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Editorial: Targeted Immunotherapy for
Cancer
Williams V. Williams

BriaCell Therapeutics Corp., Philadelphia, PA, United States

Keywords: Cancer, Immunotherapy, Targeted immunotherapy, Immune modulation—immunological terms,
targeted (selective) treatment, Immune checkpoint inhibitor

Editorial on the Research Topic

Targeted Immunotherapy for Cancer

Targeted immunotherapy for cancer is a field that is on fire with new innovations and notable
successes. In this issue numerous papers were contributed expounding on the successes and even
more on novel approaches or key insights that may be pivotal in further therapeutic advances.

Several papers were submitted evaluating the ever-expanding literature on the use of immune
checkpoint inhibitors (ICIs) in cancer. The bibliometric study of ICI use by Sun et al. includes a
description of the historical evolution of ICI use (Sun et al.). They discuss the trends in research into
immune checkpoint blockade by anti-PD1/PDL1 antibodies in cancer immunotherapy. Their use of a
direct citation network of randomized controlled trials indicated the development of these therapies was
transformational for the treatment of many cancers. This paper provides a good historical perspective
within which the others evaluating ICIs can be placed. Xue et al. evaluate the association between the
efficacy of ICIs and sex (Xue et al.). Their meta-analysis of 12,675 non-small cell lung cancer (NSCLC)
patients revealed that ICIs significantly improved overall survival and progression free survival in males
and females with no statistical difference between the sexes. However, they also noted that
immunotherapy for NSCLC patients had more treatment-emergent adverse events compared with
chemotherapy, with insufficient data to compare the sexes for anuy potential differences in the frequency
of adverse events. Feng et al. performed a meta-analysis of seven studies of PD-1/PD-L1 and CTLA-4
inhibitor combination therapy (Feng et al.). They found that combination therapy has longer progression-
free survival (PFS), overall survival (OS), and better objective response rate (ORR) than other treatments
for cancer patients. They also noted that PFS in patients with malignant tumors is positively correlated
with PD-L1 expression.

These studies document the tremendous impact ICIs have had already in cancer treatment. Looking
forward, Huang et al. evaluate the current landscape and future projections for the use of immune
checkpoint inhibitors in the first-line setting (Huang et al.). Looking predominately at NSCLC, they
review the history of the developments in cancer immunotherapy, summarize the mechanism of action
and based on the results of the recent first-line trials, propose a potential first-line immunotherapeutic
strategy for the treatment of the patients with NSCLC. Similarly forward looking, Varayathu et al.
evaluated combination strategies to augment ICI efficacy and the implications for translational research
(Varayathu et al.). Combinations evaluated included conventional chemotherapy drugs, metronomic
chemotherapy, thalidomide and its derivatives, epigenetic therapy, targeted therapy, inhibitors of DNA
damage repair, other small molecule inhibitors, anti-tumor antibodies, hormonal therapy, multiple
checkpoint Inhibitors, microbiome therapeutics, oncolytic viruses, radiotherapy, drugs targetingmyeloid-
derived suppressor cells, drugs targeting Tregs, drugs targeting renin-angiotensin system, drugs targeting
the autonomic nervous system, metformin, and others. These exciting combination therapies hold much
promise for cancer patients.
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Whereas most ICI research has focused on PD-L1, PD-L2
similarly engages PD-1 and can suppress immune responses.
Marinelli et al. evaluated the biological function of PD-L2. They
performed in silico analysis of endometrial cancer cell lines using
the cancer genome atlas (TCGA) as well as PD-L2 staining of
endometrial cancers. PD-L2 was more commonly expressed than
PD-L1 in the endometrial cancer cell lines and PD-L2 was also
highly expressed in almost 65% of the highly aggressive type II
endometrial cancer specimens in both stromal and epithelial
components. This alternative ligand for PD-1 appears to have
a functional role in these endothelial cancers.

There were two papers that focused on specific immune-
related adverse events following ICI therapy. The
cardiotoxicity of immune checkpoint inhibitors is discussed by
(Chen et al.). Looking at data from the FDA Adverse Event
Reporting System (FAERS) database between 2014 and 2019, they
noted over 9,000 cases of cardiotoxicity, with males affected close
to twice as often as females. Dyspnea, myocarditis, atrial
fibrillation, cardiac failure, and pericardial effusion were the
top 5 cardiac adverse events reported with myocarditis the
only one associated with all the immune checkpoint inhibitors
evaluated. Liu et al. discuss the relatively infrequent, but very
serious immune-related adverse event of immune
thrombocytopenia following ICI treatment. They discuss
epidemiology, clinical presentation, and prognosis a well as a
case report following treatment with durvalumab. These immune
related adverse events highlight the need for careful patient
monitoring and the need for additional therapeutic strategies
that can avoid some of these adverse events.

In an interesting sociological survey, Zhang et al. performed a
national cross-sectional survey of attitudes and practices of ICIs
in Chinese patients with cancer. Hesitancy for patients to use ICIs
stemmed from high cost, uncertainty about drug efficacy, and no
reimbursement from medical insurance. Whereas over 65% of
patients reported at least some tumor reduction, a similar
proportion reported immune-related adverse events. These
findings highlight some of the main problems that limit the
use of the current ICIs. The cost/benefit of ICI use was evaluated
by Jiang et al. They studied the value assessment of ICI use in
terms of the American Society of Clinical Oncology (ASCO) and
the European Society for Medical Oncology (ESMO) value
assessment frameworks (Jiang et al.). Focusing on nivolumab
and pembrolizumab, they noted that of the 19 clinical trials
evaluated in various cancer indications, 14 did not meet the
ASCO cutoff score while 11 met the ESMO criteria for
meaningful value. Interestingly there was only fair correlation
between ASCO and ESMO value assessment frameworks.

In a mechanistic paper, Pan et al. studied the effect of
dihydropyridine calcium channel blockers in suppressing PD-
L1 transcription (Pan et al.). They showed that these agents
blocked interferon gamma induced STAT1 phosphorylation
thus diminishing PD-L1 expression. This PD-L1 modulation
enhanced the killing ability of T cells. This could be a strategy
for PD-L1 inhibition therapeutically. PD-L1 modulation was also
discussed by (Wang et al.). They studied hepatocellular
carcinoma cells (HCC) and found that epidermal growth
factor (EGF) stimulation promoted PD-L1 transcription. The

EGF stimulation led to PKM2 phosphorylation which in turn led
to histone H3 phosphorylation which in turn regulated PD-L1
gene transcription. These findings could provide additional
therapeutic strategies in HCC.

The tumor immune microenvironment is important in
determining the efficacy of ICI treatment. Wen et al. found
that a CTNNA2 mutation changes the immune
microenvironment in lung adenocarcinoma patients receiving
ICIs. Using lung adenocarcinoma patients in TCGA and a cohort
of lung adenocarcinoma patients receiving ICIs, they noted that
CTNNA2 mutation was associated with longer OS. The patients
with the CTNNA2 mutation had more neoantigens and a greater
tumor mutational burden. Furthermore, gene expression levels of
CXCL9 and granzyme B were elevated, and the level of the
inhibitory receptor killer cell immunoglobulin-like receptor
KIR2DL1 was significantly reduced. These findings suggest
that CTNNA2 mutation is associated with more immunogenic
tumors and this is reflected in the tumor microenvironment.

As noted above, novel therapeutic strategies are needed to both
enhance efficacy and limit side-effects of cancer
immunotherapies. Numerous novel strategies are proposed in
this special issue. Chimeric antigen receptor-modified T cells
(CAR-T cells) have been the focus of tremendous interest based
on their efficacy in hematologic malignancies. Xiang et al.
perform a meta-analysis of prospective clinical trials in
patients with refractory/relapsed multiple myeloma treated
with CAR-T therapies. They included 27 studies involving 497
patients. The pooled ORR was 89% indicating excellent efficacy in
this difficult to treat malignancy. Higher ORR was seen in
subgroups of patients including those aged 55 years or less as
well as those treated with bispecific CARs targeting both B cell
maturation antigen (BCMA) and CD19. They also noted cytokine
release syndrome in 76% of patients with 11% grade 3 or higher.
This promising approach will certainly be of great interest going
forward.

Mohamad Anuar et al. review clinical studies of navitoclax, a
BCL-2 family inhibitor (Mohamad Anuar et al.). In phase I and II
studies, navitoclax monotherapy potently treats small cell lung
cancer and acute lymphocytic leukemia. In combination therapy,
it enhances the therapeutic effect of other chemotherapeutic
agents in the treatment of solid tumors. It will be interesting
to follow the development of this novel agent.

Shi et al. discuss the need for novel immunotherapies (Shi et al.).
They note that the tumor immune microenvironment includes
exhausted or suppressed T cells, which are the target of the current
ICIs. However, other cell types are present which could be taken
advantage of. These include dendritic cells, which can activate anti-
cancer T cells, neutrophils which may impede the activation and
proliferation of T cells, and natural killer cells, which can attack
cancer cells lacking MHC class I molecules. Future strategies
targeting these cell types are discussed.

In an immunotherapy-related approach, Liu et al. studied
patients with oral squamous cell carcinoma (OSCC) and noted
higher HER2 expression especially in those with middle and
advanced stage cancer. They noted the occurrence of natural
autoantibodies to HER2-derived peptides. These antibodies
significantly inhibited proliferation and invasion of OSCC cells
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by inducing the apoptosis and regulated apoptosis-associated
factors and epithelial-mesenchymal transition. This kind of
bedside to bench research reverses the normal pattern and can
provide remarkable insights.

Ubiquitination is an important process regulating the
degradation of proteins. This includes immune checkpoint
proteins such as PD-L1 and CTLA4. Ubiquitination-mediated
protein degradation modulates multiple cellular processes,
including transcriptional regulation and cell cycle progression.
Deubiquitinating enzymes can prolong protein half-life and thus
act as secondary immune checkpoints. Huang et al. review the
role of deubiquitinating enzymes in cancer immunity, in
particular their direct effects on the stability of pivotal
immune checkpoints and other key regulators of T cell
function (Huang et al.). These deubiquitinating enzymes may
be a target of therapeutic intervention with ICI activity.
Ubiquitination is also involved in the activity of a strategy to
prevent colitis associated colon cancer development. Patients
with ulcerative colitis are at an increased risk for the
development of colon cancer. Dai et al. evaluated caffeic acid
phenethyl ester (CAPE) as an inhibitor of the NOD-like receptor
protein 3 (NLRP3) inflammasome and its efficacy in preventing
colitis-associated cancer in a mouse model. They found that
CAPE decreased NLRP3 inflammasome activation in bone
marrow-derived macrophages and THP-1 cells. CAPE also
prevented colon cancer in a murine colitis model.
Interestingly, CAPE appeared to work by increasing NLRP3
ubiquitination leading to NLRP3 degradation.

Apolipoprotein A-I (ApoA-I) has anti-inflammatory and anti-
oxidative properties. Peng et al. evaluate an Apo-AI mimetic
peptide, L-4F, in a mouse model of pancreatic cancer (Peng
et al.). They showed that L-4F significantly reduced the
tumorigenicity of murine pancreatic cancer cells. In addition,
there were effects on myeloid-derived suppressor cells (MDSCs)
including apoptosis. Additional effects included differentiation and
inhibition of the accumulation of granulocytic myeloid-derived
suppressor cells as well as reducing H2O2 production by MDSCs,
increasing T cell proliferation and infiltration into the tumors.
Thus, L-4F exerts an anti-tumor and immunomodulatory effect in
this murine model of pancreatic cancer by inhibiting PMN-
MDSCs.

Zhang et al. discuss paeonol, a phenolic compound with effective
anti-inflammatory and anti-tumor properties. They evaluated the

effect of paeonol on the mouse lung cancer cell line A549. Paeonol
suppressed proliferation and motility of the A549 cells by disrupting
STAT3/NF-κB signaling. Paeonol also inhibited the growth of A549
cells transplanted tumors in nudemice. Paeonol could be a candidate
for cancer therapy.

The medicinal prospects of algal-derived antioxidants as
cancer therapeutics are discussed by (Ferdous and Yusof).
They note that cancer therapeutics often induce oxidative
damage. Antioxidant supplementation can reduce reactive
species levels and mitigate persistent oxidative damage.
Their review of the prospective anticancer effect of twenty-
three antioxidants from microalgae and their potential
mechanism of action, as well as antioxidants from seaweeds,
suggests novel agents may be developed both with anti-cancer
activity and protective effects against cancer therapeutic side
effects.

This special issue benefitted from the tremendous advances
being made in cancer immunotherapy. While we have seen
great advances, significant challenges remain. Significant side
effects from the current generation of ICIs need to be
addressed. Also, their limited efficacy in many tumor types.
Some of the novel approaches described in this issue hold great
promise in ushering in the next generation of cancer
immunotherapies.
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Apolipoprotein A-I Mimetic Peptide
L-4F Suppresses Granulocytic-
Myeloid-Derived Suppressor Cells in
Mouse Pancreatic Cancer
Meiyu Peng1*†, Qi Zhang2†, Yanqing Liu3†, Xiangdong Guo4, Jiyu Ju1, Lingzhi Xu1,
Yuanyuan Gao5, Daquan Chen6, Dongzhen Mu1* and Rongxin Zhang7*

1 Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China, 2 Tianjin Key
Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases,
Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China, 3 Department of Breast Surgery, Yantai Yuhuangding
Hospital, Yantai, China, 4 Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of
Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular
Immunology, Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Medical University, Tianjin, China,
5 Department of Pharmaceutics, School of Pharmacy, Weifang Medical University, Weifang, China, 6 School of Pharmacy,
Yantai University, Yantai, China, 7 Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life
Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China

L-4F is an apolipoprotein A-I (ApoA-I) mimetic peptide, it was engineered to imitate the anti-
inflammatory andanti-oxidative activity of ApoA-I. In this paper,H7 cell was used to construct
a mouse model of pancreatic cancer in situ, and the mice were treated with L-4F. Then, the
development of pancreatic cancer andmyeloid-derived suppressor cells (MDSCs) infiltration
were investigated in vivo. After L-4F treatment, the differentiation, proliferation and apoptosis
of MDSCs were detected in vitro. Moreover, we test its effects on the immunosuppressive
functionofMDSCsexvivo. The results show that L-4Fsignificantly reduced the tumorigenicity
of H7 cells. L-4F suppressed granulocytic myeloid-derived suppressor cells (PMN-MDSCs)
differentiation and inhibited the accumulationofPMN-MDSCs in themousespleen and tumor
tissue. L-4F weakened the immunosuppressive function of MDSCs, resulting in decreased
production of ROS and H2O2 by MDSCs, and increased T cell proliferation, interferon g and
tumor necrosis factor b secretion, and CD3+CD4+ T and CD3+CD8+ T cell infiltration into the
mouse spleen and pancreatic cancer tissue. Furthermore, L-4F significantly down regulated
the STAT3 signaling pathway in PMN-MDSCs. These results indicated that L-4F exerts an
effective anti-tumor and immunomodulatory effect in pancreatic cancer by inhibiting
PMN-MDSCs.

Keywords: pancreatic cancer, L-4F, PMN-MDSCs, STAT3, anti-tumor
Abbreviations: HDL, high-density lipoprotein; PBS, phosphate-buffered saline; GM-CSF, granulocyte macrophage colony
stimulating factor; MDSCs, myeloid-derived suppressor cell; PMN-MDSCs, granulocytic myeloid-derived suppressor cells;
MO-MDSCs, monocytic myeloid-derived suppressor cells; IFN-g, Interferon-g; TNF-b, Tumor necrosis factor-b; Th cells, T
helper cells; PDA, pancreatic ductal adenocarcinoma; TILs, tumor-infiltrating lymphocytes; STAT3, signal transducer and
activator of transcription 3.
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INTRODUCTION

Myeloid-derived suppressor cells (MDSCs) include early bone
marrow progenitors and precursors of granulocytes,
macrophages, and dendritic cells (Gabrilovich and Nagaraj,
2009). In mice, MDSCs have been divided into two main
categories: CD11b+Ly6C+Ly6G− monocytic MDSC (Mo-
MDSC) and CD11b+Ly6Clow/negLy6G+ granulocytic MDSC
(PMN-MDSC). In tumor-bearing mice, Mo-MDSC and PMN-
MDSC is different in immunosuppressive function. Tumor-
infiltrating MDSCs and residing in spleen and blood MDSCs
have the same phenotypes. But, tumor-infiltrating MDSCs has
higher suppressive function than blood or splenic MDSCs
(Parker et al., 2015).

Healthy individuals (human and mouse) can found MDSCs
at low levels in the peripheral blood. However, MDSCs levels
increase under pathological conditions such as cancer (Almand
et al., 2001), inflammation (Dorhoi and Kaufmann, 2015), and
autoimmune disease (Wang et al., 2016). Increasing clinical
evidence shows that the levels of circulating MDSCs in almost
all patients with malignant tumors are elevated, and these levels
may be directly related to the clinical cancer stage, metastatic
tumor burden, and prognosis (Diaz-Montero et al., 2009;
Gabitass et al., 2011; Eruslanov et al., 2012; Montero et al.,
2012). Compared with healthy individuals, patients with
pancreatic cancer demonstrate that the frequency of MDSCs in
the bone marrow and peripheral circulation increased in patients
with pancreatic cancer, which was associated with disease stage
(Porembka et al., 2012). Targeting MDSCs, and combined with
traditional immune-based therapies, it is possible to produce
more effect and improve cancer treatment (Finke et al., 2011;
Gabrilovich et al., 2012).

IL-6 could increase the infiltration of MDSCs, and it also can
induce MDSCs to increase the production of IL-6 (Oh et al.,
2013). Multiple signal transduction pathways, transcription
factors, take part in the regulation of accumulation and
function in MDSCs. One of these factors, MDSCs expansion, is
mainly driven by STAT3 activation. In vivo, the receptor tyrosine
kinase inhibitor sunitinib could decrease the accumulation of
MDSCs by inhibiting STAT3 signaling pathway (Xin et al.,
2009). STAT3 also take part in enhances MDSCs suppressive
activity (Kujawski et al., 2008). The production of ROS by
MDSCs is also regulated by STAT3, the activation of STAT3
increases ROS levels (Corzo et al., 2009).

Apolipoprotein A-I (ApoA-I), is one of the main protein
components of high-density lipoprotein (HDL). ApoA-I possess
anti-inflammatory and anti-oxidant properties. ApoA-I mimetic
peptide 4F (L-4F), contains 18 amino acids and contains a Class
A amphipathic helix with a polar and a nonpolar face that allows
it to bind lipids. Similar to ApoA-I, L-4F retain the anti-
inflammatory activity of ApoA-I (Xie et al., 2016). L-4F have
shown positive effects when used to treat cancer or decrease
inflammation (Gupta et al., 2005; Vaziri et al., 2009). Others
studies have shown that L-4F plays effective anti-inflammatory
properties. L-4F markedly decrease the serum Interleukin-6 (IL-
6), tumor necrosis factor (TNF)-a, and Interleukin-1b (IL-1b)
Frontiers in Pharmacology | www.frontiersin.org 29
levels in obese mice (Peterson et al., 2008). L-4F suppresses the
levels of TNF-a and IL-6, which secreted by LPS-stimulated
neutrophils (Sharifov et al., 2014). L-4F inhibits LPS-induced
inflammation by decreasing the production of cytokines,
chemokines, and adhesion molecules (Gupta et al., 2005). Our
recent study showed that L-4F treatment inhibited tumor
progression significantly is relevant to reduce the secretion of IL-
17A, IL-6, GM-CSF and IL-1b in the tumor tissue, and suppressed
tumor-associated macrophage (TAM) differentiation and
infiltration of the tumor tissue, and L-4F inhibitedM2macrophage
differentiation, it was relate to the inhibition of STAT3 andMAPK
pathways(Pengetal.,2017).However, theeffectofL-4FonMDSCsis
unclear. In this study, we aimed to investigate whether L-4F could
inhibit the progression of pancreatic cancer by regulating MDSCs,
and to determine the mechanism. Our results show that L-4F
treatment significantly decreased the infiltration of PMN-MDSCs
but not MO-MDSCs in mouse pancreatic cancer models.
Furthermore, L-4F inhibited the differentiation of PMN-MDSCs
andweakenedtheimmunosuppressivefunctionofPMN-MDSCsby
decreasing the phosphorylation of STAT3.
MATERIALS AND METHODS

Cell Lines
The highly metastatic mouse pancreatic cancer cell line H7 was
kindly provided by professor Min Li (The Vivian L. Smith
Department of Neurosurgery, Department of Integrative
Biology & Pharmacology, The University of Texas Medical
School at Houston). H7 cells was established using a method
described by Wang et al. (2001) in vivo. H7 cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) containing 100
U/ml streptomycin, 100 U/ml penicillin (Gibco, USA), and 10%
fetal bovine serum (FBS) in a humidified atmosphere of 5% CO2
at 37°C.

Animals and the Tumor Model
Six to 8 weeks old female C57BL/6 mice were obtained from the
Experimental Animal Center of Military Medical Sciences
(Beijing, China), and acclimated for at least 1 week in the
specific pathogen free cages before experimentation. All of the
experiments were approved by the animal ethics committee of
Weifang Medical University.

Anesthesia in mice, the abdomen of mice was disinfected, and
made an approximate 1 cm longitudinal incision in the left upper
abdomen. The tip of the pancreatic tail was grasped gently, and
the pancreas and spleen were externalized in a lateral direction
until fully exposed. H7 cells (1×106 cells suspended in 50 ml of
PBS) were injected into pancreas using 1 ml syringe with 27-
gauge needle. Mice were randomly divided into L-4F treatment
group (n=24) and Sc-4F control group (n=24) by daily
intraperitoneal injection beginning on day 3. L-4F was
synthesized from all L-amino acids, the peptide is Ac-D-W-F-
K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2. Sc-4F contained the
same amino acids as the 4F peptide but arranged in the sequence
Ac-D-W-F-A-K-D-Y-F-K-K-A-F-V-E-E-F-A-K-NH2. L-4F and
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Sc-4F synthesized by Lt Bio-Scientific Co.Ltd. The purity of these
peptides is >95%. The vehicle was 50 mM ammonium
bicarbonate containing 0.1 mg/ml Tween-20, pH=7.0. Mice
were sacrificed after 14 d of treatment and the tumor tissue
and spleen were collected for further study. Tumor tissue
was weight.

Isolation of Immunocytes From Spleen and
Tumor Tissue
Spleen and tumor tissue were minced into small pieces, and
single-cell suspensions were obtained by grinding these tissues
and filtering them through a 40-mm cell strainer (BD Biosciences,
USA). Immunocytes were isolated using Ficoll density
gradient centrifugation.

Flow Cytometric Analysis of the Infiltrating
Immunocytes
The isolated immunocytes were blocked with purified rat anti-
mouse CD16/32 antibodies (BD Biosciences, USA) for 30 min at
4°C, then stained with antibodies for 30 min at 4°C, washed and
analyzed by a BD FACSVerse flow cytometer (BD Biosciences,
USA). The following monoclonal anti-mouse antibodies were
used: anti-CD11b-BV421, anti-LY6C-APC, anti-LY6G-PE, anti-
CD3-PerCP, anti-CD4-APC-H7, and anti-CD8-FITC (BD
Biosciences, USA). The labeling cells were assessed using a BD
FACSVerse flow cytometer (BD Biosciences, USA). The acquired
data were analyzed using FlowJo 7.6 software (TreeStar, Inc.).

In Vitro Induction of MDSCs
Bone marrow cells were prepared as described by Wu et al.
(2012). The method of MDSC induction using the bone marrow
cells was performed according to a previously published paper
(Marigo et al., 2010). Briefly, 4×106 bone marrow cells per well
were cultured in a 6-well plate in 2 ml of medium supplemented
with 0.5 ng/ml recombinant mouse GM-CSF (Millipore, USA),
in a 5% CO2 atmosphere for 4 d.

In addition, to detect the effect of L-4F onMDSCdifferentiation,
Sc-4F/L-4F (20 mg/ml) was added in the process of inducing
differentiation of MDSC on day 0.

The cell culture medium was DMEM supplemented with
2 mM L-glutamine, 20 mM 2-ME, penicillin (100 U/ml),
streptomycin (0.1 mg/ml), and 10% heat-inactivated FBS.

Cell Proliferation and Apoptosis Assay
As described above, mouse MDSCs were induced in vitro. Then
induced MDSC cells were sorted using anti-mouse Ly-6G and
Ly-6C particles-DM (BD Biosciences, USA). Ly6G+Ly6C+ cells
(MDSC) proliferation and cell division was assayed by using
carboxyfluorescein succinimidyl ester (CFSE) (Invitrogen, USA)
labeling. Cell apoptosis was assessed using a MitoScreen (JC-1)
assay kit (BD Biosciences, USA) according to the manufacturer’s
protocol. The labeled cells were treated with vehicle or the
different concentration of L-4F (5, 10, 20 mg/ml) for 48 h.
Then, the cells were assessed using BD FACSVerse flow
cytometer and quantified with FlowJo 7.6 software.
Frontiers in Pharmacology | www.frontiersin.org 310
Assays for the Suppression of T Cells by
MDSCs
MDSCs were isolated from the spleen and tumor tissue from L-
4F/Sc-4F treated mouse using anti-mouse Ly-6G and Ly-6C
particles-DM (BD Biosciences, USA). The purity of each cell
population was > 99%. The immunocytes from spleen
(splenocytes) from C57BL/6 mice were isolated. A total of
2×105/well splenocytes were stimulated with coated 6 µg/ml
anti-CD3 (BD Biosciences, USA) and 6 µg/ml soluble anti-
CD28 mAbs (BD Biosciences, USA) for 3 d and co-cultured at
a 4:1 ratio with sorted MDSCs in 96-well flat-bottom plates. After
3 d, the cells were stained with anti-CD3-PerCP, anti-CD4-APC-
H7, and anti-CD8-APC. Then the CD3+CD4+ and CD3+CD8+

lymphocytes was analyzed.
The culture supernatants were collected to detect the

concentration of IFN-g (interferon-g) using an mouse IFN-g
ELISA assay kit (BD Biosciences, USA) and TNF-b using an
mouse TNF-b ELISA assay kit (BioLegend, USA) according to
the manufacturer’s protocol. Each experiment was performed
in triplicate.

The culture medium consisted of RPMI 1640 medium
supplemented with L-glutamine (2 mM), penicillin (100 U/ml),
streptomycin (0.1 mg/ml), 2-ME (50 m M), and 10% heat-
inactivated FBS.

Detection of ROS and H2O2 in MDSCs
MDSCs were isolated from the spleen and tumor tissue from L-
4F/Sc-4F treated mouse using anti-mouse Ly-6G and Ly-6C
particles-DM (BD Biosciences, USA). The purity of each cell
population was > 99%. ROS activity was detected by using a
fluorometric intracellular ROS kit (Sigma-Aldrich, USA) and the
concentration of H2O2 was detected by using an Intracellular
hydrogen peroxide assay kit (Sigma-Aldrich, USA) according to
the manufacturer’s protocol. Mean fluorescence intensity (MFI)
was analyzed using FlowJo 7.6 software (BD Biosciences, USA).

Western Blotting Analysis
As described above, mouse MDSCs were induced in vitro. On the
fourth day, the cells were incubated with L-4F at a concentration
of 0, 0.1, and 0.25 mg/ml for 12 h, and then stimulated with
concentration of 100 ng/ml recombinant mouse IL-6 for 15 min
at 37°C. Finally, the total protein was extracted. Western blotting
was performed to detect total and phosphorylated STAT3 (p-
STAT3) and GAPDH in the mice bone marrow cells derived
MDSCs. Briefly, protein concentration was determined by BCA
protein quantification kit (Thermo, USA). Then, the proteins
were electrophoresed by SDS-PAGE and transferred to
polyvinylidene fluoride membranes. The membranes incubated
with rabbit anti-mouse STAT3, p-STAT3 (PY705), and GAPDH
antibody (Cell Signaling Technology, USA) overnight at 4°C
depending on the target protein position. Subsequently, they
were incubated with anti-rabbit IgG (Cell Signaling Technology,
USA) and detected by chemiluminescence imaging system. The
gray intensity of related proteins expression was analyzed by
Quantity One.
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Flow Cytometric Analysis of
Intracellular Staining
MDSCs were isolated from the spleen and tumor tissue from
pancreatic cancer mouse model using anti-mouse Ly-6G and Ly-
6C particles-DM (BD Biosciences, USA). Then, the MDSCs were
incubated with L-4F at a concentration of 0, 0.1, and 0.25 mg/ml
for 12 h, and then stimulated with 100 ng/ml recombinant mouse
IL-6 (BD Bioscience, USA) for 15 min at 37°C. First, these cells
were stained with anti-LY6C-APC and anti-LY6G-PE (BD
Biosciences, USA). Second, these cells were fixed in a single
step using BD Phosflow™ Lyse/Fix buffer for 10 min at 37°C.
Third, these cells were permeabilized in BD Phosflow™ Perm
Buffer III for 30 min on ice. Fourth, these cells were then stained
with anti-p-STAT3 (PY705)-PE for 30 min at room temperature.
Finally, the cells were assessed using a BD FACSVerse flow
cytometer. The percentage of p-STAT3+ cells in PMN-MDSC
was analyzed using FlowJo 7.6 software (BD Biosciences, USA).

Statistical Analysis
Each experiment was performed in triplicate. All values were
presented as the mean value ± the standard deviation (SD).
Comparisons between two groups were performed using
Student’s paired t-test, and one-way analysis of variance was
used for comparisons the multiple groups as indicated. Statistical
analysis was performed using SPSS 10.0 software.
RESULTS

L-4F Inhibits the Accumulation of PMN-
MDSCs in Mice With Pancreatic Cancer
Similar to our previous research (Peng et al., 2017), compared with
the tumors in the Sc-4F-treatedmice, the tumors in theL-4F-treated
mice were significantly light (0.808 g vs 0.506 g, P < 0.05) (Figures
1A,B).Thenwedetected the infiltrationofMDSCsinthe spleenand
tumor tissue by using flow cytometry. The populations of PMN-
Frontiers in Pharmacology | www.frontiersin.org 411
MDSCs and MO-MDSCs were assessed using the CD11b+Ly-
6G+Ly-6CLow and CD11b+Ly−6G−Ly-6C+ phenotypes as markers,
respectively. Compared with Sc-4F-treated group, the percentages
of PMN-MDSCs in the L-4F-treated group was significantly
decreased in the spleen (43.33% vs 29.1%, respectively, P < 0.05)
(Figures 1C, D) and tumor (55.32% vs 29.27%, respectively, P <
0.05) (Figures 1E, F). On the contrary, L-4F did not inhibit the
increase in the accumulation ofMO-MDSCs in the spleen (29.67%
in the Sc-4F-treated group vs31.33% in the L-4F-treated group,NS)
(Figures 1C, D) or tumor (10.93% in the Sc-4F-treated group vs
12.74% in the L-4F-treated group, NS) (Figures 1E, F).

L-4F Suppresses PMN-MDSCs
Differentiation
To further investigate the effect of L-4F on the differentiation of
PMN-MDSCs in vitro, we induced mouse bone marrow-derived
MDSCs using GM-CSF in the presence of Sc-4F or L-4F. As
shown in the Figures 2A, B, the number of PMN-MDSCs was
decreased significantly in L-4F-treated group with compared to
the Sc-4F-treated group (8.74% vs 15%, respectively, P < 0.01). In
contrast, there were no significant changes in the MO-MDSC
populations (64.92% in the L-4F-treated group vs 63.32% in the
Sc-4F-treated group, NS). These results indicate that L-4F can
inhibit the differentiation of PMN-MDSCs populations in vitro.

L-4F Did Not Reduce Proliferation or
Induce Apoptosis of MDSCs
MDSCs were treated with different concentrations of L-4F (0, 5,
10, or 20 mg/ml). As shown in Figures 2C, D, the populations of
apoptotic cells were not changed obviously with L-4F treatment
compared with the untreated cells (11%, 10.73%, 11.23%, and
11.27%, for 0, 5, 10, and 20 mg/ml, respectively, NS). In addition,
as shown in Figures 2E, F, the percentage of divided cells was not
reduced obviously in the L-4F-treated group compared to the
untreated or low dose-treated groups (68.63%, 68.02%, 69.72%,
and 69.38% for 0, 5, 10, and 20 mg/ml, respectively, NS).
A

B

C
D

E
F

FIGURE 1 | L-4F inhibits the infiltration of PMN-MDSCs in mice with pancreatic cancer. H7 cells were implanted into the pancreas. Mice were euthanized after 2
weeks of L-4F or Sc-4F treatment. (A) Representative tumors from Sc-4F- or L-4F-treated mice. (B) Final tumor weights (*P < 0.05). (C, E) One representative result
from each experiment. (D) The percentages of MO-MDSCs and PMN-MDSCs among the splenocytes and (F) tumor-infiltrating cells in the tumor tissue (*P < 0.05).
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L-4F Increases T Cell Infiltration in Mice
With Pancreatic Cancer
MDSCs have the ability to significantly inhibit immune cell
response. So we detected the infiltration of T cell and T
subpopulation in spleen and tumor-infiltrating cell. As shown
in Figures 3A, B, compared with the Sc-4F treated groups, the L-
4F obviously increased T cell infiltration in the spleen of treated
mice (18.03% vs 25.9%, respectively, P < 0.05). Therefore, we
further analyzed the percentages of CD3+CD4+ cells and
CD3+CD8+ cells in total T cells from the spleen and the tumor
infiltrating lymphocytes. In the L-4F group, the percentages of
CD3+CD8+ T cells (27% vs 33.7%, respectively, P < 0.05)
significantly increased in the spleen (Figures 3C, D), and the
percentages of CD3+CD4+ T cells (20.4% vs 33.34%, respectively,
P < 0.05) and CD3+CD8+ T cells (11.91% vs 17.41%, respectively,
P < 0.05) all significantly increased in the tumor-infiltrating cell
populations (Figures 3G, H). However, the percentages of
CD3+CD4+ T cells in the spleen (56.27% vs 58.1%, respectively,
NS) (Figures 3C, D) and the percentages of total T cells in the
tumor-infiltrating cell populations (36.73% vs 33.67%,
respectively, NS) did not significant changes (Figures 3E, F).

L-4F Blocks the Immunosuppressive
Function of MDSCs
To detect the immune suppression mediated by MDSCs,
Ly6G+Ly6C+ MDSCs isolated from the Sc-4F or L-4F treated
Frontiers in Pharmacology | www.frontiersin.org 512
mice were co-cultured with splenocytes from normal mice. Then
we analyzed the percentages of CD3+CD4+ T cells and
CD3+CD8+ T cells in the total T cell population. Compared
with the without co-cultured MDSCs group, CD3+CD4+ T cells
percentage (73.35% vs 56.57%, respectively, P < 0.05) and
CD3+CD8+ T cells percentage (26.53% vs 17.57%, respectively,
P < 0.01) significantly decreased in co-cultured with MDSCs
which from Sc-4F treatment group. While, compared with the
co-cultured with the MDSCs which from Sc-4F treatment group,
the percentages of CD3+CD4+ T cells (56.57% vs 66.42%,
respectively, P < 0.05) and CD3+CD8+ T cells (17.57% vs
20.85%, respectively, P < 0.01) (Figures 4A–C) increased in
co-cultured with MDSCs which from the L-4F-treated group.

The concentration of IFN-g and TNF-b from the culture
medium was detected after co-culturing MDSCs with T cells as
performed for the immune-suppression assays. Compared with
the without MDSCs group, the concentrate of IFN-g from the co-
culturing with MDSCs which from Sc-4F treatment group
obviously decreased (468.33 pg/ml vs 237.85 pg/ml, P < 0.01).
While compared with the co-culturing with MDSCs which from
Sc-4F treatment group, the concentrate of IFN-g from the co-
culturing with MDSCs which from L-4F treatment group
obviously increased (237.85 pg/ml vs 364.98 pg/ml, P < 0.01)
(Figure 4D). Similar, compared with the without MDSCs group,
the concentrate of TNF-b from the co-culturing with MDSCs
which from Sc-4F treatment group obviously decreased (254.21
A

C
D

E

F

B

FIGURE 2 | The effect of L-4F on MDSCs differentiation, proliferation and apoptosis. Bone marrow cells were treated with Sc-4F/L-4F (20 mg/ml) on day 0 of the
MDSC induction. (A) One representative result from each experiment. (B) The percentages of MO-MDSCs and PMN-MDSCs among the induced cells (**P < 0.01).
(C, E) MDSCs were treated with L-4F (0, 5, 10, or 20 mg/ml). One representative result from each experiment is shown. (D) The percentage of apoptotic cells and
(F) the percentage of divided cells treated with L-4F at 48 h.
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A

C D

E F

G H

B

FIGURE 3 | The percentages of infiltrated T cells in the spleen or tumor tissue of mice with pancreatic cancer. The spleen and tumor were collected from the Sc-4F/
L-4F-treated mice. Single-cell suspensions were generated, and the cells were immunostained for CD3, CD4, and CD8. (A, C, E, G) One representative result from
each experiment. The percentage of CD3+ cells among the splenocytes (B) and tumor-infiltrating cells (F) (*P < 0.05). The percentage of CD3+CD8+T cells and
CD3+CD4+T cells among the CD3+T population of the splenocytes (D) and tumor-infiltrating cells (H) (*P < 0.05).
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pg/ml vs 119.28 pg/ml, P < 0.01). While compared with the co-
culturing with MDSCs which from Sc-4F treatment group, the
concentrate of TNF-b from the co-culturing with MDSCs which
from L-4F treatment group obviously increased (119.28 pg/ml vs
189.38 pg/ml, P < 0.01) (Figure 4E).

L-4F Inhibits the Production of ROS and
H2O2 by MDSCs
It has been reported that PMN-MDSCs inhibit T cell functions
via multiple pathways, including the up-regulation of ROS and
H2O2 production and the generation of arginase-1 (Arg-1). We
thus detected the ROS activity and the concentration of H2O2 in
Ly6G+Ly6C+ MDSCs isolated as described in the Materials and
Frontiers in Pharmacology | www.frontiersin.org 714
Methods section. Compared with the Sc-4F-treated group, the L-
4F-treated group showed significant decreases in ROS activity
(MFI: 2.09×104 vs 0.99×104, respectively, P < 0.01) (Figures 5A,
B) and the concentration of H2O2 (MFI: 3.35×103 vs 1.41×103,
respectively, P < 0.01) (Figures 5C, D).

L-4F Downregulates STAT3 Signaling
Pathways in PMN-MDSCs
To explore the mechanism by which L-4F inhibits the
differentiation and immunosuppressive function of PMN-
MDSCs, we first observed the effect of L-4F in the level of p-
STAT3 in MDSCs by western blotting, our results show that the
expression of p-STAT3 was significantly reduced after 0.25 µg/ml
A

B

C

D E

FIGURE 4 | L-4F blocks the immunosuppressive function of MDSCs Ly6G+Ly6C+ MDSCs were isolated from the Sc-4F- or L-4F-treated mice and co-cultured with
splenocytes from normal mice. (A, B) One representative result from each experiment is shown. (C) The percentages of CD3+CD4+ T cells and CD3+CD8+ T cells in
T cell population (***P < 0.001,**P < 0.01, *P < 0.05). (D) The concentration of IFN-g in the culture medium (***P < 0.001). (E) The concentration of TNF-b in the
culture medium (***P < 0.001).
A

B

C

D

FIGURE 5 | L-4F inhibits the production of ROS by MDSCs MDSCs were isolated from the spleen and tumor tissue of Sc-4F or L-4F-treated mice using anti-mouse
Ly-6G and Ly-6C particles-DM. The ROS activity and H2O2 concentration were detected. (A, C) One representative result from each experiment is shown. The MFI
of the ROS activity (B) and the MFI of the H2O2 detection (D) in the isolated Ly6G+Ly6C+ MDSCs (***P < 0.001).
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L-4F intervention compared with IL-6 stimulation alone
(Figures 6A, B). Further we detected the percentage of p-
STAT3 in PMN-MDSCs derived from MDSCs isolated as
described in the Materials and Methods section. As shown in
Figures 6C, D, L-4F obviously decreased the phosphorylation
level of STAT3 (80.3% vs 71.73% vs 58.47%, P< 0.01) in a dose-
dependent manner in PMN-MDSCs (Figures 6C, D).
DISCUSSION

One of the challenges of developing effective immunotherapies
for clinical practice remains the complex interaction between the
host immune system and the tumor, which includes the various
mechanisms by which the tumor evades the immune system. A
variety of cells are known to be involved in tumor-mediated
immune suppression, including TAMs, regulatory T cells
(Tregs), type 2 natural killer T cells, and MDSCs (Mundy-
Bosse et al., 2011; Diaz-Montero et al., 2014).

Our previous results show that L-4F could inhibit pancreatic
cancer progression, mostly by its anti-inflammatory effect, such as
reduce the secretion of IL-6 in tumor tissue (Peng et al., 2017),
While IL-6 could increase the infiltration of MDSCs in tumor tissue
(Oh et al., 2013). In addition, our previous results show that
reducing the infiltration of MDSCs and Treg in tumor tissue can
inhibit the development of pancreatic cancer in mice (Peng et al.,
2014). In this study, we elucidated the effect of L-4F on MDSCs in
mouse pancreatic cancer model. Our results (Figure 1) show that L-
Frontiers in Pharmacology | www.frontiersin.org 815
4F attenuated the progression of pancreatic tumors in mice. And L-
4F decreased the infiltration of PMN-MDSCs in mouse spleen and
tumor tissue. Furthermore, L-4F could inhibit the differentiation of
PMN-MDSCs in vitro (Figures 2A, B). However, L-4F had no effect
on either the proliferation or apoptosis of MDSCs (Figures 2C–F).
This means that the inhibition of pancreatic cancer progression by
L-4F may be related to the decrease of PMN-MDSCs infiltration
and PMN-MDSCs differentiation in the mouse spleen and
pancreatic cancer tissue.

MDSCs have the ability to significantly inhibit immune cell
response. There are several mechanisms by which MDSCs inhibit
the function of T cells, including the production of arginase 1 (Arg1)
and reactive oxygen species (ROS), nitrosylation of the T cell
receptor (TCR), downregulation of CD62L expression, and
sequestration of cysteine (Rodriguez et al., 2007; Corzo et al.,
2009; Ostrand-Rosenberg, 2010). In terms of functional
differences, PMN-MDSCs play its immunosuppressive function
mainly depend on ROS and the enzyme Arg1, while MO-MDSCs
mainly depend on nitric oxide synthase-2 (NOS2) and ROS. ROS is
an important factor which PMN-MDSCs have the ability to inhibit
T cells. By producing high levels of ROS, such as hydrogen peroxide
and H2O2, MDSCs can cause T cell apoptosis. ROS can also cause
the nitrosylation of T cell receptor during MDSC-T cell contact,
which inhibit TCR bind to antigen, thus blocking T cell activation
(Youn et al., 2008; Ostrand-Rosenberg, 2010; Solito et al., 2011;
Kotsakis et al., 2012). In this study, our results (Figure 3) show that
the L-4F treatment increased the infiltration of CD3+CD4+ T and
CD3+CD8+ T cells into the mouse spleen and pancreatic cancer
A B

C D

FIGURE 6 | L-4F downregulates STAT3 signaling pathways in PMN-MDSCs Mouse MDSCs were induced in vitro. On the fourth day, the cells were incubated with
L-4F at a concentration of 0, 0.1, and 0.25 mg/ml for 12 h, and then stimulated with concentration of 100 ng/ml recombinant mouse IL-6 for 15 min. (A) One
representative result from each experiment is shown. (B) The ratio of p-STAT3/STAT3 in MDSCs (*P < 0.05). MDSCs were isolated from the spleen and tumor tissue
from pancreatic cancer mouse model using anti-mouse Ly-6G and Ly-6C particles-DM. The MDSCs were incubated with L-4F at a concentration of 0, 0.1, and 0.25
mg/ml for 12 h, then stimulated with concentration of 100 ng/ml recombinant mouse IL-6 for 15 min. (C) One representative result from each experiment is shown.
(D) The percentage of p-STAT3 in PMN-MDSCs (**P < 0.01, *P < 0.05).
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tissue to various degrees. In addition, L-4F could weaken the
immunosuppressive effects of MDSCs on T cell proliferation and
IFN-g, TNF-b secretion (Figure 4). Furthermore, L-4F could inhibit
the production of ROS and H2O2 by MDSCs (Figure 5). This
means that L-4F can attenuate the progression of pancreatic cancer
and may also be related to weakened immunosuppressive function
in MDSCs.

It has been demonstrated that signal transducer and activator of
STAT3 may promote the differentiation of MDSCs, and STAT3 is
also known to be a key factor for the MDSCs suppressive effect.
Increased ROS production in MDSCs is relate to the enhancive
expressionofNox2. The activationof STAT3directly increasing the
transcription of Nox2 (Condamine and Gabrilovich, 2011). Our
previous results show L-4F could prevent the differentiation of M2
macrophage, and it related to the inhibition of STAT3 pathways
(Peng et al., 2017). In this study, our results (Figure 6) show that L-
4F significantly decreased the phosphorylation of STAT3 in PMN-
MDSCs in adose-dependentmanner.These results indicate that the
decrease in PMN-MDSCs infiltration, inhibition of PMN-MDSCs
differentiation, and weakened immunosuppressive function of
PMN-MDSCs after the L-4F treatment is mediated by decreasing
STAT3 phosphorylation in the tumor tissue.
CONCLUSION

In conclusion, we have proven that L-4F could inhibit pancreatic
cancer progression, mostly by reducing the infiltration of PMN-
MDSCs and weakening their immunosuppressive function by
decreasing the phosphorylation of STAT3 in the tumor tissue.
Therefore, L-4F plays a crucial role in regulating tumor
microenvironment. Our results indicate that L-4F represents a
novel immunomodulatory candidate for the clinical treatment of
pancreatic cancer.
Frontiers in Pharmacology | www.frontiersin.org 916
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Long-lasting inflammation in the intestinal tract renders individuals susceptible to colitis-

associated cancer (CAC). The NOD-like receptor protein 3 (NLRP3) inflammasome

plays a key role in the progression of inflammatory bowel disease and CAC. Therefore,

identifying effective drugs that prevent CAC by targeting NLRP3 inflammasome is of

great interest. Here, we aimed to evaluate the anti-inflammatory effect of caffeic acid

phenethyl ester (CAPE) on bone marrow-derived macrophages (BMDMs), THP-1 cells,

and azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colon cancer mouse

model. We also investigated the anti-tumor mechanism of CAPE. We found that CAPE

decreased NLRP3 inflammasome activation in BMDMs and THP-1 cells and protected

mice from colorectal cancer induced by AOM/DSS. CAPE regulated NLRP3 at the post-

transcriptional level by inhibiting reactive oxygen species (ROS) production. However,

CAPE did not affect NLRP3 or IL-1β transcription, but instead enhanced NLRP3 binding

to ubiquitin molecules, promoting NLRP3 ubiquitination, and contributing to the anti-

tumor effect in the AOM/DSS mouse model. Moreover, CAPE suppressed the interaction

between NLRP3 and CSN5 but enhanced that between NLRP3 and Cullin1 both in

vivo and in vitro. Altogether, our findings demonstrate that CAPE prevents CAC by

post-transcriptionally inhibiting NLRP3 inflammasome. Thus, CAPE may be an effective

candidate for reducing the risk of CAC in patients with inflammatory bowel disease.

Keywords: colitis-associated cancer, NLRP3, caffeic acid phenethyl ester, IL-1β, BMDMs, THP-1 cells

INTRODUCTION

Colorectal cancer is the third most common cancer worldwide (1). Inflammation and immunity
are important determinants of tumorigenesis, affecting cancer initiation, promotion, malignant
transformation, and metastasis (2). Compared with the general population, patients with
inflammatory bowel disease have a much higher risk of colorectal cancer (3). In addition, patients
with ulcerative colitis-associated cancer (CAC) have poorer survival than patients with sporadic
colorectal cancer in the advanced stage (4). Therefore, anti-inflammatory chemopreventive
intervention is of great significance to this high-risk population.
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Pattern recognition receptors initiate inflammatory responses
to restore homeostasis in the case of microbial or risk-
related molecular patterns. Many pattern recognition receptors,
including members of the NOD-like receptor family, work
by assembling macromolecular complexes referred to as
inflammasomes (5). In particular, the NOD-like receptor protein
3 (NLRP3) inflammasome plays crucial roles in host defense
against infection, inflammation-induced cancer, and several
inflammatory diseases including inflammatory bowel disease
(6, 7). NLRP3 triggers innate immunity by activating caspase-
1 and then cleaves immune and metabolic substrates, especially
the pro-inflammatory cytokine interleukin-1β (IL-1β), which
induces inflammation and promotes tumor growth (8). Thus,
identifying safe and effective compounds that inhibit NLRP3may
aid CAC treatment.

Caffeic acid phenethyl ester (CAPE), a bioactive extract
from propolis that can be widely found in fruits, grains and
dietary supplements, is an effective antioxidant with many
health benefits including anti-inflammatory, antitumor, and
antimicrobial activities (9). Khan et al. (10) reported that
CAPE alleviates dextran sulfate sodium (DSS)-induced colitis
in mice by suppressing inflammation-triggered myeloperoxidase
activity and pro-inflammatory cytokine production. However,
whether CAPE can inhibit CAC and the underlying mechanism
remain elusive.

In this study, we found that CAPE significantly protectedmice
from azoxymethane (AOM)/DSS-induced CAC by inhibiting
NLRP3 inflammasome activation in macrophages. Our findings
highlight a potential novel strategy for treating CAC using anti-
inflammatory phytochemicals against NLRP3 inflammasome.

MATERIALS AND METHODS

Materials
CAPE (purity >99.7%) was purchased from the National
Institutes for Food and Drug Control (Beijing, China).
Primary antibodies used: anti-NLRP3 (ab214185, Abcam,
Cambridge, UK), anti-pro-IL-1β (16806-1-AP, Proteintech,
Rosemont, IL, USA), anti-β-actin (ab8227, Abcam), anti-ASC
(ab175449, Abcam), anti-ubiquitin (ab7780, Abcam), anti-
Cullin1 (ab75817, Abcam), anti- CSN5 (A300-014A-M, Thermo
Fisher Scientific, Waltham, MA, USA), anti-cleaved caspase-
1 (#4199, Cell Signaling Technology, Danvers, MA, USA),
and anti-cleaved IL-1β (#8900, Cell Signaling Technology).
Secondary antibodies used include: horseradish peroxidase
(HRP)-conjugated anti-rabbit IgG (ab205718, Abcam) and
HRP-conjugated anti-mouse IgG (ab97023, Abcam). AOM,
rotenone, ATP, and lipopolysaccharide (LPS) were purchased
from Sigma-Aldrich (St. Louis, MO). DSS was obtained fromMP
Biomedicals LL (Solon, OH). All other reagents were purchased
from Sigma-Aldrich.

Patient Selection and Tissue Preparation
A total of 30 patients with colorectal cancer were treated at
the National Center of Colorectal Surgery, Nanjing Hospital of
Chinese Medicine affiliated to Nanjing University of Chinese
Medicine. All patients underwent radical resection, and no

patients received chemo or radiotherapy before surgery. The
study was performed according to the Declaration of Helsinki
and informed written consent was obtained from all patients
and controls after clinicians explained the purpose, nature, and
possible consequences of the study. The study protocol was
approved by the Medical Ethics Committee of Nanjing Hospital
of Chinese Medicine affiliated to Nanjing University of Chinese
Medicine (KY2014004).

Animals
Male C57BL/6 mice (6–8 week old) were obtained from
the Model Animal Research Center of Nanjing University
(Nanjing, China). The mice were housed in a specific-pathogen-
free facility under controlled temperatures (22 ± 2◦C) and
a 12:12 h light/dark cycle. Animal welfare and experimental
procedures were performed in accordance with the Guide for
the Care and Use of Laboratory Animals (National Institutes
of Health, Bethesda, MD) and the related ethical regulations of
our university.

Mouse Model Establishment
Mice in the drug-administered groups were fed with CAPE
at corresponding doses for 2 weeks stating from AOM/DSS
model establishment. After drug administration, the mice in the
AOM/DSS and drug-administered groups were intraperitoneally
injected with AOM at 10 mg/kg and fed a normal diet for 7 days,
after which they were subjected to a repetitive DSS administration
cycle (four times). In each cycle, the mice were given 2.3% DSS
solution for 7 days, followed by 14 days of normal water without
DSS. The control mice were fed a normal diet.

Histomorphology
Colon tissues were fixed in 4% formaldehyde and embedded in
paraffin wax. Then, 5-µm-thick sections were obtained using a
microtome (Leica,Wetzlar, Germany) and placed onmicroscopic
slides. The sections were then stained with hematoxylin and
eosin as previously described (11). The severity of damage in all
sections was assessed by independent pathologists.

Western Blotting
Samples were collected, washed with ice-cold PBS, and lysed
in lysis buffer. Whole sample lysates were centrifuged, after
which the protein-containing supernatant was collected. Total
proteins were then boiled in water, separated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE),
and electrophoretically transferred onto polyvinylidene fluoride
membranes (Millipore, Burlington, MA). The membranes
were blocked with 5% bovine serum albumin for 1 h at
room temperature, probed with primary antibodies overnight
at 4◦C, and then incubated with HRP-coupled secondary
antibodies. Primary antibodies included NLRP3 (1:1,000),
cleaved caspase-1 (1:500), pro-IL-1β (1:1,000), cleaved IL-
1β (1:1,000), β-actin (1:10,000), ASC (1:1,000), and ubiquitin
(1:1,000) antibodies; concentrations were determined according
to manufacturers’ instructions. Secondary antibodies included
HRP-labeled goat anti-rabbit IgG (1:10,000) and HRP-labeled
goat anti-mouse IgG (1:10,000). Blots were developed using
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enhanced chemiluminescence reagent (PerkinElmer, Waltham,
MA). Data were analyzed with the Quantity One v-4.6.5 software
(Bio-Rad Laboratories, Hercules, CA).

Co-immunoprecipitation
Total lysates from cells or tissues were immunoprecipitated with
2 µg of appropriate antibody or the corresponding IgG control
for 1 h at 4◦C, and then precipitated with protein A/G-agarose
beads overnight at 4◦C (Santa Cruz Biotechnology, Dallas, TX).
Beads were washed three times with low-salt lysis buffer for.
Immunoprecipitated proteins were separated by SDS-PAGE,
followed by western blotting with the corresponding antibodies.

Cell Culture
Bone marrow-derived macrophages (BMDMs) and THP-
1 cells were purchased from the American Type Culture
Collection (Manassas, VA). The cells were incubated in DMEM
supplemented with 10% fetal bovine serum (Life Technologies,
Carlsbad, CA), 100 U/ml penicillin, and 100 mg/ml streptomycin
in a humidified atmosphere at 37◦C and 5% CO2.

Real-Time PCR
Briefly, total RNA was extracted with Trizol reagent (Invitrogen,
Carlsbad, CA) and reverse transcribed into cDNA with an
real-time PCR kit (Roche, Basel, Switzerland) according to
manufacturer’s instructions. Real-time PCR was performed with
cDNA equivalent to 200 ng of total RNA on a Bio-Rad iQ5 Real-
Time PCR Detection System (Bio-Rad Laboratories). Cycling
conditions were as follows, 95◦C for 2min, followed by 40 cycles
of 95◦C for 10 s, 60◦C for 30 s, and 95◦C for 10 s. GAPDH was
used as an endogenous control. PCR results were normalized to
GAPDH expression and were quantified by the 11CT method.
The sense and antisense primers used in this study are listed in
Table 1. All primers were synthesized by Sangon Biotech. Co.,
Ltd. (Shanghai, China).

Immunohistochemistry
Excised tumor tissues were fixed in 5% formalin for 24 h before
embedding in paraffin and sectioning (5µM thick) as previously

TABLE 1 | Primers used for real-time PCR analysis.

Forward Reverse

NLRP3 H CTAGCTGTTCCTGAGGCTGG AGCCCTTCTGGGGAGGATAG

M TATCCACTGCCGAGAGGTGA TCTTGCACACTGGTGGGTTT

IL-1β H CAGAAGTACCTGAGCTCGCC AGATTCGTAGCTGGATGCCG

M TGCCACCTTTTGACAGTGATG AAGGTCCACGGGAAAGACAC

TNF-α H CTGGGCAGGTCTACTTTGGG CTGGAGGCCCCAGTTTGAAT

M AGGCACTCCCCCAAAAGATG CCACTTGGTGGTTTGTGAGTG

IL-6 H CTCAATATTAGAGTCTCAAC

CCCCA

GAGAAGGCAACTGGACCGAA

M CAACGATGATGCACTTGCAGA TGTGACTCCAGCTTATCTCTTGG

GAPDH H AATGGGCAGCCGTTAGGAAA GCGCCCAATACGACCAAATC

M CCCTTAAGAGGGATGCTGCC ACTGTGCCGTTGAATTTGCC

H, human; M, mouse.

described (11). The sections were then deparaffinized and
rehydrated. After endogenous peroxidase activity was blocked
with methanol and hydrogen peroxide, non-specific binding
sites were blocked with 5% bovine serum albumin at 37◦C
for 30min. Then, tissue sections were incubated with primary
antibodies at 4◦C overnight, followed by incubation with a
streptavidin-peroxidase complex at 37◦C for 30min. The sections
were then incubated with a secondary antibody for 60min at
room temperature. The positively stained sites were visualized
by incubating with peroxidase-labeled streptavidin-complexed
DAB, and nuclei were counterstained with hematoxylin.
Yellowish-brown staining indicates immune-positive sites and
blue or purple staining indicates nuclei. Images were captured
with an Olympus BX51 microscope (Tokyo, Japan).

Intracellular Reactive Oxygen Species
(ROS) Determination
Cells (1× 106 per well) were cultured in 6-well plates and treated
with CAPE in the presence or absence of LPS or ATP + LPS for
6 h. Afterwards, the cells were harvested, incubated with 2′,7′-
dichlorofluorescein diacetate (Invitrogen) at 37◦C for 20min,
and washed twice with cold PBS. The fluorescence distribution
of 2′,7′-dichlorofluorescein was detected by flow cytometry on an
Accuri R© C6 fluorescence-activated cell sorter (Becton Dickinson,
Franklin Lakes, NJ) at an excitation wavelength of 488 nm and an
emission wavelength of 525 nm.

Enzyme-Linked Immunosorbent Assay
(ELISA)
Cells were primed with LPS for 6 h (10 ng/ml), after which
the medium was replaced with serum-free medium containing
DMSO (1:1,000) for 1 h, followed by incubation with ATP for
1 h (5 nM). The concentrations of IL-1β, IL-6, and TNF-α in the
culture supernatant were analyzed using commercially available
IL-1β, IL-6, and TNF-α ELISA kits (Boster Bio, Pleasanton, CA)
according to manufacturer’s instructions.

Statistical Analysis
Statistical analysis was carried out using two-tailed Student’s t-
test for comparisons between two groups and one-way analysis
of variance followed by Dunnett’s test for comparisons between
three or more groups. Results were expressed as mean ±

standard deviation (SD). P < 0.05 was considered statistically
significant. All analyses were performed with GraphPad Prism
v5.01 (GraphPad Software Inc., La Jolla, CA).

RESULTS

CAPE Decreases NLRP3 Inflammasome
Activation in BMDMs and THP-1 Cells
We first investigated whether CAPE inhibits the activation of
NLRP3 inflammasome induced by ATP and LPS in macrophages
in vitro. Western blotting showed that CAPE significantly
inhibited the increased protein levels of NLRP3, caspase-1,
and IL-1β in BMDMs and THP-1 cells after LPS and ATP
stimulation (Figure 1A). Similarly, ELISA showed that CAPE
significantly suppressed the secretion of IL-1β induced by LPS
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FIGURE 1 | CAPE decreases the activation of NLRP3 inflammasome in BMDMs and THP-1 cells. (A) Effect of CAPE on the expression of NLRP3, cleaved

caspase-1, pro-caspase-1, cleaved IL-1β and pro-IL-1β in BMDMs and THP-1 cells. (B) ELISA for IL-1β in supernatants from the indicated groups. (C) ASC

polymerisation (oligomerization) was analyzed by Western blotting. (D) Coimmunoprecipitation assay using cell lysates from the indicated groups for analyzing the

interaction between ASC and NLRP3 or between ASC and pro-caspase-1. Data are presented as mean ± SD (n = 3). *P < 0.05, **P < 0.01 vs. LPS+ATP group.

and ATP (Figure 1B). Moreover, CAPE significantly inhibited
the formation of ASC dimers and reduced the abundance of
NLRP3 inflammasome complexes in a dose-dependent manner
(Figures 1C,D). Altogether, these results indicate that CAPE
reduces NLRP3 protein levels and suppresses NLRP3 activation
in macrophages.

CAPE Does Not Affect NLRP3 mRNA
Levels
We then examined whether CAPE also reduces NLRP3 mRNA
levels. As shown in Figure 2A, LPS + ATP promoted the

expression of NLRP3 and pro-IL-1β in THP-1 cells; however,
real-time PCR revealed that after treatment with CAPE for 12 h,
mRNA levels of NLRP3 and IL-1β in THP-1 cells were similar to
control (Figures 2B,C), indicating that CAPE does not affect the
transcription of NLRP3 and IL-1β.

CAPE Promotes NLRP3 Ubiquitination by
Inhibiting ROS
ROS are central to the regulation of NLRP3 activation (12).
Therefore, we evaluated the impact of CAPE on ROS.
As shown in Figures 3A,C, CAPE significantly inhibited
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FIGURE 2 | CAPE does not affect mRNA levels of NLRP3, despite altering its protein levels. (A) Effect of CAPE on the expression of NLRP3, cleaved caspase-1,

pro-caspase-1, cleaved IL-1β, and pro-IL-1β in THP-1 cells. (B,C) mRNA levels of NLRP3 and IL-1β were detected by real-time PCR after CAPE treatment for 12 h.

Data are presented as mean ± SD (n = 3). **P < 0.01 vs. LPS+ATP group.

the production of ROS induced by LPS + ATP in THP-1
cells in a dose-dependent manner, which was reversed by
rotenone. Moreover, CAPE enhanced the binding of NLRP3
to ubiquitin molecules, promoted NLRP3 ubiquitination
(Figure 3B), and significantly blocked the formation of NLRP3
inflammasome, which were again reversed by rotenone
(Figure 3D). Furthermore, CAPE significantly reduced the
expression of NLRP3, cleaved caspase-1, and cleaved IL-1β,
which was restored by rotenone (Figure 3E). Taken together,
the findings indicate that CAPE regulates the expression
of NLRP3 at the post-transcriptional level by inhibiting
ROS production.

CAPE Protects Mice From Colorectal
Cancer Induced by AOM/DSS
Subsequently, we examined whether CAPE had therapeutic
effects on AOM/DSS-treated mice. The AOM/DSS group
exhibited significant body weight reduction compared with

that of the control group; this loss in body weight was
attenuated by CAPE in a dose-dependent manner (Figure 4A).
The survival rates of CAPE-administered groups were also
significantly higher than those of the AOM/DSS group, and
no mouse died when administered a high-dose of CAPE
(45 mg/kg; Figure 4B). Moreover, CAPE administration
significantly mitigated colitis progression and tumor burden.
As shown in Figures 4C–F, the number, size, burden, and
volume of tumors in CAPE-administered groups were
significantly lower than those of the AOM/DSS group, and
CAPE significantly relieved intestinal atrophy and increased
colon length in a dose-dependent manner. In addition,
the clinical scores of CAPE-administered groups were
significantly lower than those of the AOM/DSS group, with

a high-dose of CAPE (45 mg/kg) exhibiting the best efficacy

(Figure 4G). Altogether, the findings demonstrate that CAPE

alleviates mouse colitis progression and tumor burden caused
by AOM/DSS.
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FIGURE 3 | CAPE promotes NLRP3 ubiquitination by inhibiting ROS in THP-1 cells. (A,C) Effect of CAPE on mitochondrial production of ROS. (B) Cell extracts from

indicated groups were subjected to immunoprecipitation assays with an anti-NLRP3 antibody, followed by Western blotting with an anti-ubiquitin antibody. (D) Cell

lysates were subjected to immunoprecipitation assays with an anti-ASC antibody, using mouse IgG as control. (E) Effect of CAPE on the expression of NLRP3, cleaved

caspase-1, pro-caspase-1, cleaved IL-1β, and pro-IL-1β in THP-1 cells. Data are presented as mean ± SD (n = 3). *P < 0.05, **P < 0.01 vs. LPS + ATP group.

Inhibition of NLRP3 Inflammasome
Contributes to the Anti-tumor Effect of
CAPE
To determine whether CAPE inhibits NLRP3 inflammasome
in vivo, we assessed NLRP3 expression in the AOM/DSS
mouse model by immunohistochemistry and western blotting.

Hematoxylin-eosin staining demonstrated severe inflammation

in the intestinal tract, and the inflammatory response and tumor

formation resulting from AOM/DSS was attenuated by CAPE

(Figure 5A). Moreover, CAPE significantly reduced NLRP3

accumulation in the intestinal tract (Figure 5B) and significantly

inhibited AOM/DSS-induced recruitment of macrophages to

Frontiers in Oncology | www.frontiersin.org 6 May 2020 | Volume 10 | Article 72123

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Dai et al. CAPE Prevents CAC by Inhibiting NLRP3

FIGURE 4 | CAPE alleviates mouse colitis progression and tumor burden resulting from AOM/DSS treatment. (A–G) Effect of CAPE on (A) body weight, (B) survival

rate, (C) intestinal tract (representative image), (D) number of polyps and polyp size, (E) tumor load and tumor size, (F) colon length and (G) average clinical score.

Data are presented as mean ± SD (n = 3). *P < 0.05, **P < 0.01 vs. AOM/DSS group.

intestinal tissues (Figure 5C). CAPE also significantly reduced
AOM/DSS-induced expression of NLRP3, cleaved caspase-1,
cleaved IL-1β, and ASC in the intestinal tract (Figure 5D).
The increased secretion of IL-1β, IL-6, and TNF-α in serum
was similarly reduced by CAPE in a dose-dependent manner
(Figure 5E). Overall, the results indicate that activated NLRP3 in
AOM/DSS mouse model is suppressed by CAPE.

CAPE Increases NLRP3 Ubiquitination in
AOM/DSS Mouse Model
Glutathione is one of the main endogenous antioxidants
produced by cells and is directly involved in the neutralization
of ROS (13). The content of reduced glutathione in the intestinal
tract of the AOM/DSS group was decreased; however, CAPE

dose-dependently enhanced glutathione activity and reduced
IL-1β, IL-6, and TNF-α levels (Figure 6A). Moreover, CAPE
decreased the mRNA levels of NLRP3, IL-1β, IL-6, and TNF-
α (Figure 6B), increased the binding of NLRP3 to ubiquitin
molecules and facilitated NLRP3 ubiquitination (Figure 6C).
In patients with colorectal cancer, NLRP3 was found highly
expressed (Figure 6D). These findings indicate that CAPE also
enhances NLRP3 ubiquitination in vivo.

CAPE Suppresses Interaction Between
NLRP3 and CSN5, and Enhances the
Interaction Between NLRP3 and Cullin1
Considering that ubiquitination is mediated by a balance
between ubiquitin-conjugating and deubiquitinating enzymes
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FIGURE 5 | NLRP3 inflammasome inhibition contributes to the anti-tumor effect of CAPE. (A) Colon tissues were fixed and stained with hematoxylin-eosin. (B)

Immunohistochemistry of NLRP3 in the colon. (C) F4/80+ CD11b+ macrophages in infiltrated leukocytes of colon tissue were detected by FACS blots. (D) Western

blotting for NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, cleaved IL-1β, and ASC in colons. (E) ELISA for IL-1β, IL-6, and TNF-α in serum. Data are

represented as mean ± SD (n = 3). *P < 0.05, **P < 0.01 vs. AOM/DSS group. Scale bar = 50 µm.

(14), we examined the interaction between NLRP3 and the
ubiquitin-conjugating enzyme Cullin1 and deubiquitinating
enzyme CSN5. CAPE enhanced the interaction between NLRP3
and Cullin1 and decreased the interaction between NLRP3

and CSN5 in THP-1 cells in a time-dependent manner
(Figures 7A,C). These findings were also observed in the
AOM/DSS mouse model and occurred in a dose-dependent
manner (Figures 7B,D). Thus, CAPE suppresses the interaction
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FIGURE 6 | CAPE increases NLRP3 ubiquitination in the AOM/DSS mouse model. (A) Effect of CAPE on the activity of glutathione and the production of IL-1β, IL-6,

and TNF-α. (B) Real-time PCR for determining mRNA levels of NLRP3, IL-1β, IL-6, and TNF-α. (C) Tissue extracts were subjected to immunoprecipitation with an

anti-NLRP3 antibody, followed by immunoblotting with an anti-ubiquitin antibody. (D) Immunohistochemistry of NLRP3 expression in tumor and adjacent tissue of

patient with colorectal cancer. Data are presented as mean ± SD (n = 3). *P < 0.05, **P < 0.01 vs. AOM/DSS group. Scale bar = 50 µm.

between NLRP3 and deubiquitinating enzymes, and enhances its
interaction with a ubiquitin-conjugating enzyme in vivo and in
vitro, promoting NLRP3 ubiquitination.

DISCUSSION

In this study, NLRP3 was found highly expressed in the
tumor tissues of patients with colorectal cancer. Administering
CAPE suppressed NLRP3 protein expression in vitro and in
vivo by inhibiting ROS and increasing NLRP3 ubiquitination.
Subsequently, inhibiting NLRP3 inflammasome by CAPE
protected mice from AOM/DSS-induced CAC. Altogether, our

findings indicate that inhibition of NLRP3 inflammasome by
CAPE prevents CAC.

NLRP3 interacts with ASC and pro-caspase-1 to form

an inflammasome. Activated NLRP3 promotes pro-caspase-
1 proteolysis into its active form, caspase-1 (p20), and then
cleaves pro-IL-1β and pro-IL-18 into their mature forms (IL-1β
and IL-18). Macrophage-derived IL-1β stimulates Wnt signaling
and leads to proliferation of colon cancer cells; high IL-1β
secretion is associated with malignant phenotypes in the cancer
microenvironment (15, 16). Here, CAPE inhibited IL-1β both
in vitro and in vivo, highlighting its potential to suppress
inflammation and CAC.
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FIGURE 7 | CAPE suppresses the interaction between NLRP3 and CSN5, but enhances the interaction between NLRP3 and Cullin1. (A,C) Immunoprecipitation

assay using cell lysates with anti-CSN5 or anti-Cullin1 antibodies; mouse IgG was used as control. (B,D) Colon tissues lysates were subjected to immunoprecipitation

assays with anti-CSN5 or anti-Cullin1 antibodies; mouse IgG was used as control. (n = 3).

Chronic inflammation is an important event in carcinogenesis
and tumor progression, and cancer-associated inflammation
has been identified as the seventh hallmark of cancer (17).
NLRP3 plays a key role in inflammation, and activation of
NLRP3 inflammasome has been linked to inflammation-induced
cancer (6, 18). Indeed, NLRP3 is activated in patients with
inflammatory bowel disease and overexpression and constitutive
activation of NLRP3 inflammasome contribute to the progression
of head and neck squamous cell carcinoma (19, 20), lung cancer,
and colorectal cancer (21, 22). Moreover, NLRP3 inhibition
was found to prevent CAC (23). In agreement with these
findings, we found that NLRP3 is highly expressed in the
tumor tissues of patients with colorectal cancer and that CAPE
protected mice from AOM/DSS-induced CAC by inhibiting
NLRP3 inflammasome.

Nevertheless, the role of NLRP3 in tumorigenesis is
complex. Wei et al. found that the expression of all NLRP3
inflammasome components was either completely lost or
significantly downregulated in human hepatocellular carcinoma
and was correlated with advanced stage and poor pathological
differentiation (24). Allen et al. also reported that Nlrp3−/− mice
presented with acute and recurring colitis and CAC, suggesting
that NLRP3 functions as a negative regulator of tumorigenesis
during CAC (25). Thus, NLRP3 expression levels may vary
between different tumors or stages of tumor development and
NLRP3 may exert various effects via different mechanisms.

The production of ROS has been associated with cancer
promotion and is implicated in the regulation of NLRP3
inflammasome (12, 26, 27). Bauernfeind et al. previously
demonstrated that mitochondrial ROS regulates NLRP3 by
blocking the priming step of NLRP3 inflammasome activation
(28). Juliana et al. also found thatmitochondrial ROS are required
for the non-transcriptional priming of NLRP3 and that NLRP3
deubiquitination is a prerequisite for its activation (29). Here,

CAPE did not affect the mRNA level of NLRP3, but decreased its
protein levels by facilitating ubiquitination, which was abolished
by rotenone, suggesting that CAPE exhibits inhibitory effects by
suppressing mitochondrial ROS production.

Indeed, CAPE possessed antioxidant activity and has been
reported to scavenge ROS (9, 30, 31). The anti-inflammatory
effect of CAPE can most likely be attributed to suppression
of ROS production at the transcriptional level by inhibiting
NF-κB activation (32). Khan et al. reported that CAPE
can suppress inflammation-induced MPO activity and pro-
inflammatory cytokine production and can enhance epithelial
barrier function in experimental colitis (10). Some recent studies
also demonstrated that CAPE has a protective effect on colitis (33,
34). However, it remains unknown whether CAPE can inhibit
CAC and what the underlying mechanism is. In this study, we
provide evidence that CAPE facilitates NLRP3 ubiquitination by
inhibiting ROS in THP-1 cells and inhibits enteritis and tumor
burden by inhibiting NLRP3 in an AOM/DSS mouse model.
All flavonoids in propolis, except for CAPE, have low acute
oral toxicity, with an LD50 of 8–40 g/kg (35). In our study, the
CAPE dosage at which the anti-CAC effect was evident was 45
mg/kg indicating that such a high dose of these agents is safe
for preventing CAC. Further studies are needed to verify the
efficiency and safety of CAPE before use in clinic.

In conclusion, CAC can be prevented by CAPE-induced
NLRP3 inflammasome inhibition, highlighting CAPE as a
potential candidate for reducing the risk of CAC in patients with
inflammatory bowel disease.
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The efficacy of cancer immunotherapy depends on the fine interplay between tumoral

immune checkpoints and host immune system. However, the up-to-date clinical

performance of checkpoint blockers in cancer therapy revealed that higher-level

regulation should be further investigated for better therapeutic outcomes. It is becoming

increasingly evident that the expression of immune checkpoints is largely associated to

the immunotherapeutic response and consequent prognosis. Deubiquitinating enzymes

(DUBs) with their role of cleaving ubiquitin from proteins and other molecules,

thus reversing ubiquitination-mediated protein degradation, modulate multiple cellular

processes, including, but not limited to, transcriptional regulation, cell cycle progression,

tissue development, and antiviral response. Accumulating evidence indicates that DUBs

also have the critical influence on anticancer immunity, simply by stabilizing pivotal

checkpoints or key regulators of T-cell functions. Therefore, this review summarizes the

current knowledge about DUBs, highlights the secondary checkpoint-like role of DUBs

in cancer immunity, in particular their direct effects on the stability control of pivotal

checkpoints and key regulators of T-cell functions, and suggests the therapeutic potential

of DUBs-based strategy in targeted immunotherapy for cancer.

Keywords: cancer immunotherapy, deubiquitination, deubiquitinating enzymes, immune checkpoint, secondary

checkpoint

BACKGROUND

As one kind of posttranslational modification, ubiquitination is mediated by a series of enzymatic
reactions, mostly initiating protein degradation and thus affecting protein stability (1, 2).
Besides, more and more ubiquitination-dependent but protein degradation-irrelevant events are
discovered, and further studies indicate that a number of vital cellular processes are triggered
by ubiquitination (3, 4). Thus, the ubiquitin system is complex and vast, affecting every aspect
of cell life. There are a great many types of ubiquitination, but the dominant forms are
monoubiquitination, and Lys48 or Lys63-linked polyubiquitination (5). The ubiquitin signal
is modulated by an enzymatic cascade involving two ubiquitin-activating enzymes (E1), ∼40
ubiquitin-binding enzymes (E2), and more than 700 ubiquitin ligases (E3), as well as ∼100
of deubiquitinating enzymes (DUBs) (6–8). Ubiquitination is a highly conserved and tightly
controlled enzymatic process with three joint steps. E1, E2, and E3 work together to form a covalent

30

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.01289
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.01289&domain=pdf&date_stamp=2020-08-07
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:huangxing66@zju.edu.cn
mailto:liangtingbo@zju.edu.cn
mailto:shirleybai@zju.edu.cn
http://orcid.org/0000-0002-8886-2777
https://doi.org/10.3389/fonc.2020.01289
https://www.frontiersin.org/articles/10.3389/fonc.2020.01289/full
http://loop.frontiersin.org/people/767163/overview
http://loop.frontiersin.org/people/953278/overview
http://loop.frontiersin.org/people/953802/overview
http://loop.frontiersin.org/people/999162/overview
http://loop.frontiersin.org/people/1041899/overview
http://loop.frontiersin.org/people/953241/overview
http://loop.frontiersin.org/people/900534/overview
http://loop.frontiersin.org/people/900911/overview


Huang et al. Targeting DUBs for Cancer Immunotherapy

FIGURE 1 | Key events in ubiquitylation and deubiquitylation. A schematic illustration of three-step enzymatic process in ubiquitination. E1, E2, and E3 form a

covalent bond to coordinate the editing between ubiquitin and its substrate protein, while DUBs reverse this processing.

bond between ubiquitin and its substrate protein for chain editing
and precursor processing to complete the processing of ubiquitin,
whereas DUBs reverse this progression (Figure 1).

Deubiquitinating enzymes are proteolytic enzymes that
can cleave ubiquitin or ubiquitin-like proteins from their
target substrate or proproteins, thus inhibiting ubiquitination-
mediated protein degradation (9, 10). Based on sequence
and domain conservation, six DUB families with distinct
structures have been described. Families of cysteine peptidases

Abbreviations: DUB, deubiquitinating enzyme; E1, ubiquitin-activating enzyme;

E2, ubiquitin-binding enzyme; E3, ubiquitin ligase; USP, ubiquitin-specific

protease; UCH, ubiquitin COOH terminal hydrolase; MJD, Machado-Josephine-

containing protease; OUT, ovarian tumor protease; MINDY, motif that interacts

with the novel DUB family containing ubiquitin; JAMM, JAB1/MPN/MOV34

metalloprotease DUB; SENP, Sentrin/ SUMO-specific protease; DeSI, de-

SUMO-glycosylated isopeptidase; NEDP1, NEDD8-specific protease 1; PTM,

posttranslational modification; HCC, hepatocellular carcinoma; CSN5, COP9

signalosome 5; JAMM, JAB1/MPN/Mov34 metalloenzyme; CCL5, C-C motif

chemokine ligand 5; TNF, tumor necrosis factor; TNFR, TNF receptor; TLR,

Toll-like receptor; NOD2, nucleotide-binding oligomerization domain protein

2; N-terminus, amino-terminus; OUT, ovarian tumor–related proteases; RIPK3,

receptor-interacting protein 3; mTORC1, mTOR complex 1; IκB, inhibitor of NF-

κB; IKK, IκB kinase; TRPA1, transient receptor potential channel A1; DN, double

negative; DP, double positive; SP, single positive; mTEC, myeloid thymocyte; NKT,

natural killer T; SRC1, steroid receptor coactivator 1; DUBA, deubiquitylating

enzyme A; IFN, interferon; IRF3, IFN-regulatory factor 3.

include ubiquitin-specific proteases (USPs), ubiquitin COOH
terminal hydrolases (UCHs), Machado-Josephine domain-
containing proteases, ovarian tumor–associated proteases
(OTUs), zinc finger–containing ubiquitin peptidases, and
motif interacting with ubiquitin-containing novel DUB
family (MINDY). In addition, a family of Zn-dependent
peptidase JAB1/MPN/MOV34 metalloprotease DUBs (JAMMs,
also known as MPN+; 16 members) exists (11, 12). Other
protease classes, such as ubiquitin-like proteases, also act
as protein-like modifiers, including, but not limited to,
SUMO [Sentrin/SUMO-specific protease (SENP) and de-
SUMO-glycosylated isopeptidase (DeSI) family] and NEDD
[NEDD8-specific protease 1 (NEDP1), member of the SENP
family] (13, 14). For instance, the deISGylating enzyme USP18
is a ubiquitin-like protease that plays a key role in the innate
immune system. USP18 acts as an endogenous isopeptidase that
cleaves the ubiquitin-like ISG15, which is the representative
type I interferon-induced gene and also the first identified
ubiquitin-like protease (15, 16).

As mentioned above, multiple modes regulate DUB
interaction with ubiquitin and substrate, enabling multiple
mechanisms to fine-tune DUB function. The mechanism used
by cells to regulate DUB function can be roughly divided into
two main types: one is to regulate DUB abundance and position,
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FIGURE 2 | Regulation of PD-L1 by DUBs. A schematic illustration of multiple DUBs involved in PD-L1 deubiquitylation, including USP22, CSN5, and USP9X. ICD,

intracellular domain; TM, transmembrane domain; EC, extracellular domain; SIG, signal sequence.

and the other is to regulate its catalytic activity (17, 18). The
catalytic domain of DUBs can directly bind to its substrates and
further recognize the specific ubiquitin sites, which determines
the activity and specificity of DUBs. All types of DUB classes
have at least one ubiquitin binding site, called S1 site, which
guides the ubiquitin C-terminus and the frangible bond to the
active site, followed by hydrolysis. When double ubiquitin,
the distal ubiquitin occupies the S1 site, while the proximal
ubiquitin occupies the S1

′
site. Moreover, some of DUBs have

extra ubiquitin binding sites such as S2, S3, S2
′
, or S3

′
, which

allow the polymerized ubiquitin chain binding to precise
position in enzymes and thus may contribute to the specificity of
connection (11, 17).

In addition to conventional effects on the protein stability
and expression level, accumulating evidence suggested that the
ubiquitin-based regulatory system also plays a crucial role in
immunological process. This review hereafter summarizes the
novel roles of DUBs and deubiquitination on protein-dependent
antitumor immune responses, majorly focusing on different
immune cell signaling cascades, including, but not limited to,
the tumor necrosis factor (TNF) signaling cascade in T cells
and B cells.

EFFECT OF DUBS ON TUMORAL IMMUNE
CHECKPOINTS

Immune checkpoints are part of the immune system. Their role
is to prevent a strong immune response and the destruction
of healthy human cells by the immune system itself. Immune
checkpoints [including Programmed Cell Death Protein 1 (PD-
1) and Cytotoxic T-Lymphocyte-Associated Protein 4 (CTLA-
4)] work when proteins on the surface of immune cells such
as T cells recognize and bind to chaperone proteins (such as
PD-L1) on other cells, including certain tumor cells. Immune
checkpoint blockade–based immunotherapy provides novel and
promising approaches for cancer patients, which may result
in a long-time control of the tumor or even cure it (19, 20).

However, the immune checkpoint inhibitors (such as PD-1/PD-
L1 antibody drugs) did not achieve the expected efficacy in the
treatment of certain tumors (e.g., pancreatic cancer) (21). It is
well-known that the expression of the target is needed for the
corresponding therapy to work. For instance, PD-L1 expression,
on tumor cells and/or T cells, is a prognostic factor for PD-
1/PD-L1–targeting immunotherapies. Accumulating evidence
suggests that the expression of immune checkpoints is regulated
at multiple levels from different levels. Recently, increasing
evidence indicates that immune checkpoints are also regulated
by multiple posttranslational modifications in tumors, thus
regulating their ability to mediate immune escape (22). In this
context, DUB has become a crucial factor in ubiquitination
and deubiquitination, which is a type of posttranslational
modification. Thus, in the first part of our review, we summarize
the recent findings regarding the regulatory effects of three
key DUBs, USP22, CSN5, and USP9X, on PD-L1, the most
representative immune checkpoint (Figure 2).

USP22
USP22 is a novel human DUB composed of 525 amino acids,
and containing Cys, Asp, His, and Asp/Asn, which are highly
conserved domains of the UBP family in DUBs (23). Some
results show that USP22 is overexpressed in many tumor types
and affects tumorigenesis and development by affecting cell
cycle (24–28). However, our previous study demonstrated that
USP22 induces the deubiquitination of PD-L1 and prevents PD-
L1 degradation. Binding directly to the C-terminal cytoplasmic
tail and transmembrane region of PD-L1, USP22 catalyzes the
deubiquitination of PD-L1 and stabilizes PD-L1 in a CDK4-
independentmanner (29). Hepatocellular carcinoma is the tumor
that better fits in the exploration of tumor inhibition mediated by
USP22–PD-L1, because the expression of USP22 in this tumor
is higher than its expression in other cancer types (30). In
pancreatic cancer, in addition to affecting tumor progression
through the regulation of the cell cycle, USP22 can also influence
tumorigenesis and development by regulating immune cell
infiltration through nuclear functions independent of its effects
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on PD-L1 protein stability (31). Although the expression of PD-
L1 is a predictive biomarker for the result of immunotherapy
in patients with multiple tumor types, the therapeutic effect of
targeting PD-L1 is unsatisfactory (21, 32, 33). Our hypothesis is
that the poor clinical efficacy of the treatments targeting PD-L1
may be due to the stabilization of PD-L1 mediated by USP22,
abolishing the effect of anti–PD-L1 drugs (30). Therefore, a
targeted inhibition of USP22-mediated deubiquitination of PD-
L1 can be a new potentially effective immunotherapeutic strategy.

CSN5
COP9 signalosome subunit 5 (CSN5), which is also called
JAB1, is the fifth component of the CSN regulatory complex
and contains an evolutionarily conservative Jab1/Mpr1p and
Pad1pN terminus (MPN) domain metalloenzyme (JAMM)motif
interface with the ubiquitin–proteasome pathway. CSN5 plays
critical roles in regulating the invasion and migration of cancer
cells, as well as exosome protein sorting (34–37). Some results
by mass spectrometry analysis revealed that CSN complex is
the interaction partner of PD-L1 (34, 38, 39). Acting as a DUB,
CSN5 inhibits the ubiquitination processing and subsequent
proteasomal degradation of PD-L1 and thus stabilizing its
protein expression in cancer cells. Tumor necrosis factor α

stimulation activates nuclear factor κB (NF-κB), which induces
CSN5 expression, resulting in PD-L1 stabilization. However, the
CSN5 inhibitor curcumin inhibits the stability of PD-L1, making
cancer cells sensible to an anti-CTLA4 therapy (38). In colorectal
cancer, Liu et al. (39) suggested that the C-C motif chemokine
ligand 5 (CCL5), secreted from macrophages, inhibits T cell–
mediated killing in HT29 cells. Mechanistically, CCL5 promotes
the immune escape through causing the formation of STAT3/NF-
κB p65 complex, which bound to the CSN5 promoter, and in turn
modulates the deubiquitination and stability of PD-L1 in vitro
and in vivo (39).

USP9X
Previous studies showed that the function of USP9X in regulating
cancer cells is complex and diverse. Through a ubiquitin-specific
protease activity, USP9X not only plays a paramount role in
regulating the proliferation, apoptosis, and adhesion of cancer
cells (40, 41), but also maintains the stability of DNA replication-
fork and DNA-damage checkpoint responses, thus affecting
radiosensitivity (42, 43). Recently, it has been revealed that
USP9X also plays a vital role in regulating immune checkpoints.
Indeed, USP9X induces PD-L1 deubiquitination and regulates its
stabilization by ubiquitin specific protease activity (44). In Oral
Squamous Cell Carcinoma (OSCC) cells, the high expression of
USP9X increases the deubiquitination of PD-L1 and reduces its
degradation, resulting in protein accumulation in these cells (44).
Thus, targeting PD-L1 by blocking USP9X may be a potentially
useful strategy in the treatment of cancer cells.

ROLE OF DUBS IN T CELL FUNCTION AND
IMMUNE RESPONSE

Ubiquitination is one kind of critical mechanism in regulating
the immune response and T-cell function. Although the

TABLE 1 | Deubiquitinases involved in immune response and T-cell regulation.

Family DUB Function Target

USP CYLD Survival of immature NKT cells IKK

T cell activation TAK1/IKK

Thymocyte development LCK

Treg development IKK/Smad7

USP4 TH17 differentiation RORγt

USP7 Treg function Foxp3/ Tip60

inflammasome activation NLRP3

USP8 Thymocyte maturation CHMP5

USP9X TCR signaling and central tolerance Bcl10/Zap70/Themis

USP10 Unknown T-bet

USP11 Immune response NF-κB pathway

USP15 T-cell activation and differentiation MDM2

TH17 differentiation RORγt

USP17 TH17 differentiation RORγt

USP18 TH17 differentiation RORγt

Innate immune response IFN-γ pathway

USP25 Innate immune response TLR pathway

USP47 Inflammasome activation NLRP3

OTU A20 NKT cell differentiation MALT1

CD4 T-cell survival RIPK3

T-cell survival mRORC1

CD8 T-cell activation/Treg

development/cell-extrinsic regulation of

TH1 and TH17 cell differentiation

NF-κB pathway

DUBA T-cell activation and differentiation UBR5

Otud7b TH17 differentiation Zap70

OTULIN Innate immune response NF-κB pathway

BRCC3/

ABRO

Inflammasome activation NLRP3

Zranb1 Cell-extrinsic regulation of TH1 and TH17

cell differentiation

Jmjd2b

full-scale roles of DUB in immunity have not been thoroughly
understood, significant progresses have recently been reported
by some studies regarding immunoregulation by DUBs. In
the following part, we discuss the up-to-date findings on the
molecular features and signaling function of deubiquitylation
in immune response and T-cell function (Table 1). There are
many DUBs regulating the immune response, majorly from USP
family, including CYLD, USP4, USP7, USP8, USP9X, USP11
USP15, USP17, USP18, USP25, and USP47, as well as OTU
family, including A20, deubiquitylating enzyme A (DUBA),
Otud7b, OTULIN, BRCC/ABRO, and Zranb1. Specifically,
USP11, A20, and OUTLIN contribute to immune response
through NF-κB pathway, whereas USP25 regulates innate
immunity by deubiquitylation of the adaptor protein TRAF3
(45–49). Moreover, USP7, USP47, and BRCC3/ABRO can
activate the NLRP3 inflammasome (50–54). Furthermore, USP4,
USP15, USP17, and USP18 control TH17 differentiation through
RORγt pathway. Additionally, USP18 is a key regulator of
interferon signaling and its mediated innate immune response
(45, 55–58). Because the regulatory mechanism of DUBs in
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immunity is quite complex, we focus on the representative ones
in this part.

A20
A20, also known as TNFAIP3, is a zinc finger domain–containing
deubiquitinase that limits the function of TNF receptor (TNFR)
and induces NF-κB activation via innate immune receptors,
such as Toll-like receptors (TLRs) and NOD2 (nucleotide-
binding oligomerization domain protein 2, an intracellular
pattern recognition molecule) (59–62). A unique feature of A20
is not only its capability to act as a DUB, but also works as an
E3 ligase (59). The amino-terminal (N-terminal) region of A20
contains an OUT (the ovarian tumor–related proteases) domain,
which is composed of ∼24 members in the human genome and
forms the second largest DUB family in mammalian. A20 has
DUB activity toward several NF-κB signaling factors that regulate
both innate and adaptive immune responses. In addition, A20
inhibits receptor-interacting protein kinase 1 (RIP1, also called
RIPK1) K63-linked polyubiquitination to block NF-κB signaling
downstream of TNFR1 (59, 62, 63). Of note, the carboxy-terminal
domain of A20 contains seven C2/C2 zinc finger domains; thus,
it is able to act as an E3 ubiquitin ligase. For instance, A20 can
polyubiquitinate RIP with K48-linked ubiquitin chains, thereby
promoting the proteasomal degradation of RIP (59).

In addition to the TNFR pathway, the function of A20 has
been described in the IL-1R/TLR4 pathway. A20 targets E3
ligases via being recruited to the E3 ligases TRAF2, TRAF6,
and cIAP1/2, disrupting the connection between E2 and E3
ubiquitin enzyme complex, and destroying the interactions with
the E2 enzymes Ubc13 and UbcH5c. The ubiquitination and
degradation of the E2 enzymes occur at later time points after
stimulation (64). A20 was the first DUB found to have a
role in innate immune regulation. Some studies have shown
that the loss of A20 leads to continued activation of NF-κB
by TLRs and TNFR by breaking the tolerance of the innate
immune system to the commensal intestinal microflora, causing
abnormal homeostatic TLR signaling and the production of pro-
inflammatory mediators (60, 62, 65). Therefore, A20 is a key
protein that regulates immune homeostasis and TLR signaling
in vivo. In different immune tissues, the important role of A20
has been described using A20 conditional knockout mice. The
deficiency of A20 in B cells makes them hyperresponsive after
an appropriate activation stimuli, and this phenomenon leads to
a higher NF-κB activation, as well as an enhanced proliferation
and survival (66). Recent results revealed that the level of pro-
inflammatory cytokines including IL-6 increases in Tnfaip3fl/fl
CD19-Cre mice. Interleukin 6 causes an expansion of myeloid
and effector T cells as well as a loss of B-cell tolerance (66,
67). The reason may be due to the fact that the deficiency of
A20 results in the accumulation of K63-linked ubiquitination
by TRAF6 and RIP stimulation, causing prolonged activation
of NF-κB signaling pathway and abnormal expression of pro-
inflammatory cytokines. A20 also induces RIP2 deubiquitylation,
thereby negatively regulating NF-κB activation and inducing the
production of pro-inflammatory cytokines by the intracellular
PRR and NOD2. Thus, A20 plays a crucial role in B-cell
homeostasis and the control of inflammatory responses.

In T-cell development, T lymphocytes express high levels of
A20, which decrease after T-cell activation. A great amount of
evidence is available regarding the effect of A20 on natural killer
T (NKT) cell development. Although A20 is not necessary for
the survival of immature NKT cells, it is an important regulator
in mediating their maturation. According to the secretion of
cytokines, NKT cells are classified into three subgroups, such
as NKT1, NKT2, and NKT17, which are characterized by the
production of IL-4, IL-17, and interferon γ (IFN-γ). The loss of
A20 in T cells can greatly reduce the number of mature NKT
cells, but does not affect the early stages of immature NKT cells.
In other words, the loss of A20 reduces the quantity of NKT1
and NKT2 cells, without affecting NKT17 cells in organs and the
peripheral blood (68, 69).

A20 plays a vital role in mediating CD8 T-cell response,
which involves the inhibition of NF-κB signaling pathway. A20
deficiency in mature T cells can lead to excessive production
of IL-2 and IFN-γ in CD8+ T cells by increasing NF-κB
activation. High expression of A20 in tumor-infiltrating CD8+

T cells has been reported to be related to poor antitumor
immune response, and the loss of A20 is associated with the
increased ability of CD8+ T cells in tumor clearance. However,
another study suggested that the function of A20 in regulating
T cells is quite complex, because it could regulate primary and
memory responses of CD8+ T cells in opposite manners (70,
71). A20 also shows vital influence on the survival of activated
CD4+ T cells, involving the K5 ubiquitination of RIPK3, which
induces the formation of the RIPK1–RIPK3 complex required
to induce necrotic cell death. Therefore, A20 deficiency is
important for the ubiquitination of RIPK3 and the formation
of the RIPK1–RIPK3 complex, which exacerbates the death of
CD4+ T cells (72). Additionally, A20 mediated CD4+ T-cell
survival through promoting autophagy, which is caused by the
inactivation of mTOR complex 1 (mTORC1), a major inhibitor
of autophagy (73, 74).

As regards T-cell tolerance, the regulatingmechanism involves
inability to induce and regulatory T cell (Treg)–mediated
suppression of autoreactive T cells, which were eliminated during
central tolerance (75, 76). A20 plays a negative regulatory role
in thymus development of Tregs by inhibiting RelA (a classic
member of NF-κB). The specific loss of A20 in T cells is related
to the increase of Tregs in the thymus tissue and surrounding
lymphoid organs. Nevertheless, the unusual thing is that A20
deficiency has no effect on the survival or proliferation of Tregs,
which seems to reduce the dependence of thymic Treg precursor
cells on IL-2 during development in vivo (77).

CYLD
CYLD was initially identified as a tumor suppressor, and its
mutation leads to familial cylindromatosis. The mutation often
occurs in the carboxy-terminal (C-terminal) portion of CYLD,
which contains a DUB domain 10, interacts with NEMO,
and has deubiquitinating activity (78, 79). It is now evident
as demonstrated by functional proteomics that CYLD is a
member of the USP family of DUBs that negatively regulates
NF-κB activation by binding to multiple signaling molecules
including NF-κB essential modulator, two IKK regulatory
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proteins (members of the TRAF family), the NF-κB coactivator
BCL-3, the IKK [inhibitor of NF-κB (IκB) kinase], the steroid
receptor coactivator (SRC) protein tyrosine kinase LCK, RIP1,
and TRPA1 (transient receptor potential channel A1) (79–87).

Recent evidence suggests that CYLD is a protein specifically
linked to K63, which facilitates the interaction of CYLD targets
in the recruitment and activation of downstream signaling
molecules (88, 89). Because of the unique structure of the
USP catalytic domain, CYLD has specific determinants that
can mediate the uncoupling of K63-linked ubiquitin chains.
However, it does not mean that CYLD is precisely a K63-specific
DUB, because there is evidence from two studies indicating that
CYLD has activity to prevent the proteasomal degradation of
some target proteins by targeting toward K48-linked ubiquitin
chains (82, 85, 90–92). Moreover, adaptor proteins may be
involved in the function of CYLD. For instance, p62, one adaptor
protein, can promote the deubiquitylation of TRAF6 (one of p62
targets) by CYLD. Moreover, p62 is able to regulate the DUB
activity of CYLD through induction of its ubiquitylation (84, 93).

An important function of CYLD is to regulate the immune
response. CYLD deficiency leads to spontaneous B-cell activation
and proliferation (94). As regards the regulation of the innate
immunity, CYLD activates the nuclear factor of Streptococcus
pneumoniae–activated T cells by deubiquitinating the upstream
kinase TAK1, thus inducing its inhibition (95).

The first DUB shown to regulate thymocyte development
is CYLD. The role of CYLD in the regulation of thymocyte
development involves IKK activation (96). Moreover, defined
by the expression of T4 coreceptors CD4 and CD8, T-cell
development in the thymus is divided into three different stages:
double-negative, double-positive (DP), and single-positive (SP)
cells. The loss of CYLD attenuates thymocyte development
because it affects the DP to SP stages, leading to a reduced
quantity of T cells in the peripheral lymphoid organs. In
regulating T-cell receptor (TCR) signaling during the transition
from DP thymocytes to mature SP thymocytes, CYLD targets
the tyrosine kinase LCK, playing a critical role in this transition
(85). In addition, CYLD regulates the differentiation of myeloid
thymocytes required for the negative selection of thymocytes
(97). In contrast to A20, CYLD also has an important role in
regulating NKT-cell development. CYLD is not only essential
for the maturation of NKT cell, but also for the survival of
immature NKT cells. Because of abnormal activation of NF-κB,
CYLD deficiency attenuates the signal transduction of NKT cells
stimulated by IL-7 (98).

In the activation and survival of T cells, CYLD can regulate the
dynamic ubiquitination of TAK1 and thus controls TCR/CD28
stimulation in T cells under homeostatic conditions. CYLD
deficiency results in the hyperactivation of IKK, JNK, and the
downstream transcription factor NF-κB by hyperubiquitination
and activation of TAK1 (86). Therefore, CYLD plays an
important negative regulator role in TCR activation and
homeostasis. Like A20, CYLD negatively regulates the Treg
development; thus, CYLD deficiency increases the frequency
of Treg in the thymus tissue and peripheral lymphoid
organs (99). Because NF-κB is an important inducer in Treg
development, CYLD mainly regulates Treg development by

inhibiting the NF-κB pathway. Furthermore, CYLD can regulate
the development of Treg by inhibiting TGFβ signaling that in
turn deubiquitinates smad7 (100, 101). An evidence showed that
although CYLD inhibits the development of Tregs, it is regulating
the immune suppressive function of Tregs, because enhanced
Treg production was observed in mice expressing the CYLD
(ex7/8), a non-functional CYLD splice variant (102).

USP15
In marked contrast with CYLD and A20, USP15 negatively
regulates K48-linked ubiquitination of IκBα, which triggers
IκBα proteolysis and the nuclear translocation of NF-κB,
as well as downstream signaling pathways (103). Recent
studies showed that the NFAT signaling is also regulated by
USP15 ubiquitin. First, USP15 interacts with MDM2, inhibits
ubiquitination, and stabilizes MDM2, an important E3 ligase that
mediates the ubiquitination and proteolysis of NFATc2 members
of the NFAT family and negatively regulates TCR signals.
Subsequently, the activated NFATc2 is conjugated to the K48
ubiquitin chain through the E3 ubiquitin ligase MDM2, inducing
its proteasome degradation (56). Because of the ubiquitin-
dependent degradation, together with TCR/CD28 stimulation,
MDM2 can be transiently down-regulated, and the loss of USP15
greatly promotes the degradation of MDM2 in T cells (56).
Therefore, USP15 is deemed as an essential adaptor protein for
MDM2-mediated NFAT ubiquitination and T-cell activation.

In T-cell differentiation, USP15 regulates IFN-γ production
in activated CD4+ T cells at early stage. The main feature
of TH1 cells is the production of cytokine IFN-γ, as well as
the participation in the immune responses against intracellular
pathogens (56, 104). The lack of USP15makes CD4+ naive T cells
highly responsive to IFN-γ produced by TCR/CD28 stimulation,
thus leading to promoted TH1 differentiation in vitro under the
stimulation of a suboptimal dose of TH1 polarized cytokine IL-
12. In addition, USP15 deficiency in a mouse tumorigenic model
enhanced TH1 response in vivo (56). As mentioned previously,
USP15 is not only the DUB of MDM2, but also mediates the
ubiquitination of K48 and the degradation of activated NFATc2.
NFATc2 is a transcription factor that is critically related to
the induction of IFN-γ (56). Some studies show that USP15
is involved in the differentiation of TH17 cells. USP15 targets
RORγt (TH17 lineage transcription factor) for deubiquitylation,
but it regulates function rather than the stability of RORγt.
The mechanism of action is the following: USP15 increases the
association between RORγt and SRC1 by removing ubiquitin
from lysine 446 of RORγt, thereby facilitating the transactivation
function of RORγt and TH17 differentiation (105).

DUBA
The DUBA is an OTU family member (also called OTUD5),
which was found acting as a negative regulator of type I
IFN production through siRNA screening (106). Like A20,
DUBA has an OTU domain and can selectively cleave K63-
linked ubiquitin chains in transfected cells. However, unlike
A20 and CYLD, DUBA is not necessary for the negative
regulation of NF-κB, because knockdown of DUBA via its
targeted specific siRNA shows almost negligible effects on the
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activation of NF-κB is (106). In contrast, DUBA selectively
regulates the activation of IFN-regulatory factor 3 (IRF3)
and IRF7, both regulating IFN expression. DUBA not only
interacts with TRAF3 and inhibits TRAF3 ubiquitination, but
also interrupts the interaction between TRAF3 and TBK1.
Therefore, our hypothesis is that the K63-linked ubiquitin chain
of TRAF3 may promote its interaction with the TBK1–IKKε

complex (107, 108).
Deubiquitylating enzyme A is another TH17 regulator. On the

one hand, DUBA deletion in T cells promotes the production
of TH17 cells. On the other hand, DUBA-deficient Tregs, which
still have immunosuppressive functions in vitro and in vivo, can
produce IL-17A under TCR stimulation (109). The mechanism
involved is that DUBA stabilizes UBR5, which is an E3
ubiquitin ligase thatmediates the ubiquitination and proteasomal
degradation of RORγt of the TH17 lineage. Therefore, DUBA or
UBR5 knockout can enhance the level of RORγt and promote
TH17 cell differentiation (109).

USP9X
Unlike the several DUBs mentioned previously, which can
negatively regulate TCR-stimulated NF-κB signaling, USP9X
regulates TCR-proximal signaling and T-cell activation. USP9X
binds to Bcl10 and inhibits its ubiquitination under TCR
stimulation by deleting the K48-linked ubiquitin chain from
Bcl10 (110). A recent study suggests that although USP9X exerts
a positive role in TCR signaling, T cell–specific USP9X-deficient
mice still have a large number of antigen-stimulated T cells,
as well as expanded PD-1– and OX40-expressing populations,
which is actually consistent with immune hyperactivity, thus
developing a lupus-like autoimmune disease. This effect may be
due to a defect in the negative selection of thymocytes in USP9X-
deficient mice and consequent generation of self-reactive T cells
(111, 112). USP9X also uncouples K48-linked polyubiquitin
chains from Themis, a TCR proximal signal molecule that
regulates thymocyte development (111). These findings highlight
the critical role of USP9X in regulating TCR signaling in
thymocytes and peripheral T cells, which also indicates multiple
targets are involved in such regulation.

Perspective
In addition to the well-established classical functions, DUBs also
play crucial roles in the immunological regulation of tumors.
In a deubiquitination-dependent manner, DUBs not only can
stabilize the key immunosuppressive checkpoint PD-L1 to cause
the enhancement of tumor-immune escape, but also can directly
affect T-cell activation and consequent antitumor immune
response by exerting an action on the critical regulators of T-cell
activity. Deubiquitinating enzymes act as secondary checkpoints
to determine the efficacy of current tumor immunotherapies at
the level of posttranslational modification.

Nowadays, small molecule inhibitors targeting DUBs are
constantly being developed (Table 2). For instance, WP1130
is designed as a relatively broad range inhibitor to block the
activity of USP5, USP9X, USP14, and UCH37. In addition,
VLX1570, a USP14 and UCHL5 inhibitor, has entered the first
phase of clinical trials of multiple myeloma (NCT02372240).

TABLE 2 | Deubiquitinating enzyme–targeted drug candidates.

Name Target(s) Efficacy References

PR-619 ATXN3, BAP1,

JOSD2, OTUD5,

UCH-L1, UCH-L3,

UCH-L5/UCH37,

USP1, 2, 4, 5, 7, 8,

9X, 10, 14, 15, 16,

19, 20, 22, 24, 28,

47, 48, VCIP135,

YOD1, PLpro,

DEN1, SENP6

EC50: 1–20µM (113)

P5091 (P005091) USP7, 47 EC50: 4.2µM,

4.3µM

(114, 115)

P22077 USP7, 47 EC50: 8µM (113, 116)

HBX41108 USP7 IC50: 0.27µM (117)

HBX19818 USP7 IC50: 28.1µM (118)

HBX28258 USP7 IC50: 22.6µM (118)

9-oxo-9H-indeno

[1,2-b]pyrazine-2,3-

dicarbonitrile

USP7, USP8 IC50: 3.5µM,

0.29µM

(119)

b-AP15 UCHL5 IC50: 2.1µM (120)

VLX1570 USP14, UCHL5 EC50: 29 nM (121)

Degrasyn (WP1130) USP5, USP9X,

USP14, UCH37

IC50: 1-5µM (122, 123)

IU1 USP14 IC50: 4.7µM (124)

pimozide USP1/UAF1 IC50: 2µM (125)

GW7647 USP1/UAF1 IC50: 5µM (125)

Isatin O-acyl oxime

derivatives (30, 50, 51)

UCHL1, UCHL3 IC50: 0.80-0.94µM,

17-25µM

(126)

AZ1 USP25, USP28 IC50: 0.62µM,

0.7µM

(127)

ML364 USP2, USP8 IC50: 1.1µM,

0.95µM

(128)

ML323 USP1-UAF1 IC50: 76 nM (129)

TCID UCH-L3 IC50: 0.6µM (126)

Vialinin A USP4, USP5 IC50: 1–25µM (130)

XL188 USP7 IC50: 90–190 nM (131)

Chalcone derivatives

(AM146, RA-9, RA-14)

DUB IC50: 1-13µM (132)

GRL0617 PLpro EC50: 10–15µM (133)

Considered the predominance of immune checkpoint blockade
in immunotherapy, as well as the mainstream status of
immunotherapy in cancer therapy, DUBs-targeting strategy
will have a great translational potential and application
prospect in the future cancer immunotherapy. Therefore, it is
urgent to further identify the core DUBs in tumor immune
regulation and clarify the target and mechanism of its action
in depth.
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Lung cancer is one of the most common cancers and the leading cause of cancer-related
deaths worldwide. Most of these patients with non-small cell lung cancer (NSCLC)
present with the advanced stage of the disease at the time of diagnosis, and thus
decrease the 5-year survival rate to about 5%. Immune checkpoint inhibitors (ICIs) can act
on the inhibitory pathway of cancer immune response, thereby restoring and maintaining
anti-tumor immunity. There are already ICIs targeting different pathways, including the
programmed cell death 1 (PD-1), programmed cell death ligand 1 (PD-L1), and cytotoxic T
lymphocyte antigen 4 (CTLA-4) pathway. Since March 2015, the US Food and Drug
Administration (FDA) approved nivolumab (anti-PD-1 antibody) as the second-line option
for treatment of patients with advanced squamous NSCLC. Additionally, a series of
inhibitors related to PD-1/PD-L1 immune-checkpoints have helped in the immunotherapy
of NSCLC patients, and modified the original treatment model. However, controversies
remain regarding the use of ICIs in a subgroup with targeted oncogene mutations is a
problem that we need to solve. On the other hand, there are continuous efforts to find
biomarkers that effectively predict the response of ICIs to screen suitable populations. In
this review, we have reviewed the history of the continuous developments in cancer
immunotherapy, summarized the mechanism of action of the immune-checkpoint
pathways. Finally, based on the results of the first-line recent trials, we propose a
potential first-line immunotherapeutic strategy for the treatment of the patients
with NSCLC.

Keywords: first-line, PD-L1, immunotherapy, checkpoints, non-small cell lung cancer
INTRODUCTION

The lung cancer is one of the most frequent malignant tumors, and ranks first in the incidence and
mortality among all the cancer types globally (Bray et al., 2018). In clinical practice, only a small
percentage of the patients with NSCLC are diagnosed at an early stage, while the majority of them
present with locally advanced or metastatic disease at diagnosis, which accounts for their low five-
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year survival rate of 4–17% (Carbone et al., 2015; Hirsch et al.,
2017; Osmani et al., 2018). Surgical resection remains the
preferred treatment modality for the patients with early-stage
NSCLC (Postmus et al., 2017). However, 58–73% of the patients
with stage I and about 40% of those with stage II disease relapse
after surgery, which reduces their 5-year survival rates (Liang
and Wakelee, 2013; Gao et al., 2020). Whereas, different
treatment methods are being adopted based on the overall
health condition and the scope of the tumor in patients with
NSCLC. Although platinum-based chemotherapy and radiation
therapy are the traditional treatment methods for such tumors
(Hanna et al., 2017; Tabchi et al., 2017), the last decade has
shown the emergence of the molecular targeted therapies,
including the tyrosine kinase inhibitors (TKI) targeting the
epidermal growth factor receptor (EGFR), and the immune-
checkpoint inhibitors (ICIs) that have helped improve the
outcome of the patients with NSCLC (Hirsch et al., 2017;
Dong et al., 2018).

A remarkable progress has been made in the field of molecular
research in the last decade, which necessitated the World Health
Organization (WHO) and the International Association for the
Study of Lung Cancer (IASLC) to update the classification of lung
cancer highlighting the molecular and immunohistochemical
characteristics of the tumor subtypes (Travis et al., 2015; Osmani
et al., 2018). The treatment of malignant tumors using
immunotherapy has recently shown improvement (Kim and
Chen, 2016). Moreover, immunotherapy has been approved since
September 2014 for the treatment of metastatic melanoma (Robert
et al., 2014), and the other tumor types, including the classical
Hodgkin lymphoma (CHL) (Chen et al., 2017), renal cell carcinoma
(RCC) (McDermott et al., 2016), head and neck squamous cell
carcinoma (HNSCC) (Taylor et al., 2020), and NSCLC (Chen and
Mellman, 2013; Ma et al., 2016; Queirolo and Spagnolo, 2017). Since
March 2015, the nivolumab (anti-PD-1 monoclonal antibody) has
been approved by the US Food and Drug Administration (FDA), as
the second-line treatment for the patients with advanced NSCLC.
Pembrolizumab (anti-PD-1 antibody), atezolizumab (anti-PD-L1
antibody), and durvalumab (anti-PD-L1 antibody) have been
successively approved as the second-line, or even first-line,
therapies for the patients with advanced NSCLC (Keating, 2015;
Pai-Scherf et al., 2017; Antonia et al., 2018). However, despite the
clinical benefits of immunotherapy, only a small proportion of the
patients with NSCLC respond to ICIs administered as
monotherapy, and not all responders continue to respond
indefinitely (Kim and Chen, 2016). Most of patients treated with
ICIs present with a variety of immune-related adverse events
(IRAEs), including hepatitis, colitis, pneumonitis, thyroiditis, and
so on. In addition, the severe adverse events can also have fatal
consequences (Michot et al., 2016; Spain et al., 2016; Ali and
Watson, 2017; Wang et al., 2017). Therefore, it is imperative to
identify and analyses the NSCLC patients who can benefit from the
treatment using ICIs.

Here, we have reviewed the history of the continuous
developments in cancer immunotherapy. We present an
analysis and summary of the completed and ongoing clinical
trials with first-line immunotherapy and explore the possible
Frontiers in Pharmacology | www.frontiersin.org 242
models for their implementation for the treatment of patients
with NSCLC.
A BRIEF OVERVIEW OF THE CANCER
IMMUNOTHERAPY

The cancer immunotherapy is a comprehensive concept that
involves many aspects, including the human immune system,
immunosurveillance, immune escape mechanisms, and the
process of identifying and eliminating pathogens (Dermani et al.,
2019). In cancer, studies have established that the immune system
plays a dual role–it can either eliminate or suppress the cancer by
inhibiting the growth of cancer cells, or enhance the growth of
cancer by enriching cells that can evade the immunosurveillance or
modify the tumor immune microenvironment suitable for the
survival of cancer cells (Schreiber et al., 2011). Therefore, this
dual-function of the immune system, as host-protective and
tumor-promoting, is referred as cancer immune editing. It usually
includes three consecutive phases, viz. elimination, equilibrium, and
escape, and each phase is involved in the innate and adaptive
immune responses (Vesely and Schreiber, 2013; Anagnostou and
Brahmer, 2015). Further, the tumor cells can escape the immune
system by decreasing the tumor antigenicity, reducing tumor
immunogenicity and establishing an immunosuppressive tumor
microenvironment (Beatty and Gladney, 2015; Jiang et al., 2019).
Moreover, in the escape phase, the cancer cells recruit normal
cells to establish an immunosuppressive tumor immune
microenvironment, and eventually transform into malignant
tumors (Hanahan and Weinberg, 2011). Though the
administration of immunotherapy can promote the cytotoxic T
lymphocytes to destroy the tumor cells, it requires a series of steps,
called the Cancer-Immunity Cycle (CIC) (Chen and Mellman,
2013; Joyce and Fearon, 2015). The CIC usually includes seven
primary continuous steps (Figure 1), which can be summarized as
follows: (1) the cancer cells release neoantigens; (2) antigen-
presenting cells (APCs) capture neoantigens released by the
cancer cells; (3) APCs present the captured neoantigens to the T
cells, which primes and activates the T cells; (4) the activated effector
T cells are transported from the lymphoid organs to the tumor site
via the circulatory system; (5) the effector T cells gradually infiltrate
the tumor; (6) the activated effector T cells recognize the cancer cells
in the tumors; and (7) the identified cancer cells are cleared by the
effector T cells (Chen and Mellman, 2013; Karasaki et al., 2017).
Thus, it can be concluded that the CD8+ T lymphocytes play an
irreplaceable role, and each step can be regulated to either
strengthen or weaken the CIC. Furthermore, studies suggest that
the immune checkpoints can prevent T cell over-activation and
maintain self-tolerance in the CIC. However, some tumor cells can
recruit these checkpoint pathways to escape the immune system.
Therefore, the administration of checkpoint inhibitors can block the
association between the immune-checkpoint ligands and receptors
in the CIC and prevent the immune escape, which maintains the
function of the immune system and enhances the response of the
effector T cells that eliminate the tumor cells (Pardoll, 2012;
Anagnostou and Brahmer, 2015; Dermani et al., 2019).
October 2020 | Volume 11 | Article 578091
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Additionally, several immune checkpoint combinations have been
approved by the FDA for the treatment of the cancer patients with
satisfactory results. The next section introduces their mechanism of
action (Hargadon et al., 2018).
MECHANISM OF IMMUNE-CHECKPOINT
PATHWAY IN NSCLC

The introduction of the ICIs have been an important
breakthrough in cancer treatment (Singh et al., 2020). The ICIs
Frontiers in Pharmacology | www.frontiersin.org 343
have proven their efficacy in the field of NSCLC and have
been clinically approved by the FDA and/or the European
Medicines Agency (EMA) (Table 1) (Xiao et al., 2020). The
following sub-sections describe the mechanism of action of two
immune checkpoints.

Mechanism of Blocking the PD-1/PD-L1
Checkpoint Pathway
The PD-1 is a 288-residue type I transmembrane protein surface
receptor. It is mainly expressed on the T lymphocytes in peripheral
tissues and in small amounts on other immune cells, such as the
FIGURE 1 | The Cancer-Immunity Cycle. This cycle can be divided into seven major steps, each major step is described above. Every major step in the cancer-
immune cycle is regulated by stimulatory and inhibitory factors. The figure above lists two major inhibitory regulators. Immune-checkpoint proteins, such as CTLA4,
can inhibit the development of an active immune response by acting primarily on T cell development and proliferation levels (step 3). Immunostat factors, such as
PD-L1, can inhibit function that mainly acts to modulate active immune responses in the tumor bed (step 7) (Chen and Mellman, 2013). CTLA4, cytotoxic T
lymphocyte antigen 4; PD-1, programmed cell-death 1; PD-L1, programmed cell-death ligand 1; APCs, antigen presenting cells; CTLs, cytotoxic T lymphocytes.
TABLE 1 | Different immune-checkpoint inhibitors are approved for NSCLC.

Target Drug Trademark Description Manufacturer FDA approval Indication

PD-1 Nivolumab* Opdivo Fully human IgG4 Bristol-Myers Squibb March 2015 Second-line treatment metastatic
NSCLC

Pembrolizumab* Keytruda Humanized IgG4 Merck October 2015 First-line and second-line treatment
NSCLC

PD-L1 Atezolizumab* Tecentriq Fully human IgG1 Roche October 2016 Second-line treatment NSCLC
Durvalumab Imfinzi Fully human IgG1 AstraZeneca February 2018 Unresectable stage III NSCLC

without relapse after chemo-
radiotherapy

Avelumab Bevencio Fully human IgG1 Merck Serono – Phase III
CTLA-
4

Ipilimumab Yervoy Fully human IgG1 Bristol-Myers Squibb – Phase III

Tremelimumab – Fully human IgG1 Astra Zeneca – Phase III
October
*Drug administration also approved by the European Medicines Agency (EMA); FDA, U.S. Food and Drug Administration; NSCLC, non-small cell lung cancer; PD-1, programmed cell
death 1; PD-L1 programmed cell death ligand 1; CTLA-4: cytotoxic T lymphocyte antigen 4.
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dendritic cells (DCs), B lymphocytes, activated monocytes, natural
killer (NK) cells, andmyeloid-derived suppressor cells (MDSC) (Keir
et al., 2008). The PDCD1, which encodes PD-1, was unexpectedly
discovered by Professor Honjo and colleagues in 1992 while
examining the mechanism of the programmed cell death pathway
(Ishida et al., 1992). It consists of 5 exons located on the chromosome
2 in humans, and is homologous to theCD28 protein receptor family
(Akinleye and Rasool, 2019). The PD-1 consists of extracellular, a
transmembrane, and an intracellular domain. Further, the
extracellular domain contains a single immunoglobulin V (IgV)-like
domain, while the intracellular domain is made up of about 95-
residues, and contains two phosphorylation sites that are the
immunoreceptor tyrosine-based inhibitory motif (ITIM) and the
immunoreceptor tyrosine-based switch motif (ITSM) (Nishimura
et al., 1999; Keir et al., 2008; Zak et al., 2017). Additionally, the
preliminary analysis have suggested that ITIM and ITSM, upon
phosphorylation, bind to the protein tyrosine phosphatases (PTPs),
such as SHP2, which negatively regulates the effector T cells
(Topalian et al., 2015).

The PD-L1 (CD274) and PD-L2 (CD273) are known ligands
of the PD-1 (He et al., 2004). The PD-L1 is a type I
transmembrane protein consisting of 290 residues, and is
encoded by the CD274 gene that contains 7 exons. Further, the
CD274 is situated on the chromosome 19 in mice and on human
chromosome 9 (Zak et al., 2017). The PD-L1 protein consists of
three domains, viz. the transmembrane, intracellular, and
extracellular that contains the IgV-like domain, IgC-like
domain, and signal sequences (Keir et al., 2008). Furthermore,
PD-L1 is expressed in different cell types, including the immune
cells (APCs), non-lymphoid organs (the lung, heart, and
placenta), and non-hematopoietic cells (epithelial cells,
endothelial cells, and tumor cells), as opposed to the PD-1 that
is primarily expressed in the immune cells (T- and B-
lymphocytes) (Zhang et al., 2019). Whereas, the PD-L2 shows
a limited expression range, detected in the B lymphocytes,
macrophages, dendritic cells, and bone marrow-derived mast
cells (Chen et al., 2016). Studies have shown that the expression
of PD-L1 can be induced or regulated by a variety of pro-
inflammatory cytokines in several cell types, and this effect is
particularly prominent in the tumor cells (Akinleye and Rasool,
2019). Moreover, numerous inflammatory cytokines, including
the IFN-g, TNF-a, and IL-10 are secreted by the activated T cells
and NK cells, of which IFN-g shows a predominant effect (Li
et al., 2018).

Several studies have showed that targeting the expression of
PD-1 on the T lymphocytes and PD-L1 on the cancer cells can
inhibit the function or cause dysfunction of the T lymphocytes,
induce apoptosis of T lymphocytes, and promote the production
of the cytokine interleukin 10 (IL-10) in the tumor
microenvironment (Sun et al., 2015). Therefore, the tumor
cells over-expressing PD-L1 can escape immune responses
mediated by the cytotoxic T lymphocytes (CD8+) (Zou and
Chen, 2008). Moreover, the other T cell subtypes, such as the
regulatory T cells (Treg), create a highly immunosuppressive
tumor microenvironment by maintaining PD-1 expression on
their surface that further suppresses the effector immune
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response (Francisco et al., 2010). Thus, based on this
mechanism of action, the PD-L1/PD-L2 expressed on the
surface of tumor cells can be inhibited from binding the PD-1
expressed on the surface of the T lymphocytes, so that they can
activate the innate or adaptive immune responses and destroy
the tumor cells (Figure 2). Furthermore, the PD-1 and PD-L1
provide immune targets for immunotherapy and allow durable
response in NSCLC.

Mechanism of Blocking the CTLA4/CD28
Checkpoint Pathway
The CTLA-4, also known as CD152, is a receptor protein widely
expressed on the surface of the T lymphocytes, B lymphocytes,
and fibroblasts (Pardoll, 2012). In the third step of the CIC, the
early stage of neoantigen presentation, the receptor CTLA4 on
the surface of T lymphocytes competes with the co-stimulatory
receptor CD28 to bind to the ligands B7-1 (CD80) and B7-2
(CD86) expressed on the APCs. However, with a higher affinity
and lower surface density to bind the B7 ligand than the CD28
receptor, the CTLA4 receptor inhibits the association of CD28 to
the B7 ligand. This reduces the production of the cytokine IL-2,
which suppresses the immune response and prevents functioning
of the CIC (Qureshi et al., 2011) (Figure 2). Therefore, an
inhibitor of the CTLA4 checkpoint can suppress the
association of the CTLA4 receptor to its ligand B7, and thus
aid the immune cells to clear tumors through the activation of
innate and adaptive immune responses. Moreover, immune-
checkpoint inhibitors targeting the CTLA4, including the
ipilimumab and tremelimumab, have been adopted by the US
FDA as immunotherapy options for the patients with metastatic
melanoma. Additionally, multiple randomized clinical trials
using checkpoint inhibitors related to CTLA4, administered
alone or in combination with other treatment modalities for
NSCLC, are ongoing, and are expected to achieve better survival
outcomes with acceptable toxicity levels (Hodi et al., 2010;
Hellmann et al . , 2018). Taken together, additional
immunotherapeutic strategies targeting the CTLA4 checkpoints
can be explored in several cancer types.
FIRST-LINE IMMUNE-CHECKPOINT
INHIBITORS MONOTHERAPY FOR NSCLC

Several randomized controlled trials have confirmed that the
patients treated with ICIs show better clinical outcomes than the
patients receiving second-line docetaxel for the treatment of
advanced NSCLC. This article lists the results of multiple
clinical trials in Table 2, receiving monoclonal antibody
monotherapy (including nivolumab, pembrolizumab, and
atezolizumab) and platinum-based chemotherapy.

Nivolumab (ONO-4538/BMS-936558)
The nivolumab, targeting PD-1, is a humanized immunoglobulin
G4 (IgG4) monoclonal antibody (Gettinger et al., 2015). The
CheckMate-026 phase III clinical trial was initiated by our
group to test the efficacy of nivolumab monoclonal antibody
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administered as a monotherapy. The patients (n = 541) with stage
IV or recurrent NSCLC harboring PD-L1 positive tumors (PD-L1
≥ 1%) were randomly recruited and grouped in a 1:1 ratio to either
receive nivolumab or platinum-based chemotherapy. Of these, 423
patients showed PD-L1 expression more than 5% (PD-L1 ≥ 5%),
and the progression-free survival (PFS) was used as the primary
endpoint to assess the outcome. Our analysis indicated the
nivolumab monotherapy to be ineffective in extending the PFS
and overall survival (OS) than that achieved with chemotherapy in
the control arm (PFS: 4.2 months versus 5.9 months; OS: 14.4
months versus 13.2 months; overall response rate (ORR): 26.1
versus 33.5%, respectively). Further, the nivolumab monotherapy
showed significantly lower treatment-related adverse events
(TRAEs) than treatment with chemotherapy (71 versus 92%),
especially in the incidence of grade 3 or higher adverse events (17.6
versus 50.6%). However, in the nivolumab arm, though OS of
patients with high tumor mutation burden (TMB) was low, the
ORR and PFS were found to be significantly improved than those
in the chemotherapy arm. Therefore, this analysis demonstrated
the predictive value of TMB for evaluating the efficacy of
immunotherapy in phase-III clinical trial (Carbone et al., 2017;
Zarogoulidis et al., 2018).

Pembrolizumab (MK-3475)
The KEYNOTE-001 trial was a phase Ib clinical study of
pembrolizumab monotherapy administered in previously
treated or untreated patients with advanced or metastatic
NSCLC (Garon et al., 2015; Hui et al., 2017). The trial
recruited a total of 550 patients with NSCLC, which included
101 untreated and 449 previously treated patients, and had a
follow-up duration of more than 5 years. The data discussed at
the American Society of Clinical Oncology (ASCO) meeting in
2019 showed 15.5% 5-year OS rate in patients in the previously-
Frontiers in Pharmacology | www.frontiersin.org 545
treated category. Of these patients, those in the PD-L1-high
expression (PD-L1 ≥ 50%) arm showed 25.0% 5-year OS rate.
Whereas, patients in the PD-L1 low (PD-L1: 1–49%) and PD-L1-
negative (PD-L1 < 1%) arm showed 12.6 and 3.5% 5-year OS
rate, respectively. However, in the previously-untreated category,
patients showed 23.2% 5-year OS rate, which was found to be
better in the patients in the PD-L1-high arm than those in the
PD-L1-low arm (29.6 versus 15.7%) (Garon et al., 2019).
Therefore, it can be concluded that, especially in the arm with
high expression of PD-L1, treatment with pembrolizumab
monotherapy could effectively prolong the survival outcome.

In a subsequent randomized phase III trial, KEYNOTE-024,
305 previously-untreated patients with advanced NSCLC having
PD-L1 expression in more than 50% tumor cells and no EGFR/
ALK mutations were recruited to either receive pembrolizumab
or platinum-based chemotherapy (Reck et al., 2016). The
patients treated with pembrolizumab showed better PFS, OS,
and ORR than those treated with chemotherapy (Reck
et al., 2016; Reck et al., 2019a). Moreover, the TRAEs were
found to be 26.6 versus 53.3%, respectively, thus indicating the
pembrolizumab monotherapy to be safe and better than
chemotherapy. Based on these results, the US FDA approved
the pembrolizumab as a single-agent first-line immunotherapy
in patients with advanced NSCLC harboring high PD-L1
expression (PD-L1 ≥ 50%) and no EGFR/ALK mutations (Pai-
Scherf et al., 2017). This approval by the FDA changed the
landscape of first-line immunotherapy, and provided more
treatment options for the patients with advanced NSCLC.
In 2019, the 3-year survival follow-up data of the trial
(KEYNOTE-024) was presented at the World Conference on
Lung Cancer (WCLC). The results indicated that the
pembrolizumab monotherapy significantly prolonged the
median OS length (26.3 months versus 14.2 months), and
FIGURE 2 | Mechanism of action of immune-checkpoint inhibitors. APC, Antigen presenting cell; CD28, cluster of differentiation 28; MHC, major histocompatibility
complex; PD-1, programmed cell death 1; PD-L1, programmed cell death ligand 1; CTLA4, cytotoxic T lymphocyte associated protein 4, TCR, T cell receptor.
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the 3-year OS rate (43.7 versus 24.9%) than is those treated with
standard chemotherapy. Additionally, the overall safety of
immunotherapy was found to be better than chemotherapy
(Reck et al., 2019b).

Further, the KEYNOTE-042 phase III clinical trial was set to
benefit more patients from the pembrolizumab monotherapy
and expand the beneficiary population. In this study, 1274
patients with advanced NSCLC who were previously-untreated
and harbored tumors positive for PD-L1- expression and no
EGFR/ALK mutations (Mok et al., 2019a; Mok et al., 2019b). All
the patients were randomly divided into two arms to either
receive pembrolizumab or chemotherapy. Each treatment arm
was further divided into three subgroups based on the level of
PD-L1 expression (PD-L1 ≥ 50%, ≥ 20%, ≥ 1%). In addition to
comparing these three different expression levels, the fourth PD-
L1 TPS is 1–49% as an exploratory endpoint. We defined the OS
was used as the main endpoint of the trial. With a median follow-
up duration of 12.8 months the updated data suggested that the
patients treated with pembrolizumab monotherapy showed
significantly better OS than those treated with chemotherapy
(PD-L1 ≥ 50%: 20.0 months versus 12.2 months; PD-L1 ≥ 20%:
17.7 months versus 13.0 months; PD-L1 ≥ 1%: 16.7 months
Frontiers in Pharmacology | www.frontiersin.org 646
versus 12.1 months). Moreover, the OS of patients who received
pembrolizumab monotherapy in the high PD-L1 expression arm
(PD-L1 ≥ 50%) was prolonged by 7.8 months, and showed
maximum benefit. At the same time, when we followed up to
24 months, the researchers compared the survival percentages of
patients receiving pembrolizumab and chemotherapy and found
that regardless of the level of PD-LI expression, the survival
benefit was more obvious in the subgroup of patients receiving
immunotherapy (PD-L1 ≥ 50%: 45 versus 30%; PD-L1 ≥ 20%: 41
versus 30%; PD-L1 ≥ 1%: 39 versus 28%). However, by
comparing the PD-L1 low expression (PD-L1, 1–49%) and
PD-L1 high expression (PD-L1 > 50%) arms, it is particularly
important to note that pembrolizumab and platinum-based
chemotherapy have similar median OS in the PD-L1 low
expression group, which is no significant statistical difference
[13.4 months versus 12.1 months; HR 0.92 (95% CI, 0.77–1.11)].
The reason for this phenomenon may be that the data in the PD-
L1 TPS ≥ 1% and TPS ≥ 20% arms overlap with the data in the
PD-L1 TPS ≥ 50% arm (Jørgensen, 2020). Thus, these results
validate the benefits observed using the pembrolizumab in the
KEYNOTE-024 trial, and supports its administration as a single-
drug in patients with advanced NSCLC harboring PD-L1 ≥ 50%.
TABLE 2 | Summary of immune-checkpoint inhibitors monotherapy as first-line treatment for advanced NSCLC.

Study Phase Sample
size

Histology RR, % Median PFS
(months)

Median OS
(months)

Grade 3–5
TRAEs, %

Treatment arms PD-L1
expression

Ref.

CheckMate-026
(NCT02041533)

III 423 Squamous and
non-squamous

26 vs. 33 4.2 vs. 5.9 14.4 vs. 13.2 18 vs. 51 Nivolumab vs.
chemotherapy

PD-L1 ⩾
5%

(Carbone
et al.,
2017)

KEYNOTE-001
(NCT01295827)

Ib 550 Squamous and
non-squamous

Treatment
naïve 41.6

Treatment-
naïve
PD-L1 ⩾ 50%
35.4
PD-L1 1–49%
19.5

13 Pembrolizumab PD-L1
unselected

(Garon
et al.,
2019)

Previously
treated 22.9

Previously
treated
PD-L1 ⩾ 50%
15.4
PD-L1 1–49%
8.5
PD-L1 < 1%
8.6

KEYNOTE-024
(NCT02142738)

III 305 Squamous and
non-squamous

44.8 vs.
27.8

10.3 vs. 6.0 30.0 vs. 14.2 26.6 vs.
53.3

Pembrolizumab
vs. chemotherapy

PD-L1 ⩾
50%

(Reck
et al.,
2016)

KEYNOTE-042
(NCT02220894)

III 1274 Squamous and
non-squamous

PD-
L1⩾50% 39
vs. 32

PD-L1 ⩾
50% 7.1 vs.
6.4

PD-L1 ⩾ 50%
20.0 vs. 12.2

18 vs. 41 Pembrolizumab
vs. chemotherapy

PD-L1 ⩾1% (Mok et al.,
2019a)

PD-
L1⩾20% 33
vs. 29

PD-L1 ⩾
20% 6.2 vs.
6.6

PD-L1⩾;20%
17.7 vs. 13.0

PD-L1 ⩾
1% 27 vs.
27

PD-L1 ⩾ 1%
5.4 vs. 6.5

PD-L1 ⩾ 1%
16.7 vs. 12.1

BIRCH
(NCT02031458)

II Cohort 1
first
line:139

Squamous and
non-squamous

22 5.4 23.5 9 Atezolizumab PD-L1⩾5% (Peters
et al.,
2017)

FIR II Cohort 1
first line: 31

Squamous and
non-squamous

32 5.5 14.4 16 Atezolizumab PD-L1⩾5% (Spigel
et al.,
2018)
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Additionally, the incidence of grade 3 or severe TRAEs was 17.8
and 41% in the immunotherapy and chemotherapy arm,
respectively, indicating lower propensity of adverse events
upon pembrolizumab treatment (Mok et al., 2019a). Although,
patients with high PD-L1 expression were notably exceeding
those in the other subgroups of this trial. The analysis of the
various subgroups indicated statistically insignificant difference
in OS in patients with PD-L1 expression in the 1–49% range.
Therefore, the trial KEYNOTE-042 failed to rewrite the
guidelines issued by the FDA to confer benefit to the
NSCLC patients.

Reviewing the above several clinical trial studies (CheckMate-
026, KEYNOTE-024 and KEYNOTE-042), it was found that the
first-line single-agent immunotherapy showed different results.
In NSCLC patients with PD-L1 ≥ 5%, the use of nivolumab
monotherapy to treat OS was not benefit compared to standard
chemotherapy. In contrast, OS can significantly benefit from the
use of pembrolizumab to treat PD-L1 ≥ 50% of patients with
NSCLC. Therefore, it is suggested that patients should be highly
selected for first-line immune monotherapy in clinical practice.
Therefore, in clinical practice, it is suggested that first-line
immune monotherapy requires a predictive biomarker (such as
PD-L1, etc.) to highly select patients who can produce sustained
immune response. In 2019, R. de Vries and his colleagues found
that exhaled breath analysis by electronic nose can screen out
responders and non-responders to anti-PD-1 therapy in order to
find patients who could benefit from immune monotherapy. In
addition, the prediction effect of this new biomarker is
significantly better than that of PD-L1, which is currently used
clinically (de Vries et al., 2019).

Atezolizumab (MPDL-3280A)
A phase II trial with atezolizumab, BIRCH, recruited patients
with advanced NSCLC harboring PD-L1 ≥ 5% and no disease of
the central nervous system. We set the objective response rate as
the primary endpoint, and progression-free survival (PFS),
median duration of response, and overall survival (OS) are
secondary endpoints. The analysis suggested that advanced
NSCLC patients treated with atezolizumab monotherapy
showed better outcome in the primary endpoint (Peters et al.,
2017), and the FIR results of this trial indicated possibility of
clinical benefits that need further analysis (Spigel et al., 2018).
FIRST-LINE IMMUNE-CHECKPOINT
INHIBITORS THERAPY COMBINED
WITH NSCLC

The previous studies implicate treatment with chemotherapy to
influence the immune response and enhance the expression of
PD-L1. Data suggests that treatment with immunotherapy and
chemotherapy may show a synergized effect. Therefore, several
randomized clinical trials combining immunotherapy and
chemotherapy are ongoing, and identification of a reasonable
combination of these agents that can confer better survival
outcome in patients with advanced NSCLC can be anticipated.
Frontiers in Pharmacology | www.frontiersin.org 747
The data of the ongoing clinical trials have been summarized in
Table 3.

Pembrolizumab and Chemotherapy
In the KEYNOTE-021G phase II trial, patients (n = 123) with
advanced non-squamous NSCLC not harboring EGFRmutations
and ALK aberrations were recruited. These patients were
randomly divided into two arms in 1:1 ratio to receive the
following treatments: pembrolizumab combined with
carboplatin and pemetrexed and carboplatin and pemetrexed-
alone (Langer et al., 2016). The observations indicated the
combination therapy to confer better PFS (24.0 months versus
9.3 months) and ORR (56.7 versus 30.2%) than treatment with
chemotherapy-alone. Moreover, the combination therapy
delayed disease progression and reduced the risk of mortality
in the patients (Borghaei et al., 2019). Based on these results, the
US FDA, on May 21, 2017, approved the immunotherapy plus
chemotherapy regimen, which involves pembrolizumab
combined with carboplatin and pemetrexed for the treatment
of patients with advanced non-squamous NSCLC not harboring
EGFR/ALK mutations, independent of the expression of PD-L1.

Next, a phase III KEYNOTE-189 trial was conducted to
understand the benefit conferred by the administration of
pembrolizumab combined with chemotherapy in the patients
with advanced non-squamous NSCLC. The patients (n = 616)
who were previously-untreated, showed varying expression levels
of the PD-L1, and had no EGFR mutation or ALK
rearrangements were included in this trial (Gandhi et al.,
2018). They were divided into two arms in a 2:1 ratio to either
receive pembrolizumab with pemetrexed and platinum-based
chemotherapy or a placebo and pemetrexed and platinum-based
chemotherapy. The PFS and OS were set as the primary
endpoints for evaluating the outcome of the trial. The latest
data presented in the ASCO-2019 meeting suggested that the
combinatorial treatment with pembrolizumab plus standard
chemotherapy extended the PFS of patients by 4.1 months
than the treatment with placebo plus standard chemotherapy.
Furthermore, the OS and ORR in the pembrolizumab
combinatorial arm were significantly better than that in the
placebo arm (OS: 22.0 months versus 10.7 months; ORR: 46.7
versus 18.9%) (Gadgeel et al., 2020). Based on the PD-L1
expression status, the patients were further divided into
groups. While the OS was improved to some extent in all the
subgroups, those with PD-L1 expression of ≥ 50% showed
the maximum clinical benefits. Thus, on the basis of the results
of the KEYNOTE-189 clinical trial, the US FDA, on August 20,
2018, approved the combination of pembrolizumab plus
pemetrexed-platinum as a first-line treatment of the patients
with advanced non-squamous NSCLC (Gandhi et al., 2018).

Further, as opposed to the KEYNOTE-189, the KEYNOTE-
407 phase III trial recruited 559 patients with advanced
squamous NSCLC who were previously untreated. These
patients were randomly divided into two arms to receive
chemotherapy, comprised of carboplatin and paclitaxel or nab-
paclitaxel, combined with either pembrolizumab or placebo
(Paz-Ares et al., 2018). The median follow-up was observed for
7.8 months, and the pembrolizumab combined chemotherapy
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treatment group was extended by 4.9 months and 1.6 months,
respectively, compared to the median OS and median PFS in the
placebo combined chemotherapy treatment group (OS: 15.9
months versus 11.3 months; PFS: 6.4 months versus 4.8
months). Based on the outcome of this trial, the US FDA, on
October 30, 2018, approved pembrolizumab combined with
standard chemotherapy for the treatment of the patients with
squamous NSCLC. The final analysis was released in June 2020,
which once again demonstrated that the experimental arm of
pembrolizumab combined chemotherapy significantly extended
OS and PFS (OS: 17.1 months versus 11.6 months; PFS: 8.0
months versus 5.1 months) (Paz-Ares et al., 2020). Moreover, the
results of the KEYNOTE-189 were updated at the European
Society of Medical Oncology (ESMO) meeting in 2019, where the
patients treated with pembrolizumab combined with
chemotherapy were shown to have increased ORR and longer
PFS and OS (Paz-Ares et al., 2019). Furthermore, the
administration of pembrolizumab combinatorial therapy
reduced the risk of death in the patients by 29%, indicating its
safety. Therefore, in the patients with advanced squamous
NSCLC, independent of the PD-L1 expression status, the
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combination of immunotherapy and chemotherapy may
greatly improve the endpoints of the trial and confer a
controllable safety.

Atezolizumab and Chemotherapy
The IMpower series of trials related to the combination
treatment of atezolizumab in patients with NSCLC are
ongoing. The first phase III clinical trial, IMpower130, which
recruited 723 patients with non-squamous NSCLC tumors with
EGFR/ALK wild-type status, was set to evaluate the effectiveness
and safety of the combinatorial treatment of atezolizumab than
treatment with chemotherapy (carboplatin/nab-paclitaxel)-alone
(Cappuzzo et al., 2018). The trial data was updated in 2019. The
analysis suggested that the administration of atezolizumab
combined with chemotherapy improved the PFS (1.5 months
improvement), OS (4.7 months improvement), and ORR (49.2
versus 31.9%) than treatment with chemotherapy-alone (West
et al., 2019).

Second, a phase III clinical trial, IMpower131, recruited
patients with advanced squamous NSCLC who were previously-
untreated. These patients were randomly divided into three
TABLE 3 | Summary of immune-checkpoint inhibitors combined with other therapies advanced NSCLC.

Study Phase Sample
size

Histology RR,
%

Median
PFS

(months)

Median OS
(months)

Grade
3–5 TRAEs, %

Treatment arms PD-L1
expression

Ref.

Combination immune-checkpoint inhibitor and chemotherapy
KEYNOTE-021
(NCT02039674)

II 123 non-
squamous

56.7
vs.
30.2

20.0 vs.
9.3

NR vs. 21.1 41 vs. 27 Pembrolizumab/PC vs.
carboplatin/pemetrexed

PD-L1
unselected

(Borghaei
et al.,
2019)

KEYNOTE-189
(NCT02578680)

III 616 non-
squamous

47.6
vs.
18.9

9.0 vs.
4.9

22.0 vs. 10.7 71.9 vs. 66.8 Pembrolizumab/PC vs.
carboplatin/pemetrexed

PD-L1
unselected

(Gadgeel
et al.,
2020)

KEYNOTE-407
(NCT02775435)

III 559 Squamous 62.6
vs.
38.4

8.0 vs.
5.1

17.1 vs. 11.6 69.8 vs. 68.2 pembrolizumab/
chemotherapy vs.
carboplatin/(nab-)
paclitaxel

PD-L1
unselected

(Paz-Ares
et al.,
2019)

IMpower130
(NCT02367781)

III 723 non-
squamous

49.2
vs.
31.9

7.0 vs.
5.5

18.6 vs. 13.9 32 vs. 28 Atezolizumab/CnP vs.
carboplatin/nab-
paclitaxel

PD-L1
unselected

(West
et al.,
2019)

IMpower131
(NCT02367794)

III 683 Squamous 59.4
vs.
51.3

6.5 vs.
5.6

14.6 vs. 14.3 68 vs. 57 Atezolizumab/CnP vs.
carboplatin/nab-
paclitaxel

PD-L1
unselected

(Socinski
et al.,
2018a)

IMpower132
(NCT02657434)

III 578 non-
squamous

47
vs.
32

7.6 vs.
5.2

18.1 vs. 13.6 69 vs. 59 Atezolizumab/PC vs.
pemetrexed-
carboplatin/cisplatin

PD-L1
unselected

(West
et al.,
2017)

IMpower-150
(NCT02366143)

III 1202 non-
squamous

63.5
vs.
48.0

8.3 vs.
6.8

19.2 vs. 14.7 58.5 vs. 50.0 Atezolizumab/BCP vs.
bevacizumab/
carboplatin/paclitaxel

PD-L1
unselected

(Socinski
et al.,
2018b)

Combination immune-checkpoint inhibitor and immune-checkpoint inhibitor
CheckMate-
227
(NCT02477826)

III 1739 Squamous
and non-
squamous

45.3
vs.
26.9

7.2 vs.
5.5

– 31.2 vs. 36.1 Nivolumab/Ipilimumab
vs. chemotherapy

PD-L1
unselected

(Hellmann
et al.,
2018)

PD-L1≥1% 17.1 vs.
14.9 PD-L1<1%
17.2 vs. 12.2

32.8 vs. 36.1 PD-L1
unselected

(Hellmann
et al.,
2019)

MYSTIC
(NCT02453282)

III 1118 Squamous
and non-
squamous

– 3.9 vs.
5.4

11.9 vs. 12.9 47.7 vs. 46.0 Durvalumab/
Tremelimumab vs.
chemotherapy

PD-L1 ⩾
25%

(Rizvi
et al.,
2018)
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NR, not reached; OS, overall survival; PD-L1, programmed cell-death ligand 1; PFS, progression-free survival; RR, response rate; CnP, carboplatin/nab-paclitaxel; PC, pemetrexed/
carboplatin; BCP, bevacizumab plus carboplatin/paclitaxel; ABCP, atezolizumab plus bevacizumab plus carboplatin/paclitaxel; ACP, atezolizumab/carboplatin/paclitaxel.
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arms: Two of the experimental arms received atezolizumab
combined with chemotherapy (carboplatin/nab-paclitaxel),
while the third control arm received chemotherapy-alone. The
results suggested that patients in the two experimental arms
showed prolonged PFS than in those in the control arm. The
PFS was significantly higher in patients with high expression of
PD-L1 than in other patients. However, no significant difference
was observed in OS of patients in the experimental arms (Socinski
et al., 2018a).

Third, the IMpower132 phase III trial recruited the patients
with advanced-stage non-squamous NSCLC harboring no
EGFR/ALK mutations. These patients received either the
atezolizumab combined with chemotherapy (pemetrexed plus
carboplatin/cisplatin) or chemotherapy-alone (West et al., 2017).
The recent analysis suggested that the combinatorial treatment
arm showed longer PFS, but no significant improvement in the
OS, than in the chemotherapy-alone arm (Papadimitrakopoulou
et al., 2018).

In the IMpower150 phase III trial, patients (n = 1202) with
non-squamous NSCLC were recruited independent of the
expression levels of the PD-L1. The patients were divided into
three arms based on the proportion and received different
treatments: the first arm received atezolizumab combined with
chemotherapy (CP: carboplatin/paclitaxel), the second arm
received atezolizumab plus anti-angiogenesis drug (bevacizumab)
combined with chemotherapy (ABCP), and the third arm received
anti-angiogenesis drugs and chemotherapy (BCP). The results
suggested that the administration of the ABCP could effectively
prolong the PFS (1.5 months) and OS (4.5 months) than with BCP
(Socinski et al., 2018b). The trial suggested that the administration
of the ABCP quadruple therapy could prolong the survival
duration of the non-squamous NSCLC patients. Therefore, the
US FDA, on December 6, 2018, approved the ABCP as a first-line
immunotherapy in patients with non-squamous NSCLC not
harboring EGFR/ALK mutations, independent of the expression
levels of the PD-L1. Furthermore, the subgroups with sensitized
EGFR/ALK mutations were analyzed, which led to the conclusion
that the use of ABCP quadruple therapy failed to confer significant
PFS (9.7 months versus 6.1 months), and the median OS could not
be achieved (NR versus 17.5 months). However, in the intention-
to-treat (ITT) subgroup, the OS was found to be prolonged by
5 months (19.8 months versus 14.9 months) (Reck et al., 2019c).
Thus, based on the existing experimental data, the EMA has
approved the administration of atezolizumab combined with
anti-angiogenesis drugs plus chemotherapy for the treatment of
non-squamous NSCLC patients harboring the EGFR/ALK
mutations who failed to respond to the first-line molecular
targeted therapy.
FIRST-LINE PD-1/PD-L1 CHECKPOINT
INHIBITORS COMBINED WITH CTLA4
CHECKPOINT INHIBITORS FOR NSCLC

The previous clinical trials have shown that targeting checkpoint
pathway have anti-tumor effects. However, the experimental
Frontiers in Pharmacology | www.frontiersin.org 949
studies addressing the combined inhibition of these pathways
to the tumorigenic activity are ongoing. The Table 3 summarizes
the observations of the ongoing phase III clinical trials, viz. the
CheckMate-227 and MYSTIC.

Nivolumab and Ipilimumab
In the phase III CheckMate-227 trial, patients (n = 1739) with
advanced NSCLC not harboring the EGFR mutations and ALK
rearrangements, and who were previously-untreated, were
recruited in 2018. These patients were divided into two
experimental arms based on the expression levels of the PD-
L1, as the PD-L1 positive and PD-L1 negative arm. Further, each
experimental arm was divided into three subgroups at a ratio of
1:1:1 and they received different treatments, respectively. In the
experimental arm with the PD-L1 positive expression, patients
received nivolumab plus ipil imumab combinatorial
immunotherapy, nivolumab monotherapy, and chemotherapy-
alone, respectively. Whereas, patients in the PD-L1 negative arm
received dual immunotherapy, nivolumab combined with
chemotherapy, and chemotherapy-alone (Hellmann et al.,
2018). To compare the efficacy of nivolumab plus ipilimumab
dual immunotherapy versus chemotherapy-alone, the PFS and
OS were selected as two main endpoints for the diverse
population. Further, PFS was used to evaluate the patients with
high TMB, while OS was used to assess those with positive PD-
L1 expression. The results suggested that irrespective of the PD-
L1 expression, patients with high TMB upon treatment with dual
immunotherapy showed significantly better PFS and increased
ORR than upon treatment with chemotherapy-alone (PFS: 7.2
months versus 5.5 months; ORR: 45.3 versus 26.9%) (Hellmann
et al., 2018). Therefore, these results support the use of TMB as a
biomarker to predict the efficacy of treatment for the patients
with NSCLC. Furthermore, the updated results in 2019 showed
that in patients with positive PD-L1 expression, the OS upon
combined use of nivolumab plus ipi l imumab dual
immunotherapy was 2.2 months longer than that in the
chemotherapy-alone arm (17.1 months versus 14.9 months).
Moreover, in patients with negative PD-L1 expression, the OS
benefit was more pronounced when treated with dual
immunotherapy (17.2 months versus 12.2 months). Taken
together, independent of the TMB and expression of PD-L1,
the administration of nivolumab plus ipilimumab dual
immunotherapy conferred different degrees of clinical benefit
(17.1 months versus 13.9 months) in the patients. Additionally,
the median duration of response was found to be significantly
better in the patients treated with nivolumab plus ipilimumab
dual immunotherapy than when treated with chemotherapy-
alone (23.2 months versus 6.2 months) (Hellmann et al., 2019).
Therefore, these results support and validate the “chemotherapy-
free” first-line treatment regimen for the patients with
advanced NSCLC.

Durvalumab and Tremelimumab
Further, the phase III MYSTIC clinical trial evaluated the safety and
effectiveness of the treatment regimens related to durvalumab. The
patients (n = 1118) were recruited and divided into three arms in
equal proportions to receive durvalumab monotherapy,
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durvalumab plus tremelimumab dual immunotherapy, and
chemotherapy-alone. Here, patients with PD-L1 expression > 25%
were considered, and the OS and PFS were considered as the main
endpoints for evaluating the efficacy of durvalumab single-therapy
versus chemotherapy-alone and dual immunotherapy versus
chemotherapy-alone, respectively (Rizvi et al., 2018). The results
suggested that the OS and PFS were statistically insignificant for all
the comparisons in the patients with advanced and metastatic
NSCLC. However, the OS in patients treated with first-line
durvalumab immunotherapy was better, and more clinical trials
would be required to ascertain its efficacy in NSCLC.
BIOMARKERS PREDICTIVE OF EFFICACY
TO FIRST-LINE TREATMENT

As mentioned in the introduction, majority of the patients are
insensitive to immunotherapy and fail to show survival benefits.
Therefore, it is imperative to perform immune monitoring of the
clinical trials to identify biomarkers that can distinguish between
potential responders and non-responders. According to the
screened groups of potential beneficiaries, the use of
immunotherapy can maximize the therapeutic effect. In this
section, the recent predictive biomarkers, including the PD-L1
and TMB have been studied.

PD-L1 Expression
The PD-L1 has been considered as one the most common
predictive biomarkers in NSCLC immunotherapy. Multiple
clinical diagnosis and treatment guidelines recommend the use
of immunohistochemistry (IHC) methods to detect the
expression level of PD-L1, which can be used to screen
potential benefit populations and predict efficacy. At present, a
range of PD-L1 detection commercial kits for different epitopes
have been developed, including 22C3, 28-8, SP142, SP263 and
73-10. The above five antibodies are detected on two
immunohistochemistry platforms Dako and Ventana
respectively, and the evaluation cell types include tumor cells
(TC) and/or tumor-infiltrating immune cells (ICs). Four
Frontiers in Pharmacology | www.frontiersin.org 1050
antibodies (22C3, 28-8, SP263, and SP142) have been approved
by the US FDA, and each immune checkpoint inhibitors uses a
different antibody to evaluate PD-L1 expression levels. For
instances, pembrolizumab uses 22C3 clone antibody and
atezolizumab uses SP142 clone antibody as companion
diagnosis, nivolumab uses 28-8 clone antibody, and
durvalumab uses SP263 clone antibody as complementary
diagnosis (Büttner et al., 2017). Moreover, for NSCLC clinical
trials at various stages, different detection antibodies or platforms
and different immune checkpoint inhibitors adopt various cut-
off values and scoring systems to define the expression level of
PD-L1 (Lantuejoul et al., 2020; Tumor Pathology Committee of
Chinese Anti-Cancer Association et al., 2020). In Table 4, we
summarize the IHC PD-L1 assay methods for NSCLC patients.

In the phase IB KEYNOTE-001 clinical trial, patients with
PD-L1 ≥ 50% showed significant clinical and survival benefits
upon administration of pembrolizumab single drug treatment.
Moreover, this trial proved that the expression of the PD-L1 may
indicate the degree of clinical benefit in the patients (Garon et al.,
2015). Further, the analysis of the phase III KEYNOTE-024 and
KEYNOTE-042 clinical trials suggested that in the patients
with positive PD-L1 expression, especially in those with
PD-L1 expression ≥ 50%, the pembrolizumab monotherapy
significantly increased the OS of patients than in the
chemotherapy-alone arm. Moreover, along with better OS,
patients showed lower incidence of the TRAEs (Reck et al.,
2016; Mok et al., 2019a). Furthermore, the analysis of multiple
clinical trials related to the PD-1/PD-L1 checkpoint inhibitors
indicated that when the expression levels of PD-L1 were
different, the survival benefits in NSCLC patients were variable.
This indicated that the patients with high expression of PD-L1
may show better survival benefits and longer survival duration
than those with lower expression. Therefore, the expression of
PD-L1 may serve as a biomarker to predict the degree of benefit
of the PD-1/PD-L1 inhibitors in different patients. However,
there has been a lack of uniformity in the kits used to determine
the PD-L1 expression across institutions and departments
(Büttner et al., 2017). Thus, studies have even tested the
consistency between different detection methods. For instance,
the clinical trials that used the 28-8, 22C3 and SP263 kits showed
TABLE 4 | Summary of IHC PD-L1 assay in patients with NSCLC.

PD-L1 detection antibody Type of antibody Diagnostic platform Evaluation of cell
types

PD-L1 Cut-off Immunotherapy
drug

FDA approved

22C3 Mouse monoclonal
antibody

Dako Link 48 TC ⩾ 1%, ⩾ 50% Pembrolizumab Companion
diagnostic

28-8 Rabbit monoclonal
antibody

Dako Link 48 TC ⩾ 1%, ⩾ 5% Nivolumab Complementary
diagnostic

SP142 Rabbit monoclonal
antibody

Ventana Benchmark or
Ultra

TC and/or IC TC: ⩾ 1%, ⩾ 5%, ⩾
50%
IC: ⩾ 1%, ⩾ 5%, ⩾
10%

Atezolizumab Companion
diagnostic

SP263 Rabbit monoclonal
antibody

Ventana Benchmark or
Ultra

TC ⩾ 25% Durvalumab Complementary
diagnostic

73-10 Rabbit monoclonal
antibody

Dako Link 48 TC ⩾ 1%, ⩾ 5%, ⩾
80%

Avelumab Diagnostic test
Octo
ber 2020 | Volume 1
FDA, U.S. Food and Drug Administration; PD-L1 programmed cell death ligand 1; TC, Tumor cells; IC, Infiltrating immune cells.
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consistency and reproducibility, while the SP142 kit showed
inaccuracy in predicting the PD-L1 expression in the tumor
cells (Adam et al., 2018). Additionally, the use of the PD-L1
expression as a qualitative variable would explain the variable
thresholds obtained for stratification of the patients, and hence,
the varying immunotherapy strategies adopted in the clinical
trials. Although determining the PD-L1 expression has become
a routine test, the temporal and spatial heterogeneity in
the expression of PD-L1 and several other challenges
affect its efficacy as a predictive biological marker in the
NSCLC patients.

In addition, the research results published by R de Vries et al.
in October 2019 showed that the molecular characteristics of
exhaled air may capture the inflammatory environment related
to the individual’s response to the PD-1 treatment, thereby
screening out patients with NSCLC that can produce sustained
immunotherapy responses. On the other hand, this study may
prevent ineffective treatment among those who have been
identified as non-responders to immunotherapy (de Vries
et al., 2019). We hope that electronic nose assessment will
become a widely used predictive biomarker soon.

Tumor Mutation Burden
The cancer develops by the gradual accumulation of numerous
somatic mutations in the body (Gubin et al., 2015). While the
incidence of mutation varies across tumor types, the NSCLC are
considered the most mutated malignant tumors (Branca, 2016).
When a mistranslation mutation occurs, the protein will be
translated abnormally and expressed abnormally, and tumors
with high tumor mutation burden (TMB) will be recognized as a
new antigen by the immune system (Braun et al., 2016). The
administration of immune-checkpoint inhibitors can aid the
immune system clear the tumor cells. The TMB can be defined
as the number of mutations per megabase (Mb) of the DNA,
which is determined using the DNA sequencing. The whole-
genome sequencing (WGS) and whole-exome sequencing (WES)
are the sequencing methods used to determine the TMB
(Greillier et al., 2018). The TMB has been used as a predictive
biomarker to evaluate the role of immunotherapy, mainly
nivolumab, in clinical trials. The phase I CheckMate-012
clinical trial studied the combinatorial efficacy of ipilimumab
and nivolumab in patients with advanced NSCLC. The results
suggested that the dual ipil imumab and nivolumab
immunotherapy conferred longer PFS and better ORR in
patients with high TMB (TMB ≥ 10 mut/Mb) than in patients
with low TMB (TMB < 10 mut/Mb) (Hellmann et al., 2018).
Further, the phase II CheckMate-568 clinical trial suggested that
independent of the expression status of the PD-L1, the patients
showed an increase in the ORR with the gradual increase in the
TMB. When TMB expression reaches 10 or higher, the ORR
entered a platform period is not increasing. Moreover, the TMB
is above a certain value (TMB ≥ 10mut/Mb) corresponds to
longer PFS in the patients (Ready et al., 2019). The analysis of
several phase-III clinical trials, such as the CheckMate-227 and
CheckMate-026, suggested that the TMB could potentially
predict the efficacy of the immunotherapy in the patients with
NSCLC. However, several issues impede the utility of TMB,
Frontiers in Pharmacology | www.frontiersin.org 1151
including the long test cycles and high-cost and standardization
of the threshold for high- and low-TMB.
CONCLUSION

The immunotherapy has the potential to modify the treatment
regimen and outcome in the patients with NSCLC. Based on the
results of the phase III CheckMate-017 and CheckMate-057 clinical
trials, the US FDA, in 2015, approved nivolumab as a second-line
treatment post chemotherapy in the patients with advanced
squamous and non-squamous NSCLC (Brahmer et al., 2015;
Borghaei et al., 2015). The results suggested that the
administration of nivolumab monotherapy effectively increased
the ORR and conferred significantly better OS than treatment
with second-line docetaxel. In this review, we have described the
details of the completed and ongoing clinical trials, which should aid
in exploring the appropriate first-line, single-drug or combinatorial,
treatment in the previously-untreated patients with advanced
NSCLC not harboring EGFR/ALK mutations (Figure 3). In
NSCLC, different first-line immunotherapy strategies have been
selected depending on the expression of the PD-L1. The clinical
studies recommend the administration of pembrolizumab as a
monotherapy or combined with chemotherapy based on the
expression levels of PD-L1 ≥ 50% in the NSCLC patients.
Furthermore, in the patients with PD-L1 < 50%, results support
the administration of pembrolizumab combined with
chemotherapy. Whereas, pembrolizumab-alone is being
administered in those unwilling to or unsuitable for receiving
chemotherapy. Thus, in the future, as additional clinical trials
attain the set primary endpoint and obtain adequate data support,
the choice offirst-line immunotherapy would becomemore diverse.

The results of the ASCO andWCLC published in 2019 indicated
a 10% improvement in the 5-year OS of the patients treated with
immunotherapy. However, several problems exist in the
immunotherapeutic treatment. First, an increasing number of
clinical trials have been initiated to elucidate the role of
immunotherapy in the patients belonging to stage IB–IIIB of
NSCLC. At the 2019 ASCO meeting, three neoadjuvant
immunotherapy studies were announced, including the LCMC3,
NEOSTAR, and NADIM (Cascone et al., 2019; Kwiatkowski et al.,
2019; Provencio et al., 2019). The clinical trial LCMC3 was mainly
initiated to evaluate the patients with NSCLC after neoadjuvant
treatment with atezolizumab.We included patients with stages IB to
selected IIIB resectable NSCLC into experimental studies to the
safety and efficacy of neoadjuvant therapy. The interim data showed
that the major pathological response (MPR) rate and the
pathological complete response (pCR) rate to be 19 and 5%,
respectively. Next, the neoadjuvant therapy NEOSTAR clinical
trial with nivolumab and ipilimumab confirmed that in patients
with surgically resectable NSCLC, the survival benefits conferred by
the combinatorial neoadjuvant therapy were significantly better
than those upon treatment with nivolumab monotherapy.
Further, the neoadjuvant therapy NADIM clinical trial mainly
recruited the patients with stage IIIA NSCLC, and for the first
time explored the neoadjuvant treatment plan combining
immunotherapy and chemotherapy. The results indicated that the
October 2020 | Volume 11 | Article 578091
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administration of neoadjuvant immunotherapy decreased the stage
in most of the patients, and the MPR and pCR rates were 85.36 and
71.4%, respectively. Although the inclusion of neoadjuvant
immunotherapy, especially combined with chemotherapy, has
improved the pCR, a series of problems impede its utility, such as
the criteria for efficacy evaluation, choice of surgical timing, and
postoperative treatment options.

Second, in order to screen out potential populations who may
benefit from immunotherapy, exploring biomarkers that can
effectively predict the efficacy of immunotherapy is one of the
key steps. At present, the main biomarkers used in clinical practice
of NSCLC immunotherapy include PD-L1 expression and tumor
mutation burden (TMB). Compared with the detection of TMB,
the detection of PD-L1 expression level has the advantages of
simplicity, convenience and low price, so that it is more widely
used in practical work. Another relatively common important
marker is microsatellite instability (MSI) (Lemery et al., 2017).
MSI needs to detect the expression of 4 mismatch repair proteins,
while polymerase chain reaction can detect 5 microsatellite loci.
Previous studies have shown that tumors with high microsatellite
instability (MSI-H) also have a higher tumor mutation burden,
indicating that there is a certain correlation between them.
Moreover, a series of experimental studies have confirmed that
tumor infiltrating lymphocytes (TILs), neutrophil-to-lymphocyte
ratio (NLR), electronic nose analysis of exhaled breath and other
biomarkers can help to screen patients who can benefit from
immunotherapy for NSCLC (Tokito et al., 2016; de Vries et al.,
2019; Lee and Ruppin, 2019; Rossi et al., 2020).

In addition, the criteria for evaluating the immunotherapy are
not well-defined. The Response Evaluation Criteria in Solid
Frontiers in Pharmacology | www.frontiersin.org 1252
Tumors 1.1 (RECIST1.1), which is currently being used for the
evaluation of the efficacy of the treatment, is primarily based on
the change in tumor size in the imaging. However, it may
underestimate the benefit of immunotherapy in the patients,
and hence affect the evaluation. Therefore, the international
RECIST working group has formally proposed newer
standards for evaluating the efficacy of the treatment, such as
the Immune-related RECIST (irRECIST) and immune-related
pathologic response criteria (irPRC) (Cottrell et al., 2018; Tazdait
et al., 2018). Since the evaluation criteria for the immunotherapy
would get constantly updated, the accuracy and effectiveness of
the evaluation criteria remain to be completely verified.

Finally, the occurrence and management of IRAEs needs to
be thoroughly evaluated. Though the administration of
checkpoint inhibitors can prolong the survival duration in
patients, it can also change their immune homeostasis. The
disruption of the immune homeostasis would result in a series
of autoimmune side effects, termed as the IRAEs (Puzanov et al.,
2017). Moreover, while the overall incidence of IRAEs is low,
few of them can have consequences and, thus, require attention
and active prevention.

The conclusions of several clinical trials administering
checkpoint inhibitors for treatment of cancer indicate IRAEs
related to the endocrine toxicity (thyroid dysfunctions,
hypophysitis, adrenal insufficiency, and pituitary), gastrointestinal
tract (diarrhea and colitis), lungs (pneumonia), skin (rash and
pruritus), and joints (arthritis). In the NSCLC, the incidence of
pulmonary IRAEs is higher; for example, the incidence of
pneumonitis ranks first, which may be related to chronic
obstructive airway disease or previous treatment with
FIGURE 3 | Potential suggestion for first-line immunotherapy options for advanced non-small-cell lung cancer. CnP, carboplatin/nab-paclitaxel; PC, pemetrexed/
carboplatin; BCP, Bevacizumab plus carboplatin/paclitaxel; ABCP, Atezolizumab plus bevacizumab plus carboplatin/paclitaxel; ACP, Atezolizumab/carboplatin/
paclitaxel; EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; Mb, megabase; mut, mutations; PD-L1, programmed cell-death ligand 1;
TMB, tumor mutation burden.
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chemotherapy in the NSCLC patients (Khoja et al., 2017). In 2019,
the Chinese Society of Clinical Oncology (CSCO) published the
guidelines for the toxicity management of the immune-checkpoint
inhibitors that deal with basic management principles of the IRAEs,
including the prevention, detection, evaluation, treatment, and
monitoring (Zhou et al., 2020). Thus, the early identification
would detect and manage adverse events, and prevent the fatal
outcomes in some cases.

In summary, the field of immunotherapy has shown rapid
development since the US FDA approval in 2015 to administer
the immunotherapeutic drugs as second-line, and recently as
first-line, treatment in the patients with advanced stage NSCLC.
However, the strategies are in their early phases and continue to
suffer serious challenges. Therefore, we can anticipate that a
systematic treatment model based on immunotherapy, along
with the multidisciplinary approach, inclusive of surgery,
radiotherapy, and supportive treatment would ensure the
selection of the most appropriate treatment for the patients
with different stages of the NSCLC.
Frontiers in Pharmacology | www.frontiersin.org 1353
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In cancer, upregulation of coinhibitory B7 ligands has been associated with immune
evasion. So far, anti-programmed death-1 (PD-1) and anti-PD-ligand 1 (PD-L1)
antibodies have been used in immuno-oncology, with promising outcomes; however,
it is still needed to identify other markers, especially for endometrial cancer (EC). EC
is a gynecological malignancy historically classified into two types: type I, with mostly
estrogen-dependent endometrioid diseases, and the most aggressive type II, including
mainly estrogen-independent and non-endometrioid tumors. PD ligand-2 (PD-L2) is
known as the second ligand of the PD-1 receptor and, upon its binding, contributes to
T-cell exhaustion. Up to now, very few information are available about PD-L2 in cancers,
and no data have been reported for EC. The aim of this work was to characterize the
PD-L1 and PD-L2 ligand expression profile in EC cell lines, focusing the attention on
the biological role of PD-L2 and its prognostic impact in human type II EC biopsies.
Using in silico analysis of TCGA data, we performed a molecular profiling in a cohort
of 506 patients, both types I and II, and PD-1 ligands expression was also analyzed
in different primary human EC cell lines. Moreover, PD-L2 staining was evaluated in
a cohort of human type II EC samples and correlated with the overall survival (OS),
progression-free survival (PFS), and additional clinicopathological data. From the in silico
analysis, PD-L2 was more expressed than PD-L1 in EC cell lines. PD-L2 was found
highly expressed in 64.44% of tumor specimens, predominantly in the serous subtype,
in both stromal and epithelial components, while in peritumoral and normal tissues it
was predominantly moderate or low. In vitro, we investigated the cell autonomous role
of PD-L2 in controlling cell survival, migration, and chemoresistance.

Keywords: programmed death ligand 2, endometrial cancer, immune checkpoint, overall survival,
chemoresistance
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INTRODUCTION

In developed countries, endometrial cancer (EC) is the
most commonly diagnosed gynecological malignancy (1).
Based on epidemiology, conventional histopathology and
clinical behavior, EC is divided into two subtypes: estrogen-
dependent endometrioid type I and estrogen-independent
non-endometrioid type II (2). Endometrioid type I EC arises
from hyperplastic tissue and is characterized by mutations of
KRAS, β catenin, loss of PTEN expression, and microsatellite
instability (MSI) (1). Non-endometrioid type II EC is less
common but associated with an aggressive behavior and
comprises only 3 to 10% of ECs but accounting for 39–44% of
EC deaths (3). This group includes different non-endometrioid
histological subtypes (e.g., serous or clear cell adenocarcinomas),
and it develops from an atrophic endometrium. They are
poorly differentiated, aggressive, and associated with a poor
prognosis (1, 2). TP53 mutations occur in around 90% of serous
adenocarcinomas, and these tumors are also characterized
by aneuploidy, HER2 overexpression, p16 inactivation, and
reduced E cadherin expression (1). Recently, “The Cancer
Genome Atlas” has reframed type I/II distinction into four
molecular categories: POLE-ultra mutated, MSI hypermutated,
microsatellite stable (MSS), marked by endometrioid histology,
and DNA copy number high marked by serous-like histology
(4). Hysterectomy is indicated for early stage EC, while
adjuvant treatments (hormonal therapy and combinations of
radiation and chemotherapy) are suggested for higher stage
EC, and promising results are obtained with triplet therapy
with paclitaxel, cisplatin, and doxorubicin (TAP), but it is
associated with significant toxicity. Then, generally, a doublet
of paclitaxel and carboplatin (TC) is preferred, but a phase
III non-inferiority trial comparing TAP and TC showed no
significant difference in overall survival (OS) (5). However, only
limited options remain if the tumor metastasizes (2). Therefore,
novel and more effective therapies for patients with advanced
or recurrent disease are needed (5). Cancer immunotherapy
is emerging as a promising component for cancer therapy.
The most promising immunotherapeutic approach involves
antibodies targeting the immune checkpoint inhibitor (ICI)
molecules, as demonstrated in Hodgkin’s lymphoma in which
programmed death 1 (PD-1, CD279) receptor blockage resulted
in response rate of 87%, probably based on the molecular
upregulation of PD-1 and its ligands (PD-Ls) pathways (6, 7).
Regarding EC, the role for PD-1 blockade in POLE-mutated and
MSI-high tumors is clear, but for other molecular subtypes of
EC, many aspects remain controversial in preclinical and clinical
studies (8, 9).

PD-L1 (B7-H1, CD274) and PD-L2 (PDCD1LG2, B7-DC,
CD273) are immune co-signaling molecules belonging to the
B7 family, and they are expressed in several cancer types (6,
10) and, also, in infiltrating immune cells (11, 12). However,
the prognostic value of PD-1 ligands is still debated, and their
role, when expressed in the tumor microenvironment, has not
been fully elucidated yet (9). It is known that PD-L1 and PD-
L2 interaction with PD-1 receptor contributes to the strong
inhibition of T-cell antitumor effects, resulting in immune escape

(10, 13, 14). Indeed, previous studies showed that PD-L1 exerts
tumor crucial cell-intrinsic signals for pathogenesis, including
epithelial–mesenchymal transition, autophagy, resistance against
proapoptotic stimuli, regulation of glucose metabolism, and
activation of tumor mTOR/AKT signaling, supporting cancer cell
proliferation and survival (13, 15). PD-L1 blocking antibodies
have been approved for clinical use (15), while current and
ongoing studies are trying to improve clinical responses for EC
(16). So far, compared with PD-L1, the functional role of PD-L2
in cancer cells has been scarcely investigated (14). However, in
patients with solid cancer, a meta-analysis suggested that PD-L2
might be involved in promoting tumor metastasis and predicts
unfavorable prognosis, mainly in hepatocellular carcinomas (17).
To our knowledge, there is no relevant literature reporting the
expression of PD-L2 in non-endometrioid EC and its tumor
intrinsic signaling effects. So, in this study, we evaluated PD-
L2 expression in EC cell lines and human non-endometrioid EC
biopsies, correlating its expression with different clinical features.
In addition, we explored the signaling mechanisms regulated by
PD-L2 in EC cell lines.

MATERIALS AND METHODS

Endometrial Cancer Cell Lines
Ishikawa and MFE-280, respectively, well and poorly
differentiated type I cell lines, were purchased from Sigma
Aldrich (Milan, Italy). Ishikawa cells were grown in EMEM
medium (Lonza, Milan, Italy), supplemented with 5% fetal
bovine serum (FBS), 2 mM/L of glutamine, 100 IU/ml of
penicillin, and 100 mg of streptomycin. MFE-280 cells were
grown in EMEM medium (Lonza, Milan, Italy), supplemented
with 10% FBS, 2 mM/L of glutamine, 100 IU/ml of penicillin,
and 100 mg of streptomycin. HEC-1A and the primary EC cell
lines PCEM002, PCEM004a, and PCEM004b were established
in the lab of Frédéric Amant (Department of Oncology, KU
Leuven, Leuven, Belgium). HEC-1A moderately differentiated
type I cells were grown in Mc Coy’s medium (Lonza, Milan,
Italy), supplemented with 10% FBS, 100 IU/ml of penicillin,
and 100 mg of streptomycin, while the primary cell lines were
grown in RPMI1640, supplemented with 20% FBS, 2 mM/L of
glutamine, 100 IU/ml of penicillin, and 100 mg of streptomycin.
PCEM002 is a poorly differentiated type I cell line, while
PCEM004a and PCEM004b are poorly differentiated mixed type
I/II cell lines. Media were changed every 48 h until cells were
90% confluent. All cell lines were maintained at 37◦C with 5%
CO2 and 95% humidity.

Reagents and Drugs
RNAs and protein lysate from healthy donors (CU0000000015
and CI0000009692) were purchased from OriGene (Rockville,
MD, United States). Cisplatin, doxorubicin, and paclitaxel were
purchased from Sigma-Aldrich (Milan, Italy).

TCGA and cBioportal Database Analysis
The cBioPortal for Cancer Genomics is an open-access
downloaded bio-database, providing visualization and analyzing
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tool for large-scale cancer genomics data sets1. Analysis of
506 sequenced EC samples from this database (PanCancer
Atlas) was performed in order to evaluate PD-Ls expression,
following the online instructions of cBioPortal database for
Genetic Alteration, Mutation level, Clinical Attribute, and mRNA
expression. Briefly, the cancer-specific TCGA datasets were
selected followed by the selection of mRNA expression z-scores
relative to all samples (log RNA Seq V2 RSEM), PD-L1, and
PD-L2 gene symbols, in the specified columns. On submitting
the query, the software shows all types of genomic alterations
including somatic mutations, copy number change, and mRNA
expression, in a concise graphical summary called oncoprint.
Then, data were downloaded, and mRNA expression values were
analyzed with GraphPad.

RNA Isolation, Reverse Transcription,
and Quantitative Real-Time Polymerase
Chain Reaction
Total RNA from cell lines was extracted with the RNeasy Mini
Kit (Qiagen, Milan, Italy), and cDNA was synthesized using
the iScript Advanced cDNA Synthesis Kit for RT-qPCR (Bio-
Rad, Segrate, Italy) according to the manufacturer’s instructions.
Quantitative real-time polymerase chain reactions (qRT-PCR)
were performed with QuantiTect Primer Assays for Programmed
Cell Death 1 Ligand 2 (CD273, PD-L2), Programmed Cell
Death 1 Ligand 1 (CD274, PD-L1), and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) (Qiagen), using the iQ5
Multicolor Real-Time PCR Detection System (Bio-Rad). The
PCR parameters were 10 min at 95◦C followed by 40 cycles at
95◦C for 15 s and 60◦C for 40 s. The relative amount of target
mRNA was calculated by the 2−11Ct method, using GAPDH
as a housekeeping gene. All samples were assayed in triplicates
in the same plate. Measurement of GAPDH levels was used to
normalize mRNA contents, and target gene levels were calculated
by the 2−11Ct method.

Western Blot Analysis
Twenty micrograms of total protein lysates were separated
on an SDS polyacrylamide gel, transferred onto Hybond-
C extra membranes (GE Healthcare, Milan, Italy), blocked
with 5% low-fat dry milk in PBS-Tween 20, immunoblotted
with goat anti-CD274 (PD-L1, 0.5 µg/ml, R&D System,
Minneapolis, MN, United States), mouse anti-CD273 (PD-
L2, 1 µg/ml, R&D System), rabbit anti-pAKT (1:1.000, Cell
Signaling Technology, Danvers, MA, United States), rabbit
anti-AKT (1:1.000, Cell Signaling), mouse anti-pERK (1:2.000,
Cell Signaling Technology, Danvers, MA, United States),
rabbit anti-ERK (1:1.000, Cell Signaling Technology), and anti-
glyceraldehydes-3-phosphate dehydrogenase (GAPDH, 1:8.000,
OriGene) antibodies (Abs) for 1 h and then incubated with HRP-
conjugated anti-mouse or anti-rabbit secondary Abs (1:2.000,
Cell Signaling Technology) and with HRP-conjugated anti-goat
secondary Ab (1:1.000, Cell Signaling Technology) for 1 h.
Peroxidase activity was visualized with the LiteAblot R©PLUS

1http://cbioportal.org

or TURBO (EuroClone, Milan, Italy) kit, and densitometric
analysis was carried out by a Chemidoc using the Quantity One
software (Bio-Rad).

Patient Samples
After obtaining approval from the Medical Ethics Committee
UZ/KU Leuven (protocol nr S61970, Dec 2018), 53 archived
formalin-fixed, paraffin-embedded type II EC samples, along
with clinical data, and 15 normal tissues (of which five
peritumoral tissues) were retrieved from UZ Leuven Biobank,
Belgium. The sample set included 29 serous tumors, 7 clear
cell tumors, 17 mixed types I and II, 5 peritumoral tissues
from patients with type II EC, and 10 healthy endometrial
samples.

Immunohistochemistry
Paraffin slides (4 µm) were heated for 3 to 4 h at 55◦C,
deparaffinized in toluol, and rinsed in ethanol. Tissues were
incubated for 30 min in 0.5% H2O2 (Merck Millipore, Milan,
Italy) in methanol, to block the endogenous peroxidases. For
PD-L2 staining, after washing in TBS, epitopes were retrieved
for 2 h at 90◦C in Tris–EDTA (pH = 9). Tissues were cooled
down slowly in TBS. After extensive washing, tissues were
blocked with a solution of 2% BSA (Sigma-Aldrich), 1% milk
powder, and 0.1% Tween-80 (Merck Millipore) in TBS, before
antibody incubation. After removal of blocking solutions, tissues
were incubated with mouse anti-CD273 (PD-L2, 1 µg/ml, R&D
System) in TBS, overnight at 4◦C. After washing, sections
were incubated with anti-mouse-HRP (Dako, Milan, Italy) for
30 min and washed again. Stainings were visualized by 10-
min incubation in 3,3’-diaminobenzidine (DAB, Sigma-Aldrich)
+0.015% H2O2 in the dark. Mayer’s hematoxylin was used
to stain nuclei, and tissues were dehydrated in propanol,
dipped in xylene, and mounted. To ensure no staining was
caused by non-specific binding of secondary/tertiary molecules,
control slides without addition of primary antibody were
used.

Immunohistochemistry Scoring Method
All stainings were evaluated semiquantitatively, using the Allred
score system, adding score for intensity (0 = absent, 1 = weak,
2 = moderate, and 3 = strong) and score for percentage of
stained cells (0 = absent, 1 = less than 1%, 2 = 1–10%, 3 = 11–
33%, 4 = 34–66%, and 5 = 67–100%), to a maximum score of
8 (18). Stainings were evaluated only in the cellular component
where expression was expected. Tissues were considered with a
high expression at a cutoff score of 6, corresponding to strong
positivity in≥ 11% of cells, moderate positivity in≥ 34% of cells,
or weak staining in ≥67% of cells. This cutoff was considered
clinically relevant for therapeutic applications, as a targeted
therapy, because it would be more effective when the target is
expressed in a sufficient percentage of cells. Tissues with a value
between 4 and 5 were classified as moderate. Photographs of
representative cases were taken using the Axioskop microscope
(MRc5, Zeiss, Jena, Germany) equipped with the ZEN 2.0
software.
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Confocal Laser Scanning Microscopy
Analysis
Ishikawa cells were seeded on eight-well culture slide in
fresh medium, fixed, and permeabilized using 2% and 4% of
paraformaldehyde with 0.5% of Triton X-100 (Sigma-Aldrich) in
PBS. After washing with PBS, cells were incubated with 10% of
FBS and 0.1% of Tween-20 in PBS for 1 h at room temperature
and stained with mouse anti-PD-L2 overnight at 4◦C. Then,
the slide was washed with 0.3% of Triton X-100 in PBS and
incubated with Alexa Fluor 594-conjugated secondary Ab (Cell
Signaling Technologies) for 1 h at 37◦C. Nuclei were stained
with DAPI. The slide was then analyzed with C2 Plus confocal
laser scanning microscope (Nikon Instruments, Firenze, Italy).
Optimized emission detection bandwidths were configured by
Zeiss Zen control software. Images were processed using NIS
Element Imaging Software (Nikon Instruments, Firenze, Italy).

PD-L2 Overexpression
PCEM004b cells were seeded at a density of 4 × 105 cells/ml
and, after 12 h of incubation, transfection was achieved with
3 µl/ml of the TurboFectin Transfection Reagent (OriGene) and
1 µg/ml of pCMV empty (pCMV6) and pCMV6–PDCD1LG2
vectors (OriGene), according to the manufacturer’s instructions.
The cells were harvested at 72 h post-transfection for analysis.
Transfection efficiency was evaluated by Western blot analysis.

PD-L2 Silencing
Small interfering RNAs (siRNAs) targeted to PD-L2
(siPDCD1LG2) and a control non-silencing siRNA (NC1)
were purchased from Riboxx GmbH (Radebeul, Germany).
Ishikawa cells were plated at a density of 1 × 105 cells/ml. After
overnight incubation, transfections were achieved with 80 µl/ml
of the reagent riboxxFECT and 20 nM of siPDCD1LG2 or NC1
(negative control), according to the manufacturer’s instructions.
Cells were harvested at 72 h post-transfection for analysis. The
efficiency of silencing was evaluated by Western blot analysis.

Wound Healing Assay
PCEM004b and Ishikawa cells, native and transfected/silenced
for PD-L2, were plated on a 24-well plate at density of 4× 104 and
1.5 × 105/ml, respectively. Confluent cells were scratched using
10-µl sterile pipette tips, and low serum medium was added, to
minimize cell proliferation and prevent cell detachment. Images
of wounded areas were taken at 0, 24, and 48 h. Image acquisition
was carried out by a Leitz Fluovert FU (Leica Microsystems)
microscope. Remaining wound areas were determined using NIH
Image J software for calculation of the percentage of wound
closure. Analyses were performed in triplicate.

MTT Assay
EC cell lines (3 × 104 cells/ml) were plated in 96-well plates, in
a final volume of 100 µl/well. After 24 h, treatments or vehicles
were added for 72 h. At least six replicates were used for each
treatment. At the indicated time point, cell viability was assessed
by adding 0.8 mg/ml of 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl
tetrazolium bromide (MTT, Sigma-Aldrich) to the media. After

3 h, the plates were centrifuged, the supernatant was removed,
and the pellet was solubilized with 100 µl/well of DMSO. The
absorbance of the samples against a background control (medium
alone) was measured at 570 nm using an ELISA reader microliter
plate (BioTek Instruments, Winooski, VT, United States).

Statistical Analysis
The data presented represent the mean with standard deviation
(SD) of at least three independent experiments. The statistical
significance was determined by Student’s t-test and by one-way
and two-way ANOVA with Bonferroni’s posttest; ∗p < 0.05.
Patients were divided in three groups according to high,
moderate, or low expression of protein target. The Kaplan–
Meier (KM) method was also used for OS and progression-free
survival (PFS) analysis. For univariate and multivariate analysis
of significance, the log-rank test or Cox analysis was used (Graph
Pad and XLSTAT). A value of ∗p < 0.05 was considered as
statistically significant. The statistical analysis of IC50 levels was
performed using Prism 5.0a (Graph Pad).

RESULTS

PD-1 Ligands Expression in EC Samples
From TCGA and in EC Cancer Cell Lines
Programmed death-1 ligand gene expression was assessed in 506
EC data samples from TCGA, queried with cBioportal (TCGA,
PanCancer Atlas). Samples were divided into endometrioid (397
samples) and serous type (109 samples), and the mRNA levels
were expressed in log2. PD-L2 mRNA expression was higher
than PD-L1 (p < 0.0001), but no significant differences were
observed between endometrioid and serous tumors (Figure 1A).
The expression of PD-L1 and PD-L2 in normal uterine tissue
obtained from a healthy donor and in six EC cell lines, two of
which, PCEM004a and PCEM004b, are classified as mixed type
I/II, was evaluated by RT-PCR (data not shown) and Western
blot analysis. At the protein level, PD-L2 levels were significantly
higher in most EC cell lines compared to normal uterus, while
PD-L1 was expressed predominantly in both mixed type I/II
PCEM004 cell lines but were not significantly different from the
control. Furthermore, in three type I EC cell lines, Ishikawa,
HEC-1a, and PCEM002, PD-L2 levels were higher than PD-
L1 (Figure 1B). Since PD-L1 and PD-L2 expression profile in
analyzed cell lines is in accordance with data from TCGA, our
cell lines could be a representative model for PD-1 ligands in
in vitro study. To determine cellular distribution, Ishikawa cells
(expressing high levels of PD-L2) were analyzed by confocal laser
scanning microscopy. Results show that PD-L2 has a punctuate
distribution localized mainly in the cytoplasm (Figure 2).

PD-L2 Expression in Human Biopsies of
EC Type II
On the basis of available literature and preliminary data obtained
from our cell line models and PanCancer Atlas database, we
investigated PD-L2 expression in a cohort of human EC type
II. Its expression level was determined in a total of 51 samples,
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FIGURE 1 | Programmed death-ligand 1 (PD-L1) and PD-L2 expression in endometrial cancer (EC). (A) The expression of PD-L1 and PD-L2 in EC patients. The
mRNA expression (log2) of PD-L1 and PD-L2 in 506 EC samples, divided by 397 for type I and 109 for type II, from the TCGA database. ***p < 0.0001 PD-L2 vs
PD-L1. (B) PD-L1 and PD-L2 protein expression was evaluated by Western blot in normal human uterus and six EC cell lines. PD-L1 and PD-L2 densitometry values
were normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) used as loading control. Densitometric values shown are the mean ± SE of three
separate experiments. *p < 0.05 vs normal control, #p < 0.05 vs type I primary EC cell line PCEM002.

including serous, clear cell, mixed type, peritumoral tissues,
and normal endometrium. Expression data are summarized in
Table 1, divided for histological subgroups, FIGO stage, age, and
tumor localization. Representative images of the stained samples
classified according to the adopted scoring system, are shown
(Figure 3A). Tissues were considered “high” at a score of 6 or

higher, while “moderate” staining corresponds to a score of 4–
5. PD-L2 was highly expressed in 64.44% of tumor specimens,
while 24.44% of the samples stained moderate and 11.11% low
or negative. PD-L2 was expressed predominantly in the epithelial
component in 40% of the specimens and in both stromal and
epithelial components in 53.33% of the samples (Figure 3B).
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FIGURE 2 | PD-L2 cytoplasmatic expression in Ishikawa cells. Cells were fixed, permeabilized, and stained with anti-human PD-L2 antibody (Ab) followed by Alexa
Fluor-594 secondary Ab. 4’,6-Diamidino-2-phenylindole (DAPI) was used to counterstain the nuclei. Calibration bar: 20 µm.

TABLE 1 | Expression of programmed death-ligand 2 (PD-L2) in endometrial cancer (EC), peritumoral tissue, and normal endometrium.

PD-L2

High Moderate Low

Tumor 29/45 (64.44%) 11/45 (24.44%) 5/45 (11.11%)

Serous 18/26 (69.23%) 4/26 (15.38%) 4/26 (15.38%)

Clear cell 3/7 (42.85%) 3/7 (42.85%) 1/7 (14.28%)

Mixed 8/12 (66.66%) 4/12 (33.33%) 0/12 (0%)

Peritumoral tissue 1/4 (25%) 2/4 (50%) 1/4 (25%)

Normal endometrium 0/2 (0%) 1/2 (50%) 1/2 (50%)

FIGO stage

Stage I–II 13/17 (76.47%) 3/17 (17.64%) 1/17 (5.88%)

Serous 7/9 (77.77%) 1/9 (11.11%) 1/9 (11.11%)

Clear cell 1/2 (50%) 1/2 (50%) 0/2 (0%)

Mixed 5/6 (83.33%) 1/6 (16.66%) 0/6 (0%)

Stage III 7/16 (43.75%) 7/16 (43.75%) 2/16 (12.5%)

Serous 5/10 (50%) 3/10 (30%) 2/10 (20%)

Clear cell 0/2 (0%) 2/2 (100%) 0/2 (0%)

Mixed 2/4 (50%) 2/4 (50%) 0/4 (0%)

Stage IV 9/12 (75%) 1/12 (8.33%) 2/12 (16.66%)

Serous 6/7 (85.71%) 0/7 (0%) 1/7 (14.28%)

Clear cell 2/3 (66.66%) 0/3 (0%) 1/3 (33.33%)

Mixed 1/2 (50%) 1/2 (50%) 0/2 (0%)

Age

≤68 11/19 (57.89%) 5/19 (26.31%) 3/19 (15.79%)

>68 18/26 (69.23%) 6/26 (23.07%) 2/26 (7.69%)

Percentages of samples according to different clinicopathological characteristics.

The highest score was most frequently detected in serous type
(69.23%) and mixed type (66.66%). Regarding peritumoral and
normal tissues, PD-L2 was predominantly moderate or low

(Figures 3C,I–II). The number of normal samples was low with
respect to the initial selected cohort (10 samples) because the
staining protocol used was incompatible with specimens rich in
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FIGURE 3 | (A) Representative images of IHC stainings for PD-L2 in human EC biopsies. Stainings and scores of representative tumors. Pictures were taken at ×20
magnification (scale bar, 50 µm). (B) Percentages of patients classified according to PD-L2 distribution inside tumoral mass. (C) Classification of patients according
to PD-L2 expression and clinicopathological characteristics. (I) Percentages of patients classified according to PD-L2 expression in EC, *p < 0.05 vs serous type
PD-L2high, #p < 0.05 vs serous type PD-L2moderate, çp < 0.05 vs serous type PD-L2low. (II) Percentage of patients classified according to PD-L2 expression and
FIGO stage, *p < 0.05 vs FIGO stages I–II PD-L2high, #p < 0.05 vs FIGO stages I–II PD-L2moderate.

fat, according to H&E staining. Samples were classified according
to the FIGO staging system, and the highest scores were detected
for 76.47% stage I–II samples and for 75% stage IV samples
(Figures 3C,III). An increased percentage of samples with strong
positivity was detected in 69.23% of patients over 68 years
(Figures 3C,IV). Taken together, our data suggest that PD-L2
could be a potential target for non-endometrioid EC, especially
for serous and mixed subtypes, for low- and high-stage tumors.

High Levels of PD-L2 Correlate With
Poor Prognosis
Overall survival (OS) and PFS were evaluated by Kaplan–
Meier analysis stratifying patients according to high and
moderate PD-L2 expression levels. The subgroup with low
expression was excluded because there were too few patients
for a statistical analysis. Kaplan–Meier analysis revealed that

OS was significantly longer for patients who have a lower
PD-L2 expression (PD-L2high 34 months vs PD-L2moderate

114 months, p = 0.0332, HR = 2.033, 95% CI = 0.9747 to
4.240) (Figure 4A). Significant correlation with better prognosis
was confirmed for patients with moderate expression of PD-
L2 also with the Cox proportional hazards model, adjusted
for age (Pr > χ2 = 0.029, HR = 0.26). For PFS, PD-
L2 expression has minor impact on progression-free status
(p > 0.05, HR = 1.942, 95% CI = 0.7419 to 5.085) (Figure 4A).
Additionally, OS and PFS were calculated according to PD-
L2 distribution, dividing patients for PD-L2 expression in
tumor, stroma, or both. The stroma subgroup was excluded
because there were too few patients for a statistical analysis.
PD-L2 distribution inside tumoral mass does not influence
OS outcome (p > 0.05, HR = 0.5368, 95% CI = 0.2550 to
1.130) or PFS (p > 0.05, HR = 0.9280, 95% CI = 0.3610 to
2.386) (Figure 4B).
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FIGURE 4 | (A) Survival of EC patients according to PD-L2 expression. Kaplan–Meier survival curves showing overall survival (OS) and PFS of EC patients. The
log-rank test with corresponding p-values applies to the PD-L2high and PD-L2moderate curves. (B) Survival of EC patients according to the PD-L2 distribution.
Kaplan–Meier survival curves showing OS and PFS of EC patients, according PD-L2 distribution inside tumoral mass (tumor, stroma, or both). The log-rank test with
corresponding p-values applies to the PD-L2–tumor and PD-L2–both.
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PD-L2 Expression Stimulates Migration
and Survival of EC Cells
To examine the role of PD-L2 in regulating migration of EC
cells, the mixed type I/II PCEM004b cell line, showing a low
PD-L2 expression, was transfected with a PD-L2 overexpressing
vector (PD-L2+), whereas Ishikawa cells, which are a type I
model expressing high levels of PD-L2, were silenced using a
PD-L2 siRNA (PD-L2−). PD-L2 expression was subsequently
detected by Western blot (Figures 5A, 6A). The results
showed that PD-L2+ cells exhibited higher migratory capacities
compared with the control group (empty vector-transfected
cells) as determined by the wound healing assay (p < 0.01)
(Figure 5B). Opposite results were obtained in PD-L2-silenced
Ishikawa cells since PD-L2 cells exhibited lower migratory
capacities compared with the control group as determined
by the wound healing assay (p < 0.001) (Figure 6B). These
data indicate that PD-L2 is involved in migration of EC
cells, and it could explain the worse OS for patients with
high expression of PD-L2. Additionally, to assess the potential
role of PD-L2 in regulating protumoral pathways involved
in cancer cell aggressiveness, the modulation of ERK and
Akt/PKB pathways were evaluated through Western blot analysis
in PD-L2+ and PD-L2− cells. Indeed, the phosphorylated
form of AKT is significantly increased (p = 0.05), while
phosphorylated ERK is significantly decreased in PD-L2+ cells,
compared to the control (p < 0.05) (Figure 7A), and the
opposite effect was observed by PD-L2 silencing in Ishikawa
cells (Figure 7B).

PD-L2 Expression Influences
Chemotherapy Response in EC Cell
Lines
To evaluate the potential role of PD-L2 in influencing response
to chemotherapy, PD-L2+ and PD-L2− EC cell lines were treated
with the common chemotherapeutic drugs used in EC therapy
(cisplatin, doxorubicin, and paclitaxel) for 72 h, and cell viability
was evaluated compared to the respective control. The results
showed that PD-L2 does not significantly alter the sensitivity
of both transfected/silenced cells to cisplatin and doxorubicin
(p > 0.05) but increased the effect of paclitaxel (p < 0.05) in
PD-L2+ cells, especially at concentration of 0.16 µg/ml and
decreased the effect of paclitaxel in PD-L2− cells, up to 0.8 µg/ml
(p < 0.05) (Figure 8).

DISCUSSION

EC is still the most frequently diagnosed malignancy of
the female genital tract, particularly in developed countries
(19). Type II EC is responsible for most EC-related deaths
because it is characterized by an aggressive behavior, late
stage detection, and high resistance to common therapy.
Furthermore, there are no specific targeted therapies for this
subtype, and it is still treated in the same way as endometrioid
type I EC, which is characterized by good prognosis and
good response to therapy. Therefore, type II EC needs new

treatment options and molecular targets (20). PD-L1 and PD-
L2, as PD-1 ligands, are considered signals that negatively
regulate T-cell activation, stimulating tumor immune escape
and survival (21), but emerging evidence shows that they also
have tumor-intrinsic functions (13, 15, 22). The role of immune
checkpoints in the suppression of T-cell antitumor response
leads to the development of immune checkpoint inhibitors
for cancer treatment. Indeed, blocking antibodies against PD-
1 (such as Nivolumab and Pembrolizumab) and against PD-
L1 (such as Atezolizumab) have been approved by the US
Food and Drug Administration (FDA) for melanoma, non-
small-cell lung cancers and MSI tumors (8). Regarding PD-
L2, less is known about its role in cancer, and up to now,
there is little information available in EC, especially for non-
endometrioid EC (9).

PD-L2 expression was evaluated in type II ECs in 12 patients
and 7 (58,3%) were positive for PD-L2 without a significant
difference among patients with different ages, differentiation
status, clinical stages, histological types, or status of vascular
invasion in the tumor (23). Additionally, as reported by Sung and
collaborators, analyzing 127 EC tumor specimens (113 classified
as type I), PD-L2 expression seems to differ from PD-L1 with
PD-L1 positive staining in tumor cells at 36.2% and 64.4% with
PD-L2 (24). In previous works, no significant differences in PD-
L2 expression have been found between normal endometrium
and type I tumor (23, 25, 26). High PD-L2 expression was
shown in 30% of primary EC patients and 16% of uterine
sarcoma patients, demonstrating the potential of PD-L2 blockade
in limited proportion of uterine cancer patients (26). Moderately,
poorly differentiated and non-endometrioid EC shows a more
frequent PD-L2 expression and seems to be correlated with POLE
and MSI status (9, 23).

In glioma, an unfavorable prognostic effect of PD-L2 was
reported (27). Moreover, in hepatocellular carcinoma, PD-L2
expression was unfavorable both for OS and DFS/PFS, but,
in esophageal cancer, high PD-L2 expression implied a trend
toward favorable prognosis, suggesting that PD-L2 has different
effects on immune suppression among different cancer types
(17). In this study, we demonstrated that ECs express both PD-
1 ligands but PD-L2 seems to be expressed more frequently
than its homolog PD-L1, especially in serous subtype. Indeed,
we showed that PD-L2 expression is higher in the serous
subtype of non-endometrioid EC (69.23% and 15.38% with
high and moderate expressions, respectively) compared with
other subtypes. Moreover, we observed that PD-L2 expression
correlates with shorter OS (p = 0.0332), and high PD-L2
expression is detected predominantly in FIGO stages I–II and
IV samples. Therefore, we analyzed the possible molecular
mechanisms supporting the negative prognostic role of PD-
L2 in EC.

Emerging evidence shows that PD-L1 and PD-L2 also activate
tumor-intrinsic functions (13, 14, 22). PD-L1 regulates cancer
cell resistance to apoptosis (22), cell proliferation, AKT/mTOR
signaling pathway, and autophagy in ovarian cancer cells (13, 15),
while in vitro data, describing an intrinsic role of PD-L2 in cancer
cells, are scarce. A recent study demonstrates that cell-intrinsic
PD-L2 signals promote invasion and metastasis through the
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FIGURE 5 | PD-L2 overexpression enhances migration of EC cells. (A) Western blot analysis of PD-L2 and GAPDH protein levels in PD-L2+ PCEM004b cells. Blots
are representative of one of three separate experiments. PD-L2 densitometry values were normalized to GAPDH used as loading control. Densitometric values
shown are the mean ± SE of three separate experiments. *p < 0.05 vs control cells. (B) Wound healing assays for PCEM004b cells after PD-L2 overexpression. All
experiments were repeated three times. T0 h (used for consistency with other time-points). Data are presented as the mean ± SD. **p < 0.01 vs control.
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FIGURE 6 | (A) PD-L2 silencing reduces migration in Ishikawa cells. (A) Western blot analysis of PD-L2 and GAPDH protein levels in PD-L2–Ishikawa cells. Blots are
representative of one of three separate experiments. PD-L2 densitometry values were normalized to GAPDH used as loading control. Densitometric values shown
are the mean ± SE of three separate experiments. *p < 0.05 vs control cells. (B) Wound healing assays for Ishikawa cells after PD-L2 silencing. All experiments were
repeated three times. T0 h (used for consistency with other time-points). Data are presented as the mean ± SD. ***p < 0.001 vs control.

Rhoa-ROCK-LIMK2 and positively regulate autophagy pathways
in osteosarcoma cells (14). In this study, we demonstrate that PD-
L2 increases migration of the mixed type I/II PC-EM004b cell
line, while the opposite effects were observed by PD-L2 silencing

in the Ishikawa cell line, a type I model that expresses high
levels of PD-L2.

The Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt pathways
interact with each other, regulating a variety of oncogenic
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FIGURE 7 | PD-L2 influences AKT and ERK pathways. (A) Western blot analysis of pAKT (Ser473), pERK1/2(Thr202/Tyr204), ERK1/2, AKT, and GAPDH protein
levels in PD-L2+ EC cells. (B) Western blot analysis of pAKT (Ser473), pERK1/2(Thr202/Tyr204), ERK1/2, AKT, and GAPDH protein levels in PD-L2− EC cells. Blots
are representative of one of three separate experiments. The pERK1/2(Thr202/Tyr204) and pAKT (Ser473) protein levels were determined with respect to ERK1/2
and AKT levels. ERK1/2 and AKT densitometry values were normalized to GAPDH used as loading control. Densitometric values shown are the mean ± SE of three
separate experiments. *p < 0.05 vs control cells.
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FIGURE 8 | PD-L2 influences chemoresistance in EC cell lines. (A) PD-L2+ and (B) PD-L2− cell lines and relative controls were treated for 72 h with different
concentrations of cisplatin, doxorubicin, and paclitaxel (up to 100 µg/ml). Data shown are expressed as mean ± SE of three separate experiments. *p < 0.05
treated vs vehicle, #p < 0.05 PD-L2+ or PD-L2− vs control.

processes including cell proliferation, survival, epithelial
mesenchymal transition, enhanced motility, angiogenesis,
and genetic alterations (28–30). Furthermore, increased
PI3K/AKT/mTOR signaling has been reported in both type I

and type II ECs (31). Previous results clearly suggest that PD-L1
is able to activate an intrinsic signal through the mTOR/AKT
pathway, supporting cancer cell proliferation and regulating cell
autophagy (13, 15), but there is no evidence for the involvement
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of PD-L2 in these pathways. We first demonstrated that PD-
L2 overexpression induces an increase in AKT activation and a
reduction in ERK phosphorylation. Indeed, the Ras–ERK and
PI3K–AKT pathways can negatively regulate each other’s activity.
It has been reported that this cross-inhibition is often revealed
when one pathway is chemically blocked, thereby activating the
other pathway (28).

Furthermore, the clinical significance of the PD-L2 expression
and chemotherapy has not been fully investigated. Tanaka
et al. demonstrated that esophageal patients with PD-L2-positive
tumor had significantly inferior responses to chemotherapy
suggesting that PD-1/PD-Ls pathway might be an immunological
mechanism associated with resistance to chemotherapy in
esophageal cancer patients (32). Herein, we found that PD-
L2+ EC cells are more sensitive to paclitaxel than the control,
and the opposite effect is observed in the PD-L2-silenced cells.
However, PD-L2 expression levels did not alter the response
to cisplatin and doxorubicin. It has been found that a specific
inhibition of MEK1/2 kinase activity, associated with a decrease
in phospho-ERK, enhanced the effects of nab-paclitaxel-based
chemotherapy in pancreatic ductal adenocarcinoma patients
(33). Similarly, elevated levels of activated ERK have been found
in paclitaxel-resistant hematopoietic cells and ectopic activation
of Raf induces resistance to doxorubicin and paclitaxel in breast
cancer cells (34). These evidences support our results in which
PD-L2 silencing, associated with an increase in pERK1/2/ERK1/2
ratio, are more resistant to paclitaxel than PD-L2+ cells.

PD-1 ligands are transmembrane proteins that binds PD-
1 expressed on the cellular surface of activated T and B cells,
monocytes, natural killer, and dendritic cells (23, 35). Recent
studies showed also an intracellular distribution, suggesting that
these proteins might have an unexpected function, different
from what has previously been described for its membranous
counterpart (13, 14, 36, 37). It has been demonstrated that
cytoplasmic PD-L1 levels in SKOV3 and HO8910 ovarian cancer
cell lines are high, and in SKOV3 cells, cytoplasmic PD-L1
increased cancer cell growth and migration (36). In addition to
a membrane expression, cytoplasmic PD-L1 was detected also in
lymphoma (37) and lung cancer (38). For PD-L2, previous studies
reported an expression in both membranous and cytoplasmic
compartments (14, 38, 39), and these findings were confirmed in
our study where, by confocal analysis, PD-L2 was detected in the
cytoplasm and plasma-membrane.

CONCLUSION

In conclusion, our preliminary data suggest a prognostic role of
PD-L2 in type II EC patients. High PD-L2 expression is detected

in serous and mixed subtype and correlates with a shorter OS,
without affecting PFS. Anyway, a more extensive study is required
in order to establish if there are differences in PD-L2 expression
between type II EC and the normal uterus. Indeed, in this study,
we used a small cohort of normal samples because IHC protocol
was incompatible with specimens rich in fat. Overall, in vitro
investigations revealed that PD-L2 affects two main protumoral
pathways in EC cells. Furthermore, it is involved in cancer cell
migration and in influencing sensitivity to paclitaxel, suggesting
that PD-L2 could have an additional non-immunological role
supporting EC malignancy.
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Paeonol Suppresses Proliferation and
Motility of Non-Small-Cell Lung
Cancer Cells by Disrupting STAT3/
NF-κB Signaling
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Background: Targeting inflammatory microenvironment is a promising anti-tumor
strategy. Paeonol is a phenolic compound with effective anti-inflammatory and anti-
tumor properties. However, the effects of paeonol on non-small cell carcinoma
(NSCLC) have not been fully investigated. Here, we evaluated the effects of paeonol
on proliferation and metastasis of NSCLC and elucidated the underlying mechanisms.

Methods: The effects of paeonol on inflammatory cytokines were determined by cell
proliferation and ELISA assays. Assays of wound healing, single cell migration and
perforation invasion were used to evaluate migration and invasion of NSCLC cells.
Expression of marker proteins in epithelial-mesenchymal transition (EMT) and matrix
metalloproteinase (MMP) family enzymes were detected by Western blot assays. Nude
mouse A549 cells transplantation tumor model was used to study the anti-lung cancer
effects of paeonol in vivo. TUNEL stanining were used to detect the apoptosis of tumor
cells in A549 lung cancer mice, and Ki67 analysis was used to detect the proliferation of
tumor cells in A549 lung cancer mice. Immunohistochemistry was used to detect the
effects of paeonol on signaling molecules in tumor tissues.

Results: Paeonol inhibited A549 cancer cell migration and invasion in vitro. Paeonol
inhibited secreaion of inflammatory cytokines in A549 cells, including tumor necrosis factor
(TNF)-α, interleukin (IL)-6, IL-1β, and transforming growth factor (TGF)-β. Paeonol altered
the expression of marker proteins involved in EMT and MMP family enzymes. In addition,
paeonol inhibited the transcriptional activity of nuclear factor-κB (NF-κB) and
phosphorylation of signal transducers and activators of transcription 3 (STAT3).
Paeonol inhibited the growth of A549 cells transplanted tumors in nude mice.
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Conclusion: Paeonol potently inhibited NSCLC cell growth, migration and invasion
associated with disruption of STAT3 and NF-κB pathways, suggesting that it could be
a promising anti-metastatic candidate for tumor chemotherapy.

Keywords: Paeonol, Non-small-cell lung cancer, STAT3, NF-κB, Cell motility, Cell invasion

INTRODUCTION

Lung carcinogenesis has been recognized as one of the
hallmarks of human cancer, and recently shows a strong
connection with inflammation (Altorki et al., 2019; Mohrherr
et al., 2020). Approximately 25% of human cancers occur as a
result of chronic inflammation. Epidemiological studies have
shown that anti-inflammatory agents (such as aspirin,
dexamethasone and ruxolitinib) can be beneficial for
reducing the prevalence and mortality of cancer (Bock et al.,
2014; Diakos et al., 2014). There are many similarities in cellular
behavior, signal transduction and gene expression shared by
cancer and inflammation, and both processes involve enhanced
cell motility that is controlled by growth factors, cytokines, and
inflammatory signals in tumor microenvironment. The
infiltrated inflammatory cells produce different cytokines and
chemokines to promote tumor cell migration and invasion and
contribute to inflammation-mediated metastasis (Wu and
Zhou, 2010; Yi et al., 2017).

Understanding the mechanisms by which inflammation
contributes to tumor metastasis will lead to innovative approach
for treating cancer. Cytokines and immune mediators promote
tumor cell survival and chemoresistance through autocrine and
paracrine mechanisms. Inflammatory cells produce tumor necrosis
factor (TNF)-α (King, 2015), transforming growth factor (TGF)-β
(Feng et al., 2017), interleukin (IL)-6 (Wouters et al., 2014), and other
pro-inflammatory factors, which activate NF-κB/STAT3 pathways
and induce epithelial-to-mesenchymal transition (EMT) as well as
cancer metastasis (Narayan and Kumar, 2012; Gray et al., 2014).
Numbers of cancer-related cytokines frequently precede and
contribute to NSCLC development (Zhang J. et al., 2019).
Moreover, these cancer-related cytokines can activate several signal
pathways, such as NF-κB and JAK/STAT, which control cancer cell
proliferation, survival, and chemosensitivity (Ivanenkov et al., 2011;
Garbers et al., 2015). Many pharmacological interventions have been
developed to target inflammatory mediators and immune-related
signal pathways. However, only a few of those have been
demonstrated to be efficacious in clinical trials (Shaikh et al.,
2019). Agents attacking multiple inflammatory signaling pathways
may effectively prevent the proliferation andmetastasis of tumor cells.
Given the co-activation of NF-κB and STAT3 (two dominant
pathways in inflammation and tumorgenesis) (He and Karin,
2011; Fan et al., 2013), small molecule inhibitors targeting them or
the upstream receptors merit investigation for combination therapy
for NSCLC.

Paeonol (2-hydroxy-4-methoxyacetophenone) has been used as
an anti-inflammatory agent (Lou et al., 2017; Zhang L. et al.,
2019; Zong et al., 2018; Al-Taher et al., 2020), and also has
inhibitory effects on a wide range of cancers including
pancreatic, ovarian (Saahene et al., 2018; Gao et al., 2019;

Cheng et al., 2020),etc. Recent studies revealed that paeonol
could enhance the efficacy of chemotherapeutics, reduce
cyclooxygenase-2 (COX-2) and regulate EMT by increasing
Human Runt-Related Transcription Factor 3 expression in
different types of tumors (Cai et al., 2014; Whittle et al.,
2015). However, the underlying mechanism has not been
elucidated yet. Given that chronic inflammation mediates
tumor development and metastasis, we investigated the anti-
tumor and anti-metastatic effects of paeonol on A549 NSCLC
cells under inflammatory stimulation. Here, we report that
paeonol potently inhibited A549 cancer cell migration and
invasion associated with disruption of STAT3 and NF-κB
pathways, suggesting that it may be a promising anti-
metastatic candidate for lung tumor chemotherapy.

MATERIALS AND METHODS

Reagents and Antibodies
Paeonol (purity >98%, HPLC) was purchased from the Xuancheng
Herbs Plant Industry and Trade Co., Ltd. (Xuancheng, China) and
was dissolved in dimethyl sulfoxide (DMSO) for all experiments. IL-
6 and TNF-α were from Sigma (St Louis, MO, USA) and diluted to
indicated concentrations for experiments. The primary antibodies
used in Western blot analyses against STAT3, p-STAT3, IκBα,
p-IκBα, p-NF-κB, and NF-κB were purchased from Cell Signaling
Technology (Danvers, MA, USA). The primary antibodies against
MMP-2, MMP-9, Bax, and Bcl-2 were from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). The primary antibodies
against E-cadherin and N-cadherin were purchased from
Signalway Antibody (Baltimore, MD, USA). The primary
antibody against GAPDH and the horseradish peroxidase-
conjugated secondary antibodies were obtained from Bioworld
(St. Louis Park, MN, USA).

Cell Culture
The NSCLC cell lines A549, H1650, and H1975 (Chinese
Academy of Science, Shanghai, China) were grown in RPMI-
1640 medium (Invitrogen, Grand Island, NY, USA)
supplemented with 10% fetal bovine serum (FBS; Sijiqing
Biological Engineering Materials Co., Ltd., Hangzhou, China),
100 U/mL penicillin and 100 mg/ml streptomycin. Cell
morphology was assessed using an inverted microscope with a
Leica Qwin System (Leica, Germany).

Measurements of Cytokines
The secreted cytokines (TNF-α, IL-6, IL-1β, and TGF-β) in culture
supernatant of A549 cells treat with or without paeonol were
tested using ELISA (BD Biosciences, San Jose, CA, USA)
according to the protocols provided by the manufacturer.
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The absorbance was read at 450 nm, with reference wavelength
at 570 nm using a 96-well plate spectrometer (SpectraMax 190;
Molecular Devices, Sunnyvale, CA). Calculation of the
concentrations of the cytokines was performed in a log-log
linear regression according to the instructions in the protocols.

Cell Proliferation Assay
A549 cells in logarithmic growth were seeded in 96-well plates (5×103
per well) and cultured in RPMI-1640 medium supplemented with
10% FBS for 24 h, and then treated with 0.5% DMSO or paeonol
at indicated concentrations or time periods. After treatment, 3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfo-
phenyl)-2H-tetrazolium (MTS; Sigma, St Louis, MO, USA) and
phenazine methosulfate (Promega Corporation, Madison, WI,
USA) were added, and the cells were further incubated for 3 h at

37°C. The spectrophotometric absorbance at 490 nmwasmeasured
by a SPECTRAmax™ microplate spectrophotometer (Molecular
Devices, Sunnyvale, CA, USA).

Wound Healing Assay
24-Well plates were coated with 5% collagen for 1.5 h at room
temperature, washed three times with phosphate buffered saline
(PBS), and blocked by 2% bovine serum albumin (BSA)/RPMI-
1640 medium. A549 cells were seeded at 1 × 105 cells per well.
Once the cells had attached properly, FBS-deprived medium and
mitomycin (4 μg/ml, Sigma, St Louis, MO, USA) were added to the
cells for 3 h. One linear wound was scraped in each well with a sterile
pipette tip, and cells were washedwith PBS to remove the unattached
cells. Then FBS-deprived mediumwas added to each well, and TNF-
α or IL-6 with or without paeonol was added. Images were taken at

FIGURE 1 | Paeonol inhibits proliferation in NSCLC cells. A549, H1650, and H1975 cells were treated with paeonol at indicated concentrations for 12, 24 or 48 h.
(A) Representative morphological images of cells. Original magnification ×400. (B) MTS assays for evaluating cell proliferation, n � 3 (independent experiments).
Signficance: *p < 0.05 vs. control, **p < 0.01 vs. control, ***p < 0.001 vs. control.
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indicated time points after wound induction using an inverted
microscope with a Leica Qwin System (Leica, Germany). The
number of cells migrating per millimeter of scratch was counted.

Colloidal Gold Single Cell Migration Assay
Six-Well plates were coated with the colloidal gold particles.
Serum-starved A549 cells were trypsinized and resuspended at
a density of 1 × 103 cells/mL. Suspension of 2 ml was added to
each well. After incubation for 2 h, cells were pretreated with or
without paeonol (20 μg/ml) for 2 h, followed by stimulation with
IL-6 or TNF-α for 24 h. When cells migrated, they phagocytized
gold particles, resulting in corresponding white tracks. The single
migrating cell was visible as a black body. Images were taken
using an inverted microscope with a Leica Qwin System (Leica,
Germany). Cell motility was evaluated by measuring the areas
free of the gold particles using ImageJ.

Transwell Invasion Assay
Cell invasion was evaluated using an 8 μm pore size Transwell
system (Millipore, USA). Briefly, the collagen stock solution
(5 mg/ml), stored in −20°C, was thawed and mixed with RPMI-
1640 medium and 1 M NaOH at a ratio of 1.37:0.22:0.1 at 4°C.
The mixture (70 ml) was added onto the upper chamber. Serum-
starved A549 cells were resuspended at a density of 5 × 105

cells/mL. Cell suspension of 200 μl with or without paeonol
upon stimulation with IL-6 or TNF-α were carefully transferred
on the surface of collagen in the upper chambers. The bottom
chamber was loaded with 0.8 ml of RPMI 1640 medium with
10% FBS. After incubation for 6 h, the filters were removed,

rinsed two times with PBS, fixed in 4% paraformaldehyde and
stained with 0.1% crystal violet. Cells on the upper side of the
filter were wiped off with cotton swabs. The invasive cells in five
random fields (×400) were counted and images were taken using
an inverted microscope with a Leica Qwin System (Leica,
Germany).

Flow Cytometric Analyses of Apoptosis
Apoptosis was determined by FITC labeled annexin-V/PI double
staining and flow cytometry analysis. A549 cells were treated with
paeonol at indicated concentrations for 24 h. An Annexin V-FITC
apoptosis assay kit (Nanjing KeyGen Biotech Co., Ltd., Nanjing,
China) was used according to the protocol. Only fluorescein-positive
cells without PI staining were regarded as apoptotic cells and the
percentages were determined by flow cytometry (FACSCalibur;
Becton, Dickinson and Company, Franklin Lakes, NJ, USA). The
data were analyzed using the software CELLQuest.

Western Blot Analysis
Whole cell protein extracts were prepared from treated A549 cells.
The protein levels were determined using a BCA assay kit (Pierce,
USA). Proteins (50 μg/well) were separated by SDS-polyacrylamide
gel, transferred to a PVDF membrane (Millipore, Burlington, MA,
USA), blocked with 5% skimmilk in Tris-buffered saline containing
0.1% Tween 20. Target proteins were detected by corresponding
primary antibodies, and subsequently by horseradish peroxidase-
conjugated secondary antibodies. Protein bands were visualized
using chemiluminescence reagent (Millipore, Burlington, MA,

FIGURE 2 | Paeonol reduces secretion of inflammatory cytokines in A549 cells. A549 cells were treated with paeonol at indicated concentrations for 24 h. ELISA
was used to determine the levels of TNF-α (A), IL-6 (B), IL-1β (C), and TGF-β (D) in supernatants, n � 3 (independent experiments). Significance: *p < 0.05 vs. control,
**p < 0.01 vs. control, ***p < 0.001 vs. control.
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USA). Equivalent loading was confirmed using an antibody against
GAPDH. The levels of target protein bands were densitometrically
determined using ImageJ. The variation in the density of bands was
expressed as fold changes compared to the control in the blot after
normalized to GAPDH.

Nuclear Translocation Assay
Cells were seeded in six-well plates and grown overnight. Cells
were pretreated with paeonol for 24 h before stimulated with
20 ng/ml IL-6 or TNF-α for 10 min. Treated cells were washed
with cold PBS followed by fixation with cold acetone for 10 min at
4°C. Cells were permeabilized with 0.5% Triton X-100 (Sigma, St.
Louis, MO, USA) for 10 min at room temperature, washed with PBS
and blocked with 1% BSA for 1 h. Antibody was added and
incubated overnight at 4°C. After washing with PBS for three
times, goat anti-rabbit IgG-Tritc was added and incubated for 1 h
at room temperature. Fluorescence cells were observed and
photographed under a laser scanning confocal microscope
(LEICA, Mannheim, Germany).

Luciferase Assay
NF-κB transcriptional activity was measured by a NF-κB-responsive
luciferase reporter assay. In brief, A549 cells were seeded in 96-well
plates and reached 70% confluence overnight. Luciferase reporter
vector containing NF-κB response element and Renilla luciferase
reporter plasmid as control were transfected into A549 cells for 24 h
using X-tremeGENE HP DNA transfection reagent (Roche). Cells
were then incubated with various concentrations of paeonol (5, 10,
20 μg/ml) for 24 h. Before the indicated time, cells were stimulated
with 20 ng/ml TNF-α or vehicle control for another 30 min. Relative
transcriptional activity of 20 μl of lysate/well sample was determined
using the Dual-Luciferase Assay System (Promega).

Animal Experiments
The in vivo research protocols were approved by the Animal Ethics
Committee of Anhui Medical University. Male nude mice (18–20 g)
were purchased from Changzhou Cavens Experimental Animal Co.,
Ltd., and subcutaneously injected with A549 cells suspension (1 × 105
cells in 0.1ml permouse) into the right forelimb of 15 nudemice. The

FIGURE 3 | Paeonol represses motility in A549 cells stimulated with TNF-α or IL-6. A549 cells were treated with paeonol at indicated concentrations and/or TNF-α
(20 ng/ml) or IL-6 (20 ng/ml) for 24 h. (A)Wound healing assays with quantitation. (B) Colloidal gold single cell migration assays with quantitation. (C) Transwell invasion
assays with quantitation. Representative images are shown from three independent experiments (n � 3). Original magnification ×400. Significance: **p < 0.01 vs. control,
***p < 0.001 vs. control, #p < 0.05 versus TNF-α or IL-6, ##p < 0.01 versus TNF-α or IL-6, ###p < 0.001 versus TNF-α or IL-6.

Frontiers in Pharmacology | www.frontiersin.org November 2020 | Volume 11 | Article 5726165

Zhang et al. Paeonol inhibition NSCLC

76

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


mice were randomly assigned to the following three groups: group 1,
NS group, intraperitoneal injection of normal saline; group 2, paeonol
group, intraperitoneal injection of paeonol (50mg/kg/d); group 3,
cisplatin group, intraperitoneal injection of cisplatin (1mg/kg/d).
Feeding and observing tumor growth, all nude mice were
sacrificed 14 days after injection of tumor cells. TUNEL staining,
immunohistochemistry andHE stainingwere performed according to
standard procedures. Representative images are shown.

Statistical Analysis
Data were presented as mean ± SD, and results were analyzed using
SPSS16.0 software. The significance of difference was determined by
one-way ANOVA with the post-hoc Dunnett’s test. Values of p <
0.05 were considered to be statistically significant.

RESULTS

Paeonol Inhibits Proliferation and Secretion
of Inflammatory Cytokine in A549 Cells
We initially determined the effects of paeonol on the morphology
of three lines of NSCLC cells. The results showed that paeonol at
80 μg/ml significantly altered the morphology of the three cell
lines, and at 40 μg/ml also remarkably affect the morphology of
A549 cells. Paeonol at 20 μg/ml or lower concentrations did not

evidently change the morphology of the three cell lines
(Figure 1A). These observations indicated that paeonol could
affect the growth of various NSCLS cells but they had different
sensitivity to paeonol treatment. To confirm this, cell
proliferation was determined using MTS assays. Paeonol
inhibited the proliferation of A549, H1650 and H1975 cells in
concentration- and time-dependent manners. Paeonol at
concentrations of 5–20 μg/ml did not significantly reduce the
proliferation of the three cell lines, but at 40 and 80 μg/ml
considerably inhibited their proliferation (Figure 1B). Notably,
the IC50 value of paeonol inhibition of A549 cell proliferation
was the lowest among the three cell lines, suggesting that A549
cells were mostly sensitive to paeonol treatment. Therefore, A549
NSCLC cells were selected for subsequent experiments. We
additionally observed that paeonol at concentrations of 10 and
20 μg/ml did not appaently induce apoptosis in A549 cells and
influence the protein expression of Bax and Bcl-2
(Supplementary Figures S1A–C). These results directed us to
investigate whether paeonol affected some other aspects of
NSCLC cell biology at relatively low concentrations. Then we
used ELISA methods to determine the levels of inflammatory
cytokines (TNF-α, IL-6, IL-1β and TGF-β) in the supernatants of
paeonol-treated A549 cells. The results showed that paeonol at
10, 20 and 40 μg/ml significantly reduced the supernatant levels of
TNF-α and IL-6, IL-1β and TGF-β, respectively (Figure 2). These

FIGURE 4 | Paeonol inhibits EMT and modulates MMPs system in A549 cells stimulated with TNF-α or IL-6. A549 cells were treated with paeonol at indicated
concentrations and/or TNF-α (20 ng/ml) or IL-6 (20 ng/ml) for 24 h (A,B) Western blot analyses of N-cadherin, E-cadherin, MMP-9 and MMP-2 with quantification.
GAPDH was used as an invariant control for equal loading and representative blots were from three independent experiments (n � 3). Significance: *p < 0.05 vs. control,
**p < 0.01 vs. control, ***p < 0.001 vs. control.
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data suggested that paeonol at relatively low concentrations
inhibited the secretion of inflammatory cytokines from
A549 cells.

Paeonol Inhibits Motility in A549 Cells
Stimulated by TNF-α or IL-6
We next turned to examined whether paeonol at concentrations
less than or equal to 20 μg/ml could regulate migration and
invasion of A549 cells in the presence of inflammatory
cytokines TNF-α (20 ng/ml) or IL-6 (20 ng/ml). Wound
healing assays showed that both TNF-α and IL-6 significantly
increased A549 cell migration, whereas paeonol significantly
inhibited the migration of A549 cells not only under normal
conditions but also upon the stimulation of TNF-α and IL-6
(Figure 3A). Colloidal gold single cell migration assays were used
to further demonstrate the paeonol effects on A549 cell
migration. The results were consistent with the observations in
wound healing assays, showing that paeonol has a more effective
inhibitory effect on TNF-α-induced A549 cell migration
(Figure 3B). Cell invasion was examined by transwell invasion

assays showing that TNF-α or IL-6 significantly promoted A549
cell invasion, whereas these stimulatory effects were significantly
abolished by paeonol (Figure 3C). Taken together, these results
indicated that paeonol suppress motility of A549 cells under
stimulation of TNF-α or IL-6.

Paeonol Modulates EMT and MMPs in
A549 Cells
We subsequently explored the molecular mechanisms
responsible for paeonol inhibition of A549 cell motility. We
examined the effects of paeonol on the expression of
N-cadherin and E-cadherin, two marker proteins in EMT,
showing that paeonol concentration-dependently downregulated
N-cadherin expression, but upregulated E-cadherin expression in
A549 cells upon TNF-α or IL-6 treatment (Figure 4), suggesting
that paeonol could inhibit the EMT process in A549 cells.
Furthermore, paeonol reduced the protein expression of MMP-
2 and MMP-9 in the presence of inflammatory cytokines
(Figure 4), indicating that paeonol could inhibit matrix
degradation. Altogether, these results indicated that alterations

FIGURE 5 | Paeonol disrupts STAT3 signaling in A549 cells stimulated with IL-6. A549 cells were treated with paeonol at indicated concentrations and/or IL-
6 (20 ng/ml) for 24 h. (A) Western blot analyses of p-STAT3 and total STAT3 with quantification. GAPDH was used as an invariant control for equal loading and
representative blots were from three independent experiments (n � 3). Significance: ***p < 0.001 vs. control, #p < 0.05 vs. IL-6, ##p < 0.01 vs. IL-6. (B)
Immunofluorescence double staining for determining STAT3 nuclear translocation. Original magnification ×400. Representative images are shown from
triplicate experiments.
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of EMT-related proteins and MMPs were associated with paeonol
suppression of A549 cell motility.

Paeonol Interrupts STAT3 Signaling and
Inhibits STAT3 Nuclear Translocation in
A549 Cells Stimulated by IL-6
Since the phosphorylation of STAT3 can be elevated by IL-6, we
examined the effects of paeonol on STAT3 signaling in A549 cells
stimulated with IL-6. As expected, paeonol inhibited
phosphorylation of STAT3 in a concentration dependent
manner (Figure 5A), suggesting that paeonol could block
STAT3 signal transduction. In addition, nuclear translocation
is critically important for STAT3 to exert its biological
consequences as a transcription factor. Therefore, we further
investigated whether STAT3 nuclear translocation was affected
by paeonol. Immunofluorescence assays showed that STAT3 was
primarily located in cytoplasm in the control cells, suggesting the
inactive state of STAT3 signaling (Figure 5B). Treatment with IL-
6 led to considerably increased STAT3 in the nuclear, but paeonol
reduced IL-6-induced STAT3 nuclear translocation (Figure 5B),
indicating that the transcriptional activity of STAT3 signaling was
suppressed by paeonol. Altogether, these data suggested that

paeonol could block IL-6-activated STAT3 signal transduction
in A549 cells.

Paeonol Interrupts NF-κB Signaling and
Inhibits NF-κB Transcriptional Activity in
A549 Cells Stimulated by TNF-α
NF-κB as a key player was involved in inflammation-induced
tumor metastasis. Thus, we further determined whether
paeonol affected NF-κB signaling upon the stimulation of
cytokines in A549 cells. The results showed that after TNF-
α treatment, the NF-κB signaling pathway was obviously
activated, and p-IκBα, IκBα, p-NF-κB p65, p-NF-κB p65 were
significantly upregulated. However, paeonol concentration-
dependently inhibited p-IκBα, p-NF-κB p65, and NF-κB, but
the total protein IκBα, which serves as an inhibitor of NF-κB,
was not apparently influenced (Figure 6A), indicating that the
TNF-α-induced NF-κB signaling was blocked by paeonol.
Similar to STAT3, nuclear translocation is also required for
NF-κB signal transduction. Our detection of the nuclear
translocation of NF-κB in the presence of TNF-α and/or
paeonol revealed that the enhanced NF-κB translocation
into the nucleus was abolished by paeonol in a

FIGURE 6 | Paeonol disrupts NF-κB signaling in A549 cells stimulated with TNF-α. A549 cells were treated with paeonol at indicated concentrations and/or TNF-α
(20 ng/ml) for 24 h. (A)Western blot analyses of IκBα, p-IκBα, NF-κB p65 and p-NF-κBp65with quantification. GAPDHwas used as an invariant control for equal loading
and representative blots were from three independent experiments (n � 3). Significance: ***p < 0.001 vs. control, #p < 0.05 vs. TNF-α, ## p < 0.01 vs. TNF-α, ### p <
0.001 vs. TNF-α. (B) Immunofluorescence double staining for determining NF-κB (p65) nuclear translocation. Original magnification ×400. Representative images
are shown from triplicate experiments.
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concentration-dependent manner (Figure 6B). In addition,
dual luciferase assays demonstrated that paeonol inhibited the
transcriptional activity induced by TNF-α (Figure 7).
Collectively, these data suggested that paeonol suppressed
NF-κB signaling at transcriptional level, contributing to the
complete interruption of NF-κB pathway in A549 cells.

Paeonol Exerts Anti-Tumor Effects in Nude
Mice With A549 Cell Transplantation

A549 cells were implanted subcutaneously in the right forelimb
underarm of nude mice to construct an in vivo lung cancer model.
After tumor formation, mice were continuously injected with

saline, paeonol or cisplatin intraperitoneally for 14 days. The
results showed that in the model, both paeonol and cisplatin
showed inhibitory effects on tumor growth, and compared with
the control group, the tumor volume of treatment groups was
significantly reduced (Figure 8A). There was no significant
weight loss in the paeonol treatment group, while the mice of
cisplatin group began to lose weight from the day 6 (Figure 8B).
Examinations of the weight and size of isolated tumors showed
that paeonol and cisplatin had inhibitory effects on A549 cell
xenografts (Figures 8C,D). Moreover, TUNEL staining was
used to detect the apoptosis of tumor cells in mice
transplanted with A549 cells. The number of TUNEL positive
cells in the paeonol and cisplatin groups was significantly

FIGURE 8 | Paeonol exerts anti-tumor effects on A549 cells transplanted tumors in nude mice treated with paeonol or cisplatin. (A) Tumor growth curve of A549
cells. (B) Body weights. (C) Tumor weights. (D) Morphological image of the tumors. Significance: *p < 0.05 vs. NS, n � 5.

FIGURE 7 | Paeonol inhibits TNF-α-induced transcriptional activity of NF-κB in A549 cells stimulated with TNF-α. A549 cells were treated with paeonol at indicated
concentrations and/or TNF-α (20 ng/ml) for 24 h. Dual-luciferase assays were used to determine the transcriptional activity of NF-κB, n � 3 (independent experiments).
***p < 0.001 versus control, #p < 0.05 versus TNF-α, ##p < 0.01 versus TNF-α.
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increased (Figure 9A). Analyses of Ki67 also showed that the
cell proliferation rate in paeonol group and the cisplatin group
was reduced, indicating that paeonol and cisplatin had
inhibitory effects on tumor proliferation in vivo (Figure 9B).
We also observed that the expression of p-JAK and p-STAT3 in
paeonol group was lower than that in NS group, which was

consistent with the effects of paeonol on A549 cells in vitro.
Importantly, paeonol exhibited no toxic effects on non-tumor
organs or tissues (Supplementary Figure S2), suggesting a high
safety of paeonol. Altogether, paeonol had significant anti-
tumor effects in nude mice with A549 cell transplantation
with high safety.

FIGURE 9 | Paeonol inhibits tumor cell growth and reduces the activation of JAK/STAT3 signaling in tumor tissue of nude mice transplanted with A549 cells. (A)
Representative images of TUNEL immunofluorescence with quantification. (B) Representative image of Ki67 immunohistochemistry with quantification. (C,D)
Representative images of p-JAK and p-STAT3 immunohistochemistry with quantification. Signficance: *p < 0.05 vs. NS, n � 5.
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DISCUSSION

NSCLC represents a highly malignant and particularly aggressive
cancer, and has characteristics of early, widespread metastases and
poor prognosis (Wang et al., 2020). NSCLC metastasis is the main
cause of significant morbidity and mortality associated with surgical
resection, involving tumor cell motility, intravasation, and circulation
in the blood or lymph system (Sadowska et al., 2011). Cisplatin, a
platinum agent, due to its affinity for DNA and other intracellular
nucleophiles, has strong anti-tumor activity against a variety of
malignant tumors including lung cancer (Trendowski et al., 2019).
However, cisplatin can also cause a variety of off-target toxicity
(ototoxicity, nephrotoxicity, bone marrow suppression, and
neurotoxicity), which not only seriously affects the quality of life of
patients, but also leads to lower doses or the choice of alternative
therapies that ultimately affect the results (Trendowski, et al., 2019).
There is currently no effective measure to successfully alleviate these
symptoms. Cisplatin toxicity is related to patient symptoms and
genetic factors. For example, the single nucleotide polymorphism
in acylphosphatase 2 andWolfram syndrome type 1 gene is related to
hearing loss caused by cisplatin (Trendowski, et al., 2019). Aging
increases the risk of platinum-induced nephrotoxicity by 43%, which
may be due to more comorbidities in elderly patients (Duan et al.,
2018). The risk of nephrotoxicity in elderly patients in Asian countries
is much higher than that in European countries and North America
(Duan, et al., 2018). In addition, the production of pro-inflammatory
cytokines (including TNF-α and IL-6) and inflammatory responses

are considered important factors for cisplatin to damage these organs
(Ozkok and Edelstein, 2014; Vasaikar et al., 2018). In the current
study, our results showed that paeonol and cisplatin significantly
inhibited the lung cancer of A549 cells. Although cisplatin had better
anti-tumor effects than paeonol, cisplatin at therapeutic dose caused
obvious kidney toxicity and partial liver damage evidenced by the
immunohistochemical analyses of various organs and tissues. Paeonol
had no side effects on the structure of liver and kidney tissues,
suggesting that paeonol could be significantly better than cisplatin
in terms of adverse reaction, which may be due to the anti-
inflammatory effects of paeonol (Zhang L. et al., 2019).

It has been increasingly recognized that tumor microenvironment
plays an important role in carcinogenesis (Mendes et al., 2020).
Inflammation often exists in tumor microenvironment and is
induced by inflammatory mediators produced by the tumor,
stroma, and infiltrating cells. These factors modulate tissue
remodeling and angiogenesis and actively promote tumor cell
migration and invasion through autocrine and paracrine
mechanisms (Liu et al., 2018). Many inflammatory mediators in
tumor microenvironment link inflammation to tumor progression.
Studies have demonstrated that TNF-α and IL-1β are required for the
initiation of chronic inflammation and their activation of NF-κB
pathway is closely related to tumor development (Jing and Lee, 2014).
IL-6 is a major factor involved in inflammation-associated cancer
strongly stimulating the activation of JAK and STAT3, and plays an
important role in the spread and invasion of tumor cells (Yoon et al.,
2012; Xiang et al., 2014). IL-6 can also be synergistic with cytokines

FIGURE 10 | Proposed mechanisms of paeonol inhibition of cell motility in NSCLC cells.
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such as TGF-β to induce EMT and thereby to promote tumor
proliferation, motility and invasion (Lopez-Bergami and Barbero,
2020). Our present study found that paeonol concentration-
dependently reduced the secretion of inflammatory cytokines from
A549 cells, especially TNF-α and IL-6. Moreover, paeonol inhibited
A549 cells migration and invasion upon TNF-α or IL-6 treatment.

A growing number of studies have indicated that EMT and
MMP enzymes are critically involved in the enhanced motility and
invasion of tumor cells (Wu et al., 2019). The event of EMT
characterized by loss of E-cadherin and upregulation of
N-cadherin can promote the transformation of tumor cell
phenotype, rending the acquisition of fibroblast-like characteristics
and leading to decreased cell adhesion and increasedmotility (Li et al.,
2019). On the other hand, tumor cells can obtain increased ability to
degrade extracellular matrix components via production and
secretion of MMPs especially MMP-2 and MMP-9. Therefore, it
could be much easier for tumor cells to permeate basement
membrane and achieve distant invasion and metastasis (Pai et al.,
2020). In the present study, we found that paeonol concentration-
dependently downregulated the expression of N-cadherin, MMP-2
and MMP-9 and upregulated the expression of E-cadherin in A549
cells stimulated by both TNF-α and IL-6, suggesting that paeonol was
able to reverse the EMT process. It could be postulated that
modulation of EMT and MMPs might contribute to paeonol
suppression of A549 cell migration and invasion. However,
whether EMT and MMPs in A549 cells are regulated by
inflammatory pathways awaits further investigation.

JAK3/STAT3 signaling plays a dual role in tumor
inflammation and immunity because it critically links many
carcinogenic pathways to inflammatory pathways. Increasing
evidence has shown that blockade of JAK3/STAT3 signaling
not only inhibits the proliferation of tumor cells, but also
reduces the inflammatory promotion in tumor
microenvironment. Activation of STAT3 by IL-6 prevents
cancer cell apoptosis and promotes malignant cell proliferation
via upregulation of proliferative and anti-apoptotic factors (Vaish
and Sanyal, 2011). In the current studies, we demonstrated that
paeonol inhibited IL-6-induced cell migration and invasion, and
further found that STAT3 phosphorylation and nuclear
translocation were reduced by paeonol in IL-6-stimulated
A549 cells. These data suggested that IL-6-induced activation
of STAT3 could be blocked by paeonol, which affected A549 cell
motility and invasion. NF-κB as a transcription factor is
commonly upregulated in cancer cells and is implicated in the
increased synthesis of inflammatory cytokines (Liu et al., 2020).
NF-κB not only activates genes associated with cancer cell
proliferation, invasion and metastasis, but also induces the
expression of inflammatory cytokines and chemokines (e.g.,
IL-6 and COX-2) (Hirano et al., 2020). NF-κB can crosstalk
with STAT3 at multiple levels, and is also a critical target
molecule for anti-tumor therapy (Degoricija et al., 2014). The
IκBα phosphorylation is a key step for activation of NF-κB
signaling. In the present study, we showed that paeonol
concentration-dependently inhibited the NF-κB p65
phosphorylation and the subsequent downstream signaling
mediators such as IκB induced by TNF-α in A549 cells. Then
we confirmed that paeonol inhibited TNF-α-induced NF-κB

nuclear translocation and transcriptional activity. These
findings suggested that paeonol blockade of TNF-α/NF-κB
signaling might be related to repressing migration and
invasion in A549 cells. Given the crosstalk between NF-κB and
STAT3, whether the blockade of IL-6/STAT3 signaling was due to
the feedback regulatory mechanisms needs to be verified in
further study.

CONCLUSION

Our present studies demonstrated that paeonol inhibited the
migration and invasion of A549 cells stimulated with IL-6 or
TNF-α, and reduced the secretion of inflammatory cytokines in
A549 cells. These effects might be associated with the inhibition of
EMT and regulation of MMPs system. Molecular evidence showed
that the STAT3 and NF-κB pathways were disrupted by paeonol,
contributing to the inhibition of motility and invasion (illustrated
in Figure 10). Paeonol also exerted potent anti-tumor effects in
nude mice with high safety. Our results provided novel insights
into the anit-tumor properties of paeonol implicated in anti-tumor
therapy against NSCLC.
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EGF-Mediated PD-L1 Transcription in
HCC
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High expression of programmed death-ligand-1 (PD-L1) in hepatocellular carcinoma
(HCC) cells usually inhibits the proliferation and functions of T cells, leading to immune
suppression in tumor microenvironment. However, very little has been described regarding
the mechanism of PD-L1 overexpression in HCC cells. In the present study, we found
epidermal growth factor (EGF) stimulation promoted the expression of PD-L1 mRNA and
protein in HCC cells. Inhibition of epidermal growth factor receptor (EGFR) could reverse
EGF-induced the expression of PD-L1 mRNA and protein. Subsequently, we also
observed that the phosphorylation level of Pyruvate kinase isoform M2 (PKM2) at
Ser37 site was also increased in response to EGF stimulation. Expression of a
phosphorylation-mimic PKM2 S37D mutant stimulated PD-L1 expression as well as
H3-Thr11 phosphorylation in HCC cells, while inhibition of PKM2 significantly blocked
EGF-induced PD-L1 expression and H3-Thr11 phosphorylation. Furthermore, mutation of
Thr11 of histone H3 into alanine abrogated EGF-induced mRNA and protein expression of
PD-L1, Chromatin immunoprecipitation (ChIP) assay also suggested that EGF treatment
resulted in enhanced H3-Thr11 phosphorylation at the PD-L1 promoter. In a
diethylnitrosamine (DEN)-induced rat model of HCC, we found that the expression of
phosphorylated EGFR, PKM2 nuclear expression, H3-Thr11 phosphorylation as well as
PD-L1 mRNA and protein was higher in the livers than that in normal rat livers. Taken
together, our study suggested that PKM2-dependent histone H3-Thr11 phosphorylation
was crucial for EGF-induced PD-L1 expression at transcriptional level in HCC. These
findings may provide an alternative target for the treatment of hepatocellular carcinoma.

Keywords: epidermal growth factor, Pyruvate kinase isoform M2, histone H3, programmed death-ligand-1,
hepatocellular carcinoma

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with a high
mortality rate (Du et al., 2016; Nie et al., 2018). Immune escape is emerging as important
contributors to the pathogenesis of HCC through remodeling the tumor microenvironment (Liu
et al., 2018a; Mantovani et al., 2020). Aberrant overexpression of programmed death-ligand-1 (PD-
L1) has been observed in hepatocellular carcinoma cells (Zhong et al., 2017). Unfortunately, PD-L1
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expression by cancer cells usually inhibits the proliferation and
functions of T cells in tumoral microenvironment, leading to
immune suppression and impressive antitumor effects (Langhans
et al., 2019; Liao et al., 2019). However, the mechanism of PD-L1
upregulation in HCC remains largely unclear.

The epidermal growth factor receptor (EGFR) belongs to the
ErbB family of receptor tyrosine kinases (RTKs) (Patel and
Leung, 2012; Maennling et al., 2019). Hyperactivation of
EGFR in HCC is suggested to be associated with aggressive
tumors, metastasis, and poor patient survival (Berasain and
Avila, 2014; Lanaya et al., 2014). Numerous studies have
showed that EGF/EGFR signal could increase PD-L1
expressions in non-small-cell lung cancer, colon cancer stem
cells, renal cancer cells and glioblastoma (Li et al., 2018b; Chen
et al., 2019b; Ma et al., 2020; Su et al., 2020). Therefore, this raise
the possibility that EGF/EGFR signal is also attributable to the
upregulation of PD-L1 in HCC.

Pyruvate kinase isoformM2 (PKM2) is a rate-limiting enzyme
in glycolysis that plays a key role in tumor metabolism (Xie et al.,
2016; Liu et al., 2017). Interestingly, under EGF stimulation,
PKM2 can translocate to the nucleus and act as a transcriptional
co-activator of many target genes associated with tumor cell
growth and metastasis (Yang et al., 2011; Chen et al., 2019c).
For example, PKM2 could translocate to nucleus and
phosphorylate histone H3 at Thr11 residue in response to the
activation of EGFR, leading to the expression of CCND1 and
MYC at transcriptional level (Yang et al., 2012a). Notably, recent
findings showed that PKM2 was closely positively related to PD-
L1 expression in lung adenocarcinoma and colon carcinoma
(Palsson-McDermott et al., 2017; Guo et al., 2019), while
knockdown of PKM2 substantially inhibited PD-L1 expression
in lung cancer cells (Guo et al., 2019). Although the expression of
PKM2 was higher in HCC tissues than in adjacent tissues (Lv
et al., 2018), it is still unknown whether PKM2 was involved in
regulating PD-L1 expression in HCC. In the present study, we
found that PKM2-induced phosphorylation of histone H3 is
required for EGFR-mediated PD-L1 transcription in
hepatocellular carcinoma.

MATERIALS AND METHODS

Materials
All the inhibitors used in the present study were purchased from
Cell Signaling Technology (Beverly, MA, USA). Rabbit
monoclonal anti-PD-L1 antibody (ab205921), rabbit
monoclonal anti-PKM2 antibody (ab206130), rabbit polyclonal
anti-Histone H3 antibody (ab1791), rabbit polyclonal anti-
Histone H3 (phosphor-Thr11) antibody (ab5168) were
obtained from Abcam (Cambridge, MA, USA). Rabbit
polyclonal anti-PKM2 (phosphor-Ser37) antibody (PA5-37684)
obtained from Thermo Fisher Scientific (Waltham, MA, USA).
Mouse monoclonal anti-β-actin antibody (sc-47778), horseradish
peroxidase (HRP)-conjugated goat anti-rabbit IgG (sc-2054) and
goat anti-mouse IgG (sc-2973) were all purchased from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). EGF was purchased
from R&D systems (Minneapolis, MN, USA).

Cell Lines and Cell Culture
The human hepatoma cell lines SNU368, SNU739, Huh-7 and
HepG2 were purchased from the Cell Bank of the Chinese
Academy of Science (Shanghai, China). All the cells were
routinely maintained in RPMI 1640 medium or Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10%
fetal bovine serum (HyClone, UT, USA) at 37 °C in a
humidified atmosphere with 5% CO2.

Induction of HCC
Male Sprague-Dawley rats (6-week-old) were purchased from
Beijing Weitong Lihua Animal Co. All animal procedures were
performed in accordance with the guidelines of the Institutional
Animal Care and Use Committee of Henan University (Grant
No. HUSOM2018-87). To induce hepatocellular carcinoma, the
rats were intraperitoneally injected diethylnitrosamine (DEN) at
a dose of 50 mg/kg once a week for 16 weeks. Rats in the control
group were intraperitoneally injected with normal saline solution
on the same days as the DEN-treated group. At the end of the
study, all animals were sacrificed, and the livers were removed.
After photographing with a camera, the livers were kept at −80°C
for qRT-PCR or Western blotting.

RNA Extraction and qRT-PCR
mRNA from cancer cells or rat livers were isolated using TRIzol
reagent (Invitrogen, Carlsbad, CA, USA) as previous described
(Li et al., 2018a). Reverse transcription was performed by using
random hexamers and MMLV reverse transcriptase according to
the manufacturer’s instructions (Takara, Tokyo, Japan). Relative
quantitative real-time PCR was performed in triplicate for each
sample using 2×SYBR Green PCR Master Mix (Promega) on an
ABI 7500 sequence detection system (Applied Biosystems).
Glyceraldehyde phosphate dehydrogenase (GAPDH) was used
as an internal control. The relative expression level of the genes
was calculated by the 2−ΔΔCt method. Specific primers for human
hepatocellular carcinoma cells were as follows: PD-L1, forward:
5′-TGT CAG TGC TACACCAAGGC-3′, reverse: 5′-ACAGCT
GAA TTG GTC ATC CC-3′. GAPDH, forward: 5′-GAC ACC
CAC TCC TCC ACC TTT-3′, reverse: 5′-TTG CTG TAG CCA
AAT TCG TTGT-3′. Specific primers for rat were as follows: PD-
L1, forward: 5′-TTA TAG TCA CAG CCT GCA GTC ACG -3′,
reverse: 5′-ATC GTG ACA TTG CTG CCA TAC TC-3′;
GAPDH, forward: 5′-AGC CAT GTA CGT AGC CAT CC-3′,
reverse: 5′-GCC ATC TCT TGC TCG AAG TC-3′.

Western Blot Analysis
Western blot analysis was conducted as previously described (Liu
et al., 2018b). Briefly, the total proteins were extracted using ice-
chilled RIPA lysis buffer containing 50 mM Tris-HCl (pH 8.0),
150 mM NaCl, 0.5% sodium deoxycholate, 0.1% SDS, 1% NP-40,
5mMEDTA, 0.25 mMPMSF and protease inhibitor cocktail. The
nuclear proteins were isolated according to previous report. In
brief, the harvested cells were washed three times with cold
phosphate buffered saline (PBS) buffer and then resuspended
gently in hypotonic buffer containing 20 mM Tris-HCl (pH 7.4),
10 mM NaCl and 3 mM MgCl2. After incubation on ice for
15 min, these cells were lysed with a Dounce homogenizer.
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The homogenate was centrifuged to remove intact cells, followed
by centrifugation at 800 g to collect the nuclei. The supernatant
contains the cytoplasmic fraction. The nuclear pellets were
washed three times with PBS buffer and lysed through
sonication. The concentration of total or nuclear protein was
determined using a BCA assay kit (Pierce, Rockford, IL). Protein
samples were denatured and separated by SDS-polyacrylamide
gel electrophoresis (SDS-PAGE). Following separation, the
protein was transferred onto a PVDF membrane. The
membranes were then blocked with 5% nonfat milk or 3%
BSA followed by the incubation of the indicated primary and
HRP-conjugated secondary antibodies. The blots were detected
using the ECL plus reagents and visualized using a Fluor Chem E
Imager (Protein Simple, San Jose, CA, USA).

ELISA Assay
Supernatants from cancer cell cultures were collected at the
indicated time points after EGF stimulation. The content of
PD-L1 in the culture medium was measured using ELISA kits
(R&D Systems, Minneapolis, MN) according to the instructions
provided by the manufacturer. Absorbance was measured at
450 nm by using a Vmax Kinetic microplate reader (Molecular
Devices, Sunnyvale, CA).

Immunofluorescence
The immunofluorescence staining was performed as previously
described (Bi et al., 2019). Briefly, Cells grown on coverslips were
stimulated with EGF for indicated times and fixed for 10 min in
4% paraformaldehyde at room temperature. After blocked with
5% fetal calf serum for 1 h at room temperature, the cells were
stained with the corresponding primary antibody overnight at
4 °C, followed by incubation with Alexa Fluor 488-conjugated
secondary antibodies (Invitrogen, Carlsbad, CA, USA) for 1 h at
room temperature. Nuclei were labeled with Hoechst 33342 stain
for 5 min at room temperature. Images were captured using an
LSM510M (Carl Zeiss) confocal microscope.

Chromatin Immunoprecipitation
Chromatin immunoprecipitation (ChIP) assays were performed
using a Simple ChIP plus enzymatic chromatin IP Kit (Cell
Signaling Technology) following the manufacturer’s
instructions. In brief, cells were cross-linked with 1%
formaldehyde for 10 min at 37 °C. Then the chromatin was
digested with micrococcal nuclease to generate 150–900 bp
DNA/protein fragments. The DNA-protein complexes were
immunoprecipitated with the ChIP-grade antibodies and
appropriate protein G-agarose beads. Normal rabbit or mouse
IgG was used as a negative control. The ChIP samples were
verified by qPCR to evaluate histone modification status on the
PD-L1 promoter, and the primers were as follows (−1,178 bp to
−1,117 bp): forward 5′-GCT GGG CCC AAA CCC TATT - 3′
and reverse 5′-TTT GGC AGG AGC ATG GAG TT-3′.

Statistical Analysis
Statistical analyses were performed using the GraphPad Prism 8.0
(GraphPad Software, Inc., CA, USA). All data are presented as
means ± SEM. The statistical significance of the difference

between the two groups was tested by an unpaired, two-tailed
Student’s t-test. One-way analysis of variance (ANOVA) followed
by Tukey or Dunnet’s post-tests were used to compare means of
multiple experimental groups. p < 0.05 was considered to be
significant.

RESULTS

Activation of EGFR Promotes PD-L1
Transcription in HCC Cells
To determine whether the activation of EGFR was responsible for
the upregulation of PD-L1 in HCC, we treated Huh-7, HepG 2,
SNU-368 and SNU-739 cells with 100 ng/ml EGF and then
measured the mRNA and protein expression of PD-L1.
Through real time PCR, we found that EGF promoted the
mRNA expression of PD-L1 in these cancer cells (Figure 1A).
Similarly, incubation of HCC cells with 100 ng/ml EGF also
induced a significant increase in PD-L1 protein expression
(Figure 1B). Considering that PD-L1 is a secreted protein, we
also examined the content of PD-L1 in cell culture medium. As
shown in Figure 1C, the level of PD-L1 in cell culture medium
increased in EGF-treated group.

Given that EGF-induced PD-L1 mRNA expression in SNU-
368 cells was more significant than in other cell lines, we
subsequently select SNU-368 cells to explore the underlying
mechanism of EGF-induced PD-L1 expression at
transcriptional level. In order to determine whether the
activation of EGFR contributes to the upregulation of PD-L1
in HCC cells, we first knocked down of EGFR with specific
shRNA in SNU-368 cells and evaluated the expression of EGF-
mediated PD-L1 expression. Our real time PCR results showed
that knockdown of EGFR could block EGF-induced the
upregulation of PD-L1 mRNA and protein expression in
SNU-368 cells (Figures 2A,B). Then, we examined the effects
of Gefitinib, an inhibitor of EGFR tyrosine kinase, on PD-L1
expression in EGF-treated SNU-368 cells. As expected, exposure
of SNU-368 cells to 20 µM Gefitinib for 12 h could attenuate the
upregulation of PD-L1 mRNA and protein expression induced
by EGF (Figures 2C,D). Obviously, EGF can promote the
mRNA and protein expression via activation of EGFR in
HCC cells.

Phosphorylation of PKM2 at Ser37 Is
Required for EGF-Induced PD-L1
Expression
It has been reported that the phosphorylation of PKM2 at Ser37 is
required for its nuclear translocation upon EGFR activation,
leading to a series of gene expression (Yang et al., 2012b).
Based on this report, we supposed that the phosphorylation of
PKM2 at Ser37 may be involved in EGF-induced PD-L1
expression. To test this hypothesis, we first treated SNU-368
cells with 100 ng/ml EGF and then detected the level of PKM2
Ser37 phosphorylation. The results showed that EGF could induce
a significant upregulation of PKM2 Ser37 phosphorylation in
SNU-368 cells (Figure 3A). Then, we asked if EGFR inhibitor
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Gefitinib could reverse EGF-induced PKM2 Ser37

phosphorylation. The results indicated that 20 µM Gefitinib
almost completely abolished 100 ng/ml EGF-induced PKM2
Ser37 phosphorylation after 2 h coincubation in SNU-368 cells
(Figure 3B). Moreover, using a Western blot assay, we also
observed increased PKM2 nuclear accumulation in SNU-368
cells after treated with 100 ng/ml for 2 h, while 20 µM
Gefitinib blocked 100 ng/ml EGF-induced PKM2 nuclear
accumulation (Figure 3C). Immunofluorescence analysis
further confirmed these results (Figure 3D).

Subsequently, we examined the effects of PKM2 knockdown
on EGF-induced PD-L1 expression in SNU-368 cells. Using real
time PCR and Western blot assay, we found that knockdown of
PKM2 significantly reversed EGF-induced PD-L1 mRNA and
protein expression (Figures 4A,B). Furthermore, we transfected
SNU-368 cells with Flag-tagged WT PKM2, a phosphorylation-
defective PKM2 S37A mutant, or a phosphorylation-mimic
PKM2 S37D mutant and examined the mRNA and protein
expression of PD-L1. The results showed that only PKM2
S37D mutant could promote the expression of PD-L1 mRNA
and protein in SNU-368 cells (Figures 4C,D). Through
chromatin immunoprecipitation (ChIP) analyses, we also
demonstrated that only PKM2 S37D mutant, but not WT

PKM2 or PKM2 S37A mutant, could induce an increased
PKM2 binding to PD-L1 promoter in SNU-368 cells
(Figure 4E). Thus, phosphorylation of PKM2 at Ser37 is
essential for EGF-induced PD-L1 expression in HCC cells.

PKM2-Induced Phosphorylation of Histone
H3 is Involved in EGF-Mediated PD-L1
Expression in HCC Cells
PKM2 has been reported to phosphorylate histoneH3 at Thr11 site in
response to EGF stimulation, which is required for subsequent gene
expression (Yang et al., 2012a). Therefore, we first treated SNU-368
cells with 100 ng/ml EGF and examined the level of histone H3 Thr11

phosphorylation. The results indicated that EGF treatment increased
histone H3 Thr11 phosphorylation in SNU-368 cells (Figure 5A). To
investigate whether EGF-induced H3 Thr11 phosphorylation
depended on PKM2, we then examined the effects of EGFR
inhibitor Gefitinib and PKM2 inhibitor shikonin on EGF-induced
H3 Thr11 phosphorylation. Through Western blot assay, we
discovered that both Gefitinib (20 µM) and Shikonin (5 µM)
could block EGF-mediated the upregulation of histone H3 Thr11

phosphorylation (Figure 5B). To test whether the phosphorylation of
PKM2 at Ser37 is instrumental for histone H3 Thr11 phosphorylation,

FIGURE 1 | EGF promotes PD-L1 expression in hepatocellular carcinoma cells (A and B) A significant increase in PD-L1mRNA (A) and protein expression (B)was
observed in Huh-7, HepG2, SNU-368 and SNU-739 cells after treated with EGF for indicated time. *p < 0.05, **p < 0.01, ***p < 0.001 compared to control group, one-
way ANOVA, n � 5 independent experiments per group (C) The ELISA assay showed that the concentration of PD-L1 in the cell culture medium was increased after
incubation with EGF for indicated time, *p < 0.05, **p < 0.01, ***p < 0.001 compared to control group, one-way ANOVA, n � 5 independent experiments per group.
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we expressed a Flag-tagged WT PKM2, a phosphorylation-defective
PKM2 S37A mutant or a phosphorylation-mimic PKM2 S37D
mutant in SNU-368 cells and measured the level of histone H3-
Thr11 phosphorylation. The results indicated that the
phosphorylation-mimic PKM2 S37D mutant induced a higher
level of histone H3 Thr11 phosphorylation compared with WT
PKM2 and PKM2 S37A mutant (Figure 5C). These results
suggested that phosphorylation of PKM2 at Ser37 is required to
EGF-induced H3-Thr11 phosphorylation.

To investigate whether H3-Thr11 phosphorylation was involved
in EGF-induced PD-L1 expression, we expressed RNAi-resistant
WT histone H3 or histone H3-T11A in endogenous histone H3-
depleted SNU-368 cells, the results showed that mutation of Thr11 of
histone H3 into alanine (Ala, A) abrogated EGF-induced mRNA
and protein expression of PD-L1 (Figures 5D,E). To strengthen the
evidence for the causal relationship of PKM2/H3 T11
phosphorylation on PD-L1 expression, we then explored the
effect of H3 T11A mutation on the PKM2 S37D overexpression-
induced PD-L1 expression in endogenous histone H3-depleted
SNU-368 cells. Through real time PCR and Western blot, we
found reconstituted expression of WT histone H3 and PKM2

S37D could induce PD-L1 mRNA and protein expression in H3-
depleted SNU-368 cells (Figures 5F,G), however, these increased
expression of PD-L1mRNA and protein could be blocked whenWT
histone H3 was replaced with histone H3 T11A mutant in
endogenous histone H3-depleted SNU-368 cells (Figures 5F,G).
ChIP assay also suggested that EGF treatment resulted in enhanced
H3-Thr11 phosphorylation at the PD-L1 promoter (Figure 5H),
while mutation of Thr11 of histone H3 into alanine (Ala, A)
abrogated EGF-induced enhanced H3-Thr11 phosphorylation at
the PD-L1 promoter in endogenous histone H3-depleted SNU-
368 cells (Figure 5I). These data confirmed our hypothesis that
PKM2-induced H3-Thr11 phosphorylation is involved in EGF-
mediated PD-L1 expression in HCC cells.

In order to expand our findings in vivo, we subsequently injected
diethylnitrosamine (DEN) into rats to set up a model of
hepatocellular carcinoma. As the results shown in Figure 6A,
numerous tumor nodules occurred in the livers of rats that
received DEN administration for 16 weeks. Then, we measured
the level of EGFR phosphorylation, the expression PKM2 nuclear
protein and H3-Thr11 phosphorylation in these rats. The results
showed that DEN treatment could induce a significant increase in

FIGURE 2 | EGFR activation is required for PD-L1 expression in SNU-368 cells. (A,B) Knockdown of EGFR with specific shRNA reversed EGF-induced PD-L1
mRNA (A) and protein (B) expressions in SNU-368 cells. At 24 h post-transfection, the cells were incubated in the presence or absence of 100 ng/ml EGF for 12 h. **p <
0.01, ***p < 0.001, one-way ANOVA, n � 4 independent experiments per group. (C,D) EGF-induced upregulation of PD-L1 mRNA (C) and protein (D) was blocked by
gefitinib. ***p < 0.001, one-way ANOVA, n � 5 independent experiments per group.
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EGFR phosphorylation, PKM2 nuclear protein and H3-
Thr11phosphorylationin in the rat livers (Figures 6B–D).
Moreover, we also found that the mRNA and protein expression
of PD-L1 was increased in the livers of DEN-treated rats (Figures
6E,F). Meanwhile, a ChIP assay also demonstrated that DEN
administration resulted in enhanced H3-Thr11 phosphorylation at
the PD-L1 promoter in rats (Figure 6G). Taken together, these in vivo
results also implied that PKM2-inducedH3-Thr11 phosphorylation is
involved in EGF-mediated PD-L1 expression in HCC.

DISCUSSION

High expression of PD-L1 is significantly associated with tumor
aggressiveness and poor prognosis in HCC patients who were
never treated via immunotherapy (Liao et al., 2019; Mocan et al.,
2019). During tumor development and growth, PD-L1 can
enhance immune evasion by suppression of recruitment and
activation of T cells in tumor microenvironment (Macek

Jilkova et al., 2019). Recently, emerging evidence come to
explore the underlying mechanism of PD-L1 expression in
HCC. For example, osteopontin (OPN) promotes the PD-L1
expression in HCC via activation of the colony stimulating
factor-1 (CSF1)-CSF1 receptor pathway in macrophages (Zhu
et al., 2019). Knockdown of MYC expression can induce PD-L1
expression both at mRNA and protein levels (Zou et al., 2018). A
key glycolytic enzyme, PFKFB3, mediated the increased
expression of PD-L1 via activating the nuclear factor kappa B
signaling pathway in HCC (Chen et al., 2019a). Although
accumulating evidences suggested the activation of EGFR
contributes to PD-L1 expression in several cancers (Li et al.,
2018b; Chen et al., 2019b), it is still unknown whether EGF/EGFR
signal was involved in PD-L1 expression in HCC. In the present
study, we also observed that EGF could induce PD-L1 expression
at the transcriptional level in HCC cells, while inhibition of EGFR
dramatically attenuated EGF-induced PD-L1 expression.
Therefore, we supposed that EGF/EGFR signal may be critical
in regulating PD-L1 expression in many cancers. However,

FIGURE 3 | EGF stimulates the phosphorylation and nuclear translocation of PKM2 in SNU-368 cells (A) EGF induced an increase in the level of PKM2 Ser37

phosphorylation in SNU-368 cells. **p < 0.01, ***p < 0.001, one-way ANOVA, n � 6 per group (B) Gefitinib attenuated EGF-induced the level of PKM2 Ser37

phosphorylation in SNU-368 cells. **p < 0.01, one-way ANOVA, n � 5 per group (C) EGF-mediated PKM2 nuclear accmulation was reversed by Gefitinib in SNU-368
cells. Lamin B1 was used as internal control and β-actin was used as negative control. **p < 0.01, one-way ANOVA, n � 5 per group (D) Immunofluorescence
staining showed Gefitinib attenuated EGF-induced PKM2 nuclear accmulation in SNU-368 cells.
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because we used Gefitinib to block the activity of EGFR tyrosine
kinase, this may bring a risk of off targets effects due to the
problem of dosage and specificity. Indeed, this is a limitation of
our study.

Overexpression of PKM2 has been observed in a variety of
malignant tumors, which is related to the tumor proliferation,
progression and drug resistant (Wong et al., 2015; Bhardwaj and
Das, 2016; Li et al., 2018c). As a glycolytic enzyme, PKM2
normally located in the cytoplasm functions as a prominent
driver of the Warburg effect that plays a dominant role in
cancer metabolism (Wong et al., 2015; Wang et al., 2017). In
addition, PMK2 has nonmetabolic functions in malignant cells
through acting as a glycolytic enzyme or transcriptional
coactivator. For example, PKM2 could translocate to the
nucleus and form a complex with HIF-1α subunit to promote
the transcription of HIF-1α targeted genes (Azoitei et al., 2016).
Nuclear dimeric PKM2 also directly phosphorylates signal
transducer and activator of transcription 3 (STAT3) at Tyr705,
resulting in aggressive progression of colorectal cancer (Yang
et al., 2014). Here, our results also suggested that nuclear PKM2
could serve as a transcriptional cofactor to induce PD-L1
transcription in response to EGF stimulation in hepatocellular
carcinoma cells. Accumulating evidences illuminated that post-
translational modifications including phosphorylation and

acetylation are critical for the protein localization and
functional modulation of PKM2(Yang et al., 2012b; Wang
et al., 2017). For instance, the Ser202 phosphorylation of PKM2
by AKT1 is essential for the nuclear localization of PKM2 protein
under IGF-1 stimulation (Park et al., 2016). Acetyltransferase
p300 could acetylate PKM2 at Lys433, leading to the accumulation
PKM2 in the nucleus and the increases of both tyrosine and
threonine kinase activities (Lv et al., 2013). Especially, Yang et al.
(2012b) have found that phosphorylation of PKM2 at Ser37 by
ERK1/2 promotes the translocation of PKM2 to the nucleus upon
EGFR activation. Consistent with Yang report, we also
demonstrated that Ser37-phosphorylated PKM2 is vital for
PKM2 nucleus localization in HCC. Meanwhile, we believe
ERK1/2 may be also responsible for the phosphorylation of
PKM2 at Ser37 in HCC cells.

Histone H3 phosphorylation has been regarded as one of the
most frequent epigenetic modifications that affects chromatin
structure and gene transcription (Cerutti and Casas-Mollano,
2009). For example, phosphorylation of histone H3 at Ser10 was
required for AP-1 activation in nasopharyngeal carcinoma (Li
et al., 2013); phosphorylation H3 Thr45 by Akt has been reported
to facilitate transcriptional termination in response to DNA
damage (Hurd et al., 2009); histone H3-Thr11 phosphorylation
induced by PKM2 is required for cyclin D1 and c-Myc expression

FIGURE 4 | Phosphorylation of PKM2 at Ser37 participates in EGF-induced PD-L1 expression. (A,B) PKM2 shRNA blocked EGF-induced PD-L1 mRNA (A) and
protein (B) expressions in SNU-368 cells. At 24 h post-transfection, the cells were incubated in the presence or absence of 100 ng/ml EGF for 12 h. **p < 0.01, ***p <
0.001, one-way ANOVA, n � 4 independent experiments per group. (C,D) The expression of a phosphorylation-mimic PKM2 S37D mutant induced a higher expression
of PD-L1 mRNA (C) and protein (D) compared with WT PKM2 or the S37A mutant in SNU-368 cells. **p < 0.01, one-way ANOVA, n � 4 independent experiments
per group. (E) ChIP analyses showed that the expression of a phosphorylation-mimic PKM2 S37D mutant resulted in increased binding of PKM2 to PD-L1 promoter in
SNU-368 cells. *p < 0.05, **p < 0.01, one-way ANOVA, n � 5 independent experiments per group.
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under EGF stimulation (Yang et al., 2012a). In support of these
observations, our results suggested that PKM2-mediated histone
H3-Thr11 phosphorylation participated in EGF-induced PD-L1
transcriptional expression. Interestingly, several studies suggested

that histone H3 acetylation also play a key role in the regulation of
PD-L1 gene expression in cancer cells (Lei et al., 2015; Wang
et al., 2020). Given that the process of H3 phosphorylation usually
recruits a histone modifying enzyme that would in turn generate

FIGURE 5 | PKM2-induced phosphorylation of histone H3 at Thr11 is required for EGF-mediated PD-L1 transcription in SNU-368 cells. (A) EGF treatment induced
a significant increase in H3 Thr11 phosphorylation in SNU-368 cells. **p < 0.01, ***p < 0.001, one-way ANOVA, n � 5 independent experiments per group, (B) EGF-
induced H3-Thr11 phosphorylation was attenuated by Gefitinib and shikonin after 1 h co-incubation in SNU-368 cells, **p < 0.01, ***p < 0.001, one-way ANOVA, n � 5
independent experiments per group, (C) expression of the phosphorylation-mimic PKM2 S37D mutant increased H3-Thr11 phosphorylation compared with the
WT PKM2 or the S37A mutant in SNU-368 cells. **p < 0.01, one-way ANOVA, n � 5 independent experiments per group, (D and E) Reconstituted expression of RNAi-
resistant histone H3-T11A abrogated EGF-induced the mRNA, (D), and protein (E) expression of PD-L1 in endogenous H3-depleted SNU-368 cells. At 24 h post-
transfection, cells were incubated in the presence or absence of 100 ng/ml EGF for 12 h ***p < 0.001, one-way ANOVA, n � 5 independent experiments per group
(F and G) Reconstituted expression of WT histone H3 and PKM2 S37D could induce PD-L1 mRNA (F) and protein (G) expression which could be blocked when WT
histone H3 was replaced with histone H3 T11 A mutant in endogenous histone H3-depleted SNU-368 cells. **p < 0.01, ***p < 0.001, one-way ANOVA, n � 5
independent experiments per group (H) ChIP analysis showed that EGF treatment for 6 h resulted in enhanced H3-Thr11 phosphorylation at the PD-L1 promoter in
SNU-368 cells. **p < 0.01, a two-tailed unpaired t-test, n � 5 independent experiments per group (I)ChIP analysis showed reconstituted expression of histone H3 T11A
mutant abrogated EGF-induced enhanced H3-Thr11 phosphorylation at the PD-L1 promoter in endogenous histone H3-depleted SNU-368 cells.
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FIGURE 6 | DEN treatment induced a significant upregulation of phospho-EGFR, phospho-H3, and PKM2 nuclear accumulation in rat livers. (A) Top,
representative photos of livers from normal and DEN-treated rats; bottom, representative images of H&E-stained livers. (B) The phosphorylational level of EGFR at
Tyr1068 was increased in the livers of DEN-treated rats. **p < 0.01, two-tailed unpaired t-test, n � 8 rats per group. (C) The expression of PKM2 nuclear protein was
upregulated in the livers of DEN-treated rats. Lamin B1 was used as an internal control, and β-actin was used as a negative control. **p < 0.01, two-tailed unpaired
t-test, n � 8 rats per group. (D) The phosphorylational level of H3-Thr11 was increased in the livers of DEN-treated rats. **p < 0.01, two-tailed unpaired t-test, n � 8 rats per
group. (E,F) The expression of PD-L1 mRNA (E) and protein (F)was increased in the livers of DEN-treated rats. **p < 0.01, ***p < 0.001, two-tailed unpaired t-test, n � 8
rats per group. (G) ChIP analyses showed that DEN administration resulted in enhanced H3-Thr11 phosphorylation at the PD-L1 promoter in rats. **p < 0.01, two-tailed
unpaired t-test, n � 8 rats per group.

FIGURE 7 | Schematic representation of the activation of EGF induced PD-L1 transcription in hepatocellular carcinoma cells. EGF stimulation induced PKM2
phosphorylation at Ser37 site. Then, the phosphorylated PKM2 translocates into the nucleus to phosphorylate histone H3 at Thr11, leading to PD-L1 transcription in HCC.
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the second modification (Cheung et al., 2000; Yang et al., 2012a),
we supposed histone H3 acetylationmay be also involved in EGF-
induced PD-L1 expression in HCC cells. In line with this opinion,
Yang et al. (2012a) found that H3-Thr11 phosphorylation induced
by EGF is required for histone deacetylase 3 (HDAC3)
disassociation from some gene promoters and subsequent
acetylation of histone H3 at Lys9. Notably, a recent study
suggested that enhancer of zeste homolog 2 (EZH2) can
suppress PD-L1 expression by directly upregulating
H3K27me3 levels at CD274 (encoding PD-L1) promoter
regions in hepatoma cells (Xiao et al., 2019). Combined with
Dong et al. (2018) findings that EGF can promote EZH2
expression in human lens epithelial cells (HLECs), therefore,
we cannot exclude that EGF can regulate PD-L1 expression
through inducing EZH2 overexpression in HCC.

In conclusion, our study firstly suggested that EGF could
induce PKM2 phosphorylation at Ser37 and translocation of
the PKM2 protein to the nucleus, the nuclear PKM2 then
phosphorylates histone H3 at Thr11 and the subsequent
expression of PD-L1 in HCC (Figure 7). Furthermore,
these results also revealed that targeting PKM2 or histone
H3-Thr11 may be an effective treatment approach for HCC in
the future.
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B-cell lymphoma 2 (BCL-2) family proteins primarily work as a programmed cell death
regulator, whereby multiple interactions between them determine cell survival. This
explains the two major classes of BCL-2 proteins which are anti-apoptotic and pro-
apoptotic proteins. The anti-apoptotic proteins are attractive targets for BCL-2 family
inhibitors, which result in the augmentation of the intrinsic apoptotic pathway. BCL-2 family
inhibitors have been studied extensively for novel targeted therapies in various cancer
types, fibrotic diseases, aging-related as well as autoimmune diseases. Navitoclax is one of
them and it has been discovered to have a high affinity toward BCL-2 anti-apoptotic
proteins, including BCL-2, BCL-W and B-cell lymphoma-extra-large. Navitoclax has been
demonstrated as a single agent or in combination with other drugs to successfully
ameliorate tumor progression and fibrosis development. To date, navitoclax has
entered phase I and phase II clinical studies. Navitoclax alone potently treats small cell
lung cancer and acute lymphocytic leukemia, whilst in combination therapy for solid
tumors, it enhances the therapeutic effect of other chemotherapeutic agents. A low platelet
count has always associated with single navitoclax treatments, though this effect is
tolerable. Moreover, the efficacy of navitoclax is determined by the expression of
several BCL-2 family members. Here, we elucidate the complex mechanisms
of navitoclax as a pro-apoptotic agent, and review the early and current clinical studies
of navitoclax alone as well as with other drugs. Additionally, some suggestions on the
development of navitoclax clinical studies are presented in the future prospects section.

Keywords: anti-cancer agent, apoptosis, cancer, fibrosis, navitoclax (ABT-263), B-cell lymphoma

INTRODUCTION

Navitoclax is one of the B-cell lymphoma 2 (BCL-2) family protein inhibitors which has been
generated during the clinical development of ABT-737 (Tse et al., 2008). This orally bioavailable
drug, which was formerly known as ABT-263, has a similar structure to its predecessor, ABT-737.
Three main sites of ABT-737 have been identified to cause its large molecule (molecular weight >
800 g/mol) and contribute to its poor profile in terms of charge balance, affinity as well as metabolism
(Park et al., 2006; Tse et al., 2008). The results from ABT-737 preclinical studies have proven its poor
bioavailability and physicochemical properties which then caused the clinical studies to be impeded
(Tse et al., 2008). Modification of ABT-737 structure to ABT-263 aims tomaximize the drug potency,
pharmacokinetics and pharmacodynamics (Bruncko et al., 2007), hence increasing its potential as an
anti-cancer drug. Additionally, early studies on navitoclax have shown promising results to suppress
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tumors in small cell lung cancers (SCLC) and acute lymphocytic
leukemia (ALL) (Tse et al., 2008). One study has demonstrated a
high affinity profile of navitoclax toward BCL-2 family proteins
(Chen et al., 2011). Navitoclax is a known BH3 mimetic drug and
potently binds to the BH3 domain of BCL-2 anti-apoptotic
members. Upon administration, navitoclax binds to the BH3
binding groove of BCL-2 proteins which are located in the

cytoplasm, causing the displacement of pro-apoptotic BH3-
only protein, BIM, from BCL-2 (Mérino et al., 2012). BIM is
then set free to trigger the release of small heme proteins, the
cytochrome c, from mitochondria causing cell apoptosis (Mérino
et al., 2012).

The BCL-2 family members are categorized into three groups
which represent their respective structure and function

FIGURE 1 | BCL-2 family protein members. The BCL-2 family members are comprised of anti-apoptotic and pro-apoptotic proteins. Pro-apoptotic proteins are
further categorized into three groups according to their functions: (A) Pro-apoptotic effectors � executioner proteins (B) Proapoptotic activators � BH3-only activators
(C) Proapoptotic sensitizers � BH3-only sensitizers. BCL-2, B-cell lymphoma 2; BCL-XL, B-cell lymphoma-extra-large; MCL-1, Myeloid cell leukemia; A1, BCL-2 related
protein A1. Adapted from Shamas-Din et al. (2013).

FIGURE 2 | Summary of B-cell lymphoma 2 (BCL-2) family proteins mechanism of actions. Initiation of death signal is through the binding of BH3-only proapoptotic
proteins either into the hydrophobic groove of antiapoptotic BCL-2 family or executioner proteins, leading to executioner proteins activation and oligomerization. This
results in mitochondrial outer membrane permeabilization, cytochrome c release and activation of caspase activity. Eventually, cell death is observed. However, cell
apoptosis is inhibited by anti-apoptotic proteins through the suppression of executioner proteins activities and blocking cytochrome c released.
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(Figure 1): i) Executioner proteins: stimulate apoptotic events
directly or indirectly through BH3 proteins signaling that are able
to detect cellular stress; ii) BH3-only proapoptotic proteins:
regulate apoptosis by recruiting the executioner proteins, BAX
or BAK, to oligomerize and trigger mitochondrial outer
membrane permeabilization (MOMP); iii) Anti-apoptotic
proteins: inhibit apoptosis by hindering BH3 and executioners
proteins activities (Visvader et al., 2009; Shamas-Din et al., 2013).
The activity of BCL-2 family members is a central regulator for
cell survival or cell death. A brief description of their mechanism
in modulating the intrinsic apoptotic pathway is illustrated in
Figure 2.

Generally, the BCL-2 family protein structure consists of
several BCL-2 homology (BH) domains which play a crucial
role in activating cell apoptosis (Ibrahim et al., 2016; Tan et al.,
2016). In fact, previous studies have shown that apoptotic event
rates, as well as their interactions with other proteins signaling
were affected by these domains alteration or deletion (Reed et al.,
1996; Kawatani and Imoto, 2003; Monaco et al., 2013). Besides,
the roles and interactions of BCL-2 family members to modulate
programmed cell death are diverse and complex (Petros et al.,
2004; Chen et al., 2005; Willis et al., 2005; Moldoveanu et al.,
2014). An early study has discovered that some BH3-only
proteins (i.e., BIM and PUMA) displayed random binding to
all the anti-apoptotic proteins with comparable potency whilst
others (e.g., BAD and NOXA) were observed to be selective
(Chen et al., 2005). For example, BAD displayed high potency
toward BCL-2, B-cell lymphoma-extra-large (BCL-XL) and BCL-
W but low potency to A1 and no association with myeloid cell
leukemia (MCL-1). In contrast, NOXA only showed interaction
with MCL-1 and A1 (Chen et al., 2005). Concurrent selective
binding of Bad and NOXA to their respective antiapoptotic BCL-
2 proteins exhibited a potent stimulation of cell death (Chen et al.,
2005). This selectivity is influenced by the differences in the pro-
apoptotic activity of BH3-only members and certain selective
interaction combinations that lead to complementary apoptotic
function (Chen et al., 2005). Another study has reported that
different anti-apoptotic proteins regulate the activity of
executioner proteins in causing cell death. The study
demonstrated that BAK activation was negatively regulated by
the binding of MCL-1 and BCL-XL only, whilst BAX activity was
influenced by most of the anti-apoptotic members (Willis et al.,
2005). Nevertheless, BAK inactivation could be reversed by the
concurrent interaction of BH3-only proteins with MCL-1 and
BCL-XL, thus restoring BAK-mediated apoptosis activity (Willis
et al., 2005). This evidence has clearly illustrated the
multicomplex molecular interaction of BCL-2 family members
in modulating programmed cell death. In spite of that, the
determination of several BCL-2 family proteins’ selectivity and
specificity interactions could potentially contribute to the
development of BCL-2 inhibitors.

Over the decade, further investigations and clinical studies
involving navitoclax in cancer treatment have been carried out to
evaluate its efficacy and toxicology. In addition, many existing
investigations attempt to explore the apoptotic effect of
navitoclax on other diseases such as chronic lymphocytic
leukemia, epithelial cancer, breast cancer and fibrosis.

Nevertheless, a comprehensive review of navitoclax
pharmacological properties has yet to be presented. This
review aims to clearly elucidate and compile the potential
therapeutic use of navitoclax on various cancer types, tumor
progression, and fibrosis. The discussion will center on the
mechanisms and available clinical reports of navitoclax in
treating those diseases in order to evaluate its pharmacological
profile as well as tolerability in patients. Furthermore, the
combination therapy of navitoclax with other drugs will also
be reviewed. Lastly, suggestions on how to improve navitoclax
clinical studies and other potential targets for navitoclax
treatment will be included in the future prospects section.

ROLE OF NAVITOCLAX ON CANCER AND
TUMOR PROGRESSION

Uncontrolled cell growth and its spreading are the prime factors
of cancer pathophysiology. Modulation of the intrinsic apoptotic
pathway by BCL-2 family proteins highly influences the survival
of cancer cells. Previous studies have demonstrated an abundant
expression of anti-apoptotic proteins, commonly BCL-2, BCL-XL,
and BCL-W in multiple myeloma cell lines (Gazitt et al., 1998)
and non-SCLC tissues (Liu et al., 2017) which are associated with
tumor advancement, sustenance (Liu et al., 2017) and
chemoresistance (Gazitt et al., 1998; Shangary et al., 2004;
Paulus et al., 2014). Avoidance of apoptosis through the
promotion of pro-survival BCL-2 family proteins is effective to
support the pathogenesis of cancer. Meanwhile, a stimulation of
intrinsic apoptosis after DNA damage would enhance the
potency of chemotherapeutic agents (Gandhi et al., 2011). One
of the strategies for cancer treatment development is via
promoting the intrinsic programmed cell death. Blocking the
interaction of anti-apoptotic proteins with executioner proteins
on mitochondrial membranes has been the basis for that
approach. Therefore, the pro-survival proteins of BCL-2
families are the potential targets for this therapeutic
intervention. Several BCL-2 family inhibitors have been
explored as anti-cancer drugs and one of them is navitoclax. A
study has reported the mechanism of navitoclax to induce cancer
cell apoptosis by disrupting the interaction of anti-apoptotic
proteins with BH3 domain binding proteins as shown in
Figure 3. As a consequence, the free BH3-only activators
initiate BAX translocation resulting in mitochondrial MOMP
(Han et al., 2019). MOMP leads to the cytochrome c secretion
from the mitochondrial intermembrane space into the cytoplasm
(Bender and Martinou, 2013) and further stimulate downstream
signaling of intrinsic apoptosis through caspase proteins’
interaction. Ergo, cancer cells further proliferation are
abolished, and in some cases, this may promote the
chemotherapeutic regimens. Nevertheless, the mechanism of
navitoclax in mediating anti-tumor activity of various cancer
types by recruiting BCL-2 family proteins is complex and yet to be
well elucidated. The following are the studies of navitoclax
therapy on various cancer types, mostly aimed to explore its
mechanism, efficacy, side effects, pharmacodynamics as well as
pharmacokinetic profiles.
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Navitoclax Clinical Studies on Various
Cancer Types
Preclinical Studies
In vitro and in vivo studies conducted by Tse et al. (2008) were the
first to show the inhibitory effect of navitoclax on anti-apoptotic
proteins of the BCL-2 family for various tumor therapies
including SCLC. Navitoclax was found to have a high affinity
toward BCL-2 and BCL-XL proteins, but not to MCL-1 protein
(Tse et al., 2008). The in vitro study has further confirmed the
navitoclax interaction with BCL-2 protein, as this drug weakly
induced apoptosis of BCL-2-deficient cells (Tse et al., 2008).
Furthermore, their study demonstrated the downstream
signaling of navitoclax through BAX activation and the release
of cytochrome c (Tse et al., 2008). In vivo study on SCLC
xenograft models found that daily oral dosing of navitoclax
effectively attenuates tumor progression (Tse et al., 2008).
Dosages of 25–50 mg/kg have induced tumor suppression in
almost half of the models studied and even with a low dosage,
a moderate tumor inhibition was observed. Their steady-state
pharmacokinetics study demonstrated that approximately
5.4–7.7 μmol/L of navitoclax peak plasma concentrations are
of high potency (Tse et al., 2008). Other than that, a further
study conducted by Shoemaker et al. (2008) aimed to elucidate
the efficacy of navitoclax in several SCLC cell lines (in vitro) and
xenograft models (in vivo). Navitoclax efficacy on different
SCLC xenograft models was varied, yet the treatment showed
the induction of BAX translocation, cytochrome c release and

caspase-3 stimulation were dose-dependent through the cellular
level. Nonetheless, the results displayed a good correlation
between in vitro cellular potency and in vivo tumor efficacy
where the cell lines with the higher potency (EC50 <
200 nmol/L) exhibited 100% objective response rate [ORR:
the proportion of patients with tumor size reduction of a
predefined amount and for a minimum time period (Kogan
and Haren, 2008)] in vivo (Shoemaker et al., 2008). Dose
regimen tests have demonstrated the high efficacy of
navitoclax through continuous dosing (whether once or twice
daily) compared to intermittent dosing (every 3 or 7 days).
These findings indicate that acute administration of
navitoclax is sufficient to significantly kill cancer cells.
However, chronic treatment contributes to a stronger effect
on tumor regression as well as delaying tumor growth
(Shoemaker et al., 2008)

Navitoclax treatment also has been investigated for several
lymphoid malignancies such as ALL, B-cell lymphoma and
multiple myeloma. Even though these cancer types are quite
similar in some ways as they are originated in the bone marrow,
navitoclax exhibits different efficacy toward them. An in vivo
study on an ALL xenograft model had demonstrated a potent
anti-cancer effect of navitoclax (Tse et al., 2008). This result was
supported by a pediatric preclinical testing program study, where
a total of 23 panels of cell lines were treated with navitoclax at
concentrations ranging from 1.0 nM to 10.0 µM, and the
outcomes showed the greatest treatment sensitivity toward

FIGURE 3 | Apoptotic mechanism of navitoclax on tumor cells. Left: Classical apoptotic pathway of B-cell lymphoma 2 (BCL-2) family proteins. Right: Potentiation
of apoptotic activity in the presence of navitoclax. Navitoclax affinity on antiapoptotic BCL-2 proteins are varied. MOMP,mitochondrial outer membrane permeabilization.
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ALL cell lines (Lock et al., 2008). Similarly, in vivo results against
ALL xenograft models also have displayed a significant
therapeutic effect, but it was less sensitive against pediatric
solid tumors despite the dosing and administration timing
were according to the SCLC research procedure (Lock et al.,
2008). Moreover, it is fascinating to observe that navitoclax has
significantly potentiated the efficacy of some chemotherapeutic
regimens (i.e., rituximab, doxorubicin, cyclophosphamide,
vincristine, bortezomib and prednisone) in the xenograft
models of other lymphoid malignancies including B-cell
lymphoma and multiple myeloma (Tse et al., 2008).
Nonetheless, single navitoclax treatments fairly inhibit the
growth of these tumor types (Tse et al., 2008). Following this
finding, Ackler et al. (2010) have conducted an investigation to
assess potential augmentation of several common
chemotherapeutic agents in blood cancer models by
navitoclax. Both of these in vitro and in vivo studies
demonstrated the ability of navitoclax to enhance other
chemotherapeutic agents’ effects, significantly improve the
ORR, massively attenuate tumor development and effectively
delay the tumor growth (Tse et al., 2008; Ackler et al., 2010).
Ackler et al. (2010) proposed that the upregulation of BCL-2 and
BCL-XL in targeted tumor lines has developed resistance toward
the common cytotoxicity agents in which the sensitivity could be
restored in the presence of navitoclax.

A preclinical study by Shi et al. (2011) on a panel of epithelial
cancer lines also demonstrated that MCL-1 and BCL-XL play a
crucial role as apoptotic mediators during a prolonged mitotic
arrest. BCL-2 family members’ expressions are varied throughout
the mitosis cycle. During interphase, the MCL-1 level is elevated,
hence explaining the low responsiveness of epithelial cancer lines
toward navitoclax treatment (Shi et al., 2011). While during
mitotic arrest (developed by antimitotic drug), MCL-1
expression is low due to an imbalance between synthesis and
proteolysis, thus allowing navitoclax to effectively accelerate
apoptotic activity through inhibition of the BCL-XL signaling
pathway (Shi et al., 2011). They also found that BIM upregulation
is unnecessary to promote apoptosis duringmitotic arrest, though
other pro-apoptotic proteins expression should be determined in
the future (Shi et al., 2011). Therefore, Shi et al. (2011) results
have shed new light on epithelial cell-variation, whereby in cells
with low BCL-XL levels (i.e., HeLa), downregulation of MCL-1
alone was sufficient to trigger BAX/BAK translocation and cause
cell apoptosis. Whereas, in cells with substantial levels of BCL-XL
(i.e., U2OS, OVCAR-5, A549), loss of MCL-1 alone was
insufficient, but a combination with BCL-XL inhibitors such as
navitoclax would cause BAX/BAK translocation that led to cell
apoptosis (Shi et al., 2011). These data are the first to illustrate the
point at which cell death is potentiated by navitoclax in the cell
cycle phase and is governed by BCL-2 family members’
expressions.

Recent studies have reported the potency of navitoclax on
breast cancer cells. However, the clinical trials were limited due to
the occurrence of resistance towardmonotherapy in breast cancer
cells. Additionally, monotherapy with BCL-2 family did not
induce tumor death in some breast cancer cell lines (Chen
et al., 2011; Oakes et al., 2012; Vaillant et al., 2013). Jha et al.

(2012) have reported that survivin is overexpressed in the
majority of breast cancer cases, and its expression is associated
with chemotherapeutic resistance. Thus, survivin-targeted
therapy may be a good treatment approach for breast cancer
patients (Lee et al., 2018). Primary functions of survivin include
inhibiting cell apoptosis and regulating mitosis which is
associated with the initiation of cancer formation (Lv et al.,
2010). Lee et al. (2018) have conducted a study on two
different types of breast cancer cell lines which are MDA-MB-
231 and MCF-7. They reported different potencies of single
navitoclax treatments on these cells. Navitoclax treatment
alone had downregulated survivin expression and induced cell
death in MDA-MB-231 cells, in contrast to MCF-7 cells that did
not exhibit survivin reduction and causing cell resistance toward
navitoclax (Lee et al., 2018). However, a combination therapy of
navitoclax with a survivin inhibitor which is everolimus, was
effective in stimulating an intrinsic apoptotic pathway in MCF-7
cells (Lee et al., 2018). Further in vivo studies of this novel
polytherapy should be carried out in order to pursue clinical
trials. Other than that, further preclinical studies using navitoclax
with survivin inhibitors against various breast cancer cell lines
could broaden the clinical data of navitoclax on breast
malignancies (Lee et al., 2018).

Apart from that, Yang et al. (2019) have revealed the apoptotic
activity of navitoclax as well as potential new molecular targets in
human oral cancer-derived cell lines and mouse xenograft
models. Their in vitro study has shown that navitoclax
reduced the viability and stimulated cell death of HSC-3 and
HSC-4 oral cancer cell lines (Yang et al., 2019). C/EBP
homologous protein (CHOP) expressions were discovered to
elevate in response to navitoclax treatment in a concentration-
and time-dependent manner, thus indicating CHOP association
with apoptotic activity of navitoclax in human oral cancer cells
(Yang et al., 2019). CHOP is known as a critical element of the
endoplasmic reticulum (ER) stress response and its expression is
considered as an ER stress marker protein (Yang et al., 2017; Yang
et al., 2019). Earlier studies demonstrated that several BCL-2
inhibitors may stimulate ER stress conditions, including
accumulation and aggregation of unfolded and misfolded
proteins to manifest their anti-tumor activities (Soderquist R.
et al., 2014; Soderquist R. S. et al., 2014). Therefore, these studies
support the findings of Yang et al. (2019) in suggesting that
navitoclax works as an ER stress activator in mediating the
apoptotic mechanism of oral cancer cells. In addition, an in
vivo study using 100 mg/kg/day navitoclax treatment against oral
cancer xenograft mice for 21 days found it exhibited a significant
anti-tumor effect without apparent hepatic and renal toxicities
(Yang et al., 2019). From these data, they postulated that
navitoclax may be an attractive therapeutic drug candidate for
human oral cancer therapy with CHOP as its alternative target in
regulating the apoptotic activity and the side effects are also
minimal. Hence, this study provides new insight into the
navitoclax mechanism in regulating cell apoptosis through
other families of apoptotic protein not only through BCL-2
family members. The findings from previous preclinical
studies involving navitoclax in various cancer models are
summarized in Table 1.
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TABLE 1 | Summary of navitoclax preclinical studies on various cancer types.

disease Model Dosage Sample number Side effect Mechanism of
action

References

Small cell lung cancer In vitro: Human tumor cell lines In vitro: 0 – 1,000 nmol/L In vitro: SCLC cell lines →
n � 22

Rapid but reversible
thrombocytopenia

Navitoclax functionally inhibits BCL-XL
activity which then triggers BAX
translocation and release of
cytochrome, eventually causing cell
apoptosis

Tse et al. (2008)
Lymphoid malignancies

Lymphoid malignancies cell
lines → n � 23

In vivo: C.B. -17 scid-bg and C.B.-
17 scid mice

In vivo: Mice→ 100 mg/kg In vivo: Mice → n � 8–10 — — —

Beagle dogs Dogs → 2 mg/kg/d (day 1
– day 6), then increased to
6 mg/kg/d (day 7 – day 12)

Dogs → n � 3 — — —

Hematologic tumors B-cell lymphoma and multiple
myeloma cell lines and mice models

In vitro: 0.1–100 nM ND Drug resistance Navitoclax neutralizes BCL-2 activity,
causing an increase of BAX
oligomerization and subsequently
enhances cell killing

Ackler et al. (2010)
In vivo: 100 mg/kg/day

Small cell lung cancer In vitro: SCLC cell lines In vitro: Various EC50

values of navitoclax have
been determined for each
SCLC cell lines tested,
i.e., 110 nmol/L and
22 μmol/L against the
most and the least
sensitive cell lines
respectively

In vitro: 30 cell lines Transient thrombocytopenia
and lymphopenia

Navitoclax inhibits BIM and
antiapoptotic proteins interactions,
which then stimulates the intrinsic
apoptotic pathway. Moreover,
navitoclax triggers cell apoptosis in
cytokine-deprived cells through BCL-
XL- and BCL-2-dependent signaling.

Shoemaker et al.
(2008)

In vivo: SCLC mice models In vivo: 100 mg/kg/day
and 50 mg/kg/day

In vivo: 11 mice models

Solid tumors and
hematologic malignancies

In vitro: Solid tumors and
hematologic tumors cell lines

In vitro: 0.001–10.0 µM In vitro: 23 cell lines Thrombocytopenia Navitoclax is positively correlated with
BCL-2, BCL-W, BCL-XL and with BH3-
only proteins; BIM, whilst exhibiting
negative correlation with MCL-1
expression

Lock et al. (2008)

In vivo: Mice models In – vivo: 100 mg/kg/day In vivo: 44 xenograft mice
models

Epithelial cancer Epithelial cancer cell lines 1 µM ND None Navitoclax promotes cell killing during
mitotic arrest is BCL-XL-dependent
and is contributed by low MCL-1
expression. Plus, BH3-only proteins’
actions for cell apoptosis during mitotic
arrest are dispensable

Shi et al. (2011)

Breast cancer MDA-MB-231 and MCF-7
breast cancer cell lines

1 μM, 2 μM, 5 µM ND None The single navitoclax treatment has
induced apoptosis of MDA-MB-231
cell line, but not MCF-7 cell line.
Stimulation of the apoptotic signaling
are through survivin inhibition and
caspase-activation-dependent

Lee et al. (2018)

Oral cancer In vitro: Human oral cancer-derived
cell lines; HSC-3, HSC-4, Ca9.22,

HN22, MC-3, YD-15.

In vitro: 0 μM, 2 μM,
4 μM, 6 µM

— None Navitoclax acts as an endoplasmic
reticulum stress inducer by
upregulating C/EBP homologous
protein (CHOP) expression to mediate
apoptosis in human oral cancer cells

Yang et al. (2019)

In vivo: Four-week-old female nude
mice tumor xenograft models

In vivo: 100 mg/kg/day

ND: not determined; BCL-XL, B-cell lymphoma-extra-large; SCLC, Small cell lung cancer.

Frontiers
in

P
harm

acology
|w

w
w
.frontiersin.org

N
ovem

ber
2020

|V
olum

e
11

|A
rticle

564108

M
oham

ad
A
nuar

et
al.

N
avitoclax

and
C
ancer

102

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Phase I Clinical Trials
A phase I clinical study has been carried out for a year on forty-
seven patients with SCLC or pulmonary carcinoids by Gandhi
et al. (2011). Intermittent and continuous navitoclax treatments
were applied in this study to examine the safety doses and
pharmacokinetics of this drug in humans. Several biomarkers
have been identified such as pro-gastrin releasing peptide (pro-
GRP) and an antibody marker for the cleaved product of
caspase-mediated apoptosis (i.e., M30) to reflect the effect of
navitoclax on BCL-2 protein expression and cell apoptosis
respectively (Gandhi et al., 2011). The pro-GRP was known
as a surrogate marker of BCL-2 amplification and its changes
correlated with changes in tumor volume (Tahir et al., 2010;
Gandhi et al., 2011). The study found that the severity of the
major adverse events, including diarrhea, vomiting, fatigue and
nausea were in grade 1 and 2, which were tolerable (Gandhi
et al., 2011). Conversely, the blood platelet count was affected
through different dosing regimens, whereby it lessened as the
BCL-XL mechanism was inhibited in response to elevation of the
navitoclax concentration (Gandhi et al., 2011). Meanwhile, the
best anti-tumor activity was observed in patients that were
treated with the highest navitoclax dose (i.e., 130 mg).
Furthermore, there was a correlation between pro-GRP levels
with the best percentage tumor change and M30 levels also
displayed a direct correlation with navitoclax doses. Hence, this
study has established pro-GRP as a relevant biomarker to
determine the BCL-2 level in response to its potential inhibitors.

Wilson et al. (2010) have conducted a phase 1 dose-escalation
investigation on adult patients with various relapsed or refractory
lymphoid tumors which were chronic lymphoid leukemia (CLL),
diffuse large B-cell lymphoma (DLBCL), mantle-cell lymphoma
(MCL), follicular lymphoma (FL), small lymphocytic lymphoma
(SLL), classic Hodgkin’s lymphoma, NK/T-cell lymphoma and
marginal-zone lymphoma. Intermittent and continuous dose-
escalation regimens for 21 days had been carried out in this study
and the patients were enrolled in different regimen groups
through a modified Fibonacci 3 + 3 design (Wilson et al.,
2010). Common toxic effects were observed throughout the
treatment including gastrointestinal disorders, infection,
fatigue thrombocytopenia, lymphocytopenia, and an increase
in aminotransferases. The incidence of thrombocytopenia in
patients receiving the intermittent dosing schedule was more
severe than in the continuous regimens, whereby platelet counts
dropped drastically with the first dose of each cycle, then followed
by a slight rebound (Wilson et al., 2010). Nevertheless, the
severity of thrombocytopenia was ameliorated by applying a
continuous dosing schedule at day-8 of the treatment. They
reported a novel pharmacodynamic effect of navitoclax on
peripheral thrombocytopenia and T-cell lymphopenia in
treating lymphoid tumors owing to high affinity inhibitions of
BCL-2 and BCL-XL proteins (Wilson et al., 2010). These results
were in accordance with previous preclinical studies of navitoclax
on SCLC and ALL xenograft models (Tse et al., 2008).
Furthermore, they discovered that the hematological toxic
effects were critical in patients with a limited bone marrow
reserve (Wilson et al., 2010). Hence, Wilson et al. (2010)
suggested starting the treatment with 150 mg of navitoclax for

day 1–7, followed by a 325 mg dose administered on a continuous
21/21 dosing schedule for phase II studies (Wilson et al., 2010).

Roberts et al. (2012) have also carried out phase 1 clinical study
of navitoclax, this time on 29 patients with relapsed or refractory
CLL. A dose escalation regimen of navitoclax was implemented,
where 15 patients received navitoclax for 14 days (10, 110, 200,
250 mg/d), whilst another 14 patients received navitoclax for
21 days (125, 200, 250, 200 mg/d) of each 21-days cycle (Roberts
et al., 2012). However, the dose escalation was decided by
continual reassessment methodology, in which this method
can effectively estimate the maximum-tolerated dose (Roberts
et al., 2012). Their study demonstrated that Navitoclax has
significant single-agent activity against circulating, nodal, and
splenic disease in patients with CLL. The anti-leukemic activity
was seen within days, particularly in circulating lymphocyte
counts, with maximum clinical responses typically observed
within the first 4 months (Roberts et al., 2012).
Thrombocytopenia due to BCL-XL inhibition was observed in
accordance with the results from preclinical studies of navitoclax
with lymphocytic tumors. Hence, Roberts et al. (2012) suggested
250 mg/day of navitoclax in a continuous dosing regimen is
effective for phase II studies.

Phase II Clinical Trials
A phase IIa clinical study of navitoclax has been conducted by
Rudin et al. (2012) in patients with recurrent and progressive
SCLC as the therapeutic choices for this occurrence is limited.
They carried out a phase I study prior to the phase IIa to
determine the optimum and safer navitoclax dose on patients
with various solid tumors so that the risk of severe
thrombocytopenia can be evaded. As a result, 325 mg daily
dose was accepted to be used in phase II and it showed that
the severity of thrombocytopenia can be managed (Rudin et al.,
2012). Other than that, the effectiveness of cytotoxic drugs to kill
the cancer cells in SCLC and other solid tumors could also be
promoted in the presence of navitoclax (Rudin et al., 2012).
Development of major adverse events in the Rudin et al. (2012)
study corresponded to the Gandhi et al. (2011) report, which has
been mentioned earlier. However, Rudin et al. (2012) observed
around 40% occurrence of low blood platelet count in grade III-
IV as the effect of navitoclax. Both studies suggested that
combination therapy of navitoclax should be carried out to
alleviate the adverse effects.

Navitoclax Toxicity
Potential side effects have been discovered from the earlier study
by Tse et al. (2008), where they reported a reversible
thrombocytopenia with daily and escalation dose regimens on
an animal model (i.e., dog). Even escalation dose regimen caused
about 50% platelet drops initially, but a similar steady-state effect
is induced through a continuous dosing at a constant high dosage
(Tse et al., 2008). Similarly, transient thrombocytopenia and
lymphopenia were observed as well by Shoemaker et al. (2008)
and Lock et al. (2008) through their in vivo studies on SCLC and
ALL xenograft models respectively. They have characterized this
incident by rapid clearance of circulating platelets that are
undergoing apoptosis in response to navitoclax treatment
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(Lock et al., 2008; Shoemaker et al., 2008; Tse et al., 2008).
However, it is vital to note that the thrombocytopenia
occurrence is reversible, well-tolerated and is mechanism-
based. This outcome was supported by the evidence from its
predecessor (i.e., ABT-737) data that showed an inactive ABT-
737 enantiomer did not reduce the circulating platelet counts
(Zhang et al., 2007). Fortunately, the absence of bone marrow
toxicity was perceived in both ABT-737 and ABT-263 studies
(Zhang et al., 2007; Tse et al., 2008). These results may lead to a
potential clinical study of ABT-263 as a single agent or in a
combination regime for SCLC and hematological malignancies
treatment with tolerable side effects that could justify the
existence of a therapeutic window with navitoclax treatment.

A very recent preclinical study has reported the establishment
of navitoclax into a prodrug, namely a galacto-conjugation of
navitoclax (Nav-Gal), which aims to minimize the platelet
toxicity effect and increase the selectivity toward tumors-
accumulating senescent cells (González-Gualda et al., 2020).
The modification of navitoclax with acetylated galactose
exhibited selective apoptotic activity on senescent cells due to
the elevation of lysosomal and galactosidase activity, which causes
an active navitoclax to be released at the action site (González-
Gualda et al., 2020). However, this prodrug remained inactive in
non-senescent cells, thus hindering the apoptotic mechanism of
navitoclax. In vitro and in vivo studies of Nav-Gal on non-SCLC
(NSCLC) cell lines and xenograft models have revealed a high
potency of this prodrug to mitigate tumor progression (González-
Gualda et al., 2020). Besides, this novel prodrug did not trigger
platelet apoptosis in mouse and human blood ex vivo (González-
Gualda et al., 2020). This reflects the capability of Nav-Gal to have
an effective anti-tumor effect with the absence of
thrombocytopenia which has been the highlight of their study.
Further clinical studies of Nav-Gal on other cell lines and
different xenograft models should be carried out to validate
more the potential of this prodrug as an anti-cancer agent.
Furthermore, it is worthwhile to conduct a clinical trial of
Nav-Gal on NSCLC patients. This novel prodrug has given a
promising outcome for navitoclax to exhibit its pro-apoptotic role
with a high therapeutic index.

The Association of B-Cell Lymphoma 2
Family Protein Expressions With Navitoclax
Sensitivity
Most of the early studies on lung and lymphoid cancers that
reported the effectiveness of navitoclax against BCL-2 family
protein to induce cell death in SCLC and ALL xenograft models
were associated with BCL-2 anti-apoptotic proteins’ expressions,
including BCL-2, BCL-XL, BCL-W and MCL-1 (Lock et al., 2008;
Shoemaker et al., 2008; Tse et al., 2008). Tumor cells with a high
expression of MCL-1 create resistance toward navitoclax
treatment. The low binding affinity of navitoclax toward
MCL-1 (Tse et al., 2008) may contribute to this resistance as
navitoclax would fail to block the interaction of MCL-1 with the
executioner proteins, thus hindering cell death. Tse et al. (2008)
have demonstrated that navitoclax potency was restored when
MCL-1 expressions in several resistant cells were suppressed.

They reported the sensitivity of SCLC and ALL xenograft models
toward navitoclax treatment was positively correlated with BCL-
2, BCL-XL, BCL-W and pro-apoptotic protein (i.e., BIM)
expressions, while exhibiting a negative correlation with MCL-
1 expression (Lock et al., 2008; Tse et al., 2008). In addition, Lock
et al. (2008) have reported that the limited navitoclax activity on
pediatric solid tumors was associated with a high level of MCL-1
expressions and one of the ALL xenograft models was not
responsive to navitoclax due to lower expression of pro-
apoptotic activators. These findings indicate a complex
modulation of navitoclax efficacy by BCL-2 family protein
expressions.

Various cancer types may exhibit different expression levels of
this protein family which contribute to the varying potency of
navitoclax. Many studies have demonstrated that the expression
of BCL-2 family proteins is correlated with the navitoclax
sensitivity at the cellular level for SCLC and ALL particularly.
It is interesting to study the effect of a single navitoclax treatment
on different cancer types with high BCL-2, BCL-XL or BCL-W
expressions, and to include navitoclax in a combination
treatment with other chemotherapeutic agents that have
moderate anti-tumor action as well as tumor regression.
Moreover, future studies can be done to determine whether
the other types of lung cancers, lymphoid malignancies or
other cancer types that are recently discovered to benefit from
navitoclax treatment will display a similar or a new biomarker for
navitoclax sensitivity. The results may allow us to evaluate the
novel potential biomarkers for navitoclax.

ROLE OF NAVITOCLAX IN FIBROSIS/
FIBROTIC DISEASES

In wound healing condition, failure of myofibroblast to undergo
apoptosis or convert back to the inactivated form of fibroblast
would lead to excessive production of extracellular matrix (Latif
et al., 2019), which contribute to the progression of fibrotic
diseases (Ho et al., 2014). Uncontrolled activation of stiffness-
induced myofibroblast results in pathological fibrosis (Kuehl and
Lagares, 2018). Navitoclax has the ability to cause apoptosis of
myofibroblast via a mitochondrial apoptosis mechanism. The
apoptosis of myofibroblast may prevent and reverse the
progression of fibrotic diseases such as in scleroderma, which
is also known as systemic sclerosis (Wan Ali et al., 2015). Daily
intake of navitoclax was shown to reverse dermal fibrosis via
apoptosis of myofibroblast (Lagares et al., 2017). A
summarization of navitoclax preclinical studies on different
fibrotic diseases is displayed in Table 2.

When a fibroblast is differentiated into a myofibroblast, the
mitochondria are targeted by pro-apoptotic protein with the BH3
domain such as BIM (Lagares et al., 2017). In order to counteract
the pro-apoptotic protein and to prevent the occurrence of
apoptosis, the myofibroblasts express anti-apoptotic proteins
such as BCL-XL. Navitoclax is a very potent BH3 mimetic
drug that could inhibit BCL-XL in myofibroblasts and
eventually lead to the apoptosis of myofibroblasts (Lagares
et al., 2017). Navitoclax acts on BCL-XL, sequestering BCL-XL
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from binding with BIM. This enables BIM to continue
functioning and causes apoptosis in rigid myofibroblasts. The
inhibition of BCL-XL by navitoclax has been shown to treat
fibrosis in a mouse model of scleroderma dermal fibrosis via
myofibroblast apoptosis. The main target of navitoclax in
fibrosis-related-diseases is the antiapoptotic proteins of
myofibroblast (Lagares et al., 2017). It has become clear that
differentiated myofibroblast expresses an anti-apoptotic protein
that inhibits the mechanism. By forcing these myofibroblasts to
undergo apoptosis, the progression of fibrosis could be reversed
(Kuehl and Lagares, 2018). Normally, fibroblasts would not be
targeted by navitoclax as they are resistant to the action of
navitoclax. However, stiffness-activated myofibroblast expresses
anti-apoptotic proteins that sequester the function of BIM
(Lagares et al., 2017). With the addition of navitoclax in vivo,
anti-apoptotic BCL-XL will be occupied by navitoclax and pro-
apoptotic BIM will be set free to cause apoptosis. BIM will then
bind to the BAX/BAK activator, resulting in mitochondria
membrane permeabilization and apoptosis of myofibroblast.
Therefore, navitoclax induces apoptosis of myofibroblast in
vivo and treats dermal fibrosis by releasing pro-apoptotic BIM
from BCL-XL (Lagares et al., 2017).

In the case of persistent pulmonary fibrosis, navitoclax is
potent in reversing the condition by killing senescent type II
pneumocytes. A study conducted by Pan et al. (2017) where
pulmonary fibrosis in mouse was induced through laser
irradiation had found that the number of senescent cells
increased significantly in pulmonary fibrosis. However,
navitoclax as a senolytic drug killed the senescent cells and
resolved pulmonary fibrosis (Pan et al., 2017). Likewise,
navitoclax also exhibited an apoptotic effect on senescent lung
myofibroblasts, which are the main effector cells in idiopathic
pulmonary fibrosis (IPF) (Schafer et al., 2017). Continuous
fibrosis in IPF is associated with the build-up of senescent
type II alveolar epithelial cells and myofibroblasts that are
resistant toward apoptosis. Navitoclax has been proven to treat
permanent pulmonary fibrosis in mice through induction of
apoptosis in senescent type II alveolar epithelial cells (Pan
et al., 2017). Interestingly, navitoclax is shown to have both
fibrinolytic and senolytic actions, which have a potential in
reversing age-related fibrotic diseases. This drug acts as a
selective, secure, and useful anti-fibrotic agent to reverse organ
fibrosis (Kuehl and Lagares, 2018).

In the context of liver cirrhosis due to fibrosis, navitoclax
specifically targets and binds to the inhibitory site of anti-
apoptotic BCL-XL protein. This will then stop the anti-
apoptotic effect of BCL-XL, resulting in apoptosis of senescent
cells (Zhu et al., 2016). The senolytic in vivo mechanism aids in
diminishing liver fibrosis via the apoptosis of senescent liver cells
(Moncsek et al., 2018). Primary sclerosing cholangitis (PSC) is
usually associated with senescence of cholangiocyte (Moncsek
et al., 2018). As shown in Figure 4, PSC continuous injury to
cholangiocytes causes a pro-inflammatory response, which
induces chronic inflammation, cholestasis and fibrosis. The
majority of the cholangiocytes turn into senescent cells and
express BCL-XL to prevent death. Senescent cholangiocytes
secrete growth factors such as platelet-derived growth factorT
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(PDGF) that activate stromal fibroblasts. Continual activation of
fibroblast is the key factor of liver fibrosis. Activated stromal
fibroblasts express a lower level of BCL-2, causing them to
become BCL-XL-dependent. Since BCL-XL is the key to
survival of senescent cholangiocytes and activated stromal
fibroblasts, treatment with navitoclax, which is a BCL-XL

inhibitor is potent in reducing biliary liver fibrosis (Moncsek
et al., 2018).

Senescent cholangiocytes consistently secrete growth factors
that stimulate stromal fibroblasts, which contribute to the
progression of fibrosis (Karin et al., 2016). The activated
stromal fibroblasts show increased responsiveness toward
apoptotic signals (Mertens et al., 2013). Moncsek et al. (2018)
operated a coculture system and identified that senescent
cholangiocytes activate mesenchymal cells in the presence of
PDGF into stromal fibroblast. The key to the survival of
PDGF-induced human and mouse fibroblasts is BCL-XL.
Moreover, BCL-XL is also expressed in senescent
cholangiocytes. Thus, the blockage of BCL-XL by navitoclax
promotes apoptosis in PDGF-activated fibroblasts and
senescent cholangiocytes in vitro. Moncsek et al. (2018)
examined navitoclax efficacy on both activated stromal
fibroblasts and senescent cholangiocytes in the multidrug
resistance 2 gene knockout (Mdr2−/−) mouse model of biliary
liver fibrosis. The reduction of senescent cholangiocytes and
activated stromal fibroblasts due to apoptosis reversed
established biliary liver fibrosis in Mdr2−/− mice.

According to Walaszczyk et al. (2019), aging cardiomyocytes
contribute the most to defective cardiac function as they are
abundant in cardiac tissues, which subsequently lead to cardiac
fibrosis. This can lead to a higher chance of mortality in the
occurrence of myocardial infarction (MI). Cardiac fibrosis due to

aging cells results in reduced survival of the elderly with MI. The
treatment of aged mice with navitoclax successfully induces
apoptosis in aging cardiac cells and inhibits the expression of
pro-fibrotic transforming growth factor beta-2 (TGFβ2) protein
by aged mice, thereby decreasing cardiac fibrosis. Particularly, the
removal of aging cardiac cells ameliorated myocardial remodeling
and diastolic activity along with a higher rate of survival in the
event of MI.

Since both senescent cells and activated myofibroblasts express
BCL-XL proteins, navitoclax can induce apoptosis not only in
myofibroblasts, but also in senescent cells. The specificity of
navitoclax enables the eradication of both myofibroblasts and
related senescent cells, hence resolving fibrosis in the affected
organs. This widens the potential of navitoclax in treating a
variety of fibrotic diseases.

NAVITOCLAX IN COMBINATION THERAPY

To date, most studies on navitoclax with the presence of other
drugs have been conducted against various solid tumors and
lymphoid malignancies. Researches intend to amplify the anti-
tumor activity of chemotherapeutic drugs with navitoclax
through multiple simultaneous protein interactions. This could
be achieved as the chemotherapeutic agents commonly display
distinct target proteins from navitoclax. The preclinical and
clinical studies on navitoclax in combination treatment are
summarized in Table 3.

BRAFV600E mutation in papillary thyroid cancer (PTC) highly
corresponds to aggressive tumor features, including metastasis,
cancer relapse, and failure of radioiodine treatment (Zhu et al.,
2019). Vemurafenib, a potent BRAF inhibitor that exhibited

FIGURE 4 |Mechanism of B-cell lymphoma-extra-large (BCL-XL) inhibitor in diminishing liver fibrosis. PSC, Primary sclerosing cholangitis; PDGF, Platelet-derived
growth factor; ECM, extracellular matrix.
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strong efficiency in metastatic malignant melanoma possessing
BRAFV600E mutation (Mcarthur et al., 2014), also showed a
convincing therapeutic effect against BRAFV600E-positive
PTC (Kim et al., 2013; Brose et al., 2016). Nevertheless, the
development of resistance toward vemurafenib slowly limited its
efficacy in BRAFV600E-positive PTC (Dadu et al., 2015). In a
study carried out by Jeong et al. (2019), vemurafenib alone
demonstrated anti-proliferative activity against
K1 BRAFV600E-positive PTC cells by suppressing almost half
of K1 cells growth at 10 µM. After the treatment of vemurafenib
for 24 h, the protein expression of p-Erk1/2 was reduced, while
the protein expression of BCL-XL and BCL-2 was increased. This
proved that vemurafenib upregulates the expression of anti-
apoptotic BCL-2 and BCL-XL in K1 cells. On the other hand,
treatment of navitoclax alone at 4 µM for 24 h showed
insignificant outcomes on the survival of K1 cells. Therefore, a
combination of navitoclax and vemurafenib was given against
K1 BRAFV600E-positive PTC cells. This combination strongly
inhibited cell development and induced a higher rate of apoptosis
with a lower concentration of navitoclax and vemurafenib, in
which 0.5 and 1 µMwere required respectively to yield synergistic
activity (Jeong et al., 2019).

A study conducted by Lam et al. (2015) proved that a
combination of benzimidazoles, an anti-helminthic agent with
navitoclax enhanced the apoptosis effect in NSCLC cell lines via a
mechanism mediated by NOXA, a pro-apoptotic protein with
BH3 domain. The addition of benzimidazoles upregulates both
mRNA and protein expression of pro-apoptotic NOXA, which
then binds and opposes the effect of anti-apoptotic protein MCL-
1. This combination is beneficial as navitoclax alone is unable to
target and bind on MCL-1 due to its low affinity to MCL-1
(Leverson et al., 2015). Combination therapy of navitoclax with
other agents that target MCL-1 could restore the apoptosis
process in cancers with high expression of BCL-XL and MCL-
1 (Lam et al., 2015).

The anti-apoptotic BCL-XL and MCL-1 are highly expressed
in SCLC, as SCLC relies on both BCL-XL and MCL-1 for survival
(Nakajima et al., 2016). Nakajima et al. (2016) reported that a
combination of navitoclax and vorinostat, which is known as a
histone deacetylase (HDAC) inhibitor, effectively triggered
apoptosis in various SCLC cell lines, including navitoclax-
resistant H82 and H526 cells. This is based on the mechanism
that NOXA and BIM can be transcriptionally induced by HDAC
inhibitors (Nakajima et al., 2016) as histone modification plays a
significant role in SCLC (Peifer et al., 2012). Therefore, vorinostat
as a HDAC inhibitor is capable of mutating histone modification,
which then augments SCLC cell death by navitoclax due to the
expression of NOXA and BIM. SCLC has increased
responsiveness toward navitoclax with the increased expression
of NOXA and BIM, where pro-apoptotic NOXA binds to anti-
apoptotic MCL-1 with a high affinity that leads to degeneration of
MCL-1 (Nakajima et al., 2016). NOXA was constantly activated
by the combination of vorinostat and navitoclax in all tested cell
lines excluding H209 cells, which do not have known levels of
NOXA and BIM. However, H209 cells were effectively killed
when vorinostat and navitoclax co-treatment was given. This was
achieved via the decreased protein expression of BCL-XL inducedT
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only by the combination of vorinostat and navitoclax, causing the
discharge of BAK from BCL-XL into an active form. Hence,
Nakajima et al. (2016) proved that the combination treatment
significantly activated apoptosis in certain cell lines by
upregulating NOXA or BIM while inhibiting BCL-XL alone in
other cell lines.

Acute myeloid leukemia (AML) with co-existing NUP98-
NSD1 and FLT3-ITD mutation is accompanied by poor
prognosis and a low chance of survival (Akiki et al., 2010;
Hollink et al., 2011; Ostronoff et al., 2014; Thanasopoulou
et al., 2014). Kivioja et al. (2019) discovered that a
combination of Src/Abl-inhibitor dasatinib and BCL-2 blocker
navitoclax works synergistically against NUP98-NSD1+/FLT3-
ITD+ AML cells. Patient cells with NUP98-NSD1+/FLT3-ITD+

were very responsive toward navitoclax and showed the most
sensitivity toward dasatinib. There was an increased expression of
BCL-2A1, proteins Lck and Fgr in NUP98-NSD1+/FLT3-ITD+

AML cells. On the other hand, the expression of BCL-2A1,
proteins Lck and Fgr were much lower in healthy CD34 +

cells, as proven by gene expression profiling. Therefore, a
combined treatment of navitoclax and dasatinib produces
synergistic outcomes against AML cells co-expressing NUP98-
NSD1+ and FLT3-ITD+ in which navitoclax inhibits BCL-2A1
while dasatinib inhibits proteins Lck and Fgr (Kivioja et al., 2019).

Navitoclax alone adequately exhibits therapeutic response
against CLL and lymphoma as described above. Kipps et al.
(2015) carried out a study using a combination of navitoclax
and rituximab for CLL patients. The combination regimen was
given to a group of random patients once a week, for 8 weeks.
Rituximab alone was given to another group of CLL patients once
a week for the same duration. The combination of navitoclax plus
rituximab was shown to give a better therapeutic effect compared
to rituximab alone. CLL cells express a high level of anti-apoptotic
protein BCL-2 (Fegan and Pepper, 2013), which can be easily
targeted and inhibited by navitoclax. At the same time, CLL cells
also express a high level of pro-apoptotic protein BIM, causing
the CLL cells to be more susceptible to apoptosis with navitoclax
treatment. The pro-apoptotic protein BIM will be displaced and
set free by navitoclax to carry out the apoptotic program of CLL
cells (Kipps et al., 2015). Therefore, navitoclax potentiates the
anti-leukemic effect of rituximab. CLL patients treated with a
combination of navitoclax and rituximab showed a higher overall
response rate compared to those treated with rituximab alone
(Kipps et al., 2015).

Navitoclax and rituximab produce a synergistic effect in pre-
clinical models of B-cell lymphoid cancers (Roberts et al., 2015).
In vitro, lymphoma clones with resistance to rituximab show
elevated expression of anti-apoptotic BCL-2 family proteins and
increased level of resistance to a range of chemotherapeutic
drugs. These findings suggest that by reducing the apoptotic
threshold, navitoclax as a BCL-2 inhibitor may produce a
synergistic effect with rituximab against B-cell malignancies
(Roberts et al., 2015). In the experiment designed by Roberts
et al. (2015), 29 patients were administered a 200–325 mg daily
dose of navitoclax and four weekly doses of rituximab. The
outcome of the combination was well-tolerated, with a few side
effects including mild diarrhea, nausea and thrombocytopenia.

The total CD19+ was significantly decreased, while CD2+ cells
and serum IgM were also decreased in the first year. The
ultimate acceptable dose for navitoclax in combination with
rituximab was 250 mg/dose (Roberts et al., 2015), with no
interaction between the drugs. This combination exhibited
greater efficacy for low-grade lymphoid cancers than either
navitoclax or rituximab alone (Roberts et al., 2015).

An in vivo research done by Ackler et al. (2012) showed that
the therapeutic combinations of navitoclax with either
bendamustine alone or bendamustine with rituximab (BR)
were effective in mouse xenograft models of non-Hodgkin’s
lymphoma (NHL). These combinations were applied in a few
models of NHL, including the DoHH-2 DLBCL model, Granta
519MCLmodel and RAMOS BLmodel. Navitoclax enhanced the
effect of bendamustine in every cell line experimented.
Bendamustine stimulated p53 in Granta 519 tumors and
activated caspase 3 at the same time. Navitoclax also enhanced
the reaction of a subset of tumors to bendamustine-rituximab
(BR). The addition of navitoclax essentially boosted the durability
and extent of tumor response to bendamustine and BR, resulting
in inhibition of tumor growth (Ackler et al., 2012).

Pre-clinically, navitoclax has been shown to yield an in vitro
synergistic outcome with erlotinib, an epidermal growth factor
receptor inhibitor. Erlotinib inhibits the anti-apoptotic MCL-1
protein and activates the pro-apoptotic BIM protein (Chen et al.,
2011). Tolcher et al. (2015) tested a combination of navitoclax
and erlotinib in an in vivo phase I study. Eleven patients with
known cancers undergoing erlotinib treatment were given
150 mg erlotinib in addition to 150 mg navitoclax orally once
per day. The pharmacokinetic evaluation presented no possible
interactions between co-administered navitoclax and erlotinib.
Although the maximum tolerated dose of navitoclax was given at
150 mg/d, the experiment did not achieve the desired outcome
with 0% response rate for the navitoclax and erlotinib
combination. Moreover, a few side effects can be observed,
such as diarrhea, nausea and vomiting.

Carboplatin and paclitaxel are the most prevalent
chemotherapeutic drugs used in ovarian cancer therapy.
However, the evolution of drug resistance mechanism allows
long term survival of cancer cells. This required the use of
navitoclax to overcome the resistance of ovarian cancer cells
toward carboplatin and paclitaxel (Wong et al., 2012). In the
in vitro treatment of ovarian cancer done by Stamelos et al.
(2013), the combination of navitoclax with either carboplatin or
paclitaxel retarded cancer cell proliferation significantly as
compared to the combination of carboplatin and paclitaxel,
which acted antagonistically to one another in Ovcar-4, Ovcar-8
and Skov-3 cells. When navitoclax was combined with carboplatin
and paclitaxel, the antagonism between carboplatin and paclitaxel
was diminished. The synergistic effect was produced from the
combination therapy in comparison to either carboplatin or
paclitaxel monotherapy. Furthermore, navitoclax strengthened
the effect of carboplatin and paclitaxel by upregulating
caspase3/7 in Igrov-1 spheroids, thus suppressing the
proliferation of Igrov-1. The triplet combination of navitoclax,
carboplatin and paclitaxel presented beyond additive effect toward
Igrov-1 spheroids (Stamelos et al., 2013).
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The role of navitoclax can be major or auxiliary, depending on
the underlying cause of the disease. This is because different
diseases have different mutations, which can be inhibited by
certain chemotherapeutic drugs. In most diseases, navitoclax
functions as an auxiliary drug. The auxiliary effect of navitoclax
can be seen when certain diseases have developed resistance against
the specific chemotherapeutic drugs, or the treatment of specific
chemotherapeutic drugs upregulates the expression of BCL-XL
proteins. On the contrary, there are certain cases where navitoclax
acts as a major drug in treating diseases that are caused by the
overexpression of anti-apoptotic BCL2, or BCL-XL proteins.
However, in diseases such as SCLC and AML, navitoclax plays
neither the auxiliary nor major role, but instead acts as a co-
inhibitor with other drugs to inhibit targeted proteins respectively,
thus resulting in synergistic therapeutic outcomes.

CONCLUSION AND FUTURE PROSPECTS

The BCL-2 family of proteins is largely identified in normal cells and
plays a crucial role in cell death and survival. Its anti-apoptotic role
and overexpression in cancer cells and fibroblasts have been widely
studied and identified as a valid and potential target for anti-cancer
and anti-fibrotic therapies. Navitoclax has now been in clinical
studies for SCLC treatment, though, the data of navitoclax on
various solid tumor types are still limited. More studies should
be done to explore and target the molecular mechanism that
associates with navitoclax’s effect in solid tumors and
hematologic tumors (except for ALL). Elucidation of this
interaction would assist in determining the potential of
navitoclax as a single agent or can be used in combinational
regimens for these cancers’ treatment. Other than that, following
Lee et al. (2018) study, a further in vivo study of navitoclax against
several breast cancer xenograft models should be done to determine
its efficacy and to find out any complications. Animal models such
as dogs or pigs could be used in the in vivo study before pursuing
human clinical trials in order to get a more accurate and valid
preclinical data. Moreover, it is worth pursuing the development of
navitoclax as an anti-oral-cancer drug as Yang et al. (2019) have
obtained a promising result with a novel molecular target. Advanced
mechanism-based research on navitoclax andwith other therapeutic
agents should be pursued to achieve greater success at the pre-
clinical stage, then translated into potential clinical therapies.

Most of the previous, as well as ongoing clinical studies on
navitoclax are focusing more on its therapeutic effect as a pro-
apoptotic agent on cancer and tumor therapies. However, cell
apoptotic activity mediated by navitoclax may also provide a
therapeutic outcome on cardiovascular diseases. Some of the
cardiovascular diseases such as atherosclerosis, myocardial

infarction, and stroke are exacerbated due to excessive
cellular proliferation. On that account, pro-apoptotic agents
like navitoclax may play a role in ameliorating the progression
of those diseases. In order to approach this matter, in vitro
studies of navitoclax on various primary cell lines
(i.e., endothelial cells) has to be done in order to evaluate the
potency of navitoclax.

Based on the evidence discussed in this review paper, the
navitoclax mechanism is shown to be complex and diverse.
Through SCLC and several lymphoid malignancies, navitoclax
can be well-explained to have an effect through the inhibition of
either BCL-2, BCL-W or BCL-XL activities, with MCL-1
expression having minor influence However, further
downstream signaling of the intrinsic apoptotic pathway
through BCL-2 family members is modulated by the
expression of proapoptotic activators such as BIM, and
executioner proteins as well. This downstream signaling has
contributed to the complex mechanism of navitoclax as those
proteins’ expressions should be considered in evaluating the
effectiveness of single navitoclax treatments. Otherwise, a
combination of navitoclax with other cytotoxic agents would
be the best strategy to enhance its anti-tumor effect. Most of the
combination treatment clinical studies have also shown a
tremendous therapeutic effect of navitoclax as a proapoptotic
agent with very minimal unfavorable effects. Furthermore,
accumulating findings on solid tumors have uncovered several
novel molecular mechanisms targeted by navitoclax to induce cell
killing activity such as survivin and CHOP. These data suggest
that navitoclax has a diverse mechanism with multiple molecular
targets that are not only limited through BCL-2 family members
in order to exhibit its role as a pro-apoptotic agent. Therefore,
clear elucidation and understanding of potential molecular
targets by navitoclax is essential and highly beneficial for
further development of navitoclax treatment in cancer as well
as other diseases including cardiovascular disease.
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Efficacy and Safety of CAR-Modified
T Cell Therapy in Patients with
Relapsed or Refractory Multiple
Myeloma: A Meta-Analysis of
Prospective Clinical Trials
Xinrong Xiang1†, Qiao He2†, Yang Ou1, Wen Wang2 and Yu Wu1*

1Hematology Research Laboratory, West China Hospital, Department of Hematology, Sichuan University, Chengdu, China,
2Chinese Evidence-based Medicine Center and Cochrane China Center, West China Hospital, Sichuan University, Chengdu,
China

Background: In recent years, chimeric antigen receptor-modified T (CAR-T) cell therapy
for B-cell leukemia and lymphoma has shown high clinical efficacy. Similar CAR-T clinical
trials have also been carried out in patients with refractory/relapsed multiple myeloma
(RRMM). However, no systematic review has evaluated the efficacy and safety of CAR-T
cell therapy in RRMM. The purpose of this study was to fill this literature gap.

Methods: Eligible studies were searched in PUBMED, EMBASE, the Cochrane Central
Register of Controlled Trials (CENTRAL), CNKI, and WanFang from data inception to
December 2019. For efficacy assessment, the overall response rate (ORR), minimal
residual disease (MRD) negativity rate, strict complete response (sCR), complete
response (CR), very good partial response (VGPR), and partial response (PR) were
calculated. The incidence of any grade cytokine release syndrome (CRS) and grade ≥3
adverse events (AEs) were calculated for safety analysis. The effect estimates were then
pooled using an inverse variance method.

Results: Overall, 27 studies involving 497 patients were included in this meta-analysis. The
pooled ORR and MRD negativity rate were 89% (95% Cl: 83–94%) and 81% (95% Cl:
67–91%), respectively. The pooled sCR, CR, VGPR, and PR were 14% (95% Cl: 5–27%),
13% (95% Cl: 4–26%), 23% (95% Cl: 14–33%), and 15% (95% Cl: 10–21%), respectively.
Subgroup analyses of ORR by age, proportion of previous autologous stem cell
transplantation (ASCT), and target selection of CAR-T cells revealed that age ≤
55 years (≤55 years vs. > 55 years, p � 0.0081), prior ASCT ≤70% (≤70% vs. > 70%,
p � 0.035), and bispecific CAR-T cells (dual B-cell maturation antigen (BCMA)/BCMA +
CD19 vs specific BCMA, p � 0.0329) associated with higher ORR in patients. Subgroup
analyses of remission depth by target selection suggested that more patients achieved a
better response than VGPR with dual BCMA/BCMA + CD19 CAR-T cells compared to
specific BCMA targeting (p � 0.0061). In terms of safety, the pooled incidence of any grade
and grade ≥ 3 CRS was 76% (95% CL: 63–87%) and 11% (95% CL: 6–17%). The most
common grade ≥ 3 AEs were hematologic toxic effects.
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Conclusion: In heavily treated patients, CAR-T therapy associates with promising
responses and tolerable AEs, as well as CRS in RRMM. However, additional
information regarding the durability of CAR-T cell therapy, as well as further
randomized controlled trials, is needed.

Keywords: chimeric antigen receptor, cancer immunotherapy, multiple myeloma, efficacy, safety, meta-analysis

1. INTRODUCTION

Multiple myeloma (MM) is the second most common
hematological malignancy after non-Hodgkin’s lymphoma. It
is characterized by clonal evolution of malignant plasma cells
(Lipe et al., 2016). During the past decades, autologous stem cell
transplantation (ASCT) and the development of novel agents,
such as proteasome inhibitors (PIs), immunomodulatory drugs
(IMiDs), and monoclonal antibodies, have significantly
prolonged patient survival. Although MM treatment options
have gradually improved, relapsed and refractory diseases are
common (Palumbo and Anderson, 2011; Rajkumar, 2011; Chim
et al., 2018; Goldschmidt et al., 2019). It is, therefore necessary to
develop innovative treatment strategies to achieve long-term
remission for patients with relapsed/refractory MM.

Chimeric antigen receptor (CAR)-T cell therapy has shown
the potential for inducing durable remission in certain
hematologic malignancies (Makita et al., 2017; Mikkilineni and
Kochenderfer, 2017; Neelapu et al., 2018). Meanwhile, anti-CD19
CAR-T-cell therapies reportedly offer promising efficacy in
patients with leukemia or lymphoma. Based on previous
successful results in B-cell neoplasms (Maude et al., 2014; Lee
et al., 2015; Turtle et al., 2016a; Kochenderfer et al., 2017; Neelapu
et al., 2017; Jain et al., 2018; Maude et al., 2018; Park et al., 2018),
this approach has been licensed by the US Food and Drug
Administration (FDA) for the treatment of relapsed or
refractory acute lymphocytic leukemia (ALL), and diffuse large
B-cell lymphoma (DLBCL). CAR-T cell therapy is defined as a
novel immunotherapy that modifies T-cells with CAR, typically
consisting of a target-recognition ectodomain, an anchored
functional transmembrane domain, a hinge region, and
signaling endodomains (Jensen and Riddell, 2015; van der
Stegen et al., 2015; Guedan et al., 2018). Selection of targets is
the key to successful CAR-T therapy (Melchor et al., 2014).
Currently, in the context of RRMM, targets used in clinical
trials include the B-cell maturation antigen (BCMA), CD19,
CD138, signaling lymphocytic activation molecule 7 (SLAM7),
immunoglobulin light chains, and the fully human heavy-chain
variable domain (FHVH) (Hajek et al., 2013; Lam et al., 2020).

Design and optimization of CAR-T therapy in RRMM has
been a hot research area with several prospective clinical trials
having been conducted to evaluate its efficacy and safety.
However, there is a lack of quantitative and comprehensive
statistical analyses on treatment outcome. Moreover, the
factors contributing to CAR-T-cell therapy efficacy and safety
in RRMMpatients remain unclear. Therefore, a systematic review
and meta-analysis on the efficacy and safety of the CAR-modified
T cell therapy in RRMM patients were performed to offer an
evidence-based reference for clinicians.

2. MATERIALS AND METHODS

2.1. Methods
In performing this study, we abided by the standards set by the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) (Knobloch et al., 2011).

2.2. Literature Search
We searched PUBMED, EMBASE, the Cochrane Central Register
of Controlled Trials (CENTRAL), CNKI, and WanFang from
inception of the study to December 20, 2019 without any
language restriction. We combined Medical Subject Headings
(MeSH) terms and free-text terms regarding “CAR” and
“myeloma” to search for potentially eligible studies.

2.3. Inclusion and Exclusion Criteria
We included clinical trials (phase 1 and phase 2 single arm trials)
involving patients with relapsed or refractory MM receiving
CAR-T cell therapy. Qualified studies reported at least one of
the following variables: efficacy outcomes (overall response rate,
ORR), strict complete response (sCR), complete response (CR),
very good partial response (VGPR), partial response (PR),
minimal residual disease (MRD) negativity rate, and safety
outcomes (any grade cytokine syndrome, CRS), grade ≥ 3 AEs
(anemia, neutropenia, lymphopenia, thrombocytopenia), and
grade ≥ 3 CAR-T- related encephalopathy syndrome (CRES).
No restrictions on sample size or length of follow-up were imposed.

FIGURE 1 | Flow diagram of the study selection process.
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TABLE 1 | Characteristics of the included studies.

No Study Registration
number

No. of
patients

Design Target Treatment Costimulatory
domain

Conditioning

1 Raje et al. (2019) NCT02658929 33 Phase1, single arm BCMA (bb2121) 150/450/800 × 10̂6 cells 4-1BB CP/Flu
2 Brudno et al.

(2018)
NCT02215967 16 Phase I, single arm BCMA 9 × 10̂6 cells/kg CD28 CP/Flu

3 Fan et al. (2017) — 19 Phase I/II, single arm LCAR-B38M 4.7 (0.6–7.0) x 10̂6/kg 4-1BB CP
4 Zhang et al.

(2017)
— 22 Phase I, single arm LCAR-B38M 4.0 × 10̂6 (1.5–7.0 × 10̂6)/kg 4-1BB CP

5 Hao et al. (2019) NCT03716856, NCT03302403,
NCT03380039

24 3-Site phase I, single arm BCMA（CT053) 1.5 × 10̂8 cells 4-1BB CP/Flu

6 Han et al. (2019) — 16 Phase I, single arm BCMA 2–10 × 10̂6 cells/kg 4-1BB CP/Flu
7 Shah et al. (2020) NCT03274219 22 Multicenter phase I, single arm BCMA

(bb21217)
150/300/450 × 10̂6 cells 4-1BB CP/Flu

8 Zhao et al. (2018) NCT03090659 57 Multisite phase1/2 LCAR-B38M 0.07–2.1 × 10̂6 cells/kg 4-1BB CP
9 Jie et al. (2019) ChiCTR—ONH—17012285 17 Multisite phase1/2, single arm LCAR-B38M 0.21–1.52 × 10̂6 cells/kg 4-1BB CP/Flu or CP

only
10 Gregory et al.

(2018)
NCT03288493 12 Phase I, single arm BCMA 0.75–15 × 10̂6 cells 4-1BB CP/Flu

11 Mailankody et al.
(2018a)

NCT03430011 19 Multisite phase1/2, single arm BCMA 50/150 × 10̂6 cells (5 + 3) 4-1BB CP/Flu

12 Jiang et al. (2018) NCT03915184 16 Multisite phase1(CT053) BCMA (CT053),
single arm

0.5/1.5/1.8 × 10̂8 cells 4-1BB CP/Flu

13 Mailankody et al.
(2018b)

NCT03070327 11 Phase 1 (MCARH171), single arm BCMA 72/137/475/818 × 10̂6 cells 4-1BB CP/Flu

14 Li et al. (2018) ChiCTR—OPC—16009113 28 Phase 1 (BRD015), single arm BCMA 5.4–25.0 × 10̂6 cells/kg CD28 CP/Flu
15 Li et al. (2019a) ChiCTR1800018137 16 Phase 1 (CT103A), single arm BCMA 1/3/6/8 × 10̂6 cells/kg 4-1BB CP/Flu
16 Cohen et al.

(2019)
NCT02546167 25 Single arm phase 1 BCMA 1–5 × 10̂7/10̂8 cells 4-1BB CP or none

17 Fu et al. (2019) NCT03093168 44 Single arm phase 1 BCMA 9 × 10̂6 cells/kg 4-1BB CP/Flu
18 Han et al. (2018) NCT03661554 4 Multisite phase 1; single arm BCMA 5/10 × 10̂6 cells/kg 4-1BB CP/Flu
19 Yan et al. (2017) NCT03196414 8 Single arm BCMA + CD19 1 × 10̂7/kg CD19-targeted cells;

2.5–8.2 × 10̂7/kg BCMA-targeted cells
OX40, CD28 CP/Flu

20 Shi et al. (2018) NCT03455972 9 Single arm BCMA + CD19 1 × 10̂7/kg CD19-targeted cells;
2.5–8.2 × 10̂7/kg BCMA-targeted cells

OX40, CD28 BUCY + ASCT

21 Yan et al. (2019) ChiCTR—OIC—17011272 21 Single arm, phase 2 trial BCMA + CD19 1 × 10̂6/kg both BCMA and CD19-
targeted CAR + T cells

4-1BB CP/Flu

22 Damian (2018) NCT03338972 7 Phase I, single arm BCMA 5–15× 10̂7 cells 4-1BB Null
23 Cowan et al.

(2019)
NCT03502577 6 Phase I single arm, with an orally administered

gamma secretase inhibitor (JSMD194)
BCMA？ 5 × 10̂7 EGFRt + cells 4-1BB Null

24 Madduri et al.
(2019)

NCT03548207 25 Phase 1b/2 single arm study of JNJ-4528
(containing two BCMA targeting)

BCMA 0.75 × 10̂6 cells/kg (0.5–1.0 × 10̂6) Null CP/Flu

25 Li et al. (2019b) ChiCTR1800018143 16 Phase 1 single arm (BM38) BCMA + CD38 0.5/1.0/2.0/3.0/4.0 × 10̂6 cells/kg 4-1BB CP/Flu
26 Popat et al. (2019) — 12 Phase 1 first-in-human study of AUTO2, single

arm
BCMA + TACI 15/75/225/600/900 × 10̂6 cells CD28 CP/Flu

27 Mikkilineni et al.
(2019)

— 12 Single arm FHVH-BCMA-T 0.75/1.5/3 × 10̂6 cells/kg 4-1BB CP/Flu

BCMA,B-cell maturation antigen; FHVH, fully human heavy-chain variable domain; LCAR-B38M, bispecific BCMA; TACI, transmembrane activator and calcium-modulator and cyclophilin ligand interactor; CP,cyclophosphamide;
Flu,fludarabine; mAb, monoclonal antibody; ASCT, autologous stem cell transplant.
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2.4. Study Qualitative Assessment
TheMethodological Index forNon-randomized Studies (MINORS)
was adopted to assess the methodological quality of the inclusive
studies. MINORS contained 12 items, eight of which were specified
for non-comparative studies (Slim et al., 2003; Cullis et al., 2020).
The eight items included: study aims, consecutive patient inclusion
criteria, prospective pooling of data, endpoint consistent with the
study aim, unbiased evaluation of endpoints, follow-up period, loss
to follow-up less than 5%, and prospective calculation of the sample
size. The items were scored 0 (not reported), 1 (reported but
inadequate), or 2 (reported and adequate).

2.5. Data Extraction
Two investigators independently reviewed and extracted the
following information: study characteristics (first author,
publication year, ClinicalTrials.gov number, research design),
patient characteristics (the group number, age, median time
from diagnosis, prior lines of treatment, high-risk cytogenetics,
previous ASCT, anti-CD38 monoclonal antibodies exposed,
extramedullary-disease), intervention (CAR-T cell dose, target
selection, costimulatory domain, conditioning regimen), and
outcomes of interest (treatment response, adverse events

(AEs)). Discrepancies were settled by discussion or by
adjudication by a third reviewer.

2.6. Statistical Analysis
We used the Metaprop module in the R-3.4.3 statistical software
package to analyze therapeutic efficacy and safety. The effect
estimates were pooled using an inverse variance method.
Heterogeneity among studies was evaluated by the chi-squared
test (χ2 test) and I-squared test (I2 test). In case of potential
heterogeneity (I2 > 50%), analysis was conducted using the
random-effect model; otherwise, the fixed-effect model was
employed. Subgroup analysis by age (≤55 vs. >55 years),
proportion of high-risk cytogenetics (≤50% vs. >50%),
proportion of previous ASCT (≤70% vs. >70%), conditioning
regimen (cyclophosphamide plus fludarabine vs
cyclophosphamide only), target selection for CAR-T therapy
(specific BCMA vs. dual BCMA/BCMA + CD19 vs BCMA +
others), costimulatory domain (4-1BB vs. CD28 vs. CD28 +
OX40) was performed to explore the sources of heterogeneity.
P values < 0.05 were considered statistically significant. Sensitivity
analysis was aimed at estimating the effect with removal of the
largest sample size among all studies.

TABLE 2 | Characteristics of the included patients.

No Study No. of
patients

Mean
age (years)

prior
lines

median
time
from

diagnosis,
(years)

High-risk-
cytogenetics

(%)

Prior
ASCT
(%)

Anti-CD38
mAb exposed

(%)

Extramedullary-
disease

(%)

1 Raje et al. (2019) 33 60 7 5 45.00% 97.00% 79.00% 27.00%
2 Brudno et al. (2018) 16 — 9.5 — 40.00% 75.00% 43.75% —

3 Fan et al. (2017) 19 — — — — — — —

4 Zhang et al. (2017) 22 53.5 — — — 18.20% — —

5 Hao et al. (2019) 24 60.1 4.5 3.5 37.50% 41.70% 20.80% 45.80%
6 Han et al. (2019) 16 — 10 — — — — 18.75%
7 Shah et al. (2020) 22 63 7 — 31.82% 82.00% 86.00% —

8 Zhao et al. (2018) 57 54 3 4 — 58.00% 0.00% —

9 Jie et al. (2019) 17 56 4 — — 47.05% — 29.41%
10 Gregory et al. (2018) 12 — — — 64.00% — 100.00% —

11 Mailankody et al. (2018a) 19 53 10 4 50.00% 88.00% — —

12 Jiang et al. (2018) 16 55 4 3.9 — 56.00% — —

13 Mailankody et al. (2018b) 11 — 6 — 82.00% — 100.00% —

14 Li et al. (2018) 28 — — — — — — —

15 Li et al. (2019a) 16 — — — — — — —

16 Cohen et al. (2019) 25 58 7 4.6 96.00% 92.00% 76.00% 28.00%
17 Fu et al. (2019) 44 — — — — — — —

18 Han et al. (2018) 4 57 — — — — — —

19 Yan et al. (2017) 8 — 4 — — — — —

20 Shi et al. (2018) 9 55 — — — — — —

21 Yan et al. (2019) 21 — — — — — — —

22 Damian (2018) 7 63 8 — 100.00% 71.00% — —

23 Cowan et al. (2019) 6 64.5 10 — 75.00% — — —

24 Madduri et al. (2019) 25 61 5 — — — 100.00% —

25 Li et al. (2019b) 16 61 — — — — — 31.25%
26 Popat et al. (2019) 12 61 5 — — 73.00% — —

27 Mikkilineni et al. (2019) 12 63 6 — — — — —

BCMA,B-cell maturation antigen; FHVH, fully human heavy-chain variable domain; LCAR-B38M, bispecific BCMA; TACI, transmembrane activator and calcium-modulator and cyclophilin
ligand interactor; CP,cyclophosphamide; Flu,fludarabine; mAb, monoclonal antibody; ASCT, autologous stem cell transplant.
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3. RESULTS

3.1. Literature Search Results and Study
Characteristics
The flowchart illustrating the literature search process is
presented in Figure 1. Our search yielded 986 reports, 407 of
which were, duplicates. After screening titles, abstracts, and full
text, 552 publications were excluded. Ultimately, 27 studies,
involving 497 patients, were included (Fan et al., 2017; Yan
et al., 2017; Zhang et al., 2017; Brudno et al., 2018; Zhao
et al., 2018; Berdeja et al., 2019; Chen et al., 2019; Cohen
et al., 2019; Costello et al., 2019; Cowan et al., 2019; Fu et al.,
2019; Han et al., 2019; Jie et al., 2019; Li et al., 2019a; Li et al.,
2019b; Madduri et al., 2019; Mikkilineni et al., 2019; Popat et al.,
2019; Raje et al., 2019; Yan et al., 2019) (Mailankody et al., 2018a;
Mailankody et al., 2018b; Damian et al., 2018; Han et al., 2018;
Jiang et al., 2018; Li et al., 2018; Shi et al., 2018).

Table 1 shows the characteristics of the inclusive studies. All
studies were single-arm clinical trials, and involved 497 patients
who had received at least two lines of treatment. Of the 27
included studies, 17 (63%) explored the efficacy and safety of
the specific BCMA CAR-T therapy in patients with RRMM
(Zhang et al., 2017; Brudno et al., 2018; Cohen et al., 2019;
Costello et al., 2019; Cowan et al., 2019; Fu et al., 2019; Jie et al.,
2019; Li et al., 2019b; Madduri et al., 2019; Popat et al., 2019; Raje
et al., 2019) (Damian et al., 2018; Han et al., 2018; Jiang et al.,
2018; Li et al., 2018; Mailankody et al., 2018a; Mailankody et al.,
2018b), four (15%) focused on targeting of the dual BCMA (Fan

et al., 2017; Zhang et al., 2017; Zhao et al., 2018; Chen et al., 2019),
three (11%) explored the targeting of BCMA plus CD19 (Yan
et al., 2017; Yan et al., 2019) (Shi et al., 2018), and the remaining
three (11%) examined the targeting of BCMA plus other targets,
i.e., CD38, FHVH, and the transmembrane activator and
calcium-modulator and cyclophilin ligand interactor (TACI),
respectively (Li et al., 2019a; Mikkilineni et al., 2019; Popat
et al., 2019). The CAR-T cell dose varied across studies and
ranged between 0.07 × 106 and 82 × 106 cells/kg. The
costimulatory domain was either 4-1BB or CD28. For
conditioning regimen, the common choices were
cyclophosphamide (CP) alone or in combination with
fludarabine (Flu). The mean patient age ranged from 53 to
64.5 years; the median time from diagnosis was 3.5–5 years;
the proportion of anti-CD38 mAb exposure was 20.80–100%;
the proportion of prior ASCT was 18.20–97%; the proportion of
extramedullary-disease was 18.75–45.80%; and the proportion of
high-risk patients was 32–100% (Table 2).

3.2. Study Quality
All studies illustrated the aim of the study. Their endpoint was
appropriate to the aim of the study and data were prospectively
collected. In most studies (approximately 80%) consecutive
patients were enrolled, an unbiased evaluation of endpoints
was performed, and loss to follow-up did not exceed 5%.
Twenty-six studies (96%) did not prospectively calculate the
sample size. In general, the overall rating was high, and the
overall quality of the selected studies was adequate (Table 3).

3.3. Efficacy of the CAR-Modified T Cell
Therapy
Twenty-seven studies with 497 patients reported ORR; the pooled
ORR was 89% (95% Cl: 83–94%; Figure 2). Fifteen studies
reported the minimal residual disease status, and the pooled
MRD negativity rate was 81% (95% Cl: 67–91%) among 239
patients who responded to CAR-T therapy (Figure 2) (Fan et al.,
2017; Brudno et al., 2018; Zhao et al., 2018; Berdeja et al., 2019;
Chen et al., 2019; Cohen et al., 2019; Jie et al., 2019; Li et al., 2019a;
Li et al., 2019b; Madduri et al., 2019; Mikkilineni et al., 2019; Raje
et al., 2019) (Damian et al., 2018; Jiang et al., 2018; Shi et al.,
2018). Eighteen studies with 339 patients reported the response
depth (sCR, CR, VGPR, PR) (Fan et al., 2017; Zhang et al., 2017;
Brudno et al., 2018; Berdeja et al., 2019; Chen et al., 2019; Cohen
et al., 2019; Jie et al., 2019; Li et al., 2019a; Li et al., 2019b; Madduri
et al., 2019; Mikkilineni et al., 2019; Raje et al., 2019) (Damian
et al., 2018; Jiang et al., 2018; Shi et al., 2018). The pooled sCR, CR,
VGPR, and PR were 14% (95% Cl: 5–27%), 13% (95% Cl: 4–26%),
23% (95% Cl: 14–33%), and 15% (95% Cl: 10–21%), respectively
(Figure 3).

Subgroup analysis of ORR by age showed that, in patients with
mean age ≤55 years, the ORR was higher than in those with
>55 years (98.01% vs. 82.58%, interaction p � 0.0081). Compared
to the proportion of prior ASCT > 70%, a higher ORR was
observed with a higher proportion of prior ASCT ≤ 70% (93.68%
vs. 76.12%, interaction p � 0.035). Regarding target selection, the
ORR obtained by targeting dual BCMA or BCMA + CD19 was

TABLE 3 | The scores of MINORS.

Study 1 2 3 4 5 6 7 8 Total

Raje et al. (2019) 2 2 2 2 2 2 2 0 14
Brudno et al. (2018) 2 2 2 2 2 2 2 2 16
Fan et al. (2017) 2 2 2 2 2 2 2 0 14
Zhang et al. (2017) 2 2 2 2 2 2 2 0 14
Hao et al. (2019) 2 2 2 2 2 0 2 0 12
Han et al. 2019 2 2 2 2 2 2 2 0 14
Shah et al. (2020) 2 2 2 2 2 2 2 0 14
Zhao et al. (2018) 2 2 2 2 2 2 2 0 14
Jie et al. (2019) 2 2 2 2 2 2 2 0 14
Gregory et al. (2018) 2 2 2 2 2 2 0 0 12
Mailankody et al. (2018) 2 0 2 2 0 0 0 0 6
Jiang et al. (2018) 2 0 2 2 2 0 0 0 8
Mailankody et al. (2018) 2 0 2 2 2 0 2 0 10
Li et al. (2018) 2 0 2 2 0 0 2 0 8
Li et al. (2019a) 2 2 2 2 2 2 2 0 14
Cohen et al. (2019) 2 2 2 2 2 2 2 0 14
Fu et al. (2019) 2 2 2 2 2 2 2 0 14
Han et al. (2018) 2 0 2 2 2 2 2 0 12
Yan et al. (2017) 2 2 2 2 2 2 0 0 12
Shi et al. (2018) 2 0 2 2 2 0 2 0 10
Yan et al. (2019) 2 2 2 2 2 2 2 0 14
Damian (2018) 2 0 2 2 2 0 2 0 10
Cowan et al. (2019) 2 2 2 2 2 2 2 0 14
Madduri et al. (2019) 2 2 2 2 2 2 2 0 14
Li et al. (2019b) 2 2 2 2 2 2 2 0 14
Popat et al. (2019) 2 2 2 2 2 2 2 0 14
Mikkilineni et al. (2019) 2 2 2 2 0 2 2 0 12
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higher than that obtained by targeting specific BCMA or BCMA
plus other antigens (96.05% vs. 86.18% vs. 70.28%, interaction p �
0.0329). However, subgroup analysis of ORR suggested that no
significant differences occurred in the proportion of high-risk
cytogenetics patients (≤50% vs. >50%), the use of different
costimulatory domains (4-1BB vs CD28 vs CD28 + OX40), or
in patients pretreated with CP in the presence or absence of Flu
(Table 4). Subgroup analysis of remission depth (sCR, CR,
VGPR, PR) suggested that compared to targeting specific
BCMA, a higher proportion of patients achieved a better
response than VGPR in the case of dual BCMA or BCMA +

CD19 targeting (59.89% vs. 84.82%, interaction p � 0.0061).
These results are shown in Figure 4 and Table 5.

3.4. Safety of the CAR-Modified T Cell
Therapy
Twenty-four studies reported any grade CRS, and the total
incidence of any grade CRS was 76% (95% CL: 63–87%) (Fan
et al., 2017; Yan et al., 2017; Brudno et al., 2018; Zhao et al., 2018;
Berdeja et al., 2019; Chen et al., 2019; Cohen et al., 2019; Costello
et al., 2019; Cowan et al., 2019; Fu et al., 2019; Han et al., 2019; Jie

FIGURE 2 | The forest plot of (A) pooled ORR, and (B), MRD negativity in patients who received CAR-T cell therapy.
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et al., 2019; Li et al., 2019a; Li et al., 2019b; Madduri et al., 2019;
Popat et al., 2019; Raje et al., 2019; Yan et al., 2019; Shah et al.,
2020) (Damian et al., 2018; Han et al., 2018; Jiang et al., 2018;
Mailankody et al., 2018a; Mailankody et al., 2018b; Shi et al.,
2018). Twenty-five studies reported grade ≥3 CRS, and the pooled
incidence of grade ≥ 3 CRS was 11% (95% CL: 6–17%) (Fan et al.,
2017; Yan et al., 2017; Brudno et al., 2018; Zhao et al., 2018;
Berdeja et al., 2019; Chen et al., 2019; Cohen et al., 2019; Costello

et al., 2019; Cowan et al., 2019; Fu et al., 2019; Han et al., 2019; Jie
et al., 2019; Li et al., 2019a; Li et al., 2019b; Madduri et al., 2019;
Popat et al., 2019; Raje et al., 2019; Yan et al., 2019; Shah et al.,
2020) (Damian et al., 2018; Han et al., 2018; Jiang et al., 2018; Li
et al., 2018; Mailankody et al., 2018a; Mailankody et al., 2018b; Shi
et al., 2018). Six studies reported a severe CRES, and the relevant
pooled incidence was 8% (95% CL: 4–13%) (Brudno et al., 2018;
Berdeja et al., 2019; Cohen et al., 2019; Madduri et al., 2019; Raje

FIGURE 3 | The forest plot of (A) pooled sCR, (B) CR, (C), VGPR, and (D) PR.

TABLE 4 | Subgroup analysis results of ORR.

Subgroup No of trails ORR (95% CI) p for differences

Age,y
≤55 5 0.9801 [0.9099; 1.00]
>55 12 0.8258 [0.7093; 0.9211] 0.0081

High-risk cytogenetics (%)
≤50% 5 0.8421 [0.7421; 0.9237]
>50% 5 0.8217 [0.5556; 0.9909] 0.7841

Previous ASCT, rate (%)
≤70% 5 0.9368 [0.8584; 0.9887]
>70% 7 0.7612 [0.5685; 0.9153] 0.035

Condition regimen
CP 5 0.8632 [0.6256; 0.9981]
CP/Flu 19 0.8680 [0.8013; 0.9247] 0.9628

CAR-T target
BCMA 19 0.8618 [0.7842; 0.9269]
BCMA + CD19/bispecific BCMA 7 0.9605 [0.8964; 0.9979]
BCMA + others 3 0.7028 [0.3483; 0.9649] 0.0329
BCMA 19 0.8618 [0.7842; 0.9269]
BCMA + CD19/bispecific BCMA 7 0.9605 [0.8964; 0.9979] 0.0254

Costimulatory domain
4-1BB 21 0.9024 [0.8382; 0.9542]
CD28 3 0.7149 [0.3723; 0.9642]
OX40, CD28 2 0.9559 [0.6435; 1.0000] 0.4385
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et al., 2019) (Jiang et al., 2018) (Figure 5). Hematologic toxic
effects were the most frequent treatment-related AEs of grade 3 or
higher, including a decreased neutrophil count (70%, 95% CL:
57–81%), anemia (43%, 95% CL: 25–64%), decreased lymphocyte
count (43%, 95% CL: 16–75%), and thrombocytopenia (36%, 95%
CL: 25–50%).

Subgroup analysis of any-grade CRS by target selection showed
that any grade CRS was less frequent in the case of specific BCMA
targeting (69.73%) compared to BCMA + CD19/dual BCMA
targeting (89.78%) (interaction p < 0.05). However, subgroup
analysis of grade ≥3 CRS by target selection suggested that, no
difference occurred between specific BCMA and BCMA + CD19/
dual BCMA targeting. Additional details are shown in Table 6.

3.5. Sensitivity Analysis
Sensitivity analysis showed that after removal of the largest
sample size among all studies, the pooled ORR did not change
significantly. Moreover, the results of the meta-analysis were
stable (Table 7).

4. DISCUSSION

In the last decade, CAR-T therapies have been extensively
developed for the advancement of individualized clinical

cancer immunotherapy. This meta-analysis, which examined
27 prospective studies involving 497 patients, has
demonstrated that CAR-T therapy offered promising outcomes
with a tolerable safety profile in RRMM patients.

Our meta-analysis suggests that CAR-T cell therapy could
address the negative effects associated with high-risk cytogenetics
(≤50% vs. > 50% � 84.21% vs. 82.17%) and exhibited a higher
efficacy against MM resistant to previous therapies including
IMiDs, PIs, anti-CD38 monoclonal antibody, and ASCT.
Notably, patients who did not receive prior ASCT achieved a
better response, suggesting that ASCT is an irreplaceable
component of RRMM patient treatment.

CAR-T cell-based therapies mechanistically differ from all
other MM treatment modalities. CAR-T cells can be optimized to
specifically kill tumor cells, or reshape the tumor
microenvironment by releasing soluble factors capable of
regulating the function of matrix or immune cells (Fujiwara,
2014; Maus et al., 2014; Park et al., 2016). Hence, they represent a
powerful tool for targeting multiple constituents of the tumor
ecological system (Ye et al., 2018). When stimulated by primary
MM cells, anti-BCMA-CAR-transduced T cells produce IFN-c
and kill them. In fact, serum from patients receiving BCMA-
specific CAR-T cells kill target cells that express BCMA in vitro
through complement-mediated lysis and antibody-dependent
cytotoxicity (Bellucci et al., 2005). Some studies also suggest
that earlier CAR-T intervention, at a stage when T cells may
be intrinsically “fitter,” may be particularly effective (Kay et al.,
2001; Dhodapkar et al., 2003; Suen et al., 2016). Based on these
arguments, deciding whether CAR-T therapy should be
administered early is challenging, particularly for patients with
unfavorable cytogenetics.

Additionally, the efficacy appeared to be independent of
conditioning scheme, as the combination of
cyclophosphamide/fludarabine (Cy-Flu) appears to produce
CAR-T cell dynamics similar to that of cyclophosphamide
alone. This differed from the CD19-specific CAR-T cell-based
therapy in relapsed/refractory B cell non-Hodgkin’s lymphoma,
where Cy/Flu lymphodepletion resulted in higher response rates
(50% CR, 72% ORR) compare to those elicited by the Cy-based
lymphodepletion without Flu (8% CR, 50% ORR) (Turtle et al.,
2016b). Our research demonstrates that the normal expansion
and activity of CAR-T cells in MM may not require exhaustive
lymphatic depletion, as patients with MM may have intrinsically
“fitter” T cell reserves compared to patients with B cell non-

FIGURE 4 | The remission depth achieved by different target selection.

TABLE 5 | The subgroup analysis results of response depth.

Subgroup No of trails sCR + CR +
VGPR (95% CI)

p for differences

CAR-T target
BCMA 10 0.5989 [0.4732; 0.7192]
BCMA + CD19/bispecific BCMA 6 0.8482 [0.7161; 0.9491] 0.0061

Subgroup No of trails PR (95% CI) p For differences
CAR-T target
BCMA 10 0.2228 [0.1380; 0.3186]
BCMA + CD19/bispecific BCMA 6 0.0733 [0.0115; 0.1661] 0.0162
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Hodgkin’s lymphoma. Therefore, a single CAR-T conditioning
protocol may be applied in future patient management.

Previous studies have suggested that specific product features,
including the design of engineered costimulation, may impact

therapeutic efficacy (Long et al., 2015; Zhao et al., 2015). In
contrast, our present study showed that a similar overall response
rate (ORR) was elicited by different costimulatory domains (4-
1BB, CD28, and CD28 plus OX40), which may indicate that the

FIGURE 5 | The forest plot of pooled incidence of (A) all grade CRS (B), CRS grade ≥3 and (C) CRES grade ≥3.
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small patient samples sizes, as well as the diverse differences in
study designs, including the inclusion criteria, broad range of
efficacious doses, treatment schedule, and lymphodepletion
regimen, preclude drawing definitive conclusions. Notably, the
production of CAR-T cells depends, to a large extent, on
numerous manual, open-process procedures, and cell culture
media to reach a clinical therapeutic dosage (Sadelain, 2009;
Sadelain et al., 2013). These characteristics may limit the
application of this approach to large-scale, multicenter clinical
trials. Therefore, studies are needed to streamline and optimize
the production process. Moreover, additional steps should be
standardized to maximize the process consistency (Roberts et al.,
2018).

The initial success of the CD19-targeted CAR-T cell therapy in
B-cell malignancy emphasizes that selecting the optimal surface
target antigens is critical for efficient CAR-T cell therapeutics.
However, first-rank surface antigens remain to be identified in
MM. Nevertheless, several alternative antigens have been used in
CAR-T cell therapy against MM (Bolli et al., 2014; Tai et al.,
2016). In our study, the BCMA, dual BCMA, CD196, CD38,
TACI, and FHVH were considered. The results show that LCAR-
B38M and combined CD19/BCMA exhibit higher overall
response rates and deeper responses compared to specific
BCMA. In the design of LCAR-B38M, the antigen recognition
portion consists of two camel antibody heavy chains against two
BCMA epitopes. This structure may enhance the antigen
recognition specifically as well as the affinity of CAR-T cells
for antigen, resulting in a stronger anti-MM effect (Shah et al.,
2020). In terms of immunophenotype, the dominant clones of
most myeloma patients are similar to the most differentiated
normal plasma cell subset: CD38 + CD138 + CD19−. A few MM
clone subsets with poorly differentiated plasma cell phenotypes
(CD138lo/– or CD19+), or a B cell phenotype (CD138–CD19 +
CD20+) can also be found in patients. Moreover, according to a
clinical trial and in vitro study using immunodeficient mice,
poorly differentiated components in MM clones are also
involved in disease pathogenesis. In addition, CD19 was found
to be expressed on only a small proportion ofmyeloma cells (Bagg
et al., 1989; Paiva et al., 2017; Garfall et al., 2018; Nerreter et al.,
2019). Hence, the combination of CD19 and BCMA may tackle
MM pathogenesis more effectively and result in enhanced anti-
tumor effects.

Although our study included some patients without an MRD
status reported, the high rate of pooled MRD negativity in patients
(81%, 67%–91%) was inspiring. In contrast, a recent study exploring
the effects of daratumumab plus pomalidomide–dexamethasone for
RRMMshowed that 35% and 29%of the patients could be assessed as
MRD negative at a threshold of 10−4 and 10−5 nucleated cells,
respectively (Chari et al., 2017). Meanwhile, previous studies
showed that the MRD status was one of the most relevant
independent prognostic factors in MM. Compared with patients
achieving CRwho areMRD positive, patients who areMRDnegative
may have longer overall, and progression-free survival (PFS) (Paiva
et al., 2015; Kumar et al., 2016; Munshi et al., 2017). Despite the high
response rate, it remains unknown whether CAR-T cells have the
potential to induce long-lasting remission in RRMM, as observed
with the CD19 CAR-T cells in B-cell malignancy. Longer follow-ups
for patients who exhibit a response and are MRD negative will be
required to address this question.

CRS was determined to be primarily of grade 1 or 2. The
reported incidence of grade 3 or higher with CD19-directed CAR-
T cells was 46% with tisagenlecleucel and 13% with axicabtagene
ciloleucel (Neelapu et al., 2017; Maude et al., 2018), which is
higher than our results (11%). The overall occurrence of grade
three or four neurologic toxic events was also low (8%). Generally,
the safety profile was tolerable and manageable.

In conclusion, in an era in which numerous novel agents for
MM are emerging, CAR-T cells demonstrate a high overall
response and a good remission rate in heavily treated patients
(Miguel et al., 2013; Lonial et al., 2016; Chen et al., 2018).
However, further information regarding the durability of the
CAR-T cell-based therapy is needed. Owing to the lack of control
groups and the small sample sizes of the examined studies, our
results require confirmation by randomized controlled trials.
Finally, as continuous development of MM therapeutic agents

TABLE 6 | The subgroup analysis results of all grade CRS and severe CRS.

Subgroup No of trails
CRS (95% CI)

p for differences

CRS≥3 (95% CI) p for differences

Conditions
CP 3 0.8625 [0.7690; 0.9367] 0.1627 [0.0359; 0.3453]
CP/Flu 17 0.7378 [0.5771; 0.8745] 0.1105 0.1028 [0.0387; 0.1858] 0.5905

CAR-T target
BCMA 16 0.6973 [0.5124; 0.8576] 0.0836 [0.0405; 0.1646]
BCMA + CD19/bispecific BCMA 6 0.8978 [0.8196; 0.9587] 0.0225 0.1641 [0.0380; 0.4935] 0.3979

Costimulatory domain
4-1BB 20 0.7286 [0.5857; 0.8533] 0.0905 [0.0454; 0.1457]
CD28 4 0.8946 [0.5848; 1.0000] 0.306 0.2311 [0.0000; 0.6907] 0.4317

TABLE 7 | The effect of removing the largest sample size of the study in the
sensitivity analysis.

Study
No. of patients

Proportion 95%-CI

Total 497 0.8800 [0.8300; 0.9403]
Omitting Zhang et al., 2017, 440 0.8400 [0.8042; 0.8703]
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is underway, the optimization of timing, sequensce, and
combination with other therapies will be crucial to obtain
adequate responses and substantially increase patient survival
(Trudel et al., 2018; Kumar et al., 2019; Parrondo et al., 2020).
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Immune checkpoint inhibitors, including antibodies targeting programmed cell death
protein-1 (PD-1) and its receptor programmed cell death ligand-1 (PD-L1), represent
promising therapeutic strategies for advanced human malignancies. However, a
subgroup of patients experiences various autoimmune toxicities, termed immune-
related adverse events (irAEs), that occur as a result of on-target and off-tumor
autoimmune responses. Although irAEs are generally confirmed to be less severe than
toxicities caused by conventional chemotherapy and targeted therapy, uncommon irAEs,
such as immune thrombocytopenia, may occur with a very low incidence and sometimes
be severe or fatal. This review focuses on the epidemiology, clinical presentation, and
prognosis of immune thrombocytopenia occurring in advanced cancer patients induced
by immune checkpoint inhibitors, especially in those with PD-1 or PD-L1 inhibitor
treatment. We also first present one patient with non-small cell lung cancer who
received the PD-L1 inhibitor durvalumab and developed severe thrombocytopenia.

Keywords: programmed cell death 1 inhibitor, programmed cell death ligand 1, immune thrombocytopenia, immune
checkpoint inhibitor, durvalumab, immune-related adverse event
INTRODUCTION

Immune checkpoint inhibitors (ICIs) are intended to destroy tumor cells by disrupting the
immunoinhibitory signals mediated by programmed cell death protein-1 (PD-1), programmed
cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and
unleash the power of the body’s immune system (1). In particular, immunotherapy with anti-PD-1/
PD-L1 antibodies has resulted in durable tumor remission and changed the treatment landscape in
non-small cell lung cancer (NSCLC) and melanoma, and the application of PD-1/PD-L1 inhibitors
is expending to various other human tumors (2).
Abbreviations: ALK, Anaplastic lymphoma kinase translocations; CT, Computerized tomography; CTLA-4, Cytotoxic
T-lymphocyte-associated protein 4; EGFR, Endothelial growth factor receptor; FDA, United States Food and Drug
Administration; irAEs, Immune-related adverse events; ICI, Immune checkpoint inhibitor; IVIG, Intravenous
immunoglobulin; NSCLC, Non-small cell lung cancer; PD-1, Programmed cell death protein-1; PD-L1, Programmed death
ligand-1; TPO, thrombopoietin; TRA, thrombopoietin receptor agonist.
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ICIs are generally recognized as tolerable agents that are associated
with unique side effects termed immune-related adverse effects
(irAEs), and these toxicities may concern any organ or tissue.
However, irAEs present in nearly 50% of patients treated with PD-
1/PD-L1 inhibitors, and 10%–15% of patients are likely to develop
grade 3–4 or potentially life-threatening events with variable clinical
implications, leading to a discontinuation of immunotherapy. Fatigue,
loss of appetite, rash, pruritis, pneumonitis, hepatitis, and
hypothyroidism are identified as usual irAEs (3). Use of PD-1/PD-
L1 inhibitors also results in a variety of irAEs at a low frequency, such
as eye, cardiac, neurological, and hematologic toxicities. Hematologic
disorders include aplastic anemia, neutropenia, thrombocytopenia,
bi-cytopenia, hypereosinophilia, and pancytopenia. Generally,
hematologic complications are much less frequently found in
patients treated with anti-PD-1/PD-L1 therapy compared to those
inducedwith classic cytotoxic chemotherapy, but some are potentially
life threatening. An increased number of cases of hematologic
disorders have been reported since 2017, which may be attributed
to increased application of ICIs and improved recognition of adverse
effects (4). In particular, immune thrombocytopenia induced by ICIs
has been reported in a few NSCLC, melanoma, and other
malignancies (5–25). We herein describe one case of immune
thrombocytopenia induced by the PD-L1 inhibitor durvalumab
and its clinical management. We also review the epidemiology,
clinical presentation, and prognosis of immune thrombocytopenia
occurring in advanced cancer patients caused by ICIs.
CASE PRESENTATION

In July 2018, an 82-year-old woman was referred to our hospital.
Her medical history was not remarkable. A computed tomography
(CT) scan of the chest revealed a mass in her left upper lobe with
mediastinum lymph node metastasis and left pleural effusion. She
was initially diagnosed with lung adenocarcinoma by fiberoptic
bronchoscopy. Molecular mutation analysis showed that her
tumor did not harbor any driver gene alterations, such as EGFR,
ALK, and ROS1. Immunohistochemical staining of tumor tissue
showed that PD-L1 expression was found in >25% of tumor cells.
In August 2018, she entered a clinical study and received her first
Frontiers in Oncology | www.frontiersin.org 2127
infusion of the anti-PD-L1 antibody durvalumab as first-line
therapy. At that time, baseline blood tests were normal. After 4
infusions of durvalumab, she got a partial response by a CT scan
and no severe toxicities in October 2018, and immunotherapy was
continued. Shortly after receiving 20 cycles of durvalumab
treatment, this patient developed thrombocytopenia (platelet
level: 100 × 103/mL) with normal hemoglobin and normal white
cell counts. Unfortunately, 2 weeks later, her thrombocytopenia
worsened with a sudden decrease to 38 × 103/mL platelet level. A
bone narrow biopsy was performed on October 20, 2018, and
showed no dysplastic changes. Abnormality of lymphoid and
megakaryocytic cell lines were not found, and evidence of
metastatic cancer invasion was not present. Antinuclear and
antiplatelet antibodies were not abnormal. Other laboratory tests
were normal or negative. After excluding chemotherapy,
infectious etiology, or other drug-induced thrombocytopenia, we
considered a diagnosis of immune thrombocytopenia induced by
durvalumab. She received a high-dose steroid (1 mg/kg) for 4
consecutive days and was treated with recombinant human
thrombopoietin (TPO), but platelets did not recover. She
received two platelet transfusions, but the platelet count was not
increased. The lowest platelet level was 12 × 103/mL on October 15,
2019. Thus, immunotherapy with durvalumab was definitely
discontinued because of unacceptable toxicities. Subsequent
treatments, including continuing platelet transfusions and
infusion of intravenous immunoglobulin (IVIG), were not
effective (Figure 1). Finally, this patient unfortunately died of
acute upper gastrointestinal hemorrhage.
INCIDENCE AND ONSET OF IMMUNE
THROMBOCYTOPENIA INDUCED BY ICIS

Fatigue, loss of appetite, rash, pruritis, pneumonitis, hepatitis, and
hypothyroidism are identified as usual irAEs. However,
hematologic disorders are uncommon. Rare cases of leukopenia,
thrombocytopenia, bi-cytopenia, hypereosinophilia, and
pancytopenia have been reported. Basically, thrombocytopenia
was reported as an independent hematologic adverse event.
Recently, a NSCLC patient who developed concomitant
FIGURE 1 | Platelet and WBC counts following immunotherapy with durvalumab. WBCs are multiplied by 102.
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immune-related thrombocytopenia and hypothyroidism following
nivolumab treatment was also reported (5).

Although ICIs have been approved for treating various types
of human malignancies, immune-related thrombocytopenia is
most likely to be reported in NSCLC (5–11, 24, 25), melanoma
(12–20), lymphoma (21), pancreatic cancer (22), and renal cell
carcinoma (23), which is consistent with retrospective data from
multiple institutions (26). Previous case and retrospective studies
show that immune thrombocytopenia occurred in cancer
patients treated with PD-1 inhibitor monotherapy, such as
Frontiers in Oncology | www.frontiersin.org 3128
nivolumab or pembrolizumab, or a CTLA-4 inhibitor, or a
combination with PD-1 and a CTLA-4 inhibitor (Table 1).
Here, we report the first case of a lung cancer patient who
developed a late-onset autoimmune cause of thrombocytopenia
during PD-L1 inhibitor durvalumab monotherapy.

The absolute frequency of hematologic irAEs, including
immune thrombocytopenia, is unknown. The frequency of
thrombocytopenia in clinical phase II–III trials involving
nivolumab monotherapy or combined with brentuximab is
between 6% and 13% for all grades and between 1% and 10%
TABLE 1 | Summary of reported cases with immune-related thrombocytopenia after receiving immunotherapy.

Authors Year Tumor
type

Age
(years)

Gender ICI Cycles Lowest PLT
(/ul)

Concurrent
irAE

PA-IgG (ng/107

cells)
irAE Treatment BRT Final

outcome

Lung cancer
Present case 2019 LAC 82 Female D 12 12000 None NR Steroid, IVIG PR Died of

irAE
Mouri et al. (24) 2020 LAC 66 Male P 1 3000 None 154 Steroid PR Recovered
Dickey et al. (25) 2020 LSCC 60 Female P 5 77000 Anemia NR Steroid PD Recovered
Hasegawa et al. (6) 2019 LAC 82 Female N 2 2000 None 223 Steroid, IVIG, TRA NR Died of

irAE
Song et al. (7) 2019 NSCLC 65 Male P 7 0 None NR Steroid, IVIG, TRA SD NR
Mori et al. (8) 2019 NSCLC 77 Male N 1 2000 Pneumonitis 1130 Steroid SD Recovered
Tokumo et al. (11) 2018 LAC 56 Male N 3 19000 Pancytopenia NR Steroid, IVIG PR Died of

Cancer
Jotatsu et al. (5) 2017 NSCLC 62 Male N 2 1600 Hypothyroidism 473 Steroid PR Recovered
Karakas et al. (9) 2017 NSCLC 78 Male N 6 5000 None NR Steroid NR Died of

Cancer
Bagley et al. (10) 2016 LSCC 34 Male N 8 33000 None NR TRA PR Recovered
Melanoma
Berger et al.
(12)

2019 Melanoma 57 Female P 11 10000 Anemia NR Steroid, CTX, IVIG PD Died of
Cancer

Sadaat et al.
(13)

2018 Melanoma 58 Male P 6 10100 HLH NR Steroid PR Recovered

Philipp et al.
(14)

2018 Melanoma 46 Female N,
I

2 7000 Neutropenia NR Steroid, IVIG CR Recovered

Takimoto et al.
(15)

2018 Melanoma 79 Female N,
I

2 2000 None NR Steroid, IVIG, TRA CR Recovered

Shiuan et al.
(16)

2017 Melanoma 47 Female N,
I

1 5000 None Steroid, IVIG,
rituximab, TRA

PR Recovered

Shiuan et al.
(16)

2017 Melanoma 45 Female N,
I

1 75000 None NR Steroid, IVIG,
rituximab

PD NR

Pföhler et al.
(20)

2017 Melanoma 73 Male P 1 10800 None NR Steroid PD Died of
Cancer

Inadomi et al.
(17)

2016 Melanoma 73 Male N 7 23000 Bi-cytopenia 28.4 Steroid PD Died of
Cancer

Kanameishi
et al. (18)

2016 Melanoma 75 Female N 2 2000 None NR Steroid, IVIG, TRA NR Recovered

Le Roy et al.
(19)

2016 Melanoma 34 Female P 1 100 None NR Steroid, IVIG NR Recovered

Le Roy et al
(19)

2016 Melanoma 51 Female P 9 9000 None NR Steroid CR Recovered

Others
Iyama et al. (22) 2020 Pancreatic

cancer
54 Female N 2 12000 None Slightly elevated Steroid, IVIG, CSA NR Recovered

Hata et al. (23) 2020 RCC 70 Male N 8 17000 None 73 Steroid, IVIG, TRA NR Died of
Cancer

Bulbul et al.
(21)

2017 HL 32 Female N 15 29000 Leucopenia ND Steroid, IVIG CR Recovered
Dece
mber 2020 | Volume 1
0 | Ar
LAC, lung adenocarcinoma; NSCLC, non-small cell lung cancer; LSCC, lung squamous cell carcinoma; RCC, renal cell carcinoma; HL, Hodgkin’s lymphoma; ICI, immune checkpoint
inhibitor; D, durvalumab; N, nivolumab; P, pembrolizumab; I, ipilimumab; irAE, immune-related adverse event; HLH, Hemophagocytic Lymphohistiocytosis; NR, not reported; ND, not
detected; IVIG, intravenous immunoglobulin; TRA, thrombopoietin receptor agonist; CTX, cyclophosphamide; BRT, best response to treatment; PR, partial response; CR, complete
response; SD, stable disease; PD, progressive disease; CSA, cyclosporine.
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for grades 3 to 4 (27–29). Phase II–III trials seem to report a
higher frequency of immune thrombocytopenia than retrospective
studies involving multiple institutions or large data sets. For
example, Shiuan et al. reported nearly 0.5% of metastatic
melanoma patients experienced immune thrombocytopenia by
reviewing a total of 2360 patients with melanoma receiving
checkpoint inhibitor therapy from five large institutions in the
United States (16). Data from a descriptive observational study
including cancer patients registered in three French
pharmacovigilance databases showed that PD-1/PD-L1 inhibitor-
induced hematological irAEs had a frequency of 0.5%. Of them,
thrombocytopenia was also the most common type of
hematological irAEs (26). Davis et al. identified 168 cases of
immune thrombocytopenic purpura complicating ICI therapy in
individual case safety reports using the World Health
Organization’s pharmacovigilance database VigiBase (4). Immune
thrombocytopenic purpura was the most common reported
hematologic toxicity. However, VigiBase does not capture the
number of individuals actually exposed to a given ICI, so the
absolute frequency of hematologic toxicities cannot be calculated.
In a meta-analysis conducted byWang et al., the relative risks of all-
and high-grade thrombocytopenia were lower in patients who
received ICIs than those in control therapies (30). A low
incidence of high-grade thrombocytopenia was observed in cancer
patients treated with PD-1 inhibitor monotherapy compared to
those with PD-1 inhibitor combination therapy (31). Combined
analysis showed that only 2% of patients developed all-grade
thrombocytopenia (95% CI: 1%–5%), but the use of a PD-1/PD-
L1 inhibitor in combination therapy with ipilimumab, peptide
vaccines, or chemotherapy had significantly higher risks than PD-
1 inhibitor monotherapy (6%, 95% CI: 2%–18%) (30). However, the
addition of pembrolizumab to chemotherapy failed to improve the
risk of thrombocytopenia with an incidence of 5% for combination
therapy in the randomized KEYNOTE-021 study (32). Although
hematologic disorders have been found in diverse tumor types, the
incidence rate and severity of all-grade thrombocytopenia,
leukopenia, and neutropenia appeared to be similar in NSCLC
and melanoma, which was reported in a meta-analysis (30).

Furthermore, immune thrombocytopenia is an unusual irAE,
but deaths caused by this severe adverse event were reported. In a
recently published meta-analysis involving 125 clinical trials and
20,128 patients, a total of 82 deaths (0.45%) were reviewed.
Thrombocytopenic (1.2%) or immune thrombocytopenic
purpura (1.2%) were identified as uncommon causes of
treatment-related death (33). In VigiBase, death was reported
in 11% of immune thrombocytopenia cases (4). Thus, immune
thrombocytopenia is a potentially life-threatening side effect and
should not be neglected in clinical practice.

Time of onset of development of immune thrombocytopenia
is not clear. The risk for developing irAEs was usually highest
during the initial 4 weeks of immunotherapy, but irAEs occurred
in 5.7% of patients in the period from 4 weeks to the end of
treatment as late-onset toxicity even in patients whose
immunotherapy was terminated (34, 35). The median time to
onset of hematological irAEs is similar to times for other irAEs.
In a majority of reported cases, thrombocytopenia occurred as
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early as initial 1–2 cycles of treatment (5). Our and other case
reports showed that it also could develop as a delayed toxicity in
which thrombocytopenia happened after approximately 1–2 years
of treatment (12, 21). Data from the VigiBase showed that
immune thrombocytopenic purpura may develop at any time
point with a median of 41 days (range from 14 to 321 days) (4).
DIAGNOSIS AND TREATMENT OF
IMMUNE THROMBOCYTOPENIA
INDUCED BY ICIS

Diagnosis of immune thrombocytopenia is difficult and
challenging due to the lack of a specific test or marker.
Although immune-related thrombocytopenia could be induced
by ICIs, other secondary causes may lead to this disease,
including infection and other therapeutic agents. The diagnosis
depends on the exclusion of other causes of a low platelet count;
additional investigations, such as bone marrow examination,
may be necessary in some cases to exclude dysplasia or cancer
invasion. In particular, when the irAEs concern platelets, it
should be distinguished from a chemotherapy-induced
thrombocytopenia for patients receiving chemotherapy plus
immunotherapy because the prognosis and therapeutic
management differs. Sometimes detecting the presence of a
high platelet–associated IgG titer is helpful to confirm immune
thrombocytopenia (8). Increased circulating PD-1+CD4+T cells
and PD-L1+DCs and sPD-1 levels, which has been reported in
idiopathic thrombocytopenic purpura, may be helpful in
identifying immune-related thrombocytopenia (36, 37).

Approved treatments for immune thrombocytopenia are
uncertain. Different clinical guidelines on the management of
irAEs have been published by the European Society of Medical
Oncology, the Society for Immunotherapy of Cancer, and the
American Society of Clinical Oncology (38–40). Any new blood
count abnormality, such as decreased platelet counts, should be
considered as a potentially clinically significant event related to
immunotherapy because the early onset of hematological
toxicities developed as a grade 1 or 2 event could worsen
within a short period. Similar to our case, platelet count was
slightly decreased or only close to the lower limit of normal
values (100 × 103/mL) before or during ICI therapy. It is possible
that immunotherapy with ICIs aggravates thrombocytopenia via
autoimmune activation, especially for elderly cancer patients.

Basically, regular management includes the use of recombinant
human TPO or romiplostim, a recombinant TPO receptor agonist
(TRA), and platelet transfusion. Other treatment strategies, such as
IVIG, steroids (methylprednisolone pulse with maintenance
therapy), splenectomy, using other immunosuppressive agents
such as azathioprine and rituximab, were required. Of these
interventions, steroids were the most frequently used agent for
treating mild thrombocytopenia, but they are not always effective in
managing immune-related severe thrombocytopenia caused by
ICIs. Previous investigations indicate that idiopathic
thrombocytopenic purpura patients with the HLA-DRB1*0410 or
HLA-DRB1*0405 allele were originally resistant to steroid
December 2020 | Volume 10 | Article 530478
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treatment (6), which needs to be validated in immune
thrombocytopenia secondary to ICIs. Accordingly, these patients
who are resistant to steroid treatment could timely switch to other
treatments, such as IVIG, rituximab, and a TRA (16). On the other
hand, the predictive value of irAEs caused by immunotherapy have
been evaluated by a variety of retrospective studies (41–44).
Objective response rate and survival were significantly improved
in patients who experienced different irAEs compared with those
who did not experienced them. Unlike other common specific irAEs
(45), hematologic events, such as thrombocytopenia, has not been
found to be linked to increased efficacy of immunotherapy, but half
of the previously reported cases with immune thrombocytopenia
responded well to immunotherapy (Table 1). In the present case
report, this patient had a deep disease response beyond 12 months
of immunotherapy. Thus, monitoring symptoms of bleeding and
the blood cell count during and after any immunotherapy is very
important to help recognize and identify patients at risk of bleeding
early, especially those whose tumors were responsive to
immunotherapy, and rapidly interfere with steroids and other
agents to obtain consistent benefits and good outcomes.
MECHANISM OF IMMUNE
THROMBOCYTOPENIA INDUCED BY ICIS

Although at least six different mechanisms of drug-induced
thrombocytopenia have been proposed, the mechanism
underlying thrombocytopenia induced by immune checkpoint
blockade remains unclear (46). It is reasonable that the activation
of the body’s immune system contributes to immune-related
thrombocytopenia and other hematologic disorders. The
activation of CD4+ helper T cells and CD8+ cytotoxic T cells is
involved in the immune response in patients receiving CTLA-4 or
PD-1/PD-L1 inhibitors, resulting in the damage to hematopoietic
stem cells (47). Furthermore, a circulating immune response may
contribute to a decreased thrombocyte count. In NSCLC cases,
nivolumab induced or increased production of platelet-specific IgG
autoantibodies that could promote platelet destruction with
immature platelets and megakaryocytes without abnormal cells in
a bone marrow biopsy (5, 8). The pathogenesis of
thrombocytopenia induced by ICIs is postulated to be similar to
classical immune thrombocytopenia, including idiopathic
thrombocytopenic purpura. For example, Wu et al. found that the
levels of interferon-g, interleukin-17, and sPD-1 in the serum of
patients with idiopathic thrombocytopenic purpura were increased,
and IL-4 and transforming growth factor-b were decreased.
Furthermore, activation of PD-1/PD-L1 signaling with sPD-L1
Frontiers in Oncology | www.frontiersin.org 5130
may restore the imbalance of Th1/Th2 and Treg/Th17 cell
subtypes, which could be a therapeutic strategy for idiopathic
thrombocytopenic purpura or immune thrombocytopenia (36).
CONCLUSIONS

Autoimmune hematologic toxicities induced by ICIs, including
thrombocytopenia, are viewed as rare irAEs, and increased
application of ICIs in advanced malignancies contributes to
increased reports of immune thrombocytopenia, but it should not
be neglected in treating patients with ICIs because it is potentially
life threatening in some cases. Oncologists should bear in mind that
decreasing platelet counts represent an early sign of immune-related
thrombocytopenia. In patients with immune thrombocytopenia, the
risk of bleeding, arterial thromboembolism, or venous thrombosis is
increased. Careful recognition, diagnosis, and differential diagnosis
are required. Clinical management includes the use of steroid, IVIG,
and platelet transfusion. However, the true mechanism of
immunotherapy-related thrombocytopenia and its pathogenesis is
unknown and further investigation is awaited.
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Choosing PD-1 Inhibitors in Oncology
Setting, Left or Right?—Lessons From
Value Assessment With ASCO-VF and
ESMO-MCBS
Qian Jiang1*, Mei Feng1, Youping Li2, Jinyi Lang1, Hua Wei3,4 and Ting Yu1
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Background: Influx of innovative therapies and dramatic rise in prices have been
prompting value-driven decision-making. Both the American Society of Clinical
Oncology (ASCO) and the European Society for Medical Oncology (ESMO) have
independently proposed value assessment frameworks.

Objectives: To comprehensively examine the value of nivolumab and pembrolizumab by
two value assessment frameworks with a cohort of published randomized controlled trials
and offer insight into the association between these two frameworks.

Methods: Trials were identified with a cutoff date of Nov 30th, 2019. Receiver operating
characteristic curves were generated to establish the predictive value of ASCO-VF score to
meet ESMO-MCBS grade and discriminate the agreement of these two value assessment
tools. Spearman correlation was used to assess the association between monthly cost
and ASCO-VF score/ESMO-MCBS grade.

Results: 19 randomized controlled trials were eligible. seven (36.8%) trials were of
treatment included nivolumab while 12 (63.2%) pembrolizumab. 8 (42.1%) of the trials
were of treatments for non-small-cell lung cancer, 5 (26.3%) for melanoma, 2 (10.5%) were
for head and neck squamous cell carcinoma, 2 (10.5%) for gastric or gastro-oesophageal
junction cancer and 1 (5.3%) for urothelial cancer and renal-cell carcinoma respectively.
ASCO scores ranged from 7 to 94.7 with median 40.90. 11 (57.9%) trials met the ESMO
criteria for meaningful value achieved. Of 14 trials not meeting the ASCO cutoff score, only
8 did not meet the meaningful ESMO criteria. Agreement between these two frameworks
thresholds was only fair (κ � 0.412, P＜0.05). A negative correlation was noted between
increment monthly cost and value assessment results.

Conclusion: There is only fair correlation between ASCO and ESMO value assessment
frameworks. Not all treatment with nivolumab and pembrolizumab meet valuable
thresholds.
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INTRODUCTION

Influx of innovative therapies, particularly the targeted drugs and
immunotherapies have marked major therapeutic advances in
oncology. Nevertheless, dramatic rise in prices of these drugs
supports the growing concern whether their value demonstrated
by evidence is commensurate with the high prices and is challenging
to put into practice (Promoting Value, 2018). Favorable evidence
for high-value drugs could incentivize the development of novel
drug regimens and facilitate conversations in clinical practice. To
facilitate value-driven decision-making, an evolving field from the
perspective of stakeholders—physicians, patients, health care
insurers, etc., including the American Society of Clinical
Oncology (ASCO) (Schnipper et al., 2015; Schnipper et al., 2016)
and the European Society for Medical Oncology (ESMO) (Cherny
et al., 2015; Cherny et al., 2017) have independently proposed
frameworks as unbiased tools for systematic assessment of value of
anticancer drugs, justifiably evaluating high quality therapies
affordable for various cancer disease states.

To date, only a few reports have focused on application of two
prominent tools-ASCOValue Framework (ASCO-VF), or the ESMO
Magnitude of Clinical Benefit Scale (ESMO-MCBS), or both
according to a contemporary cohort of randomized controlled
trials (RCTs) to assess the value of anticancer drugs, suggesting
that not all approved drugs were significantly associated with
meaningful value and additionally exploring the extent of
concordance or discordance between these two respective
frameworks (Del Paggio et al., 2017; Foote et al., 2017; Vivot
et al., 2017; Djatche et al., 2018). However, studies of value
assessment were limited.

New anticancer drugs approved by the Food and Drug
Administration are expected to be of high value. For example,
programmed cell death (PD-1) inhibitors (nivolumab and
pembrolizumab) have revolutionized cancer therapy and have
shown potential efficacy for a wide range of tumor types based
on data from published studies. These approvals have resulted in a
widespread prescribing of PD-1 inhibitors in real-world clinical
practice. Up to now, numerous RCTs have reported the benefits and
safety of PD-1 inhibitors. Unfortunately, not all cancer
patients—now and in the future—might be able to afford these
drugs because of their high prices. Furthermore, patients know the
high prices of these drugs but not their value, or misunderstand the
drugs prices and their value, both of which might stifle innovation
in the development of anticancer drugs and in turn prevent the
patients from achieving optimal cancer care.

Overall, we performed this study to comprehensively integrate the
value of two PD-1 inhibitors (nivolumab and pembrolizumab) by
ASCO-VF and ESMO-MCBS in a cohort of RCTs and offer insight
into the association between these two frameworks as an important
structured evidence for clinicians in making clinical decisions.

METHODS

Study Cohort and Eligibility Criteria
Phase III RCTs that compared nivolumab and pembrolizumab
alone or in combination with chemotherapy, hormonal therapy,

other targeted agents, etc., to the same regimen without them
used in the intervention group irrespective of the cancer type and
stage were identified.

Reports of secondary, subset, or pooled data, phase I or II
trials, animal studies, or trials that assessed drug delivery or
single-drug dosing schedules were excluded.

Literature Search
Systematic search of electronic databases including the Cochrane
Controlled Trials Register on the Cochrane Library, MEDLINE,
EMBASE, and Science Citation Index was conducted using the
terms nivolumab, pembrolizumab and PD-1 inhibitor, with a cutoff
date of Nov 30, 2019. Both MeSH and free text terms were used to
identify relevant articles. Reference lists of pertinent retrieved
articles were reviewed for additional studies, and ClinicalTrials.
gov was also checked in June 2019 to ensure that data from
previously published trials were updated on the registry.

Study Process
Two authors (HW and HL) independently conducted the
literature search, screened titles and abstracts for potential
eligibility and full texts for final eligibility. In case of
disagreement, a consensus was reached through discussion.

Treatments were classified as curative or palliative according
to the trial population. Two reviewers extracted the data using a
standardized extraction form, including but not limited to the
trial name, phase, cancer type, PD-1 inhibitor used, dosing
schedule, follow-up time and outcomes in accordance with the
ASCO-VF and ESMO-MCBS for all eligible studies. ASCO-VF
scores and ESMO-MCBS grades were independently recorded.
Any discrepancies were discussed among all authors to establish a
final score or grade.

To assess the monthly cost of therapeutic regimen including the
cost of all anticancer drugs in the study regimen, we used the price
for branded and generic drugs recorded in theHospital Information
System (HIS). Monthly costs were calculated over an average of
30 days based on the dosage schedule in all eligible trials for a patient
weighing 60 kg with a body surface area of 1.70m2. Ultimately,
incremental monthly drug costs as the difference between the
experimental and control groups were reported. The most
expensive one was recorded if there were several options of
therapeutic regimen in the control group. All therapeutic
regimens were adjusted to provide the price per 4-week period.

Statistical Analysis
All data were collected using structured Excel sheets designed for
this study. Statistical analysis was performed using IBM SPSS 25.0.
Continuous data of ASCO-VF scores were plotted and analyzed to
assess the normality of the underlying distribution. Since ASCO-VF
has no explicit definition for what score is deemed “meaningful
value achieved”; we split scores at the 75th percentile of ASCO-VF
scores as the cutoff score, referring to themeaningful value achieved
of ESMO-MCBS as a grade of 4, 5, B, or A.We split the cutoff scores
for subsequent analyses. A score above the cutoff was defined as
“meaningful value achieved” while a score below the cutoff
indicated “meaningful value not achieved”. Receiver operating
characteristic (ROC) curves were generated to establish the
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TABLE 1 | Characteristics of included phase III randomized controlled trials of PD-1 inhibitor.

NO. Year Registry
number

Study code Disease type Setting Drug PD-L1
expression
level

Sample
size

Follow-
up time
(m)

Outcomes Industry
sponsorship

ASCO-
VF
scores

ESMO-
MCBS
grade

1 2019 NCT02220894 KEYNOTE-042
(Cohen et al., 2019)

NSCLC First-line for locally
advanced or
metastatic with EGFR
and ALK WT

Pembrolizumab vs.
paclitaxel or pemetrexed
plus carboplatin

PD-L1≥1% 1,274
(637/637)

12.8 OS, PFS,
ADEs, QALY

Yes 30.2 3

2 2019 NCT02252042 KEYNOTE-040 (Wu
et al., 2019)

Head and neck
squamous cell
carcinoma

Second-line for
recurrent or
metastatic

Pembrolizumab vs.
methotrexate,
docetaxel, or cetuximab

—— 495 (247/
248)

7.5 ORR, OS,
PFS, ADEs

Yes 30.8 3

3 2019 NCT02613507 CheckMate 078
(Shitara et al., 2018)

NSCLC Second-line for
platinum-based
doublet chemo-
therapywith EGFR
and ALK WT

Nivolumab vs. docetaxel —— 504 (338/
166)

8.8 ORR, OS,
ADEs

Yes 47.8 3

4 2018 NCT02370498 KEYNOTE-061
(Eggermont et al.,
2018)

Gastric or gastro-
oesophageal
junction cancer

Second-line for
advanced gastric or
gastro-oesophageal
junction cancer

Pembrolizumab vs.
Paclitaxel

PDL1 CPS≥1 395 (196/
199)

8.5 ORR, OS,
PFS, ADEs

Yes 30 3

5 2018 NCT02362594 EROTC1325/
KEYNOTE-054
(Hodi et al., 2018)

Melanoma Completely resected
stage III

Pembrolizumab vs.
placebo

1,019
(514/505)

15 RFS, OS,
DFS, ADEs,
QALY

Yes 9.4 A

6 2018 NCT01844505 CheckMate 067
(Hellmann et al.,
2018)

Melanoma First-line for stage III or
IV with BRAF mutation

Nivolumab plus
ipilimumab or nivolumab
alone vs. Ipilimumab
alone

—— 945 (314/
316/315)

48 ORR, OS,
PFS, ADEs

Yes 38.8 5

7 2018 NCT02477826 CheckMate 227
(Bellmunt et al.,
2017)

NSCLC First-line for stage IV
or recurrent with
EGFR and ALK WT

Nivolumab plus
ipilimumab, nivolumab
monotherapy vs.
platinum doublet
chemotherapy

—— 1,537
(576/391/
570)

11.2 PFS, ADEs Yes 36.3 2

8 2017 NCT02256436 KEYNOTE-045
(Carbone et al.,
2017)

Urothelial cancer Second-line for
advanced

Pembrolizumab vs.
paclitaxel, docetaxel, or
vinflunine

—— 542 (270/
272)

14.1 ORR, OS,
PFS, ADEs

Yes 40.9 5

9 2017 NCT02041533 CheckMate 026
(Weber et al., 2017)

NSCLC First-line for stage IV
or recurrent with
EGFR and ALK WT

Nivolumab vs. platinum
doublet chemotherapy

—— 541 (270/
271)

13.7 ORR, OS,
PFS, ADEs

Yes 10.9 2

10 2017 NCT02388906 CheckMate 238
(Kang et al., 2017)

Melanoma Adjuvant resected
stage III or IV

Nivolumab vs.
Ipilimumab

PD-L1≥5% 906 (453/
453)

18 RFS, ADEs Yes 29.6 A

11 2017 NCT02267343 ONO-4538–12,
ATTRACTION-2
(Reck et al., 2016)

Gastric or gastro-
oesophageal
junction cancer

After second-line for
advanced

Nivolumab vs. placebo PD-L1≥1% 493 (330/
163)

12 ORR, OS,
PFS, ADEs

Yes 7 1

12 2016 NCT02142738 KEYNOTE-024
(Herbst et al., 2016;
Brahmer et al.,
2017)

NSCLC First-line for stage IV
with EGFR and ALK
WT

Pembrolizumab vs.
platinum-based
chemotherapy

PD-L1≥50% 305 (154/
151)

11.2 ORR, OS,
PFS, ADEs,
QALY

Yes 70 5

(Continued on following page)
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TABLE 1 | (Continued) Characteristics of included phase III randomized controlled trials of PD-1 inhibitor.

NO. Year Registry
number

Study code Disease type Setting Drug PD-L1
expression
level

Sample
size

Follow-
up time
(m)

Outcomes Industry
sponsorship

ASCO-
VF
scores

ESMO-
MCBS
grade

13 2016 NCT01905657 KEYNOTE-010
(Ferris et al., 2016)

NSCLC Second-line after
platinum-based
therapy or
TKIs(EGFR/ALK
sensitive mutated)

Pembrolizumab vs.
docetaxel

PD-L1≥1% 687 (344/
343)

13.1 ORR, OS,
PFS, ADEs,
QALY

Yes 41.6 3

14 2016 NCT02105636 CheckMate 141
(Borghaei et al.,
2015; Harrington
et al., 2017)

Head and neck
squamous-cell
carcinoma

Platinum-refractory
recurrent or
metastatic

Nivolumab vs.
methotrexate,
docetaxel, cetuximab

PD-L1≥1% 381 (240/
141)

16.8 ORR, OS,
PFS, ADEs,
QALY

Yes 82.5 4

15 2015 NCT01673867 CheckMate 057
(Brahmer et al.,
2015; Reck et al.,
2018)

Nonsquamous
NSCLC

EGFR mutation/ALK
translocation

Nivolumab vs. docetaxel —— 582 (292/
290)

17.2 ORR, OS,
PFS, ADEs,
QALY

Yes 63.3 4

16 2015 NCT01642004 CheckMate 017
(Motzer et al., 2015;
Reck et al., 2018)

Squamous-cell
NSCLC

Second-line for stage
IIIB or IV after
platinum-based
therapy

Nivolumab vs. docetaxel —— 272 (135/
137)

11 ORR, OS,
PFS, ADEs,
QALY

Yes 78.5 5

17 2015 NCT01668784 CheckMate 025
(Weber et al., 2015;
Cella et al., 2016)

Renal cell
carcinoma

Advanced or
metastatic

Nivolumab vs.
everolimus

—— 706 (362/
344)

14 ORR, OS,
PFS, ADEs,
QALY

Yes 46.7 5

18 2015 NCT01721746 CheckMate 037
(Robert et al., 2015)

Melanoma Second-line for
unresectable stage
IIIC or IV metastatic

Nivolumab vs.
dacarbazine, or
carboplatin plus
paclitaxel

PD-L1≥5% 405 (272/
133)

6 ORR, OS,
PFS, ADEs

Yes 49.2 4

19 2014 NCT01721772 CheckMate 066
(Robert et al., 2015;
Long et al., 2016)

Melanoma Unresectable,
previously untreated
stage III or IV
metastatic without
BRAF mutation

Nivolumab vs.
dacarbazine (double-
blind)

PD-L1≥5% 418 (210/
208)

73 weeks ORR, OS,
PFS, ADEs,
QALY

Yes 94.7 4

NSCLC: non-small-cell lung cancer; WT: wide type; RFS: recurrence-free survival; OS: overall survival; PFS: progression-free survival; ORR: Objective Response Rate; ADE: adverse events; EGFR: epidermal growth factor receptor; ALK:
anaplastic lymphoma kinase.
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predictive value of ASCO-VF score to meet ESMO-MCBS grade
and discriminate the agreement of these two value assessment tools.
Subgroups analyses were performed according to palliative and
curative intent of the eligible trials. Spearman’s correlation was used
to assess the association between monthly cost and ASCO-VF
score/ESMO-MCBS grade. A p < 0.05 was deemed significant
for all analyses.

RESULTS

Eligible Studies and Characteristics
Of the 11,414 reports identified through search of electronic
databases, 19 phase III RCTs eventually met our eligibility criteria
(Borghaei et al., 2015; Brahmer et al., 2015; Motzer et al., 2015;
Robert et al., 2015; Weber et al., 2015; Cella et al., 2016; Ferris
et al., 2016; Herbst et al., 2016; Long et al., 2016; Reck et al., 2016;
Bellmunt et al., 2017; Brahmer et al., 2017; Carbone et al., 2017;
Harrington et al., 2017; Kang et al., 2017; Weber et al., 2017;
Eggermont et al., 2018; Hellmann et al., 2018; Hodi et al., 2018;
Reck et al., 2018; Reck et al., 2018; Shitara et al., 2018; Cohen et al.,
2019; Mok et al., 2019; Wu et al., 2019). Of these, seven (36.8%)
trials included treatments with nivolumab while 12 (63.2%) with
pembrolizumab; eight (42.1%) trials involved treatments for non-
small-cell lung cancer (NSCLC), five (26.3%) for melanoma, two
(10.5%) for head and neck squamous cell carcinoma and gastric
or gastro-esophageal junction cancer, respectively, and one each
(5.3%) for urothelial cancer and renal-cell carcinoma,
respectively. The longest follow-up time was 48 months of
nivolumab for melanoma. The largest sample size was 1,537 of
nivolumab for NSCLC (Table 1).

Value Scores/Grades
ASCO-VF scores ranged from 7 to 94.7 (Figure 1), and the scores
were normally distributed. Median ASCO-VF score was 40.90,
with inter-quartile range (IQR) 33.30. Ten (52.6%) trials fell

below, while nine (50.1%) trials were above. Since ASCO-VF
has no explicit definition of what score is deemed “meaningful
value achieved”; we split scores at the 75th percentile of ASCO-
VF scores—63.3 as the cutoff score, referring to the meaningful
value achieved of ESMO-MCBS as a grade of 4, 5, B, or A.
Therefore, five (26.3%) trials were above the threshold whereas 14
(73.3%) fell below. Eleven (57.9%) of the 19 RCTsmet the ESMO-
MCBS criteria for meaningful value achieved. Of the 14 trials that
did not meet the ASCO-VF cutoff score, only eight did not meet
the ESMO-MCBS “meaningful value achieved” criteria.

Association Between ASCO-VF and
ESMO-MCBS
ROC curve was used to establish a discrimination threshold of
ASCO-VF scores in relation to the ESMO-MCBS criteria, and the
threshold score was approximately 40, which was comparatively
close to the median ASCO-VF value scores. Nevertheless, the area
under the curve was 0.795 (p＜0.05) (Figure 2), suggesting only
fair predictive value. Agreement between ASCO-VF and ESMO-
MCBS thresholds was only fair (κ � 0.412, p＜0.05).

Correlation Between Cost and Value
Results
Incremental monthly cost data, ranged from ¥28,426.40 to
¥47,661.88, were not normally distributed and were analyzed
with non-parametric statistics. Incremental monthly cost and
ASCO-VF scores were negatively correlated (Spearman’s ρ�
−0.272; p � 0.260), and a negative correlation was also noted
between incremental monthly cost and ESMO-MCBS grades
(Spearman’s ρ� −0.088; p � 0.720).

FIGURE 1 | Distributions of the ASCO-VF Scores (Histograms).

FIGURE 2 | Receiver operating characteristic curve for ASCO-VF scores
and ESMO-MCBS grades among 19 randomized controlled trials.
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DISCUSSION

Summary of Key Findings
To the best of our knowledge, this was the first study that applied
ASCO-VF and ESMO-MCBS to comprehensively address the
value of two PD-1 inhibitors, nivolumab and pembrolizumab,
and offer insight into the association between these two
frameworks.

Most studies focused on NSCLS and melanoma. In addition to
NSCLC, melanoma, head and neck squamous cell carcinoma and
gastric or gastro-esophageal junction cancer, only one trial
compared nivolumab in renal cell carcinoma while another
compared pembrolizumab in urothelial cancer (Cella et al., 2016).

There were some conflicting results. For gastric or gastro-
esophageal junction cancer, ASCO-VF scores and ESMO-MCBS
grades showed that both nivolumab and pembrolizumab were of
little value, with ASCO-VF scores 7 vs. ESMO-MCBS grade 1 for
nivolumab (Reck et al., 2016) and ASCO-VF scores 30 vs. ESMO-
MCBS grade 3 for pembrolizumab (Eggermont et al., 2018). For
the second-line treatment for recurrent or metastatic head and
neck squamous cell carcinoma, nivolumab (ASCO-VF scores 82.5
vs. ESMO-MCBS grade 4) was valuable (Borghaei et al., 2015;
Harrington et al., 2017), but pembrolizumab was not (ASCO-VF
scores 30.8 vs. ESMO-MCBS grade 3) (Wu et al., 2019). For
melanoma, discordant ASCO-VF scores and ESMO-MCBS
grades were generated except CheckMate 066 (Robert et al.,
2015; Long et al., 2016) and CheckMate 037 (Robert et al.,
2015) examining the efficacy and safety nivolumab for
melanoma. For CheckMate 066, ASCO-VF score was highest
and ESMO-MCBS grade was only 4. For NSCLC, results were
almost the same with ASCO-VF scores and ESMO-MCBS grades.
For CheckMate 017 (Motzer et al., 2015; Reck et al., 2018)
examining the second-line treatment of nivolumab for
squamous-cell stage IIIB or IV NSCLC after platinum-based
therapy, and KEYNOTE-024 (Herbst et al., 2016; Brahmer
et al., 2017) examining the first-line pembrolizumab treatment
for stage IV NSCLC with EGFR and ALK wild type, both ASCO-
VF scores and ESMO-MCBS grades were high, demonstrating
that they were valuable.

Strengths and Limitations
This study fills a crucial knowledge gap regarding the value of PD-
1 inhibitors among cancer patients. Several strengths should be
noted. Firstly, each trial had a wide range of ASCO-VF scores.
Secondly, not all trials met the ESMO-MCBS “meaningful value
achieved” criteria. Thirdly, only a fair association was found
between ASCO-VF and ESMO-MCBS. Fourth, there was no
correlation between incremental monthly cost and ASCO-VF
scores or ESMO-MCBS grades.

Irrespective of whether the trials described patients with
specific PD-1 expression level, high ASCO-VF scores and
ESMO-MCBS grades were recorded.

Nevertheless, this study also had several limitations. Firstly,
the ASCO-VF score and ESMO-MCBS grade of the trials with

the largest sample size was not high and did not meet the
ASCO-VF cutoff score and the ESMO-MCBS “meaningful
value achieved” criteria. Secondly, the association between
ASCO-VF and ESMO-MCBS was only moderate in a cohort
of 19 trials, substantially similar to those reported by others
except one study including only a small number of trials (n � 5).
Extensive efforts are needed to improve convergence of the two
value assessment tools based on our findings. Thirdly, since
ASCO-VF has no explicit definition of what score is deemed
“meaningful value achieved”; we split scores at the 75th
percentile of ASCO-VF scores—63.3 as the cutoff score,
referring to the meaningful value achieved of ESMO-MCBS
as a grade of 4, 5, B, and A. Nevertheless, changing this cutoff
score will change the degree of correlation between these
two tools.

Clinical and Research Implications
This study sheds light on the important clinical issue about the
comparative value of PD-1-related treatment. Our results
demonstrated the value of a drug should not be judged solely
by its price. It is necessary to conduct value assessment to insight
the date beyond RCTs.

CONCLUSION

There is only fair correlation between ASCO-VF and ESMO-
MCBS. Not all treatments with nivolumab and pembrolizumab
meet valuable thresholds according to value assessment tools
established by ASCO or ESMO. Given the high prices of these
drugs, valuable, appropriate and affordable treatment is
important for decision-making.
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Next-Generation Immunotherapies to
Improve Anticancer Immunity
Yaoyao Shi, Katarzyna Tomczak, June Li, Joshua K. Ochieng, Younghee Lee and
Cara Haymaker*

Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX,
United States

Checkpoint inhibitors are widely used immunotherapies for advanced cancer.
Nonetheless, checkpoint inhibitors have a relatively low response rate, work in a
limited range of cancers, and have some unignorable side effects. Checkpoint
inhibitors aim to reinvigorate exhausted or suppressed T cells in the tumor
microenvironment (TME). However, the TME contains various other immune cell
subsets that interact to determine the fate of cytotoxic T cells. Activation of cytotoxic
T cells is initiated by antigen cross-presentation of dendritic cells. Dendritic cells could also
release chemokines and cytokines to recruit and foster T cells. B cells, another type of
antigen-presenting cell, also foster T cells and can produce tumor-specific antibodies.
Neutrophils, a granulocyte cell subset in the TME, impede the proliferation and activation of
T cells. The TME also consists of cytotoxic innate natural killer cells, which kill tumor cells
efficiently. Natural killer cells can eradicate major histocompatibility complex I-negative
tumor cells, which escape cytotoxic T cell–mediated destruction. A thorough
understanding of the immune mechanism of the TME, as reviewed here, will lead to
further development of more powerful therapeutic strategies. We have also reviewed the
clinical outcomes of patients treated with drugs targeting these immune cells to identify
strategies for improvement and possible immunotherapy combinations.

Keywords: DC, B cells, NK cells, neutrophils, combination immunotherapy

INTRODUCTION

Cancer immunotherapy harnesses the patient’s own immune system to fight against cancer,
distinguishing immunotherapy from conventional cancer therapies, which directly target the
tumor cells. Major types of cancer immunotherapies are described in Figure 1. The clinical
practice of immunotherapy in cancer patients was initiated by F. Fehleisen and Wilhelm Busch,
two German physicians, who noticed that a malignancy shrank after erysipelas infection (Dobosz
and Dzieciatkowski, 2019). The preclinical discovery of immune cell subsets and associated cytokines
significantly furthered the clinical practice of cancer immunotherapy (Old et al., 1959; Carswell et al.,
1975; Herberman et al., 1975; Quesada et al., 1984). Subsequently, checkpoint inhibitors such as
cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed cell death-1 (PD-1) and its ligand
(PD-L1) were found to play a critical role in immune escape (Leach et al., 1996; Dong et al., 2002).
Monoclonal antibodies targeting checkpoint inhibitors were approved by the US Food and Drug
Administration for clinical treatment of various malignancies and achieved promising therapeutic
outcomes in certain cancer types. A pooled analysis of data from phase II and III trials of ipilimumab
(anti-CTLA-4) in patients with unresectable or metastatic melanoma revealed a 22% 3-year
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long-term survival rate with a median overall survival duration of
11.4 months (Schadendorf et al., 2015). In contrast, the 3-year long-
term survival rate of patients who receive routine chemotherapy
using dacarbazine is 12.2% (Robert et al., 2011). Nivolumab, a PD-1
inhibitor, achieved an objective response rate of 40.0% in patients
with melanoma without the Braf mutation, 19% in non-small-cell
lung cancer (NSCLC), and 66.3–87% inHodgkin lymphoma (Ansell
et al., 2015; Borghaei et al., 2015; Robert et al., 2015; Younes et al.,
2016). Pembrolizumab, another PD-1 inhibitor, achieved a 39%
objective response rate in patients with locally advanced or
metastatic NSCLC, with a PD-L1 tumor proportion score ≥50%
(Mok et al., 2019). Chimeric antigen receptor (CAR)-T cell therapy,
which targets the specific tumor antigen, was also approved by the
US Food andDrug Administration recently andwas reported to lead
to a remarkable remission rate in patients with B cell acute
lymphocytic leukemia (DiNofia and Maude, 2019).

Both checkpoint inhibitors and CAR-T cell therapy have been
shown to lead to beneficial clinical outcomes in selected cancer
types mentioned above; however, the response rate to checkpoint
inhibitors is relatively low. CAR-T cell therapy has a relatively
high response rate in hematologic malignancies, but huge
challenges exist when CAR-T cell therapy is utilized to treat

solid tumors. Specifically, the tumor-specific antigens that are the
potential target for CAR-T cell therapy are lacking; meanwhile, the
suppressive immune environment of solid tumors limits CAR-T cells’
infiltration into the solid tumors (Ma et al., 2019). Another issue for
CAR-T cell therapy is the severe immune-related adverse events,
including cytokine release syndrome, neurologic toxicity, and off-
tumor recognition (Bonifant et al., 2016). Checkpoint inhibitors,
especially anti-CTLA-4 agents, also have relatively high rates of
immune-related adverse events, including colitis and hypophysitis
(Postow et al., 2018).

Both checkpoint inhibitors and CAR-T cell therapy aim at
invigorating T cells’ response to fight against cancer. However,
the tumor immune microenvironment (TME) contains multiple
types of immune cell subsets, not limited to T cells. The multilevel
and multiscale interactions among these immune cells determine
their final capacity of tumor control (Chew et al., 2012). In this
review, we describe four of these immune cell types, i.e., dendritic
cells (DCs), natural killer (NK) cells, B cells, and neutrophils,
along with current methods to target these cells to induce
antitumor immune activation (Figure 2). DCs are the
“professional” tumor antigen-presenting cells, which essentially
initiate the activation of T cell response in the TME (Banchereau

FIGURE 1 |Major types of cancer immunotherapies. (A) Immune Checkpoint blockade therapy utilizing antibodies targeting CTLA-4 or PD-1/PD-L1 pathway have
demonstrated promising results in a variety of malignancies. Additionally, recent studies have identified many other immune checkpoint markers, such as LAG3, TIM3 or
TIGIT that could also be targeted. (B) Tumor Antigen Targeting Antibodies are laboratory generated, designed to target specific tumor antigens, usually conjugated with a
specific drug. Currently the development of polyspecific antibodies (bi- and tri-specific antibodies) has the advantages by targetingmultiple tumor antigens, tomore
precisely and effectively eradicate cancer cells. (C) Recombinant Cytokines (e.g., IL-2, IL-18, IL-6, IFNγ, GM-CSF) can induce, mediate and regulate the immune
response by improving antigen priming, facilitating T cell proliferation and survival or enhancing their cytolytic activity. (D) Therapeutic Vaccines made of laboratory
modified cancer cells, parts of cells, or pure antigens elicit an immune response against tumor-specific or tumor-associated antigens. (E) Oncolytic viruses (OVs) in the
forms of native or engineered viruses can be used to selectively target and kill cancer cells. Advancements of genetic engineering enable successful editing of viral
genome of many species to augment antitumor activity and attenuate pathogenicity, but also to express specific cytokines that favor immune cell recruitment and
activation or to produce co-stimulatory molecules on tumor cells to facilitate the generation of T-cell activating signals. (F) CAR T cells and Adoptive Cell Therapy (ACT)
are personalized cancer strategies relying on the collection of immune cellular components from patient, expansion and/or genetically modification of those cells in vitro
and injection them back to the patient to achieve a therapeutic response. Combination strategies involving the immunotherapies described above as well as
combinations including both standard of care chemotherapy or radiation treatment options are also actively being tested in both preclinical models and in the clinical
setting.
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and Palucka, 2005). Similar to cytotoxic T cells, NK cells are
another powerful cytotoxic immune cell capable of direct tumor
killing, and NK cells do not need prior exposure to the specific
antigen (Morvan and Lanier, 2016). B cells, another cell subset in
the adaptive immune system, are required for optimal T cell
activation in the TME or tumor-draining lymph nodes (Dilillo
et al., 2010). Most neutrophils in the TME, conversely, suppress
T cell function and promote tumor progression and metastasis
(Wu et al., 2019). The direct tumor killing capability or the
significant impact on cytotoxic T cell function make these

immune cells the potential next-generation cancer therapeutic
targets. The combination of therapies targeting these cells with
checkpoint inhibitors or CAR-T cell therapy may significantly
improve clinical outcomes for various cancer types.

DENDRITIC CELLS

Most current immunotherapies, including checkpoint inhibitors,
aim to invigorate the adaptive immune response, specifically

FIGURE 2 | Schematic overview of immune cell-mediated anticancer therapies based on dendritic cells (DCs), natural killer (NK) cells, B cells, and neutrophils
applied within clinical trials. (A) DC-related antitumor immunotherapies include the DC vaccine loaded with tumor antigen, STING agonist, TLR agonist, and anti-CD47
antibodies. (B) NK cell-related antitumor immunotherapies include treatment with a superagonist, cytokine-activated NKs, anti-CD19 chimeric antigen receptor-NK,
combination of haNK with anti-CD20 antibody, application of anti-NKG2A antibody, and NK-based CD16-IL15-CD33 TriKEs. (C) B cell-related antitumor
immunotherapies include treatment with anti-CD40 antibody. (D) Neutrophil-related antitumor immunotherapies include CXCR1/2 inhibitor, CCR5 inhibitor, anti-TRAIL-
R2 agonist antibody, anti-C5aR agonist antibody, treatment with IFNγ, anti-TGFβ neutralizing antibody, TGFβ receptor kinase inhibitor, arginase 1 inhibitor, recombinant
arginase 1, and anti-CD47 antibody. These strategies can be combined with other therapies such as anti-PD-L1 antibody. The antitumor effect (marked as a red dashed
arrow) or inhibitory interaction (marked as a black line) is indicated within the figure.
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cytotoxic T cells, to fight against cancers. However, an antitumor
adaptive T cell response is not triggered autonomously. Instead, it
is initiated, activated, and regulated predominantly by one innate
immune cell subset: DCs (Patente et al., 2018). DCs are
professional antigen-presenting cells, capturing tumor-
associated antigens (TAA) in the TME. Distinct from
macrophages, which destroy TAAs completely into amino
acids for the purpose of antigen clearance, DCs partially
degrade TAAs into potential peptides for T cell recognition
(Ramachandra et al., 2009). Specifically, TAA peptides are
presented by the major histocompatibility complex (MHC) I
molecule on the surface of DCs to be recognized by TAA-
specific T cells. This is known as cross-presentation. After this
process, neoantigen-specific CD4+ T helper cells and cytolytic
CD8+ T cells are activated and start to fight against tumor cells
(Neefjes et al., 2011). In addition, DCs can produce cytokines
such as tumor necrosis factor alpha (TNFα) and type I interferon
(IFN) in an autocrine manner to further promote DC activation
and maturation (Blanco et al., 2008). DCs can also secrete
chemokines such as CCL2/3/4, CCL17, CCL19/21, and
CXCL9/10/11 to recruit T cells and other cell subsets into the
tumor sites (Thaiss et al., 2011). DCs can also activate B cells, NK
cells, and NK T cells (Fernandez et al., 1999; Kadowaki et al.,
2001; Jego et al., 2003), thereby conducting all elements of the
immune orchestra in concert to eliminate tumors.

However, DC function is suppressed in the TME. During the
process of tumor formation, tumor cells manipulate immune
cells, including DCs, to form a suppressive immune environment
to foster tumor cell expansion. Immunosuppressive regulatory
DCs that secrete interleukin (IL)-6 and galectin-1 to promote
tumor growth have been observed in the TME (Veglia and
Gabrilovich, 2017). In addition, DCs in patients with breast
cancer were reported to express lower MHC II and maturation
markers and to be less effective in stimulating cytotoxic T cells
than in healthy donors (Gervais et al., 2005). Patients with renal
cell carcinoma were reported to have minimal recruitment and
activation of DCs in the TME (Troy et al., 1998). Reinvigoration
of DC function will be a powerful step in restarting the robust
antitumor adaptive immune response in patients with cancer
(Figure 2A).

DCs have been explored in clinical trials as a target for
therapeutic vaccination of patients with cancer since the mid-
1990s (Anguille et al., 2014). Specifically, autologous DCs, ex vivo
loaded with specific TAAs or peptides or pulsed with whole
tumor lysate, were used as a therapeutic vaccine (Chiang et al.,
2015). The sources of autologous DCs include peripheral blood
monocytes, circulating DCs after in vivo expansion, or CD34+

hematopoietic precursors mobilized from bone marrow
(Constantino et al., 2017). DC vaccines have been extensively
tested in clinical trials of patients with malignant melanoma,
prostate cancer, malignant glioma, and renal cell cancer. In
patients with melanoma, DC vaccines resulted in an objective
response rate of 8.5%, and median overall survival was prolonged
by at least 20% in most trials (Anguille et al., 2014). Similarly,
7.1% of patients with prostate cancer had an objective response.
Notably, the phase III clinical trial of DC-based therapeutic
sipuleucel-T showed a 4.1-month improvement in median

overall survival in patients with prostate cancer (Kantoff et al.,
2010). In addition, 15.6% of patients with malignant glioma had
an objective response to the DC vaccine and 11.5% of patients
with advanced renal cell carcinoma had an objective response
(Martin Lluesma et al., 2016). In brief, the overall clinical benefit
of the DC vaccine is real but underwhelming. Unlike with other
immunotherapies, immune-related adverse events with DC
vaccination are not severe, and systemic grade 3–4 toxicity is
uncommon with monotherapy (Draube et al., 2011).

Cancer therapies targeting in vivo DC maturation and
activation have also been investigated and put into clinical
practice. Toll-like receptors (TLRs) are one molecule family
expressed by DCs. The activation of TLR signaling in DCs
enhances antigen cross-priming of naïve T cells and
upregulates cytokine production to further promote DC
maturation in an autocrine manner (Hemmi and Akira, 2005).
TLR7 and TLR9 agonists, which target plasmacytoid DCs to
produce type I IFN, showed clinical efficacy. In a multicenter
phase III study using imiquimod (a TLR7 agonist) to treat basal
cell carcinoma, patients using imiquimod had 80% histologic
tumor clearance compared with 6% clearance in control groups
(Schulze et al., 2005). In an early-phase trial of IMO-2055 (a TLR9
agonist) to treat NSCLC, 15% of patients achieved a partial
response and 61% had stable disease (Smith et al., 2014). Like
TLRs, the stimulator of IFN genes (STING) signaling in DCs can
also induce type I IFN expression and promote intrinsic or
therapy-induced antitumor T cell responses (Vatner and
Janssen, 2019). The first notable clinical STING agonist,
vadimezan, was shown to stimulate mouse STING and boost
antitumor immunity in preclinical studies; however, vadimezan
cannot bind human STING and thereby failed to improve
antitumor efficacy in a randomized phase III trial conducted
in patients with advanced NSCLC (Lara et al., 2011; Conlon et al.,
2013). Afterward, various human STING agonists such as ADU-
S100 and MK-1454, which may have promising clinical
outcomes, were developed and are currently being tested in
combination with checkpoint inhibitors in ongoing clinical
trials (NCT02675439, NCT03172936, NCT03010176).

Another suppressive factor in the TME that results in DC
anergy is the “do not eat me”molecules expressed on tumor cells.
DCs in the TME failed to recognize tumor cells expressing CD47,
one of the “do not eat me” molecules (Liu et al., 2015).
Magrolimab (a CD47-blocking antibody) is being tested in
various ongoing clinical trials (NCT02953509, NCT04313881,
NCT03248479), and promising preliminary data from
NCT02953509 showed that 40% of patients with non-Hodgkin
lymphoma achieved an objective response and 33% achieved a
complete response when magrolimab was combined with
rituximab (Advani et al., 2018).

In the TME, DCs not only continuously present TAAs to
initiate robust T cell responses but also coordinate with other
immune cell subsets, including NK cells and B cells, to eliminate
cancer cells. The current pitfall for DC vaccination lies in its
limited efficacy in terms of tumor control (Anguille et al., 2014).
The antitumor efficacy of the DC vaccine has been reported to
partially depend on the maturation status of the DCs. Results
from prostate cancer clinical trials showed that DCs derived from
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mature monocytes led to better clinical outcomes than did their
immature counterparts (Draube et al., 2011). The current gold
standard method to induce in vitroDCmaturation is using a pro-
inflammatory cytokine mix (IL-1, TNFα, IL-6, and prostaglandin
E). More efficient methods to induce DC maturation have also
been developed, such as adding type I/II IFN, CD40, or TLR
agonist (Banchereau and Palucka, 2005). Homing efficiency of
vaccinated DCs in the tumor-draining lymph node(s) is also
critical to optimize the clinical outcome of patients who receive
the DC vaccine (Shang et al., 2017). Various administration
methods have been tested to achieve higher levels of infused
DC infiltration in the tumor-draining lymph nodes and TME
(Perez and De Palma, 2019). Antigen loading efficiency presents
another problem for DC vaccination. DCs pulsed by TAA
peptides are the most common DC vaccines in clinical
practice. However, the low conjugation affinity of these
peptides with MHC molecules and the fast turnover of the
peptide-MHC complex on DCs reduces the antitumor efficacy
of DC vaccines (Banchereau and Palucka, 2005). Therefore,
methods to achieve long-lasting and natural processing of the
peptide-MHC complex is an area for further exploration and
improvement.

As for immunotherapies to activate DCs in vivo, TLR agonists,
STING agonists, or anti-CD47 antibodies can activate DC
function and turn “cold tumors” into “hot tumors.” However,
the administration of these stimulators leads to upregulation of
type I and II IFN in the TME, resulting in upregulation of PD-L1
expression, causing T cell suppression/exhaustion (Blanco et al.,
2008; Liu et al., 2015; Garcia-Diaz et al., 2017; Vatner and Janssen,
2019). Therefore, the logical combination of these DC stimulators
with checkpoint inhibitors may lead to a more favorable clinical
outcome in patients with cancer.

NK CELLS

NK cells are a powerful subset of innate cytotoxic lymphocytes
fighting against pathogens and tumor cells, without the need for
prior exposure to a specific antigen (Morvan and Lanier, 2016).
NK cells can lyse cancer cells through secretion of cytolytic
granules, such as perforin and granzyme, and foster other
immune responses via secretion of immunomodulatory
cytokines. NK cells can also induce tumor cell apoptosis by
releasing members of the TNF family, such as FAS and
TRAIL (Lanier, 2008; Guillerey et al., 2016). Crosstalk between
NK cells and DCs promotes DC uptake of tumor antigens in
tumor-draining lymph nodes, thereby activating T cells. Recently,
it was also found that, like adaptive immune cells, NK cells can
acquire features of memory-like responses, under certain
circumstances (O’Sullivan et al., 2015; Rapp et al., 2018). The
activity of NK cells depends upon a delicate integration of signals
from multiple surface-activating and inhibitory receptors on NK
cells that cognate with ligands on target cells. Inhibitory
receptors, such as killer cell immunoglobulin-like receptors
(KIRs) and CD94-NK group 2A (NKG2A), could be
conjugated by MHC class I to inhibit NK cell activity. The
MHC class I molecule is constitutively expressed on normal

cells but is often downregulated or lost in malignant cells.
Therefore, tumor cells can be distinguished from normal cells
by NK cells, through the process of “missing-self recognition”
(Raulet, 2006). Activating receptors on NK cells, such as NKG2D,
NKG2C, and natural cytotoxicity receptors NKp30, NKp44, and
NKp46, bind to their corresponding ligands, resulting in NK cell
activation.

NK cell activity is frequently suppressed in both hematopoietic
malignancies and solid tumors owing to downregulation of
activating receptors, such as NKp30 and DNAM-1, and
upregulation of inhibitory receptor(s), such as KIR and CD94/
NKG2A. In addition, leukemic blasts express more ligands to the
inhibitory receptors mentioned above. In solid tumors, NK cells
also highly express immune checkpoint receptors shared with
T cells, including CTLA-4, T cell immunoglobulin- and mucin-
domain-containing molecule 3 (TIM-3), lymphocyte activation
gene 3 (LAG-3), T cell immunoreceptor with immunoglobulin
and immunoreceptor tyrosine-based inhibition motif domains
(TIGIT), and CD96 (Del Zotto et al., 2017; Pesce et al., 2019;
Sivori et al., 2019; Sun and Sun, 2019). Moreover, the presence of
NK cells in the tumor tissue is rare. These features contribute to
varying degrees to the suppression of NK cell activity. NK cells’
natural toxicity and broad target cell reactivity make NK-cell-
based therapy an alternative or complementary immunotherapy
approach to T cell therapy. Given the cell biology of NK cells,
various approaches designed to bolster NK cell activity against
cancer have been tested in clinical trials and are described below
(Figure 2B).

Clinical Trials of Cytokine-Activated
NK Cells
Pre-activation of human peripheral blood-derived NK cells using
a cytokine cocktail mix, such as IL-18, IL-15, and IL-13, can
induce human NK cell differentiation into memory-like NK cells
with features of increased proliferative capacity, long-term
survival and in vivo persistence, enhanced cytokine
production, and increased cytotoxicity (Romee et al., 2012;
Pahl et al., 2018). Recently, several phase I and II clinical trials
of cytokine-induced memory-like NK cells have been performed
in patients with relapsed or refractory acute myeloid leukemia
(AML) after allogeneic hematopoietic cell transplantation.
Favorable clinical responses have been observed, including
improved survival in the absence of graft-versus-host disease
(GVHD), which is associated with donor NK cell expansion and
the graft-versus-leukemia effect. More recently, a phase I/II
clinical trial of haploidentical NK cell infusion given with
recombinant human IL-15 resulted in remission in 35% of
patients with refractory AML, with in vivo NK cell expansion
(Cooley et al., 2019), indicating that persistence and expansion of
these NK cells in vivo is key for achieving a clinical response and
that IL-15 alone is powerful enough to make this happen.
However, although large-scale expansion of these NK cells is
possible, and the graft-versus-leukemia effect against leukemic
cells or tumor cells without accompanying GVHD is a big
advantage of these NK cells, they are undesirable for the
treatment of solid tumors.
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Patients’ endogenous NK cells can be activated by
administration of IL-15. IL15-IL15Rα-Sushi-Fc fusion proteing
(ALT-803), termed superagonist, in which the IL-15Ra sushi
domain is complexed with IL-15, is more powerful than native
IL-15 for enhancing NK cell activity (Mathios et al., 2016). Phase I
clinical studies in patients with various leukemias or solid tumors
verified the safety of ALT-803 (Margolin et al., 2018; Romee et al.,
2018; Wrangle et al., 2018). A study in patients with AML who
experienced relapse after allogeneic hematopoietic cell
transplantation demonstrated that ALT-803 significantly
increased NK and CD8+ T cell numbers and function, with a
response rate of 19%, including one complete remission lasting
7 months (Romee et al., 2018).

Clinical Trials of CAR NK Cells
The CAR offers specificity to NK cells for intended target cells.
CAR-NK cells are potentially safer than CAR-T cells because
allogeneic infusion of CAR-NK cells has low likelihood of
triggering GVHD. CAR-NK cells seldom result in cytokine
release syndrome because NK cells mainly secrete IL-3, IFNγ,
and granulocyte-macrophage colony stimulating factor (CSF),
not pro-inflammatory cytokines IL-1, IL-6, and TNFα (Liu et al.,
2020; Wang et al., 2020). However, the ability of CAR-NK cells to
penetrate tumor tissue is inferior to that of CAR-T cells. In
addition, genetic manipulation of primary NK cells is more
challenging. The targets used for CAR-NK research in
preclinical studies include CD19, CD20, CD138, CD5, CD2
subset 1 (CS1), NKG2D ligand, glucosylceramidase beta
(GD2), HER2, epidermal growth factor receptor (EGFR),
EGFRvIII, epithelial cell adhesion molecule 1, glypican 3, and
guanine nucleotide-binding protein alpha-7 to target distinct
cancer cell types (Rezvani et al., 2017). CD19 CAR-NK cells
have shown remarkable clinical efficacy in B cell cancers. In a
phase I/II trial, human leukocyte antigen-mismatched anti-CD19
CAR-NK cells derived from cord blood were infused into 11
patients with relapsed or refractory CD19-positive cancers; 73%
of patients (8/11) had a response and seven patients had a
complete remission without development of major toxic effects
(Liu et al., 2020). Several CAR-NK cells (targeting CD19, CD22,
CD7, and CD33) are currently in clinical trials for the treatment
of certain types of leukemia or lymphoma (e.g., NCT03056339,
NCT04004637).

Clinical Trials of NK Cells With Enhanced
Antibody-Dependent Cellular Cytotoxicity
When anticancer antibodies target cancer cells by binding to a
cancer antigen, the Fc region of the antibodies may recruit NK
cells by binding to CD16 (FcγRIII) on NK cells, triggering
Antibody-Dependent Cellular Cytotoxicity (ADCC), by which
tumor-targeting antibody drugs exert their antitumor effects
(Pereira et al., 2018). Because interaction between FcγRIII and
Fc occurs naturally and is not necessarily tight, in recent years,
several approaches have been used to increase the affinity
between FcγRIII and Fc by modifying antibodies or FcγRIII,
enhancing ADCC-mediated NK cell antitumor effects. haNK, a
NK-92 cell line engineered with high-affinity FcγRIIIa (158V)

allele (Gleason et al., 2012), has been tested in phase I and II
clinical trials, either alone or in combination with anti-PD-L1
antibody (avelumab), a cancer vaccine, or super-IL-15. Most of
these trials are ongoing for the treatment of triple-negative breast
cancer, squamous cell carcinoma, Merkel cell carcinoma,
pancreatic cancer, and other types of cancers. Phase I trials of
CAR-modified haNK (also named target-activated NK-92) cells
targeting CD19 in patients with B cell lymphoma or PD-L1 in
patients with solid tumors are currently ongoing (NCT04052061,
NCT04050709). Margetuximab, against HER2, with Fc-
engineered and subsequently elevated affinity to CD16A, was
shown to be well tolerated and highly effective in patients with
HER2-overexpressing carcinomas (Bang et al., 2017). Of the 60
patients in this trial, partial response was observed in seven
patients (12%) and stable disease in 30 (50%); 78% of patients
(18/23) had tumor reductions. Both obinutuzumab (GA101) and
ublituximab are afucosylated antibodies against CD20, in which
Fc is modulated, leading to enhanced binding affinity for
FcγRIIIa and increased ADCC activity. Phase I/II trials
demonstrated that both drugs are safe and efficacious in
patients with B cell malignancies. In phase III trials, GA101 in
combination with chlorambucil prolonged overall survival
significantly, as well as prolonging progression-free survival
and increasing the complete response rate (Pereira et al., 2018).

Clinical Trials of Enhanced NK Cell Activity
by Targeting Inhibition Receptors and
Immune Checkpoint Molecules
The TME is a major obstacle for optimizing the antitumor activity
of NK cells, because in the TME immunosuppressive cells and
molecules limit NK cell function through downregulation of
activating receptors, upregulation of inhibitory receptor(s), and
upregulation of immune checkpoint receptors on NK cells. In an
effort to restore NK cell activity against tumor cells, researchers
have developed anti-NKG2A (monalizumab/IPH2201) and anti-
pan-KIR2D (lirilumab/IPH2102) antibodies for blockage of these
inhibitory receptors. Phase I/II clinical trials showed that
monalizumab/IPH2201 alone was well tolerated but resulted in
short-term disease stabilization as the best response in patients
with various advanced gynecologic malignancies. Combination
therapy comprising IPH2201 and cetuximab (anti-EGFR
antibody) enhanced antitumor immunity (Tognarelli et al.,
2018). An overall response rate of 31% and a disease
stabilization rate of 54% were obtained, in patients with
squamous cell carcinoma of the head and neck (Tinker et al.,
2019). The anti-pan-KIR2D agent lirilumab/IPH2102 was
examined in several phase I/II clinical trials. It was well
tolerated in patients with hematologic malignancies or solid
tumors. Combination therapy with the anti-PD-1 antibody
nivolumab or with the anti-CTLA-4 antibody ipilimumab in a
population of patients with various solid tumors showed a
durable response, and an overall response rate of 24% was
achieved in 29 patients with squamous cell carcinoma of the
head and neck (Vey et al., 2018). Other phase I clinical trials of
combination therapies for various solid tumors are ongoing
(NCT03532451, NCT03341936).
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Because NK cells express some immune checkpoint molecules
shared with T cells, including PD-1, CTLA-4, TIM3, LAG3, and
TIGIT, checkpoint inhibitors targeting these molecules should
enhance the function of both T cells and NK cells against cancer.
Currently, multiple phase I/II clinical trials in patients with solid
tumors or hematologic malignancies are ongoing for these
checkpoint inhibitors, including anti-TIM3 (e.g.,
NCT03489343), anti-LAG3 (e.g., NCT03005782), and anti-
TIGIT (e.g., NCT04354246), as well as combination therapies,
such as the combination of anti-TIM3, anti-PD-1, and anti-LAG3
(NCT04370704) and the combination of anti-LAG3 with anti-
TIGIT (NCT04150965).

Clinical Trials of Bi- or Tri-Specific Killer
Engagers for NK Cells
Bi-Specific Killer Engagers (BiKEs) and Tri-Specific Killer
Engagers (TriKEs) are multi-specific antibodies composed of
two to three single-chain variable fragments of antibodies with
different specificities, joined together by a short peptide linker.
Usually, one of the fragments is directed against CD16 on NK
cells to induce NK cell–mediated ADCC. BiKEs and TriKEs can
boost NK cell activity and promote NK-mediated killing of tumor
cells because they create an immune connection between NK and
tumor cells (Gleason et al., 2012; Felices et al., 2016).

Several NK-based BiKEs or TriKEs are currently in preclinical
and clinical development. CD16-directed BiKEs CD16 × CD19
and CD16 ×CD33 and TriKE CD16 ×CD22 ×CD19 were shown
to specifically stimulate NK cell activation via CD16, which
triggers NK cell cytolytic activity and secretion of cytokines to
attack CD19+, CD33+, and CD19+CD22+ lymphoma and
leukemia, respectively (Gleason et al., 2012; Nagato et al.,
2017). CD16 × IL-15 × CD33 TriKE displayed markedly
enhanced NK cytotoxicity against AML and better NK cell
persistence than did BiKE CD16 × CD33 in vivo, because the
TriKE provided NK cell expansion signal via IL-15 moiety. CD16
× IL-15 × CD33 TriKE is being evaluated in phase I and II clinical
trials in patients with advanced systemic mastocytosis, relapsed or
refractory AML, or CD33-expressing high-risk myelodysplastic
syndromes NCT03214666 (Wiernik et al., 2013; Schmohl et al.,
2016; Schmohl et al., 2017). TriKEs targeting two activating
receptors, NKp46 and CD16, on NK cells and a tumor antigen
(CD19, CD20, or EGFR) on cancer cells have been generated in
the laboratory (Gauthier et al., 2019). TriKEs represent a versatile
platform for incorporation of various targeting molecules and will
be a promising tool for NK cell immunotherapy.

NK cell–based anticancer therapy has achieved clinical
benefits for various cancer types, especially hematologic
malignancies. CAR-NK cell therapy still faces critical
challenges, including difficulty in genetic manipulation of
primary NK cells and difficulty in storage of CAR-NK cells
(Wang et al., 2019b). Currently, more cell resources, such as
human NK cell lines, human embryonic stem cells, induced
pluripotent stem cells, and bone marrow or umbilical-cord
blood, are being tested as alternative sources of therapeutic
NK cells (Wang et al., 2019a). There are also some challenges
for solid tumors because NK cells have difficulties in trafficking

and infiltrating into solid tumor sites. Therefore, future directions
for NK cell development will include enhancing activating
signals, suppressing inhibitory signals, and promoting NK cell
homing to tumors.

B CELLS

Bursal-derived lymphocytes (B cells) arise from hematopoietic
stem cells residing within the spongy bone marrow and have a
significant impact on the TME through their antibody production
and antigen presentation capabilities (Shahaf et al., 2016).
Currently, the potential of B cells for cellular therapy is still
largely underestimated despite their multiple diverse effector
functions.

The antitumor response of B cells has been linked to tumor-
infiltrating B cells and the formation of tertiary lymphoid
structures (TLSs), which correlate with favorable clinical
outcome in patients treated with immune checkpoint blockade
(LeBien and Tedder, 2008; Adamo et al., 2020). TLSs are
composed of T cells and mature DCs located in the
T cell–rich areas close to a B cell follicle, a setting that
suggests a local antigen-driven antibody response resulting in
production of antibodies with antitumor or pro-tumor properties
(Romero, 2020). Thus, TLSs represent a potential for T cell
priming, B cell activation, and B cell differentiation into
plasma cells and an intricately located factory for antibody
production (Teillaud and Dieu-Nosjean, 2017). Considering
the multiple roles of tumor-infiltrating B cells in tumor
immunity, B cell depletion therapy, and selective clearance of
regulatory B cells, promoting TLS formation and targeted
regulation of tumor-infiltrating B cell-linked signaling
pathways may become effective strategies for tumor-infiltrating
B-cell-based tumor immunotherapy.

B Cell Antigen Presentation
B cells recruit and activate T cells in a cognate or non-cognate
manner and trigger T cell polarization, impacting T cell-mediated
antitumor responses (Teillaud and Dieu-Nosjean, 2017). TLS-B
cells present features of B cell follicles marked by homing of naïve
and germinal center B cells, with scattered plasmablasts and
memory B cells (Teillaud and Dieu-Nosjean, 2017; Helmink
et al., 2020). TLS-associated antibody responses are speculated
to be elicited by TAAs, suggesting that TLSs are critical for the
development of efficient B cell–dependent antitumor immunity
(Germain et al., 2014).

The immunostimulatory capacity of B cells requires B cell
receptor binding to antigen and TLR-mediated signals
(Wennhold et al., 2019). The CD40L/CD40 signaling pathway
is a potent activator of antigen presentation capacity in B cells
(Van Belle et al., 2016). B cell activation by CD40-mediated
signals has been shown to be affected by the location of B cell
binding to CD40 and the degree of CD40 crosslinking (Barr and
Heath, 2001). Additionally, stimulation of CD40 results in
improved antigen processing and presentation via the MHC
class II pathway (Faassen et al., 1995). CD40 B cells equally
cross-present antigens via MHC class I pathways and, thus,
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induce naïve and memory CD8+ T cell responses (Wennhold
et al., 2019). Tumor-infiltrating B cells have been identified in
association with TLSs; however, their functions remain elusive.
TLSs are thought to modulate antitumor immune activity; mature
TLSs exhibit evidence of formation of germinal centers (Selitsky
et al., 2019). Some strategies for modulating B cell activity within
the TME are described in the sections below and in Figure 2C.

B Cell-Based Therapies
A wide range of preclinical studies using immunocompetent
cancer mouse models so far underscore CD40-directed
therapies as a next-generation immune-modulating therapy
(Piechutta and Berghoff, 2019). Therapeutic strategies
associated with B cells focus on CD40 because the ligation of
CD40 with CD40L on helper T cells is critical for antigen-
presenting cell activation and proliferation and for
immunoglobulin class-switch (Eltahir et al., 2020). Preclinical
data have demonstrated that CD40-activated B cell-based cancer
immunotherapy induces effective antitumor immunity; however,
CD40 agonistic antibodies rely on combination therapy strategies
(Wennhold et al., 2019). Moreover, studies have shown that
agonistic CD40 therapy can be combined with anti-PD-1 to
trigger effective T cell immunity (Gravbrot et al., 2019).
Patients with metastatic pancreatic cancer treated with PD-1/
PD-L1 checkpoint inhibitors in combination with CTLA-4 and
anti-CD40 have shown better responses than those who received
PD-1/PD-L1 checkpoint inhibitors alone. Additional studies have
also demonstrated that patients with pancreatic ductal
adenocarcinoma had their tumors dramatically shrink when
treated with CD40 monoclonal antibodies in combination with
chemotherapy (Helmink et al., 2020).

Ongoing clinical studies investigating agonistic CD40
antibodies focus on the activity of these antibodies in
enhancing the CD40/CD40L axis. The initial clinical study
CP-870,893 (selicrelumab, Hoffman-La Roche) reported a
maximum tolerated dose of 0.2 mg/kg body weight as a single
infusion and showed that this dose led to a partial response rate of
13.8% (4 of 29 patients) in a phase I study (Vonderheide et al.,
2007). A follow-up study applied selicrelumab on a weekly basis
and provided further evidence of safety for the previously
determined maximum tolerated dose. However, that study
failed to reproduce the promising clinical data of the first
study (7 of the 27 enrolled patients (Ruter et al., 2010). The
combination of selicrelumab with gemcitabine/nab-paclitaxel as
neoadjuvant and adjuvant therapy for pancreatic
adenocarcinoma (NCT02588443) is currently under
investigation in an ongoing phase I study.

Additionally, the therapeutic potential of selicrelumab is being
investigated in three additional clinical phase I trials investigating the
efficacy of the drug in patients with advanced solid tumors. In these
studies, selicrelumab is combined with another immune-modulating
or targeted antibody, including i) emactuzumab, an anti-CSF1
receptor antibody (NCT02588443); ii) vanucizumab, a bispecific
antibody targeting angiopoietin 2 and vascular endothelial growth
factor (VEGF), or bevacizumab, an anti-VEGFmonoclonal antibody
(NCT02665416); and iii) atezolizumab, an anti-PD-L1 monoclonal
antibody (NCT02304393 (Piechutta and Berghoff, 2019).

Other clinical trials include APX005M, a second-generation
anti-CD40 agonistic antibody with improved FcγRIIb. Compared
with the first-generation antibodies, it contains a non-fucosylated
Fc region with cross-linking capacity that improves tumor
immunity (White et al., 2015). APX005M has so far been
investigated in nine early clinical trials. The dose-finding
phase I study completed recruitment at the end of 2018
(NCT02482168). Three phase II studies aiming to test the
safety and clinical efficacy of APX005M in combination with
standard of care in several solid cancer types (metastasized
pancreatic adenocarcinoma: NCT03214250; advanced soft
tissue sarcoma: NCT03719430; resectable gastroesophageal
carcinoma: NCT03165994) are currently recruiting. In
addition, investigation of the safety and antitumor efficacy of
APX005M is ongoing in melanoma patients and those with
NSCLC, with the treatment applied either systemically
(NCT03123783) or intratumorally (NCT02706353), in
combination with PD-1 blockade.

The combination of APX005M with cabiralizumab, an anti-
CSF1 receptor antagonist, with and without nivolumab
(NCT03502330) in patients with melanoma, NSCLC, or renal
cell carcinoma whose treatment with anti-PD-1 or anti-PD-L1
had failed (i.e., in order to overcome anti-PD-1/anti-PD-L1
therapy resistance) is being investigated in a phase I study.
Other innovative studies utilizing APX005 to boost the
effectiveness of a personalized vaccine (NEO-PV-01) approach
with or without checkpoint blockade in patients with advanced
melanoma (NCT03597282) are also ongoing. A phase I study of
APX005M for recurrent or refractory pediatric brain tumors and
newly diagnosed diffuse intrinsic pontine glioma for patients
younger than 21 years was launched, representing the first and
only study so far to target the CD40/CD40L axis in childhood
cancer (NCT03389802).

Other second-generation CD40 agonistic antibodies presently
under investigation in phase I trials include JNJ-64457107
(NCT02379741, NCT02829099) and SEA-CD40
(NCT02376699). Furthermore, a bispecific antibody, ABBV-
428, targeting CD40 and the well-known tumor antigen
mesothelin, is currently under investigation in a phase I trial
(NCT02955251).

To this end, localization of B cells within TLSs has been shown
to be enriched in the tumors of responders, thus providing
insights into the potential role of B cells and TLSs in the
response to immune checkpoint blockade (Cabrita et al., 2020;
Helmink et al., 2020; Petitprez et al., 2020). Therefore, linking
B cell activation and the presence of TLSs to function in tumors
would inform strategies to design new therapies.

NEUTROPHILS

Neutrophils lead the body’s front line in fighting against
pathogens, such as fungi or bacteria. They act like surveillance
cells that sweep through the bloodstream to screen the tissue for
potential infections or other inflammatory events, such as cancer
(Segal, 2005; Mantovani et al., 2008). Because neutrophils
originate from bone marrow myeloid precursors, their release

Frontiers in Pharmacology | www.frontiersin.org January 2021 | Volume 11 | Article 5664018

Shi et al. Novel Immunotherapy Combinations

148

https://clinicaltrials.gov/ct2/show/NCT02588443
https://clinicaltrials.gov/ct2/show/NCT02588443
https://clinicaltrials.gov/ct2/show/NCT02665416
https://clinicaltrials.gov/ct2/show/NCT02304393
https://clinicaltrials.gov/ct2/show/NCT02482168
https://clinicaltrials.gov/ct2/show/NCT03214250
https://clinicaltrials.gov/ct2/show/NCT03719430
https://clinicaltrials.gov/ct2/show/NCT03165994
https://clinicaltrials.gov/ct2/show/NCT03123783
https://clinicaltrials.gov/ct2/show/NCT02706353
https://clinicaltrials.gov/ct2/show/NCT03502330
https://clinicaltrials.gov/ct2/show/NCT03597282
https://clinicaltrials.gov/ct2/show/NCT03389802
https://clinicaltrials.gov/ct2/show/NCT02379741
https://clinicaltrials.gov/ct2/show/NCT02829099
https://clinicaltrials.gov/ct2/show/NCT02376699
https://clinicaltrials.gov/ct2/show/NCT02955251
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


into the blood and finally to the site of inflammation or tumor
must occur via a stepwise process coordinated by the release of
cytokines and chemokines (Furze and Rankin, 2008). Multiple
and heterogeneous neutrophil subsets have been identified both
in circulation and tissue (Fridlender et al., 2009; Sagiv et al., 2015).
The neutrophils infiltrating into tumor sites, so-called tumor-
associated neutrophils (TANs), can be identified as
(CD62LloCD54hi). TANs are further characterized by a
repertoire of chemokine receptors, such as CCR5, CCR7,
CXCR3, and CXCR4. Furthermore, when compared with
blood-circulating neutrophils, TANs not only exhibit distinct
receptor expression signatures but also produce substantial
quantities of the proinflammatory factors MCP-1, IL-8, MIP-
1α, and IL-6 and anti-inflammatory IL-1R antagonist (Eruslanov
et al., 2014; Gabrilovich, 2017). Of note, TANs can display diverse
responses to the tumor depending on the presence of different
stimuli, such as type I IFN with TANs polarizing toward
antitumor (N1) subset or transforming growth factor beta
(TGFβ) toward pro-tumorigenic (N2) subset; (Fridlender et al.,
2009; Andzinski et al., 2016; Shaul et al., 2016; Hong, 2017).
Further studies confirmed these differential profiles (Shaul et al.,
2016). Whereas the N1 subset expresses high levels of TNFα,
CCL3, and ICAM-1 and low levels of arginase, the N2 subset is
characterized by the upregulation of chemokines CCL2, CCL3,
CCL4, CCL8, CCL12, CCL17, CXCL1, CXCL2, IL-8/CXCL8, and
CXCL16 (Fridlender and Albelda, 2012). Those notable
differences of TAN subsets and their plasticity are important
factors to be considered while designing anticancer therapies.

The antitumor activity of the TAN N1 subset is executed via
direct or indirect cytotoxicity, as well as through activation of
different innate and adaptive immune cells, including T and B
lymphocytes, NK cells, and DCs (Gerrard et al., 1981; Mantovani
et al., 2008). For example, the cytotoxic effect of the N1 subset is
achieved through enhanced NADPH oxidase activity, which leads
to the production of reactive oxygen species, causing direct tumor
cell apoptosis, granule release, tumor cell sloughing, ADCC
through Fc receptors, and trogoptosis (Otten et al., 2005; Hodi
et al., 2010; Lohse et al., 2012; Matlung et al., 2018). Studies of the
antitumor roles of TANs in mice and humans showed that TANs
are involved in the recruitment and activation of intratumor
CD4+ and cytotoxic CD8+ T cells. However, it was also shown
that the pro-tumor TANN2 subset exhibits the ability to suppress
the proliferation of intratumor CD8+ T cells and their IFNγ
production (Coffelt and De Visser, 2016) and to induce CD8+

T cell apoptosis by secretion of TNFα and NO (Michaeli et al.,
2017). Importantly, blocking the Fas-ligand was shown to
augment the effectiveness of checkpoint blockade in in vivo
cancer models (Zhu et al., 2017). Moreover, the significant
role of N2 TANs in tumorigenesis, tumor growth, and
metastasis through many neutrophil-derived factors has also
been shown (Coussens et al., 2000; Schruefer et al., 2005;
Wculek and Malanchi, 2015; Aldabbous et al., 2016; Park
et al., 2016; Faget et al., 2017; Loffredo et al., 2017).

The heterogeneity of neutrophil phenotypes and their function
and interaction within the TME is complex and not fully
understood. Nevertheless, there are many different strategic
points that could be harnessed to fight cancer via neutrophil-

based therapies (Lecot et al., 2019). Such strategies could target
neutrophils at different stages of development, such as
maturation, activation, release to the blood stream, migration
to the tumor site, and function (Figure 2D). Prospective
preclinical studies demonstrated many ways of targeting
cancer-related neutrophils (both circulating and tumor-
associated), and these studies have paved the way for
launching related clinical trials.

Therapeutic Strategy to Limit the
Recruitment of Neutrophils to Tumor Sites
Neutrophils exiting from the bone marrow to the bloodstream
could be controlled via inhibition of CXCR2, an important
marker for neutrophil migration from the bone marrow into
sites of inflammation, or of CXCL4, which acts antagonistically to
CXCR2 in allowing neutrophils to exit from the bone marrow
(Eash et al., 2010). Genetic or pharmacologic inhibition of
CXCR2 in in vivo lung and pancreatic cancer models has been
shown to significantly decrease Ly6G+ neutrophils owing to their
inability to “home,” along with decreasing primary tumor growth
and suppressing cancer metastasis (Gong et al., 2013; Steele et al.,
2016; Sano et al., 2019). Although loss of CXCR4 results in
neutrophil egress from the bone marrow, CXCR4 acquisition
is relevant for neutrophil infiltration into the tumor; therefore,
inhibiting the CXCL12/CXCR4 axis could also result in
therapeutic effects (Xue et al., 2017). The application of
reparixin, an inhibitor of CXCR1 and CXCR2, was further
evaluated in phase I and II clinical trials. In the phase I
clinical trial (NCT02001974), orally administered reparixin
with weekly addition of paclitaxel in patients with HER2-
negative metastatic breast cancer was demonstrated to be safe,
and a 30% response rate was observed (Schott et al., 2017). The
phase II study (NCT02370238) is ongoing. Treatment with the
CCR5 inhibitor maraviroc, currently used to treat HIV infections,
is also being investigated in clinical trials (NCT01736813,
NCT03274804) for the treatment of metastatic colorectal
cancer. This investigation of maraviroc is based on its
previously reported antitumor effects through blocking the
release of immature neutrophils from bone marrow and then
blocking the recruitment of these immature cells to tumor sites
(Velasco-Velazquez et al., 2012; Hawila et al., 2017). Another
therapeutic strategy aims at targeting the CD47-SIRPα signaling
axis, through either anti-CD47 or anti-SIRPα antibody
approaches. This signaling axis is under investigation in
multiple clinical trials owing to evidence that blocking this
pathway limits neutrophil migration into tumor sites and
triggers macrophage-mediated phagocytosis of tumor cells
(NCT02216409, NCT03717103, NCT02367196 (Liu et al.,
2002; Barrera et al., 2017; Voets et al., 2019).

Therapeutic Strategies to Deplete
Neutrophils
Preclinical studies have demonstrated that neutrophil depletion
using an anti-Ly6G approach with progressive selectivity
properties may have a therapeutic effect (Daley et al., 2008;
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Bruhn et al., 2016). However, approaches using Ly6C and Ly6G
have also been shown to deplete other immune cells such as
monocytes and subsets of CD8+ T cells, limiting the selectivity of
the treatment and delaying potential pathogen clearance (Bao and
Cao, 2011). Ongoing preclinical efforts aim to evaluate the
potential synergistic effect of neutrophil depletion with
currently approved immunotherapies. Prospective studies
using an agonistic TNF-related apoptosis-inducing ligand
receptor 2 (TRAIL-R2) antibody have also shown promising
results, correlating with increased cell death of mouse
granulocytic myeloid-derived suppressor cells in vitro and
increased effects of CTLA-4 immune checkpoint blockade in
vivo. A phase I clinical trial (NCT02076451) evaluating the
impact of targeting TRAIL-R2 to selectively eliminate myeloid-
derived suppressor cells in advanced solid tumors or lymphoma is
ongoing (Dominguez et al., 2017). This TRAIL-R2 agonist
antibody (DS-8273a) showed selective properties in reducing
the circulating fraction of low-density neutrophils without
affecting other peripheral blood myeloid and lymphoid cells,
and without dose-limiting toxicities. Interestingly, this selective
depletion was inversely correlated with the length of progression-
free survival. However, the observed decrease was short-term and
could not be maintained beyond 28 days from the treatment start.
Therefore, further studies including a larger cohort of patients
and an extended treatment timeline would be necessary to
confirm this treatment outcome. However, although new
strategies focus on depletion of neutrophils to decrease tumor
growth and improve overall survival, standard strategies using
chemotherapy have a common side effect of neutropenia, as
characterized by a critical drop in neutrophil blood concentration
(Buckley et al., 2014). The ideal targeting of neutrophils in
oncology would be to favor the enrichment of antitumor
neutrophils while eliminating their pro-tumor counterparts
without altering antibacterial neutrophils. One potential way
to compensate for the treatment-induced neutropenia is to
introduce ex vivo manufactured neutrophils (Torres-Acosta
et al., 2019).

Therapeutic Strategies to Target the
Suppressive Functions of Neutrophils
Arginase 1 produced by neutrophils was found to suppress T cell
proliferation, and depletion of arginase 1 through treatment
with an arginase one inhibitor reversed the suppression in a
preclinical mouse model (Rodriguez et al., 2004; Marini et al.,
2017). However, bioengineered arginase 1 can also exhibit
antitumorigenic functions by inducing cell cycle arrest and
apoptosis, as was shown in human tumor cell lines and in
vivo models (Lam et al., 2009; Li et al., 2013). Moreover, the
bioengineered human PEGylated arginase 1 (AEB1102) showed
additive antitumor effects when combined with anti-PD-1 or
anti-PD-L1 in a preclinical in vivo model (Agnello et al., 2017;
Agnello et al., 2020). The combination of either recombinant
arginase 1 or arginase 1 inhibitor with various chemotherapies
or immunotherapy (anti-PD-1) is currently being tested and has
shown synergistic therapeutic efficacy. Phase I/II clinical trials
(NCT03371979; NCT02903914; NCT03361228;

NCT03314935) to test the efficacy of this combination are
ongoing.

Another targetable feature triggering immunosuppressive
activity is C5a receptor (C5aR, CD88). Increased expression of
this receptor was found on myeloid-derived suppressor cells and
neutrophils, caused by C5a released by cancer cells (Corrales
et al., 2012). Pharmacologic inhibition of C5a or blockage of its
interaction with the receptor by using antibodies against C5aR
showed promising results in many preclinical studies (Ajona
et al., 2017; Medler et al., 2018). The blocking antibody
against C5aR (IPH5401) in combination with PD-L1 blockade
has been tested in clinical phase I trials for the treatment of
selected advanced solid tumors (NCT03665129).

Therapeutic Strategies Modulating the
Neutrophil Phenotype
The presence of key players modulating the TAN phenotype,
such as TGFβ and IFNβ, promote a phenotype switch toward a
pro-tumor or antitumor phenotype in animal models. Therefore,
it has been proposed that inhibition of TGFβ signaling could
result in TAN antitumor manifestation and that treatment with
type I IFNs could induce antitumor polarization of TANs
(Fridlender et al., 2009; Andzinski et al., 2016). Treatment
with type I IFNs has been tested in various clinical trials (Ni
and Lu, 2018). Also, TGFβ signaling inhibitors had been launched
as an anticancer therapy in many clinical trials before the TGFβ
immunomodulatory effects on neutrophils were revealed
(Akhurst, 2017). The therapeutic approach currently tested in
clinical trials includes targeting TGFβ signaling using specific
antibodies or through molecules targeting its receptors (Morris
et al., 2014; Herbertz et al., 2015). The human anti-TGFβ
monoclonal antibody (GC1008) that neutralizes all isoforms of
TGFβ was tested in a phase I clinical trial in patients with
advanced malignant melanoma or renal cell carcinoma
(NCT00356460), and the antibody showed antitumor efficacy
with no dose-limiting toxicity at a dose of up to 15 mg/kg, with
acceptable safety. The TGFβ antagonist, galunisertib
(LY2157299), a small molecule inhibitor of the TGFβ receptor
I kinase, was shown to re-sensitize drug-tolerant cells to
anticancer therapeutics and demonstrated antitumor activity in
animal models and was proposed as a strategy to improve the
efficacy of immune checkpoint inhibitors (Huang et al., 2012).
Galunisertib is being tested in clinical trials both as a
monotherapy and in combination studies. In difficult-to-treat
cancer types, such as glioblastoma (NCT01582269,
NCT01682187, NCT01220271), pancreatic cancer
(NCT0273416, NCT01373164), or hepatocellular carcinoma
(NCT01246986, NCT02423343), combinations with
chemotherapy, temozolomide-based chemoradiotherapy, and
immunotherapy are being tested.

Different therapeutic strategies relying on the innate and
adaptive immune systems are being investigated and hold great
promise for oncology. In addition to the above described major
clinical research achievements, other ongoing important
clinical research will pave the way for new clinical trial
approaches (Shaul and Fridlender, 2019). Improving our
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understanding of the role of neutrophils in the TME,
neutrophil interaction with other immune components, and
how tumor cells tune TANs toward their favor would have
great impact in generating target-specific treatment strategies
aimed at improving antitumor effects. Moreover, the emerging
field of genetic engineering technology and ex vivo
modification of immune cells could provide yet another
avenue to improve the effectiveness of neutrophils in the
fight against cancer.

COMBINATION TREATMENTS USING
NEXT-GENERATION CELL-BASED
IMMUNOTHERAPIES
Cellular therapy is a term representing several types of cell
transplantation used clinically for patients with various types
of cancer. Accordingly, the specific mechanisms of cellular
therapy involved in the therapies are extensive. Antigen-
specific immunotherapy is a therapeutic vaccine that directs
tumor-specific immune cells to kill cancer cells (Schlom et al.,
2007). Specific targeting for activation during therapeutic
vaccination provides a powerful and low-toxicity benefit.
However, cancer cells can evade the immune system through
various strategies, such as dysregulation of T cell immune
checkpoints, invasion, anti-apoptosis, outside environmental
factors, and other nonspecific issues (Davies, 2014; Zhao and
Subramanian, 2017). Synergistic combination therapies may

provide the key to improving responses and reducing drug
dosage and side effects for cancer patients. The combination
therapies described below are listed in Table 1.

DC-Based Combination Therapy
DC-based immunotherapy is the first cellular therapy to provide
clinical benefit for patients with prostate cancer and has been
tested in clinical trials in melanoma and hepatocellular carcinoma
(Harzstark and Small, 2007). However, the clinical results were
not as effective as expected. Most cancer types produce many
factors that contribute to immune dysfunction, such as IL-6, IL-
10, TGFβ, and VEGF, by inhibiting the function of DCs and
T cells, and this resulted in poor clinical outcomes (Rabinovich
et al., 2007; Melief, 2008). Therefore, the combination of DC
therapies is a strategy to neutralize tumor-associated immune
suppression and prolong the antitumor activity of DC-induced
effector T cells. Blockade with anti-PD-1 monoclonal antibodies,
anti-PD-L monoclonal antibodies, or anti-CTLA-4 monoclonal
antibodies in combination with DC vaccination resulted in
increased activation of cytotoxic CD8+ T cells and showed
better treatment efficacy compared with monotherapy in mice
(Sznol, 2012; Ge et al., 2013; Antonios et al., 2016; Coffelt and de
Visser, 2016; Salmon et al., 2016). Recently, a selected number of
phase I/II clinical trials have been initiated that combine DC
vaccination in various malignant tumors with pulsing tumor-
associated peptides and checkpoint inhibitors (anti-PD-1, anti-
PD-L1; NCT03059485, NCT03152565). In a study of patients
with stage III melanoma that progressed after DC therapy,

TABLE 1 | Combination therapies using cellular therapy.

Cell type Interventions/treatment Targeted diseases Phase Trial no.

DC-based therapy AML fusion DC + anti-PD-L1 (durvalumab) AML II NCT03059485
Autologous DC + anti-PD-L1 (avelumab) Colorectal carcinoma I/II NCT03152565
Autologous DC + anti-CTLA-4 (ipilimumab) Melanoma III/IV NCT01973322
Cryosurgery DC vaccination + anti-PD-1 (pembrolizumab) Non-Hodgkin lymphoma I/II NCT03035331
DC-CIK + anti-PD-1 (pembrolizumab) NSCLC I/II NCT03360630
TriMixDC-MEL + anti-CTLA-4 (ipilimumab) Melanoma III/IV NCT01302496
CMV mRNA-pulsed autologous DCs + anti-PD-1 (nivolumab) Grade III/IV brain tumors I NCT02529072
CMN-001 (CD40L RNA)-DC + anti-CTLA-4 (ipilimumab) + anti-
PD-1 (nivolumab)

Renal cell carcinoma II NCT04203901

Autologous DCs + TKI (dasatinib) Melanoma II NCT01876212
NK-based therapy NK cells + anti-HER2 (trastuzumab) Breast cancer, gastric cancer I/II NCT02030561, NCT02843126,

NCT02805829
NK cells + anti-CD20 (rituximab) B cell lymphoma I/II NCT02843061
NK cells + anti-EGFR (cetuximab) Head and neck cancer, NSCLC I/II NCT02507154, NCT02845856
NK cells + anti-CD319 (elotuzumab) Multiple myeloma II NCT03003728
FATE-NK100 + anti-HER2 (trastuzumab) or anti-EGFR
(cetuximab)

Advanced solid tumors I NCT03319459

NK cells + anti-VEGF-A (bevacizumab) Malignant solid tumors I/II NCT02857920
NK cells + anti-GD2 Neuroblastoma I/II NCT03242603
NK cells + anti-PD-1 (nivolumab) Malignant solid tumors I/II NCT02843204
NK cells + ALT803 Leukemia I NCT02890758

CAR-T cell–based
therapy

CD30-CAR-T + anti-PD-1 (nivolumab, pembrolizumab) Hodgkin lymphoma I NCT04134325
CD19-CAR-T + anti-PD-1 (pembrolizumab) Large B cell lymphoma I/II NCT02650999
CD19 CD28-CAR-T + anti-CTLA-4 (ipilimumab) B cell lymphoma, lymphocytic

leukemia
I/II NCT00586391

JCAR014 + durvalumab Non-Hodgkin lymphoma I NCT02706405

DC, dendritic cell; AML, acute myeloid leukemia; NSCLC, non-small cell lung cancer; TKI, tyrosine kinase inhibitor; NK cells, natural killer cells; EGFR, epidermal growth factor receptor;
CAR, chimeric antigen receptor.
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administration of ipilimumab induced tumor-specific T cell
responses (NCT01973322), which was not associated with an
improvement in overall survival (Boudewijns et al., 2016). DCs
pulsed with melanoma-associated antigens (MAGE-A3, MAGE-
C2, and gp100: TriMix-DC) can induce expansion of antitumor
T cells (Wilgenhof et al., 2016). Ipilimumab combined with the
TriMix-DC vaccine therapy is under clinical follow-up and may
be a more effective treatment for patients with advanced
melanoma (NCT01302496). This indicates that combining DC
therapy with CTLA-4 targeting agents could lead to synergistic
effects. In mice that received DC therapy combined with tyrosine
kinase inhibition, such as macrophage CSF receptor inhibitor,
prolonged survival and improved CTL levels were observed
compared with DC monotherapy (Dammeijer et al., 2017). DC
therapy in combination with the tyrosine kinase inhibitor
dasatinib has been shown to lead to increased recruitment of
CD8+ T cell infiltration, and a clinical trial is currently ongoing
(NCT01876212). A phase I study using recombinant human
CD40L showed antitumor activity and long-term complete
remission in patients with squamous cell carcinoma, and the
current CD40L RNA-transfected DC combination therapy is in
an ongoing phase II study for the treatment of renal cell
carcinoma (NCT04203901) (Vonderheide et al., 2001). Various
types of tumors are sensitive to DC vaccination and immune
checkpoint blockade. Therefore, targeting both DCs and immune
checkpoints can lead to promising strategies for next-generation
vaccine combinations.

NK Cell-Based Combination Therapy
As described above, NK cells are a type of cytotoxic lymphocyte
and play a major role in host defenses against tumors and viral
infections. NK cells are important in both innate and adaptive
immune responses for potential cancer therapies (Terunuma
et al., 2008). Adoptive cellular therapy using NK cells has been
extensively studied in clinical trials, but its antitumor effect is
limited. NK cell-based adoptive transfer has shown efficacy in the
treatment of hematopoietic malignancies (Cheng et al., 2013).
Combination therapy with antibodies and cytokines is required to
obtain more potent tumor killing activity in transferred NK cells.
Mainly TAA-targeting antibodies were used in clinical trials in
combination with NK cell adoptive cellular therapy. Among the
targeting therapeutic antibodies, rituximab targets CD20 in B cell
lymphoma (Battella et al., 2016). Trastuzumab targets HER2 and
is used routinely in combination with chemotherapy in HER2-
overexpressing breast and gastric cancer (Maximiano et al., 2016).
Trastuzumab is known to induce NK cell–mediated ADCC for
tumor cell killing. In patients, the therapeutic efficacy of
trastuzumab in the treatment of metastatic breast cancer has
been demonstrated to induce ADCC by NK cells (Beano et al.,
2008). Other targeting antibodies such as cetuximab, elotuzumab,
and anti-GD2 are also associated with ADCC effects by NK cells
and are currently under investigation in phase I or phase II
studies in combination with NK cells (Taylor et al., 2009; Collins
et al., 2013). NK100 is a first-in-class NK cell cancer
immunotherapy consisting of adaptive memory NK cells, a
highly functionally distinct NK subset. FATE-NK100 is
undergoing clinical trials in combination therapy with anti-

HER2 or anti-EGFR monoclonal antibodies against solid
tumors (NCT03319459). A phase I/II study of the
combination of anti-PD-1 monoclonal antibodies and NK
cells for the treatment of malignant solid tumors is underway
to determine the safety and efficacy of combination
immunotherapy (NCT02843204). In patients with
hematologic malignancies, ALT-803 (an IL-15 superagonist)
combined with NK cells is being tested in an ongoing phase I
trial. NK cell–based therapies have shown remarkable efficacy in
some types of cancer, and combination therapies building on
these results will likely prove beneficial for patients with cancer.
In addition, NK cell adoptive cellular therapy combined with
bispecific proteins is a new avenue of therapy being tested in
ongoing clinical trials, the results of which will be of great
interest to the field.

CAR-T Cell Combination Therapy
CAR-T cells are genetically engineered to specifically recognize
tumor cells, resulting in direct CAR-T activation and antitumor
function (Eshhar et al., 1993). Most clinical studies have shown
that CAR-T cell monotherapy had low clinical response in the
treatment of solid tumors despite the progress made in treating
hematologic malignancies (Kershaw et al., 2006; Lamers et al.,
2016). Most solid tumors inhibit CAR-T activity through
upregulation by immune checkpoint inhibitors such as PD-1.
Therefore, using CAR-T cell therapy in combination with
immune checkpoint inhibitors for patients with early solid
tumors may demonstrate improved results compared with
those seen with CAR-T cell monotherapy (Liu et al., 2016). In
preclinical studies, CAR-T cell therapy with PD-1 blockade
showed synergistic effects and improved long-term survival
(John et al., 2013). In clinical trials, the combination of anti-
PD-1 with CAR-T cell therapy enhanced the efficacy and
persistence of CAR-T cells in the treatment of melanoma
(Gargett et al., 2016). CTLA-4 can also be a good target to
enhance CAR-T cell efficacy. Ongoing clinical trials examining
the combination of CAR-T cells with PD-1 or CTLA-4 blockade
are listed in Table 1. Although these trials are designed to treat
solid tumors, combinations are applied to treat a variety of
lymphomas, especially B cell lymphomas. In solid tumors,
CAR-T cell therapy has low efficacy for T cell trafficking and
infiltration into tumor lesions (Zhang et al., 2016). To address this
problem, various methods are being studied, such as engineered
CD6-based homing system CAR-T or combination therapy with
tumor-infiltrating lymphocytes (Hu et al., 2018; Brown and
Dustin, 2019). CAR-T cell-based combination therapies are
possible and can improve the potential of CAR-T cell therapy.
For this to be successful, it is important to determine which
patients need a combination strategy and which combination is
best for a given patient.

DISCUSSION

Checkpoint inhibitors and CAR-T cell therapy are currently the
most prevalent immunotherapies for cancer patients. However,
concerns exist about the relatively low clinical response to
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checkpoint inhibitors, the severe side effects of CAR-T cell
therapy, and the limitations of cancer types for both therapies.

Onemajor factor leading to resistance to checkpoint inhibitors
is the so-called “cold tumor” microenvironment, mostly caused
by lack of tumor-specific antigens, deficient antigen
presentation, insufficient T cell activation, and a deficit of
T cell homing to the tumor sites (Bonaventura et al., 2019).
DCs, NK cells, B cells, and neutrophils are important cell
components of the TME. DCs, as the professional antigen-
presenting cells in the TME, once activated, can efficiently
cross-present tumor antigens to T/B cells and thereby initiate
T/B cell activation (Banchereau and Palucka, 2005). Mature
DCs can also secrete cytokines to foster T cell response and
release chemokines such as CXCL9, CXCL10, CCL3, CCL4, and
CCL17 to recruit T cells into the tumor bed (Thaiss et al., 2011).
Therefore, clinical agonists and antibodies targeting DC
maturation, as well as various DC vaccines, can be the
potential tools to transform a “cold tumor” to a “hot tumor”
and synergize with checkpoint inhibitors for better clinical
outcomes. Another advantage of DC vaccination lies in its
lower systemic toxicity compared with other
immunotherapies (Draube et al., 2011).

In addition to DCs, B cells in the TME can also present cognate
TAAs to T cells (Sharonov et al., 2020). CD40 agonists, which
activate both B cells and DCs, showed remarkable clinical benefits
in melanoma patients when combined with checkpoint inhibitors
(Bajor et al., 2018). Furthermore, B cells are the major cell type to
produce antibodies to capture tumor antigens on the surface of
tumor cells and tomediate ADCC byNK cells as well as antibody-
dependent cell phagocytosis by macrophages (Tay et al., 2019).

NK cells, the first-line cytotoxic cells in the TME, can
recognize and kill MHC class I negative tumor cells that can
escape cytotoxic T cell–mediated destruction (Paul and Lal,
2017). CAR-T cells can also mediate MHC-unrestricted tumor
cell killing (Benmebarek et al., 2019), but the clinical benefit is
limited to patients with AML. Different from CAR-T cell therapy,
CAR-NK cell therapy achieved preclinical and clinical efficacy in
both hematologic and solid tumors (Burger et al., 2019). Another
advantage of the CAR-NK strategy over CAR-T cell therapy is its
low risk of inducing GVHD and cytokine release syndrome
(Rezvani et al., 2017).

As for the pro-tumorigenic immune subsets, TANs promote
the immune escape of tumor cells, contributing to the suppressive
immune environment (Faget et al., 2017). To reverse the
suppressive TME and reinvigorate cytotoxic T cells, therapies
against TANs should be considered andmay lead to better clinical
outcome when combined with other immunotherapies. B cells,
suppressive DCs, macrophages, and myeloid-derived suppressive
cells also have roles in promoting tumor progression, which
should also be taken into account (Awad et al., 2018; Largeot
et al., 2019).

Challenges also exist in therapies targeting DCs, B cells, NK
cells, and neutrophils. DC vaccination had limited clinical efficacy
(Anguille et al., 2014). TLR/STING agonists lead to upregulation
of the PD-1/PD-L1 axis (Blanco et al., 2008; Garcia-Diaz et al.,
2017; Vatner and Janssen, 2019). STING signal is active not only

in DCs and macrophages but also in T cells. Conversely,
activation of STING in T cells leads to T cell stress and cell
death (Larkin et al., 2017). The potential T cell defects caused by
the STING agonist may reduce the clinical outcome of STING
agonist–based immunotherapies. For CAR-NK therapy, CAR-
NK cells must be irradiated to avoid a possible stimulation of
GVHD, resulting in reduced cell life and antitumor efficiency
(Kloess et al., 2019). The CD40 agonistic antibody may induce
cytokine release syndrome and autoimmune reactions because
CD40 is also expressed on platelets and endothelial cells
(Vonderheide and Glennie, 2013). Treatment with the anti-
Ly6G antibody is a common method for neutrophil depletion.
However, anti-Ly-6G therapy also causes the depletion of
monocytes and subsets of CD8+ T cells, limiting the clinical
practice of this therapeutic strategy (Bao and Cao, 2011). All of
these issues need further exploration for identification of possible
solutions.

Various immune cell subsets exist and interact with each other
in the TME. Therefore, one single immunotherapy may not be
sufficient to reverse the immunosuppressive environment
fostering tumor growth. Overcoming immune resistance may
require an immunotherapy cocktail or combination of
immunotherapy with routine cancer treatment
(i.e., radiotherapy, chemotherapy, and surgery). Different
cancer types have distinct immune signatures and TMEs
(Thorsson et al., 2018). Immune signatures and TMEs also
vary among individual patients. The optimal combination of
various cancer therapies may depend on a thorough
understanding of the individual’s immune signature. As such,
personalized and combination immunotherapies may achieve
unprecedented progress against cancer.
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Dihydropyridine Calcium Channel
Blockers Suppress the Transcription
of PD-L1 by Inhibiting the Activation
of STAT1
Xiaohui Pan1†, Run Li2†, Hongjie Guo1, Wenxin Zhang1, Xiaqing Xu1, Xi Chen1* and
Ling Ding1*

1Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of
Pharmaceutical Sciences, Zhejiang University, Hangzhou, China, 2The Second Clinical College, Zhejiang Chinese Medical
University, Hangzhou, China

Programmed death ligand 1 (PD-L1) which is upregulated in various epithelial tumors, plays a
central role in the evasion of the immune system. In addition to monoclonal antibodies that
blocking PD1/PD-L1 axis, finding small molecule compounds that can suppress PD-L1
expression might be another substitutable strategy for PD1/PD-L1 based therapy. Here, we
found that dihydropyridine calcium channel blockers dose-dependently reduced the expression
of PD-L1, both in the cytoplasm and cell surface. IFNγ induced PD-L1 transcription was
consistently suppressed by Lercanidipine in 24 h,whereas, the half-life of PD-L1proteinwas not
significantly affected. IFNγ trigged significant STAT1 phosphorylation, which was eliminated by
Lercanidipine. Similarly, STAT1 phosphorylation could also be abolished by extracellular calcium
chelating agent EGTAand intracellular calciumchelator BAPTA-AM. Furthermore, Lercanidipine
enhanced killing ability of T cells by down-regulatingPD-L1. Taken together, our studies suggest
that calcium signal is a crucial factor that mediates the transcription of PD-L1 and regulation of
calcium can be used as a potential strategy for PD-L1 inhibition.

Keywords: dihydropyridine calcium channel blockers, NSCLC, STAT1, PD-L1, transcription

INTRODUCTION

The programmed death protein 1 (PD-1) and its ligand (PD-L1) are negative inhibitory signaling
molecules, which play a key role in tumor immune escape. PD-L1 binds to either PD-1 or CD80
receptors on T cells, B cells, dendritic cells, and natural killer cells to inhibit their proliferation,
cytokine release, and cytolytic activity. Blocking PD-1/PD-L1 coinhibitory ligation with monoclonal
antibodies has achieved impressive clinical results in the treatment of several types of tumors
(Buchbinder and Hodi, 2016; Ding et al., 2019). To date, six kinds of monoclonal antibodies of PD-1/
PD-L1 have been approved by FDA, for the treatment of non-small cell lung cancer (NSCLC),
melanoma, Hodgkin’s lymphoma and gastric cancer andmore. However, the arguments to search for
alternatives to mAbs in immunoncology exist. Antibodies are not orally bioavailable and their high
molecular weight leads to poor diffusion, especially in large tumors. The Fc portion of IgG antibodies
can interact with various receptors on the surface of different cell types, which affects their retention
in the circulation. Further, mAbs are immunogenic and can lead to irAEs with deadly outcomes,
albeit in rare cases (Konstantinidou et al., 2018). Given that PD-L1 is frequently over-expressed in
various cancers (Dong et al., 2002; Audrito et al., 2017; Bertucci and Goncalves, 2017), finding small
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molecular compounds that suppress PD-L1 expression might be
an efficient strategy. Recent studies have found that eIF4F (Cerezo
et al., 2018), BRD4 (Zhu et al., 2016) are respectively associated
with the translational and transcriptional regulation of PD-L1,
furthermore, their respective inhibitors silvestrol, JQ1 all show
obvious tumor suppressive effects, which suggests that there is
large development space to excavate.

It has been widely recognized that calcium signal is a crucial
regulator of processes related to tumor progression (Clapham,
2007; Roderick and Cook, 2008). Numerous studies have shown
that the progression of tumors is often accompanied by the
changes of calcium or driven by calcium, and specific calcium
signaling pathways encourages the establishment of the tumor
microenvironment (Monteith et al., 2017). At the same time, the
expression of specific calcium channels and pumps is often
observed in tumors (Monteith et al., 2007). Although there
have been many studies on the role of calcium in tumors,
there are still few studies on the regulation of calcium on
tumor immunity. For example, its studies on PD-L1 have not
been reported.

In our study, we found that dihydropyridine calcium channel
blockers can inhibit the transcription levels of PD-L1 by
inhibiting the phosphorylation of STAT1 which is widely
regarded as the transcription factor of PD-L1 (Zerdes et al.,
2018). As one of L-type calcium channel (LTCC) blockers,
Lercanidipine inhibits calcium influx and downstream calcium
signaling, and in this way Lercanidipine exhibits its biological
function. Through verification, the decrease of cytosolic calcium
or the inhibition of its downstream protein kinase CAMKII
indeed inhibit the level of PD-L1 and enhance killing ability of
T cells on tumor cells. Our results not only show that calcium
signaling involves the gene expression, but also improve the
understanding of the mechanism of regulation of PD-L1.

MATERIAL AND METHODS

Antibodies and Reagents
FITC-conjugated CD274mouse monoclonal antibody (#558065),
FITC-conjugated CD47 (#556045) and FITC mouse IgG were
from BD Biosciences. FITC anti-human MHC Ⅰ (#343303), FITC
anti-human CD8a (#300906) and FITC mouse IgG1 κ isotype
control (#400110) were from Biolegend. Anti-PD-L1 (#13684),
anti-Phospho-STAT1 (Tyr701) (#7649), anti-Phospho-STAT1
(Ser727) (#8826) and anti-CAMKII (#3362) antibodies were
from Cell Signaling Technology. Anti- STAT1 p84/p91 (sc-346),
anti-AKT1/2/3 (sc-8312), anti-P-AKT1/2/3 (Thr308) (sc-16646),
anti-ERK (sc-94) and anti-P-ERK (sc-101761) antibodies were
from Santa Cruz Biotechnology. Anti-GAPDH (db106) was
from diagbio. Lercanidipine (PubChem CID: 65866; purity >
99%), Amlodipine (PubChem CID: 60496; purity > 99%),
Azelnidipine (PubChem CID: 65948; purity > 99%),
Verapamil (PubChem CID: 2520; purity > 99%), Diltiazem
(PubChem CID: 39186; purity > 99%), BAPTA-AM
(PubChem CID: 2293; purity > 99%), AMG-517 (PubChem
CID: 16007367; purity > 98%), KN-93 (PubChem CID:
5312122; purity > 99%), MG132(PubChem CID: 462382;

purity > 97%) and Chloroquine (PubChem CID: 6301; purity
> 99%) were from TargetMol. Sulforhodamine B (#230162) was
from Sigma-Aldrich. Fluo-4 AM (S1060) was from Beyotime.

Cell Culture
All the cell lines were purchased from Cell Bank of Shanghai
Institutes for Biological Sciences, Chinese Academy of Sciences
(Shanghai, China). The NCI-H1299 and NCI-H460 cell lines
(NSCLC) were maintained in RPMI 1640 (Gbico) medium with
10% fetal bovine serum (FBS; Gbico). All cells were maintained at
37°C in a 5% CO2 incubator.

Western Blot
Protein samples were separated by SDS-PAGE, and then they
were transferred to PVDF membranes. Membranes were blocked
in 5%milk and TBST (150 mMNaCl, 10 mMTris-HCl at pH 7.6,
and 0.1% Tween 20) for 1 h, and incubated with primary
antibodies overnight at 4°C. Washed three times with TBST
for 25 min, membranes were incubated with secondary
antibody (1:5,000) at room temperature for 1 h, and then
washed three times in TBST again. The protein bands were
analyzed by chemiluminescence using ECL detection reagent.

Cell Survival Assay
Cells were plated at a density of 3 × 103 cells per well in 96-well
plates and allowed to adhere for 24 h then cells were exposed to
special concentrations of inhibitors (10 μM) for 24 h. Cells were
harvested and fixed by 10% TCA for 1 h or overnight at 4°C. After
removing the media, cells were washed five times by PBS, and
they were subsequently stained by sulforhodamine B (SRB).
Following dye incorporation, fluorescence was measured at
499 nm with the SpectraMax M5 (Molecular Devices). The
situation of cell proliferation for each well was calculated.

SiRNA-Mediated Silencing
NCI-H1299 cells were plated at 50% confluency in 6-well plates
for 24 h, then cells were transfected with transfection reagent
JetPRIME (Polyplus, #114-15), Jet PRIME Buffer (Polyplus,
#712-60) and STAT1 (CaMKII) siRNA or siRNA-negative
control (Jet PRIME Buffer (Polyplus, #712-60); 200 μL,
JetPRIME 2 μL, 20 μM siRNA: 2.5 μL for per well) for 24 h.
The siRNA sequences used in the study are provided in
Supplementary Table S1.

RNA Isolation and Quantitative
Real-Time PCR
Total RNA was extracted using TRIzol reagent (Invitrogen,
#15596026), and it was further purified according to standard
protocols. Single-strand cDNA was synthetized by using
TransScript One-Step gDNA Removal and cDNA Synthesis
SuperMix (TRAN, #AT311-03). Quantitative RT-PCR was
accomplished with SYBR-Green kit (Bio-Rad, #172-5124), and
its’ accuracy can be judged bymelting curves and Repeated sample.
Beta-actin was used as the normalizing gene, and calculation of the
data all needs to normalize to its’ mRNA levels. The primers used
are provided in Supplementary Table S2.
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Flow Cytometry
NCI-H1299 cells were collected, then they were washed twice
with cold PBS and stained with FITC-conjugated CD274 (CD47,
MHC Ⅰ) in 0.2% BSA at 4°C for 2 h (5 μL/2 × 105 cells in 100 μL
0.2% BSA). Next, they were washed with PBS again, filtered
through membrane before detecting by BD FACSuite TM (BD
bioscience). The data were analyzed by one-way ANOVA with
Dunnett’s post hoc test.

Ca2+ Measurements
For intracellular Ca2+ measurements using Fluo-4 AM, NCI-
H460 cells were cultured in 6-well plates and allowed to adhere
for 24 h. Then cells were exposed to special concentrations of
inhibitors and IFNγ for 24 h. NCI-H460 cells were collected, then
they were washed three times with cold PBS and incubated with
2 μMFluo-4 AM for 1 h at 37°C. Next, they were washed with PBS
again and detected by BD FACSuite TM (BD bioscience).

T Cell-Mediated Cancer Cells Killing Assay
The fresh heparinized blood was diluted by using ice cold PBS.
Then the diluted blood was slowly added to the surface of the
Ficoll-Paque solution (17-1440-02; GE). By density-gradient
centrifugation with Ficoll, peripheral blood mononuclear cells
(PBMC) were separated. Next, PBMC was washed by PBS with
0.1% BSA and 2 mM EDTA. Finally, PBMC, resuspend in
TexMACS™ GMP Medium (170-076-309; Miltenyi Biotec),
was stimulated about 2–3 days with ImmunoCult Human
CD3/CD28/CD2 T cell activator (10970; STEMCELL
Technologies) and IL-2 (30 U/mL; PeproTech) to be activated
T cells.

The cancer cells were seeded in 96-well plate and permitted to
grow for 24 h, then they were treated with IFNγ, other
pharmacological inhibitors for 24 h. Next, the drugs was
removed and activated T cells was added to cancer cells for
24–48 h, and the ratio of cancer cells to T cells was around 1 to 5
or 10. Finally, T cells and cell fragments were eliminated carefully
by PBS, and the living cancer cells were stained with Crystal
Violet or SRB so that their survival condition can be observed.

Statistical Analysis
All of the data are presented as mean ± SEM. Student t-test was
used to determine Statistical differences (two groups). The data
were analyzed by one-way ANOVA with Dunnett’s post hoc test
(more than two groups) with PRISM (GraphPad 7.00 Software). p
values below 0.05 were considered as significant. All figures were
acquired by using GraphPad Prism software (GraphPad Software).
The images were quantified with Image-Pro Plus 6.0 software.

RESULTS

Dihydropyridine Calcium Channel Inhibitors
Suppress the Expression of PD-L1 in Lung
Cancer
When tumor cells are infiltrated by cytotoxic T lymphocytes (CTLs),
the PD-L1 expression will be induced by IFNγ secreted from CTLs

in preparation for an immune attack (Mandai et al., 2016).
Therefore, we give exogenous IFNγ to mimic in vivo
microenvironment. To investigate the involvement of
dihydropyridine calcium channel blockers in PD-L1 regulation,
we added three LTCC blockers, Lercanidipine, Amlodipine and
Azelnidipine, to observe the change of the PD-L1 protein expression
stimulated by IFNγ after 24 h of treatment in NCI-H460. To varying
degrees, all three compounds inhibited the expression. The relative
protein level of PD-L1 was analyzed quantitatively on the right
(Figure 1A). In parallel, a similar downregulation of PD-L1 was
observed in NCI-H1299 (Figure 1B). This observation was further
validated in two cases of primary lung cancer cells (Figure 1C). In
order to exclude the influence of calcium channel inhibitors on cell
survival, cells were treated with special concentrations of inhibitors
(10 μM) for 24 h and cell survival rate was assessed by
Sulforhodamine B (SRB) assay. We found that these inhibitors
didn’t affect cell growth compared to the control group
(Supplementary Figure S1A). Furthermore, we detected that
Lercanidipine could down-regulate the PD-L1 protein expression
with IFNγ stimulation in a dose-dependent manner in NCI-H1299
(Figure 1D). Considering their efficacy, we prefer to choose
Lercanidipine as our tool to continue the next experiments. We
then examined the dose-dependent effects of Lercanidipine and
further confirmed that Lercanidipine remarkably reduced their
expression levels in NCI-H460 (Supplementary Figure S1B).
PD-L1 surface expression was the foundation of its biological
function. Using flow cytometry, we found that differential
concentrations of Lercanidipine reduced the expression levels of
cellmembrane surface PD-L1 in the proportion cells positive for PD-
L1 compared to IFNγ groups after 24 h treatment (Figure 1E). In
addition, we also investigated whether the expression of MHC I and
CD47, the cell surface immunosuppressive factor, would be
influenced by Lercanidipine. The results showed that the cell
surface expression of MHC I and CD47 was not significantly
affected by Lercanidipine (Supplementary Figure S1C).
Collectively, these data suggested that Lercanidipine can inhibit
the expression of PD-L1.

Lercanidipine Inhibits the Transcription of
PD-L1
Then we explored how Lercanidipine influences the level of PD-
L1. Studies have shown that IFNγ could continuously induce PD-
L1 expression in 24 h (Moon et al., 2017). Subsequently, we
examined the PD-L1 mRNA expression induced by IFNγ, and
found that Lercanidipine can reduce the transcriptional levels of
PD-L1 in a time-dependent manner in NCI-H1299 cells
(Figure 2A). A significant decrease of PD-L1 mRNA
expression was observed in NCI-H460 cells (Figure 2B). Next,
we examined the stability of PD-L1 proteins. Cycloheximide
(CHX) is a compound that inhibits the synthesis of eukaryotic
cytoplasmic proteins by impairing ribosomal translocation
(Buchanan et al., 2016), which is widely used to determine the
half-life of proteins. Therefore, we introduced Cycloheximide to
further examine whether Lercanidipine influences the half-life of
PD-L1 protein. However, there was no significant difference in
the half-time of PD-L1 protein with or without Lercanidipine
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administration (Figure 2C). To further confirm this effect, cells
were treated with Ubiquitin-proteasome pathway inhibitor
MG132 and Lysosomal pathway inhibitor Chloroquine (CQ),
which can avoid two major ways of protein degradation in the
body (Dikic, 2017). We found these inhibitors also can’t reverse
Lercanidipine effect on down-regulating PD-L1 proteins
(Figure 2D). These data suggested that Lercanidipine inhibits
the transcription of PD-L1.

Lercanidipine Suppresses the
Phosphorylation of STAT1
Next, we explored how Lercanidipine regulated PD-L1
transcription. The Janus kinase (JAK)-signal transducer and

activator of transcription 1 (STAT1) signal axis is activated by
IFNγ to induce the expression of genes which display tremendous
role in immune system (Ivashkiv, 2018), including PD-L1
(Garcia-Diaz et al., 2017). In addition, the activation of STAT1
requires phosphorylation of tyrosine 701 (Tyr701), which is a key
activation step to induce the formation and translocation of
STAT1 dimers (Ramana et al., 2002), and serine
phosphorylation will further enhance the transcriptional
activity (Wen et al., 1995). Consequently, we used
Lercanidipine to consider the change of phosphorylation of
STAT1. The results indicated that the increase in
phosphorylation of STAT1 at Tyr701 and Ser727 induced by
IFNγ was inhibited by Lercanidipine (Figure 3A). To further
determine this result, we conducted time course studies and

FIGURE 1 | Dihydropyridine calcium channel blockers inhibited IFNγ induced expression of PD-L1. (A–C) The expression of PD-L1 protein was measured by
Western blot in NCI-H1299, NCI-H460 cells and primary lung cancer when treated with three kinds of dihydropyridine calcium channel blockers (10 μM) and IFNγ
(10 ng/ml) for 24 h. The relative protein level of PD-L1 in NCI-H460was analyzed quantitatively on the right. (D)NCI-H1299 cells were treatedwith and Lercanidipine (2.5, 5,
and 10 μM) for 24 h, and the expression of PD-L1 was analyzed by Western blot. n � 3. (E) Surface PD-L1 expression on NCI-H1299 treated with both IFNγ
(10 ng/ml) and the indicated doses of Lercanidipine (2.5, 5, and 10 μM) was determined by flow cytometry. Cells were estimated for PD-L1 or mouse IgG control antibody.
Data were the mean ± SEM of triplicate experiments. The data were analyzed by one-way ANOVA with Dunnett’s post hoc test. ***, p < 0.001; **, p < 0.01; *, p < 0.05.
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found the inhibition of phosphorylation was consistently
inhibited in 24 h (Figure 3B). Moreover, we knocked down
STAT1 by siRNA and found that the ability of Lercanidipine
down-regulating PD-L1 was nearly abolished (Figure 3C). In
addition, we also investigated whether the other signaling
pathways are involved in the regulation of Lercanidipine on
PD-L1 expression. As shown in Supplementary Figure S2A,
Lercanidipine significantly down-regulated the level of PD-L1
without affecting the RAS-ERK1/2 and PI3K/mTOR/S6K1
signaling pathways. These data all suggested that Lercanidipine
regulates PD-L1 transcription through STAT1.

Calcium Channel Blockers Down-Regulate
the Expression of PD-L1 by Reducing
Cytosolic Calcium
Given that Lercanidipine mainly works through inhibiting Ca2+

entry, thenwe have to validate whether the decrease of cytosolic Ca2+

accounted for the inhibition of PD-L1 by Lercanidipine. Generally,
the elevation of cytosolic Ca2+ promotes the activation of Ca2+-
dependent signaling enzymes such as calmodulin kinase (CaMK)
and calcineurin (CN). Ca2+-CaMK is involved in the expression of
cyclin D1 by regulating the expression of transcription factors like
cAMP-responsive element binding protein (CREB). Calcineurin can
dephosphorylate NFATC1 proteins, allowing them enter the nucleus
and regulate expression of MYC, cyclin E and E2F (Roderick and
Cook, 2008). To confirm this hypothesis, we investigated the change
of these signaling and found that these proteins were inhibited by
Lercanidipine with or without IFNγ induction, which indicated the
inhibition of calcium signaling pathway (Figure 4A). At the same
time, we also detected the level of cytosolic calcium and found the
similar result (Figure 4B). It’s reported that IFNγ can induce an
obvious increase in cytosolic Ca2+ (Mizuno et al., 2008; Deng et al.,
2018), however, the stimulation of IFNγ didn’t cause the change of
calcium signaling related proteins. To further confirm the role of
cytosolic calcium, we introduced the other two non-dihydropyridine

FIGURE 2 | Lercanidipine inhibited the transcription of PD-L1. (A,B) NCI-H1299 cells and NCI-H460 cells were treated with IFNγ (10 ng/ml) and Lercanidipine
(10 μM) or IFNγ (10 ng/ml) alone for 0, 3, 6, 9, 12, and 24 h, then the relative expression of PD-L1 mRNA was quantified by qRT-PCR. n � 3. (C)Western blot of PD-L1
protein in NCI-H1299 cells with or without Lercanidipine in the presence of CHX at 20 μg/mL for 0, 3, 6, 9, 12, and 24 h. The relative protein level of PD-L1 was analyzed
quantitatively on the right. n � 3. (D) The change of PD-L1 protein was detected in NCI-H1299 treated with Lercanidipine for 24 h with or without IFNγ (10 ng/ml)
stimulation meanwhile the cells were treated with CQ (10 μg/mL) or MG132 (10 μM) for 8–10 h. LE, long exposure; SE, short exposure. Data are the mean ± SEM of
triplicate experiments. Statistical differences were determined by Student’s t-test. *, p < 0.05; n.s: not significant.
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calcium channel blockers, Diltiazem and Verapamil, to verify the
effect on the expression of PD-L1, and they all inhibited the
expression of PD-L1 (Figures 4C,D). Like L-type calcium
channel, the activation or suppression of other plasma membrane
Ca2+-permeable ion channels also can induce the fluctuation of
calcium, such as Transient Receptor Potential (TRP) channels and
Calcium release-activated calcium channel (Monteith et al., 2017).
Hence, we used the compound AMG-517, an effective and special
TRPV1 antagonist, also showed the same inhibition (Figure 4E). To
further examine the role of calcium, we introduced extracellular
calcium chelating agent EGTA and intracellular calcium chelator
BAPTA-AM. Through verification above two compounds all
reduced the expression of PD-L1 to varying degrees, and
BAPTA-AM exhibited a better effect (Figure 4F), which
suggested cytosolic calcium play a more crucial role. CaMK, the
downstream protein kinase of calcium, plays a significant role in the
regulation of many cellular processes. CaMKII, activated by calcium,
can phosphorylate STAT1 serine residues by interacting directly
with STAT1 (Nair et al., 2002). Based on this, we guessed that
Lercanidipine may influence the expression of PD-L1 by inhibiting
CAMKII signaling. As predicted, we detected that the CaMKII
inhibitor KN-93 suppressed the phosphorylation of STAT1 and
the expression of PD-L1 (Figure 4G). Furthermore, Knockdown of
CAMKII also exhibited the same effect (Figure 4H). Together, these
results suggested that Lercanidipine leads to the change of PD-L1
through the reduction of cytosolic calcium.

CalciumChannel Blockers Enhanced Killing
Ability of T Cells
To determine the biological significance of dihydropyridine
calcium channel blockers down-regulating PD-L1 expression,

we performed a T cell killing assay using NCI-H1299 cells
which were treated with Lercanidipine, Amlodipine and
Azelnidipine, at the same time, we set Anti-PD-L1 (50 μg/ml)
as positive control. Compared with the negative control, these
three calcium channel blockers all induced varying degrees of T
cell-mediated cancer cells death, and this result was consistent
with efficacy down-regulating PD-L1 (Figure 5A). To further
confirm the effects, we conducted the SRB assay to assess the
survival of tumor cell in T cell killing assay. A similar result was
observed (Figure 5B). Furthermore, Lercanidipine and KN-93
can strengthen the T cell-mediated killing ability in a dose-
dependent manner (Figure 5C). The corresponding images
were quantified with Image-Pro Plus 6.0 software (Figure 5D).
These results all revealed that the decrease of calcium and
inhibition of calcium signaling pathways have biological
significance.

DISCUSSION

In the last few years, calcium channel blockers of dihydropyridine
have been studied as important antihypertensive drug in clinic.
However, we found that they are involved in the regulation of
PD-L1. Nowadays, few instances concerning dihydropyridine
calcium channel blockers and cancer immune have been
reported. Our results show that dihydropyridine calcium
channel blockers suppress the transcription of PD-L1 by
inhibiting calcium signaling, which indicate the potential
connection of calcium signaling and immune regulation.

Calcium, one of the most significant second messengers, plays
a crucial role in gene transcription. The elevation of calcium will
activate extensive downstream calcium signaling pathway

FIGURE 3 | Lercanidipine inhibited the phosphorylation of STAT1. (A) NCI-H1299 cells were analyzed by Western blot for P-STAT1, STAT1 and PD-L1 proteins
after the treatment of indicated concentrations of Lercanidipine (2.5, 5, and 10 μM) for 24 h. (B) The P-STAT1, STAT1 and PD-L1 proteins in NCI-H1299 cells were
evaluated with or without Lercanidipine in the presence of IFNγ (10 ng/ml) for 0, 3, 6, 9, 12, and 24 h. LE, long exposure; SE, short exposure. (C) The expression of PD-L1
was measured in NCI-H1299 cells transfected with siSTAT1 treated with or without IFNγ (10 ng/ml) and Lercanidipine (10 μM).
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including Calcineurin which de-phosphorylates NFATC1 proteins
and promotes NFAT to regulate relative gene transcription
(Crabtree, 2001; Hogan et al., 2003). Moreover, calcium also
can encourage CaMKII to the cell nucleus to drive CREB to
phosphorylation and gene expression (Ma et al., 2014). CREB-
binding Protein and p300/CBP-associated Factor can activate the
transcription of P53 protein (Scolnick et al., 1997). Although the C
terminus of the L-type voltage-gated calcium channel can mediate
the expression of genes, most genes relate to neuronal signaling
(Gomez-Ospina et al., 2006). Moreover, our results (Figures
4A,C–F) found several kind of calcium channel blockers and
chelators all play a similar role in the regulation of PD-L1, so
we are inclined to the role of calcium. Notably, we found that
calcium signaling involves in the transcription of PD-L1 in cancer
cells, which links calcium signaling with immune regulation.

The transcription of PD-L1 is regulated by many signaling
pathways which have been studied widely (Atsaves et al., 2017;
Zerdes et al., 2018; Zhu et al., 2018). IFNγ, one of cytokines,
activates STAT1 and STAT3 with comparable efficiency, and

induced STAT1 response is more strong than STAT3 response
(Qing and Stark, 2004). Thus, we are inclined to investigate the
change of STAT1 with Lercanidipine. Reportedly, IFNγ can cause
increasement of cytosolic Ca2+, however, our result (Figure 4A)
didn’t exhibit this trend, maybe the cells we used was different or
the concentration we used didn’t arrive at the point that elicits a
rapid increase of cytosolic Ca2+.

CaMK, one kind of serine-threonine kinases, can
phosphorylate serine 727 (Ser727) of STAT1 by interacting
directly with STAT1 in NIH 3T3 (Nair et al., 2002).
Theoretically, the phosphorylation of STAT1 at tyrosine 701
(Tyr701) cannot be phosphorylated by CaMK, at least cannot
be directly accomplished. Furthermore, our results (Figure 4G)
showed that the CaMK inhibitor KN-93 strongly suppressed the
phosphorylation of STAT1 at Tyr701 with IFNγ stimulation in a
concentration-dependent manner, which indicated that CaMK is
actually involved in the phosphorylation of tyrosine 701. Pyk2, a
tyrosine kinase, can be regulated by calcium and CaMK (Wang
et al., 2008), and the interaction of Pyk2 and JAK kinases has been

FIGURE 4 |Calcium channel blockers inhibited the expression of PD-L1 through reducing cytosolic calcium. (A)NCI-H1299 cells were treated with Lercanidipine (5
and 10 μM) and IFNγ (10 ng/ml) or without IFNγ (10 ng/ml) stimulation for 24 h and protein expression of P-NFATC, NFATC, P-CREB, Cyclin-E, Cyclin-D, P-STAT1 and
PD-L1 proteins. (B)NCI-H460 cells were treated with Lercanidipine (5 and 10 μM) with IFNγ (10 ng/ml) stimulation or not for 24 h and the calciumMFI was measured by
flow cytometry. (C,D) The expression of PD-L1 protein wasmeasured byWestern blot in NCI-H460 cells when treated with Diltiazem and Verapamil (2.5, 5, 10, and
20 μM) and IFNγ (10 ng/ml) for 24 h. (E) NCI-H460 cells induced by IFNγ (10 ng/ml) were treated with AMG-517 (2.5, 5, and 10 μM) for 24 h, and the expression of PD-
L1 was detected by Western blot. (F) The PD-L1 protein was determined by Western blot after treating with BAPTA (10 μM) and EGTA (100 µM) with or without IFNγ
(10 ng/ml) stimulation for 24 h. (G) The PD-L1 and P-STAT1 proteins were measured in NCI-H460 treated with KN-93 (2.5, 5, and 10 μM) and IFNγ (10 ng/ml) for 24 h.
(H) The expression of PD-L1 was measured in NCI-H460 cells transfected with siCAMKⅡ. **, p < 0.01; *, p < 0.05.
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confirmed (Lev et al., 1995; Miyazaki et al., 1998). The published
reports also pointed that CaMK can accomplish tyrosine
phosphorylation by mediating relative tyrosine kinases like
Pyk2, however, whether Pyk2 or other tyrosine kinases take
part in the regulation of tyrosine phosphorylation and how
CaMK affects these signaling pathways in cancers also need
further investigation. Here, we proposed that CaMK induces
directly or indirectly tyrosine and serine phosphorylation of

STAT1, and its’ meaning to the regulation of immune
checkpoints worth further exploration.

In general, our study indicates that Lercanidipine can
modulate the transcription of PD-L1 by inhibiting calcium
related signaling pathways. Our findings not only provide a
thinking about reducing cytosolic Ca2+ thereby inhibiting PD-
L1 in cancer cells, but also provide novel ideas to improve clinical
immunotherapy.

FIGURE 5 | The down-regulation of PD-L1 strengthened the T cell-mediated killing ability. (A) T cell killing assay of H1299 cells treated with IFNγ, Lercanidipine,
Amlodipine, Azelnidipine and Anti-PD-L1 (positive control) for 24 h. (B) T cell killing assay of H1299 cells treated with IFNγ, Lercanidipine, Amlodipine, Azelnidipine and
Anti-PD-L1 (positive control) for 24 h. Then H1299 cells survival assay was implemented. (C) T cell killing assay of H1299 cells treated with IFNγ, the indicated doses of
Lercanidipine (2.5, 5, and 10 μM), KN-93 (10 μM) and Anti-PD-L1 (positive control) for 24 h. (D) The images were quantified with Image-Pro Plus 6.0 software. ****,
p < 0.0001; **, p < 0.01.
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Checkpoint Inhibitors: A
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to 2019 Based on FAERS
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Hospital, Second Military Medical University, Shanghai, China

This study was to scientifically and systematically explore the association between
cardiotoxicity and immune checkpoint inhibitors (ICIs) and also to characterize the
spectrum of ICI-related cardiac complications. From the first quarter of 2014 to the
fourth quarter of 2019, data from the FDA Adverse Event Reporting System database were
selected to conduct the disproportionality analysis. Reporting odds ratios and information
components were used to evaluate the signal after statistical shrinkage transformation. In
total, 7,443,137 cases and 36,326,611 drug-adverse event pairs were collected, among
which 9,271 cases were identified to be related to ICI-induced cardiotoxicities. The
number of male patients was much higher than that of females (5,579 vs. 3,031) and
males presented a slightly higher reporting frequency than females in general, which was
statistically significant (ROR � 1.04, 95%CI: 0.99–1.09, p < 0.001). Simultaneously, the
proportion of serious or life-threatening outcomes in males was significantly higher than in
females (ROR � 1.05, 95%CI: 0.96–1.15, p < 0.001). Importantly, ICIs were associated
with over-reporting frequencies of cardiotoxicities in general (ROR025 � 1.06, IC025 �
0.08). PD-1 and PD-L1 were found to be related to cardiac adverse events, corresponding
to ROR025 � 1.06, IC025 � 0.08, and ROR025 � 1.06, IC025 � 0.08, respectively, while
anti-CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) was significantly associated
with some specific adverse events rather than common adverse events. The spectrum of
cardiotoxicities induced by ICIs mostly differed among individual agents, but also
demonstrated some common features. Dyspnea (N � 2,527, 21.25%), myocarditis
(N � 614, 5.16%), atrial fibrillation (N � 576, 4.84%), cardiac failure (N � 476, 4.00%),
and pericardial effusion (N � 423, 3.56%) were the top five cardiac adverse events reported
in the database. Among them, myocarditis was the only one caused by all ICIs with strong
signal value and high risk, warranting further attention. Overall, this investigation mainly
showed the profile of cardiotoxicities caused by ICIs, which varied between different ICI
therapies, but also shared some similarities in specific symptoms such as myocarditis.
Therefore, it is vital and urgent to recognize andmanage ICI-related cardiotoxicities, known
to frequently occur in clinical practice, at the earliest point.
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INTRODUCTION

Immunotherapy was revolutionary for cancer treatment, largely
improving the survival rate of patients during terminal stages of
cancer. Immune checkpoint inhibitors (ICIs), including anti-
CTLA-4 (cytotoxic T-lymphocyte-associated protein 4), anti-
programmed cell death 1 (PD-1), and anti-programmed death
ligand-1 (PD-L1), are currently used to treat various cancers,
including melanoma, non-small cell lung cancer, renal cell
carcinoma, and Hodgkin’s lymphoma (Ribas and Wolchok,
2018; Xu et al., 2018; Khan and Gerber, 2019). However,
immune-related adverse events (irAEs) are known to occur
with the widespread application of ICIs, impairing several
organ systems, but most commonly the gastrointestinal tract,
skin, endocrine system, and liver (Costa et al., 2017; Postow et al.,
2018; Wang et al., 2018). Most irAEs are manageable in the early
stage, although approximately 10–17% result in fatal outcomes
(Wang et al., 2018). Cardiotoxicity, especially myocarditis, has a
low rate of reporting but a high rate of mortality, which may
induce irreversible consequences. A large retrospective
pharmacovigilance study (Wang et al., 2018) has reported that
myocarditis, with only 131 cases reported, has the highest fatality
rate (39.7%), whereas other common irAEs, such as endocrine
events and colitis, demonstrated only 2–5% of reported fatalities.
Owing to its rarity, most studies regarding cardiotoxicities are
presented as case reports (Laubli et al., 2015; Johnson et al., 2016;
Mahmood et al., 2018a; Hsu et al., 2018), or are only biased
towards myocarditis (Heinzerling et al., 2016; Mahmood et al.,
2018b; Altan et al., 2019; Chitturi et al., 2019); few studies have
systematically focused on cardiotoxicity induced by ICIs. The
only study (Salem et al., 2018) focusing on cardiovascular
toxicities rather than cardiotoxicities detected limited potential
signals. The extensive use of ICIs has increased the detection and
reporting of cardiotoxicities; hence, the previous incidence might
be underestimated. Given the serious outcome and increasing
number of reported cases (Moslehi et al., 2018), cardiotoxicity
might be a potential physiological and financial threat to patients.
However, the overviewed relationship between cardiotoxicity and
ICIs, as well as the spectrum of potential signals, remains unclear.
In our study, we anaylzed and evaluated the association between
cardiotoxicity and ICI therapies and more importantly detected
and provided a comprehensive spectrum of 44 potential signals in
order to provoke further attention, management, and research on
this issue, as well as to serve as a clinical reference.

MATERIALS AND METHODS

Data Sources
This real-world, retrospective study performed a
disproportionality analysis based on the FDA Adverse Event
Reporting System (FAERS) database, utilizing data from the
first quarter of 2014 to the fourth quarter of 2019. The FAERS

database is a typical spontaneous reporting system (SRS), which
collects data from sources such as AE reports, medication error
reports, and product quality complaints, resulting in AEs from
healthcare professionals, consumers, and manufacturers.

Procedures
Essential variables, such as PRIMARYID, CASEID, SEX,
DRUGNAME, ROLE_COD, and PT (preferred terms), were
extracted from different data files in the database. FAERS
inevitably includes duplicate reports for receiving reports
submitted by various individuals and institutions. So removal
of duplicates was first conducted to reduce both false positive and
false negative signals by employing a simple but widespread
method called variable matching, which is used by the
Medicines and Healthcare products Regulatory Agency
(MHRA) and Danish Health and Medicines Authority
(DHMA) (Tregunno et al., 2014). The variable matching
method is the matching of key variables in two reports. If the
key variables are the same, the two reports are considered
duplicate reports. The key variables can be customized, but
generally include report IDs, patient details (e.g., sex, birth
date), suspect drug, and so on. Only the most recent report
should be used, as recommended by the FDA. So, we chose
PRIMARYID, CASEID, CASEVERSION, and FDA_DT as key
matching variables in our study. The procedure was performed as
selecting the latest FDA_DT when the PRIMARYIDs were the
same, while selecting the largest CASEID and CASEVERSION
when the FDA_DT and the PRIMARYID were the same. Drugs
were categorized into four patterns: PS (primary suspect), SS
(secondary suspect), C (concomitant), and I (interacting).
Concomitant associated records were excluded to obtain better
signal intensity, which is also adopted by the World Health
Organization (WHO) Uppsala Monitoring Centre. As the
FEARS has two variables, DRUGNAME and PROD_AI,
related to medications, both generic names and brand names
were used to identify ICIs in the database. The search was
performed using the words ipilimumab/Yervoy, cemiplimab/
Libtayo, nivolumab/Opdivo, pembrolizumab/Keytruda,
atezolizumab/Tecentriq, avelumab/Bavencio, and durvalumab/
Imfinzi. All cardiac AEs in the study were coded in PTs
according to MedDRA version 23.0.

Statistical Analysis
Descriptive analysis was used to present the characteristics of all
reports regarding ICI-related cardiotoxicity. Disproportionality
analysis, a widely used measure in pharmacovigilance, was used
to identify potential signals in our investigation. Currently, a
variety of national spontaneous reporting centers are employing
this method, including the WHOMonitoring Centre and the UK
Yellow Card Scheme spontaneous reporting database
(Montastruc et al., 2011). Reporting odds ratio (ROR) and
Bayesian confidence propagation neural networks of
information components (IC) are two specific indices that are

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 12 | Article 6165052

Chen et al. Cardiotoxicity Induced by ICIs

171

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


calculated to detect potential associations between ICIs and
cardiac AEs (Hou et al., 2014). For the sake of robustness,
statistical shrinkage transformation was performed. The
calculation formulas for ROR and IC after transformation are
as follows (Noren et al., 2013; Zhai et al., 2019):

ROR � Nobserved + 0.5
Nexpected + 0.5

IC � log2
Nobserved + 0.5
Nexpected + 0.5

Nexpected � Ndrug × Nevent

Ntotal

where Nobserved is the observed number of records of target drug-
AEs, Nexpected is the expected number of records of target drug-
AEs, Ndrug is the total number of records of the target drug, Nevent

is the total number of records of target AEs, and Ntotal is the total
number of records in the whole database.

The calculation is based on two-by-two contingency tables.
The lower limit of the 95% confidence interval for both ROR
(ROR025) and IC (IC025) are criteria for a significant signal. If
ROR025 is greater than one with at least three records or IC025

exceeding zero, it would be considered statistically significant and

deemed a potential signal. The calculation formulas are as follows
(Noren et al., 2013):

ROR95%CI � eln(ROR) ± 1.96
�����

1
a+1b+1c+1

d

√

IC025 � IC − 3.3 × (Nobserved + 0.5)− 0.5 − 2 × (Nobserved + 0.5)− 1.5

IC975 � IC + 2.4 × (Nobserved + 0.5)− 0.5 − 0.5 × (Nobserved + 0.5)− 1.5

ROR and IC were both calculated by comparing total or class-
specific ICIs, while IC025, indicating the signal intensity, was
calculated in the spectrum of cardiotoxicity. All analyses were
performed using SAS version 9.4 (SAS Institute Inc., Cary, NC,
United States).

RESULTS

Descriptive Analysis
In total, 7,443,137 records were extracted, of which 9,271 (0.125%)
were reported as cardiac AEs after using ICI regimes. All
demographic and clinical characteristics are presented in Table 1.
Males presented a larger proportion of cardiac AEs than women.
Among 9,271 cases, 5,578 were reported by male patients,
accounting for 60.17%, while 3,031 (32.69%) were encountered
by females. In addition, patients aged 65 years and above
accounted for a greater proportion than those aged between 18
and 64 years old (46.31% vs. 33.24%), which implied that patients
greater than or equal to 65 years old are more likely to be affected by
ICI-induced cardiotoxicity. Most cases were reported between 2016
and 2019, with increasing tendency year by year, which is consistent
with findings of Moslehi et al. (2018). It can be assumed that cardiac
AEs are more likely to be observed and reported owing to the
widespread use of immune therapy. Hospitalization (N � 3,588,
38.70%) was the most common outcome induced by ICIs, followed
by death (N � 2,808, 30.29%). Furthermore, two high-risk outcomes,
death and life-threatening event, were reported in 3,418 cases in
total, accounting for 36.87%, indicating that once cardiotoxicity
occurs, it is relatively easy to threaten life or directly lead to
death, further confirming the high mortality rate of ICI-induced
cardiotoxicity.

TABLE 1 | Characteristics of patients with ICI-induced cardiotoxicity.

ICIs induced cardiac
AEs n (%)

Gender
Male 5,578 (60.17)
Female 3,031 (32.69)
Missing or unknown 662 (7.14)

Age
<18 17 (0.18)
18–64 3,082 (33.24)
≥65 4,293 (46.31)
Missing 1,879 (20.27)

Year
2014 186 (2.01)
2015 469 (5.06)
2016 1,137 (12.26)
2017 1,629 (17.57)
2018 2,432 (26.23)
2019 3,418 (36.87)

Reporting countries
America 3,520 (37.97)
Japan 1,269 (13.69)
France 899 (9.70)
Germany 667 (7.19)
Italy 366 (3.95)
Canada 338 (3.65)
Great Britain 289 (3.12)
Other countries 1,923 (20.74)

Outcome
Death 2,808 (30.29)
Life-threatening 610 (6.58)
Disability 113 (1.22)
Hospitalization 3,588 (38.70)
Congenital anomaly 3 (0.03)
Required intervention 2 (0.02)
Other serious 1,604 (17.30)
Missing 543 (5.86)

TABLE 2 | The associations of cardiotoxicity with different ICIs regimens.

Drug N ROR ROR025 ROR975 IC IC025 IC975

Total ICIs 13,659 1.08 1.06 1.09 0.11 0.08 0.13
Anti-CTLA-4 2,336 0.92 0.88 0.95 −0.13 −0.20 −0.08
Ipilimumab 2,336 0.92 0.88 0.95 −0.13 −0.20 −0.08
Anti-PD-1 9,686 1.08 1.06 1.10 0.11 0.08 0.13
Nivolumab 6,836 1.13 1.10 1.15 0.17 0.13 0.20
Pembrolizumab 2,808 0.98 0.95 1.02 −0.02 −0.09 0.02
Cemiplimab 42 0.91 0.67 1.24 −0.13 −0.65 0.23
Anti-PD-L1 1,637 1.39 1.32 1.46 0.48 0.40 0.54
Atezolizumab 1,023 1.35 1.27 1.44 0.44 0.33 0.51
Avelumab 194 1.78 1.53 2.06 0.83 0.59 1.00
Durvalumab 420 1.35 1.22 1.49 0.43 0.27 0.55

The bold values mean that the values were exceeding the setting threshold, of which
ROR025 was over 1 and IC025 was over 0.
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FIGURE 1 | Cardiotoxicity Signal Profiles of Different ICI Strategies.
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Signal Values Related to Different Immune
Therapies
The signal values and the association between total/class-specific
ICIs and cardiotoxicity are shown in Table 2. In general, ICI
therapies were significantly associated with the reporting
frequency of cardiac AEs (ROR025 � 1.06, IC025 � 0.08).
Regarding different class-specific ICIs regimens, anti-PD-1
drugs (ROR025 � 1.06, IC025 � 0.08) and anti-PD-L1 drugs
(ROR025 � 1.32, IC025 � 0.40) were also significantly
associated with cardiotoxicity. Most cardiac AEs were reported
in cases using anti-PD-1 drugs (N � 9,686, 70.91%), especially
nivolumab, which presented the largest number of cardiac AE
reports (N � 6836, 50.05%). Although anti-PD-L1 drugs are
reported less frequently (N � 1,637, 11.98%), they
demonstrated stronger signal values (ROR025 � 1.32, IC025 �
0.40); avelumab ranked second among all drugs, although it
showed the strongest signal values (ROR025 � 1.53, IC025 �
0.59). In general, anti-CTLA-4 drugs did not demonstrate a
significant association with cardiac AEs (ROR025 � 0.88, IC025

� −0.20); however, in our further analysis, anti-CTLA-4 drugs
were significantly associated with some specific cardiac AEs,
revealing markedly strong signals.

The Signal Spectrum of Cardiotoxicity
Differs in Immune Therapies
As cardiotoxicity is relatively rare and reported cases are also
scarce, some important signals might be ignored if data mining is
conducted only at a general level. Therefore, we performed a
further exploration to determine whether there exists a
connection between different ICIs and each specific cardiac
AE. The cardiotoxicity signal spectrum of different ICI
strategies is shown in Figure 1, where the lower limit of the
95% confidence interval of IC (IC025) was regarded as an
indicator.

As shown in Figure 1, nivolumab presented the broadest
spectrum, with a total of 29 potential ICI-induced
cardiotoxicity signals detected, ranging from stress
cardiomyopathy (IC025 � 0.08) to autoimmune myocarditis
(IC025 � 4.74). For pembrolizumab, a total of 22 PTs as signals
were observed, with signal values ranging from IC025 � 0.10
(Dyspnea exertional) to IC025 � 4.40 (autoimmune
myocarditis). However, the drug with the least PTs was
cemiplimab, and pericardial effusion (IC025 � 0.03) and
myocarditis (IC025 � 1.04) were the only two signals
detected. Interestingly, these three drugs (nivolumab,
pembrolizumab, and cemiplimab) are all anti-PD-1 drugs.
Cemiplimab is only used to treat patients with metastatic or
locally advanced cutaneous squamous cell carcinoma (CSCC)
deemed unsuitable for surgery or radiation therapy (Markham
and Duggan, 2018), with the rare application resulting in a
small number of reported AEs. Accordingly, cemiplimab was
less analyzed and discussed in further research. For nivolumab
and pembrolizumab, there were 17 PTs in common, in which
autoimmune myocarditis and myocarditis were the two
strongest signals, ranked first (IC025 � 4.74, IC025 � 4.40)

and second (IC025 � 4.10, IC025 � 3.67), respectively.
Surprisingly, pembrolizumab demonstrated the largest
number of PTs, detected as signals with IC025 greater than
or equal to 4.

Overall, 18, 8, and 7 PTs were observed to be significantly
associated with anti-PD-L1 therapy involving atezolizumab,
avelumab, and durvalumab, respectively. Myocarditis, dyspnea,
and atrial fibrillation are three overlapping PTs. In particular,
myocarditis showed the strongest signal intensity for all three
anti-PD-L1 drugs (IC025 � 3.82, IC025 � 3.08, IC025 � 2.66).
Regarding ipilimumab, the only anti-CTLA-4 drug considered in
this study, although it failed to reveal a significant association
with cardiac AEs initially, it produced 18 potential signals after
further analysis, which simultaneously ranked the third most PTs
along with atezolizumab, and overlapped in 12 PTs with
nivolumab and pembrolizumab. Among the 18 signals,
myocarditis was the most frequently reported; it also revealed
the strongest signal strength (IC025 � 4.00).

Notably, myocarditis was the only AE significantly related to
all seven ICIs with markedly strong intensity. Furthermore, atrial
fibrillation, dyspnea, and pericardial effusion were 3 PTs detected
in six ICIs. Based on the statistics performed (Table 3), dyspnea,
myocarditis, atrial fibrillation, cardiac failure, and pericardial
effusion were the five most common AEs significantly
associated with ICI-related cardiotoxicity.

DISCUSSION

In patients with cancer, immunotherapy inevitably induces
drug toxicity along with its actual curative effect, especially
irAEs. Although the incidence is low, it can affect all tissues in
the human body (Khan and Gerber, 2019). Cardiotoxicity is
not a commonly observed AE; however, it can easily lead to
serious outcomes, warranting further attention. Owing to the
rarity of cardiotoxicity, most studies are presented as case
reports (Laubli et al., 2015; Johnson et al., 2016; Mahmood
et al., 2018a; Hsu et al., 2018), or only focus on a specific
cardiac AE such as myocarditis (Heinzerling et al., 2016;
Mahmood et al., 2018b; Altan et al., 2019; Chitturi et al.,
2019), meaning cardiotoxicity lacks scientific and systematic
investigations. Our research systematically conducted a data
mining process employing the FAERS database and gave a
overview on cardiotoxicity associated to ICIs with a wide signal
spectrum, resulting in some universal conclusions. Our
findings are as follows.

TABLE 3 | The Five most Common ICI-related Cardiotoxicity.

Cardiac AEs N (%)

Dyspnea 2,527 (21.25)
Myocarditis 614 (5.16)
Atrial fibrillation 576 (4.84)
Cardiac failure 476 (4.00)
Pericardial effusion 423 (3.56)
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The Association Between Gender and
Cardiac AEs
From 2014 to 2019, the reporting rate for ICI-related
cardiotoxicity was approximately 0.125%, which, to a certain
extent, highlighted that cardiotoxicities induced by ICIs remain
rare and the reporting rate is low. The descriptive analysis above
showed that cardiac AEs were more likely to be over-reported in
males than in females. After further disproportionality analysis,
we observed that men had a slightly higher reporting frequency
than women (ROR � 1.04, 95%CI: 0.99–1.09). Few studies have
considered the gender difference in ICI-induced toxicities, and to
a much lesser extent cardiotoxicity. A retrospective study based
on the VigiBase has revealed that females dominate the
proportion of reports in most SOCs (Watson et al., 2019),
while another observational study has concluded that
cardiovascular toxicities such as myocarditis, pericardial
diseases, and vasculitis mainly affected male patients (Salem
et al., 2018). Our results, to some extent, agree with the latter
finding. This result may be attributed to the over-representation
of men treated with ICIs (Conforti et al., 2018; Wu et al., 2018),
but not explicitly, necessitating further evidence to verify our
results.

Watson et al. have observed that although female patients
reported AEs more frequently than males, male patients are more
easily affected by serious or fatal AEs (Watson et al., 2019).
Therefore, our study analyzed and found that 2,198 of 5,578
(39.40%) males experienced life-threatening outcomes or death;
in the case of women, 1,034 of 3,031 (34.11%) demonstrated
similar outcomes. This indicated that the proportion of males
with serious or fatal outcomes was marginally higher than that of
females (ROR � 1.05, 95%CI: 0.96–1.15).

Furthermore, some studies have concluded that the efficacy of
immunotherapy varies between genders, with greater efficacy in
male patients (Conforti et al., 2018; Grassadonia et al., 2018; Wu
et al., 2018). These findings suggest that there might be a certain
association between gender and cardiac AEs, regardless of the
reporting rate, outcomes, or efficacy. Therefore, gender should be
considered as a vital factor in both further studies and clinical
therapy, especially in the field of cardiac irAEs.

Different Immunotherapies AssociatedWith
Cardiotoxicity
Anti-PD-1 drugs, especially nivolumab, presented the largest
number of AEs, which was consistent with the characteristics
of statistical results based onVigiBase ofWHO (Upadhrasta et al.,
2019). In general, ICIs were significantly associated with cardiac
AEs. Cardiotoxicities induced by anti-PD-1/anti-PD-L1 drugs
were over-reported, but the signal intensity was weak; anti-
CTLA-4 did not present a significant signal value. Previous
studies have found that anti-CTLA-4 drugs demonstrate a
higher number of adverse reactions than anti-PD-1/ anti-PD-
L1 drugs, mostly involving the skin, gastrointestinal, and
endocrine systems (Boutros et al., 2016; El Osta et al., 2017).
Although it is difficult to discriminate between the AE profiles of
anti-PD-1 and anti-PD-L1, anti-PD-L1 might be less toxic owing

to PD-L2 signaling protecting immune homeostasis (Khoja et al.,
2017; Martins et al., 2019). However, it remains to be determined
whether cardiac system observations were consistent with
findings in previous studies. Based on the signal spectrum in
our study, we hypothesized that anti-PD-1 drugs may be more
likely to cause cardiac AEs than the other two ICI regimens, with
nivolumab and pembrolizumab demonstrating the broadest PTs
spectrum and pembrolizumab revealing stronger signals.
Furthermore, previous studies have highlighted that in terms
of susceptibility to myocarditis, anti-PD-1/ anti-PD-L1 are
superior to anti-CTLA-4, similar to results obtained in our
study. Owing to a lack of studies on immunotherapy-induced
cardiotoxicity, the rationale for weak signals and no signal for
anti-CTLA-4 drugs need to be further explored and elucidated.
We postulated that this may be related to the rarity of
cardiotoxicity, as well as the low reporting rate.

Myocarditis and the Signal Spectrum of
Cardiotoxicity
Our research provided a comprehensive spectrum of cardiac
AEs induced by different ICIs, precisely presenting indicators
of irAEs in different ICI regimens. In the spectrum of
cardiotoxicity, dyspnea, myocarditis, atrial fibrillation,
cardiac failure, and pericardial effusion were the five most
common ICI-induced cardiac AEs. Notably, myocarditis was
the only strong signal significantly associated with all ICIs,
including cemiplimab, revealing myocarditis as the primary
focus of current immunotherapy studies.

Myocarditis is the most common and fatal cardiac AE induced
by ICIs, with the infiltration of effector CD8+ T cells observed in
myocardial biopsies (Laubli et al., 2015; Tadokoro et al., 2016;
Barlesi et al., 2018; Shah et al., 2019). In total, 614 myocarditis
cases were extracted in our study, and 268 (43.63%) eventually
died. A previous study has reported that the fatality rate of
myocarditis is approximately 27%–46% (Moslehi et al., 2018),
indicating the high risk and serious consequences associated with
myocarditis. Compared with anti-CTLA-4 or anti-PD-L1, anti-
PD-1 showed a stronger signal value in myocarditis, especially
nivolumab (IC025 � 4.10), which corresponded with the findings
of Ji et al. (2019). Additionally, a study involving 250 reports
regarding ICI-related myocarditis, also based on the FAERS
database, has revealed that the number of myocarditis reports
is gradually increasing, which is consistent with the overall
increasing trend of ICI-related cardiac AEs observed in our
study. It can be predicted that the incidence of myocarditis, as
well as reporting, may increase over time. Thus, it is necessary to
be vigilant for myocarditis in clinical settings with enhanced
supervision, with further studies urgently needed.

The Reasons for Higher Reporting Odds
With ICIs
The cardiotoxicity of immune checkpoint inhibitors (ICIs) was
first confirmed in early animal studies. The study observed that
CTLA-4 and PD-1 deficient mice developed severe T cell
infiltration and autoimmune dilated cardiomyopathy
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(Waterhouse et al., 1995). A later study (Nishimura et al., 2001)
showed that ovalbumin (OVA)-specific PD-1 deficient CD8+

T cells were transfected into CMy-mOva mice. In these mice,
OVA-specific PD-1 expressing CD8+ T cells can cause severe
myocarditis. In addition, PD-1 deficient mice were more likely to
be infected with autoimmune myocarditis than control mice by
immunizing CD4+ T cells induced by cardiac myosin, which can
cause myocarditis. Studies have shown that genetic or
pharmacological depletion of PD-L1 and PD-L2 aggravates the
disease severity of various autoimmune myocarditis models.

According to the analysis of drug research safety database for
evaluating the frequency of cardiac irAE in patients receiving
ipilimumab or ipilimumab plus nivolumab (Johnson et al.,
2016), 18 of 20,594 patients (0.09%) developed myocarditis, and
the incidence of myocarditis in patients receiving ipilimumab plus
nivolumab was higher than that in patients receiving nivolumab
alone (0.27% vs. 0.06%). In addition, patients treated with
combination therapy had more serious diseases. Five of 2,974
patients treated with combination therapy died of myocarditis,
while one of 17,620 patients treated with nivolumab monotherapy
died. These data suggest that myocarditis is a rare disease, but dual
ICI treatment increases the risk of fatal myocarditis.

In addition to myocarditis, ICIs can also induce other
manifestations of cardiotoxicity (Gibson et al., 2016). One
patient with metastatic lung cancer had normal ECG and
cardiac catheterization results. After the second cycle of
nivolumab treatment, the ECG was significantly abnormal,
accompanied with right bundle branch block, and progressed
to multiple ectopic beats, which eventually led to persistent
ventricular tachycardia, abnormal levels of creatine kinase MB
(CK-MB) and troponin I, hepatitis, and pneumonia.

The mechanism of cardiac dysfunction induced by ICIs is not
completely clear, but the limited data of irAE case reports show
that there are various mechanisms, including direct binding of
ICI with target molecules on non-lymphocytes, inducing
downstream immune activation, cross reaction between tumor
antigen and target tissue, production of autoantibodies, and
increase of pro-inflammatory cytokines.

Limitations and Strengths
There are some limitations to our study. First, as a classical SRS, the
FAERS database has limitations itself, with multiple data sources, a
nonuniformdata format, data duplication, andmissing data. Second,
the causal association cannot be confirmed as our study is a
retrospective study. Third, the data in contingency tables were
extracted as units of combination drug-AE pairs rather than
reports. The two different data extraction methods may affect the
results. Fourth, we only considered ICI monotherapy but failed to
consider the combined use of ICIs. Nevertheless, our study
quantified the potential risks scientifically and systematically with
the steady support of big data, and provided a signal spectrum of
cardiotoxicities induced by ICIs, which could provide valuable
evidence for further studies and clinical practice in this field.

CONCLUSION

With the widespread use of ICIs in the antitumor field, reports of
cardiac AEs are rising, and the severity cannot be ignored. Our
study, based on the FAERS database, conducted a comprehensive,
retrospective analysis, exploring the relationship between ICIs
and cardiotoxicity from different perspectives, as well as
quantifying the potential risks, which, to some extent, can
assist clinical practice, medication monitoring and
management, and future investigations. Furthermore, we
expect further studies focusing on ICI-induced cardiotoxicities,
which could compensate for limitations and deficiencies in our
study, and more comprehensively and extensively discover and
confirm the risks.
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Results from a Meta-analysis of
Combination of PD-1/PD-L1 and
CTLA-4 Inhibitors in Malignant Cancer
Patients: Does PD-L1 Matter?
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Minhe Shen2* and Shanming Ruan2*

1The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China, 2Department of Medical Oncology,
The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China

Background: Combination therapy with immune checkpoint inhibitors (ICIs) has been
widely used for clinical treatment in recent years, which has a better survival benefit.
However, not all patients can derive clinical benefit from combination immunotherapy.
Therefore, it is necessary to explore the biomarkers of combination immunotherapy.

Methods: We retrieved articles from electronic databases including PubMed, EMBASE
and Cochrane. The statistical analysis was performed using RevMan software.
Progression free survival (PFS), overall survival (OS) and objective response rate (ORR)
were the outcome indicators. In the unselect population, we compared combination
therapy with other treatments. In addition, we also conducted subgroup analysis on PFS,
OS and ORR according to PD-L1 status.

Results: Seven studies were included in the analysis for a total of 3,515 cases. In the
unselected population, we found that combination therapy has longer PFS, OS, and better
ORR than other treatments for cancer patients. The longer PFS was showed in PD-L1 ≥
5% cases (HR � 0.64, 95% CI: 0.56–0.76; p < 0.001) than PD-L1 ≥ 1% cases (HR � 0.72,
95% CI: 0.66–0.79; p < 0.001), while ORR and OS have not related to the status of PD-L1.

Conclusion: This study supported the efficacy of combination therapy with immune
checkpoint inhibitors (ICIs), and also showed that PFS in patients with malignant tumors is
positively correlated with PD-L1 expression. Due to the limited number of trials included,
more high-quality clinical randomized controlled trials should be conducted to confirm the
review findings.

Keywords: combination immunotherapy, PD-L1, PD-1, CTLA-4, efficacy

INTRODUCTION

Due to the limited therapeutic effect, drug resistance, and adverse events of chemotherapy in
malignant tumors (Islam et al., 2019), many new anti-tumor methods have emerged, such as
traditional Chinese medicine, molecular-targeted therapy and immunotherapy (Ishihara et al., 2021;
Kong et al., 2020; Tang et al., 2020). In particular, immune checkpoint inhibitors (ICIs) has become a
hot topic in recent years (Darvin et al., 2018). As expected, ICIs have provided a surprising
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breakthrough in the treatment of cancer. It has shown a more
durable response and longer survival in a variety of cancers
(Borghaei et al., 2015; Larkin et al., 2015; Cheng et al., 2018).
Present studies have confirmed that the cancers harboring highly
immunogenic mutations are sensitive to ICIs, such as melanoma,
RCC, and NSCLC (Topalian et al., 2012).

Ipilimumab and tremelimumab, which both target CTLA-4,
can prevent normal down-regulation of T cells and prolong T-cell
action (Tarhini and Kirkwood 2008; Darvin et al., 2018).
Durvalumab is a selective and high-affinity human
immunoglobulin G1 monoclonal antibody, which blocks PD-
L1 binding to PD-1 and CD80 (Stewart et al., 2015). While
nivolumab is a human monoclonal antibody that selectively
blocks the PD-1 receptor on the surface of cytotoxic T cells to
prevent downregulation of the immune response in malignant
tumor cells induced by PD-L1 (Minguet et al., 2016).

Immunotherapy combined with chemotherapy or targeting
drugs has shown capability to extend patient survival time in
multiple cancers (Robert et al., 2011; Reck et al., 2016; Pal et al.,
2020). ICIs plays a therapeutic role by activating T cells in the
tumor immune microenvironment by suppressing immune
checkpoints. However, T cells activated by anti-PD-1/PD-L1
or anti-CTLA-4 may be inhibited by other immunosuppressive
cells or factors in the tumor immunemicroenvironment (Jia et al.,
2020). Hence, clinical trials for dual immunotherapy are also
emerging. The combination of nivolumab and ipilimumab
reported a longer survival time and progression-free survival
than either nivolumab or ipilimumab (Larkin et al., 2015).
Similarly, the combination of durvalumab and tremelimumab
was also more effective than either of them (Planchard et al.,
2020). This may be related to the dual inhibitory effects of PD-1/
PD-L1 and CTLA-4 pathways, which enhance the anti-tumor
efficacy (Curran et al., 2010).

Expression of PD-L1 is a potential prognostic biomarker for
cancer patients undergoing PD-1/PD-L1 targeting therapy (Darvin
et al., 2018). A previous meta-analysis contained about 6,000
patients with different cancers, has suggested that PD-L1
expression is significantly associated with clinical response to
anti-PD-1/PD-L1 in patients with non-squamous NSCLC and
melanoma (Gandini et al., 2016). However, few meta-analyses
have been conducted on the relationship between the efficacy of
combination immunotherapy and the expression of PD-L1.
Whether combination immunotherapy can increase the clinical
efficacy compared with other treatments, and whether its efficacy is
related to the expression of PD-L1? Therefore, we reviewed the
relevant clinical trials and performed this meta-analysis.

MATERIALS AND METHODS

This systematic review and meta-analysis followed the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement (Moher et al., 2009). The protocol for
this systematic review was registered on the PROSPERO
International prospective register of systematic reviews
(CRD42020182767) and is available in full on the website at
http://www.crd.york.ac.uk/PROSPERO.

Search Strategy
Two investigators (Y.Q.F. and H.M.J.) independently searched
PubMed, EMBASE and Cochrane Library databases for eligible
studies from inception to March 31, 2020. The search terms
include “Programmed Cell Death 1 Receptor,” “Programmed
death ligand 1,” “PD-1,” “PD-L1,” “CTLA-4 Antigen,” and
“randomized controlled trial” (for details see Supplementary
Material 1). We also manually reviewed the relevant
literatures cited in the references to find additional eligible
clinical trials. When different publications derived from the
same trails, we only chose data from the most recent or
appropriate report.

Eligibility Criteria
The inclusion of the article was performed independently by two
of investigators (Y.Q.F. and H.M.J.), and a third investigators
(K.B.G.) was consulted in case of disagreement. The studies we
included met the following criteria: a) in malignant cancer
patients; b) anti-PD-1/anti-PD-L1 plus anti-CTLA-4 therapy
is the treatment arm; c) control arm can be anything other than
combination immunotherapy; d) Studies have data available for
PD-L1 expressed related hazard ratio (HR) and 95%
confidential interval (CI) of OS/PFS, or the number of
patients with objective response in both the experimental
group and the control group; e) randomized controlled trial;
f) Each group has a sample size of more than 10 patients.
Meanwhile, the exclusion criteria were as follows: a) not in
malignant cancer patients; b) anti-PD-1/anti-PD-L1 plus anti-
CTLA-4 therapy is not the treatment arm; c) combination
immunotherapy is the treatment arm; d) Studies do not have
data available for PD-L1 expressed related hazard ratio (HR)
and 95% confidential interval (CI) of OS and PFS, the number of
patients with objective response in both the experimental group
and the control group; e) non-randomized controlled trial;
animal studies; f) One of group has a sample size of less than
10 patients; g) only the abstract part, no full text.

Data Extraction
The relevant data was extracted by two investigators (Y.Q.F. and
H.M.J.) independently via a predefined data extraction form.
Any disagreements were resolved through discussion to reach a
final consensus, such as the inconsistency of the extracted data
and the controversy over the inclusion of specific information.
Study characteristics and outcome data were extracted from the
included trials. From each trial, we extracted specific
information on study number, the phase of study, first
author name, publish year, treat line, cancer type, primary
endpoint, study design, efficacy data and PD-L1 detection
method.

Bias Assessment
The risk of bias assessment was conducted by two reviewers
(Y.Q.F. and H.M.J.) independently in accordance with the
Cochrane Handbook for Systematic Reviews of Interventions
(Version 5.1.0) (Higgins et al., 2011). For inconsistent
opinions, the two reviewers resolved differences through
discussion to achieve an agreement.
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Statistical Analysis
All the analyses were accomplished by RevMan software
(Version 5.3 for Windows). Data from different trails were
pooled via Mantel-Haenszel method with either fixed-effects
model or random-effects model, depending on the degree of
heterogeneity (statistically rather than clinically). Statistical
heterogeneity was assessed with the Q-test and the I2 statistic.
When p > 0.1 and I2 < 50%, the fixed-effects model was used;
otherwise, the random-effects model was used. Time-to-event
variables, including OS, PFS, HRs with 95% confidence
intervals (CIs) were calculated for each study. For the
dichotomous variables, risk ratios (RRs) with 95% CIs were
calculated. A value of p < 0.05 was regarded to be statistically
significant, and all tests were two sided.

RESULTS

Search Results and Studied Characteristics
A total of 2,637 articles were retrieved from three electronic
databases using the comprehensive search strategy. Duplicate

articles were eliminated through automatic and manual re-
check, leaving 2,387 articles. We then browsed through the
titles and abstracts to weed out 2,348 completely unrelated
articles. After the title and abstract screening, 39 records
were considered for full-text evaluation, of which seven
records were included in the final analysis (Hodi et al., 2016;
Janjigian et al., 2018; Motzer et al., 2018; Hellmann et al., 2019;
Larkin et al., 2019; Planchard et al., 2020; Rizvi et al., 2020). Each
of step was performed and proofread by two investigators
independently. The study inclusion procedure is shown in
Figure 1.

All included studies were published between 2016 and
2020. Among them, five trials were first-line treatments and
two trials were third-line treatments or later. A total of 4,414
patients from 7 RCTs were enrolled in our present meta-
analysis, including 1,928 in treatment arm and 2,486 in the
control arm. The treatment regimen of the experimental
group was nivolumab plus ipilimumab or durvalumab plus
tremelimumab (Table 1). The survival data of the overall
population and the PD-L1 positive population are shown in
Supplementary Table S1.

FIGURE 1 | PRISMA chart.
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Quality Assessment
Figure 2 summarized the results of the quality assessment of
seven eligible studies. In general, the included studies were
judged to have a low risk of bias. Among them, one trial
(Hodi et al.) had high risk of random sequence generation
and five trials (Larkin et al.; Yelena et al.; Motzer et al.; Rizvi
et al.; Hellmann et al.) were evaluated as unclear risk of bias.
Only one trial (Larkin et al.) clearly reported the selection bias.
We rated five trials (Yelena et al.; Motzer et al.; Planchard et al.;
Rizvi et al.; Hellmann et al.) as high risk of performance bias,
since they take different amounts of medication and no placebo
was used. One trial (Hodi et al.) reported unclearly about
blinding of outcome assessment.

Efficacy
Progression Free Survival
The pooled analysis in unselected cases showed improved
PFS in the experimental arm (HR � 0.69, 95% CI: 0.55–0.86;
p < 0.001, Figure 3A). The analysis was performed using a
random-effects model (I2 � 87%). We then compared PFS in
patients whose PD-L1 expression was ≥1 and ≥5%. The
pooled analysis in PD-L1 ≥ 1% cases showed improved
PFS in the experimental arm (HR � 0.61, 95% CI:
0.45–0.81; p < 0.001, Figure 3B) and even greater PFS
improvement in PD-L1 ≥ 5% cases (HR � 0.57, 95% CI:
0.41–0.80; p � 0.001, Figure 3B).

Overall Survival
We also found that PD-1/PD-L1 combined with CTLA-4 had a
better effect than other treatments through the OS study of
unselected cases (HR � 0.74, 95% CI: 0.64–0.85; p < 0.001,
Figure 4A). The analysis was performed using a random-
effects model (I2 � 57%). We then compared OS in patients
whose PD-L1 expression was ≥1 and ≥5%. The pooled analysis in
PD-L1 ≥ 1% cases showed improved OS in the experimental arm

TABLE 1 | Characteristics of included studies.

Study
(phase)

First
author

Year Treat
line

Cancer
type

Primary
endpoint

Treatment
arm (No.

of patients)

Control
arm (No.

of
patients)

Experimental
drug/control

arm

PD-L1
detection

NCT01844505
(phase 3)

James Larkin 2019 First line Melanoma ORR,
OS, PFS

314 316/315 N+I/I/N NR

NCT01927419
(phase 2)

F Stephen Hodi 2016 First line Melanoma ORR,
OS, PFS

95 47 N+I/I Bristol-Myers Squibb
and Dako

NCT01928394
(phase 1/2)

Yelena Y.
Janjigian

2018 ≥Third
line

Esophagogastric
Cancer

ORR,
OS, PFS

49 59 N+I/N Dako North America,
Carpinteria, CA

NCT02231749
(phase 3)

Robert J
Motzer

2018 First line Renal-Cell Carcinoma ORR,
OS, PFS

550 546 N+I/S Dako PD-L1 IHC 28-
8 pharmDx

NCT02352948
(phase 3)

D.Planchard 2020 ≥Third
line

Non–Small-Cell Lung
Cancer

ORR,
OS, PFS

174 118/
117/60

D+T/Soc/D/T VENTANA PD-L1
(SP263)

NCT02453282
(phase 3)

Naiyer A. Rizvi 2020 First line Non–Small-Cell Lung
Cancer

ORR,
OS, PFS

163 162/163 D+T/C/D NR

NCT02477826
(phase 3)

Matthew D.
Hellmann

2019 First line Non–Small-Cell Lung
Cancer

ORR,
OS, PFS

583 583 N+I/C Agilent Dako

N, nivolumab; I, ipilimumab; D, durvalumab; T, tremelimumab; S, sunitinib; Soc, standard of care; C, chemotherapy; NR, not reported.

FIGURE 2 | Risk of bias of included studies.
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(HR � 0.72, 95% CI: 0.56–0.94; p � 0.02, Figure 4B). However, no
better result was found in PD-L1 ≥ 5% cases (HR � 0.78, 95% CI:
0.68–0.90; p < 0.001, Figure 4B).

Objective Response Rate
Lastly, the objective response was investigated in all studies. Using
the Mantel–Haenszel method, the pooled RR was 1.44 (95% CI
1.09–1.90; p � 0.01; I2 � 89%, random effect model; Figure 5A) in
treatment arm. This means that PD-1/PD-L1 combined with
CTLA-4 has a higher objective response rate than other
treatments. Also, we found similar results in patients with
positive expression of PD-L1. In PD-L1 ≥ 1% cases, the
pooled RR was 1.58 (95% CI 1.17–2.14; p � 0.003; I2 � 87%,
random effect model; Figure 5B). In PD-L1 ≥ 5% cases, the

pooled RR was 1.41 (95% CI 1.05–1.89; p � 0.02; I2 � 80%,
random effect model; Figure 5B).

Subgroup Analysis
In order to investigate sources of heterogeneity, subgroup analysis
was undertaken based on different intervention measures. We
mainly classify the interventionmeasures according to nivolumab
plus ipilimumab vs. nivolumab and nivolumab plus ipilimumab
vs ipilimumab (Supplementary Figures S1–S3). In PFS, when
PD-L1 ≥ 1%, the pooled HR of nivolumab plus ipilimumab vs.
nivolumab was 0.85 (95%CI, 0.74–0.97; p � 0.02), while the HR of
nivolumab plus ipilimumab vs. ipilimumab was 0.39 (95% CI,
0.30–0.50; p < 0.001); PD-L1 ≥ 5%, the pooled HR were 0.82 (95%
CI, 0.67–1.00; p � 0.05) and 0.34 (95% CI, 0.24–0.48; p < 0.001),

FIGURE 3 | Forest plots of hazard ratios (HRs) for progression-free survival (PFS) comparing combination of immune checkpoint inhibitors with other treatments.
(A) Unselected patients. (B) PD-L1 positive patients.
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respectively. The results suggested that intervention could be the
potential sources of heterogeneity. Also, we found that using
combination therapy was significantly better than the ipilimumab
monotherapy. Similar results were found in OS and ORR.
(Supplementary Figures S4–S6).

Publication Bias Test and Sensitivity
Analysis
Publication bias was not performed because no more than 10
studies were included. Sensitivity analysis was discussed based on
the results. After switching the random effect model to the fixed
effect model, the results did not change significantly, indicating
that the results are relatively stable (Table 2).

DISCUSSION

This meta-analysis indicates that PD-1/PD-L1 combined with
CTLA-4 has better therapeutic efficacy, compared with other
treatments. Regardless of PD-L1 expression, the combination
therapy shows longer PFS, OS and better ORR. In PFS, we found
that the efficacy of combined immunotherapy was related to the
expression of PD-L1, and the PFS of patients with PD-L1 ≥ 5%
was longer than those with PD-L1 ≥ 1%. However, in OS and
ORR, the survival benefit of cancer patients did not relate to the
status of PD-L1. Therefore, we believed that the status of PD-L1
may not be a perfect biomarker in combination immunotherapy.

The presence of CTLA-4 can inhibit the co-stimulation of B7
and CD-28, thus inhibiting the proliferation of T cells

FIGURE 4 | Forest plots of hazard ratios (HRs) for overall survival (OS) comparing combination of immune checkpoint inhibitors with other treatments. (A)
Unselected patients. (B) PD-L1 positive patients.
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(Lenschow et al., 1996). Similar to CTLA-4, PD-1 and its ligands
play a role in down-regulating the immune system by blocking
T cell activation, which in turn reduces autoimmune and
promotes self-tolerance (Keir et al., 2006). PD-1 contributes
to peripheral tissue T cells failure, while CTLA-4 inhibits T cells
at an earlier stage of activation (Wolchok et al., 2013). They can
suppress autoimmunity and promote immune tolerance by
blocking the activation of T cells (Francisco et al., 2009).
Hence, PD-1/PD-L1 and CTLA-4 play complementary roles

in regulating adaptive immunity (Diesendruck and Benhar
2017). Clinically, several studies have shown that
combination therapy has survival benefits in different types
of tumors compared to other monotherapy (Wolchok et al.,
2013; Robert et al., 2015; Antonia et al., 2016; Hellmann et al.,
2017). And in October 2015, the FDA approved a melanoma
regimen that combines anti-CTLA-4 (ipilimumab) with anti-
PD1 (nivolumab) (Larkin et al., 2015). This result was also
supported in our meta-analysis.

FIGURE 5 | Forest plots of risk ratios (RRs) for objective response rate (ORR) comparing combination of immune checkpoint inhibitors with other treatments. (A)
Unselected patients. (B) PD-L1 positive patients.
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The status of PD-L1 as a biomarker to predict the efficacy
of immune checkpoint inhibitors has always been
controversial. KEYNOTE-001 in 2016 (Daud et al., 2016)
and KEYNOTE-010 in 2014 (Herbst et al., 2014) showed that
melanoma patients and non-small cell lung cancer patients
with PD-L1 positive had a greater survival benefit from anti-
PD-L1/anti-PD-1 therapy. A previous meta-analysis also
showed that positive expression of PD-L1 in malignant
tumors was significantly higher than negative expression
in objective response rate (Gandini et al., 2016). In
combination immunotherapy, however, different results
were reported. CheckMate-067 in 2019 showed that the
efficacy of nivolumab combine with ipilimumab in
melanoma is not associated with the expression of PD-L1
(Larkin et al., 2015). Similar results were also shown in
CheckMate-032 in 2018 (Janjigian et al., 2018). While
Long et al. found that combination nivolumab and
ipilimumab in melanoma brain metastases, patients with
PD-L1 expression ≥1% had longer PFS than those with
PD-L1 expression <1% (Long et al., 2018). Our study
found that PFS was positively correlated with PD-L1
expression, while OS and ORR were not significantly
correlated with PD-L1 expression. This may be related to
tumor type or treatment line. So we performed subgroup
analysis. The results revealed that the use of combined
immunotherapy in the first-line treatment was superior to
the third-line treatment, whether OS or PFS. However, the
limited number of included trials prevented us to conduct
further studies on the expression status of PD-L1. In terms of
tumor types, we studied non-small cell lung cancer and
malignant melanoma. The results suggested that the
efficacy of combined immunotherapy in malignant
melanoma was better than that in non-small-cell lung
cancer, whether OS, PFS or ORR. Such results were also
found in PD-L1 ≥ 1% and PD-L1 ≥ 5% cases, but their
efficacy did not improve with the increase of PD-L1
expression (Supplementary Table S2). Due to the
insufficient number of the eligible clinical trials, we were
unable to evaluate other factors that may affect the results.

In our subgroup analysis, we found that the treatment of
nivolumab combined with ipilimumab was obviously better
than the treatment of ipilimumab monotherapy, while there
was no significant advantage over nivolumab monotherapy
in PD-L1 ≥1% and ≥5% cases. Since the dominant
mechanism associated with anti-PD-1 drug response is
PD-L1 expression (Topalian et al., 2016). Therefore, when
PD-L1 is highly expressed, anti-PD-1 drugs are not suggested
to use with anti-CTLA-4 drugs together, which reduces the
toxic side effects and economic burden. In the two clinical
trials included on durvalumab and tremelimumab
combination therapy, we found almost no survival benefit
or even negative effects (Planchard et al., 2020; Rizvi et al.,
2020). However, the MYSTIC trial reflected that in patients
with bTMB ≥ 20 mut/Mb, the OS and PFS of the durvalumab
and tremelimumab combination therapy were considerably
longer than those in the chemotherapy group (Rizvi et al.,
2020). Therefore, tumor mutation burden might be one ofT
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the biomarkers of PD-1/PD-L1 combined with CTLA-4
treatment.

Indeed, combination immunotherapy has achieved
promising results in terms of curative effect, but the
adverse events should be considered. Previous meta-
analyses showed that the incidence of fatal events in
combination immunotherapy was higher than that in single
immunotherapy, mainly respiratory diseases and
cardiotoxicity, but less frequent. Gastrointestinal diseases,
respiratory diseases and rashes were the most common
grade 3–4 adverse reactions. Overall, the adverse effects of
immunotherapy were manageable (Xu et al., 2019; Yang et al.,
2020). Since adverse events have been discussed in previous
studies (Xu et al., 2019; Yang et al., 2020), and will not be
further considered here.

There were also several limitations should be observed. First,
our study was based on literature research, resulting in some
deviation of statistical results. Second, only seven clinical trials
were included, and the control arm and the treatment arm are
different. Third, the detection methods of PD-L1 are different in
trials. PD-L1 itself has certain limitations, such as the tumor
heterogeneity and the effect of PD-L1 expression on tumor cells
and immune cells, etc.

CONCLUSION

Combination immunotherapy has become the focus of discussion
in recent years, and many related clinical studies have been
reported. However, research on biomarkers related to
combined immunotherapy remains controversial. Our meta-
analysis revealed that PFS in patients with malignant tumors
is positively correlated with PD-L1 expression, since the
conclusions were drawn from a small number of clinical trials.
More large-sample, multicenter and well-designed randomized
controlled trials are still expected.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

SR, MS, and YF contributed to the study design. YF and HJ
conducted the data collection. YF, HJ and, KG interpreted the
data. KG, YX, YZ, and WD prepared the manuscript. YF and HJ
performed the literature search. SR and MS were responsible for
funds collection.

FUNDING

National Natural Science Foundation of China (81573902); China
Postdoctoral Science Foundation (2017M612040, 2018T110610);
Program for the Cultivation of Youth talents in China Association
of Chinese Medicine (SR, no. QNRC2-C08, http://www.cacm.org.
cn/); Zhejiang Provincial Program for the Cultivation of the Young
and Middle-Aged Academic Leaders in Colleges and Universities
(SR, no. 2017-248, http://www.zjedu.gov.cn/); Zhejiang Provincial
Project for the key discipline of Traditional Chinese Medicine
(Yong Guo, no. 2017-XK-A09, http://www.zjwjw.gov.cn/);
Science and technology innovation activity plan and new
seedling of college students in Zhejiang Province (2019R410001)

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphar.2021.572845/
full#supplementary-material.

REFERENCES

Antonia, S. J., López-Martin, J. A., Bendell, J., Ott, P. A., Taylor, M., Eder, J. P., et al.
(2016). Nivolumab alone and nivolumab plus ipilimumab in recurrent small-
cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial.
Lancet Oncol. 17 (7), 883–895. doi:10.1016/S1470-2045(16)30098-5

Borghaei, H., Paz-Ares, L., Horn, L., Spigel, D. R., Steins, M., Ready, N. E., et al.
(2015). Nivolumab versus docetaxel in advanced nonsquamous non-small-
cell lung cancer. N. Engl. J. Med. 373 (17), 1627–1639. doi:10.1056/
NEJMoa1507643

Cheng, W., Fu, D., Xu, F., and Zhang, Z. (2018). Unwrapping the genomic
characteristics of urothelial bladder cancer and successes with immune
checkpoint blockade therapy. Oncogenesis 7 (1), 2. doi:10.1038/s41389-017-
0013-7

Curran, M. A., Montalvo, W., Yagita, H., and Allison, J. P. (2010). PD-1 and CTLA-
4 combination blockade expands infiltrating T cells and reduces regulatory T
and myeloid cells within B16 melanoma tumors. Proc. Natl. Acad. Sci. U.S.A.
107 (9), 4275–4280. doi:10.1073/pnas.0915174107

Darvin, P., Toor, S. M., Sasidharan Nair, V., and Elkord, E. (2018). Immune
checkpoint inhibitors: recent progress and potential biomarkers. Exp. Mol.
Med. 50 (12), 1–11. doi:10.1038/s12276-018-0191-1

Daud, A. I., Wolchok, J. D., Robert, C., Hwu, W. J., Weber, J. S., Ribas, A., et al.
(2016). Programmed death-ligand 1 expression and response to the anti-
programmed death 1 antibody pembrolizumab in melanoma. J. Clin. Oncol.
34 (34), 4102–4109. doi:10.1200/JCO.2016.67.2477

Diesendruck, Y., and Benhar, I. (2017). Novel immune check point inhibiting
antibodies in cancer therapy-Opportunities and challenges. Drug Resist. Updat.
30, 39–47. doi:10.1016/j.drup.2017.02.001

Francisco, L. M., Salinas, V. H., Brown, K. E., Vanguri, V. K., Freeman, G. J.,
Kuchroo, V. K., et al. (2009). PD-L1 regulates the development, maintenance,
and function of induced regulatory T cells. J. Exp. Med. 206 (13), 3015–3029.
doi:10.1084/jem.20090847

Gandini, S., Massi, D., and Mandalà, M. (2016). PD-L1 expression in cancer
patients receiving anti PD-1/PD-L1 antibodies: a systematic review and meta-
analysis. Crit. Rev. Oncol. Hematol. 100, 88–98. doi:10.1016/j.critrevonc.2016.
02.001

Hellmann, M. D., Paz-Ares, L., Bernabe Caro, R., Zurawski, B., Kim, S. W.,
Carcereny Costa, E., et al. (2019). Nivolumab plus ipilimumab in advanced
non-small-cell lung cancer. N. Engl. J. Med. 381 (21), 2020–2031. doi:10.1056/
NEJMoa1910231

Hellmann, M. D., Rizvi, N. A., Goldman, J. W., Gettinger, S. N., Borghaei, H.,
Brahmer, J. R., et al. (2017). Nivolumab plus ipilimumab as first-line treatment
for advanced non-small-cell lung cancer (CheckMate 012): results of an open-

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 12 | Article 5728459

Feng et al. Combination Immunotherapy for Cancer

187

http://www.cacm.org.cn/
http://www.cacm.org.cn/
http://www.zjedu.gov.cn/
http://www.zjwjw.gov.cn/
https://www.frontiersin.org/articles/10.3389/fphar.2021.572845/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2021.572845/full#supplementary-material
https://doi.org/10.1016/S1470-2045(16)30098-5
https://doi.org/10.1056/NEJMoa1507643
https://doi.org/10.1056/NEJMoa1507643
https://doi.org/10.1038/s41389-017-0013-7
https://doi.org/10.1038/s41389-017-0013-7
https://doi.org/10.1073/pnas.0915174107
https://doi.org/10.1038/s12276-018-0191-1
https://doi.org/10.1200/JCO.2016.67.2477
https://doi.org/10.1016/j.drup.2017.02.001
https://doi.org/10.1084/jem.20090847
https://doi.org/10.1016/j.critrevonc.2016.02.001
https://doi.org/10.1016/j.critrevonc.2016.02.001
https://doi.org/10.1056/NEJMoa1910231
https://doi.org/10.1056/NEJMoa1910231
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


label, phase 1, multicohort study. Lancet Oncol. 18 (1), 31–41. doi:10.1016/
S1470-2045(16)30624-6

Herbst, R. S., Soria, J. C., Kowanetz, M., Fine, G. D., Hamid, O., Gordon, M. S., et al.
(2014). Predictive correlates of response to the anti-PD-L1 antibody
MPDL3280A in cancer patients. Nature 515 (7528), 563–567. doi:10.1038/
nature14011

Higgins, J. P., Altman, D. G., Gøtzsche, P. C., Jüni, P., Moher, D., Oxman, A. D.,
et al. (2011). The Cochrane Collaboration’s tool for assessing risk of bias in
randomised trials. BMJ 343, d5928. doi:10.1136/bmj.d5928

Hodi, F. S., Chesney, J., Pavlick, A. C., Robert, C., Grossmann, K. F., McDermott, D.
F., et al. (2016). Combined nivolumab and ipilimumab versus ipilimumab alone
in patients with advanced melanoma: 2-year overall survival outcomes in a
multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 17 (11),
1558–1568. doi:10.1016/S1470-2045(16)30366-7

Ishihara, H., Fukuda, H., Takagi, T., Kondo, T., Tachibana, H., Yoshida, K., et al.
(2021). Efficacy of nivolumab versus molecular-targeted therapy as second-line
therapy for metastatic renal cell carcinoma: real-world data from two Japanese
institutions. Int. J. Urol. 28, 99–106. doi:10.1093/jjco/hyaa232

Islam, K. M., Anggondowati, T., Deviany, P. E., Ryan, J. E., Fetrick, A., Bagenda, D.,
et al. (2019). Patient preferences of chemotherapy treatment options and
tolerance of chemotherapy side effects in advanced stage lung cancer. BMC
Cancer 19 (1), 835. doi:10.1186/s12885-019-6054-x

Janjigian, Y. Y., Bendell, J., Calvo, E., Kim, J. W., Ascierto, P. A., Sharma, P., et al.
(2018). CheckMate-032 study: efficacy and safety of nivolumab and nivolumab
plus ipilimumab in patients with metastatic esophagogastric cancer. J. Clin.
Oncol. 36 (28), 2836–2844. doi:10.1200/JCO.2017.76.6212

Jia, Y., Liu, L., and Shan, B. (2020). Future of immune checkpoint inhibitors: focus
on tumor immune microenvironment. Ann. Transl. Med. 8 (17), 1095. doi:10.
21037/atm-20-3735

Keir, M. E., Liang, S. C., Guleria, I., Latchman, Y. E., Qipo, A., Albacker, L. A., et al.
(2006). Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp.
Med. 203 (4), 883–895. doi:10.1084/jem.20051776

Kong, M. Y., Li, L. Y., Lou, Y. M., Chi, H. Y., and Wu, J. J. (2020). Chinese herbal
medicines for prevention and treatment of colorectal cancer: from molecular
mechanisms to potential clinical applications. J. Integr. Med. 18 (5), 369–384.
doi:10.1016/j.joim.2020.07.005

Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Cowey, C. L., Lao, C. D., et al.
(2015). Combined nivolumab and ipilimumab or monotherapy in untreated
melanoma. N. Engl. J. Med. 373 (1), 23–34. doi:10.1056/NEJMoa1504030

Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Rutkowski, P., Lao, C. D.,
et al. (2019). Five-year survival with combined nivolumab and ipilimumab in
advanced melanoma. N. Engl. J. Med. 381 (16), 1535–1546. doi:10.1056/
NEJMoa1910836

Lenschow, D. J., Walunas, T. L., and Bluestone, J. A. (1996). CD28/B7 system of
T cell costimulation. Annu. Rev. Immunol. 14, 233–258. doi:10.1146/annurev.
immunol.14.1.233

Long, G. V., Atkinson, V., Lo, S., Sandhu, S., Guminski, A. D., Brown, M. P., et al.
(2018). Combination nivolumab and ipilimumab or nivolumab alone in
melanoma brain metastases: a multicentre randomised phase 2 study.
Lancet Oncol. 19 (5), 672–681. doi:10.1016/s1470-2045(18)30139-6

Minguet, J., Smith, K. H., and Bramlage, P. (2016). Targeted therapies for treatment
of non-small cell lung cancer–recent advances and future perspectives. Int.
J. Cancer 138 (11), 2549–2561. doi:10.1002/ijc.29915

Moher, D., Liberati, A., Tetzlaff, J., and Altman, D. G. (2009). Preferred reporting
items for systematic reviews and meta-analyses: the PRISMA statement. PLoS
Med. 6 (7), e1000097. doi:10.1371/journal.pmed.1000097

Motzer, R. J., Tannir, N. M., McDermott, D. F., Arén Frontera, O., Melichar, B.,
Choueiri, T. K., et al. (2018). Nivolumab plus ipilimumab versus sunitinib in
advanced renal-cell carcinoma. N. Engl. J. Med. 378 (14), 1277–1290. doi:10.
1056/NEJMoa1712126

Pal, S. K., McDermott, D. F., Atkins, M. B., Escudier, B., Rini, B. I., Motzer, R. J.,
et al. (2020). Patient-reported outcomes in a phase 2 study comparing
atezolizumab alone or with bevacizumab vs sunitinib in previously

untreated metastatic renal cell carcinoma. BJU Int. 126, 73–82. doi:10.1111/
bju.15058

Planchard, D., Reinmuth, N., Orlov, S., Fischer, J. R., Sugawara, S., Mandziuk, S.,
et al. (2020). ARCTIC: durvalumab with or without tremelimumab as third-line
or later treatment of metastatic non-small-cell lung cancer. Ann. Oncol. 31 (5),
609–618. doi:10.1016/j.annonc.2020.02.006

Reck, M., Rodríguez-Abreu, D., Robinson, A. G., Hui, R., Cs}oszi, T., Fülöp, A., et al.
(2016). Pembrolizumab versus chemotherapy for PD-L1-positive non-small-
cell lung cancer. N. Engl. J. Med. 375 (19), 1823–1833. doi:10.1056/
NEJMoa1606774

Rizvi, N. A., Cho, B. C., Reinmuth, N., Lee, K. H., Luft, A., Ahn, M. J., et al. (2020).
Durvalumab with or without tremelimumab vs standard chemotherapy in first-
line treatment of metastatic non-small cell lung cancer: the MYSTIC phase 3
randomized clinical trial. JAMA Oncol. 6 (5), 661–674. doi:10.1001/jamaoncol.
2020.0237

Robert, C., Schachter, J., Long, G. V., Arance, A., Grob, J. J., Mortier, L., et al.
(2015). Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl.
J. Med. 372 (26), 2521–2532. doi:10.1056/NEJMoa1503093

Robert, C., Thomas, L., Bondarenko, I., O’Day, S., Weber, J., Garbe, C., et al. (2011).
Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N.
Engl. J. Med. 364 (26), 2517–2526. doi:10.1056/NEJMoa1104621

Stewart, R., Morrow, M., Hammond, S. A., Mulgrew, K., Marcus, D., Poon, E., et al.
(2015). Identification and characterization of MEDI4736, an antagonistic anti-
PD-L1 monoclonal antibody. Cancer Immunol. Res. 3 (9), 1052–1062. doi:10.
1158/2326-6066.CIR-14-0191

Tang, K. Y., Du, S. L., Wang, Q. L., Zhang, Y. F., and Song, H. Y. (2020). Traditional
Chinese medicine targeting cancer stem cells as an alternative treatment for
hepatocellular carcinoma. J. Integr. Med. 18 (3), 196–202. doi:10.1016/j.joim.
2020.02.002

Tarhini, A. A., and Kirkwood, J. M. (2008). Tremelimumab (CP-675,206): a fully
human anticytotoxic T lymphocyte-associated antigen 4 monoclonal antibody
for treatment of patients with advanced cancers. Expert Opin. Biol. Ther. 8 (10),
1583–1593. doi:10.1517/14712598.8.10.1583

Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C.,
McDermott, D. F., et al. (2012). Safety, activity, and immune correlates of
anti-PD-1 antibody in cancer. N. Engl. J. Med. 366 (26), 2443–2454. doi:10.
1056/NEJMoa1200690

Topalian, S. L., Taube, J. M., Anders, R. A., and Pardoll, D. M. (2016). Mechanism-
driven biomarkers to guide immune checkpoint blockade in cancer therapy.
Nat. Rev. Cancer 16 (5), 275–287. doi:10.1038/nrc.2016.36

Wolchok, J. D., Kluger, H., Callahan, M. K., Postow, M. A., Rizvi, N. A., Lesokhin,
A. M., et al. (2013). Nivolumab plus ipilimumab in advanced melanoma. N.
Engl. J. Med. 369 (2), 122–133. doi:10.1056/NEJMoa1302369

Xu, H., Tan, P., Ai, J., Zhang, S., Zheng, X., Liao, X., et al. (2019). Antitumor activity
and treatment-related toxicity associated with nivolumab plus ipilimumab in
advanced malignancies: a systematic review and meta-analysis. Front.
Pharmacol. 10, 1300. doi:10.3389/fphar.2019.01300

Yang, Y., Jin, G., Pang, Y., Huang, Y., Wang, W., Zhang, H., et al. (2020).
Comparative efficacy and safety of nivolumab and nivolumab plus
ipilimumab in advanced cancer: a systematic review and meta-analysis.
Front. Pharmacol. 11, 40. doi:10.3389/fphar.2020.00040

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Feng, Jin, Guo, Xiang, Zhang, Du, Shen and Ruan. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 12 | Article 57284510

Feng et al. Combination Immunotherapy for Cancer

188

https://doi.org/10.1016/S1470-2045(16)30624-6
https://doi.org/10.1016/S1470-2045(16)30624-6
https://doi.org/10.1038/nature14011
https://doi.org/10.1038/nature14011
https://doi.org/10.1136/bmj.d5928
https://doi.org/10.1016/S1470-2045(16)30366-7
https://doi.org/10.1093/jjco/hyaa232
https://doi.org/10.1186/s12885-019-6054-x
https://doi.org/10.1200/JCO.2017.76.6212
https://doi.org/10.21037/atm-20-3735
https://doi.org/10.21037/atm-20-3735
https://doi.org/10.1084/jem.20051776
https://doi.org/10.1016/j.joim.2020.07.005
https://doi.org/10.1056/NEJMoa1504030
https://doi.org/10.1056/NEJMoa1910836
https://doi.org/10.1056/NEJMoa1910836
https://doi.org/10.1146/annurev.immunol.14.1.233
https://doi.org/10.1146/annurev.immunol.14.1.233
https://doi.org/10.1016/s1470-2045(18)30139-6
https://doi.org/10.1002/ijc.29915
https://doi.org/10.1371/journal.pmed.1000097
https://doi.org/10.1056/NEJMoa1712126
https://doi.org/10.1056/NEJMoa1712126
https://doi.org/10.1111/bju.15058
https://doi.org/10.1111/bju.15058
https://doi.org/10.1016/j.annonc.2020.02.006
https://doi.org/10.1056/NEJMoa1606774
https://doi.org/10.1056/NEJMoa1606774
https://doi.org/10.1001/jamaoncol.2020.0237
https://doi.org/10.1001/jamaoncol.2020.0237
https://doi.org/10.1056/NEJMoa1503093
https://doi.org/10.1056/NEJMoa1104621
https://doi.org/10.1158/2326-6066.CIR-14-0191
https://doi.org/10.1158/2326-6066.CIR-14-0191
https://doi.org/10.1016/j.joim.2020.02.002
https://doi.org/10.1016/j.joim.2020.02.002
https://doi.org/10.1517/14712598.8.10.1583
https://doi.org/10.1056/NEJMoa1200690
https://doi.org/10.1056/NEJMoa1200690
https://doi.org/10.1038/nrc.2016.36
https://doi.org/10.1056/NEJMoa1302369
https://doi.org/10.3389/fphar.2019.01300
https://doi.org/10.3389/fphar.2020.00040
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Medicinal Prospects of Antioxidants
From Algal Sources in Cancer Therapy
Umme Tamanna Ferdous1 and Zetty Norhana Balia Yusof1,2,3*

1Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Selangor,
Malaysia, 2Faculty of Biotechnology and Biomolecular Sciences, Department of Biochemistry, Universiti Putra Malaysia, Selangor,
Malaysia, 3Bioprocessing and Biomanufacturing Research Center, Universiti Putra Malaysia, Selangor, Malaysia

Though cancer therapeutics can successfully eradicate cancerous cells, the effectiveness
of these medications is mostly restricted to several deleterious side effects. Therefore, to
alleviate these side effects, antioxidant supplementation is often warranted, reducing
reactive species levels and mitigating persistent oxidative damage. Thus, it can impede the
growth of cancer cells while protecting the normal cells simultaneously. Moreover,
antioxidant supplementation alone or in combination with chemotherapeutics hinders
further tumor development, prevents chemoresistance by improving the response to
chemotherapy drugs, and enhances cancer patients’ quality of life by alleviating side
effects. Preclinical and clinical studies have been revealed the efficacy of using
phytochemical and dietary antioxidants from different sources in treating chemo and
radiation therapy-induced toxicities and enhancing treatment effectiveness. In this context,
algae, both micro and macro, can be considered as alternative natural sources of
antioxidants. Algae possess antioxidants from diverse groups, which can be exploited
in the pharmaceutical industry. Despite having nutritional benefits, investigation and
utilization of algal antioxidants are still in their infancy. This review article summarizes
the prospective anticancer effect of twenty-three antioxidants from microalgae and their
potential mechanism of action in cancer cells, as well as usage in cancer therapy. In
addition, antioxidants from seaweeds, especially from edible species, are outlined, as well.

Keywords: algae, antioxidant, cancer therapy, reactive species, dietary supplements, cancer

INTRODUCTION

Oxygen is essential to aerobic life conditions and represents the main driving force for the
maintenance of cell metabolism and viability. Simultaneously, oxygen also has a potential
hazard due to its paramagnetic characteristics stimulating the formation of partially oxidized
high reactive components, known as reactive oxygen species (ROS) (Francenia Santos-Sánchez
et al., 2019). Though the metabolism of oxygen produces ROS in living organisms as by-
products, they have a significant influence on cell signaling and redox homeostasis. Sometimes,
ROS levels can be increased upon contacting with exogenous or endogenous sources, rendering
a stress condition in the cell that is called oxidative stress. In such a state, the ROS level reaches a
toxic threshold, and it manages to overcome the antioxidant system of the cell, thus escapes to
elimination and remain in the cell. (Raza et al., 2017). These ROS give rise to negative oxidative
stress that engenders some drastic changes in cellular function and metabolism through
altering cellular signaling pathways, initiating genomic instability, or activating
immunosuppression, which leads to carcinogenesis (Morry et al., 2017). Cancer cells are
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more sensitive to therapeutic drugs that produce excessive
amounts of ROS or impair ROS scavenging capacity of cells,
which provokes apoptosis (Mut-Salud et al., 2015).

Among a variety of treatments, chemotherapy remains the
first choice of cancer treatment. Though drugs used in
chemotherapy can successfully eliminate fast-growing
cancerous tissues, these drugs can affect the mucous
membranes of various organs. As a consequence, several side
effects are noticed in cancer patients, such as anaphylaxis, a
different type of cytopenia, toxicity to liver, heart, nephron, ear,
and also nausea, vomiting, pain, diarrhea, alopecia, anorexia,
cachexia, inflammation in mucous membranes, and asthenia
(Oun et al.,2018). To compensate for these adverse effects,
antioxidant supplements are often prescribed, which can help
to ameliorate side effects while not affecting treatment efficacy
(Ambrosone et al., 2019). Cancer survivors often consume
vitamins or minerals supplements, natural plant-based
products, or herbal medicines to alleviate the therapy-related
side effects. The most common recommended antioxidants are
vitamins, polyphenols, and carotenoids. Edible vegetables and
fruits are an excellent reservoir of different antioxidant
phytochemicals with varied antioxidant capacity and it has
been recommended that intake of >400 g fruits and vegetables
can prevent certain types of cancer (Miller and Snyder, 2012;
Chester et al., 2019; Wall-Medrano and Olivas-Aguirre, 2020).

Besides these plant products, microalgae can be an excellent
alternative producer of antioxidant compounds. Microalgae are
often considered a mother lode of high value pharmaceutically
important metabolites, like carotenoids, polyphenols, fatty acids,
phycobiliproteins, vitamins, which are the outcomes of defense
strategies of microalgae against stress factors (Chu, 2013). These
bioactive compounds have proven antioxidant capability as well as
in vitro and in vivo anticancer property as well. For example,
microalgal tetraterpenoids are a good source of antioxidants and
also have shown promising antitumor activity in different cell lines
(Ferdous and Yusof, 2021). The activity of microalgal antioxidants is
commensurate with or sometimes higher than that of plant or animal
origin, which makes them a good supply of nutraceuticals for human
health (Sansone and Brunet, 2019). Microalgae are getting more
attention to exploit in pharmaceutical usage due to having a diverse
and wide array of metabolites, accelerated growth rate, ability to grow
to disregard the seasonal variation or extremity, not requiring
cultivable land and supply of fresh water, and most importantly,
not affect food crops (Khan et al., 2018). Microalgae and their
metabolites, like astaxanthin, DHA are used popularly as a
supplement. Chlorella and Spirulina are the two most commonly
consumed healthy foods in the forms of powder, tablets, or capsules.
Currently, Tetraselmis is joining the race, which is consumed as an
antioxidant supplement. Microalgae-enriched food products are also
a good source of nutraceuticals (Koyande et al., 2019). Additionally,
seaweeds are also a good source of antioxidant molecules. Among
these bioactive, fucoidans, phlorotannin, laminarin, and terpenoids
are widely studied for their antioxidant activity (Gupta and Abu-
Ghannam, 2011). Moreover, many Asian countries, like China,
Indonesia, Japan, Korea, Malaysia, Thailand, and the Philippines,
are the leading producers and consumers of edible seaweeds that
contain these antioxidants in high amounts (Ferdouse et al., 2018).

However, antioxidant phytochemicals found in these algae have
been claimed to exhibit chemo-preventive role in normal cells by
suppressing radiation or chemotherapy-induced oxidative stress via
activation of the antioxidant defense system in cells, prevention of
ROS mediated genomic instability, and inhibition aberrant cell
proliferation, metastasis, and angiogenesis. On top of these roles,
in combinationwith chemotherapeutic agents, antioxidants can act as
therapeutic agents. They can boost oxidative stress in tumor cells,
disable transcription factors, switch on apoptosis-related signaling
pathways, and impede signaling pathways involved in cell
proliferation (Chikara et al., 2018). Nevertheless, there are still
some controversies in the utilization of antioxidants in cancer
therapy. This review clarifies reactive species as well as oxidative
stress, and their roles in cancer development. Then, the classification
and mode of action of antioxidants have been explained briefly.
Finally, some well-known microalgal and seaweed antioxidants and
their potential roles in cancer therapy are described.

REACTIVE SPECIES AND OXIDATIVE
STRESS

Free radicals contain one or more unpaired electrons in their atoms’
outermost shell, which makes them strikingly reactive and more
unstable. They are formed in our body naturally as byproducts during
biological processes or from exogenous sources and can potentially
harm cells. (Shrivastava et al., 2019). Free radicals are related to
reactive oxygen species (ROS), reactive nitrogen species (RNS),
reactive sulfur species (RSS), reactive carbonyl species (RCS), and
reactive selenium species (RSeS) (Sies et al., 2017). These reactive
species are continuously formed from endogenous and exogenous
sources in our body. Endogenous sources comprise intracellular
organelles, like peroxisomes, mitochondria, and extracellular
components like inflammatory cells (macrophages, eosinophils,
and neutrophils). On the other hand, exogenous sources include
high ionizing radiation, environmental toxins (pollution, allergens,
toxic metals like cadmium, lead, mercury, iron, arsenic, and
pesticides, microorganisms, some drugs, cigarette smoke, alcohol,
and dietary xenobiotics (Pizzino et al., 2017).

Among these reactive species, ROS are widely studied. ROS is
generated in the cytosol by soluble cell components and cytosolic
enzymes, on membranes of mitochondria, in the peroxisomes, in
the endoplasmic reticulum, on the plasma membrane of the
dysfunctional cells, and in the lysosomes (Di Meo et al., 2016).
However, ROS is of two classes; one type consists of radicals with
an unpaired electron in their outermost shell (superoxide anion,
nitric oxide, hydroperoxyl, and peroxyl radicals, and hydroxyl
radical); another class comprises non-radical ROS, and these ROS
are without unpaired electron but still has the chemical reactivity,
even can be changed to radical ROS, e.g., singlet oxygen, ozone,
hydrogen peroxide, and hypochlorous acid (Chahal et al., 2018).
In cell signaling, ROS can serve as secondary messengers, playing
an essential role in a range of cellular processes by stimulating
different signal transduction pathways that involve gene
activation or cellular growth (Klaunig and Wang, 2018).

ROS reacting with nitric oxide gives rise to RNS and RSS, with
thiols (Corpas and Barroso, 2015; Mut-Salud et al., 2015; Sies
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et al., 2017). RNS, nitrogen-containing oxidants, consist of nitric
oxide (NO•) and nitrogen dioxide radical (NO2•), peroxynitrite
(HNO3

−), as well as other oxides of nitrogen. Similarly, reactive
sulfur species (RSS) are sulfur-containing molecules, which
include hydrogen sulfide (H2S), thiols (RSH), persulfides
(RSSH), polysulfides, S-nitrosothiols (RSNO), hydrogen
polysulfides, and sulfenic acids (RSOH), that have essential
roles in the regulation of cellular systems (Xu et al., 2019).

As a notion in redox biology, the term oxidative stress has been
mentioned for the first time in the book entitled “Oxidative
Stress” in 1985. Oxidative stress (OS) occurs when there is a
disproportion between generation and detoxification of RS by the
biological system in cells (Di Meo et al., 2016). According to
Helmut Sie, oxidative stress is “an imbalance between oxidants
and antioxidants in favor of the oxidants, leading to a disruption
of redox signaling and control and/or molecular damage.”
Oxidative stress can exert two-sided actions, classified
according to intensity, as oxidative eustress and oxidative
distress. Low oxidant or reactive species exposure permits
addressing particular targets for redox signaling, essential for
maintaining normal physiology, which is called oxidative
eustress. The basal level of OS augments the defense system
through the expression of antioxidant compounds and proteins,
yielding health benefits. Contrarily, excessive oxidant or RS
challenge leads to disrupted redox signaling, causing
deleterious effect, like macromolecular damage in intracellular

organelles, inactivation of redox regulatory enzymes, or abnormal
cellular proliferation and death, which is termed as oxidative
distress (Niki, 2016; Go and Jones, 2017; Sies, 2020) (Figure 1).
There are different types of oxidative stress which depend mainly
on the generation source, such as nutritional, postprandial,
photooxidative, radiation-induced, reductive, and nitroxidative,
nitrosative, nitrative oxidative stress (Sies, 2019).

EFFECT OF REACTIVE SPECIES AND
OXIDATIVE STRESS ON CANCER CELLS

OS can play an important role in all phases of the oncogenic
process (initiation, promotion, and progression), by activating
different transcription factors, including nuclear factor (NF-κB),
Nuclear factor erythroid 2-related factor 2 (Nrf2), hypoxia-
inducible factor (HIF-1α), activator protein (AP), tumor
protein (p53), β-catenin/Wnt signaling pathway, which helps
in modulating the expression of immune and inflammatory-
related genes and thus triggers carcinogenesis (Saed et al.,
2017). Besides, ROS functions bidirectionally in cancer. It can
be pro- and antitumorigenic. ROS can contribute to cancer
development via a range of cancer signaling pathways, such as
MAPK/AP-1/NF-κB, associated with cancer metastasis and
angiogenesis. ROS can also trigger inflammation by activating
NF-κB, AP-1, HIF-1a, growth factors, inflammatory cytokines,
and chemokine. Conversely, elevated ROS level promotes
oxidative stress-induced cancer cell death by triggering
antitumorigenic signaling (Reczek and Chandel, 2017; Kashyap
et al., 2019). Cancer cells always need to keep an elevated ROS
level allowing the pro-tumorigenic cell signaling without
inducing cell death. Moreover, the ROS scavenging mechanism
is stimulated by tumor cells to maintain ROS levels below the
cytotoxic level (Ilghami et al., 2020).

Role of Reactive Oxygen Species in Cell
Proliferation and Survival
An increase in ROS has been implicated in enhanced cell growth,
proliferation, survival and in the progression of carcinogenesis by
regulating mitogen activated-protein kinase, protein kinase D
(PKD) signaling pathways, transcription factors such as AP, NF-
κB, HIF-1α and also through the negative regulation of
phosphatases and protein tyrosine phosphatase 1B (PTP1B),
epigenetic alterations in transcription factors and tumor
suppressors, Nrf2 and p53, as well as by down-regulating the
expression of E-cadherin tumor suppressor (Galadari et al., 2017;
Moloney and Cotter, 2018).

Role of Reactive Oxygen Species in Genetic
Instability
ROS often act as mediators of DNA damage. When ROS
accumulate cells through its overproduction, they are often
associated with DNA interaction, producing ROS-interacting
modification, such as inter-and intra-strand bindings or
creating DNA-protein crosslinks, yielding altered gene

FIGURE 1 | Oxidative stress and its relation to cancer (Sies, 2019).
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expression. ROS cause DNA damage through oxidizing
nucleoside bases and form DNA lesions, such as the formation
of 8-oxo guanine, that generate DNA double-strand breaks
(DSBs), if unrepaired. ROS accumulation creates
mitochondrial DNA lesions, strand breaks, and finally,
degradation. In addition, increased ROS through the activation
of oncogenes influences the replication stress. ROS can oxidize
dNTPs that can modify polymerase activity, breakdown of
replication forks, and the formation of DSBs, which all
together lead to genomic instability. Moreover, ROS induce
activation of proteins associated with cell cycle checkpoint,
leading to cell cycle arrest. Above all, these alterations of
chromosomes give rise to genetic instability and ultimately
lead to carcinogenesis (De Sá Junior et al., 2017; Srinivas et al.,
2019).

Role of Reactive Oxygen Species in Cell
Death
Increased ROS engender cell cycle arrest, senescence, and
apoptosis. Elevated intracellular ROS production promotes
apoptosis via extrinsic or intrinsic pathways. Moreover, ROS
trigger apoptosis by inactivating or enhancing the ubiquitination
of anti-apoptotic protein, Bcl-2, and by reducing the levels of
apoptosis regulator, Bax, and Bad. On the other hand, ROS can
kill cancer cells through autophagy, an effective defense against
OS damage. ROS cause inactivation of autophagy-related genes
and can inhibit the negative regulator of autophagy (TORC1).
ROS generated in the mitochondrial electron transport chain or
by NADPH oxidases (NOXs), enhance necroptosis. Furthermore,
tumor suppressor protein p53 causes cell death through
ferroptosis (depends on intracellular iron) which is induced by
increased ROS level (Perillo et al., 2020).

Role of Reactive Oxygen Species in
Angiogenesis and Metastasis
In metastasis, tumor cells are circulated from the primary site to
other places in the body via blood and lymph. ROS can cause
metastasis by inducing hypoxia-mediated MMPs (matrix
metalloproteinases) and cathepsin expression. Increased ROS
level may activate the MMP enzymes with the stimulation or
modulation of a myriad number of tumor progression pathways
or metastasis signaling pathways, respectively. Tumor migration
can be caused by ROS providing that they are produced by
activated growth factor receptors and integrin assembly and
with the modulation of signaling kinases. ROS mediate FAK
(cell motility controlling protein) activation, leading to cellular
invasion. Moreover, ROS can activate the actin-binding protein,
cofilin, and thus, help in cell migration.

However, metastasis can be induced by ROS by other
mechanisms also, like proteolytic degradation of
glycosaminoglycan (GAG) and other ECM components. An
increased level of ROS can stabilize HIFα by impeding prolyl
hydroxylases (PHDs) and, thus, VEGF (primary pro-angiogenic
factor) activation, ultimately rendering angiogenesis and tumor
progression (Galadari et al., 2017; Kashyap et al., 2019).

Role of Reactive Oxygen Species in
Chemoresistance
Chemoresistance is a primary cause of treatment ineffectiveness
in cancer. P-glycoprotein (a transporter protein) is a multidrug
resistance protein that involves the removal or efflux of several
anticancer drugs from cancer cells. ROS can upregulate this
protein, leading to chemoresistance and inhibiting cell death
(Galadari et al., 2017).

ANTIOXIDANTS

Antioxidant was first defined by Halliwell et al., in 1989 as “any
substance that, present in low concentrations compared to
oxidizable substrates (carbohydrates, lipids, proteins or nucleic
acids), significantly delays or inhibits the oxidation of the
mentioned substrates” (Halliwell et al., 1992). The term
‘Antioxidant’ denotes that antioxidants are molecules that
work against the activity of oxidants. Antioxidants can be
defined as, chemicals that can inhibit or quench free radicals,
that are formed as natural byproducts in the body during the
biological process, and thus retarding oxidative damage (Chahal
et al., 2018; Khurana et al., 2018).

Antioxidants, which are produced in our body through the
metabolic process, are called endogenous antioxidants.
Antioxidants can also be incorporated exogenously through
foods and dietary supplements, which are called exogenous
antioxidants. Besides, there is also another group of
antioxidants that can be produced synthetically, which are
widely used in the food industry (Mut-Salud et al., 2015).

CLASSIFICATION OF ANTIOXIDANTS

Antioxidants can be classified based on their origin, activity, size,
solubility, and mode of action (Figure 2).

ANTIOXIDANT DEFENSE SYSTEM IN CELL

Antioxidants give protection to the cells through three lines of
defense. The first line of defense includes antioxidants
hindering the formation of new free radicals. Enzymatic
antioxidants such as SOD, CAT, GPx, and reduced
glutathione; metal-binding proteins (ferritin and
ceruloplasmin) and antioxidant minerals such as selenium,
copper, and zinc. The second line comprises antioxidants,
which are involved in scavenging free radicals, and thus
preventing OS. Endogenous and exogenous antioxidants
such as glutathione, albumin, CoQ, flavonoids, carotenoids,
uric acid, and vitamins (A, C, and E) are involved in this group.
Finally, different enzymatic antioxidants are the main player in
the third line of defense, that repair the damaged DNA,
intracellular protein, and other biomolecules. For example,
DNA repair enzymes, proteases, peptidase, lipases,
transferases, etc. (Surai et al., 2003; Mut-Salud et al., 2015).
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EFFECT OF ANTIOXIDANTS IN CANCER
THERAPIES

Cancer is a term used for a cluster of analogous diseases that
causes cells anywhere in the body commence to divide out of
control and start proliferating in the surrounding or even distant
tissues. It is the second-highest cause of mortality globally and
accounts for approximately 9.6 million deaths in 2018 (WHO,
2020). Depending on the type of cancer and the malignancy, there
is a range of cancer treatments, such as surgery, chemo-,
radiation-, immuno-, targeted- and hormone therapy, stem
cell transplant, or a combination of these therapies. Among
them, chemotherapy remains the treatment of choice,
integrated with surgery or other therapies. Commonly used
chemotherapy drugs are the alkylating agents, anthracyclines
(doxorubicin, daunorubicin, epirubicin, idarubicin, aclarubicin,
and pirarubicin), epipodophyllotoxines, platinum-based drugs
(cisplatin, carboplatin, and oxaliplatin), camptothecins, vinca
alkaloids, taxanes, and antimetabolites, which are used for the
treatment of a variety of cancers, such as breast, liver, ovarian,
testicular, bladder, head and neck, lung cancer (He et al., 2018;
Moiseeva, 2019; Ilghami et al., 2020). These drugs can cause more
than 40 specific side effects and are broadly categorized into seven
types, namely cardiotoxicity, hepatotoxicity, nephrotoxicity,
ototoxicity, neurotoxicity, hematological toxicity, and
gastrointestinal toxicity. (Oun et al., 2018). On the other hand,
radiation therapy uses ionizing radiation to kill cells, by
generating ROS, other organic radicals, and lipid peroxidation.
Therefore, radiation induces an increase of free radicals which
damage DNA and ultimately leads to cell death. This elevated
ROS can affect the cellular antioxidant status as well (Mut-Salud
et al., 2015; Ko and Formenti, 2019).

The goal of cancer treatment should be to kill cancer cells
successfully and be attenuating therapy-induced genotoxicity in
normal tissues and detoxifying harmful effects after treatment
should be an additional goal of cancer treatment (Vilimanovich

and Jevremovic, 2019). Therefore, antioxidant supplementation is
often recommended to neutralize the effects of these
chemotherapy drugs.

The usage of antioxidant supplements during cancer therapy
can reduce oxidative damage in the surrounding healthy tissues,
reduce side effects, and boost overall patient health and survival
rate. (Calvani and Favre, 2019). These supplements can decrease
cell growth, inhibit cell proliferation, and induce apoptosis in
tumor cells. However, it has been estimated that 20–85% of
cancer patients use antioxidant supplements, where the
majority of consumers are breast cancer survivors. Also,
patients with prostate, colorectal, and lung cancers prefer to
take these supplements. When combined with certain types of
chemotherapy, these nutraceuticals become more beneficial in
treating cancer (Calvani et al., 2020).

POTENTIAL MICROALGAL ANTIOXIDANTS
FOR USE IN CANCER THERAPIES

Microalgal antioxidants are primarily composed of carotenoids,
phenolics, flavonoids, polyunsaturated fatty acids, vitamins,
sulfated polysaccharides, sterols, minerals, amino acids,
phycobiliproteins as well as some other compounds like MAA,
sulfolipids, Coenzyme Q, and peptides (Figure 3). From blue-
green algae, antioxidant components like scytonemin,
C-phycocyanin are also known as strong cytotoxic agents
(Abd El-Hack et al., 2019). These phytochemicals have anti-
cancerous properties as well (Table 1).

Vitamins
Vitamin A
Vit A comprises retinol and its derivatives (retinoids). It is a
collective term for many analogous compounds that can be
classified into two groups based on the source. Vit A is
derived from animal-based foods, such as beef liver, eggs, cod

FIGURE 2 | Classification of antioxidants (Nimse and Pal, 2015; Anwar et al., 2018; Chahal et al., 2018; Khurana et al., 2018; Azat Aziz et al., 2019).
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liver oil, butter, and yellow pigmented fruits, vegetables, and
fortified grains, which are called preformed vitamin A. On the
other hand, provitamin A (α- and β-carotene, β-cryptoxanthin)
are available in colored fruits and vegetables, like in tomato,
carrots, leafy greens, yams, and vegetable oils. This retinol is
changed into retinoic acid and retinoids upon entering into the
body (Fritz et al., 2011; Kim J. et al., 2019). Interestingly, some
microalgae species contain Vit A which is much higher in amount
compared to some fruits. For instance, Tetraselmis suecica
contains Vit A (493,750 I.U./kg dry weight) in a higher
amount than orange (14,728 I.U./kg dry weight). Isochrysis
galbana, Dunaliella tertiolecta, Chlorella stigrnatophora,
Chaetoceros calcitrans and Skeletonema costatum are also a
rich source of Vit A and provitamin in comparison with other
foods like cod liver oil, beef liver or parsley (Fabregas and
Herrero, 1990; De Roeck-Holtzhauer et al., 1991).
Cyanobacteria Aphanizomenon flos-aquae and Spirulina spp.
are another reservoir of provitamin A (Kay and Barton, 1991).
Chronopoulou et al., has reported that extraction of vit A from
Tetradesmus Obliquus is in the highest amount through
supercritical fluid extraction method (Chronopoulou et al., 2019).

Higher intake of dietary Vit A can remarkably decrease the
ovarian, lung, gastric, pancreatic, and cervical carcinoma risk

(Sanusi, 2019; Wang and He, 2020). Retinoic acid activates the
extracellular-signal-regulated kinase (ERK) pathway and thus,
promotes angiogenesis and metastasis in lung cancer. Retinoids
in combination with chemotherapeutic drugs and other
antioxidants inhibit cancer cell proliferation and thus increase
the life span of cancer patients (Tripathi et al., 2019). Besides,
natural and synthetic retinoids can prevent colorectal cancer
progression (Abdel-Samad et al., 2019). Furthermore, retinol
has a protective capacity against digestive cancers (Xie et al.,
2019). Additionally, an increased dietary supplement of Vit A and
β-carotene can improve hepatocellular carcinoma prognosis with
an increased survival rate (Zhang et al., 2020).

Vitamin C
Vit C can be obtained naturally in a variety of fruits, vegetables like
green chili, thyme, parsley, guavas, black current, kiwis, lemon, and
algae. It is commonly called ascorbic acid and is aqueous soluble
(Padayatty and Levine, 2016). It is often considered a well-tolerated
micronutrient. Vit C containing eleven microalgae species from
different classes have been reported where Chaetoceros muelleri,
Skeletonema costatum, Nannochloropsis oculata, and Nannochloris
atomus showed higher amount of Vit C than others (Brown et al.,
1997). Vitamin C is also commonly found in Spirulina spp., Chlorella

FIGURE 3 | Production of antioxidants from microalgae.
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spp., T. suecica, I. galbana, D. tertiolecta, Aph. flos-aquae, Pavlova
lutheri, and Rhodomonas salina (Fabregas and Herrero, 1990; Kay
and Barton, 1991; Brown et al., 1997).

However, Vit C can highly sensitize tumor cells compared to
normal cells. Vit C acts as a prodrug by generating ascorbate radicals
and H2O2, causing oxidative stress and ultimately kill cancer cells,
which can be attained by the intravenous injection of Vit C. On the
other hand, cancer cells can be damaged through epigenetic
regulation, like DNA and histone demethylation, and
reestablishing 5-hydroxymethylcytosine with oral administration of
Vit C supplement. Moreover, Vit C supplementation can prevent
tumor metastasis by collagen cross-linking, suppress cancer
progression by HIF-1a degradation (Mustafi and Wang, 2019). It
has been reported that higher doses of ascorbic acid alone or
combinedly with conventional cancer drugs significantly impede
cancer growth, but it should be administered intravenously. Oral
administration of ascorbate causes only a moderate increase in its
plasma concentration (Blaszczak et al., 2019).

In contrast, another study revealed that intravenous
administration of Vit C of a lower dose with longer

administration was better in treating cancer, though a high
dose is still safe (Mikirova et al., 2019). Vit C can modulate
infiltration of the tumor microenvironment by stimulating
immune cells and delay cancer growth in breast, colorectal,
melanoma, and pancreatic murine tumors (Magrì et al., 2020).
Importantly, Vit C can kill cancer cells selectively and its
activity depends on factors like the type of cancer and
signaling pathways involved in the tumor development. In
cancer stem cells, it can enter through sodium-dependent Vit
C transporter 2 (SVCT2) and alter JHDM and TET protein.
Besides it can enter via glucose transporters (GLUTs) and
modify ROS, causing mitochondrial dysfunction and finally
triggers Vit C-induced cell death (Satheesh et al., 2020). Vit C
supplementation shows a protective effect in modulating
inflammatory regulators in the case of esophageal
adenocarcinoma (Abdel-Latif et al., 2019).

Vitamin D
Vit D is also known as the “sunshine” vitamin since it can be
gained through exposure to sunlight. Besides, this fat-soluble

TABLE 1 | List of some antioxidants found in microalgae that showed in vitro antitumor activities.

Algae Antioxidants Targeted cell
line

Active
concentration

Mode of
action

References

Dunaliella salina β-carotene Human prostate cancer
cell line (PC-3)

Inhibition rate: 79%
at 50 µM

Apoptosis associated with mitochondrial
dysfunction and DNA fragmentation

(Jayappriyan
et al., 2013)

Dunaliella tertiolecta Violaxanthin Human breast cancer cell
line (MCF-7)

aIC50: 56.1 µg/ml Apoptosis (Pasquet et al.,
2011)

Porphyridium
purpureum

Zeaxanthin Human melanoma cell line
(A2058)

IC50: 40 µM Gene mutation; activation of pro-apoptotic
factors; cell cycle arrest; caspase activation;
inhibition of NF-κB

(Juin et al., 2018)

Chaetoceros
calcitrans

Fucoxanthin Human liver cancer cell
line (HepG2)

IC50: 18.89 μg/ml Gene modulation of cell signaling, apoptosis,
and oxidative stress

(Foo et al., 2018)

Chlorella ellipsoidea Carotenoids (mainly
violaxanthin)

Human colon cancer cells
(HCT116)

IC50: 40.73 ±
3.71 μg/ml

Apoptosis (Cha et al., 2008)

Chlorella vulgaris Carotenoids (mainly
lutein)

Human colon cancer cells
(HCT116)

IC50: 40.31 ±
4.43 μg/ml

Apoptosis (Cha et al., 2008)

Codium fragile Siphonaxanthin Human leukemia cells
(HL-60)

Inhibition rate: 95%
at 20 µM

Activation of caspase-3; up-regulation of
GADD45a and DR5, downregulation of Bcl-2

(Ganesan et al.,
2011)

Cyanophora
paradoxa

β-Cryptoxanthin Malignant Inhibition rate: 93.0 ±
0.1% at 100 μg/ml

Apoptosis (Baudelet et al.,
2013)Melanoma cells (A-2058)

Haematococcus
pluvialis

Astaxanthin Human hepatoma cancer
cell line (HepG2)

Inhibition rate: 58.55%
at 25 μg/ml

Depletion of glutathione; DNA fragmentation;
cell cycle arrest at G0/G1 phase

(Nagaraj et al.,
2012)

Nannochloropsis
oculata

Sterols Human promyelocytic
leukemia cell line (HL-60)

IC50: 23.58 ±
0.09 μg/ml

Apoptosis (Sanjeewa et al.,
2016)

Nannochloropsis
salina

PUFA Human breast cancer cell
line (MCF-7)

IC50: 0.45 μg/ml - (Sayegh et al.,
2016)

Porphyridium
cruentum

Sulfolipids Human adenocarcinoma
cells

IC50: 20–46 μg/ml Cell cycle arrest; inhibition of DNA polymerase (Bergea et al.,
2002)

Phaeodactylum
tricornutum

Sulfated
polysaccharides

HepG2 Inhibition rate: 60.37%
at 250 μg/ml

Apoptosis (Yang et al.,
2019)

Tribonema sp Sulfated
polysaccharides

HepG2 Inhibition rate: 66.8%
at 250 μg/ml

Apoptosis (Chen et al.,
2019)

Chlorella zofingiensis Exopolysaccharides Human colon cancer cell
lines (HCT8)

IC50: 1.7 mg/ml - (Zhang et al.,
2019)

Spirulina platensis C-Phycocyanin Human breast cancer cell
lines (MDA-MB-231)

IC50 : 189.4 μg/ml Cell cycle arrest at G0/G1 phase; decreased
levels of cyclin D1 and CDK-2 and increased
levels of p21 and p27; down regulation of
cyclooxygenase-2; activation of MAPK
signaling pathways

(Jiang et al.,
2018)

aIC50: the concentration needed for 50% inhibition.
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vitamin is available in foods like fishes rich in fat, egg yolk, dairy
products like cheese, cod liver oil, beef liver, and mushrooms.
Surprisingly, P. lutheri, T. suecica, S. costatum, and I. galbana can
produce Vit D in a higher amount in comparison with cod liver
oil, oyster, mushroom, egg, and liver (De Roeck-Holtzhauer et al.,
1991). It has been reported that Vit D3 is found in the highest
amount in UVB exposed Nannochloropsis oceanica (Ljubic et al.,
2020).

In the liver, Vit D is metabolized into 25(OH)D (25-
hydroxyvitamin D), which is a biomarker for Vit D status
assessment (Marian, 2017). Studies showed that daily
supplementation of Vit D is effective in improving relapse-free
survival among digestive tract cancer patients and also in early-
stage lung adenocarcinoma, with low bioavailable 25(OH)D
levels (Akiba et al., 2018; Urashima et al., 2020). Besides, Vit
D supplementation can reduce cancer-related mortality (Keum
et al., 2019). Additionally, in the kidney, it is conceived that
25(OH)D can be converted to calcitriol by 1-alpha hydroxylase
that can attach to Vit D specific receptors and has a significant
effect on gene expression, and thus control cancer cell survival
(Chatterjee et al., 2019).

Vitamin E
Vit E, a lipid-soluble vitamin, is mainly found in nuts, seeds,
vegetables, plant oils. Marine microalgae are an excellent source
of Vit E and contain a larger amount of Vit D than other plant
and animal sources. Studies showed that C. stigmatophora, C.
calcitrans, P. lutheri, T. suecica, S. costatum, I. galbana, and D.
tertiolecta possess ample amount of Vit D than olive oil, corn,
bean, carrot, wheat or liver (Fabregas and Herrero, 1990; De
Roeck-Holtzhauer et al., 1991). This Vit E can be classified into
eight isoforms, namely α, β, δ, γ-tocopherol, and -tocotrienol
(Peh et al., 2016). T. obliquus contains α and γ-tocopherol
(Chronopoulou et al., 2019). Chlorella spp., Spirulina spp. and
Aph. flos-aquae also have a significant level of Vit E (Kay and
Barton, 1991; Kim et al., 2001).

Intake of vitamin E supplementation up to upper tolerable
intake level (UL) of 300–1,000 mg/day is considered safe and
effective in the reduction of mortality (Köpcke, 2019). Vitamin E
supplementation has significant neuroprotective properties
against cisplatin-induced ototoxicity (Villani et al., 2016) and
also in cisplatin-induced nephrotoxicity, where a significant
reduction in the serum levels of renal injury biomarker
(NGAL) has been observed (Ashrafi et al., 2020). It has been
reported that intake of high Vit E supplementation reduces total
cancer and gastrointestinal cancer risk among patients with high
selenium levels (Wang et al., 2019). Tocotrienols can selectively
suppress cancer cells without harming the normal cells, where γ
and δ tocotrienols have the highest anti-cancer activity. They can
exert anti-cancer activity by inhibiting cell proliferation, arresting
cell cycle, inhibition of angiogenesis by downregulation various
growth factors, metastasis and inducing cell death (apoptosis,
autophagy, and paraptosis) through different mechanisms that
involve death receptor, caspase 9 activation, or Bax/Bcl ratio
(Abraham et al., 2019; Constantinou et al., 2020). Besides, Vit E
consumption reduces the risk of bladder cancer (Lin et al., 2019).

Vitamin K
Vitamin K belongs to lipid-soluble vitamin, also known as
‘Koagulations vitamin,’ which is divided into two classes Vit
K1 and K2, along with synthetic derivatives K3–K5. Vit K1 and
K2 are also called phylloquinone and menaquinone, respectively,
which are found in leafy vegetables, cheese, and curd (Kurosu and
Begari, 2010). Vit K is also available in T. suecica, I. galbana, S.
costatum, P. lutheri, Chlorella ellipsoidea, and T. obliquus where
the level is significantly higher than milk, egg, or vegetables like
spinach, cabbage (De Roeck-Holtzhauer et al., 1991; Kim et al.,
2001; Chronopoulou et al., 2019).

Vit K and derivatives have been reported to exhibit anticancer
property against cancer in the lung, liver, breast, prostate, blood,
colon, and bladder. It can destroy cancer cells through several
mechanisms, such as by increasing oxidative stress, by inducing
apoptosis through the upregulation of Fas/FasL, NF-kB, p53,
downregulating Bcl-2/Bcl-xl, Bax/Bak, and also through caspase-
3 activation pathway, by inhibiting cell cycle through the
inhibition of CDK-1 checkpoint and activation of CDK-1
inhibitors, p21. It can also induce autophagic death in
different cancer cells (Dasari et al., 2017). Along with
autophagy, Vit K2 can cause non-apoptotic cell death in
breast cancer cell lines (Miyazawa et al., 2020). In
combination with sorafenib, Vit K1 can cause apoptosis in
hepatocellular carcinoma cells in vivo and in vitro through the
activation of caspase pathways (Wei et al., 2010). In prostate
cancer, Vit K2 has been reported to hinder metastasis and
inducing apoptotic cell death (Vinjamuri et al., 2019).

Polyphenols
Microalgae is a rich source of polyphenolic compounds that
mainly consist of simple phenols, flavonoids, flavanones,
isoflavone, flavonols, dihydroflavonols, flavones, flavan-3-ols,
dihydrochalcones, proanthocyanidins. Among them, Flavones
(Apigenin) and isoflavone (Genistein) have been reported to
be found in P. tricornutum, Diacronema lutheri, P. purpureum,
H. pluvialis, T. suecica, and C. vulgaris, while D. lutheri and H.
pluvialis contain the most diverse classes of flavonoids (Goiris
et al., 2014). In a study, Bulut et al., (2019), has assumed that
flavonol (quercetin) from Scenedesmus sp., is one of the major
contributors to its antioxidant property (Bulut et al., 2019). On
the other hand, marine microalgae P. tricornutum, isolated from
the Moroccan sea, produce protocatechuic acid which is
considered to have antioxidant activity (Haoujar et al., 2019).

Euglena cantabrica having a high amount of phenolics (gallic
acid and protocatechuic acid) shows the most effective radical
scavenging activity which was even more than the conventional
antioxidants (Jerez-Martel et al., 2017). Phenolic acids from
Spirulina maxima displayed better radical scavenging activity
and protection against microsomal lipid-peroxidation in the liver
than commercial antioxidants (Abd El-Baky et al., 2009).
Phenolic compounds are responsible for antioxidant activity
tested for a myriad of microalgae, for instance,
Nannochloropsis sp., Spirulina sp., D. salina, Navicula clavata,
Chlorella sp., Tetraselmis sp., Porphyridium cruentum, P.
tricornutum, Neochloris oleoabundans, C. calcitrans,
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Botryococcus braunii (Goiris et al., 2012; Hemalatha et al., 2013;
Choochote et al., 2014; Zainoddin et al., 2018).

Along with antioxidant activity, these polyphenolic
compounds exhibit anticarcinogenic activity as well. Jayshree
et al., (2016), found that flavonoids, isolated from C. vulgaris
as well as Chlamydomonas reinhardtii, were cytotoxic to breast
cancer cells (Jayshree et al., 2016). Similarly, flavonoids in C.
vulgaris extract can hinder proliferation in lung carcinoma
(Wang et al., 2010). Spirulina maxima produce phenolic
compounds that may stop proliferation and induce apoptosis
in liver cancer cells (Wu et al., 2005). Likewise, phenolic
compounds from C. vulgaris and I. galbana might be
responsible for the anticancer activity against human liver
cancer (Custódio et al., 2014; Raikar et al., 2018).

Polyphenols like quercetin, genistein, ellagic acid have
significant anticancer properties. Genistein has displayed
anticancer effects against breast, colon, lung, thyroid, gastric,
and prostate cancers by modulating a variety of molecular targets,
such as apoptotic markers caspases, Bcl and Bax, nuclear factor-
κB, an inhibitor of NF-κB, mitogen-activated protein kinase
(MAPK), phosphoinositide 3-kinase/Akt (PI3K/Akt),
extracellular signal-regulated kinase 1/2 (ERK 1/2), and
Wingless and integration 1/β-catenin (Wnt/ß-catenin)
signaling pathway (Tuli et al., 2019). It can show pro-
apoptotic, anti-proliferative, and anti-metastatic activities
in vitro on PC3 prostate cancer cells through triggering
apoptosis by activating caspase-3 related pathways, by
reducing cell survival via inhibition of p38MAPK at both gene
expression and protein levels, and by inhibiting metastasis
through the blockage of MMP2 activity (Shafiee et al., 2020).
Genistein is documented as clinically safe and effective when
combined with standard fluoropyrimidine and platinum-based
drug, oxaliplatin, with or without Bevacizumab, in the treatment
of metastatic colon cancer (Pintova et al., 2019). Quercetin exerts
its anti-cancer effects on different cancer cells through the
regulation of PI3K/Akt/mTOR, Wnt-catenin, and MAPK/
ERK1/2 pathways. It can induce tumor cell death by
modulating the apoptotic pathway, enhancing the expression
of pro-apoptotic proteins (Bax, Bad) as well as decreasing the
expression level of anti-apoptotic proteins (Bcl, Mcl), and also
affect the expression of TRAILR, FAS, TNFR1. Moreover, it
hinders metastasis by reducing VEGF secretion, repressing the
expression of the downstream regulatory factor AKT and MMP
levels, and by inhibiting EMT progression. Furthermore,
quercetin promotes protective autophagy in cancer cells by
forming autophagic vacuoles and acidic vesicular organelles
(AVOs), activating autophagic gens, and inhibiting Akt-mTOR
signaling and stabilizing HIF-α expression (Reyes-Farias and
Carrasco-Pozo, 2019; Tang et al., 2020). However,
coadministration of sorafenib (0.1 µM) and quercetin 25 µM
for 1 day has been exhibited a significant reduction in the cell
proliferation rate and inhibition in cell adhesion and migration
properties (Celano et al., 2020).

Another important phenolic compound in microalgae is
ellagic acid (EA). EA can effectively reduce cisplatin (CP)
induced nephrotoxicity and gonadotoxicity, by reducing
peroxidative damage to tissue, when given together with CP to

murine colon cancer model (Goyal et al., 2019). Moreover, EA in
combination with doxorubicin and cisplatin can strongly hinder
cell proliferation and engender mitochondria-mediated cell death
in hepatocellular carcinoma cells in vitro and reduce side effects
significantly (Zhong et al., 2019). In the multidrug-resistant
glioma cells, EA combined with bevacizumab may show both
inhibitory and suppressive role in bevacizumab-induced DNA
repair, when treated for an extended period (Çetin et al., 2019).

Carotenoids
β-Carotene
β-Carotene (BC) is abundantly found in the human diet and
popularly used as a food additive and coloring agent in the food
industry (Bogacz-Radomska and Harasym, 2018). Microalgae
Dunaliella salina possesses a copious amount of BC and is
considered the richest source among other microalgae. BC
from Dunaliella salina has been reported to kill human
prostate cancer cells through apoptosis (Jayappriyan et al.,
2013). Moreover, BC can be found readily in green microalgae
Chlorella vulgaris, Asterarcys quadricellulare, and in
cyanobacteria Spirulina sp. (Seshadri et al., 1991; Damergi
et al., 2017; Singh et al., 2019).

BC suppresses the proliferation and self-renewal capacity of
colon cancer stem cells (CSCs) through epigenetic modulation,
involving expression of miRNAs and miRNA-mediated histone
acetylation, and global DNA methylation (Kim D. et al., 2019).
Though its negative relationship to lung cancer is widely studied,
it can reduce lung cancer when combined with vitamin A (Yu
et al., 2015). It has been documented that oral administration of
beta-carotene-loaded solid lipid nanoparticles (BC-SLNs)
enhances the bioavailability of BC and also the safety as well
as the efficacy of BC. It sustains the release of BC from the lipid
core and prolongs circulation time in the body (Jain et al., 2019).
Besides, in methotrexate (MTX) therapy, BC loaded
nanoparticles of zein (βC-NPs) significantly improve cellular
uptake, reduces MTX-induced liver and kidney toxicity, and
display elevated biopharmaceutical performance of BC orally
(Jain et al., 2019).

Lutein
Lutein is a carotenoid with a yellow-orange hue that is an
important ingredient in the food, feed, and pharmaceutical
industries. It is available in fruits, vegetables, and flowers,
especially in marigold which is considered as a primary source
(Becerra et al., 2020). Surprisingly, microalgae can produce up to
six times higher lutein content compared to marigold and thus, is
claimed to be a better alternative of lutein production (Lin et al.,
2015). Lutein is produced at a higher amount in Chlorella
protothecoides, C. sorokiniana, C. vulgaris, H. pluvialis,
Parachlorella sp., Muriellopsis sp. and Scenedesmus obliquus
(Li et al., 2001b; Shi et al., 2002; Blanco et al., 2007; Chan
et al., 2013; Chen et al., 2016; Di Sanzo et al., 2018; Heo et al.,
2018). Lutein from Botryococcus braunii has been reported to
exhibit both in vitro and in vivo antioxidant activity (Rao et al.,
2006).

Lutein augments the effect of the antiproliferation and
apoptosis capacity of chemotherapy drugs and also can inhibit
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cell cycle progression, alone or combinedly with chemotherapy
drugs, in the prostate cancer cell line. Moreover, lutein
downregulates biomarker genes related to growth and survival
in prostate cancer (Rafi et al., 2015). In another study, lutein has
been shown anti-breast cancer activity by generating intracellular
ROS level and also by inducing apoptotic cell death via
downregulation of Bcl2 genes with the upregulation of pro-
apoptotic genes and by enhancement of p53 signaling
pathway. At the same time, lutein augments the anticancer
activity of taxanes when administered combinedly in breast
cancer cell lines (Gong et al., 2018). A similar result has been
reported by Luan et al., (2018), where lutein plus doxorubicin
hinders the growth of sarcoma cells, induces apoptosis, and also
shows in vivo anti-tumor activity in a mouse model (Luan et al.,
2018). Lutein also displays anti-proliferation activity in breast
cancer cells by triggering the NrF2/ARE pathway and inactivating
the NF-κB signaling pathway (Chang et al., 2018).

Astaxanthin
Astaxanthin (ATX), a red lipid-soluble xanthophyll carotenoid, is
mostly available in microorganisms and has an important role in
aquaculture, food, and pharmaceutical industries (Ambati et al.,
2014). Haematococcus pluvialis is considered the finest
production source of ATX industrially (Shah et al., 2016). This
ATX from H. pluvialis hinders the oxidative stress inside the cells
(Régnier et al., 2015). ATX is also obtained from other microalgae
like C. sorokiniana, C. zofingiensi, Tetraselmis sp., Chlorococcum
sp. andG. sulphuraria (Li et al., 2001a; Ip and Chen, 2005; Raman
and Mohamad, 2012; Graziani et al., 2013).

ATX exhibits anti-proliferation activity against various cancer
cells through blocking cell cycle at G0/G1 phase or G2-M phase,
epigenetic alterations, or chromatin remodeling. It also induces
apoptosis by downregulation of the antiapoptotic proteins while
upregulation of the proapoptotic proteins. It also blocks
angiogenesis and metastasis to distant tissues (Faraone et al.,
2020). On combinatorial treatment with carbendazim, AXT
potentiates the anti-proliferative effect of this drug by arresting
MCF-7 cells at the G2/M phase (Atalay et al., 2019).

Fucoxanthin
Fucoxanthin (FX) is an orange-hued marine carotenoid that is
mainly obtained from algae. Fucoxanthin has many health
benefits, especially antioxidative and antiproliferative capacity
(Muthuirulappan and Francis, 2013). It has exhibited antitumor
activity against a range of cancer types, namely osteosarcoma,
leukemia, lymphoma, and also against colorectal, breast, prostate,
hepatocellular, bladder cancer (Martin, 2015). Antioxidant
activity of FX have been reported from Phaeodactylum
tricornutum, Odontella aurita, I. galbana, C. calcitrans, D.
salina, C. gracilis, Navicula sp., Thalassiosira sp., Pavlova
lutheri, Cylindrotheca closterium (Rijstenbil, 2003; Xia et al.,
2013; Neumann et al., 2019; Peraman and Nachimuthu, 2019).
FX from P. tricornutum and C. calcitrans has been reported to
show anticancer activity as well (Foo et al., 2018; Neumann et al.,
2019). Furthermore, FX obtained from Conticribra weissflogii
showed the anti-inflammatory property in the sepsis mouse
model (Su et al., 2019). However, FX is also available in

Nitzschia laevis, Chaetoceros muelleri, Amphora sp. and
Tisochrysis lutea (Ishika et al., 2019; Sun et al., 2019;
Mohamadnia et al., 2020).

The anticancer mechanism of FX is mainly directed by
blocking the cell cycle at the G0/G1 phase with decreased
cyclin D and also by apoptotic cell death with DNA
degradation, chromatin condensation, or DNA laddering. FX
also inhibits metastasis where a decreased level of MMPs has been
observed. Besides, these mechanisms involved a myriad of pro-
and anti-apoptotic proteins and many signaling pathways like
caspase, PI3K/Akt/mTOR, JAK/STAT, MAPK, SAPK/JNK
pathways (Kumar et al., 2013).

Zeaxanthin
Zeaxanthin (ZX) is a yellow colored carotenoid and also found in
orange or yellow colored fruits, vegetables, like corn, tangerine,
squash, mango, honeydew, papaya, peach, yellow bell pepper,
marigold, egg yolk, and in many microorganisms as well (Sajilata
et al., 2008). On the other hand, ZX can be obtained from
microalgae like in Synechocystis sp., Dunaliella salina, Chlorella
saccharophila, C. ellipsoidea, C. pyrenoidosa, Scenedesmus
almeriensis, S. obliquus, Porphyridium aerugineum, Microcystis
aeruginosa, and Spirulina sp. (Lagarde et al., 2000; Chen et al.,
2005; Inbaraj et al., 2006; Granado-Lorencio et al., 2009; Koo
et al., 2012; Yu et al., 2012; Singh et al., 2013; El-Baz et al., 2019).

ZX from Nannochloropsis oculata, Scenedesmus obliquus,
Porphyridium aerugineum has been reported to show the
antioxidative property (Cho et al., 2011; Banskota et al., 2019).
On the other hand, the anticancer activity of ZX has been
reported in Porphyridium purpureum, where ZX induced
apoptosis in cells of human melanoma through the
augmentation of proapoptotic proteins (Bak, Bax) or pro-
apoptotic factors (Bim, Bid) and the reduction of antiapoptotic
proteins (Bcl-2), as well as through caspase 3 activation and DNA
fragmentation. Moreover, ZX from this P. purpureum potentiates
the efficacy of the chemotherapeutic drug, vemurafenib toward
human melanoma (Juin et al., 2018). A similar apoptosis
mechanism of ZX in melanoma cells was reported in another
study as well (Bi et al., 2013).

Canthaxanthin
Canthaxanthin (CTX), a ketocarotenoid, was found in
Cantharellus cinnabarinus mushroom for the first time and
now is gaining interest in the food and feed industry (De
Miguel et al., 2001). This antioxidative and antitumorigenic
CTX can be found in microalgae also. Microalgal species like
Haematococcus pluvialis, Chlorella emersonii, C. zofingiensis.
Coelastrella sp., Dactylococcus dissociates, Chlorococcum sp.
and also in some cyanobacteria like Nodularia spumigena,
Aphanizomenon flos-aqua, Trichormus variabilis, Anabaena sp.
(Ben-Amotz, 1993; Malis et al., 1993; Li et al., 2006; Nobre et al.,
2006; Hu et al., 2013; Grama et al., 2014; Janchot et al., 2019;
Krajewska et al., 2019).

CTX showed anticancer activity by causing apoptosis in
human colon adenocarcinoma as well as in melanoma cells
(Palozza et al., 1998). Similarly, CTX from Aspergillus
carbonarius has been reported to engender apoptosis in
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human prostate cancer cells (Kumaresan et al., 2008). Dietary
intake of CTX has in vivo chemopreventive role in oral cancer
(Tanaka et al., 1995).

Violaxanthin
Violaxanthin (VLX), an orange-hued carotenoid, is obtained
mainly from fruits of similar color and also from leafy greens
as well as microalgae. VLX has significant antioxidative activity.
Yellow-green microalgae Eustigmatos cf. polyphem has been
reported to produce VLX that has exhibited radical scavenging
activity through DPPH and ABTS assays (Wang et al., 2018).
Moreover, VLX has antiproliferative activity as well. VLX isolated
from Dunaliella tertiolecta and Chlorella ellipsoidea has been
revealed to inhibit breast cancer cells and colon cancer cells,
respectively, and also induce apoptosis (Cha et al., 2008; Pasquet
et al., 2011).

However, VLX from Chlorella vulgaris, N. oceanica, Dunaniella
salina, Tetraselmis spp., Isochrysis galbana, Pavlova lutheri, P. salina,
and Chaetoceros spp. has been reported to show antioxidative and
anti-inflammatory activities (Soontornchaiboon et al., 2012; Ahmed
et al., 2014; Kim H. et al., 2019; Kim et al., 2020).

Neoxanthin
Neoxanthin (NX), a pigment in spinach, is also available in
microalgae. The antioxidative property of NX has been
reported in Scenedesmus sp., Chlorella sp. and Tetraselmis
suecica (Patias et al., 2017; Sansone et al., 2017). However, NX
can also be isolated from Chlorella vulgaris, C. protothecoides,
Ankistrodesmus gracilis, Scenedesmus quadricauda, Neochloris
oleoabundans, Chlorella pyrenoidosa, Botryococcus braunii,
Nephroselmis pyriformis (Tonegawa et al., 1998; Inbaraj et al.,
2006; Magnusson et al., 2008; Chue et al., 2012).

NX has been reported to show anticancer activity against
human prostate carcinoma and also responsible for the apoptosis
in these cancer cells (Terasaki et al., 2007; Kotake-Nara et al.,
2005; Kotake-Nara et al., 2001). In an animal model, NX
exhibited anti-initiation activity and also hindered the
promotion stage in tumor cells which was revealed through a
two-step carcinogenesis study (Lin et al., 1995).

Siphonaxanthin
Ketocarotenoid siphonaxanthin (SPX) has been predominately
found in microalgae and reported to show better anti-
proliferative and anti-angiogenic activity than FX (Sugawara
et al., 2014). For instance, SPX from green microalgae Codium
fragile exhibited apoptosis in human leukemia cells through
TRAIL induction with the augmentation of GADD45a and
DR5 expression and reduced Bcl-2 and thus showed more
effective anticancer property compared to FX (Ganesan et al.,
2011). Similarly, this SPX displayed ex vivo antiangiogenic
activity as well (Ganesan et al., 2010).

Cryptoxanthin
Cryptoxanthin is available in many microalgae like C. vulgaris, S.
obliquus, Aphanothece microscopica Nageli, C. pyrenoidosa, C.
zofingiensi, Chlamydomonas planctogloea, Selenastrum
bibraianum, Coelastrum sphaericum, Parachlorella kessleri,

Mougeotia sp., S. platensis, and P. cruentum (Jaime et al.,
2005; Inbaraj et al., 2006; Patias et al., 2017; Di Lena et al.,
2019; Soares et al., 2019). β-Cryptoxanthin obtained from
Cyanophora paradoxa exerted cytotoxicity against human skin,
breast, and lung cancer cells (Baudelet et al., 2013).

β-Cryptoxanthin blocks gastric cancer cells at the G0/G1
phase and induces apoptosis through caspase activation and
Cyt C release (Gao et al., 2019). It also displayed anticancer
property and apoptosis in HeLa cells (Gansukh et al., 2019).
When combined with oxaliplatin, β-cryptoxanthin increased the
potency of this chemotherapeutic drug and reduced its toxicity in
colon carcinoma (Millán et al., 2015). Moreover,
β-Cryptoxanthin hindered lung carcinoma both in vitro and in
vivo experiments (Lian et al., 2006; Iskandar et al., 2016).

Fatty Acids
Omega-3 polyunsaturated fatty acids, mainly consisting of
EPA, DHA as well as α-linolenic acid, is found
predominately in fish oil, various plant sources (flaxseed,
kiwifruit, chia), and in microalgae, which is effective in the
treatment of a different form of cancers such as, breast,
colorectal, prostate, ovarian, renal, liver, lung and some
other types of cancer (Ashfaq et al., 2019). Microalgal fatty
acids are frequently used as fish feed and also as a dietary
supplement. EPA has been found in larger amounts in Chlorella
minutissima, while α-linolenic acid in H. pluvialis and T.
suecica (Rosa et al., 2005). In a study, DHA has been
reported to be found in a high amount from Australian
microalgae species Heterocapsa niei (Mansour et al., 2005).
However, EPA and DHA are also obtained from Phaeodactylum
sp., Thalassiosira sp., Skeletonema sp., Cryptomonas sp., Tetraselmis
sp., Isochrysis sp.,Nannochloropsis sp., Porphyridium sp., Chaetoceros
sp. (Ryckebosch et al., 2012).

It has been reported that Omega-3 fatty acid
supplementation with standard neoadjuvant
cyclophosphamide, doxorubicin, and fluorouracil (CAF)
chemotherapy and mastectomy improves overall survival and
progression-free survival of locally advanced breast cancer
patients, through decreasing expression levels of Ki-67 and
VEGF leading to inhibition of proliferation and angiogenesis
(Darwito et al., 2019). Higher intake of marine ω-3
polyunsaturated fatty acids (MO3PUFA) intake improves
survival among stage III colon cancer patients with wild-type
KRAS proto-oncogene and deficient DNA mismatch repair,
which are responsible for tumor proliferation and survival
(Song et al., 2019). Besides, co-supplementation of vitamin D
and omega-3 fatty acids significantly reduces inflammatory
biomarkers (TNF-a, IL-1b, IL-6, IL-8) and tumor marker,
carcinoembryonic antigen in colorectal cancer patients
(Haidari et al., 2020). It has been reported that omega-3
supplements can reduce cancer-related fatigue (CRF) in
cancer patients under chemotherapy (Ansari et al., 2019).
Though omega-3 polyunsaturated fatty acids (O3-PUFA) are
widely known for reducing cancer-related fatigue, O6-PUFAs
have been documented to significantly reduce CRF compared
with O3-PUFA among breast cancer survivors (Peppone et al.,
2019).
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Sterols
Microalgal is considered as an alternative source of producing
some valuable commercial sterols like, β-sitosterol, stigmasterol,
ergosterol, campesterol, and brassicasterol which have
pharmaceuticals importance (Randhir et al., 2020). Sterols are
found in Chlorella sp., Chlamydomonas sp., Scenedesmus sp.,
Ankistrodesmus sp., Nannochloropsis limnetica, Stephanodiscus
hantzschii, Gomphonema parvulum, Cyclotella meneghiniana,
Cryptomonas sp., Monoraphidium sp. (Martin-Creuzburg and
Merkel, 2016). Along with antioxidative activity, microalgal
sterols can show antitumor activity. A sterol-containing
fraction of Nannochloropsis oculate exhibited anticancer
property against human blood, lung, liver, and colon cancer
cells (Sanjeewa et al., 2016). Similarly, fatty acid fractions of
Nannochloropsis salina also showed cytotoxicity against breast
cancer cells (Sayegh et al., 2016). Moreover, fatty acids from S.
maxima have also been reported to show anticancer activity
against breast cancer (Elkhateeb et al., 2020).

Sterols can stop tumor growth, metastasis, angiogenesis, and
induce apoptosis through caspase-3 activation, Bax/Bcl2
enhancement, or blood cholesterol reduction (Ramprasath and
Awad, 2015). Dietary intake of phytosterol can minimize the risk
of cancer. For instance, β-sitosterol intake can hinder tumor
growth in the human colon, lung, liver, prostate, and breast
cancer cells (Jiang et al., 2019).

Polysaccharides
Microalgae is an excellent reservoir of polysaccharides that has
different bioactivity, especially anti-inflammatory, antioxidant
and anticancer. For instance, C. stigmatophora and P.
tricornutum can produce polysaccharide extract with anti-
inflammatory activity (Guzmán et al., 2003). Polysaccharides
obtained from Tetraselmis spp., Pavlova viridis, Sarcinochrysis
marina, Porphyridium sp. exhibited significant antioxidant
activity revealed through antioxidant assays (Tannin-Spitz
et al., 2005; Sun et al., 2014; Amna Kashif et al., 2018). In
addition, polysaccharide extract of I. galbana and N. oculata
has the antioxidant capacity and antiproliferative activity against
HeLa cells (Hafsa et al., 2017). Nostoglycan, a polysaccharide
isolated from Nostoc sphaeroides has been reported to give
protection from oxidative stress, and also to stop the growth
of lung cancer cells as well as to promote apoptosis through
activation of the caspase-3 pathway (Li et al., 2018). Moreover,
polysaccharide fraction of P. viridis displayed in vivo antitumor
property (Sun et al., 2016).

An investigation on the exopolysaccharide-producing
microalgae and cyanobacteria revealed that forty-five out of
166 strains were exopolysaccharide producers (Gaignard et al.,
2019). Graesiella sp., isolated from Tunisian hot spring, possess
EPS that have antioxidant activity and show cytotoxicity against
human liver and colon cancer cells (Trabelsi et al., 2016).
Similarly, C. pyrenoidosa, Chlorococcum sp., and Scenedesmus
sp. produce EPS exhibiting antioxidative properties that also have
the potential to kill human colon cancer cells (Zhang et al., 2019).
On the other hand, sulfated polysaccharides (sPS) with
antioxidant activity are extracted from Navicula sp. (Fimbres-
Olivarria et al., 2018). sPS from Tribonema sp. showed

antiproliferative and apoptosis in human hepatic carcinoma
(Chen et al., 2019). P. cruentum having sPS showed in vitro
and in vivo antitumor activity (Gardeva et al., 2009).

Phycobiliproteins and Peptides
Phycobiliproteins, mainly composed of, phycocyanin,
allophycocyanin, phycoerythrin phycoerythrocyanin, are light-
harvesting colored protein found predominately in cyanobacteria
and also in red algae. Phycobiliproteins have different
bioactivities like, antioxidant, anti-inflammatory, anticancer,
and others (Pagels et al., 2019). Phycocyanin (PC) plays a
protective role against oxidative damage and exerts anticancer
activity against different cancers. Arthrospira platensis produces
PC which shows antioxidant activity revealed through DPPH
assay (Pan-utai and Iamtham, 2019). PC isolated from Porphyra
yezoensis exerted anticancer activity against human melanoma
and laryngeal cancer cells in a dose-dependent way (Zhang et al.,
2011). PC can block cell cycle at G0/G1 or G2/M phase and
induce apoptosis through caspase 3 or 9 activations, reduction of
Bcl-2/Bax, COX-2, p-ERK, PEG2, cyclin D1, and CDK4, DNA
fragmentation, Cyt c release, ROS generation, reduction of NF-
κB, Fas, p53, ICAM-1, CD44, Chromatin condensation.
Moreover, PC also downregulates the genes involved in
metastasis and angiogenesis. Besides, PC can promote
autophagy through blocking Akt/mTOR/p70S6K pathways.
Furthermore, PC can enhance the efficacy of chemotherapeutic
drugs like doxorubicin, topotecan, betaine, when administered
combinedly (Jiang et al., 2017).

Apart from these phycobiliproteins, microalgae also produce
protein products, like whole-cell protein, protein hydrolysates,
protein concentrates, and peptides which have different biological
activities (Soto-Sierra et al., 2018). Microalgal peptides isolated
from S. maxima, S. obliquus, and T. suecica have been reported to
exert anti-inflammatory, antioxidant, and antimicrobial activity,
respectively (Vo et al., 2013; Montone et al., 2018; Guzmán et al.,
2019).

Amino Acids
There is evidence that cancer is related to the interference in
amino acid kinetics, which is indicated by an imbalance between
plasma amino acids and a higher rate of whole-body turnover of
protein and muscle protein breakdown, thus leads to muscle
damage. Therefore, increased amino acid supplementation is
recommended to promote the synthesis of muscle protein (van
der Meij et al., 2019). Supplementation with branched-chain
amino acids (BCAA) can control protein synthesis by
triggering the mTORC1 pathway which promotes muscle
protein balance. Amino acids like arginine and glutamine
improve nutritional status in cancer patients undergoing
surgery, chemotherapy, and radiotherapy by minimizing
inflammation (Soares et al., 2020). In NSCLC, AAs suppress
inflammation by increasing the number of CD4+ T cells and thus,
improve immune status among patients receiving chemotherapy
(Liu et al., 2018). However, Brown (1991) stated the presence of
all 20 amino acids in 16 microalgae species, where aspartate and
glutamate were the most abundant amino acids found in those
microalgae. Lim et al., (2018) reported six dinoflagellates having
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18 amino acids and glutamic acid was in the highest amount in all
species. Additionally, leucine, alanine, valine, and glycine are
found to be produced in higher amounts in C. sorokiniana and C.
vulgaris (Ballesteros-Torres et al., 2019).

Mycosporine-like amino acids (MAAs) with the antioxidant
property are also commonly found in microalgae. Xiong et al.,
(1999), reported the presence of five MAAs in Scenedesmus sp.
and C. sorokiniana (Xiong et al., 1999). Llewellyn and Airs (2010)
assessed 33 microalgae species and found six MAAs isolated from
these microalgae. Among these microalgae, Glenodinuim
foliaceum was the most prolific producer of MAAs, while
shinorine was the most common MAA (Llewellyn and Airs,
2010).

Minerals
Marine microalgae P. tricornutum, T. chuii, and N. granulate
have macro minerals (Ca, P, Mg, K, Na, S) and microminerals
(Cu, Fe, Mn, Se, Zn), while Botryococcus braunii and
Porphyridium aerugineum possess all these minerals except Se
(Fox and Zimba, 2018). Additionally, C. ellipsoidea contains
major elements like Na, Mg, Al, K, Ca, Mn, Fe, Cu, and Zn
(Kim et al., 2001). Moreover, cookies made from Spirulina and
Chlorella are found high in Se content along with some other
minerals Na, Mg, and P (Uribe-Wandurraga et al., 2020).

It has been reported that higher intake of calcium, magnesium,
manganese, zinc, selenium, potassium, and iodine intakes,
combined with lower intake of iron, copper, phosphorus, and
sodium intake can reduce the risk of colorectal cancer incident in
postmenopausal women (Swaminath et al., 2019).
Supplementation of antioxidants multivitamin and mineral
(AMM) protect cancer patients from radiotherapy or
chemotherapy-induced oxidative stress, which is indicated by
depletion of oxidative stress markers such as MDA and nitric
oxide, and restores the endogenous and exogenous antioxidants
(SOD, GPx, Vitamin C and Vitamin E) and essential trace
element levels (zinc, copper, and selenium), as well (Patil and
More, 2020). Moreover, a high daily intake of selenium is
protective against cancer, though the effects vary with different
cancers (Kuria et al., 2020).

Coenzyme Q
Coenzyme Q (CoQ10), also known as ubiquinone, is a naturally
occurring ubiquitous compound and also an important cofactor
in oxidative phosphorylation in mitochondria and associated
with cellular energy (ATP) production (Raizner, 2019).
Microalgae Porphyridium purpureum has been claimed to
produce CoQ10, as well as there is also evidence of the
presence of CoQ10 in C. pyrenoidosa (Klein et al., 2011).
Additionally, freeze-dried biomass of I. galbana showed a high
amount of CoQ10 (Matos et al., 2019).

CoQ10 in combination with alpha-lipoic acid (ALA) prevent
cisplatin-induced nephrotoxicity (Khalifa et al., 2020). It has been
claimed that coenzyme Q10 inhibits human colon cancer
(HCT116) cells through increased ROS and nitric oxide
production, while regulating the increased expression of
apoptosis-related genes and decreased expression of the anti-
apoptotic gene, Bcl2 (Jang et al., 2017). A standard dose of

300 mg/day for 3 months of coenzyme Q10 supplementation
has been proposed which can significantly increase antioxidant
enzymes activities (SOD, CAT, and GPx) and decreases the levels
of inflammatory markers in hepatocellular carcinoma patients
after surgery (Liu et al., 2016). On the other hand, it has been
observed that high proportion of patients with oral cancer has low
ubiquinone and this deficiency is related to high risk of central
obesity, hypertriglyceridemia, and metabolic syndrome (Chan
et al., 2020). Similar deficiency is often observed in breast cancer
also, where supplementation with CoQ10 has been suggested to
reduce the adverse effects (Tafazoli, 2017).

SEAWEEDS AS A POTENTIAL SOURCE OF
ANTIOXIDANTS

Seaweeds are an important part of Asian cuisine and are rich in
pharmaceutically important bioactive compounds. Seaweed
antioxidants comprise mainly carotenoids, polyphenols,
phycobilin (phycoerythrin and phycocyanin), sulfated
polysaccharide, vitamin (A, C) (Cornish and Garbary, 2011).
Sulfated polysaccharides and polyphenols from seaweed are not
similar to microalgae. Carrageenans, fucoidans, ulvan, and
porphyran are the most studied seaweed or macroalgal
sulfated polysaccharides that have antioxidant and anticancer
activity. Moreover, macroalgae also have non-sulfated
polysaccharides like alginic acid, laminarin possessing
antioxidative and antitumor properties (Venugopal, 2019). In
the case of polyphenolic compounds, the presence of
phlorotannins, tetraphloretol, fucophlorethol, eckol, difucol,
fucodiphlorethol, phloroglucinol, diphlorethol have been
reported from macroalgae (Mekinić et al., 2019). Among all
the antioxidant-rich phenolic compounds, phlorotannins, are
widely found in macroalgae, especially in brown algae
(Montero et al., 2017). Fatty acids from Laurencia papillosa
(red alga), sulfated polysaccharides from Pterocladia capillacea,
meroterpenoids like sargachromanol, sargahydroquinoic and
sargaquinoic acid from Sargassum serratifolium,
sesquiterpenoids (isozonarol) from Dictyopteris undulata
(brown alga) have been reported to exert high antioxidant
property (Fleita et al., 2015; Kumagai et al., 2018; Omar et al.,
2018; Lim et al., 2019). Besides these, a range of edible seaweeds
with antioxidative properties is consumed globally (Table 2).

LIMITATIONSONUSING ANTIOXIDANTS IN
CANCER THERAPY

Dietary antioxidant supplements can act as a “double-edged sword”
in cancer treatment due to their ability to kill cancer cells or to protect
them (Favre, 2019). A high daily intake of nutraceutical
supplementation may not be safe and may have toxic side effects.
Therefore, it is necessary to differentiate the prophylactic dose from
the therapeutic dose. A prophylactic dose protects healthy cells and
tumor cells, while a therapeutic dose inhibits the growth of only
cancer cells. (Calvani et al., 2020). In some cases, low concentrations
of free radicals because of the high administration of antioxidant
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supplementation may promote the proliferation of neoplastic cells
rather than interrupting it, thus causing cancer development (Valko
et al., 2007). Similarly, herbal supplements are likely to carry a greater
risk of pharmacokinetic (PK) interaction with chemotherapy agents
compared with vitamin, mineral, and other supplements, which may
decrease the efficacy of therapy or create an adverse effect (Luo and
Asher, 2018).

The potential harmful or beneficial effect of an antioxidant often
depends on its concentration, the presence of other antioxidants, and
the concentration of endogenous antioxidants. Many antioxidants
interact with the synergic effect with other antioxidants present in the
formulation, which is known as “sparing effects.”Administration of a
mixture of antioxidants exerts a higher biological effect due to their
synergistic activity in various phases, which is more beneficial than a
high amount of a single antioxidant (van Breda and de Kok, 2018).

CONCLUSION AND FUTURE DIRECTIONS

Over the last few decades, there have been several in vitro and in
vivo studies regarding the antioxidant therapies which have
shown that daily intake of a specific dosage of antioxidant
nutraceuticals is inversely related to cancer risk as well as
enhances the treatment efficacy, nonetheless, randomized
clinical trials have shown mixed results which are considered
as a real conundrum for the extensive use of antioxidant
supplements in cancer therapy. These inconsistent outcomes
can be directed by several factors, such as dose, synergism, the
bioavailability of antioxidants used, patients’ health status, type of
cancer, lifestyle, tendency to supplement intake, and the duration

of studies with other variables involved. Therefore, more
controlled and well-defined clinical trials with newer
approaches need to be conducted to accomplish a safe and
effective antioxidant supplement system in cancer treatment.
Likewise, there is a need for extensive research to explore
novel antioxidant molecules from algae, and their purification
strategies as well as in vivo investigations should be prioritized.
More studies are needed to explore the actual antioxidant
compounds present in several organic and aqueous extracts
that have already shown in vitro antioxidant as well as
anticancer activities, and to investigate their mechanism of
action on the cellular system and their capability to potentiates
chemotherapeutic drugs.
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Attitudes and Practices of Immune
Checkpoint Inhibitors in Chinese
Patients With Cancer: A National
Cross-Sectional Survey
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Xiaobing Chen7, Baocheng Wang8, Yongmei Yin6, Bo Zhu1 and Jianguo Sun1*
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Hospital of Shandong First Medical University, Jinan, China, 3Cancer Center, Renmin Hospital of Wuhan University, Wuhan,
China, 4Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan, China, 5Associate Chief Physician of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute,
Tongji University School of Medicine, Shanghai, China, 6Department of Oncology, The First Affiliated Hospital of Nanjing Medical
University, Nanjing, China, 7Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer
Hospital, Zhengzhou, China, 8Department of Oncology, No. 960 Hospital of PLA, Jinan, China

Immune-checkpoint inhibitors (ICIs) are revolutionizing the field of immuno-oncology. Side
effects and tumor microenvironment currently represent the most significant obstacles to
using ICIs. In this study, we conducted an extensive cross-sectional survey to investigate
the concept and practices regarding the use of ICIs in cancer patients in China. The results
provide real-world data on the adverse events (AEs) of ICIs and the factors influencing the
use of ICIs. This survey was developed by the Expert Committee on Immuno-Oncology of
the Chinese Society of Clinical Oncology (CSCO-IO) and the Expert Committee on Patient
Education of the Chinese Society of Clinical Oncology (CSCO-PE). The surveys were
distributed using a web-based platform between November 29, 2019 and December 21,
2019. A total of 1,575 patients were included. High costs (43.9%), uncertainty about drug
efficacy (41.2%), and no reimbursement from medical insurance (32.4%) were the factors
that prevented the patients from using ICIs. The patients were most concerned about the
onset time or effective duration of ICIs (40.3%), followed by the indications of ICIs and pre-
use evaluation (33.4%). Moreover, 9.0, 57.1, 21.0, and 12.9% of the patients reported
tumor disappearance, tumor volume reduction, no change in tumor volume, and increased
tumor volume. Among the patients who received ICIs, 65.7% reported immune-related
AEs (irAEs); 96.1% reported mild-to-moderate irAEs. Cancer patients in China had a
preliminary understanding of ICIs. Yet, the number of patients treated with ICIs was small.

Keywords: immunotherapy, adverse effects, attitude, practice, survey

INTRODUCTION

Immune checkpoint inhibitors (ICIs) are a type of anticancer therapy that acts by suppressing
immune inhibitory pathways such as the cytotoxic lymphocytes antigen proteins (CTLA-4) pathway
and the programmed cell death protein-1 (PD-1)/programmed death-ligand-1 (PD-L1) axis
(Pardoll, 2012). Cancer cells can activate those pathways to evade immune surveillance, but
when checkpoints are blocked, the immune cells can kill cancer cells (Cameron et al., 2011;
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Karwacz et al., 2011; Pardoll, 2012). Recently, some ICIs have
been approved by the FDA, including ipilimumab that targets
CTLA4 (Cameron et al., 2011); nivolumab, pembrolizumab, and
cemiplimab, which target PD-1 (Rajan et al., 2016; Vachhani and
Chen, 2016; Migden et al., 2020); atezolizumab, avelumab, and
durvalumab that can block the PD-L1 axis (Kaufman et al., 2018;
Schmid et al., 2018; Senan et al., 2019). Moreover, China has
recently launched a few new ICIs, including camrelizumab (Wei
et al., 2019), toripalimab (Song et al., 2020), and tisleizumab
(Wang et al., 2019), which have been approved for the treatment
of Hodgkin’s lymphoma.

ICIs have shown high efficacy in treating certain types of
cancer. For example, the pooled hazard ratios (HRs) for overall
survival (OS) and progression-free survival (PFS) in lung cancer
patients treated with PD-1/PD-L1 inhibitors were 0.69 and 0.74,
respectively, while the odds ratios (ORs) for treatment-related
grade 3–5 adverse events (AEs) were 0.30–0.33 (Lai et al., 2020).
Similar results were observed in the treatment of classic
Hodgkin’s lymphoma (Zhang et al., 2019), renal cell
carcinoma (Sun et al., 2020), urothelial cancer (Niglio et al.,
2019), melanoma (Karlsson and Saleh, 2017), and breast cancer
(Vranic et al., 2019). The NCCN (NCCN, 2019a; NCCN, 2019b;
NCCN, 2020a; NCCN, 2020b), ESMO (Dummer et al., 2015;
Escudier et al., 2016; Novello et al., 2016; Haanen et al., 2017),
and SITC (Puzanov et al., 2017; Rini et al., 2019) guidelines
support the use of ICIs for various cancer types, with specific
indications.

Despite the growth of the clinical indications for ICIs, the
attitudes and practices of cancer physicians and patients in China
toward ICIs are not clear. Side effects and tumor
microenvironment currently represent the biggest obstacles in
using ICIs. For example, severe immune-related AEs (irAEs) have
also been observed following treatment with ICIs (Das and
Johnson, 2019). Besides, some preclinical studies have shown
that the intestinal flora may significantly affect the efficacy of a
therapy targeting PD-1/PD-L1 (Sivan et al., 2015). Recently, we
conducted a national questionnaire survey (which covered thirty
different provinces and autonomous regions) to investigate the
use of PD-1/PD-L1 inhibitors by oncologists in China (Zhang
et al., 2020) and found that increasing numbers of oncologists
were interested in using PD-1/PD-L1 inhibitors. In this study, we
further expanded our search by conducting a more extensive
cross-sectional survey. The survey aimed to investigate the
concept and practices regarding ICIs in cancer patients across
China (including all provinces and cities in China). The results
provide real-world data on the AEs of ICIs and the factors
influencing the use of ICIs in China.

MATERIALS AND METHODS

Study Design and Participants
This was a cross-sectional survey of Chinese cancer patients. The
study was initiated by the Expert Committee on Immuno-
Oncology of the Chinese Society of Clinical Oncology (CSCO-
IO) and the Expert Committee on Patient Education of the
Chinese Society of Clinical Oncology (CSCO-PE). The surveys

were handled using a web-based survey platform between
November 29, 2019, and December 21, 2019. The patients
from the hospitals cooperating with the CSCO-IO and CSCO-
PE were invited consecutively to participate, covering all
provinces and cities in China.

The ethics committee of Xinqiao Hospital affiliated with the
Army Medical University (2019-Research No.127-01), approved
the study. The front page of the survey presented the study and
the implication for the patients. All patients signed the online
version of the informed consent form before filling in the survey.

To be included, the patients had to have been diagnosed with
any type of cancer before the start of the survey. The family
members were allowed to assist the patient in responding when
they were unable to read or move. The patients who never knew
about ICI therapy were excluded from the survey.

Survey Design
The survey was developed according to our previous study
(Zhang et al., 2020). It was compiled after discussion and
modification by the expert committees of the CSCO-IO and
CSCO-PE. The survey contained four parts: basic information,
information-seeking behavior, attitude regarding ICIs, and
practice of using ICIs.

Data Collection
Patients were recruited using two methods: 1) recruiting
respondents through online platforms of a third-party survey
agency, or 2) inviting eligible patients in the hospital. The patients
who received online invitations were provided with the survey
web link. The patients who received offline invitations filled in the
survey by scanning the QR code. The geographic location of the

FIGURE 1 | Province distribution of respondents. Valid surveys were
collected from 30 provinces. The highest number of respondents were from
the Chongqing area. Two respondents, who completed the survey outside
China, are not shown.
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respondents was determined through the network IP address
following the survey submission.

Quality Control
Quality control questions were set up in the survey to exclude
pharmaceutical company/scientific research company personnel,
physicians, and other medical personnel with high knowledge of
ICIs. The survey had to be entirely completed upon submission,
with no missing items.

Statistical Analysis
Statistical analysis was carried out using SPSS 20.0 for Windows
(IBM Corp., Armonk, NY, United States). Descriptive statistics
were used. Categorical data are presented as numbers and
percentages.

RESULTS

Characteristics of the Respondents
A total of 2,459 surveys were sent, and 1,937 qualified surveys
were collected (response rate of 78.8%). Besides, 362 patients
(18.7%) who never knew about ICIs were excluded. Finally, 1,575
patients (81.3%) were included in the analysis.

Figure 1 shows the map of the province distribution of valid
surveys. Valid surveys were collected from 30 provinces
(Supplementary Table S1). The characteristics of the
respondents are shown in Table 1. Most respondents were
41–60 years of age and undergraduate education (55.1%).
Lung cancer was the primary tumor type (59.1%), followed by
colorectal cancer (7.1%). The most known ICIs were
pembrolizumab (55.3%), nivolumab (48.9%), sindilizumab
(38.1%), and toripalimab (34.2%). The usage rate of ICIs was
32.4% (511/1,575). The remaining about two-thirds of patients
and their families who had not used the ICIs had known about
ICIs and were ready to choose ICIs.

Approaches and Preferences of Patients
Related to ICIs
Among the participants, 55.7% learned about ICIs from
network media, 48.8% received doctors’ advice regarding ICIs
therapy, 26.7% received ward mates’ advice, and 9.5 and 6.5%
learned about ICIs from a patient education program and

TABLE 1 | Characteristics of the survey respondents.

Characteristics Total, n (%)

Age, years
≤20 3 (0.2)
21–40 198 (12.6)
41–60 804 (51.0)
61–80 544 (34.5)
≥80 26 (1.7)

Education
Junior high school and below 213 (13.5)
High school 342 (21.7)
Undergraduate 868 (55.1)
Master degree and above 152 (9.7)

Type of malignant tumor
Age, years
Lung cancer 931 (59.1)
Colorectal cancer 112 (7.1)
Breast cancer 71 (4.5)
Ovarian cancer 65 (4.1)
Liver cancer 62 (3.9)
Stomach cancer 47 (3.0)
Esophagus cancer 38 (2.4)
Cervical cancer 26 (1.7)
Melanoma 23 (1.5)
Pancreatic cancer 22 (1.4)
Thyroid cancer 15 (1.0)
Lymphoma 15 (1.0)
Prostatic cancer 10 (0.6)
Endometrial cancer 10 (0.6)
Bladder cancer 3 (0.2)
Other malignancies 125 (7.9)

Patients’ knowledge of ICIs
Keytruda/pembrolizumab 871 (55.3)
Opdivo/nivolumab 770 (48.9)
Daboshu/sindilizumab 600 (38.1)
Tuoyi/toripalimab 538 (34.2)
Airika/camrelizumab 466 (29.6)
Tecentriq/atezolizumab 310 (19.7)

Age, years
Tislelizumab 250 (15.9)
Yervoy/ipilimumab 213 (13.5)
Imfinzi/durvalumab 164 (10.4)
Bavencio/avelumab 117 (7.4)
Tremelimumab 76 (4.8)

Total usage rate of ICIs 511 (32.4)
Patient use of ICIsa

Keytruda/pembrolizumab 174 (11.0)
Opdivo/nivolumab 10 8(6.9)
Tuoyi/toripalimab 93 (5.9)
Airika/camrelizumab 84 (5.3)
Daboshu/sindilizumab 7 7(4.9)
Tislelizumab 9 (0.6)
Tecentriq/atezolizumab 9 (0.6)
Yervoy/ipilimumab 7 (0.4)
Imfinzi/durvalumab 5 (0.3)
Bavencio/avelumab 4 (0.3)
Tremelimumab 3 (0.2)

Approach of access to ICIsa

Pharmacy 322 (63.0)
Hospital 196 (38.4)
Charitable donation 72 (14.1)
Participation in clinical trials 50 (9.8)

Age, years
Hong Kong, Macao, Taiwan, or overseas purchases 39 (7.6)
Wardmate approach (bought from others, transfer or gift) 60 (11.7)

Using place of ICIsa

(Continued in next column)

TABLE 1 | (Continued) Characteristics of the survey respondents.

Characteristics Total, n (%)

Hospital ward 428 (83.8)
Hospital outpatient 122 (23.9)
Community health service center 33 (6.5)
Private clinics 25 (4.9)
Home (medical home visit) 22 (4.3)
Pharmacy 7 (1.4)
Hong Kong, Macao, Taiwan, or overseas medical facilities 1 (0.2)

ICIs, immune checkpoint inhibitors.
aThe 511 patients who had been treated with ICIs were asked the following questions.
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friends’ advice, respectively (Figure 2). The patients were most
interested in graphics and text information (42.7%; Figure 3A).
In terms of content type, the patients were most interested in
medical progress (37.2%; Figure 3B). In terms of the type of
activity, the patients were most interested in online science
popularization (43.4%; Figure 3C). Besides, 49.0% of the
patients thought that the existing information channels
(wardmate groups, patient education official accounts, APP,
and rehabilitation organization activity) were very helpful
(Figure 3D). In terms of oncology services, the top three
patients’ interests were health guidance (68.3%), disease
education (64.5%), and cancer pain relief services (63.4%)
(Figure 3F).

Reasons for Using ICIs and Possible
Concerns Regarding ICI Therapy
High prices (43.9%), tuncertainty regarding drug efficacy
(41.2%), and no reimbursement from medical insurance
(32.4%) were the major factors that prevented the patients
from using ICIs (Figure 4A). Domestic recommendations and
the indications (42.9%), recommendations and indications
approved abroad (17.8%), and recommendations and
indications which were not approved but reported effective by
preclinical studies (14.8%) were the driving factors for the
patients to use ICIs (Figure 4B). The patients were most
concerned about the therapeutic effect (40.3%), followed by
the conditions for drug use (33.4%) (Supplementary Figure S1).

FIGURE 2 | Frequency of the answers regarding the methods for learning about immune checkpoint inhibitors.

FIGURE 3 | Frequencies of the approaches and preferences of the patients for acquiring immune checkpoint inhibitor treatment information. (A) Preferred types of
written material for information about checkpoint inhibitors. (B) Preferred types of information about checkpoint inhibitors. (C) Preferred types of online and offline
activities about checkpoint inhibitors. (D)Appreciation of the patients regardingwardmate group, patient education official accounts, APP, and rehabilitation organization
about checkpoint inhibitors. (E) Patients’ need for oncology services.
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Current Status of Drug Use: Efficacy and
Adverse Effects
ICIs were considered effective in 9.0% of the patients whose
tumor disappeared and 57.1% of the patients whose tumor
volume reduced. ICIs were considered ineffective in 21.0% of
the patients, who experienced no change in tumor volume, and in
12.9% of the patients whose tumor volume increased
(Supplementary Figure S2).

Among the patients who received ICIs, 34.3% reported no AEs
after ICIs. The most common AEs were immune-related
dermatitis (36.3%), immune-related pneumonia (16.5%), and
immune-related thyroid dysfunction (13.5%) (Supplementary
Figure S3A). Among the patients who experienced AEs, 54.9%
did not need to suspend treatment since they experienced mild
AEs. In comparison, 18.5% required suspension or termination
(14.6% with moderate AEs suspended the ICI treatment but
resumed after irAE remission and 3.9% with severe AEs and
discontinued ICI permanently) (Supplementary Figure S3B).
Besides, when the patients were asked, “if you or your family
initially used imported drugs with a good effect, would you

consider switching to a domestic drug that has a lower price
and approved related indications?”, 54.3% of patients said that
they would consider a replacement, 17.3% said they would not,
and 28.4% said that they would follow the doctor’s advice.

DISCUSSION

This national real-world survey investigated three main aspects
(information seeking, attitude, and practice) related to ICIs in
Chinese cancer patients. More than 80% of the patients were
familiar with ICIs, and the most common ways of gaining
relevant information (learning about ICIs therapy) were
internet media, doctors, and ward mates. Pembrolizumab,
nivolumab, and sindilizumab were the most commonly used
ICIs. Furthermore, patients were most interested in learning
about the existing graphics and texts and medical progress
related to ICIs treatment. At the same time, the online
popularization of science activity by doctors attracted the
patients’ attention. More than 80% of the patients recognized
the help of patient groups, patient education official accounts or

FIGURE 4 | Factors influencing the use of ICIs in patients. (A) Patients’ reasons for not using immune checkpoint inhibitor (ICI) treatment. (B) Patients’ reasons for
using ICI treatment.

Frontiers in Pharmacology | www.frontiersin.org March 2021 | Volume 12 | Article 5831265

Zhang et al. Immune Checkpoint Inhibitors in China

215

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


APP, and rehabilitation organizations, and patients had a strong
demand for various types of cancer services. Moreover,
approximately two-thirds of the patients have never been
treated with ICIs, primarily due to economic reasons or
uncertainty about drug effectiveness. Similar data were
reported by Haslam and Prasad (2019). They found that
43.6% of cancer patients in the United States were eligible for
ICIs in 2018 (Haslam and Prasad, 2019); yet, their study did not
examine the number of patients treated with ICIs.

Our data indicated that doctors’ recommendations were the
most important reason for patients to use ICIs. More than 50% of
the patients used pembrolizumab or nivolumab. The efficacy,
effective duration, conditions of use of the drug, and types of tests
required during therapy were the most important concerns.

Immune-related dermatitis was the most common irAE. In
addition, 50% of the patients reported that the degree of the AEs
was mild, and there was no need to suspend the ICIs. This was not
consistent with a previous study investigating the use of ICIs in
advanced lung cancer and found a high rate of ICI discontinuation
due to AEs (Muchnik et al., 2019). Suresh et al. indicated that the
rate of ICI-induced pneumonitis in lung cancer patients could be as
high as 7–19% (Suresh et al., 2018). A study reported a rate of 33%
of pneumonitis with any symptoms (grade ≥2) (Saito et al., 2020).
A meta-analysis showed that the pooled rates of grades 2, 3, 4, and
5 pneumonitis were 17.8, 7.9, and 14%, respectively (Dawe et al.,
2016). The cancer type, cancer stage, ECOG, and previous
treatments might be important factors in the patients’ response
to ICIs. Our data indicated that the patients paid more attention to
the indications and price when considering ICIs therapy, and less
concern about the origin of the drug (domestic or imported drug),
while only less than 20% of patients were reluctant to change to
domestic drugs after the approval of domestic drugs. Finally,
pharmacies were the most important way for patients to obtain
ICIs, followed by hospitals. The vast majority of patients received
drug infusions at hospitals.

These results present the real-world situation of the use of ICIs
in China, according to the patients’ perspective. Unfortunately,
considering different research settings, it was impossible to
compare the results from this survey with the results from
clinical trials. Real-world studies about the attitude and
practice toward ICIs are rare. Notably, many patients receive
ICIs outside of the approved indications in China. As ICIs in
China are just in the preliminary stage of obtaining their clinical
approval, the clinical use of ICIs might lag behind the global ones.
In addition, the patients learn about ICIs from the internet and
the news, and many of them are willing to receive ICIs beyond the
approved indications.

This study has some limitations. First, there were no restrictions
on the type of tumor, which might reflect the real situation more
comprehensively, but introduce a higher heterogeneity in the
results. Second, this was a cross-sectional study without follow-
up. The study was designed to investigate the attitudes and
practices, and no follow-up was required. Third, the patients
were concentrated in some provinces, possibly because the
current ICIs are still not being used in some provinces with
poorer economic conditions, leading to biases in the reported
results. Fourth, the patients who never heard of ICIs were

excluded, which introduced some bias. Fifth, the treatment
pattern of ICIs was not collected in the survey, including setting
of lines, combination medication and off-label use. Finally, the
rates of severe AEs and treatment discontinuation due to AEs were
smaller than those reported in previous studies (Suresh et al., 2018;
Muchnik et al., 2019). It is possible that there was a response bias.
Of note, a possible correlation between AE severity and response is
suspected (Palmieri and Carlino, 2018).

CONCLUSION

Cancer patients in China have a preliminary understanding of
emerging ICIs through physicians’ direct education or the internet.
Besides, patients are concerned about medical progress and the
doctors’ popularization of science. They also think that the
educational information provided by the media was helpful.
Uncertainty about the efficacy and economic factors are the
main obstacles in using ICIs. For patients who received ICIs,
the conditions of use of drugs are the most critical concerns.
More than 50% of the patients reported that the treatment is
effective. Although the AEs of ICIs are relatively common, most of
them are mild and moderate.
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Immune checkpoint inhibitor therapy has revolutionized the field of cancer
immunotherapy. Even though it has shown a durable response in some solid tumors,
several patients do not respond to these agents, irrespective of predictive biomarker (PD-
L1, MSI, TMB) status. Multiple preclinical, as well as early-phase clinical studies are
ongoing for combining immune checkpoint inhibitors with anti-cancer and/or non-anti-
cancer drugs for beneficial therapeutic interactions. In this review, we discuss the
mechanistic basis behind the combination of immune checkpoint inhibitors with other
drugs currently being studied in early phase clinical studies including conventional
chemotherapy drugs, metronomic chemotherapy, thalidomide and its derivatives,
epigenetic therapy, targeted therapy, inhibitors of DNA damage repair, other small
molecule inhibitors, anti-tumor antibodies hormonal therapy, multiple checkpoint
Inhibitors, microbiome therapeutics, oncolytic viruses, radiotherapy, drugs targeting
myeloid-derived suppressor cells, drugs targeting Tregs, drugs targeting renin-
angiotensin system, drugs targeting the autonomic nervous system, metformin, etc. We
also highlight how translational research strategies can help better understand the true
therapeutic potential of such combinations.

Keywords: translational research, immune checkpoint inhibitors (ICI), preclinical model, clinical trials, combination
strategies, immunotherapy adjuncts
INTRODUCTION

Immunotherapy is often thought to be a recent discovery. However, if we look at the beginnings of
cancer immunotherapy, the first scientific attempts were made Fehleisen and Busch, German
physicians who noted significant tumor regression post erysipelas infection. William Bradley Coley,
the father of immunotherapy first tried to use the immune system in 1981 for the treatment of bone
cancer. His work was largely ignored for more than fifty years when the field of immunology took off
with the discovery of T cell existence and their role in immunity. In the 1970s, Donald L. Morton
treated melanoma patients with Bacillus Calmette-Guerin (BCG) and 91% of patients treated had
May 2021 | Volume 11 | Article 5591611219

https://www.frontiersin.org/articles/10.3389/fonc.2021.559161/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.559161/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.559161/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.559161/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:hrishivarayathu@gmail.com
https://doi.org/10.3389/fonc.2021.559161
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.559161
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.559161&domain=pdf&date_stamp=2021-05-28


Varayathu et al. Augmenting Efficacy of ICIs
disease regression. Then in the 1980s, the first immunotherapy
cancer treatment IL-2 was approved for the treatment of
melanoma and kidney cancer by FDA (1). The most significant
breakthrough in immunotherapy came through James Allison &
Tasuku Honjo who discovered CTLA4 and PDL1 respectively as
therapeutic targets. That research work has further led to the
successful development of new checkpoint inhibitors, Dendritic
cell therapy, CAR-T cells, and other adoptive cell therapies,
oncolytic viruses which have all brought hope to the future of
immunotherapy (2).

PD1 and CTLA-4 are the two distinct inhibitory receptors on
T cells, which are targeted by monoclonal antibodies for
providing a durable antitumor immune response. The efficacy
of immune checkpoint inhibitors (ICI) was first noted in
metastatic melanoma with anti-tumor immune response and
significant improvement in overall survival (OS) of patients
received ipilimumab an anti-CTLA4 antibody (3). This led to
the accelerated clinical studies using anti-PD1/PDL-1 antibodies
and regulatory approval in other malignancies including few
hematological malignancies, non-small cell lung cancer
(NSCLC), and melanoma (4, 5). Currently, six ICIs have been
approved by the US FDA, of which five ICIs also received market
authorization by the European Medicines Agency (EMA).

Even though these therapies have shown survival benefits
with reduced incidence of drug resistance or adverse effects than
conventional chemotherapy, not all cancer patients are
benefitted from these drugs (6). The ability of the tumor
microenvironment (TME) to evade immune responses and
thereby generating immunosuppression/immune escape is one
of the prime challenges that remain (7). This tumor-derived local
environment is known as the immunosuppressive TME which
ultimately suppresses the antitumor immune response. Clinical
trial data analysis of ICI reveals mainly three kinds of patient
response: (a) patients who do not respond initially (innate
resistance); (b) those who respond at first but fail subsequently
(acquired resistance); and (c) those continuously respond from
initially to later stages (8, 9). Antigen experienced T-cell
activation and proliferation are entailed for the generation of
an effective antitumor response. The difference in response is
because of the insufficient generation and activity of anti-tumor
CD8 T-cells (10). Impaired processing and presentation of neo
antigens are other causes for the lack of activation of tumor-
reactive T cells. Multiple other factors like type of cancer, tumor
heterogeneity, multiple lines of treatment, and the
immunosuppressive TME generated due to tumor-related and
non- tumor related factors result in poor response to ICIs (11).
Another important obstacle in reduced ICI efficacy is tumor
associated hypoxia due to the structural organization of
stroma. This can results in altering the pharmacokinetics of
the drug by reducing the target drug disposition. Hypoxia
can potentiate tumor invasion, stemness, and metastatic
capacity mainly through the activation of hypoxia-inducible
factor-1a– mediated hepatocyte growth factor/c-Met pathway
(12, 13). Immunosuppressive microenvironment-associated
macrophages enhance tumor hypoxia and further reduce the
efficacy of ICIs (14). These results highlight the necessity of
Frontiers in Oncology | www.frontiersin.org 2220
combination therapies that can improve the tumor
immunogenicity, changing the immunosuppressive TME and
targeting other pathways which potentially inhibit the activation
of T cells. There are many drugs including cytotoxic as well as
non-anti-cancer drugs which have shown promising results in
potentiating the efficacy of ICIs.
MATERIALS AND METHODS

We collected 250 published studies that had used the
combination of ICIs and other therapies. From the collected
studies duplicates were removed and further assessed for
eligibility as shown in Figure 1. The review covered all
countries with a web-based search of PubMed/Google Scholar
published from 2005 to 2019. A further search was conducted in
ClinicalTrials.gov to check for the available clinical trials. A few
of the clinical trials were further explored by contacting the study
teams or information gathered from recent press releases for
the study.

Inclusion/Exclusion Criteria
Original primary research such as experimental, observational,
and qualitative studies which are written in English and
published in peer-reviewed journals are included in the review.
Some of the review articles were also selected if they contained
outcomes of previous exploratory studies. Search terms were
used to find specific studies related to the subject (Table 1).
Articles that define the mechanism behinds the use of drugs as
adjuncts with ICIs were considered eligible.

We mainly focused on the mechanisms and rationale of using
an adjunct with ICIs for the combinations already in clinical
trials. Adjuncts used only in preclinical studies with no currently
available clinical data have been excluded from the review.

Anti-Cancer Drugs in Combination
With ICIs
Cytotoxic Drugs
Conventional chemotherapy drugs such as anthracyclines,
cyclophosphamide, Cisplatin, Oxaliplatin, gemcitabine,
temozolomide, and paclitaxel are observed to enhance tumor
immunity at lesser doses. These drugs at normal dosage and
schedule produce immunogenic cell death (ICD) which results in
the tumor antigen release and danger signal generation from
dying cancer cells known as damage-associated molecular
patterns (DAMPs), which in turn provide tumor-targeting
immune responses (15). The immunogenicity of tumor cells is
modulated by these drugs via various mechanisms comprising
(1) enhanced tumor antigen expression and presentation;
(2) down regulating coinhibitory molecules (B7-H1/PDL1) and
upregulating costimulatory molecules (B7-1) expressed on the
surface of tumor cells which in turn increases the function of
effector T-cell; (3) granzyme and perforin-dependent
mechanisms increasing T-cell facilitated tumor cell lysis; and
(4) decreasing MDSCs and Tregs infiltration in the TME.
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In mouse immunization experiments using tumor cells
pretreated with chemotherapeutic agents such as mitoxantrone
and doxorubicin, effective cancer regression via CRT
(calreticulin) expression and HMGB1 secretion was observed
(16, 17). These findings have been confirmed in clinical studies
which show that CRT expression is crucial for better prognosis in
cancer patients (18). Many studies over the past decade have
shown that different chemotherapy regimens also promote
differentiation of Th1/Th2 and amplify the proliferation of T-
lymphocytes in solid cancers (renal cell carcinoma, colon cancer,
and ovarian cancer) (19, 20).

Various clinical trials such as KEYNOTE-189, IMPower-132
which used ICI combination with chemotherapy in non-
squamous NSCLC have shown significant benefits.
Frontiers in Oncology | www.frontiersin.org 3221
After a median follow-up of 18.7 months, the combination of
pembrolizumab and chemotherapy resulted in a longer OS
compared to chemotherapy alone, with a median OS of 22.0
months versus 10.7 months (hazard ratio [HR], 0.56; 95% CI,
0.45-0.70, P.00001). At 9.0 months versus 4.9 months, respectively,
progression-free survival (PFS) was also substantially increased as
compared to placebo plus chemotherapy (HR, 0.48; 95% CI,
0.40-0.58, P <.00001).

Recent findings from KEYNOTE-062 which used first-line
ICI chemotherapy combination in advanced gastric or
gastroesophageal junction (G/GEJ) adenocarcinoma was non-
inferior to chemotherapy and showed a slight improvement in
OS. Pembrolizumab plus chemotherapy resulted in a median
OS of 12.5 months (95% CI, 10.8-13.9) versus 11.1 months
FIGURE 1 | Research strategy with PRISMA flow diagram.
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(95% CI, 9.2-12.8) with chemotherapy (HR 0.85; 95% CI, 0.70-
1.03; p = 0.046) (21–23).

The second interim analysis of IM passion 130 trial that
assessed the efficacy and safety of atezolizumab plus nab-
paclitaxel in patients with unresectable, locally advanced, or
metastatic triple-negative breast cancer (TNBC) reported that
median OS analysis in patients with PD-L1 immune cell-positive
tumors was 25 months (95% CI 19.6–30.7) in atezolizumab +
nab-paclitaxel arm and 18 months (13.6–20.1) in placebo + nab-
paclitaxel arm(stratified HR 0.71, 0.54–0.94]) (24).

In March 2020, FDA approved Durvalumab chemotherapy
(Etoposide + Cisplatin or carboplatin) combination as a first-line
treatment for extensive-stage small cell lung cancer (ES-SLC). In
untreated previously ES-SLC, CASPIAN trial showed a median
OS of 13 months (95% CI: 11.5, 14.8) in the durvalumab plus
chemotherapy group compared with 10.3 months (95% CI: 9.3,
11.2) in the chemotherapy alone arm (hazard ratio 0.73; 95% CI:
0.59, 0.91; p=0.0047). However, median PFS was almost the same
in the combination arm (5.1months) vs chemotherapy alone
(5.4months) arm (25).

Metronomic Therapy
Metronomic therapy, an alternate approach for chemotherapy
administration encompasses continuous administration of lesser
doses of cytotoxic agents. Various studies have reported significant
anti-tumor immune responses, lower therapeutic resistance, and a
decrease in tumor vascularization (26–28). Chemotherapeutic
drugs such as methotrexate, cyclophosphamide, etoposide,
vinblastine, and paclitaxel are used widely as metronomic
chemotherapy in various cancers. Even though high dose
chemotherapy target cancer cells and are immunosuppressive,
high-frequency low dose chemotherapy is considered to be
immunostimulatory by targeting the supporting tumor stroma.
Cancer cells in tumors cause the surrounding stroma to
release additional angiogenesis stimulators. Angiogenesis in the
tumor is a process initiated by growth factors and tumor-
associated endothelial cells (TEC). When exposed to cancer
chemotherapeutic agents at much lower concentrations than
those needed to cause tumor cell damage, TECs lose
functionality. This property of low-dose chemotherapy such as
vinblastine, doxorubicin, paclitaxel, and carboplatin is
documented in many studies (29, 30). This can reduce the
Frontiers in Oncology | www.frontiersin.org 4222
tumor-resistant clones, by giving combination with other
treatment modalities (31).

Chemotherapy administered metronomically reduces the
number of immunosuppressive regulatory T cells (Tregs) (32–
34), promote antigen-presenting cell maturations (35), improves
the activity of dendritic cells (DCs) (36) and, chiefly enhances the
activation and function of cytotoxic CD8+ T cells and NK cells.
Moreover, it also targets other TME immunosuppressive
components referred to as myeloid-derived suppressor cells
(MDSCs) (37–40). MDSCs are a diverse group of myeloid
immune cells characterized by their immature state and ability
to suppress T cells. This particular property of metronomic
chemotherapy can be used for the modulation of the efficacy of
ICIs and many studies have reported positive results. It is
proposed that metronomic chemotherapy promotes tumor-
specific immune activation; concurrent administration of ICIs
could maintain the T cells in an activated state. Combination of
low dose cyclophosphamide and oxaliplatin sensitized tumor ICI
which are initially refractory by increasing CTLs/Treg ratio in the
TME in a murine model of lung adenocarcinoma (41). Similar
results were obtained in the murine colorectal cancer model
where oxaliplatin augmented the amounts of CTLs and activated
dendritic cells (DCs) potentiating the efficacy of anti-PD-L1
therapy (42). Enhanced infiltration of CD8+ and CD4+FoxP3T
along with suppression of the CD4+ CD25+ FoxP3+ regulatory
T cell function have seen after low dose cyclophosphamide with
an anti-PD1 agent and improved tumor-free survival in a model
of cervical cancer (43, 44). There are clinical studies ongoing,
combining a metronomic dose of cyclophosphamide along with
ICIs as depicted in Table 2.

Thalidomide and Its Derivatives
Thalidomide was first used for its direct anti-tumor actions on
myeloma cells by resulting in cell cycle arrest and anti-angiogenic
effect. Thalidomide derivatives such as lenalidomide,
pomalidomide were then classified as immunomodulatory
agents as they stimulate T cells and natural killer cells (NK) to
secrete IL-2 and IFNg and inhibit Tregs. This resulted in the
amplification of specific immunity in myeloma (45, 46).
Lenalidomide in combination with dexamethasone and
proteasome inhibitor (Bortezomib and Carfilzomib) is
considered as a standard chemotherapy regimen for multiple
TABLE 1 | Search terms used for the collection of articles.

Immune therapy Enhancer

‘Immune checkpoint Inhibitors’, ‘anti-PD(L)1’, ‘anti CTLA4’ “Chemotherapy” OR “metronomic chemotherapy”
‘Immune checkpoint Inhibitors’, ‘anti-PD(L)1’, ‘anti CTLA4’ “Epigenetic therapy” OR “hypomethylating agents” OR “Histone deacetylase inhibitors”
‘Immune checkpoint Inhibitors’, ‘anti-PD(L)1’, ‘anti CTLA4’ “Anti-angiogenic therapies” OR “Tyrosine Kinase Inhibitors” OR “Bevacizumab”
‘Immune checkpoint Inhibitors’, ‘anti-PD(L)1’, ‘anti CTLA4’ “Microbiota” OR “gut microbe” OR “microbiome”
‘Immune checkpoint Inhibitors’, ‘anti-PD(L)1’, ‘anti CTLA4’ “Oncolytic Virus” OR “Talimogene Laherparepvec” OR “Coxsackie virus”
‘Immune checkpoint Inhibitors’, ‘anti-PD(L)1’, ‘anti CTLA4’ “Targeted therapy” OR “CDK4/6 Inhibitors” OR “PARP Inhibitors” OR “Other small molecule inhibitors” OR

“Bruton Kinase Inhibitors” OR “selective estrogen down regulators”
‘Immune checkpoint Inhibitors’, ‘anti-PD(L)1’, ‘anti CTLA4’ “Radiation” OR “Radiotherapy” OR “abscopal effect”
‘Immune checkpoint Inhibitors’, ‘anti-PD(L)1’, ‘anti CTLA4’ “T cell co-stimulator” OR “Nectin 4” OR “Enfortumab Vedotin” OR “Interleukin 6”
‘Immune checkpoint Inhibitors’, ‘anti-PD(L)1’, ‘anti CTLA4’ “Drugs targeting renin-angiotensin system OR Losartan”
‘Immune checkpoint Inhibitors’, ‘anti-PD(L)1’, ‘anti CTLA4’ “Drugs targeting autonomous nervous system” OR “Beta Blockers”
‘Immune checkpoint Inhibitors’, ‘anti-PD(L)1’, ‘anti CTLA4’ “Oral hypoglycemic agents” OR “Metformin” OR “Rosiglitazone” OR “pioglitazone”
‘Immune checkpoint Inhibitors’, ‘anti-PD(L)1’, ‘anti CTLA4’ “Drugs targeting Myeloid-derived suppressor cells” and Tregs”
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TABLE 2 | Few clinical trials listed in Clinical trials.gov which uses combination strategies with ICIs as of 17-04-2020.

Adjunct Therapy ICI used Study Title Clinical Trial
Reference

Phase Status

Metronomic Vinorelbine Atezolizumab Trial to Evaluate Safety and Efficacy of Vinorelbine With Metronomic
Administration in Combination With Atezolizumab as Second-line
Treatment for Patients With Stage IV NSCLC (VinMetAtezo)

NCT03801304 Phase 2 Recruiting

Metronomic Cyclophosphamide Pembrolizumab Evaluation of Pembrolizumab in Lymphopenic Metastatic Breast
Cancer Patients Treated With
Metronomic Cyclophosphamide (CHEMOIMMUNE)

NCT03139851 Phase 2 Active

Methotrexate, Etoposide, Ifosfamide,
Dexamethasone, Pegaspargase

Pembrolizumab Chemoimmunotherapy and Allogeneic Stem Cell Transplant for NK
T-cell Leukemia/Lymphoma

NCT03719105 Phase 1 Recruiting

Nab-Paclitaxel, Epirubicin,
Cyclophosphamide

Pembrolizumab Neoadjuvant Study of Pembrolizumab in Combination With Nab-
paclitaxel Followed by Pembrolizumab in Combination With Epirubicin
and Cyclophosphamide in Patients With Triple-Negative Breast
Cancer

NCT03289819 Phase 2 Active

Carboplatin, Etoposide Atezolizumab A Study of Atezolizumab in Combination With Carboplatin
Plus Etoposide to Investigate Safety and Efficacy in Patients With
Untreated Extensive-Stage Small Cell Lung Cancer (MAURIS)

NCT04028050 Phase 3 Recruiting

Pegylated liposomal doxorubicin,
Cyclophosphamide

Atezolizumab Atezolizumab Combined With Immunogenic Chemotherapy in
Patients With Metastatic Triple-negative Breast Cancer (ALICE)

NCT03164993 Phase 2 Recruiting

5-Fluorouracil, Irinotecan, Leucovorin
calcium, Oxaliplatin

Nivolumab Nivolumab in Combination With Chemotherapy Before Surgery in
Treating Patients With Borderline Resectable Pancreatic Cancer

NCT03970252 Phase 2 Recruiting

Capecitabine, Carboplatin,
Gemcitabine Hydrochloride, Nab-
paclitaxel, Pegylated
Liposomal Doxorubicin Hydrochloride

Durvalumab Durvalumab in Combination With Chemotherapy in Treating Patients
With Advanced Solid Tumors, (DURVA+ Study)

NCT03907475 Phase 2 Recruiting

ATRA Pembrolizumab Pembrolizumab and All-Trans Retinoic Acid Combination Treatment of
Advanced Melanoma

NCT03200847 Phase 2 Recruiting

Lenalidomide Nivolumab Nivolumab and Lenalidomide in Treating Patients With Relapsed or
Refractory Non-Hodgkin or Hodgkin Lymphoma

NCT03015896 Phase 2 Recruiting

Lenalidomide, Pomalidomide,
Daratumumab, Dexamethasone

Atezolizumab A Study of Atezolizumab (Anti-Programmed Death-Ligand 1 [PD-L1]
Antibody) Alone or in Combination With an Immunomodulatory Drug
and/or Daratumumab in Participants With Multiple Myeloma (MM)

NCT02431208 Phase 1 Active

Vorinostat, Tamoxifen Pembrolizumab Reversing Therapy Resistance With Epigenetic-Immune Modification NCT02395627 Phase 2 Active
Vorinostat Pembrolizumab Pembro and Vorinostat for Patients With Stage IV NSCLC NCT02638090 Phase 2 Recruiting
Guadecitabine Atezolizumab A Study Evaluating the Safety and Pharmacology

of Atezolizumab Administered in Combination With
Immunomodulatory Agents in Participants With Acute Myeloid
Leukemia (AML)

NCT02892318 Phase 1 Completed

Azacitidine Pembrolizumab Azacitidine and Pembrolizumab in Pancreatic Cancer NCT03264404 Phase 2 Recruiting
Pegylated liposomal doxorubicin,
Cyclophosphamide

Nivolumab,
Ipilimumab

Phase IIb Study Evaluating Immunogenic Chemotherapy Combined
With Ipilimumab and Nivolumab in Breast Cancer (ICON)

NCT03409198 Phase 2 Recruiting

Selicrelumab, Cobimetinib,
Gemcitabine + Carboplatin or
Eribulin, Capecitabine, Bevacizumab,
Ipatasertib

Atezolizumab A Study Evaluating the Efficacy and Safety of Multiple
Immunotherapy-Based Treatment Combinations in Patients With
Metastatic or Inoperable Locally Advanced Triple-Negative Breast
Cancer (Morpheus-TNBC) (Morpheus-TNBC)

NCT03424005 Phase 2 Recruiting

Trabectedin Nivolumab,
Ipilimumab

SAINT: Trabectedin, Ipilimumab, and Nivolumab as First-Line
Treatment for Advanced Soft Tissue Sarcoma

NCT03138161 Phase 2 Recruiting

Trabectedin Nivolumab Combined Treatment With Nivolumab and Trabectedin in Patients
With Metastatic or Inoperable Soft Tissue Sarcomas (NiTraSarc)

NCT03590210 Phase 2 Recruiting

Talimogene Laherparepvec
(Oncolytic Virus), Trabectedin

Nivolumab Talimogene Laherparepvec, Nivolumab, and Trabectedin for Sarcoma
(TNT)

NCT03886311 Phase 2 Recruiting

Letrozole, Palbociclib Pembrolizumab Pembrolizumab, Letrozole, and Palbociclib in Treating
Postmenopausal Patients With Newly Diagnosed Metastatic Stage IV
Estrogen Receptor-Positive Breast Cancer

NCT02778685 Phase 2 Recruiting

Entinostat, Fulvestrant, Ipatasertib,
Exemestane, Tamoxifen, Abemaciclib

Atezolizumab A Study of Multiple Immunotherapy-Based Treatment Combinations
in Hormone Receptor (HR)-Positive Human Epidermal Growth Factor
Receptor 2 (HER2)-Negative Breast Cancer (MORPHEUS HR+BC)

NCT03280563 Phase 2 Recruiting

Cabozantinib Ipilimumab,
Nivolumab

Combined Immunotherapy and Targeted Therapy for Hepatocellular
Carcinoma

NCT01658878 Phase 2 Active

Pemetrexed, Carboplatin,
Bevacizumab

Atezolizumab Carboplatin Plus Pemetrexed Plus Atezolizumab Plus Bevacizumab in
Chemotherapy and Immunotherapy-naïve Patients With Stage IV
Non-squamous NSCLC

NCT03713944 Phase 2 Recruiting

Radiation Therapy Pembrolizumab Pembrolizumab With or Without Radiation in Patients With Recurrent
or Metastatic Adenoid Cystic Carcinoma

NCT03087019 Phase 2 Active

(Continued)
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myeloma. Some studies show that the immunostimulatory effects
of lenalidomide are hampered by the concurrent use of
dexamethasone (46). The immunomodulatory effects of these
drugs can be exploited to enable an enhanced action with ICIs.
An invitro cell line study suggests good results with the
combination of ICIs and thalidomide derivatives in anti-
leukemic therapy (47).

Despite these effects, FDA on July 2017 placed a clinical hold
on three clinical trials of the programmed death 1 (PD-1)
inhibitor pembrolizumab in combination with lenalidomide or
pomalidomide for patients with multiple myeloma: KEYNOTE-
183, KEYNOTE-185, and KEYNOTE-023 because of increasing
reports of death. However, there are similar clinical trials
ongoing with the combination of ICIs and lenalidomide for
other indications such as lymphoma (47–49). In KEYNOTE-023
responses were durable in the overall study population which
includes lenalidomide refractory patients with a median duration
of response (DOR) of 18.7 months, Objective response rate
(ORR) of 44%. Median PFS was 7.2 months and median OS
was not reached (50). The median PFS was 27.6 months with a
median follow-up of 32.2 months in a two-year update of a Phase
II trial of Pembrolizumab, Lenalidomide, and dexamethasone as
post autologous stem cell transplant consolidation in multiple
myeloma. Similarly, Badros et al. reported ORR-60%, DOR 14.7
months, median PFS 17.4 months, Median OS not reached with
Pembrolizumab, pomalidomide and dexamethasone
combination and they also reported long term remissions after
discontinuing Pembrolizumab, 57% have ongoing response
without any further treatment with a median survival of 18
months (51, 52).

Epigenetic Therapy
Hypomethylating Agents
Hypomethylating agents such as azacytidine and decitabine are
mainly used in the treatment of myelodysplastic syndromes
(MDS) and acute myeloid leukemia (AML). Due to the
availability of advanced genomic studies, it is evident that
hypermethylation of tumor suppressor genes in the promoter
region is one of the pathways of carcinogenesis (53). The most
Frontiers in Oncology | www.frontiersin.org 6224
common and stable of epigenetic alterations in cancer is
methylation of DNA at CpG islands. Hypermethylation tends
to limit ICIs by blocking endogenous interferon responses
required for cancer cell recognition whereas global
hypomethylation marks in the expression of inhibitory
cytokines and PD-L1, supplemented by epithelial-mesenchymal
variations contribute to immunosuppression. The drivers of
these opposing states of methylation are not stated well. DNA
methylation is also essential in the ‘exhaustion’ of cytotoxic T
cells that occurs as a result of tumor progression (54). The
feasibility of targeting this mechanism with hypomethylating
agents is being widely studied now. Other than this, the collective
data of studies suggests that hypomethylating agents are known
to promote the expression of cancer-specific antigens and major
histocompatibility complex (MHC) results in improved
immunologic recognition of cancer cells and enhanced anti-
tumor responses (55–57). This property is exploited By Brahmer
J et al. and when six patients in a clinical trial of epigenetic
therapy for advanced treatment-resistant NSCLC were switched
to an immunotherapy trial targeting the PD-1/PD-L1 immune
tolerance checkpoint, they saw a substantial improvement. Three
of the six patients had long-term partial responses to
immunotherapy, ranging from 14 to 26 months, while the
other two had stable disease for 8.25 and 8.5 months,
respectively (4, 5, 58). Various clinical studies are ongoing to
check the efficacy and toxicity of this combination therapy in
various cancers (Table 2).

Histone Deacetylase Inhibitors (HDACis)
As discussed above, in cancers that are immune to
immunotherapy, epigenetic inhibitors may be used as
adjunctive therapy or as a replacement for immunotherapy
(sole agents of immune modification). In the TME, epigenetic
changes are normal, resulting in a variety of gene expression
changes and tumor escape. Recently, HDAC inhibitors have
shown potential anti-cancer properties such as cell cycle arrest,
anti-angiogenesis, activation of both intrinsic and extrinsic
apoptotic pathways, autophagy, and modulation of immune
responses. HDACs are classified mainly into 4 categories
TABLE 2 | Continued

Adjunct Therapy ICI used Study Title Clinical Trial
Reference

Phase Status

Decitabine, Radiation Therapy Pembrolizumab Pembrolizumab in Combination With Decitabine and Hypofractionated
Index Lesion Radiation in Pediatrics and Young Adults

NCT03445858 Phase 2 Recruiting

Dasatinib or Imatinib Mesylate or
Nilotinib

Pembrolizumab Pembrolizumab and Dasatinib, Imatinib Mesylate, or Nilotinib in
Treating Patients With Chronic Myeloid Leukemia and Persistently
Detectable Minimal Residual Disease

NCT03516279 Phase 2 Recruiting

Multiple ICIs Durvalumab,
Tremelimumab

Neoadjuvant Immunotherapy With Durvalumab and Tremelimumab for
Bladder Cancer Patients Ineligible for Cisplatin (NITIMIB)

NCT03234153 Phase 2 Active

Multiple ICIs Pembrolizumab,
Ipilimumab

Low Dose Ipilimumab With Pembrolizumab in Treating Patients With
Melanoma That Has Spread to the Brain

NCT03873818 Phase 2 Active

Ibrutinib Pembrolizumab Pembrolizumab in Combination With Ibrutinib for Advanced,
Refractory Colorectal Cancers

NCT03332498 Phase 2 Active

Ibrutinib, Cetuximab Nivolumab Trial of Ibrutinib Combined With Nivolumab or Cetuximab to Treat
Recurrent/Metastatic HNSCC

NCT03646461 Phase 2 Recruiting

Fecal Microbiota transplant Pembrolizumab Fecal Microbiota Transplant and Pembrolizumab for Men With
Metastatic Castration-Resistant Prostate Cancer.

NCT04116775 Phase 2 Recruiting
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(Class I, Class II, Class III, Class IV) based on their structure,
which is further subdivided into Zinc dependent (Class I, Class
II, Class IV) and NAD+ dependent (Class III) for their enzymatic
activity (59). Modulation of the immune response can be utilized
for improving the outcome of ICIs. HDACis can change the
expression of immune system upregulaters including MHC and
costimulatory molecules, which affects antigen presentation and
thus T cell activation. It has also been observed that naïve T cell
functionality is stimulated by HDAC6i and Tregs are targeted by
class II HDACis. The Class I HDACis target adaptive immunity
by enhancing natural killer and CD8 cells functionality. Several
non-selective HDACis such as vorinostat, belinostat, trichostatin
A are being tried in clinical trials (60). HDAC I, II, and IV are
inhibited by Pan-HDACi such as valproic acid, vorinostat, and
panobinostat. MS275 (a class I HDAC inhibitor), MC1568 (a
class III HDACi), sirtinol (a class II HDACi), and Nexturastat A
(HDAC6i), among many others, are currently being used to
reduce the toxic effects associated with pan-HDAC inhibition.
The wide range of biological effects may be due to each
inhibitor’s particular chemical structure and mechanistic
profiles (61).

In a B16F10 syngeneic murine model study by Wood DM
et al. HDAC inhibitor treatment resulted in rapid upregulation of
histone acetylation of the PD-L1 gene leading to improved and
persistent gene expression. The effectiveness of combining
HDAC inhibitor with PD-1 blockade for the treatment of
melanoma was studied in a murine B16F10 model and
compared to control and single-agent therapies, they had a
slower tumor development and a higher survival rates (62).

Jhanelle et al. Phase 1/1b study of pembrolizumab plus
vorinostat in advanced/metastatic NSCLC concluded that
Pembrolizumab plus vorinostat was well tolerated and
demonstrated preliminary anti-tumor activity despite
progression on prior ICI treatment. Of 30 patients (6 ICI-naive
and 24 ICI-pretreated) were evaluable for response, 4 (13%) had
a partial response, 16 (53%) had SD, and 10 (33%) had PD for a
DCR of 67% without any dose-limiting toxicities (63).
Targeted Therapy in Combination With ICIs
CDK4/6 Inhibitors
CDK inhibitors are a class of naturally occurring molecules
that belong to the Cyclin-dependent kinase inhibitors family
INK4 and specifically inhibit the CDK4/6 proteins. By
dephosphorylating the retinoblastoma tumor suppressor
protein, CDK4/6 inhibitors block the G1 to S phase transition
of the cell cycle, resulting in cell cycle arrest in tumor cells. Teo
ZL et al. showed that a combination of CDK4/6 and PD1
blockade resulted in intensifying tumor growth inhibition.
Increased antigen presentation by tumor cells, stimulation of
effector T lymphocyte activation, and decreased proliferation of
immunosuppressive Treg cells are among the various
mechanisms suggested (64, 65). The immune checkpoint
pathway is majorly implicated with the increased immune
response upon inhibition of CDK4/6 inhibition. The results of
a phase Ib clinical trial combining abemaciclib and
pembrolizumab in ER-positive HER2-negative women at a 16-
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week interim study, MBC demonstrated that this combination is
secure, with an ORR of 14.3% (66).

In the JPCE trial, 25 hormone receptor-positive Her2 negative
metastatic breast cancer patients were treated with a
combination of Abemaciclib and Pembrolizumab. In this trial,
the partial response (PR) rate at 16 weeks was 14.3% compared to
6.8% seen in the MONARCH-1 trial which used single-agent
abemaciclib. There were no complete responses in either trial. In
both experiments, the incidence of stable disease was 60.7% in
JPCE and 60.6% in MONARCH-1. In the JPCE experiment,
fewer patients developed a progressive disease (17.9% and
25.0%). At the early assessment, the disease control rate (DCR)
in JPCE was 75%, while in MONARCH-1 it was 67.4%. As of 17-
04-2020, the study is still ongoing and results are yet to
publish (66).

Anti-Angiogenic Drugs
Anti-angiogenic drugs work by inhibiting platelet-derived
growth factor receptors (PDGFRs) and fibroblast growth factor
receptors, which target vascular endothelial growth factor
(VEGF)/VEGF2 or other small molecules involved in
angiogenic and proliferative pathways (FGFRs). Preclinical
studies have shown that abnormal tumor vasculature promotes
immunosuppressive TME, which can be reversed with anti-
angiogenic therapies (67, 68). Inflammatory mediators such as
cytokines and immune cells promote and control angiogenesis,
which in turn may affect the microenvironment (Figure 2) (69).
Anti-angiogenic agents can thus activate the immune system,
and immunotherapy can also have an anti-angiogenic effect,
therefore they can act synergistically on the tumor.

Results of the phase 3 IMpower150 (NCT02366143) study
reported in 2018 showed significant improvement in OS of
patients treated with a combination of Atezolizumab,
Bevacizumab along with chemotherapy in treatment-naïve
metastatic non-squamous non–small-cell lung cancer patients.
A total of 800 patients were given either atezolizumab plus
bevacizumab plus carboplatin plus paclitaxel therapy (ABCP
group) or bevacizumab plus carboplatin plus paclitaxel therapy
(BCCP group) (BCP group). The study found that the ABCP
community had slightly longer progression-free survival (PFS)
and overall survival (OS) (median PFS of ABCP vs. BCP: 8.3 vs.
6.8 months; hazard ratio: 0.61, 95% CI: 0.52 to 0.72) (median OS
of ABCP vs. BCP: 19.2 vs. 14.7 months; hazard ratio: 0.78, 95%
CI: 0.52 to 0.72). CI ranges from 0.64 to 0.96) (70).

Keynote-426 (NCT02853331), an open-label, phase 3 trial,
which randomly assigned 861 patients with previously
untreated advanced clear-cell renal-cell carcinoma to receive
pembrolizumab (200 mg) intravenously once every 3 weeks
plus axitinib (5 mg) orally twice daily (432 patients) and
single-agent sunitinib (50 mg) orally once daily for the first 4
weeks of each 6-week cycle (429 patients) which disclose that
after a median follow-up of 12.8 months, the estimated %age of
patients who were alive at 12 months was 89.9% in the
pembrolizumab–axitinib group and 78.3% in the sunitinib
group (hazard ratio for death, 0.53; 95% confidence interval
[CI], 0.38 to 0.74; P<0.0001) and median progression-free
survival was 15.1 months in the pembrolizumab–axitinib
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group and 11.1 months in the sunitinib group (hazard ratio for
disease progression or death, 0.69; 95% CI, 0.57 to 0.84;
P<0.001) (71).

Inhibitors of DNA Damage Repair
Synthetic lethal impact on cancer cells with a dearth in
homologous recombination (HR) is induced by Poly ADP-
ribose polymerase (PARP) inhibition. In addition, PARP
inhibitors (PARPi) can enhance Th1-skewing immunity and
modulate the immune microenvironment, as well as promote
the priming of anti-cancer immune responses (72). As the
immunological effect of PARPi is multifaceted, it might favor
an increased efficacy of ICI treatment and boost the cancer-
immunity cycle. Olaparib is a first-in-class PARP inhibitor for
the treatment of adult patients with germline BRCA mutated
advanced ovarian cancer, breast cancer, fallopian tube cancer,
and peritoneal cancer. As discussed the immunological effects of
PARP inhibitors are multifaceted (73), which includes
Frontiers in Oncology | www.frontiersin.org 8226
1. PARPi-mediated catastrophic DNA damage; elevated
neoantigens and tumor immunogenicity are generated by
the accumulation of chromosome rearrangements

2. PARPi-mediated DNA damage could enhance the
recruitment and infiltration of T cells into the tumor via
activating the cGAS-STING pathway

3. PARPi-induced double-strand breaks could directly
upregulate PD-L1 by the ATM-ATRChk1 pathway which is
independent of the IFN pathway

Al l the se mechan i sms reprogram the immune
microenvironment to an immune-supportive environment.
Th e max ima l b enefi t o f t h e s e abov e -men t i on ed
immunomodulatory mechanisms of PARPi can be achieved in
combination with ICIs. Various studies are ongoing, including
preclinical as well as clinical trials using the combination of
PARP inhibitor + anti-VEGF + ICIs and a combination of PARP
inhibitor + checkpoint kinase1 (CHK) + ICIs in cancer (74, 75).
FIGURE 2 | Mechanisms involved in the development of immunosuppressive tumor microenvironment by tumor angiogenesis. CTL, Cytotoxic T lymphocytes; TAM,
Tumor-associated macrophages.
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In metastatic ovarian cancer, a recent ESMO update of the
MEDIOLA phase I/II open-label, multicenter analysis evaluating
the combination of Olaparib and durvalumab in patients with
advanced solid tumors who harbor BRCA mutations revealed a
median PFS of 15.4 months. Median OS data was not mature yet.
83.5% of patients were still alive after a median follow-up of 23.7
months (76).

Other Small Molecule Inhibitors
Several multiple tyrosine kinase inhibitors have shown enhanced
action with ICIs. Sorafenib, regorafenib, and Lenvatinib are some
of the drugs which have demonstrated superior effect with ICIs
in hepatocellular carcinoma. Hepatocellular carcinomas
generally arise from an immunosuppressive environment (77).
Since it must interact with a variety of foreign antigens, the liver
suppresses immune responses to toxins and antigens draining
from the enteric circulation. Because of the progressive nature of
the disease and the tolerogenic characteristics of the liver, the
HCC TME has immunosuppressive characteristics (77–79).
HCC exploits this immune tolerance to initiate and
promote HCC carcinogenesis and progression. Even though
the TME is highly immunosuppressive there are reports which
show that ICIs have benefits in the treatment of HCC (78–80).
Most of these successful attempts of ICI usage in HCC were
demonstrated in combination with multiple tyrosine kinase
inhibitors such as sorafenib and regorafenib or when
pretreated with these small molecule inhibitors (78–80).
However, the exact mechanisms of their additive activity are
yet to be proven.

Other small molecule inhibitors include drugs which target
PI3K and MAPK pathway. Both the PI3K-Akt-mTOR and the
RAS/RAF/MEK/MAPK pathways have been implicated in the
control of PD-L1 expression in previous studies (81, 82).
Vemurafenib, a BRAF inhibitor, can enhance T cell antigen
expression in melanoma and thus stimulate T cell immune
responses. By the expression of anti-apoptotic proteins, the
PI3K-Akt-mTOR pathway is also involved in resistance to T
cell-mediated killing. A more recent study reported better tumor
immune infiltration and more anti-tumor immune control in a
CD8 T-cell-dependent way when the dual blockade of BRAF and
MEK combined with PD-1 inhibitors (83). The experimental
evidence presented above may be used to justify clinical trials of
BRAF and/or MEK inhibition in conjunction with ICIs. Many
studies are ongoing to test these hypotheses and some of the
study results are promising. In a study, the selective targeting of
PI3K–g with a small molecule inhibitor IPI-549 (NCT02637531)
showed that it could restore the TME and overcome resistance to
ICIs by inducing cytotoxic T cell-mediated tumor regression
(84). This discovery paves the way for the appealing technique of
combining PI3Kis and ICIs to prevent immune checkpoint
blockade resistance. One or two agents targeting the PI3KAkt-
mTOR pathway could be a possible combination partner for
immune checkpoint blockade (85), but the most effective
combination is not defined.

Cabozantinib a multikinase inhibitor whose targets include
MET, AXL, and VEGFR2 in combination with Nivolumab
showed better response rate, delayed disease progression, and
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extended survival in the CheckMate -9ER trial (86). CheckMate
-9ER (NCT03141177) is an open-label, randomized, multi-national
Phase 3 trial that investigates Cabozantinib+Nivolumab
combination in treatment naïve advanced or metastatic
renal cell carcinoma. However, 3 drug combinations of
Cabozantinib+Nivolumab+Ipilimumab for the same indication
were discontinued.

Phase 1/2 (Checkmate-040) study of doublet therapy
(Cabozantinib+Nivolumab) in advanced HCC reported 19%
ORR, 75% DCR and median PFS 5.4 months. DOR was 8.3
months with a median OS of 21.5 months in the doublet.
Interestingly, the triplet therapy (Cabozantinib+Nivolumab+
Ipilimumab) showed comparatively better ORR (29%), DCR
(83%), median PFS (6.8 months), and both DOR and median
survival were not reached in triplet therapy. However, triplet
therapy is associated with an increased risk of treatment-related
toxicity (Grade 3 or 4) compared to doublet (71% vs 47%) (87).

Bruton’s Tyrosine Kinase Inhibitors
Bruton’s tyrosine kinase (BTK), bone marrow-expressed kinase
(BMX), redundant resting lymphocyte kinase (RLK), and IL-2
inducible T-Cell kinase are all members of the Tec kinase family
(ITK). BTK is primarily expressed on B cells, though not
exclusively, and ITK is primarily expressed on T cells (88).
Ibrutinib is a small molecule that not only targets BTK, which
is required for malignant B cell survival, but also blocks ITK,
which shifts the Th1/Th2 balance and improves antitumor
immune activity. The combination of ibrutinib anti-tumor
activity and ICIs showed synergism in preclinical models and
its positive therapeutic outcome does not result from the direct
action against tumor cells, but rather from their activity on the
immune system (89). Ibrutinib activates CD8+ T cells, lowers
MDSC cytokine secretion, and modifies the inhibitory activity of
immune checkpoint molecules like the PD1/PD-L1 and CTLA-4
axis on tumor-infiltrating lymphocytes (89, 90). Many clinical
trials are testing this hypothesis and most of them are being tried
in lymphoma patients. However, there is limited data in solid
tumors and one study showed no benefits of adding ibrutinib
along with ICIs (durvalumab) in pretreated solid tumors such as
pancreatic cancer (ORR- 2%, Median OS- 4.2 months), breast
cancer(ORR- 3%, Median OS- 4.2 months) and NSCLC (ORR-
0%, Median OS- 7.9 months) (91).

Selective Estrogen Down Regulators
Fulvestrant is a selective ER down regulator (SERDs), a class of
ERa antagonists. Fulvestrant treatment aids in overcoming
various resistance mechanisms by ERa down-regulation.
Several preclinical studies have proposed various mechanisms
by which SERDs exert an anti-tumor response. It alters the TME
by increasing Th1 immune response, decreasing Tregs, and
inhibiting estrogen-mediated cell proliferation pathways (92,
93). Results of recent translational research indicate that
SERDs with strong anti-estrogen activity such as Fulvestrant
and potentially other anti-estrogens (94) can augment the action
of ICIs to inhibit breast cancer progression. As a result,
combining anti-estrogens with ICI may be an effective
treatment technique for both ER-positive and potentially
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ER-negative or treatment-resistant breast cancers, greatly
increasing the use and life-extending effects of these drugs to
improve patient survival (95).

Combination of Multiple Checkpoint Inhibitors
Recently, many studies are focusing on the combination of
immunotherapy agents which target multiple pathways in
cancer. It is proposed that targeting multiple checkpoints can
increase the activity of each other and thereby overcoming each
monotherapy’s limitations. The combination of CTLA-4 and PD
1/PD-L1 blockade has exhibited antitumor efficacy in preclinical
models (96). The logic of combining multiple checkpoint
inhibitors is that they have different mechanisms of action,
with anti – CTLA-4 mainly acting in the lymph node
compartment which is responsible for restoring the induction
and proliferation of activated T cells, and with anti –PD-1 mainly
acting at the periphery of tumor site, preventing the
neutralization of cytotoxic T cells by PD-L1 expressing tumor
and plasmacytoid dendritic cells in the TME (97).

In the RCT checkmate 067 trial in advanced melanoma,
patients with PD-L1-positive tumors had the same median
progression-free survival (14 months) when they were given
nivolumab alone or in combination. However, in patients with
PD-L1–negative tumors, ipilimumab plus nivolumab had a
longer progression-free survival (11.2 months) than nivolumab
alone (5.3 months). The major disadvantage of combination
immunotherapy is the increase in grade 3 or grade 4 toxicities.
The updated data in 2017 reported that only patients with no
expression of PD-L1 benefited from the combination and the
recent update in 2019 added that the %age of patients
experiencing a complete response continued to increase, with
complete response rates at five years of 22% for combination
therapy and the proportion of patients alive and treatment-free
was 74% in nivolumab/ipilimumab combination (98).

Based on ORR and DOR in phase I/II CheckMate-040 trials,
FDA has approved Nivolumab-Ipilimumab combination in
Hepatocellular carcinoma in March-2020. In the study, 16 of
49 patients (33%) treated with nivolumab in combination with
ipilimumab responded to treatment after a minimum of 28
months of follow-up (95% CI, 20-48). Four patients (8%) had a
full response (CR) and 12 people (24%) had a partial response
(PR). DORs ranged from 4.6-30.5 months, with 88% lasting at
least 6 months, 56% lasting at least 12 months, and 31% lasting at
least 24 months (99, 100).

Updated result of Phase 3 Checkmate-214 trial (Ipilimumab
+Nicolumab) in treatment naïve renal cell carcinoma after 42-
month median follow-up showed very promising result with CR
in 10% patients, OS rate and ORR as 52% and 42% respectively
and DOR was not reached (101).

FDA granted fast track designation for investigation of the
combination of Balstilimab PD-1 inhibitor and Zalifrelimab a
CTLA-4 inhibitor for the treatment of patients with relapsed or
refractory metastatic cervical cancer. The FDA designates an
investigational drug for fast track review in order to speed up the
production of drugs that treat severe or life-threatening
conditions and address an unmet medical need. Combination
Frontiers in Oncology | www.frontiersin.org 10228
of Balstilimab/Zalifrelimab exhibit 26.5% objective response
rates (ORR) vs 11.4% in Balstilimab monotherapy (102).

Microbiome
Microorganisms live on our skin, in our lungs, and in our
intestines, accounting for a large portion of our cellular,
metabolic, and genetic mass (103). The microbiota is the
collective term for the species that make up this population,
while the microbiome is the collective term for their genetic
material. Inflammatory bowel disease, autism, asthma, and
obesity have all been linked to the intimate relationship
between microbiota composition, metabolic function, and
immune system development and regulation (104). When a
combination of broad-spectrum antibiotics (i.e., ampicillin plus
colistin plus streptomycin) and single-agent imipenem elicited
antitumor effects of CTLA-4 monoclonal antibody (mAb) as a
result of microbiota impairment, the relationship between
microbiota and ICIs was demonstrated. Antibiotic use between
two months before and two months after the start of
immunotherapy has been linked to a worse prognosis in
patients treated with anti–PD-1/PD-L1 mAb (105). It is
suggested that microbiota can influence dendritic cell (DC)
maturation and activation. Several studies have reported the
influence of bacteria such as Akkermansia mucinphila,
Bacteriodetes, and Firmicutes in augmenting the response of ICIs.
Creating a favorable microbiome using fecal transplantation in
patients on ICIs is also being widely studied.

Anti–cytotoxic T-lymphocyte antigen 4 (anti-CTLA-4)
immunotherapy causes mucosal damage and the translocation
of Burkholderiales and Bacteroidales bacteria, which promote
anti-commensal immunity as an adjuvant to anti-tumor
immunity and are necessary for a positive response to therapy.
Anti–PD-1/PD-L1 therapy, which does not harm the gut
epithelia, requires pre–existing antitumor immunity, which is
particularly effective in mice with intestinal Bifidobacterium spp
(106) as portrayed in Figure 3.

Oncolytic Virus
Oncolytic viruses also appear to be an additional therapeutic
agent for the management of cancer. These agents specifically
target and kill cancer cells leaving the normal cells undamaged.
Oncolytic viral infection triggers anti-cancer immune responses,
which boost the effectiveness of checkpoint inhibition (107).
Oncolytic viruses elicit anti-tumor immunity by promoting DC
maturation and function. Improved DCmaturation and function
is because of the ability of oncolytic viruses in transferring genes
encoding IFN-a, GM-CSF, and other cytokines. Breakdown of
tumor cells induced by the oncolytic virus results in the release of
DAMPS which further facilitates anti-tumor immune response.
DAMPS include cell surface proteins, membrane proteins, and
nucleic acid (108). FDA has approved an intralesional oncolytic
immune therapy known as Talimogene Laherparepvec (T-VEC)
for stage3b and stage 4 melanoma. A phase II trial comparing a
combination of ipilimumab and T-VEC with ipilimumab
monotherapy showed better ORR in the combination arm
(39% vs. 18%; p < 0.02). Phase1b study of T-Vec combination
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with Pembrolizumab in melanoma patients reported no dose-
limiting toxicity with an ORR of 62% and a CRR (complete
response rate) of 33% (109). Many studies including a phase III
trial is underway (110). Increased PD-L1 expression and distant
inflammation from the injection sites are reported after T-VEC
from the analysis performed before the administration of anti-
PD1 antibodies. Similarly, several other oncolytic viruses are
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being evaluated under clinical studies in combination with ICIs
as well as a single agent. HF 10 virus included in the HSV family,
Tasadenoturev (DNX-2401), members of the Poxviridae family
(Pexa-Vec), Coxsackieviruses (CVA 21) are some of the
oncolytic viruses which have shown promising results in
combination with ICIs in melanoma, GBM, liver cancer, etc.
(111–119).
FIGURE 3 | Gut microbiota in cancer immunotherapy. Translocation of Burkholderiales and Bacteroidales, enhances antitumor immunity of anti–cytotoxic T-
lymphocyte antigen 4 (anti-CTLA-4). The antitumor effect of anti–PD-1/PD-L1 therapy enhanced by the preexisting antitumor immunity that is particularly effective in
mice harboring intestinal Bifidobacterium spp and Akkermansia mucinphila.
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Radiotherapy
It is known that radiation inducesDNAdamage-induced apoptosis
and recent evidence suggests that it stimulates tumorantigen release
and exerts an immune-mediated tumor response (120).
Radiotherapy has been stated to enhance immunosuppressive
TME via (1) Treg proliferation, M2 polarization of TAMs, and
MDSC accumulation by increasing HIF 1 alpha transcription (2)
activating latent TGF beta in the tumor, which converts CD4+ T-
cells to Tregs and polarizes TAMs into M2 phenotypes (121, 122).
Some studiesdemonstrate the abscopal effect after radiation therapy
distinctly fromthe treatment effects of immunotherapy alone (123).
The abscopal effect is described as a phenomenon in the
management of metastatic cancer by which localized radiation
activates systemic antitumor effects and eradicates distant
metastasis. There are several Phase 1 and Phase 2 clinical trials
are ongoing in patients with metastatic NSCLC, metastatic head,
and neck cancer, and metastatic castration-resistant prostate
cancer, etc. (124–126).

Other Drugs
Many other drugs are found to have an additive or synergistic
effect with ICIs such as Inducible T cell Costimulatory (ICOS)
Receptor Agonist, Nectin 4 directed therapies, and anti-IL-6
vaccine. Enfortumab vedotin, a Nectin-4-directed antibody and
microtubule inhibitor conjugate, was recently granted
accelerated approval by the FDA for the treatment of adult
patients with locally advanced or metastatic urothelial cancer
who have previously obtained a programmed death receptor-1
(PD-1) or programmed death-ligand 1 (PD-L1) inhibitor and
platinum-containing chemotherapy in the neoadjuvant/
adjuvant, locally advanced or metastatic setting. A recent study
shows that the combination of Enfortumab Vedotin and
pembrolizumab demonstrates encouraging efficacy with a
tolerable and manageable safety profile in an early phase trial
for locally advanced or metastatic urothelial carcinoma. A phase
1b study reported by C J Hoimes et al. states that of the 29
enrolled patients, preliminary confirmed ORR per RECIST 1.1
was 62% by investigators, including a 14% CR rate. The DCR was
90%. (NCT03288545) (127).

GSK609 is an anti-Inducible T cell Co-Stimulator (ICOS)
receptor agonist antibody that is used to treat cancers with
various histologies. The first in man Phase 1 studies are
ongoing as a single agent and along with Pembrolizumab. In
patients with previously treated, PD-1/L1 naive HNSCC,
preliminary evidence suggests that the combination of GSK609
and pembrolizumab has promising antitumor activity and a
manageable safety profile (NCT02723955) (128).

Promising results are reported with anti-Her2 antibody
(trastuzumab) in combination with ICIs in patients with
HER2-positive metastatic esophagogastric cancer. A study
reported a median PFS of 13·0 months (95% CI 8·6 to not
reached), and a median OS of 27·3 months with a median DOR
of 9.4 months (129). Phase 3 Keynote-811 trial is ongoing and
expected to get a detailed result in combining pembrolizumab
and trastuzumab (130). Similarly, clinical trials are ongoing to
evaluate the response of other anti-tumor antibodies such as
rituximab (anti-CD20) in combination with pembrolizumab in
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recurrent follicular lymphoma and DLBCL (NCT02446457) and
cetuximab (anti EGFR)+ ICI combination in recurrent/
metastatic HNSCC (NCT03494322) and RAS wild type
metastatic colorectal cancer (NCT04561336).

A very recent study published by Chan LC et al. found that
JAK1, activated by IL-6 phosphorylates Tyr112 of programmed
death-ligand 1 (PD-L1), causing STT3A, an endoplasmic
reticulum-associated N-glycosyltransferase, to catalyze PD-L1
glycosylation and maintain PD-L1 stability. In animal models,
targeting IL-6 with an IL-6 antibody resulted in synergistic T cell
killing when paired with anti–T cell immunoglobulin mucin-3
(anti–Tim-3) therapy. In hepatocellular carcinoma patient
tumor tissues, there was a positive association between IL-6
and PD-L1 expression. These findings point to the use of
anti–IL-6 and anti–Tim-3 as a marker-guided therapeutic
strategy (131).

Other Drugs in Combination With ICIs
There are a few drugs that are not used in cancer therapy
however have been widely studied in combination with ICIs.
The ultimate aim of using these drugs as adjuncts to ICIs is to
create an immune stimulatory TME. Most of these studies are
still in the preclinical setup but some of them are in clinical
studies and show favorable outcomes (Table 3).

Drugs Targeting Myeloid-Derived Suppressor Cells
The key targets in the TME are considered to be MDSCs.
Research demonstrates that diminished immunotherapy
efficacy is associated with the presence of MDSCs in the TME
(132, 133). MDSCs play a vital role in the immunosuppression of
TME. These cells possess a strong immunosuppressive potential
by representing a heterogeneous population of immature
myeloid cells. Antitumor reactivity of NK cells and T cells have
also been inhibited by MDSCs. They also encourage
angiogenesis, the formation of pre-metastatic niches, and the
recruitment of other immunosuppressive cells including
regulatory T cells (134). Many commonly prescribed drugs
such as rosiglitazone, cimetidine, tadalafil, etc. have shown
preclinical benefits in targeting MDSCs (135). Even though the
mechanism behind these drugs is different, the goal is to create
an immune stimulatory TME inhibiting MDSCs. Examples of
these classes of drugs with their proposed mechanism of
action include:

• Rosiglitazone: Reduction of early MDSC accumulation
• PDE5 antagonist (Tadalafil and sildenafil): Reduction of

MDSC levels, reduction of arginase and iNOS production
• Vitamin D: Stimulate differentiation of immature myeloid

cells into DCs
• Amiloride: Inhibit MDSC suppressive capacity via reduced

exosome secretion in preclinical studies
• Cimetidine: Reduction of MDSC expansion by induction of

apoptosis and inhibition of NOS and ARG-I expression in
preclinical studies

Paricalcitol a synthetic vitamin D analog has been used along
with ICIs in some of the pancreatic clinical trials and showed a
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favorable response compared to conventional therapies. In a phase
2 trial using paricalcitol in combination with nivolumab,
gemcitabine, nab-paclitaxel, and cisplatin in patients with
untreated metastatic pancreatic ductal adenocarcinoma (PDAC),
of the 25 patients enrolled thus far, OS has been recorded as 15·3
months, with an underlying ORR of 83% (NCT02754726).

A J Lugibuhl et al. conducted a study using Tadalafil
Nivolumab combination in preoperative Head and Neck
squamous cell cancer (HNSCC) showed 50% of patients
having a pathologic treatment effect (TE) > 21% in 4 weeks. In
the context of PD-1 blockade, tadalafil enhanced T lymphocyte
and myeloid cell infiltration. 45 patients were treated with the
combination regimen, and a preliminary assessment of
pathologic treatment effect was performed on post-treatment
specimens, revealing that 25% of patients had no treatment effect
(TE), 25% had 1-20% TE, 41% had 21-99% TE, and 9% had CR
(NCT03238365) (136).

Drugs Targeting Tregs
Regulatory T cells (Tregs) play a pivotal role in maintaining
immune homeostasis and self-tolerance. They also play a
negative role in inducing efficacious anti-tumor response.
There is substantial evidence that depleting Tregs or inhibiting
Treg function improves antitumor effects (137, 138). The
suppressive activity of Treg cells is exhibited by various
mechanisms including secretion of inhibitory cytokines such as
Frontiers in Oncology | www.frontiersin.org 13231
TGF beta, IL10, and IL35; inhibition of APC maturation through
the CTLA-4 pathway; and expression of granzyme and perforin
which kills effector T-cells (139, 140). TGFb inhibitors and IDO
inhibitors are currently explored along with checkpoint
inhibitors in various cancer models such as melanoma,
NSCLC, head, and neck, renal and bladder cancer, etc.

TGFb Inhibitors. Transforming growth factor (TGF) is a cyto-
kine that induces Tregs and mediates immunosuppression in the
TME. Therefore the strategy of blocking the recruitment of Tregs
by TGFb inhibitors has shown benefits in some of the preclinical
trials (141). T-cell sequestration away from the tumor mass is
caused by the expression of a fibroblast TGF response signature
(F-TBRS) in peritumoral fibroblasts. Immune checkpoint block-
ade with PD-1/PD-L1 inhibitors is ineffective in the absence of
physical proximity between cytotoxic T cells and tumor cells.
Pharmacological inhibition of TGFb reverses such immune
exclusion and promotes CD8+ T cell penetration into tumors.
TGF inhibition combined with immune checkpoint blockade
maximizes tumor regression, with several tumor-bearing mice
showing complete remission (142–145). Active TGF-signaling in
the peritumoral stroma, especially in patients with low tumor-
infiltrating T cells in the tumor parenchyma, resulted in a lack of
response to atezolizumab (anti-PD-L1 mAb) in metastatic
urothelial cancer, according to a study (146). Galunisertib a TGFb
inhibitor is in various clinical trials in combination with ICIs in
TABLE 3 | Few clinical trials listed in Clinical trials.gov which uses non-cancer drugs combination strategies with ICIs as of 17-04-2020.

Adjunct
Therapy

ICI used Study Title Clinical Trial
Reference

Phase Status

Rosiglitazone
Metformin

Nivolumab or
Pembrolizumab

A Phase II Clinical Trial of Anti-PD-1 mAb Therapy Alone or With Metabolic Modulators to
Reverse Tumor Hypoxia and Immune Dysfunction in Solid Tumor Malignancies

NCT04114136 Phase 2 Not yet
recruiting

Tadalafil Nivolumab Window of Opportunity Trial of Nivolumab and Tadalafil in Patients With Squamous Cell
Carcinoma of the Head and Neck

NCT03238365 Phase 1 Active

Tadalafil Nivolumab A Phase II Study of Tadalafil and Pembrolizumab in Recurrent or Metastatic Head and Neck
Squamous Cell Carcinoma

NCT03993353 Phase 2 Not yet
recruiting

Paricalcitol Pembrolizumab A SU2C Catalyst Randomized Phase II Trial of the PD1 Inhibitor Pembrolizumab With or
Without a Vitamin D Receptor Agonist Paricalcitol in Patients With Stage IV Pancreatic Cancer
Who Have Been Placed in Best Possible Response

NCT03331562 Phase 2 Active

Galunisertib Nivolumab A Phase 1b/2 Dose Escalation and Cohort Expansion Study of the Safety, Tolerability and
Efficacy of a Novel Transforming Growth Factor-beta Receptor I Kinase Inhibitor (Galunisertib)
Administered in Combination With Anti-PD-1 (Nivolumab) in Advanced Refractory Solid Tumors
(Phase 1b) and in Recurrent or Refractory NSCLC or Hepatocellular Carcinoma

NCT02423343 Phase 2 Active

Losartan,
FOLFIRINOX,
SBRT

Nivolumab A Randomized Phase 2 Study of Losartan and Nivolumab in Combination With FOLFIRINOX
and SBRT in Localized Pancreatic Cancer

NCT03563248 Phase 2 Recruiting

Epacadostat Nivolumab A Phase 1/2, Open-Label, Dose-Escalation, Safety, Tolerability, and Efficacy Study of
Epacadostat and Nivolumab in Combination With Immune Therapies in Subjects With
Advanced or Metastatic Malignancies (ECHO-208)

NCT03347123 Phase 2 Active

Propranolol Pembrolizumab A Phase Ib/II Study of Propranolol With Fixed-Dose Pembrolizumab in Patients With
Unresectable Stage III and Stage IV Melanoma

NCT03384836 Phase 2 Recruiting

Aspirin Atezolizumab A Phase II Study of the Anti-PDL1 Antibody Atezolizumab, Bevacizumab and Acetylsalicylic
Acid to Investigate Safety and Efficacy of This Combination in Recurrent Platinum-resistant
Ovarian, Fallopian Tube or Primary Peritoneal Adenocarcinoma

NCT02659384 Phase 2 Recruiting

Aspirin or
Celecoxib

Pembrolizumab PD-1 Antibody Combined With COX Inhibitor in MSI-H/dMMR or High TMB Colorectal Cancer:
a Single-Arm Phase II Study

NCT03638297 Phase 2 Recruiting

Celecoxib Nivolumab NICE-COMBO: An Open-Label Phase II Study Combining Nivolumab and Celecoxib in Patients
With Advanced “ Cold “ Solid Tumors

NCT03864575 Phase 2 Not yet
recruiting

Celecoxib Nivolumab
Ipilimumab

Nivolumab, Ipilimumab, and COX2-inhibition in Early Stage Colon Cancer: an Unbiased
Approach for Signals of Sensitivity (NICHE)

NCT02431208 Phase 1 Active
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NSCLC, pancreatic cancer, urothelial cancer, etc. Besides,
galunisertib is also in a clinical trial for advanced refractory solid
tumors along with ICIs (NCT02423343).

IDO Inhibitors. In response to interferon-gamma, tumor cells
and MDSCs express IDO. Recent research has found that IDO
activity is important for FoxP3 Treg activity (147) and MDSCs,
leading to suppression of the activity of T cells and NK cells
(148). Several IDO inhibitors are being investigated in combi-
nation with CTLA-4 and PD-1 inhibition based on promising
preclinical results. Epacadostat is an example of an IDO inhibitor
that is being studied along with ICIs in clinical trials. COX-2
inhibitors which are another class of drugs have been found to
have potential use as an adjunct with ICIs to treat immuno-
suppressive tumors that constitutively express indoleamine 2,3-
dioxygenase (IDO1) (149–151). In the absence of IDO activity,
recent studies have discovered that Tryptophan 2, 3-dioxygenase
(TDO), another essential enzyme in the kynurenine pathway,
plays a compensatory role. As a result, a dual inhibitor of IDO
and TDO is currently being investigated in preclinical studies to
achieve maximum inhibition of the kynurenine pathway and
alleviate tumor immune suppression (152).

Drugs Targeting the Renin-Angiotensin System (RAS)
RAS components are also expressed in many cell types of the TME,
such as endothelial cells, fibroblasts, monocytes, macrophages,
neutrophils, dendritic cells, and T cells (153, 154). Growth and
dissemination can be facilitated or hindered by RAS signaling in
Frontiers in Oncology | www.frontiersin.org 14232
these cells which have been shown to affect cell proliferation,
migration, invasion, metastasis, apoptosis, immunomodulation,
angiogenesis, cancer-associated inflammation, and tumor fibrosis/
desmoplasia (155, 156). The angiotensin II and angiotensin
receptor (AngII/AT1R) axis regulates the tumor stroma and
contributes to an immunosuppressive microenvironment through
various mechanisms (Figure 4).

Several clinical studies have also shown that RASi may have
favorable effects in a wide range of malignancies. The gain in
survival is tumor type– and stage-dependent and ranged from 3
months (advanced NSCLC) to more than 25 months (metastatic
RCC) in retrospective studies (157). Drugs such as losartan are
already in clinical trials as an adjunct with ICIs in many cancers.

Drugs Targeting the Autonomic Nervous System (ANS)
Lately, the role of the nervous system, in particular, the
sympathetic nervous system has been observed in immune
response regulation. Normally, the response of acute stress is
beneficial whereas chronic stress is detrimental due to the
suppression of effector immune cell activity while enhancing
the immunosuppressive cell activity (158). Beta-blockers have
been shown to have significant benefits when used along with
ICIs. Data have shown that decreasing adrenergic stress by
housing mice at thermoneutrality or treating mice housed with
b-blockers at cooler temperatures reverses immunosuppression
and remarkably increases responses to ICIs (159). Various pre-
clinical, as well as clinical studies, have shown improved efficacy
when ICIs are used along with a b blocker (159–161).
FIGURE 4 | Contribution of angiotensin II and angiotensin receptor to the tumor microenvironment.
May 2021 | Volume 11 | Article 559161

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Varayathu et al. Augmenting Efficacy of ICIs
Metformin
Metformin has shown antitumor properties in various studies
(162, 163). Metformin prevents gluconeogenesis in the liver by
regulating the adenosine monophosphate-activated protein
kinase (AMPK)/liver kinase B1 (LKB1) pathway. The AMPK/
LKB1 pathway controls the cell cycle by regulating protein
synthesis and cell proliferation by adjusting the amount of
energy needed by the cells (164). Cancerous cells are inhibited
and apoptosis is induced as a result of this regulation of the cell
cycle and proliferation. Metformin was found to target CD8+
tumor-infiltrating leukocytes in a sample (TILs). Metformin also
prevents the production of immune tolerance to cancer cells by
inhibiting the synthesis of unfolded proteins, activating the
immune response to cancer cells, inhibiting the expression of
CD39/73 on MDSCs, and inhibiting the expression of CD39/73
on MDSCs. Metformin prevents exhaustion of CD8+ TILs, thus
increasing production of various cytokines such as TNF-a,
TNF-g, IL-2 and reversing immunosuppression. Some studies
in NSCLC have reported that metformin exhibits cytotoxic
effects as well (165–167). Preclinical and clinical studies are
ongoing to explore the efficacy of metformin as an adjunct
to ICIs.

An interim safety analysis of Durvalumab Metformin
combination in Head and Neck squamous cell carcinoma
proved safe in part 1 of the study which contains only 6
patients and enrollment for part 2 with more patients is
currently ongoing (NCT03618654) (168).

Future Implications
Various other modalities are being explored to achieve maximum
benefit from ICI therapy. Newer checkpoint targets are being
analyzed such as LAG-3, TIM-3, TIGIT, VISTA, or B7/H3.
Moreover, stimulatory checkpoint pathway agonists such as
GITR, 4-1BB, OX40, ICOS, CD40, or molecules targeting TME
components like TLR or IDO are under investigation (169, 170).
Inhibiting multiple pathways along with ICIs is another ongoing
topic of research. Combination of multiple checkpoint inhibitors
and triplet or doublet therapy with adjunct drugs are being
clinically validated. Improving TME to produce an immune
stimulatory environment is being widely explored and drugs
targeting these immune suppressive cells such as MDSC, TAM,
etc. are being developed (Figures 5 and 6). Targeting mast cells is
another approach that is currently being studied. Some of the
recent studies have reported that intra-tumoral mast cell levels
rose as the tumor progressed, and this independently predicted a
shorter OS (171). It was found that CXCL12-CXCR4 chemotaxis
results in the accumulation of these tumor-infiltrating mast cells.
Intra-tumoral mast cells induced by cancer strongly express PD-
L1 in both dose-dependent and time-dependent manner (172).
This mechanism can be explored in the future to develop adjunct
drugs with ICIs.

Translational Perspectives
As the spectrum of combinatorial immunotherapy strategies
widens, the demand for robust preclinical models is at an all-
time high. Combination strategies with ICIs require stalwart
preclinical models for precise repurposing of the partner drugs.
Frontiers in Oncology | www.frontiersin.org 15233
Murine models generally used previously may not be helpful in
immuno-oncology because of fundamental differences in the
immune composition between mice and humans. The
introduction of a patient-derived humanized xenograft model
(Hu-PDX) is a very promising strategy in immuno-oncology.
Hu-PDXs are mouse cancer models where tissue or cells from a
patient’s tumor are implanted into a humanized mouse which
contains an immune system identical to humans (173). This
knowledge of the Hu-PDX model further propelled research in
immuno-oncology and enlightened the concept of co-clinical
trial. In a co-clinical trial model, the clinical trial is coupled with a
preclinical trial which provides valuable information to the
corresponding clinical trial (174). Simultaneous treatment of
the Hu-PDX model of a patient enrolled in a clinical trial with
new agents helps in further understanding of underlying
mechanisms, evaluating novel combination strategies, and
identification of potential biomarkers. These advantages of co-
clinical trials will ensure the swift transition of preclinical data to
the clinic which will be of great value to precision medicine and
immuno-oncology.

Besides Hu-PDX models, patient-derived tumor three-
dimensional organoid models are also an exciting proposition
for co-clinical trials (175). Organoids (and cancer-derived
organoids) are three-dimensional tissue-like cellular clusters
made from tissue or tumor-specific stem cells that imitate in
vivo (tumor) characteristics such as cell heterogeneity (176). The
major limitation is the inability to create a tumor-associated
immune system in these models. Despite these limitations,
organoid cultures accurately mimic the in vivo response of
patient-derived xenograft models, as demonstrated in recent
studies using bladder cancer-derived organoids by Pauli et al.
and Lee et al. (177, 178).
DISCUSSION

Our review shows that the majority of the adjuncts, which vary
from chemotherapy, targeted therapy, radiation, immune-
modulators, or even other forms of immunotherapy when
combined with ICIs could provide far superior results than
previously achieved. Adjunct drugs/modalities with favorable
and unfavorable responses are distinctly illustrated in our review.

Maike Trommer, Sin Yuin Yeo et al. showed abscopal effects
of RT in up to 29% of the patients when combined with anti PD1
immune check point inhibition (123). Huaqin Yuan et al. showed
that Axitinib which is a known antiangiogenic agent could have
an immune effect through its inhibition of MDSCs, STAT 3
pathway, and stimulation of CD8 T cells. This effect of Axitinib
could enable us to use it as an adjunct along with checkpoint
inhibition (179). A R Folgueras et al. showed that epigenetic
modification could enhance immune surveillance in epithelial
tumors. They found that HDAC inhibition could enhance the
immunogenicity of epithelial tumors (180).

Similarly, David Roulois, Helen Loo Yau et al. found that
hypomethylating agents may mount an antitumor response by
inducing viral mimicry by endogenous transcripts (181). Recent
studies have even used a triple-drug combination to augment
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antitumor immunity. Alexandra S. Zimmer, Erin Nichols et al.
found a combination of PD1 inhibitor, Parp inhibitor, and
antiangiogenic agent to be well tolerated and effective in a
phase 1 study (75). Joseph A. Califano, Zubair Khan et al.
found that even non-cancer drugs like tadalafil can have an
immune-stimulating effect. Their work showed that tadalafil can
reverse the resistance to immune recognition in head and neck
cancer when patients were administered daily tadalafil (182).

Even though ICI’s have shown tremendous promise especially
in tumors refractory to standard treatments, their response rates
are rarely beyond 15-20% (183). Translational research is of
utmost value in this scenario and may help to further harness
and improve the potential of immunotherapy.
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Firstly, standard immune biomarkers like PDL1 levels, MSI
status may not hold good when adjuncts are being used along with
ICIs. Hence the need to develop newer biomarkers such as tumor
mutational burden, tumor-infiltrating lymphocytes, miRNA
studies, establishing ‘foreignness’ of neoantigens, HLA variations,
N/L ratio, etc. so that a larger %age of patients can reap the benefits
of ICIs. Artificial intelligence, neural networks, virtual clinical trials,
and patient-derived xenograft models may be required to
determine which patients may benefit from ICIs, to learn about
the variation in the durability of response among patients, and
identify those who may benefit from re-challenge of ICIs.

Secondly, the dose of adjuncts to be administered with ICIs
would need to be determined. Ideally, an immune stimulatory’
FIGURE 5 | Chemotherapy, Radiotherapy, and Epigenetic therapy which facilitates immunogenic cell death increase antigen presentation enhances cross-priming of
dendritic cells, and decreases PDL-1 expression on tumor cells activates the antitumor immune response. Drugs that target Tregs, tumor-associated macrophages
(TAM), and myeloid-derived suppressor cells block immunosuppression and enhance T effector T cell function to convert immunosuppressive tumor
microenvironment into the immune-stimulatory environment.
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dose is required which may or may not be the same as the
standard dose used otherwise. Once proof of concept is
established, the ICI-adjunct combination could be used in
tumor agnostic/basket trials thus further tapping into
unknown potentials of ICIs. Thirdly, although the mechanisms
of ICI-adjunct combinations have been broadly defined, the
exact additive/synergistic mechanisms need to be determined
through well-constructed trials and translational research before
they can become part of standard treatment. Fourthly, adverse
effects of ICI-adjunct combination could be a lot greater than
when either of the agents is used singly. Moreover, failure of
combination strategies in the first-line may result in a lack
of availability of drugs for second-line use. Hence proper
analysis of adverse events and determining risk: benefit ratio
would be required before such combinations become part of
routine practice.

Finally, the emerging role of the microbiome and its effect on
ICI combinations needs to be addressed and evaluated as it may
play a major role in immune-modulation and effectiveness of
such combinations. The above-addressed points all form a major
Frontiers in Oncology | www.frontiersin.org 17235
portion of T0 and T1 phases of translational research which
could greatly widen our understanding and applicability of ICIs
and their combinations.
CONCLUSION

The efficacy of ICIs is highly variable and only a few patients are
benefited from them. To address this issue there are many
ongoing translational studies to target the resistant
mechanisms of ICIs. The main principle is to enhance the
TME to an immune stimulatory type from an immune-
suppressive one. In this review, we have evaluated available
literature which included drugs used as adjuncts in clinical
trials along with ICIs. Many drugs have shown significant
benefits and some have shown a mixture of both favorable and
unfavorable outcomes. There is conflicting evidence for most of
the above-mentioned adjuncts such as metformin, Vit D, etc.
From the available adjuncts, the selection of the best adjunct for
the patients on ICI treatment is still a dilemma. Not only the
FIGURE 6 | Drugs that target multiple signaling pathways kill tumor cells and stimulates immune cells to provide a durable adaptive immune response. Blocking of
multiple immune checkpoints stimulates immune responses against tumors.
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selection of adjuncts but also the dose for the desired property is
also questionable. It might require a dose that is different than
used normally and needs to be further evaluated. Therefore, the
need of conducting co-clinical trials or translational studies in
this field is immense. We believe that recent advances in
preclinical models such as humanized xenograft models,
invitro modeling using 3D bioprinting, etc. may give further
insight into this problem.
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62. Woods DM, Sodré AL, Villagra A, Sarnaik A, Sotomayor EM, Weber J.
HDAC Inhibition Upregulates PD-1 Ligands in Melanoma and Augments
Immunotherapy With PD-1 Blockade. Cancer Immunol Res (2015) 3
(12):1375–85. doi: 10.1158/2326-6066.CIR-15-0077-T
May 2021 | Volume 11 | Article 559161

https://doi.org/10.1002/pbc.24794
https://doi.org/10.1038/nrclinonc.2016.64
https://doi.org/10.1016/j.canlet.2014.12.039
https://doi.org/10.3390/ijms18102134
https://doi.org/10.1007/s00262-009-0671-1
https://doi.org/10.1007/s00262-009-0671-1
https://doi.org/10.1158/1078-0432.CCR-08-1507
https://doi.org/10.1007/s00262-006-0225-8
https://doi.org/10.1158/0008-5472.CAN-09-1101
https://doi.org/10.1158/0008-5472.CAN-09-1101
https://doi.org/10.1002/ijc.27801
https://doi.org/10.1158/1078-0432.CCR-08-1174
https://doi.org/10.1126/scitranslmed.3007974
https://doi.org/10.1158/1538-7445.AM2017-3666
https://doi.org/10.1158/1538-7445.AM2017-3666
https://doi.org/10.1016/j.coi.2015.10.009
https://doi.org/10.1016/j.coi.2015.10.009
https://doi.org/10.1016/j.immuni.2015.11.024
https://doi.org/10.1016/j.immuni.2015.11.024
https://doi.org/10.1038/s41467-018-04605-x
https://doi.org/10.1016/j.ctro.2018.08.001
https://doi.org/10.12659/MSM.902426
https://doi.org/10.1007/s00262-012-1308-3
https://doi.org/10.1182/blood-2010-04-278432
https://doi.org/10.1158/1078-0432.CCR-15-0200
https://doi.org/10.1182/blood-2019-125155
https://ash.confex.com/ash/2015/webprogramscheduler/Paper85801.html
https://ash.confex.com/ash/2015/webprogramscheduler/Paper85801.html
https://doi.org/10.1111/bjh.15946
https://doi.org/10.1182/blood-2017-03-775122
https://doi.org/10.1182/bloodadvances.2019000191
https://doi.org/10.1182/bloodadvances.2019000191
https://doi.org/10.1038/s41467-017-02630-w
https://doi.org/10.1016/j.it.2019.02.004
https://doi.org/10.1016/j.cell.2015.07.011
https://doi.org/10.1016/j.cell.2015.07.056
https://doi.org/10.1200/jco.2013.31.15_suppl.8030
https://doi.org/10.1038/sj.onc.1210620
https://doi.org/10.3390/ijms20092241
https://doi.org/10.18632/oncotarget.2289
https://doi.org/10.1158/2326-6066.CIR-15-0077-T
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Varayathu et al. Augmenting Efficacy of ICIs
63. Gray JE, Saltos A, Tanvetyanon T, Haura EB, Creelan B, Antonia SJ, et al.
Phase I/Ib Study of Pembrolizumab Plus Vorinostat in Advanced/Metastatic
non–Small Cell Lung Cancer. Clin Cancer Res (2019) 25(22):6623–32. doi:
10.1158/1078-0432.CCR-19-1305

64. Goel S, Decristo MJ, Watt AC, Brinjones H, Sceneay J, Li BB, et al. CDK4/6
Inhibition Triggers Anti-Tumour Immunity. Nature (2017) 548(7668):471–
5. doi: 10.1038/nature23465

65. Deng J, Wang ES, Jenkins RW, Li S, Dries R, Yates K, et al. CDK4/6
Inhibition Augments Antitumor Immunity by Enhancing T-Cell Activation.
Cancer Discov (2018) 8(2):216–33. doi: 10.1158/2159-8290.CD-17-0915

66. Rugo H, Kabos P, Dickler M, JohnW, Smith I, Lu Y, et al. Abstract P1-09-01:
A Phase 1b Study of Abemaciclib Plus Pembrolizumab for Patients With
Hormone Receptor-Positive (HR+), Human Epidermal Growth Factor
Receptor 2-Negative (HER2-) Metastatic Breast Cancer (MBC). Am Assoc
Cancer Res (AACR) (2018) 38(15 suppl):P1–09. doi: 10.1158/1538-
7445.SABCS17-P1-09-01

67. Farsaci B, Donahue RN, Coplin MA, Grenga I, Lepone LM, Molinolo AA,
et al. Immune Consequences of Decreasing Tumor Vasculature With
Antiangiogenic Tyrosine Kinase Inhibitors in Combination With
Therapeutic Vaccines. Cancer Immunol Res (2014) 2(11):1090–102. doi:
10.1158/2326-6066.CIR-14-0076

68. Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, et al.
Vascular Normalizing Doses of Antiangiogenic Treatment Reprogram the
Immunosuppressive Tumor Microenvironment and Enhance
Immunotherapy. Proc Natl Acad Sci USA (2012) 109(43):17561–6. doi:
10.1073/pnas.1215397109

69. Manegold C, Dingemans AMC, Gray JE, Nakagawa K, Nicolson M, Peters S,
et al. The Potential of Combined Immunotherapy and Antiangiogenesis for
the Synergistic Treatment of Advanced NSCLC. J Thoracic Oncol (2017)
12:194–207. doi: 10.1016/j.jtho.2016.10.003

70. Socinski MA, Jotte RM, Cappuzzo F, Orlandi FJ, Stroyakovskiy D, Nogami
N, et al. Overall Survival (OS) Analysis of IMpower150, a Randomized Ph 3
Study of Atezolizumab (Atezo) + Chemotherapy (Chemo) ± Bevacizumab
(Bev) vs Chemo + Bev in 1L Nonsquamous (NSQ) NSCLC. J Clin Oncol
(2018) 36(15_suppl):9002–2. doi: 10.1200/JCO.2018.36.15_suppl.9002

71. Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, et al.
Pembrolizumab Plus Axitinib Versus Sunitinib for Advanced Renal-Cell
Carcinoma. N Engl J Med (2019) 380(12):1116–27. doi: 10.1056/
NEJMoa1816714

72. Stewart RA, Pilie PG, Yap TA. Development of PARP and Immune-
Checkpoint Inhibitor Combinations. Cancer Res (2018) 78:6717–25. doi:
10.1158/0008-5472.CAN-18-2652

73. Li A, Yi M, Qin S, Chu Q, Luo S, Wu K. Prospects for Combining Immune
Checkpoint Blockade With PARP Inhibition. J Hematol Oncol (2019) 12
(1):1–2. doi: 10.1186/s13045-019-0784-8

74. Sen T, Rodriguez BL, Chen L, Della Corte CM, Morikawa N, Fujimoto J,
et al. Targeting DNA Damage Response Promotes Antitumor Immunity
Through STING-mediated T-Cell Activation in Small Cell Lung Cancer.
Cancer Discov (2019) 9(5):646–61. doi: 10.1158/2159-8290.CD-18-1020

75. Zimmer AS, Nichols E, Cimino-Mathews A, Peer C, Cao L, Lee M-J, et al. A
Phase I Study of the PD-L1 Inhibitor, Durvalumab, in Combination With a
PARP Inhibitor, Olaparib, and a VEGFR1–3 Inhibitor, Cediranib, in
Recurrent Women’s Cancers With Biomarker Analyses. J Immunother
Cancer (2019) 7(1):1–8. doi: 10.1186/s40425-019-0680-3

76. Penson RT, Drew Y, de Jonge MJ, Hong SH, Park YH, Wolfer A, et al.
Mediola: A Phase I/II Trial of Olaparib (PARP Inhibitor) in Combination
With Durvalumab (anti-PD-L1 Antibody) in Pts With Advanced Solid
Tumours –. OncologyPRO. Available at: https://oncologypro.esmo.org/
Meeting-Resources/ESMO-2018-Congress/MEDIOLA-A-Phase-I-II-trial-
of-olaparib-PARP-inhibitor-in-combination-with-durvalumab-anti-PD-L1-
antibody-in-pts-with-advanced-solid-tumours-new-ovarian-cancer-
cohorts.

77. Chan T, Wiltrout RH, Weiss JM. Immunotherapeutic Modulation of the
Suppressive Liver and Tumor Microenvironments. Int Immunopharmacol
(2011) 11:879–89. doi: 10.1016/j.intimp.2010.12.024

78. Joerger M, Güller U, Bastian S, Driessen C, von Moos R. Prolonged Tumor
Response Associated With Sequential Immune Checkpoint Inhibitor
Combination Treatment and Regorafenib in a Patient With Advanced
Frontiers in Oncology | www.frontiersin.org 20238
Pretreated Hepatocellular Carcinoma. J Gastrointest Oncol (2019) 10
(2):373–8. doi: 10.21037/jgo.2018.11.04

79. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al.
Nivolumab in Patients With Advanced Hepatocellular Carcinoma
(CheckMate 040): An Open-Label, Non-Comparative, Phase 1/2 Dose
Escalation and Expansion Trial. Lancet (2017) 389(10088):2492–502. doi:
10.1016/S0140-6736(17)31046-2

80. Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al.
【Keynote-224試験】 ソラフェニブ抵抗性の切除不能肝細胞癌に対するペン

ブロリズマブ療法の第ii相試験. Lancet Oncol (2018) 19(7):940–52. doi: 10.1016/
S1470-2045(18)30351-6

81. Jiang X, Zhou J, Giobbie-Hurder A, Wargo J, Hodi FS. The Activation of
MAPK in Melanoma Cells Resistant to BRAF Inhibition Promotes PD-L1
Expression That Is Reversible by MEK and PI3K Inhibition. Clin Cancer Res
(2013) 19(3):598–609. doi: 10.1158/1078-0432.CCR-12-2731

82. AtefiM, Avramis E, Lassen A, Wong DJL, Robert L, Foulad D, et al. Effects of
MAPK and PI3K Pathways on PD-L1 Expression in Melanoma. Clin Cancer
Res (2014) 20(13):3446–57. doi: 10.1158/1078-0432.CCR-13-2797

83. Vanneman M, Dranoff G. Combining Immunotherapy and Targeted
Therapies in Cancer Treatment. Nat Rev Cancer (2012) 12:237–51. doi:
10.1038/nrc3237

84. De Henau O, Rausch M, Winkler D, Campesato LF, Liu C, Cymerman DH,
et al. Overcoming Resistance to Checkpoint Blockade Therapy by Targeting
PI3Kg in Myeloid Cells. Nature (2016) 539(7629):443–7. doi: 10.1038/
nature20554

85. Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, et al. Loss of PTEN
Promotes Resistance to T Cell–Mediated Immunotherapy. Cancer Discov
(2016) 6(2):202–16. doi: 10.1158/2159-8290.CD-15-0283

86. Opdivo-Cabometyx Combo Extended Survival in Advanced Kidney Cancer.
Available at: https://immuno-oncologynews.com/2020/04/28/opdivo-
cabometyx-combo-extends-survival-increases-response-rates-advanced-
kidney-cancer-phase-3-trial/?utm_source=IO+News&utm_campaign=
a6d281b789-RSS_WEEKLY_EMAIL_CAMPAIGN_NON-US&utm_
medium=email&utm_term=0_f04c303b86-a6d281b789-73533625.

87. Selected Abstracts on Novel Treatments in Colon, Hepatocellular, and Biliary
Tract Cancers. The ASCO Post. Available at: https://www.ascopost.com/
issues/march-25-2020/selected-abstracts-on-novel-treatments-in-colon-
hepatocellular-and-biliary-tract-cancers/.

88. Dubovsky JA, Beckwith KA, Natarajan G, Woyach JA, Jaglowski S, Zhong Y,
et al. Ibrutinib Is an Irreversible Molecular Inhibitor of ITK Driving a Th1-
Selective Pressure in T Lymphocytes. Blood (2013) 122(15):2539–49. doi:
10.1182/blood-2013-06-507947

89. Hude I, Sasse S, Engert A, Bröckelmann PJ. The Emerging Role of Immune
Checkpoint Inhibition in Malignant Lymphoma. Haematologica (2017)
102:30–42. doi: 10.3324/haematol.2016.150656

90. Sagiv-Barfi I, Kohrt HEK, Czerwinski DK, Ng PP, Chang BY, Levy R.
Therapeutic Antitumor Immunity by Checkpoint Blockade Is Enhanced by
Ibrutinib, an Inhibitor of Both BTK and ITK. Proc Natl Acad Sci USA (2015)
112(9):E966–72. doi: 10.1073/pnas.1500712112

91. Hong D, Rasco D, Veeder M, Luke JJ, Chandler J, Balmanoukian A, et al. A
Phase 1b/2 Study of the Bruton Tyrosine Kinase Inhibitor Ibrutinib and the
PD-L1 Inhibitor Durvalumab in Patients With Pretreated Solid Tumors.
Oncol (2019) 97(2):102–11. doi: 10.1159/000500571

92. Svoronos N, Perales-Puchalt A, Allegrezza MJ, Rutkowski MR, Payne KK,
Tesone AJ, et al. Tumor Cell–Independent Estrogen Signaling Drives
Disease Progression Through Mobilization of Myeloid-Derived
Suppressor Cells. Cancer Discov (2017) 7(1):72–85. doi: 10.1158/2159-
8290.CD-16-0502

93. Gabrilovich DI. Myeloid-Derived Suppressor Cells. Cancer Immunol Res
(2017) 5(1):3–8. doi: 10.1158/2326-6066.CIR-16-0297

94. Zhao L, Huang S, Mei S, Yang Z, Xu L, Zhou N, et al. Pharmacological
Activation of Estrogen Receptor Beta Augments Innate Immunity to
Suppress Cancer Metastasis. Proc Natl Acad Sci USA (2018) 115(16):
E3673–81. doi: 10.1073/pnas.1803291115

95. Márquez-Garbán DC, Deng G, Comin-Anduix B, Garcia AJ, Xing Y, Chen
HW, et al. Antiestrogens in Combination With Immune Checkpoint
Inhibitors in Breast Cancer Immunotherapy. J Steroid Biochem Mol Biol
(2019) 193:105415. doi: 10.1016/j.jsbmb.2019.105415
May 2021 | Volume 11 | Article 559161

https://doi.org/10.1158/1078-0432.CCR-19-1305
https://doi.org/10.1038/nature23465
https://doi.org/10.1158/2159-8290.CD-17-0915
https://doi.org/10.1158/1538-7445.SABCS17-P1-09-01
https://doi.org/10.1158/1538-7445.SABCS17-P1-09-01
https://doi.org/10.1158/2326-6066.CIR-14-0076
https://doi.org/10.1073/pnas.1215397109
https://doi.org/10.1016/j.jtho.2016.10.003
https://doi.org/10.1200/JCO.2018.36.15_suppl.9002
https://doi.org/10.1056/NEJMoa1816714
https://doi.org/10.1056/NEJMoa1816714
https://doi.org/10.1158/0008-5472.CAN-18-2652
https://doi.org/10.1186/s13045-019-0784-8
https://doi.org/10.1158/2159-8290.CD-18-1020
https://doi.org/10.1186/s40425-019-0680-3
https://oncologypro.esmo.org/Meeting-Resources/ESMO-2018-Congress/MEDIOLA-A-Phase-I-II-trial-of-olaparib-PARP-inhibitor-in-combination-with-durvalumab-anti-PD-L1-antibody-in-pts-with-advanced-solid-tumours-new-ovarian-cancer-cohorts
https://oncologypro.esmo.org/Meeting-Resources/ESMO-2018-Congress/MEDIOLA-A-Phase-I-II-trial-of-olaparib-PARP-inhibitor-in-combination-with-durvalumab-anti-PD-L1-antibody-in-pts-with-advanced-solid-tumours-new-ovarian-cancer-cohorts
https://oncologypro.esmo.org/Meeting-Resources/ESMO-2018-Congress/MEDIOLA-A-Phase-I-II-trial-of-olaparib-PARP-inhibitor-in-combination-with-durvalumab-anti-PD-L1-antibody-in-pts-with-advanced-solid-tumours-new-ovarian-cancer-cohorts
https://oncologypro.esmo.org/Meeting-Resources/ESMO-2018-Congress/MEDIOLA-A-Phase-I-II-trial-of-olaparib-PARP-inhibitor-in-combination-with-durvalumab-anti-PD-L1-antibody-in-pts-with-advanced-solid-tumours-new-ovarian-cancer-cohorts
https://oncologypro.esmo.org/Meeting-Resources/ESMO-2018-Congress/MEDIOLA-A-Phase-I-II-trial-of-olaparib-PARP-inhibitor-in-combination-with-durvalumab-anti-PD-L1-antibody-in-pts-with-advanced-solid-tumours-new-ovarian-cancer-cohorts
https://doi.org/10.1016/j.intimp.2010.12.024
https://doi.org/10.21037/jgo.2018.11.04
https://doi.org/10.1016/S0140-6736(17)31046-2
https://doi.org/10.1016/S1470-2045(18)30351-6
https://doi.org/10.1016/S1470-2045(18)30351-6
https://doi.org/10.1158/1078-0432.CCR-12-2731
https://doi.org/10.1158/1078-0432.CCR-13-2797
https://doi.org/10.1038/nrc3237
https://doi.org/10.1038/nature20554
https://doi.org/10.1038/nature20554
https://doi.org/10.1158/2159-8290.CD-15-0283
https://immuno-oncologynews.com/2020/04/28/opdivo-cabometyx-combo-extends-survival-increases-response-rates-advanced-kidney-cancer-phase-3-trial/?utm_source=IO+News&utm_campaign=a6d281b789-RSS_WEEKLY_EMAIL_CAMPAIGN_NON-US&amp;utm_medium=email&amp;utm_term=0_f04c303b86-a6d281b789-73533625
https://immuno-oncologynews.com/2020/04/28/opdivo-cabometyx-combo-extends-survival-increases-response-rates-advanced-kidney-cancer-phase-3-trial/?utm_source=IO+News&utm_campaign=a6d281b789-RSS_WEEKLY_EMAIL_CAMPAIGN_NON-US&amp;utm_medium=email&amp;utm_term=0_f04c303b86-a6d281b789-73533625
https://immuno-oncologynews.com/2020/04/28/opdivo-cabometyx-combo-extends-survival-increases-response-rates-advanced-kidney-cancer-phase-3-trial/?utm_source=IO+News&utm_campaign=a6d281b789-RSS_WEEKLY_EMAIL_CAMPAIGN_NON-US&amp;utm_medium=email&amp;utm_term=0_f04c303b86-a6d281b789-73533625
https://immuno-oncologynews.com/2020/04/28/opdivo-cabometyx-combo-extends-survival-increases-response-rates-advanced-kidney-cancer-phase-3-trial/?utm_source=IO+News&utm_campaign=a6d281b789-RSS_WEEKLY_EMAIL_CAMPAIGN_NON-US&amp;utm_medium=email&amp;utm_term=0_f04c303b86-a6d281b789-73533625
https://immuno-oncologynews.com/2020/04/28/opdivo-cabometyx-combo-extends-survival-increases-response-rates-advanced-kidney-cancer-phase-3-trial/?utm_source=IO+News&utm_campaign=a6d281b789-RSS_WEEKLY_EMAIL_CAMPAIGN_NON-US&amp;utm_medium=email&amp;utm_term=0_f04c303b86-a6d281b789-73533625
https://www.ascopost.com/issues/march-25-2020/selected-abstracts-on-novel-treatments-in-colon-hepatocellular-and-biliary-tract-cancers/
https://www.ascopost.com/issues/march-25-2020/selected-abstracts-on-novel-treatments-in-colon-hepatocellular-and-biliary-tract-cancers/
https://www.ascopost.com/issues/march-25-2020/selected-abstracts-on-novel-treatments-in-colon-hepatocellular-and-biliary-tract-cancers/
https://doi.org/10.1182/blood-2013-06-507947
https://doi.org/10.3324/haematol.2016.150656
https://doi.org/10.1073/pnas.1500712112
https://doi.org/10.1159/000500571
https://doi.org/10.1158/2159-8290.CD-16-0502
https://doi.org/10.1158/2159-8290.CD-16-0502
https://doi.org/10.1158/2326-6066.CIR-16-0297
https://doi.org/10.1073/pnas.1803291115
https://doi.org/10.1016/j.jsbmb.2019.105415
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Varayathu et al. Augmenting Efficacy of ICIs
96. Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4
Combination Blockade Expands Infiltrating T Cells and Reduces
Regulatory T and Myeloid Cells Within B16 Melanoma Tumors. Proc
Natl Acad Sci USA (2010) 107(9):4275–80. doi: 10.1073/pnas.0915174107

97. Eggermont AMM, Crittenden M, Wargo J. Combination Immunotherapy
Development in Melanoma. Am Soc Clin Oncol Educ B (2018) 38):197–207.
doi: 10.1200/EDBK_201131

98. Five-Year Outcomes for Opdivo (Nivolumab) in Combination With Yervoy
(Ipilimumab) Demonstrate Durable Long-Term Survival Benefits in Patients
With Advanced Melanoma. BMS Newsroom. Available at: https://news.bms.
com/press-release/corporatefinancial-news/five-year-outcomes-opdivo-
nivolumab-combination-yervoy-ipilimu.

99. U.s. Food and Drug Administration Accepts for Priority Review Bristol-Myers
Squibb’s Application for Opdivo (Nivolumab) Plus Yervoy (Ipilimumab)
Combination for Patients With Previously Treated Advanced
Hepatocellular Carcinoma. Business Wire. Available at: https://www.
businesswire.com/news/home/20191111005122/en.

100. Yau T, Kang Y-K, Kim T-Y, El-Khoueiry AB, Santoro A, Sangro B, et al.
Nivolumab (NIVO) + Ipilimumab (IPI) Combination Therapy in Patients
(Pts) With Advanced Hepatocellular Carcinoma (Ahcc): Results From
CheckMate 040. J Clin Oncol (2019) 37(15_suppl):4012–2. doi: 10.1200/
JCO.2019.37.15_suppl.4012

101. Opdivo (Nivolumab) Plus Yervoy (Ipilimumab) Demonstrates Continued
Survival Benefit At 42-Month Follow-up in Patients With Previously
Untreated Advanced or Metastatic Renal Cell Carcinoma. BMS Newsroom.
Available at: https://news.bms.com/press-release/corporatefinancial-news/
opdivo-nivolumab-plus-yervoy-ipilimumab-demonstrates-continued.

102. Agenus Announces Positive Interim Data From Balstilimab and Zalifrelimab
Clinical Trials in Second-Line Cervical Cancer (2020). Available at: https://
investor.agenusbio.com/2020-02-20-Agenus-Announces-Positive-Interim-
Data-from-Balstilimab-and-Zalifrelimab-Clinical-Trials-in-Second-Line-
Cervical-Cancer.

103. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla
AT, et al. Structure, Function and Diversity of the Healthy Human
Microbiome. Nature (2012) 486(7402):207–14. doi: 10.1038/nature11234

104. Schwartz DJ, Rebeck ON, Dantas G. Complex Interactions Between the
Microbiome and Cancer Immune Therapy. Crit Rev Clin Lab Sci (2019) 56
(8):567–85. doi: 10.1080/10408363.2019.1660303

105. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut
Microbiome InfluencesEfficacy of PD-1-based ImmunotherapyAgainstEpithelial
Tumors. Sci (80- ) (2018) 359(6371):91–7. doi: 10.1126/science.aan3706

106. Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. The Microbial
Pharmacists Within Us: A Metagenomic View of Xenobiotic Metabolism.
Nat Rev Microbiol (2016) 14:273–87. doi: 10.1038/nrmicro.2016.17

107. Sivanandam V, LaRocca CJ, Chen NG, Fong Y, Warner SG. Oncolytic
Viruses and Immune Checkpoint Inhibition: The Best of Both Worlds. Mol
Ther - Oncolytics (2019) 13:93–106. doi: 10.1016/j.omto.2019.04.003

108. LaRocca CJ, Warner SG. Oncolytic Viruses and Checkpoint Inhibitors:
Combination Therapy in Clinical Trials. Clin Transl Med (2018) 7(1):1–3.
doi: 10.1186/s40169-018-0214-5

109. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin
O, et al. Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration
and Improves Anti-PD-1 Immunotherapy. Cell (2017) 170(6):1109–19. doi:
10.1016/j.cell.2017.08.027

110. Pembrolizumab With or Without Talimogene Laherparepvec or Talimogene
Laherparepvec Placebo in Unresected Melanoma (Keynote-034) - Full Text
View. ClinicalTrials.gov.

111. Andtbacka RHI, Ross MI, Agarwala SS, Taylor MH, Vetto JT, Neves RI, et al.
Final Results of a Phase II Multicenter Trial of HF10, a Replication-
Competent HSV-1 Oncolytic Virus, and Ipilimumab Combination
Treatment in Patients With Stage IIIB-IV Unresectable or Metastatic
Melanoma. J Clin Oncol (2017) 35(15_suppl):9510–0. doi: 10.1200/
JCO.2017.35.15_suppl.9510

112. Combination Adenovirus + Pembrolizumab to Trigger Immune Virus Effects -
Full Text View. ClinicalTrials.gov.

113. Haddad D. Genetically Engineered Vaccinia Viruses as Agents for Cancer
Treatment, Imaging, and Transgene Delivery. Front Oncol (2017) 77:96. doi:
10.3389/fonc.2017.00096
Frontiers in Oncology | www.frontiersin.org 21239
114. Anthoney A, Samson A, West E, Turnbull SJ, Scott K, Tidswell E, et al. Single
Intravenous Preoperative Administration of the Oncolytic Virus Pexa-Vec to
Prime Anti-Tumor Immunity. J Clin Oncol (2018) 36(15_suppl):3092–2. doi:
10.1200/JCO.2018.36.15_suppl.3092

115. A Phase I/Ii Study of Pexa-Vec Oncolytic Virus in Combination With Immune
Checkpoint Inhibition in Refractory Colorectal Cancer - Full Text View.
ClinicalTrials.gov.

116. Immunization Strategy With Intra-Tumoral Injections of Pexa-Vec With
Ipilimumab in Metastatic / Advanced Solid Tumors. - Full Text View.
ClinicalTrials.gov.

117. Intratumoral CAVATAK (CVA21) and Ipilimumab in Patients With
Advanced Melanoma (Vla-013 MITCI) - Full Text View. ClinicalTrials.gov.

118. Silk AW, Kaufman H, Gabrail N, Mehnert J, Bryan J, Norrell J, et al. Abstract
CT026: Phase 1b Study of Intratumoral Coxsackievirus A21 (C V A 21) and
Systemic P Emb R Olizumab in a Dvanced Melanoma Patients: Interim
Results of the CAPRA Clinical Trial. Am Assoc Cancer Res (AACR) (2017) 77
(13 Suppl):CT026–6. doi: 10.1158/1538-7445.AM2017-CT026

119. Mahalingam D, Fountzilas C, Moseley JL, Noronha N, Cheetham K, Dzugalo
A, et al. A Study of REOLYSIN in Combination With Pembrolizumab and
Chemotherapy in Patients (pts) With Relapsed Metastatic Adenocarcinoma
of the Pancreas (MAP). J Clin Oncol (2017) 35(15_suppl):e15753–3. doi:
10.1200/JCO.2017.35.15_suppl.e15753

120. Hanna GG, Coyle VM, Prise KM. Immune Modulation in Advanced
Radiotherapies: Targeting Out-of-Field Effects. Cancer Lett (2015)
368:246–51. doi: 10.1016/j.canlet.2015.04.007

121. Frey B, Rückert M, Deloch L, Rühle PF, Derer A, Fietkau R, et al.
Immunomodulation by Ionizing Radiation—Impact for Design of Radio-
Immunotherapies and for Treatment of Inflammatory Diseases. Immunol
Rev Blackwell Publishing Ltd (2017) 280:231–48. doi: 10.1111/imr.12572

122. Menon H, Ramapriyan R, Cushman TR, Verma V, Kim HH, Schoenhals JE,
et al. Role of Radiation Therapy in Modulation of the Tumor Stroma and
Microenvironment. Front Immunol (2019) 10:193. doi: 10.3389/
fimmu.2019.00193

123. Trommer M, Yeo SY, Persigehl T, Bunck A, Grüll H, Schlaak M, et al.
Abscopal Effects in Radio-Immunotherapy-Response Analysis of Metastatic
Cancer Patients With Progressive Disease Under anti-PD-1 Immune
Checkpoint Inhibition. Front Pharmacol (2019) 10:511. doi: 10.3389/
fphar.2019.00511

124. Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC. An Abscopal
Response to Radiation and Ipilimumab in a Patient With Metastatic Non-
Small Cell Lung Cancer. Cancer Immunol Res (2013) 1(6):365–72. doi:
10.1158/2326-6066.CIR-13-0115

125. Slovin SF, Higano CS, Hamid O, Tejwani S, Harzstark A, Alumkal JJ, et al.
Ipilimumab Alone or in Combination With Radiotherapy in Metastatic
Castration-Resistant Prostate Cancer: Results From an Open-Label,
Multicenter Phase I/Ii Study. Ann Oncol (2013) 24(7):1813–21. doi:
10.1093/annonc/mdt107

126. Ling DC, Bakkenist CJ, Ferris RL, Clump DA. Role of Immunotherapy in
Head and Neck Cancer. Semin Radiat Oncol (2018) 28:12–6. doi: 10.1016/
j.semradonc.2017.08.009

127. Hoimes CJ, Rosenberg JE, Srinivas S, Petrylak DP, Milowsky M, Merchan JR,
et al. Ev-103: Initial Results of Enfortumab Vedotin Plus Pembrolizumab for
Locally Advanced or Metastatic Urothelial Carcinoma. OncologyPRO.
Available at: https://oncologypro.esmo.org/Meeting-Resources/ESMO-
2019-Congress/EV-103-Initial-results-of-enfortumab-vedotin-plus-
pembrolizumab-for-locally-advanced-or-metastatic-urothelial-carcinoma.

128. Rischin D, Groenland SL, Lim AM, Martin-Liberal J, Moreno V, Perez JT,
et al. Inducible T Cell Costimulatory (Icos) Receptor Agonist, GSK3359609
(GSK609) Alone and in Combination With Pembrolizumab (Pembro):
Preliminary Resul. OncologyPRO. Available at: https://oncologypro.esmo.
org/Meeting-Resources/ESMO-2019-Congress/Inducible-T-cell-
Costimulatory-ICOS-Receptor-Agonist-GSK3359609-GSK609-alone-and-
in-combination-with-Pembrolizumab-pembro-preliminary-results-from-
INDUCE-1-expansion-cohorts-EC-in-Head-and-Neck-Squamous-Cell-
Carcinoma-HNSCC.

129. Janjigian YY, Maron SB, Chatila WK, Millang B, Chavan SS, Alterman C,
et al. First-Line Pembrolizumab and Trastuzumab in HER2-positive
Oesophageal, Gastric, or Gastro-Oesophageal Junction Cancer: An Open-
May 2021 | Volume 11 | Article 559161

https://doi.org/10.1073/pnas.0915174107
https://doi.org/10.1200/EDBK_201131
https://news.bms.com/press-release/corporatefinancial-news/five-year-outcomes-opdivo-nivolumab-combination-yervoy-ipilimu
https://news.bms.com/press-release/corporatefinancial-news/five-year-outcomes-opdivo-nivolumab-combination-yervoy-ipilimu
https://news.bms.com/press-release/corporatefinancial-news/five-year-outcomes-opdivo-nivolumab-combination-yervoy-ipilimu
https://www.businesswire.com/news/home/20191111005122/en
https://www.businesswire.com/news/home/20191111005122/en
https://doi.org/10.1200/JCO.2019.37.15_suppl.4012
https://doi.org/10.1200/JCO.2019.37.15_suppl.4012
https://news.bms.com/press-release/corporatefinancial-news/opdivo-nivolumab-plus-yervoy-ipilimumab-demonstrates-continued
https://news.bms.com/press-release/corporatefinancial-news/opdivo-nivolumab-plus-yervoy-ipilimumab-demonstrates-continued
https://investor.agenusbio.com/2020-02-20-Agenus-Announces-Positive-Interim-Data-from-Balstilimab-and-Zalifrelimab-Clinical-Trials-in-Second-Line-Cervical-Cancer
https://investor.agenusbio.com/2020-02-20-Agenus-Announces-Positive-Interim-Data-from-Balstilimab-and-Zalifrelimab-Clinical-Trials-in-Second-Line-Cervical-Cancer
https://investor.agenusbio.com/2020-02-20-Agenus-Announces-Positive-Interim-Data-from-Balstilimab-and-Zalifrelimab-Clinical-Trials-in-Second-Line-Cervical-Cancer
https://investor.agenusbio.com/2020-02-20-Agenus-Announces-Positive-Interim-Data-from-Balstilimab-and-Zalifrelimab-Clinical-Trials-in-Second-Line-Cervical-Cancer
https://doi.org/10.1038/nature11234
https://doi.org/10.1080/10408363.2019.1660303
https://doi.org/10.1126/science.aan3706
https://doi.org/10.1038/nrmicro.2016.17
https://doi.org/10.1016/j.omto.2019.04.003
https://doi.org/10.1186/s40169-018-0214-5
https://doi.org/10.1016/j.cell.2017.08.027
https://doi.org/10.1200/JCO.2017.35.15_suppl.9510
https://doi.org/10.1200/JCO.2017.35.15_suppl.9510
https://doi.org/10.3389/fonc.2017.00096
https://doi.org/10.1200/JCO.2018.36.15_suppl.3092
https://doi.org/10.1158/1538-7445.AM2017-CT026
https://doi.org/10.1200/JCO.2017.35.15_suppl.e15753
https://doi.org/10.1016/j.canlet.2015.04.007
https://doi.org/10.1111/imr.12572
https://doi.org/10.3389/fimmu.2019.00193
https://doi.org/10.3389/fimmu.2019.00193
https://doi.org/10.3389/fphar.2019.00511
https://doi.org/10.3389/fphar.2019.00511
https://doi.org/10.1158/2326-6066.CIR-13-0115
https://doi.org/10.1093/annonc/mdt107
https://doi.org/10.1016/j.semradonc.2017.08.009
https://doi.org/10.1016/j.semradonc.2017.08.009
https://oncologypro.esmo.org/Meeting-Resources/ESMO-2019-Congress/EV-103-Initial-results-of-enfortumab-vedotin-plus-pembrolizumab-for-locally-advanced-or-metastatic-urothelial-carcinoma
https://oncologypro.esmo.org/Meeting-Resources/ESMO-2019-Congress/EV-103-Initial-results-of-enfortumab-vedotin-plus-pembrolizumab-for-locally-advanced-or-metastatic-urothelial-carcinoma
https://oncologypro.esmo.org/Meeting-Resources/ESMO-2019-Congress/EV-103-Initial-results-of-enfortumab-vedotin-plus-pembrolizumab-for-locally-advanced-or-metastatic-urothelial-carcinoma
https://oncologypro.esmo.org/Meeting-Resources/ESMO-2019-Congress/Inducible-T-cell-Costimulatory-ICOS-Receptor-Agonist-GSK3359609-GSK609-alone-and-in-combination-with-Pembrolizumab-pembro-preliminary-results-from-INDUCE-1-expansion-cohorts-EC-in-Head-and-Neck-Squamous-Cell-Carcinoma-HNSCC
https://oncologypro.esmo.org/Meeting-Resources/ESMO-2019-Congress/Inducible-T-cell-Costimulatory-ICOS-Receptor-Agonist-GSK3359609-GSK609-alone-and-in-combination-with-Pembrolizumab-pembro-preliminary-results-from-INDUCE-1-expansion-cohorts-EC-in-Head-and-Neck-Squamous-Cell-Carcinoma-HNSCC
https://oncologypro.esmo.org/Meeting-Resources/ESMO-2019-Congress/Inducible-T-cell-Costimulatory-ICOS-Receptor-Agonist-GSK3359609-GSK609-alone-and-in-combination-with-Pembrolizumab-pembro-preliminary-results-from-INDUCE-1-expansion-cohorts-EC-in-Head-and-Neck-Squamous-Cell-Carcinoma-HNSCC
https://oncologypro.esmo.org/Meeting-Resources/ESMO-2019-Congress/Inducible-T-cell-Costimulatory-ICOS-Receptor-Agonist-GSK3359609-GSK609-alone-and-in-combination-with-Pembrolizumab-pembro-preliminary-results-from-INDUCE-1-expansion-cohorts-EC-in-Head-and-Neck-Squamous-Cell-Carcinoma-HNSCC
https://oncologypro.esmo.org/Meeting-Resources/ESMO-2019-Congress/Inducible-T-cell-Costimulatory-ICOS-Receptor-Agonist-GSK3359609-GSK609-alone-and-in-combination-with-Pembrolizumab-pembro-preliminary-results-from-INDUCE-1-expansion-cohorts-EC-in-Head-and-Neck-Squamous-Cell-Carcinoma-HNSCC
https://oncologypro.esmo.org/Meeting-Resources/ESMO-2019-Congress/Inducible-T-cell-Costimulatory-ICOS-Receptor-Agonist-GSK3359609-GSK609-alone-and-in-combination-with-Pembrolizumab-pembro-preliminary-results-from-INDUCE-1-expansion-cohorts-EC-in-Head-and-Neck-Squamous-Cell-Carcinoma-HNSCC
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Varayathu et al. Augmenting Efficacy of ICIs
Label, Single-Arm, Phase 2 Trial. Lancet Oncol (2020) 21(6):821–31. doi:
10.1016/S1470-2045(20)30169-8

130. Narita Y, Kadowaki S, Muro K. Immune Checkpoint Inhibitor Plus Anti-
HER2 Therapy: A New Standard for HER2-positive Oesophagogastric
Cancer? Lancet Oncol (2020) 21:741–3. doi: 10.1016/S1470-2045(20)30208-4

131. Chan LC, Li CW, Xia W, Hsu JM, Lee HH, Cha JH, et al. Il-6/JAK1 Pathway
Drives PD-L1 Y112 Phosphorylation to Promote Cancer Immune Evasion.
J Clin Invest (2019) 1129(8):3324–38. doi: 10.1172/JCI126022

132. Wang Z, Liu Y, Zhang Y, Shang Y, Gao Q. MDSC-Decreasing Chemotherapy
Increases the Efficacy of Cytokine-Induced Killer Cell Immunotherapy in
Metastatic Renal Cell Carcinoma and Pancreatic Cancer. Oncotarget (2016) 7
(4):4760–9. doi: 10.18632/oncotarget.6734

133. Weber R, Fleming V, Hu X, Nagibin V, Groth C, Altevogt P, et al. Myeloid-
Derived Suppressor Cells Hinder the Anti-Cancer Activity of Immune
Checkpoint Inhibitors. Front Immunol (2018) 99:1310. doi: 10.3389/
fimmu.2018.01310

134. Tesi RJ. MDSC; the Most Important Cell You Have Never Heard of. Trends
Pharmacol Sci (2019) 40:4–7. doi: 10.1016/j.tips.2018.10.008

135. Fleming V, Hu X, Weber R, Nagibin V, Groth C, Altevogt P, et al. Targeting
Myeloid-Derived Suppressor Cells to Bypass Tumor-Induced
Immunosuppression. Front Immunol (2018) 99:398. doi: 10.3389/
fimmu.2018.00398

136. Luginbuhl AJ, Johnson JM, Harshyne L, Tuluc M, Mardekian S, Leiby BE,
et al. A Window of Opportunity Trial of Preoperative Nivolumab With or
Without Tadalafil in Squamous Cell Carcinoma of the Head and Neck
(SCCHN): Safety. OncologyPRO. Available at: https://oncologypro.esmo.
org/Meeting-Resources/ESMO-2019-Congress/A-window-of-opportunity-
trial-of-preoperative-nivolumab-with-or-without-tadalafil-in-squamous-
cell-carcinoma-of-the-head-and-neck-SCCHN-safety-clinical-and-
correlative-outcomes.

137. Yan S, Zhang Y, Sun B. The Function and Potential Drug Targets of
Tumour-Associated Tregs for Cancer Immunotherapy. Sci China Life Sci
(2019) 62:179–86. doi: 10.1007/s11427-018-9428-9

138. Furukawa A, Wisel SA, Tang Q. Impact of Immune-Modulatory Drugs on
Regulatory T Cell. Transplantation (2016) 100:2288–300. doi: 10.1097/
TP.0000000000001379

139. König M, Rharbaoui F, Aigner S, Dälken B, Schüttrumpf J. Tregalizumab – A
Monoclonal Antibody to Target Regulatory T Cells. Front Immunol (2016)
7:11. doi: 10.3389/fimmu.2016.00011

140. Ohue Y, Nishikawa H. Regulatory T (Treg) Cells in Cancer: Can Treg Cells
be a New Therapeutic Target? Cancer Sci (2019) 110:2080–9. doi: 10.1111/
cas.14069

141. Hanks BA, Holtzhausen A, Evans K, Heid M, Blobe GC. Combinatorial
TGF-b Signaling Blockade and anti-CTLA-4 Antibody Immunotherapy in a
Murine BRAF V600e -PTEN-/- Transgenic Model of Melanoma. J Clin
Oncol (2014) 32(15_suppl):3011–1. doi: 10.1200/jco.2014.32.15_suppl.3011

142. Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-
Ramentol J, Iglesias M, et al. Tgfb Drives Immune Evasion in Genetically
Reconstituted Colon Cancer Metastasis. Nature (2018) 554(7693):538–43.
doi: 10.1038/nature25492

143. Holmgaard RB, Schaer DA, Li Y, Castaneda SP, Murphy MY, Xu X, et al.
Targeting the TGFb Pathway With Galunisertib, a TGFbRI Small Molecule
Inhibitor, Promotes Anti-Tumor Immunity Leading to Durable,
Complete Responses, as Monotherapy and in Combination With
Checkpoint Blockade. J Immunother Cancer (2018) 6(1):1–5. doi: 10.1186/
s40425-018-0356-4

144. Knudson KM, Hicks KC, Luo X, Chen JQ, Schlom J, Gameiro SR. M7824, a
Novel Bifunctional Anti-PD-L1/TGFb Trap Fusion Protein, Promotes Anti-
Tumor Efficacy as Monotherapy and in Combination With Vaccine.
Oncoimmunology (2018) 7(5):e1426519. doi: 10.1080/2162402X.2018.1426519

145. Principe DR, Park A, Dorman MJ, Kumar S, Viswakarma N, Rubin J, et al.
TGFb Blockade Augments PD-1 Inhibition to Promote T-cell–mediated
Regression of Pancreatic Cancer. Mol Cancer Ther (2019) 18(3):613–20. doi:
10.1158/1535-7163.MCT-18-0850

146. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al.
TGFb Attenuates Tumour Response to PD-L1 Blockade by Contributing to
Exclusion of T Cells. Nature (2018) 554(7693):544–8. doi: 10.1038/
nature25501
Frontiers in Oncology | www.frontiersin.org 22240
147. Spranger S, Koblish HK, Horton B, Scherle PA, Newton R, Gajewski TF.
Mechanism of Tumor Rejection With Doublets of CTLA-4, PD-1/PD-L1, or
IDO Blockade Involves Restored IL-2 Production and Proliferation of CD8+
T Cells Directly Within the Tumor Microenvironment. J Immunother
Cancer (2014) 2(1):1–4. doi: 10.1186/2051-1426-2-3

148. Holmgaard RB, Zamarin D, Munn DH, Wolchok JD, Allison JP.
Indoleamine 2,3-Dioxygenase Is a Critical Resistance Mechanism in
Antitumor T Cell Immunotherapy Targeting CTLA-4. J Exp Med (2013)
210(7):1389–402. doi: 10.1084/jem.20130066

149. Adding COX-2 Inhibition to Checkpoint Inhibitors Could Treat IDO1-
Expressing Cancers. Available at: https://www.genengnews.com/topics/
drug-discovery/adding-cox-2-inhibition-to-checkpoint-inhibitors-could-
treat-ido1-expressing-cancers/.

150. Cox-2 Inhibitors may Reverse Ido1-Mediated Immunosuppression in Some
Cancers. The ASCO Post. Available at: https://www.ascopost.com/News/
57861.

151. Labadie BW, Bao R, Luke JJ. Reimagining IDO Pathway Inhibition in Cancer
Immunotherapy Via Downstream Focus on the Tryptophan–Kynurenine–
Aryl Hydrocarbon Axis. Clin Cancer Res (2019) 25:1462–71. doi: 10.1158/
1078-0432.CCR-18-2882

152. Kim C, Kim JH, Kim JS, Chon HJ, Kim J-H. A Novel Dual Inhibitor of IDO
and TDO, CMG017, Potently Suppresses the Kynurenine Pathway and
Overcomes Resistance to Immune Checkpoint Inhibitors. J Clin Oncol
(2019) 37(15_suppl):e14228–8. doi: 10.1200/JCO.2019.37.15_suppl.e14228

153. Cortez-Retamozo V, Etzrodt M, Newton A, Ryan R, Pucci F, Sio SW, et al.
Angiotensin II Drives the Production of Tumor-Promoting Macrophages.
Immunity (2013) 38(2):296–308. doi: 10.1016/j.immuni.2012.10.015

154. Lin C, Datta V, Okwan-Duodu D, Chen X, Fuchs S, Alsabeh R, et al.
Angiotensin-Converting Enzyme Is Required for Normal Myelopoiesis.
FASEB J (2011) 25(4):1145–55. doi: 10.1096/fj.10-169433

155. George AJ, Thomas WG, Hannan RD. The Renin–Angiotensin System and
Cancer: Old Dog, New Tricks. Nat Rev Cancer (2010) 10(11):745–59. doi:
10.1038/nrc2945

156. Bader M. Tissue Renin-Angiotensin-Aldosterone Systems: Targets for
Pharmacological Therapy. Annu Rev Pharmacol Toxicol (2010) 50(1):439–
65. doi: 10.1146/annurev.pharmtox.010909.105610

157. Pinter M, Jain RK. Targeting the Renin-Angiotensin System to Improve Cancer
Treatment: Implications for Immunotherapy. Sci Trans Med Am Assoc
Advancement Sci; (2017) 9(410):1–11. doi: 10.1126/scitranslmed.aan5616

158. Kamiya A, Hayama Y, Kato S, Shimomura A, Shimomura T, Irie K, et al.
Genetic Manipulation of Autonomic Nerve Fiber Innervation and Activity
and its Effect on Breast Cancer Progression. Nat Neurosci (2019) 22(8):1289–
305. doi: 10.1038/s41593-019-0430-3

159. Wrobel LJ, Bod L, Lengagne R, Kato M, Prévost-Blondel A, Gal FA Le.
Propranolol Induces a Favourable Shift of Anti-Tumor Immunity in a
Murine Spontaneous Model of Melanoma. Oncotarget (2016) 7(47):77825–
37. doi: 10.18632/oncotarget.12833

160. Patel VG, OhWK, Galsky MD, Liaw BC-H , Tsao C-K. Effect of Concurrent
Beta-Blocker (BB) Use in Patients Receiving Immune Checkpoint Inhibitors
for Metastatic Urothelial (mUC) and Renal Cell Carcinomas (mRCC). J Clin
Oncol (2019) 37(7_suppl):467–7. doi: 10.1200/JCO.2019.37.7_suppl.467

161. Kokolus KM, Zhang Y, Sivik JM, Schmeck C, Zhu J, Repasky EA, et al. Beta
Blocker Use Correlates With Better Overall Survival in Metastatic Melanoma
Patients and Improves the Efficacy of Immunotherapies in Mice.
Oncoimmunology (2018) 7(3):e1405205. doi: 10.1080/2162402X.2017.1405205

162. Sahra IB, Marchand-Brustel YL, Tanti JF, Bost F. Metformin in Cancer
Therapy: A New Perspective for an Old Antidiabetic Drug?Mol Cancer Ther
(2010) 9:1092–9. doi: 10.1158/1535-7163.MCT-09-1186

163. Bodmer M, Meier C, Krähenbühl S, Jick SS, Meier CR. Long-Term
Metformin Use Is Associated With Decreased Risk of Breast Cancer.
Diabetes Care (2010) 33(6):1304–8. doi: 10.2337/dc09-1791

164. Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M. Metformin Is
an AMP Kinase-Dependent Growth Inhibitor for Breast Cancer Cells.
Cancer Res (2006) 66(21):10269–73. doi: 10.1158/0008-5472.CAN-06-1500

165. Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H.
Immune-Mediated Antitumor Effect by Type 2 Diabetes Drug, Metformin.
Proc Natl Acad Sci USA (2015) 112(6):1809–14. doi: 10.1073/
pnas.1417636112
May 2021 | Volume 11 | Article 559161

https://doi.org/10.1016/S1470-2045(20)30169-8
https://doi.org/10.1016/S1470-2045(20)30208-4
https://doi.org/10.1172/JCI126022
https://doi.org/10.18632/oncotarget.6734
https://doi.org/10.3389/fimmu.2018.01310
https://doi.org/10.3389/fimmu.2018.01310
https://doi.org/10.1016/j.tips.2018.10.008
https://doi.org/10.3389/fimmu.2018.00398
https://doi.org/10.3389/fimmu.2018.00398
https://oncologypro.esmo.org/Meeting-Resources/ESMO-2019-Congress/A-window-of-opportunity-trial-of-preoperative-nivolumab-with-or-without-tadalafil-in-squamous-cell-carcinoma-of-the-head-and-neck-SCCHN-safety-clinical-and-correlative-outcomes
https://oncologypro.esmo.org/Meeting-Resources/ESMO-2019-Congress/A-window-of-opportunity-trial-of-preoperative-nivolumab-with-or-without-tadalafil-in-squamous-cell-carcinoma-of-the-head-and-neck-SCCHN-safety-clinical-and-correlative-outcomes
https://oncologypro.esmo.org/Meeting-Resources/ESMO-2019-Congress/A-window-of-opportunity-trial-of-preoperative-nivolumab-with-or-without-tadalafil-in-squamous-cell-carcinoma-of-the-head-and-neck-SCCHN-safety-clinical-and-correlative-outcomes
https://oncologypro.esmo.org/Meeting-Resources/ESMO-2019-Congress/A-window-of-opportunity-trial-of-preoperative-nivolumab-with-or-without-tadalafil-in-squamous-cell-carcinoma-of-the-head-and-neck-SCCHN-safety-clinical-and-correlative-outcomes
https://oncologypro.esmo.org/Meeting-Resources/ESMO-2019-Congress/A-window-of-opportunity-trial-of-preoperative-nivolumab-with-or-without-tadalafil-in-squamous-cell-carcinoma-of-the-head-and-neck-SCCHN-safety-clinical-and-correlative-outcomes
https://doi.org/10.1007/s11427-018-9428-9
https://doi.org/10.1097/TP.0000000000001379
https://doi.org/10.1097/TP.0000000000001379
https://doi.org/10.3389/fimmu.2016.00011
https://doi.org/10.1111/cas.14069
https://doi.org/10.1111/cas.14069
https://doi.org/10.1200/jco.2014.32.15_suppl.3011
https://doi.org/10.1038/nature25492
https://doi.org/10.1186/s40425-018-0356-4
https://doi.org/10.1186/s40425-018-0356-4
https://doi.org/10.1080/2162402X.2018.1426519
https://doi.org/10.1158/1535-7163.MCT-18-0850
https://doi.org/10.1038/nature25501
https://doi.org/10.1038/nature25501
https://doi.org/10.1186/2051-1426-2-3
https://doi.org/10.1084/jem.20130066
https://www.genengnews.com/topics/drug-discovery/adding-cox-2-inhibition-to-checkpoint-inhibitors-could-treat-ido1-expressing-cancers/
https://www.genengnews.com/topics/drug-discovery/adding-cox-2-inhibition-to-checkpoint-inhibitors-could-treat-ido1-expressing-cancers/
https://www.genengnews.com/topics/drug-discovery/adding-cox-2-inhibition-to-checkpoint-inhibitors-could-treat-ido1-expressing-cancers/
https://www.ascopost.com/News/57861
https://www.ascopost.com/News/57861
https://doi.org/10.1158/1078-0432.CCR-18-2882
https://doi.org/10.1158/1078-0432.CCR-18-2882
https://doi.org/10.1200/JCO.2019.37.15_suppl.e14228
https://doi.org/10.1016/j.immuni.2012.10.015
https://doi.org/10.1096/fj.10-169433
https://doi.org/10.1038/nrc2945
https://doi.org/10.1146/annurev.pharmtox.010909.105610
https://doi.org/10.1126/scitranslmed.aan5616
https://doi.org/10.1038/s41593-019-0430-3
https://doi.org/10.18632/oncotarget.12833
https://doi.org/10.1200/JCO.2019.37.7_suppl.467
https://doi.org/10.1080/2162402X.2017.1405205
https://doi.org/10.1158/1535-7163.MCT-09-1186
https://doi.org/10.2337/dc09-1791
https://doi.org/10.1158/0008-5472.CAN-06-1500
https://doi.org/10.1073/pnas.1417636112
https://doi.org/10.1073/pnas.1417636112
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Varayathu et al. Augmenting Efficacy of ICIs
166. Levy A, Doyen J. Metformin for non-Small Cell Lung Cancer Patients:
Opportunities and Pitfalls. Crit Rev Oncol/Hematol (2018) 125:41–7. doi:
10.1016/j.critrevonc.2018.03.001

167. Song CW, Lee H, Dings RPM,Williams B, Powers J, Dos ST, et al. Metformin
Kills and Radiosensitizes Cancer Cells and Preferentially Kills Cancer Stem
Cells. Sci Rep (2012) 2(1):1–9. doi: 10.1038/srep00362

168. Richa T, Johnson JM, Cognetti DM, Argiris A, Luginbuhl A, Zinner R, et al.
Window of Opportunity for Durvalumab (MEDI4736) Plus Metformin Trial
in Squamous Cell Carcinoma of the Head and Neck (SCCHN): Interim Safety
Analysis. OncologyPRO. Available at: https://oncologypro.esmo.org/
Meeting-Resources/ESMO-2019-Congress/Window-of-Opportunity-for-
Durvalumab-MEDI4736-plus-Metformin-Trial-in-Squamous-Cell-
Carcinoma-of-the-Head-and-Neck-SCCHN-interim-safety-analysis.

169. Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y.
Next Generation of Immune Checkpoint Therapy in Cancer: New
Developments and Challenges. J Hematol Oncol (2018) 1111(1):1–20. doi:
10.1186/s13045-018-0582-8

170. Zappasodi R, Sirard C, Li Y, Budhu S, Abu-Akeel M, Liu C, et al. Rational
Design of anti-GITR-based Combination Immunotherapy. Nat Med (2019)
25:759–66. doi: 10.1038/s41591-019-0420-8

171. Kaesler S, Wölbing F, Kempf WE, Skabytska Y, Köberle M, Volz T, et al.
Targeting Tumor-Resident Mast Cells for Effective Anti-Melanoma Immune
Responses. JCI Insight (2019) 4(19):e125057. doi: 10.1172/jci.insight.125057

172. Lv Y, Zhao Y, Wang X, Chen N, Mao F, Teng Y, et al. Increased Intratumoral
Mast Cells Foster Immune Suppression and Gastric Cancer Progression
Through TNF-a-PD-L1 Pathway. J Immunother Cancer (2019) 7(1):54.
doi: 10.1186/s40425-019-0530-3

173. Meraz IM, Majidi M, Meng F, Shao RP, Ha MJ, Neri S, et al. An Improved
Patient-Derived Xenograft Humanized Mouse Model for Evaluation of Lung
Cancer Immune Responses. Cancer Immunol Res (2019) 7(8):1267–79. doi:
10.1158/2326-6066.CIR-18-0874

174. Koga Y, Ochiai A. Systematic Review of Patient-Derived Xenograft Models
for Preclinical Studies of Anti-Cancer Drugs in Solid Tumors. Cells (2019) 8
(5):418. doi: 10.3390/cells8050418

175. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan
K, et al. Patient-Derived Organoids Model Treatment Response of Metastatic
Gastrointestinal Cancers Europe PMC Funders Group. Sci (80- ) (2018) 359
(6378):920–6. doi: 10.1126/science.aao2774
Frontiers in Oncology | www.frontiersin.org 23241
176. Di Modugno F, Colosi C, Trono P, Antonacci G, Ruocco G, Nisticò P. 3D
Models in the New Era of Immune Oncology: Focus on T Cells, CAF and
ECM. J Exp Clin Cancer Res (2019) 38:1–14. doi: 10.1186/s13046-019-1086-2

177. Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB, Kim K, et al. Tumor
Evolution and Drug Response in Patient-Derived Organoid Models of Bladder
Cancer. Cell (2018) 173(2):515–28.e17. doi: 10.1016/j.cell.2018.03.017

178. Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, et al. Personalized
In Vitro and In Vivo Cancer Models to Guide Precision Medicine. Cancer
Discov (2017) 7(5):462–77. doi: 10.1158/2159-8290.CD-16-1154

179. Yuan H, Cai P, Li Q, Wang W, Sun Y, Xu Q, et al. Axitinib Augments
Antitumor Activity in Renal Cell Carcinoma Via STAT3-dependent Reversal
of Myeloid-Derived Suppressor Cell Accumulation. BioMed Pharmacother
(2014) 68(6):751–6. doi: 10.1016/j.biopha.2014.07.002
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Background: Lung cancer has always been the most prevalent cancer. Lung
adenocarcinoma (LUAD) is the most common lung cancer subtype and has a high
tumor mutation rate. In addition to KRAS, EGFR, ALK, HER2, ROS1, and BRAF,
which are known to have high mutation rates, we discovered some new mutated
genes, such as catenin alpha-2 (CTNNA2), in LUAD patients treated with immune
checkpoint inhibitors (ICIs). These mutant genes are potential therapeutic targets
for LUAD.

Methods:We analyzed a cohort of LUAD patients with somatic mutation and survival data
in the Cancer Genome Atlas (TCGA) database and a cohort of LUAD patients receiving
immune checkpoint inhibitors with clinical data and whole-exome sequencing (WES)
mutation data to evaluate the role of CTNNA2 gene mutation in LUAD. In addition,
CIBERSORT was used to analyze the immune characteristics of CTNNA2 wild-type
patients and CTNNA2 mutant-type patients, and gene set enrichment analysis (GSEA)
was employed for pathway enrichment analysis. The results were verified by downloading
data regarding the drug sensitivity of LUAD cell lines from the Genomics of Drug Sensitivity
in Cancer (GDSC) database.

Results:We found that CTNNA2mutation was associated with longer overall survival (OS)
in LUAD patients. Analysis of the cohort from the Cancer Genome Atlas showed that
patients with CTNNA2 mutation had more tumor neoantigens and a greater tumor
mutation burden (TMB). Through further analysis of the tumor immune
microenvironment, we found that in LUAD patients with CTNNA2 mutations, the gene
expression levels of chemokine C-X-C motif chemokine 9 (CXCL9) and granzyme B
(GZMB) were elevated, and the gene expression level of inhibitory receptor killer cell
immunoglobulin-like receptor 2DL1 (KIR2DL1) was significantly reduced. These alterations
might affect gene expression in macrophages, NK cells, and mast cell markers. In addition,
LUAD patients with CTNNA2mutation had a significantly increased number of mutations in
DNA damage response (DDR) genes. The drug susceptibility results and gene set
enrichment analysis showed that after CTNNA2 mutation occurred, changes were
found in the DNA damage response pathway, the phosphoinositide 3-kinase (PI3K)
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pathway and others, indicating that CTNNA2 mutation can regulate the activation of PI3K
and DDR pathways.

Conclusion: Our findings provide novel insights into the underlying pathogenesis of
LUAD. CTNNA2 mutation can change the immune microenvironment, thereby improving
patient prognosis. The results also suggest that CTNNA2 may become a new biomarker
and therapeutic target for LUAD in the future.

Keywords: CTNNA2, lung adenocarcinoma, immune checkpoint inhibitors, immune microenvironment, prognosis

INTRODUCTION

Globally, lung cancer is the leading cause of cancer-related death
(Nasim et al., 2019). Lung cancer includes small cell lung cancer
and non-small cell lung cancer (NSCLC), and NSCLC accounts
for 85% of all lung cancers. NSCLC is divided into different
histological types, including adenocarcinoma, squamous cell
carcinoma, large cell carcinoma, adenosquamous carcinoma,
sarcomatoid carcinoma, etc. Among them, adenocarcinoma
accounts for more than 50% of NSCLCs (Gridelli et al., 2015),
and lung adenocarcinoma (LUAD) has become the most
common type of lung cancer. Common mutation sites driving
oncogenes in LUAD are KRAS (25%), EGFR (21%), ALK (7%),
MET (3%), HER2 (2%), ROS1 (2%), BRAF (2%), RET(2%),
NTRK1(1%), PIK3CA(1%), MEK1(1%), and other unknown
oncogenic drivers (31%) (Hirsch et al., 2017; Inamura, 2018).
Using drugs with more specific targets can improve the prognosis
of patients, and immunotherapy has become one of the most
promising treatment strategies (Gridelli et al., 2015; Hirsch et al.,
2017).

Currently, the most studied immune checkpoints in lung
cancer mainly include cytotoxic T lymphocyte-associated
antigen 4 (CTLA-4), programmed cell death receptor 1
(PD-1), and programmed cell death receptor ligand 1 (PD-
L1), etc (Gubin et al., 2014; Steven et al., 2016). Immune
checkpoint inhibitors mainly activate T cells by blocking
these molecules and exert antitumor effects. Monoclonal
antibody-based therapies targeting CTLA-4 and/or PD-1
(checkpoint block) have produced significant clinical
benefits for patients with different malignancies (Hodi et al.,
2010; Wolchok et al., 2013). The immune microenvironment
plays an important role in the regulation of immunotherapy
response (Menzel and Black, 2020). Tumors are complex
tissues composed of not only tumor cells but also stromal
cells, inflammatory cells, vasculature and extracellular matrix
(ECM). The sum of all of these factors is defined as the tumor
microenvironment (Quail and Joyce, 2013). Although the
success of immunotherapy is exciting and countless patients
have achieved remarkable results with immunotherapy
treatment, there are still some patients who do not respond
to immunotherapy (Suresh et al., 2018). As technology has
advanced, the complexity and diversity of the tumor
microenvironment and its important impact on
immunotherapy have been revealed. Further analysis and
understanding of the tumor immune microenvironment will
help improve the response to immunotherapy.

Alpha-catenin is a mechanosensing protein that undergoes
conformational changes under the action of cytoskeletal tension,
thereby changing the connection between cadherin and the actin
backbone (Vite et al., 2015). There are three α-catenin subtypes in
mice and humans: CTNNA1 (αE-catenin, epithelial), CTNNA2
(αN-catenin, nerve) and CTNNA3 (αT-catenin, testis) (Vite et al.,
2015). CTNNA2 is related to the development of the nervous
system and many neurological diseases (Takeichi and Abe, 2005).
Recent articles have shown that CTNNA2 is also involved in the
occurrence and development of some tumors. According to
reports, CTNNA2 mutation is involved in the adhesion
junction pathway, which is one of the most disturbed
pathways in gastric cancer (Wang et al., 2014). CTNNA2 and
CTNNA3 are also frequently mutated tumor suppressor genes in
laryngeal cancer (Fanjul-Fernandez et al., 2013). In addition,
CTNNA2 mutation is associated with the prognosis of patients
with pancreatic ductal adenocarcinoma (PDAC) (Rizzato et al.,
2016). However, the role of CTNNA2 mutation in lung cancer
has not been studied, and the relationship between the tumor
microenvironment and CTNNA2 mutation remains unknown.

In this article, we analyzed data from The Cancer Genome
Atlas LUAD cohort, an ICI-treated cohort, and LUAD cell line
drug sensitivity data from the Genomics of Drug Sensitivity in
Cancer (GDSC) database to elucidate the clinical and immune
characteristics of LUAD patients with CTNNA2 mutation. The
results suggest that CTNNA2 can be used as a prognostic target
for LUAD patients.

MATERIALS AND METHODS

Catenin Alpha-2 Gene Mutation and the
Prognosis of Lung Adenocarcinoma
Treated with Immunotherapy
Clinical data and WES mutation data on the immunotherapy
cohort (Miao et al., 2018) were collected to evaluate the
relationship between CTNNA2 mutation and the prognosis of
LUAD patients receiving immune checkpoint inhibitors (ICIs).
According to CTNNA2 mutation status, we grouped LUAD
patients who received ICI treatment (anti-PD-1/PD-L1/anti-
CTLA-4 therapies) and had mutation data (n � 47) into
CTNNA2 mutant-type (MT) and CTNNA2 wild-type (WT)
groups and then performed Kaplan-Meier (KM) analysis. In
addition, we used the R package TCGAbiolinks (Colaprico
et al., 2016) to download the somatic mutation and survival
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data (overall survival) of the LUAD cohort from TCGA in
Genomic Data Commons (https://portal.gdc.cancer.gov/).
cBioportal (Cerami et al., 2012) was used to download TCGA-
LUAD survival data (disease-free survival), and KM analysis of
TCGA-LUAD patient survival was performed according to the
mutation status of the CTNNA2 gene.

Gene Mutation Characteristics
Targeted next-generation sequencing (NGS; MSK-IMPACT) was
used by Miao et al. to report the somatic mutation data in 47
LUAD samples. In addition, many papers in the LUAD cohort of
TCGA have analyzed neoantigen loading (NAL) data (Thorsson
et al., 2019).

Immune Characteristics and Tumor
Immunogenicity
We downloaded the gene expression data (Illumina HiSeq,
RNASeq) of the LUAD cohort of TCGA from TCGAbiolinks,
and used CIBERSORT (Newman et al., 2015) for the analysis.
We mainly assessed the infiltration of 22 immune cell types in
the CTNNA2-WT group and CTNNA2-MT group in the
LUAD cohort of TCGA (|logFC| > 1, p < 0.05). In addition,
the mRNA expression of immune-related genes in the
CTNNA2-WT group and CTNNA2-MT group in the LUAD
cohort of TCGA (|logFC| > 1, p < 0.05) was also analyzed. We
obtained immune cell-related genes from the existing
literature (Hao et al., 2018), and quantified the expression
level of these genes as log2 (FPKM + 1). Among them,
immune-related genes and their functional classification and
immune-related scores have been reported in the literature
(Thorsson et al., 2019). To better illustrate the gene mutation
characteristics, the R package ComplexHeatmap (Gu et al.,
2016) was used to visualize the top 20 gene mutations and
clinical features of the ICI-treated cohort and the LUAD
cohort of TCGA.

Pathway Enrichment Analysis
TCGAbiolinks was used to download the gene expression data
(raw count) of TCGA-LUAD, and difference analysis was
performed using the R package edgeR (Robinson et al., 2010).
The ClusterProfiler R package (Yu et al., 2012) was used for gene
annotation enrichment analysis. In addition, this article uses the
GSEA gene set in the MSigDB database of the Broad Institute
(Subramanian et al., 2005). In terms of statistics, p < 0.05 was
considered a significant difference for Gene Ontology (GO) terms
and Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Reactome pathway databases.

Drug Sensitivity Analysis
This article uses the LUADcell line withWES data for analysis. The
specific information of the cell line was obtained from the GDSC
database (Yang et al., 2013). In addition, the nonsynonymous
mutations were taken as the raw mutation count and divided by
38Mb to quantify the tumor mutation burden (TMB) in the ICI-
treated cohort, the LUAD cohort of TCGA and the GDSC-LUAD
cohort. This calculationmethod is consistent with that published in

the literature (Chalmers et al., 2017). The information downloaded
from the GDSC database included the susceptibility data of the
LUAD cell line for comparisons of the sensitivity of CTNNA2-WT
and CTNNA2-MT cell lines to different chemotherapeutic drugs
and molecular targeted drugs.

DNA Damage Response and Repair
Pathway Mutation Number Analysis
We evaluated the number of nonsynonymous mutations in the
DDR pathway in the ICI-treated cohort, TCGA-LUAD cohort
and GDSC-LUAD cohort and compared the number of
nonsynonymous mutations in the DDR pathway between the
CTNNA2-WT group and the CTNNA2-MT group. For these
analyses, we used the DDR pathway gene set of the Molecular
Signatures Database (MSigDB) of the Broad Institute
(Subramanian et al., 2005), see Additional File:
Supplementary Table S1 for details.

Copy Number Variation Analysis
The data come from the Affymetrix SNP 6.0 microarray (hg19;
germline/potential false-positive calls were removed) of the
LUAD cohort of TCGA, downloaded through the Broad
GDAC Firehose tool (http://gdac.broadinstitute.org/), and
the data are saved in CNV segment format. The
downloaded data were analyzed by GISTIC2.0, and the
analysis platform was GenePattern (Reich et al., 2006)
(https://cloud.genepattern.org/gp/pages/index.jsf). In terms
of GISTIC2.0 analysis parameter settings, the confidence
level was 0.99; the X-chromosome was not excluded before
analysis, and the rest of the analysis uses default settings.
GISTIC2.0 uses R package Maftools (Mayakonda et al.,
2018) to visualize CNVs.

Statistical Analysis
Progression-free survival (PFS) was defined as the time from the
introduction of ICIs to progression on ICIs. Overall survival (OS)
was defined as the time from the introduction of ICI to death. The
Mann–Whitney U test was used to compare the abundance of
immune cells, the expression of immune-related genes, the
number of gene mutations in the DDR pathway, and the drug
sensitivity in the GDSC database between the CTNNA2-WT
group and the CTNNA2-MT group. Fisher’s exact test was used
to compare sex, age, OS, PFS, TMB, smoking history, treatment
response and the mutation status of the top 20 genes between the
CTNNA2-WT group and the CTNNA2-MT group in the
immunotherapy cohort. The chi-square test was used to
compare the difference in tobacco smoking history in the
LUAD cohort of TCGA between the CTNNA2-WT group and
the CTNNA2-MT group. Fisher’s exact test was used to compare
the mutation status of the top 20 genes in the LUAD cohort of
TCGA between the CTNNA2-WT group and the CTNNA2-MT
group and to compare sex, race, ethnicity, Neoantigens, OS, TMB,
pack-years and clinical stage in the LUAD cohort of TCGA
between the CTNNA2-WT group and the CTNNA2-MT
group. The Kaplan-Meier method was used to estimate the
PFS and OS of the entire cohort, and the log-rank test was
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used for survival analysis. Differences with p < 0.05 were
considered statistically significant, and all statistical tests were
two-sided tests. All statistical tests and visual analysis were
performed in R software (version 3.6.1). In addition, the R
package ggpurb is used to visualize box plots. Differential
analyses were visualized via the “ggpubr” package (https://
CRAN.R-project.org/package�ggpubr). The false discovery rate
(FDR) cutoff for CNV visualization was 0.05.

RESULTS

Catenin Alpha-2 Gene Mutation was
Associated with Clinical Features of
Patients with Lung Adenocarcinoma
We used an immunotherapy cohort with clinical data and WES
mutation data to evaluate the relationship between CTNNA2
mutation and the prognosis of LUAD patients receiving ICIs (see
Materials and Methods) (Figure 1A). This cohort included
10 CTNNA2-MT patients and 37 CTNNA2-WT patients. We
found that compared with CTNNA2-WT patients, CTNNA2-
MT patients had a longer OS time (log-rank test, p < 0.05). In
addition, missense mutation was the most common mutation
mode in CTNNA2-MT patients, which accounted for 84.6%,

followed by nonsense mutation, which accounted for 15.4%.
CTNNA2-MT patients often had other gene mutations, the
most common of which were COL11A1 and OBSCN
mutations. The mutation frequency increased for some other
genes as well, such as TP53, TTN, MUC16, and KRAS. In
addition, we analyzed factors such as sex, age, pack years,
response, smoking, PFS, TMB, etc., but no difference was
found between the two groups. The top 30 mutant genes of
ICI-treated cohort are shown in Supplementary Figure S1.

We also downloaded the LUAD cohort of TCGA survival data
(see Materials and Methods, Figure 1B). A total of 514 LUAD
patients were in this cohort, including 55 CTNNA2-MT patients
and 459 CTNNA2-WT patients. We found that compared with
CTNNA2-WT patients, CTNNA2-MT patients had a
significantly higher TMB and more tumor neoantigens
(Mann-Whitney U test, p < 0.05, Figure 1B). Missense
mutation was the most common mutation mode of CTNNA2-
MT patients, which accounted for 84.4%. Other mutation modes
included splice site, frame shift, and nonsense mutations. The
proportion of CTNNA2-MT patients with other gene mutations,
such as TP53, TTN, MUC16, and CSMD3, was higher than that
of CTNNA2-WT patients (Fisher test, p < 0.05, Figure 1B). The
average age of CTNNA2-MT patients was lower than that of
CTNNA2-WT patients (Fisher test, p < 0.05, Figure 1C), and
differences in ethnic distribution were found (Fisher test, p �

FIGURE 1 | The clinical features of patients with CTNNA2-WT LUAD and CTNNA2-MT LUAD. (A) The heat map shows the differences in the mutation status of the
top 20 genes and in sex, age, OS, PFS, TMB, smoking history and treatment response between the CTNNA2-WT (n � 37) and CTNNA2-MT (n � 10) LUAD patients in the
immunotherapy cohort (ICI-treated). The data came from theMemorial Sloan-Kettering Cancer Center (MSKCC). (B) The heat map shows the differences in the mutation
status of the top 20 genes and in sex, race, tumor neoantigens, OS, TMB, pack-years and clinical stage between the CTNNA2-WT (n � 459) and CTNNA2-MT (n � 55)
LUADpatients in the LUAD cohort of TCGA. (C)Box plot of the age of CTNNA2-WT (n � 441) and CTNNA2-MT (n � 54) LUAD patients in the LUAD cohort of TCGA. Fisher’s
exact test, p < 0.05. (D)Box plot of the age of CTNNA2-WT (n � 441) and CTNNA2-MT (n � 54) LUAD patients in the LUAD cohort of TCGA. Fisher’s exact test, p < 0.05. (E)
The pie chart comparing the tobacco smoking history of CTNNA2-WT (n � 446) and CTNNA2-MT (n � 54) LUAD patients in the LUAD cohort of TCGA. Chi-square test,
Pearson χ2 (4) � 15.63, p � 0.004, V Cramer � 0.18, 95% CI [0.09, 0.25], nobs � 500.
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0.029). CTNNA2 mutation was more common in African
Americans than Caucasians. Patients with CTNNA2 mutation
generally smoked longer (Fisher’s exact test, p < 0.05, Figure 1D),
and CTNNA2-MT patients also had more pack-years than
CTNNA2-WT patients (Pearson χ2 4) � 15.63, p � 0.004,
Figure 1E). In addition, we analyzed clinical stage and OS, but
no difference was observed between the two groups. Based on the
above two cohort studies, we found that the clinical differences
between the two groups were obvious and that CTNNA2-MT
patients had a longer overall survival than CTNNA2-WT
patients.

Immune Microenvironment Characteristics
of Catenin Alpha-2 Mutant-Type Patients in
the Checkpoint Inhibitor-Treated Cohort
and Cancer Genome Atlas-Lung
Adenocarcinoma Cohort
Clinical data initially showed that in LUAD, CTNNA2 mutation
was associated with high TMB (Figure 1B). High TMB can help
predict the efficacy of tumor immunotherapy in patients with

lung cancer, bladder cancer, and melanoma, and TMB is an
important and independent predictive biomarker. Analysis of
the GDSC database showed that LUAD cells with CTNNA2
mutation had a higher TMB than CTNNA2-WT patients
(Mann-Whitney U test, p < 0.05 Figure 2A), and analysis of
the cohort of TCGA verified this result. The ICI-treated cohort
also exhibited this trend. More importantly, the analysis of the
cohort of TCGA showed that CTNNA2-MT patients had more
tumor neoantigens than CTNNA2-WT patients (Mann-
Whitney U test, p < 0.05 Figure 2A). Studies have shown
that patients with advanced non-small-cell lung cancer who
had more tumor antigens were more sensitive to
immunotherapy (Rolfo et al., 2017), which suggests that
LUAD patients with CTNNA2 mutation may be more likely
to benefit from immunotherapy than those without this
mutation.

Chemokines can induce chemotaxis and promote the
differentiation of immune cells; thus, their anticancer effects
are worthy of further study. We analyzed the relative
expression of 16 immune genes (chemokines/cytolytic activity/
immune checkpoints) in CTNNA2-WT and CTNNA2-MT

FIGURE 2 | The immune microenvironment characteristics of CTNNA2-MT patients. (A) The first chart shows the relative expression of TMB in CTNNA2-WT (n � 37)
and CTNNA2-MT (n � 10) LUAD patients in the ICI-treated cohort. The second chart shows the relative TMB expression of CTNNA2-WT (n � 459) and CTNNA2-MT (n � 55)
LUAD patients in the LUAD cohort of TCGA. The third chart shows the relative expression of neoantigens of CTNNA2-WT (n � 446) and CTNNA2-MT (n � 54) patients in the
LUAD cohort of TCGA. The fourth chart shows the relative expression of TMB in the CTNNA2-WT (n � 53) and CTNNA2-MT (n � 10) LUAD cell lines in the GDSC
database.Mann-Whitney U test, nsmeans no statistical significance, *meansp <0.05; **means p< 0.01; ***means p< 0.005; and ****meansp <0.001. (B) The immunegene
box diagram shows the relative expression levels of 16 immune genes (chemokines/cytolytic activity/immune checkpoints) in patients with LUAD of CTNNA2-WT (n � 445) and
CTNNA2-MT (n� 52) in the LUADcohort of TCGA.Mann–WhitneyU test, nsmeansno statistical significance, *meansp<0.05. (C)The immune-related geneheatmap shows the
relative expression of 74 immune-related genes (antigen presentation/stimulatory/inhibitory) in patients with CTNNA2-WT and CTNNA2-MT LUAD in the LUAD cohort of TCGA.
Thewhite font represents the genes that were not differentially expressed, and the row annotation in the heat map represents the function of the gene; seeMethods for details. (D)
The heat map of immune cell-related genes shows the relative expression of 11 immune cell-related genes in patients with CTNNA2-WT and CTNNA2-MT LUAD in the LUAD
cohort of TCGA. The row annotation in the heatmap represents the cell type fromwhich the gene originated. (E) TheCTA immune score of CTNNA2-WT (n � 393) andCTNNA2-
MT (n � 46) patients in the LUAD cohort of TCGA.
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patients in the LUAD cohort of TCGA. After CTNNA2mutation,
CXCL9 and GZMB gene expression levels were found to increase
(Mann-Whitney U test, Figure 2B). Evidence has shown that the
CXCL9 axis can not only activate the antitumor activity of
immune cells (Tokunaga et al., 2018) but can also play an
important role in the response to immune checkpoint
inhibitors (Zhang et al., 2018). Moreover, CXCL9 can exert a
tumor suppressive function in tumors (Bronger et al., 2016). This
suggests that CXCL9 can exert antitumor effects by affecting
other immune cells in LUAD. However, the role of GZMB in
immunotherapy is unclear, and CTNNA2 mutation had no
significant effect on the gene expression of immune
checkpoints. CD274 and LAG3 exhibited an increasing trend,
while IDO1 exhibited a decreasing trend.

We also analyzed the relative expression of 74 immune-
related genes and 11 immune cell-related genes in patients with
CTNNA2-WT and CTNNA2-MT in the LUAD cohort of
TCGA (|logFC| > 1, p < 0.05), and the results showed that
the gene expression level of inhibitory receptor KIR2DL1
decreased most significantly after CTNNA2 mutation
occurred (Figure 2C). KIR2DL1 is the receptor for some
HLA-C alleles on natural killer cells, which can inhibit the
activity of NK cells, thereby preventing cell lysis (Hilton and
Parham, 2017). In patients with CTNNA2 mutation, the
expression level of KIR2DL1 was reduced, and the factors
that prevent cell lysis were reduced, leading to cell death.

CTNNA2 mutation has been shown to affect immune cells,
with different immune cells exhibiting different genetic changes.
After CTNNA2 mutation, the gene expression level of
FCER1A in central memory B cells, CAMP in neutrophils,
CD1A in T cells, CA2 in Th17 cells, and S100A8 in myeloid-
derived suppressor cells (MDSCs) were found to decrease
(Figure 2D). Furthermore, the gene levels of a disintegrin
and metalloprotease 23 (ADAM23) in central memory B cells,
Fc fragment of IgA receptor (FCAR) and L1 cell adhesion
molecule (L1CAM) in macrophages, adenylate cyclase
activating polypeptide 1 (ADCYAP1) and sialic acid binding
Ig-like lectin 6 (SIGLEC6) in mast cells, and GATA binding
protein 3 (GATA3) in Th2 cells were found to increase
(Figure 2D). Among them, ADAM23 is considered to be a
possible tumor suppressor gene and is often downregulated in
various malignant tumors (Zmetakova et al., 2019). In
addition, we used the cancer testis antigen (CTA) immune
scoring system to score CTNNA2-WT and CTNNA2-MT
LUAD patients in the LUAD cohort of TCGA (see
Materials and Methods). The results confirmed that
CTNNA2-MT LUAD patients had higher CTA scores
(Figure 2E). These results indicate that CTNNA2 mutation
may stimulate the increase in gene expression in a series of
immune cells by increasing the expression of chemokine
CXCL9, thereby enhancing the immune response of patients
with LUAD.

FIGURE 3 | The differences in DDR pathway mutations between the CTNNA2-MT group and the CTNNA2-WT group. (A) The copy number variation in CTNNA2 in
the LUAD cohort of TCGA; red represents an increase in copy number fragments, blue represents a loss of copy number fragments, and the mutation sites have been
marked. (B) The picture above shows the number of nonsynonymous mutations in DDR-related pathways in CTNNA2-WT patients (n � 37) and CTNNA2-MT patients
(n � 10) in the ICI-treated cohort. The middle picture shows the number of nonsynonymous mutations in DDR-related pathways in CTNNA2-WT patients (n � 459)
and CTNNA2-MT patients (n � 55) in the LUAD cohort of TCGA. The picture below shows the number of nonsynonymous mutations in the DDR-related pathways of
CTNNA2-WT (n � 53) and CTNNA2-MT (n � 10) LUAD cell lines in the GDSC database. Mann–Whitney U test, ns means no statistical significance; *means p < 0.05;
**means p < 0.01; ***means p < 0.005; and ****means p < 0.001.
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The Number of DNA Damage Response
Pathway Mutations was Higher in Catenin
Alpha-2 Mutant-Type Patients with Lung
Adenocarcinoma
To describe the specific situation of CTNNA2 mutation, we
detected the copy number variation of CTNNA2 gene
mutation sites among LUAD patients in TCGA (Figure 3A),
and we found that CTNNA2-WT patients had an increased copy
number of 14q13.3, 14q13.1, 8q24.21, and 1q21.2, and a
decreased copy number of 9p21.3. CTNNA2-MT patients had
an increased copy number of 14q13.3, 14q12, 1q21.3, 1q23.3, and
1q22. The G-score of CTNNA2-MT patients at these common
mutation sites was higher than that of CTNNA2-WT patients. In

addition, we compared the number of nonsynonymous
mutations in DDR-related pathways between CTNNA2-WT
and CTNNA2-MT patients in the ICI-treated cohort and
LUAD cohort of TCGA. The same analysis was performed on
LUAD cell lines in the GDSC database. The list of genes included
in the DDR genome used for comparative analysis is shown in
Supplementary Table S1. The results showed that in the LUAD
cohort of TCGA, there was a significant increase in DDR mutations
among CTNNA2-MT patients (Mann-Whitney U test, p < 0.05,
Figure 3B). DDR analysis of the other two databases showed the
same trend. According to the analysis of the LUAD cohort of TCGA,
the number of nonsynonymous mutations in CTNNA2-MT patients
increased mainly in three pathways: homologous recombination
(HR), double strand break (DSB), and nonhomologous end

FIGURE 4 | Drug sensitivity results of CTNNA2-MT LUAD cell lines. The box plot shows the IC50 of CTNNA2-WT and CTNNA2-MT LUAD cell lines for targeted
drugs in the GDSC database; the unit of measurement is μM. Mann–Whitney U test, ns means no statistical significance; *means p < 0.05; **means p < 0.01.
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joining (NHEJ). These results suggest that CTNNA2-MT patients
with LUAD have more mutations in the DDR pathway, and these
mutation targets are not only targets for immunotherapy but also
suggest a favorable prognosis (Pilié et al., 2019).

Catenin Alpha-2 Mutation was Related to
the Drug Sensitivity of Some Targeted
Drugs
We used the GDSC database to analyze the sensitivity of CTNNA2-
WT and CTNNA2-MT LUAD cell lines to some drugs. The results
confirmed that the half-maximal inhibitory concentration (IC50) of
eight common chemotherapy drugs, namely, cisplatin, docetaxel,
etoposide, gemcitabine, irinotecan, paclitaxel, pemetrexed and
vinorelbine, tended to be higher in CTNNA2-MT LUAD cells than
in WT cells (Supplementary Figure S2). We also used the GDSC
database to analyze the sensitivity of CTNNA2-WT and CTNNA2-
MT LUAD cell lines to EGFR-TKI and ALK inhibitors commonly
used in clinical practice. The results confirmed that the half-maximal
inhibitory concentration (IC50) of erlotinib was higher in CTNNA2-
WT LUAD cell lines, with no difference between the two groups with
regard to other inhibitors (Supplementary Figure S3). Interestingly,
we further tested 351 drugs and found that in CTNNA2-MT LUAD
cell lines, the IC50 of 44 drugs increased, indicating that the CTNNA2-
MTLUADcell lineswere less sensitive to these drugs than theWTcells
(Figure 4). These drugs mainly targeted HDAC, PI3K and other
pathways, suggesting thatCTNNA2-MTcellsmay have low expression
of proteins in these pathways. These results provide valuable guidance
for the clinical treatment of patients with CTNNA2-MT LUAD.

Enrichment of Tumor-Related Pathways
After Catenin Alpha-2 Mutation
We conducted GSEA analysis on the differentially expressed
genes between CTNNA2-WT patients and CTNNA2-MT
patients in the LUAD cohort of TCGA (Figure 5A). The results

showed that DNA methylation-and DDR-related pathways were
enriched in the CTNNA2-MT group. In the immune
microenvironment, negative regulation of immune system
processes, negative regulation of leukocyte activation, negative
regulation of cytokine production and negative regulation of
immune effector processes were enriched in the CTNNA2-WT
group, indicating that after CTNNA2 mutation, negative immune
regulation was decreased. We also analyzed the differentially
expressed genes between CTNNA2-WT and CTNNA2-MT
LUAD cell lines in the GDSC database (Figure 5B). The results
showed that negative regulation of cell death, negative regulation of
the apoptotic process, negative regulation of programmed cell death
and PD-1 signaling were enriched in the CTNNA2-WT group,
indicating that after CTNNA2 mutation, negative regulators of cell
death and cell damage decreased. In addition, both of these findings
indicate that the PI3K-Akt signaling pathway was enriched in the
CTNNA2-WT group. According to reports, the PI3K pathway is
often overactivated in malignant tumors, and inhibition of the PI3K
pathway can enhance the antitumor activity of the immune system
(Collins et al., 2018; Borcoman et al., 2019). This result is consistent
with the low expression of the PI3K pathway, which was observed in
the immune-activated CTNNA2-MT group.

Catenin Alpha-2 Mutation was Associated
with Longer Overall Survival in Patients with
Lung Adenocarcinoma
We performed prognostic analysis of LUAD patients in the ICI-
treated cohort and LUAD cohort of TCGA. The results showed that
patients with CTNNA2 mutation had a longer OS than those
without CTNNA2 mutation in the ICI-treated cohort (log-rank
test, p � 0.043). The LUAD cohort of TCGA also showed a trend of
longer OS in CTNNA2-MT patients (log-rank test, p � 0.258), and
the trend of longer disease-free survival (DFS) was also observed in
CTNNA2-MT patients (log-rank test, p � 0.059) (Figure 6A). To
analyze the relationship between CTNNA2 mutation and prognosis

FIGURE 5 | Enrichment of tumor-related pathways after CTNNA2 mutation. (A) Pathway enrichment analysis of differentially expressed genes between the
CTNNA2-WT and CTNNA2-MT LUAD patients in the LUAD cohort of TCGA. (B) Pathway enrichment analysis of differentially expressed genes between the CTNNA2-
WT and CTNNA2-MT LUAD cell lines in the GDSC database.
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in NSCLC and LUADpatients without immunotherapy, we used the
MSKCC cohort and found that CTNNA2mutation had no effect on
progression-free survival (PFS) (Supplementary Figures S4A,B).
We also used the TRACERx cohort for analysis in NSCLC patients,
and the results showed no difference in OS between CTNNA2-WT
patients and CTNNA2-MT patients (Supplementary Figure S4C).
In addition, the CTNNA2mutation has been shown to be associated
with the prognosis of gastric cancer, laryngeal cancer, and pancreatic
ductal cancer (Fanjul-Fernandez et al., 2013; Wang et al., 2014;
Rizzato et al., 2016). These results indicate that CTNNA2 can be
used as a predictor of prognosis in patients with LUAD. The
mechanism by which CTNNA2 mutations cause changes in the
immune microenvironment of patients with LUAD (Figure 6B).

DISCUSSION

The tumor microenvironment of LUAD affects the survival of
tumor cells and the prognosis of tumor patients. Some papers

have confirmed that activation of the immune microenvironment
is beneficial to the prognosis of tumor patients. As a link protein,
CTNNA2 participates in the occurrence and development of
many diseases, and CTNNA2 protein is closely related to the
occurrence and development of tumors. Our results confirmed
that the overall survival of LUAD patients with CTNNA2
mutation was longer than that of those with CTNNA2
mutations and that CTNNA2 mutations were related to TMB.
To our surprise, analysis of the cohort of CGA showed that
patients with CTNNA2 mutation had more tumor neoantigens,
suggesting that this mutation might play a critical role in the
tumor immune microenvironment. We hypothesized that
CTNNA2 mutation can increase the transcription level of
GZMB and CXCL9, causing changes in the immune
microenvironment. These changes in the immune
microenvironment include elevated expression of FCAR and
L1CAM receptors on macrophages, increased secretion of
ADAM23 by CD8+ T cells and increased secretion of
ADCYAP1 by mast cells. Changes in the immune

FIGURE 6 | CTNNA2 mutation was associated with better survival of LUAD patients. (A) The left picture shows the Kaplan–Meier survival curve of OS in the
CTNNA2-WT (n � 37) and CTNNA2-MT (n � 10) LUAD patients in the ICI-treated cohort. Themiddle image shows the Kaplan–Meier survival curve of OS in the CTNNA2-
WT (n � 440) and CTNNA2-MT (n � 54) LUAD patients in the LUAD cohort of TCGA. The picture on the right shows the Kaplan-Meier survival curve of DFS in the
CTNNA2-WT (n � 382) and CTNNA2-MT (n � 48) LUAD patients in the LUAD cohort of TCGA using the log-rank test. (B) The mechanism by which CTNNA2
mutations cause changes in the immune microenvironment of patients with LUAD.
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microenvironment affect the survival of tumor cells and prolong
the survival period of patients with LUAD. Our results not only
confirm the role of CTNNA2 mutation in LUAD but also suggest
that the effect of CTNNA2 may occur via changes to the immune
microenvironment, providing strong evidence for CTNNA2 as a
new tumor microenvironment therapeutic target.

Papers have shown that CTNNA2 is closely related to the
treatment and prognosis of many tumors. CTNNA2 is a tumor
suppressor gene frequently mutated in laryngeal cancer, and
CTNNA2 and CTNNA3 mutations increase the migration and
invasion capabilities of head and neck squamous cell carcinoma
cells (Fanjul-Fernandez et al., 2013; Wang et al., 2014; Rizzato
et al., 2016). Novel-miR-4885 can bind to the 3’ untranslated
region of CTNNA2, thereby reducing cell adhesion and
promoting the epithelial-mesenchymal transition of esophageal
cancer cells. The relationship between LUAD and the immune
microenvironment is inseparable. Many papers have shown that
the immune microenvironment has an important effect on the
prognosis of patients with LUAD. For example, CD8+ T cell
infiltration leads to a better prognosis, while neutrophil and NK
cell infiltration leads to a worse prognosis. Cox risk analysis
showed that increased neutrophil infiltration is an independent
risk factor for poor prognosis (Chen et al., 2019). This article
discusses the changes in immune cell genes after CTNNA2
mutation and reveals the impact of CTNNA2 mutation on the
immune environment in patients with LUAD. Patients with
LUAD can be divided by immunodeficiency subtype and
immune activation subtype (Seo et al., 2018), which also
played a guiding role in the research presented in this article.
In addition, changes in the immune microenvironment resulting
from CTNNA2 mutation in other tumors warrant further study.

The underlying feature of cancer is genome instability, so
therapies targeted against the DDR have great potential.
Inhibitors based on the DNA damage response, including
PARP, ATR, ATM, CHEK1, CHEK2, DNAPK and WEE1
inhibitors, all play a major role in the treatment of tumors,
especially BRCA-mutant tumors (Pilié et al., 2019). It has also
been found that in LUAD, the regulation of the DDR can affect

the response of tumor cells to radiation (Dong et al., 2019). This
article also found that the number of DDR mutations is
upregulated after CTNNA2 mutation in patients with LUAD,
indicating that treating these patients with a DDR inhibitor may
improve their prognosis. In addition, drug sensitivity data showed
that CTNNA2-MT cell lines are more resistant than WT cells to
HDAC, EGFR, and PI3K inhibitors, suggesting that CTNNA2-
MT cell lines may exhibit decreased expression of the proteins in
these pathways. It has been reported that the role of HDAC in
LUAD is closely related to EZH2. NSCLC patients with high
expression of HDAC and EZH2 have a low survival rate (Shi et al.,
2019), and EGFR and PI3K are classic regulatory pathways
involved in the development of LUAD (Wei et al., 2019;
Shaurova et al., 2020). This motivates further exploration and
clinical application of these potential targets.
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The programmed death receptor 1 (PD1) and its ligand programmed death receptor ligand
1 (PDL1) are the most widely used immune checkpoints in cancer immunotherapy. The
related literature shows the explosive growth trends due to the promising outcomes of
tumor regression. The present study aimed to provide a comprehensive bibliometric
analysis of the literature on anti-PD1/PDL1 from three perspectives including molecular
mechanisms, randomized clinical trials (RCT), and meta-analysis, thus producing a
knowledge map reflecting the status of the research, its historical evolution, and
developmental trends in related research from 2000 to 2020. We included 11,971,
191, and 335 documents from the Web of Science Core Collection database,
respectively, and adopted various bibliometric methods and techniques thereto. The
study revealed the major research themes and emergent hotspots based on literature and
citation data and outlined the top contributors in terms of journals and countries. The co-
occurrence overlay of keywords and terms pertaining to the PD1/PDL1 molecule reflected
the progress from the discovery of the PD1/PDL1 molecule to the clinical application of
anti-PD1/PDL1. Immune-related adverse events (irAEs) formed a unique cluster in the term
co-occurrence analysis of meta-analysis. The historical direct citation network of RCT
indicated the development and transformation of cancers and therapy strategies. irAEs
and the strategies of combination therapy might become a future focus of research in this
cognate area. In summary, the bibliometric study provides a general overview of the
landscape on anti-PD1/PDL1 research, allowing researchers to identify the potential
opportunities and challenges therein.
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INTRODUCTION

Cancer is a public health problem and a major cause of mortality
with significant repercussions on individual patients and
societies. The strategies of cancer treatment have undergone a
unique evolution (Mellman et al., 2011). The development of
cancer immunotherapy has changed our understanding of cancer
biology and the manners of treatment (Pardoll, 2012; Osipov
et al., 2019). It can enhance antitumor responses by regulating the
host immune system compared with traditional methods. Cancer
immunotherapy is a rapidly growing field, and many
immunotherapeutic agents including vaccine-based therapies,
oncolytic viruses and T cell directed therapies have been
approved in various cancers (Khalil et al., 2016). Among
which, the immune checkpoint blockade (ICB) has achieved
great success due to its promising outcomes with regard to
tumor regression (Liu et al., 2020).

PD1 and its ligand PDL1 were the most widely used immune
checkpoints in clinical practice. PD1 is a type-1 transmembrane
protein which was first discovered in 1992 (Ishida et al., 1992). It
is remarkably expressed on the surface of many effector immune
cells including T cells, B cells, dendritic cells, monocytes and
tumor-infiltrating lymphocytes (TILs). PDL1, a member of the B7
family of co-stimulatory/co-inhibitory molecules of antigen
presentation, was independently discovered by two research
teams in 1999 and 2000 (Dong et al., 1999; Freeman et al.,
2000). It is expressed in cancer cells and many antigen-
presenting cells (APCs) (Zuazo et al., 2017). Inflammatory
cytokines are produced when T cells recognize the antigen
expressed by major histocompatibility complex (MHC) on
target cells. The action and blocking mechanisms of PD1 and
PDL1 are as follows. The activation of T cells contributes to the
expression of PDL1 on the surface of cancer cells and PD1 on
various immune cells. The combination of PD1 and PDL1
molecule causes T cell dysfunction and exhaustion as well as
immune tolerance within the tumor microenvironment (Alsaab
et al., 2017). The blockade of the PD1/PDL1 axis by anti-PDL1
could affect antitumor immune response and suppress tumor
growth since it was first demonstrated in the PDL1+ mouse
model in 2002, providing attractive targets for cancer
immunotherapy (Dong et al., 2002). Blockade of PD1 or PDL1
could recover anti-tumor immunity mediated by T cell because of
preventing the interaction between molecules (Kwok et al., 2016).
The proliferation and effector functions of T cells could also be
inhibited by the combination of PD1 and its another ligand
programmed death receptor ligand 2 (PDL2) (Chang et al., 2018).
Due to the weaker binding affinity of PD1 and PDL2 and the
restricted expression of PDL2, its application in cancer
immunotherapy is limited (Alsaab et al., 2017). Furthermore,
CD80-Fc could bind with PDL1 to prevent PD1-PDL1-mediated
suppression and facilitate T cell activation by co-stimulating
through CD28 (Haile et al., 2013). These should also be taken
into consideration during PD1/PDL1 blockade.

With the wide application of anti-PD1/PDL1 therapy over
recent years, researchers found that a sizeable proportion of
patients do not show clinical responses or develop acquired
resistance after initial responses. Therefore, the scientists focus

on the determinants driving the response, the mechanisms of
resistance, potential biomarkers for clinical benefit, and the
strategies of combined therapy to improve anti-PD1/PDL1
efficacy (Hack et al., 2020; Jafarzadeh et al., 2020; Lei et al.,
2020). Besides, irAEs have been reported in the treatment of anti-
PD1/PDL1 including rashes, pneumonitis, colitis, hepatitis,
myocarditis, hypophysitis, and so forth. Although the
incidences thereof are not high, these might affect patient
quality of life and can even be fatal (Dupont et al., 2020;
Joseph et al., 2020). The widespread concern about anti-PD1/
PDL1 in cancer treatment advances the processing of related
research, and the body of literature is growing rapidly. Hence, the
programmatic and instructive review is necessary to disentangle
the results and indicate directions.

The traditional review usually reflects the recent progress in a
certain aspect of a topic instead of the overall landscape of the
discipline. Bibliometrics is a measurable informatic method that
analyses the knowledge structure to obtain quantifiable data and
to address the above limitation (Guo et al., 2020; McElroy and
Allen, 2020; Wang et al., 2020). Although there have been several
bibliometric studies related to PD1 or PDL1, they usually only
focused on some specific aspects such as documents on PD1/
PDL1 molecule, anti-PD1/PDL1 therapy in China or for a single
kind of cancer (Zhao et al., 2018; Baş and Şenel, 2019; Gao et al.,
2019; Ahn and Hwang, 2020; Li et al., 2021). Considering that the
application of anti-PD1/PDL1 in various cancers is still in
exploration, and researchers devote to explore more
mechanism of PD1/PDL1 molecule to improve efficacy of
immunotherapy, it is necessary to conduct an updated and
more comprehensive bibliometric study. The current study
focused on the publications on the PD1/PDL1 molecule and
RCT as well as meta-analysis of anti-PD1/PDL1 therapy to
provide a holistic view of related research to benefit
researchers and patients for the first time. We found that the
documents of these three aspects could represent the
determinants driving the response, clinical application, and
adverse effects of anti-PD1/PDL1, respectively. Combining the
three perspectives of the results would give us a new and overall
understanding.

The purposes and benefits of this study include the following
several points. The study provided the complete overview of
academic structure in PD1/PDL1 research based on literature and
citation data to benefit researchers and patients. Firstly, we
present the current status of related research by summarizing
trends of production, top contributors, major research themes
and highly cited documents. Besides, the historical evolution of
the field was outlined by bibliographic coupling overlay and
historical direct citation network. Finally, keyword and term
co-occurrence overlays and references with citation bursts
were analyzed to reflect the focus of future studies. This
information should be helpful to readers, including those
without deep previous knowledge of the topic, in gleaning a
general overview of the landscape, including the historical
evolution and the future focus of the field. The information
could also be used to identify potentially promising research
directions, possible collaboration partners, and relevant
publications.
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FIGURE 1 | Data filtration processing and results. Flowchart of inclusion and exclusion criteria for meta-analysis of anti-PD1/PDL1 (A) and RCT of anti-PD1/
PDL1 (B). (C) Schematic diagram of main research contents.
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MATERIALS AND METHODS

Data Source and Search Strategies
A comprehensive search was performed online using the Citation
Index Expanded (SCI-E) database from Web of Science Core
Collection (WoSCC) through the Library of China Medical
University on May 22, 2020. The database was selected to
conduct the bibliometric study because it provided plenty of
bibliometric indicators including publication and citation data.
The study included three datasets, including the documents of the
PD1/PDL1 molecule (dataset A), RCT (dataset B) and meta-
analysis (dataset C) of anti-PD1/PDL1. The search terms were
PD1/PDL1, various anti-PD1/PDL1 agents, cancer, meta-analysis
and their synonyms. Besides, various writing formats and search
rules of database were considered to cover as many results related
in the process of designing the search strategies. The detailed
search strategies were presented in Supplementary Material S1.

Data Filtration
According to the search strategy, 22,659 records were found
for dataset A. The publications were limited to English
articles and we included 11,971 documents eventually.
2,019 records were searched for dataset B at first. We
excluded the records published not in English or with the
publication type of review, meeting abstract, editorial
material and correction, and 904 documents were exported
to screen further. In dataset C, 554 in 668 documents were
exported because the records published in non-English
languages or in the type of meeting abstract and correction
were eliminated. After the initial search, manual filtration
was performed by viewing the contents of documents to
screen the documents with the type of RCT (including
their secondary analysis and study designs) and meta-
analysis for dataset B and C, respectively. Then we further
judged whether there was a clear correlation with anti-PD1/
PDL1. 713 and 219 unrelated records were excluded in
dataset B and C, respectively, most of which focused on
PD1/PDL1 expression or did not conform with concerned
document types. The meta-analysis with the publication type
of review was included in dataset C. Finally, there were 191
and 335 results identified as valid after comparing the
outcomes of filtration made by at least two authors
independently in dataset B and C. The filtering process is
shown in Figure 1. The information of screened results for 3
datasets were exported in the formats of BIB, UTF-8 encoded
TXT and TXT to conduct the bibliometric analysis.

Data Analysis and Visualization
We applied several methods to represent the bibliographic
data. The number of productions and citations (including total
citations and average citations per paper) were considered as
the most important bibliometric indicators because they
represented productivity and influence, respectively
(Svensson, 2010; Ding et al., 2016). Besides, we included
other common measures such as international collaboration
of countries, top contributors in terms of authors, institutions,
countries and journals, as well as historical direct citation

network (Mulet-Forteza et al., 2019a; Mulet-Forteza et al.,
2019b; Merigó et al., 2019). Local citation score (LCS)
represents the number of times that an article has been
referenced in the current dataset, therefore, a high LCS
indicated the importance of the article in the field. Besides,
the global citation score (GCS) was also been calculated, which
is the number of times the article has been cited by all
documents in the entire WoSCC database, and it covers the
influence of the article on other areas (Wang et al., 2021). The
citation thresholds were set to identify the number of
influential documents and we also concerned the citations
per year since their publication to define the references with
citation bursts (Mulet-Forteza et al., 2019a; Merigó et al.,
2019).

The different formats of the download files were imported into
the R Studio, VOSviewer, and CiteSpace for analysis. The R
package bibliometrix was taken to get the basic information of
datasets including annual scientific production and percentage
growth rate, the production and citations as well as international
collaboration of countries, highly cited documents, most relevant
journals and the historical direct citation network (Aria and
Cuccurullo, 2017). VOSviewer 1.6.15 was used to perform the
cluster analysis and visualize the network maps of the keywords,
terms, authors, institutions and co-cited references (van Eck and
Waltman, 2010; Sinkovics et al., 2016). In the network maps, the
nodes represented elements and the size of the nodes reflected the
frequency. The links between nodes represented relationships
such as co-occurrence, coupling or co-citation. The co-
occurrence of the keywords and terms identified the core
scientific knowledge in the research field and indicated the
correlations between research topics (Su and Lee, 2010). The
documents with a coupling relationship shared cited references,
measuring the relevance of their research. Conversely, co-citation
indicated the similarity between documents when they were cited
by the same records (Mulet-Forteza et al., 2019b). The color of
nodes and lines represented different clusters or years. The names
of the different nodes represented are indicated in
Supplementary Table S1 for every figure. Furthermore,
CiteSpace 5.7.R1 (64-bit) was used to analysis the references
with strongest citation bursts (Chen, 2006). The impact factors
(IF) of journals were obtained from the 2019 Journal Citation
Reports (JCR) (Clarivate Analytics, Philadelphia, United States).
The analysis represented in tables and figures was made using a
full counting system in this study, except for term co-occurrence
analysis which was conducted by binary counting (van Eck and
Waltman, 2010).

RESULTS

The Current Status of PD1/PDL1 and
anti-PD1/PDL1 Research
The main information pertaining to the collected bibliometric
data is summarized in Table 1. The literature search on the PD1/
PDL1 molecule resulted in 11,971 documents from 1,226 sources
(journals, books, etc.). The growth trend in publication number of
PD1/PDL1 molecule was the most obvious, and the field is still in
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a phase of rapid ascent (Figures 2A-C). Since 2016, 9,888 articles
have been published, accounting for 82.60% of the publications in
the field. Considering that we limited documents to those marked
as having the publication type “article”, the number of items with
a focus on the PD1/PDL1 molecule is much greater (Figure 2D).
The search of RCT andmeta-analysis of anti-PD1/PDL1 returned
191 and 335 documents received an average number of citations
per paper of 263.20 and 13.88, respectively. RCT is considered as
the gold standard when used to evaluate the safety and efficacy of
drugs and it usually requires cooperation between multiple
countries and organizations. In the 191 RCT documents on
anti-PD1/PDL1, the United States was the most productive
country, publishing 79 items (41.36% of the total) including
65 multiple-country publications (Figure 2E). Besides, France
(18), Japan (17), the United Kingdom (13), and Germany (10)
made significant contributions. Among the 335 meta-analysis
documents of anti-PD1/PDL1 (Figure 2F), a large number of
publications could be attributed to authors in China (168, 50.20%
of the total), United States (52), and Italy (31) (Table 2).

The co-occurrence analysis was then conducted on the
keywords (author keywords and Keywords Plus) and terms
(title and abstract fields). The use of keywords and terms with
a high frequency of occurrence could indicate their importance in
the research fields. As for the 11,971 documents covering the
PD1/PDL1 molecule, when the minimum number of occurrences
of a keyword was set to 200, 97 keywords met the threshold and
formed three clusters (Figure 3A). Cluster 1 (shown in red) was
mainly related to expression and mechanism such as PD1, B7-H1
(PDL1), activation, response, pathway, and lymphocytes. Cluster
2 (blue) consisted of the RCT of immunotherapy including
nivolumab, ipilimumab, open-label, multi-center, safety,
chemotherapy, and docetaxel, which was consistent with the
keyword co-occurrence analysis of RCT (Figure 3B). Cluster 3
(green) was composed largely of cancers, survival, and
biomarkers covering lung-cancer, prognosis, microsatellite
instability, and mutations.

Our study indicated that the studies of PD1/PDL1 molecule
were relatively comprehensive. The biomarkers used for
predicting the efficacy of anti-PD1/PDL1 are essential
components in the Cluster 3 (green), and also necessary for
the selection of patients most likely to respond to ICB from
overall individuals; this could decrease the cost of treatment and
avoid irAEs (Yi et al., 2018). Biomarkers including mismatch
repair deficiency (dMMR), MSI-H, tumor mutational burden

(TMB), quantity of tumor infiltrating lymphocyte (TIL), and so
forth were identified as valuable predictors (Teng et al., 2018; Yan
et al., 2018; Zhao et al., 2019; Ballot et al., 2020). However, a recent
study suggested that high TMB could not predict the response to
ICB across all cancer types, which indicated that further tumor
type-specific studies for biomarkers should be conducted
(McGrail et al., 2021). Besides, researchers have demonstrated
that prior antibiotic therapy resulted in a poorer treatment
response and OS in unselected patients treated with ICB
(Pinato et al., 2019). The article captured the attention and
interest of scientists and contributed to several further meta-
analyses (Lurienne et al., 2020; Wilson et al., 2020; Yang et al.,
2020), which indicated the ability of meta-analysis to reflect and
explore key issues in the field. Beyond that, researchers have
explored the mechanisms of resistance of matters such as
insufficient tumor immunogenicity, irreversible T cell
exhaustion, disfunction of MHC, immunosuppressive
microenvironment, and some oncogenic signaling pathways to
improve anti-PD1/PDL1 efficacy (Chocarro de Erauso et al.,
2020; Lei et al., 2020; Sun et al., 2020).

We further analyzed keyword co-occurrence in RCT and term
co-occurrence in meta-analysis of anti-PD1/PDL1. The 69
keywords occurring at least five times and 155 terms occurring
10 times were included, respectively. As for the keyword co-
occurrence analysis in RCT, the three clusters were related to the
therapy strategies of different malignancies. The red cluster was
the largest and it displayed the treatments and medications used
to combine, or be compared, with anti-PD1/PDL1 in lung cancer,
including chemotherapy, radiotherapy, docetaxel, cisplatin,
carboplatin, paclitaxel, gefitinib, crizotinib and so forth. The
other two clusters referred to renal cell carcinoma (sorafenib
and everlimus), melanoma (trametinib) and the quality of life of
patients, respectively (Figure 3B). The three clusters of term co-
occurrence analysis in meta-analysis were composed largely of
irAEs, survival, and benefits with anti-PD1/PDL1, and technical
terms pertaining to meta-analysis (Figure 3C).

The top 10 contributors in terms of journal among the three
datasets are listed in Table 3. Consistent with our expectations,
the RCT of anti-PD1/PDL1 were mostly published in the top
medical journals such as New England Journal of Medicine,
Lancet Oncology, Lancet, Annals of Oncology, Journal of
Clinical Oncology, Journal of Thoracic Oncology, etc. Our
analysis found that excellent meta-analyses of anti-PD1/PDL1
were likely to be accepted in some influential journals such as

TABLE 1 | Summary of the main information of collected bibliometric data about three datasets.

PD1/PDL1 molecule RCT of anti-PD1/PDL1 Meta-analysis
of anti-PD1/PDL1

Documents 11,971 191 335
Timespan 2000 : 2020 2014 : 2020 2015 : 2020
Sources 1,226 45 105
Annual Percentage Growth Rate 37.77 72.12 62.98
Average citations per documents 34.27 263.20 13.88
References 185,462 3,057 6,048
Author’s Keywords 12,134 249 479
Keywords Plus 10,745 413 547
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FIGURE 2 | The growth trend in publication number and the international cooperation of countries. Annual scientific production of the articles on the PD1/PDL1
molecule (A), RCT of anti-PD1/PDL1 (B) and meta-analysis of anti-PD1/PDL1 (C). Top 20 productive countries and their international collaboration on the PD1/PDL1
molecule (D), RCT of anti-PD1/PDL1 (E) and meta-analysis of anti-PD1/PDL1 (F). The blue and red lines represented single country publication (SCP) and multiple
countries publication (MCP).
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JAMA Oncology which was the seventh top contributor (11 of
335 documents). Besides, the other journals had more than nine
published documents and were significant for researchers in
the field as first choices for submitting their meta-analysis;
the results pertaining to the PD1/PDL1 molecule were more
persuasive because of the large number of publications: 2,678
articles have been published in the top 10 journals which
account for 22.37% of the total publications. For authors,
articles related to PD1/PDL1 molecule are more likely to be
accepted by these journals, as they have previously shown
significant interest.

The top 15 most highly cited articles of RCT and meta-
analysis of anti-PD1/PDL1 sorted by LCS are listed in Tables
4, 5, respectively. Our analysis found that the top 15 highly
cited articles sorted by GCS were inconsistent with the
ranking as ordered by LCS (Supplementary Tables S2,
S3). As for RCT, the top 15 GCS articles were all cited
more than 1,000 times, compared with only the top four
LCS articles. This indicated that there was a difference
between the articles that were more valuable to other fields
and those generating the most concern in the current field.
All of the top 15 articles in these two datasets were published
before 2019 (perhaps because the most recently published
articles have yet to be fully cited). Twelve in 15 top LCS
articles were published in Lancet, Lancet Oncology, and New
England Journal of Medicine (the most frequent source
journal in ten of 15 top GCS articles). These were also the
top three contributors with regard to journal in the RCT of
anti-PD1/PDL1 (Table 3). Besides, the top 15 most highly
cited documents of PD1/PDL1 molecule sorted by LCS and
GCS were listed in Supplementary Tables S4, S5.

Most of the top LCS articles in RCT focused on non-small-cell
lung cancer (NSCLC, four articles) and melanoma (five articles),
which might be due to the better efficacy of immunotherapy
therein. Researchers also paid attention to the choice of treatment
population such as refractory or PDL1-positive cancer patients.
The meta-analysis reflected the controversial and unresolved
issues in RCT, and the top LCS articles in meta-analysis
mainly investigated the irAEs including pneumonitis, elevated

transaminases, endocrine complications, and cutaneous
toxicities. Furthermore, two network meta-analysis and two
articles exploring the characteristics of population including
gender and age were covered in the list. Women have stronger
innate and adaptive immune responses than men, which results
in more rapid clearance of pathogens and lower prevalence of
some infections (Klein and Flanagan, 2016; vom Steeg and Klein,
2016). Considering the immune-related mechanisms of anti-
PD1/PDL1, the most highly cited article of meta-analysis
sorted by LCS (Table 5, 19 times in 335 documents) included
20 randomized controlled trials and indicated a greater efficacy of
ICB compared with the standard of care for men than women
(Conforti et al., 2018). This attracted extensive attention and
contributed to several related research projects. The meta-
analysis published in JAMA Oncology found no significant
sex-associated differences in the efficacy of ICB for overall and
various sub-group analyses in 2019 (Wallis et al., 2019). The
further analysis of Conforti et al. (2019) suggested that anti-PD1
alone had a greater advantage in men while anti-PD1/PDL1 plus
chemotherapy was more effective among women. Because meta-
analysis did not solve the concern of researchers, a study focused
on sex-associated molecular differences for cancer
immunotherapy responsiveness and suggested it was associated
with cancer types, such as male-bias in melanoma and female-
bias in LUSC (Ye et al., 2020). Recently, this research team
explored the association between sex and irAEs and the results
indicated that minimal sex-associated differences in irAEs which
might be unnecessary to consider it (Jing et al., 2021). Whether
the biological difference of sex could be the variable affecting the
treatment benefits of anti-PD1/PDL1 is currently unclear and
warrants further research.

We also found that Omar Abdel-Rahman from Ain Shams
University (as first author) contributed 12 meta-analyses of anti-
PD1/PDL1 in which three articles were included in the top 15
LCS articles. Considering the correlation between RCT and meta-
analysis, we conducted co-citation analysis in the meta-analysis
dataset (Figure 4). When the minimum number of citations of a
cited reference was set to 30, 44 of 6,033 references met the
threshold. Consistent with our speculation, the highly co-cited

TABLE 2 | Top 10 productive countries and their total and average citations in three datasets.

PD1/PDL1 molecule RCT of anti-PD1/PDL1 Meta-analysis of anti-PD1/PDL1

Country Records Total
citations

Average
citations

Country Records Total
citations

Average
citations

Country Records Total
citations

Average
citations

USA 4,226 254,907 60.32 USA 79 34,771 440.14 CHINA 168 1,032 6.14
CHINA 2,270 23,847 10.51 FRANCE 18 6,940 385.56 USA 52 1734 33.35
JAPAN 1,102 22,537 20.45 JAPAN 17 715 42.06 ITALY 31 468 15.10
GERMANY 569 13,250 23.29 UNITED

KINGDOM
13 4,578 352.15 EGYPT 17 405 23.82

FRANCE 495 21,303 43.04 GERMANY 10 882 88.20 CANADA 14 100 7.14
ITALY 405 5,615 13.86 AUSTRALIA 9 413 45.89 KOREA 10 67 6.70
KOREA 361 5,077 14.06 ITALY 8 176 22.00 UNITED

KINGDOM
10 98 9.80

AUSTRALIA 295 7,080 24.00 CHINA 7 263 37.57 AUSTRALIA 8 413 51.62
UNITED
KINGDOM

257 14,345 55.82 CANADA 6 92 15.33 FRANCE 3 19 6.33

CANADA 202 5,382 26.64 KOREA 5 167 33.40 PORTUGAL 3 159 53.00
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FIGURE 3 | VOSviewer network visualization map of keyword and term co-occurrence analyses. The cluster analysis of keyword co-occurrence in the articles on
the PD1/PDL1 molecule (A) and RCT of anti-PD1/PDL1 (B). (C) The cluster analysis of term co-occurrence in meta-analysis of anti-PD1/PDL1.
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TABLE 3 | Top 10 contributors in terms of journal among the three datasets.

PD1/PDL1 molecule RCT of anti-PD1/PDL1 Meta-analysis of anti-PD1/PDL1

Source IF Records Source IF Records Source IF Records

ONCOIMMUNOLOGY 5.869 445 NEW ENGLAND
JOURNAL OF
MEDICINE

74.699 28 IMMUNOTHERAPY 2.964 19

CLINICAL CANCER RESEARCH 10.107 396 LANCET ONCOLOGY 33.752 26 MEDICINE 1.552 17
ONCOTARGET - 304 LANCET 60.392 13 INTERNATIONAL

IMMUNOPHARMACOLOGY
3.943 13

JOURNAL FOR
IMMUNOTHERAPY OF CANCER

9.913 296 ANNALS OF
ONCOLOGY

18.274 11 ONCOTARGET - 13

CANCER IMMUNOLOGY
RESEARCH

8.728 284 JOURNAL OF CLINICAL
ONCOLOGY

32.956 10 ONCOTARGETS AND THERAPY 3.337 12

CANCER IMMUNOLOGY
IMMUNOTHERAPY

5.442 233 JOURNAL OF
THORACIC
ONCOLOGY

13.357 10 FRONTIERS IN PHARMACOLOGY 4.225 11

CANCER RESEARCH 9.727 209 EUROPEAN JOURNAL
OF CANCER

7.275 9 JAMA ONCOLOGY 24.799 11

PLOS ONE 2.74 176 FUTURE ONCOLOGY 2.66 8 CRITICAL REVIEWS IN ONCOLOGY
HEMATOLOGY

5.833 10

SCIENTIFIC REPORTS 3.998 171 JAMA ONCOLOGY 24.799 8 ONCOIMMUNOLOGY 5.869 10
FRONTIERS IN IMMUNOLOGY 5.085 164 NATURE MEDICINE 36.13 6 CANCER MEDICINE 3.491 9

TABLE 4 | Top 15 RCT of anti-PD1/PDL1 sorted by LCS.

Title Source Year LCS GCS

Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer
(KEYNOTE-010): a randomised controlled trial

HERBST RS, LANCET 2016 37 2,399

Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3,
open-label, multicentre randomised controlled trial

RITTMEYER A, LANCET 2017 27 1,426

Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a
multicentre, open-label, phase 2 randomised controlled trial

FEHRENBACHER L, LANCET 2016 18 1,151

Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4
treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial

WEBER JS, LANCET ONCOL 2015 13 1,331

Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-years
overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial

HODI FS, LANCET ONCOL 2016 11 392

Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of,
at least two previous chemotherapy regimens (ONO-4538–12, ATTRACTION-2): a randomised, double-blind,
placebo-controlled, phase 3 trial

KANG YK, LANCET 2017 11 431

Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002):
a randomised, controlled, phase 2 trial

RIBAS A, LANCET ONCOL 2015 9 791

Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung
cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study

LANGER CJ, LANCET ONCOL 2016 8 633

Health-related quality-of-life results for pembrolizumab versus chemotherapy in advanced, PD-L1-positive
NSCLC (KEYNOTE-024): a multicentre, international, randomised, open-label phase 3 trial

BRAHMER JR, LANCET
ONCOL

2017 7 81

Nivolumab for Metastatic Renal Cell Carcinoma: Results of a Randomized phase II Trial MOTZER RJ, J CLIN ONCOL 2015 6 556
Quality of life in patients with advanced renal cell carcinoma given nivolumab versus everolimus in CheckMate
025: a randomised, open-label, phase 3 trial

CELLA D, LANCET ONCOL 2016 6 106

Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre,
randomised, open-label phase 3 study (KEYNOTE-006)

SCHACHTER J, LANCET 2017 5 331

Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate
067): 4-years outcomes of a multicentre, randomised, phase 3 trial

HODI FS, LANCET ONCOL 2018 5 230

Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab
versus sunitinib in renal cell carcinoma

MCDERMOTT DF, NAT MED 2018 5 169

Nivolumab vs. investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-
years long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression

FERRIS RL, ORAL ONCOL 2018 5 108
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TABLE 5 | Top 15 meta-analysis of anti-PD1/PDL1 sorted by LCS.

Title Source Year LCS GCS

Cancer immunotherapy efficacy and patients’ sex: a systematic review and meta-analysis CONFORTI F, LANCET ONCOL 2018 19 109
Incidence of Programmed Cell Death 1 Inhibitor-Related Pneumonitis in Patients With Advanced
Cancer: A Systematic Review and Meta-analysis

NISHINO M, JAMA ONCOL 2016 17 185

Risk of elevated transaminases in cancer patients treated with immune checkpoint inhibitors: a meta-
analysis

ABDEL-RAHMAN O, EXPERT OPIN
DRUG SAF

2015 14 30

Risk of endocrine complications in cancer patients treated with immune check point inhibitors: a meta-
analysis

ABDEL-RAHMAN O, FUTURE ONCOL 2016 14 69

Clinical and Molecular Characteristics Associated With Survival Among Patients Treated With
Checkpoint Inhibitors for Advanced Non-Small Cell Lung Carcinoma: A Systematic Review and Meta-
analysis

LEE CK, JAMA ONCOL 2018 14 99

Risk of cutaneous toxicities in patients with solid tumors treated with immune checkpoint inhibitors: a
meta-analysis

ABDEL-RAHMAN O, FUTURE ONCOL 2015 13 48

Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-
analysis

WANG DY, JAMA ONCOL 2018 13 175

Safety and Tolerability of PD-1/PD-L1 Inhibitors Compared with Chemotherapy in Patients with
Advanced Cancer: A Meta-Analysis

NISHIJIMA TF, ONCOLOGIST 2017 11 70

A Network Meta-analysis Comparing the Efficacy and Safety of Anti-PD-1 with Anti-PD-L1 in Non-small
Cell Lung Cancer

YOU W, J CANCER 2018 10 16

Comparison of efficacy of immune checkpoint inhibitors (ICIs) between younger and older patients: A
systematic review and meta-analysis

NISHIJIMA TF, CANCER TREAT REV 2016 9 88

Incidence of Endocrine Dysfunction Following the Use of Different Immune Checkpoint Inhibitor
Regimens: A Systematic Review and Meta-analysis

BARROSO-SOUSA R, JAMA ONCOL 2018 9 148

Risk of pneumonitis in cancer patients treated with immune checkpoint inhibitors: a meta-analysis ABDEL-RAHMAN O, THER ADV
RESPIR DIS

2016 8 56

Checkpoint Inhibitors in Metastatic EGFR-Mutated Non-Small Cell Lung Cancer-A Meta-Analysis LEE CK, J THORAC ONCOL 2017 8 278
Comprehensive Meta-analysis of Key Immune-Related Adverse Events from CTLA-4 and PD-1/PD-L1
Inhibitors in Cancer Patients

DE VELASCO G, CANCER
IMMUNOL RES

2017 8 106

Immune checkpoint inhibitors and targeted therapies for metastatic melanoma: A network meta-
analysis

PASQUALI S, CANCER TREAT REV 2017 7 23

FIGURE 4 | VOSviewer network visualization map of co-citation analysis in meta-analysis of anti-PD1/PDL1.
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references of meta-analyses could be found among the list of the
top 15 GCS articles in RCT.

The Historical Evolution of PD1/PDL1 and
anti-PD1/PDL1
A bibliographic coupling overlay was applied for work on the PD1/
PDL1 molecule and RCT of anti-PD1/PDL1; the color of each node
represents the average year of publication (Figure 5). The authors or
organizations with a coupling relationship cited the same literature,
indicating the relevance of their research. In the articles on the PD1/
PDL1 molecule, we found the active authors changing over time.
Gordon J Freeman shown in purple and F Stephen Hodi in
aquamarine led the field in its early stage. Nowadays, more
scientists from a wider range of countries have participated in
exploration of the PD1/PDL1 molecule: these newer researchers
shown in yellow represent a significant portion authors, which
illustrated the good prospects for research therein (Figure 5A). As
shown in Figure 5C, Johns Hopkins University, Mayo Clinic, and
Harvard University have been working on the PD1/PDL1 molecule
since the initiation of research into this subject. University of Texas
MDAnderson Cancer Center and Dana-Farber Cancer Institute were
more productive in aboutmid-2017. Recently, SunYat-SenUniversity
was the major contributor, while newly active organizations were
finite. This may indicate that the organizations require to pay more
attention to the field. The network visualization map depicting this

bibliographic coupling overlay in RCT of anti-PD1/PDL1 presented a
similar trend.

To explore the systemic changes in the content of such research,
we analyzed the historical direct citation network in RCT of anti-
PD1/PDL1 (Figure 6; Supplementary Table S6). The researchers
conducted RCT of anti-PD1/PDL1 in the various cancer types at
different times. Melanoma was the focus upon initiation of the work
in 2014, followed by renal cell carcinoma, and lung cancer sub-types.
Gastric or gastroesophageal junction cancer and head and neck
squamous carcinoma were paid more attention in 2017. The ICB
RCT of urothelial cancer was conducted in 2019. In themiddle of the
process, scientists became concerned with the quality of life and the
clinical benefit beyond progression issues in 2017. The studies of
melanoma reflected the transformations of therapy strategies in the
experimental group and the control group of RCT to a more
complete extent. Anti-PD1/PDL1 was used to treat advanced and
ipilimumab-refractory melanoma in earlier research. With
increasing confidence in anti-PD1/PDL1 treatment, researchers
contrasted combined nivolumab and ipilimumab with
ipilimumab. Anti-PD1/PDL1 alone has been chosen to compare
with ipilimumab in 2017.

The references with citation bursts in three datasets could also
contribute to predicting the future focus for such work. The
threshold was set to the top 30 per slice and references with a
minimum burst duration of 2 years in RCT and meta-analysis of
anti-PD1/PDL1 were displayed in Supplementary Materials S2,

FIGURE 5 | The overlay visualization map of author and institution coupling analyses. Author coupling analysis (A) and institution coupling analysis (C) for work on
the PD1/PDL1 molecule. Author coupling analysis (B) and institution coupling analysis (D) in RCT of anti-PD1/PDL1.
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S3, respectively. When the minimum duration was set to 3 years,
the top 100 references with the strongest citation bursts were
selected from among the documents about the PD1/PDL1
molecule (Supplementary Material S4). The top six references
with citation bursts in the RCT dataset appeared in 2015 and 2016
and consisted of two guidelines and four melanoma research,

which indicated melanoma occupied a position of vital
importance in the field. As shown in Supplementary Material
S3, the top 14 references on meta-analysis could be divided into
three stages by the onset of the corresponding citation bursts. The
safety and activity of anti-PD1/PDL1 were of greatest concern in
the first stage. Melanoma research contributed the strongest

FIGURE 6 | The historical direct citation network in RCT of anti-PD1/PDL1. The links among documents represented the citation relationships in the dataset.
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citation bursts in the second stage in 2017. Besides, two of 14
references in the third stage have the longest duration of citation
burst (highly cited in 2018–2020). This suggested that ICB plus
chemotherapy in lung cancer might be paid continuous attention
in meta-analysis of anti-PD1/PDL1.

The highly cited references and documents contained much
valuable information: we found most references were highly cited
one or 2 years after publication and the citation bursts lasted no
more than 5 years. The citation bursts coincided with the
publication and lasted for more years in only a few cases,
which might represent the major milestones in the
development of PD1/PDL1-related research. Ten of the top
100 references with the strongest citation bursts in documents
about the PD1/PDL1 molecule followed the rules and mainly
focus on the molecular mechanism of action of PD1/PDL1 on
T cells in the tumor microenvironment (Supplementary
Material S4) (Carter et al., 2002; Dong et al., 2002; Blank
et al., 2004). These reports involved the first identification of
PDL2 (the second ligand for PD1 with the overlapping functions
of PDL1) and B7-Dc (a new dendritic cell molecule with potent
costimulatory properties for T cells) in 2001 (Latchman et al.,
2001; Tseng et al., 2001). The last one appeared in 2005 and
revealed that the expression of PDL1 in mouse cancers conferred
resistance to immunotherapy by anti-CD137 activity, and
blockading of PD1/PDL1 could reverse the resistance and
enhance the therapeutic efficacy thereof (Hirano et al., 2005).

The Developmental Trends of PD1/PDL1
and anti-PD1/PDL1
Keyword and term co-occurrence overlays were conducted for
work on the PD1/PDL1 molecule and meta-analysis of anti-PD1/
PDL1 to explore the developmental trends in the field (Figure 7).
As for the PD1/PDL1 molecule, we found that the research focus
changed from the molecular mechanism (in purple) to the
expression of related molecules and immunotherapy (in
aquamarine), following by antitumor drugs including ICB and
tyrosine kinases inhibitors (TKI) from the keywords. Besides, the
biomarkers of immunotherapy covering microsatellite instability
(MSI), the characters of patients’ responses to anti-PD1/PDL1
treatment such as sensitivity, resistance and heterogeneity (in
yellow) might warrant sustained attention in the future
(Figure 7A). There was a similar trend in the analysis of the
term co-occurrence overlay, and the transition from molecular
mechanism to clinical characteristics (treatment, survival, and
clinical benefits) was demonstrated. The close connection
between clinicopathologic features (immunohistochemistry and
mRNA expression) (in aquamarine) and clinical characteristics
(in yellow) was shown in Figure 7B. These reflected the process
from the discovery of the PD1/PDL1 molecule to the clinical
application of anti-PD1/PDL1, which was in accordance with the
tendency in the development of work on such molecules. In the
meta-analysis of anti-PD1/PDL1, researchers might be dedicated
to irAEs, the treatment strategy of combination therapy,

FIGURE 7 | The overlay visualization map of keyword and term co-occurrence analyses.Keyword co-occurrence overlay (A) and term co-occurrence overlay (B) in
the articles on the PD1/PDL1 molecule. Keyword co-occurrence overlay (C) and term co-occurrence overlay (D) in meta-analysis of anti-PD1/PDL1.
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randomized controlled trails, and work on some select sub-
population such as patients with recurrent caners and brain
metastases in the future (Figures 7C–D).

irAEs formed the red cluster in the term co-occurrence
analysis of meta-analysis (Figure 3C) and these would also be
the focus of future studies (Figure 7D). The unique side effects
induced by ICB are classified as irAEs, which often differ from the
classical chemotherapy-related toxicities and result from the loss
of immune homeostasis and off-target effects in peripheral tissues
(Martins et al., 2019). The adverse events of anti-PD1/PDL1
might be irreversible and occur in, or even after, the course of
treatment, especially in those patients subject to combined
therapy (Lowe et al., 2016). Interestingly, recent studies
suggested that the incidence of irAEs was associated with
better long-term survival and overall response rates across
different malignancies treated with anti-PD1/PDL1 (Das et al.,
2020; Dupont et al., 2020; Maillet et al., 2020). The researchers
wondered whether elderly patients could benefit from anti-PD1/
PDL1 without increasing toxicities. A pooled analysis of elderly
patients (those aged 75 years and over) with advanced NSCLC
with PDL1-positive have indicated that pembrolizumab not only
improved OS but presented a more favorable safety profile versus
chemotherapy (Nosaki et al., 2019). In the second-line therapy of
NSCLC, elderly patients (those aged 75 years and over) appeared
to tolerate anti-PD1/PDL1 and Grade 3 or 4 treatment-related
adverse events were less frequent compared to the sub-group of
patients below 65 years of age (Marur et al., 2018). These serious
irAEs resulted in the interruption of treatment, while current
oncological guidelines recommended permanent discontinuation
of ICB for only Grade 4 irAEs (Brahmer et al., 2018). The recent
cohort study indicated that 28.8% recurrence rate of the same
irAE associated with discontinuation of ICB therapy and 4.4%
incidence rate of a different irAE after re-challenge with the same
ICB. The recurrence rate was 28.6% after anti-PD1/PDL1
monotherapy resumption (Dolladille et al., 2020). Despite
resumption of ICB therapy being able to be considered for
selected patients, the optimal management of irAEs still relies
on early recognition to limit interruptions to treatment and avoid
the risk of rare fatal outcomes.

The landscape of developmental process and trends in PD1/
PDL1 molecule and anti-PD1/PDL1 could be speculated by
consideration of the historical direct citation network
(Figure 6) as well as keyword and term co-occurrence
overlays (Figure 7): the strategy of combination therapy (in
yellow) could for a focus for future research. Currently,
treatments combining anti-PD1/PDL1 with other ICB,
conventional chemotherapy, radiotherapy, or chimeric antigen
receptor T cell (CAR-T) therapy have been reported with
beneficial effects being identified therein (Chen et al., 2020;
Gray et al., 2020; Sullivan et al., 2020). Besides,
pembrolizumab combined with natural killer cells contributed
to a better survival to advanced NSCLC patients compared with
pembrolizumab alone (Lin et al., 2020). Combination therapy
with TKI including EGFR-TKI gefitinib and ALK-TKI crizotinib
were expected in recent years because of the limited efficacy of
anti-PD1/PDL1 for EGFR mutations and ALK rearrangements
patients with advanced NSCLC (Gainor et al., 2016; Lisberg et al.,

2018); however, severe hepato-toxicities among patients were
observed in CheckMate 370 (nivolumab plus crizotinib) and
KEYNOTE-021 (pembrolizumab plus gefitinib) (Spigel et al.,
2018; Yang et al., 2019). Conversely, combining anti-PD1/
PDL1 with TKI therapy had a manageable safety profile and
encouraging antitumor activity in other cancers, such as
avelumab plus axitinib for advanced renal cell carcinoma and
regorafenib plus nivolumab for advanced gastric or colorectal
cancer (Motzer et al., 2019; Fukuoka et al., 2020). These indicated
the feasibility of the strategy involving the combination of anti-
PD1/PDL1 and TKI, and the appropriate dosages and medication
orders should be explored further.

DISCUSSION

In the present study we analyzed the literature on the PD1/PDL1
molecule and RCT as well as meta-analysis of anti-PD1/PDL1 to
map the knowledge and status of the research status, historical
evolution, and developmental trends of PD1/PDL1-related
research from 2000 to 2020. The publication records showed
explosive growth trends (with annual percentage growth rates of
37.77, 72.12, and 62.98%, respectively) and high average citations
per document in the period (Table 1). As for the country-based
distribution of the literature (Table 2), the United States was the
most productive country with the highest average article citations
for molecule (35.3%, 60.32 citations per article) and RCT (41.6%,
440.14). China is the top contributor to meta-analysis (50.1%),
while the top three countries with the highest average citations
were Portugal (three articles, 53.0 citations per article), the
Philippines (one, 52.0), and Australia (eight, 51.62). These
suggested China should pay increased attention to the quality
and attractiveness of meta-analysis. The most analyses in this
study were made using a full counting system in which every
author collaborating on a document would be counted once. In
the case of binary counting for term co-occurrence analysis, the
occurrences attribute indicated the number of documents in
which a term occurred at least once (van Eck and Waltman,
2010). The fractional counting system is also a widely used
method, and it counts a half for two authors with a single
document (Leydesdorff and Park, 2017). The differences
between two counting methods should be noticed during the
bibliometric analysis.

The results presented how the research focus had changed
during time from molecular mechanisms to targeting PD1/
PDL1 pathway in combination with other therapies and the
change process of therapy lines that anti-PD1/PDL1 were
used in. In addition, biomarkers, irAEs and resistance to
PD1/PDL1 blockade are currently hot research topics and
would most likely keep this status also in the near future.
However, this retrospective analysis might not reflect the
latest trends because the significant number of documents
have not been published yet due to their novelty. We noticed
that anti-PD1/PDL1 had been used as neoadjuvant therapy in
the documents included in dataset B. The OpACIN trial
suggested the feasibility of neoadjuvant combination of
ipilimumab and nivolumab for stage III melanoma patients
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and neoadjuvant therapy expanded more tumor-resident
T cell clones than adjuvant application (Blank et al., 2018;
Rozeman et al., 2021). The NCT02519322 study indicated
that neoadjuvant treatment with combined ipilimumab and
nivolumab yielded higher response rates (RECIST ORR 73%)
but substantial toxicity (73% grade 3 trAEs) compared with
neoadjuvant nivolumab in high-risk resectable melanoma
patients (Amaria et al., 2018). Besides, the RCT of
neoadjuvant therapy with anti-PD1/PDL1 have been
designed in multiple cancers including NSCLC and gastric
cancer (Bang et al., 2019).

Another emerging research direction should be paid attention in
is single cell sequencing which could focus on the genome or
transcriptome information at a single-cell level to reveal cell
population differences and cellular evolutionary (Lei et al., 2021).
Several related documents were found in our datasets due to the
attention of researchers to PD1/PDL1 expression in various kinds of
cells (Brummelman et al., 2018; Penter et al., 2019). A recent
bibliometric study focused on single cell sequencing technologies
and suggested its applications in immunology would be the next
research hotspot (Wang et al., 2021). We found that in single cell
sequencing had been applied in the patients with anti-PD1/PDL1
therapy to figure out the changes of cell subsets after treatments and
differences between responders and non-responders, which could
contribute to predict prognosis, select suitable therapy strategy and
monitor the condition of diseases (Bassez et al., 2021; Gohil et al.,
2021). Considering that cancer immunotherapy is characterized by
targeting cells in tumor microenvironment, some cell subsets may
have the similar effects on anti-PD1/PDL1 therapy of different
cancers. Based on the analyses of single cell sequencing
technologies, the specific gene expression signatures of cancer-
associated fibroblasts (CAF) have been identified to be associated
with poor responses to anti-PD1 or anti-PDL1 antibodies in breast
cancer and pancreatic cancer, respectively (Dominguez et al., 2020;
Kieffer et al., 2020). Besides, single cell sequencing technologies have
also been used in the patients with the combined treatment and
irAEs. Griffiths et al. (2020) conducted single cell RNA sequencing at
serial time points during treatment of modified FOLFOX6
chemotherapy followed by a combination of chemotherapy and
anti-PD1 immunotherapy for the patients with advanced
gastrointestinal cancers to study the population dynamics of
tumor, immune cells and immune phenotypic. Luoma et al.
(2020) preformed the unique research that highlighted the
mechanisms of colon inflammatory adverse events induced by
checkpoint blockades (anti-PD1 and anti-CTLA4) at a single-cell
level and provided opportunities for therapeutic intervention.

To our knowledge, the present study is the first
comprehensive bibliometric analysis to explore the major
research themes and hotspot tendencies in anti-PD1/PDL1
research from three perspectives including molecular
mechanisms, RCT, and meta-analysis. However, the study
has certain limitations: first, a single database (WoSCC) was
used to collect publications and their bibliometric data.
Second, non-English language documents were excluded
from the analysis which possibly resulted in source bias.
Additionally, we did not analyze the most significant
authorship contributions to the three datasets because

many authors with similar initials led to inaccurate
counting especially for Chinese authors in the meta-
analysis documents. Moreover, the cleaning process for
synonyms was absent in this study, because it is hard to
clean data by manual filtration due to the large volume of
literatures. The effective and automatic algorithms are in the
learning and designing process and expected to be used in our
further studies. Anti-PD1/PDL1 are the most widely used
ICB in clinical practice, beyond that, immune checkpoints
such as TIM-3, LAG-3, and TIGIT are also being actively
investigated (Anderson et al., 2016; Andrews et al., 2019),
which awaits the attention of future bibliometric studies.

CONCLUSION

The present study provided a comprehensive bibliometric
analysis of the literature on anti-PD1/PDL1 from three aspects
including molecular mechanisms, randomized clinical trials and
meta-analysis, thus producing the academic structure reflecting
the status of the research, its historical evolution, and
developmental trends in related research from 2000 to 2020.
The results showed that research related to anti-PD1/PDL1 is still
on the raise and analyzed themain contributors in the field. It also
presented how the research focus had changed during time from
molecular mechanisms to targeting PD1/PDL1 pathway in
combination with other immune checkpoint inhibitors,
targeted therapies and conventional therapies. In addition,
biomarkers, irAEs and resistance to PD1/PDL1 blockade are
currently hot research topics and would most likely keep this
status also in the near future. This information could contribute
to readers, especially to those without deep previous knowledge of
the topic, in gleaning a general overview of the landscape. The
results could also be used to identify potentially relevant
publications, possible collaboration partners and promising
research directions.
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Background: Mounting randomized clinical trials have proved that immune checkpoint
inhibitors (ICIs) achieved better overall survival (OS) and progression-free survival (PFS)
than chemotherapy drugs for advanced non-small cell lung cancer (NSCLC) patients.
However, some literatures have indicated that different sexes might not have equal
immune response. Also, no agreement reached on the issue whether therapeutic
benefit of ICIs is related to sex.

Objectives: To explore the association between efficacy of ICIs for NSCLC patients and
their sexes and summarize overall treatment-related adverse events (TRAEs) in an
exploratory manner.

Methods: We performed this systematic review and meta-analysis of all potentially
relevant studies retrieved from PubMed, EMBASE, and the Cochrane Library until June
2021, for eligible randomized controlled trials (RCTs) comparing immunotherapy with
chemotherapy in advanced NSCLC patients. Literature screening, summary data
extraction was performed independently and in duplicate. The pooled hazard ratio (HR)
and 95% confidence interval (CI) of OS, PFS and TRAEs were calculated, applying STATA
software and random-effects models. This study was registered in international
prospective register of systematic reviews (PROSPERO), number CRD42020210797.

Results: Twenty-one trials involving 12,675 NSCLC patients were included. For patients
with advanced NSCLC, ICIs significantly prolonged the OS (males: HR 0.73, 95%CI 0.67-
0.79; females: HR 0.73, 95%CI 0.61-0.85) and PFS (males: HR 0.62, 95%CI 0.55-0.70;
females: HR 0.68, 95%CI 0.55-0.81) versus chemotherapy. Overall, there was no
statistical difference between their sexes (OS: P = 0.97; PFS: P = 0.43), respectively.
Owing to insufficient TRAEs data of different sexes, we only found immunotherapy for
NSCLC patients had more all-grades (RR 0.88; 95%CI 0.82-0.95) and 3-5 grades (RR
0.60; 95%CI 0.47-0.75) AEs compared with chemotherapy.
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Conclusion: Our findings indicated that the interaction between immunotherapy efficacy
and different sexes was equally evident. Overall, patients with NSCLC could obtain more
benefits from ICIs than chemotherapy regimen regardless of their sexes.

Systematic Review Registration: PROSPERO (https://www.crd.york.ac.uk/prospero/),
identifier CRD42020210797.
Keywords: immune checkpoint inhibitors, non-small cell lung cancer (NSCLC), different sexes, meta-analysis,
patients’ selection
INTRODUCTION

Lung cancer is one of the most common thoracic diseases, and
NSCLC accounts for approximately 85% of total histological
subtypes (1). It has reached epidemic proportions and always
been the leading cause of cancer related deaths worldwide (2).
According to global cancer statistics, frequency of new diagnosis
reaches to 22.5 per 100,000, with death rates 18.6 per 100,000 (3, 4).
In spite of tremendous advances in local and systemic therapies,
cure rates of lung cancer were still slowly increased over the last
decades (5). In recent years, the advent of immunotherapy has
brought about a shift in the landscape of NSCLC treatment (6–8).
More clinical trials have demonstrated that ICIs have a higher OS or
PFS than chemotherapy for NSCLC patients (9).

Sex correlations seem to exist in lung cancer for the fact that males
have a higher incidence (31.5% vs 14.6%) and mortality (27.1% vs
11.2%) than females (10). However, we still have no clear ideas of
efficacy of ICIs in different sexes. Previously,Wallis and colleagues (11)
updated a meta-analysis and found that there was no statistical
significance between efficacy of ICIs and sex in the treatment of
various advanced cancers. However, heterogeneity exists, and different
varieties of tumors do not have equal outcomes for ICIs (12). As a
result, Wang and colleagues (13) had drawn that controversial
conclusion that males obtain more beneficial outcomes from ICIs
than females in NSCLC in their subgroup analysis.

Now that these previous studies have not come to consistent
findings on this issue, a comprehensive updated meta-analysis is
necessary to yield more information. What’s more, we noticed
that Wang and colleagues (13) did not perform a test of
interaction to compare the difference of outcomes data
between males and females. Statistical data, including hazard
ratio (HR) and P value, were insufficient to support its final
conclusion. Also, several comprehensive and worthy clinical
trials had updated outcomes data, which might influence
conclusions in this literature review. Consequently, we aim to
inhibitors; OS, Overall survival; PFS,
n-small cell lung cancer; TRAEs,
, Randomized controlled trials; HR,
interval; PROSPERO, Prospective

A, Preferred Reporting Items for
eSH, Medical subject headings; Patho,
IO, Immuno-oncology; NSCLC, Non-
mmed cell death 1 ligand 1; PD-1,
, Cytotoxic T - Lymphocyte Antigen
mor proportion score.
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conduct an analysis of 12,675 patients to compare efficacy and
safety of ICIs in NSCLC and patients’ sex.
MATERIALS AND METHODS

Literature Search and Selection Criteria
Our study was regis tered in PROSPERO, number
CRD42020210797. And this systematic review and meta-analysis
complied with the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) Statement (14).

We searched for all potentially relevant studies retrieved from
PubMed, EMBASE, and the Cochrane Library until June 2021,
for eligible phase II or III RCTs comparing immunotherapy with
chemotherapy in stage IIIB or IV NSCLC patients. And we
searched keywords and Medical Subject Headings (MeSH) terms
pertinent to the intervention of interest. Articles published in
non-English-language were excluded. More details about
procedures and methods were reported in the appendix.

Data Extraction
The data was extracted by two authors (CXC and HJD)
independently. The following information was extracted from
the trials: first author, year of publication, histology of lung
cancer, therapeutic line, trial phase, immunotherapy targets,
number of patients, intervention arms, control arms, median
follow-up time, PFS/OS hazard ratio (HR) of males and females,
all grades and 3-5 grades TRAEs. The third author (HJC)
assessed the data and resolved the disagreement.

Assessment of Study Quality and
Publication Bias
The Cochrane collaboration tool (15) was applied to assess
studies for methodological quality. There are seven aspects,
including selection bias, allocation concealment, performance
bias, detection bias, attrition bias, reporting bias and other bias.
All the included clinical studies have been registered. All
assessments were independently verified by two authors (CXX
and HJD). Any disagreements were resolved through discussion
with the third author (HJC). Potential publication bias among
the main outcome was assessed by Begg’s test.

Statistical Analysis
The STATA software (version 14.0) was used for statistical
analyses and generation of the forest plots. HR and 95%CI
August 2021 | Volume 11 | Article 627016
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were used as effect sizes. The pooled estimates were considered
statistically significant if the 95% CI did not include 1.0, with a P
value of <0.05 (two-sided).

Statistical heterogeneity across studies was assessed using the
I2statistic and forest plots. An I2 value of <50% indicated a low
heterogeneity (16). In this analysis, the null hypothesis that the
studies were homogenous would be rejected if P for
heterogeneity was less than 0.10 or I2 > 50%. Owing to
Frontiers in Oncology | www.frontiersin.org 3273
heterogeneity inherent in clinical data, random-effects model
was applied to calculate the summary estimates.

We used the inverse variance method, assuming that the
studies included in the meta-analysis had the same quantity. We
made calculations using log HR, comparing two estimates from
the same patients derived from separate analyses with test of
interaction. Moreover, we assessed whether the variations
differed from the null using the c2 test.
FIGURE 1 | Flow chart for study selection.
FIGURE 2 | Risk of bias graph assessed by the Cochrane collaboration tool in Revman 5.3.
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We explored the heterogeneity via subgroup analysis using
the following classification variables: target class of ICIs (PD-1,
PD-L1, CTLA-4, or combination), line of therapy (first line, or
after first line), study methodology (IO+chemo vs chemo, IO vs
chemo, IO+IO vs chemo), and different pathological types
(NSCLC, squamous NSCLC, non-squamous NSCLC). We also
use a test of interaction to compare OS/PFS data in male and
female groups derived from separate analyses. Outcomes of
interest provided by over two studies are pooled and presented.
RESULT

Search Results and Patients’
Characteristics
On the basis of the initial search strategy, we identified 6231
potentially relevant articles, of which 3176 were duplicates. After
eligibility screening of the titles and abstracts, 21 identified trials
(17–38) were deemed eligible for inclusion. Finally, 12,675
patients were enrolled. Figure 1 depicts the search process.

Additionally, baseline characteristics of these trials were
summarized in Table S1. All the trials evaluated efficacy of
ICIs for males and females, including 5 with Nivolumab, 6
with pembrolizumab, 5 with Atezolizumab, 3 with Ipilimumab,
1 with Avelumab, 1 with Sintilimab, 1 with Cemiplimab, and 1
with Tislelizumab. All the studies were well designed phase II or
III RCTs. Ten trials investigated PD-1 blocking agents, eight
trials investigated PD-L1 blocking agents, two trials investigated
CTLA‐4+ PD-1 blocking agents, and only one trial investigated
CTLA‐4 blocking agents.

Quality of the Included Studies and
Publication Bias
Because of the difficulty of masking, some of the included studies
showed high risks and unknown risks. All of them had
comparatively comprehensive information of outcomes data.
The assessment of bias was detailed in Figures 2 and 3. No
publication bias for OS were observed in those studies (P = 0.069
and 1.000) by Begg’s test and the funnel plots were shown
in Figure 4.

Outcomes
Nineteen trials compared OS data according to NSCLC
patients’ sex. This meta-analysis showed (Figure 5A) that the
pooled OS HR was 0.73 (95%CI 0.67-0.79) for males and 0.73
(95%CI 0.61-0.85) for females when treated with ICIs versus
chemotherapy. The clinical benefit was not statistically
significant for OS results between males and females (HR 1.00;
95% CI 0.92-1.08; P=0.97).

Fourteen trials compared PFS data according to NSCLC
patients’ sex. This meta-analysis showed (Figure 5B) that the
pooled PFS HR was 0.62 (95%CI 0.55-0.70) for males and 0.68
(95%CI 0.55-0.81) for females when treated with ICIs versus
chemotherapy. Notably, the overall result of PFS manifested that
males seemed not to benefit more from ICIs than females (HR
0.96; 95% CI 0.87-1.05; P=0.43).
Frontiers in Oncology | www.frontiersin.org 4274
FIGURE 3 | Risk of bias summary assessed by the Cochrane collaboration
tool in Revman 5.3.
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A B

FIGURE 4 | The Begg’s test and funnel plots (OS: A. males; B. females). No publication bias were observed.
A

B

FIGURE 5 | Funnel plots depicting pooled OS (A) and PFS (B) data.
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Subgroup Analysis
In general, males with NSCLC obtained similar OS and PFS
benefits with females when treated with immunotherapy
regardless of any subgroups (Table 1 and Figures S1, 2).

Adverse Events
All trials reported any grades of TRAEs and 3-5 grades of TRAEs
for NSCLC patients. The pooled RRs of any-grade and grade 3–5
TRAEs% were 0.88 (95% CI 0.82-0.95), and 0.60 (95% CI 0.47-
0.75). All reported AEs in those trials included did not
demonstrate any subgroup analysis stratified by sex. As a
result, a meta-analysis of AEs incidence according to sex was
not feasible. Results of pooled AEs (Figure 6) showed that use of
ICIs had more all-grades and 3-5 grades AEs compared
with chemotherapy.
DISCUSSION

Immunotherapy drugs exert anti-tumor activity by inhibiting the
immune escape caused by tumor cells, which is closely related to
human immune system (39). PD-1/PD-L1 and CTLA-4 pathway
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are critical in tumor immune evasion and considered as
attractive targets for therapeutic intervention (26). Monoclonal
antibodies of PD-1/PD-L1 and CTLA-4 have proved to be
promise and profit for lung cancer patients (40).

Previously, Wang and colleagues (13) drew the conclusion
that males had better OS and PFS than females in NSCLC
patients treated with immunotherapy by the comparison of HR
net values. However, a test of interaction is most frequently
recommended in methodology to compare two independent
estimates of the same quantity derived from separate analyses
(41). In the KEYNOTE-042 study, the effect remained significant
in patients with a tumor proportion score (TPS) of 1% or greater,
especially more than 50%. As we know, the expression of PD-L1
is not related to sex (42). Thus, the correlation between immune
responses and sex has not been a consensus at present.

Biological differences between men and women could affect
the susceptibility to certain respiratory diseases. Thus, the
hypothesis on association between efficacy of immunotherapy
and sex might be based on the following facts and several
possible mechanisms may be involved. Estrogen plays an
essential role in the immune system (43). Females show
advantages in both innate and adaptive immune responses
TABLE 1 | Subgroup analysis of pooled OS HR and PFS HR.

Variable Study No.
(%)

Participants,
No.

Pooled HR (95%CI) for OS Study No.
(%)

Participants,
No.

Pooled HR (95%CI) for PFS

Men Women Men Women P
value

Men Women Men Women P
value

Overall 19 8286 3751 0.73 (0.67-
0.79)

0.73 (0.61-
0.85)

0.965 14 4852 2088 0.62 (0.55-
0.70)

0.68 (0.55-
0.81)

0.427

Immune target
PD-L1 8 2872 1210 0.80 (0.74-

0.87)
0.73 (0.63-

0.83)
0.258 9 2864 1212 0.70 (0.63-

0.77)
0.67 (0.48-

0.87)
0.784

PD-1 8 2977 1494 0.66 (0.57-
0.75)

0.68 (0.46-
0.89)

0.916 4 1484 661 0.60 (0.49-
0.70)

0.72 (0.51-
0.94)

0.313

CTLA-4 1 635 114 0.85 (0.69-
1.00)

1.33 (0.70-
1.97)

0.112 - - - - -

PD-1+CTLA-4 2 1282 603 0.67 (0.58-
0.76)

0.80 (0.60-
1.00)

0.236 1 504 215 0.58 (0.44-
0.71)

0.49 (0.24-
0.75)

0.593

line of therapy
1 12 5297 2213 0.70 (0.63-

0.78)
0.75 (0.55-

0.95)
0.649 10 3384 1441 0.60 (0.51-

0.69)
0.67 (0.50-

0.84)
0.471

>1 7 2989 1538 0.77 (0.68-
0.86)

0.71 (0.62-
0.79)

0.307 4 1468 647 0.69 (0.61-
0.77)

0.72 (0.47-
0.96)

0.824

study methodology
IO+chemo vs chemo 5 2270 1181 0.81 (0.74-

0.88)
0.61 (0.43-

0.80)
0.093 6 2157 899 0.65 (0.52-

0.78)
0.63 (0.42-

0.83)
0.877

IO vs chemo 10 4255 2095 0.69 (0.60-
0.77)

0.78 (0.68-
0.87)

0.158 8 2695 1189 0.61 (0.52-
0.70)

0.72 (0.56-
0.89)

0.238

IO+IO vs chemo 1 635 114 0.68 (0.56-
0.80)

0.89 (0.68-
1.10)

0.076 - - - - -

Pathological type
Squamous NSCLC 4 1855 408 0.76 (0.61-

0.91)
0.69 (0.40-

0.98)
0.702 4 1438 317 0.63 (0.55-

0.70)
0.59 (0.43-

0.75)
0.671

Non-squamous NSCLC 4 1466 989 0.80 (0.69-
0.92)

0.61 (0.33-
0.89)

0.290 4 1466 989 0.68 (0.60-
0.76)

0.61 (0.40-
0.81)

0.567

NSCLC 11 4965 2354 0.70 (0.63-
0.77)

0.78 (0.68-
0.88)

0.176 6 1948 782 0.60 (0.45-
0.75)

0.82 (0.56-
1.07)

0.138
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FIGURE 6 | Funnel plots depicting pooled AEs data in included studies (A. all-grades TRAEs; B. 3-5 grades AEs).
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because of complex effects of X chromosome and sex hormones
on the immune system and target organs (44). Thus, females
have stronger immune environment than males (45). However,
tumors in female patients exhibit stronger immune-suppressive
signals (11). On the other hand, males provide an edge against
females in some respects. As we know, TMB is an essential
checkpoint before immunotherapy to predict efficacy of ICIs (42,
46). But evidence suggests that high-TMB is associated with
smoking history, whereas common driver mutations in lung
adenocarcinoma contributed to low-TMB (47). This conclusion
Frontiers in Oncology | www.frontiersin.org 7277
implies that men with higher smoking frequency for gender
dimorphism in behaviors may obtain greater benefit from ICIs.
And the most sensitive populations to EGFRmutations are Asian
females. Female patients may get higher mutation probability to
have lower TMB and respond not well to immunotherapy (48).

To provide more powerful evidence, our study concentrated
on NSCLC, one unitary type of cancer. To the best of our
knowledge, this is the most comprehensive meta-analysis that
has investigated this association in NSCLC patients up to now.
We considered that it might make clear sense on clinical practice
August 2021 | Volume 11 | Article 627016
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to research whether ICIs could have similar advantage over
chemotherapy in different sex groups.

Referring to previous studies (11, 13), we made rigorous all-
sided literature search strategies. We included 14 RCTs included
in Wang’s study by literature review method. And we collected 7
new RCTs and updated 6 RCTs from 2018 to the present. Finally,
we investigated OS data from 19 RCTs with 12037 patients and
PFS data from 14 RCTs with 6940 patients. It is particularly
noteworthy that subgroups from trials IMpower130 (28) and
IMpower131 (30), demonstrated greater OS and PFS for females
but not the same for males. They contributed crucially to the
pooled HR effects. Differing from the results of the study done by
Wang and colleagues (13), the key findings of this meta-analysis
are that overall improvement of OS and PFS for both sexes
patients in NSCLC of ICIs is evidence-supporting and there is no
statistically significant association of patients’ sex with the
efficacy of ICIs in NSCLC patients using both OS and PFS as
outcomes. The subgroup analysis indicated that study
methodology, pathological types, class of ICIs targets, and line
of therapy were potential causes of between-study heterogeneity.
Nonetheless, OS and PFS are regarded as gold standard and
universally accepted benefit endpoint in oncology clinical trials
(49). And there is no difference of OS and PFS between males
and females in any subgroup, which we are more concerned with.

In addition, previous studies have only reported the
association of patients’ sex with efficacy of ICIs in patients
with NSCLC. Association between adverse effects and sex has
not yet been defined. All trials included did not perform
subgroups analysis of TRAEs among different sexes so that we
could not acquire pooled estimates. Thus, we could not perform
further exploration in the balance between efficacy of ICIs and
following TRAEs. Incidence of TRAEs is one crucial safety
outcome endpoint considered in clinical trials (50), and
difference of TRAEs between males and females should have
been paid more attention to.

Several potential limitations should be acknowledged for this
meta-analysis. First, high degree of heterogeneity exists among
articles in subgroup analysis. It may influence our analysis
between different genders. Second, the sample size of females in
all included trials was much smaller than that of males. This
limitation can make statistical results more likely to be skewed
towards males. Finally, some included studies lacked adequate
data and we can’t acquire initial individual participants’ data from
authors. Although the test of interaction helps us to compare the
differences between male and female indirectly using HR and
summary data, there is limited power to detect interactions.
Analyses of individual data are needed to yield further insights.
Frontiers in Oncology | www.frontiersin.org 8278
In conclusion, via a comprehensive analysis of 21 articles, our
findings indicated that NSCLC patients could achieve better OS
and PFS from ICIs than chemotherapy regardless of their sex.
Overall, the interaction between sex and immunotherapy efficacy
is equal. Further investigations on the molecular mechanisms
linking efficacy of ICIs to sex are also warranted.
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Circulating Natural Autoantibodies to
HER2-Derived Peptides Performed
Antitumor Effects on Oral Squamous
Cell Carcinoma
Xiu Liu1, Ziyi He2, Yi Qu3, Qingyong Meng4, Lizheng Qin3* and Ying Hu1*

1Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China, 2Department of
Transfusion Research, Dongguan Blood Center, Dongguan, China, 3Department of Oral and Maxillofacial and Head and Neck
Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China, 4Laboratory for Nursing Science and
Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China

Natural autoantibodies play a crucial role in destruction of malignant tumors due to immune
surveillance function. Epidermal growth factor receptor 2 (HER2) has been found to be
highly expressed in a variety of epithelial tumors including oral squamous cell carcinoma
(OSCC). The present study was thus undertaken to investigate the effect of anti-HER2
natural autoantibodies on OSCC. Compared with cancer-adjacent tissues, cancer tissues
from OSCC patients exhibited higher HER2 expression especially in those with middle &
advanced stage OSCC. Plasma anti-HER2 IgG levels examined with an enzyme-linked
immunosorbent assay (ELISA) developed in-house showed differences between control
subjects, individuals with oral benign tumor and patients with OSCC. In addition, anti-
HER2 IgG-abundant plasma was screened from healthy donors to treat OSCC cells and to
prepare for anti-HER2 intravenous immunoglobulin (IVIg). Both anti-HER2 IgG-abundant
plasma and anti-HER2 IVIg could significantly inhibit proliferation and invasion of OSCC
cells by inducing the apoptosis, and also regulate apoptosis-associated factors and
epithelial-mesenchymal transition (EMT), respectively. Besides, the complement-
dependent cytotoxicity (CDC) pathway was likely to contribute to the anti-HER2 IgG
mediated inhibition of OSCC cells. After the HER2 gene was knocked down with HER2-
specific siRNAs, the inhibitory effects on OSCC cell proliferation and apoptotic induction
faded away. In conclusion, human plasma IgG, or IVIg against HER2 may be a promising
agent for anti-OSCC therapy.

Keywords: circulating natural autoantibodies, HER2, oral squamous cell carcinoma, trastuzumab, intravenous
immunoglobulin

INTRODUCTION

Oral squamous cell carcinoma (OSCC) is the sixth leading cancer worldwide and accounts for
approximately 90% of all oral malignant tumors (Niu et al., 2020; Zheng et al., 2021). It has been
estimated that there are about 400,000 new cases diagnosed as having OSCC with 170,000 OSCC-
related deaths each year (Sasahira and Kirita, 2018; Sarkar et al., 2021; Yang et al., 2021). Most people
with OSCC already progressed to the advanced stage when they were diagnosed (Sasahira and Kirita,
2018). About 20–30% OSCC patients experienced relapse regardless of treatment; the prognosis of
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OSCC is rather poor and the overall 5-years survival rate is
roughly 50% across the globe (Singhvi et al., 2017; Zhao et al.,
2020; Sarkar et al., 2021). Current therapies available for
treatments of OSCC include surgical resection, radiotherapy,
chemotherapy, immunotherapy, gene therapy as well as
combination of several therapies (Gau et al., 2019; Gigliotti
et al., 2019; Yang et al., 2020); however, these treatments may
result in serious problems such as complications, oral cavity
disorders and multi-drug resistance (MDR) to chemotherapy
(Chen et al., 2016).

Human epidermal growth factor receptor (EGFR) 2, also
called HER2, is a member of the EGFR family of
transmembrane receptor tyrosine kinase, and has been
reported to be associated with cell growth and survival (Huang
et al., 2018; Mirza et al., 2020). HER2 is a non-ligand binding
member and exerts its activity by heterodimerization with other
EGFR family members, leading to the initiation of multiple
signaling pathways involved in cellular proliferation and
tumorigenesis (Huang et al., 2018; Oh and Bang, 2020). High
HER2 expression due to gene amplification drives oncogenic
signaling in various organs and tissues of cancer origin including
esophagogastric, breast, head, and neck and other types of cancer
(Cierpikowski et al., 2018; Grenda et al., 2020; Pennacchiotti et al.,
2021; Sanz-Moreno et al., 2021). Meanwhile, diverse results
regarding the overexpression of HER2 in OSCC have been
reported (Werkmeister et al., 2000; Fong et al., 2008;
Cierpikowski et al., 2018). This highlights the importance of
further investigation of HER2 in OSCC development. Currently,
small molecule inhibitors or antibodies targeting HER2 have been
approved for treatment of patients with HER2-positive breast
cancer, non-small cell lung cancer (NSCLC), and
gastroesophageal cancer (Iqbal and Iqbal, 2014; Cameron
et al., 2017; Kneissl et al., 2017; Liu et al., 2018; Okamoto
et al., 2020). Two FDA-approved HER2 monoclonal antibodies
(mAbs), namely trastuzumab, and pertuzumab, have shown anti-
tumor effects by attacking HER2 signaling (Gerson et al., 2017).
Trastuzumab has been used clinically for the treatment of
metastatic breast cancer (Kristeleit et al., 2016; Early Breast
Cancer Trialists’ Collaborative, 2021). Pertuzumab is a
recombinant humanized mAb binding to the extracellular
dimerization domain II of HER2 to prevent the ligand-
induced HER2 heterodimer formation and reduce the survival
of tumor (Barthelemy et al., 2014). However, mAb-based
immunotherapy has raised new questions about assessment of
drug toxicity, the economics of cancer therapy, and resistance to
treatments (Kristeleit et al., 2016; Dempsey et al., 2021). Hitherto,
HER2-targeted medications have not been applied clinically to
treat OSCC, so that there is an urgent need to develop HER2-
based alternative and safe therapies.

Natural autoantibodies are defined as immunoglobulins
constitutively produced by B-1 cells in the absence of external
antigen stimulation (Schwartz-Albiez et al., 2009; Panda and
Ding, 2015), and play a role in a number of physiological
activities such as homeostatic regulation of the immune
system, elimination of invading pathogens and clearance of
apoptotic or cancer cells (Holodick et al., 2017). Several lines
of evidence suggest that natural autoantibodies are associated

with some common chronic illnesses including type-2 diabetes,
atherosclerosis, and malignant tumor (Cai et al., 2017; Wang
et al., 2018; Zhao et al., 2018; Liu et al., 2020). In fact, anti-tumor
cytotoxicity of natural autoantibodies has been confirmed with
in vitro study and catches more attention lately. In a previous
study, we found that healthy individuals had remarkably high
levels of natural IgG antibodies against human vascular
endothelial growth factor receptor 1 (VEGFR1) and that anti-
VEGFR1 IgG-abundant plasma could inhibit the proliferation of
liver cancer cells (Wang et al., 2017). In this study, therefore, we
investigated circulating levels of natural autoantibodies against
HER2 in OSCC patients and analyzed the effects of anti-HER2
IgG-abundant plasma and its intravenous immunoglobulin
(IVIg) on OSCC cells.

MATERIALS AND METHODS

Participants
A total of 88 patients with OSCC and 105 patients with oral
benign tumor, who were admitted to the Beijing Stomatological
Hospital of Capital Medical University in the period between
December 2018 and August 2020, were recruited for this study;
120 healthy subjects were simultaneously recruited as controls
from local communities. The demographic and clinical
information was given in Table 1. All patients with OSCC
underwent histological confirmation for their diagnosis and
tumor stages; their plasma samples were obtained after
diagnosis was made but prior to any anticancer treatment
given. Patients with oral benign tumor and OSCC experienced
clinical interview and radiographic or imaging examination to
exclude those who had any other malignancy or autoimmune
diseases. To explore whether plasma anti-HER2 IgG levels were
altered in different stages of OSCC, these patients were divided
into two subgroups based on the TNM (tumor, node, and
metastasis) staging system: early stage (Tis + T1N0M0 +
T2N0M0), and middle & advanced stage (stages 3 and 4). All
the participants provided written informed consent to participate
in the study as approved by the Research Ethics Board of the
Beijing Stomatological Hospital of Capital Medical University
(Approval code: 2015-92 and 2019-126) and conformed to the
Declaration of Helsinki.

Detection of Plasma Anti-HER2 IgG Levels
Linear peptide antigens derived from the extracellular domain of
human HER2 protein (NP_004439.2) were designed using a
computational epitope prediction software (http://www.iedb.
org) based on the features of the target sequences such as
hydrophilicity, flexibility, surface accessibility and antigenicity;
they were then synthesized by solid-phase chemistry with a purity
of >95%. An enzyme-linked immunosorbent assay (ELISA) was
developed in-house as described previously (Wang et al., 2017;
Zhao et al., 2018; Liu et al., 2020). A total of 200 plasma samples
from healthy blood donors were screened at the Blood Center of
Dongguan, Guangdong Province, China. To reduce inter-plate
deviation, pooled plasma from >100 randomly selected
individuals was used as a quality control (QC) sample to
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assess reproducibility of the in-house ELISA for relative
quantification of plasma anti-HER2 IgG levels. All the ELISA
reagents were provided by Hailanshen Biotechnology Ltd.,
Qingdao, China. Negative control (NC) was PBS-based assay
buffer and positive control (PC) was purified IgG from human
blood (G4386, Sigma-Aldrich, United States). The optical
density (OD) was measured on a microplate reader at
450 nm with a reference wavelength of 620 nm. All the
samples were tested in duplicate and specific binding ratio
(SBR) was used to represent plasma anti-HER2 IgG levels.
The SBR is calculated as follows:

SBR � ODsample − ODNC

ODPC − ODNC

Histological Assay
OSCC and cancer-adjacent normal tissues were fixed with 10%
(v/v) neutral formaldehyde, and then processed routinely for
paraffin embedding, preparation of tissue sections with 4 μm
serial sections, followed by deparaffinization. The slices were used
for Hematoxylin-eosin (H&E) staining and
immunohistochemistry (IHC) analysis. After routine
deparaffinization and rehydration, the paraffin-embedded
tissue slices were heated in a pressure cooker containing
10 mM citrate buffer (pH 6.0) for 10 min to repair the antigen
and the endogenous peroxidase was then quenched by 3% H2O2.
After blocking, the slices were incubated with the anti-HER2
antibody working solution (A2071, Abclonal, Wuhan, China)
overnight at 4°C, and the secondary antibody (Maxim
Biotechnologies, Beijing, China) conjugated with HRP was
then incubated and stained with 3,3′-diaminobenzidine (DAB)
for observation. Hematoxylin was used for a counterstain. H&E
and IHC staining image acquisition was performed under the
Olympus BX61 microscope (Olympus, Tokyo, Japan); the
average optical density (AOD) was counted using
ImageProPlus 6.0 software.

Cell Culture
Three OSCC-derived cell lines, CAL27, SCC25, and SCC15
(ATCC, United States), were cultured in Dulbecco’s Modified
Eagle Medium (DMEM, Gibco, NY, United States) and RPMI
1640 Medium (Gibco), respectively, and both media contained
10% fetal bovine serum (FBS, Gibco). All cell lines were cultured
in humidified atmosphere with 5% CO2 at 37°C.

Cell Proliferation Assay
Boya Bio-pharmaceutical Group Co., Ltd., China kindly provided
anti-HER2 IVIg that was extracted from anti-HER2 IgG-
abundant plasma and regular IVIg that was extracted from
anti-HER2 IgG-deficient plasma. Cell proliferation was
analyzed using the Cell Counting Kit-8 (CCK-8) reagent
(Dojindo, Tokyo, Japan), and 5-ethynyl-2′-deoxyuridine (EdU)
staining according to the manufacturer’s instructions. Briefly,
OSCC cells were seeded in a 96-well plate and pre-incubated for
24 h with complete medium containing 10% FBS. These cells
were then treated with following conditions for 48 h: 20% anti-
HER2 IgG-abundant plasma only, 20% anti-HER2 IgG-deficient
plasma only, 20% FBS with trastuzumab (Roche, Genentech, Inc.
CA, United States), 20% anti-HER2 IgG-deficient plasma plus
200 μg/ml trastuzumab or plus regular IVIg (2.5 mg/ml or 5 mg/
ml) or plus anti-HER2 IVIg (2.5 mg/ml or 5 mg/ml), respectively.
Cell viability was used to present data and calculated based on the
CCK-8 OD signal as follows:

Cell Viability � ODabundant − ODblank

ODdeficient − ODblank

EdU staining was conducted using BeyoClick™ EdU Cell
Proliferation Kit with Alexa Fluor 555 (Beyotime, Shanghai,
China) according to the manufacturer’s protocol. The treated
OSCC cells were incubated with EdU working solution (10 µM)
in the dark at 37°C for 2 h, and then fixed with 4%
paraformaldehyde for 15 min. Next, the cells were
permeabilized with 0.1% Triton X100 for 15 min, and then
incubated with Hoechst 33342 for 5 min. The image was
captured with a fluorescence microscope, and the image was
taken at 200× magnification (Olympus, Tokyo, Japan) to
calculate the rate of cell proliferation. OSCC cells that
underwent DNA replication during the incubation showed red
fluorescence, while the nucleus showed blue fluorescence.

Analysis of Apoptosis
The percentage of OSCC cell lines in early and late apoptosis was
determined by AnnexinV-FITC/ propidium iodide (PI) staining
according to the instruction (BD Biosciences, United States). The
cells were then analyzed through FlowJo V10 software. Apoptotic
cells were detected by FITC-Annexin V staining, while PI staining
was used to discriminate apoptotic, dead, and necrotic cells.
Annexin V-FITC+/PI− and Annexin V-FITC+/PI+ staining
was used to define early and late apoptosis.

TABLE 1 | Demographic and clinical characteristics of control, benign-tumor and OSCC subjects.

Characteristics Control (n =
120)

Benign (n =
105)

OSCC (n =
88)

pa pb

Gender, n (%)
Male 83 (69.2) 52 (49.5) 50 (56.8) 0.067 0.312
Female 37 (30.8) 53 (50.5) 38 (43.2)
Age (�X ± SD) 50.2 ± 2.2 46.5 ± 14.9 58.9 ± 11.0 <0.001 <0.001

TNM subgroups (%)
Early stage — — 39 (44.3)
Middle & advanced stage — — 49 (55.7)

aControl vs. OSCC.
bBenign vs. OSCC.
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Transwell Invasion Assay
A conventional 24-well transwell invasion system (Corning, NY,
United States) was applied to analyze the ability of cell invasion/
metastasis. 5 × 105 OSCC cells in serum-free medium was seeded
in triplicate on the top chamber coated with Matrigel (100 µl per
well, thickness: 3 mm; Becton Dickinson, San Jose, CA,
United States), and then incubated for 48 h in medium
containing 20% FBS added to the lower chamber as a driving
factor. OSCC cells on the lower surface of the membrane were
fixed with 4% formalin and stained with Giemsa (Salarbio,
Beijing, China). The polycarbonate membrane was cut and
mounted on the slide for preservation. Images of the cells
attached to the undersurface of the membrane were captured
with 200× magnification microscope (Olympus BX61).

Western Blotting Assay
Cultured OSCC cells were harvested and lysed in cell lysis reagent
(Sigma-Aldrich, St. Louis, United States) to extract total cell
protein. Equal amounts of proteins were separated by sodium
dodecyl sulfate (SDS) polyacrylamide gel electrophoresis on
4–15% gels (Bio-Rad, CA, United States) and then
electrophoretically transferred to polyvinylidene difluoride
membranes (Bio-Rad). The membranes were blocked at room
temperature and incubated overnight at 4°C with the appropriate
primary antibody; HRP-conjugated goat anti-rabbit IgG (AS014,
ABclonal) was then added and incubated. Following extensive
washing, the immune-reactive proteins on the membrane were
visualized with Clarity Western ECL Substrate (1705060, Bio-
Rad) and measured via computerized image analysis (ChemiDoc
MP, Bio-Rad). All primary antibodies used are listed in
Supplementary Table S1.

Quantitative Real-Time PCR
Total RNAwas isolated from cultured OSCC cell lysates using the
Trizol Reagent (Invitrogen, Carlsbad, United States), and
Nanodrop spectrophotometer (California Santa Clara, Agilent
Technologies, CA, United States) was used to measure the
concentrations of RNA samples. The SuperRT cDNA synthesis
kit (CWbio, Beijing, China) was used to generate cDNA, and the
UltraSYBR one-step qPCR kit (Low ROX, CWbio) was used to
quantify the expression of target genes. Glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) was used as a
housekeeping gene for normalization, and the 2−△△CT method
was used to quantify relative levels of gene expression. The
primary sequences used for qPCR amplification are given as
follows: HER2, 5′- GACTGCCTGTCCCTACAAT-3′ (forward)
and 5′-TCCTCTGCTGTCACCTCTTG-3′ (reverse); GAPDH,
5′-AGGTCGGTGTGAACGGATTTG-3′ (forward) and 5′-
TGTAGACCATGTAGTTGAGGTCA-3′ (reverse).

siRNA Transfection
All siRNAs used in this study were synthesized by GenePharma
(Shanghai, China). Before siRNA transfection, OSCC cells were
seeded in 6-well plates and cultured for 24 h. These cells were
then transfected with siRNA Oligo (100 pmol/well) against GP-
transfect-Mate (GenePharma) diluted in serum-free DMEM
medium according to the manufacturer’s instructions; the

efficiency of knockdown was determined by qPCR and
Western blot 24 and 48 h after siRNA transfection. The siRNA
sequences were listed in Supplementary Table S2.

Statistical Analysis
The coefficient of variation (CV) was used to represent an inter-
assay deviation estimated using the QC sample tested on every
96-well plate as mentioned above. Plasma IgG levels were
expressed as the mean ± standard deviation (SD) in SBR.
Because Kolmogorov–Smirnov one-sample test showed a
skewed distribution of plasma IgG levels in all three groups
(Supplementary Table S3), Kruskal-Wallis H test was applied
to examine their differences. Binary regression analysis was
applied to examine the differences in plasma anti-HER2 IgG
levels between OSCC patients and control subjects or between
OSCC patients and benign-tumor patients, with adjustment for
gender and age. Student’s t-test (two-tailed) and one-way
ANOVA were also applied to analyze the experimental data.
p < 0.05 was considered to be statistically significant.

RESULTS

HER2 Expression in OSCC Cancer Tissues
and Adjacent Tissues
Following pathological diagnosis of clinical cases, we randomly
collected 10 individual samples of cancer and adjacent tissues
from OSCC patients in early stage and middle & advanced stage,
respectively, for H&E and IHC staining, and then analyzed the
relationship between HER2 expression and tumor progression.
H&E staining showed normal epithelial features in all cancer-
adjacent tissues as compared with OSCC tissues. The cancer cells
were arranged to form solid nests or strands as well as infiltrative
pattern growth; the nuclear pleomorphism of cancer cells was
obviously increased with abnormal mitotic nuclear (Figure 1A).
The IHC staining showed higher expression of HER2 in OSCC
tissues than normal adjacent tissues (p � 6.89 × 10−6 for early
stage and p � 3.26 × 10−5 for middle & advanced stage), and also
in cancer tissues from middle & advanced than early stage OSCC
(p � 0.038) (Figure 1B), demonstrating that the level of HER2
expression was gradually increased with the progression
of OSCC.

Changes of Plasma Anti-HER2 IgG Levels in
Patients With OSCC
The in-house ELISA developed showed a good reproducibility
with a CV of 2.75% based on the anti-HER2 IgG assay with QC
plasma (Supplementary Table S4). As shown in Table 2, plasma
anti-HER2 IgG levels were significantly different between control
subjects, oral benign tumor and OSCC patients (H � 11.820, p �
0.003). Further analysis was performed to compare plasma anti-
HER2 IgG levels between subgroups and indicated that anti-
HER2 IgG levels were slightly lower in patients with oral benign
tumor and early stage OSCC than control subjects, while plasma
anti-HER2 IgG levels showed a trend toward an increase in OSCC
patients at the middle & advanced stages compared with those at
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the early stage (Table 2). Because the age distribution was
significantly different between these three study groups
(Table 1), a binary logistic regression analysis was applied
to examine the differences in plasma IgG levels with

adjustment for age and gender but failed to show a
difference among these three groups, suggesting that this
alteration might be caused by the bias in age distribution
(Supplementary Table S5).

FIGURE 1 | The expression of HER2 in OSCC tissues. (A) H&E and IHC staining of OSCC tissues and cancer-adjacent tissues in early (n � 5), middle & advanced
stages (n � 5). (B) The average optical density (AOD) data of IHC staining were presented as mean ± standard deviation (SD). *p < 0.05; **p < 0.01.
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The Role of Anti-HER2 IgG-Abundant
Plasma in Inhibiting OSCC by Induction of
Cell Apoptosis
According to the analysis of plasma samples showing an increase in
natural anti-HER2 IgG levels with the severity of tumors, we
screened 200 plasma samples from healthy donors by the in-
house ELISA to identify anti-HER2 IgG-abundant plasma; two
samples with the highest anti-HER2 IgG levels were selected as the
anti-HER2 IgG-abundant plasma (assigned A and B, respectively)
and pooled plasma from six individual donors with the lowest anti-
HER2 IgG levels was used as the anti-HER2 IgG-deficient plasma
for baseline signals. Three pre-incubated OSCC cell lines, CAL27,
SCC15, and SCC25 cells, were cultured in medium containing
either 20% anti-HER2 IgG-deficient or 20% anti-HER2 IgG-
abundant plasma for 48 h. The CCK-8 assay showed that anti-
HER2 IgG-abundant plasma could significantly inhibit the
proliferation of CAL27 cells treated with plasma A (p � 4.25 ×
10−11), and SCC15 and SCC25 cells treated with plasma B (p � 2.02
× 10−8 for SCC15 cells and p � 5.2 × 10−8 for SCC25 cells) (Figures
2A–C). To address the mechanism behind the inhibitory effect of
anti-HER2 IgG-abundant plasma on OSCC cells, we investigated
cell apoptosis induced by 20% anti-HER2 IgG-abundant plasma.
As shown in Figure 2D, the proportion of apoptotic cells was
significantly increased in CAL27 cells (p � 0.0019 for 24 h
treatment and p � 0.0063 for 48 h treatment), SCC15 cells (p �
0.0024 for 24 h treatment and p � 0.0009 for 48 h treatment), and
SCC25 cells (p � 0.0046 for 24 h treatment and p � 6.29 × 10−5 for
48 h treatment). Transwell invasion assay demonstrated that anti-
HER2 IgG-abundant plasma could inhibit the invasion of CAL27
cells (p � 0.021), SCC15 cells (p � 0.013), and SCC25 cells (p � 7.87
× 10−15) (Figures 2E,F). The expression of epithelial-mesenchymal
transition (EMT)-related biomarkers was examined. As shown in
Figure 2G, the expression of E-Cadherin was up-regulated in
CAL27 and SCC25 cells treated with anti-HER2 IgG-abundant
plasma, while the expression of Vimentin and Snail was down-
regulated in SCC15 and SCC25 cells, suggesting that anti-HER2
IgG-abundant plasma could significantly inhibit cell proliferation
and invasion, and promote the apoptosis of OSCC cells.

Possible Involvement of the CDC Pathway
The complement-dependent cytotoxicity (CDC) pathway has been
considered to play a critical role in anti-tumor effect of mAbs.
Based on a dose-dependent curve from trastuzumab-treated OSCC
cells for 48 h at the concentrations of 0, 25, 50, 100, 200 and 400 μg/
ml, respectively, 200 μg/ml trastuzumab in a medium containing

20% fetal bovine serum (FBS) appeared to be the optimal
concentration of inhibiting OSCC proliferation (p � 3.18 ×
10−10 for CAL27 cells, p � 1.41 × 10−4 for SCC15 cells, and p �
1.1 × 10−7 for SCC25 cells) as compared with 0 μg/ml trastuzumab
treatment (Figures 3A–C). When FBS was inactivated at 56°C for
30 min to destroy the complement system, trastuzumab no longer
showed the inhibitory effect onOSCC cell proliferation (p � 0.0003
for CAL27 cells, p � 0.006 for SCC15 cells, and p � 6.3 × 10−9 for
SCC25 cells) (Figures 3D–F). When trastuzumab was also heated
at 56°C for 30 min, this mAb appeared to be stable and still had
inhibitory effect on the growth of OSCC cells (p � 2.91 × 10−5 for
CAL27 cells, p � 1.98 × 10−4 for SCC15 cells, and p � 1.26 × 10−10

for SCC25 cells) (Figures 3G–I). To confirm if anti-HER2 IgG-
abundant plasma inhibited OSCC cell proliferation via the CDC
pathway, heat-inactivated anti-HER2 IgG-abundant plasma was
used to replicate the above finding. The results demonstrated that
OSCC cells grew more quickly in medium containing 20%
inactivated plasma than 20% normal plasma (p � 1.39 × 10−8

for CAL27 cells, p � 3.29 × 10−14 for SCC15 cells and p � 3.02 ×
10−16 for SCC25 cells) (Figures 3J–L), suggesting that anti-tumor
effects of natural anti-HER2 IgG autoantibodies were mediated
through the CDC pathway. Since trastuzumab was mainly applied
to treat patients with breast cancer that showed high expression of
the HER2 gene, we performed an in vitro study to compare the
difference in anti-tumor effects between anti-HER2 IgG-abundant
plasma and trastuzumab on two breast cancer-derived cell lines,
SK-BR-3 and BT-474, which highly express HER2
(Supplementary Materials and Methods). When SK-BR-3 and
BT-474 cells were cultured in medium containing 20% anti-HER2
IgG-abundant plasma only and in medium containing 20% anti-
HER2 IgG-deficient plasma and 200 μg/ml trastuzumab,
respectively, trastuzumab could significantly inhibit the
proliferation of BT-474 cells (p � 1.49 × 10−7) but not SK-BR-3
cells (Supplementary Figures S1A,B), whereas anti-HER2 IgG-
abundant plasma could significantly inhibit the proliferation of
both breast cancer cell lines (p � 0.006 for SK-BR-3 cells and p �
1.71 × 10−7 for BT-474 cells). Interestingly, the inhibitory effect on
proliferation of breast cancer cells disappeared after heat-
inactivated anti-HER2 IgG-abundant plasma was applied.

Inhibitory Effect of Anti-HER2 IVIg on OSCC
Cell Proliferation
To rule out the effect of other components in plasma on cancer
cells, both anti-HER2 IgG-abundant and -deficient plasma were
used to prepare for anti-HER2 IVIg and regular IVIg,

TABLE 2 | The levels of plasma IgG against HER2 among three different groups.

Group Control (n) Benign (n) OSCC (n) Ha pb

TMN Subgroupsc

Early stage 0.32 ± 0.10 (120) 0.27 ± 0.11 (105) 0.31 ± 0.12 (39) 11.91 0.003
Middle & advanced stage 0.32 ± 0.10 (120) 0.27 ± 0.11 (105) 0.33 ± 0.16 (49) 12.49 0.002
Total 0.32 ± 0.10 (120) 0.27 ± 0.11 (105) 0.32 ± 0.14 (88) 11.82 0.003

Plasma anti-HER2 IgG levels were expressed as mean ± SD in SBR.
aKruskal-Wallis H test.
bp < 0.05 was considered statistically significant as three individual groups were tested.
cEarly stage was defined as stages Tis + T1N0M0 + T2N0M0, and middle & advanced stages were defined as stages 3 and 4.
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FIGURE 2 | Effects of anti-HER2 IgG-abundant plasma on the proliferation of OSCC cells. (A–C) Proliferation of three OSCC cell lines treatedwith anti-HER2 IgG-abundant
plasma for 48 h. Plasma A and plasma B obtained from two individual healthy donors were abundant in anti-HER2 IgG. The data of proliferation were expressed asmean ± SD in
cell viability (%). PlasmaAshowedan inhibitory effect onCAL27andplasmaBonbothSCC15andSCC25cells. (D)Apoptosis of threeOSCCcell lines treatedwith anti-HER2 IgG-
abundant and -deficient plasma for 24 and 48 h, respectively. The data were expressed as mean ± SD in proportion of apoptotic cells. (E–F) Three OSCC cell lines treated
with either 20%anti-HER2 IgG-abundant or -deficient plasma for 48 hwere photographed andbar chart showed the proportion of invasive cells relative to total number of seeding
cells. (G) Three OSCC cell lines were cultured in 20% anti-HER2 IgG-abundant or -deficient plasma and the expression of EMT-related factors, E-cadherin, Vimentin, or Snail was
then determined by Western blot with β-actin as reference. D: anti-HER2 IgG-deficient plasma; A: anti-HER2 IgG-abundant plasma; *p < 0.05; **p < 0.01.
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FIGURE 3 | Possible involvement of complement-dependent cytotoxicity. (A–C) Inhibitory effects of trastuzumab (TZ) on proliferation of CAL27, SCC15, and
SCC25 cells. A range of the TZ concentrations was used to treat OSCC cells and the concentration of 200 μg/ml TZ was considered as the optimum concentration for
subsequent experiments. (D–F) Viability of CAL27, SCC15, and SCC25 cells treated with 200 μg/ml TZ in medium containing either 20% inactivated FBS or 20%
activated FBS. (G–I) Viability of CAL27, SCC15, and SCC25 cells treated with inactivated 200 μg/ml TZ in medium containing either 20% inactivated FBS or 20%
activated FBS. (J–L) Viability of CAL27, SCC15, and SCC25 cells treated with 20% anti-HER2 IgG-deficient plasma, 20% anti-HER2 IgG-abundant plasma and 20%
inactivated anti-HER2 IgG-abundant plasma. The data of proliferation were expressed as mean ± SD in cell viability (%). Deficient, anti-HER2 IgG-deficient plasma;
Abundant, anti-HER2 IgG-abundant plasma; TZ, trastuzumab; *p < 0.05; **p < 0.01.
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FIGURE 4 | Inhibitory effect of anti-HER2 IVIg on the proliferation of OSCC cells. (A,B) Viability of CAL27 cells and SCC25cells treated with anti-HER2 IgG-deficient
plasma only, anti-HER2 IgG-deficient plasma containing 200 μg/ml trastuzumab, 2.5 mg/ml regular IVIg, 2.5 mg/ml anti-HER2 IVIg, 5 mg/ml regular IVIg, and 5 mg/ml
anti-HER2 IVIg, respectively. (C–E) EdU staining of CAL27 and SCC25 cells treated with anti-HER2 IgG-deficient plasma only, 200 μg/ml trastuzumab, 2.5 mg/ml
regular IVIg, 2.5 mg/ml anti-HER2 IVIg, 5 mg/ml regular IVIg, and 5 mg/ml anti-HER2 IVIg, in medium containing 20% anti-HER2 IgG-deficient plasma. The data
were expressed as mean ± SD in cell viability (%). Deficient, anti-HER2 IgG-deficient plasma; IVIg, intravenous immunoglobulin; *p < 0.05; **p < 0.01.
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FIGURE 5 | The effects of anti-HER2 IVIg on OSCC cells apoptosis. (A–C) Apoptosis of CAL27 and SCC25 cells treated for 48 h with anti-HER2 IgG-deficient
plasma only, 200 μg/ml trastuzumab, 5 mg/ml regular IVIg, and 5 mg/ml anti-HER2 IVIg, respectively. The data were expressed as mean ± SD in proportion of apoptotic
cells. (D) CAL27 cells and SCC25 cells were treated for 48 h with anti-HER2 IgG-deficient plasma only, 200 μg/ml trastuzumab, 5 mg/ml regular IVIg, and 5 mg/ml anti-
HER2 IVIg, respectively; the expression of apoptosis-related factors, including Bcl-2, Bax, Bak, cytochrome c, caspase-9, caspase-3, and cleaved caspase-3, was
then determined by Western blot with β-actin as a reference. Deficient, anti-HER2 IgG-deficient plasma; IVIg, intravenous immunoglobulin; *p < 0.05; **p < 0.01.
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respectively, and to conduct the following experiments with
CAL27 and SCC25 cell lines (Supplementary Figure S2).
According to the physiological IgG levels in human blood, the
concentrations of 2.5 and 5 mg/ml IVIg in 20% anti-HER2 IgG-
deficient plasma were chosen to treat CAL27 and SCC25 cells for
48 h with the following conditions: 20% anti-HER2 IgG-deficient
plasma only, 20% anti-HER2 IgG-deficient plasma containing
200 μg/ml trastuzumab, and 20% anti-HER2 IgG-deficient
plasma containing regular IVIg or anti-HER2 IVIg. The CCK-
8 assay showed that both 2.5 mg/ml IVIg and 5 mg/ml anti-HER2
IVIg could significantly inhibit CAL27 cell proliferation (p �
0.007 for 2.5 mg/ml treatment and p � 0.0005 for 5 mg/ml
treatment) and SCC25 cell proliferation (p � 7.84 × 10−5 for
2.5 mg/ml treatment and p � 4.63 × 10−8 for 5 mg/ml treatment),
as compared with the regular IVIg. Intriguingly, 200 μg/ml
trastuzumab had no effect on OSCC proliferation (Figures
4A,B). Meanwhile, EdU staining further verified the above
results (Figures 4C–E), although the anti-HER2 IVIg
treatment showed a significant inhibitory effect on two breast
cancer cell lines (p � 6.33 × 10−7 for SK-BR-3 cells and p � 1.08 ×
10−8 for BT-474 cells), as compared with regular IVIg treatment
(Supplementary Figures S1C,D). It is worth noting that
trastuzumab could also inhibit the proliferation of two breast
cancer cell lines but its inhibitory intensity was much weaker than
anti-HER2 IVIg (p � 3.05 × 10−6 for SK-BR-3 cells and p � 2.32 ×
10−10 for BT-474 cells).

Induction of OSCC Cell Apoptosis by
Anti-HER2 IVIg
To explore the mechanism by which anti-HER2 IVIg could
significantly inhibit OSCC cell proliferation, cell apoptosis was
examined in OSCC cells treated with anti-HER2 IVIg, regular
IVIg, or trastuzumab in subsequent experiments. As shown in
Figures 5A–C, the proportion of apoptotic OSCC cells was
significantly increased in the 5 mg/ml anti-HER2 IVIg
treatment compared with 200 μg/ml trastuzumab treatment
(p � 0.0036 for CAL27 cells and p � 0.002 for SCC25 cells).
In addition, regular IVIg treatment could also induce the
apoptosis of OSCC cells with a weaker effect than anti-HER2
IVIg treatment (p � 0.00048 for CAL27 cells and p � 0.0017 for
SCC25 cells) (Figures 5A–C). Western blot assay showed that
Bcl-2 expression was significantly down-regulated in both CAL27
and SCC25 cells treated with anti-HER2 IVIg, while the
expressions of Bax, Bak, cytochrome c, casepase-9, casepase-3,
and cleaved casepase-3 were significantly up-regulated, compared
with regular IVIg treatment (Figure 5D). However, the
expression of cleaved casepase-3 was slightly increased only in
SCC25 cells treated with 200 μg/ml trastuzumab.

Inhibitory Effect of Anti-HER2 IVIg on OSCC
Cell Invasion
OSCC is prone to recurrence andmetastasis, which possibly is the
main reason for the poor prognosis of this malignancy. Therefore,
transwell assay was applied to explore the inhibitory effect of anti-
HER2 IVIg on OSCC invasion. The results demonstrated that

5 mg/ml anti-HER2 IVIg treatment could inhibit CAL27 cell
invasion (p � 5.15 × 10−13) and SCC25 cell invasion (p � 1.86 ×
10−11) compared with regular IVIg; the invasion ability was about
4 times lower than regular IVIg treatment. However, 200 μg/ml
trastuzumab failed to show inhibition of OSCC invasion (Figures
6A–C). Western blotting assay demonstrated that E-cadherin
expression was up-regulated and the expression of Vimentin and
Snail was down-regulated in CAL27 and SCC25 cells treated with
anti-HER2 IVIg compared with those treated with trastuzumab
and regular IVIg (Figure 6D).

Effects of Anti-HER2 IVIg on Proliferation
and Apoptosis of HER2-Knockdown OSCC
Cells
To determine the mechanism behind anti-HER2 IVIg effect on
OSCC cells, we developed a cell model with siRNA-mediated
HER2 knockdown experiments. Three HER2-targeting siRNAs
were transfected into CAL27 and SCC25 cells to suppress HER2
expression, in which HER2-specific siRNA-2 showed the
maximum of knockdown efficiency (Figures 7A–D). The
CCK-8 assay demonstrated that anti-HER2 IVIg could
significantly inhibit the proliferation of CAL27 cells (p � 4.34
× 10−5) and SCC25 cells (p � 0.006) treated with control siRNAs
compared with regular IVIg and 200 μg/ml trastuzumab.
However, this inhibitory effect was vanished in the HER2-
specific siRNA-2 transfected cells (Figures 7E,F). The
apoptosis assay further confirmed that anti-HER2 IVIg could
significantly promote the apoptosis of CAL27 cells (p � 0.021)
and SCC25 cells (p � 0.020) treated with control siRNAs, as
compared with regular IVIg and 200 μg/ml trastuzumab,
although the effect of promoting apoptosis faded away in the
siHER2-treated cells (Figure 7G). The above data proved that
HER2 was the target of anti-HER2 IVIg exerting anti-tumor
activity.

DISCUSSION

Natural autoantibodies, including IgM, IgG, and IgA, were
discovered nearly half a century ago. Of these three isotypes of
natural antibodies, IgG is themost common type and abundant in
human plasma (Schwartz-Albiez et al., 2009;Wang et al., 2017). It
has been reported that natural autoantibodies are likely to serve as
a prominent anti-tumorigenic component in the body to exert
immune surveillance against transformed cells (Avrameas et al.,
2007; Panda and Ding, 2015; Liu et al., 2021). Plasma levels of
natural autoantibodies vary from people to people, and different
stages of cancer provide the clues to the insight into risk of
malignant tumors and prognostic assessment (Zhao et al., 2018).
HER2 belongs to the epidermal growth factor family and plays a
key role in cell growth due to high expression in several solid
tumors including oral cancer (Connell and Doherty, 2017; Wang
and Xu, 2019). HER2 expression has been found to be enhanced
in OSCC tissues compared with their adjacent tissues, although
the association between anti-HER2 natural autoantibody and
OSCC has yet to be established.
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FIGURE 6 | Inhibitory effects of anti-HER2 IVIg on OSCC cells migration. (A–C)CAL27 and SCC25 cells treated for 48 h with anti-HER2 IgG-deficient plasma only,
200 μg/ml trastuzumab, 5 mg/ml regular IVIg, and 5 mg/ml anti-HER2 IVIg, respectively, were photographed; bar chart showed the proportion of invasive cells relative to
the total number of seeding cells. (D)CAL27 and SCC25 cells were cultured for 48 h with anti-HER2 IgG-deficient plasma only, 200 μg/ml trastuzumab, 5 mg/ml regular
IVIg, and 5 mg/ml anti-HER2 IVIg, respectively; the expression of EMT-related factors, E-cadherin, Vimentin, or Snail was then determined by Western blot with H3
as a reference. Deficient: anti-HER2 IgG-deficient plasma; IVIg: intravenous immunoglobulin; *p < 0.05; **p < 0.01.
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FIGURE 7 | Inhibitory effects of anti-HER2 IVIg on HER2 knockdown OSCC cells. (A–D) Three HER2-specific siRNAs were transfected into CAL27 and SCC25
cells. The expression of HER2 mRNA and protein was then examined by qPCR and Western blot assay, respectively. (E–F) CAL27 and SCC25 cells were transfected
with either HER2-specific siRNAs or control siRNAs; OSCC cells were treated for 48 h with anti-HER2 IgG-deficient plasma containing 200 μg/ml trastuzumab, 5 mg/ml
regular IVIg, and 5 mg/ml anti-HER2 IVIg, respectively. The data were expressed as mean ± SD in cell viability (%). (G) CAL27 and SCC25 cells were transfected
with either HER2-specific siRNAs or control siRNAs, and then treated for 48 h with anti-HER2 IgG-deficient plasma containing 200 μg/ml trastuzumab, 5 mg/ml regular
IVIg, and 5 mg/ml anti-HER2 IVIg, respectively. The data were expressed asmean ± SD in proportion of apoptotic cells. IVIg, intravenous immunoglobulin; si-Ctrl, control
siRNA; si-HER2, HER2-specific siRNAs; *p < 0.05; **p < 0.01.
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In this study, we found that plasma anti-HER2 IgG levels were
significantly different among control subjects, individuals with
oral benign tumor and patients with OSCC. Individuals with
benign tumor or early stage of OSCC had lower levels of plasma
natural anti-HER2 antibodies than controls subjects, suggesting
that natural anti-HER2 antibodies play a crucial role in
preventing tumorigenesis by inhibiting the growth of both
OSCC and benign tumors. Plasma anti-HER2 IgG levels were
gradually increased with OSCC progression but were not
significantly different between two subgroups of OSCC
patients in different stages although histological observations
also confirmed high expression of HER2 in patients with
middle & advanced OSCC. It is possible that with the
progression of OSCC, increased HER2 production promotes
the secretion of anti-HER2 IgG to prevent further growth of
tumors. Zhao et al. suggested that high anticancer autoantibody
levels were associated with longer survival in patients with non-
small cell lung cancer (Zhao et al., 2018). Accordingly, individuals
with a decrease in anticancer autoantibody levels may be at a high
risk of developing cancer due to lack of immunological
surveillance to monitor transformed cells in the body.

Taken together, natural anti-HER2 IgG levels are likely to
impact the tumorigenesis of OSCC based on the present findings
that anti-HER2 IgG-abundant plasma could significantly inhibit
the proliferation and invasion of OSCC cells, and induce the
apoptosis of these cancer cells. The key pharmaco-dynamic
mechanism behind anticancer activity of mAb is involved in
inhibition of cell signaling, induction of apoptosis, activation of
antibody-dependent cell-mediated cytotoxicity (ADCC) and the
CDC pathway as well as targeting a toxic payload to tumor cells
(Schwartz-Albiez et al., 2008; Schwartz-Albiez et al., 2009; Meyer
et al., 2014). Interestingly, the present study demonstrated that
the CDC pathwaymight play a major role in killing OSCC cells by
anti-HER2 IgG-abundant plasma treatment. However, there are
some unwanted factors present in human plasma, such as growth
factors, IgA, and IgE, which may result in adverse outcomes and
allergic reactions. Approximately 98% IVIg is IgG prepared from
several thousands of healthy blood donors; human IVIg may be a
good agent for anticancer therapy and other treatments such as
primary humoral immunodeficiency, inflammation and
autoimmune diseases (Corbí et al., 2016; Alonso et al., 2020).
Both in vitro studies and animal models showed that IVIg could
inhibit the growth and spreading of several types of solid cancer,
such as melanoma, colon cancer, breast cancer and sarcoma
(Fishman et al., 2002; Sapir et al., 2005; Schwartz-Albiez et al.,
2009). For this reason, anti-HER2 IVIg made from anti-HER2
IgG-abundant plasma was applied to verify its anticancer effects
on OSCC cells in this study. Our data suggested that anti-HER2
IVIg could significantly inhibit OSCC proliferation and promote
the apoptosis of OSCC cells, and the expression of some
apoptosis-associated factors was also influenced, including
downregulation of Bcl-2 and upregulation of Bax, Bak,
cytochrome c, casepase-9, casepase-3, and cleaved casepase-3.
Although there are several therapies available for clinical
treatment of OSCC, the rates of recurrence and metastasis are
still very high, which is the most reasons for the poor prognosis of
OSCC patients. Based on this study, anti-HER2 IVIg is much

stronger to kill OSCC cells than tastuzumab that is currently
recommended as a first-line treatment of patients with metastatic
HER2-positive breast cancer (Rochette et al., 2015; Kristeleit et al.,
2016), as our data showed that trastuzumab had almost no
inhibitory effect on OSCC cells and that inhibitory effect of
anti-HER2 IVIg on breast cancer cells was more powerful
than trastuzumab. Since trastuzumab is produced in
humanized mice, there are still 30% homologous to mice,
leading to serious side effects, in which cardiotoxicity and
drug resistances are the most common issues (Nemeth et al.,
2017). It has been reported that trastuzumab can cause
symptomatic congestive heart failure (CHF) and develop
severe drug resistance within 1 year of medication (Rochette
et al., 2015). However, anti-HER2 IVIg is a natural
autoantibody originated from healthy individuals and is
unlikely to produce serious side effects and treatment
resistance. As mentioned above, IVIg is a mixture of
allogeneic IgG antibodies and the inhibitory effect of anti-
HER2 IVIg on OSCC cells has been confirmed by work on
HER2-knockdown OSCC cells. To our knowledge, this is the
first report on the role of plasma anti-HER2 IgG and anti-HER2
IVIg in inhibiting OSCC growth and invasion.

While plasma anti-HER2 IgG levels are likely to be associated
with OSCC progression and anti-HER2 IVIgmay have a potential
for OSCC therapy because of its anti-OSCC properties, there are a
few limitations of this study. First, the sample size for clinical
study was too small to draw a firm conclusion; replication of this
initial finding is needed with large sample collection. Second,
clinical information was incomplete and the overall survival of
OSCC patients with different plasma anti-HER2 IgG levels need
investigating. Third, the cell model developed in this study may
not be strong enough to reflect an in vivo change, so that the effect
of anti-HER2 IVIg on OSCC should be replicated in patient-
derived tumor xenograft (PDX) mouse model.

CONCLUSION

In summary, the present results indicate that plasma anti-HER2
IgG and anti-HER2 IVIg preparations have significantly
inhibitory effects on the proliferation and invasion of OSCC
cells and the CDC pathway is likely to be involved in anticancer
mechanism. Anti-HER2 IVIg may be a promising agent for the
treatment of OSCC.
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