms)

mAb 4H84 81.9 80.0 80.6 82.5 84.4 80.6 80.6 84.4 85.0 91.3 83.13 <0.001
mAb MEM-G/1 43.8 45.0 27.5 46.3 50.1 32.5 43.8 60.0 26.3 33.8 40.91
mAb MEM-G/2 0.00 36.3 21.3 18.8 14.4 22.5 6.30 5.00 10.6 26.3 16.15

Group 2
(HLA-G5/6)

mAb 5A6G7 68.3 85.6 76.3 68.8 61.9 61.9 60.6 52.5 39.4 63.8 63.91 0.105
mAb 2A12 69.4 62.5 61.3 68.1 70.6 71.9 72.5 83.8 76.9 72.5 70.95
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different locations within a same sample from another five CRC
samples were obtained #1022488 (Male, 49 years, AJCC stage III
B), #1022363 (Male, 70 years, AJCC stage I A), #1020932 (Male,
75 years, AJCC stage IV A), #1023081 (Male, 75 years, AJCC stage
II A) and #444345 (Male, 86 years, AJCC stage II A; Table 2).
Furthermore, slides from three case-matched blocks that each
includes 36 esophageal squamous cell carcinoma (ESCC)
samples were included in the study. Among 36 ESCC patients
(27male andnine female;median age: 58 years; range from47 to 79
years), there were one patient with stage I B, six patients with II A,
14 patients with II B, seven patients with III A, seven patients with
III B, and one patient with III C. The detailed clinical information
was shown in Table 3. The clinicopathological findings were
determined according to 7th American Joint Committee on
Cancer (AJCC) Tumor-Node-Metastasis (TNM) staging system
(21). None of them received radiotherapy, chemotherapy, or other
medical interventions before the study. All these patients were
diagnosed and treated at Taizhou Hospital of Zhejiang Province,
China, and samples were retrieved by Biological Resource Center,
Taizhou Hospital of Zhejiang Province (National Human Genetic
Resources Platform of China YCZYPT [2017]02). Written
informed consent was obtained from each participant before the
surgical operation, and this study was approved byMedical Ethics
Review Board of Taizhou Hospital of Zhejiang Province.

HLA-G Antibodies and
Immunohistochemistry
Five anti-HLA-Gmurine antibodies were used in this study.mAbs
4H84 (dilution 1:200), MEM-G/1 (dilution 1:100) and MEM-G/2
(dilution 1:100), IgG1 antibodies detect denatured heavy chain of
all HLA-G isoforms (Exbio, Prague, Czech Republic); mAbs
5A6G7 and 2A12, IgG1 antibodies probe denaturized heavy
chain of HLA-G5/HLA-G6 isoforms (dilution 1:100; Exbio,
Prague, Czech Republic). Immunohistochemistry assay was
Frontiers in Immunology | www.frontiersin.org 372
performed on 4-mm-thick, formalin-fixed and paraffin-
embedded tumor lesion sections. Details of the protocols was
according to our previous study (22). Immunohistochemistry
staining was visualized with a Dako EnVison kit (Dako,
Glostrup, Denmark). The percentage of HLA-G positive tumor
cells was determined by presence of HLA-G staining while
irrespective of staining intensity. HLA-G staining was evaluated
by two reviewers who were blind to the patient clinicopathological
information.Membrane or/and cytoplasmic expression ofHLA-G
were interpreted as positive. Percentage of HLA-G-positive tumor
cells was determined by each observer, and the average of scores
was calculated.

Statistical Analysis
Statistical analysis was performed with the SPSS 13.0 statistical
software package (SPSS, Inc., Chicago, IL, USA). Comparison
between groups was analyzed with non-parametric Mann-
Whitney U or Kruskal-Wallis H test. p<0.05 (two-tailed) was
considered statistically significant.
RESULTS

To evaluate the heterogeneity of HLA-G expression in cancers,
three different types of tumor tissue samples were prepared.
a) For three CRC tissue samples (#598937, #624267 and
#681878), 50 slides was serially sectioned for each sample.
Among 50 slides, 10 randomized slides for each antibody
probing. b) Slides from three different zones within a same
sample from another five CRC samples (#1022488, #1022363,
#1020932, #1023081, and #444345), and c) slides from three
case-matched blocks that each includes 36 esophageal cancer
samples. These slides were probed with five different anti-HLA-
G antibodies. Anti-HLA-G antibodies were divided into two
TABLE 2 | Percentage of HLA-G expression in different zones of colorectal cancer lesions.

Sample Sex Age AJCCStage Percentage of HLA-G positive tumor cells (%)

4H84 MEM-G/1 MEM-G/2 5A6G7 2A12

CRC #1022488 Male 49 III B
Zone 1 0.57 2.43 0.27 9.16 2.84
Zone 2 0.71 1.67 0.21 20.29 9.69
Zone 3 2.00 2.22 0.00 7.18 4.42

CRC #1022363 Male 70 I A
Zone 1 14.88 9.25 2.60 22.05 11.90
Zone 2 50.00 0.00 0.00 4.12 24.80
Zone 3 22.00 0.44 0.67 9.42 12.89

CRC #1020932 Male 75 IV A
Zone 1 45.00 8.93 8.74 32.61 24.53
Zone 2 15.58 26.38 7.13 16.13 19.50
Zone 3 13.19 7.00 0.50 24.19 18.13

CRC #1023081 Male 75 II A
Zone 1 59.49 34.14 56.57 4.33 16.43
Zone 2 15.19 55.20 59.23 32.3 19.70
Zone 3 36.32 24.48 14.10 2.74 7.58

CRC #0444345 Male 86 II A
Zone 1 45.30 25.40 34.80 16.23 0.00
Zone 2 13.00 58.82 32.35 41.14 30.59
Zone 3 32.74 33.23 37.42 31.42 27.10
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TABLE 3 | Percentage of HLA-G expression in different blocks of esophageal squamous cell carcinoma.

No. Sex Age AJCC stage Percentage of HLA-G positive tumor cells (%)

Blocks 4H84 MEM-G/1 MEM-G/2 5A6G7 2A12

1 Male 61 III B 1# 40 10 0 0 0
2# 58 10 0 0 0
3# 0 0 5 0 0

2 Male 62 II B 1# 30 30 10 0 0
2# 65 60 40 0 0
3# 80 75 45 0 0

3 Female 54 III A 1# 65 80 45 1 0
2# 98 30 0 0 40
3# 80 80 20 0 0

4 Female 47 II B 1# 60 10 40 0 0
2# 80 30 0 0 0
3# 98 90 90 80 85

5 Male 60 II A 1# 95 90 90 0 80
2# 70 80 30 0 0
3# 95 85 80 0 85

6 Male 53 II B 1# 80 90 70 3 20
2# 80 60 3 0 0
3# 55 70 5 0 3

7 Male 56 II B 1# 60 60 0 0 0
2# 60 55 0 0 0
3# 95 80 85 10 0

8 Female 72 II A 1# 80 85 65 0 0
2# 95 85 15 20 45
3# 90 90 80 5 1

9 Male 72 III A 1# 90 90 90 70 30
2# 70 90 60 0 0
3# 95 85 40 0 1

10 Male 65 I B 1# 0 0 0 0 0
2# 0 0 0 0 0
3# 40 10 0 0 0

11 Male 51 II B 1# 0 0 0 0 0
2# 0 0 0 0 0
3# 20 0 0 0 0

12 Male 56 II B 1# 0 0 0 0 0
2# 30 20 0 0 0
3# 75 20 0 0 0

13 Male 58 III A 1# 0 0 0 0 0
2# 20 0 0 0 0
3# 40 0 80 0 0

14 Male 59 II B 1# 70 55 55 0 0
2# 40 10 0 0 0
3# 98 5 70 0 0

15 Male 79 II A 1# 35 15 30 10 10
2# 35 30 20 0 0
3# 85 5 55 0 10

16 Male 57 II B 1# 70 5 80 60 10
2# 30 65 40 0 0
3# 98 60 30 0 0

17 Female 58 III A 1# 70 80 10 0 0
2# 80 60 90 0 0
3# 40 0 80 0 0

18 Male 59 III A 1# 95 90 80 0 60
2# 95 95 90 2 40
3# 95 85 70 65 45

19 Male 48 II A 1# 20 0 10 0 10
2# 10 80 10 0 0
3# 80 0 0 0 0

20 Male 59 III B 1# 80 80 0 0 0
2# 60 0 0 0 0
3# 40 2 0 0 0

21 Female 58 II B 1# 60 60 0 0 0
2# 40 0 0 0 0
3# 30 0 0 0 0

(Continued)
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groups according to the specificity of these antibodies. Group 1:
mAbs 4H84, MEM-G/1 and MEM-G/2, which detect denatured
heavy chain of all HLA-G isoforms; Group 2: mAbs 5A6G7 and
2A12, which detect denaturized heavy chain of HLA-G5/HLA-
G6 isoforms. The representative immunohistochemistry HLA-G
staining patterns of CRC and ESCC were shown in Figure 1.

Intratumor Heterogeneity of HLA-G
Intratumor heterogeneous expression of HLA-G was observed
among different sections and antibodies used in three CRC tissue
samples (#598937, #624267, and #681878).

For the Group 1 antibodies (mAbs 4H84, MEM-G/1, and
MEM-G/2), HLA-G expression was dramatically different in
Frontiers in Immunology | www.frontiersin.org 574
samples CRC#598937 (p<0.001) and CRC#681878 (p<0.001),
while comparable degree of HLA-G expression was observed in
sample CRC#624267 (p=0.453). Among these samples, no
significant variation of HLA-G expression was found for the
Group 2 antibodies (mAbs 5A6G7 and 2A12; Table 1).

Moreover, HLA-G expression in samples from different zones
of a same tumor also varied significantly when detected with a
distinct anti-HLA-G antibody. CRC#1022488 for an example, the
percentage of HLA-G expression detected with mAbs 5A6G7 and
2A12 are much higher than that probed with mAbs 4H84, MEM-
G/1 and MEM-G/2. Zone 2 particularly, percentage of HLA-G
expression detected by mAb 5A6G7 is 20.29% while HLA-G is
nearly negative detected by mAb 4H84 (0.71%). In CRC#1022363,
TABLE 3 | Continued

No. Sex Age AJCC stage Percentage of HLA-G positive tumor cells (%)

Blocks 4H84 MEM-G/1 MEM-G/2 5A6G7 2A12

22 Female 73 II B 1# 60 0 0 0 0
2# 65 0 0 0 0
3# 70 0 0 0 0

23 Male 50 III A 1# 3 0 0 0 0
2# 0 0 0 0 0
3# 15 0 0 0 0

24 Female 58 III B 1# 80 60 30 0 0
2# 85 0 20 0 0
3# 85 70 60 0 0

25 Male 50 III B 1# 60 10 0 0 0
2# 70 0 0 0 0
3# 75 30 30 0 0

26 Female 50 III C 1# 80 55 0 0 0
2# 70 0 55 0 0
3# 85 80 0 0 0

27 Male 70 II B 1# 60 40 0 0 0
2# 10 0 0 0 0
3# 20 10 0 0 0

28 Male 49 II A 1# 85 80 80 80 0
2# 70 0 80 0 3
3# 95 90 85 80 70

29 Male 55 II B 1# 90 40 30 0 0
2# 10 0 0 0 0
3# 85 20 40 0 0

30 Male 53 II A 1# 95 80 80 0 2
2# 60 2 15 2 2
3# 90 70 80 30 10

31 Male 59 III B 1# 65 2 10 0 0
2# 80 0 55 0 0
3# 85 80 70 0 0

32 Male 59 III B 1# 90 90 90 60 0
2# 85 0 40 0 0
3# 95 90 90 30 0

33 Male 51 III A 1# 95 80 70 0 2
2# 90 0 80 3 0
3# 95 30 20 0 2

34 Female 53 II B 1# 90 3 80 0 0
2# 80 0 0 0 0
3# 90 85 60 0 0

35 Male 69 II B 1# 0 0 0 0 0
2# 0 0 0 0 0
3# 80 20 0 0 0

36 Male 54 III B 1# 70 30 20 0 0
2# 90 0 0 0 0
3# 90 60 0 0 0
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the degree of HLA-G detected by mAb 4H84 was 14.88%, 50.0%
and 22.0% in zone 1, zone 2, and zone 3, respectively. HLA-G
expression in zone 2 and 3 was almost undetectable, while HLA-G
was positive in zone 1 when detected by mAbs MEM-G/1 and
MEM-G/2. Moreover, HLA-G expression was observed in all three
zones when detected with mAb 5A6G7 and mAb 2A12,
respectively (Table 2). Similarly, intratumor heterogeneity of
HLA-G expression was also found in case-matched esophageal
cancer blocks (Table 3).

Intratumor Heterogeneity of HLA-G
Isoforms
Distinct pattern and variation of HLA-G expression was also
observed for each antibody for HLA-G detection among 10
randomized slides from a same tumor sample. No significant
variation of HLA-G expression was observed when detected by
mAb 2A12 in CRC#598937 (p=0.1151), mAb 4H84 in
CRC#681878 (p=0.154), and mAbs MEM-G/1 (p=0.203) and
MEM-G/2 (p=0.386) in CRC#624267. HLA-G expression was
found varied dramatically among 10 slides when probed with a
distinct anti-HLA-G antibody (Figure 2A). To be noted, previously
considered as unexpected immunohistochemistry staining patters
such as mAb 4H84neg mAb 5A6G7pos was observed in this study
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(Table 2). In CRC#1022488, HLA-G expression is low/negative
stained with mAbs 4H84, MEM-G/1, and MEM-G/2, while HLA-
G is positive when stained with mAbs 5A6G7 and 2A12. This
staining pattern now could be explained by the findings that novel
HLA-G isoforms such as lacking the a1 domain was depicted by
Tronik-Le Roux et al. (3) in a renal cancer study. Similar data were
also observed in slides from three different zones within a same
sample from another five CRC samples (#1022488, #1022363,
#1020932, #1023081, and #444345; Figure 2B).

Among 36 ESCC samples, HLA-G expression could be
detected by mAbs 4H84, MEM-G/1 and MEM-G/2, while
HLA-G expression is negative detected by mAbs 5A6G7 and
2A12 in most cases. Moreover, the staining pattern for mAbs
4H84 and 5A6G7 seems more consistent according to their
recognizing epitope in the HLA-G heavy chain, that no mAbs
4H84neg5A6G7pos was observed (Table 3).
DISCUSSION

Inter-tumor HLA-G expression in various types of tumor tissues
has been widely investigated and its clinical significance has been
well acknowledged. A large body of studies have evidenced that
FIGURE 1 | Representatives of intratumor heterogeneous staining of HLA-G expression with different anti-HLA-G antibodies in three blocks of a esophageal
squamous cell carcinoma sample (#444763), and serial sections of two colorectal cancer samples (#624267 and #681878) (400×).
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higher degree of HLA-G expression in cancers is related to
disease progression and worse clinical outcome (14). Based on
the signaling pathway of HLA-G/ILTs and its clinical relevance,
HLA-G as a potential immune checkpoints is expected (1).
Though ICIs such as targeting the PD-L/PD-L1 is certainly an
effective and promising strategic regime for cancer
immunotherapy, limited effects of the ICIs therapy resulted
from inter- and intratumor heterogeneous expression of
immune checkpoints is gaining concern (19).

Indeed, the degree and percentage of HLA-G in cancers varies
significantly among different types of cancers which have been
observed to be negative in uveal melanoma to totally positive in
hydatidiform moles (23, 24), and inconsistent HLA-G findings
among different cohorts or laboratories existed in most cases
even on a same type of cancer such as breast cancer (25–27) and
CRC (22, 28–30). These controversies might be raised by the
different specificities of HLA-G monoclonal antibodies, varied
laboratory technical procedures, or different composition and
HLA-G genetic backgrounds of the included cohorts (14, 31). In
line with this, our data showed that different staining pattern of
HLA-G expression has been observed between the CRC and
ESCC, where HLA-G is almost negative in ESCC but positive in
CRC samples when detected by mAbs 5A6G7 and 2A12. This
finding indicated that HLA-G isoforms could be differentially
regulated among different types of cancers. Moreover,
mechanisms involved in regulation of HLA-G expression are
complex. In addition to the HLA-G genetic variations both in 5′-
upstream regulatory region and in 3′-untranslated region which
Frontiers in Immunology | www.frontiersin.org 776
comprise binding sites for transcription factor and microRNAs
and epigenetic modifications (32), other environmental factor
such as hypoxia, cytokines, hormones, and even immunotherapy
chemicals and radiation have been acknowledged to be related to
the regulation of HLA-G expression (33–35).

Intratumor heterogeneity of HLA-G expression has
been firstly detailed in 19 primary renal cell cancer (RCC)
tumor tissues. HLA-G expression was sharply differed either
between samples or inside a tumor tissue (20). In that study,
with mAb 4H84, authors revealed that various degree of
HLA-G expression exists among different areas (zones) as
they illustrated in sample RCC#2 (70% in area T1, 37% in T2,
58% in T3 and T4, respectively), while no HLA-G expression
was observed in the T1 or T2 areas in sample RCC#10. In
line with their findings, as our data in this study revealed that
intratumor heterogeneous expression of HLA-G is a common
phenomenon among different zones within a sample in CRC
and ESCCs. According to these results, similar findings that
intratumor HLA-G heterogeneity could be expected in other
malignancies. Shortly afterwards, with transcriptome analysis in
RCC samples, they further depicted that, besides the already
identified HLA-G1~HLA-G7 isoforms, novel HLA-G isoforms
without an a1 domain and transmembrane region could be
existed (3). This important finding do explain previously
unexpected immunohistochemistry staining patters such as
mAb 4H84neg mAb 5A6G7pos, which was observed in our
study such as the CRC#1022488 and other samples. In this
context, in an our previous study, we found 44 out of 379
A

B

FIGURE 2 | Intratumor heterogeneous staining of HLA-G expression with different anti-HLA-G antibodies in (A) serial sections of three colorectal cancer samples
(each sample with 50 serial sections, 10 randomized slides for each antibody). Dot represents each section. Black line represents median. Comparison among the
sections was analyzed with analyzed with Kruskal-Wallis H test. (B) three different zones within a same sample (five CRC samples). Dot represents each zone. Black
line represents median.
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(11.6%) CRC patients were with the staining pattern of mAbs
4H84neg 5A6G7pos, and CRC patients with the patterns of mAbs
4H84neg 5A6G7pos had a longer survival time than those with
the pattern of mAbs 4H84pos5A6G7neg (36). However, future
investigations for the biological functions and clinical
significance of novel HLA-G isoforms with mAbs 4H84neg

5A6G7pos are extremely necessary.
However, our study have notable limitations. First, this study

is based on a very limited size of patients and types of cancers,
the real-world of the heterogeneity of HLA-G expression in
more different types of cancers and in larger cohorts of cancer
patients remain to be explored. Second, being the very limited
size of the patients included, clinical significance of the
heterogeneity of HLA-G and HLA-G isoform expression in
cancers is still unknown. Third, potential mechanisms
underlying the heterogeneity of HLA-G in cancers remain to
be uncovered. Finally, more specific antibodies for HLA-G
isoforms are needed to define the clinical significance of a
particular HLA-G isoforms.

In summary, our study revealed a rather high degree of
intratumor heterogeneity of HLA-G expression in cancers, and
degree of HLA-G expression is also varied among anti-HLA-G
antibodies with different specificities. Therefore, to evaluate the
clinical significance of HLA-G expression in cancers, important
issues including location of the tumor tissues isolated, HLA-G
isoforms and specificity of the anti-HLA-G antibodies should
be concerned.
Frontiers in Immunology | www.frontiersin.org 877
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article. Further inquiries can be directed to the
corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved byMedical Ethics Review Board of Taizhou Hospital of
Zhejiang Province. The patients/participants provided their
written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

W-HY: study design. XZ, JG, and AL: performed experiments.
J-GZ, Q-YH, Q-YC, Y-HY, W-JZ, and H-HX: material support
and data acquisition. W-HY: performed statistical analysis and
drafted the manuscript. All authors contributed to the article and
approved the submitted version.

FUNDING

This work was supported by grants from National Natural
Science Foundation of China (81901625) and Science and
Technology Bureau of Taizhou (1901ky01; 1901ky04,
1901ky05, 1901ky09).
REFERENCES
1. Carosella ED, Rouas-Freiss N, Tronik-Le Roux D, Moreau P, LeMaoult J.

HLA-G: An Immune Checkpoint Molecule. Adv Immunol (2015) 127:33–144.
doi: 10.1016/bs.ai.2015.04.001

2. Amiot L, Vu N, Samson M. Biology of the immunomodulatory molecule
HLA-G in human liver diseases. J Hepatol (2015) 62:1430–7. doi: 10.1016/
j.jhep.2015.03.007
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Stimulation by HLA-G-Expressing
Tolerogenic DC
Ching-Lien Wu1,2,3, Julien Caumartin3, Giada Amodio4, François Anna3, Maria Loustau3,
Silvia Gregori 4, Pierre Langlade-Demoyen3 and Joel LeMaoult 1,2*

1 CEA, DRF-Francois Jacob Institute, Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, Paris,
France, 2 Université de Paris, IRSL, UMRS 976, Paris, France, 3 Invectys, Paris, France, 4 San Raffaele Telethon Institute for
Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy

Invariant Natural Killer T (iNKT) cells are a small and distinct population of T cells crucial in
immunomodulation. After activation by alpha-GalactosylCeramide (aGC), an exogenic
glycolipid antigen, iNKT cells can rapidly release cytokines to enhance specific anti-tumor
activity. Several human clinical trials on iNKT cell-based anti-cancer are ongoing, however
results are not as striking as in murine models. Given that iNKT-based immunotherapies
are dependent mainly on antigen-presenting cells (APC), a human tolerogenic molecule
with no murine homolog, such as Human Leucocyte Antigen G (HLA-G), could contribute
to this discrepancy. HLA-G is a well-known immune checkpoint molecule involved in fetal-
maternal tolerance and in tumor immune escape. HLA-G exerts its immunomodulatory
functions through the interaction with immune inhibitory receptors such as ILT2,
differentially expressed on immune cell subsets. We hypothesized that HLA-G might
inhibit iNKT function directly or by inducing tolerogenic APC leading to iNKT cell anergy,
which could impact the results of current clinical trials. Using an ILT2-transduced murine
iNKT cell line and human iNKT cells, we demonstrate that iNKT cells are sensitive to HLA-
G, which inhibits their cytokine secretion. Furthermore, human HLA-G+ dendritic cells,
called DC-10, failed at inducing iNKT cell activation compared to their autologous HLA-G‒

DCs counterparts. Our data show for the first time that the HLA-G/ILT2 ICP is involved in
iNKT cell function modulation.

Keywords: Human Leucocyte Antigen G, Natural Killer T cells, immune regulation, tolerogenic dendritic cells, ILT2/
CD85j/LILRB1
INTRODUCTION

Natural Killer T (NKT) cells are a subset of T cells expressing distinct ab T cell receptor (abTCR).
Initially, co-expression of T cell and Natural Killer (NK) cell markers (CD56 or CD161) were used
to identify this population, therefore named NKT cells. NKT cells are now better characterized as
CD1d-dependent T cells with potent cytokine production capacity (1–3). CD1d is a MHC-class-I-
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like molecule that mediates the presentation of lipid or glycolipid
antigens to T cells. Invariant NKT (iNKT) cells, are a small
subtype of the NKT population. They recognize lipids presented
by of CD1d, in particular the marine-sponge-derived alpha-
galactosylceramide (aGC), and express a canonical invariant
TCR a chain (Va24Ja18 in humans and Va14Ja18 in mice) and
TCR b chains that use limited Vb segments (Vb11 in humans
and Vb8.2 in mice) (4).

iNKT cells play an important role in anti-tumor immunity by
linking the innate and adaptive immune responses. Stimulation
of iNKT cells by the CD1d-aGC complex leads to a rapid
production of Th1 and Th2 cytokines (e.g. IFN-g and IL-4)
and recruitment of dendritic cells (DC), NK cells, B cells, helper
T cells, and cytotoxic T cells. In mice, this capability of aGC-
stimulated iNKT cells to boost cellular immune responses was
strong enough to generate specific responses against tumor cells,
such as the B16F10 melanoma cell line, leading to long-term
tumor rejection (5–7). Besides this adjuvant effect, iNKT cells
can also directly control tumor growth by cytotoxicity (8).
Clinical data show that iNKT cell numbers correlate with
better survival of cancer patients (9) and on the contrary, that
abnormal numbers and functions of iNKT cells are associated
with poor clinical outcome (10, 11). Thus, there is an increasing
interest in iNKT cell-based immunotherapy strategies to
treat cancer.

iNKT-based anti-tumor strategies rely, so far, on harnessing
iNKT cells to optimize anti-tumor vaccination through (i)
intravenous injection of aGC (12) (ii) adoptive transfer of
aGC pulsed APC (13) and (iii) adoptive transfer of ex vivo
activated iNKT cells (14, 15). Clinical trials were mainly based on
infusions of either aGC-loaded APC preparations or aGC-
expanded enriched iNKT, which gave promising results in
mouse models (16, 17). However, unlike in murine studies,
results obtained with human iNKT cells are not yet convincing
(18). Given that iNKT-based immunotherapies are dependent on
APC, human-specific immune checkpoint-expressing or
tolerogenic APCs could dampen their activation. It was shown
that intravenous injection of aGC leads to iNKT cell anergy in a
PD-1/PDL-1 dependent manner. Indeed, iNKT cells functions
were decreased by PD-L1/PD-L2 expressed by APCs (19).

Thus, it is possible that the striking differences observed after
iNKT-based anti-tumor immunizations in mice and humans
could be due to differential expression of regulatory molecules in
humans and mice, including species-specific murine-only and/or
human-only molecules. In this work, we investigated the possible
impact of the HLA-G/Immunoglobulin-like Transcript 2 (ILT2)
interaction on the function of iNKT cells.

HLA-G is a molecule involved in fetal-maternal tolerance and
in tumor immune escape. This non-classical HLA class I
molecule has low polymorphism, unlike classical HLA class I
molecules, and presents four membrane-bound (HLA-G1 to G4)
and three soluble isoforms (HLA-G5 to G7). The most common
and best-characterized isoforms, HLA-G1 and HLA-G5, are
non-covalently associated with b-2-microglobulin (B2M) (20,
21). HLA-G physiological expression is tissue-restricted, mainly
to trophoblast, thymus, cornea, and mesenchymal stem cells in
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physiological conditions. However, HLA-G can be induced
under pathological conditions such as viral diseases,
inflammatory disorders, transplantation and cancer (22).

HLA-G immuno-modulatory functions on all immune cell
subsets are exerted through specific binding to inhibitory
receptors. ILT2/CD85j/LILRB1 is one of the known HLA-G
receptors, which is expressed on various proportions of
monocytes, DC, B, NK, and T cells (23). ILT2 has four tandem
Ig-like extracellular domains and four immunoreceptor tyrosine-
based inhibitory receptor motifs (ITIM) in its cytoplasmic tail. In
the case of T and NK cells, HLA-G:ILT2 interaction was reported
to inhibit alloproliferation (24–28), alter cytokine secretion (25,
29–32), and inhibit the antigen-specific cytolytic functions of
cytotoxic T lymphocytes (CTLs) (33, 34), uterine NK cells and
peripheral blood NK cells (35, 36).

HLA-G-expressing tumor cells or high levels of HLA-G in
plasma have been reported in numerous types of cancers and
associated with higher grade and worse prognosis (22, 37–41).
Indeed, HLA-G plays the role of an immune escape mechanism
through inhibition of anti-tumor effectors, alteration of cytokine
expression patterns (14, 37, 38), and generation of regulatory
cells (39, 40). Furthermore, tumors can induce HLA-G
expression by other cells such as tolerogenic APCs (e.g. DC-10
cells), leading to T cell anergy and induction of regulatory T cells
(42, 43). Interestingly, ILT2 expression has also been associated
with tumor immune escape (44). Thus, HLA-G:ILT2 is a potent
immune checkpoint and constitutes a potential new target in
anti-tumor therapies.

iNKT cells are related to both NK and T cells since they are T
cells expressing markers mostly associated with NK cells, in
particular inhibitory receptors (45). Since human NK cells and
classical T cells were shown to be inhibited by HLA-G through
ILT2 receptor expression, we reasoned that iNKT cells could be
sensitive to HLA-G that would be expressed by the tumor cells
themselves or by antigen-presenting cells such as the recently
discovered HLA-G-positive DC-10 tolerogenic DC subset. Our
results show that this is indeed the case. As HLA-G is known to
be present in the tumor microenvironment, it could inhibit iNKT
cell reactivity to aGC and impair the effectiveness of the iNKT
cell-based immune therapy.
MATERIALS AND METHODS

Human PBMC Isolation
Blood in ETDA tubes or from plateletpheresis residues was
collected at the French Blood Center (EFS, Saint Louis
Hospital, France) from healthy donors with informed consent.
Human PBMC from healthy donors were used for ILT2 analysis,
and for CD14+ monocyte and iNKT cells isolation. PBMC were
isolated by density gradient separation using either Ficoll
(Sigma-Aldrich) or Leucosep™ tube (Grenier Bio-One),
washed twice in 0.9% NaCl (Versylène® Fresenius), and
counted using trypan blue dye in KOVA counting slides
(Fisher Scientific). Viability was always >90%. Processing was
completed within less than 10 h for all sample specimens.
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Flow Cytometry Analysis
Surface markers and intracellular cytokines were analyzed by flow
cytometry. Labeling steps were performed by using between 0.2–
3×106 cells per test according to the experimental requirements in
either FACS tubes or 96-well U-bottom plates. Washing steps were
performed with PBS followed by centrifugation at 800 g for 1 min.
Surface labeling was carried out by blocking Fc receptors, either with
anti-mouse CD16/32 (eBioscience) for murine cells or human
immunoglobulin G (Sigma) for human samples, for 5 min at room
temperature, followedbyantibody incubation for30minat4°C in the
dark using concentrations according to the manufacturer’s
instructions. Cells were fixed in 200 µl PBS containing 1%
formaldehyde and acquired within 24 h after two washing steps. To
detect intracellular cytokines, surface-labeled cellswerefixedwith 4%
PFA for 10 min at 4°C, and then permeabilized for the intracellular
staining with Perm/Wash solution (BD Bioscience) following
manufacturer’s instruction prior to incubation with cytokine
specific antibodies.

Antibodies used in flow cytometry analysis were: i) Anti-murine:
CD1d-PE (clone 1B1, BD Phamingen), CD3-APC (clone REA606,
Miltenyi Biotech), IL-2-FITC (clone JES6-5H4, eBioscience), and
PIR-A/B-PE (clone 10-1-PIR, BD Phamingen); ii) Anti-human:
CD1d-PE (clone 51.1, eBioscience), CD1d tetramer-APC (pre-
loaded with and without aGC, ProImmune), CD3-eFluor450
(clone OKT3, eBioscience), CD11c-APC (clone 3.9, eBioscience),
CD14-PerCP-Cy5.5 (clone 61D3, eBioscience), CD56-PE-Cy7
(clone CMSSB, eBioscience), CD86-PE-Cy7 (clone IT2.2,
eBioscience), HLA-DR-FITC (clone MEM-12, Exbio), HLA-G
(clone MEM-G/09, Exbio), IFNg-PerCP-Cy5.5 (clone 4S.B3,
eBioscience), IL-4-APC (clone 8D4-8, eBioscience), ILT2-PE (clone
HP-F1, eBioscience), CD161-APC (clone HP-3G10, eBioscience),
and Va24Ja18 TCR-FITC (clone 6B11, eBioscience). The matched
isotype controls were systematically used.

Acquisition was performed on either a BD FACSCanto™ II
equipped with BD FACSDiva™ software (version 6.0, BD
Bioscience) or a MACSQuant® Analyser 10 equipped with
MACSQuantify™ Analysis Software (version 2.8, Miltenyi
Biotech). The PMT voltages were adjusted for each
fluorescence channel using unstained cells and compensations
were set using a mixture of unstained and single color stained
cells with antibodies. Analyses were performed by FlowJo
software (version 10, FlowJo LLC).

ILT2 Expression on Lymphocytes
Three million freshly isolated PBMC from 14 healthy donors
were used to perform ILT2 expression analysis by flow
cytometry. The CD3-eFluor450, CD56-PE-Cy7, Va24Ja18
TCR-FITC, CD1d tetramer-APC, and ILT2-PE and their
matched isotype controls were used as a five-color staining.
The ILT2 expression was analyzed on CD4+ T cells
(CD3+CD56‒CD4+ lymphocytes), CD8+ T cells (CD3+CD56‒

CD8+ lymphocytes), NK cells (CD3‒CD56+ lymphocytes),
CD3+CD56+ NKT cells (CD3+CD56+ lymphocytes) and iNKT
cells (CD3+6B11+ lymphocytes). Cytometry analysis was set
according to the isotype controls and all results were expressed
as % of ILT2+ among studying subsets.
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Murine iNKT and APCs
The murine NKT1.2 [Va14i NKT cell hybridoma 1.2 in (46)],
C57BL/6) and A20CD1d (CD1d-transduced A20 B cells line,
ATCC, Balb/c) lines were used as iNKT and APCs, respectively.
They were kindly provided by Pr. Mitchell Kronenberg (La Jolla
Institute, CA, USA) and cultured in X-VIVO-10 medium
(Lonza) at 37°C with 5% CO2.

HLA-G-expressing and ILT2–expressing stable cell lines were
generated by transduction and the lentiviral particles were
generated as follows: specific sequences corresponding to
native ILT2 cDNA (NM_006669.6), HLA-G1 cDNA
(NM_002127.5) modified K334A and K335A according to
Zhao et al. (47), and human beta-2-microglobulin (hB2M)
cDNA (NM_004048.2) were cloned separately into a pTrip
plasmid vector by digestion/ligation after extraction by PCR
with specific primers, under CMV immediate early promoter.
HIV-1-derived vector particles were produced by calcium
phosphate co-transfection of HEK-293T cells (ATCC) with the
recombinant plasmid pTRIP, an envelope expression plasmid
encoding the glycoprotein from VSV, serotype Indiana
glycoprotein, and the p8.74 encapsidation plasmid. Viral
stocks were titrated by real-time PCR on cell lysates from
transduced HEK-293T cells and expressed as transduction unit
(TU) per ml.

To generate A20CD1d‒HLA-G/hB2M and NKT1.2-ILT2 cell
lines, 1×105 A20CD1d or NKT1.2 cells were seeded in 12-well
plate with in 500 µl of X-VIVO-10 medium and 106 TU (293T)
of Trip CMV-HLAG plus Trip CMV-hB2M or Trip CMV-ILT2
vectors. Cells were incubated for 1 h at 37°C and then centrifuged
1 h at 37°C 1,200 g. Afterwards, 1 ml of X-VIVO-10 medium was
added and incubated at 37°C. Two weeks later, positive cells were
sorted by flow cytometry using anti-HLA-G or anti-ILT2
antibodies. The expression of, HLA-G, ILT2, murine CD1d,
and PIR-B were evaluated by flow cytometry before the iNKT
activation assay.
Human mDC and DC-10 Differentiation
Human CD14+ monocytes were isolated from fresh PBMC by
positive selection using CD14 MicroBeads (Miltenyi Biotech,
Germany) according to the manufacturer’s instructions. Cells
were cultured in RPMI 1640 (Lonza, Italy) supplemented with
10% Fetal Calf Serum (Lonza, Italy), 2 mM L-glutamine
(Lonza, Italy), and 100 U/ml penicillin/streptomycin (Lonza,
Italy) at 37°C. To induce mature DC (mDC), CD14+

monocytes were kept in culture with 10 ng/ml rhIL-4 (R&D
Systems, Minneapolis MN, USA) and 100 ng/ml rhGM-CSF
(Genzyme, Seattle WA, USA) for 5 days and maturation was
induced by the addition of 1 mg/ml of LPS (Sigma, CA, USA)
for additional 2 days. To differentiate DC-10, CD14+

monocytes were kept in culture with 10 ng/ml rhIL-4, 100
ng/ml rhGM-CSF, and10 ng/ml of rhIL-10 (BD, Pharmigen,
CA, USA) for 7 days. DCs were harvested and analyzed for
lineage maturation makers (CD14, CD1a, CD11c, HLA-DR,
and CD86), CD1d and HLA-G by flow cytometry before the
iNKT activation assay.
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Human iNKT Isolation and Expansion
HumanCD14+monocytes and iNKT cells were isolated from fresh
PBMC by positive selection using CD14 MicroBeads and anti-
iNKT MicroBeads (Miltenyi Biotech, Germany), respectively,
according to manufacturer’s instructions. iNKT expansion was
performed as described (48) with modifications. Briefly, iNKT
were co-cultured with CD14+ monocytes at 1:1 ratio in RPMI
1640 (Sigma) supplemented with 10% fetal bovine serum (Sigma-
Aldrich), 2mML-glutamine (Gibco), 10µg/ml gentamicin (Gibco),
and 0.25 µg/ml fungizone (Gibco) in the presence of 20 ng/ml GM-
CSF (Peprotech), and20 ng/ml IL-4 (R&DSystems), and100ng/ml
aGC (CaymanChemical). Half of themediumwas replaced and 20
U/ml IL-2 (Chiron, Emeryville,USA)was added everyday fromday
2 to day 21 in order to reach around 1×106 cells. ILT2 expression
was evaluated and iNKTcells were phenotypically validated byflow
cytometry before the iNKT activation assay. Purity of the iNKT cell
population was systematically higher than 90%. The iNKT cells
used in the activation assay with DC-10 cells were isolated and
maintained in culture with the presence of IL-2 and aGC till the
autologous mDC and DC-10 cells were differentiated.
iNKT Activation Assays
The APC (A20CD1d, mDC, orDC-10) andNKT cells (NKT1.2, or
human iNKT cells) were co-incubated at 1:1 ratio (1×106 cells/ml)
in 96-well U-bottom plates for 24 and 4 h respectively for the assay
of NKT1.2 cells and human iNKT cells. aGC-loaded APCs were
prepared by incubating APC with 100 ng/ml of aGC in DMSO
during 1 h at 37°C. Control APCs were prepared concomitantly by
adding the same volume of DMSO without aGC. For blocking
experiments, both APC and NKT cells were pretreated with either
anti-HLA-G (functional grade, clone 87G; Exbio) or anti-ILT2
(functional grade, clone GHI/75; BioLegend) at 37°C for 1 h prior
to the co-incubation. The protein transport inhibitor (eBioscience)
was used at 1× to stop the cytokine release. NKT cell phenotypes
and intracellular cytokines labeling was performed as described
above. The expression of murine IL-2 and human IFN-g and IL-4
were analyzed in NKT1.2 cells (CD3+ cells) and human iNKT cells
(singlet CD3+6B11+ lymphocytes or CD3+CD161+ lymphocytes),
respectively. The gates for cytokine expressionwere set according to
the non-activated controls in each independent experiment.
Statistics
Shapiro-Wilk normality test, one-way ANOVA, Bonferroni’s
Multiple Comparison Test, and statistical plots were performed
in Prism 5 software (GraphPad). P-value ≤ 0.05 was considered
statistically significant.
RESULTS

Human iNKT Cells Express Cell-Surface
ILT2 Upon Activation
To determine whether NKT cells can be inhibited by HLA-G, we
first evaluated their ILT2 expression in comparison to autologous
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CD4+ T cells (CD3+CD56‒CD4+ lymphocytes), CD8+ T cells
(CD3+CD56‒CD8+ lymphocytes), and NK cells (CD3‒CD56+

lymphocytes). As shown in Figure 1A, CD3+CD56+ NKT cells
(i.e. CD3+CD56+ lymphocytes) generally represented almost
10% of peripheral lymphocytes. On the other hand, iNKT (i.e.
CD3+6B11+ lymphocytes), showing double positivity for CD3
and Va24Ja18 expression (6B11+) represented only 0.06% of
peripheral lymphocytes. Subgating of this small subset showed
them to be CD1d-aGC-reactive, but only 30% of them expressed
CD56 (Figure 1B).

ILT2 expression by CD3+CD56+ NKT and iNKT cell subsets
was then investigated in peripheral blood monocuclear cells
(PBMC) of 14 healthy donors. As shown on Figure 1C, only a
minority of iNKT expressed ILT2 at their surface. We compared
ILT2 expression by CD3+CD56+ NKT and iNKT cells to those of
other lymphocyte cell subsets (Figure 1D). Approximately 1% of
CD4+ T cells, 20% of CD8+ T cells, and 35% of NK cells
expressed ILT-2 receptors at their surface, which is in
accordance with what has been reported (22). The
CD3+CD56+ NKT cell population expressed ILT2 the most
(39.82%), with values similar to those of NK cells (~35%)
(Figure 1D). This was in sharp contrast to iNKT cells, which
barely expressed ILT2 (~5%).

It is known that cell-surface ILT2 expression can be
induced on T cells following activation (49). Thus, we
stimulated 6B11+CD3+ iNKT cells with autologous aGC-
loaded CD14+CD1d+ APCs purified from healthy donors, as
previously reported (48). We showed (Figure 1E) that ILT2
expression is indeed induced upon iNKT cell activation,
resulting in a 10-fold increase compared to unstimulated
iNKT cells.
HLA-G:ILT2 Pathway Inhibits iNKT Cell
Activation in a Murine In Vitro Model
Human iNKT cells represent only 0.01% to 0.1% of peripheral
lymphocytes and their ILT2 expression is dependent on their
activation state, reducing even further the numbers of human
iNKT cells available for setting up the conditions of our functional
assays. Given this and the fact that no human iNKT cell lines exist,
we first developed an in vitro assay using murine cell lines. The
murine line A20CD1d, transduced with HLA-G1 and hB2M, was
used as APCs presenting aGC to the ILT2-transduced NKT1.2
effector cell line, as described in Materials and Methods. HLA-G1
expression on A20CD1d‒HLA-G1‒hB2M cells and ILT2
expression on NKT1.2-ILT2 cells are shown in Figure 2. Of
note, no association between HLA-G1 heavy chain and murine
B2M was observed, and HLA-G1 was expressed at the cell surface
only in A20CD1d cells transduced with both HLA-G1 and human
B2M (Supplemental Figure 1). Although HLA-G does not have a
murine homolog, it can interact with PIR-B, the functional murine
homolog of human ILT receptors (50). As can be seen in Figure 2,
PIR-B was not expressed by either A20CD1d or NKT1.2 cell lines,
ruling out any effect of HLA-G binding endogenous murine
receptors, leaving transduced ILT2 as sole HLA-G receptor on
NKT1.2-ILT2 cells.
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FIGURE 1 | Human Invariant Natural Killer T (iNKT) cells express cell-surface Immunoglobulin-like Transcript 2 (ILT2). ILT2 expression on CD3+CD56+ NKT cells and
CD3+6B11+ iNKT cells was evaluated with fresh PBMC by flow cytometry and was compared to that of CD4+ T, CD8+ T, and NK cells. (A) Gating strategy to
identify CD4+ T, CD8+ T, NK, CD3+ CD56+ NKT, and iNKT cells from lymphocytes gated according to the FSC-SSC profile and to the CD3, CD4, CD8, CD56, and
6B11 expression. Percentage of parent population is indicated. (B) CD1d tetramer-aGC reactivity and CD56 expression of iNKT cells. Percentage of parent
population is indicated. (C) ILT2 expression on different subsets of one representative blood donor. Percentage of ILT2+ cells is indicated. (D) Percentage of ILT2+

cells of each subpopulation from 14 healthy donors. Bars indicate mean ± SEM. (E) ILT2 expression on iNKT cells during expansion. iNKT cells at day 0 and 2
weeks after stimulation by CD1d-aGC and cytokines are shown. Percentage of ILT2+ cells is indicated.
FIGURE 2 | A20CD1d and NKT1.2 cells lines generated to evaluate Human Leucocyte Antigen G (HLA-G):Immunoglobulin-like Transcript 2 (ILT2) inhibitory effect.
A20CD1d and NKT1.2 cells were transduced to express HLA-G and ILT2, respectively. Flow cytometry was performed to measure the expression of HLA-G, ILT2,
and PIR-B. Open histograms: staining for the indicated antibodies. Shaded histograms: isotype controls. Percentage of the parent population is indicated.
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To evaluate the capability of HLA-G to inhibit iNKT cells
through ILT2, 24-h co-incubations between A20CD1d ± HLA-G/
hB2M, and effector NKT1.2 cells ± ILT2 in the presence or absence
of aGC were performed, and intracellular IL-2 expression by
NKT1.2 cells was evaluated by flow cytometry (51).

Figure 3 summarizes the results obtained from six independent
experiments and demonstrates that intracellular IL-2 expression
was increased in NKT1.2 cells after aGC stimulation in the absence
of HLA-G (p ≤ 0.001), and was significantly decreased for NKT1.2-
ILT-2 cells only in the presence of HLA-G (p ≤ 0.001). Addition of a
blocking anti-HLA-G antibody restored IL-2 expression
upregulation (p ≤ 0.05), demonstrating that the inhibition
observed was indeed due to the HLA-G:ILT2 interaction.
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HLA-G:ILT2 Pathway Inhibits Human iNKT
Cell Activation
In order to evaluate whether the reactivity of human iNKT cells
naturally expressing ILT2 could also be inhibited through the
HLA-G:ILT2 interaction, we first stimulated human iNKT cells
from healthy donors with aGC-loaded A20CD1d and
A20CD1d‒HLA-G1‒hB2M cells. Indeed, it was reported that
human iNKT cells can be stimulated by aGC presented in the
context of murine CD1d (52). Because resting human iNKT cells
barely express ILT2 as shown earlier in this work, our
experiments required that ILT2 receptor expression be boosted
by an in vitro expansion step prior to use, following published
protocols (48) with modifications described in Materials and
A

B

C

FIGURE 3 | NKT1.2-ILT2 cells are inhibited through the Human Leucocyte Antigen G (HLA-G)/Immunoglobulin-like Transcript 2 (ILT2) interaction. A20CD1d or
A20CD1d-HLA-G1-hB2M cells were used as Antigen Presenting Cells (APC) and NKT1.2 or NKT1.2-ILT2 cells were used as effector cells. Intracellular IL-2 expression of
effector NKT cells was evaluated by flow cytometry after 24 h of co-culture with APC loaded or not with aGC as indicated. Anti-HLA-G antibody (Ab), 87G, was used to
block the HLA-G/ILT2 interaction when indicated. (A) Gating strategy to identify NKT1.2 cells after the coculture assay. FSC-SSC profile was used to identify living cells,
then the NKT1.2 cells are identified as CD3+ singlet living cells. Percentage of lymphocytes is indicated. (B) Intracellular IL-2 expression in NKT1.2 cells of one
representative experiment. The gate of IL-2 expression is based on the no activation control in each experiment. (C) Six independent experiments were performed. Each
bar indicates mean ± SEM. Horizontal bars indicate statistical significance (One-way ANOVA and Bonferroni post hoc, *p ≤ 0.05; ***p ≤ 0.001).
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(Figure 1E). Two donors were used for these experiments, and
results did not reach significance but only show tendency.
Following amplification, 25% of iNKT cells from both donors
expressed cell-surface ILT2 (data not shown). Stimulation results
show that in the absence of aGC, only 1%–4% of iNKT expressed
IFN-g and 5%–7% of iNKT expressed intracellular IL-4 (Figure
4). Intracellular IFN-g and IL-4 expression increased to 17.6%
and 18.2% respectively when stimulated by aGC-loaded
A20CD1d for 4 h, whereas intracellular IFN-g and IL-4
expression was respectively 6.72% and 8.73% after a 4-h co-
incubation with aGC-loaded A20CD1d‒HLA-G1‒hB2M cells
(Figure 4). The presence of blocking anti-HLA-G or anti-ILT2
antibodies restored intracellular IFN-g and IL-4 expression by
iNKT cells stimulated by aGC-loaded A20CD1d‒HLA-G1‒
hB2M cells, demonstrating that human iNKT inhibition was
dependent on HLA-G:ILT2 interaction.

These results demonstrate that human iNKT cells are sensitive
to HLA-G inhibition through ILT2 receptors engagement.
aGC-Loaded HLA-G-Expressing
Tolerogenic DC-10 Cells Do Not Activate
Human iNKT Cells
DC-10 cells are human tolerogenic DC expressing high levels of
HLA-G. They are regulatory cells capable of inhibiting allogeneic
responses throughHLA-G and IL-10, of inducing IL-10-producing
T regulatory type 1 (Tr1) cells (42, 43), and they were shown to
increase in cancer patients (53, 54). Accordingly, we investigated
whether tolerogenic DC-10 cells could inhibit the functions of
autologous human iNKT. Human iNKT cells were stimulated with
aGC-loaded autologous mDC or autologous DC-10 cells, and
IFN-g and IL-4 expression was analyzed. Freshly isolated
monocytes from two healthy donors were differentiated into mDC
and DC-10 cells as previously described (42), and in parallel, iNKT
cells were isolated from the same donors and amplified in vitro
in the presence of IL-2 and aGC. As expected (42, 43), DC-10 in
vitro-differentiated from peripheral monocytes expressed cell-
surface HLA-G1, while mDC barely expressed HLA-G1 (Figure
5). Conversely, mDC and DC-10 expressed similar cell-surface
expression levels of CD1d, indicating that both cell types were
capable of presenting aGC to autologous human iNKT cells.

iNKT cells were then co-incubated for 72 h with either
autologous mDC or DC-10 and their intracellular IFN-g and IL-4
expression was evaluated by flow cytometry. It is unfortunate that
we could obtained all required cell populations from two donors
only, preventing the results from reaching statistical significance,
although tendencies were clear: Figure 6B shows the results
obtained for one donor, and Figure 6C presents data for both
donors. As can be seen for both experiments combined, 11%–12%
of iNKT cells expressed IFN-g and 16%–17% expressed IL-4 when
stimulatedwith unloadedmDCandDC-10.When iNKT cells were
stimulated with aGC-loaded mDC, IFN-g and IL-4 expression
increased, to 26% and 31%, respectively (Figure 6C). Conversely,
when iNKT cells were stimulated with aGC-loaded DC-10, no
increase in IFN-g and IL-4 expression was observed, and the
proportion of iNKT cells positive for IFN-g and IL-4 remained at
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or below the baseline obtained without aGC (7% and 10%
respectively) (Figure 6C). These results indicated that HLA-G-
positive aGC-loaded DC-10 cells do not seem to support human
iNKT activation.
DISCUSSION

We sought to prove that the interaction of HLA-G with ILT2
could inhibit iNKT activation. Thus, we first evaluated the ILT2
cell-surface expression on iNKT cells. Surprisingly, although
CD3+CD56+ NKT cells expressed high levels of cell-surface
ILT2, the iNKT cell subset, specific for aGC presented in the
context of CD1d, barely expressed ILT2 (Figure 1D). Indeed,
ILT2 expression on resting human iNKT cells from peripheral
blood was higher than that of CD4+ T cells but lower than that of
CD8+ T cells or NK cells. Therefore, following these first results,
it seemed unlikely that HLA-G could have any significant direct
inhibitory effect on iNKT cells. However, it must be considered
that even though CD4+ T cells express ILT2, even less so than
iNKT cells, they are well known to be sensitive to HLA-G
inhibition anyway (27, 28, 55). This discrepancy between weak
ILT2 expression and sensitivity to HLA-G can be explained by
two hypotheses: first, T cell inhibition by HLA-G may not be
direct; HLA-G could act on stimulating APC or through the
generation of tolerogenic APC. This mechanism is very relevant
to iNKT cells since monocytes/DC that are required for aGC-
induced iNKT activation constitutively express the ILT2 and
ILT4 HLA-G receptors (23, 56), and are known to be inhibited by
HLA-G (57–59). Second, ILT2 might not be readily present on
peripheral blood resting T cells, but be upregulated upon
activation. In this case, HLA-G would not act directly on
resting iNKT cells, but only on already activated ones. Several
studies demonstrated that ILT2 is upregulated by CD4+ and
CD8+ T cells upon activation (49). In agreement with these
results, our experiments showed that ILT2 was upregulated on
iNKT cells in response to stimulation, and that in vitro expanded
iNKT cells expressed cell-surface ILT2 at a level comparable to
that of polyclonal NK cells (Figure 1E). Thus, according to our
results, it seems that HLA-G direct inhibition should only impact
activated iNKT cells.

To demonstrate that activated iNKT cells could be inhibited by
HLA-G, we developed an in vitro model using a murine NKT cell
line. Indeed, iNKTcells, andevenmore so ILT2-positive iNKTcells,
represent a very small subset of peripheral lymphocytes which is
difficult to isolate.Thus, toovercome this limitation,weset upHLA-
G/ILT2 ICP inhibition experiments in the already described
NKT1.2 vs A20CD1d model and transduced them with ILT2 and
HLA-G/hB2M respectively. We showed that NKT1.2 cells rapidly
expressed IL-2 in response to stimulation by aGC-loaded
A20CD1d cells expressing HLA-G or not (Figure 3). However,
IL-2 upregulation was hampered when ILT2-expressing NKT1.2-
ILT2 cells were stimulated by HLA-G-expressing aGC-loaded
A20CD1d-HLA-G1-hB2M cells (Figure 3). IL-2 expression
inhibition was due to the ILT2:HLA-G1 interaction given that
January 2021 | Volume 11 | Article 608614

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wu et al. HLA-G Inhibits iNKT Cells
A B

D

C

FIGURE 4 | Activation of human Invariant Natural Killer T (iNKT) cells is inhibited through the Human Leucocyte Antigen G (HLA-G):Immunoglobulin-like
Transcript 2 (ILT2) interaction. A20CD1d or A20CD1d-HLA-G1-B2M cells were used as Antigen Presenting Cells (APC) and human iNKT cells were used as
effector cells. Intracellular IFN-g and IL-4 expression by effector NKT cells was evaluated by flow cytometry after a 4-h co-culture with APC loaded or not
with aGC as indicated. Anti-HLA-G antibody 87G, or anti-ILT2 antibody GHI/75, were used to block the HLA-G/ILT2 interaction as indicated. (A) Before
functional assay, expanded human iNKT cells were checked using 6B11 and CD1d-tetramer-aGC. Their surface ILT2 levels were measured. (B) Gating
strategy to identify human iNKT cells after the coculture assay with stimulator cells, gated on lymphocytes according to the FSC-SSC profile and CD3+ and
6B11+ expression. Percentage of lymphocytes is indicated. (C) IFN-g (upper panel) and IL-4 (lower panel) expression levels by effector cells of one
representative experiment. The gate of cytokine expression is based on the no activation control in each experiment. (D) Two independent experiments
were performed; bar indicates mean ± SEM.
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anti-HLA-G blocking antibodies restored IL-2 expression
(Figure 3). We demonstrated that HLA-G could directly inhibit
ILT2-expressing iNKT cells. Transducedmurine cell lines may not
be representative of human iNKT cells, however the human iNKT
cells interaction with aGC-loaded murine CD1d could be used to
studyhuman iNKTcells inhibitionbyHLA-G.aGC-loadedmurine
A20CD1d/A20CD1d-HLA-G1-hB2M cells were used to stimulate
human in vitro-expanded iNKT cells (Figure 4). In these
experiments, iNKT cells had been expanded in vitro in order to
induce ILT2 expressions sufficiently so that the ILT2+ population
was analyzable. It is unclear whether naïve, resting iNKT could
respond toHLA-Gas activated iNKTdid.One canhypothesize that
only previously stimulated iNKT would respond to HLA-G. Those
iNKT cells, recognizing specific CD1d-lipid complexes would then
be akin to memory T cells and sensitive to HLA-G inhibition in
recall immunization or in the context of chronic stimulation. One
can also hypothesize that resting, naïve iNKT cells would be
insensitive to HLA-G but only until they are fully activated and
upregulate ILT2. In this case, HLA-G would not prevent the early
functions of iNKT, but rather their late functions, and possibly
shorten their activation.

When studying the possible effect ofHLA-G:ILT2 ICP on iNKT
cell activation and functions, it is necessary to consider the
stimulatory cells. Indeed, in the context of cancer, HLA-G can be
expressed by the tumor cells and/or by the infiltrating APCs
(monocytes/macrophages/DC). Myeloid cells constitutively
express both ILT2 and ILT4 HLA-G receptors, and are efficiently
inhibitedby thismolecule (23). Followingexposure toHLA-G,APC
lose their capability to stimulateT cells (57) and thereforemight lose
their capability to stimulate iNKT cells as well. Furthermore, HLA-
G induces the differentiation of regulatory cells, including
regulatory myeloid cells (42, 60). These cells do not support
Frontiers in Immunology | www.frontiersin.org 987
regular T cell activation and might not stimulate iNKT cells
either. In order to test this hypothesis, we investigated if HLA-G-
expressing tolerogenic DC, called DC-10, were capable of
stimulating iNKT cells. DC-10 cells are particularly interesting in
our context because they express the same levels ofCD1d asmature
DC (mDC). Indeed, iNKT cells have been stimulated by artificial
APC, expressing costimulatorymolecules such as CD80 andCD86.
Thus, the lack of stimulation of DC-10 cells compared to mDC
could not be explained by lack of costimulation. Generating
autologous mDC, DC-10, and ILT2-expressing iNKT to set up
and thenperform functional studies proved tobea veryproblematic
and uncertain task, which limited the number of experiments we
could perform, ultimately preventing our results from reaching
statistical significance. However, the tendency was clear and
indicates that whereas mDC efficiently activate iNKT cells, HLA-
G-expressing tolerogenic DC-10 do not (Figure 6). We could not
block andprove thatHLA-Gcaused iNKTcell inhibition, for lackof
sufficient autologous DC-10 and purified iNKT cells. However, in
light of the other results presented here, an HLA-G-mediated
inhibition of iNKT following stimulation by aGC-loaded DC-10
is a relevant hypothesis, even though inhibition by IL-10 cannot be
excluded, since DC-10 modulatory activity relies not only on the
expression of HLA-G but also on the secretion of IL-10 (42). These
two mechanisms are actually not mutually exclusive and could act
synergically as it has been shown in other contexts (42, 43, 61). It is
well known that HLA-G, and especially HLA-G-expressing APCs
such as DC-10, not only inhibit the classical function of T cells, but
also induce their differentiation into regulatory cells (42). Yamaura
et al. demonstrated that IL-10-secretingDCs can induce iNKT cells
to produce more IL-10 which will further have an anergic
phenotype, and potently inhibit allogeneic CD4+ T cell
proliferation in vitro (62). We do not know the function of
FIGURE 5 | Phenotypic characteristics of mature dendritic cell (mDC) and autologous DC-10 cells. Phenotype was validated based on the expression of CD14,
CD1a, CD1d, HLA-DR, and Human Leucocyte Antigen G (HLA-G); numbers indicate the percentages of positive cells for CD1d and HLA-G.
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DC-10-stimulated iNKT cells, but their differentiation toward a
regulatory type is a possibility that should be investigated.
Nevertheless, our data show for the first time that iNKT cells are
not activated if tolerogenic stimulators are present. This is an
important headway in the context of anti-tumor adjuvant therapy
using iNKT cells, given that these therapeutic strategies rely on the
proper activation of iNKT cells by autologous DC. Thus, because
tolerogenic DC or myeloid suppressive cells have been reported in
the pathological context of cancer, this might explain the lack of
iNKT response in human trials, possibly amplified by iNKT cell
differentiation in tolerogenic iNKT cells (62) which would achieve
the opposite of the intended goal. Thus, without proper
identification, DC-10 cells could very well be present within the
Frontiers in Immunology | www.frontiersin.org 1088
autologous myeloid cell population used for iNKT cell stimulation
in iNKT-based immunotherapies.

iNKT cells have the ability to rapidly release large amounts of
cytokines to link both innate and adaptive immune responses.
Hence, iNKT cells possess a potent adjuvant activity: IFN-g
secretion by activated iNKT cells can activate NK cells, mature
DC, and prime Ag-specific T cell responses (63) IFN-g and IL-4
secretions can also contribute to antibody secretion and memory
B cell induction (64, 65). Our work demonstrates that HLA-G
and myeloid regulatory cells such as HLA-G-expressing DC-10
cells prevent proper activation of iNKT cells by aGC, a
mechanism that may very well occur in iNKT cell-based
anti-tumor therapy trials and reduce therapy efficiency.
A B

C

FIGURE 6 | Tolerogenic DC-10 cells do not support human Invariant Natural Killer T (iNKT) cell activation. Mature Dendritic Cells (mDC) or tolerogenic DC-10 cells
were used as antigen-presenting cell (APC), and autologous human iNKT cells were used as effector cells. Intracellular IFN-g and IL-4 expression of effector cells was
evaluated by flow cytometry after 72 h of co-culture with APC loaded or not with aGC antigen as indicated. (A) Gating strategy to identify iNKT cells after the
coculture assay with stimulator cells, gated on lymphocytes according to the FSC-SSC profile and CD3+ and CD161+ expression. Percentage of lymphocytes is
indicated. (B) IFN-g (upper panel) and IL-4 (lower panel) expression levels by effector cells of one representative experiment. The gate of cytokine expression is based
on the no activation control in each experiment. (C) Two independent experiments were performed; bar indicates mean ± SEM.
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More generally, our results emphasize the need for factoring in
the functions of ICPs and regulatory cells in iNKT cell-based
anti-tumor therapies.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
AUTHOR CONTRIBUTIONS

C-LW: performed experiments, collected and analyzed data, wrote
themanuscript. JC: designed and performed experiments, analyzed
data, wrote the manuscript. GA: performed and analyzed
experiments. FA: performed experiments. ML: analyzed data,
wrote the manuscript. SG: wrote the manuscript. PL-D:
manuscript review. JL: designed study, analyzed data, wrote the
manuscript. All authors contributed to the article and approved the
submitted version.
Frontiers in Immunology | www.frontiersin.org 1189
FUNDING

This work was supported by CEA, Invectys and by CIFRE
fellowship numbers 2014/0386.
ACKNOWLEDGMENTS

We thank Dr. Mitchell Kronenberg from the La Jolla Institute for
Allergy & Immunology, CA, USA, for providing the NKT
hybridoma 1.2 and the A20CD1d cell lines, Dr Simon Wain-
Hobson from Invectys for constructive criticism of the
manuscript, and Dr. Sophie Duchez, and Ms. Christelle Doliger
from the flow cytometry core facility at IUH Institute, Saint-Louis
Hospital, Paris, France, for technical assistance in cytometry.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2020.
608614/full#supplementary-material
REFERENCES

1. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L. NKT
cells: what’s in a name? Nat Rev Immunol (2004) 4(3):231–7. doi: 10.1038/
nri1309

2. Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol
(2007) 25:297–336. doi: 10.1146/annurev.immunol.25.022106.141711

3. Bendelac A, Lantz O, Quimby ME, Yewdell JW, Bennink JR, Brutkiewicz RR.
CD1 recognition by mouse NK1+ T lymphocytes. Science (1995) 268
(5212):863–5. doi: 10.1126/science.7538697

4. Lantz O, Bendelac A. An invariant T cell receptor alpha chain is used by a
unique subset of major histocompatibility complex class I-specific CD4+ and
CD4-8- T cells in mice and humans. J Exp Med (1994) 180(3):1097–106. doi:
10.1084/jem.180.3.1097

5. Jukes J-P, Silk JD, Salio M, Cerundolo V. Invariant NKT Cell-Based Vaccine
Strategies. In: M Terabe, JA Berzofsky, editors. Natural Killer T cells:
Balancing the Regulation of Tumor Immunity. New York, NY: Springer
New York (2012). p. 39–53. doi: 10.1007/978-1-4614-0613-6_3

6. Mattarollo SR, Smyth MJ. Therapeutic Approaches Utilising NKT Cells. In: M
Terabe, JA Berzofsky, editors. Natural Killer T cells: Balancing the Regulation
of Tumor Immunity. New York, NY: Springer New York (2012). p. 111–28.
doi: 10.1007/978-1-4614-0613-6_7

7. Motohashi S, Okamoto Y, Nakayama T. Clinical Trials of Invariant Natural
Killer T Cell-Based Immunotherapy for Cancer. In: M Terabe, JA Berzofsky,
editors. Natural Killer T cells: Balancing the Regulation of Tumor Immunity.
New York, NY: Springer New York (2012). p. 185–98. doi: 10.1007/978-1-
4614-0613-6_11

8. Bassiri H, Das R, Guan P, Barrett DM, Brennan PJ, Banerjee PP, et al. iNKT
cell cytotoxic responses control T-lymphoma growth in vitro and in vivo.
Cancer Immunol Res (2014) 2(1):59–69. doi: 10.1158/2326-6066.CIR-13-0104

9. Tachibana T, Onodera H, Tsuruyama T, Mori A, Nagayama S, Hiai H, et al.
Increased intratumor Valpha24-positive natural killer T cells: a prognostic
factor for primary colorectal carcinomas. Clin Cancer Res (2005) 11
(20):7322–7. doi: 10.1158/1078-0432.CCR-05-0877

10. Molling JW, Langius JA, Langendijk JA, Leemans CR, Bontkes HJ, van der
Vliet HJ, et al. Low levels of circulating invariant natural killer T cells predict
poor clinical outcome in patients with head and neck squamous cell
carcinoma. J Clin Oncol (2007) 25(7):862–8. doi: 10.1200/JCO.2006.08.5787

11. Motohashi S, Kobayashi S, Ito T, Magara KK, Mikuni O, Kamada N, et al.
Preserved IFN-alpha production of circulating Valpha24 NKT cells in
primary lung cancer patients. Int J Cancer (2002) 102(2):159–65. doi:
10.1002/ijc.10678

12. Giaccone G, Punt CJ, Ando Y, Ruijter R, Nishi N, Peters M, et al. A phase I
study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000)
in patients with solid tumors. Clin Cancer Res (2002) 8(12):3702–9.

13. Fujii S, Shimizu K, Kronenberg M, Steinman RM. Prolonged IFN-gamma-
producing NKT response induced with alpha-galactosylceramide-loaded DCs.
Nat Immunol (2002) 3(9):867–74. doi: 10.1038/ni827

14. Motohashi S, Ishikawa A, Ishikawa E, Otsuji M, Iizasa T, Hanaoka H, et al. A
phase I study of in vitro expanded natural killer T cells in patients with
advanced and recurrent non-small cell lung cancer. Clin Cancer Res (2006) 12
(20 Pt 1):6079–86. doi: 10.1158/1078-0432.CCR-06-0114

15. Yamasaki K, Horiguchi S, Kurosaki M, Kunii N, Nagato K, Hanaoka H, et al.
Induction of NKT cell-specific immune responses in cancer tissues after NKT
cell-targeted adoptive immunotherapy. Clin Immunol (2011) 138(3):255–65.
doi: 10.1016/j.clim.2010.11.014

16. Motohashi S, Okamoto Y, Yoshino I, Nakayama T. Anti-tumor immune responses
induced by iNKT cell-based immunotherapy for lung cancer and head and neck
cancer. Clin Immunol (2011) 140(2):167–76. doi: 10.1016/j.clim.2011.01.009

17. Exley MA, Friedlander P, Alatrakchi N, Vriend L, Yue S, Sasada T, et al.
Adoptive Transfer of Invariant NKT Cells as Immunotherapy for Advanced
Melanoma: A Phase I Clinical Trial. Clin Cancer Res (2017) 23(14):3510–9.
doi: 10.1158/1078-0432.CCR-16-0600

18. McEwen-Smith RM, Salio M, Cerundolo V. The regulatory role of invariant
NKT cells in tumor immunity. Cancer Immunol Res (2015) 3(5):425–35. doi:
10.1158/2326-6066.CIR-15-0062

19. Parekh VV, Lalani S, Kim S, Halder R, Azuma M, Yagita H, et al. PD-1/PD-L
blockade prevents anergy induction and enhances the anti-tumor activities of
glycolipid-activated invariant NKT cells. J Immunol (2009) 182(5):2816–26.
doi: 10.4049/jimmunol.0803648

20. Morales PJ, Pace JL, Platt JS, Langat DK, Hunt JS. Synthesis of beta(2)-
microglobulin-free, disulphide-linked HLA-G5 homodimers in human
placental villous cytotrophoblast cells. Immunology (2007) 122(2):179–88.
doi: 10.1111/j.1365-2567.2007.02623.x

21. JuchH, Blaschitz A,DaxbockC, Rueckert C,Kofler K, DohrG.A novel sandwich
ELISA for alpha1 domain based detection of soluble HLA-G heavy chains.
J Immunol Methods (2005) 307(1-2):96–106. doi: 10.1016/j.jim.2005.09.016

22. Carosella ED, Rouas-Freiss N, Tronik-Le Roux D, Moreau P, LeMaoult J.
HLA-G: An Immune Checkpoint Molecule. Adv Immunol (2015) 127:33–144.
doi: 10.1016/bs.ai.2015.04.001
January 2021 | Volume 11 | Article 608614

https://www.frontiersin.org/articles/10.3389/fimmu.2020.608614/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2020.608614/full#supplementary-material
https://doi.org/10.1038/nri1309
https://doi.org/10.1038/nri1309
https://doi.org/10.1146/annurev.immunol.25.022106.141711
https://doi.org/10.1126/science.7538697
https://doi.org/10.1084/jem.180.3.1097
https://doi.org/10.1007/978-1-4614-0613-6_3
https://doi.org/10.1007/978-1-4614-0613-6_7
https://doi.org/10.1007/978-1-4614-0613-6_11
https://doi.org/10.1007/978-1-4614-0613-6_11
https://doi.org/10.1158/2326-6066.CIR-13-0104
https://doi.org/10.1158/1078-0432.CCR-05-0877
https://doi.org/10.1200/JCO.2006.08.5787
https://doi.org/10.1002/ijc.10678
https://doi.org/10.1038/ni827
https://doi.org/10.1158/1078-0432.CCR-06-0114
https://doi.org/10.1016/j.clim.2010.11.014
https://doi.org/10.1016/j.clim.2011.01.009
https://doi.org/10.1158/1078-0432.CCR-16-0600
https://doi.org/10.1158/2326-6066.CIR-15-0062
https://doi.org/10.4049/jimmunol.0803648
https://doi.org/10.1111/j.1365-2567.2007.02623.x
https://doi.org/10.1016/j.jim.2005.09.016
https://doi.org/10.1016/bs.ai.2015.04.001
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wu et al. HLA-G Inhibits iNKT Cells
23. Colonna M, Navarro F, Bellon T, Llano M, Garcia P, Samaridis J, et al. A
common inhibitory receptor for major histocompatibility complex class I
molecules on human lymphoid and myelomonocytic cells. J Exp Med (1997)
186(11):1809–18. doi: 10.1084/jem.186.11.1809

24. Wu D, Kuiaste I, Moreau P, Carosella E, Yotnda P. Rescuing lymphocytes
from HLA-G immunosuppressive effects mediated by the tumor
microenvironment. Oncotarget (2015) 6(35):37385–97. doi: 10.18632/
oncotarget.6044

25. Lesport E, Baudhuin J, Sousa S, LeMaoult J, Zamborlini A, Rouas-Freiss N,
et al. Inhibition of human Vg9Vd2 T-cell antitumoral activity through HLA-
G: implications for immunotherapy of cancer. Cell Mol Life Sci (2011) 68
(20):3385–99. doi: 10.1007/s00018-011-0632-7

26. Bahri R, Hirsch F, Josse A, Rouas-Freiss N, Bidere N, Vasquez A, et al. Soluble
HLA-G inhibits cell cycle progression in human alloreactive T lymphocytes.
J Immunol (2006) 176(3):1331–9. doi: 10.4049/jimmunol.176.3.1331

27. Riteau B, Menier C, Khalil-Daher I, Sedlik C, Dausset J, Rouas-Freiss N, et al.
HLA-G inhibits the allogeneic proliferative response. J Reprod Immunol
(1999) 43(2):203–11. doi: 10.1016/S0165-0378(99)00034-0

28. Lila N, Rouas-Freiss N, Dausset J, Carpentier A, Carosella ED. Soluble HLA-G
protein secreted by allo-specific CD4+ T cells suppresses the allo-proliferative
response: a CD4+ T cell regulatory mechanism. Proc Natl Acad Sci U S A
(2001) 98(21):12150–5. doi: 10.1073/pnas.201407398

29. Kanai T, Fujii T, Kozuma S, Miki A, Yamashita T, Hyodo H, et al. A subclass
of soluble HLA-G1 modulates the release of cytokines from mononuclear cells
present in the decidua additively to membrane-bound HLA-G1. J Reprod
Immunol (2003) 60(2):85–96. doi: 10.1016/S0165-0378(03)00096-2

30. Kanai T, Fujii T, Kozuma S, Yamashita T, Miki A, Kikuchi A, et al. Soluble
HLA-G influences the release of cytokines from allogeneic peripheral blood
mononuclear cells in culture. Mol Hum Reprod (2001) 7(2):195–200. doi:
10.1093/molehr/7.2.195

31. Kanai T, Fujii T, Unno N, Yamashita T, Hyodo H, Miki A, et al. Human
leukocyte antigen-G-expressing cells differently modulate the release of
cytokines from mononuclear cells present in the decidua versus peripheral
blood. Am J Reprod Immunol (2001) 45(2):94–9. doi: 10.1111/j.8755-
8920.2001.450205.x

32. Favier B, Lemaoult J, Lesport E, Carosella ED. ILT2/HLA-G interaction
impairs NK-cell functions through the inhibition of the late but not the
early events of the NK-cell activating synapse. FASEB J (2010) 24(3):689–99.
doi: 10.1096/fj.09-135194

33. Le Gal FA, Riteau B, Sedlik C, Khalil-Daher I, Menier C, Dausset J, et al. HLA-
G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int
Immunol (1999) 11(8):1351–6. doi: 10.1093/intimm/11.8.1351

34. Riteau B, Rouas-Freiss N, Menier C, Paul P, Dausset J, Carosella ED. HLA-G2,
-G3, and -G4 isoforms expressed as nonmature cell surface glycoproteins
inhibit NK and antigen-specific CTL cytolysis. J Immunol (2001) 166
(8):5018–26. doi: 10.4049/jimmunol.166.8.5018

35. Rouas-Freiss N, Marchal RE, Kirszenbaum M, Dausset J, Carosella ED. The
alpha1 domain of HLA-G1 and HLA-G2 inhibits cytotoxicity induced by
natural killer cells: is HLA-G the public ligand for natural killer cell inhibitory
receptors? Proc Natl Acad Sci U S A (1997) 94(10):5249–54. doi: 10.1073/
pnas.94.10.5249

36. Rouas-Freiss N, Goncalves RM, Menier C, Dausset J, Carosella ED. Direct
evidence to support the role of HLA-G in protecting the fetus from maternal
uterine natural killer cytolysis. Proc Natl Acad Sci U S A (1997) 94(21):11520–
5. doi: 10.1073/pnas.94.21.11520

37. Ye SR, Yang H, Li K, Dong DD, Lin XM, Yie SM. Human leukocyte antigen G
expression: as a significant prognostic indicator for patients with colorectal
cancer. Mod Pathol (2007) 20(3):375–83. doi: 10.1038/modpathol.3800751

38. Rutten MJ, Dijk F, Savci-Heijink CD, Buist MR, Kenter GG, van de Vijver MJ,
et al. HLA-G expression is an independent predictor for improved survival in
high grade ovarian carcinomas. J Immunol Res (2014) 2014:274584. doi:
10.1155/2014/274584

39. de Figueiredo Feitosa NL, Crispim JC, Zanetti BR, Magalhaes PK, Soares CP,
Soares EG, et al. HLA-G is differentially expressed in thyroid tissues. Thyroid
(2014) 24(3):585–92. doi: 10.1089/thy.2013.0246

40. Alkhouly N, Shehata I, Ahmed MB, Shehata H, Hassan S, Ibrahim T. HLA-G
expression in acute lymphoblastic leukemia: a significant prognostic tumor
biomarker. Med Oncol (2013) 30(1):460. doi: 10.1007/s12032-013-0460-8
Frontiers in Immunology | www.frontiersin.org 1290
41. Cao M, Yie SM, Liu J, Ye SR, Xia D, Gao E. Plasma soluble HLA-G is a
potential biomarker for diagnosis of colorectal, gastric, esophageal and lung
cancer. Tissue Antigens (2011) 78(2):120–8. doi: 10.1111/j.1399-0039.2011.
01716.x

42. Gregori S, Tomasoni D, Pacciani V, Scirpoli M, Battaglia M, Magnani CF,
et al. Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10
requires the IL-10-dependent ILT4/HLA-G pathway. Blood (2010) 116
(6):935–44. doi: 10.1182/blood-2009-07-234872

43. Amodio G, Comi M, Tomasoni D, Gianolini ME, Rizzo R, LeMaoult J, et al.
HLA-G expression levels influence the tolerogenic activity of human DC-10.
Haematologica (2015) 100(4):548–57. doi: 10.3324/haematol.2014.113803

44. Zhang Y, Lu N, Xue Y, Zhang M, Li Y, Si Y, et al. Expression of
immunoglobulin-like transcript (ILT)2 and ILT3 in human gastric cancer
and its clinical significance. Mol Med Rep (2012) 5(4):910–6. doi: 10.3892/
mmr.2012.744

45. Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate
activation scheme linked to diverse effector functions. Nat Rev Immunol
(2013) 13(2):101–17. doi: 10.1038/nri3369

46. Burdin N, Brossay L, Degano M, Iijima H, Gui M, Wilson IA, et al. Structural
requirements for antigen presentation by mouse CD1. Proc Natl Acad Sci U S A
(2000) 97(18):10156–61. doi: 10.1073/pnas.97.18.10156

47. Zhao L, Teklemariam T, Hantash BM. Mutated HLA-G3 localizes to the cell
surface but does not inhibit cytotoxicity of natural killer cells. Cell Immunol
(2014) 287(1):23–6. doi: 10.1016/j.cellimm.2013.11.005

48. Li X, Tsuji M, Schneck J, Webb TJ. Generation of Human iNKT Cell Lines. Bio
Protoc (2013) 3(6). doi: 10.21769/BioProtoc.418

49. HoWangYin KY, Caumartin J, Favier B, Daouya M, Yaghi L, Carosella ED,
et al. Proper regrafting of Ig-like transcript 2 after trogocytosis allows a
functional cell-cell transfer of sensitivity. J Immunol (2011) 186(4):2210–8.
doi: 10.4049/jimmunol.1000547

50. Liang S, Baibakov B, Horuzsko A. HLA-G inhibits the functions of murine
dendritic cells via the PIR-B immune inhibitory receptor. Eur J Immunol
(2002) 32(9):2418–26. doi: 10.1002/1521-4141(200209)32:9<2418::AID-
IMMU2418>3.0.CO;2-L

51. Kinjo Y, Illarionov P, Vela JL, Pei B, Girardi E, Li X, et al. Invariant natural
killer T cells recognize glycolipids from pathogenic Gram-positive bacteria.
Nat Immunol (2011) 12(10):966–74. doi: 10.1038/ni.2096

52. Brossay L, Chioda M, Burdin N, Koezuka Y, Casorati G, Dellabona P, et al.
CD1d-mediated recognition of an alpha-galactosylceramide by natural killer
T cells is highly conserved through mammalian evolution. J Exp Med (1998)
188(8):1521–8. doi: 10.1084/jem.188.8.1521

53. Locafaro G, Amodio G, Tomasoni D, Tresoldi C, Ciceri F, Gregori S. HLA-G
expression on blasts and tolerogenic cells in patients affected by acute myeloid
leukemia. J Immunol Res (2014) 2014:636292. doi: 10.1155/2014/636292

54. Xu DP, Shi WW, Zhang TT, Lv HY, Li JB, Lin A, et al. Elevation of HLA-G-
expressing DC-10 cells in patients with gastric cancer. Hum Immunol (2016)
77(9):800–4. doi: 10.1016/j.humimm.2016.01.003

55. Bainbridge DR, Ellis SA, Sargent IL. HLA-G suppresses proliferation of CD4
(+) T-lymphocytes. J Reprod Immunol (2000) 48(1):17–26. doi: 10.1016/
S0165-0378(00)00070-X

56. Colonna M, Samaridis J, Cella M, Angman L, Allen RL, O’Callaghan CA, et al.
Human myelomonocytic cells express an inhibitory receptor for classical and
nonclassical MHC class I molecules. J Immunol (1998) 160(7):3096–100.

57. Ristich V, Liang S, ZhangW,Wu J, Horuzsko A. Tolerization of dendritic cells
by HLA-G. Eur J Immunol (2005) 35(4):1133–42. doi: 10.1002/eji.200425741

58. Huang J, Burke P, Yang Y, Seiss K, Beamon J, Cung T, et al. Soluble HLA-G
inhibits myeloid dendritic cell function in HIV-1 infection by interacting with
leukocyte immunoglobulin-like receptor B2. J Virol (2010) 84(20):10784–91.
doi: 10.1128/JVI.01292-10

59. Horuzsko A, Lenfant F, Munn DH, Mellor AL. Maturation of antigen-
presenting cells is compromised in HLA-G transgenic mice. Int Immunol
(2001) 13(3):385–94. doi: 10.1093/intimm/13.3.385

60. LeMaoult J, Krawice-Radanne I, Dausset J, Carosella ED. HLA-G1-expressing
antigen-presenting cells induce immunosuppressive CD4+ T cells. Proc Natl
Acad Sci U S A (2004) 101(18):7064–9. doi: 10.1073/pnas.0401922101

61. Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings
MK. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans.
Immunol Rev (2006) 212:28–50. doi: 10.1111/j.0105-2896.2006.00420.x
January 2021 | Volume 11 | Article 608614

https://doi.org/10.1084/jem.186.11.1809
https://doi.org/10.18632/oncotarget.6044
https://doi.org/10.18632/oncotarget.6044
https://doi.org/10.1007/s00018-011-0632-7
https://doi.org/10.4049/jimmunol.176.3.1331
https://doi.org/10.1016/S0165-0378(99)00034-0
https://doi.org/10.1073/pnas.201407398
https://doi.org/10.1016/S0165-0378(03)00096-2
https://doi.org/10.1093/molehr/7.2.195
https://doi.org/10.1111/j.8755-8920.2001.450205.x
https://doi.org/10.1111/j.8755-8920.2001.450205.x
https://doi.org/10.1096/fj.09-135194
https://doi.org/10.1093/intimm/11.8.1351
https://doi.org/10.4049/jimmunol.166.8.5018
https://doi.org/10.1073/pnas.94.10.5249
https://doi.org/10.1073/pnas.94.10.5249
https://doi.org/10.1073/pnas.94.21.11520
https://doi.org/10.1038/modpathol.3800751
https://doi.org/10.1155/2014/274584
https://doi.org/10.1089/thy.2013.0246
https://doi.org/10.1007/s12032-013-0460-8
https://doi.org/10.1111/j.1399-0039.2011.01716.x
https://doi.org/10.1111/j.1399-0039.2011.01716.x
https://doi.org/10.1182/blood-2009-07-234872
https://doi.org/10.3324/haematol.2014.113803
https://doi.org/10.3892/mmr.2012.744
https://doi.org/10.3892/mmr.2012.744
https://doi.org/10.1038/nri3369
https://doi.org/10.1073/pnas.97.18.10156
https://doi.org/10.1016/j.cellimm.2013.11.005
https://doi.org/10.21769/BioProtoc.418
https://doi.org/10.4049/jimmunol.1000547
https://doi.org/10.1002/1521-4141(200209)32:93.0.CO;2-L
https://doi.org/10.1002/1521-4141(200209)32:93.0.CO;2-L
https://doi.org/10.1038/ni.2096
https://doi.org/10.1084/jem.188.8.1521
https://doi.org/10.1155/2014/636292
https://doi.org/10.1016/j.humimm.2016.01.003
https://doi.org/10.1016/S0165-0378(00)00070-X
https://doi.org/10.1016/S0165-0378(00)00070-X
https://doi.org/10.1002/eji.200425741
https://doi.org/10.1128/JVI.01292-10
https://doi.org/10.1093/intimm/13.3.385
https://doi.org/10.1073/pnas.0401922101
https://doi.org/10.1111/j.0105-2896.2006.00420.x
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wu et al. HLA-G Inhibits iNKT Cells
62. Yamaura A, Hotta C, Nakazawa M, Van Kaer L, Minami M. Human invariant
Valpha24+ natural killer T cells acquire regulatory functions by interacting
with IL-10-treated dendritic cells. Blood (2008) 111(8):4254–63. doi: 10.1182/
blood-2007-04-085142

63. Fujii S, Motohashi S, Shimizu K, Nakayama T, Yoshiga Y, Taniguchi M.
Adjuvant activity mediated by iNKT cells. Semin Immunol (2010) 22(2):97–
102. doi: 10.1016/j.smim.2009.10.002

64. Galli G, Nuti S, Tavarini S, Galli-Stampino L, De Lalla C, Casorati G, et al.
CD1d-restricted help to B cells by human invariant natural killer T
lymphocytes. J Exp Med (2003) 197(8):1051–7. doi: 10.1084/jem.20021616

65. Galli G, Pittoni P, Tonti E, Malzone C, Uematsu Y, Tortoli M, et al. Invariant
NKT cells sustain specific B cell responses and memory. Proc Natl Acad Sci
U S A (2007) 104(10):3984–9. doi: 10.1073/pnas.0700191104
Frontiers in Immunology | www.frontiersin.org 1391
Conflict of Interest: C-LW,JC, FA, ML and PL-D were employed by Invectys.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2021Wu, Caumartin, Amodio, Anna, Loustau, Gregori, Langlade-Demoyen
and LeMaoult. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s) are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which does
not comply with these terms.
January 2021 | Volume 11 | Article 608614

https://doi.org/10.1182/blood-2007-04-085142
https://doi.org/10.1182/blood-2007-04-085142
https://doi.org/10.1016/j.smim.2009.10.002
https://doi.org/10.1084/jem.20021616
https://doi.org/10.1073/pnas.0700191104
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	The Biological and Clinical Aspectsof HLA-G.
	Table of Contents
	Editorial: The Biological and Clinical Aspects of HLA-G
	Author Contributions
	References

	The Role of HLA-G in Human Papillomavirus Infections and Cervical Carcinogenesis
	Introduction
	Molecular Structure of Human Leukocyte Antigen-G
	HLA-G-Mediated Immune Suppression
	HLA-G Polymorphisms in the Context of HPV Infections
	HLA-G Expression in Cervical Carcinogenesis
	HLA-G as a Novel Target for Immunotherapies
	Conclusions
	Author Contributions
	Funding
	References

	HLA-G Genotype/Expression/Disease Association Studies: Success, Hurdles, and Perspectives
	Introduction
	HLA-G Haplotypes
	HLA-G Genetic Footprint and Correlation With Disease Course
	Association HLA-G Genotype/Phenotype
	Intracellular and Extracellular Mechanisms Regulating HLA-G Expression
	Concluding Remarks
	Data Availability Statement
	Author Contributions
	Funding
	References

	HLA-G Neo-Expression on Tumors
	Introduction
	HLA-G NEO-Expression In Hematopoietic Tumors
	HLA-G NEO-Expression in Solid Tumors
	Discussion
	Author Contributions
	References

	Soluble HLA-G and HLA-G Bearing Extracellular Vesicles Affect ILT-2 Positive and ILT-2 Negative CD8 T Cells Complementary
	Introduction
	Materials and Methods
	Cell Culture
	Isolation and Characterization of Extracellular Vesicles Derived From Conditioned Media
	Stimulation of Peripheral Blood Mononuclear Cells
	Flow Cytometric Analysis
	Statistical Analysis

	Results
	Priming With sHLA-G1 Modulates the ILT-2 Expression of CD8+ T Cells
	Priming With sHLA-G1 Modulates the*1pt Expression of Immune Checkpoint Molecules Exclusively on ILT-2 Positive CD8+ T Cells
	Priming With EV Preparations Modulates Immune Checkpoint Molecules Exclusively on ILT-2 Negative CD8+ T Cells
	Priming With sHLA-G1 or EV Preparations Drives ILT-2 Positive or Negative CD8+ T Cells, Respectively, Toward an Immunosuppressive/Exhausted Phenotype

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	HLA-G Expressing Immune Cells in Immune Mediated Diseases
	Introduction
	Hla-G+ Immune Cells in Physiologic Conditions
	T and NK Cells
	Monocytes
	Dendritic Cells

	Hla-G-Expressing Immune Cells in Non-Autoimmune Diseases
	T and NK Cells
	Monocytes and Dendritic Cells
	Mast Cells

	Hla-G-Expressing Immune Cells in Autoimmune Diseases
	Multiple Sclerosis
	Systemic Lupus Erythematosus
	Systemic Sclerosis
	Skin Diseases

	Discussion
	Author Contributions
	References

	Roles of HLA-G in the Maternal-Fetal Immune Microenvironment
	Introduction
	HLA-G Promotes the Remodeling of Spiral Artery
	HLA-G Participates in the Formation of Maternal-Fetal Immune Tolerance
	HLA-G Facilitates Fetal Growth
	Conclusions
	Author Contributions
	Funding
	References

	Intratumor Heterogeneity of HLA-G Expression in Cancer Lesions
	Introduction
	Materials and Methods
	Tumor Lesion Specimen
	HLA-G Antibodies and Immunohistochemistry
	Statistical Analysis

	Results
	Intratumor Heterogeneity of HLA-G
	Intratumor Heterogeneity of HLA-G Isoforms

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	Inhibition of iNKT Cells by the HLA-G-ILT2 Checkpoint and Poor Stimulation by HLA-G-Expressing Tolerogenic DC
	Introduction
	Materials and Methods
	Human PBMC Isolation
	Flow Cytometry Analysis
	ILT2 Expression on Lymphocytes
	Murine iNKT and APCs
	Human mDC and DC-10 Differentiation
	Human iNKT Isolation and Expansion
	iNKT Activation Assays
	Statistics

	Results
	Human iNKT Cells Express Cell-Surface ILT2 Upon Activation
	HLA-G:ILT2 Pathway Inhibits iNKT Cell Activation in a Murine In Vitro Model
	HLA-G:ILT2 Pathway Inhibits Human iNKT Cell Activation
	αGC-Loaded HLA-G-Expressing Tolerogenic DC-10 Cells Do Not Activate Human iNKT Cells

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Back Cover


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




