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Editorial on the Research Topic

Stochastic Modeling in Hydrogeology

The call for this research topic asked for papers that would support the use of stochastic modeling in
Hydrogeology, mainly focusing on proved applications of these techniques. We succeeded in attracting
many expressions of interest that finally materialized in the collection of ten papers that makes up this
section. Not all ten articles show real applications of stochastic Hydrogeology, but they all highlight the
importance of uncertainty quantification in groundwater flow andmass transport modeling, and the need
to use stochastic techniques to do it in an appropriate, systematic, and traceable manner.

If you were to read just one paper on this research topic, we suggest you the one by White et al.
since it meets all the target objectives. It stresses the importance of parameter estimation (PE) and
uncertainty quantification (UQ) and demonstrates it with a fully worked-out example in the Edwards
aquifer, Texas, United States. The authors not only guide the reader on the different steps to perform
PE and UQ in an aquifer that is complex to model but also provide all the scripts used so that anyone
can inspire from their work and apply them to other cases.

Of the other papers demonstrating the importance of adequately handling heterogeneity in aquifer
modeling, two focus on facies heterogeneity since this heterogeneity is more critical than the intrinsic
heterogeneity of hydraulic conductivity within facies. The large contrasts in hydraulic conductivity are not
due to its inherent spatial variability but to hydrofacies heterogeneity. Consequently, there is a need for
robust methods for the generation of categorical realizations resembling the geological aquifer
architecture. Both Carle and Fogg and Jorreto-Zaguirre et al. propose ways of handling soft or
uncertain data in categorical simulation, each one using a different categorical simulation technique.
Carle and Fogg demonstrate their findings in the Savanah River, South Carolina, United States and the
Llagas basin, California, United States, and Jorreto-Zaguirre et al. in theAndraxDelta, Spain. Of particular
interest is the discussion by Carle and Fogg of current methods and the outlook about the future.

Another interesting application of stochastic Hydrogeology to a real case is the paper by Colombo
et al. who demonstrate the applicability of backward tracking to identify pollutant sources in the
metropolitan area of Milano.

There are two more papers with real case applications. The first one, by Hemmings et al.
discusses the importance of early uncertainty quantification aimed to maximize the efficiency of
modeling in the context of decision support. The authors discuss the importance of identifying
whether the cost of expensive history matching is worth it given the available data. They propose a
decision support modeling workflow and demonstrate it in the Wairarapa Valley, New Zealand.
The second one, by Cromwell et al. presents a clever use of deep neural networks to estimate
hydraulic conductivities in a catchment using integrated surface-subsurface modeling and
demonstrates its application in Rock Creek, Colorado, United States.
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The last application by Allgeier et al. addresses an
optimization problem under uncertainty: the optimal selection
of a monitoring network for the delineation of groundwater
divides. The authors use the Preposterior Data Impact
Assessor as their optimal experimental design method and
demonstrate it to delineate the groundwater divide between
the Ammer and Neckar river catchments in Germany.

There are three more papers that explore different facets of
stochastic Hydrogeology in very different environments. Jeong
et al. address the general problem of optimization under
uncertainty and compare three different ensemble-based
stochastic gradient methods for the optimal well placement
for brine extraction in a synthetic carbon storage reservoir. In
their conclusions, they provide recommendations on when
and how to use each one of the three methods analyzed. Lam
et al. discuss the application of an ensemble smoother for
stochastic inverse modeling of groundwater flow parameters
using transient hydraulic heads and flow rates as data. They
limit their analysis to multi-Gaussian distributions for the flow
parameters and use a synthetic case, which resembles the
French Underground Research Laboratory site, to
demonstrate the performance of the approach. Their final
results are clearly influenced by the uneven coverage of the
model domain by the observation locations. Finally, Williams
et al. focus on a very specific problem related to the loss of
resolution in the velocity field computed on an equivalent
porous media derived from a fractured domain. The authors

demonstrate the problem and propose a downscaling approach
to recover the effects of subgrid heterogeneity in the context of
radionuclide transport through fractured media. They
demonstrate their approach on a synthetic brittle fault
zone model.

The more than 13,000 views, in the first four months after the
first paper was accepted, proves the interest of the scientific
community in stochastic modeling in Hydrogeology. We hope
that you enjoy reading this collection.
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A fully worked example of decision-support-scale uncertainty quantification (UQ) and

parameter estimation (PE) is presented. The analyses are implemented for an existing

groundwater flow model of the Edwards aquifer, Texas, USA, and are completed in a

script-based workflow that strives to be transparent and reproducible. High-dimensional

PE is used to history-match simulated outputs to corresponding state observations of

spring flow and groundwater level. Then a hindcast of a historical drought is made. Using

available state observations recorded during drought conditions, the combined UQ and

PE analyses are shown to yield an ensemble of model results that bracket the observed

hydrologic responses. All files and scripts used for the analyses are placed in the public

domain to serve as a template for other practitioners who are interested in undertaking

these types of analyses.

Keywords: decision-support, groundwater modeling, uncertainty quantification, parameter estimation,

reproducible, scripting

1. INTRODUCTION

The importance of uncertainty quantification (UQ) in the context of environmental modeling
for decision support is widely recognized (e.g., Anderson et al., 2015; Doherty, 2015a). So too
is the importance of parameter estimation (PE), which, herein, we regard as the process of
reducing uncertainty through history matching the simulation outputs to their state observation
counterparts (a process often referred to as “calibration”). Together, UQ and PE represent critical
analyses for model-based resource management decision support as they provide estimates of
uncertainty in important simulated outcomes and reduce this uncertainty, respectively.

However, implementing high-dimensional UQ and PE in real-world modeling analyses can be
difficult, from both a theoretical understanding standpoint (related to the depth and breadth of
topical knowledge required), as well as from a mechanics/logistics standpoint arising from the
preparation, implementation, and post-processing of these analyses. In the authors’ experience,
the difficulties commonly encountered when implementing UQ and PE for decision-support-scale
modeling can preclude their application in many cases, especially when project time lines are short
and funding is limited.

There are also strong calls for modeling based analysis (including UQ and PE analyses) to
move toward more transparent, reproducible, and accountable processes. The reasons for this
push are self-evident; several groups have called for increased transparency and reproducibility
in computational science (Goecks et al., 2010; Stodden, 2010; Peng, 2011; Sandve et al., 2013;
Liu et al., 2019) and in environmental simulation specifically Fienen and Bakker (2016). Some
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authors have put forward examples of increasing the
reproducibility of the forward environmental model construction
process (e.g., Fisher et al., 2016). To that end, some script-based
tools have been developed for practitioners to increase the
reproducibility of the forward model construction process
(Olsthoorn, 2010; Fisher, 2014; Bakker et al., 2016). However,
these tools are focused on the forward model rather than the
UQ and PE process; in a decision-support setting, UQ and PE
analyses are critical to the robust deployment of a model, and are
therefore likely just as important as the forward model.

Ironically, the need for PE and UQ can be, in many
contexts, in competition with the need for reproducibility. This
is because the PE and UQ analyses require many additional
subjective conceptual choices and bring many more operations
and steps into the implementation of the modeling analysis,
and these additional complications can substantially decrease
the reproducibility of a modeling analyses. This decrease of
reproducibility, especially in the outcomes of the PE and UQ
analyses, can reduce the credibility of the model as a decision
support tool and may hamper resource management efforts.

Herein, we present a step toward reproducible UQ and PE
analysis through a script-based workflow. We use the term
“reproducible” to mean giving readers access to the datasets and
scripting tools needed to reproduce our results (e.g., figures,
Supplementary Material and associated data release; White
et al., 2020) and the findings based on them. Readers are referred
to Plesser (2018) and Kitzes et al. (2017) (and the references
cited therein) for a more nuanced and detailed discussion of what
“reproducibility” means in the context of computational science.

Several open-source software tools were used to implement
the UQ and PE workflow, including:

• The python package FloPy (Bakker et al., 2016) was used to
programmatically load, process, and manipulate an existing
groundwater flow model;

• The python package pyEMU (White et al., 2016) was used
to programmatically construct a high-dimensional PEST
interface (Doherty, 2015b) around the forward model and the
generate the prior parameter ensembles;

• The iterative ensemble smoother PESTPP-IES (White, 2018)
was used to evaluate the prior parameter ensembles (for UQ)
and to also perform formal, high-dimensional PE.

Within this scripted workflow, we programmatically construct

a high-dimensional truncated multi-variate (log-)Gaussian prior

parameter distribution (hereinafter referred to as the “Prior”)
and associated ensembles. The scripting is also used to define a
subjective, management-focused likelihood function for the PE
analysis. Additionally, we use scripting to post-process the results
into the figures and Supplementary Material presented herein.
In this way, we demonstrate that high-dimensional UQ and PE
in real-world environmental modeling settings are achievable
and can be both efficient and reproducible. Furthermore, given
the increased interest in UQ and PE analyses in environmental
simulation, the workflow presented herein provides the capability
to efficiently and repeatably apply UQ and PE analyses to models
that were previously constructed.

The rest of this manuscript is organized as follows.
First, we briefly present the existing model, then we discuss
the formulation of the Prior and the definition of the
likelihood function used for PE, followed by the reproducible
implementation and workflow presentation. Then the UQ
and PE analysis results are presented, and finally, we discuss
some nuances and implications of a script-driven UQ and
PE workflow.

2. THE EDWARDS AQUIFER MODEL AND
PURPOSE OF THE ANALYSIS

Herein, we use an existing model of the Edwards aquifer, Texas,
USA from the work of Liu et al. (2017), based on the model of
Lindgren et al. (2005). Briefly, the model is a MODFLOW-2005
(Harbaugh, 2005) model with 1 layer, 370 rows, and 700 columns
arranged on a regular grid with a spacing of 1,340 feet; the
geographic location of the model domain and features of interest
are shown in Figure 1. Water enters the model domain as diffuse,
areal recharge and as concentrated, stream-bed recharge—both
of these recharge processes are simulated with the Recharge
(RCH) package. Water leaves the model domain as spring flow
(simulated with the Drain (DRN) package) and as extraction
wells (simulated with the Well (WEL) package). Faults that are
thought to function as barriers to flow are represented with the
Horizontal Flow Barrier (HFB) package. Readers are referred
to Liu et al. (2017) for more details regarding the model and
specific simulations.

The model has been temporally discretized into two
simulation time periods:

• history-matching simulation: simulates the period 2001–2015
with monthly stress periods. This simulation is used for
PE (i.e., history matching) of observed spring flows and
groundwater levels;

• scenario simulation: simulates the period 1947–1958 (known
as the “drought of record”) with monthly stress periods. This
simulation is used to make a hindcast of simulated states of
primary interest to groundwater resource managers, namely
spring flow at Comal and SanMarcos springs and groundwater
level at index wells J-17 and J-27.

Both simulations use the same static (i.e., time-invariant)
properties of hydraulic conductivity, storage, HFB conductances,
and DRN boundary elements (stage and conductance). This is
the mechanism for PE to reduce uncertainty in the scenario-
simulation outputs of primary interest to groundwater resource
managers. If these outputs are sensitive to the static properties
and, through PE, the uncertainty in the static properties is
reduced, then the uncertainty in the scenario-simulation outputs
may also be reduced.

For the PE analysis, observations of spring flow and
groundwater level are used for history matching from
6 and 336 locations, respectively, with a total of 1,060
spring flow state observations and 6,809 groundwater-level
state observations.
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FIGURE 1 | The geographic extent of the active model domain (gray) and locations of springs and groundwater-level observation locations of primary interest to

groundwater resource managers. Modified from Brakefield et al. (2015).

2.1. Model Purpose
The flow from Comal and San Marcos springs and the
groundwater levels at index wells J-17 and J-27 during the
scenario (e.g., drought) simulation are of particular interest to
groundwater resource management and are the primary focus
of the UQ and PE analyses presented herein. Therefore, we
focus the PE analysis on reproducing the observed spring flow
and water levels listed above as robustly as possible during
the history-matching simulation. Logically, reproducing these
observed states during history-matching should improve the
ability to simulate these observed states during the scenario
simulation. We note that state observations of spring flow and
groundwater level are also available for the scenario hindcast
simulation at Comal and San Marcos springs and at index
wells J-17 and J-27, respectively. However, we use these state
observations only to verify the robustness (or otherwise) of
the various workflow components, and, more generally, of the
workflow itself; these scenario-period observations are not used
for history-matching purposes.

2.2. Parameterization and the Prior
Herein, we use a Bayesian uncertainty framework (Tarantola,
2005) to represent uncertainty in parameters and outputs of
primary interest to groundwater resource managers. A critical
part of any Bayesian uncertainty quantification (UQ) analysis is
definition of the Prior. We use a high-dimensional parameter
space (Doherty et al., 2011) with the aim of achieving robust
estimates for the hindcast of simulated states of primary interest
to groundwater resource managers, while also attempting to
avoid any ill-effects arising from under-parameterization (White
et al., 2014; Knowling et al., 2019). Specifically, we used 337,482
and 339,449 parameters to represent model input uncertainty
in the history-matching and scenario simulations, respectively
(including the shared static property parameters, outlined above).

In the high-dimensional parameter space, we defined a
truncated, multi-variate (log-)Gaussian distribution as the Prior;
we used the existing history-matching and scenario simulation
model inputs of Liu et al. (2017) as the first moment (e.g., mean
vector) of the Prior and a block-diagonal covariance matrix for
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the second moment. Parameter variances were defined using
expert knowledge and previousmodeling analyses of the Edwards
aquifer. The blocks in the prior parameter covariance matrix
represent spatially- and temporally-correlated parameters, such
as grid-scale and pilot-point (Doherty, 2003) parameters and
time-varying parameters associated with well extraction rates.
These correlations between spatially and temporally distributed
parameters were specified using exponential variograms with the
following ranges:

• 13,200 feet: grid-scale parameters, including hydraulic
conductivity, specific storage, specific yield, initial conditions,
HFB conductances; spatially-distributed well extraction
rate parameters;

• 180 days: time-varying well extraction rate parameters; and
• 39,600 feet: pilot-point parameters, including hydraulic

conductivity, specific storage, specific yield, initial conditions.

These ranges were selected so that the resulting spatially
distributed model inputs had sufficient stochastic character
in accordance with expert knowledge and previous modeling
analyses of the Edwards aquifer.

Using the previously history-matched model inputs as the
mean of the Prior is not standard practice in a purely Bayesian
context because the same state observations will be used for
conditioning herein. However, using the existing model inputs
in this way allows us to take advantage of expert and institutional
knowledge that has previously been assimilated into the model.
Furthermore, using a very high-dimensional parameter space
in combination with an ensemble framework allows us to
account for the null-space contribution to uncertainty (Moore
and Doherty, 2005) surrounding this history-matched location in
parameter space.

We use a multi-scale parameterization strategy (McKenna
et al., 2019) to explicitly represent different spatial scales of
uncertainty and also to help understand how information is
transferred from observed states to parameters (at different
scales) in the PE analysis. For hydraulic conductivity, specific
storage, specific yield, and initial conditions, three spatial scales
of parameterization were used:

• a single, domain-wide (“global”) multiplier parameter;
• pilot point multiplier parameters (Doherty, 2003) at a spacing

of 39,600 feet; and
• grid-scale multiplier parameters (one parameter per active

computational cell).

Recharge was parameterized using time-varying domain-
wide multiplier parameters in conjunction with time-varying
multiplier parameters for each of the 25 unique recharge
“zones”—for each stress period, a domain-wide multiplier
parameter and a multiplier parameter for each zone was
specified. In this way, we attempt to account for spatial
uncertainty as well as temporal uncertainty in the recharge
estimates. See Brakefield et al. (2015; Figure 15) for an example
of the recharge zonation and Puente (1978) for a description
of the Edwards aquifer recharge estimation process. Readers
are referred to the Supplementary Material for a graphically
summary of the multi-scale parameterization.

Well extraction rates were also parameterized to account
for spatial and temporal uncertainty in the well extraction rate
estimates. A single set of extraction rate multiplier parameters
(one per well) was applied across all stress periods. This set
of spatially distributed multiplier parameters were used with
a set of temporally-distributed multiplier parameters (one for
each stress period). We note that, while groundwater extraction
rates were metered during the history-matching period, the
simulated groundwater extraction in the model is nevertheless
still uncertain as these metered rates may not capture all of the
groundwater extraction that occurred and because of uncertainty
(e.g., error) induced through spatial and temporal discretization.

Because the exact hydrologic disposition and function of the
simulated HFBs is unknown, these were also parameterized at
the grid scale. The conductance of each HFB cell was treated
as uncertain but was spatially correlated with nearby HFB cells
using a geostatistical variogram with a range of 13,200 feet.

A summary of the parameterization and prior parameter
variances is presented in the Supplementary Material.

Note that separate temporal parameters (recharge, well
extraction and initial conditions) are used for the history-
matching and scenario simulations. All other parameters are
shared between the two simulations.

2.3. The Likelihood
Given the intended management purposes(s) of this modeling
analysis, we focused the PE analysis on reproducing the observed
states from the history-matching period that most resemble
the outputs from the scenario period of primary interest
to groundwater resource managers (Beven and Binley, 1992;
Doherty and Welter, 2010; White et al., 2014). Specifically, we
defined a subjective L2 norm likelihood function—expressed
through observation weights—to focus the PE analysis on
reproducing observed states from the following four locations:

• Comal springs flow;
• San Marcos springs flow;
• index well J-17 groundwater levels;
• index well J-27 groundwater levels.

The model outputs of primary interest to groundwater resource
managers during the scenario simulation are of the same
character (i.e., observed hydrologic state types, spatial locations)
as the state observations used in the focused likelihood function.
We therefore expect that reproducing the observed states at these
four locations during the history-matching simulation should
improve the model’s ability to simulate these observed states
during the scenario simulation (e.g., Doherty and Christensen,
2011; White et al., 2014).

The focused likelihood function was implemented by
subjectively specifying weights (e.g., the inverse of observation
variance) on these four state observation series that are two
orders of magnitude higher than the weights on the other
state observation series. In this way, we focus the PE analysis
toward preferentially reproducing these four state observation
series, with the expectation that better reproduction of these
observed states in the history-matching simulation will lead to
reduced uncertainty in the hindcast of simulated states at these
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locations. Including the remaining state observations into the
likelihood function with a lower weight (e.g., focus) helps to
ensure physically plausible simulation results in the posterior
history-matching ensemble. This subjective weighting scheme
was applied using the mean residuals from the initial, prior
Monte Carlo analysis (discussed below).

3. IMPLEMENTATION AND WORKFLOW

The UQ and PE analyses outlined above were implemented
within a python-based scripting workflow; the workflow is
contained entirely within the python script eaa.py and is
implemented as functions within this script. We note the
initial history-matching and scenario simulation model input
files are preserved “as-is”—the scripting process does the only
file handling.

At the highest-level, the workflow follows these steps
(function names shown in parentheses):

1. (setup_models_parallel): Process the model input
files for both history-matching and scenario simulations and
generate high-dimensional PEST interface (Doherty, 2015b).
Tasks include programmatically switching the MODFLOW
model input formats to support free-format and external
files, as well as rectifying the WEL files so that the same
number of well entries are present in each stress period,
which is important for parameterizing well extraction rates.
This means including additional extraction well entries with
extraction rate equal to zero for consistency. Define the
geostatistical prior parameter covariance matrix and generate
the prior parameter ensembles of 100 realizations for each
simulation using the Prior distribution.

2. (prep_for_parallel, run_condor): Evaluate prior
ensembles (with parallel computation) for both simulations.

3. (reweight_ensemble): Use the history-matching
simulation prior ensemble mean residuals to define the
focused likelihood function. Eliminate realizations that yield
implausible outputs.

4. (build_localizer, prep_for_parallel,
run_condor): Construct a localizing matrix for temporal
parameters (discussed later). Perform the PE analysis using
PESTPP-IES (White, 2018).

5. (transfer_hist_pars_to_scenario): Transfer the
static (time-invariant) final (i.e., posterior) history-matching
ensemble values to the scenario prior parameter ensemble,
effectively forming the scenario posterior ensemble.

6. (prep_for_parallel, run_condor): Evaluate the
scenario posterior ensemble.

7. (plot_parallel): Post-process the results of the UQ and
PE analyses into figures and Supplementary Material.

We chose 100 realizations for the UQ and PE analyses as a trade-
off between the need to express uncertainty and the need to
minimize the computational burden both during these analyses
and during follow-on scenario analyses to support resource
management decision making.

The PEST interface construction is the most complex portion
of the workflow as it involves setting up a multi-scale multiplier

parameter process, the PEST control file, as well as template files
and instruction files to interface with the model. Furthermore,
because we are working in an ensemble framework, it is
important to record all possible model outputs of interest within
the PEST interface given that acquiring new model outputs
requires a re-evaluation of the entire ensemble (as opposed to a
deterministic setting where only a single model run is needed).
To achieve this goal, we used the python modules FloPy (Bakker
et al., 2016) and pyEMU (White et al., 2016) to automate the
PEST interface construction process. These two python modules,
when used together, can reduce (or eliminate as is the case here)
instances where a practitioner must create or modify files in
a manual fashion (e.g., “by hand”) (Barchard and Pace, 2011).
Furthermore, using pyEMU to automate the PEST interface
construction and geostatistical-prior ensemble generation can
greatly reduce the cognitive burden on practitioners and also
facilitate UQ and PE analyses at earlier stages within the larger
modeling analysis.

The prior parameter ensembles were evaluated in parallel
using the iterative ensemble smoother PESTPP-IES (White,
2018); this code was also used to perform the PE for the
history-matching simulation. The results of each PESTPP-IES
analysis were post processed using the above-referenced plotting
functions to produce the figures presented in the Results section.
Two iterations of PESTPP-IES were used to history-match the
prior parameter ensemble to the observed states from history-
matching simulation.

The high-throughput run manager HTCondor (Thain
et al., 2005; Fienen and Hunt, 2015) was used to coordinate
starting the PESTPP-IES parallel “agents” on a distributed
computing cluster, as well as the “master” instance (through
the function run_condor). However, the analyses
presented herein can also be completed using the function
run_local, which starts parallel agents and the master
instance using only locally available (on a single machine)
computational resources.

Localization was used in PESTPP-IES to mitigate for the
effects of spurious correlation issues that can accompany the use
of ensemble (smoother) methods (Chen and Oliver, 2016). Here,
we localize temporal parameters—using an 18-month window
between temporal parameters and state observations such that
only apparent cross-correlations between observations that occur
within the 18 months following the application of a temporal
parameter are allowed in the PESTPP-IES solution scheme. In
short, temporal localization effectively prevents non-physical
(i.e., backward in time) cross-correlations and also eliminates
long-term cross-correlations that are not expected in the Edwards
aquifer, which is a karst system that responds rapidly to changes
in forcing conditions. The localization matrix was constructed by
the function build_localizer.

We note that the algorithm encoded in PESTPP-IES
implements a “regularized” parameter adjustment equation (e.g.,
Hanke, 1997; Chen and Oliver, 2013, 2016) that enforces
regularization penalties individually for each realization to prefer
each realization remain close to the prior-generated initial
values. This regularization, used in conjunction with localization,
attempts to retain maximum parameter variance in the posterior
parameter ensemble.
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FIGURE 2 | Observed vs. simulated plots for the four locations of primary interest to groundwater resource managers for the history-matching simulation. Red trace is

the observed series, dashed black trace is the simulation results from the existing model from Liu et al. (2017), thick blue trace is the maximum a posteriori simulation

result (the posterior realization corresponding to the existing model inputs), light blue traces are the posterior ensemble simulation results. In general terms, the

posterior ensemble closely reproduces the observed series.

4. RESULTS

During evaluation of the history-matching simulation prior

parameter ensemble, 13 realizations were removed due to

excessive run times and 5 realizations were removed for yielding
“dry” model cells for locations where groundwater level have

been measured, leaving 82 realizations for use in the PE

analysis—these 82 realizations were used to evaluate prior and

posterior scenario simulation uncertainty. In total, the history-
matching simulation was evaluated 310 times; the scenario
simulation was evaluated 182 times.

In general terms, the prior and posterior ensembles bracket
the observed states behavior both for the history-matching and
scenario simulations at the four locations of primary interest
to groundwater resource managers (Figures 2, 3). The posterior
ensemble is tightly clustered around the observed states at
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FIGURE 3 | Observed vs. simulated plots for the four locations of primary interest to groundwater resource managers for the scenario simulation. Red trace is the

observed series, dashed black trace is the existing simulation results from Liu et al. (2017), thick blue trace is the maximum a posteriori simulation result, light blue

traces are the posterior ensemble simulation results. The posterior ensemble brackets the observed series, however, some uncertainty remains, which we attribute to

the scenario simulation forcing parameters.

the four locations of primary interest to groundwater resource
managers during the history-matching simulation (Figure 2),
as expected, due to these particular observed states being
the dominant components of the likelihood function used in
the PE analysis. The scenario simulation posterior ensemble
(Figure 3) does not result in the same level of reproduction
at the four locations. We attribute this to the inclusion

of scenario-simulation-specific recharge and well-extraction
uncertainty, expressed as parameters that only occur in the
scenario simulation. That is, no matter how much the static
properties are conditioned during history-matching simulation
PE analysis, these scenario-only parameters remain at their prior
uncertainty, and subsequently induce uncertainty in the scenario
posterior simulated outputs.
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FIGURE 4 | Prior (gray) and posterior (blue) unweighted sum of squared residual (i.e., 8) histograms for both history-matching and scenario simulations at the four

locations of primary interest to groundwater resource managers. The vertical dashed gray line marks the 8 yielded by the existing model of Liu et al. (2017). Several

posterior realizations better reproduce the observed series than the existing model; the history-matching simulation ensemble is more tightly clustered around the

minimum 8.

The fact that the posterior scenario simulation ensemble
brackets the observed low spring-flow rates and low water levels
at the springs and index wells of primary interest to groundwater
resource managers (Figure 3) indicates that the combined UQ
and PE analyses are likely to be robust at hindcasting (in a
stochastic sense) the hydrologic response to drought at these four
locations. This is an encouraging outcome and indicates that the
automated workflow is functioning as expected. We attribute
this success to the use of a high-dimensional parameter space
(which helps to avoid under-estimation of uncertainty and limits
the potential ill-effects of model error; Doherty and Christensen,
2011; White et al., 2014; Knowling et al., 2019), as well as the use
of a likelihood function that was focused on outcomes of primary
interest to groundwater resource managers (Doherty andWelter,
2010).

We also compared the residual L2 norm (8) at the
four locations of primary interest to groundwater resource
managers for both the history-matching and scenario simulations
(Figure 4). In this light, we see that the PE analysis was able to
reduce 8 for both the history-matching and scenario simulation
ensembles, even though the scenario simulation outputs were not
used in the PE analysis. We also note that for several realizations,
the posterior 8 values are less than that of the existing Liu et al.
(2017) models. The reduction in 8 across the ensemble under
scenario conditions is attributable to the learning through PE

about the static properties in the history-matching simulation
and the subsequent transfer of these static properties to the
scenario simulation.

An important aspect of PE is maintaining physically-plausible
parameters (and corresponding simulation inputs). We have
included several prior and posterior parameter realizations in
the Supplementary Material. In general, the parameter changes
resulting from the PE analysis are in agreement with the
expected spatial and temporal patterns and are within the range
of expectation.

The primary interest of groundwater resource managers is the
number of low-flow/no-flow months at Comal springs during
the scenario period. Figure 5 shows the prior and posterior
statistical distribution of simulated months with flow at Comal
Springs less than 30

ft3

s . The PE process has substantially reduced
the uncertainty in this important simulated output. Specifically,
the information in the state observations used for PE appears
incompatible with prior realizations that yield more than 30 low-
flow months. Or, put another way, parameter realizations that
yield large values for Comal springs low-flow months during the
scenario simulation do not fit the history-simulation observed
states. Because of this incompatibility, the process of PE through
history matching appears to be a valuable analysis to reduce
uncertainty in the estimated Comal springs low-flow months. It
is also important to note that while the posterior distributions
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FIGURE 5 | Prior (gray) and posterior (blue) ensemble results for (A) the consecutive months below 30 ft3

s
and (B) the total months below 30 ft3

s
at Comal springs

during the scenario simulation. The red vertical line marks the observed values (7 months for both). The PE analyses has reduced the number of extreme cases and

has moved the ensemble closer to the observed values, however, considerable uncertainty remains. Note the X-axis scale was selected to focus on the posterior

realizations; 37 prior realizations yielded greater than 40 consecutive months below 30 ft3

s
and 44 prior realizations yielded greater than 40 total months below 30 ft3

s
;

these prior realizations are not shown.

of both of these outputs bracket their respective observed values,
both consecutive months and total months of low flow contain
some posterior uncertainty and could range as high as 20 and 30
months, respectively.

5. DISCUSSION AND CONCLUSION

We have presented a demonstration of an approach to increase
the reproducibility of UQ and PE for decision-support-scale
groundwater modeling. This approach is predicated on the use
of scripting to “drive” the modeling workflow. We recognize
that not all environmental simulation practitioners will be
proficient with scripting to the point that the approach we
have demonstrated will be efficient. However, this approach
offers many benefits, mostly toward increased transparency
and reproducibility of the decision-support analyses—analyses
that are typically at the center of the decision-making process.
Furthermore, a script-based workflow affords increased efficiency
when unforeseen factors arise that necessitate completing the
analysis repeatedly. These “redos” are inevitable given the
“ubiquity of errors” in computational science (e.g., Donoho et al.,
2008) and occur, for example, when input errors are discovered
or when the scope/purpose of the analysis changes). Greater
reproducibility also makes the analysis more transferable to other
projects and easier for third parties to evaluate or review the work
(Kitzes et al., 2017).

To be clear, we are not stating that script-based analyses
such as the one presented herein, will be free from input
errors. While we have worked to implement the analyses herein
as robustly and accurately as possible, the sheer number of
operations and decisions required indicates that, in a statistical
sense, there are faults or “bugs” in the script (and underlying
modules) used to implement these analyses—the typical fault
rate even in production-level software is between 15 and 50
faults per 1,000 lines (McConnell, 2004). However, in contrast to
non-scripted modeling workflows, these “faults” can be identified

and investigated by others practitioners long after the analysis has
been completed—all the assumptions, decisions, and operations
needed to implement our analysis are encoded transparently
in the scripting workflow. This level of transparency and
reproducibility has become a requirement in other fields—
such as some omics cancer research—where the ramifications
of decisions made in data processing can have life or death
consequences (see e.g., Fienen and Bakker, 2016). Furthermore,
as faults are discovered, they can be rectified programmatically in
the script and the UQ and PE analyses can easily then be re-run,
from beginning to end, without the complication of introducing
new faults. In this way, while there is an initial “investment” to
develop the scripting workflow, the returns on investment, as
measured by efficiency and fidelity, are considerable.

The efficiency of the PE algorithm in PESTPP-IES has been
shown to facilitate very high-dimensional (>300,000 parameters)
history matching at a relatively low computational cost—the PE
analysis required approximately 300 model evaluations, while
the scenario prior and posterior Monte Carlo runs required
approximately 100 model evaluations each. This efficiency
allows practitioners to focus less on how model inputs are
parameterized in the context of a computational trade-off and
instead focus on expressing model input uncertainty as robustly
as possible.

We realize that given the interest of groundwater resource
managers in the hydrologic response to drought and the
availability of state observations for PE during the scenario
simulation, the scenario simulation could have also been
subjected to PE (which could have easily been undertaken
using our workflow and PESTPP-IES)—this would likely further
reduce the posterior uncertainty in the outputs of primary
interest to groundwater resource managers. However, in this
study we are interested in evaluating the ability of UQ and
PE to provide robust answers to management questions for
which observations are not available (the more common use of
environmental modeling).
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Ensemble-based stochastic gradient methods, such as the ensemble optimization

(EnOpt) method, the simplex gradient (SG) method, and the stochastic simplex

approximate gradient (StoSAG) method, approximate the gradient of an objective

function using an ensemble of perturbed control vectors. These methods are increasingly

used in solving reservoir optimization problems because they are not only easy to

parallelize and couple with any simulator but also computationally more efficient than

the conventional finite-difference method for gradient calculations. In this work, we show

that EnOpt may fail to achieve sufficient improvement of the objective function when

the differences between the objective function values of perturbed control variables and

their ensemble mean are large. On the basis of the comparison of EnOpt and SG, we

propose a hybrid gradient of EnOpt and SG to save on the computational cost of SG.

We also suggest practical ways to reduce the computational cost of EnOpt and StoSAG

by approximating the objective function values of unperturbed control variables using

the values of perturbed ones. We first demonstrate the performance of our improved

ensemble schemes using a benchmark problem. Results show that the proposed

gradients saved about 30–50% of the computational cost of the same optimization by

using EnOpt, SG, and StoSAG. As a real application, we consider pressure management

in carbon storage reservoirs, for which brine extraction wells need to be optimally placed

to reduce reservoir pressure buildup while maximizing the net present value. Results

show that our improved schemes reduce the computational cost significantly.

Keywords: stochastic gradient, ensemble optimization, simplex gradient, stochastic simplex approximate

gradient, hybrid simplex gradient, active pressure management

INTRODUCTION

Since the ensemble Kalman filter was first introduced into the petroleum engineering (Lorentzen
et al., 2001; Nævdal et al., 2002; Kim et al., 2018), many ensemble-based history matching methods
have gained popularity because they are reduced rankmethods (meaning less computational effort)
and are relatively easy to implement, parallelize, and couple with any numerical simulator. Chen
et al. (2009) first systematically applied the ensemble concept to optimization of well control
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variables (e.g., well rates and bottom-hole pressures) to maximize
the net present value in oil and gas fields. They named their
scheme the ensemble optimization (EnOpt) method. Similar to
the ensemble-based data assimilation methods, EnOpt can also
be easily parallelized and coupled with any simulator.

Another strength of EnOpt is that EnOpt finds an optimal
solution under geological uncertainty by maximizing the
expectation of the objective function values of multiple models
representing model uncertainties, whereas the conventional
optimization methods typically require solving each model
separately (Chen et al., 2009; van Essen et al., 2009) and
optimization under uncertainty is non-trivial (Sun et al., 2013;
Zhang et al., 2016). The idea of considering model uncertainties
in optimization was also explored by van Essen et al. (2009).
van Essen et al. (2009) named their method robust optimization,
and the handling of model uncertainties in their method is
essentially the same as that in EnOpt. However, EnOpt includes
a specific way to compute the gradient, which is needed by all
gradient-based optimization algorithms.

The gradient of EnOpt is determined on the basis of the
cross covariance between randomly perturbed control variables
(or decision variables) and the corresponding objective function
values. Because this work is mainly concerned with the gradient
approximation in various ensemble methods, hereafter, we will
use EnOpt to refer to the gradient approximation in EnOpt
where no confusion occurs. Traditional methods for gradient
calculation include the finite-difference method (FDM) and
adjoint-state method (Sun and Sun, 2015). FDM needs as many
objective function evaluations as the product of the number of
control variables and the number of ensemble members because
FDM perturbs each control variable separately. The adjoint-
state method typically requires derivation and solution of a dual
problem of the original problem in the adjoint state space, which
is not straightforward. In comparison, EnOpt only requires as
many objective function evaluations as the number of ensemble
members, because it computes the search directions by averaging
the objective function anomalies resulting from simultaneous
random perturbations of the control vector. Previous studies
have shown that the EnOpt can efficiently and satisfactorily
achieve improvement of the objective function, despite its low
computational cost (Chen et al., 2009; Chen and Oliver, 2010,
2012). However, Fonseca et al. (2017) indicated that EnOpt may
not produce satisfactory results for multiple geological models
unless the variance in the ensemble models is sufficiently small.
The first objective of our work is to show mathematically and
experimentally why EnOpt may fail to produce satisfactory
results when the variance of the ensemble models is not small.

EnOpt can be considered a variant of the simultaneous
perturbation stochastic approximation (SPSA) method
introduced by Spall (1992), and SPSA is appropriate for
robust optimization because the computational cost of SPSA
is significantly lower than that of FDM for a high-dimensional
control vector. Even though accurate gradients are obtained
using FDM at a high computational cost, gradient-based
optimizations are likely to converge to local optima. Rather
than spending considerable computational resources computing
the gradients, it is more practical to find global optima by

trying many initial solutions using the less accurate but more
computationally efficient SPSA. SPSA computes the gradient
of an objective function more efficiently than FDM does by
perturbing control variables randomly and simultaneously
(Spall, 1992, 1998). There are several variants of SPSA that
can be used to compute the gradient of an objective function
stochastically and quickly.

Bangerth et al. (2006) introduced the integer SPSA to solve
an optimal well placement problem. Li et al. (2013) applied
SPSA for joint optimization of well placement and controls
under geological uncertainty. Li and Reynolds (2011) proposed
a modification of the SPSA, which is called the stochastic
Gaussian search direction (SGSD or G-SPSA). The original SPSA
samples perturbations from a symmetric Bernoulli distribution,
while SGSD and EnOpt generate perturbations from Gaussian
distributions (Chen et al., 2009; Li and Reynolds, 2011). Do and
Reynolds (2013) used the simplex gradient (SG) that has the
perturbation coefficient of 1 in the formulation of SGSD.

However, Bangerth et al. (2006), Li et al. (2013), Li and
Reynolds (2011), and Do and Reynolds (2013) applied the
variants of SPSA to optimization of a single geologic model,
which means that geological uncertainty was not considered.
Fonseca et al. (2017) proposed an extension of SG, which is
named the stochastic simplex approximate gradient (StoSAG),
that improves the accuracy of the stochastic gradient by repeating
multiple perturbations for each ensemble model. In this study,
we propose practical ways to reduce the computational cost of
EnOpt, SG, and StoSAG by approximating the objective function
values of unperturbed control variables using those obtained for
the perturbed ones. The proposed approaches reduce about 10%
to 50% of the computational cost compared to EnOpt, SG, and
StoSAG in our examples.

This paper is organized as follows. In the next section, we
explain why EnOpt may fail when the variance of objective
function values of the ensemble members is not small, by
comparing the gradient approximation schemes in the original
EnOpt and SG. Then we propose new hybrid schemes for
further reducing computational costs in EnOpt, SG, and StoSAG.
Finally, we demonstrate the efficacy of the different schemes
using two examples, a test function that is popular for algorithm
benchmarking and a well placement optimization problem for
pressure management in geologic carbon storage reservoirs.

COMPARISON OF ENOPT AND SG

The steepest ascent or descent algorithm to maximize or
minimize an objective function J(u) is given as

uk+1 = uk ± αk
dk

‖dk‖∞

, for k= 0, 1, · · · until convergence, (1)

where u is the column vector of control variables; u0 is the
initial guess; d is the search direction; α is the step size; and k
is an iteration index. For convenience, all major notations used
in this study are listed in the Nomenclature table attached at
the end of the paper. In this problem, the objective function (J)
is dependent only on u. van Essen et al. (2009) replaced J(u)
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with J(m, u) by adding another input (m) to the scalar function,
wherem is a random vector generated from a known probability
density function. In optimization of well placement and controls,
for instance, m may represent uncertain rock properties arising
from geologic heterogeneity. J(m, u) is dependent on both m

and u, but only u is a control vector. Because J(m, u) inherits
the uncertainty of m, van Essen et al. (2009) suggested to
maximize the approximate expectation of J(m, u) for mi (i = 1,
2, 3, . . . , Ne) sampled from a given probability density function
(Fonseca et al., 2017).

max
u

Em [J (m, u)] = max
u

1

Ne

Ne
∑

i=1

J (mi, u), (2)

where 1/Ne
∑Ne

i=1 J (mi, u) and J(mi, u) are called the objective
function and the J-function, respectively, to avoid confusion. The
former is marginalized over all ensemble members, while the
latter corresponds to a single ensemble member.

Ensemble-based gradients (EnOpt, SG, and StoSAG)
generate the objective function anomalies by stochastically
sampling perturbations for u from a multivariate Gaussian
distribution with mean uk and covariance matrix Cu. The
perturbed vector of u at the kth iteration is denoted by
ûk. In the following, we explain situations that EnOpt may
underperform. We then proceed to introduce several hybrid
schemes that can significantly reduce the computational costs of
the ensemble-based optimization in general while mitigating the
underperformance of EnOpt.

SG is given by Do and Reynolds (2013) as.

dk,SG =
1

Ne

Ne
∑

i=1

(

ûk,i − uk
) (

J
(

mi, ûk,i
)

− J (mi, uk)
)

. (3)

Equation (3) presented by Do and Reynolds (2013) was applied to
a single model. However, once the objective function is replaced
with Equation (2) in the formulation of Do and Reynolds (2013),
Equation (3) can be applied to multiple models (or robust
optimization). Equation (3) is identical to StoSAG with a single
repetitive perturbation. Hereafter, we will use SG to refer to
StoSAG with a single repetitive perturbation.

The search direction of EnOpt is given by Chen et al. (2009).

dk,EnOpt =
1

Ne − 1

Ne
∑

i=1

(

ûk,i − ûk

) (

J
(

mi, ûk,i
)

− J
(

m, ûk
)

)

,(4)

uk ≈ ûk =
1

Ne

Ne
∑

i=1

ûk,i,(5)

J (mi, uk) ≈ J
(

m, ûk
)

=
1

Ne

Ne
∑

i=1

J
(

mi, ûk,i
)

. (6)

Compared to Equation (3), the unperturbed vector of control
variables (uk) and the corresponding J(mi, uk) are approximated

by their corresponding ensemble means (ûk and J
(

m, ûk
)

) in
Equation (4) that are further defined as in Equations (5) and

(6) (Chen et al., 2009; Do and Reynolds, 2013; Fonseca et al.,
2017). In Equation (4), EnOpt needs Ne J-function evaluations to
compute a search direction. However, EnOpt requires additional
Ne J-function evaluations to calculate the expectation Em[J(m,
u)] in Equation (2). In Equations (2) and (4), SG needs 2Ne J-
function evaluations to compute a search direction. Thus, SG and
EnOpt essentially take the same computational effort (2Ne) to
compute a search direction and Em[J(m, u)].

Do and Reynolds (2013) demonstrated that the performances
of EnOpt and SG are almost identical for a single geological
model. However, Fonseca et al. (2017) pointed out that EnOpt
may produce unsatisfactory results because the two assumptions
given in Equations (5) and (6) are invalid unless Ne is sufficiently
large or the variance in the prior model form is sufficiently small.
Equation (5) is usually valid because perturbations for uk should
be sufficiently small to approximate ∇uEm[J(m, u)]. Equation
(6) is likely to be invalid if high variations in model parameters
such as permeability and porosity cause large variations in J-
function values. However, even though the variance ofm is small,
other variables in the J-function such as unit costs may still make
large variations in the J-function values. The claim of Fonseca
et al. (2017) can be expressed more quantitatively by simply
manipulating Equation (4):

dk,EnOpt =
1

Ne − 1

Ne
∑

i=1

(

ûk,i − ûk

)

(

J
(

mi, ûk,i
)

− J
(

m, ûk
)

)

=
Ne

Ne − 1

1

Ne

Ne
∑

i=1

(

ûk,i − ûk

)

(

J
(

mi, ûk,i
)

− J (mi, uk)

+ J (mi, uk) − J
(

m, ûk
)

)

=
Ne

Ne − 1

[ 1

Ne

Ne
∑

i=1

(

ûk,i − ûk

)

(

J
(

mi, ûk,i
)

− J (mi, uk)
)

+
1

Ne

Ne
∑

i=1

(

ûk,i − ûk

) (

J (mi, uk) − J
(

m, ûk
)

) ]

=
Ne

Ne − 1

[

dk,SG +
1

Ne

Ne
∑

i=1

(

ûk,i − ûk

)

(J (mi, uk)

− J
(

m, ûk
)

) ]

. (7)

From Equation (7), it follows that

rk =
1

Ne

Ne
∑

i=1

(

ûk,i − ûk

) (

J (mi, uk) − J
(

m, ûk
)

)

,

dk,EnOpt =
Ne

Ne − 1

[

dk,SG + rk
]

,

‖rk‖2 =

∥

∥

∥

∥

Ne − 1

Ne
dk,EnOpt − dk,SG

∥

∥

∥

∥

2

, (8)

where dk,EnOpt/||dk,EnOpt||∞ ≈ dk,SG/dk,SG||∞ is true if ||rk||2 is
sufficiently small compared to dk,SG. However, as ||rk||2 increases,
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dk,EnOpt becomes more inaccurate than dk,SG. In rk in Equation.
(8), because perturbations for uk should be small enough to
approximate a search direction accurately, ||rk||2 is significantly

dependent on J (mi, uk) − J
(

m, ûk
)

. Thus, ||rk||2 is closely
related to the variance in J(m, uk), which is σ

2
J(m,uk)

as given in

Equation (9):

σ
2
J(m,uk)

=
1

Ne − 1

Ne
∑

i=1

[

J (mi, uk) − J (m, uk)
]

2,

J (m,uk) =
1

Ne

Ne
∑

i=1

J (mi, uk). (9)

The norm ||rk||2 is not exactly the same as the variance in J(m,
uk), but ||rk||2 is expected to increase as σ

2
J(m,uk)

increases because

J (m, uk) ≈ J
(

m, ûk
)

. On the basis of the observation that the
approximation of EnOpt becomes inaccurate as the variance in
J(mi, uk) increases, we propose a hybrid gradient of EnOpt and
SG in the next section that first clusters ensemble members based
on the variance of J

(

mi, ûk
)

and then approximate J(mi, uk)
using J

(

mi, ûk
)

within each cluster. Thus, the hybrid gradient
is more computationally efficient than SG because the objective
function for the unperturbed control vector in some ensemble
members does not need to be evaluated. We also propose two
additional practical measures that can save the computational
cost of EnOpt and StoSAG.

COMPUTATIONAL COST REDUCTION OF
ENOPT, SG, AND STOSAG

Here, we introduce three new formulations to save on the
computational cost of EnOpt, SG, and StoSAG. The new
formulations approximate the objective function values for
unperturbed control variables using the objective function values
for perturbed ones in the formulations of EnOpt, SG, and
StoSAG. Thus, these new formulations require fewer J-function
evaluations than that by the original ensemble-based gradients.

In EnOpt, the J-function for unperturbed control variables
does not need to be evaluated for the search direction, but it
needs to be evaluated for the objective function in Equation
(2). However, the means of J(mi, uk) and J

(

mi, ûk,i
)

are similar
because the perturbations on u are small. Thus, Em[J(m, u)] can
be approximated using J

(

mi, ûk,i
)

as given in Equation (10):

max
u

Em [J (m,u)] ≈ max
u

1

Ne

Ne
∑

i=1

J
(

mi, ûk,i
)

. (10)

We call this the modified EnOpt (ModEnOpt), which uses
Equation (10) instead of Equation (2) for approximating Em[J(m,
u)].ModEnOpt requires only half of the number of the J-function
evaluations of EnOpt to approximate a search direction and
calculate Em[J(m, u)].

To save the computational cost of SG, we propose a hybrid
gradient of EnOpt and SG, which is named the hybrid simplex
gradient (HSG) method, on the basis of the observation that

EnOpt provides satisfactory search directions if the variance in
J(m, uk) is small. HSG clusters the ensemble members based on
J
(

mi, ûk,i
)

and then uses the cluster mean instead of J(mi, uk) for
clusters that havemore than onemember as given in the first term
of Equation (11), which is close to the search direction of EnOpt
given in Equation (4). In the second term of Equation (11), J(mi,
uk) should be evaluated for the clusters that have only a single
member, which is close to the search direction of SG given in
Equation (3). The search direction of HSG is given by

dk,HSG =
1

Ne

NC
∑

j=1







∑

i∈Cj ,NCj>1

(

ûk,i − ûkj

) (

J
(

mi, ûk,i
)

− J
(

mi, ûk
)

j

)

+
∑

i∈Cj ,NCj=1

(

ûk,i − uk
) (

J
(

mi, ûk,i
)

− J (mi, uk)
)






(11)

HSG uses a different approximation of Em[J(m, u)] given in
Equation (12), instead of Equation (2):

max
u

Em [J (m, u)] ≈ max
u

1

Ne

NC
∑

j=1







∑

i∈Cj,NCj>1

J
(

mi, ûk,i
)

+
∑

i∈Cj,NCj=1

J (mi, uk)






. (12)

In Equation (12), the J-function values for perturbed control
variables are used to approximate Em[J(m, u)], but the J-function
values for unperturbed ones are used for clusters that have only a
single member.

In Equation (11), the Ne ensemble members (models) are
grouped based on [J(mi, ûk,i)]. However, determining the
optimal number of clusters is still a challenging problem in
data clustering (Jain, 2010). Furthermore, even though models
are grouped to the optimal number of clusters, some groups
might have significantly different J

(

mi, ûk,i
)

values because
cluster algorithms group the models into the number of clusters
unexceptionally regardless of how similar J

(

mi, ûk,i
)

values
are in a group. For this reason, a mean of J

(

mi, ûk,i
)

in a
group might not be properly representative of J(mi, uk) of
the group members. Thus, rather than trying to determine
the optimal number of clusters, we use a predefined criterion
to determine if models have similar J

(

mi, ûk,i
)

. A standard
deviation is the most common indicator of how dissimilar
data are, but the standard deviation should be normalized
in our clustering problem. For example, let us assume that
there are two data sets (1, 2, 3) and (198, 200, 202).
The standard deviation of (1, 2, 3) is smaller than that
of (198, 200, 202), but (198, 200, 202) has relatively small
differences in terms of magnitude compared to (1, 2, 3). In
our clustering problem, group members should have relatively
similar J-function values within each group. Thus, for the
predefined criterion, we use the coefficient of variation shown
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in Equation (13) instead of standard deviation to normalize the
standard deviation.

coefficient of variation (CV) =
standard deviation

mean
(13)

Thus, the Ne models are grouped so that the coefficient of
variation in each cluster is smaller than a predefined value
(CVHSG). However, during clustering, a model should be
assigned to a cluster such that the coefficient of variation
becomes minimal. We introduce an algorithm to find groups
that have small coefficient of variations that are lower than
a predefined coefficient of variation. First, Ne models have
random cluster indices where the initial number of groups
(Nc) is the same to the number of models (Ne). Then whether
the coefficient of variation of a group can be reduced by
adding a model to the group is examined where the model
makes the coefficient of variation of the group minimum.
For example, let us assume that we try to select a cluster
for a model between clusters A and B. The coefficients
of variation of both A and B are smaller than those of
CVHSG. If the coefficients of variation of A and B (after
including the model) are 0.001 and 0.002, respectively, then
the model should be put in cluster A. This is repeated until
the coefficient of variation of the group does not become
smaller. Finding models that make the coefficient of variation
of other groups smaller is repeated. Other details of the
proposed algorithm are described in Algorithm 1. In HSG,
we use Algorithm 1 to make the coefficients of variation
of clusters smaller than CVHSG and to drop the coefficients
of variation of clusters. The procedure of clustering is given
as follows:

The input of Algorithm 1 includes a predefined coefficient of
variation, CVHSG, and the J-function values for perturbed control
variables. The number of clusters does not need to be inputted
for Algorithm 1. The k-means clustering algorithm (MacQueen,
1967), which is one of the most commonly used clustering
algorithms, cannot be used in this case because it requires the
number of clusters to be specified and it tends to group members
that are relatively close to each other. Determination of the
CVHSG value depends on how much computational cost of HSG
is expected to be saved compared to SG. For example, if 70%
of the computational cost is expected to be saved using HSG
compared to SG, then CVHSG is set to a number that makes the
number of clusters 70% of the number of ensemble members.
CVHSG can be chosen based on the initial J-function values of
an ensemble.

HSG is equivalent to ModEnOpt and SG for large and small
CVHSG, respectively, where the sum is divided by Ne – 1 in dk,

ModEnOpt , but this is canceled by ||dk, ModEnOpt||∞ in Equation
(1). For large ||rk||2, a small CVHSG should be used because the
approximate gradient of ModEnOpt is inaccurate. HSG takes
Ne ∼ 2Ne J-function evaluations where Ne and 2Ne correspond
to the number of J-function evaluations of ModEnOpt and
SG, respectively.

Algorithm 1 : Clustering using a predefined coefficient of
variations for HSG (CVHSG)

Sort 1, . . . ,Ne randomly and assign the randomly sorted numbers
to the cluster indices of Ne ensemble members (=c_ind) where
the initial number of clusters (Nc) is the same as the number of
models (Ne)
Mark clustering_done as false for Ne ensemble members
j= 1
While j ≤ Nc

Find ensemble members that belong to Cj and of which
clustering_done is false
If the number of the ensemble members== 0
j++

Else
temp_cv= [inf, inf, . . . , inf] //size of temp_cv= Ne

Form= 1 to Ne

Ifm does not belong to Cj and clustering form is not done
//c_ind[m] 6= c_ind[j] and clusetering_done[m]== false
temp_cv[m] = coefficient of variation of perturbed objective
function values of Cj members andm

End
For-Loop

Find an ensemble member corresponding to the minimum of
temp_cv
If the minimum coefficient of variation ≤ CVHSG

Add the ensemble member to Cj

Else
Mark clustering_done as true for the ensemble member
j++

End
End

While-Loop

The search direction of StoSAG is given by
Fonseca et al. (2017) as

dk,StoSAG =
1

Ne

Ne
∑

i=1





1

Np

Np
∑

j=1

(

ûk,i,j − uk
) (

J
(

mi, ûk,i,j
)

− J (mi, uk))



. (14)

StoSAG repeats multiple perturbations (Np) for each ensemble
member, while SG takes a single perturbation for each ensemble
member. StoSAG provides more accurate search directions than
SG does because StoSAG takes more J-function evaluations to
compute the search direction than SG. StoSAG needs Ne(Np +

1) J-function evaluations, and this is (Np + 1)/2 times as many
J-function evaluations as SG requires.

The computational cost of StoSAG can be reduced by
approximating the J-function values of unperturbed control
variables using the J-function values of perturbed ones as
given below:
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dk,ModStoSAG =
1

Ne

Ne
∑

i=1

[ 1

Np

Np
∑

j=1

(

ûk,i,j − uk
) (

J
(

mi, ûk,i,j
)

− J
(

mi, ûk,i
)

)]

, (15)

J (mi, uk) ≈ J
(

mi, ûk,i
)

=
1

Np

Np
∑

j=1

J
(

mi, ûk,i,j
)

. (16)

The modified StoSAG (ModStoSAG) uses different
approximations of Em[J(m, u)] given in Equation (17) instead of
Equation (2):

max
u

Em [J (m,u)] ≈ max
u

1

NeNp

Ne
∑

i=1

Np
∑

j=1

J
(

mi, ûk,i,j
)

. (17)

ModStoSAG requires NeNp J-function evaluations, and it can
save 1/(Np + 1) of the computational cost of StoSAG needed
to compute a search direction. A summary of the ensemble-
based stochastic gradient methods discussed thus far is presented
in Table 1. ModEnOpt, HSG, and ModStoSAG use different
objective functions, but the objective function in Equation (2)
is calculated at initial and final steps for all the formulations to
compare them in the next numerical examples.

NUMERICAL EXAMPLES

Rosenbrock Function
The performance of the six formulations given inTable 1 is tested
using the Rosenbrock (1960) function, which is widely used for
benchmarking optimization solvers. The Rosenbrock function is
given by

J (mi, u) =

Nu
∑

j=1

[

(

1− u2j−1

)2
+mi

(

u2j − u2j−1
2
)2
]

, (18)

min
u

Em [J (m, u)] = min
u

1

Ne

Ne
∑

i=1

J (mi, u), (19)

where u =
[

u1 u2 · · · uNu

]T
and i= 1, 2, . . . ,Ne.mi is a constant

(=100) in the original Rosenbrock function, but ensemble
members have different mi to mimic geological uncertainty
where m ∼ N

(

100, σ 2
m

)

. The number of ensemble members is
100 (Ne = 100), and the ensemble members have different mi.
The dimension of u is 50, and an initial solution is ui = 2.0 for i=

1, 2, . . . , Nu. The objective function is 1
Ne

Ne
∑

i=1
J (mi, u) in Equation

(19), and 100 J-function evaluations are needed to calculate the
objective function. Two values of σm (0.01 and 1.00) are used
to generate two sets of m1, m2, . . . , m100 for the 100 ensemble
members. A larger σm makes a larger variance in J(mi, u) and
larger ||rk||2, which causes inaccurate search directions of EnOpt
and ModEnOpt. Perturbations for u are generated using N(0,
Cu) where Cu is a diagonal matrix and the diagonal elements are
0.0012. Np is set to 3 for both StoSAG and ModStoSAG.

CVHSG is set to a number that makes the number of clusters
about 70 (=0.7 · 100). CVHSG for σm = 0.01 and 1.00 are T
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û
k
,i,
j
−

u
k

)

(

J
(

m
i,
û
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FIGURE 1 | Plot of numbers of J-function evaluations and relative objective function values of the seven gradient methods for σm = 0.01. (A) Relative objective

function value is a percentage of the initial objective function value. Symbols represent iterations, and the x-axis is the total number of function evaluations. (B) Shows

the average relative objective function values and the average total number of function evaluations of 100 optimization runs.

1E−5 and 5E−5, respectively, which were determined based
on the J-function values for the initial solution (ui = 2.0 for
i= 1, 2, . . . , Nu).

The performance of the stochastic gradients is compared to
the gradient obtained using FDM (Sun and Sun, 2015). A search
direction of FDM is computed using Equation (20), andNe(Nu +
1) function evaluations are needed.

∂

∂uj

(

Ne
∑

i=1

J (mi, u)

)

=
1

δuj









Ne
∑

i=1
J
(

mi,
[

u1 · · · uj + δuj · · · uNu

]T
)

−
Ne
∑

i=1
J
(

mi,
[

u1 · · · uj · · · uNu

]T
)









, j = 1, . . . ,Nu

(20)

The optimization problem is solved using the steepest descent
method given in Equation (1). The optimization is terminated if
either of the following two conditions is satisfied: (i) the relative
increase of the objective function is <0.0001%, or (ii) the relative
change of the norm of uk – uk+1 is <0.01%.

Figure 1 shows the optimization results for σm = 0.01.
Figures 1A,B show the results of a single run and the
average result of 100 runs, respectively. Because perturbations
are stochastically generated for the stochastic gradients
(EnOpt, ModEnOpt, SG, HSG, StoSAG, and ModStoSAG),
the optimization runs using the stochastic gradients show the
different numbers of J-function evaluations and relative objective
function values for iterations. For this reason, in Figure 1B, the
100 optimization runs are repeated, and the relative objective
function values and the total number of J-function evaluations
are averaged for each iteration. In Figure 1, because σm (=0.01)
is small, the variance in J(mi, u) is also small, and the small
variance in J(mi, u) leads to small ||rk||2. Because EnOpt and

TABLE 2 | Numbers of function evaluations that are needed to achieve 5% of the

relative objective function value in Figure 1B.

Method Number of J-function

evaluations

Method Number of J-function

evaluations

FDM 8,417 HSG 586

EnOpt 788 StoSAG 2,349

ModEnOpt 417 ModStoSAG 1,548

SG 876

ModEnOpt provide accurate search directions for small ||rk||2,
EnOpt and ModEnOpt find satisfactory solutions as the other
gradient methods do.

Table 2 shows the numbers of function evaluations that
are needed to achieve 5% of the relative objective function
value in Figure 1B. ModEnOpt, HSG, and ModStoSAG
saved about 47, 33, and 34% of the function evaluations
compared to EnOpt, SG, and StoSAG, respectively. In Table 2,
ModEnOpt took the smallest number of function evaluations,
and EnOpt needed a smaller number of function evaluations
than SG did.

However, EnOpt and ModEnOpt do not achieve satisfactory
reduction of the objective function value for σm = 1.0 as
shown in Figure 2A. In Figure 2B, EnOpt and ModEnOpt
show the abnormal relation between the number of J-function
evaluations and relative objective function values because EnOpt
and ModEnOpt do not reduce the objective function value
sufficiently for all the 100 optimization runs. The large σm(=1.0)
results in a large variance in J(mi, u) and, consequently, large
||rk||2. For this reason, EnOpt andModEnOpt provide inaccurate
search directions and unsatisfactory optimization results. The
average angles between the search directions obtained using FDM
and the stochastic gradients for σm = 1.0 are given inTable 3. The
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FIGURE 2 | Plot of numbers of J-function evaluations and relative objective function values of the seven gradient methods for σm = 1. (A) Relative objective function

value is a percentage of the initial objective function value. Symbols represent iterations, and the x-axis is the total number of function evaluations. (B) Shows the

average relative objective function values and the average total number of function evaluations of 100 optimization runs.

TABLE 3 | Average angles between the search directions obtained using FDM

and the stochastic gradients for σm = 1.0.

Method Average angle (degrees) Method Average angle (degrees)

EnOpt 83.98 ModEnOpt 81.25

SG 18.65 HSG 21.87

StoSAG 13.76 ModStoSAG 14.74

The angle calculations are repeated 100 times and averaged.

angle between two search direction vectors is calculated using
Equation (21):

θ = cos−1

(

u • v

|u| |v|

)

, (21)

where u and v are vectors corresponding to search directions.
The angle calculations are repeated 100 times and averaged.
The search direction obtained using FDM is considered to
be the most accurate, and a higher angle from the FDM
search direction implies less accuracy. It can be seen from
Table 3 that SG, HSG, StoSAG, and ModStoSAG provide
acceptable search directions, while EnOpt and ModEnOpt
provide inaccurate search directions. The number of J-
function evaluations for the same relative objective value
increases from HSG, SG, ModStoSAG, and StoSAG, as
shown in Figure 2B.

Optimization of Well Placement in a
Carbon Storage Reservoir
Problem Formulation

As a realistic example, we now consider the optimization of brine
extraction well placement in geological carbon sequestration
(GCS) applications. CO2 injection into saline aquifers or depleted

oil and gas reservoirs necessarily leads to pore pressure increases.
The pore pressure buildup not only can affect the CO2 injectivity
and storage performance but may also cause caprock damage,
fault reactivation, induced seismicity, and leakage of brine
and CO2, posing severe problems to CO2 long-term storage
permanence and public safety (Birkholzer et al., 2012; Carroll
et al., 2014; Cihan et al., 2015). Recently, active reservoir pressure
management was proposed as a mitigation measure, which
installs one or more brine extraction wells to reduce pressure
buildup in the reservoir (Bergmo et al., 2011; Buscheck et al.,
2011, 2012; Birkholzer et al., 2012; Cihan et al., 2015; Arena et al.,
2017). The extraction, treatment, and disposal of the extracted
brine, however, impose additional expenses to GCS operators
(Cihan et al., 2015). Thus, the placement and control of brine
extraction wells need to be optimized to improve the economic
feasibility of GCS projects. Cihan et al. (2015) optimized well
placement and controls of brine extraction wells in different
geological models to minimize extracted brine volume and
keep pressure buildups under critical thresholds for potentially
activating fault leakage and/or fault slippage. In their study,
Cihan et al. (2015) adopted a constrained differential evolution
algorithm, which is a heuristic stochastic evolution algorithm
similar to the genetic algorithm. Here, we demonstrate the
use of the more efficient ensemble-based gradient algorithms.
Optimal placement of a brine extraction well is sought inmultiple
geological models (i.e., geologic uncertainty) to maximize the
objective function, which is expressed in the form of the net
present value. Performance of the six formulations given in
Table 1 is compared.

The J-function for a single model,mi, is given by

J (mi, u) =

Nt
∑

n=1





1tn
(

1+ b
)

1tn
365







Ninj
∑

j=1

(

rci · q
n
ci,j − fciq

(

qnci,j

))

(22)
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−

Next
∑

k=1

(

cbe · q
n
be,k

− cce · q
n
ce,k

)

−

Nleak
∑

l=1

(

cbl · q
n
bl,l

− ccl · q
n
cl,l

)











fciq

(

qnci,j

)

=

{

if qnci,j < qnciq, cciq

(

qnciq − qnci,j

)

otherwise, 0
(23)

where the control vector u is a two-dimensional column vector
including I and J indices of brine extraction wells. In words, the
objective function in Equation (22) can be described as the tax
credit for injected CO2 minus the penalty for unfulfilled CO2

injection, the cost of brine extraction wells, and the damage cost
related to brine and CO2 leakage.

FIGURE 3 | Three-dimensional view of log10 permeability (md). The z-axis is

exaggerated by a factor of 20.

The brine extraction wells are vertically perforated in a CO2

injection zone, and I and J indices are rounded off to integers
during iterations. 1tn is the size (days) of the nth time step
in the reservoir simulation, and b is the annual discount rate.
Ninj, Next , and Nleak are the numbers of CO2 injection, brine

extraction, and leaky wells, respectively. qnci,j, q
n
be,k

, and qn
ce,k

represent the average CO2 injection rate at the jth CO2 injector,
the average brine extraction rate at the kth brine extractor, and
the average CO2 extraction rate at the kth brine extractor for
1tn, respectively.

TABLE 4 | Cost factors and unit costs for brine extraction.

Cost factor Unit cost

Tax credit for CO2 injection (rci ) $50/ton

Quota of CO2 injection (qciq ) 2.5 tons/day

Penalty for quota of CO2 injection (cciq) $100/ton/day

Brine treatment (cbe) $10/ton

CO2 reinjection (cce) $50/ton

Brine leakage treatment (cbl ) $10/ton

CO2 leakage (ccl ) $1,000/ton

TABLE 5 | Statistical parameters used to generate the geological model.

Parameter Value

Mean of porosity (fraction) 0.2

Standard deviation of porosity (fraction) 0.05

Mean of log10 horizontal permeability (md) 2

Standard deviation of log10 horizontal permeability (md) 0.6

Correlation coefficient between porosity and log10 horizontal

permeability

0.7

Correlated direction of porosity and log10 horizontal permeability North–south

Correlation lengths (major, minor, vertical) of porosity and log10
horizontal permeability (m)

500, 300, 10

FIGURE 4 | Top view of log10 permeability (md) of 3 of 20 geological models, and the locations of an injector (INJ) and two leaky abandoned wells (L1 and L2).
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One of the main risks related to GCS is leakage from
abandoned wells—if abandoned wells are leaky, then brine and
CO2 can migrate to an overlying formation along the leaky
wells (Birkholzer et al., 2012; Sun et al., 2013). Because the
risk related to leakage must be minimized for safe long-term
CO2 storage, abandoned wells are assumed to be leaky for
conservative estimation. In Equation (20), qn

bl,l
and qn

cl,l
are the

brine leakage rate at the lth leaky abandoned well and the CO2

leakage rate at the lth leaky abandoned well for the nth time
step. If brine extraction wells are placed near the leaky wells, the
brine and CO2 leakage amount decreases because the installed
brine extraction wells reduce the pressure buildup at the leaky
wells; on the flip side, the brine extraction wells also need to
be shut in early if they are placed near CO2 injectors because
they have early CO2 breakthroughs. The brine extraction wells
should be placed at locations that minimize the leakage costs
at the leaky wells while postponing CO2 breakthrough at the
brine extraction wells as late as possible. rci is the credit for CO2

storage, which is often provided by the government subsidy or
driven by the carbon trading market (Jahangiri and Zhang, 2012;
Allen et al., 2017). In Equation (23), qnciq is the minimum required

CO2 injection rate for 1tn, and a penalty is imposed when the
injection rate cannot be met, qnci,j < qnciq, in which case the

upstream capturing facility needs to find an alternative means for
temporary storage. In Equation (20), cbe, cce, cbl, and ccl are the
unit costs of brine treatment, CO2 reinjection, brine leakage, and
CO2 leakage, respectively.

Overall, the brine extraction well placement optimization
is complex, especially when geologic uncertainty is involved.
The ensemble gradient methods are well-suited to solve such
problems because of their efficiency and the ability to incorporate
geologic uncertainty. As a demonstration, we consider the three-
dimensional reservoir model shown in Figure 3, which is 2.55 km
(x-axis) by 2.55 km (y-axis) by 30m (z-axis), and the dimensions
of a grid block are 50m by 50m by 10m. The vertical structure
consists of three formations, which are named the above zone,
caprock, and injection zone. CO2 is injected at 30 tons/day at
the center of the injection zone for 5 years, and the maximum
bottom-hole pressure is 20,000 kPa. Brine is extracted at an
extraction well at 60 m3/day, and it is shut in if the ratio
of produced CO2 volume to produced brine volume is >100.
The caprock blocks the flow between the above and injection

FIGURE 5 | Iteration steps of well placement of a brine extraction well using HSG for four initial solutions (I and J indices). INJ and L1 and L2 represent the CO2 injector

and two leaky abandoned wells, respectively. (A) 1st initial solution (11,40). (B) 2nd initial solution (40,40). (C) 3rd initial solution (11,11). (D) 4th initial solution (40,11).
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zones, but brine and CO2 can vertically flow up along two leaky
abandoned wells where the leaky wells are located 300m north
and east of the injector in Figure 4. The unit cost data needed for
calculating the J-function in Equations (22) and (23) are given in
Table 4.

Heterogeneous porosity and log10 permeability fields are
generated using the sequential Gaussian simulation and the
sequential Gaussian co-simulation modules of SGeMS (Remy
et al., 2011). Porosity and log10 permeability follow normal
distributions, and their statistical parameters are given inTable 5.
Figure 4 shows three realizations of log10 permeability out of
a total of 20 geological models. The porosity and permeability
of the caprock zone are assumed deterministic and are assigned
values of 0.1 and 0.001 md, respectively. The flow simulation is
conducted using a compositional multiphase reservoir simulator,
CMG-GEM (CMG, 2015). The two leaky abandoned wells are
described using the local grid refinement of CMG-GEM, and the
porosity and the vertical permeability of the leaky wells are set to
0.2 and 1,000 md.

The convergence criteria are as follows: (i) the relative increase
of the objective function is <0.1%, or (ii) the relative change of
the norm of uk – uk+1 is <1%.

RESULTS AND DISCUSSION

The objective of this optimization problem is to find the optimal
location of a brine extraction well that maximizes the mean
of the J-function values given in Equation (22) of the 20
geological models. As described in Equation (22), a solution for
a brine extraction well is a two-dimensional vector including
I and J indices of the brine extraction well. Thus, in this
example, the vector of a search direction has two elements for
the I and J indices of a brine extraction well, and the I and
J indices of a solution are updated at the same time using
the search direction. The optimal solution is sought using the
six stochastic gradients, and then the performance of the six
stochastic gradients is compared. In HSG, CVHSG is set to a
number that makes the number of clusters about 80% of the
number of ensemble members. Np = 2 is used for StoSAG
and ModStoSAG.

Figure 5 shows the brine extraction well locations at the
iterations obtained using HSG for four different initial solutions.
In general, initial solutions for optimization are sampled in a
prior distribution, but the initial solutions located at the four
corners in Figure 5 are selected because optimal solutions are
expected to be located between CO2 plume and the boundary.
The four different initial solutions are fixed to compare the
performance of the stochastic gradients. As described in the
previous section, a brine extraction well should be placed as
close to the CO2 injector and the leaky wells as possible
to mitigate the reservoir pressure buildup, as well as CO2

and brine leakage amounts. However, the brine extraction
well is shut in early if the brine extraction well is placed
in the extent of the CO2 plume, which changes for different
brine extraction well locations because the CO2 migration
is affected by the reservoir pressure drawdown caused by

FIGURE 6 | Average CO2 saturation map of 20 geological models after CO2 is

injected for 5 years when placing a brine extraction well at the optimal location

(I = 31 and J = 18). INJ, EXT, and L1 and L2 represent the CO2 injector, the

brine extraction well, and two leaky abandoned wells, respectively.

the brine extraction well. Furthermore, the reservoir pressure
buildup and drawdown, the CO2 and brine leakage amounts,
and the CO2 plume extent are significantly affected by the
heterogeneity of rock permeability in the 20 geological models.
As shown in Figure 6, a brine extraction well should be
placed out of the CO2 plume extent and as close to the CO2

injector and the leaky wells. (11, 11) and (40, 11) shown in
Figures 5C,D are converged to the same solution, which is (31,
18) shown in Figure 6.

Figure 7 shows the numbers of simulation runs and objective
function values of the six stochastic gradient methods for four
initial solutions. In Figure 7, the number of simulation runs
is how many times the flow simulator is conducted until an
iteration is finished. For example, if the suite of the 20 models
is simulated five times until an iteration ends, then the number of
simulation runs is 100.

EnOpt and ModEnOpt do not achieve satisfactory objective
function values compared to the others. This implies that ‖rk‖2 in
Equation (8) or the variance in J(mi, u) is too large for EnOpt and
ModEnOpt to provide acceptable accuracy of search directions.
In Figure 7, for the same number of simulation runs, HSG and
ModStoSAG reach higher objective function values than SG and
StoSAG do.

CONCLUSION

Ensemble-based optimization algorithms are widely used for
reducing the computational costs of optimization, especially
when the forward problem requires a significant amount of time
to run. In this work, we theoretically and experimentally showed
when EnOpt may fail to achieve satisfactory performance. If
‖rk‖2 in Equation (8) or the variance in J(mi, u) is large, EnOpt
produces unsatisfactory optimization results because the search
direction of EnOpt is inaccurate as shown in the Rosenbrock
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FIGURE 7 | Plot of numbers of simulation runs and objective function values of the six stochastic gradient methods for four initial solutions (I and J locations). Symbols

represent iterations, and the x-axis is the total number of simulation runs. (A) 1st initial solution (11,40). (B) 2nd initial solution (40,40). (C) 3rd initial solution (11,11).

(D) 4th initial solution (40,11).

function example. We also introduced hybrid schemes to reduce
the computational costs of EnOpt, SG, and StoSAG. For the
benchmark example and the geological carbon sequestration
example, the computational costs of EnOpt, SG, and StoSAG can
be significantly reduced by replacing the J-function values for
the unperturbed control variables with those for the perturbed
ones. The ensemble-based optimization schemes proposed in
this study are generic and can be readily used on other
types of problems involving computationally expensive forward
simulations or optimization under uncertainty.
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NOMENCLATURE

u Control vector
d Search direction
α Step size
m Reservoir model parameters
J(m, u) Objective function of a single model and a control

vector
Ne Number of ensemble members
Cu Covariance matrix of perturbations for a control vector
ûk Matrix of perturbed control column vectors for Ne

ensemble members
ûk,i Perturbed control vector of the ith ensemble member at

the kth iteration

ûk,j Mean of control vectors in the jth cluster

Cj jth cluster
Np Number of perturbations for StoSAG and ModStoSAG
ûk,i,j jth perturbed control vector of the ith ensemble

member at the kth iteration
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Over the last decade, data assimilation methods based on the ensemble Kalman

filter (EnKF) have been particularly explored in various geoscience fields to solve

inverse problems. Although this type of ensemble methods can handle high-dimensional

systems, they assume that the errors coming from whether the observations or the

numerical model are multivariate Gaussian. To handle existing non-linearities between

the observations and the variables to estimate, iterative methods have been proposed. In

this paper, we investigate the feasibility of using the ensemble smoother and two iterative

variants for the calibration of a synthetic 2D groundwater model inspired by a real nuclear

storage problem in France. Using the same set of sparse and transient flow data, we

compare the results of each method when employing them to condition an ensemble of

multi-Gaussian groundwater flow parameter fields. In particular, we explore the benefit of

transforming the state observations to improve the parameter identification performed by

one of the two iterative algorithms tested. Despite the favorable case of a multi-Gaussian

parameter distribution addressed, we show the importance of defining an ensemble size

of at least 200 to obtain sufficiently accurate parameter and uncertainty estimates for the

groundwater flow inverse problem considered.

Keywords: inverse problem, transient groundwater flow, parameter identification, iterative ensemble smoother,

data assimilation, uncertainty

1. INTRODUCTION

Since the ensemble Kalman filter (EnKF) (Evensen, 1994) has been introduced as a computationally
efficient Monte Carlo approximation of the Kalman filter (Kalman, 1960; Anderson, 2003),
ensemble methods for data assimilation have been widely used for high-dimensional estimation
problems in geosciences (Evensen, 2009b). In all these methods, an initial ensemble of realizations
which should capture the initial uncertainty of the state or parameter variables of interest is
first generated. Then, thanks to the assimilation of available uncertain observations, an updated

31

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2020.00202
http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2020.00202&domain=pdf&date_stamp=2020-06-16
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dan-thuy.lam@outlook.fr
https://doi.org/10.3389/feart.2020.00202
https://www.frontiersin.org/articles/10.3389/feart.2020.00202/full
http://loop.frontiersin.org/people/598630/overview
http://loop.frontiersin.org/people/901510/overview
http://loop.frontiersin.org/people/348841/overview


Lam et al. Conditioning Parameters With Iterative ES

ensemble of realizations that are conditioned by the observations
is obtained. However, a main limitation is that ensemble Kalman
methods assume multivariate Gaussian error statistics in the
distributions involved in the computation of the update. As a
result, departures from this multi-Gaussian assumption can lead
to an important loss of optimality in the estimated ensemble
mean and variance.

EnKF is for example extensively applied in meteorology
in order to estimate the current state of the atmosphere in
real time (Anderson, 2009). In such atmospheric applications,
newly obtained observations of the atmosphere are assimilated
sequentially in order to update the initial conditions of weather
predictions models. In reservoir modeling, ensemble methods
have also become a standard tool with the use, more particularly,
of smoother algorithms for inverse modeling (Evensen, 2018).
Still with the aim of improving model forecasts, time series of
state observations collected during the production of a reservoir
are with smoother methods processed all simultaneously in order
to update the static parameters of reservoir simulation models.

EnKF has also been applied in surface and groundwater
hydrology for the estimation of both the parameter and
state variables of a system (Moradkhani et al., 2005;
Hendricks Franssen and Kinzelbach, 2008). In particular, it
has been shown that the increased degree of freedom introduced
by the larger number of unknowns can make the estimation of
EnKF particularly unstable, especially in the presence of non-
linear dynamics (Moradkhani et al., 2005). When the problem is
non-linear, such joint estimation can also result in inconsistent
predicted data after the update and physical inconsistencies
between the updated states and parameters (Gu and Oliver, 2007;
Chen et al., 2009). These issues have particularly motivated the
development of iterative EnKF methods based on the iterative
minimization of a cost function for each iteration of the standard
EnKF (Gu and Oliver, 2007; Emerick and Reynolds, 2012b).

Because of the need of restarting the dynamic model multiple
times in the context of non-linear parameter estimation with
EnKF, the simultaneous assimilation of all the data set in the
ensemble smoother method (van Leeuwen and Evensen, 1996)
has been considered a suitable alternative to EnKF in reservoir
applications. Instead of having to update the variables at each
assimilation time step, the ensemble smoother can process all
the data of the time series in one single update step. Similarly to
the iterative EnKF, successive updates can also be applied using
iterative forms of the ensemble smoother in order to improve the
data fit in non-linear problems (Chen and Oliver, 2012; Emerick
and Reynolds, 2012a; Luo et al., 2015). (Chen and Oliver, 2012;
Emerick and Reynolds, 2012a; Luo et al., 2015).

This paper focuses on the performance of two existing
iterative forms of ensemble smoother for a synthetic groundwater
flow application. Although the model is synthetic, it is inspired
by the real hydraulic perturbation observed at the Andra’s
Meuse/Haute-Marne site since the construction and operation of
the Underground Research Laboratory (Benabderrahmane et al.,
2014; Kerrou et al., 2017). In particular, the problem considers
a transient flow induced by one vertical shaft, and transient
observations at points located in a restricted region of the model.
Note that these situations of sparse and unevenly distributed

data are very common in real groundwater modeling studies
and makes the problem of subsurface characterization by inverse
modeling more difficult.

The main objective of this synthetic application is to assess
the benefit of assimilating different types of flow data, namely
hydraulic heads and flow rates, for the identification of multi-
Gaussian log hydraulic conductivity (log K) fields. In particular,
the effects of increasing the ensemble size on the accuracy
of the mean estimate and its associated uncertainty captured by
the ensemble will be compared for both methods. In addition,
similarly to the work of Schoniger et al. (2012) which introduced
the benefit of using a normal-score transform on the state
variables prior to updating multi-Gaussian log K fields with
EnKF, we will also assess in this study the benefit of using a
similar transformation approach but in the specific context of
one of the tested smoother algorithms. Indeed, it has been shown
that such state transformations could improve the accuracy of
the updates computed by EnKF thanks to a pseudolinearization
between the multi-Gaussian parameter field and the transformed
states variables (Schoniger et al., 2012). As a matter of fact, the
normal-score transform approach has already been applied in the
context of iterative ensemble smoothing in the recent work of
Li et al. (2018). However, in that study, the proposed approach
specifically aimed at addressing the problem of identifying
non-Gaussian parameter fields. Hence the approach required
transforming not only the state variables but also the parameters
in order to perform the update in both the transformed
parameter and data spaces. The main motivation for the normal-
score transform in that particular context was to get closer
to the assumption of multi-Gaussian variables which underlie
ensemble Kalman methods. However, unlike the normal-score
transform approach introduced by Schoniger et al. (2012), one
main drawback of transforming both the parameter and state
variables is that it can actually increase the non-linearity between
those variables (Zhou et al., 2011).

Hereinafater, we first present in section 2 the ensemble
smoother and the two iterative ensemble smoother considered
in this study: LM-EnRML (Chen and Oliver, 2013) and ES-
MDA (Emerick and Reynolds, 2012a). Both are the main
iterative variants currently used for inverse modeling in reservoir
applications (Evensen, 2018). The synthetic case including the
model set up and the generation of the initial ensemble are
presented in section 3. The performance used to analyze our
results on the synthetic case are presented in section 4. Finally,
the results are discussed in section 5.

2. GENERAL BACKGROUND ON THE
ENSEMBLE SMOOTHER AND ITERATIVE

The ensemble smoother (ES) introduced by van Leeuwen and
Evensen (1996) is an extension of the ensemble Kalman filter.
Both are similar in that a set of N realizations {m

pr
i , ...,m

pr
N } is

used to represent a presumed multi-Gaussian distribution, and
is updated by the assimilation of measurements in order to form
a new conditional distribution. When using either ES or EnKF
for the inverse modeling of parameters based on observations
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of state variables, each conditioned parameter realization m
post
i

of the ensemble is calculated from the unconditioned realization
m

pr
i according to the following equation

m
post
i = m

pr
i + K(dobs,i − g(m

pr
i )) (1)

with

K = C
pr
MD(C

pr
DD + Cerr)

−1

The matrix K represents an approximation of the so-called
“Kalman gain” in the Kalman filter update equation, derived so
as to minimize the error covariance of the posterior estimate. It
is here computed based on approximations from the ensemble
of the cross-covariance matrix between the vector of prior
parameters and the vector of predicted data, noted C

pr
MD,

the auto-covariance matrix of predicted data C
pr
DD, and the

covariance matrix of observed data measurement errors Cerr .
By evaluating the relative uncertainty of the measurements and
prior estimate, the Kalman gain weights the contribution of each
conditioning observation relatively to the prior estimate m

pr
i for

the computation of the update. More precisely, it weights the
contribution from each component of the mismatch between
the vector of perturbed observations dobs,i, i.e., the observations
corrupted with noise zobs,i ∼ N(0,Cerr), and the corresponding

vector of predicted states g(m
pr
i ) using the forward operator g.

Unlike EnKF however, ES does not assimilate the data
sequentially in time. Instead, it assimilates all the available
observations simultaneously in a single conditioning step. Hence
the prediction step in ES prior to the single update will be longer
than each recursive one in EnKF since the ensemble of prior
realizations need to be forwarded in time until the time of the
last conditioning observation. Evensen and van Leeuwen (2002)
showed that when the prior realizations are multi-Gaussian and
the forward model is linear, ES and EnKF at the last data
assimilation will give the same result. In this special case, they
will converge to the exact solution in the Bayesian sense as the
ensemble size increases to infinity (hence the subscripts pr and
post used in the previous equations to denote the unconditioned
and conditioned realizations respectively). In non-linear cases,
EnKF has been shown to outperform ES (Crestani et al.,
2013). Indeed, the sequential processing of fewer data in EnKF
effectively allows the computation of smaller updates than the
single global update of ES. This fact particularly allows EnKF to
better match the measurements than ES in non-linear problems.

Even so, if the whole data set for the parameter estimation
is already acquired, the assimilation with ES of the whole set
of data in a global update step may seem more convenient to
implement. Indeed, the additional computations of intermediate
conditional ensembles over time with EnKF can be avoided.
For non-linear problems, iterative versions of the ES have
been especially developed in order to improve the insufficient
data match obtained with ES. Like ES, these iterative variants
assimilate the complete data set during the conditioning step.
However, the assimilation is performed multiple times on the
same data set in order to reach the final solution. In the following
sections, we introduce two existing iterative ensemble smoother

algorithms which are particularly used in reservoir applications
(Evensen, 2018), namely the simplified version of the Levenberg-
Marquardt Ensemble Randomized Maximum Likelihood (LM-
EnRML) of Chen and Oliver (2013) and the Ensemble smoother
with Multiple Data Assimilation (ES-MDA) of Emerick and
Reynolds (2012a).

2.1. Levenberg–Marquardt Ensemble
Randomized Likelihood (LM-EnRML)
LM-EnRML is an iterative ensemble smoother based on a
modified form of the Levenberg-Marquardt algorithm (Chen
and Oliver, 2013). By modifying the Hessian term, LM-EnRML
avoids the explicit computation of the sensitivity matrix of the
predicted data to the model parameters using the ensemble at
each iteration as in the original LM-EnRML formulation. This
allows LM-EnRML to reduce the numerical instability usually
observed with the original method for large-scale problems
where the ensemble size becomes smaller than the number of
parameters to estimate (Chen and Oliver, 2013). For our study,
we will use a simplified version of LM-EnRML referred as LM-
EnRML (approx.) in Chen and Oliver (2013) which neglects the
contribution to the update of the mismatch between the updated
and the prior realization. Indeed, Chen and Oliver (2013) showed
that using this simpler variant did not significantly affect the
results obtained with an ensemble of 104 realizations for a
large-scale estimation problem involving 165000 parameters and
4000 observations.

Assuming a prior multi-Gaussian distribution of realizations
m

pr
i with i = 1, ...,N, the algorithm aims to generate a posterior

ensemble of N realizations mi that each individually minimizes
an objective function

O(mi) =
1

2
(g(mi)− dobs,i)

TC−1
err (g(mi)− dobs,i)

+
1

2
(mi −m

pr
i )

TC−1
M (mi −m

pr
i ) (2)

which measures the distance between mi and the realization
m

pr
i sampled from a prior distribution and the distance between

the noisy observations dobs,i and the corresponding vector of
predictions, noted g(mi), which results from the application of
the forward operator g tomi.

Each minimization of the ensemble of objective functions is
performed iteratively, so that for each ensemble member, the
updated realization at iteration k+1 is computed using the results
of the previous iteration k as follows

mk+1
i = mk

i − C1/2
sc 1me

kV
PD
D WPD

D ((1+ λk)IPD +WPD
D

2
)−1

UPD
D

T
C−1/2
err (g(mk

i )− dkobs,i) (3)

where Cerr is the covariance of measurement errors, Csc, a
scalingmatrix for themodel parameters. AlthoughCsc is typically
defined diagonal with its diagonal elements equal to the variance
of the prior distribution in the general form of LM-EnRML,
Csc can simply be the identity matrix in the approximate
version LM-EnRML as it allows the algorithm to converge more
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quickly (Chen and Oliver, 2013).1me represents an ensemble of
deviations from the mean of the parameters vectors, computed as

1me
k = −C−1/2

sc (me
k −me

k
)/
√
N − 1 (4)

with me the ensemble of N parameter vectors and me the
ensemble mean. As for the terms UPD

D ,WPD
D , and VPD

D , they result
from the truncated singular value decomposition, based on a
number PD of singular values, of the ensemble of deviations from
the mean of the vectors of predictions, noted1de, so that1de =

UPD
D WPD

D VPD
D

T
. This ensemble of predicted data deviations is

calculated as

1dek = −C
−1/2
D (dek − de

k
)/
√
N − 1 (5)

with de the ensemble of N prediction vectors and de the
ensemble mean. Finally, λ is a damping parameter, also known
as the Levenberg-Marquardt regularization parameter (Chen and
Oliver, 2013), and is adjusted by the algorithm. This parameter
is critical for the convergence of the algorithm as it affects the
search direction and length of each update step. The LM-EnRML
algorithm as proposed by Chen and Oliver (2013) adjusts λ after
each parameter update computation according to whether the
updated parameters lead to a decrease or increase of the objective
function. If the objective function is decreased, the update is
accepted and the parameter search continues with a decreased
λ. Otherwise, λ is increased until an update that decreases the
objective function is found. LM-EnRML will stop iterating either
after a maximum number of iterations allowed is reached, or the
relative decrease of the objective function or the magnitude of
the realization update falls below a defined threshold. To allow
a convergence toward a sufficiently low value of the objective
function, we set for our synthetic problem the initial value of λ
to 100 and defined a factor for either decreasing or increasing
the damping parameter equal to 4. Indeed, after testing different
initial values of λ, we found that lower values such as 1× 10−3

did not allow a significant change of the results in terms of
convergence and final data match. However, we noticed that
values larger than 1× 105 could result to very small changes in
the objective function and consequently to the termination of the
algorithm before a good data match could be reached.

2.2. Ensemble Smoother With Multiple
Data Assimilation (ES-MDA)
Thanks to its simple formulation, ES-MDA of Emerick and
Reynolds (2012a) is perhaps the most used iterative form of
the ensemble smoother in geoscience applications. The standard
algorithm consists simply in repeating a predefined number
of times the standard ensemble smoother (ES) (Emerick and
Reynolds, 2012a). However, unlike in the ES update, the
covariance of the measurement errors in ES-MDA is inflated so
that each realizationmi of the ensemble of sizeN at iteration k+1
is updated as follows

mk+1
i = mk

i + Ck
MD(C

k
DD + αk+1Cerr)

−1(dkobs,i − g(mk
i )) (6)

where dk
obs,i

= dobs +
√
αk+1C

1/2
err zd,i with zd,i ∼ N(0, Id).

The purpose of inflating the Gaussian noise, sampled at every
iteration, via the coefficient α > 1 is to limit the confidence given
to the data as they will be assimilated multiple times (Emerick
and Reynolds, 2012a). In so doing, the parameter covariance
reduction which occurs after each data assimilation is also
limited. The inflation factors used to inflate the covariancematrix
of the measurement errors need to satisfy the following condition

Na
∑

k=1

1

αk
= 1 (7)

where Na is the number of times we repeat the data assimilation.
Indeed, this condition has been derived in order to make the
single update by ES and multiple data assimilation by ES-MDA
equivalent for the linear Gaussian case. For all our tests using
ES-MDA, we set for simplicity the inflation coefficients equal
to the predefined number of assimilations, as varying them in a
decreased order do not lead to a significant improvement of the
data match (Emerick, 2016).

ES-MDA effectively improves the data fit obtained by ES
in the non-linear case because ES is in fact equivalent to one
single iteration of the Gauss-Newton procedure to minimize the
objective function (2) when using a full step length and an average
sensitivity matrix calculated from the ensemble (Emerick and
Reynolds, 2012a; Le et al., 2016). The motivation for applying
ES-MDA in non-linear problems is that it would be comparable
to several Gauss-Newton iterations with an average sensitivity
matrix which is updated after each new data assimilation. By
calculating smaller updates than one single potentially large ES
update, ES-MDA is expected to lead to better results than ES.

The quality of the final data fit achieved with ES-MDA
will particularly depend on the predefined number of data
assimilations. The standard ES-MDA algorithm is therefore not
an optimized procedure as it requires some amount of trial before
finding a number of iterations which allows an acceptable match.
Although we did not consider them in this synthetic study,
implementations of ES-MDA which allow to adapt the inflation
coefficients and the number of iterations as the history match
proceeds have been proposed (Emerick, 2016; Le et al., 2016).

2.3. Normal-Score Transform of State
Variables With ES-MDA
Considering that the forward model g can be non-linear due
to the physical process being modeled and/or the influence
of imposed boundary conditions on the predicted states, the
assumption of multi-Gaussian dependence among state variables
in ensemble Kalman methods is generally not justified in
subsurface flow modeling even in the case of multi-Gaussian log
hydraulic conductivity fields (Schoniger et al., 2012). In addition
to the linearization around the ensemble mean introduced by
the use of an ensemble gradient, the derivation of the ES
update equation (6) particularly involves a linearization of the
forward model around the local estimate mk

i (Luo et al., 2015;
Evensen, 2018). Hence ES-MDA, which is based on the repeated
application of ES using inflated measurement errors, also applies
such a local linearization at each update step (Evensen, 2018).
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Because of this aforementioned local linearization in the
update step, we are here interested in assessing the effects
of a normal-score transform in order to apply the ES-
MDA update to locally Gaussian state distributions. In a
previous study, (Schoniger et al., 2012) observed an improved
performance of EnKF for the identification of multi-Gaussian
log hydraulic conductivity fields when assimilating normal-
score transformed state variables such as hydraulic heads. They
attributed this improvement to an “implicit pseudolinearization”
of the relationship between the multi-Gaussian log hydraulic
fields and the transformed predicted data which benefited the
“linear updating step” of EnKF. In addition to this statement, we
conjecture here that it is more specifically the local linearization
highlighted by Evensen (2018), rather than the linearization
around the ensemble mean introduced by the approximated
gradient, which will benefit from such a normal-score transform
performed locally at the data points. The “pseudolinearization”
observed by Schoniger et al. (2012) would then allow a
better approximation of the forward model from the local
linearization applied at each update step, thereby yielding more
accurate updates.

The effects of the ES-MDA update in the transformed space
will be tested as follows

mk+1
i = mk

i + Ck
M̂D

(̂Ck
DD + αk+1̂Cerr)

−1( ̂dk
obs,i

−
̂g(mk

i )) (8)

where

dkobs,i = dobs +
√
αk+1C

1/2
err zd,i

with

zd,i ∼ N(0, Id)

where the hat indicates either transformed variables or
covariances calculated based on transformed variables. A
normal-score transform (NST) function denoted ψk, for each
data type, is calculated based on the time series of state variables
predicted at each one of the k observation locations (Figure 1)
which we perturb with noise beforehand. Indeed, we perturb
the predicted data using the same inflated measurement errors
added to the observations dobs in (8). This NST function maps
the p-quantile of the ensemble distribution of original perturbed
predicted values at one location to the p-quantile of a standard
normal distribution. In order to evaluate properly the data
mismatch in the transformed space, the predicted data g(mk

i )

without added noise and the perturbed observations dk
obs,i

are
transformed using the same NST functions defined depending on
the location of the data. Note that CM̂D is the cross-covariance
between the parameters and the normal-score transform of the
predicted data without added measurement errors.

To transform the term Ck
DD + αk+1Cerr , Schoniger et al.

(2012) suggested to calculate the covariance using directly the
transformed perturbed predicted data from which we built the
NST functions. In this way, the terms Ck

DD and Cerr don’t need
to be transformed separately. However, unlike in EnKF where
the inversion of the matrix Ck

DD + αk+1Cerr is fast thanks to
the generally small number of data at each observation time

(Liu and Oliver, 2005), the assimilation of a large data set here
with ES-MDA will require the use of the subspace inversion
procedure of Evensen (2004). Consequently, the calculation of

the transformed terms ̂Ck
DD and ̂Cerr will be needed in any case to

compute the pseudo-inverse of ̂Ck
DD + αk+1Cerr in (8). In the end,

̂Ck
DD can be calculated simply on the basis of the normal-score

transform of the predicted data without added measurement
errors, while the transformed measurement error covariance ̂Cerr

will be determined so as to respect the following ratio

̂Cerr(Cerr)
−1 = ̂CD′D′ ,diag(CD′D′ ,diag)

−1 (9)

where Cerr is the untransformed measurement error covariance
which is often assumed diagonal, ̂CD′D′ ,diag is the diagonal
matrix constructed from the diagonal elements of the covariance
of the transformed perturbed predicted data, and CD′D′ ,diag is
the untransformed equivalent. It is worth pointing out that
transforming properly the measurement error covariance is
particularly critical in this proposed application of ES-MDA in
the transformed space as the data mismatch reduction with ES-
MDA will rely on the inflation of ̂Cerr . Moreover, to better taking
into account the data of different orders of magnitude in the
update, Emerick (2016) suggested using the measurement error
covariance to rescale the predicted data before calculating the
truncated singular value decomposition (SVD) in the subspace
inversion procedure.

3. A SYNTHETIC INVERSE PROBLEM
INSPIRED BY THE ANDRA’S SITE

A synthetic case inspired by the hydraulic situation encountered
at the Andra’s Meuse/Haute-Marne site during the construction
and the operation of the Underground Research Laboratory
(Benabderrahmane et al., 2014; Kerrou et al., 2017) was created.
The model represents a two-dimensional vertical cross-section
of a multilayered aquifer system and is inspired by previous
modeling studies on the Andra’s site (Bourgeat et al., 2004;
Deman et al., 2015). The model was designed to mimic the
hydraulic behavior of the Oxfordian limestone multi-layered
aquifer above the Callovo-Oxfordian clay host formation which
is not included in the model. It will be used to analyze the
performance of the ensemble smoother and the two iterative
ensemble smoother algorithms presented previously for the
identification of multi-Gaussian parameter fields. We present
hereinafter the inverse problem set up, the assumptions for the
application of the methods, and the performance criteria.

3.1. Model Set Up
The synthetic model is two-dimensional over a vertical domain
of 5,000 m along the west-east direction and 500m in depth.
In order to solve the groundwater flow equation, the domain is
discretized by 50 × 500 square elements of 10m wide. Along the
top boundary, constant heads are imposed. The head values vary
from 267.5m on the west side to 284m on the east side according
to a small hydraulic gradient observed in the shallow aquifers
which we did not represent in our model. At depth, between 150
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FIGURE 1 | The two-dimensional vertical domain modeled of 5,000 m length and 500m depth. The thin rectangles indicates the location of nodes with a boundary

condition applied. The dots indicates the head observation nodes. Not shown here, the seepage boundary is divided into 5 zones where the produced flowrates are

measured. Reprinted from Lam et al. (2020) with permission.

and 500m, a constant head of 280m is imposed on the east side to
maintain a continuous east-west flow in the system (Figure 1).
To mimic the hydraulic perturbation created by one vertical
shaft to the underground research laboratory at the Andra’s site,
a subsequent transient flow simulation is calculated by adding
from time zero a seepage condition over the nodes corresponding
to the first 300 m of the western boundary starting from the
bottom (Figure 1). The nodes over the remaining 200m toward
the surface do not contribute to the production of water as they
model the isolated upper part of the shaft as in the real case.
Since the produced flowrates at the shaft are unknown prior to
the computed head solution at each time step, using a seepage
boundary condition instead of a pumping well with a prescribed
extraction rate seems indeed more appropriate here. Note that
in exploratory simulations, a sensitivity analysis was carried out
on different levels of the finite element mesh refinement and the
solver parameters, as well as on various types of flow boundary
conditions and hydraulic property values. This was in order to
ensure robust numerical solutions and optimized CPU time, and
also to avoid bias from boundary effects.

For simplicity, the groundwater flow equation was solved
numerically under saturated conditions. All the groundwater
flow simulations in the framework of this study were performed
with the simulator GroundWater (GW) (Cornaton, 2014). This
numerical code uses the standard Galerkin Finite Element and
the Control Volume Finite Element methods, and has been
validated on the basis of a series of standard benchmarks by
comparison with analytical solutions as well as with commercial
numerical simulators.

3.2. Synthetic Data Set
Since we intend in this synthetic study to apply ensemble Kalman
methods to an initial ensemble of multi-Gaussian parameter
realizations, a reference field of values of decimal logarithm
of hydraulic conductivity (log K) with mean −5 and variance
0.49 was generated with a multi-Gaussian simulation technique
(Figure 2). To generate the synthetic data set of the inverse
problem, a steady state groundwater flow was first simulated
prior to the activation of the seepage boundary condition. The
computed heads were then used as initial conditions for a

subsequent transient flow simulation after the activation of the
seepage condition at time zero. A constant specific storage value
of 10−6 m−1 was assumed over the whole domain as they will
not be considered in the inverse modeling. In the end, the data
set for the inversion is composed of simulated heads collected
every 1,200 s from t = 0 to t = 43, 200s, hence at 37 time
steps, at the ten observation points shown in Figure 1, and of
the flowrates produced every 300s in five defined zones of nodes
spread along the seepage boundary during the first 6,000 s of
the time series. As a result, the data set will be composed of at
most 570 observations in our experiments. Note that the final
time step of the flow simulation was chosen so as to capture
approximatively the drawdown before its stabilization, similarly
to the situation observed at the Andra’s site in Meuse/Haute
Marne (Kerrou et al., 2017).

3.3. Initial Ensemble of Parameters and
Assumptions for the Update Step
In this synthetic case, an initial multi-Gaussian distribution of the
variables to condition was considered to respect the underlying
multivariate Gaussian assumption of ensemble Kalman methods.
The initial ensemble is composed of multi-Gaussian realizations
of mean −5 of log hydraulic conductivity (log K) values
generated using a fast Fourier transform method. This mean
corresponds to the one used for the reference field as we
assume this value to be known in our case. Although different
variogram models could have been considered for the generation
of the initial ensemble, Wen and Chen (2005) showed that the
covariance model was not critically important to reproduce the
main heterogeneity features from the assimilation of flow data
with an ensemble Kalman method. Interestingly, Jafarpour and
Khodabakhshi (2011) concluded in a study which addressed
variogram uncertainty that the direct estimation of the variogram
model parameters with an ensemble Kalman method was made
difficult due to an insufficient strength of the linear correlation
between the flow data and those parameters. Ultimately, we
chose to simply assume a known variogram and hence used
the same variogram model as the one used for the reference
to describe the spatial variability of the ensemble of log K
fields, i.e., an exponential variogram of variance 0.49 and
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FIGURE 2 | Reference field of decimal logarithm of hydraulic conductivities (m/s).

correlation lengths of 120 gridblocks in the horizontal direction
and 10 gridblocks in the vertical direction. We assumed longer
ranges in the horizontal direction to mimic the presence of
the elongated porous horizons “HP” observed in the real field
case. In the vertical direction, we assumed the existence of five
horizons, hence a correlation length was set to one fifth of the
vertical dimension of the model. The realizations generated are
considered quite heterogeneous since the correlation lengths are
shorter with respect to the domain size, namely about one fifth of
each dimension.

One practical issue of ensemble methods is that the finite
number ofmembers, usually nomore thanO(100) in applications
(Wen and Chen, 2005; Gillijns et al., 2006; Anderson, 2009;
Evensen, 2009a), can cause spurious covariances between widely
separated components of the parameter vector and between
components of the vector of parameters and vector of predicted
data. Since these long-range spurious correlations are non-
physical, they can bring an undesirable response in the
update computed. In general, they cause an underestimation
of the ensemble variance which can potentially lead to “filter
divergence” (Evensen, 2009a). This term refers to the situation
where the assimilation of newmeasurements stops being effective
because the spread of the ensemble has overly reduced or has
“collapsed” to take them into account.

Considering that the observations are spatially restricted
to the modeled domain (Figure 1) and that the hydraulic
perturbation from the shaft is local relatively to the horizontal
extension of the model, such long range correlations will be
inevitable in this synthetic case. Therefore, it is necessary to
try to filter them out as much as possible before computing
the update. To this end, we will use a simple approach which
consists in “localizing” the Kalman gain matrix so that only the
parameters located within a certain distance of an observation
will be influenced by this observation during the update (Chen
and Oliver, 2017). We will multiply the Kalman gain element-
wisely with a “localization matrix” of the same size, i.e., number
of parameters by number of data, which each entry will be a factor
between 0 and 1 calculated by the correlation function defined by
Gaspari and Cohn (1999)
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where δ denotes the distance between each couple of parameter
and data variable and L is a predefined “critical length” beyond

which the contribution of the data to the parameter update will
be negligible. In this way, long-range spurious correlations will
be partly removed from the Kalman gain and the performance
of the ensemble method will be improved. To avoid potential
discontinuities in the localized parameter update between the
two columns of data points (Figure 1), we set L to 1,600 m,
hence over a little larger distance than the distance separating the
points horizontally, in all tests. In this synthetic case, this distance
is consistent with the domain of the model that is identifiable
given our data set, namely the region influenced by the observed
hydraulic perturbation.

The ensemble smoother, LM-EnRML and ES-MDA all
consider the vector of observations in their update equation as
a random vector with the addition of a random noise vector
sampled from the measurement error covariance Cerr . For all
tests performed, we assumed a diagonal covariance matrix of
independent measurement errors of 0.05m2 for every head
observation. When flowrate data were assimilated in addition
to the hydraulic heads, Cerr also included independent flowrate
measurement errors set equal to the square of 20% of the flowrate
value. For the application of ES-MDA with transformed state
variables, Cerr was transformed as described in section 2.3.

4. PERFORMANCE CRITERIA

Ideally, the application of ensemble Kalman methods for our
parameter estimation problem aims to satisfy the following two
criteria: (1) to reproduce the dynamic observations of state
variables with the final ensemble of conditioned realizations, and
(2) to obtain a final ensemble of conditional realizations which
variations around the mean correctly quantify the uncertainty.
As we assumed in this synthetic case no model errors or errors
in the choice of the prior distribution used to sample the
parameter space, meeting both these criteria should ensure that
the ensemble-based uncertainty in the model predictions will be
well-represented.

To assess the quality of the fit between the simulated g(mi) and
observed data dobs using either LM-EnRML or ES-MDA with or
without transformed data, we will consider the evolution of the
sum of squared errors

D(mi) = (g(mi)− dobs)
T(g(mi)− dobs) (11)

Note that this sum of squared errors does not correspond to the
data mismatch term of the objective function which is actually
minimized by each algorithm considered (cf. section 2). Indeed,
dobs here denotes the vector of the original observations even
in the case of ES-MDA when considering transformed data. In
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this manner, we will be able to more easily compare the data
mismatch results obtained using LM-EnRML, ES-MDA with
or without transformed data. Note also that in this defined
sum of squared residuals, no normalization by the observation
error is considered. Therefore, when assimilating both heads and
flowrates, this sum will be dominated by the head data.

In addition, to compare the efficiency of ES-MDA when
using transformed vs. untransformed data, we will also compute
for each case the data mismatch term of the different cost
functions being minimized at each iteration. Indeed, Evensen

(2018) noted that each updated estimate mk+1
i of ES-MDA

actually corresponds to an estimation of the minimum of a cost
function written as

D(mk+1
i ) =

1

2
(g(mk+1

i )− dobs −
√
αkzd,i)

T(αkCerr)
−1

× (g(mk+1
i )− dobs −

√
αkzd,i)

+
1

2
(mk+1

i −mk
i )
T(Ck

M)−1(mk+1
i −mk

i )

(12)

where mk=1
i = m

pr
i and Ck=1

M = C
pr
M with C

pr
M the prior model

covariance approximated from the ensemble around the prior

ensemble meanmpr = m
pr
i .

Once an acceptable data match has been reached during
the conditioning procedure, the uncertainty based on the
variability of the final ensemble of conditioned realizations can
be assessed. In practice, ensemble-based Kalman methods are
known to particularly overestimate the uncertainty reduction
when they are not applied in sufficiently optimal conditions.
In particular, the use of a finite ensemble inevitably introduces
sampling errors in the approximated covariances which can lead
to an overly reduced variance of the conditioned ensemble.
Moreover, the solution space spanned by the ensemble when
computing the update will likely be under-sampled (Evensen,
2009a) and the estimated uncertainty will not be reliable. To
reduce these sampling errors, a natural solution is to increase
the ensemble size. However, because the Monte Carlo sampling
errors decrease proportionally to 1/

√
N, with N the ensemble

size, the improved performance of the ensemble method can
come at a significant computational cost. For example, Chen and
Zhang (2006) noted that an ensemble size of 1,000 allowed EnKF
to obtain an accurate uncertainty estimation for their synthetic
case, but ultimately concluded that an ensemble size of 200 was
sufficient to achieve results with both accuracy and efficiency.
When applying iterative ensemble smoothers, the choice of the
ensemble size will be particularly constrained by the time needed
to run all the forward predictions of the ensemble during one
iteration. Consequently, larger ensemble sizes than O(100) are
generally not affordable if the available computational resources
are not sufficient to efficiently parallelize the prediction step of
every ensemble member. For these practical reasons, we will
discuss the performance of the different ensemble methods based
on tests involving ensemble sizes of the order of O(102) at most.

To assess the accuracy of the uncertainty captured by the
final conditioned ensemble, a common approach consists in
comparing the error between the ensemble mean of log K
realizations and the known reference to the ensemble mean

error that was obtained by the ensemble method, also called the
“ensemble spread” (Houtekamer andMitchell, 1998). For the first
error mentioned, we will simply compute the root-mean-squared
error (RMSE) as follows

RMSE =

√

√

√

√

1

Nm

Nm
∑

i=1

(mi
true −mi

e)
2 (13)

whereNm is the number of gridblocks,mtrue is the reference logK
field, andme stands for the mean of the ensemble of log hydraulic
conductivity fields.

The ensemble spread, here noted Sens, corresponds to an
average uncertainty on the log K property calculated from
the ensemble

Sens =

√

√

√

√

1

Nm

Nm
∑

i=1

σ
2
ens,i (14)

where σ 2
ens,i corresponds to the variance estimated from the

ensemble of log K realizations at one gridblock i. For our
uncertainty analysis, we will systematically evaluate these average
errors by considering the gridblocks of the model located within
a certain distance from the seepage boundary which includes all
the data points. In particular, we will set this distance equal to
the “critical length” used for the localization of the update (cf.
section 3.3). In this way, the comparison between the RMSE and
the ensemble spread will be based on the set of parameters which
are the most informed by the observations and hence which
uncertainty will decrease the most during the assimilation.

One goal of this analysis will be to illustrate how the spread
between ensemble members updated using either LM-EnRML,
ES-MDA with or without transformed data is representative of
the difference between the ensemble mean and the reference
(RMSE) depending on the ensemble size. Indeed, as the size
of the ensemble increases, the discrepancy between the final
conditioned ensemble and the RMSE should reduce thanks to
the reduced sampling errors. However as previouslymentioned, a
trade-off between accuracy of the uncertainty and computational
efficiency will need to be found. In the end, if the ensemble spread
is not overly underestimating the RMSE, we will consider that
the ensemble method has performed correctly given its intrinsic
limitations. In addition, although the inverse problem is ill-
posed, i.e., there are more parameters to infer than data to inform
them in a unique way, we expect for this synthetic case that the
information contained in the data set (i.e., hydraulic heads and
flowrates) is sufficient in order to yield after the data assimilation
estimates that are closer to the reference than initially in the
most updated region of parameters. Therefore, the performance
of the smoother will also be assessed in its ability to decrease the
RMSE value.
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FIGURE 3 | Predicted hydraulic head at four different locations, before (in gray) and after (in blue) the assimilation with ES of the head data without normal-score

transform. The red dots are the observed data; The ensemble size is 100.

5. RESULTS AND DISCUSSION

5.1. Ensemble Smoother and Benefit of
Data Transformation
As expected in a non-linear case, the application of a non-
iterative ensemble method such as the ensemble smoother (ES)
results in an insufficient match between the final ensemble of

predicted data, i.e., computed from the ensemble of updated
realizations, and the observations. Figure 3 shows for three

locations at different depths 1 km away from the producing

shaft the simulated heads before and after the update of 100
realizations with ES. By using the same initial ensemble, the
evolution of the data mismatch obtained from the assimilation

of the head data only and both the head and flowrate
data simultaneously are shown respectively in Figures 4A,C.
Because the represented data mismatch does not include the
inflated measurement error in the observed data and hence the
normalization by the error variance, as defined in section 4, the
additional contribution to the mismatch from the flowrates in
Figure 4C is not visible. Even so, compared to Figure 4A), we
can observe that the assimilation of the flowrates in addition to
the heads allows the data mismatch to decrease thanks to a better
match of the head data.

The strategy of transforming the data prior to each update
of ES-MDA, as described in section 2.3, was also tested here
with ES using the same initial ensemble. Indeed, ES is equivalent
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FIGURE 4 | Evolution of the decimal logarithm of the data mismatch when assimilating with ES: (A) the head data, (B) the transformed head data, (C) both the head

and flowrate data, (D) both the transformed head and transformed flowrate data. The blue curve is the median, the blue area corresponds to the region between the

percentiles P5 and P95 of the ensemble of values, and the black curve is the values computed for the ensemble member no. 0.

to ES-MDA with only one iteration and hence applies once a
local linearization of the model around the initial parameter
estimate to compute its single update. As shown in Figures 4B,D,
whether only the head data are assimilated or both the head
and flowrate data, the data mismatch is reduced in both cases
with a slightly lower mismatch in the case mentioned last.
Therefore, compared to the case where only untransformed head
are assimilated (Figure 4A), the data transformation seems to
have a positive impact on the decreased data mismatch which,
we remind, considers the original data even for the transformed
case. The improved history match can be observed for example
by comparing Figure 3 with Figure 5. In particular, we note that
when data transformation is used, the ensemble of predicted
values better tracks the observations, most certainly as a result
of a more accurate update of each ensemble member. Indeed,
the comparison of the RMSE and the ensemble spread in Table 1

for each one of the cases considered in Figure 4 shows that the
assimilation of the transformed heads instead of the original
data results in a more accurate estimation of the ensemble mean
and spread thanks to a decrease of the RMSE which reduces
the discrepancy with the reduced ensemble spread. As for the
assimilation of both the head and flowrate data simultaneously,
we can see that compared to when the data are transformed, the
assimilation is less efficient with a less reduced ensemble spread
and a RMSE that has almost not reduced. Based on both the
evolution of the RMSE and the “coverage”, which we defined as
the percentage of true values of the reference captured by the final
ensemble spread in the most updated region of the model, we can

conclude from Table 1 that transforming the data clearly benefits
the performance of ES. However, we note that the assimilation
of both the transformed head and flowrate data with ES does
not allow to further reduce the RMSE compared to when using
the transformed heads only, although the ensemble spread is
further reduced.

5.2. Comparing the Accuracy of
LM-EnRML and ES-MDA Estimates
Although ES-MDA and the LM-EnRML were developed with
the aim of improving the data match obtained with ES in the
non-linear case, the iterative updates will likely cause a more
important underestimation of the uncertainty than with ES.
Indeed, at each iteration, the sampling errors in the approximated
covariances of the Kalman gain will affect the estimates of the
method, and more particularly the ensemble uncertainty. Seeing
as how the Monte Carlo sampling errors decrease according
to 1/

√
N where N is the ensemble size (Evensen, 2009a),

we tested for our synthetic case the effect of increasing N
on the performance of ES-MDA and LM-EnRML when only
assimilating the head data. Table 2 shows the evolution of the
RMSE and the ensemble spread when applying ES-MDA with 4
arbitrarily defined iterations. Whether we consider an ensemble
of 100, 200, or 400, hence of the order of O(102) to remain
computationally efficient, we note that starting from the first
update, the ensemble spread measuring the variability between
the ensemble members systematically underestimates the RMSE
whichmeasures the error between the reference and the ensemble
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FIGURE 5 | Predicted hydraulic head at four different locations, before (in gray) and after (in blue) the assimilation with ES of normal-score transformed head data. The

red dots are the observed data; The ensemble size is 100.

mean. This discrepancy with the RMSE further increases with
each iteration as the spread keeps decreasing while the RMSE
remains higher. Although we do not show it here, not localizing
the update resulted in a larger discrepancy between the RMSE
and ensemble spread for the different ensemble sizes tested.

Nevertheless, we note that the larger the ensemble size, the
more reduced the gap between the RMSE and the ensemble
spread becomes. As expected, the estimated uncertainty gains in
accuracy with the ensemble size. We note however that the most
significant improvement occurs when increasing the ensemble
from 100 to 200 realizations for both algorithms (Tables 2, 3).
Indeed, as indicated for ES-MDA in Table 2, the coverage,

defined as the proportion of reference values that are within
the ensemble range in the most updated region of the model,
has more than doubled with a final value of 77% after the same
number of iterations. In a similar manner, the coverage also
doubled with LM-EnRML (Table 3). Moreover, when using an
ensemble size of 100, we can see that the evolution of the RMSE
is particularly unstable for both LM-EnRML and ES-MDA. The
ensemble means estimated with LM-EnRML even lead to a final
RMSE value which is much higher than initially. In contrast,
an ensemble size of 200 allows LM-EnRML to provide a more
accurate estimation of the true uncertainty than with ES-MDA.
The results shown in Table 3 were all calculated based on the
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TABLE 1 | Influence of different types of data assimilated (transformed or not) on

the RMSE, ensemble spread, and coverage calculated with ES.

Assimilated data RMSE Ens. spread Coverage (%)

h 0.72–1.00 0.70–0.42 57

h, q 0.72–0.69 0.70–0.53 93

transf. h 0.72–0.58 0.70–0.44 91

transf. h, transf. q 0.72–0.59 0.70–0.41 88

The ensemble size was 100 for all the tests shown in this table.

TABLE 2 | Effect of increasing the ensemble size on the RMSE, ensemble spread,

and coverage after 4 predefined ES-MDA iterations.

Ens.

size

Assimilated

data

RMSE Ens.

spread

Coverage

(%)

100 h 0.72–0.71 0.70–0.19 37

200 h 0.71–0.66 0.70–0.32 77

400 h 0.72–0.57 0.70–0.40 96

TABLE 3 | Effect of increasing the ensemble size on the RMSE, ensemble spread,

and coverage with LM-EnRML at iteration 8.

Ens.

size

Assimilated

data

RMSE Ens.

spread

Coverage

(%)

100 h 0.72–0.88 0.70–0.19 49

200 h 0.70–0.60 0.70–0.34 93

400 h 0.72–0.66 0.70–0.39 94

estimates of LM-EnRML obtained after 8 iterations when the
reduction of the objective function seemed to have decreased to
a sufficiently low data mismatch value as shown in Figure 6A.
We note also from Figure 6, however, that it seems to take more
iterations for LM-EnRML to converge to the same level of data
match achieved by ES-MDA using 6 predefined iterations.

From all these tests, it is clear that the larger the size,
the more accurate the uncertainty estimated by LM-EnRML
or ES-MDA will be. However, as can be observed in Table 2,
this improvement in the estimates comes at an increased
computational cost. For our synthetic problem, we note that an
ensemble of 400 realizations would still not allow the ensemble
to represent correctly the true error on the ensemble mean.
Since increasing the ensemble size does not seem to be a
reasonable option computationally, it seems that the application
of such ensemble methods necessarily requires to achieve a
balance between accuracy and computational efficiency. This
computational efficiency is of even more importance for large-
scale problems since the biggest constraint would often be the
long flow simulation time required to run the prediction step
for each ensemble member. Hence the larger the ensemble, the
longer it will take to complete all the predictions of the ensemble
before being able to start the update step. Indeed, we remind
that the update of each member is based on the same ensemble-
based Kalman gain matrix. It is worth mentioning that this

matter of efficiency also concerns the case where the ensemble
of predictions steps is parallelized. Indeed, it would still require
to have enough resources to efficiently run the whole ensemble of
forward simulations simultaneously after each update step.

From Tables 2, 3, it is clear that the improvement on both the
ensemble mean and spread is very significant when increasing
the size from 100 to 200 with either LM-EnRML and ES-MDA.
However, the differences in the estimated ensemble mean fields
shown in Figure 7 suggest that the twomethods converge toward
different solutions. This is confirmed by the fact that when
increasing the ensemble size from 200 to 400, the accuracy of
both the error and uncertainty estimated with ES-MDA keeps
increasing whereas for LM-EnMRL, no visible improvement
is observed as if an optimal ensemble size has been reached
around 200.

Although LM-EnRML provides the more accurate estimation
of the uncertainty compared to ES-MDA for any of the tested
ensemble sizes, ES-MDA seems to converge faster, as shown in
Figure 6. Indeed, it takes more iterations with LM-EnRML to
reach the same mismatch value which corresponds to a good
match as obtained with ES-MDA using 6 iterations. In the end,
although the estimates of ES-MDA definitely improve with an
ensemble size of 400, we will consider that using an ensemble
of size 200 with either ES-MDA or LM-EnRML in our case is
acceptable in order to achieve both accuracy and efficiency.

5.3. Assimilating Both Hydraulic Head and
Flowrate Data With LM-EnRML and
ES-MDA
As shown in Table 4, the assimilation of both head and flowrate
data with LM-EnRML yields estimates of similar accuracy to
when only the heads are assimilated. Neither the larger number
of observations nor the higher “weights” of the flowrates in the
objective function, given their much lower magnitudes, seem
to have affected the minimization process. Figure 8A shows in
fact that the mismatch associated to the flowrate data in the
objective function, i.e., the sum of squared residuals weighted
by the inverse of the measurement variance, is mostly reduced
after the first iteration so that ultimately the remaining of the
optimization deals with the reduction of the mismatch associated
to the head data (Figure 8B). Although the convergence of LM-
EnRML seems effective when assimilating different data types,
we note that the accuracy of the estimates does not improve
with the additional information coming from the assimilated
flowrates. This lack of improvement could be related to possible
over-corrections of the parameters during the first iteration
as often observed with gradient-based methods. One way to
reduce such over-corrections would be to artificially increase
the measurement errors. We did not try that however since the
parameter estimates obtained seem sufficiently accurate in terms
of the estimated uncertainty.

For the assimilation of both data types, we first note that ES-
MDA converged more rapidly, i.e., in 8 iterations, to the same
level of data match achieved with LM-EnRML after 16 iterations
(Figures 8A, 9A). For brevity, we do not show the associated
good match of the head and flowrate observations obtained with
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FIGURE 6 | Evolution of the decimal logarithm of the data mismatch when assimilating head data with: (A) LM-EnRML, (B) ES-MDA (×6). The ensemble size is 200.

FIGURE 7 | Two initial different realizations of log hydraulic conductivity being updated, respectively, with LM-EnRML (A) and ES-MDA (B) throughout the iterations.

Panels (C,D) show the corresponding ensemble mean fields at each iteration. The ensemble size is 200.

both methods. However, unlike previously with LM-EnRML, the
mean and variance estimates obtained with ES-MDA are less
accurate than those obtained by the assimilation of head data
only (Table 4). This illustrates that the different data types are not
properly taken into account with ES-MDA during the multiple
assimilations compared to LM-EnRML.

As done previously with ES in order to mitigate the effects of
non-Gaussianity on the performance of the method, we applied
a normal-score transform on the data so as to obtain ensemble
distributions of predicted variables which are locally Gaussian,
for each data type, before performing each update step of ES-
MDA in the transformed data space. As shown in Figure 10,
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the proposed state transformation allows ES-MDA to achieve an
acceptable match of the head and flowrate observations after 8
iterations.Table 4 shows the estimates obtained after assimilating

TABLE 4 | Effect of assimilating the flowrate data in addition to the hydraulic

heads on the RMSE, ensemble spread, and coverage with LM-EnRML and

ES-MDA with or without transformed data.

Algorithm Assimilated

data

RMSE Ensemble

spread

Coverage (%)

LM-EnRML h 0.72–0.60 0.70–0.34 93

LM-EnRML h, q 0.71–0.60 0.69–0.34 93

ES-MDA(×6) h 0.72–0.65 0.69–0.29 72

ES-MDA(×8) h, q 0.72–0.70 0.70–0.20 58

ES-MDA(×8) transf. h 0.72–0.66 0.69–0.31 80

ES-MDA(×8) transf. h, q 0.70–0.63 0.70–0.30 82

The ensemble size was 200 for all the tests shown in this table. The corresponding number

of iterations was chosen so as to obtain an acceptable and comparable data match for

all the results.

only the transformed heads resulted in a slight improvement. The
coverage has slightly increased, which indicates that the estimated
uncertainty, although still underestimated, has improved a
little. A much more significant improvement, however, can be
observed when both the head and flowrate data are assimilated in
the transformed space. Compared to when no transformation is
applied, the assimilation of both transformed data types is much
more efficient given the larger variability of the ensemble and the
smaller RMSE.

Figure 9 shows that when both data types are transformed,
the decrease of the cost functions minimized for each iteration
of ES-MDA (Evensen, 2018) is more stable than when no
transformation is applied. In the case without transformation,
the larger range of the initial ensemble of values reflects the
differences of magnitude of the mismatch associated to the
flowrate data on the one hand, and the one associated to
the heads on the other hand. As shown in Figure 11A, the
distribution is spread around two distinct modes. Hence the less
stable reduction observed is probably related to the contribution
of the flowrate data which dominates the cost function to

FIGURE 8 | Evolution of the decimal logarithm of the data mismatch when assimilating both head and flowrate data with LM-EnRML: (A) With the normalization of the

residuals by their variance (as minimized by the objective function). (B) Without normalization, hence the values reflect the head data mismatch reduction mainly. The

ensemble size is 200.

FIGURE 9 | Evolution of the decimal logarithm of the data mismatch term of the cost function minimized at each iteration when assimilating both head and flowrate

data with ES-MDA: (A) Without transformed data. (B) With transformed data. The ensemble size is 200.
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FIGURE 10 | Predicted hydraulic head and flowrate data at the observation locations, before (in gray) and after (in blue) the assimilation of both the transformed

hydraulic heads and transformed flowrate data with ES-MDA. The red dots are the observed data; the ensemble size is 200.

minimize because of their much more smaller measurement
errors. In contrast, the initial ensemble of mismatch values
resulting from the transformed data (Figure 9B) is much less
spread and resembles a Gaussian distribution (Figure 11). By
making Gaussian the distribution of all mismatch values defining
the first cost function to be minimized with ES-MDA, the

normal-score transform applied to each data type seems to have
benefited the data assimilation with ES-MDA. Since a new cost
function is minimized after each ES-MDA iteration, we suppose
that the initial Gaussian distribution of all the data mismatch
values resulting from the transformation contributes to make
the minimization more efficient by allowing to take equally
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FIGURE 11 | Distribution of the decimal logarithm of the sum of weighted squared errors prior to the assimilation of head and flowrate data with ES-MDA: (A) Without

transformation. (B) With transformation.

account of each data type in the assimilation from the start of
the assimilation. However, as discussed by Schoniger et al. (2012),
it is important to note that such local transformation of the
state variables would not have led to a successful application
of ES-MDA if the multivariate dependence of the state
variables was not sufficiently Gaussian in the first place. Indeed,
since the proposed transformation only affects the marginal
distribution, it is essential that the multivariate structure of
the state variables is near-Gaussian in order to really observe
an improvement of the performance of the ensemble Kalman
method. Crestani et al. (2013) illustrated this point by observing
that similar local transformation performed on concentration
data can deteriorate the performance of EnKF because of
an insufficient dependence between the multi-Gaussian log
hydraulic conductivity parameters and the concentrations.

It could be argued that equal contributions from both the
heads and flowrate data to the first cost function could also
have been obtained in the case without transformation by
decreasing the measurement variance of the head measurements.
However, the use of very small values of measurement errors can
cause problems during the data assimilation as it may lead to
severe underestimations of the parameter uncertainty due to the
overconfidence in the assimilated data.

6. CONCLUSION

In this synthetic study, two iterative forms of ensemble smoother,
LM-EnRML (Chen andOliver, 2013) and ES-MDA (Emerick and
Reynolds, 2012a), were applied and compared. They were both
used to condition an ensemble of multi-Gaussian log hydraulic
conductivity fields to transient hydraulic data. Given the non-
linear dynamics of the groundwater flow problem inspired by a
real hydraulic situation, the results show the necessity of using
an iterative instead of non-iterative ensemble smoother in order
to obtain an ensemble of hydraulic conductivity fields which all
match properly the data.

Despite the multi-Gaussian log K distribution considered, the
repeated assimilations of the data set have highlighted the known
tendency of ensemble Kalman methods to underestimate the

true error due to the finite ensemble size. A trade-off between
accuracy of the estimation and computational efficiency hence
needs to be found when applying such methods. Our uncertainty
analysis based on the comparison between the ensemble spread
and the true error, here accessible in this synthetic study, clearly
indicated the existence of a threshold ensemble size below which
the updated mean and variance are not reliable. For our case,
we found that the final estimates using an ensemble of 100
were not acceptable whereas increasing the ensemble to a still
reasonable size of 200 improved significantly the accuracy of the
updated mean and spread of the ensemble for both algorithms.
Because determining this threshold ensemble size a priori is not
possible, it seems all the more important before tackling large-
scale applications to try to estimate this threshold size on a
smaller-sized problem but which will take into account the main
characteristics of the real inverse problem.

Although LM-EnRML outperforms ES-MDA in terms of the
accuracy of the estimated uncertainty when using an ensemble
size of 200, the performance of ES-MDA seems to improve
steadily with the ensemble size while LM-EnRML does not. In
particular, the RMSE of the ES-MDA estimates keeps decreasing.
This particularly underlines that both algorithms do not converge
to the same solution. It is not so surprising considering that LM-
EnRML was derived so as to minimize an objective function
using a gradient-based approach while ES-MDA was derived
to minimize the variance of the error (Chen and Oliver, 2013;
Evensen, 2018).

The benefit of transforming the state variables with ES-
MDA was mainly observed when assimilating the hydraulic
head and flowrate data simultaneously. Indeed, the normal-
score transform of the state variables allowed a normalization
of the magnitudes of all data types to values drawn from a
standard normal distribution. Consequently, both data types
could be more equally taken into account during the data
assimilation as shown by the more stable reduction of the cost
functions compared to the application of ES-MDA without
transformation. However, as commented in previous studies
(Schoniger et al., 2012; Crestani et al., 2013), the applicability
of such state transformation could be questioned in cases where
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the multi-Gaussian dependence of the state variables is not as
strong as in this multi-Gaussian log K case, either as a result
of the non-linearity of the model and/or because of an initial
non-multi-Gaussian parameter distribution.

Although this paper focused on the performance of iterative
ensemble smoothers in the specific case of multi-Gaussian
distributions, their application to condition non-Gaussian
distributions is of special interest for many real field applications.
For a case such as the one of the ANDRA where the built
groundwater model is very high-dimensional, the observed
efficiency of iterative ensemble smoothers to decrease the
data mismatch in the multi-Gaussian case is very interesting.
However, as summarized by Zhou et al. (2014), one main issue
when conditioning directly non-multi-Gaussian distributions
using ensemble Kalman methods is that the consistency of the
initial geological structures is lost. A relevant future perspective
for the case of the ANDRA will hence to consider an appropriate
parameterization for the application of iterative ensemble
smoother methods to non-Gaussian heterogeneous fields such
as when generated with truncated Gaussian or multiple-point
statistics simulation techniques.
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Groundwater in most urban areas around the globe is often contaminated by toxic

substances. Among the various sources of contamination, industries cause the heaviest

impact when toxic compounds are released underground, mainly through leaking tanks

or pipelines. Some contaminants (typically chlorinated hydrocarbons) tend to persist

within the underground and are hard to biodegrade. As a result, substances that leaked

decades ago are still impacting groundwater. Milano and its surroundings (Functional

Urban Area) is a good example of an area that has been hosting industries of all

dimensions for over a century, many of them contributing to groundwater contamination

from chlorinated hydrocarbons. While the position of the biggest industrial facilities is

well-known, many smaller sources are hard to identify in many cases where direct

surveys have not been undertaken. Furthermore, the overlapping effects of big, small,

known, and unknown sources of groundwater contamination make it challenging to

identify the contribution of each. In order to identify the contribution of several point

sources responsible for tetrachloroethylene contamination in public water supply wells, a

numerical model (MODFLOW-2005) has been implemented and calibrated using PEST in

the northwestern portion of the Milano Functional Urban Area. In contaminant transport

modeling, the deterministic approach is still favored over the stochastic approach

because of the simplicity of its application. Nevertheless, the latter is considered by the

authors as the most suitable for dealing with problems characterized by high uncertainty,

such as hydrogeological parameter distributions. Adopting a Null-Space Monte Carlo

analysis, 400 different sets of hydraulic conductivity fields were randomly generated

of which only 336 were selected using an objective function threshold. Subsequently,

particle backtracking was performed for each of the accepted hydraulic conductivity

fields, by placing particles in a contaminated well. The number of particle passages is

considered as being proportional to the contribution of each unknown point source to

the tetrachloroethylene contamination identified in the target well. The study provides

a methodology to help public authorities to locate the “more probable than not” area

responsible for the tetrachloroethylene contamination detected in groundwater and to

focus environmental investigations in specific sectors of Milano.

Keywords: particle tracking, Null-Space Monte Carlo, Stochastic MODPATH, groundwater pollution, inverse

modeling, uncertainty prediction, PEST
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1. INTRODUCTION

In urban areas impacted by historical industrialization, the main
problem of groundwater contamination is related to chlorinated
hydrocarbons (CHCs) (Menichetti and Doni, 2017; La Vigna
et al., 2019). Such contamination is typically associated with point
sources (PS) or discrete zones, formerly linked to petrochemical
plants, refineries, automotive, dry-cleaning, or metal degreasing
operations. However, due to the intense industrial and urban
development during the last 60 years, it is very difficult to apply
the “Polluter Pay Principle” (PPP) (De Sadeleer, 2014; Schwartz,
2018; Covucci, 2019; Milon, 2019). Pollution plumes pose
challenges in terms of characterization of contaminant migration
pathways, identification of the source, and the polluter. Due to
the high uncertainty linked to the exact position of the source, it
is necessary to identify the PS with a stochastic approach in order
to apply the “more probable than not” principle. Jurisprudence
has frequently highlighted the fact that public authorities must
identify the operator liable for damage to the environment caused
by pollution (D.Lgs 152/2006, Environmental Ministry of Italy,
2006). Particularly, article 239 recalls principles set out by the
EU including the PPP. From Directive 2004/35/EC (2004), there
is the stem that supports the obligation of imposing the costs
of preventive and remediation measures on the operator whose
actions or omissions have caused the environmental damage. In
the Lombardy Region (Italy), one of the most urbanized and
industrialized areas in Europe, nearly 3,000 potential brownfields
are present in the contaminated site regional database (AGISCO,
ARPA Lombardia, 2019). In such a context, there are many
obstacles for remediation as suggested by Alderuccio et al. (2019)
and Barilari et al. (2020). The PPP is quite different in many
countries: for example, in China (Zahar, 2018), the PPP has
been introduced into environmental law, but it seems to be
difficult to apply because of the ownership of the National
Government. In Spain, the PPP is mixed to the concept of
“pay as you throw” (PAYT), which is the method that most
directly relates user charges to contributions to environmental
sustainability (Chamizo-González et al., 2018). A number of
developing countries have recently extended this principle to
make it an obligation of the state to compensate the victims of
environmental harm (Luppi et al., 2012). In order to apply in Italy
both administrative and penal proceedings, a detailed historical
analysis of the activities conducted at a site, in conjunction
with the link between substances, materials used in production
cycles and relationship with the owner, creates the basis for
environmental forensics. The link, always “causal,” requires
strong supporting “evidence”; in this sense, the criterion of “more
probable than not” can be applied. This is a fundamental step for
regional authorities that, without identifying those responsible
for contamination, have to take charge of the remediation
processes. In order to reconstruct such difficult historical
backgrounds in highly urbanized areas (i.e., in the Lombardy
Region), new scientific and robust methodologies are required
in order to identify the suspected sources of contaminant.
Among others, compound-specific isotope analysis (Hunkeler
et al., 2008; Shouakar-Stash et al., 2009; Alberti et al., 2017),
integral pumping tests (Bauer et al., 2004; Alberti et al., 2011),

inverse groundwater modeling (Carrera et al., 2005; Tonkin
and Doherty, 2009; Alberti et al., 2018; Moeck et al., 2020),
and their combination are the most promising techniques. The
modeling methodologies have to take into account uncertainties
within an “acceptable level,” which depends on the effects and
costs of possible contamination and on the complexity of the
hydrogeological systems (Frind andMolson, 2018). Uncertainties
are given by heterogeneity in the aquifer units, in the regional
flow system, in the recharge, and in the conceptual model setup
(Rojas et al., 2008). The classical method to identify sources is
particle tracking (PT), which involves flow system simulation
modeling combined with advective transport of particles along
flow lines. For contamination in highly urbanized areas, where
a simple termination point (i.e., end-point) analysis is not
feasible due to the multiple unknown source release times, the
combination of particle tracking with the Null-Space Monte
Carlo approach (PT+NSMC) is able to delineate the contribution
of each PS under geological uncertainty associating a probability
to each of them. It thus enables the public authorities to
focus their investigations and to effectively apply the “Polluter
Pay Principle”.

2. MATERIALS AND METHODS

2.1. Study Area and Hydrogeology
The methodology has been developed within the AMIIGA
Project (Interreg Central Europe Grant N. CE32), where inverse
transport modeling was one of the tools used to assess the
unknown sources in the northwestern part of the Milano
Functional Urban Area (FUA). The area of 157 km2 covers
12 municipalities with high urbanization density (about 4,000
inhabitants per km2) and a large presence of industrial sites. The
area is historically affected by many chlorinated hydrocarbon
plumes originating from the northern outer border of the
Milano municipality (Giovanardi, 1979; Segre, 1987; Provincia
di Milano, 1992); over the last 40 years, the contamination has
migrated into Milano city because of the intake area induced
by the water supply wells, which provoked a coalescence of
several plumes and causing a deterioration of water quality.
The evidence is that many plumes that originated in the early
70s in the vicinity of Milano are still affecting the aquifers
that supply water to the Milano aqueduct system due to the
presence of secondary sources and the retardation process of
transport. Many chloride compounds were commonly used for
degreasing processes by metallurgical, chemical, galvanizing, dry
cleaning, and other industrial plants. Today, the main solvents
observed in the water supply wells are tetrachloroethylene (PCE),
trichloroethylene (TCE), and thichloromethane (TCM) whose
concentrations exceed the CCT (Contamination Concentration
Threshold) of Italian Law (D. Lgs 152/2006, Environmental
Ministry of Italy, 2006, D. Lgs 31/2001, Environmental Ministry
of Italy, 2001). The problems owing to the presence of these
substances in waters are (1) the high risk of carcinogenicity in
humans and (2) the measures that water managers have to adopt
in order to control and remove organic chlorinated compounds
from drinking water.
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FIGURE 1 | Study area: FUA municipalities with black contours, PCE contamination sampled in (a) 2000 and (b) 2007 with the associated piezometric map. The

cross-section AA′ is described in the Supplementary Figure 1.

Figure 1 shows the evolution of PCE contamination from
2000 (a) to 2007 (b) in the water supply wells in Milano
(in some wells the detected values are higher than 200 µg/l,
as represented by violet and brown circles). Furthermore, the
urban texture has significantly changed during the last 15
years [the change in the use of soil (from 2000 to 2015) is
provided in the Supplementary Figure 2. Some green areas
are becoming industrialized and vice versa. The continuous
change of use of soil (Masetti et al., 2008) can be one of
the causes affecting the groundwater contamination (Pollicino
et al., 2019). It is therefore very difficult to reconstruct the
suspected areas and consequently to attribute the responsibility
of contamination observed in the water supply wells. The
Lombardy Region aquifer classification (Regione Lombardia
and ENI Divisione Agip, 2002) considers the presence of four
different hydrostratigraphic units named A, B, C, and D (a

vertical cross-section is shown in the Supplementary Figure 1)

that originated due to the overlay of plio-pleistocenic alluvial

sediments that filled the Neogene Po plain fore-deep, reaching

a maximum thickness of approximately 500 m (Bini, 1987).
The main aquifers affected by the contamination (A and B)
have alluvial and glacio-fluvial origins, and they have a high
transmissivity. The unconfined Aquifer A, has a sandy-gravel
texture, and the underlying semi-confined aquifer (Aquifer B) has
a fine sand composition, interrupted by clay lenses that subdivide
it in several small aquifers (i.e., multilayered aquifer). The two
aquifers are undifferentiated in the northern part of the study
area, whereas they are hydraulically separated by a clay layer of

about a meter in thickness in the Milano area. The historical
piezometric data collected for the two aquifers show that Aquifer
A presents a hydraulic head, higher than in Aquifer B, of about
1 to 1.5 m, and there is therefore a natural downwelling of
flow from the shallow aquifer where the clay aquitard shows
discontinuities. More details about the conceptual model can be
found in previous works (Cavallin et al., 1983; Beretta et al., 1992,
2004; Alberti et al., 2016; Colombo et al., 2019).

2.2. Methodology
The model used to carry out the stochastic simulations in
this work is briefly described in this section; a more detailed
description is provided by Colombo et al. (2019). Nine model
layers with variable thickness (Figure 2) are used to represent
the two most contaminated geological units (A and B) in
the groundwater model (MODFLOW-2005, Harbaugh, 2005),
using Groundwater Vistas as the graphical interface (Rumbaugh
and Rumbaugh, 2011): Layer 1 represents Aquifer A, layer 2
represents the aquitard, and layers 3–9 represent the so-called
multilayered Aquifer B. The model also represents rivers and
sinks (i.e., pumping wells), and the horizontal discretization
is a 100x100 m grid. Boundary conditions are chosen to be
CHs (Constant Heads) and are extrapolated from previous
modeling studies (Alberti et al., 2016). The main river (Olona)
is implemented as a Cauchy boundary condition. The exchange
between superficial water and groundwater is quite low and
influences a zone of a few hundred meters around the riverbed.
The flow rate depends on the low conductance term defined
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FIGURE 2 | Groundwater model: (a) boundary conditions, grid, and internal condition; (b) Pilot Point (PP) positions and targets used for calibration (blue) and

validation (red); (c) example of different zones used in calibration process for Layer 2 and (d) calibrated hydraulic conductivity distribution for Layer 2 in the

deterministic process. The violet squared area is the San Siro pumping station, where the particles are located for the backtracking analysis.

by hydraulic conductivity and the riverbed thickness (Alberti
et al., 2007). An artificial canal used for irrigation purposes is
also represented using a Cauchy boundary condition, even if its
exchanges with the aquifer are quite low because of its concrete

structure. Over the rest of model top, the amount of vertical
recharge has been considered uniform in areas with similar land
use (divided in urban, agricultural, and green) and estimated
through the Thornthwaite method (Thornthwaite, 1948). In the
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urbanized areas, the contribution of natural recharge is almost
null, but a low groundwater recharge is nevertheless assigned in
order to consider water network losses (Alberti et al., 2016). More
than 750 pumping wells are included in the model (Colombo
et al., 2019) of which 200 wells are drinking water wells affected
by CHCs contamination.

The model has been calibrated in a steady state, as described
in Colombo et al. (2019), using head values from 63 piezometers
using the inverse parameter estimation code PEST (Doherty,
2010). The spatial variations in hydraulic conductivity are
estimated by using a pilot point (PP) approach for each of the
hydrogeology units (A and B). An anisotropy ratio between the
horizontal direction (Kxx = Kyy) and the vertical direction
(Kzz = 0.1Kxx) is applied. Four different zones, where the
PPs are able to interpolate (using Kriging with an exponential
variogram), the K-values have been set (zone 1 for Aquifer A,
zone 3 for Aquifer B, zone 2–4 respectively for aquitard and
lenses in Aquifer B). As suggested by Doherty (2015) and Moeck
et al. (2020), using a high number of PPs, the variogram assumes
less importance and only an estimation is required. During the
process of inverse calibration, PEST is able to modify the PP
values in order to minimize the objective target function (i.e.,
residual sum of squares expressed inm2, PHI =

∑

[hobs−hsim]
2,

where hobs is the observed head and hsim is the computed head)
in subsequent iterations. Expert knowledge in this framework
has been used to assign input values to the PPs representing
aquifer tests performed in the study area (i.e., characterization
of contamination site and new hydraulic barrier installations).
For these PPs, as the hydraulic conductivity values have been
estimated by a test (i.e., pumping tests), the boundary range is
narrower compared to the others (+/- 0.5 times the magnitude
of the value) in order to constrain the PEST estimation in a
“real geological” interval. PPs are distributed differently in each
zone (83 in zone 1, 46 in zone 2, 117 in zone 3, and 71 in
zone 4). The density of the PPs is proportional to the head
observation number, as suggested by Christensen and Doherty
(2008), and they are uniformly distributed within the domain
except for the aquifer test points. In general, the PP density has to
take into account the possibility of exploring the heterogeneity,
which is needed to have a good fit with observations; on the
other hand, the more PPs are considered, the more complex is
the inverse parameter estimation with its higher computational
time. After this step, a singular value decomposition (SVD), in
conjunction with a Tikhonov regularization, is applied in order
to have a stable inverse process and to consider prior information
(which includes the expert knowledge) into the model to obtain
a reasonable geological structure. The subsequent step is to
combine PPs with a NSMC analysis (Tonkin and Doherty, 2009)
to provide spatial variations in the K-field. A total of 400 different
parameter sets are generated through a random log-normal
distribution based on the provided upper and lower parameter
range (Table 1).

The parameter sets are modified in the null-space projections
and are adapted from the base model. In other words,
PEST decomposes the parameter space into two perpendicular
sub-spaces (solution and null-space). The first space is the
representation of parameter combinations that can be estimated

TABLE 1 | Hydraulic conductivity in m/s (initial and bounding values) of the

parameter used under NSMC (for the geological zones description see

Supplementary Figure 1).

Geological zone Initial level Lower limit Upper limit

1 10−4 10−5 10−2

2 10−6 10−8 10−6

3 10−5 10−5 5× 10−3

4 10−6 10−8 10−6

on the current field used for the calibration. The parts not
“explained” in the solution space are spanned into the null-
space (i.e., the second space). Each generated random parameter
is therefore projected into the calibration null-space and the
solution-space component is removed, as it is replaced with
the calibrated parameter field from the base model. As the
groundwater model is not linear, the stochastic parameter
field needs to be re-calibrated. One option is a two-iteration
method calibration. The final objective target function is then
compared to the desired objective function to keep only the best
calibrated K-distributions. Alberti et al. (2018) considered an
arbitrary threshold value of the objective function corresponding
to the objective function values of the initial deterministic
calibrated model, while Moeck et al. (2020) considered both
the expected measurement error and structural model error (to
avoid overfitting).

In this analysis, following Alberti et al. (2018), the threshold
has been set to 35 m2, corresponding to the objective function
value of the “native” (primary) calibrated model. From
the total set of 400 random models, 64 were discarded
and 336 accepted for the further analyses (as presented
in Supplementary Figure 3). Generally, the results in
terms of probability in the study area are not different (in
Supplementary Figure 4 shows the differences, while in
Supplementary Figure 5 is shown the particle frequency
distribution in Layer 2). The scheme of the adopted methodology
is represented in Figure 3.

In the literature, several examples of the NSMC method with
different uses have been presented: from calibration purposes
(Tonkin and Doherty, 2009; Doherty, 2015) to diffuse pollution
assessment (Alberti et al., 2018) and from assessing aquifer
pathways (Moeck et al., 2020) to testing barrier effectiveness
(Formentin et al., 2019).

2.3. Integration of Particle Tracking and
NSMC
To assess the most likely source area of the PCE contamination
in the San Siro pumping wells in Milano and to identify
the most likely occurring flow path, the particle backtracking
technique has been applied by using the code MODPATH v.5
(Pollock, 1994). For all accepted hydraulic conductivity fields,
3D backward particle tracking has been carried out from most
contaminated pumping well (well N◦500), where the detected
concentrations of PCE are historically higher than the threshold
limit for drinking water set by the Environmental Ministry of
Italy (2001). Figure 4 provides details about the area of the
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FIGURE 3 | Conceptual flowchart for the PT+NSMC methodology.

San Siro pumping station. In general, the wells of the Milano
pumping stations are screened in Aquifer B, which is mostly
protected by a clay lenses of variable thickness (between 1 and
3 m) whose extension is shown in Figure 2d. Figure 4 shows
the cross-sections obtained from the pumping station well log-
stratigraphy, where pumping well N◦500 is screened in three
different layers. The particles have been computed based on a
“screen-position” hypothesis: since wells can screen more than
one layer and so the actual depth of the contamination is
uncertain, it has been assumed that the number of particles can
be distributed in different modeled layers. Then, for well N◦500,
a total of three particles are positioned basing on the screened
levels in permeable layers (Layer 5,7, and 9), as the contaminant
is considered diluted along the screened length of the well.

3. RESULTS AND DISCUSSION

Figure 5 shows the values of the objective function before
and after the K-field re-calibration (paragraph 2.2). It can be
seen that the randomly generated K-fields are generally “not
calibrated” as generated by a “classical”Monte Carlo process: they
have higher objective functions than the posterior calibration
(399 models are not calibrated compared to the objective
function of the “native” deterministic model during the first
random extraction).

3.1. Spatial Distribution of K-field
Realization
During the calibration process, the hydraulic conductivity
(K) random distributions are estimated over the available

prior knowledge of the geological setting. Figure 6 shows the
variability of the K pattern in some of the randomly generated
realizations. The areas where the K-values are higher generally
remain the same spatially. For example, in the northern part
of the model, the extension of the high permeability zone (in
white) changes the shape but remains located in the upper part
of the area. This area is affected by limited information (only
a few targets are available), and for this reason the uncertainty
has a strong influence on the realizations. On the other hand,
in the central area of the model (near the San Siro pumping
station), the density of information (target measurements) is
higher and the realizations are less influenced by the lack
of observations. At these locations, the information contained
in the head measurements is able to constrain the parameter
estimation process.

3.2. Mapping the Backward NSMC Particle
Tracking: the Probability Associated With
the Source Areas of Contamination
Similar to Alberti et al. (2018) and Moeck et al. (2020),
a computation of the number of particles crossing the
model cells has been carried out, considering all different
accepted simulations. Figure 7a represents the particle frequency
distribution for all calibrated K-fields and for all model layers.
For areas delineated with high pathline density (i.e., higher
particle passage frequency), it is possible to delineate the most
likely area that can contain one or more PS and it allows to
apply the criterion “more probable than not.” It is important
to remember that, also in those areas where the frequency is
low, the possibility to find a source area is still not negligible.
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FIGURE 4 | Technical layout of the San Siro pumping station: (a) position of the San Siro pumping wells, (b) cross-sections reporting stratigraphic well logs (the colors

along each well represent the different materials); the color in the cross-section represents the different layers and (c) the PCE concentrations for the period

1992–2017 in well N◦500 where the particles were placed.

Most of the water pumped from the well is collected from
a central narrow line whose frequency is higher than 10%.
Superimposing the AGISCO database (from ARPA Lombardia,
2019) with these results (Figure 7), it is possible to underline the
contaminated sites that are more probable to be responsible for
the contamination detected in well N◦500. The single pathline
is comparable to the path with the highest pathline density. In
this case, a single pathline can therefore be used as an initial
screening tool.

Figure 7a shows that there are few contaminated sites
(Provincia di Milano, 1992, 1994) falling in the area having a
higher probability (in yellow), whereas the majority of them
fall in green areas having a low probability. Considering a
probability higher than 10%, two industrial districts (represented
in red and blue) can be considered the most probable source
of the San Siro PCE contamination. Nevertheless, even if the
backtracking PT assigns the same probability to those districts,
the distance from well N◦500 has to be considered. Indeed,
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FIGURE 5 | Comparison between the initial objective function (RANDPAR) and the final objective function obtained with the two-iteration process (SVD). The red line

represents the threshold objective function limit (35 m2 ) used to retain the models with a good misfit to track particles.

chlorinated hydrocarbon plumes can be very long as natural
attenuation needs anoxic aquifer conditions. However, the
further the contaminated target is from the potential source, the
less probable for that source to be responsible (McGuire et al.,
2004). For this reason, as the red rectangle is closer to well N◦500
in the San Siro pumping wells (approximately 6 km) compared
to the blue rectangle (approximately 12 km), it can be stated that
the latter has a globally lower probability of being responsible.

In order to better identify the contaminated sites and to
clarify the contamination paths, two different maps have been
prepared separating the two aquifers: Figure 7b shows the
probability based only on particles flowing in Aquifer A, whereas
Figure 7c represents the probability only in Layer 5, which can
be considered representative of Aquifer B because most of the
particles flow within this hydrogeological unit.

The following analysis of the particle paths in each aquifer
was applied in order to narrow the areas directly impacted by
the contamination:

• In Aquifer A, the area with higher frequency (more than 15%)
is more evident, which was used to restrict the analyses and
then to find the potential responsible site.

• In Aquifer B, the probability is significantly less than 10%.
This map has the advantage to show that the withdrawals of
the Novara pumping station are high enough to affect the
flow direction in Aquifer B, acting as a “hydraulic barrier”,
protecting the San Siro pumping station.

3.3. Analyses of the Cross-Sections and
Discussion
In order to understand how the contamination can move and
reach the screens of well N◦500, it is also useful to analyze,

through some cross-sections, the probability distribution of
particles in the vertical direction. The represented particle
frequencies have been computed summing the number of
passages for each cell (the model coordinates are row and
column) and dividing it by the total sum in each column
(Figure 8): for example, in the cell coordinate (155;116), 29%
of total particles crossing this specific column (whose total
is indicated with

∑

in Figure 8) pass in Layer 1, whereas
2% pass in Layer 2, representing the shallow aquifer A and
the aquitard, respectively. To present the advantages of this
analysis, two different cross-sections (Figure 7a) have been
drawn near the red squared area. To complete the analysis, a
third cross-section is presented in the Supplementary Material
(Supplementary Figure 7).

Longitudinal cross-section B (Figure 8): this is oriented along

the main flow direction (NW-SE) and stretches for 7 km, starting

from the red square to the San Siro pumping station. This

representation allows to show in detail the vertical migration of
the contamination along the main flow direction. Starting from
the screens of well N◦500 (cell 189;151) and backtracking the
particle pathlines from there, Figure 8 shows that the particles
flow only in Aquifer B (Layer from 5 to 9), but they are
suddenly (cell 182;144) able to partially reach the shallower layers.
Continuing northward, the number of particles in Layer 9 and
7 progressively decreases (cell 166;127), and, simultaneously,
they increase in the more permeable upper Layers 5 and 1;
due to the presence of a high number of clay lenses, Layers
2–4 are not significantly interested by the particles. As soon
as a clay layer becomes discontinuous or disappears (from cell
154;114), the particle frequencies also increase in those layers,
and similar percentages are consequently present in Layers 1
to 5, corresponding to industrial sites 4 and 5. These results
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FIGURE 6 | K distribution for Aquifer A for three randomly selected parameter realizations (a–c). The K values are shown as log10 values, where white and red areas

show higher and lower K, respectively. Blue dots represent the head targets and green dots represent the aquifer tests.

show that contamination released in Aquifer A, 7 km from
San Siro, is able to reach the upper part of the screen at well
N◦500 (corresponding to Layer 5). In contrast, in order to
contaminate the deeper screens (Layer 7 and 9), PCE would
have to be mainly released directly in the deeper part of

Aquifer B, as few particles are able to cross the clay strata
underneath Layer 5.

Transverse cross-section A (Figure 9): this is orthogonal to
the main flow direction and stretches for 1.5 km. The capital
letter B indicates the crossing point with the longitudinal
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FIGURE 7 | Particle frequency distribution of the ensemble backtracked pathlines for (a) all layers, (b) Aquifer A, and (c) Layer 5, representing the more affected

sector of Aquifer B. Particle tracking has been carried out for all 336 accepted and re-calibrated model realizations. To represent the particle passage frequency, a

threshold value of 1% was set in all maps. Black lines represent the pathlines resulting from the native deterministic model.
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FIGURE 8 | (a) Cross-section B, oriented NW-SE (BB’) with the blue arrow indicating the flow direction: line one shows the cell coordinates, line two shows the sum

of particles passing in each vertical column and then the percentage for each layer, and the last column represents the number of particles for each layer; (b) zoom of

Figure 7, showing the area and two different industrial sites (4 and 5). The hydrogeological cross-section is shown in the Supplementary Figure 6B.

cross-section. Figure 9 shows that at the red squared area,
a large part of particles traverse Layer 1 and 5 where the
particle sum is 239 and 212 respectively. Nevertheless, some
differences can be noticed moving to the right and left of
the B crossing point. On the right side, moving toward the
industrial site 2, frequencies are quite similar from Layer 1
to 5 as displayed by the cross-section B in the cell (149;109).
On the left side, toward the industrial site 3, frequencies are
decreasing in Layer 2–4, indicating that here clay lenses are
able to better separate Aquifer A from Aquifer B. Summarizing
the results, it is possible to affirm that a PCE release in
the shallow aquifer at site 2, 4, and 5, compared to sites
1 and 3, has a higher probability to be responsible for the
contamination detected in well N◦500 (mainly for screens
positioned in Layer 5, as shown in Figure 8). On the other
hand, for the contamination detected in screens located in Layers
7 and 9, a direct release (i.e., dry well) in the deeper part
of Aquifer B should be hypothesized. Results show how the
stochastic approach, combined with backtracking PT, is able to
display the probability of the advective pathways followed by
the contaminant.

Stochastic particle tracking (PT+NSMC) is an innovative tool
that can be helpful in the search for contamination source
areas and plume monitoring. Its simplicity and versatility allows
several advantages such as the ability to perform multiple
analyses based on the same results, indeed two possible outcomes
have been presented: (1) plan map (x,y) of the particle passage
frequency in each cell of the model domain, showing all the
possible pathlines that the contaminant can follow starting from
a specific location, reached by the contamination, considering
the uncertainty related to the hydraulic conductivity. The main
advantage of the maps is that they allow us to consider a
global frequency (i.e., counts all the particles belonging to
a specific layer or group of layers) in order to locate the
more likely area to be investigated by the installation of new
piezometers or the characterization of brownfield areas. On the
contrary, these maps are not able to link the vertical passage
of the contamination (i.e., it would be necessary to produce
as many maps as the number of layers); (2) vertical cross-
sections representing the distribution of the particles cell by
cell as a function of the layer (z), able to represent the impact
of the contamination in each model layer and to give a 3D
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FIGURE 9 | (a) Cross-section A, oriented SW-NE (AA′): line one shows the cell coordinate, line two the sum of particles passing in each vertical column and then the

frequency for each layer, and the last column the count of particles for each layer; (b) zoom of Figure 7, showing the area and three different industrial sites (1, 2, and

3). The hydrogeological cross-section is shown in the Supplementary Figure 6A.

vision if orthogonal cross-sections are used. The advantage of
these analyses is the calculation of the number of particles
per vertical column and therefore the frequency for each layer
(i.e., accounting for the particles passing through a specific
cell) in order to show the contamination impact relative to a
single cell. However, the vertical cross-section is representative
of a specific area and as many different cross-sections as the
number of different contaminated sites should be made (i.e., a
reconstruction in a greater detail of the contamination paths).
The two analyses are complimentary and can be used together
to identify both potential contamination sources (i.e., higher
frequency in the plan map) in order to find appropriate areas
to install monitoring wells and suitable positions for the well
screens (i.e., in the more contaminated layer computed in
the vertical cross-section). However, this methodology shows
some limitations that can be further improved. For example,
a preliminary linear uncertainty analysis (Moore and Doherty,
2005; James et al., 2009; Dausman et al., 2010; Moeck et al., 2015,
2020) can be carried out in order to identify the most important
parameters linked to the uncertainty and likely to be used in the
NSMC procedure: for example, porosity, well abstractions, the
vertical recharge, and the boundary conditions can be considered
in the analyses. In this paper, only the hydraulic conductivity has
been considered as uncertain because concerning the porosity,
previous analyses showed that the model is not sensitive to
this parameter (Colombo et al., 2019); well abstraction data
have been provided by water managers so are considered to

be only slightly uncertain. To deal with BC’s, the choice has
been to use a large model domain in order to set them far
away from the area of interest and therefore would have a low
influence. Since the results obtained by the deterministic pathline
and the higher pathline density area obtained with NSMC are
coherent (Figure 7), it is possible that the flow path is mainly
controlled by the BCs and therefore the subsurface heterogeneity
might be less important. For this reason, the influence of the
BCs it will be further investigated in the future. In addition,
as reported by Chow et al. (2016), particle tracking provides
an approximation of groundwater flow paths and results can
differ between simulators because of velocity approximations
which are used for computation of the particle tracks. In the
model presented here, a regular grid has been used due to the
domain dimensions, and the choice was to apply the option
“pass through weak sinks” in order to not terminate any particle
and as a factor of safety from an environmental point of view.
Thanks to the unstructured grid of theMODFLOW-USG version
(Panday et al., 2013), it also would be possible to reduce the
particle tracking numerical error using a refined grid where wells
fall in the area of interest. Another possible improvement of
the proposed methodology could consider the combination of
stochastic results with contaminant concentrations detected in
the monitoring network. Overlapping this information would
exclude some areas removing the pathlines passing through clean
wells, following the methodology presented in Formentin et al.
(2019). Finally, in dense urban contexts, the results are not
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able to guarantee a unique liable area for the contamination
(i.e., the presence of many contaminated sites along the main
water flow direction as in cross-section B). Therefore, it can be
coupled with other analyses to further reduce the list of potential
responsible sites. For example, some statistics about the general
behavior of chlorinated solvent plumes can be considered, like
those presented inMcGuire et al. (2004). Considering a sample of
45 chlorinated solvent sites (managed throughmonitored natural
attenuation), 96% of the plumes were shorter than approximately
1.5 km and over a sample of 25 sites 68% of the remediation
time-frame was less than 30 years. According to these statistics,
a more distant potential source (e.g., the blue squared area
in Figure 7) is less likely to be responsible and therefore the
spatial range likely to contain the contamination source can
be limited, weighting the probability on the target distance or
the contaminant travel time. These ideas could be a future
improvement of the proposed methodology.

4. CONCLUSIONS

The northwestern area in the Milano Functional Urban Area
is affected by a strong presence of chlorinated hydrocarbons,
originating from several contaminated sites historically present
in the territory. Over the last years, this contamination has posed
important safety problems in the intake area of the water supply
wells of Milano. For this reason, the remediation of groundwater
for drinking water purposes has become a major problem for
water managers; on one hand, the water treatment procedures
became more onerous both in terms of management and new
plants (like new active carbon filter installations), but, on the
other hand, the cost of the raw water clean-up has to be imposed
on the citizens within the water bill costs. In this situation,
the Polluter Pay Principle becomes crucial: its application to
groundwater contamination due to the “more probable than
not” responsible source is able to help charge the cost of site
remediation and (mainly) the treatment costs of the water
extracted for public use. The support of a groundwater model is
very useful to study the contamination pathways, but, especially
in the presence of multiple possible sources, the deterministic
simulation fails as the uncertainties strongly influence the results
both in terms of groundwater flow and in terms of contaminant
transport. In this context, new methodologies and models have
been developed (Alberti et al., 2018; Moeck et al., 2020). One
innovative methodology is to combine particle backtracking
with a constrained Monte Carlo approach (i.e., considering
the uncertainties linked to the hydraulic conductivity). This
combination has been developed throughout this paper to
identify PCE point sources in urban areas. Starting from one of
the pumping wells most contaminated by PCE in the San Siro
pumping station, a particle backtracking stochastic analysis has
been developed. Considering all the accepted K-field realizations
(336), all the contaminated sites within the non-zero probability
areas must be considered as potential sources for this pollution.
However, in such a densely industrialized zone, this result is
not able to narrow the area where the actual source of the
contamination can be identified. Then, a further analysis has been

developed in order to: (1) narrow the suspected areas considering
the higher particle density, recognizing as possible sources only
five sites among several others present upstream of the detected
contamination; (2) study the particle paths in greater detail
dividing the map results into two different hydrogeological units
(Aquifer A and Aquifer B) using a high vertical discretization
of the model (nine layers); and (3) provide vertical cross-
sections of the particle passage frequency for selected suspected
areas. In conclusion, particle tracking with Monte Carlo can
be used as a method to identify the “more probable than
not” areas potentially responsible for contamination detected
in sensitive targets. For this reason, the method can be very
helpful to the public authorities as a decision support tool to
prepare a ranking list of possible potential responsible sites for
contamination and to design a suitable well monitoring network.
In densely industrialized districts, the proposed procedure is
not able to identify just one source site with certainty and it
needs to be coupled together with other analyses to provide
strong evidence of liability. This method provides a new basis
for future modelers, where the geological uncertainty plays a
fundamental role for a reasonable and responsible assessment of
the polluters.
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Integration of Soft Data Into
Geostatistical Simulation of
Categorical Variables
Steven F. Carle1* and Graham E. Fogg2

1Lawrence Livermore National Laboratory, Livermore, CA, United States, 2University of California, Davis, Davis, CA, United States

Uncertain or indirect “soft” data, such as geologic interpretation, driller’s logs, geophysical
logs or imaging, offer potential constraints or “soft conditioning” to stochastic models of
discrete categorical subsurface variables in hydrogeology such as hydrofacies. Previous
bivariate geostatistical simulation algorithms have not fully addressed the impact of data
uncertainty in formulation of the (co) kriging equations and the objective function in
simulated annealing (or quenching). This paper introduces the geostatistical simulation
code tsim-s, which accounts for categorical data uncertainty through a data “hardness”
parameter. In generating geostatistical realizations with tsim-s, the uncertainty inherent to
soft conditioning is factored into both 1) the data declustering and spatial correlation
functions in cokriging and 2) the acceptance probability for change of category in simulated
quenching. The degree or sensitivity to which soft data conditions a realization as a
function of hardness can be quantified by mapping category probabilities derived from
multiple realizations. In addition to point or borehole data, arrays of data (e.g., as derived
from a depth-dependency function, probability map, or “prior realization”) can be used as
soft conditioning. The tsim-s algorithm provides a theoretically sound and general
framework for integrating datasets of variable location, resolution, and uncertainty into
geostatistical simulation of categorical variables. A practical example shows how tsim-s is
capable of generating a large-scale three-dimensional simulation including curvilinear
features.

Keywords: geostatistics, hydrogeology, conditioning, cokriging, simulation, soft, prior, inversion

1 INTRODUCTION

In many hydrogeological modeling applications, much of the available characterization data for
categorical variables, such as lithology, texture, or hydrofacies, are uncertain or less than 100%
accurate. In some geostatistical applications, the categorical data such as soil texture are treated as
100% accurate or “hard” data despite the fact these data are uncertain for various reasons (Carle,
1996; Burow et al., 1997; Carle et al., 1998; Weissmann et al., 1999). In other applications, uncertain
or indirect “soft” data such as geophysical imaging are available but found difficult to apply as “soft
conditioning” to geostatistical simulations of categorical variables (Falivene et al., 2007; Koch et al.,
2014). Categorization of hydrogeological variables often has uncertainty attributable to sample
quality, geologic interpretation, or indirectness of measurement (e.g., geophysical logs, cone
penetrometer data). For example, so-called “driller’s logs” or lithologic descriptions by well
drillers based on interpretations of drilling conditions, cuttings, and limited core samples are,
understandably, uncertain (Oatfield and Czarnecki, 1989; Smith, 2002; Dumedah and Schuurman,
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2008; Arihood, 2009; Tsai and Elshall, 2013). Yet driller’s logs
may provide the most detailed characterization information
available for many local site to basin-scale hydrogeological
modeling applications (Ezzedine et al., 1999; Weissmann et al.,
1999; Weissmann and Fogg, 1999; Carle et al., 2006; Fleckenstein
et al., 2006; Elshall et al., 2013). Alternatively, hydrogeological
categories can be inferred from geophysical measurements or
imaging, but the resulting inferences are inherently uncertain.
Paradis et al. (2015) found that even after application of
sophisticated machine learning techniques to cone
penetrometer test and soil moisture and resistivity probe data,
classification errors persist in hydrofacies identification. The
resolution of geophysical images varies as a result of
petrophysical relationships and, therefore, provides indirect
contraints on lithology, texture, or hydrofacies, as further
discussed in application of three-dimensional resistivity maps
derived from airborne electromagnetic surveys to
characterization of spatial occurrences of sand-clay textures
(Koch et al., 2014; Hoyer et al., 2015) and electrical resistance
tomographs to determine spatial distributions of alluvial or fluvial
hydrofacies (Carle et al., 1999; Carle and Ramirez, 1999; Hermans
and Irving, 2017). It is a well-accepted fact in the Earth sciences
that uncertainty is common to subsurface data.

A general framework for integrating soft data into categorical
geostatistical simulation should be useful to stochastic subsurface
characterization and inversion of discrete heterogeneity within
hydrogeologic systems. One, two, or three-dimensional (3-D)
spatial information derived from geophysical imaging or logging
(e.g., seismic, electrical) or hydrogeologic interpretation (e.g.,
cross-sections or calibrated flow models) could be treated as a
type of soft data available for conditioning geostatistical
simulation of categorical variables. In stochastic inversion, a
general framework for integrating prior information could be
used, for example, to selectively manipulate discrete
heterogeneity structure, such as the interconnectivity of
permeable units or the continuity of impermeable units (Carle
and Ramirez, 1999; Carle et al., 1999; Aines et al., 2002;
Wainwright et al., 2014). A “Markov-Bayes” approach has
been proposed to transform the soft data to prior probability
distributions (Zhu, 1991; Deutsch and Journel, 1998), but this
approach has been deemed intractable because of nonlinear
relationships and large volumetric scale of the soft data
(Deutsch and Wen, 2000).

Categorical or “indicator” bivariate geostatistical approaches
have long been recognized as offering realistic and practical
means for assessing the impact of subsurface heterogeneity on
field- and basin-scale flow and transport processes (Poeter and
Townsend, 1994; McKenna and Poeter, 1995; Poeter and
McKenna, 1995; Tsang et al., 1996). As part of the T-ProGS
software package (Carle, 1999; Carle, 2007), the tsim code was
developed to take advantage of the interpretability of transition
probability statistic to ensure that spatial cross-correlations and
juxtapositional tendencies of hydrogeologic units or hydrofacies
are fully considered in categorical stochastic simulation (Carle,
1996; Carle, 1997; Carle and Fogg, 1996; Carle and Fogg, 1997).
The tsim code was modified from the variogram-based sisim
code (Deutsch and Journel, 1992; Deutsch and Journel, 1998) in

three main ways: 1) formulation of the estimate of the local
probability of occurence of a discrete category by a cokriging
system of equations instead of multiple indicator kriging
equations (Carle and Fogg, 1996), 2) addition of a simulated
quenching step to improve match of simulated and modeled
simulated variability (Carle, 1997), and 3) addition of an option to
vary the local direction of anisotropy direction (Carle, 1996;
Carle, 1999; Carle, 2007). The latter modification enables
simulation of curvilinear features such as variable stratigraphic
dip, major direction of anistropy, and sinuous meandering of
fluvial facies (Carle et al., 1998; Tompson et al., 1999; Carle et al.,
2006; Green et al., 2010; Engdahl et al., 2012). These
modifications were made to improve the ability of
geostatistical methods to simulate realistic three-dimensional
alluvial or fluvial hydrofacies architecture that influences site-
scale flow and transport behavior (Fogg, 1986; Tompson et al.,
1999; Fogg et al., 2000; Labolle and Fogg, 2001). Another
development of the T-ProGS simulation environment is that it
leverages the geologic reality that the spatial variability of many
hydro- or geo-facies systems can be characterized by a
continuous-lag Markov chain, which provides an intuitive yet
statistically rigorous framework for developing geologically
realistic models with a minimal number of parameters
(Vistelius, 1949; Krumbein and Dacey, 1969; Harbaugh and
Bonham-Carter, 1970; Agterberg, 1974; Doveton, 1994; Carle
and Fogg, 1997). However, the user of tsim can choose to
implement other 3-D models of the transition probability, if
so desired (Carle, 1999; Carle, 2007).

The tsim code and its associated transition probability-based
categorical geostatistical methodologies have subsequently been
found to be useful to characterization andmodeling of a variety of
heterogeneous hydrogeological systems (Carle, 2000; Ritzi, 2000;
Lu and Zhang, 2002; Lu et al., 2002; Bohling and Dubois, 2003;
Zhang and Fogg, 2003; Carle et al., 2004; James, 2004; Troldborg,
2004; Weissmann et al., 2004; McDonald et al., 2005; Ye and
Khaleel, 2008; Janza, 2009; Sakaki et al., 2009; Alberto, 2010;
Engdahl et al., 2010b; Janza, 2009; Doherty and Christensen,
2011; Papapetrou and Theodossiou, 2012; Purkis et al., 2012;
Guastaldi et al., 2014; He et al., 2015; Song et al., 2015;
Weissmann et al., 2015; Krage et al., 2016; Zhu et al., 2016a;
Meirovitz et al., 2017; Muskus and Falta, 2018; Erdal et al., 2019;
Sun et al., 2019; Wu et al., 2019; Arshadi et al., 2020).
Furthermore, tsim has been applied to the study of a range of
problems and processes involving subsurface heterogeneity
including groundwater recharge or river flow loss (Tompson
et al., 1999; Izbicki, 2002; Fleckenstein et al., 2006; Frei et al., 2009;
Engdahl et al., 2010a, Pryshlak et al., 2015; Ganot et al., 2018;
Maples et al., 2019, Maples et al., 2020), integration of geophysical
data or imaging (Carle and Ramirez, 1999; Carle et al., 1999; Zhu
et al., 2016b), aquifer or pore system interconnectivity,
percolation, and preferential flow (Fogg et al., 2000; Proce
et al., 2004; Harter, 2005; Knudby et al., 2006; Bianchi et al.,
2011; Huang et al., 2012), risk analysis (Maxwell et al., 2000;
Maxwell et al., 2008), heterogeneity effects on groundwater flow
(Lu et al., 2001; Jones et al., 2002; Phillips et al., 2007; Traum et al.,
2014; Bianchi, 2017; Liao et al., 2020), heterogeneity effects on
contaminant transport (Pawloski et al., 2001; Tompson et al.,
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2002; Hu et al., 2003; Maxwell et al., 2003; Zhang and Fogg, 2003;
Pozdniakov et al., 2005; Zhang et al., 2007; Sivakumar et al.,
2005a; Sivakumar et al., 2005b; Carle et al., 2006; Maji and
Sudicky, 2008; Sun et al., 2008; Ye et al., 2009; Cooper et al.,
2010; Baidariko and Pozdniakov, 2011; Zhang and Meerschaert,
2011; Pozdniakov et al., 2012; Zhang et al., 2013; Glinskii et al.,
2014; Liu et al., 2014; Zhang et al., 2014; Beisman et al., 2015;
Bianchi et al., 2015; Lu et al., 2015; Maghrebi et al., 2015; Siirila-
Woodburn and Maxwell, 2015; Siirila-Woodburn et al., 2015;
Mi et al., 2016; Bianchi and Pedretti, 2017; Giraldo et al., 2017;
Soltanian et al., 2017a; Teramoto et al., 2017; Chen et al., 2018;
Guo et al., 2019b; Guo et al., 2019c; Vincent Henri and Harter,
2019; Guo et al., 2020), efficacy of remediation (Labolle and Fogg,
2001; Lee, 2004; Misut, 2014; Abriola et al., 2019; Guo et al.,
2019a), effects of diffusion, dispersion, or fractionation on
groundwater tracers (Labolle and Fogg, 2001; Weissmann
et al., 2002; Labolle et al., 2006; Labolle et al., 2008; Green
et al., 2010; Green et al., 2014; Engdahl et al., 2012; Yin et al.,
2020), sequestration of carbon dioxide (Hovorka et al., 2001;
Doughty and Pruess, 2004; Ramirez et al., 2006; Ramirez et al.,
2010; Deng et al., 2012; Espinet et al., 2013; Sun et al., 2013; Yang
et al., 2013; Carroll et al., 2014; Mansoor et al., 2014;
Mukhopadhyay et al., 2015; Bianchi et al., 2016; Kitanidis,
2016; Soltanian et al., 2016; Trainor-Guitton et al., 2016;
Amooie et al., 2017; Soltanian et al., 2017b; Damico et al.,
2018; Buscheck et al., 2019; Yang et al., 2019; Yang et al.,
2020), stochastic inversion of hydrofacies spatial distributions,
hydraulic properties, or transport behavior (Aines et al., 2002;
Jones et al., 2003; Harp et al., 2008; Bohling and Butler, 2010;
Harp and Vesselinov, 2010; Blessent et al., 2011; Espinet and
Shoemaker, 2013; Berg and Illman, 2015; Wang et al., 2017; Lee
et al., 2018; Song et al., 2019), spatial variability of reactive
mineral assemblages (Carle et al., 2002; Deng et al., 2010),
analysis of contaminant plumes (Reed et al., 2004; Maji et al.,
2006; Maji and Sudicky, 2008), assessment of nitrate
contamination, reduction, and removal (Carle et al., 2004;
Carle et al., 2006; Hansen et al., 2014; Sawyer, 2015; Wallace
et al., 2020), permeability structure within fractured rock (Park
et al., 2004; Blessent et al., 2011; Blessent, 2013), 3-D modeling of
ore-grade distributions (Fisher et al., 2005), probabilistic well
location (Stevick et al., 2005), non-point source contamination
(Zhang et al., 2006; Refsgaard et al., 2014; Zhang et al., 2018),
upscaling of flow and transport parameters (Dai et al., 2007;
Fleckenstein and Fogg, 2008; Bakshevskaia and Pozdniakov,
2016), geotechnical engineering (Beretta and Felletti, 2007;
Felletti and Berretta, 2009; Zetterlund et al., 2011; Grasmick
et al., 2020), assessment of nuclear waste disposal (Back and
Sundberg, 2007), effects of subsurface heterogeneity on remote
sensing (Eslinger et al., 2007), wellhead protection and
contamination vulnerability (Burow et al., 2008; Heywood,
2013; Yager and Heywood, 2014; Theodossiou and
Fotopoulou, 2015), physical and chemical heterogeneity in
streambeds and the hyporheic zone (Schornberg et al., 2010;
Faulkner et al., 2012; Zhou et al., 2014; Pryshlak et al., 2015; Singh
et al., 2018; Pescimoro et al., 2019; Liu et al., 2020), effects of
micro-topography on surface-subsurface exchange (Frei et al.,
2010), analysis of transport at the macrodispersion experiment

site (Bianchi et al., 2011; Zheng et al., 2011; Bianchi and Zheng,
2016; Pedretti and Bianchi, 2018; Yin et al., 2020), 3-D soil texture
(Haugen et al., 2011; Roig-Silva et al., 2012; Li et al., 2014b),
characterization of groundwater ecosystems (Larned, 2012),
effects of petroleum reservoir heterogeneity (Purkis et al.,
2012; Kwon et al., 2017), geologic units of the Swiss Jura
(Sartore, 2013), groundwater hydrology of fens (Sampath
et al., 2015; Sampath et al., 2016), potential for liquefaction
(Munter et al., 2016; Munter et al., 2017; Boulanger et al.,
2019), coupled surface and subsurface flow (Blessent et al.,
2017; Erdal et al., 2019), and geomechanical modeling of land
subsidence (Zhu et al., 2020). Given the usefulness of the tsim
algorithm, which was originally designed for categorical
stochastic simulation with conditioning by hard data only, an
improved capability to assimilate conditioning from soft data or
prior information of variable quality is expected to be useful to
hydrogeological and related subsurface applications and research.

In this paper, a simple theoretical framework is developed for
incorporating uncertain, indirect, or soft categorical data into
categorical geostatistical simulation. Geostatistical realizations
will honor or be conditional to both hard and soft data. The
theory considers that soft data should not be treated the same as
hard data in formulating (co)kriging equations and objective
functions in simulated annealing (or quenching) as implemented
in the original categorical stochastic simulation codes using
bivariate spatial statistics such as isim3d (Gomez-Hernandez
and Srivastava, 1990), tsim (Carle 1996; Carle et al., 1998),
sisim and anneal (Deutsch and Journel, 1998), and iksim
(Ying, 2000).

A new version of tsim, called tsim-s, has been coded to
enable incorporation of soft categorical data or prior
information. The tsim-s algorithm was originally conceived
to enable tsim to produce and perturb stochastic realizations
for Monte Carlo Markov chain inversion (Aines et al., 2002;
Carle, 2003; Glaser et al., 2004). The new capabilities in tsim-s
have more general applicability and flexibility to handle
conditioning data of variable quality or uncertainty. tsim-s
will be made available by request as the open-source fortran
code tsim has been distributed in the past. The development of
the equations necessary for implementation of the tsim-s
algorithm are included in this paper to fully document the
methods and to facilitate coding of the tsim algorithms in
higher-level languages such as R (Sartore, 2013; Sartore et al.,
2016). As will be seen in the equations, the computational
overhead for tsim-s is not signifcantly different from tsim
because the only modifications are to the entries in the
cokriging matrices and the parameters of the quenching
objective function.

This paper provides the theory behind the tsim-s algorithms
and results from example applications. The paper first reviews
transition probability-based indicator geostatistical theory
implemented in the tsim algorithms. Next, the paper derives
the equations used for implementing the new soft data
capabilities to account for uncertainty in categorical variables
using the “hardness” concept previously introduced for
continuous variables (Deutsch and Wen, 2000). Cokriging
equations and simulated quenching objective functions are re-
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ormulated to account for soft data using the hardness concept.
Example applications are given for hard and soft conditioning at
boreholes and from prior conditioning by an array of data such as
another realization or a depth-dependent uncertainty function.
Results of a 3-D simulation by Carle et al. (2006) are included to
demonstrate that tsim-s can be used to produce large-scale
stochastic realizations useful for investigation of flow and
transport processes in hydrogeologic systems. These examples
are provided to show the flexibility of the algorithm and by no
means cover all potential applications, a topic that is beyond the
scope of this paper. Further discussion is added to clarify the
capabilities and limitations of the tsim and tsim-s algorithms in
relationship to variogram-based and multi-point geostatistical
methods and the current understanding of how the simulation
algorithms can and should be implemented in a geological context.

2 MATERIALS AND METHODS

2.1 Transition Probability-Based Indicator
Geostatistics
Transition probability-based indicator geostatistics is a
categorical geostatistical approach where the transition
probability bivariate statistic is used to analyze spatial
variability and formulate cokriging equations (Carle and Fogg,
1996). The transition probability approach enables consideration
of spatial cross correlations (e.g., how different facies tend to
locate in space relative to each other) and facilitates a Markov
chain modeling framework that can be linked to geologic
interpretation (Krumbein and Dacey, 1969; Miall, 1973; Carle
and Fogg, 1997). Indicator variogram-based geostatistical
approaches do not fully consider spatial cross-correlations and
rely on data-intensive empirical curve fitting for model
development (Deutsch and Journel, 1992; Deutsch and
Journel, 1998; Goovaerts, 1996; Goovaerts, 1997).

In a categorical geostatistical approach, an indicator variable is
defined with respect to mutually exclusive or discrete categorical
variables (e.g., lithofacies, hydrofacies) by

Ik(x) � { 1, if category k occurs at location x
0, otherwise

k � 1, . . . ,K,

(1)

where x is location, and K is the number of categories. The
probability that category k occurs at x is equivalent to the
expected value of the indicator variable:

Pr{Ik(x) � 1} � E{Ik(x)}. (2)

In transition probability-based indicator geostatistics (Carle and
Fogg, 1996), the transition probability bivariate spatial statistic is
used to quantitatively describe spatial variability of the discrete
categorical variables, which we will generally refer to as “facies.”
Assuming second-order stationarity, the transition probability
tjk(h) is defined as a conditional probability that depends on a lag
separation vector h by

tjk(h) � Pr{k occurs at x + h
∣∣∣∣ j occurs at x}. (3)

Applying Bayes theorem and Eqs. 1 and 3 is formulated with
respect to indicator variables by

tjk(h) � Pr{j occurs at x and k occurs at x + h}
Pr{j occurs at x}

� Pr{Ij(x) � 1 and Ik(x + h) � 1}
Pr{Ij(x) � 1} . (4)

The transition probability entries, tjk(h), form the transition
probability matrix, T(h), as

T(h) � ⎡⎢⎢⎢⎢⎢⎣ t11(h) / t1K(h)
« 1 «

tK1(h) / tKK(h)
⎤⎥⎥⎥⎥⎥⎦. (5)

Other bivariate statistics, such as the indicator (cross-) variogram
or covariance can be used to implement indicator geostatistical
techniques. However, the transition probability has several
advantages:

• The transition probability is defined as a conditional
probability, which facilitates the connection of statistical
measures to geologic interpretation of facies architecture
(Miall, 1973; Carle et al., 1998).

• The geologically observable and interpretable parameters of
proportions, mean length, and juxtapositional tendencies
can be used to develop Markov chain models (Carle and
Fogg, 1996; Carle and Fogg, 1997).

• Non-symmetric juxtapositional tendencies can be
considered (Carle and Fogg, 1996).

• Three-dimensional (3-D) transition probability models of
spatial variability are readily developed from 1-D Markov
chains along principal stratigraphic directions (Carle and
Fogg, 1997).

• Continuous-lag Markov chains have been found suitable
for 3-D modeling of vertical and lateral spatial
transitioning among geo- or hydro-facies (Carle 1996;
Carle and Fogg, 1996; Carle and Fogg, 1997; Carle et al.,
1998; Fogg et al., 1998; Zhang and Fogg, 2003; Proce et al.,
2004; Ye and Khaleel, 2008; Engdahl et al., 2010a; Bianchi
et al., 2011; Pozdniakov et al., 2012; Purkis et al., 2012;
Bakshevskaia and Pozdniakov, 2016; Krage et al., 2016;
Sartore et al., 2016; Zhu et al., 2016a; Meirovitz et al.,
2017; Guo et al., 2019b).

2.2 Simulation with Hard Data Only
The tsim computer code is used to generate geostatistical
“realizations” of categorical variables such as lithology, soil
texture, or hydrofacies. The realizations generated by tsim
consist of a rectangular block of regularly-spaced grid cells.
The conditional simulation algorithm consists of two steps:

(1) cokriging-based “sequential indicator simulation” (SIS), and
(2) simulated quenching.

summarized below and described in further detail by Carle
(1996), Carle et al. (1998), and Deutsch and Journel (1998).
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2.2.1 Sequential Indicator Simulation Step
The algorithm and code used by the SIS step in tsim is modified
from the sisim code (Deutsch and Journel, 1992; Deutsch and
Journel, 1998). The SIS step in tsim traces a random path through
every grid cell in the realization. At each grid cell tsim uses
cokriging (instead of repeated kriging steps as in sisim) to
estimate conditional probabilities that a facies occurs at a grid
cell given surrounding conditioning data, which are typically
facies occurrences located at nearby grid cells. Initially, hard data
are the only conditioning information. In the process of
completing the simulation, nearby simulated values serve as
hard conditioning data for the future cokriging estimates along
the random path. Based on the cokriging estimates of the
conditional probability that a facies occurs at a particular grid
cell given facies occurrences at other nearby cells, a uniformly-
distributed random number is used to select the category that
occurs at a grid cell in the realization. This process continues one
grid cell at a time until all cells have been reached by the
random path.

The indicator cokriging estimate at a location, x0, is
formulated as a weighted sum by

Pr{k occurs at x0 ∣∣∣∣ ij(xα); α � 1, . . . ,N; j

� 1, . . . ,K} ≈ ∑N
α�1

∑K
j�1

ij(xα)wjk,α, (6)

where ij(xα) are indicator data values, N is the number of data, K
is the number of categories, and wjk,α represent weighting
coefficients. The weighting coefficients wjk,α are computed by
the transition probability-based cokriging system of equations
(Carle, 1996; Carle and Fogg, 1996)

⎡⎢⎢⎢⎢⎢⎣ T(x1 − x1) / T(xN − x1)
« 1 «

T(x1 − xN) / T(xN − xN)
⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣ W1

«
WN

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣ T(x0 − x1)
«

T(x0 − xN)
⎤⎥⎥⎥⎥⎥⎦, (7)

where N is the number of data and

Wn � ⎡⎢⎢⎢⎢⎢⎣ w11,n / w1K,n

« 1 «
wK1,n / wKK,n

⎤⎥⎥⎥⎥⎥⎦ for n � 1, . . . ,N. (8)

The indicator cokriging estimate is only an approximation of the
conditional probability on the left side of Eq. 6. The SIS step
provides the “initial configuration” for the next step in tsim,
simulated quenching (Carle, 1997; Carle et al., 1998).

2.2.2 Simulated Quenching Step
The SIS step alone does not ensure that the realization will
honor the model of spatial variability including all spatial
auto-correlations [tjk(h) for j � k] and cross-correlations
[tjk(h) for j≠ k]. The simulated quenching step is used to
improve the match between modeled and simulated spatial
variability by attempting to minimize an objective function,O,
defined by

O � ∑M
l�1

∑K
j�1

∑K
k�1

[tjk(hl)SIM − tjk(hl)MOD]2, (9)

where hl denote l � 1, . . . ,M specified lag vectors and “SIM” and
“MOD” distinguish simulated and modeled transition
probabilities, respectively (Aarts and Korst, 1989; Deutsch and
Journel, 1992; Deutsch and Journel, 1998; Deutsch and
Cockerham, 1994; Carle, 1997; Deutsch and Journel, 1998).
Simulated quenching is implemented by cycling through every
grid cell of the realization several times along a random path and
querying whether a change in facies will decrease O; if so, the
category is changed. Conditioning of hard data is maintained
during quenching by not allowing changes of categories at
conditioning locations. The quenching step continues until a
specified number of iterations through the every grid cell is
reached or O is reduced below a specified minimum threshold
(Carle et al., 1998; Carle, 1999, Carle, 2007).

Simulated quenching is the “zero temperature” form of
simulated annealing, where an “annealing schedule”
determines a probability of acceptance for changes that
increase O to avoid high-valued local minima in the solution
space for O (Deutsch and Journel, 1992; Carle, 1997). The main
advantages of using simulated quenching over annealing are 1)
the difficulty of designing and implementing an annealing
schedule is avoided and 2) quenching is much faster. In tsim,
the cokriging-based SIS step avoids high-valued local minima of
O by providing a spatially-correlated initial configuration prior to
quenching. The quenching step simply modifies existing spatial
structures in the initial configuration to be consistent with the
transition probability model.

2.3 Soft Data Conditioning in Categorical
Geostatistical Simulation
Two concepts are presented here to enable location-specific soft
data conditioning for mutually exclusive categories:

• “prior probability,”which assigns probabilities between zero
and one to each category (Deutsch and Journel, 1998; Ying,
2000), and

• “hardness,” which assigns one uncertainty measure to
account for overall uncertainty of the data at a given
location (Deutsch and Wen, 2000).

A common practical situation is that the data are categorized
(e.g., as textures in driller’s logs or by interpreted hydrofacies) but
known to be uncertain (e.g., because the driller’s logs or geological
interpretations are not 100% accurate). In this situation, the latter
approach is more straightforward to apply, although both
approaches can be applied simultaneously.

2.3.1 Prior Probabilities
Uncertainty in the indicator data or the “softness” of categorical
variables can be accounted for in tsim by assigning prior
probabilities between zero and unity to the indicator values,
which Weissmann and Fogg (1999) implemented in
application use of driller’s logs. This prior probability
approach has also been implemented in integration of
geophysical imaging to condition stochastic simulations of
hydrofacies architecture (Carle et al., 1999; Carle and Ramirez,
1999; Hermans and Irving, 2017). However, the prior probability
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approach can be problematic in many practical situations for
several reasons:

• The most readily available categorical data (e.g., from
driller’s logs or geological interpretations) are discretely
categorized and not presented in the form of prior
probabilities.

• The practitioner may find difficulty, tedium, and confusion
in assigning multiple prior probabilities between zero and
unity to the different facies categories over hundreds,
thousands, or more data points.

• Uncertainty in indicator data is not accounted for in the
cokriging Eq. 7 and objective function Eq. 9 used the SIS
and simulated quenching steps, respectively, of tsim.

The latter reason is a persistent theoretical shortcoming of past
and current bivariate geostatistical methods, wherein the (co)
kriging or simulated annealing equations are weighting the soft
data in the same manner as the hard data. On this topic, Deutsch
and Wen (2000) stated that “a significant problem with kriging-
based approaches (to stochastic simulation) is that there is no
convenient way to handle the fact that the soft data have locally
variable precision (or accuracy)” and, as a result, proposed a
simulated-annealing approach. However, we believe there is a
convenient way to handle soft data in both cokriging and
simulated quenching of categorical variables.

2.3.2 Categorical Data with Hardness
We introduce a simple alternative approach to integration of
uncertain or soft categorical data into stochastic simulation by
extending the concept of data hardness to categorical variables,
as previously proposed for continuous variables (Deutsch and
Wen, 2000). This approach requires assignment of a hardness
value ranging between zero and unity to the set of facies (or
indicator) probabilities given for each data location. On the
extremes, a hardness value of 1.0 represents hard data, and 0.0
represents data that provide no additional information. To
incorporate hardness into transition probability-based
indicator geostatistics, a soft datum is assumed to consist of
a weighted sum of both certain and uncertain information,
with weights that sum to unity. The certain portion is a set of
indicator values represented in binary form (e.g., the presence
or absence of a certain lithology) or as prior probabilities, and
the uncertain portion is, in effect, a state of no useful
information.

Assuming stationarity, the condition of complete uncertainty
for the expected value of the indicator variable, Ik(x), for a facies
at location x is the marginal probability or proportion, pk, such
that

E{Ik(x)} � pk. (10)

The soft indicator value, denoted by~ik(x), consists of a weighted
sum of a hard indicator value ik(x) and the marginal probability,
pk, according to

~ik(x) � α(x)ik(x) + β(x)pk,

where the weights, α(x) and β(x), indicate hardness and softness,
respectively, at location x. The hardness and softness weights are
complementary to each other as

α(x) + β(x) � 1. (11)

Values of hardness or softness weights are assumed to depend
only on location and not on individual categories. A soft indicator
variable ~Ik(x) is defined with respect to a hard indicator variable
Ik(x) defined in Eq. 1 by

~Ik(x) � α(x)Ik(x) + β(x)pk. (12)

In practice, a single hardness value is assigned to the set of
indicator values (i.e., facies probabilities). Compared to the
original tsim code, hardness values are the only additional
conditioning data information needed to implement the soft
data approach described herein for tsim-s.

2.4 Transition Probabilities and Cokriging
with Soft Data
The transition probability values used in the cokriging Eq. 7 were
originally formulated under the assumption of hard data (Carle
and Fogg, 1996). To incorporate soft data, transition probability
values in Eq. 7 will need to be modified to reflect the uncertainty
of the data used to formulate the cokriging estimate. For example,
if a datum has zero hardness [α(x) � 0 or β(x) � 1] and,
therefore, provides no additional information, that datum
should not impact the cokriging estimate. In particular, the
left hand side matrix of Eq. 7, which accounts for the
“declustering” of the data, and the right hand side of Eq. 7,
which accounts for the statistical closeness (spatial correlation) of
the data with respect to the estimation location (Isaaks and
Srivastava, 1989; Deutsch and Journel, 1992, Deutsch and
Journel, 1998), should be modified to account for data
uncertainty.

To account for soft data, the transition probability entries in
Eq. 7 must be modified to account for decreased spatial
correlation of soft data relative to hard data. This decrease in
spatial correlation is derived below using the transition
probability as the bivariate spatial statistic. Substituting Eq. 2
into Eq. 4, the transition probability is defined with respect to
hard indicator variables by

tjk(h) �
E{Ij(x)Ik(x + h)}

E{Ij(x)} . (13)

Substituting soft indicator values as defined by Eq. 12 into Eq. 13,
a “soft transition probability” ~tjk(h) is formulated by

~tjk(h) �
E{[α(x)Ij(x) + β(x)pj][α(x + h)Ik(x + h) + β(x + h)pk]}

E{[α(x)Ij(x) + β(x)pj]} .

(14)

Expanding (as shown step-by-step in the Appendix), assuming
stationarity, applying Eqs. 10 and 11, and combining terms, Eq.
14 reduces to

Frontiers in Earth Science | www.frontiersin.org November 2020 | Volume 8 | Article 5657076

Carle and Fogg Integration of Soft Data

69

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


~tjk(h) �
E{α(x)α(x + h)Ij(x)Ik(x + h) + [β(x + h) + β(x)α(x + h)]pjpk}

pj
.

(15)

Assuming that hardness values are independent and again
applying Eq. 10, Eq. 15 reduces to

~tjk(h) � α(x)α(x + h) E{Ij(x)Ik(x + h)}
E{Ij(x)}

+ [1 − α(x + h) + [1 − α(x)]α(x + h)]pjpk
pj

. (16)

Applying Eq. 13 and simplifying the right hand side, Eq. 16
reduces to

~tjk(h) � α(x)α(x + h)tjk(h) + [1 − α(x)α(x + h)]pk. (17)

According to Eq. 17, the soft transition probability is a
weighted sum of the transition probability tjk(h) and the
marginal probability pk. The weight for tjk(h) is the
product of the hardness values α(x) and α(x + h) at the two
datum locations, and the weight for pk is the complement to
the weight for tjk(h).

To consider soft data, the transition probability-based
indicator cokriging equations are simply modified by
substituting ~T(h) for T(h) in Eq. 7 as follows

⎡⎢⎢⎢⎢⎢⎢⎣ ~T(x1 − x1) / ~T(xN − x1)
« 1 «

~T(x1 − xN) / ~T(xN − xN)
⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣ W1

«
WN

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎣ ~T(x0 − x1)
«

~T(x0 − xN)
⎤⎥⎥⎥⎥⎥⎥⎦,

where,

~T(xm − xn) � ⎡⎢⎢⎢⎢⎢⎣ ~t11(xm − xn) / ~t1K(xm − xn)
« 1 «

~tK1(xm − xn) / ~tKK(xm − xn)
⎤⎥⎥⎥⎥⎥⎦.

If α(xm) � 1 and α(xn) � 1, the soft transition probability matrix
~T(xm − xn) is identical to the hard transition probability matrix
T(xm − xn) as defined by Eq. 5. If either α(xm) � 0 or α(xn) � 0,

~T(xm − xn) � ⎡⎢⎢⎢⎢⎢⎣ p1 / pK
« «
p1 / pK

⎤⎥⎥⎥⎥⎥⎦ k � 1, . . . ,K ,

where the entries in each column k are the proportions pk.
Assuming stationarity and ergodicity,

lim
hϕ →∞

� tjk(hϕ) � pk (18)

for lags hϕ in any direction ϕ. Eq. 18 indicates that for large
lags (beyond the range of spatial correlation), the transition
probabilities converge on the marginal probabilities. Thus,
the matrix values for ~T(xm − xn) when α(xm) � 0 and α(xm) � 0
are identical to the case for hard data where the lag (xm − xn)
is large enough such the two data are not spatially
correlated.

Importantly, the right hand side entries, ~T(x0 − xn) for
n � 1, . . . ,N , should be formulated assuming α(x0) � 1 because:

• Cokriging is used to estimate the probability that a category
exists at location x0 assuming that Ik(x0) for k � 1, . . . ,K are hard
indicator variables, as defined in Eq. 1.

• The estimation location, x0, is known.

However, if the location of x0 is not certain, the hardness value
α(x0) could be used to account for estimation location
uncertainty.

2.5 Simulated Quenching with Soft Data
2.5.1 Use of Acceptance Probability
In tsim, the simulated quenching step enforces hard conditioning
by not allowing any changes in categories at grid cell locations
with hard data. At grid cell locations with no data, categories are
changed along the random path whereverO can be reduced. One
can view the quenching algorithm in terms of a bi-modal
acceptance probability for changing the category on the basis
of reducing O: 0.0 if the category is determined by data and 1.0 if
the category is not determined by data.

In tsim-s, categories are also queried for change at each grid
cell, but with a lesser probability of acceptance at grid cell
locations containing soft data as compared to cells with no
data. The probability of accepting a change of categories that
reduces O is set at β(x); corresponding to Eq. 11, the probability
of rejecting the change is α(x). Thus, if hardness equals unity
[α(x) � 1], categories are not allowed to be changed at location x.
For soft data with hardness less than unity [α(x)< 1], changes in
categories that reduce O are accepted with a probability of β(x)
along the random path implemented by the quenching algorithm
untilO is sufficiently reduced in Eq. 9. This approach enables the
simulated quenching step to impart the most change in the
realizations at the locations where data are least certain, and
the least change where data are most certain. This algorithm is, in
effect, a location-dependent simulated annealing schedule where
the acceptance probability is proportional to the softness of
the data.

2.5.2 Use of the Joint Probability
In the example discussed later in Section 3.1, one category (gravel)
has a very low proportion of 0.006. In application of tsim, low-
proportion facies could be problematic in the simulated
quenching step because of the small amount of sample
statistics for matching the measured and modeled transition
probabilities. Alternatively, the objective function can be re-
formulated with respect to the joint probability, pjk(h)

pjk(h) � Pr{k occurs at x + h and j occurs at x}
� E{Ij(x)Ik(x + h)} (19)

In tsim-s an option is available for using the joint probability
defined in Eq. 19 to formulate the simulated quenching objective
function O as

O � ∑M
l�1

∑K
j�1

∑K
k�1

[pjk(hl)SIM − pjk(hl)MOD]2, (20)
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for the lags l � 1, . . . ,M included in the quenching process. The
joint probability formulation of O using Eq. 20 de-emphasizes
matching of measured and modeled transition probabilities for
low-proportion categories compared to Eq. 9.

3 RESULTS-APPLICATIONS TOSAVANNAH
RIVER SITE AND LAGAS BASIN

3.1 Initial Characterization of Savannah
River Site
The shallow subsurface beneath the Savannah River Site (SRS) in
South Carolina consists of Tertiary siliciclastic sediments
deposited in shoreline and nearshore depositional
environments (Aadland et al., 1995; Falls et al., 1997).
Characterization of heterogeneity at SRS is of interest to
improve understanding of vadose zone, groundwater flow, and
contaminant migration processes (Miller et al., 2000). A primary
concern is characterization of vertical and lateral extent of clay
lenses within the sand-dominated flow and transport regime. A
two-dimensional (2-D) analysis (for lateral x and vertical z
directions) is performed for the following SRS example, with
the goal of generating 2-D realizations of lithofacies heterogeneity
conditioned by both hard and soft data.

Figure 1 shows lithologic and geophysical log data from SRS
treated as hard and soft data, respectively, to condition
realizations generated by tsim-s. Four texturally-based
lithofacies are distinguished, with proportions in parenthesis:
gravel (0.006), sand (0.735), clayey sand (0.156), and clay

(0.103). The hard data (labeled “Hard”) are derived from core
descriptions in the borehole data, and the soft data (labeled “Soft-
1” and“Soft-2”) are inferred from resistivity logs from two
boreholes. In some sedimentary environments, resistivity log
data are not necessarily highly correlated with texturally-
derived facies (Burow et al., 1997).

The lithologic data for two boreholes in the vicinity of the cross-
section were used to calculate matrices of transition probability
measurements with dependence on vertical lag shown by circles in
Figure 2. The transition probability measurements associated with
the gravel category are somewhat erratic because of the very low
proportion of gravel. As a practical matter, this sort of
measurement variability caused by data sparseness should not
be unduly fitted in the transition probability modeling process.
A Markov chain model, shown by the solid lines in Figure 2, was
fitted the calculated vertical transition probabilities through use of a
matrix exponential function

T(hz) � expRzhz � exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−2.233 2.205 0.028 0.000
0.013 −0.256 0.105 0.138
0.018 0.571 −0.952 0.362
0.000 0.846 0.692 −1.538

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦hz
(21)

where the rate coefficients in Rz are given in units of m−1. As
shown by Agterberg (1974) and Carle and Fogg (1997), the
entries in T(hz) for Eq. 21 are computed by an eigenvalue
decomposition, so that each entry, tjk(hz), is a weighted sum
of the k (column) category proportion and three exponential
functions:

FIGURE 1 | Lithologic data within a geologic cross-section, Savannah River Site, South Carolina. Data labeled “Soft-1” and “Soft-2″ are inferred from resistivity
logs, and data marked “Hard” are obtained from core descriptions.
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T(hz) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.006 0.735 0.156 0.103
0.006 0.735 0.156 0.103
0.006 0.735 0.156 0.103
0.006 0.735 0.156 0.103

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.9832 −1.1807 −0.0662 0.2637
−0.0072 0.0086 0.0048 −0.0019
−0.0180 0.0216 0.0012 −0.0048
0.0260 −0.0313 −0.0018 0.0070

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦exp[ − 2.250m− 1hz]

+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.0117 0.0573 0.2117 −0.2807
0.0019 0.0095 0.0351 −0.0465
0.0116 0.0568 0.2100 −0.2784
−0.0321 −0.1568 −0.5800 0.7688

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦exp[ − 1.840m− 1hz]

+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−0.0004 0.3881 −0.3018 −0.0860
−0.0003 0.2466 −0.1917 −0.0546
0.0008 −0.8137 0.6326 0.1802
0.0006 −0.5472 0.4255 0.1212

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦exp[ − 0.890m− 1hz]

For the lateral x direction, Markov chain transition probability
models were developed for the SRS example based on prior
geological estimates of lithofacies mean lengths and
juxtapositional tendencies indicated by geologic cross-sections.
Such geological information can be converted into lateral
transition rates (e.g., Rx) to enable development of 2- and 3-D
Markov chain models and demonstrated by Carle and Fogg
(1997), Carle et al. (1998), and Weissmann et al. (1999).

3.2 Geostatistical Simulation with Soft Data
at SRS
3.2.1 Effect of Soft Data
Figure 3 compares (A) six realizations generated with hard data
only with (B) six realizations generated with hard and soft data. In
(A) and (B), the hard data are honored on the right side of each
realization where the solid vertical line is shown. In (B), the soft

FIGURE 2 | Vertical direction transition probability measurements (circles) and Markov chain model (lines).
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data are added as conditioning with hardness � 0.80 at the
locations shown by dashed vertical lines toward the left side of
each realization. With careful examination near soft data
locations, the soft data impart a strong yet inexact influence
on the lithofacies occurrences. For example, the occurrences of
clay between about z � 87–90 m in both soft data boreholes
produces a persistent clay layer in all six realizations, although the

fit to the soft data values is not always exact. Near the top of the
soft data shown in Figure 1 at z � 98–102.5 m, more clay and
clayey sand is indicated on the right. The realizations in Figure 3
honor these data, but to a lesser extent than between z � 87–90 m
where lateral correlation of the soft data is stronger. This
comparison is a simple example of how tsim-s can be used to
further constrain the realizations with soft data as compared to

FIGURE 3 | Six lithofacies realizations generated for cases with (A) hard data only and (B) hard and soft data. Hard data locations are indicated by solid line at right,
and soft data locations are indicated by dashed lines at left in (B).
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conditioning with only hard data, as could otherwise be
implemented with tsim.

Another way to visualize the impact of the soft data is to
average the indicator values over many realizations to produce a
“probability map” for each lithofacies. Figure 4 shows probability
maps for each lithofacies derived from 100 realizations with and
without soft data conditioning. In case (A) with hard data only,
the lithofacies probabilities approach marginal probabilities
(proportions) toward the left portion of the realizations. In
case (B) with hard and soft data, the soft data further

constrain the probability structure toward the left side of the
realizations. However, less-refined “gray areas” remain between
the borehole data because of the limited lateral correlation of the
lithofacies units. Overall, the soft conditioning at 0.80 hardness
imparts a strong influence on the realizations.

Through the hardness parameter, the degree of influence by
the soft data can be controlled as needed in application of tsim-s.
Figure 5 shows probability maps for the sand, clayey sand, and
clay lithofacies where hardness values for the soft data are reduced
to 0.5 and 0.2. Reducing the hardness produces less contrast or

FIGURE 4 |Maps of probability of occurrence for each lithofacies, based on mean indicator value of 100 realizations, for cases with (A) hard data only and (B) hard
and soft data (soft data hardness � 0.8).
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more gray areas in the probability map, which reflects the
increased uncertainty of the soft data.

3.2.2 Use of Realizations as Soft Conditioning
There is increasing interest in use of stochastic inversion
approaches to modify heterogeneity structures within
geostatistical realizations to be more consistent with
geophysical or hydraulic testing data (Aines et al., 2002; Harp
et al., 2008; Wainwright et al., 2014; Berg and Illman, 2015; Wang
et al., 2017). To implement these approaches, there can be a need
to modify an initial heterogeneity structure in a controlled or
incremental manner.

Another application of the soft data capability in tsim-s is to
use all or part of a realization as soft conditioning to exert control
on the modification of heterogeneity structures from one
realization to the next. One realization (or any available field
of categorical values) can be used as prior information for

conditioning of a new realization, which makes several new
capabilities available in tsim-s:

• The degree of correlation between a series of realizations or
can be controlled.

• The degree of variation from one realization to the next can
be controlled at different locations within each realization.

• By exerting control on the difference between one
realization and the next, Monte Carlo Markov chain
algorithms can be implemented as a Bayesian inverse
approach to optimization of local heterogeneity structure
(Aines et al., 2002; Wainwright et al., 2014; Wang et al.,
2017).

In practice, we refer to a realization used for soft conditioning
as the “prior realization” and a subsequent realization that is
produced as the “posterior realization.” Use of prior realizations

FIGURE 5 |Maps of probability of occurrence for sand, clayey sand, and clay lithofacies, based on mean indicator value of 100 realizations, for cases of hard and
soft data with (A) soft data hardness � 0.5, and (B) soft data hardness � 0.2.
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as soft conditioning in the SIS step is implemented by adding
only one additional soft datum to each cokriging estimate Eq. 6;
that additional soft datum consists of the indicator values from
the grid cell of the prior realization corresponding to the
cokriging estimation location for the posterior realization.
More soft data can be used, but one prior realization soft
datum at the cokriging estimation location itself provides
sufficient conditioning for generating correlated realizations
without adding much more computational burden. The

degree of correlation between the prior and posterior
realizations is controlled by setting the hardness values, which
may vary with location.

Figure 6 shows a sequence of six realizations where each
posterior realization is soft-conditioned to the prior realization
for cases of (A) hardness � 0.5 and (B) hardness � 0.9. Because the
degree of hardness controls the degree of similarity (or rate of
change) between one realization and the next, the realizations in
case (A) are less similar (or more different) from one realization

FIGURE 6 | Six successive realizations where the previous realization serves as soft conditioning, with hardness set for case (A) at 0.5 and case (B) at 0.9.
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FIGURE 7 | Example using a realization as soft data (upper left) with hardness varying with depth (left, second from top). Probability maps for gravel, sand,
clayey sand, and clay facies (lower left) are derived from 100 realizations. The first six soft-conditioned realizations are shown at right.
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to the next. Comparing the left side (away from the hard
conditioning) of realizations 1 and 6, similarities have largely
disappeared for case (A) but remain for case (B). Thus, the higher
rate of change (lesser hardness) shortens the memory of
heterogeneity patterns within a sequence of realizations soft-
conditioned by prior realizations.

Figure 7 shows an example using the same realization as soft data
(upper left) with hardness varyingwith depth from0.8 at top to 0.0 at
bottom. The probability maps for gravel, sand, clayey sand, and clay
facies, derived from 100 realizations generated by tsim-s, show
increasing uncertainty with depth. In particular, the location of
individual clayey sand and clay lenses in the soft data become less
distinct with depth in the probability maps. Likewise, the sand

probabilities become less distinct with depth and approach the
proportion of 0.735. The influence of a single gravel lens in the
soft data is evident in the gravel probability map. This example
illustrates how 2or 3-D geophysical images or geological
interpretations of categorical data might be used to soft-condition
geostatistical realizations with consideration of variable spatial
resolution such as decreasing resolution with increasing depth.

3.3 Application to Large-Scale Simulation
3.3.1 Computational Aspects
Like tsim, tsim-s is readily extended to large-scale three-
dimensional (3-D) applications. From a computational
standpoint, the main difference between running tsim and

FIGURE 8 | (A) Hydrofacies interpretations of driller logs and (B) example 3-D simulation of aquifer system heterogeneity using tsim-s showing locations of
conditioning data and variable dip and flow directions of anisotropy. Modified from Carle et al. (2006).
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tsim-s will be in memory use. For very large grid cell counts
(tens of millions or more), the memory use in tsim is mostly
taken up by integer arrays storing the grid cell category and
anisotropy direction information (if used). In the late 1990s
when memory was quite restricted compared to the year 2020, a
45-million cell 3-D realization was produced on a computer
with 48 megabytes (not gigabytes!) of memory by modifying
tsim to use a 1-byte integer format for the grid cell array and
implementing an analytical function to define variable
stratigraphic directions (Carle, 1996; Carle et al., 1998; Carle,
1999; Tompson et al., 1999). The open-source nature of the
T-ProGS package of codes enables the user to make similar

modifications to conserve memory. Depending on the
application, tsim-s will require a factor of as much as ten or
more times the memory use as tsim, but computational time
tsim-swill not be significantly higher because the corresponding
arrays for the cokriging equations and quenching objective
function are of the same dimensions under similar model
parameter settings. Considering that computer memory and
computational speed are orders of magnitude higher today and
into the future as compared to the late 1990s, we do not
anticipate large-scale simulation of categorical heterogeneity
with tsim-s to be highly constrained by the current or future
computational technology.

FIGURE 9 | Cross-section through the 3-D simulation shown in Figure 8 throught (A) longitudinal (B) lateral, and (C) horizontal planes.
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3.3.2 Llagas Basin Example
As discussed in the introduction, the use of driller’s logs in
categorical geostatistical simulation is of interest in
hydrogeology, yet presents some uncertainty in how to treat
driller’s logs as conditioning data. As a demonstration of the
use of driller’s logs and tsim-s to large-scale simulation,
Figure 8A shows an interpreted version of a driller’s log
dataset, and Figure 8B shows a 3-D simulation of
hydrostratigraphic architecture for the Llagas groundwater
subbasin south of San Jose, California (Carle et al., 2004; Carle
et al., 2006).

In this application, the driller’s log data were categorized into
aquifer, interbedded, and aquitard hydrofacies, where the
interbedded category represents relatively thin interlayers of
aquifer and aquitard materials. The addition of the
interbedded hydrofacies addresses unresolvable fine-scale
heterogeneity of coarse- and fine-grained textural
classifications and adds flexibility to development of the
Markov chain model. If only two hydrofacies, aquifer and
aquitard, had been distinguished, the 3-D Markov chain
model would consist of only four parameters - proportion and
mean length in the three principal depositional directions for one
of the hydrofacies; the remaining transition probabilities are all
determined by probability law (Carle and Fogg, 1996). A two-
category characterization of heterogeneity presents no distinct
advantage in the Markov chain spatial variability modeling
framework; the spatial variability model is equivalent to a two-
category indicator variogram-based approach modeled by an
exponential variogram. With three categories, the number of
parameters for the 3-D Markov chain is raised to 14, allowing for
development of more complexity in the heterogeneity structure
including asymmetry such as fining-upward and outward
tendencies (Miall, 1973; Carle and Fogg, 1997; Fogg et al., 1998).

This simulation was generated by tsim-s with soft
conditioning data divided into three sets of driller’s logs to
which hardness levels were set to 0.3, 0.7, and 1.0 based on
data quality. Two separate tsim-s simulations of 162,500,000 and
117,000,000 cells were generated for the upper and lower portions
of the final realization of hydrofacies architecture to address
differences in the spatial structure of deeper and shallower
alluvial hydrofacies evident in the driller’s logs. Carle et al.
(2006) provides further detail on the process of selection of
the hardness parameter in the practical hydrogeological
situation of using driller’s logs for conditioning data. This
example confirms that large-scale 3-D stochastic simulation
using tsim-s is feasible. The stochastic analysis was further
applied to investigate permeability heterogeneity effects on
nitrate transport from agricultural sources toward municipal
wells (Carle et al., 2004, Carle et al., 2006).

4 DISCUSSION

The discussion focuses on capabilities and limitations of t-sim
and tsim-s with attention to the current literature on comparison
and evaluation of geostatistical methods for subsurface
characterization of categorical variables.

4.1 Curvilinear Features
Both tsim and tsim-s have the capability to produce curvilinear
features by specifying azimuthal and dip angles local to each grid
cell in an a priori manner (Carle, 1999; Carle, 2007) that can be
deterministic (Tompson et al., 1999; Carle et al., 2006) or
stochastic (Carle et al., 1998). These angles may be derived or
inferred from prior geological knowledge or geologically
reasonable interpretation of the depositional or stratigraphic
architecture, surface mapping of the deep soil horizons,
interpretation of seismic or surface geophysical data, or
stochastic modeling (e.g., by modeling variation in the major
axis of deposition due to meandering by a gaussian random field).
Local anisotropy directions are implemented in tsim and tsim-s
in a manner similar to “local anistropy kriging” (te Stroet and
Snepvangers, 2005). This is not a coordinate transformation
approach, as applied to the variogram-based isim3D (Gomez-
Hernandez and Srivastava, 1990).

The Llagas basin example application of tsim-s uses the local
anisotropy direction option to impart variable angles of dip and
principle direction of deposition into the geostatistical
realizations. Figure 9 shows vertical and horizontal slices
through the 3-D Llagas basin realization to better reveal the
nature of the curvilinear features. These include variable dip
angles evident in longitudinal and transverse-plane cross-sections
(A) and (B) and variable direction in the major axis of deposition
in the horizontal-plane cross-section (C).

The simulated aquifer/interbedded facies architecture for the
Llagas basin example does not show pronounced sinuousity,
which is consistent with how channel belt deposits were
conceptualized in this alluvial depositional setting by the
California Department of Water Resources (1981). This is in
contrast to the “true” or “training image” concept of continuous
“channels” worming their way through homogeneous low-
pemeability media, a common argument posed for replacing
bivariate statistical methods with multi-point statistical (mps)
methods (Strebelle, 2000; Caers, 2001; Krishnan and Journel,
2003; Feyen and Caers, 2006; Ronayne et al., 2008; Li et al., 2014a;
Li et al., 2015; Mariethoz and Caers, 2015; Zovi et al., 2017;
Ramgraber et al., 2020). Such surficially-based conceptual models
gloss over fundamental geologic concepts showing how
depositional processes produce amalgamations of channel and
adjacent sediments that are broader, less sinuous, and more
variable in lateral extent as compared to an active fluvial
channel viewed on the Earth’s surface (Galloway and Hobday,
1996; Miall, 2013). It is a well-known fact in interpretation of
borehole data that sedimentary features on the surface are not
necessarily preserved in the subsurface (Smith, 2002).

4.2 Methods Comparison
The T-ProGS software package has been used somewhat
frequently for comparison of methods for geostatistical
simulation of categorical variables (Carle, 1996; Carle, 2000;
Lee et al., 2007; Yong et al., 2009; Bianchi et al., 2011;
dell’Arciprete et al., 2012; Ranjineh Khojasteh, 2013; Kessler
et al., 2013; Guastaldi et al., 2014; Serrano et al., 2014; Hoyer
et al., 2015; Damico et al., 2018). Bianchi et al. (2011) and
Ranjineh Khojasteh (2013) present rigorous comparisons of
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tsim and sisim, showing that sisim does not honor the 3-Dmodel
of spatial variability, which was one of the original motivations
for developing T-ProGS (Carle, 1996; Carle, 1999; Carle, 2000).

We further discuss methods comparison below because tsim-s
carries forward several capabilities of tsim that appear not to be
recognized in the methods comparison literature. Flawed
methods comparison causes a trickle-down effect of selective
references that propogate misleading appraisals of the capabilities
of the available methods for stochastic simulation of categorical
variables.

In a methods comparsion of sisim, tsim, and mps,
dell’Arciprete et al. (2012) did not consider variable anistropy
directions in either conceptualization or parameterization of their
analysis of spatial variablity and applications of tsim despite
obvious dipping structures in their data. They chose not to apply
Markov chain modeling concepts in the structural framework of a
stratigraphic coordinate system relevant to the hydrofacies of a
sedimentary depositional system (Carle et al., 1998; Tompson
et al., 1999; Carle et al., 2006). The example of a tsim realization
shown in Figure 4 of dell’Arciprete et al. (2012) displays
completely random-looking and geologically implausible
spatial structuring inconsistent with the data and geologic setting.

An example of a trickle-down effect is how dell’Arcipreti et al.
(2012) becomes a main reference in He et al. (2017) for promoting
application ofmps, then (He et al., 2017) becomes amain reference
in Langousis et al. (2018) for criticizing the 3-D Markov chain
modeling approach of Carle and Fogg (1997). To “reveal”
limitations of Markov chain models, Langousis et al. (2018)
execute a “simple test-case” of a 2-D dipping layer with a
coordinate system anchored in the vertical and horizontal
directions of their statistical analysis. Neither dell’Arciprete et al.
(2012) nor Langousis et al. (2018) appeared to grasp the concept
that bivariate geostatistical analysis and simulation should be
applied in a geologically-based coordinate system, as
demonstrated for at least 30 years (e.g., Gomez-Hernandez and
Srivastava, 1990). The geological realism of themps application by
He et al. (2017) stands wide open to geological criticism too, with a
mps-generated “real world buried valley system” showing
unrealistic topography and isolated occurrences of the valley fill
buried beneath pre-valley-fill strata. Geostatistical analysis should
recognize and make adjustments to account for geological slopes,
directions, and depositional ordering and not be strictly anchored
in a rectilinear cooordinate system pertinent only to data locations.

Another pitfall of methods comparison is use of oversimplified
example applications. In Kessler et al. (2013), tsim was compared
to mps in application to stochastic simulation of sand lenses
within clayey till. This application of tsim adhered to an
oversimplified two-category Markov chain to model “a
complex type of heterogeneity” exhibiting a bi-modal
distribution in the size of sand lenses in 2-D training and
reference images. A simple way to address this facies size
distribution complexity would be to define two types of sand
lenses (perhaps “small” and “large”) and model a three-category
system. Instead of adhering to a textural basis for defining
categories (e.g., “sand” and “clay”), a more geological approach
is to interpret hydrofacies appropriate to the geometric
framework of the depositional system (Fogg et al., 1998).

The impact of methods comparison studies can get more
convoluted by selective referencing of the literature,
particularly on the topic of curvilinear features. For example,
in promoting mps, Barfod et al. (2018) dissmiss applicability of
tsim by stating that “. . .T-ProGS also has difficulties in
reconstructing curvilinear geological features” without any
reference to previous work in which the variable anisotropy
direction capability of tsim was implemented. Barfod et al.
(2018) refer to the oversimplified two-category sand-clay
Markov chain analysis of Kessler et al. (2013) as “revealing a
sub-optimal pattern reproduction, in comparison to other
simulation tools such as multiple-point statistics. . .” Linde
et al. (2015) in reviewing “variogram based models” state that
“transition probability techniques such as T-ProGS . . . cannot
properly produce curvilinear features. . .” This is after referencing
only dell’Arciprete et al. (2012), Falivene et al. (2007), Lee et al.
(2007), and Reffsgaard et al., 2014) as T-ProGS applications, all
four of which did not employ variable anisotropy direction
capability in tsim. The misconception that all bivariate
statistical methods for stochastic simulation of categorical
variables lack the ability to produce curvilinear features
appears to derive from selective referencing and comparison of
mps to only variogram-based methods (Strebelle, 2002; Caers,
2001; Krishnan and Journel, 2003; Feyen and Caers, 2006; Linde
et al., 2015; Barfod et al., 2018) irrespective of previous
hydrogeologic studies (Carle et al., 1998; Tompson et al., 1999;
Carle et al., 2006; Green et al., 2010; Engdahl et al., 2012) and the
T-ProGS user manual (Carle, 1999; Carle, 2007).

If tsim or tsim-s is producing spatial structure that falls well
short of the intended model for represention of the spatial
heterogeneity, the conceptualization, implementation, or
utilization of the capabilities of tsim or tsim-s may be at fault.
Methods comparison studies in geostatistics should fully
investigate the capabilities of each method including both the
geological and statistical conceptual underpinnings before
making sweeping judgments. The introduction of this paper
provides references to varied applications of T-ProGS that
should be useful for methods comparison and capabilities
assessment.

4.3 Method Limitations
All models have limitations. The T-ProGS package was originally
conceived in 1996 (Carle, 1996; Carle, 1997; Carle and Fogg, 1996;
Carle and Fogg, 1997) to improve or add to the capabilities of the
then state-of-the art variogram-based geostatistical methods of
the Geostatistical Software Library (Deutsch and Journel, 1992)
and subsequently analyze pumping test data in a highly
heterogeneous alluvial aquifer system (Carle, 1996; Lee et al.,
2007). It is easy to argue that natural systems are geometrically
inconsistent with certain geostatistical representations or exhibit
far more complexity than any bivariate geostatistical model could
ever characterize. Different practitioners will be more
comfortable with different methods or levels of complexity in
the statistical or bio/chemo/hydrogeological components of their
models. There will always be an open question as to what levels of
complexity are necessary to sufficiently analyze the subsurface
processes of interest.
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The stationarity assumption in regard to the spatial continuity
model and category proportions can be limiting. Early
applications of tsim recognized this issue and incorporated
“nonstationary” qualities into the geostatistics through data
conditioning, geologically-based zones based on stratigraphic
analysis or sedimentary environments, and spatially variable
angles of anistropy (Carle, 1996; Carle, 2000; Carle et al., 1998;
Tompson et al., 1999; Weissmann and Fogg, 1999). There
continue to be applications of tsim that recognize and address
nonstationarity (Weissmann et al., 2004; Traum et al., 2014;
Weissmann et al., 2015; Meirovitz et al., 2017; Zhu et al.,
2016a; Zhu et al., 2016b; Zhang et al., 2018; Liao et al., 2020;
Maples et al., 2020). As discussed previously for application of
tsim-s, Carle et al. (2006) employed two-zones of differing spatial
statistics and apply variable anisotropy directions in their
application of tsim-s. To address geological realism, adding a
modicum of geological insight can be more effective than adding
more statistical complexity.

The model of spatial variability is another limitation to any
geostatistical approach. A methods limitations analysis by
Langousis et al. (2018) criticizes the interpretive framework of
transition probability-basedMarkov chain model development as
“based on unverified/untested simplifying assumptions” and “ad-
hoc manipulations.” Langousis et al. (2018) further contend that.

. . .stochastic modeling of actual geologies using the [T-
ProGS] approach of Carle and Fogg (1997), is
characterized by simplifying assumptions and
theoretical limitations, with the simulated random
fields exhibiting statistical structures that strongly
depend on the problem under consideration and the
modeling assumptions made, leading to increased
epistemic uncertainties in the obtained results.

We offer some perspectives on assessing the limitations of
T-ProGS that apply to tsim-s as well:

• Use of geological concepts in categorical geostatistical simulation
may involve subjectivity, which can be viewed by some as either
a strength or a limitation to reducing uncertainty.

• The implication that injection of subjective geologic
interpretation increases epistemic uncertainties in
stochastic modeling would appear to expose a lack of
understanding of subsurface geology and it’s role in
modeling the subsurface.

• As referenced in the introduction of this paper, many
applications in hydrogeology and related fields have
found the Markov chain modeling framework to be
useful to characterization of bivariate spatial statistical
cross-relationships (i.e., juxtapositional tendencies), which
can be related in an interpretive manner to geological
concepts such as Walther’s Law in the stratigraphic
context of sedimentary depositional environments
(Leeder, 1982; Doveton, 1994).

• As evident in the T-ProGS manual (Carle, 1999; Carle,
2007), the Markov chain is not actually required to run tsim
(or tsim-s). So one could investigate epistemic aspects of

other transition probability or indicator covariance models
using tsim, tsim-s, or the various variogram-based
simulation methods, if so desired. However, such
methods comparison exercises, which can certainly be
expanded to all stochastic models, will not prove that a
spatial Markov chain is not useful to modeling subsurface
hydrofacies heterogeneity when applied in the appropriate
geologic context.

In every subsurface heterogeneity modeling project we have
encountered, the heterogeneity contains both deterministic and
stochastic aspects that should be treated differently. For example,
conventional geologic stratigraphic analysis is quite effective for
identifying and mapping the major formations, depositional
systems, and the bounding unconformities and structural
discontinuities (e.g., faults). Accordingly, such features can
typically be treated deterministically and then used as the basis
for appropriate geologic zoning of the system into quasi-
stationary subdomains. The stochastic aspect of subsurface
characterization typically lies within those geologically defined
subdomains. If one, however, lumps together both the
deterministic and stochastic aspects of the heterogeneity and
calls on the stochastic geostatistical algorithm to sort out those
spatial patterns, one only invites naive mischaracterization of the
heterogeneity that produces unnecessary uncertainty and
unrealistic results. An effective way to reduce or moderate
uncertainty is to recognize and separate out deterministic and
stochastic parts of the problem.

4.4 Stochastic Methods Evaluation
Stochastic methods evaluation in hydrogeology should strive to
determine appropriate levels of complexity necessary for gaining
insight to 3-D subsurface flow and transport processes at scales
relevant to measurement diagnostics used in decision-making.
An example of a process-oriented methods comparison, Damico
et al. (2018) compared dynamics and trapping metrics for 3-D
carbon-dioxide plume simulations using subsurface
representations of heterogeneity derived from tsim and a more
rigorous model for representation of complex features in fluvial
architecture. They concluded:

. . .in the context of representing plume dynamics and
residual trapping within fluvial deposits, and within the
scope of the parameters used here, the simpler
geostatistical model of braided fluvial deposits
appears to give an adequate representation of the
smaller scale heterogeneity. The depositional- and
geometric-based benchmark models represented
more features of the fluvial architecture, including
variability in the dip of cross sets, variability in the
geometry and orientation of unit bars, and the
occurrence of channel fills. Depending on context,
representing those features may be quite important
to understanding some multiphase flow processes in
aquifers and reservoirs. However, the simpler
geostatistical model (tsim) is able to capture the
important aspects of fluvial architecture within the
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context of understanding the general effect of smaller
scale heterogeneity on residual trapping of CO2 in
geosequestration reservoirs, within the scope of the
parameters used here.

The worthiness of a stochastic methods to subsurface
applications does not necessarily depend on statistical rigor or
geological detail, it also depends on the perception of relative
value, including both benefits and costs, in the application (Ginn,
2004). The relative value of a model is not necessarily in its
complexity, given that calibration of more complex models may
erode rather than enhance predictive ability (Doherty and
Christensen, 2011).

This paper is offering an approach to address uncertainty in
data conditioning of categorical geostatistical models. It would be
quite straightforward to add more statistical complexity to
transition probability or hardness concepts. However, in our
nearly 25-year experience with using transition probability-
based geostatistics, we find simpler and more interpretetable
geologically-based tools to be quite useful in the study of the
effects of various scales and types of heterogeneity on subsurface
flow and transport processes.

5 CONCLUSIONS

Many Earth science applications would benefit from increased
ability to incorporate “soft” (uncertain or indirect) data to further
constrain subsurface models of heterogeneity. In categorical
geostatistical simulation applications, often abundant soft data
on lithology or hydrofacies (e.g., geophysical logs and imaging,
geological interpretations, driller’s logs, etc.) offer opportunity for
imposing increased or relaxed model constraint.

A soft data capability has been incorporated into the categorical
geostatistical simulation code tsim-s. Soft data for categorical
variables are input either as indicator values or prior
probabilities, and a “hardness” value accounts for uncertainty in
the data. This approach is particularly conducive to soft data that is
already categorical, such as texture inferred from driller’s logs,
hydrofacies interpretations, or electrofacies based on resistivity
cutoffs. In generating realizations with tsim-s, the impact of
uncertainty in the soft data is factored into formulation of both
the cokriging and simulated quenching geostatistical simulation
steps. The extent to which the realizations honor the soft data is
balanced by the values of hardness, the model of spatial variability,
and the values of other nearby hard and soft data.

The degree to which soft data reduces variability in simulation
outputs can be quantified by mapping facies probabilities derived
by averaging indicator values from many realizations. Example

applications in this paper using different values and spatial
distributions of hardness illustrate how the impact of data
uncertainty can be controlled in the stochastic realizations.
Such control will be useful for assimilating different data sets
of variable resolution and accuracy. The soft conditioning can be
arrays of data, including “prior realizations,” to incrementally
adjust or evolve the spatial heterogeneity structure of the
realizations. The ability to manipulate localized heterogeneity
structure or rate of change in a sequence of realizations should be
useful for flow and transport model calibration, inverse
approaches, or sensitivity analysis. The tsim-s algorithm is
ammenable to large-scale 3-D simulation including curvilinear
features.

Overall, the tsim-s code more rigorously integrates data
uncertainty and prior information into the categorical stochastic
simulation algorithm as compared to previous indicator-based
geostatistical simulation codes including its direct predecessor
tsim. However, users and evaluators of bivariate geostatistical
models should become familiarized with capabilities, limitations,
and varied uses of T-ProGS or other geostatistical software
packages before applying or evaluating tsim or tsim-s.
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APPENDIX

Expanding Eq. 14 yields

~tjk(h) �
E{ α(x)α(x + h)Ij(x)Ik(x + h) + α(x)β(x + h)pkIj(x)

+β(x)α(x + h)pjIk(x + h) + β(x)β(x + h)pjpk }
E{[α(x)Ij(x) + β(x)pj]} .

(22)

Assuming stationarity and applying Eq. 10 and 22 reduceto

~tjk(h) �
E{ α(x)α(x + h)Ij(x)Ik(x + h) + α(x)β(x + h)pjpk

+β(x)α(x + h)pjpk + β(x)β(x + h)pjpk }
E{[α(x)pj + β(x)pj]} .

(23)

Applying Eqs. 11 and 10 and combining terms, Eq. 23 reduces to
Eq. 15:

~tjk(h) �
E{α(x)α(x + h)Ij(x)Ik(x + h) + [β(x + h) + β(x)α(x + h)]pjpk}

pj
.

(15)
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Stochastic Simulation of the Spatial
Heterogeneity of Deltaic Hydrofacies
Accounting for the Uncertainty of
Facies Proportions
S. Jorreto-Zaguirre1, P.A. Dowd2*, E. Pardo-Igúzquiza3, A. Pulido-Bosch1 and
F. Sánchez-Martos1

1Water Resources and Environmental Geology Research Group, Department of Biology and Geology, University of Almería,
Almería, Spain, 2 Faculty of Engineering, Computer and Mathematical Sciences, University of Adelaide, Adelaide, Australia,
3 Instituto Geológico y Minero de España (IGME), Madrid, Spain

The spatial geological heterogeneity of an aquifer significantly affects groundwater storage,
flow and the transport of solutes. In the particular case of coastal aquifers, spatial
geological heterogeneity is also a major determining factor of the spatio-temporal
patterns of water quality (salinity) due to seawater intrusion. While the hydraulics of
coastal hydrogeology can be modeled effectively by various density flow equations,
the aquifer geology is highly uncertain. A stochastic solution to the problem is to
generate numerical realisations of the geology using sequential stratigraphy,
geophysical models or geostatistical approaches. The geostatistical methods (two-
point geostatistics, Markov chain models and multiple-point geostatistics) have the
advantage of minimal data requirements, e.g., when the only data available are from
cores from a few sparsely located boreholes. We provide an extension of sequential
indicator simulation by including the uncertainty of the hydrofacies proportions in the
simulation approach. We also deal with the problem of variogram estimation from sparse
boreholes and we discuss the implicit transition probabilities and the connectivity of
simulated realisations of a number of categorical variables. The variogram model used in
the simulation of hydrofacies significantly influences the degree of connectivity of the
hydrofacies in the simulated model. The choice of model is critical as connectivity
determines the amount and extent of seawater intrusion and hence the environmental
risk. The methodology is illustrated with a case study of the Andarax river delta, a coastal
aquifer in south-eastern Spain. This is a semi-arid Mediterranean region in which the
increasing use of, and demand for, groundwater is exacerbated by a transient tourist
population that reaches its peak in the summer when the demand for the permanent
population is at its highest. The work reported here provides a sound basis for designing
flow simulation models for the optimal management of groundwater resources. This paper
is an extended version of a presentation given at the 2012 GeoENV Conference held in
Valencia, Spain.

Keywords: stochastic simulation, spatial hetereogeneity, hydrofacies, uncertainty, connectivity, sequential indicator
simulation
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INTRODUCTION

Half of the world’s population lives in coastal areas and the
transient and permanent populations of these areas continue to
increase. This generates increasing, and often competing, demands
for water. To meet demand, or allocate limited supply, and satisfy
environmental and sustainability constraints in these coastal zones
requires optimal management of water resources in general and
groundwater resources in particular. The problem is exacerbated in
the Mediterranean region because of the combined effects of semi-
arid climate (high evapotranspiration and low rainfall) and
seasonal tourism that increases the demand for water during
the summer, which is the period of lowest aquifer recharge. The
result is increased depletion of groundwater with the risk of over-
extraction.

In coastal areas, over-extraction not only depletes the aquifer
but also causes seawater intrusion leading to deterioration of
water quality that may ultimately render the aquifer water unfit
for human consumption and other uses such as agriculture. In
general, mathematical models of aquifers comprise two parts: the
medium (the geological materials that comprise the aquifer) and
the passage of water (hydraulics) through the geological medium.
The hydraulics are modeled effectively by various density flow
equations but the geology, particularly the spatial distribution of
the hydrofacies, introduces a major source of variability and
uncertainty in any model or assessment of an aquifer. In general,
the geology is heterogeneous and is unknown apart from limited
direct data from sparse boreholes or the indirect geophysical
information. Apart from borehole cores, the aquifer is not
observable on any meaningful scale and the only realistic
approach in such cases is via a stochastic model informed by
sparse data and/or surface analogues (outcrops). The prediction
of seawater intrusion is thus a stochastic problem.

The spatio-temporal patterns of groundwater quality in
coastal aquifers are determined by the spatial heterogeneity
and spatial distribution of hydrofacies (Eaton, 2006) as well as
by different hydrologic settings and forcings. A general way to
address the stochastic seawater intrusion problem is to
accommodate the stochastic character of the geology by
generating stochastic simulations of aquifer heterogeneity.

Although the techniques discussed here are generally
applicable to different sedimentary environments, the focus in
this paper is on deltaic environments. The three most common
means of generating three-dimensional geological models (in this
case, 3D models of hydrofacies) of deltas are sequential
stratigraphy (Cabello et al., 2007), geophysical methods
(Tercier et al., 2000; Deidda et al., 2006; Barakat, 2010) and
geostatistical techniques (dell’Arciprete et al., 2012; Perulero et
al., 1997). A good overview of statistical grid-based sedimentary
facies reconstruction and modeling methods can be found in
Falivene et al. (2007).

In an ideal situation, all of these techniques could be used to
integrate all available information to generate a model that is as
realistic as possible. However, the amount, type and quality of the
available data constrain the choice of method. Of the three
methodologies, geostatistical methods are the least demanding
in terms of data requirements because they are based on the

estimated underlying structural model and its uncertainty
(Pardo-Igúzquiza et al., 2009) and they can be applied even
when only a few sparsely located boreholes are available.

The geostatistical methods can be classified either as object-
based methods (Gouw, 2007) or models based on pixels and
voxels (Dubrule and Damsleth, 2001). The latter are the more
flexible and, in turn, they can be classified as two-point
geostatistical models (Deutsch and Journel, 1998), Markov
chain models (Carle and Fogg, 1996) or multiple-point
geostatistical models (Strebelle, 2002; Comunian et al., 2011).
Multiple-point geostatistical methods require detailed three-
dimensional training images, which are not usually available
for groundwater applications although other sources such as
surface analogues (e.g., Comunian et al., 2011), outcrops,
geophysical images, outputs of numerical models can be used.
Markov chain models tend to give simulations that are less
realistic than the other methods; in particular, the hydrofacies
are often too disconnected. For these reasons, we have chosen to
use basic, second-order stationary geostatistical models and, in
the work presented here, we have used sequential indicator
simulation to generate realisations of categorical variables
(Goovaerts, 1997). We also considered using truncated pluri-
gaussian simulation (Le Loc’h et al., 1994; Le Loc’h and Galli,
1996; Dowd et al., 2003; Mariethoz et al., 2009) but decided
against it because of the inability to infer facies contact
relationships with an acceptable level of accuracy from cores
from sparse boreholes. This method is more suitable for cases in
which there are reliable surface analogues from which detailed
contacts can be observed. A comparison of geostatistical methods
for hydrofacies simulation is given in dell’Arciprete et al. (2012).
The work presented here differs from the latter, which simulates
alluvial sediments using vertical facies maps of five almost
orthogonal quarry faces and no borehole data whereas we
simulate deltaic sediments in a flat area for which there are no
outcrops and the only data available are from a few sparsely
located boreholes. Dell’Arciprete et al. (2012) compare sequential
indicator simulation, transition probability geostatistical
simulation and multiple point simulation. We have not used
multiple point simulation because of the requirement for 3D
training images or at least orthogonal 2D training images. We
have not used transition probability simulation because, as can be
seen in dell’Arciprete et al. (2012), it can generate unrealistic
images of spatial heterogeneity, although its successful use has
been reported by other authors (Lee et al., 2007; Bianchi et al.,
2011). We have extended sequential indicator simulation to
include the uncertainty of the proportions of the hydrofacies.
The uncertainty in proportions is propagated as uncertainty in
the variograms and thus uncertainty in the connectivity of the
hydrofacies. This extended methodology is presented in the
following section.

METHODOLOGY

The focus here is on the spatial distribution of hydrofacies in
coastal aquifers, which is the major determining factor in
seawater intrusion. The physical heterogeneity of the
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geological materials that comprise the aquifer is evident from the
distribution of hydrofacies that can be observed in outcrops and
in borehole cores. In many cases there are no outcrops and, in any
case, the distribution of hydrofacies between boreholes remains
unknown. Geostatistical simulation is used to generate possible
images (as many as desired) of such unknown realities. These
simulated images reproduce the experimentally observed (from
core samples) spatial variability of the hydrofacies, which is
modeled by direct and cross-variograms. These simulations are
also conditioned to the experimental data (Chilès and Delfiner,
1999).

A spatial category (or hydrofacies for the applications
discussed here) Fi is defined as:

Fi � {u| f (u) � i} (1)

where f (u) is the function that assigns to each spatial location
u � {x, y, z} a unique hydrofacies from the set {i � 1, . . . , N}.

Suppose there are N hydrofacies that are mutually exclusive
(that is, at each location u, there is a unique hydrofacies) and
defined exhaustively in the three-dimensional space:

Fi∩Fj � ∅ ∀i, j � 1, . . . ., N; i≠ j (2)

∪
N

i�1
Fi � R3 (3)

In practice, only a part of the three-dimensional space is of
interest χ ⊂ R3. For each category define an indicator variable:

Ii(u) �
⎧⎪⎨⎪⎩

1 if u ∈ Fi
i � 1, . . . ., N

0 if u ∉ Fi
(4)

From which it follows that:

∑N
i�1

Ii(u) � 1 ∀ u ∈ χ (5)

It is assumed that each indicator variable is a second-order
stationary random function (Myers, 1989), that is, the spatial
mathematical expectation is constant, and the spatial covariance
is a function solely of the distance vector h. The mathematical
expectation of each indicator function is equal to the global
proportion of the hydrofacies:

E{Ii(u)} � pi (6)

with 0< pi < 1, i � 1, . . . . , N . The variogram is defined as:

ci(h) � 1
2
E{[Ii(u) − Ii(u + h)]2} (7)

which is related to the non-centred covariance (Journel and
Alabert, 1989) by:

Ci(h) � pi − ci(h) (8)

where

Ci(h) � E{Ii(u) Ii(u + h) � P{u ∈ Fi and u + h ∈ Fi}} (9)

In a similar way the cross-variograms, cij(h), and cross-
covariances can be defined as in Dowd et al. (2003). The

condition in Eq. 5 imposes certain relationships among direct,
and cross, variograms (Dowd et al., 2003):

ci(h) � − ∑N
j�1
j≠ i

cij(h) (10)

The sill of the variogram is given by the variance of the indicator
variable:

ci(h) 				→
h → ∞

pi(1 − pi) (11)

and the sill of the cross-variogram is given by:

cij(h) 				→
h → ∞

pi pj (12)

From Eq. 12 it is evident that all cross-variograms must be
negative as the probabilities or proportions on the right-hand
side are positive. Furthermore, the non-centered cross-covariance
between the indicators of hydrofacies Fi and Fj gives the
probability that these two hydrofacies occur at a separation
distance h:

Cij(h) � E{Ii(u) Ij(u + h)} � P{u ∈ Fi and u + h ∈ Fj} (13)

Among the many geostatistical simulation methods, we have
chosen to use sequential indicator simulation largely because of
its simplicity. The method consists of estimating, at each location
of interest u (for example, the nodes of a three-dimensional grid),
the conditional probability of occurrence of each hydrofacies,
subject to the condition:

∑N
i�1

ppi (u) � 1 (14)

The conditional probability ppi (u) is estimated by kriging (simple
indicator kriging, indicator cokriging, or any other form) using
the conditioning data, which initially comprise only the
experimental data. A value is simulated by sampling the
estimated conditional probability distribution. The simulated
value is added to the conditioning data and the process is
repeated until values have been simulated at all locations. The
algorithm is explained in detail in Deutsch and Journel (1998)
and Goovaerts (1997).

As can be seen from Eqs 10–12 the proportion of each
hydrofacies significantly affects the forms of the direct, and cross,
variograms. Because the sill of the direct, and cross, variogram
depends on the hydrofacies proportions, the ranges fitted to the
experimental variograms will also depend on the proportions
because the parameters are not fitted independently but
simultaneously with a larger sill implying a larger range. In
practical applications the real proportions are unknown and
must be estimated from sparse data, thus introducing more
uncertainty. In order to reproduce the total variability, the
uncertainty of the estimated proportions of the hydrofacies
must be assessed and taken into account in the simulations.
We propose a resampling method to estimate the uncertainty of
the proportions. Themethodology is summarized in Figure 1 and
comprises the following steps:
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(1) There are M experimental data of N hydrofacies measured
along boreholes and piezometers.

(2) Vertical variograms are calculated and used to estimate the
effective number of samples n.

(3) A bootstrap algorithm is used to generate L samples of size n
by sampling at random and with replacement from the set of
M experimental data.

(4) For each bootstrap sample of size n the proportions of the N
hydrofacies are calculated to provide a bootstrap sample of
proportions.

(5) A variogram model is obtained from the bootstrap sample of
proportions.

(6) A realization is generated using sequential indicator
simulation and the variogram models.

(7) Go to step 5) using a different bootstrap sample of
proportions. Repeat until the desired number of
simulations is achieved.

A fundamental issue is the determination of the effective
number of samples from the correlated experimental data. We
use aligned, contiguous sequences of data, such as strings of
borehole cores, to determine the effective number of data to be
used for resampling. The effective range of the variogram in the
vertical direction is a key parameter because the variability along
the boreholes is much greater than the horizontal variability
between boreholes. An example of this determination is given in
the case study section.

Once the effective number of data is determined, a large
number of samples (several thousand) of that size is obtained

by sampling with replacement from the full data set. For each
sample the hydrofacies proportions are calculated and a
histogram is generated for each hydrofacies. Note that, as the
proportions of hydrofacies must be used jointly (for example, to
satisfy Eq. 14), it is the proportions of the resamples that are
retained, and each vector of proportions is used in the
geostatistical simulation rather than using the estimated
proportions from the data.

The sequential simulation algorithm uses the models fitted
to the experimental variograms. Emery (2004) provides a
critical appraisal of the limitations of sequential indicator
simulation in general; those that relate to categorical
variables are addressed in the approach described in this
paper. There are several possibilities for estimating the
probabilities in Eq. 14. These range from simple indicator
kriging, in which each indicator variable has an anisotropic
variogram specific to each indicator variable, to full indicator
cokriging. Although the latter is the best and most complete
approach, there are serious issues around model inference and
some simplification is required. For example, a common model
could be used for all cross-variograms with a scaling factor
applied to each of them so that the correct sill, as given in Eq.
12, is assigned. However, this approach is constrained by the
need to satisfy the model validity requirement for a positive
definite coregionalization model. For categorical variables a
valid model has a very clear physical meaning. Once an
arbitrary facies, Fi � {u|f (u) � i} is fixed at an arbitrary
location u then the same hydrofacies, Fi, occurs at any other
arbitrary location u + h with conditional probability

FIGURE 1 | Flowchart for the proposed methodology.
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Cij(h)
pj

� (pi− ci(h))
pi

and hydrofacies Fj (for j≠ i) occurs with
conditional probability Cij(h)

pj
� −cij(h)

pj
. In addition, writing

Ci(h) � Cii(h), the total probability must be:

∑N
j�1

Cij(h)
pj

� 1 (15)

Equation (15), written in terms of the non-centred covariance,
can also be written in terms of variograms or in terms of centered
covariances, σ(h):

∑N
j�1

σ ij(h) + pipj
pj

� 1 (16)

FIGURE 2 | (A) Location of the study area in the Andaraxriver delta. The yellow square is the area of the case study in which there are 19 boreholes and three
clusters of four piezometers. The numeral 1 denotes detrital material from the Quaternary and 2 from the Pliocene. (B) Data for the five hydrofacies (F1 to F5) within
boreholes and piezometers. The color legend ranges from very permeable (dark blue � F1) to very impermeable (dark red � F5).
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−∑N
j�1

cij(h) � 0 (17)

Note that, by writing ci(h) � cii(h), Eqs 17 and 10 are equivalent.
That is, a valid model of covariance and cross-covariances implies
the occurrence probabilities are coherent.

From a practical perspective, there is also a need to
demonstrate that any improvement in results from the
complete cokriging method is sufficient to justify its use over
that of simpler approaches. Thus, simple indicator kriging, in
which each indicator variable has a specific anisotropic
variogram, was chosen for the work presented in this paper.

The technique is illustrated in detail by the case study in the
following section.

CASE STUDY

The study area (Figure 2A) is the detrital aquifer of the Andarax
river delta in the province of Almeria in southern Spain. The
aquifer comprises deltaic deposits from the Pleistocene overlain
by fluvial and deltaic deposits from the Quaternary (Sánchez-
Martos et al., 1999). The Andarax river is ephemeral, with flow
usually resulting from big storms, and is an example of rivers in
the semi-arid coastal regions of the Mediterranean. Within the
study area there are 19 boreholes and three clusters of four
piezometers each (Jorreto-Zaguirre et al., 2005) the locations
of which are shown in plan view in Figure 2A. Figure 2B shows
the spatial locations of the boreholes and piezometers together
with colour-coded plots of the recorded hydrofacies. The vertical
resolution of the boreholes and piezomenter cores is one m. The
borehole cores have been classified into five types of hydrofacies
according to their permeability: very permeable (F1), permeable
(F2), low permeability (F3), impermeable (F4), and very
impermeable (F5).

The proportions of each hydrofacies measured along the
boreholes are: 2.62, 43.72, 27.21, 18.57, and 7.87%,
respectively. The problem could be simplified by grouping the
hydrofacies into three broader types (aquifer, aquitard and
aquiclude) or even into only two types (permeable and
impermeable). However, there is value in retaining the five
hydrofacies because the very permeable hydrofacies could be
associated with high permeability channels while the very
impermeable facies could be associated with hydraulic barriers.
Figure 2B clearly shows the sparsity of the data, with very few
borehole cores to represent the total study volume, from which it
is reasonable to conclude that the real hydrofacies proportions
may differ significantly from the estimated values.

The data comprise hydrofacies observations made on
2,477 one-metre borehole cores. Classical (non-spatial)
statistics cannot be used to evaluate the uncertainty of the
proportions calculated from these data because spatial
correlation implies that neighboring samples are not
independent and, therefore, some of the information in the
values of these samples is redundant. Variograms can be used
to quantify the range of spatial correlation from which it is
possible to infer the effective number of (spatially

uncorrelated) samples. Variograms calculated along the
boreholes (Figure 3) indicate an effective range of spatial
correlation in this direction of around 8 m, i.e., samples
separated by distances greater than, or equal to, 8 m are
uncorrelated. Assuming that the average distance between
pairs of boreholes is greater than the ranges of spatial
correlation in all other directions, the effective number of data
can be inferred as approximately 300. The uncertainty of the
proportions can now be estimated by a bootstrap procedure, that
is, resampling with replacement with a sample size of 300 from
the full set of 2,477 data. A total of 5,000 bootstrap samples of size
300 were generated and the bootstrap distribution of the
proportion of each of the five categories was calculated.
Figure 4A shows the bootstrap distribution for the very
permeable (F1) hydrofacies. Confidence intervals can be
calculated from the bootstrap distributions. For example,
although the estimated proportion of the very permeable
hydrofacies (F1) is 2.62%, the lower and upper limits of the
95% confidence interval are, respectively, 1% and 4%. Figure 4B
shows the bootstrap distribution for the very impermeable
hydrofacies (F5). The complete results are shown in Table 1
from which the similarity between mean and median indicates
that the distributions are symmetrical.

Variograms were calculated for each of the indicators. As
the sills of the direct and cross-variograms depend on the
hydrofacies proportions it is useful to standardize the
experimental variograms using the estimated proportions so
that they can be displayed on the same graph. Figure 3A shows
the standardized variograms calculated along the boreholes.
The variogram for hydrofacies F1 is noticeably different to
those of the other hydrofacies; the variogram for F5 also differs
from the others but by a smaller amount. None of the
variograms in Figure 3A reach the theoretical sill of 1.0,
which reflects the fact that the estimated proportions differ
from the true underlying proportions. The implication of this
observation is that models fitted to the sample variograms will
be different for each bootstrap sample of proportions. Table 2
lists the experimental proportions together with the
proportions calculated from the first ten bootstrap samples
and Figure 3B shows the experimental variograms for
hydrofacies F1. An indication of the effects of the
uncertainty of the proportions is given by comparing the
variograms of the experimental proportion of hydrofacies
F1 (2.62%) with, for example, the fifth bootstrap value of
3.00%. These two proportions would generate respective
variogram sills of 0.0255 and 0.0291 and weighted least
squares estimated ranges of 4.37 and 5.62 m, respectively, as
shown in Figure 4B. The weighted least squares estimated
ranges of exponential models for the experimental proportions
of the other hydrofacies are 3.00, 2.87, 2.73, and 2.05 m for F2,
F3, F4, and F5, respectively, and these values quantify the
differences that can be seen graphically in Figure 3A. Note that
for exponential model variograms the sill is reached
asymptotically and it is useful to define an effective, or
practical, range at which, for all practical purposes, the sill
is reached; the effective range is three times the range
parameter in the variogram model.
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Although the locations of the boreholes are not ideal for
detecting horizontal anisotropies, there is no evidence of
anisotropy in the horizontal plane as demonstrated by the
example of the east-west and north-south indicator variograms
for hydrofacies F5 in Figure 5. However, because of the physical
structure of deltaic deposits, anisotropies are expected between
vertical and horizontal directions and these should be evident in
the variograms, i.e., spatial correlation in the horizontal plane
should be greater than that in the vertical direction. Given the lack
of evidence for anisotropy in the horizontal plane, omni-
directional horizontal variograms were calculated and
modeled. The exponential models fitted by weighted least
squares to the omni-directional variograms in the horizontal
plane for the different hydrofacies have ranges of 6.8, 27.5,

35.8, 25.5, and 25.4 m for hydrofacies F1 to F5, respectively.
The very high permeability hydrofacies (F1) has an effective
range, or spatial correlation length, of 21 m and the rest of the
hydrofacies have effective ranges of 75–105 m.

A plausible explanation of these variograms is that the effective
ranges quantify the average horizontal extents of permeability
channels. If, for example, permeability is due to paleochannels
formed from meandering streams then the greater the horizontal
extent of the hydrofacies the greater is the likelihood for hydraulic
barriers to have formed. Thus, the highest permeability facies F1
has the smallest horizontal extent (21 m) and the lower
permeability facies have horizontal extents greater than 75 m.

For the co-regionalization model of the five hydrofacies,
Figure 6 shows the experimental indicator cross-variograms

FIGURE 3 | (A) Standardized indicator variograms calculated along the boreholes for the five hydrofacies and standardized by their variances. (B) Indicator
variogram of facies F1 along the borehole and the two best models fitted which were those for hydro facies F1 proportions of 2.62 and 3.00% which implies variances of
0.0255 and 0.0291, respectively, and fitted ranges of 4.37 and 5.62 m, respectively, for an exponential variogram model.
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FIGURE 4 | Histogram of the bootstrap distribution for (A) F1 hydrofacies and (B) F5 hydrofacies.

TABLE 1 | Statistics of the bootstrap distributions for the different hydrofacies.

Hydrofacies Mean (%) Median (%) 95% CI lower limit
(%)

95% CI upper limit
(%)

F1 Very permeable 2.65 2.67 1 4
F2 Permeable 43.70 43.60 38 49
F3 Low permeability 27.10 27.00 22 32
F4 Impermeable 18.50 18.60 14 23
F5 Very impermeable 7.80 7.70 5 11

TABLE 2 | Experimental proportions and first ten bootstrap realisations of proportions.

Experimental Bootstrap samples

F1 0.0262 0.0267 0.0233 0.0367 0.0333 0.0300 0.0233 0.0300 0.0300 0.0267 0.0333
F2 0.4373 0.4467 0.4200 0.4267 0.3967 0.4033 0.4367 0.4333 0.4633 0.3767 0.4000
F3 0.2721 0.2933 0.2867 0.2500 0.2700 0.2700 0.2500 0.2867 0.2533 0.3067 0.2867
F4 0.1857 0.1467 0.1867 0.2067 0.2100 0.2300 0.2033 0.1667 0.1833 0.2233 0.1933
F5 0.0787 0.0867 0.0833 0.0800 0.0900 0.0667 0.0867 0.0833 0.7000 0.0667 0.0867
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along the boreholes between hydrofacies F2 and the other four
hydrofacies and the models fitted to them. Figure 7 shows the
experimental indicator variogram along the boreholes of

hydrofacies F2 and the model fitted to it. The models were
fitted by taking account of the experimental proportions and
using weighted least squares to fit an exponential model with no

FIGURE 5 | Indicator variograms for hydrofacies F5 for the two perpendicular directions most likely to exhibit anisotropic behavior.

FIGURE 6 | Indicator cross-variograms between hydrofacies F2 and the other hydrofacies and models fitted to them: (A) F2-F1; (B) F2-F3; (C) F2-F4 and (D)
F2-F5.
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nugget. The model fitted to the indicator cross-variogram
between hydrofacies F2 and F1 has a range of 7.45 m while
the indicator direct-variograms of those hydrofacies have
ranges of 3.0 and 4.37 m, respectively. However, these ranges
are not compatible with the linear model of coregionalization in
which the range of the cross-variogram cannot be greater than the
ranges of the direct variograms. The consequence of failing to
meet this requirement can be demonstrated in terms of the
conditional probabilities of occurrence. If, for example,
hydrofacies F2 is observed at an arbitrary location u, what is
the probability that each of the hydrofacies occurs at, say, 5 m
further down the borehole?

These probabilities can be calculated from the models fitted to
the direct and cross variograms as follows:

Probability of F2 occurring:

C2(5)
p2

� (p2 − c2(5))
p2

� (0.4372 − c2(5))
0.4372

� 0.543

Probability of F1 occurring:

C21(5)
p21

� c21(5)
p1

� 0.213

Probability of F3 occurring:

C21(5)
p23

� −c23(5)
p3

� 0.347

Probability of F4 occurring:

C24(5)
p24

� −c24(5)
p4

� 0.361

Probability of F5 occurring:

C25(5)
p25

� −c25(5)
p5

� 0.394

The sum of these probabilities is 1.86 rather than 1.0 as it
should be and thus the models fitted in Figures 6, 7 are not
valid when taken jointly. The ranges could be modified to

ensure that the total probability is 1.0 by increasing the ranges
of the indicator cross-variograms. However, this is not a
general solution because the example given is very specific:
it is only for one hydrofacies, for the Z-direction variogram,
using only one conditioning point and for a specific distance of
5 m. Fitting models that would satisfy all possible constraints
would be very cumbersome.

If only the direct variograms are used, the probability of F2
occurring remains the same:

C2(5)
p2

� (p2 − c2(5))
p2

� (0.4372 − c2(5))
0.4372

� 0.543

and the complementary probability 1–0.543 � 0.457 is distributed
among F1, F3, F4, and F5 in proportion to their prior probabilities
of 0.0262, 0.2721, 0.1857, and 0.0787, respectively. Using these
values in the previous equation would reproduce the correct
variograms.

The following procedure was adopted for sequential
simulation:

(a) Retain each bootstrap realization of the hydrofacies
proportions that is inside the 95% confidence interval
{p̂i > 0, i � 1, . . . , 5} . This automatically satisfies the

requirement: ∑5
i�1

p̂i � 1.

(b) Using p̂i(1 − p̂i) for the sill of each direct variogram and −p̂ip̂j
for the sill of each cross-variogram, determine, by least
squares, the ranges that give the best fit of exponential
model variograms to the experimental variograms.

(c) Apply the sequential simulation algorithm.
(d) Go to (a) and repeat to generate a specified number of

simulations.

For the experimental proportions, the least squares fit to the
direct and cross-variograms of an exponential model without a
nugget gives the ranges shown in Table 3. The effective ranges, or
distances beyond which correlations are effectively zero, are three
times these values.

There are three general possibilities for modeling the
conditional probabilities of categorical variables (Goovaerts,
1994) for the purpose of simulating them by sequential
indicator simulation: median indicator kriging, multiple
indicator kriging and indicator co-kriging. Median
indicator kriging uses the same indicator variogram model

FIGURE 7 | Indicator variograms for hydrofacies F2 and fitted model.

TABLE 3 | Ranges of an exponential variogram model fitted to the experimental
variogram by weighted least squares taking into account the experimental
proportions.

Hydrofacies Range in
direction Z (m)

Range in
X-Y plane (m)

Sill

F1 (p1� 0.0262) 4.37 6.78 p1(1 − p1) � 0.0255
F2 (p2� 0.4373) 3.00 27.50 p2(1 − p2) � 0.2461
F3 (p3� 0.2721) 2.87 35.78 p3(1 − p3) � 0.1981
F4 (p4� 0.1857) 2.73 25.48 p4(1 − p4) � 0.1512
F5 (p5� 0.0787) 2.05 25.41 p5(1 − p5) � 0.0725
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for all categories; this common model is a type of mean, or
median, model. The second possibility is multiple indicator
kriging using variogram models fitted to each hydrofacies
indicator.

The third possibility is indicator co-kriging in which the
main difficulty is to fit a valid coregionalization model. The
simplest coregionalization model is the linear model in which all
direct, and cross, variograms are linear combinations of a set of
basic direct variograms. The intrinsic coregionalization model is
a special case of the linear model in which the basic direct
variograms for each variable are identical. Allowing for the
noisy nature of the empirical variograms and cross-variograms
in Figures 8A,B for the horizontal plane (shown as dots in the
figure), it is reasonable to fit the same model for all directions as
shown by the red lines. A different model is fitted for the

variograms in the vertical direction, but the model is the
same for the direct and cross-variograms. As this model is an
intrinsic model of coregionalization and, because all variables
(the five indicators of the five hydrofacies) have been measured
at all locations, it has the property of auto-krigeability
(Wackernagel, 1994), which means that cokriging a variable
from the set of coregionalized variables yields the same value as
kriging.

The intrinsic correlation model can be written as:

Γ(h) � C c(h) (18)

where γ (h) is an exponential model variogram with range 25 m as
shown in Figure 8, and C is a positive definite matrix of
coefficients:

FIGURE 8 | (A) Standardized indicator direct variogram for the five hydrofacies and fitted model. (B) Standardized indicator cross-variograms for the five
hydrofacies: ten cross-variograms and fitted model. The fitted model is an intrinsic model of coregionalization. The model is exponential with range 25 m (effective range
of 75 m).
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C �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
p1(1 − p1) −p1p2 −p1p3 −p1p4 −p1p5
−p2p1 p2(1 − p2) −p2p3 −p2p4 −p2p5
−p3p1 −p3p2 p3(1 − p3) −p3p4 −p3p5
−p4p1 −p4p2 −p4p3 p4(1 − p4) −p4p5
−p5p1 −p5p2 −p5p3 −p5p4 p5(1 − p5)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

Furthermore, from Eq. 10 these coefficients must be such that:

c1(h) � −c12(h) − c13(h) − c14(h) − c15(h)
c2(h) � −c21(h) − c23(h) − c24(h) − c25(h)
c3(h) � −c31(h) − c32(h) − c34(h) − c35(h)
c4(h) � −c41(h) − c42(h) − c43(h) − c45(h)
c5(h) � −c51(h) − c52(h) − c53(h) − c54(h)

(20)

Using median indicator kriging gives unrealistic outputs, in
particular hydrofacies models with connectivities that are too
low to generate observed flows. In this work, multiple
indicator kriging was used together with the auto-
krigeability model in which the cross-variogram of each
variable with all other variables is proportional to the
variogram of that variable.

This approach allows for different spatial variability for each
hydrofacies and it generates realisations with significantly higher
connectivity than those generated by median indicator kriging as
can be seen by comparing Figures 9A,B. Figure 10 shows three-
dimensional views of four simulations using the experimental
proportions; these views provide a better appreciation of the
relationships between the different hydrofacies and of the real
heterogeneity of the aquifer. This heterogeneity may influence the
spatial patterns of seawater intrusion and thus condition the
spatial distribution of water quality.

Some examples of the direct- and cross-variograms
reproduced by the method are shown in Figures 11, 12 for
the Z-direction and the horizontal plane, respectively. The
ergodic fluctuations of the variograms of the simulation may
not seem large enough to include the experimental variogram,
but it should be remembered that only the experimental
proportions were used and not the bootstrap proportions.
When the bootstrap proportions are used, the sills of the
variogram models used in the simulation change, as do the
ranges, and this increases the ergodic fluctuation to reflect the
unknown real variability of the hydrofacies. This would be
apparent in an application in which thousands of simulations
are used in order to include the spatial uncertainty of the
hydrofacies in the simulation.

Finally, Figures 13A,B show the connectivity function
(Pardo-Igúzquiza and Dowd, 2003) for the five hydrofacies
in the vertical direction and on the horizontal plane,
respectively. For hydrofacies facies F1, for example, there
are connectivities of up to 40 m in the vertical direction
and 100 m in the horizontal direction, which, because
these are very high permeability channels, may have
important consequences for water intrusion and/or for
rapid propagation of contaminants.

DISCUSSION

The conditional geostatistical simulation of hydrofacies provides
numerical models of aquifers that reproduce the observed spatial
variability of the geological structures. These patterns of spatial
variability significantly influence flow and transport modeling in
coastal aquifers and, as a consequence, influence the assessment
of seawater intrusion. This is because the spatial variability of the
hydrofacies influences the mechanical macro-dispersion of the
mixed zone in seawater intrusion.

This work shows that the uncertainty in hydrofacies
proportions estimated from sparse data can be included in
sequential simulation. These proportions condition the sills of
the variogrammodels, the variability of which provides a measure
of the impact of the uncertainty in fitting theoretical models.

Various approaches have been used to simulate categorical
variables using indicators. Each of these uses different types of
indicator kriging in the sequential simulation algorithm. The
work presented in this paper uses indicator kriging, in which each
hydrofacies has its own model, as a compromise between simpler
options and the most complete option of full cokriging. The

FIGURE 9 | 3D view of a realization generated by using the experimental
proportions and (A)median indicator kriging and (B)multiple indicator kriging.
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connectivity function given in Pardo-Igúzquiza and Dowd (2003)
has been used as a measure of connectivity although other
connectivity indices could have been used, for example,
Vassena et al. (2010) and Renard and Allard (2013).

Although the work presented here is limited to the simulation
of categorical variables, it can easily be extended to include the
generation of quantitative variables (e.g., hydraulic conductivity,
porosity) by assigning a probability density function of the
variable to each categorical hydrofacies. Borehole logging
(natural gamma and resistivity are available) could be used to
construct the probability functions. Another extension would be
to use pumping test data for screening the simulated realisations.
All these lines of research are left open for future work.

A fundamental question that arises from this study is whether
the inclusion of the uncertainty of the hydrofacies proportions in
the simulation (a large number of realisations considering the
bootstrap proportions) gives results that are significantly
different to those that would be obtained from a standard
simulation (i.e. a large number of realisations with the same
global proportion, but ignoring the uncertainty of the
hydrofacies proportions). To answer this question, we used a
simplified experiment to compare the outputs from the
proposed extended sequential indicator simulation with those
that would be obtained from standard sequential indicator
simulation. The experiment comprised:

• A two-dimensional problem.
• Only two facies: the most permeable phase (0) and all

others (1).
• Non-conditional simulations.
• 1,000 independent simulations.

• Identical variograms for the proposed extended sequential
indicator simulation and the standard sequential indicator
simulation.

• The same experimental proportions were used for all of the
1,000 standard sequential indicator simulations.

• 1,000 bootstrapped proportions were used for the 1,000
simulations using the proposed extended sequential
indicator simulations.

An assessment of the connectivity of the two approaches
showed that the means of the connectivity function statistics
and the means of the connectivity function itself are very
similar. However, the minimum and maximum numbers of
connected components in a single simulation are significantly
different with a greater range of variation in the simulations
generated by the proposed extension. The minimum and
maximum number of connected components for a standard
sequential indicator simulation were 19 and 65, respectively
whereas for the extended sequential indicator simulation they
were 4 and 95, respectively. Thus, the variability is
significatively larger when the uncertainty of the facies
proportions is included. In addition, the same constant
variograms (type of variogram and range) were used in both
sets of 1,000 realisations. However, the ranges of the variograms
will change in the proposed approach because the proportions are
related to the sill and thus the ranges fitted to the experimental
variograms may be different. This would further increase the
variability of the extended sequential indicator simulations.

In this test, the propagation of uncertainty from the facies
proportions into the set of simulations is significant and we
conclude that the same must be so in the three-dimensional

FIGURE 10 | 3D views of four simulations using the experimental proportions (A) simulation 1; (B) simulation 2; (C) simulation 3; (D) simulation 4.
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FIGURE 11 | Variograms of the borehole data (solid line) and the simulations (dashed lines) calculated for the vertical direction. (A) Variogram of hydrofacies
F1. (B) Variogram of hydrofacies F2 and (C) Cross-variogram of hydrofacies F2 and F3.
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FIGURE 12 | Variogram of the borehole (solid line) data and from the simulations (dashed lane) calculated along the horizontal direction. (A) Variogram of
hydrofacies F1. (B) Variogram of hydrofacies F2 and (C) cross-variogram of hydrofacies F2 and F3.
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case with significantly more hydrofacies than were used in this
demonstration.

CONCLUSIONS

An extension of sequential indicator simulation for
simulating realisations of the three-dimensional
distribution of deltaic hydrofacies has been proposed in
this paper. The extension is the inclusion of the
uncertainty of the proportions of each hydrofacies by using
a bootstrap algorithm that generates feasible realisations of
the proportions using an effective number of samples to
evaluate that uncertainty. The actual proportions of the
hydrofacies influence the direct and cross-variograms of
the hydrofacies (using indicators) and thus affect the
connectivity between them. This extension will allow a

more realistic evaluation of the uncertainty of the
underground geological medium which, in turn, will affect
the simulation of flow and transport in coastal aquifers.
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A Stochastic Framework to Optimize
Monitoring Strategies for Delineating
Groundwater Divides
Jonas Allgeier1, Ana González-Nicolás2, Daniel Erdal 1,3, Wolfgang Nowak2 and
Olaf A. Cirpka1*

1Center for Applied Geoscience, University of Tübingen, Tübingen, Germany, 2Institute for Modelling Hydraulic and Environmental
Systems (LS3/SimTech), University of Stuttgart, Stuttgart, Germany, 3Tyréns AB, Göteborg, Sweden

Surface-water divides can be delineated by analyzing digital elevation models. They might,
however, significantly differ from groundwater divides because the groundwater surface
does not necessarily follow the surface topography. Thus, in order to delineate a
groundwater divide, hydraulic-head measurements are needed. Because installing
piezometers is cost- and labor-intensive, it is vital to optimize their placement. In this
work, we introduce an optimal design analysis that can identify the best spatial
configuration of piezometers. The method is based on formal minimization of the
expected posterior uncertainty in localizing the groundwater divide. It is based on the
preposterior data impact assessor, a Bayesian framework that uses a random sample of
models (here: steady-state groundwater flow models) in a fully non-linear analysis. For
each realization, we compute virtual hydraulic-head measurements at all potential well
installation points and delineate the groundwater divide by particle tracking. Then, for each
set of virtual measurements and their possible measurement values, we assess the
uncertainty of the groundwater-divide location after Bayesian updating, and finally
marginalize over all possible measurement values. We test the method mimicking an
aquifer in South-West Germany. Previous works in this aquifer indicated a groundwater
divide that substantially differs from the surface-water divide. Our analysis shows that the
uncertainty in the localization of the groundwater divide can be reduced with each
additional monitoring well. In our case study, the optimal configuration of three
monitoring points involves the first well being close to the topographic surface water
divide, the second one on the hillslope toward the valley, and the third one in between.

Keywords: gaussian process emulation, preposterior data impact assessor, bayesian analysis, uncertainty
quantification, optimal design of measurements, delineation, groundwater divide

1. INTRODUCTION

Groundwater divides are curves separating different subsurface catchments. Water entering the
subsurface on one side of the groundwater divide ends up in a different receptor than water
infiltrating on the other side of the divide. Delineating groundwater divides is therefore important for
the analysis of aquifer water budgets, for investigating contaminant fate, and other applications of
groundwater management. Groundwater divides also represent attractive geometries for setting
second-type boundaries of hydrogeological models, since the water flux across the divide is zero (e.g.,
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Pöschke et al., 2018; Erdal and Cirpka, 2019; Qiu et al., 2019).
Obviously, a natural stream network contains many nested
surface water and groundwater divides of different order
(i.e., a catchment can be subdivided into sub-catchments).
That is why for the mentioned research areas, it is always
important to define the scale of investigation to identify which
groundwater divides are relevant and which sub-catchments can
be attributed to a higher-order catchment.

A common assumption when delineating groundwater divides
is that the groundwater table is a subdued representation of the
surface topography (Tóth, 1963; Haitjema and Mitchell-Bruker,
2005). This simplifies the delineation to finding the surface water
divides, which can be derived directly from digital elevation
models using geographic information systems (Tarboton et al.,
1991). However, the topography of a phreatic groundwater
surface may substantially differ from the land surface so that
the groundwater and surface water divides do not coincide
(Haitjema and Mitchell-Bruker, 2005; Bloxom and Burbey,
2015; Han et al., 2019). In fact, Haitjema and Mitchell-Bruker
(2005) reported on a whole class of aquifers naturally exhibiting
such shifts between surface and subsurface water divides. They
demonstrated under which conditions a groundwater table is
mainly controlled by surface topography or by recharge. These
authors concluded that a shifted groundwater divide may be
caused by relatively high hydraulic conductivity in conjunction
with a difference between the elevation of drainage points in
neighboring valleys. Additional factors contributing to shifts in
groundwater divides include tilted aquifer strata, spatial
heterogeneity in the recharge rate, and anisotropy in hydraulic
conductivity. Of course, anthropogenic influence (e.g., drinking
water extraction wells) can also contribute to shifted groundwater
divides.

The location of groundwater divides can be constrained by
hydraulic-head measurements. Theoretically speaking, a very
dense network of piezometers could be used to accurately
interpolate the groundwater-table map, which could
subsequently be analyzed by the same tools as used for
delineating surface-water divides. In practice, this is not
advisable as the number of observation wells is restricted by
financial costs, labor intensity, and legal restrictions. That is,
groundwater divides must be delineated with head measurements
from a limited number of piezometers. A classical way of doing
this is by calibrating groundwater flow-and-transport models to
the head measurements, which explicitly uses all information fed
into the model construction (e.g., the geometry and parameter
ranges of geological units and boundary conditions) and leads to
hydraulic-head fields that are consistent with conservation
principles.

As only a limited number of observation wells is affordable,
their placements should be specifically optimized for delineating a
particular groundwater divide. Either, one wants to find the best
possible piezometer configuration for a fixed number of wells, in
which the optimum is defined by minimizing the uncertainty of
the divide’s position, or one wants to find the well configuration
requiring the least number of wells for a fixed target uncertainty
of the divide’s location. In both cases, the objective is to maximize
the information-to-costs ratio, which is a general problem

well-known under the name of “optimal design of
experiments” (Pukelsheim, 2006; Fedorov, 1972).

In this study, we solve the described optimization problem.
We provide a framework to identify the best set of points to
delineate a particular groundwater divide. The “goodness” of such
a point set is defined by how much the uncertainty in the divide’s
location is reduced, if hydraulic-head measurements were
available at these points. The best set of points might then be
implemented as real-world monitoring wells, whose
measurements can be used to calibrate a flow model for
actually delineating the divide of interest.

Of course, during the stage of identifying promising
measurement locations it is unknown which measurement
values would be obtained at these locations. To circumvent
this problem, we apply a specific technique of optimal
experimental design, called Preposterior Data Impact Assessor
(PreDIA, Leube et al., 2012). We feed it with a sample of steady-
state groundwater models that is efficiently pre-selected to
include only plausible subsurface flow fields (Erdal et al.,
2020). By means of delineating the groundwater divide for
each individual realization and virtually conducting all possible
measurements, we can quantify both, the total uncertainty of the
groundwater divide’s location across the domain and by how
much this scalar quantity can be reduced with a specific
measurement configuration.

The main contributions of the present study are the
formulation of the problem and the development of a suitable
objective function for delineating a groundwater divide, as well as
the combination of PreDIA with the pre-selection of plausible
model results.

The motivation behind our work originates from a real field
site. During the investigation of a floodplain, it was discovered
that the observed lateral groundwater influxes from the hillslope
are too small to drain the water quantities gained by the hillslope’s
expected recharge. This imbalance of in- and outfluxes has led to
the conclusion that the groundwater divide underneath the
hillslope is shifted in a way that the contributing area draining
toward the floodplain is much smaller than expected, when
considering the surface water divide as contributing boundary.
The phenomenon of flow crossing surface water divides has been
referred to as “interbasin groundwater flow”. It needs to be
quantitatively estimated, before detailed studies focusing on
the hillslope or floodplain can be conducted. The information
of whether or not such interbasin flow occurs in a domain and
how pronounced it is can furthermore be of utter importance, for
example if contamination occurs in one basin and a sensitive
receptor (e.g., a drinking water supply well) is located in the
other one.

We developed our framework for cases, where the (suspected)
shift of a groundwater divide is the phenomenon of interest that
needs to be quantified. In reality, such a shifted divide might
additionally be subject to transient processes (i.e., it might move
with time). This is not covered by our methodology, but we
believe our analysis might still be useful in such cases (see section
4.5). We want to emphasize that a shifted divide does not imply
its movement over time. A groundwater divide can very well be at
a (quasi-)steady state while being shifted due to the geological
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setting, which does not change significantly over time scales
relevant for groundwater management.

Section 2 introduces and explains the underlying framework.
Real data from a site in Southwest Germany are used in section 3
to test the method.We want to highlight that we separate our site-
specific implementation details (application) from the general
approach of our framework (Methods). The results of our
example study are presented and discussed in section 4.
Finally, we draw conclusions and give an outlook in section 5.

2. METHODS

2.1. Subsurface Flow Equations
The optimal experimental design method we use later on (section
2.4) is based on stochastic runs of a steady-state subsurface flow
model. To model saturated and unsaturated parts of the
subsurface, we solve the steady-state version of the Richards
equation for variably saturated flow in porous media
(Richards, 1931):

−∇ · q � Q (1)

q � −Kkrel(hp)∇htot (2)

hp � htot − z (3)

in which q is the specific discharge vector (dim q � LT−1), Q
represents volumetric source (Q< 0) or sink (Q> 0) terms
(dim Q � T−1), htot is the total head (dim htot � L), K is the
hydraulic-conductivity tensor (dim K � LT−1) under water-
saturated conditions, krel is the dimensionless relative
permeability, hp is the pressure head (dim hp � L), and z is
the geodetic height (dim z � L).

The relative permeability krel and the dimensionless effective
saturation Se are parameterized by the Mualem/van-Genuchten
relationships (Mualem, 1976; van Genuchten, 1980):

Se �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1 + (α∣∣∣∣hp∣∣∣∣)N)1−N
N

if hp < 0

1 otherwise

(4)

krel(Se(hp)) � ��
Se

√ (1 − (1 − S
N

N−1
e )N− 1

N )2

(5)

Θw � Θr + (Θs − Θr)Se (6)

in which Θw, Θr, and Θs are the actual, residual, and saturated
dimensionless (volumetric) water contents, α is a van-Genuchten
parameter similar to the inverse entry-pressure head
(dim α � L−1), and N is the associated dimensionless pore-
distribution index.

By including the Mualem/van-Genuchten parametrization,
the Richards equation holds for variably saturated flow
(i.e., both the saturated and unsaturated zone). In the
saturated zone (hp > 0), both the effective saturation and the
relative permeability become unity. Here, the Richards
equation naturally simplifies to the groundwater-flow equation
based on Darcy’s law and the continuity equation. In the
unsaturated zone (hp < 0), the effective saturation and relative

permeability are subject to nonlinear equations depending on
the pressure head. The groundwater table is located at the
transition from saturated to unsaturated zone (hp � 0). Since
the used parametrization does not define a clear entry pressure,
there is no capillary fringe in a strict sense. However, the
parameter α serves a similar purpose meaning that only if the
capillary head (equals −hp in the unsaturated zone) is well above
1
α
, the saturation drops significantly. That is, the model includes a
zone above the groundwater table where the effective water
saturation is close to unity, which resembles the capillary fringe.
Using the Richards equation coupled to Mualem/van-
Genuchten relationships to model saturated and unsaturated
parts of the subsurface simultaneously has been common
practice for decades (e.g., Tocci et al., 1998; Farthing et al.,
2003; Suk and Park, 2019).

We apply the following boundary conditions:

htot � hfix on ΓD (7)

n · q � qfix on ΓN (8)

htot � min[hsim, zsurf] on ΓS (9)

Q � CL

V
· (htot − hriv) on ΓL (10)

Q �
⎧⎪⎨⎪⎩

CD

V
· (htot − zsurf) if htot − zsurf >Δz

0 otherwise
on ΓT (11)

in which hfix is a known hydraulic head (dim hfix � L), n is the
dimensionless unit normal vector, qfix is a known normal flux
(dim qfix � LT−1), hsim is the simulated head if the boundary
was considered a no-flow boundary (hsim � L), zsurf is the
surface elevation (dim zsurf � L), CL is a river conductance
(dim CL � L2 T−1), V is the volume related to the source/sink
term (dim V � L3), hriv is a known river head (dim hriv � L),
CD is a drainage conductance (dim CD � L2 T−1) and Δz is a
pressure difference threshold (dimΔz � L). Here, ΓD denotes a
Dirichlet boundary, ΓN a Neumann boundary, ΓS a seepage
boundary, ΓL a leaky (e.g., river) boundary and ΓT a top
drainage boundary.

The leaky boundary condition can account for interactions
between groundwater and river water. The respective exchange
flux is driven by the head difference htot − hriv and a conductance CL:

CL � Lriv · wriv

Lsed
· Ksed, (12)

where Lriv and wriv are the associated river stretch length and
width (dim Lriv � dim wriv � L), Lsed is the thickness of the
sediment bed (dim Lsed � L), and Ksed is the sediment’s
hydraulic conductivity (dim Ksed � LT−1).

A similar conductance CD regulates the drainage flux at
surficial drainage boundary conditions:

CD � A
Llay

· Klay , (13)

where A is the associated surface area (dim A � L2), Llay is the
thickness of the intermediate layer (dim Llay � L) and Klay is its
hydraulic conductivity (dim Klay � LT−1).
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After simulating subsurface flow, we use particle tracking to
determine the groundwater divide as explained in section 2.3.
Toward this end, we introduce particles at the land surface, track
their advective movement according to the advective velocity v,
and analyze on which side of the groundwater system they end.
This approach is a common procedure for delineating subsurface
water divides (e.g., Hunt et al., 2001; Han et al., 2019):

dxi
dt

� v(xi(t)) (14)

subject to xi(t � 0) � xinii (15)

with v � q
Θw

(16)

in which v is the linear velocity (dim v � LT−1), xi(t) is the
position vector (dim xi(t) � L) of particle i at time t (dim t � T),
and xinii is the starting location (dim xinii � L).

The approach of delineating the groundwater divide by
particle tracking obviously implies that the divide is located
within the modeling domain. This is in contrast to many
practical groundwater-modeling studies, where the domain is
bounded by the assumed groundwater divides. Under such
conditions, these groundwater divides are fixed by the model
choice. Since we want to study the uncertainty of the groundwater
divide, we require a model domain where the divide is in the
interior so that the model has the freedom to shift it.

2.2. Generation of a Plausible Model Sample
In order to capture the uncertainty of the divide’s location (prior
to any measurements and after hypothetical measurements), our
framework makes use of ensemble-modeling. This implies the
repeated simulation of the same conceptual model with different
numerical representations. These can be formally identical,
differing only, for example, in some material property values.
They could also differ in more fundamental properties, like the
internal structure. We call the final group of model entities a
“sample”, to avoid confusion with the term “ensemble” referring
to such a group of infinite size. Each entity of the sample is termed
a realization or sample member.

Formally, a sample member is defined both, by the
formulation of the general model itself (common to all
members) and by a member-specific set of parameters. In
addition to that, the sample member also comprises its
deterministic modeling results (after the model was evaluated),
which can be reproduced from the general model by using the
same parameter set. We denote these parameter sets S, a vector of
all individual properties that differ between realizations. The
vector S may include not only material properties, but also
boundary conditions or geometric descriptors (for an example,
we refer to our application in section 3.2.3).

In theory, we could create a sample of sufficient size just by
drawing random parameter sets from appropriate prior
distributions and subsequent numerical modeling of
subsurface-flow. These prior distributions could be derived
from measurements (e.g., pumping tests for hydraulic
conductivities), other models (e.g., recharge rates) or expert
knowledge (e.g., anisotropies). Afterward, particle-tracking

would obtain one groundwater divide for each realization. In
practice however, we need to exclude parameter sets that lead to
implausible model results (e.g., wrong signs of fluxes across
boundaries; more examples in context of our application,
section 3.3), because that would ignore obvious insight into
the correct system behavior and thus overstretch uncertainty.
Conversely, we do not want to restrict the parameter ranges too
much because we want to assess the full space of plausible model
parameters. Therefore, we keep the prior parameter ranges
untouched, but rely on the exclusion of models with obviously
unrealistic results (denoted unbehavioral or implausible).

While excluding unbehavioral realizations is a conditioning
step, we would not yet consider it a model calibration, but rather a
plausibility check or pre-selection (see Erdal and Cirpka, 2019;
Erdal and Cirpka, 2020; Erdal et al., 2020). In a rigorous
conditioning step (i.e., “stochastic calibration”) that could
follow on this pre-selection, we would modify the parameters
of sample members to better meet the exact measurement values.
A potential method to do that would be an ensemble Kalman
smoother. However, a full stochastic calibration on the existing
data would be computationally expensive, but not informative
about the quantity of interest, namely the position of the
groundwater divide. The lack of hydraulic-head measurements
that are informative about the delineation of the groundwater
divide is the very reason why we perform the optimal design of
experiments to begin with.

The decision about the plausibility and ultimately its
acceptance or rejection of a candidate model is based on a set
of criteria. Each plausibility criterion compares a scalar model
outcome (e.g., the flux across a specific boundary) with a target
value that must not be exceeded or fallen below. Only if a model
realization fulfills all plausibility criteria, it will be included in the
sample for further analysis.

A key problem of the pre-selection is that more than 94% of
randomly drawn parameter sets in our application miss at least
one criterion. If we performed full runs of the numerical
subsurface-flow model for each model candidate, we would
thus waste more than 94% of the computing time on model
runs that must be discarded. To overcome this problem
efficiently, we have adopted the pre-selection method of Erdal
et al. (2020) (based on Erdal and Cirpka, 2019). It is based on
relating the plausibility criteria with the model parameters S by
means of interpolation, to estimate whether a new parameter set
is likely to be plausible or not. Toward this end, it follows these
steps:

(1) We create a small initial sample of S by Latin Hypercube
sampling from appropriate priors and perform numerical
subsurface-flow modeling for all sample members. We
compute the respective values of the plausibility criteria
for each realization.

(2) We train one Gaussian process emulator per plausibility
criterion with the initial sample of full model runs. A
Gaussian process emulator is a kriging interpolator in
parameter space (a “proxy model” or “surrogate model”)
that estimates the expected value of the plausibility criterion
and quantifies its estimation variance, provided that the
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assumptions of kriging (e.g., statistical stationarity) hold. We
want to emphasize here that this is not a spatial interpolation,
but an interpolation of the model response to parameter
values.

(3) We then draw further random samples of S. For each of
them, we apply the Gaussian process emulators to compute
the compliance probability with each plausibility criterion. If
a realization’s product of all individual compliance
probabilities (i.e., its overall probability) does not exceed a
certain threshold value (in our case 50%), we discard it and
draw a new sample. This evaluation is comparably quick
(fraction of a second) and saves us modeling time that would
be wasted by running a model that would probably need to be
rejected due to implausible results.

(4) For a model candidate where this product exceeds the
threshold probability (a “stage-1-accepted” realization), we
perform the simulation of the full subsurface-flow model. A
small percentage of sample members (we use 5%) is run
directly without checking against the Gaussian process
emulator estimates first.

(5) If the model candidate also meets the plausibility criteria after
running the full numerical model, it is “stage-2-accepted”
(i.e., included in the sample of physically plausible models),
and particle-tracking simulations are performed to obtain the
groundwater divide. Otherwise, it is discarded.

(6) With an increasingly large set of full model runs, the
Gaussian process emulator model is regularly retrained to
improve its accuracy in predicting the behavioral status of
subsequent model candidates.

With this procedure, we were able to increase the overall
acceptance ratio, that is, the number of stage-2-accepted full-
model runs over the total number of full-model runs. In the initial
small sample (full Monte Carlo), only 6% of the realizations
passed the plausibility check (111 out of 2000). With the

interpolation method, we were able to achieve an acceptance
ratio of 69% of realizations subject to a full model run (50,000 of
72,481 stage-1-accepted parameter sets; a large number of
randomly drawn parameter sets was rejected in stage 1).
Figure 1 schematically illustrates the whole sample-generation
procedure. It results in nsample stage-2-accepted realizations that
will actually be used in the following analysis.

2.3. Uncertainty in Delineating a
Groundwater Divide
For each stage-1-accepted parameter realization (see step 4 in
section 2.2), we determine the scalar model outcomes of the
plausibility check. Additionally, we simulate virtual measurement
values of hydraulic heads at all potential measurement locations,
by determining the respective elevations of the groundwater table
at these locations. The number and location of such potential
measurements is known prior to the analysis and part of the
problem statement.

Only for the nsample stage-2-accepted realizations, we compute
via particle tracking a vector z of particle fates for a regular map of
starting locations: We introduce npar particles at the model
domain’s surface. These particles are tracked through the
domain until they exit the domain through a groundwater
outlet. This tracking allows us to classify the particles into two
categories summarized by the classification vector z with
zi ∈ {0, 1} and i � 1, . . . , npar. A particle i that ends up in one
outlet (A) is assigned the value zi � 1, while a particle ending up
in the other outlet (B) obtains a value of zi � 0. Since each particle
is related to a starting point in two-dimensional space, z
represents what we call the binary particle-fate map. This
binary classification is sufficient to delineate the boundary of a
single subdomain, but it cannot be used to delineate all
groundwater divides between more than two subdomains (e.g.,
due to groundwater extraction wells). In the appendix (section

FIGURE 1 | Procedure used to generate a sample of physically plausible model realizations for the optimal experimental design analysis.
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5.1) we include a generalization to an arbitrary number of
subdomains. In the following, we will focus on binary systems,
because this is the most common scenario.

Other approaches than particle tracking for the delineation of
groundwater divides exist. They are typically based on locating
the “ridge of the groundwater table”. However, they have been
shown to be less reliable (Han et al., 2019).

The fate of a particle i depends on the parameter vector S
(including all variable model decisions). The probability of zi
being one (that is, of the associated starting point to be within the
catchment of outlet A) is computed by integrating over the space
ΩS of the parameter vector S, weighted with the probability
density of S:

P(zi) � ∫
ΩS

zi(S)p(S) dS

≈ ∑
j�1

nsample

zi(Sj)P(Sj), (17)

in which zi(S) is the binary fate of particle i for the given
parameter vector S, p(S) is the probability density of S, and
the second row of Eq. 17 is the Monte-Carlo approximation of
P(zi) by the sample of discrete S-values with the probability P(Sj)
given to the S-value of the jth realization. In our initial sample, all
accepted realizations are equally likely, implying
P(Sj) � 1/nsample ∀j. Upon conditioning on (virtual) head
measurements, P(Sj) will become a Bayesian weight (see
below). Franzetti and Guadagnini (1996) and Hunt et al.
(2001) used a similar approach to estimate the uncertainty of
capture-zone delineations.

We can now compute the probability Pmc(zi) of misclassifying
the fate of particle i:

Pmc(zi) � 2P(zi)(1 − P(zi)). (18)

This equation expresses the probability that particle i, which
actually ends up in outlet A, is estimated to end up in outlet B or
vice versa. Pmc ranges from zero (full certainty) to 0.5 (maximum
uncertainty). The underlying assumption is that the decision
threshold for classification is at 50%. That is the reason for
0.5 being the largest value of Pmc. P(z) and Pmc(z) can be
visualized as maps of probability all over the catchment. We
integrate the probability of misclassification over all starting
locations xini of particles to obtain an integral metric U of
describing the uncertainty of the groundwater divide:

U(z) � 1
A2D

∫
A2D

Pmc(z(xini)) dxini

≈
1

A2D
∑
i�1

npar

Pmc(zi)Aini
i

(19)

in whichA2D is the two-dimensional top surface area of the model
domain and Aini

i is the contributing area of particle i, which may
be computed by Voronoi tesselation of all starting locations (e.g.,
Brassel and Reif, 1979). Large values of U(z) express that the
outlet destination of particles is uncertain on a large fraction of
the domain’s surface, which is not desirable.

As discussed in the context of Eq. 17, the probability P(zi) of
starting location xinii being in the catchment of outlet A, and thus
the associated probability of misclassification Pmc(zi) and
ultimately the overall uncertainty U(z), depends on the
probabilities P(Sj) of individual parameter realizations j. This
implies that conditioning the parameter vector S on head
observations will change the overall uncertainty U of
delineating the groundwater divide. The following optimal
design analysis aims at minimizing U.

2.4. Prospective Optimal Experimental
Design
To find the optimal placement of piezometers in order to
delineate a groundwater divide, we apply the optimal
experimental design method PreDIA (the Preposterior Data
Impact Assessor, Leube et al., 2012), which we briefly review
in the given context.

The scientific question of optimal design is to find the
combination of measurements or experiments with the largest
information content regarding a target quantity, before the
experiment itself is carried out. Formally, the objective is to
identify the single design dopt of a set of ndes possible designs
d in the design space d ∈ D that maximizes a utility function ϕ(d)
(Leube et al., 2012):

dopt � argmax
d ∈ D

[ϕ(d)] (20)

A design in this notation is a vector containing information about
how measurements are taken in time and space. The utility
function ϕ(d) is a measure of the usefulness of data obtained
with an experiment using design d. The evaluation of ϕ obviously
requires knowledge about the measurement results of a particular
design, which is unknown at the stage of the optimal-
experimental-design analysis. PreDIA can circumvent this
problem by means of ensemble-based modeling.

As previously described, S denotes the input parameter vector,
comprising all uncertain model decisions, such as material
properties (e.g., hydraulic conductivity), boundary conditions
(e.g., recharge), geometric parameters (e.g., thickness of
geological units), or structural modeling parameters (e.g.,
presence of layers). As outlined above, we create a sample of
members with physically plausible behavior. The variability in
model input S leads to interdependent variability of model
output, both with respect to simulated measurements and
simulated target quantities (the particle-fate maps).

For a given realization Si, we can simulate virtual observations
fy(Si, d) for a specific design d, in which fy denotes the simulation
outcome of the measured quantities. To account for
measurement error, we add a random error term εy to
fy(Si, d) to obtain virtual measurements yi(d) of a specific
design d and parameter realization i:

yi(d) � fy(Si, d) + εy (21)

To answer the optimal-experimental-design question, we use
the stage-2-accepted realizations to compute the 1 × npar
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vector of prediction variables z (binary particle-fate map) as
discussed above. The prediction solely depends on the input
parameter vector S and is independent of the measurement
design d. In our particular application, the prediction variable
is binary, namely whether a particle introduced into the
subsurface at a given location belongs to one out of two
catchments. The binary nature of z implies that the sample
average of it equals the vector of probabilities that the
individual elements of z are one.

After acquiring nsample stage-2-accepted sample members
of the parameter vector S and computing the associated
virtual measurements and prediction variables, we have
nsample × ndes sets of y(d) and nsample sets of z (which can be
summarized in a nsample × npar matrix Z). As illustrated in
Figure 2, PreDIA proceeds in the following way to identify
the best design:

(1) Compute the unconditional sample mean P(zi) of all target
variables zi by Eq. 17 with equal probabilities of all
realizations.

(2) Compute the vector of unconditional probabilities of
misclassification Pmc(zi) by Eq. 18 and the associated
overall prior uncertainty of groundwater-divide delineation
U(z) by Eq. 19.

(3) Select a random subset of nsub realizations used to define
virtual truths. Its distribution of virtually measured values y
should be similar to the corresponding distribution using the
full sample (across all designs). When computationally
feasible, select all nsample sample members such that nsub �
nsample.

(4) Loop over all designs d:
a. Loop over the nsub realizations with index j:

(1) Realization j with the virtual observations yj(d) and
the virtual prediction variable zj is temporarily
declared as truth.

(2) Each realization i≠ j of the full set of nsample

realizations is assigned a Bayesian weight
depending on how close the respective
observations yi(d) are to yj(d). The weights are

computed by the likelihoods Lij of observation yi(d)
using the observation yj(d) as temporary truth:

wij � Lij∑iLij
(22)

Lij�

1���������(2π)ny |Rε|
√
exp(−1

2
(yi(d)−yj(d))TR−1

ε (yi(d)−yj(d))) if i≠j

0 otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(23)

in which ny is the number of virtual measurements
according to the current design d, and Rε is the ny ×
ny covariance matrix of measurement errors, here
assumed to be a diagonal matrix, which implies that
the measurement errors are uncorrelated.

The weights are summarized in a nsample × 1
vector wj of weights.

(3) Compute the mean of all prediction variables in Z,
conditioned on the observations yj(d) of the
temporary true parameter set Sj according to the
current design d by Eq. 17 with the probability of
realization i set to the weight wij:

P(z∣∣∣∣∣yj(d)) � wT
j Z � ∑nsample

i

wijzi (24)

The 1 × nz vector P(z
∣∣∣∣∣yj(d)) is the vector of

probabilities that the individual elements of z are
one, conditioned on the vector of observations yj(d)
of realization j using the design d.

(4) Compute the conditional probability of misclassification
Pmc(z

∣∣∣∣∣yj(d)) by substitutingP(z∣∣∣∣∣yj(d)) rather than the
vector of unconditional probabilities P(z), into Eq. 18.

(5) From the vectors of conditional and unconditional
probabilities of misclassification, Pmc(z

∣∣∣∣∣yj(d)) and
Pmc(z), respectively, compute a scalar metric
Φ(yj(d)) summarizing the relative reduction of
uncertainty U in classifying all elements of z by

FIGURE 2 | Schematic illustration of the general preposterior data impact assessor procedure. Inner loop in dark blue, outer loop in light blue.
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considering the observations yj(d) belonging to
design d:

Φ(yj(d)) � 1 − U(z∣∣∣∣∣yj(d))
U(z) (25)

by using Eq. 19. Steps 4. a (1) to 4. a (5) define the
inner loop, illustrated by dark blue shading in
Figure 2. In the inner loop, each of the nsub
virtual observations for the currently chosen
design d are temporarily considered the truth.
The inner loop results in nsub objective-function
values for a given design d.

b. Marginalize the objective function over the nsub
realizations:

ϕ(d) � 1
nsub

∑nsub
j�1

Φ(yj(d)) (26)

in which we have assumed that all “temporary truth”
realizations j are equally likely. ϕ(d) is the utility
function of design d. Steps 4. a and 4. b define the
outer loop over all designs d ∈ D, which is illustrated
by light blue shading in Figure 2).

(5) Identify the design dopt maximizing ϕ(d) according to
Eq. 20.

The two loops of PreDIA require large sample sizes to make
reliable statements about design performances. To estimate
whether the chosen sample is large enough for the results to
be meaningful, one can use the averaged effective sample size
AESS (Leube et al., 2012, adapted from; Liu, 2008). It is a measure
of how many realizations actually contribute to the analysis,
where low values indicate filter degeneracy, which needs to be
mitigated by increasing the ensemble size.

PreDIA has fundamental advantages over other optimal-
experimental-design techniques. It is applicable to inherently
non-linear problems without the need of a linearization. It is
also very versatile because it imposes few restrictions on the
numerical model. Besides the definition and reading of some pre-
run input and post-run output quantities, the actual numerical
simulation code is independent of PreDIA. This independence
makes it trivial to couple any numerical model with PreDIA. It
can be seen as a post-processing routine for any modeling sample.
PreDIA can capture all kinds of known or estimated uncertainties
in boundary conditions, material properties, model structure, or
any other model parameters due to its ensemble-based nature.

The disadvantage of PreDIA lies in its computational cost. The
analysis requires large sample sizes (i.e., tens of thousands of
model runs) and is computationally expensive itself. These
difficulties, however, can be overcome with parallel computing
techniques (i.e., running multiple realizations at the same time)
and simplified models that are comparably quick.

2.5. Numerical Implementation
Our framework does not depend on the choice of any specific
software, neither for the flow simulation nor for the optimal-design

analysis. In the following application, we use HydroGeoSphere to
solve for three-dimensional subsurface flow using standard finite
elements on triangular prisms (Therrien et al., 2010; Brunner and
Simmons, 2012). Because of the Richards equation’s nonlinearity,
we do not directly solve for steady-state flow. Instead, we use the
transient solver of HydroGeoSphere with constant forcings over a
simulation time of 3 · 1012 s ≈ 100 000 years using adaptive
discretization in time. It is reasonable to assume that steady state
is achieved within this time.

The velocity field of HydroGeoSphere is transferred to Tecplot
to perform advective particle tracking with Tecplot’s streamtracing
routine in its command line mode (Tecplot Inc., 2019).

The stochastic engine responsible for the sampling of the
parameter space and performing the plausibility check of
sample members by the Gaussian process emulator-based
surrogate model is written in Matlab (The MathWorks Inc.,
2019) and based on the code of Erdal and Cirpka (2019). We
execute the stochastic sampler on a mid-size high-performance
computing cluster with 24 Intel Xeon L5530 nodes (8 cores per
node; 2.4GHz and 8MB per chip).

The optimal design analysis using PreDIA is implemented as a
separate Matlab code that acts on the full sample of stage-2-
accepted realizations after its acquisition.

3. APPLICATION TO A FIELD SITE

3.1. Description of the Study Site
We apply the presented framework to delineate the groundwater
divide between the Ammer and Neckar catchments north and
south of the Wurmlingen Saddle, respectively, close to Tübingen
in South-West Germany. Figure 3 shows a map of the area
outlining the model domain (solid black line), the surface-water
divide (dashed black line), and streams/drainage features (blue
lines). The area of interest comprises a floodplain in the Ammer
catchment, which is part of ongoing hydrogeologic and geophysical
research (e.g., Martin et al., 2020). Previous modeling studies
suggested a shift of the groundwater divide in this area toward
the Ammer catchment in the north (Kortunov, 2018). This
hypothesis was supported by the Neckar valley being about 10m
lower than the Ammer valley and dipping of the strata toward the
south. However, no piezometers currently exist along the decisive
hillslope so that the hypothesis of a shifted groundwater divide is
fairly uncertain. Delineating the groundwater divide with higher
certainty would help to determine the Ammer floodplain’s water
budget more accurately.

In order to test the hypothesis of a shifted groundwater divide,
installing up to three piezometers is planned. Due to legal and
logistical reasons, all new groundwater observation points need to
be placed on a transect parallel to the street fromUnterjesingen to
Wurmlingen (see Figure 3). We use the presented method to
determine the best configuration of piezometers along this
transect.

The model domain contains parts of both the Ammer and
Neckar catchments, so that the groundwater divide emerges from
the model instead of being set as a boundary condition. The
surface elevation ranges from approximately 330m to 475m
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above sea level. In the East of the model domain, the surface-
water divide is on a ridge (“Spitzberg”) formed by a sequence of
mud- and sandstones that most likely does not allow groundwater
recharge to the main aquifer. Likewise, in the West, the surface-
water divide is on a plateau (“Pfaffenberg”). In the center of the
model domain, by contrast, the topographic surface-water divide
is a saddle with gentle slopes both toward the north and south.

The model domain includes the floodplain of the Ammer river
with the river itself and a network of artificial drainage channels.
The drainage features running south-north on the hillslope are
typically dry, unless during storm events. On the southern side,
the model domain includes parts of the Neckar floodplain, but
does not reach River Neckar. The only surface water on this side
of the hills is a small creek (“Arbach”). However, a dense network
of observation wells in the Neckar valley allowed us to define a
fixed-head boundary condition along the southern boundary of
the model domain.

The bedrock geology in the area is governed by sequences of
sandstones and mudstones belonging to the Upper Triassic
Keuper formation (Aigner and Bachmann, 1992). The regional
geology has been subject to many (hydro-)geological
investigations (e.g., Kekeisen, 1913; Harreß, 1973; D’Affonseca
et al., 2020). The Ammer and Neckar rivers have carved small
basins into the bedrock (Martin et al., 2020), which are filled with
Quaternary sediments forming the floodplains. In total, we
distinguish twelve hydrostratigraphic units, which we briefly
characterize in the following from bottom to top:

(1) lower Erfurt formation (kuE): The kuE unit is roughly 20m
thick. Being made of thin layers of mudstones and
dolostones, it acts as an aquitard, separating the shallow
groundwater system from the underlying middle Triassic

Muschelkalk formation, a regional karstified aquifer
(D’Affonseca et al., 2020).

(2) upper kuE: We divide the kuE into two subunits of similar
thickness to account for its heterogeneity in hydraulic
conductivity.

(3) unweathered Grabfeld formation (kmGr): The kmGr is a
mudstone unit bearing gypsum, anhydrite, mudstones, and
shales. It can reach thicknesses of up to 100m (Schmidt et al.,
2005). Its hydraulic properties vary strongly depending on its
degree of weathering. The unweathered, anhydrite-bearing
kmGr is considered tight but may be fractured to allow some
water circulation.

(4) weathered kmGr: Water contact has transformed anhydrite
to gypsum within the kmGr. Upon further weathering, the
gypsum dissolves (Ufrecht, 2017), which can increase the
hydraulic conductivity by orders of magnitude (Kirchholtes
and Ufrecht, 2015). Due to the strong contrast in hydraulic
conductivity, we divide kmGr into the unweathered and
weathered rock.

(5) mud- and sandstone formations (km2345): We lump the
remaining bedrock formations Stuttgart formation (kmSt),
Steigerwald/Hassberge/Mainhardt formation (kmSw/kmHb/
kmMh), Löwenstein formation (kmLw), and Trossingen
formation (kmTr), which are made of interbedded
mudstones, silty mudrocks, dolomite layers, sandstones,
and clay conglomerates, to a single unit with uniform
hydraulic properties. These strata occur only at the
outskirts of our model domain where they cover the kmGr.

(6) hillslope-hollow fillings: hillslope hollows on the southern
hillslopes of the Ammer valley are cut into the kmGr. They
are partially filled with poorly sorted sediments deposited by
mudflows.

FIGURE 3 | Two-dimensional overview of the model domain and its location in Germany.
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(7) Neckar-valley gravel: The floodplain material on the Neckar
side mostly consists of Quaternary sandy gravel sediments of
several meter thickness.

(8) Ammer-valley Quaternary: The Ammer floodplain
comprises five distinct layers (Martin et al., 2020):
a. Ammer-valley gravel: The lowest floodplain unit in the

Ammer valley consists of a Pleistocene clayey gravel
body, acting as a local aquifer. Its thickness is in the
range of 5m to 10m.

b. Ammer-valley clay: A clay unit of approximately 2m to
3m thickness forms an aquitard between the two
floodplain aquifers.

c. Ammer-valley tufa: This Holocene unit consists mostly
of autochthonous limestone aggregates. It has a
thickness of several meters. Slug tests conducted by
Martin et al. (2020) identified this layer as an aquifer.

d. Ammer-valley alluvial clay: The top of the Quaternary
filling of the Ammer floodplain is a several meter thick
colluvium of silty and clayey fines.

e. riverbed of the Ammer river: Underneath River
Ammer, a layer of recent river sediments with
different grain size than the surrounding sediments
can be found. This layer could have an increased
hydraulic conductivity, due to consisting of coarse
sediments deposited by the river. However, it is also
possible that this layer has a reduced conductivity due
to colmation of clayey deposits.

Figure 4 illustrates the considered hydrostratigraphic units in
three-dimensional renderings.

3.2. Details of the Subsurface-Flow Model
3.2.1. Discretization
Figure 5 shows a plan view of the model discretization and
boundary conditions. The model domain covers an area of
approximately 13 km2. We discretize the two-dimensional area
by 3,959 triangles arranged in a conforming unstructured grid.
These triangles are extruded in the vertical dimension to generate
triangular prisms. Using 35 prism layers from the bottom of the
lower kuE formation to the surface elevation results in a grid of
138,565 three-dimensional elements with 74,412 nodes. The
number of layers is constant throughout the domain, whereas
the layer thicknesses vary. The topmost layers of the domain are
discretized more finely, in order to better resolve the unsaturated
zone. The chosen mesh is a compromise between numerical
accuracy and computational effort. A comparison between
models set up on this grid with models defined on an eightfold
refined version revealed some deviations at the coarser parts (mostly
on the Neckar side and in the deeper subsurface of the domain).
However, we deem these acceptable because they occur where the
exact hydraulic heads are of little interest to us anyway and because
they are minor compared to the variance between different model
realizations. For future applications we suggest to perform a grid
convergence analysis with a range of different discretizations. The
coarsest grid providing adequate accuracy should be selected.

FIGURE 4 | Three-dimensional overview of the subsurface-flow model. The vertical dimension is exaggerated by a factor of five to enhance distinctness.
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3.2.2. Boundary Conditions
Along different parts of the boundary, we apply different
boundary conditions:

(1) If not specified otherwise, all outer mesh faces are assigned a
no-flux (Neumann) boundary condition. These boundaries
are either in formations of very low conductivity (particularly
the bottom) or the boundaries are far away from the area of
interest like the northern boundary, which is derived from a
secondary surface water divide on the far side of the Ammer
valley. The eastern and western boundaries are
approximately parallel to the estimated flow field.

(2) Three fixed-head boundary sections are defined at the
western, eastern, and southern sides of the domain to
allow regional groundwater flow (see Figure 5). To obtain
the fixed-head values, we interpolate between observation
well data. In the Ammer valley, the Dirichlet boundaries
extend over the Quaternary fillings, while on the Neckar side,
they extend over the whole depth of the model, where the
formation consists of a thin, highly conductive gravel that
ends at the municipality of Wurmlingen. Because of the high
hydraulic conductivity and the absence of significant vertical
hydraulic gradients here, we average the interpolated head
values over depth for the Dirichlet assignment.

(3) On the top surface of the domain, we apply recharge as a fixed-
flux (Neumann) boundary condition across element faces.
Recharge rates in different zones depend on land use
(cropland, floodplain, urban areas, and km2345-covered
parts). By providing recharge as a model boundary we
lump the dynamic interaction of evaporation, transpiration,
precipitation and soil water storage into a single stationary
quantity, which is of course a simplification. However, since

we are interested in the effective, long-term behavior and not
the high-resolution fluctuations, we consider this
simplification justified. We base our range of possible
recharge rates on previous work conducted in our domain
or in comparable aquifers in close proximity (Holzwarth, 1980;
Wegehenkel and Selg, 2002; Selle et al., 2013).

(4) We use a leaky boundary condition to simulate the
interaction between groundwater and the Ammer river.

(5) For the network of drainage ditches in the Ammer valley and
the small surface water creek in the Neckar valley, we apply
seepage boundaries.

(6) Drainage boundary conditions are applied to all other surface
nodes, allowing water to drain whenever the groundwater
table is above the ground surface. We distinguish between
elements that belong to the Ammer floodplain (highlighted
in light brown in Figure 5) and the remaining surface.

Note that there are no groundwater abstractions within the
model domain so that we do not need to consider corresponding
internal boundary conditions.

We tested different initial conditions for the flow solution (e.g.,
a hydraulic head field interpolated frommeasurements, hydraulic
heads equaling the surface elevation, a constant depth to the water
table). The choice of initial condition affected mostly the run time
needed to reach convergence to steady-state, but influenced the
steady-state flow field itself only marginally. We settled with initial
hydraulic heads equal to the surface elevation. For other
applications, we recommend a similar comparison procedure to
identify a useful initial condition. Choices that are too far away
from a realistic flow field (e.g., a completely dry domain) can lead to
convergence problems due to the nonlinearity of Richards’
equation.

FIGURE 5 | Boundary conditions and two-dimensional discretization of the underlying subsurface flow model.
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3.2.3. Uncertain Parameters and Prior Information
Each discretized spatial element (i.e., triangular prism) has a set
of parameters defining the hydraulic properties of its material.
All elements belonging to the same hydrostratigraphic unit
share the same set of parameters, including the horizontal and
vertical hydraulic conductivities Kh and Kv, respectively, the
van-Genuchten parameters α and N and the residual water
saturation Swr � Θr/Θs. For the transient calculations, we also
need storage-related parameters (i.e., porosity or specific
storativity), but they do not affect the final steady-state
solution.

Table 1 summarizes all material properties considered
random. These parameters are the first part of the parameter
set S, sampled by the stochastic engine. Prior to the pre-selection/
conditioning, we assume a uniform distribution of each
parameter between a minimum and a maximum value. These
distributions reflect unbiased estimates within a range of
plausibility based on hydrogeological knowledge about the
formations and other uncertain expert knowledge.

The values in Table 1 are grouped by horizontal saturated
hydraulic-conductivity values Kh, anisotropy ratios Kv/Kh, and
the van-Genuchten parameters α andN. The indices represent the
hydrostratigraphic unit using the numbering scheme of section
3.1. In total, we consider 30 variable material properties (named
#P1 to #P30), which is less than the number of units times the
number of hydraulic properties (12 × 4 � 48) because we chose
some parameters to be identical in several geological units. The
hydrostratigraphic units 1 to 6 share the same van-Genuchten
properties, and the units 7 and 8a do not require these
unsaturated properties because the gravel aquifers of the
Neckar and Ammer valleys are always fully water saturated.

We do not treat the residual water saturations as random
variables. Instead, we apply the following values in all model runs:
Swr,1−8 � 5%, Swr,9 � 17%, Swr,10 � 18%, Swr,11−12 � 25%.

In total, we use nine random parameters (#B1 to #B9) related
to boundary conditions, listed in Table 2. We again assume
uniform priors within given bounds. Parameters #B1 to #B4
regulate the groundwater recharge R [m s−1] on the four types of
land use. Here we take the random recharge rate Rcropland on
undisturbed cropland as reference, which is reduced by random
factors for the other land-use types (floodplain material, areas
covered by mud-/sandstone, urban areas).

The parameters #B5 to #B8 modify the fixed-head values at
Dirichlet and river boundaries. The base values for the fixed heads
used on the southern boundary in the Neckar valley (hNeckar) and
the stage of River Ammer (hAmmer) vary in space. In the stochastic
setup, we consider random constant shifts of ΔhNeckar and ΔhAmmer

to all nodes belonging to the respective boundaries. The fixed-
head values on the groundwater in- and outflow faces in the
Ammer floodplain are spatially constant but uncertain, so that the
stochastic model directly treats these values, hAmmer,in and
hAmmer,out, as random variables. We have chosen the ranges of
these values from time series of hydraulic head measured in
existing piezometers close to the boundaries.

At last, #B9 represents the uncertain thickness of the drainage
boundary in Eq. 13 for all floodplain elements. The respective
hydraulic conductivity is K8d,h. For the drainage boundaries

outside of the floodplain, we assume a soil layer of 0.20m
thickness and a hydraulic conductivity of 1 · 10− 6 m s−1. The
river boundary condition (see Eq. 12) uses K8e for its
conductivity and the geometry parameters Lriv � 40m,
wriv � 3m, and Lsed � 0.5m.

Finally, we consider a total of five random parameters (#S1 to
#S5) describing uncertain geometry of structural units. Table 3
lists the ranges of the parameters. #S1 controls the maximum
depth L4 of the weathered kmGr formation (hydrostratigraphic
unit 4): Wherever kmGr is the outcropping geological formation,
the top layer with thickness L4 is considered weathered, that is
attributed to the hydrostratigraphic unit 4. The parameters #S2
and #S3 describe the three-dimensional extent of the hillslope-
hollows. #S2 controls the lateral extent of the hollows by
expanding or contracting their width by a constant factor. #S3
defines the bottom slope of the hollows, which thereby also
controls their maximum depth. The total volume of the
hydrostratigraphic unit 6 depends on both #S2 and #S3. The
final two parameters #S4 and #S5 are converted to binary flags,
deciding whether the hillslope hollows (#S4) and explicit river
beds (#5) are considered at all. Negative values of #S4 and #5
indicate that the respective features are not considered, whereas
positive values lead to realizations including these features. We
have introduced these switches because the existence and
hydraulic relevance of these hydrogeological elements is
uncertain at the real field site. A full parameter set S is the
concatenation of all #P, #B and #S values.

3.3. Plausibility Criteria for Model
Pre-Selection
We define seven criteria to decide whether the flow solution of a
model realization is plausible (i.e., stage-2-accepted). These
criteria are listed in the following:

(1) To keep the realizations close to data observed in the field, the
simulated hydraulic heads are compared to real head
measurements obtained in the valleys (see section 3.4). As
the model assumes steady-state flow, we time-average the
available series of measured heads at 51 observation wells and
compute the root mean square error (RMSE) of the
corresponding simulated steady-state heads. For a model
realization to be stage-2-accepted, its RMSE has to be
smaller than 1.5m. This reflects the order of magnitude of
the measured annual fluctuations in hydraulic head, which
are in the range of 0.5 m–2 m.

(2) The total groundwater flux Qin crossing the fixed-head
boundary at the western inflow end of the Ammer-
floodplain aquifers must be positive.

(3) The total groundwater flux Qout crossing the fixed-head
boundary at the eastern outflow end of the Ammer-
floodplain aquifers must be negative.

(4) The magnitude of the two fluxes, Qin and Qout, must be
similar. It is unclear which of the boundaries exhibits the
larger groundwater discharge at the field site. Both scenarios
(increase of discharge from in-to outflow due to recharge and
input from the hillslopes or decrease of discharge due to
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drainage into the rivers and channels) are possible.
Therefore, we only evaluate the ratio γ of the absolute flux
difference over the mean flux:

c � 2
||Qin| − |Qout||
(|Qin| + |Qout|) (27)

This ratio can take values between c � 0 (both fluxes are
identical) and c � 2 (one flux is zero). For a stage-2-accepted
model realization, we require c≤ 1, which is equivalent to
requiring 1

3≤
|Qin|
|Qout|≤ 3.

(5) The sum of all exchange fluxes between the subsurface and
rivers must be negative (i.e., net groundwater discharge into
rivers). Field data on the exchange fluxes are difficult to
obtain because the change of river discharge due to surface-
water/groundwater exchange is very small along the
investigated stretch. Nonetheless we expect that the rivers
are net gaining as there are no groundwater abstractions
within the domain. Losing conditions might occur only
locally on short stretches of the rivers and channels.

(6) A typical behavior shown in many models with randomly
drawn parameters is extensive flooding of the model
domain. At the real floodplain, by contrast, we do not
observe permanent flooding outside of ditches. To

exclude flooding of the floodplain under steady-state
flow conditions, we require that the total flux across all
drainage nodes is small (see section 3.2.2). As plausibility
we set that the total flux leaving at the surface must be
smaller than 10% of the total flux produced by the
recharge boundaries.

(7) Finally, the water flux leaving at the drainage ditches should
not be excessive. In the real floodplain, these ditches carry
water only seasonally and in small quantities. Since the actual
fluxes are unknown and hard to estimate, we require a stage-
2-accepted realization to drain less than 50% of the
recharged water through the ditches.

3.4. Tested Experimental Designs
Currently, there are 35 piezometers already installed at the field
site, for which a decent-quality dataset of hydraulic head in one or
multiple depths is available. Figure 5 shows the location of these
observation wells by gray circular dots with black edges.
Accounting for different depths in multi-level wells, hydraulic
heads are measured at 51 points. However, there are no
piezometers located on the hillslope between the two valleys.
This lack of observation points results in high uncertainty
regarding groundwater flow underneath the hillslope and in
the location of the groundwater divide.

In order to fill this gap, the installation of up to three additional
piezometers is planned on a transect. We identified twenty
potential piezometer locations along this transect, coinciding
with edges of the computational grid. These locations are
marked in Figure 5 as gray circular dots without an edge. The
line of points extends longer on the North than the South, because
we expect the divide to be shifted toward the North. This is so,
because the northern valley is at a higher elevation than the
southern valley, and also the geological units dip toward the

TABLE 2 | Prior ranges of parameters describing boundary conditions of
the model.

ID Name Minimum Maximum Unit Comment

#B1 Rcropland 1.5 · 10−9 8.0 · 10− 9 m s−1 —

#B2 Rfloodplain/Rcropland 0 1 — Coupled to #B1
#B3 Rmud/sandstone/Rcropland 0 1 — Coupled to #B1
#B4 Rurban/Rcropland 0.25 1 — Coupled to #B1
#B5 ΔhNeckar −0.50 0.50 m —

#B6 Δhriver −0.25 0.25 m —

#B7 hAmmer,in 346.0 347.0 m —

#B8 hAmmer,out − hAmmer,in −8.6 −7.6 m Coupled to #B7
#B9 L8d 0.10 1.50 m —

TABLE 3 | Prior ranges of structural parameters.

ID Name Minimum Maximum Unit Comment

#S1 L4 0 50 m —

#S2 Size factor hollows 0.5 1.5 — —

#S3 Bottom slope hollows 0.0 0.7 % —

#S4 Switch hollows −0.5 0.5 — No hollows if <0
#S5 Switch riverbed −0.5 0.5 — No riverbed if <0

TABLE 1 | Prior parameter ranges of random material properties of
hydrostratigraphic units considered in the model.

ID Name Minimum Maximum Unit Comment

#P1 log10K1,h −8.0 −6.0 ms−1 —

#P2 K2,h 1/250 · K1,h 1/2 · K1,h m s−1 —

#P3 log10K3,h −9.0 −6.3 ms−1 —

#P4 K4,h K3,h 103 · K3,h m s−1 —

#P5 log10K5,h −8.3 −7.0 ms−1 —

#P6 log10K6,h −9.0 −3.0 ms−1 —

#P7 log10K7,h −5.3 −3.0 ms−1 —

#P8 log10K8a,h −5.3 −3.0 ms−1 —

#P9 log10K8b,h −10.0 −7.0 ms−1 —

#P10 log10K8c,h −5.3 −3.0 ms−1 —

#P11 log10K8d,h −9.0 −5.3 ms−1 —

#P12 log10K8e −8.0 −3.0 ms−1 —

#P13 K1,v/K1,h 1/15 1 — —

— K2,v/K2,h 1/15 1 — Coupled to #P13
#P14 K3,v/K3,h 1/15 1 — —

#P15 K4,v/K4,h 1/15 1 — —

#P16 K5,v/K5,h 1/15 1 — —

#P17 K6,v/K6,h 1/5 1 — —

#P18 K7,v/K7,h 1/5 1 — —

#P19 K8a,v/K8a,h 1/5 1 — —

#P20 K8b,v/K8b,h 1/15 1 — —

#P21 K8c,v/K8c,h 1/15 1 — —

#P22 K8d,v/K8d,h 1/15 1 — —

#P23 α1−6 0.50 5.00 m−1 —

#P24 α8b 0.01 0.10 m−1 —

#P25 α8c 8.00 12.00 m−1 —

#P26 α8d 0.50 0.70 m−1 —

#P27 N1-6 1.50 6.00 — —

#P28 N8b 1.40 1.70 — —

#P29 N8c 1.80 2.20 — —

#P30 N8d 1.50 2.10 — —

Frontiers in Earth Science | www.frontiersin.org November 2020 | Volume 8 | Article 55484513

Allgeier et al. Optimal Design for Groundwater-Divide Delineation

121

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


south-west. Furthermore, a preliminary study conducted by
Kortunov (2018) also suggested a shift in this direction.

The optimal experimental design analysis considers designs
consisting of one, two, or three new wells, each placed on one of
the twenty locations. Our design space D consists of all possible
combinations. The total number of possible designs ndes for 1, 2,
and 3 locations out of a set of npts can be evaluated by:

ndes � npts + 1
2
npts(npts − 1) + 1

6
npts(npts − 1)(npts − 2), (28)

in which npts is the number of potential observation points. With
npts � 20, Eq. 28 results in a total of ndes � 20 + 190 + 1140 �
1350 individual designs, out of which we need to identify the
best one.

While the optimal three-well design will obviously outperform
the optimal two- and one-well designs, we want to investigate which
information gain (e.g., reduction in uncertainty of delineating the
groundwater divide) is achieved by installing more or fewer wells.
However, we do not perform a full cost-benefit analysis, as the
(financial) costs are difficult to compare to the benefit of reducing
the uncertainty in the groundwater-divide delineation.

4. RESULTS AND DISCUSSION

Of 72,481 stage-1-accepted realizations, 20,600 needed to be
rejected, because they yielded implausible results according to
the given criteria. Another 1881 model runs were rejected,
because they did not converge within 40 min of wall-clock
time, set as limit to use the available computational resources
efficiently. The remaining sample consists of nsample � 50 000
accepted realizations. Among the successful realizations, the
model run times roughly followed a log-normal distribution
with a mean of 20.7min, a median of 19.5min, and a
standard deviation of 6.9min (not shown here). Due to
parallelization of up to 57 simultaneous model runs, the total

wall-clock time for all realizations was approximately three
weeks. For computational speed-up, we only used
nsub � 10 000 realizations as virtual truths for the optimal
design analysis. We checked the validity of this subset size by
comparing the average binary fate maps of the whole sample and
the subset. There were no significant deviations.

4.1. Uncertainty and Sensitivity of Head
Observations to Parameters
Figure 6 shows the distributions of the simulated groundwater-
table measurements at the twenty proposed locations. Each
profile relates to one suggested observation-well location and
includes, 1) a histogram of simulated head values of all 50,000
accepted sample members, 2) the median of the simulated head
(hmedian, yellow-brown dash markers), and 3) the position of the
land surface (zsurf , black dash markers). The longitudinal distance
is evaluated along the line connecting the proposed locations
from south to north (i.e., the index zero corresponds to the first,
southernmost investigated point).

At the southern end of the transect, which is close to the
surface-water divide, the statistical distributions of the
groundwater table are very wide, whereas at the northern end
in the Ammer floodplain they become quite narrow. This
behavior can be explained with the plausibility constraints put
onto the model selection. As Figure 5 shows, most existing
observation wells are within the Ammer floodplain, restricting
the variability of hydraulic heads by plausibility criterion 1. Also
plausibility criterion 6, excluding realizations showing extended
flooding, contributes to narrowing the variability of hydraulic
heads within the floodplain. By contrast, there are no piezometers
to constrain the models along the southern hillslope. Observation
wells further away from the hydraulic-head-constraining
floodplain show larger uncertainty than those close by, which
reflects the uncertainty in groundwater recharge and
transmissivity of the weathered part of the Grabfeld formation

FIGURE 6 | Distributions of virtual hydraulic-head observations using the sample of stage-2-accepted realizations at all twenty potential locations along the
transect.
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kmGr. The conditioning by the pre-selection procedure might
also explain why the shape of the head histograms in Figure 6
transforms from near-Gaussian for the northern wells to multi-
modal wide distributions toward the southern end.

As indicated by the black dashes in Figure 6, the topography
along the transect is not strictly monotonic. At about one quarter
along the length of the profile, a hillslope hollow oriented in the
WSW-ENE direction crosses the transect. Along the transect, the
median of the simulated hydraulic head follows the topography to
some extent, but with a much smaller range. At the southern end,
the median profile of hydraulic head drops toward the south
along a distance of 200m, whereas the surface elevation profile
increases. The median groundwater table dipping toward the
south of the transect might indicate that the groundwater divide is
shifted toward the north, as hypothesized by Kortunov (2018).
However, not all individual realizations show the same trend as
the median, indicating that the general statement of Kortunov
(2018) may be uncertain. This is why we performed the ensemble-
based particle-tracking analysis to evaluate the location of the
groundwater divide and its uncertainty in the following section.

To gain insights in how the head observations depend on the
input parameters, we performed a global sensitivity analysis using
the framework developed by Erdal et al. (2020) applying the
method of active subspaces (Constantine et al., 2014; Constantine
and Diaz, 2017) supported by a Gaussian process emulation of the

target quantity. The active-subspace method results in activity
scores, expressing the relative importance of all input parameters
for a selected target variable. We performed this analysis for the
simulated hydraulic-heads at the 20 potential locations for the
new piezometers along the transect. At the 14 southern-most
locations, which are all located along the hillslope in the
weathered Grabfeld formation, the activity scores were the
highest for the conductivities in the unweathered and
weathered Grabfeld formation, the thickness of the weathering
layer, and the recharge rate of cropland. At the six northern-most
locations, located closer to/within the floodplain, we saw a shift
toward conductivities of floodplain sediments and recharge in the
floodplain. Similar observations on global sensitivity patterns
have been made by Erdal and Cirpka (2019) in a study on a
neighboring catchment with similar geology.

4.2. Maps of Misclassification Probability
Figure 7 shows maps of the misclassification probability Pmc

according to Eq. 18. It quantifies how likely it is that any point on
the map is considered part of one subsurface catchment while
belonging in reality to the other one. The 1,526 polygons were
constructed by Voronoi tesselation based on the set of starting
points for particle tracking. The resolution is higher in a stripe
within a few hundred meters north and south of the surface water
divide (shown as a black line) because we suspect the

FIGURE 7 | Probability maps of misclassifying the attribution to the Ammer and Neckar subsurface-catchments Pmc � 2P · (1 − P). (A) Prior Pmc; (B): Pmc for the
best design with one additional piezometer; (C): with two additional piezometers; (D): with three additional piezometers.
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groundwater divide to be within this area. The colors of the
polygons reflect the misclassification probability Pmc of a particle
released in the center of the polygon. As explained in section 2.3,
Pmc ranges between zero and 0.5 (wrong attribution in half of the
cases).

Figure 7A shows the map prior to installing any new
piezometers. The highest values of the misclassification
probability occur close to the surface-water divide. On the
Neckar (southern) side of the surface-water divide, the
misclassification probability drops rapidly. Here, all model
realizations agree that these points belong to the Neckar
subsurface catchment. On the Ammer (northern) side of the
surface-water divide, by contrast, the misclassification probability
decreases gradually, overall resulting in an uncertainty belt of the
groundwater divide with a width ranging between 100m and
800m. This confirms the hypothesis of Kortunov (2018) that the
groundwater divide might be shifted in this direction. At the foot
of the hillslope within the Ammer valley, the misclassification
probability is again practically zero, because these points belong
to the Ammer subsurface catchment in almost all stage-2-
accepted model realizations.

The width of the identified uncertainty belt is comparably
small at the steeper hillslopes toward the east and at the very
western end, where the topmost geological layer is the low
conductive km2345 (see Figure 4, layer 5). In contrast to that,
the width is large on the gentle saddle in the western and middle
parts of the domain, where the top subsurface-layer consists of
weathered kmGr, which has a higher hydraulic conductivity. This
observation agrees with the findings of Haitjema and Mitchell-
Bruker (2005), stating that groundwater and surface water divides
are more likely to differ in aquifers with high transmissivities (for
a given recharge rate and geometry). The transect of the twenty
proposed piezometer locations crosses the broadest part of the
uncertainty zone perpendicular to the course of the belt. This is
fortunate for the optimal experimental design, since we can
acquire information just within the most uncertain parts of
the system.

Figures 7B–D show the maps of the misclassification
probability after performing the optimal-experimental-design
analysis for one, two, and three additional piezometers,
respectively. In each of these figures, the identified optimal
piezometer locations are marked by circles with black filling,
while the unused potential piezometer locations are depicted as
white-filled circles.

Figure 7B reveals how the misclassification probability is
expected to be reduced by placing a single additional
piezometer. The optimal location is the southernmost point
along the transect close to the surface-water divide.
Unsurprisingly, the location of this piezometer coincides with
the location that shows the highest uncertainty of hydraulic heads
in Figure 6. A comparison between Figures 7A,B shows that the
misclassification probability is not only reduced in the direct
vicinity of the chosen new piezometer, but essentially over the
entire width of the Wurmlingen saddle, whereas the effect at the
eastern end of the model domain is negligible. This pattern
reflects the smoothness of hydraulic heads, but is strongly
affected by the assumption that each lithostratigraphic unit

has a uniform set of hydraulic parameters (only the
groundwater-recharge values are subdivided by land-use). The
latter implies that conditioning the model on a single observation
point in a particular unit, here the weathered kmGr, affects the
model outcome at all other points within this unit. However, if we
had considered internal variability within the units, individual
head measurements would not have reduced the uncertainty at
distant points within that unit to the same extent. Consistent to
these arguments, the eastern end of the uncertainty belt (where
the topmost geological unit is km2345 rather than weathered
kmGr) is not affected by placing a piezometer along the transect.

Further reduction of the misclassification probability can be
achieved by placing a second additional piezometer at the
northern fringe of the uncertainty belt (Figure7C), whereas
the uncertainty pattern does not visually change when placing
a third additional piezometer between the first and second
piezometers (Figure 7D).

4.3. Performance of Designs
Figure 8 summarizes the performance of all 1,350 investigated
piezometer configurations (grouped by one-, two- and three-
additional-piezometer designs). All plots use the design number
on the abscissa. In the following discussion, we use the notation
“(first piez. | second piez. | third piez.)” to describe a given design,
in which the numbers of the piezometer locations are sorted from
south to north, and the missing piezometers in the one- and two-
piezometer designs are marked by a dash. The designs are
numbered in the following way: The first twenty designs
contain only one additional piezometer, ranging from (1| − |−)
to (20| − |−). The designs 21 to 210 are two-piezometer designs,
starting with the combination (1|2|−), incrementing the second
location in steps of one to (1|20|−), then moving from (2|3|−) to
(2|20|−) and so forth, until (19|20|−) is reached. In order to
exclude replicates, the index of the second piezometer is always
larger than that of the first. Finally, the designs 211 to 1,350 start
with (1|2|3) and increment the third location first, then the
second, and then the first one, until reaching the final design
(18|19|20). Again we avoid replicates by requiring that the
piezometer indices increase from the first to the third
piezometer within all designs. Figures 8D–F visualize the
piezometer designs by displaying the selected piezometers of
each design as rectangles.

The top row of Figure 8A-C shows the values of the utility
function ϕ(d) of the given designs d according to Eq. 26. It
quantifies the expected relative reduction of the spatial mean of
Pmc applying the measurement design d. Theoretically, this
metric can range between zero (no reduction of uncertainty at
all) to one (perfect identification of the groundwater divide).

In the single-piezometer designs (Figure 8A), the performance
declines with increasing design number (placing the new
piezometer further north along the transect). While the first
three designs result in a similar relative uncertainty reduction
of ≈ 36%, ϕ(d) gradually decreases to a negligible low value
of ≈ 3% at location 20. The optimal design is (1| − |−), resulting
in a performance of ϕ � 36.6%. The best locations for placing a
single piezometer coincide with the points at which the prior
uncertainty of hydraulic head is the highest (see Figure 6), so that
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constraining the model by taking a single head measurement at
these points yields the highest information gain. As the hydraulic
heads at the northern end of the transect are already constrained
by the plausibility criteria of the model pre-selection, additional
piezometers in this part of the transect hardly pay off.

Figure 8B shows the performances of all two-piezometer
designs. Like in the one-piezometer designs, configurations
including southern piezometer locations (design numbers 21
to ≈ 100) perform better than other designs. For a given first
piezometer location, the performance depends on the distance
between the two piezometers. At least for the well-performing
designs 21 to 100, the optimal distance between the two
piezometers is on the order of several hundred meters. Such a
configuration performs better than designs in which the two new
piezometers are further apart or closer to each other. The best
two-piezometer configuration is (2|7|−), leading to an
uncertainty reduction of ϕ � 50.2%.

The optimal two-piezometer designs may be explained by the
combined effects of having the highest prior uncertainty of
hydraulic head at the southern end of the transect (discussed
in the context of the one-piezometer designs) and the inherent
spatial correlation of hydraulic head caused by the groundwater-
flow equation itself: One piezometer should be located at the most
informative southern end; placing two piezometers to close to
each other would yield redundant information (and observing a
small head difference would drown in the measurement error),
while placing the second piezometer at the northern end would be
of little use because here the hydraulic heads are already
constrained by the plausibility criteria.

In the three-piezometer designs (Figure 8C), this pattern is
maintained, with the best location of the third piezometer being
in the middle of the other two new observation wells. Thus,
placing the third well further north, where the head-uncertainty is
low, is less beneficial than refining the spatial resolution of head

measurements in the southern third of the transect. The best three-
piezometer configuration is (1|7|15) with ϕ � 54.2%, which is not
drastically better than the best two-piezometer configuration. We
conjecture that adding a fourth piezometer along the transect would
yield an even lower increase of performance. Thus, in a practical
application, it might be better to invest the money needed to install
such a well in other investigations like elaborate well tests, or in
entirely different locations (see section 4.4).

As a quality check, we determined the average effective sample
size for the three optimal designs. The values are comparably
large (AESS1 � 859.7, AESS2 � 179.7 and AESS3 � 68.1), which
means the sample of nsample � 50 000 was large enough to make
reliable statements about the results.

Notably, all three optimal designs use very similar locations.
Each larger optimal configuration basically includes the smaller
ones as a subset (with the exception of switching between
locations 2 and 1 in the two-location design). This means that,
in the given application, one could decide whether and where to
install the next observation well after installing the preceding
ones, yielding essentially the same optimal designs. Such behavior
is beneficial from a practical standpoint of view as, in real-world
applications, the decision about extending a measurement
network is often made only after realizing that the existing
network is not (yet) sufficient. However, we cannot generalize
that such a behavior occurs in all cases. In other applications, the
optimal designs of many piezometers may not be a superset of the
designs with fewer piezometers. Also, the information gained by
the actual data value obtained by a first well could change the
current state of knowledge, hence leading to (slightly) different
later design decisions (Geiges et al., 2015). In such cases, deciding
the number of observation wells would be necessary ahead of the
first drilling in order to achieve optimal results.

We may compare the performance of the optimal designs with
those of intuitive choices using the same number of new

FIGURE 8 | Performance of all 1,350 investigated monitoring designs. Top row (A–C): normalized utility function ϕ(d) of the given design according to Eq. 26;
bottom row (D–F): piezometer combination of the given design. (A,D) Designs with one additional piezometer; (B,D) with two additional piezometers; (C,F): with three
additional piezometers.

Frontiers in Earth Science | www.frontiersin.org November 2020 | Volume 8 | Article 55484517

Allgeier et al. Optimal Design for Groundwater-Divide Delineation

125

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


piezometers. When installing a single piezometer, one might
place it on the middle of the transect using the design
(10| − |−). The uncertainty reduction of this particular design
is ϕ � 22.9%, which is considerably smaller than the optimal
performance of ϕ � 36.6%. When placing installing two
piezometers, one could either maximize the distance along the
full transect with design (1|20|−) or subdivide the transect into
three similarly long sections with the design (7|14|−). The
performances of these scenarios are ϕ � 37.2% and
ϕ � 25.1%, respectively, while the best two-piezometer design
achieved ϕ � 50.2%. Actually, the best single-piezometer design
performs almost as good as the intuitive two-piezometer design
taken the two end points of the transect, and is considerably better
than the intuitive design using identical section lengths. Finally,
intuitive choices for the three-piezometer designs would be
design (1|10|20), which includes the two end points of the
transect, and design (5|10|15), subdividing the transect into
sections of similar length. The respective uncertainty
reductions are ϕ � 50.5% and ϕ � 42.0% compared to a
reduction of ϕ � 54.2% obtained by the optimal design. These
calculations exemplify the benefit of an optimal-design-
evaluation over intuitive choices.

4.4. Designs With the Third Piezometer
being Placed Off the Transect
As shown in Figure 7, installing new piezometers along the
suggested transect reduces the misclassification probability
Pmc(x) on the hillslope parallel to the transect, but hardly
affects Pmc(x) at the eastern end of the uncertainty belt. This
part of the high-uncertainty belt is covered by the
lithostratigraphic units km2345. Therefore, this uncertainty
depends on the hydraulic properties and groundwater recharge
of this model layer, and can only be reduced by observations that
are sensitive to these properties. Because installing a third
piezometer along the transect does not reduce Pmc(x) in this
zone, the difference between the two- and three-piezometer
designs is rather small. We thus hypothesize that placing a
third piezometer somewhere else would yield a better
performance. We tested this hypothesis by defining an
alternative design space: we keep the best two piezometer
locations along the transect fixed and then allow the third
piezometer to be placed at any node of the two-dimensional
computational grid. This resulted in 2067 additional designs.

Figure 9A shows which performance ϕ can be achieved as a
function of the location of the third piezometer. The maximum
performance of ϕ � 69.3% is obtained by placing the third
piezometer in the eastern part of the domain, roughly 400m
north of the highest-uncertainty region remaining after installing
two piezometers (see 7C). This point is located in a hillslope
hollow (see Figure 5) that collects groundwater recharged in the
km2345 unit. The corresponding hydraulic head is sensitive to
the hydraulic properties and groundwater recharge of the
km2345 unit, which affects Pmc(x) in the eastern section of
the uncertainty belt. The latter is confirmed by Figure 9B,
displaying the resulting map of misclassification probability
Pmc(x) for this newly defined optimal design, indicating that

the new location of the third piezometer indeed reduces Pmc(x) in
the eastern section of the uncertainty belt, which was hardly
influenced by installing wells exclusively along the transect.

The average effective sample size of the optimal design in this
substudy is comparably low (AESS*3 � 4.4). This drop is caused by
the large information gain by the freely moving third well, so that
only few realizations achieve significant likelihoods when
compared to the hypothetical data values. Given this low
number, a larger sample would be necessary to validate the
statistical significance of the interpretations. However, given
the high computational costs and because this is only a
substudy offset from our actual objectives, we refrain from
doing so.

Figure 9A includes an interesting and instructive artifact of
the model: According to our model, hydraulic-head
measurements on the northern hillslope appear to be
beneficial for delineating the groundwater divide at the
southern boundary of the Ammer valley. Most likely this is
caused by the assumed uniformity of hydraulic parameters
within each lithostratigraphic unit. In the very north of the
model domain, the km2345 unit crops out, implying the same
values of hydraulic conductivity and groundwater recharge as in
the zone of interest at the souther boundary. Thus, a hydraulic-
head measurement within this northern zone constrains model
parameters of the km2345 unit, reducing the misclassification
probability in the eastern part of the uncertainty belt. However,
we are doubtful that this would be confirmed in a real-world
application.

4.5. Strengths and Limitations of the
Framework
Our framework is easily adaptable to other cases and applications,
with the underlying groundwater-flow model being trivially
exchangeable. This flexibility makes it convenient to apply the
presented technique to other sites. Both interfaces, from the
stochastic sampler to the numerical model, and from the
numerical model to the optimal experimental design analysis,
require only basic input/output operations of parameter values
and virtual observations. While we have implemented the
stochastic sampler and PreDIA as Matlab scripts, the approach
could easily be transferred to other programming environments.
However, a particle tracking tool is a necessary requirement for
our framework to work.

Among the most labor-intensive parts of the framework is the
initial model development, which is needed in quantitative
hydrogeological consultancy anyway. Computationally, the
creation of the plausible sample is the most costly step, but this
can largely be parallelized. To obtain reasonable uncertainty
estimates, several thousand model realizations are needed. This
may not be affordable by everybody whomight be interested in the
uncertainty of groundwater-divide delineation. These computer-
time limitations may be overcome by cloud computing.

In practical applications, the costs related to elaborate
modeling in the planning phase of a new observation-well
needs to be compared to the other expenses. This includes
filing the application for legal approval, advertising for bids,
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planning of the fieldwork, and the drilling and completion
expenses themselves. If the presented optimal-experimental-
design method is initiated at the beginning of this process, it
becomes an integral part of the decision-making process of how
many new piezometers to install and where to place them.

Thewaywe use the chosen optimal-designmethodPreDIA,we can
only rank experimental designswithin a givenfinite set. The number of
elements in this set determines the computational costs of the optimal-
design part of the analysis. In our application, we confined the design
space by restricting the piezometer locations to a transect, reflecting the
legal constraints at the given field site. With three piezometers at
twenty potential locations, we had to consider 1,350 configurations. In
the additional study presented in section 4.4, we removed the
constraint to stay on the transect for one piezometer, considering
2067 potential locations. Allowing all three piezometers to be placed at
any of these 2067 locations, would have resulted inmore than 1.4 · 109
designs (see Eq. 28), which is computationally prohibitive. Tackling
such a problem would need to involve an optimization algorithm
around PreDIA to iteratively find a best-performing design without
exhaustingly testing all of them. For the resulting search problem, the
literature offers many suitable algorithms.

Our application was restricted to steady-state flow. Of course,
real flow systems are never fully stationary, since they are always
subject to transient forcings. Depending on the investigated site,
this can include climatic influences, weather, tides or anthropogenic
impacts (e.g., drinking water supply wells), all of which could affect
the position of groundwater divides (e.g., Rodriguez-Pretelin and
Nowak, 2018). Aquifers, where the expected movement of the
groundwater flow divide over time is the main research question
obviously need to account for this. Characteristics of such systems
might be a significant abstraction of groundwater due to pumping
wells, a known imbalance of the groundwate flow field or severe
temporal fluctuations in groundwater recharge (e.g., Sanz et al.,
2009). An interesting extension of our framework would be a
transient analysis for such systems, by using transient simulations
and time-dependent observations. Consequently, the underlying
objective function would need to be redefined. We provide a
possible extension toward dynamic systems in the appendix
(section 5.2). However, the higher uncertainties related to

inherently more complex transient models would require a
larger sample and would most likely deteriorate the performance
of the pre-selection method. In the context of transient data and
models, a worthwhile avenue would be to combine optimal
experimental design techniques with data-assimilation methods,
but this is beyond the scope of the present study.

For most cases, where the divide is suspected to be shifted but
not dramatically moving over time, our steady-state framework is
applicable, with the interpretation of the steady-state as a “most
representative state”. We also want to highlight that the goal of
our framework is not to derive the position of groundwater
divides themselves. Instead, we want to identify those locations
that are best suited to conduct measurements providing insight
for this delineation. The actual delineation, for example, can then
be carried out by calibrating a groundwater flow model to the
obtained measurement data. This second model can be more
detailed, more finely discretized and even transient, as probably
fewer model runs are necessary. If not already done, a rigorous
grid convercence analysis should be performed ahead of the
calibration to validate the numerical accuracy of the model.

As with every model, the performance of the method depends
on the validity of underlying assumptions. In particular, we have
assumed that the hydraulic parameters are uniform within each
lithostratigraphic unit and that groundwater recharge is spatially
uniform in zones defined by the topmost geological layer and
land-use. Neglecting spatial variability within these zones
expands the spatial ranges over which intended measurements
are informative. We may also have missed discrete features
altogether, which affect the position of the groundwater divide
but do not influence the existing measurements. The latter would
lead to a systematic bias.

The optimal-experimental-design method chosen in this study
can accommodate any kind of uncertain parameters or uncertain
model choices, provided that a prior uncertainty range is given.
Both identifying the sources of uncertainty and defining the
related prior distributions require expert knowledge, thus
questioning the objectivity of the analysis. However, as with all
Bayesian methods, such choices are at least made transparent. We
have made good experience by initially setting fairly wide prior

FIGURE 9 | Assessment of measurement designs with the third piezometer being placed outside the transect. (A) Performance ϕ of the design as a function of
where the third observation well is placed; (B) map of the misclassification probability Pmc for the optimal three-piezometer design with one additional piezometer not
being restricted to the transect (same colormap as in Figure 7).
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parameter ranges and then constraining the parameter space to
behavioral models by the Gaussian-process-emulation supported
pre-selection method (Erdal et al., 2020).

In the given application, we restricted the observations to
hydraulic-head measurements, but this is not a limitation of the
method. It is easy to augment the virtual observation vector by
other data, such as hydraulic tests to be performed using the new
observation wells, borehole dilution or tracer tests. Like with the
extension to transient flow, the consideration of additional data
typesmay also requiremore (uncertain) parameters. Systematically
analyzing which type of data is most informative for which type of
question is an ongoing issue of stochastic subsurface hydrology and
optimal experimental design beyond the scope of the current study.

5. CONCLUSION

In this work we have presented a framework to identify the best
piezometer configuration froma set of possible layouts to delineate local
groundwater divides. Through the combination of filtered ensemble-
based modeling of steady-state subsurface flow, particle tracking, and
the application of the optimal-experimental-design technique PreDIA
(Leube et al., 2012), we could identify the piezometer configuration for
which we expect the largest reduction in the uncertainty of the
groundwater divide. We have applied the method to an appropriate
case study, which revealed the following insights:

(1) Configurations involving new measurement locations that
are far away from existing ones perform better, because then
the variability of hydraulic head, consistent with the existing
data, is higher.

(2) In our application, a medium spacing of a few hundred
meters between multiple new piezometers was optimal.
Closer points would have led to redundant information
due to the spatial auto-correlation of hydraulic head.
Larger distances would have pushed observation points
into non-informative regions close to existing measurements.

(3) The designs, defined as optimal by the presented framework,
perform better than intuitive equidistant piezometer
placements. In fact, the identified optimal design for a
single piezometer provides similar information content as
the tested intuitive equidistant placing of two piezometers,
implying significant savings in real-world applications.

(4) Additional information obtained by adding more
piezometers leads to further reduction of uncertainty, but
the additional gain of information decreases with each new
piezometer.

(5) Our procedure may be used to estimate whether the
additional information gain is worth the effort of
installing an additional observation well or not. The
actual decision depends on the case at hand and involves
a tradeoff between desired certainty and available resources.
In our case, sequential optimization of one piezometer
location after the other led to practically the same
designs as jointly optimizing multiple piezometer
designs, but this observation cannot be generalized.

A worthwhile follow-up study would be the extension of the
presented framework to transient flow systems.
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APPENDIX

5.1. Generalization to Non-Binary Systems
In cases where one wants to delineate not only a particular (sub-)
catchment’s boundary, but the (potentially intersecting)
groundwater divides between more than two of such
catchments, the formulation of our objective functon (Eq. 26)
based on binary particle fate maps (Eq. 18) is insufficient. Here,
the particle fates cannot be described with the binary Bernoulli
distributions, where the outcome for particle i is zi ∈ {0, 1}.
Instead, one could rely on categorical distributions, which can
have more than two outcomes. For example, in a domain with
three outlets the fate of particle i can be described with
zi ∈ {1, 2, . . . , k}. Each of the outcomes would correspond to
one outlet/subcatchment/receptor. We denote the total number
of outcomes nfates. To adapt our objective function to these cases,
we need to formulate the overall probability of misclassifying the
fate of a particle i. This can be done as described in the following.

We denote the probability that particle i belongs to the
receptor k is P(zi � k). Then, the overall probability of
misclassification becomes:

Pmc(zi) � ∑nfates
k�1

P(zi � k) · (1 − P(zi � k)). (29)

All other steps of the method remain as outlined above.

5.2. Possible Generalization to Transient
Systems
A potential transient implementation of our framework
would require a new formulation of the objective
function. In such applications both, the modeled
subsurface flow-field and the observations would change
over time. This means that also the particle fate maps are
transient, since the fate probabilities might change
throughout the simulation period. This results in dynamic
maps of misclassification probability, that is Pmc(z) becomes
Pmc(z, t), which is a function of time t.

One potential way to define a metric quantifying the
uncertainty of a transient groundwater divide would be to
perform an additional integration/averaging over the
simulation modeling duration τ.

U(z) � 1
τ · A2D

∫
τ

∫
A2D

Pmc(z(xini), t) dxini dt

� 1
τ · A2D

∫
A2D

∫
τ

Pmc(z(xini), t) dt dxini
(30)
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Early Uncertainty Quantification for an
Improved Decision Support Modeling
Workflow: A Streamflow Reliability
and Water Quality Example
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Effective decision making for resource management is often supported by combining
predictive models with uncertainty analyses. This combination allows quantitative
assessment of management strategy effectiveness and risk. Typically, history
matching is undertaken to increase the reliability of model forecasts. However, the
question of whether the potential benefit of history matching will be realized, or outweigh
its cost, is seldom asked. History matching adds complexity to the modeling effort, as
information from historical system observations must be appropriately blended with the
prior characterization of the system. Consequently, the cost of history matching is often
significant. When it is not implemented appropriately, history matching can corrupt
model forecasts. Additionally, the available data may offer little decision-relevant
information, particularly where data and forecasts are of different types, or represent
very different stress regimes. In this paper, we present a decision support modeling
workflow where early quantification of model uncertainty guides ongoing model design
and deployment decisions. This includes providing justification for undertaking (or
forgoing) history matching, so that unnecessary modeling costs can be avoided and
model performance can be improved. The workflow is demonstrated using a regional-
scale modeling case study in the Wairarapa Valley (New Zealand), where assessments of
stream depletion and nitrate-nitrogen contamination risks are used to support water-use
and land-use management decisions. The probability of management success/failure is
assessed by comparing the proximity of model forecast probability distributions to
ecologically motivated decision thresholds. This study highlights several important
insights that can be gained by undertaking early uncertainty quantification, including:
i) validation of the prior numerical characterization of the system, in terms of its
consistency with historical observations; ii) validation of model design or indication of
areas of model shortcomings; iii) evaluation of the relative proximity of management
decision thresholds to forecast probability distributions, providing a justifiable basis for
stopping modeling.

Keywords: uncertainty quantification, decision support, data assimilation, groundwater modeling, streamdepletion,
contaminant transport, resource management
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1. INTRODUCTION

Numerical models are routinely used to inform environmental
management decision making by exploring possible system
responses to proposed management strategies. Probabilistic
assessment of these system responses are a further
requirement of model-based decision support (e.g., Freeze
et al., 1990; Doherty and Simmons, 2013). This allows the
likelihood of any undesired impacts to be assessed alongside
relevant management decision thresholds which are defined on
the basis of ecological, economic and/or cultural objectives.

It is widely considered that history matching (also known as
“model calibration” or “data assimilation”) is a prerequisite for
such decision support model deployment (e.g., Barnett et al.,
2012). This follows the philosophy “How can a model be robust if
it isn’t calibrated?” This philosophy has its basis in the
expectation that history matching, which can be considered an
implementation of Bayes equation, will result in a reduction of
parameter and predictive uncertainty (often expressed in terms of
predictive variance; e.g., Moore and Doherty, 2005; Dausman
et al., 2010). However, the ability of the history matching process
to improve the reliability of parameter estimations, and to
appropriately reduce decision-relevant forecast uncertainty,
may be limited by a number of important factors.

First, the information content of observation datasets used for
history matching may be deficient for inferring values of
physically-based model parameters that represent spatially
distributed subsurface properties (e.g., Vasco et al., 1997;
Vasco et al., 1998; Clemo et al., 2003; Moore and Doherty,
2006), with subsequent implications for reducing forecast
uncertainty. This is particularly the case where there is
significant hydraulic property heterogeneity, which is typically
the major cause of predictive uncertainty in groundwater models.
Even where there is significant data available, a lack of forecast
relevant data may still inhibit efforts to reduce uncertainty
through history matching.

Second, a number of studies have shown that there is potential
for history matching to corrupt the quantification of predictive
uncertainty, when considering the inevitable presence of model
defects (e.g., Doherty and Christensen, 2011; Brynjarsdóttir and
O’Hagan, 2014; White et al., 2014; Oliver and Alfonzo, 2018). For
example, Knowling et al. (2019) show that there is potential to
induce bias and corruption in estimates of predictive variance, as
a consequence of inappropriate parameter compensation when
history matching “under-parameterized”models. Ultimately, this
can compromise the reliability of decisions made on the basis of
model forecasts. Additionally, Knowling et al. (2020) showed that
there is significant potential to induce predictive bias due to the
inability of an imperfect model to appropriately assimilate
information-rich data, such as environmental tracer
observations. Therefore, when faced with using a model with
prediction relevant imperfections, a modeler may wish to
critically consider whether history matching is appropriate.

History matching efforts can also place unexpected
requirements on labor and computational resources. This is
because balancing the expression of prior knowledge with

information contained within observation data, during history
matching, is not straightforward and is often undertaken in a
highly iterative process. This adds significant complexity to the
modeling workflow, and risk to project budgets and time-lines.
This is particularly the case for large-scale models of real-world
systems which are prone to numerical stability issues and long
simulation durations.

An additional consideration when examining the usefulness of
a history matching effort in a decision support context, is the
proximity of forecast probability distributions to predefined
management decision thresholds (e.g., Knowling et al., 2019;
White et al., 2020b). Evaluation of the relative positions of
forecast distributions and decision thresholds can be used to
provide a measure of apparent “decision difficulty” (e.g., White
et al., 2020b).Where, on the basis of the prior information alone, a
forecast probability distribution lies far from the critical threshold
(i.e decision difficulty trends to zero), a modeler may elect not to
progress with history matching, as it is unlikely to alter the
evaluation of management strategy effectiveness.

Finally, uncertainty quantification that underpins decision
support relies upon robust definition of the prior parameter
probability distributions that express system expert knowledge
(i.e., before history matching). Verification of robust prior
probability distributions is difficult, especially for complex
real-world numerical models, often requiring prohibitively
expensive paired model analyses (e.g., Doherty and
Christensen, 2011; Gosses and Wöhling, 2019). However, an
indication of an inappropriate expression of prior parameter
uncertainty, with the potential to undermine model-based
decision support, can be provided through comparison of
historical system observations with simulated outputs
generated on the basis of the prior parameter distributions, in
a “prior-data conflict assessment” (e.g., Nott et al., 2016).
Formally, prior-data conflict can be identified when there is
no overlap between an ensemble of observation data,
accounting for potential observation error, and the prior
ensemble of simulated outputs. This analysis can be
undertaken early in a modeling project, so that indications of
an inappropriate prior can be identified and addressed ahead of a
full comprehensive history matching process. We note that this
criterion alone is not sufficient to demonstrate that the initial
prior ensemble is valid, as model error may also be the cause of
such prior-data conflict, requiring additional statistical tests (e.g.,
Brynjarsdóttir and O’Hagan, 2014; Alfonzo and Oliver, 2019).

In this paper we explore the benefits of recasting the typical
modeling workflow, which starts with a conceptual system model
and ends with a calibrated numerical model (e.g., Barnett et al.,
2012), such that uncertainty quantification is undertaken at an
early stage in the project, before attempting comprehensive
history matching. The recast workflow involves exploration of
the prior decision-relevant forecast uncertainty relative to
decision thresholds, as well as prior distributions of model
outputs relative to system observations. The workflow then
involves undertaking an abridged history matching and a
preliminary posterior uncertainty assessment, to help identify
the extent to which available data informs estimated parameter
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values and model forecasts, and provide insights into the benefits,
or potential hazards, of continuing history matching.

This study is motivated by, and follows, the forecast focused
workflow promoted in Doherty (2015) and White (2017). It is
also consistent with the recommendations in Doherty and Moore
(2019), which suggest undertaking uncertainty quantification
early in the decision support modeling process, to identify the
extent that available historical observations can inform decision-
salient parameter values. Doherty and Moore (2019) outline how
this information can then be used to guide the modeling process,
from model conceptualization to deployment for decision
support. This study adopts this fundamental recommendation,
and explores the implications of doing so, for a real-world
case study.

The case study contributes to the small body of real-world
decision support worked examples that are currently
available in the international literature (e.g., Kunstmann
et al., 2002; Enzenhoefer et al., 2014; Sepúlveda and
Doherty, 2015; Brouwers et al., 2018; Sundell et al., 2019;
White et al., 2020a).

2. METHODOLOGY

This section describes the proposed workflow for the early
assessment of the uncertainty surrounding model predictions
that are of particular management interest (“decision-relevant”),

which are herein referred to as “forecasts”. Figure 1 provides a
flowchart outlining the major steps and decision points in the
workflow.

2.1. Problem Definition
“Problem definition” defines the decision context for
numerical modeling. It involves the definition of the
management problem and the undesirable outcome that the
management strategy is designed to prevent, e.g., land-use
consent restriction or regulation to prevent ecological
degradation of a stream system due to nutrient
contamination. This step also includes the specification of
forecasts that can be used to evaluate the efficacy of
management decisions, and the definition of decision
thresholds against which the success (or failure) of a
management strategy can be evaluated.

2.2. Model Definition
This step involves defining the pertinent processes and
components of the hydrogeological system that the forecasts
are likely to be sensitive to. On this basis, an initial numerical
model is constructed, ensuring sufficient complexity to
represent these aspects of the system (e.g., Hunt et al.,
2007). This step also includes formulation of the model
objective function, which involves collation and processing
of historical system observations and definition of a
weighting scheme. The weighting scheme ideally aims to

FIGURE 1 | Graphical presentation of the proposed decision support modeling workflow, which incorporates uncertainty quantification at an early stage before
undertaking more comprehensive history matching. The steps involved in the case study presented herein are highlighted with the green background.
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maximize the flow of information during the history matching
process, from observation data to model parameters, and
subsequently to model forecasts, while accounting for both
measurement and model error (Doherty and Welter, 2010;
Doherty, 2015).

2.3. Prior Uncertainty Quantification
“Prior uncertainty quantification” is underpinned by the
definition of uncertain model parameters and a formulation of
prior parameter uncertainty. Simulation of the model with
parameter realizations that reflect this prior parameter
uncertainty, allows an initial quantification of simulated
output and forecast uncertainty. As the relationship between
model parameters and simulated outputs can rarely be fully
known, a priori, it is advantageous to employ high parameter
dimensionality (e.g., Hunt et al., 2007; Fienen et al., 2010; Doherty
and Simmons, 2013; Knowling et al., 2019), in concert with a
conservative expression of parameter uncertainty, informed by
“expert knowledge” of the conceptualized system.

Comparison of simulated output distributions with
historically observed system behavior supports an early
assessment of the appropriateness of the prior parameter
probability distributions. The presence of prior-data conflict
may indicate underestimation of measurement error,
underestimation of parameter variances and/or insufficient
complexity in the numerical model and prior
parameterization. If the model and prior parameterization is
deemed to be sufficiently complex with respect to the
processes that the forecasts are sensitive to, prior-data conflict
may be resolved by inflation of parameter variances or
observation error, as appropriate. If however, the prior is
regarded to represent insufficient forecast relevant complexity,
the prior parameterization itself may also need to be revisited. For
example, model boundaries may need to be parameterized in a
different way, if the forecast is sensitive to these boundary
conditions. Or if the connectedness of high hydraulic
conductivity facies is relevant to the forecasts being made, a
parameter representation of these connected facies may need to
be adopted in place of, for example, a multi-variate Gaussian
parameter representation.

This part of the workflow also accommodates the situation
where there is found to be no forecast relevant data available. In
this situation the prior parameterization becomes more
important, as it is now the only source of information in the
model. In this situation a modeler is freed from all history
matching burdens, and may choose to adopt a very complex
model parameterization, to ensure a robust probability
distribution (Doherty and Moore, 2019).

If prior-data conflict is not present, the assessment of the
proximity of the prior forecast probability distributions to the
decision threshold may be sufficient for addressing the management
decision and the workflow can move to the “Stop modeling” option
(left-hand side of Figure 1). However, if reduction in forecast
uncertainty is desired to support the management decision, the
workflow moves toward a preliminary approximation of the
posterior uncertainty, as discussed in Section 2.4 below.

2.4. Preliminary Posterior Uncertainty
Quantification
The “Preliminary posterior uncertainty quantification” is
undertaken with a view to reducing forecast uncertainty
through a preliminary formal assimilation of observation data.
This step provides an opportunity to assess the ability of the
observation data to inform model parameters and forecasts; a
number of modeling workflow decisions may then be made on
the basis of this preliminary posterior uncertainty quantification.

If forecast uncertainty reduction through the preliminary
conditioning of influential parameters is sufficient for
addressing the management decision, the workflow can move
to “Stop modeling.” If the assimilation of data is deemed
beneficial for reducing forecast uncertainty, but further
uncertainty reduction is desired, then this preliminary
posterior uncertainty quantification provides justification for
continuing to assimilate observation data and deriving more
advanced posterior forecast distributions. If, however, the data
do not inform forecasts, after verifying that the model, its
parameterization, and its prior probability representation, is
sufficiently complex to adequately represent the forecast
uncertainty, the modeling workflow should move to “Stop
modeling.” If the level of forecast uncertainty is not
satisfactory for decision support purposes, then the workflow
can be re-initiated with options for recasting forecasts, model
design, parameterization, and collection or reprocessing of system
observations to improve the flow of information to model
parameters and forecasts. Alternatively, the decision maker can
choose to consider an alternative management scenario, on the
basis of this initial iteration through the workflow.

The workflow presented here is essentially agnostic with
respect to the methodologies adopted for the uncertainty
quantification, with the following proviso: that the uncertainty
quantification method must be computationally efficient, as its
purpose is to provide guidance on whether or not the investment
in a more completed and rigorous data assimilation effort is
necessary.

The model simulation and uncertainty quantification
methods adopted for this study are described in detail in the
following case study section (Section 3). The case study
addresses all major steps (boxes with green background) in
Figure 1, before shifting the “Stop modeling’ option (left-hand
side of Figure 1), based on the results. The alternative options
would be relevant for other case studies with differing forecast-
data relationships; examples of when these options may be
favorable are discussed.

3. CASE STUDY

A numerical modeling case study is used to demonstrate the
workflow outlined above. The case study, set within the
Ruam�ahanga catchment in the Wairarapa Valley, North
Island, New Zealand, involves simulation-based forecasting of
groundwater abstraction impacts on stream low flows and land-
use change impacts on groundwater nutrient concentrations.
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3.1. Problem Definition
3.1.1. Decision-Relevant Forecasts
The forecasts considered relate to water availability and water
quality issues which are of particular significance within the
Wairarapa Valley. Increased groundwater and surface water
abstraction in Wairarapa Valley are believed to have impacted
stream flows; ensuring stream flows are sufficient to meet
environmental and ecological criteria is therefore an important
management constraint, when setting groundwater allocation limits.
For the security of fish habitats critical criteria are the frequency and
persistence of days in which low streamflow (low-flow) conditions
exist. The specific streamflow reliability forecasts explored here are the
number of low-flow days within a 7-year time period (low-flow
frequency) and the maximum number of consecutive low-flow
days (low-flow persistence), at three sites (PVW, MS1, and MS2;
locations provided in Figure 2). A low-flow day is defined as a day
with simulated streamflow that is exceeded for 95% of the simulated
period (Q95), under natural conditions (i.e., when no abstraction from
either groundwater or surface water occurs).

Land-use practices can present freshwater contamination risks
and management strategies often aim to limit this contamination

potential. Of particular interest in theWairarapa Valley is nitrate-
nitrogen (hereafter referred to as nitrate) concentrations in
groundwater. The specific water quality forecast simulated in
this case study is mean nitrate concentration within defined
groundwater management zones (GMZs; as presented in Figure 2).

The case study considers the forecasts described above as absolute
quantities and also in a relative sense, as differences, relative to a
baseline scenario; e.g., percentage-changes in the simulated output
values in response to water-use- and land-use-change management
scenarios. The full list of the case study forecasts is presented inTable 1.

3.1.2. Management Scenarios
The scenarios explored constitute simplified examples of water-
and land-use management strategies employed in practice, e.g., to
satisfy water-supply needs or to reduce water contamination risk.
The streamflow reliability scenario reflects the estimated spatial
and temporal variation in water-use in the case study area which
reflects a mean (in-time) groundwater abstraction rate of
82,000 m3d−1. Changes in the frequency and persistence of
low-flow days are compared with a “naturalized” baseline
scenario with no abstraction.

FIGURE 2 | Decision-relevant forecast locations. Streamflow reliability forecasts are indicated by green dots. Groundwater management zones (GMZs) for mean
zonal nitrate concentration forecasts are delimited by colored polygons.
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The land-use scenario is combined with the abstraction
scenario and is represented with a spatially distributed nitrate
loading rate (Figure 3) reflecting a real-world nitrate loading
scenario. This nitrate loading rate is a reduction from the current
land-use baseline (Figure 4).

3.1.3. Decision Thresholds
The decision thresholds considered are listed in Table 1. For
streamflow reliability forecasts, the simulated groundwater
abstraction scenario should not increase the frequency or
persistence of low-flow days by greater than 10%. For water
quality forecasts, mean zonal nitrate concentrations should not
exceed 50% of the maximum acceptable value (MAV) for
nitrate-nitrogen in drinking water (5.65 mg L−1; Ministry of
Health 2018) and the management goal is that the land-use
scenario should result in a 10% decrease in the zonal mean
concentration.

3.2. Model Definition
3.2.1. System Conceptualization
The hydrogeological system in the Wairarapa Valley is
characterized by successions of unconsolidated, late
Quaternary and Holocene, alluvial sediments (Gyopari and
McAlister, 2010a; Gyopari and McAlister, 2010b). The general
hydraulic gradient results in groundwater flow from the north-
east to south-west. Interactions between aquifer units are
complicated by variable degrees of compaction, reworking and
faulting. Active fault systems that splay from the major
Wairarapa Fault, which bounds the western side of the valley,
are anticipated to compartmentalize the groundwater system and
potentially modify the interaction between groundwater and
surface water (Gyopari and McAlister, 2010a; Gyopari and
McAlister, 2010b); springs occur along the Masterton and
Carterton Fault features. Rainfall recharge within the valleys is
supplemented by significant river inflows, especially from the
Tararua Range to the west. Nitrate loading is mostly derived from

TABLE 1 | Decision-relevant forecasts. PVW, MS1 and MS2 relate to the streamflow reliability forecast sites in Figure 1. GMZs refers to groundwater management zones.

Forecast Code Detail Decision threshold

PVW MS1, MS2

Streamflow reliability
Low-flow frequency nday<Q95 Number of days below Q95 155 155

%Δnday<Q95 Percent change in number of days below Q95 10% 10%
Low-flow persistence nconsecday<Q95 Maximum number of consecutive days below Q95 85 20

%Δnconsecday<Q95 Percent change in maximum number of consecutive days below
Q95

10% 10%

Water quality
mean zonal concentration mean.conc Mean concentration in GMZs 5.65 mg L−1

%Δmean.conc Percent change in mean zonal concentration in GMZs 10%

FIGURE 3 | Land-use management scenario nitrate loading rate.
FIGURE 4 | Percentage change in nitrate loading rate from baseline.
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land-use within the plains, with low concentrations anticipated in
the inflowing rivers. The Wairarapa Valley is divided into two
distinct groundwater domains. Groundwater is discharged to
surface water before leaving the northern portion of the valley
(425 km2; Figure 2) via the Ruam�ahanga River.

3.2.2. Numerical Model Construction
To address the management challenges outlined above, a
regional-scale, integrated groundwater/surface-water flow and
nitrate transport model was developed. The flow and transport
processes were simulated using MODFLOW-NWT (Niswonger
et al., 2011) and MT3D-USGS (Bedekar et al., 2016), respectively.
The flow and transport simulations were undertaken on a regular
finite-difference grid, consisting of five layers, 127 rows and 125
columns at 250m spacing. Lateral model boundaries were defined
as no-flow. Flow and contaminant mass could enter the model via
recharge, streamflow and injection wells, and leave the model
through streamflow, well abstraction and first-order reactions
implemented using the MT3D-USGS reaction package (RCT).

Two simulation periods were considered, a “history matching
period” from 1992 to 2007, and a “prediction period” from 2007
to 2014. The history matching period was discretized into
771 weekly stress periods (with a constant time-step of 1.75
days), with varying hydrological stresses (e.g., recharge, well
pumping and stream inflows). The prediction period was
divided into 2,821 daily stress periods (with daily time-steps),
again with varied hydrological stresses.

Both periods consisted of a transient flow model simulation,
followed by a 20-years transport simulation with temporally
constant (though spatially variable) nitrate mass inputs. The
flow solution for the transport simulations were provided by
steady-state flow simulations using temporally averaged
hydrological stresses for each of the considered time periods.
The steady-state flow simulations were also used to provide initial
conditions for the respective transient flow simulations.

Additional relevant aspects of the model include:

• surface-water flow and contaminant routing, simulated
using the Streamflow-Routing (SFR) (Niswonger and
Prudic, 2005) and Stream-Flow Transport (SFT) packages
of MODFLOW-NWT and MT3D-USGS, respectively;

• potential fault-bound compartmentalization of the
groundwater system, simulated using the Horizontal Flow
Barrier package of MODFLOW-NWT (HFB6); and

• use of the total-variation-diminishing (TVD) solver scheme
MT3D-USGS to maximize model stability and to reduce
numerical dispersion. Note, the use of TVD restricts the
transport time step size to honor a Courant number of 1.

3.2.3. History Matching Dataset and Objective
Function Formulation
The history matching observations included nitrate
concentration measurements from groundwater and surface
water, groundwater elevation, in-stream flows and estimates of
groundwater to surface water exchanges for the history matching

time period. The data included transient time series records, of
varied lengths and sampling frequency, and more occasional
survey observations. The available observation dataset was
composed as follows (observation locations are provided in
Supplementary Figure SI 1.1):

• 35 groundwater level sites, including time series (of varied
lengths); providing a total of 20,702 observations. The 35
observation sites provided the definition of 35 observation
groups. Observations for these sites are provided in
Supplementary Section SI 4.1.1.

• 88 surface water gauging sites. Including, continuous, repeat
and spot gauging observations; providing a total of 4,385
streamflow observations. Surface water flow observations
were partitioned into 12 observation groups, 11 of which
relate to sites with 50 or more observations, and the
remaining group composed of sites with a low
observation count. Observations for these sites are also
provided in Supplementary Section SI 4.1.2.

• 23 simultaneous streamflow gaugings, providing a total of
26 surface water to groundwater exchange estimate
observations. These observations were assigned to a
single observation group.

• 203 groundwater quality monitoring sites, providing a total
of 203 mean nitrate concentration observations, assigned to
a single observation group.

• 14 surface water quality monitoring sites, providing a total
of 14 mean nitrate concentration observations, assigned to a
single observation group.

The model objective function was formulated as the sum of
weighted, squared residuals between simulated outputs and the
historical system observations. Initial observation weights were
defined to reflect the uncertainty in system measurements, as the
inverse of the estimated measurement standard deviation. For
water level observation the standard deviation was defined at
0.5 m; for streamflow observations the standard deviation was
20% of the observed value; for groundwater to surface water
exchange estimates, the standard deviation was 10% of the
observed value. For concentration observations, where values
for each location were averages of different lengths of
measurement record, the standard deviations where scaled to
account for the number of observation in the record (count). For
groundwater concentration the standard deviation used was
defined as the standard deviation of the values in the record,
multiplied by 100/count. For surface water concentrations the
standard deviation used was defined as 100/count multiplied by
the mean of the values in the record. The numerator scaling
attempts to account for the use of temporally sparse, point
concentration measurements, as average system observations.
The measurement uncertainties defined on the basis of these
standard deviation are illustrated in Supplementary Sections SI
4.1.1, 4.1.2, where red shading denotes three standard deviations
from observed values. For the objective function formulation, the
initial observations weights were re-balanced such that each
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group of observations contributed equally to the initial total
objective function (e.g., Doherty and Hunt, 2010).

3.3. Prior Uncertainty Quantification
3.3.1. Model Parameterization
A “highly parameterized” parameterization scheme was adopted,
as advocated by Hunt et al. (2007); Doherty and Hunt (2010).
Model input uncertainty was represented using probability
distributions for a total of 2,129 adjustable parameters, all of
which are expressed as multipliers on parameter values (e.g.,
McKenna et al., 2020). The uncertain model parameters
considered are as follows:

• horizontal and vertical hydraulic conductivity—520 pilot-
point and 82 zonal multipliers

• specific storage—260 pilot-point and 16 zonal multipliers
• specific yield—65 pilot-point and four zonal multipliers
• porosity—260 pilot-point and five layer-constant

multipliers
• denitrification rate—260 pilot-point and 15 zonal

multipliers
• groundwater recharge—one global multiplier; 65 pilot-point

multipliers; and 12 temporal, monthly multipliers
• nitrate loading rate—1 global multiplier and 65 pilot-point

multipliers
• stream-bed conductivity—115 spatial multipliers
• surface-water inflow—117 temporally constant multipliers
• surface-water inflow concentrations—230 spatial

multipliers
• groundwater abstraction—one global multiplier; 11

multipliers, by usage type; and 12 temporal, monthly
multipliers

• surface-water abstraction—two multipliers, by usage type

Initial model parameter values (to which multipliers were
applied) were informed by “expert knowledge” based on
hydrogeological assessments incorporating information from, for
example, bore logs, aquifer pumping test data and literature studies
(e.g., Gyopari andMcAlister, 2010a; Gyopari andMcAlister, 2010b).

More detail on the spatial and temporal distributions of
parameters and the initial native model parameter values is
provided in the Supplementary Section SI 3.

3.3.2. Parameter Uncertainty
Prior parameter uncertainty was specified through a block-
diagonal prior covariance matrix with prior covariances
informed by expert knowledge. Diagonal elements of the
prior covariance matrix represent expected individual
parameter variances; off-diagonal elements define the
correlations between parameters. For the spatially variable
parameter types (e.g., hydraulic conductivity, porosity,
recharge) the correlation between these parameters were
derived from geostatistical analysis of hydrogeolgical field
data (e.g., pumping test data; after Moore et al., 2017).
Geospatial correlation was defined by exponential variogram
with a sill proportional to the expected prior variance (with a

proportionality constant of 0.45), and range of 3,500 m. This
geospatial correlation estimation also supported the pilot-
point parameter interpolation (Doherty, 2003; Doherty
et al., 2011). Temporal and non-spatially distributed
parameters were defined as uncorrelated.

Two hundred prior realizations were drawn from the prior
parameter covariance matrix using a Monte-Carlo multi-
variate Gaussian sampling approach (e.g., Tarantola, 2005)
to produce the prior parameter ensemble. The statistics for
the prior parameter ensemble (in terms of parameters
groups) are provided in Supplementary Table SI 3.1
Grouped prior parameter PDFs are illustrated in
Supplementary Figure SI 3.8.

3.3.3. Propagation of Prior Uncertainty
Parameter uncertainty was propagated to simulated outputs and
forecasts through forward model runs using the 200 prior
parameter realizations in the prior parameter ensemble. An
assessment of the resultant prior simulated output uncertainty
distribution, relative to system observations, was undertaken for
the history matching period to identify potential model
deficiencies. Predictive period simulations using the same
parameter realizations provided forecast distributions which
were evaluated against management decision thresholds to
provide a prior probabilistic expression of management
scenario success or failure.

3.4. Preliminary Posterior Uncertainty Quantification
The preliminary approximation of the posterior forecast
uncertainty was derived after assimilation of state observations
using an abridged single-iteration history matching and a
preliminary approximation of the posterior parameter
uncertainty.

3.4.1. Abridged History Matching
History matching was undertaken with a single iteration of the
Gauss-Levenberg-Marquardt (GLM) algorithm, using PESTPP-
GLM (Welter et al., 2015). The single GLM parameter iteration
upgraded the initial parameter vector, effectively constituting and
update of the mean of the prior parameter distributions
(Supplementary Figure SI 3.8).

The use of a single iteration reduces the computational
resource burden compared to undertaking multiple iterations
but it is sufficient to provide a Jacobian matrix, which is required
to derive the preliminary posterior (see Section 3.4.2), and to
support an analysis of the relevance of the available data to the
forecasts. The abridged history matching required a total of 2,195
model forward simulations; 2,130 to populate the first-order
sensitivity (i.e., Jacobian) matrix, and 65 simulations to test
parameter upgrades (aimed at minimizing an objective
function). The Jacobian matrix was populated using 1% two-
point derivative increments on all parameters, except for surface-
water inflow parameters, which were necessarily offset by a value
of 100 and used a 0.01% derivative increment (e.g., Doherty,
2016).
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3.4.2. Preliminary Posterior Uncertainty Using
Linearized Bayes Equation
Using a linear form of Bayes equation, the posterior parameter
covariance matrix was approximated via the Schur
complement (e.g., Tarantola 2005; Doherty 2015). This
approach required: the prior parameter covariance matrix,
as introduced above; the Jacobian matrix; and the epistemic
noise covariance matrix, which was defined as diagonal with
elements specified on the basis of observation “weights.” To
account for the effect of model error in an approximate
manner, these observations weights were adjusted on the
basis of the model-to-measurement residuals after the
abridged history matching; weights were defined such that
observations within each group contributed equally to the
objective function and the total contribution from each
group was the same (e.g., Doherty, 2015). Note, this differs
from the weighting scheme employed for history matching.
More detail on the linearized Bayes equation and the Schur
complement method is provided in the Supplementary
Section SI 2.

3.4.3. Propagation of Preliminary Posterior Parameter
Uncertainty
As with the propagation of prior uncertainty, propagation of the
preliminary posterior parameter uncertainty to preliminary
posterior forecast uncertainty was achieved through predictive
period model forward simulations for each management scenario
using 200 parameter realizations, sampled from the preliminary
posterior parameter covariance matrix. Sampling was undertaken
using the samemulti-variate Gaussian Monte-Carlo method (e.g.,
Tarantola, 2005), outlined above (Section 3.3.2).

The effectiveness of the abridged history matching was
evaluated by comparing prior and preliminary posterior
parameter and simulated output distributions. The resulting
preliminary posterior forecast distributions were evaluated
against the defined management decision thresholds. On this
basis, the decision points in the workflowwere negotiated, leading
to a “Stop modeling” outcome.

4. RESULTS

Ongoing or iterative model design, history matching and
uncertainty quantification decisions are made on the basis
of the “Prior uncertainty quantification” and “Preliminary
posterior uncertainty quantification” steps of the workflow
depicted in Figure 1. These are decisions that can be informed
by an early uncertainty quantification, and therefore, the case
study results focus on these parts of the workflow, i.e., after the
modeling problem has been defined and a model has been
built. To simplify the presentation of the case study results,
and to facilitate comparisons, the prior and preliminary
posterior uncertainty quantification results figures have
been combined.

Note that the case study is used to illustrate the proposed
workflow, and the process of negotiating the decision points,
within the workflow. It is specifically used to evaluate and

demonstrate the insights gained through the steps that
constitute early uncertainty quantification (“Prior uncertainty
quantification” and “Preliminary posterior uncertainty
quantification”). The case study does not iterate through all
possible decision pathways of the workflow, but instead
demonstrates the workflow in general.

4.1. Prior Uncertainty Quantification
Recall, that purpose of this analysis is twofold. Firstly to check
that model outputs, simulated on the basis of the prior parameter
probability distributions, encompass the measured observations.
Secondly, to assess the proximity of model forecasts to decision
thresholds.

4.1.1. Comparison Between Simulated Outputs and
Historical Observations
Comparison plots of simulated outputs (both prior and
preliminary posterior) and system observations for the history
matching period are provided in the Supplementary Sections SI
4.1.1, 4.1.2. The prior simulated output distributions generally
encompass their associated observation values—i.e., gray bars in
Supplementary Section SI 4.1.1 span the diagonal one-to-one
line in the left-hand plot and the zero residual line in right-hand
plots; and prior realization outputs in Supplementary Section SI
4.1.2 (gray lines) generally overlap with observations, accounting
for observation uncertainty (red shaded areas).

This consistency between the observations and the system
conceptualization, as expressed through the numerical model and
its prior parameters, was particularly robust for those
observations that were of a similar nature and location to the
model forecasts. However, this fortunate outcome was not
absolute, as some prior-data conflict is evident in the results,
e.g., water-level observations for two closely located wells,
“s26_0298” and “s26_0308” (highlighted in Supplementary
Figure SI 1.1A, see associated plots in Supplementary
Sections SI 4.1.1, 4.1.2). Because these observations relate to
water levels at relatively distant locations from the streamflow
reliability forecast locations, this prior-data conflict is not
considered critical to the model forecasts.

Some streamflow observations also demonstrated a degree
of prior-data conflict, particularly when simulating short
duration, extreme events. For example, the simulated
outputs for “fo_s056,” which is close to the streamflow
reliability forecast location MS1, fail to reproduce the
magnitude of the extreme flow events, generally over
predicting high flows (Supplementary Sections SI 4.1.1,
4.1.2). However, the simulated outputs do reproduce the
lower flow conditions. This may relate to simplified
representation of quick-flow and runoff processes in the
numerical model, coupled with the seven-day stress period
duration in the history matching period simulation and the
relatively sparse temporal parametrization. As the forecasts
relate to stream low-flows, this prior-data conflict also not
considered critical.

With respect to the workflow schematic in Figure 1, the
prior uncertainty analysis indicates that there is no prior-data
conflict that is significant for the forecast, and therefore the
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FIGURE 5 | Percent change low-flow frequency (%nday<Q95) prior (grey) and posterior (blue) forecast PDFs at PWV (A), MS1 (B) andMS2 (C). Dashed black lines
represents the 10% change decision threshold. “nreal.” details the number of successful realizations (therefore the number of data points represented in the PDF) for prior
and posterior ensembles, respectively.
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decision was made to progress to assessing prior forecast
uncertainty and (if necessary) approximation of preliminary
posterior uncertainty quantification.

4.1.2. Prior Forecast Uncertainty
The prior forecast probability density functions (PDFs)
(presented in gray in Figures 5–9) provide the initial

indication of the magnitude of the uncertainty surrounding
model forecasts and the proximity of these forecast
distributions to the decision thresholds.

4.1.2.1. Streamflow reliability forecasts
The streamflow reliability forecasts relate to the frequency and
persistence of low-flow conditions at the three sites of interest

FIGURE 6 | PVW low-flow persistence (nconsecday<Q95; A and B) and percent change low-flow persistence (%nconsecday<Q95; C) prior (grey) and posterior
(blue) forecast PDFs. Dashed black lines represent the respective decision thresholds (85 days in A and B and 10% change in C). “NONE” represents the “naturalized”
baseline and “FULL” the abstraction scenario. “nreal.” details the number of successful realizations (therefore the number of data points represented in the PDF) for prior
and posterior ensembles, respectively.
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(PVW, MS1, and MS2; Figure 2), as well as the percentage changes
in these forecasts, associated with abstraction; see Table 1).

4.1.2.1.1. Low-Flow frequency forecasts. For simplicity, the
following presentation of the low-flow frequency forecast
results will focus on the percentage change forecast
(Figure 5) at each location. The full results for the low-flow
frequency forecasts are presented in the Supplementary
Section SI 6.

For this forecast the prior PDFs vary between sites. The
forecast uncertainty is highest at site PVW (Figure 5A). At
this site the prior forecast PDF extends (just) below the
decision threshold, indicating that there is potential (albeit
with low probability) for the abstraction to comply with the
management limit at this site. At MS1 and MS2 sites, the forecast
distributions are entirely above their respective decision
thresholds (Figures 5B,C), supporting the assumption of
certainty that abstraction will cause exceedance of the
management limit, i.e., abstraction is predicted to increase the
number of low-flow days by more than 10%.

On this basis, the results of the prior uncertainty quantification
are sufficient for supporting the management decision relating
to low-flow frequency objectives at sites MS1 and MS2.
Consequently, when considering these forecasts, the prior
uncertainty quantification provides justification for moving to
“Stop modeling” in the workflow. However, at site PVW the
results indicate that benefit may be gained by reducing forecast
uncertainty and the prior uncertainty quantification provides
justification for moving to “Preliminary posterior uncertainty
quantification.”

4.1.2.1.2. Low-Flow persistence forecasts. For the low-flow
persistence forecasts, the PDFs are multi-modal (Figures 6–8).
This is a consequence of their discontinuous nature, where, for
example, for any given realization, two consecutive periods
low-flow periods may, or may not, be bridged, and when
bridging occurs this results in one, significantly longer, low-
flow period. This multi-modal nature is most evident for the
PVW site (Figure 6) where the under naturalized conditions,
the prior forecast PDF spans 23–86 days, beyond the decision
threshold, with no single dominant mode apparent
(Figure 6A). Under the abstraction scenario, the forecast at
this site also indicates high uncertainty and spans the decision
threshold (Figure 6B). The prior forecast uncertainty is also
high for the percentage change forecast at PVW, extending
below the 10% decision threshold, to 0% change, thus
indicating the potential for abstraction to have little effect
on the persistence of low-flow conditions at this site. These
results suggest that the forecast is not sufficiently robust to
allow the workflow to progress to “Stop modeling,” indicating
the “Preliminary posterior uncertainty quantification” should
be undertaken.

For the MS1 and MS2 sites, the prior PDFs for the low-flow
persistence forecasts are similar (Figures 7, 8). Both sites
display a single dominant mode in the forecast PDFs, with
and without abstraction. For the baseline scenario, the prior
PDFs at both sites span the decision threshold (Figures 7A,

8A), this indicates that even under “natural” conditions the
number of consecutive low flow days may exceed 20 days. With
abstraction, the prior PDFs indicate certainty that this decision
threshold will be exceeded, i.e., the prior distributions are
wholly above the decision threshold (Figures 7B, 8B). On the
basis of these absolute forecast results, there would be
justification for moving to “Stop modeling” in the workflow.
However, for the percentage change forecast, the minimum of
the prior PDF at MS1 is at the decision threshold (Figure 7C),
while for MS2 it extends below the decision threshold
(Figure 8C); this suggests that for these normalized
difference forecasts, “Preliminary posterior uncertainty
quantification” should be undertaken.

4.1.2.2. Water Quality Forecasts
For the mean zonal concentration forecasts, prior forecast
PDFs demonstrate high variance and indicate a potential for
mean concentrations to exceed the 5.65 mg L−1 decision
threshold in all zones, under both the land-use
management scenario and baseline conditions (Figures
9A,B). The prior forecast distributions indicate significant
spatial variability in the predicted success of the management
strategy, with respect to the decision threshold of a desired
10% reduction in mean zonal concentration (Figure 9C). In
some zones (e.g., Te Ore Ore, Parkvale, Middle Ruam�ahanga,
Waiohine) the percent change forecasts indicate that there is
a possibility for management scenario success (forecast PDFs
at least span the decision threshold). However, for the other
zones these results indicate failure of the land-use
management scenario. Generally, for the water quality
forecasts, the prior uncertainty quantification indicates
that the workflow should move to “Preliminary posterior
uncertainty quantification.”

4.2. Preliminary Posterior Uncertainty
Quantification
The preliminary posterior uncertainty quantification was
undertaken after an abridged history matching and provides
approximate posterior parameter distributions which are
propagated to approximate posterior forecast distributions.

4.2.1. Parameter Uncertainty
To assist in the interpretation of the uncertainty surrounding the
2,129 model parameters they are grouped by type (Figure 10).
Prior parameter distributions (gray PDFs in Figure 10) reflect
sampled parameter covariances that are based on expert
knowledge alone. Posterior parameter distributions (blue
PDFs in Figure 10) reflect the approximated parameter
uncertainty after the abridged history matching. Together,
the distributions presented in Figure 10 provide an
indication of the level of parameter conditioning achieved
through the abridged history matching. The prior and
posterior distribution statistics for each parameter group are
provided in Supplementary Table SI 3.1.

While the grouping of parameters in Figure 10 and
Supplementary Table SI 3.1 can obscure visual identification
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of the extent of the conditioning of individual parameters within a
group, it is clear that the abridged historymatching has achieved only
minor reductions in the uncertainty of most parameters. Generally,
reductions in uncertainty are more notable for the lumped, global or
layer-wide, parameters, than for the spatially distributed parameters.
Illustrations of the spatial distribution of the variance reduction for
both zone and pilot point parameters are shown in Supplementary

Section SI 5. These plots also highlight that the abridged history
matching achieved only minor reduction in parameter uncertainty
over large areas of the numerical model spatial domain, coinciding
with areas lacking in observation data (Supplementary Figures SI
5.1-5.18). The streamflow reliability forecast locations are coincident
with areas where the reduction in parameter variance is minimal
(e.g., see Supplementary Figures SI 5.5-5.14).

FIGURE 7 | MS1 low-flow persistence (nconsecday<Q95; A and B) and percent change low-flow persistence (%nconsecday<Q95; C) prior (grey) and posterior
(blue) forecast PDFs. Dashed black lines represent the respective decision thresholds (20 days in A and B and 10% change in C). “NONE” represents the “naturalized”
baseline and “FULL” the abstraction scenario. “nreal.” details the number of successful realizations (therefore the number of data points represented in the PDF) for prior
and posterior ensembles, respectively.
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Collectively these results indicate that the conditioning ofmodel
parameters reflects significant parameter non-uniqueness, which is
as a combined result of data scarcity and the distributed
parameterization required to represent forecast relevant system

detail (e.g., Sanford, 2011; Erdal and Cirpka, 2016; Knowling and
Werner, 2016).

Despite the fact that variance reductions in the parameter PDFs
are very subtle, a number of parameter groups do show uncertainty
reduction. The most notable parameter variance reduction occurs
for the global nitrate surface-loading rate parameter (Figure 10H).
The apparent posterior uncertainty for this parameter is significantly
constrained, with the approximated posterior probability
distribution reducing from a range of 0.13–10 to a range of
0.45–1.57, with a variance reduction of 91%. This reflects the
highly aggregated nature of this parameter; it captures
information from all available nitrate concentration observations.

Only a few parameter groups show any evidence of first
moment changes after history matching, i.e., the mean of the
prior and posterior distributions are generally similar. Differences
between mean values of prior and posterior parameter distributions
indicate that either themean in the prior distribution is inadequately
defined, or alternatively, that there is a potential for bias due to
inadequate model or parameter complexity. The only parameter
group that shows a significant first moment response to data
assimilation is the layer-constant porosity group (Figure 10J)
which displays a first moment shift to higher values; the
distribution mean for this porosity multiplier group shifts from
1.01 to 1.17. Higher porosity values effectively reduce simulated flow
velocities, which in turn cause increased contaminant reaction
(denitrification, in this instance). This inference of higher
porosity results from the flow of information in the nitrate
concentration observations to groundwater and surface water
concentration simulated outputs which are the only simulated
outputs that are sensitive to groundwater flow velocities. Over
90% of the 203 groundwater concentration observations are
below 10mg L−1; prior simulated outputs corresponding to many
of these observations, however, spanned significantly higher values
(up to 80mg L−1; see Supplementary Section SI 4.1.1). So, while the
prior distribution of simulated nitrate concentrations span the
observed concentrations (i.e., there is no prior-data conflict), this
indicates that the prior distributions for nitrate-loading and layer-
based porosity parameters require some refinement.

4.2.2. Comparison of Simulated Outputs With
Historical Observations
We note that the prior and posterior simulated output
distributions in Supplementary Section SI 4.1.1 indicate
that, for these outputs at least, the prior distribution is
conservative relative to the posterior distribution, i.e., the
prior distributions (gray in Supplementary Sections SI
4.1.1, 4.1.2) fully encapsulate the posterior distributions
(blue in Supplementary Sections SI 4.1.1, 4.1.2).

However, after the preliminary posterior uncertainty
quantification some simulated output distributions no longer
overlap with observations (blue bars and lines in
Supplementary Section SI 4.1.1, 4.1.2). An example of this
behavior can be seen with the preliminary posterior simulated
outputs that relate to observations from well “s26_0656” (see
Supplementary Section SI 4.1.2). Discrepancy between posterior
simulated output distributions and observed system behavior may be
a manifestation of observation error, causing tension in the history

FIGURE 8 |MS2 low-flow persistence (nconsecday<Q95; A and B) and
percent change low-flow persistence (%nconsecday<Q95;C) prior (grey) and
posterior (blue) forecast PDFs. Dashed black lines represent the respective
decision thresholds (20 days in A and B and 10% change in C). “NONE”
represents the “naturalized” baseline and “FULL” the abstraction scenario.
“nreal.” details the number of successful realizations (therefore the number of
data points represented in the PDF) for prior and posterior ensembles,
respectively.
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FIGURE 9 |Water quality prior (grey) and posterior (blue) forecasts distributions for mean zonal concentration in GMZs (see Figure 2). The width of the distribution
indicates the distribution density. Box plots are also displayed to indicate the inter-quartile range (IQR, Q3-Q1, box), median (line in box), and 5th and 95th percentile
(whiskers) of the distributions. Red dashed lines represent decision threshold values; for absolute mean zonal concentration forecasts (mean.conc, A and B) this
threshold is 5.65mg l–1; for percentage-change forecasts (%mean.conc, C), the threshold is10% reduction in concentration.“no.real.” details the number of
realization completed—therefore the number represented in the PDF—for prior and posterior ensembles, respectively. In A and B, “n” represents the mean number of
active model cells in each zone, across all prior (black text) and posterior (blue text) realizations. “LOADCHANGE” represents the land-use management scenario explored
relative to the baseline (denoted as “BASELOAD”).
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FIGURE 10 | Posterior parameter distributions (blue) plotted over prior parameter distribution (grey). The total number of parameters in the grouped distributions
are detailed in the individual plot titles. If distributions refer to the log10 transformed parameters values, this is also detailed in the individual plots. Plot of grouped prior
parameter distributions alone are presented in Supplementary Figure SI 3.8.
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matching, or it may be an indication of insufficient complexity in the
model parameter conceptualization, which inhibits simulation of
system behaviors that are captured by the data. Evaluation of the
source and implication of such results is important for assessing the
robustness of posterior model forecast distributions.

For the specific example of well “s26_0656” observations, the
preliminary posterior simulated outputs for the nearby
“s26_0155” well effectively capture the observed water levels.
Well “s26_0155” is in model layer 1, while “s26_0656” is in model
layer 4, and as such it is anticipated to be more important for
informing for the streamflow reliability forecasts. This supports
continuing to the assessment of preliminary posterior forecast
uncertainty. However, as the presence of such conflict could be an
indication of insufficient parameter complexity, this assessment
could provide justification for returning to the “Prior uncertainty
quantification” step in the workflow and potentially reassessing
discretization as well as parameterization, especially before any
further history matching is considered.

4.2.3. Preliminary Posterior Forecast Uncertainty
4.2.3.1. Streamflow Reliability Forecasts
4.2.3.1.1. Low-Flow Frequency Forecasts. The abridged history
matching, undertaken as part of the preliminary posterior
uncertainty quantification, has reduced the uncertainty of the
low-flow frequency percentage change forecasts, as
demonstrated by narrower posterior PDFs (blue) compared
to prior PDFs (gray) in Figure 5. However, the magnitude of
the forecast uncertainty reduction varies between sites. The
reduction in uncertainty is greatest at site PVW (Figure 5A)
and results in the posterior forecast PDF moving above the
decision threshold, indicating a certainty that the abstraction
scenario will exceed the decision threshold; such certainty was
not achievable based on the prior forecast PDF. At MS1 and
MS2, the reduction in forecast uncertainty is relatively low
(Figures 5B,C). However, as the prior forecast PDF is already
wholly above the decision threshold, this limited reduction in
uncertainty is of little consequence in the specific decision
support context considered here. On the basis of these results,
the workflow could move to “Stop modeling” after this
preliminary posterior uncertainty quantification.

4.2.3.1.2. Low-Flow Persistence Forecasts. For the low-flow
persistence forecasts, some apparent uncertainty reduction is
achieved by the abridged history matching. At PVW, the
reduction in forecast uncertainty moves the baseline scenario
forecast away from the decision threshold (Figure 6A). However,
for all other forecasts (at all sites), the abridged history matching
has had limited impact on the position of forecast distributions,
relative to their respective decision thresholds, and therefore
provides little additional benefit for decision support. For these
forecasts the observation dataset may be considered to be of little
benefit for reducing forecast uncertainty. In this case, continued
history matching would not be expected to sufficiently reduce
forecast uncertainty and the modeling process should move to
“Stop modeling.”

4.2.3.2. Water Quality Forecasts
The abridged history matching reduces the uncertainty for the
absolute mean zonal concentration forecasts, for all zones (blue
PDFs in Figures 9A,B). For the land-use management scenario
the variance reduction is such that only forecast outliers
(beyond the 95th percentile) extend beyond the decision
threshold (Figure 9B). For some zones the variance
reduction is such that the posterior PDFs move entirely
below the decision threshold (e.g., Te Ore Ore, Parkvale and
Mangatarere). While the preliminary posterior forecast PDFs
indicate low probability that the nitrate loading management
scenario will result in mean zonal concentrations above the
decision threshold of 5.65 mg L−1, they are not sufficiently
constrained through the abridged history matching to
provide apparent certainty. However, the reduction in
forecast uncertainty indicates that the observation dataset
contains information that is beneficial for this forecast and
the preliminary posterior uncertainty quantification provides
justification to “Continue history matching.”

For the percentage change forecast, there is relatively little
reduction in uncertainty as a result of the abridged history
matching (Figure 9C). Consequently, the variability of the
predicted outcome of the management strategy, between
zones, still persists. This result suggests that although the
absolute forecast is informed by the observation data, the
conditioning of parameters appears to have little influence on
the normalized change forecast. This indicates that if
uncertainty reduction for the percentage change in mean
zonal concentration forecast is desired, there would be little
benefit in continuing history matching with this combination of
numerical model and observation data.

5. DISCUSSION

The role of uncertainty quantification in modeling for decision
support is widely recognized in the literature (e.g., Freeze et al.,
1990; Gupta et al., 2006; Moore and Doherty, 2006; Vrugt, 2016;
Ferré, 2017). A requirement for the proposed decision support
workflow, is that the forecasts of interest, and the decision
thresholds associated with them, are defined at the outset, as
outlined by the “Problem definition” step in Figure 1. This
follows from a growing recognition that for decision support
applications, model design should be based on the pre-
definition of decision-relevant forecasts and the hypothesis to
be tested (e.g., Guthke, 2017; White, 2017; Doherty and Moore,
2019).

We extend this ‘start from the problem and work
backwards’ approach, to one that explicitly considers the
environmental threshold that a management decision is
seeking to avoid. In this context we demonstrate the
important insights provided by a workflow which
incorporates a preliminary assessment of forecast
uncertainty. This can then support a number of ongoing
modeling decisions, e.g.:
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• the potential to assess the ability of a model and its
associated prior parameter uncertainty to robustly
simulate historical system observations, particularly those
that are aligned with forecasts (i.e., to evaluate prior-data
conflict);

• an opportunity to revisit model design and parameterization
to allow simulated outputs to better reproduce system
observations that are pertinent to forecasts;

• an opportunity to assess the extent to which forecasts are
informed by observation data;

• an opportunity to process system observation data to
provide the most appropriate information to inform the
parameters that forecasts are sensitive to;

• provision of a defensible basis for undertaking (and
continuing or stopping) history matching; and

• potentially, an opportunity to forgo history matching
altogether, where it is not necessary to further support
the decision making process.

As a result of the benefits listed above, the proposed workflow
has the potential to reduce the time and effort required for
decision support model deployment. For example, the prior
uncertainty quantification and preliminary posterior
uncertainty quantification (if required) can be achieved at low
computational cost, relative to a more complete derivation of
posterior uncertainty after a more exhaustive history matching
effort. In the case study example, further history matching
iterations would require 2,195 model runs per iteration, this
equates to a computational cost of around 300 CPU days per
iteration.

It should be noted however, that the history matching
method used here follows a traditional approach,
employing finite-difference gradients. Alternative
approaches exist that support efficient data assimilation
and uncertainty quantification with relativity few model
forward simulations; for example, using ensemble based
approximations (e.g., Chen and Oliver, 2013; White, 2018).
Nevertheless, such approaches still require additional model
forward simulations to approximate and propagate posterior
parameter uncertainty. As the general workflow presented in
Figure 1 is agnostic of the specific uncertainty quantification
methods employed, it still provides the potential for time and
effort savings potential as well as protection (and potential for
mitigation) against model failure induced by inappropriate
history matching.

5.1. Assumption of a Conservative Prior
The proposed workflow is underpinned by the assumption
that prior parameter distributions, and therefore prior
forecast distributions, are “conservative.” In this context,
a conservative prior means that a forecast distribution will
tend to inflate the inherent uncertainty in the modeled
system behavior. This follows the need to avoid
uncertainty variance under-estimation in modeling for
decision support (e.g., Doherty and Simmons, 2013).
Unfortunately, verification of whether the prior is
sufficiently conservative is challenging, requiring, for

example, paired model analysis, whereby prior forecast
distributions are compared for pairs of models of differing
complexity in order to highlight and expose predictive bias or
variance corruption induced through model simplification
(e.g., Doherty and Christensen, 2011; Gosses and Wöhling,
2019). In real-world decision support applications,
undertaking such an analysis is rarely considered due to
time and resource limitations, and the uncommon
availability of multiple models of varying complexity.

Notwithstanding the challenges associated with formulating
and verifying a conservative prior, a number of strategies to
circumvent the effects of a non-conservative prior have been
postulated in previous studies. These include: adopting high
parameter dimensionality (e.g., Hunt et al., 2007; Knowling
et al., 2019), with parameterization expressing system
uncertainty at different spatial and temporal scales (e.g.,
White et al., 2020a; McKenna et al., 2020), and processing
or transforming simulated outputs to minimize uncertainty,
and thereby also the effects of an inadequate prior (e.g.,
Sepúlveda and Doherty, 2015; Knowling et al., 2019).
Deploying such strategies is an important component of
“Model definition” and prior formulation in “Prior
uncertainty quantification” in the proposed workflow.
Accordingly, in the case study presented herein, a highly
parameterized scheme was adopted (e.g., Hunt et al., 2007),
incorporating a combination of pilot points and zone- and
layer-based parameters, with expert knowledge-based
parameter variance and correlation; this aligns with an
“intermediate” parameterization scheme in Knowling et al.
(2019) which was found to be relatively robust for making
predictions related to the depletion of low streamflows in
response to groundwater pumping. We also considered
“differenced” forecasts (e.g., percentage-change forecasts) in
an effort to reduce possible ill-effects due the potential presence
of large-scale boundary condition errors (e.g., Doherty and
Welter, 2010; Sepúlveda and Doherty, 2015).

5.2. Insights and Advantages of Prior
Uncertainty Quantification
The “Prior uncertainty quantification” step in the proposed
workflow provides insights into the appropriateness of the
conservative prior assumption, through comparison of the
prior uncertainty surrounding simulated outputs with
observations of system behavior (e.g., assessing the presence of
prior-data conflict). Through this process the prior uncertainty
quantification can also reveal errors in observation data at an
early point in the workflow, before effort is wasted trying tomatch
model outputs to errant data. Under the assumption that the
observation errors are minimal, and are appropriately
represented by the observation weights and the epistemic
noise covariance matrix (see Section 3.4.2), the presence of
prior-data conflict between simulated outputs and system
observations may be an indication of potential inadequacy in
the specified prior parameter uncertainty and/or in the way that
the forecast relevant aspects of the system are parameterized (e.g.,
Nott et al., 2016). Where conflicts exist for data that are closely
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related, in type and/or location, to the decision-relevant forecast,
this inadequacy has the potential to propagate to the expression of
forecast uncertainty—with the associated risk of incurring
“model failure” (Doherty and Simmons, 2013).

In the presented case study example, the “Prior uncertainty
quantification” step does indicate instances of prior-data conflict,
for example, for some water level and high streamflow
observations, as highlighted in Section 4.1. For the specific
forecasts in the case study, the conflicts were not considered
critical; i.e., the location and/or nature of the conflict between
simulated outputs and system observations was not expected to
impact on the reliability of the forecasts.

However, where model inadequacy, highlighted through the
assessment of prior-data conflict, is deemed to risk the reliability
of forecasts, additional work can be undertaken to improve the
model parameter representation of forecast relevant aspects of the
system and/or formulation of the prior parameter probabilities.
The appropriate remedy depends on an assessment of the
sufficiency of the model, its parameters, and of the expression
of the prior parameter uncertainty, to adequately represent the
system processes that are pertinent to the forecasts. If the
parameter representation of the modeled system is deemed to
be sufficiently complex to support full expression of the processes
and process uncertainty that forecasts are sensitive to, the prior-
data conflict indicates underestimated prior parameter variances.
This can be remedied by revisiting the “Prior uncertainty
quantification” step and inflating parameter variances. If
however, the prior-data conflict is deemed to be due to an
inadequate parameterization of specific processes, essentially
creating a type of model structural defect, then the workflow
should also return to the “Prior uncertainty quantification” step
to revisit the parameterization scheme itself, as well as its
probability distribution. In some cases, it will be the model
definition itself that needs to be revisited, if the
parameterization of a simulated process is not the issue, but
rather the complete omission of the process. Iteration through
these steps may be required. Importantly, undertaking this prior
uncertainty quantification provides the necessary insights for
identifying and rectifying model and parameter inadequacies
at early stage in the workflow, before significant damage is
done to the decision making process.

Once the model and prior parameter distribution is
considered to adequately represent forecast relevant system
processes, the prior uncertainty quantification also provides
an opportunity to forgo a formal history matching effort. In
the case study presented here, an example of this justification
for forging history matching, is provided by the low-flow
frequency forecast at MS1 and MS2 (Figures 5B,C). For this
example, the prior forecast PDFs are wholly above the 10%
decision threshold indicating that breaching of the
management limit is almost certain to occur. In this case,
and under the important assumption that the prior forecast
uncertainty is conservative, the management decision could
be made from a prior stance, with very low apparent risk of an
incorrect assessment; efforts to reduce the uncertainty of the
prediction through data assimilation would be unnecessary,
as this would not change the evaluation of decision threshold

exceedance, and the workflow can proceed to “Stop
modeling.”

Unfortunately, however, the capability of prior uncertainty
quantification to provide a sufficient basis for a particular
decision support context, is expected to be highly case specific.
It is likely to depend on, for example, the inherent subjective
definition of the decision threshold, the system parameterization
and how the uncertainty of these parameters is defined (especially
in regional-scale numerical models where parameters are
abstractions of true natural system properties; Watson et al.,
2013), as well as the risk tolerance of the decision-maker.
Where the prior quantification of forecast uncertainty fails to
provide sufficient certainty to support decisionmaking (and prior-
data conflict issues are minimal) the modeler may choose to
undertake history matching with the aim of reducing model
forecast uncertainty (e.g., the low-flow frequency forecast at
PVW and the mean zonal concentration forecasts in the case
study). In this instance the results of prior uncertainty
quantification provides justification for moving to the
“Preliminary posterior uncertainty quantification” step of the
workflow.

5.3. Undertaking Approximate Preliminary
Posterior Uncertainty Quantification
If history matching is considered necessary, approximation of the
preliminary posterior uncertainty surrounding simulated outputs
and forecasts at an early stage of the process provides another
opportunity to assess the relationship between the model, its
parameters, observation data, and ultimately, forecasts.
Specifically, this early approximation of the posterior can
provide insights into the ability of the observation data to
sufficiently and appropriately inform model parameters that
forecasts are sensitive to. Additionally, the resulting forecast
uncertainty may be such that the preliminary posterior
uncertainty quantification is sufficient for decision support
model deployment.

For example, from the presented case study, the prior
distribution of the low-flow frequency forecast at PVW
extends just below the 10% decision threshold (Figure 6A).
Consequently, for a decision maker with low risk tolerance
(i.e., they desire low probability that the critical condition will
not be violated), the prior uncertainty quantification does not
provide sufficient support for the specific management decision.
However, for this forecast, conditioning of parameters through
the abridged history matching in the “Preliminary posterior
uncertainty quantification” step was effective at achieving a
sufficient reduction in forecast variance to support an
assessment of management scenario outcome, with relative
certainty; i.e., after the abridged history matching, the
posterior forecast distribution was entirely above the decision
threshold (Figure 6A). For this example, further history
matching is not required, as no further uncertainty reduction
is necessary to support management decision making. The
modeling workflow could move to “Stop modeling.”

As with the “Prior uncertainty quantification” step of the
workflow, the potential to move to “Stop modeling” after
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“Preliminary posterior uncertainty quantification” is also likely to
be highly case specific. For example, for the absolute mean zonal
concentration forecasts in this case study (Figure 9), the
uncertainty remaining after abridged history matching, is still
too high to provide certainty that the tested management
scenarios will not result in conditions that exceed the decision
threshold. However, in this instance the prior uncertainty
quantification and subsequent preliminary approximation of
the posterior uncertainty was still beneficial. It provided; i) an
early indication of the ability of the model and prior
parameterization to reproduce system observations that are
pertinent to the forecasts; ii) an indication of the ability for
system observations to inform model parameters to promote a
sufficient reduction in forecast uncertainty; and, iii) indication of
the likely implications of continuing history matching in an
attempt to further reduce forecast uncertainty.

For the water quality forecasts in the case study, the data that
were most directly relevant for the forecasts were measurements
of groundwater nitrate concentration. While these observations
are generally encapsulated by the prior simulated output
distributions, and although some protection against the ill-
effects associated with history matching may have been be
gained by employing relatively high parameter dimensionality
at multiple-scales, together with the spatially aggregated (mean)
nature of the forecasts (e.g., Doherty and Christensen, 2011;
White et al., 2014; McKenna et al., 2020), the simulated
output distributions associated with the approximated
posterior no longer reproduce higher concentration
observations (see Supplementary Section 4.1.1). This indicates
that the model parameterization and its prior probability
distribution may not be sufficiently complex, and potentially
may even require a refinement of the model discretization,
which for the purposes of the workflow, can be considered
part of a parameterization scheme. While further history
matching iterations may result in the necessary variance
reduction to provide the apparent certainty desired for the
water quality forecasts, given the current model
parameterization, the efforts to assimilate system data may
induce bias in simulated outputs; therefore, further history
matching (i.e., moving to the “Continue history matching”
step) risks model failure (e.g., Doherty and Simmons, 2013).

6. CONCLUDING REMARKS

This study demonstrates the critical role of uncertainty quantification
in model-based decision support. The quantification of uncertainty
of simulated decision-relevant forecasts underpins the assessment of
risks associated with management scenarios. Our case study
demonstrates that the suggested workflow, which includes
undertaking uncertainty quantification before comprehensive
history matching efforts, brings significant advantages.

Quantification of model forecast uncertainty on the basis of
prior parameter uncertainty is generally straightforward and
relatively computationally efficient. It may be sufficient for

informing an evaluation of the efficacy of a management
strategy without the need for history matching. Depending on
the proximity and considered robustness of the prior forecast
probability distribution with respect to the decision threshold, it
may be possible to conclude a modeling project this stage.

Prior uncertainty quantification also provides an opportunity
to assess the validity of prior parameter distributions, through
comparison of historical observations with prior simulated
output distributions. Where prior-data conflict exists for
forecast relevant observations, a modeler has the opportunity
to revisit the model conceptualization and specification, including
reformulation of prior parameter uncertainty, before embarking
on history matching with a potentially flawed conceptualization.

Using a computationally efficient, albeit approximate, method
for quantifying preliminary posterior uncertainty provides a
defensible basis for undertaking further history matching.
Importantly, this insight can be provided at an early stage of
the modeling workflow.

Additionally, undertaking uncertainty quantification early in
the modeling workflow can provide important insights into how
the information in observation data flows to model parameters
and forecasts. These insights can guide further model design and
parameterization efforts, objective function formulation and
observation processing, if deemed necessary, for example, on
the basis of prior-data conflict.

We recommend adjusting the traditional modeling workflow,
so that decision support modeling projects can benefit from the
insights and potentially significant cost savings afforded by this
early uncertainty quantification approach.

In summary, the approach provides:

• an early indication of the capacity of the numerical model
and the chosen parameterization to numerically represent
the decision-relevant forecasts, and therefore support
decision making;

• an indication of the ability of observations to inform model
parameters that the decision-relevant forecasts are sensitive
to, and the opportunity to rectify incompatibilities between
the model (parameters or structural design), observations
and forecasts;

• the potential that the forecast uncertainty is sufficiently
constrained to support a management decision or assess
management strategy effectiveness without requiring
history matching; and

• a quantitative and defensible basis for undertaking (and
stopping) history matching for the purpose of reducing
forecast uncertainty, with respect to management decision
thresholds.
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Recovering the Effects of Subgrid
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Groundwater flow and contaminant transport through fractured media can be simulated
using Discrete Fracture Network (DFN) models which provide a natural description of
structural heterogeneity. However, this approach is computationally expensive, with the
large number of intersecting fractures necessitated by many real-world applications
requiring modeling simplifications to be made for calculations to be tractable. Upscaling
methods commonly used for this purpose can result in some loss of local-scale variability
in the groundwater flow velocity field, resulting in underestimation of particle travel times,
transport resistance and retention in transport calculations. In this paper, a transport
downscaling algorithm to recover the transport effects of heterogeneity is tested on a
synthetic Brittle Fault Zone model, motivated by the problem of large safety assessment
calculations for geological repositories of spent nuclear fuel. We show that the variability
in the local-scale velocity field which is lost by upscaling can be recovered by sampling
from a library of DFN transport paths, accurately reproducing DFN transport statistic
distributions and radionuclide breakthrough curves in an upscaled model.

Keywords: groundwater modeling, radionuclide transport, discrete fracture network, upscaling, downscaling

1. INTRODUCTION

Understanding the fate and migration of dissolved contaminants is important for practical
applications such as the optimal design of aquifer remediation strategies (Bolster et al., 2009),
the delineation of protection areas around wells used for drinking water production (Trinchero et al.,
2008) or the safety assessment of a repository for spent nuclear fuel (SKB, 2010).

Contaminant transport depends on the groundwater flow velocity field and this is in turn affected
by the underlying heterogeneous distribution of hydraulic conductivity. Fully characterizing this
distribution is impossible and thus upscaled macrodispersion models are typically used (Gelhar and
Axness, 1983). However, these models are only valid for mild to low degrees of heterogeneity,
whereas natural sedimentary aquifers often exhibit variations of up to 12 orders of magnitude in
hydraulic conductivity (Bear, 1972; Sanchez-Vila et al., 2006). This requires the use of alternative
upscaling methods (Hakoun et al., 2019).

In fractured crystalline rocks, transport patterns are particularly complex as they depend on both the
topological configuration of the sparse network of fractures (network-scale heterogeneity) and the variable
distribution of fracture openings (fracture-scale heterogeneity).Moreover, a large volume of these fractured
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systems that is not affected by fluid flow is still accessible by solutes via
a mechanism called matrix diffusion (Neretnieks, 1980). The
coupling between solute advection along the open conductive
fractures and diffusion into the rock matrix is a function of the
underlying groundwater flow velocity field. It turns out that a proper
characterization of groundwater velocity patterns is crucial to
properly simulate contaminant transport (along conductive
fractures) and retention (in the intact rock matrix).

An appealing approach for simulating groundwater flow and
advective transport in fractured media is by means of Discrete
Fracture Network (DFN) models (Cacas et al., 1990). DFN
models account for the structural heterogeneity of the site, by
means of field-derived statistical properties, and could also
include fracture internal heterogeneity (Makedonska et al.,
2016). In these models, contaminant retention in the rock
matrix can be accounted for by using time domain particle
tracking calculations (Painter et al., 2008).

Despite being methodologically attractive, DFN models are
computationally challenging and sometimes simplifications are
required, particularly when multiple stochastic realisations must
be assessed. These simplifications are often carried out at the
expense of a careful characterization of the local groundwater
flow velocity field. Hence, methods to reconstruct the underlying
variability of groundwater velocity are required. In particular it is
important to recast the significant spatial persistence of high/low
velocity regions along connected fractures, which was observed in
previous works (Benke and Painter, 2003; Painter and Cvetkovic,
2005; Comolli et al., 2019; Hakoun et al., 2019). Different
approaches have been proposed to represent that persistence
(e.g., Benke and Painter, 2003; Painter and Cvetkovic, 2005;
Comolli et al., 2019; Hakoun et al., 2019). Although these
approaches differ in operational details, they are all based on
some type of spatial Markov approximation for the Lagrangian
velocity. This means that spatial persistence in velocity is
simulated by assuming that the underlying Lagrangian velocity
is a spatial Markov process, which implies that velocity in one
fracture segment depends only on the velocity of the preceding
segment.

A few approaches have been proposed to extrapolate or
reconstruct velocity fluctuations, and related travel times, in
large-scale DFN models. For instance, recently Hyman et al.,
2019 have shown that heavy-tailed first passage time distributions
can be reproduced using time domain random walk simulations
based on transition times between fracture intersections. In
Hyman et al., 2019 velocity variations within fractures are
neglected and statistical ergodicity is invoked to sample
velocity from a parametric distribution. The approach is
shown to reproduce well the tail of a first passage time
distribution but it is inadequate to describe the abrupt rising
limb caused by early arrivals, which are mostly controlled by few
large and transmissive fractures and are thus clearly not ergodic.
A similar approach was presented earlier by Painter and
Cvetkovic, 2005 to extrapolate velocity distributions from
small-scale to much larger-scale DFN models. The main
difference is that in the method by Painter and Cvetkovic,
2005 empirical distribution functions of the velocity field are
derived from DFNmodels statistically representative of the large-

scale fracture intensity, orientation and distribution. Therefore,
the method is suited to reproduce the full travel time distribution
and not only the tail.

Here, the algorithm of Painter and Cvetkovic, 2005 is used to
reconstruct the lost variability in velocity by means of stochastic
simulations. The proposed approach is used in combination
with a computationally challenging DFNmodel of a Brittle Fault
Zone (BFZ). In the DFN models used to assess the safety of
proposed sites for geological repositories of spent nuclear fuel in
fractured crystalline rock, the representation of BFZ is a topic of
particular attention, due to the importance of such zones in
determining site-scale flow and transport pathways (Hartley
et al., 2018).

Radionuclide transport calculations are here carried out using
particle tracking in the time domain (Painter et al., 2008). That
and closely related approaches have been used in combination
with discrete fracture networks in previous studies related to
safety of geological disposal options (e.g., Selroos and Painter,
2012; Poteri et al., 2014; Trinchero et al., 2016, 2020),
radionuclide transport at contaminated sites (Kwicklis et al.,
2019), and production of natural gas from unconventional
reservoirs (Karra et al., 2015). The focus here is on stochastic
approaches to recover the transport effects of the subgrid
velocity variability that is lost when using upscaled
representations of fracture swarms associated with BFZs in
large-scale flow models. In particular, we evaluate and refine
the transport downscaling algorithm of Painter and Cvetkovic,
2005. All the radionuclide transport calculations are carried out
using the computer code MARFA (Painter et al., 2008; Painter
and Mancillas, 2013).

2. METHODS

2.1. Representation of Brittle Fault Zones as
Fracture Swarms
Structurally, BFZ typically consist of a damage zone with finite
thickness, containing many small fractures, about a central fault
core (Aaltonen et al., 2016). Many BFZ are hydraulically active, and
extend for multiple kilometres, providing hydraulic connectivity
over long ranges with significant implications for the safety of
geological repositories for spent nuclear fuel. In the groundwater
flow and transport modeling calculations performed for repository
safety assessments, the most commonly used approach has
historically been to represent each BFZ as either a large planar
fracture (in a DFN model) or a homogeneous volume (in a
continuum model). This is the approach adopted in the
previous generation of site descriptive modeling studies by both
the Swedish (Joyce et al., 2010) and Finnish (Posiva, 2013)
radioactive waste management organisations. In the DFN case,
both stochastic variability and depth-dependency of flow and
transport properties has sometimes been assigned to the plane
using a relatively simple scaling-law formulation, relating
transmissivity to fracture size, together with a normally-
distributed random component, as in Joyce et al. (2010).

In the most recent iteration of the Olkiluoto DFN Version 3
(ODFN3) model, describing the site of the repository currently
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under construction in Finland, a new representation of BFZ was
developed (Hartley et al., 2018). In this formulation, BFZ damage
zones are explicitly modeled as finite-thickness swarms of
fractures stochastically generated around each fault core.
Three-dimensional heterogeneity of the flow field within a
zone can therefore be simulated, with effects such as choking
of flow included. While this is a major advance, the added
realism of this description comes at a computational cost.
Methods for simplifying this BFZ model, while retaining
heterogeneity in flow and transport properties, are desirable
for the large number of particle tracking simulations required
for a safety assessment calculation. This study therefore
investigates several such methods by applying them to a
simple test DFN model and comparing the results of flow
and transport simulations.

2.2. Discrete Fracture Network Model of a
Single Brittle Fault Zone
A simplified DFN model, consisting of a single BFZ fracture
swarm overlaying a randomly oriented background fracture
network is used as the basis of these simulations. Parameters
are chosen tomatch a typical BFZ in the Olkiluoto DFNVersion 3
(ODFN3) model (Hartley et al., 2018). One stochastic realization
of the BFZ fracture swarm component of this model is shown in
subfigure A of Figure 1.

The BFZ fracture swarm is stochastically generated about a
midplane of dip angle 30°, dipping in the x-direction, with side
length 577.4 m. This is located within a modeling domain of
dimensions 500 × 500 × 500 m, intersecting the outer faces of the
domain which lie in the xz and yz planes.

For the BFZ fracture set, fracture intensity is normally
distributed in the direction orthogonal to the midplane, with a
peak value at the midplane; in the ODFN3 model, the width of
this distribution is adjusted to correspond to the observed damage
zone width. Here, a peak volumetric intensity of 4.28 m2m{-3} and
standard deviation σ of 2.69 m are selected, corresponding to a
typical ODFN3 BFZ. Fracture orientations are sampled from a
Fisher distribution about the parallel to the midplane, with a

Fisher dispersion constant K of 20; the resulting swarm fractures
are therefore subparallel to the midplane.

For the background fracture set, a homogeneous volumetric
intensity of 0.2 m2m{-3} is used throughout the modeling domain,
with a uniform orientation distribution over all possible angles.

In both BFZ and background sets, fractures are square in shape,
with side length sampled from a truncated power-law probability
distribution with exponent kr � 2.67, minimum side length rmin �
1.77m and maximum side length rmax � 200m. Hydraulic aperture
eh follows a “semi-correlated” relationship to fracture length,
consisting of a power-law distribution with a log-normally
distributed random component:

log10(eh) � log10(a) + blog10(L) + αN(0, 1) (1)

where a � 3.345 · 10− 5 m, b � 0.5 and α � 0.3. A simple linear
scaling of transport aperture et with hydraulic aperture is used
(et � 10eh). When solving for flow, the cubic law is used to
determine fracture transmissivity: T � e3h/12μ where μ is fluid
viscosity.

Following the ODFN3 methodology, both BFZ and
background fractures of side length greater than 20 m are
tessellated and a randomly selected portion of the resulting
tessellates deleted, with the retained tessellates representing
that portion of fracture surface area which is hydraulically
open to flow. The retained portion of open fracture surface
area ω(r, z) is determined by the following prescription:

ω(r, z) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(0.6 + 0.002z) +0.05(log10(r)+ log10(π)

2
) if z > 300m

0.2 + 0.05(log10(r) + log10(π)
2

) if z ≤ 300m

(2)

hence decreasing linearly with depth in the upper 200m of the
modeling domain, and constant below this point for a fracture of
given length.

Flow and transport simulations are carried out for 10 stochastic
realisations of the resulting DFN, using the ConnectFlow

FIGURE 1 | Comparison of BFZ representations; (A) is a single realization of the underlying DFN model; (B) is the plane-projected representation of the same
realization. Fractures colored by transmissivity.
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groundwater modeling software suite (Jacobs, 2018). A pressure
gradient across the modeling domain is created by imposing fixed
pressure boundary conditions of 15,000 Pa at the inlet (+x)
boundary and 0 Pa at the outlet (−x) boundary of the domain,
and a steady-state flow solution obtained for each of the 10
realisations. Pathline tracking simulations using this flow field
are performed for an ensemble of particles injected uniformly over
the inlet boundary, at the intersections between the BFZ swarm
and the inlet boundary.

For the MARFA downscaling method described in 2.4 to be
applied, samples must be taken from a library of pathline legs
calculated within a smaller “sampling cube” model. The DFN
parameters within this 100 × 100 × 100 m model are
homogeneous and equal to those for fractures at the BFZ
midplane (i.e., peak intensity). For this set of parameters, 10
realisations of the sampling cube model are generated, and flow
and transport calculations carried out in each of the three axial
directions, with an applied hydraulic gradient equal to that
applied in the full DFN model.

2.3. Plane-Projected Model
For comparison to the DFN model described in section 2.2, a plane-
projected representation is produced using the upscaling and
projection methods developed in Baxter et al., 2019. The first stage
of this process requires upscaling of the DFN to an equivalent
continuous porous medium (ECPM) model in ConnectFlow. The
DFNmodel is subdivided into submodels (5 × 5× 5m cubes); in each
of these, a linear hydraulic gradient is applied in each of the three axial
directions, and the flux through the portion of the fracture network
within the submodel calculated. A hydraulic permeability tensor k is
then evaluated to fit the calculated fluxes for each submodel. Where
cross-flows (non-parallel to the head gradient) arise, indicating
anisotropy due to the orientation, connectivity and transmissivity
of the underlying DFN, this is approximated by introducing nonzero
off-diagonal elements to the tensor.

In addition to k, which is used to calculate flux in an ECPM
model, transport simulations require two additional quantities to
be evaluated; equivalent kinematic porosity ϕ and equivalent
flow-wetted fracture surface area ar . These are calculated using
the flow-based transport upscaling method described in Baxter
et al., 2019, which was shown to provide a more accurate estimate
of these quantities when compared to the simple geometric
methods previously used, as only those portions of the
fracture network through which flow and transport actually
occurs are included. Once k has been determined, particle
tracking is performed in each of the three axial directions
within each submodel and the distributions of travel time and
flow-related transport resistance are evaluated over the ensemble
of particles. The median of each distribution is then used to
calculate the directional components of each of these quantities:

ϕi �
Qi

Ai
〈τij
Lij
〉

m

ar,i � Qi

Ai
〈βij

Lij
〉

m

(3)

where Qi is the flux out of the downstream face and Ai is the
transverse cross-sectional area in direction i, and τij, Lij and βij are
respectively the travel time, path length and flow-related

transport resistance (defined in section 2.4) for path j when a
pressure gradient is applied in direction i. The subscript m
indicates that the median value of these distributions is taken.
Although Eq. 3 results in vector quantities for kinematic porosity
and flow-wetted surface, in practice, transport simulations
(including those described here) typically require them to be
scalar and hence the geometric mean of each is used.

An ECPM model can be used directly for flow and transport
simulations, but this paper only considers it as an intermediate step
between DFN and plane-projected representations. The process of
projecting ECPM properties onto a plane results in a further
simplification in which spatial heterogeneity in flow and
transport properties is lost orthogonal to the BFZ midplane, but
retained within the plane, averaged on the scale of triangulation.
The resulting planar BFZ representation provides a computationally
less expensive framework for flow and transport simulations in a
heterogeneous BFZ damage zone, and is particularly attractive for
use in safety assessment calculations over many stochastic
realisations, as geostatistical methods such as sequential Gaussian
simulation can be applied to a single plane-projected realization to
generate many more, without the computational expense of DFN
generation, upscaling and plane-projection for each realization.

The plane projection method, described in detail in Baxter
et al., 2019, can be summarized as follows:

(1) For all ECPM elements, construct line geometries passing
through the element centroids in each of the three axial
directions (this method requires that elements form a
Cartesian grid).

(2) Triangulate the BFZ midplane at the appropriate level of
discretization (in this case, right-angled triangles with legs of
length 1.8 m).

(3) For each triangle, determine the largest axial component of
the triangle normal; this is referred to as the “collapse
direction”.

(4) Find those line geometries calculated in Step 1 which are
parallel to the collapse direction and intersect the triangle.
Calculate the points at which these intersections occur; these
are referred to as the “collapse points”.

(5) For each collapse point, aggregate a list of those elements
located along the line geometry which are within one damage
zone half-thickness (projected into the collapse direction)
from the midplane.

(6) Calculate effective properties at the collapse points for these
lists of elements as follows:

• Calculate the rotation matrix Q corresponding to a
rotation between the triangle normal and unit
normal in the collapse direction, and use this to
calculate the rotated permeability tensor: k′ � QkQT.

• Calculate the magnitude of the in-plane component
of the rotated permeability tensor in each element,
sum over the elements and convert to transmissivity:
T � H ρg

μ∑ n
i�1k′plane where H is the damage zone width,

ρ is fluid density, μ is fluid viscosity and g is
gravitational acceleration.
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• For porosity and flow-wetted surface, the arithmetic
mean over elements is taken: ϕ � 1

n∑ n
i�1ϕi and ar �

1
n∑ n

i�1ar,i.
(7) Aggregate the properties for all collapse points within the

triangle. For porosity and flow-wetted surface, an arithmetic
mean over collapse points is taken. For transmissivity, a
geometric mean is taken and multiplied by the proportion of
collapsed grid cells which are active for flow (i.e. have a non-
zero permeability value).

The resulting heterogeneous planar representation for one
realization of the model is shown in subfigure B of Figure 1, for
comparison with the underlying DFN model shown in subfigure A.

As for the DFN model in section 2.2, flow and transport
simulations are carried out for 10 stochastic realisations of the
equivalent plane-projected model, using identical boundary
conditions and modeling parameters.

2.4. Downscaling Method
In sparsely fractured media, such as crystalline rocks,
contaminant transport occurs along discrete transport
pathways that connect the source location to a receiver
location or compliance boundary. These pathways lie on
fracture planes and are made up of consecutive segments, each
segment being delimited by fracture-to-fracture intersections.
Contaminants are displaced by groundwater flow along the
pathway segments (advection) and can access the adjacent
intact rock matrix by a mechanism called matrix diffusion.
Contaminant retardation in the rock matrix might be further
enhanced by sorption onto the available mineral surfaces.

In a Lagrangian sense, advection is described by the
groundwater travel time, τ [T], whereas the coupling between
advection and matrix diffusion is characterized by the so-called
transport resistance, β [T L−1] (also sometimes denoted by F),
which is defined as:

β(τ) � ∫
τ

0

dξ
b(ξ) dξ (4)

where b [L] is the fracture half-aperture. From Eq. 4 it is evident
that β and τ are highly correlated.

The simplification of DFN models by means of upscaling
techniques (e.g. section 2.3) provides good approximations of the
underlying groundwater fluxes (Jackson et al., 2000) but it can
lead to biased distributions of τ and β (Painter and Cvetkovic,
2005) due to lost variability. Hence, Painter and Cvetkovic, 2005
developed a method for restoring the lost variability by stochastic
simulation. In the original context, they considered the stochastic
simulation as a way of extrapolating from small scale DFN
models to much larger models. Here, we use the Painter and
Cvetkovic, 2005 approach as a downscaling algorithm to
reconstruct this lost variability based on sample DFN models.
This algorithm, which is used in the calculations presented in the
next sections, is here briefly described.

Each single transport pathline connecting the source to the
boundary is divided into a number of sub-segments, with each
sub-segment being fully defined by the triplet

∣∣∣∣Δi, τi, βi
∣∣∣∣, where Δ

[L] is the sub-segment length and sub-script i identifies the ith

sub-segment. The total pathline length, LT [L], is approximated as
L(n) � ∑ NT

i�1Δi with NT � min{n : L(n)≥ LT } and the total
cumulative groundwater travel time and transport resistance
are given by:

τ(NT) � ∑NT

i�1
τi β(NT) � ∑NT

i�1
βi (5)

The triplet
∣∣∣∣Δ, τ, β∣∣∣∣ is a random process subordinated to NT ,

which is also a random variable. At this point, no assumption has
been made about the distribution of

∣∣∣∣Δi, τi, βi
∣∣∣∣ along the transport

pathway. Evidence has pointed out a significant spatial
persistence of high/low velocity regions along connected
fractures (Benke and Painter, 2003; Painter and Cvetkovic,
2005; Comolli et al., 2019; Hakoun et al., 2019). Several
approaches have been developed to represent that persistence
(Benke and Painter, 2003; Painter and Cvetkovic, 2005; Comolli
et al., 2019; Hakoun et al., 2019). Although those approaches
differ significantly in operational details, they all rely on some
type of spatial Markov approximation for the Lagrangian velocity.
That is, spatial persistence in velocity is accounted for by
assuming that Lagrangian velocity is a spatial Markov process,
meaning that velocity in one segment depends only on the
velocity of the preceding segment. To implement that spatial
dependence, we adopt the algorithm of Painter and Cvetkovic,
2005 for its simplicity and to take advantage of its
implementation in the Marfa software (Painter et al., 2008;
Painter and Mancillas, 2013). Operationally, the velocity space
is discretized into velocity classes, which define an internal state,
Sj, for particles transiting through a segment of transport
pathway. Evolution of a particle’s state is then modeled as
a discrete-state Markov chain. In a discrete state Markov
chain, changes of states are governed by a transition
matrix: Pjk. The probability of transitioning from state Sj to
all other states is 1, thus ∑ NS

k�1Pjk � 1, where NS is the total
number of states. The sum over all the preceding states gives
instead the probability for state k: ∑ NS

j�1Pjk � Pk. Here we
construct the transition matrix from a set of DFN training
simulations and use the transition matrix to simulate the
discrete state Markov chain. After determining a state in
this algorithm, a triplet (Δ, τ, β) is then sampled from the
probability distribution conditional on the internal state. In
this Markov model the probability of a triplet (Δ, τ, β) is
conditional on the state and thus the unconditional
probability for the first sub-segment is given by:

f (Δ1, τ1, β1) � ∑NS

j�1
f (Δ1, τ1, β1

∣∣∣∣Sj)Pj (6)

The joint distribution of triplets at downstream locations is:

f (Δ1, τ1, β1,Δ2, τ2, β2, . . . )
� ∑NS

j�1
f (Δ1, τ1, β1

∣∣∣∣Sj)Pj ·∑NS

k�1
f (Δ2, τ2, β2

∣∣∣∣Sk)Pjk · . . . (7)

This model is referred to as Markov-directed random walk
(MDRW). If spatial persistence in velocity is not accounted
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for, the framework reduces to a random walk (RW) model and its
joint distribution is given by:

f (Δ1, τ1, β1,Δ2, τ2, β2, . . . ) � f (Δ1, τ1, β1)f (Δ2, τ2, β2) · . . . (8)

The practical implementation of both MDRW and RW is carried
out by constructing a number of equiprobable DFN models.
These DFN’s are generated in a cubical domain and thus are
denoted as sampling cubes. The fracture recipe of each DFN is
based on the statistical properties of the core of the BFZ, which
implies that statistical homogeneity is invoked. This hypothesis is
in contrast to the assumption used to construct the BFZ, which
considers that fracture intensity is continuously decreasing at
increasing distances from the core plane of the BFZ (see section
2.2). The implication of this simplification is discussed in
section 3.2.

A synthetic global gradient, ϵg [-] is applied along the three
principal directions of the sampling cubes and particles are traced
from inlets to outlets, thus providing libraries of triplets∣∣∣∣Δi, τi, βi

∣∣∣∣uj, where uj is the unit vector that indicates the jth
principal direction. These libraries are of direct use for the RW
downscaling calculations. For MDRW, following the procedure
illustrated in Painter and Cvetkovic, 2005, sub-segments are
classified according to the local particle velocity. This
classification provides the internal state of the considered sub-
segment.

The downscaling approach is implemented as follows (notice
that a segment refers here to the transport pathways computed
using the BFZ model whereas a sub-segment is related to the
libraries generated with the sampling cubes).

(1) The nth particle is launched by randomly sampling a starting
pathway and a starting start time t0 [T].

(2) The particle is placed at the inlet of the first segment, r1, and
the library with closest direction is chosen:

u � min{∣∣∣∣∣∣∣uj · r1
‖r1‖ − 1

∣∣∣∣∣∣∣}. The length counter is set to

zero: L � 0.
(3) The triplet

∣∣∣∣Δ0, τ*0, β
*
0

∣∣∣∣ is randomly selected from the library.
The asterisk indicates that the variables have been scaled by
the ratio between the local gradient along the segment and
the global gradient applied in the sampling cube, ϵ1/ϵg . The
length counter is updated (L � L + Δ0), the retention time in
the matrix (tD [T]) is sampled conditioned on β*0 (see Painter
et al., 2008 for further details) and the particle clock is
updated accordingly (tn � t0 + tD + τ*0). The state of the
following sub-segment, S0+1 is recorded.

(4) The triplet
∣∣∣∣Δ1, τ*1, β

*
1

∣∣∣∣ is drawn from all the sub-segments
belonging to class S0+1. The length counter and particle clock
are updated and the state of the following sub-segment, S1+1
is recorded.

(5) Step 4 is repeated until L> ||r1||, which is when the particle is
placed at the inlet of the following segment (r2). The library
is updated according to the direction of the new segment
(step 2) and step 4 is repeated until hitting the outlet of the
new segment and so on until reaching the outlet boundary.
The exceeding sub-segment length, and the related exceeding
τ and β are used for the following segment.

The algorithm described in steps 1-5 is the same presented in
Painter and Cvetkovic, 2005 and is from now on denoted as
standard downscaling algorithm (SDA). As already discussed
above, this Markov chain algorithm is subordinated to the
length of the segment and, thus, the total length of the
transport pathway. It turns out that, to properly reconstruct the
signature of the original DFN model, the SDA must be applied to
upscaled transport pathways that somehow preserve the tortuosity
of the original set of trajectories. The collapsed plane model is
supposed to preserve the trajectory tortuosity by means of the
representation of the DFN heterogeneity onto the BFZ plane.
However, for the single trajectory of the homogeneous plane,
tortuosity is lost and needs to be somehow reconstructed. To
this end, we propose here an alternative implementation of the
algorithm, denoted as the projected sub-segment algorithm (PSSA).
In PSSA, steps 3 to 5 are modified by projecting the drawn value of
Δ along the selected principal direction (step 2): Δ* � Δ · u.

3. RESULTS

3.1. Initial Particle Tracking Results
Once ConnectFlow has computed the flow field within the model,
it is used to carry out particle tracking simulations; pathline
results for a single realization of the plane-projected model are
shown in Figure 2. The initial positions of particles are evenly
distributed along the inlet boundary. As particles cross the plane
toward the outlet boundary, their pathlines are observed to cluster
due to the in-plane heterogeneity of properties (shown in
Figure 1) creating preferential paths for flow and transport. In
some regions of the plane, choking of flow appears to occur, with
resulting retardation to certain pathlines (those with longer travel
times).

FIGURE 2 | Pathlines from ConnectFlow transport simulation in plane-
projected representation, colored by travel time. Direction of pressure gradient
with respect to inlet and outlet boundaries is shown.
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This results in distributions of τ (travel time) and β transport
resistance over all particles, which are plotted in Figure 3.
However, a comparison of results for the underlying DFN and
plane-projected representations shows that a significant
mismatch exists for both of these transport statistics in all
stochastic realisations; the median value of each distribution is
shifted by approximately half an order of magnitude for τ and a
full order of magnitude for β, with the plane-projected results
displaying shorter travel times and less transport resistance. The
distributions are also narrower in the plane-projected case.

These results indicate that the method of projection to a
midplane described in section 2.3, while capturing some of the
heterogeneity of the underlying DFN swarm, has not retained a full
description of the transport properties of the simulated test BFZ.
Particles transit through the BFZ too quickly, and thus corrections
must be applied to the pathline results.

3.2. Downscaling Tests
The ability of the MARFA downscaling algorithm to reintroduce
lost heterogeneity in the plane-projected BFZ representation and
hence resolve the observed mismatches with τ and β in the DFN
representation is investigated.

In figure 4 the cumulative distribution of the distance of all
DFN realizations’ segments to the main BFZ plane can be seen.
The cumulative distribution has been weighted by length, so that
is independent of how the trajectories are discretized in segments.
The vertical line shows the value of sigma distance σ. It can be
seen that most of the length of the trajectories is found between
the BFZ plane and a distance s. For that reason, the core sampling
cubes are the ones used for the downscaling algorithm.

As described in section 3.1, transport pathways are traced
using ConnectFlow by means of particle tracking calculations with
particles being placed uniformly over the inlet boundary. In all the
calculations presented hereafter a correction is applied to account
for flux-weighted particle injection. Moreover, the results of the ten
realisations of the sampling cubes are merged into single sub-
segment libraries. Details on the pre-processing procedures used
are provided in Appendix 1: Processing Transport Pathways.

Two test cases are carried out. In the first test, denoted the
Conservative case, a short pulse of a non-sorbing non-decaying
radionuclide is injected at the BFZ boundary. Radionuclide
transport is computed for each of the ten BFZ realizations
using the related transport pathways and the rock matrix
parameters listed in Table 1. The exercise is repeated first
using the ten realisations of the collapsed plane without the
downscaling algorithm and then by applying the downscaling
algorithm on the same set of pathways. Moreover, the
downscaling approach is also carried out using the single
straight pathway representative of the homogeneous plane.
The same procedure is used for the second test, denoted the
Decay Chain case, where the 4n+2 chain of U238 is simulated.
The decay chain is simplified as follows:

Cm246→Pu242→U238→U234→Th230→Ra226

The radionuclide-specific parameters are listed in Table 2,
whereas the parameters of the rock matrix are the same as in

FIGURE 3 | Cumulative distribution of τ and β of the trajectories of all
DFN realizations.

FIGURE 4 | Cumulative distribution of the distance to plane of the DFN
realizations’ segments, weighted by length. The vertical black line shows the
sigma distance.

TABLE 1 | Parameters of the rock matrix used in the Conservative case and the
Decay Chain case.

Parameter Value

Rock density 2,600 kg/m3

Matrix depth 4.5 m
Matrix porosity 0.018
Matrix effective diffusivity 8.5 × 10–7 m2/y
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the Conservative case (Table 1). The source functions (Figure 5)
are randomly selected from the 6,234 functions used to describe a
hypothetical release at canister location in the so-called Forsmark
Growing Pinhole Scenario (FGPS) (Selroos and Painter, 2012;

Trinchero et al., 2020). FGPS was one of the modeling cases used
in SR-Site, the safety assessment study for the planned repository
for spent nuclear fuel at Forsmark, Sweden.

In both tests the downscaling simulations are carried out using
the standard algorithm (SDA). In the calculations based on the
homogeneous plane the projected sub-segment algorithm (PSSA)
is also tested. It is worthwhile noting that in this latter set of
calculations (i.e. straight pathway representative of a
homogeneous BFZ), the local hydraulic gradient along the
straight pathway is equal to the global gradient applied in the
BFZ model (ϵi � 3.06 · 10− 3cos30+).

3.2.1. Conservative Case
The breakthrough curves computed for each BFZ realization (i.e.
BFZ modeled as an explicit DFN) are first compared with the
results obtained using transport pathways derived from the
collapsed plane model and without downscaling. This
comparison (Figure 6) shows that the collapsed plane model
significantly under-estimates the radionuclide retention capacity
of the BFZ system. This evidence is consistent with the statistical
analysis (figure 3) which points out that transport pathways
computed using the collapsed plane model are characterized by
lower groundwater travel time and transport resistance. The low
groundwater travel times affect the leading edge of the
breakthrough curves and partly explain the observed higher
peak values. The low values of transport resistance have an
impact on mass exchange processes and thus mostly affect the
late time part of the breakthrough curves, which explains the
observed low level of the tail. When the downscaling option is
used, the agreement with the DFN-based solutions is very good
(Figure 6), which points out that the downscaling algorithm can
properly reconstruct the variability lost during the DFN
representation onto the plane. Moreover, this good agreement
obtained using the standard downscaling algorithm (SDA)
indicates that the collapsed plane heterogeneity is properly
capturing the original geometrical tortuosity of the transport
pathways. These conclusions, which are based on visual
inspections of the breakthrough curves, are confirmed by the
results of the Kolmogorov–Smirnov (K-S) test (Table 3) that
gives significantly lower statistical values when the downscaling
algorithm is applied.

The comparison exercise is repeated using the single straight
trajectory representative of the homogeneous plane. When the
downscaling is performed using the SDA, the downscaled
solution is characterized by an earlier breakthrough and a

TABLE 2 | Radionuclide-specific parameters for the Decay Chain case.

Radionuclide Kd[m3/kg] λ[y − 1]

Cm246 1.43 · 10− 2 1.47 · 10− 4

Pu242 1.43 · 10− 2 1.86 · 10− 6

U238 5.09 · 10− 2 1.55 · 10− 10

U234 5.09 · 10− 2 2.82 · 10− 6

Th230 5.09 · 10− 2 9.19 · 10− 6

Ra226 1.93 · 10− 4 4.33 · 10− 4

FIGURE 5 | Plot of the source function of all radionuclides used in the
Decay Chain case.

FIGURE 6 | Conservative case: breakthrough curves of a non-sorbing
non-decaying radionuclide computed using transport pathways obtained
using the different realisations of the DFN model (blue continuous curves)
compared with related calculations carried out using transport pathways
derived from the collapsed plane model and without downscaling (orange
dashed lines) and with related calculations where downscaling is applied
(green dotted line).

TABLE 3 | Results of the Kolmogorov–Smirnov (KS) test for the different variant
simulations of the Conservative case. The KS test is run for each DFN
realization and related collapsed plane or homogeneous model and the results are
provided in terms of maximum (Dmax

n,m ), minimum (Dmin
n,m) and average (〈Dn,m〉) test

statistic.

Cases Dmax
n,m Dmin

n,m 〈Dn,m〉

DFN vs. collapsed plane no downscaling 8.79 · 10− 1 6.66 · 10−1 7.81 · 10− 1

DFN vs. collapsed plane with downscaling 2.24 · 10− 1 5.12 · 10−2 9.29 · 10− 2

DFN vs. homogeneous SDA 4.29 · 10− 1 3.43 · 10−1 4.01 · 10− 1

DFN vs. homogeneous PSSA 3.24 · 10− 1 1.53 · 10−1 2.23 · 10− 1
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higher peak (Figure 7). This poor agreement is due to the
tortuosity lost in the homogeneous representation. However,
when the projected sub-segment algorithm (PSSA) is used,
tortuosity is reconstructed by the downscaling algorithm and
the agreement is significantly improved (Figure 7). The superior
performance of the PSSA is also confirmed by the results of the KS
test (Table 3).

3.2.2. Decay Chain Case
The results of the Decay Chain case are discussed here in terms of
breakthrough curves of the daughter radionuclide Ra226. The results
of the parent radionuclides are not shown for the sake of brevity.

When downscaling is not applied (Figure 8) and trajectories
and related values of τ and β are taken from the collapsed planes,
significantly larger mass fluxes are seen at the outlet boundary.
These higher mass fluxes are related to the lower retention
capacity of the BFZ system as represented with the collapsed
plane model (Figure 3). Similar findings were already observed in
the Conservative case.

When downscaling is applied, using the different sets of
trajectories computed from the different realisations of the
collapsed plane model and SDA, the observed Ra226
breakthrough curves agree well with the corresponding
solutions computed using the explicit DFN representation of
the BFZ (Figure 8). A good agreement is also observed when
using the PSSA and the single straight trajectory representative of
the homogeneous plane (see same figure).

Due to the presence of decay, a good indicator for the goodness
of fit between the different models is the relative error in
recovered mass. For a collapsed plane or single straight
trajectory model n compared to a DFN model m, the relative
error εn,m is defined as:

εn,m � Mn −Mm

Mm
(9)

whereMn and Mm are the values of recovered mass for models n
and m.

The results for the recovered mass test are shown in Table 4.
Lower relative errors are observed in the collapsed plane model
when the downscaling algorithm is applied. The good agreement
between the single straight trajectory with PSSA and the DFN
model is also confirmed by the test results.

4. DISCUSSION

As expected, the model obtained by projecting the flow and
transport properties of a 3D fracture swarm onto a plane does not
fully replicate the particle transport behavior of the full DFN. By
removing heterogeneity normal to the midplane and restricting
pathlines to a 2D surface, retention within the system is
underestimated and particle travel times and transport
resistance are systematically shorter.

FIGURE 7 | Conservative case: breakthrough curves of a non-sorbing
non-decaying radionuclide computed using transport pathways obtained
using the different realisations of the DFN model (blue continuous curves)
compared with the calculation carried out using the single straight
transport pathways derived from the homogeneous plane model and with
downscaling applied using the standard algorithm (SDA) (orange dashed line)
and with downscaling applied using the projected sub-segment algorithm
(PSSA) (green dotted line).

FIGURE 8 | Decay Chain case: breakthrough curves of Ra226
computed using transport pathways obtained using the different realisations
of the DFNmodel (blue continuous curves) compared with related calculations
carried out using transport pathways derived from the collapsed plane
model and without downscaling (orange dashed lines), with related
calculations carried out using transport pathways derived from the collapsed
planemodel and with downscaling applied using the standard algorithm (SDA)
(green dashed-dotted lines) and with calculations carried out using the single
straight transport pathways derived from the homogeneous plane model and
with downscaling applied using the projected sub-segment algorithm (PSSA)
(orange dotted line).

TABLE 4 | Results of the mass test for the different variant simulations of the
Decay Chain case. The test is run for each DFN realization and related
collapsed plane or homogeneous model and the results are provided in terms of
maximum (εmax

n,m ), minimum (εmin
n,m) and average (〈εn,m〉) test statistic.

Cases εmax
n,m εmin

n,m 〈εn,m〉

DFN vs. collapsed plane no downscaling 2.87 1.31 1.94
DFN vs. collapsed plane with
downscaling

5.03 · 10− 1 −3.66 · 10− 1 −5.06 · 10− 3

DFN vs. homogeneous PSSA 8.36 · 10− 1 1.6 · 10− 1 4.36 · 10− 1

Frontiers in Earth Science | www.frontiersin.org February 2021 | Volume 8 | Article 5862479

Williams et al. Recovering Transport Effects of Heterogeneity

161

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


A correction method, based on a previously published
downscaling algorithm (Painter and Cvetkovic, 2005), has
been tested using two test cases focused on the transport of
specific radionuclides. The algorithm operates by statistically
sampling libraries of triplets

∣∣∣∣Δi, τi, βi
∣∣∣∣, which are in turn built

using simplified but statistically representative DFN models
(referred to as sampling cubes). Correlation in high/low
velocity zones is accounted for by using a Markov chain.
When the downscaling algorithm is used, the geometric
information of the collapsed-plane-based transport pathways is
used whereas the particles are advanced according to the sampled
triplet values. An additional set of calculations has been carried
out where the downscaling algorithm has been applied to a single
straight trajectory representative of a homogeneous plane.

When applied to the heterogeneous collapsed plane, the
downscaling approach is shown to accurately reconstruct the
lost transport heterogeneity and the resulting radionuclide
breakthrough curves agree well with the DFN-based solution.
However, when the single straight trajectory is used, the resulting
breakthrough curves show early arrivals and, in the case of the
decaying radionuclide Ra-226, higher mass flux. This mismatch is
caused by the lost tortuosity of the homogeneous model. Hence,
an alternative implementation of the downscaling algorithm has
been proposed, in which trajectory segments are projected along
the principle direction. The modified algorithm is shown to
provide very good results when applied to transport pathways
derived from homogeneous models.

The generality of the Markov model applied here means that it
is in principle applicable to a DFN based on any kind of empirical
relationship and thus not only limited to the set of parameters and
correlations described in Section 2.2. As the method is based on
libraries which are constructed using an identical recipe to the
DFN model, this consistency is ensured. The central assumption
of the Markov method here is that the triplet

∣∣∣∣Δ, τ, β∣∣∣∣ for each
pathline segment depends only on the preceding segment. This
method may therefore be less appropriate for DFN models in
which some longer-range persistence along a pathline is present
that cannot be captured by the Markov approximation (Painter
and Cvetkovic, 2005).

The simple case presented in this article consists of a single
synthetic BFZ fracture swarm with a single set of DFN parameter
values; only one library of pathline legs is therefore required for
the MARFA downscaling method to be applied. More than one
library must be generated in order to apply the method to the
realistic site-scale case, in which multiple BFZ are present, with
DFN parameter values varying between BFZ and in some cases
between distinct layers or regions within a single BFZ. The
increased computational overhead of multiple library

generation can be mitigated by grouping similar BFZ into
classes based on their orientation and fracture intensity, with
the pathline legs within each class described by a single library.
This approach is now being tested in a subsequent phase of
this study.

The computational speedup provided by the use of the
collapsed plane model in comparison to the full DFN model is
illustrated by the runtime provided in Tables 5, 6. For the
Conservative case, the time taken by ConnectFlow to solve for
flow and generate pathlines is reduced bymore than two orders of
magnitude. Although there is an increase in the MARFA
radionuclide tracking runtime due to the application of the
downscaling algorithm, this is small in comparison and so a
mean speedup of 20x is achieved across the 10 realisations. For
the Conservative case, the ConnectFlow calculation is identical
but the MARFA runtime accounts for a greater proportion of the
total runtime due to the additional expense of modeling a decay
chain, reducing the mean speedup to 3x. It should be noted that,
for this simple synthetic model, the relative cost of constructing a
library of pathline segments is high in comparison to the time
taken to perform radionuclide tracking calculations in the full
DFN model, with a mean ConnectFlow runtime for one
realization of the sampling cube DFN model approximately
3 times greater than the runtime for the full DFN model. This
is a result of the relative sizes of the models (homogeneous DFN
in a 100 × 100 × 100 m domain for the sampling cube, as
compared to a narrow fracture swarm in a 500 × 500 × 500 m
domain for the full DFNmodel), and therefore not representative
of the relative cost of constructing the library when scaled to the
realistic case in which the full DFN model is much larger and
more complex relative to the sampling cube. Further to this point,
a pathline library must only be constructed once for each class of
BFZ in the model (as defined in the previous paragraph), whereas
real-world applications such as safety assessments of geological
repositories of spent nuclear fuel typically necessitate multiple
iterations of particle tracking calculations with varying boundary
conditions. In such a case, the cost of library construction is thus
expected to be much smaller relative to the total computation
time saved by the use of the collapsed plane model.

5. SUMMARY AND CONCLUSION

A method for the simplification of complex DFN models of BFZ
damage zones has been tested. The method consists of first
upscaling the DFN to an ECPM model, using a flux-based
methodology. The resulting ECPM model is then projected

TABLE 5 | DFN model runtime in seconds for the Conservative case and Decay
Chain case, calculated as a mean over 10 realisations ± 1σ and separated
into ConnectFlow and MARFA components.

Cases ConnectFlow MARFA Total

Conservative case 1154.8 ± 338.9 36.1 ± 0.9 1190.8 ± 338.7
Decay Chain case 1154.8 ± 338.9 318.8 ± 6.5 1473.6 ± 341.0

TABLE 6 | Collapsed plane runtime in seconds for the Conservative case and
Decay Chain case, calculated as a mean over 10 realisations ± 1σ and
separated into ConnectFlow and MARFA components. Approximate speedup
over the DFN model runtime in Table 5 is also provided.

Cases ConnectFlow MARFA Total Total speedup (x)

Conservative case 6.7 ± 2.0 54.0 ± 0.5 60.7 ± 2.2 20 ± 6
Decay Chain case 6.7 ± 2.0 482.4 ± 8.0 489.1 ± 8.0 3 ± 1
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onto the mid-plane of the BFZ. The plane-projected model is
much more computationally tractable and provides an accurate
description of global groundwater flow patterns. However, during
the upscaling, local heterogeneity in flow and transport properties
and related local choking effects are lost and thus related
transport calculations are biased toward smaller values of
groundwater travel time and transport resistance.

We have shown that the lost transport heterogeneity can be
reconstructed by combining the plane-projected models with
libraries of the two transport controlling parameters: the
groundwater travel time and the transport resistance. These
libraries are pre-computed using small DFN models (sampling
cubes) with fracture statistics equal to those at the core of the
BFZ model. The reconstruction of the groundwater velocity
field and the transport resistance is carried out by assuming that
the Lagrangian velocity follows a Markov process; i.e. the
velocity in a fracture segment depends only on the velocity
of the preceding segment. This sampling methodology was
originally developed to extrapolate velocity distributions
from small-to much larger-scale DFN models. To adapt the
methodology to the foreseen application, a modification has
been introduced, which consists of projecting fracture segments
of the sampling cubes along principal directions. This
modification is needed to account for the tortuosity of
transport pathways of DFN models, which is lost in
homogeneous representations of the BFZ. When the BFZ is
represented as a heterogeneous collapsed plane this
modification is not needed and the original algorithm
provides good agreement with the synthetic solution.

The proposed downscaling approach is shown to provide a
very accurate description of radionuclide breakthrough curves at
compliance or outlet boundaries. The promising results shown in
this work are of interest for a broad number of applications
related to contaminant transport in fractured rocks. These
include safety assessment calculations for spent nuclear fuel
repositories, studies for the remediation of polluted sites or, in
the context of nuclear nonproliferation, the detection of chemical
signatures following underground explosions.
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APPENDIX
PROCESSING TRANSPORT PATHWAYS

The set of transport pathways, computed by ConnectFlow
assuming uniform particle injection, is re-sampled to mimic a
flux-weighted injection. The re-sampling algorithm is as follows
(algorithm 1):

(1) Calculate water flux at the inlet of each transport pathway, qi
[L3T−1].

(2) Sort the set of pathways in order of increasing flux at the inlet
and construct the cumulative distribution (CD) function by
assigning a probability of qi/Qtot to the ith pathway, where
QT � ∑ N

i�1qi and N is the total number of transport
pathways.

(3) Randomly sample the CD and store the selected transport
pathway in memory.

(4) Repeat step 3M times and write the new set of transport
pathway in an ASCII file.

In the calculations of section 3 M � 1000 whereas N depends
on the realization and varies between 820 and 1,652 while for the
collapsed planes around 300 pathways are used. A sensitivity
analysis to M has been carried out to ensure that statistical

ergodicity is attained. It is worthwhile noting that the
methodology above implies that some of the original transport
pathways are sampled multiple times whereas other pathways,
with low flux at the inlet, are never sampled.

The libraries used for the downscaling algorithm are
obtained from ten equi-probable sampling cubes. The
related set of particle trajectories (one set for each
realization and each principal direction) are merged into a
single library for each principal direction using the following
methodology:

(1) Calculate the inlet flux for every transport pathway and for all
the 10 sampling cubes.

(2) Construct a CD function for each sampling cube as in step 2
of algorithm 1.

(3) Randomly select a sampling cube assuming a uniform
distribution.

(4) Select a transport pathway from the chosen sampling cube as
in step 3 of algorithm 1.

(5) Repeat steps 1–3M times until enough trajectories are
sampled and write the library file.

(6) The original set of transport pathways of each sampling cube
consists of 1,000 particle trajectories and the library file is
built by setting M � 10000.
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Estimating Watershed Subsurface
Permeability From Stream Discharge
Data Using Deep Neural Networks
Erol Cromwell 1, Pin Shuai1, Peishi Jiang1, Ethan T. Coon2, Scott L. Painter2,
J. David Moulton3, Youzuo Lin3 and Xingyuan Chen1*
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Science, Richland, WA, United States, 2Oak Ridge National Laboratory, Oak Ridge, TN, United States, 3Los Alamos National
Laboratory (DOE), Department of Energy National Laboratories, Los Alamos, NM, United States

Subsurface permeability is a key parameter in watershed models that controls the
contribution from the subsurface flow to stream flows. Since the permeability is difficult
and expensive to measure directly at the spatial extent and resolution required by fully
distributed watershed models, estimation through inverse modeling has had a long history
in subsurface hydrology. The wide availability of stream surface flow data, compared to
groundwater monitoring data, provides a new data source to infer soil and geologic
properties using integrated surface and subsurface hydrologic models. As most of the
existing methods have shown difficulty in dealing with highly nonlinear inverse problems,
we explore the use of deep neural networks for inversion owing to their successes in
mapping complex, highly nonlinear relationships. We train various deep neural network
(DNN) models with different architectures to predict subsurface permeability from stream
discharge hydrograph at the watershed outlet. The training data are obtained from
ensemble simulations of hydrographs corresponding to an permeability ensemble
using a fully-distributed, integrated surface-subsurface hydrologic model. The trained
model is then applied to estimate the permeability of the real watershed using its observed
hydrograph at the outlet. Our study demonstrates that the permeabilities of the soil and
geologic facies that make significant contributions to the outlet discharge can be more
accurately estimated from the discharge data. Their estimations are also more robust with
observation errors. Compared to the traditional ensemble smoother method, DNNs show
stronger performance in capturing the nonlinear relationship between permeability and
stream hydrograph to accurately estimate permeability. Our study sheds new light on the
value of the emerging deep learning methods in assisting integrated watershed modeling
by improving parameter estimation, which will eventually reduce the uncertainty in
predictive watershed models.
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1 INTRODUCTION

Subsurface flows formed by infiltration of precipitation and snow
melt play a significant role in controlling the magnitude and
timing of stream flows, especially in forested headwater
watersheds (Scanlon et al., 2000). The permeability of soil and
geologic formations determine both the infiltration rate and
lateral subsurface flow rates, and ultimately the stream
discharges. Integrated watershed models that mechanistically
simulate both surface and subsurface flows with spatially
distributed parameters and inputs are expected to provide
better predictions of stream flow given sufficient data for
parameterization and model calibration (Chen et al., 2020).
Such distributed models also require a significantly larger
number of unknown model parameters to be specified or
estimated. Subsurface permeability is one of the key
parameters that determine the subsurface flow and transport
processes in watershed models. However, this parameter is
difficult and expensive to measure directly at the spatial extent
and resolution required by fully distributed, physics-based
watershed models. The linkages between permeability and
stream flow provide a new opportunity to estimate subsurface
permeability from stream flow monitoring data that are made
available through monitoring networks.

Inverse modeling has been used extensively to infer
permeability from indirect subsurface measurements such as
groundwater table in wells (Carrera et al., 2005) using
optimization based methods. Parameter ESTimation software
PEST (Doherty, 2010) has been a popular inverse modeling
tool for performing uncertainty analyses and inverse modeling,
including applications in integrated surface-subsurface models
(Ala-aho et al., 2017). Ensemble-based approaches, including but
not limited to Ensemble Kalman filter (EnFK) (Evensen, 1994;
Evensen, 2003) and Ensemble Smoother (ES) (van Leeuwen and
Evensen, 1996), have been adopted to estimate both model
parameters and states (Moradkhani et al., 2005; Wen and
Chen, 2006; Clark et al., 2008; Bailey and Baù, 2010; Vogt
et al., 2012; Chen et al., 2013; Chen and Oliver, 2013; Emerick
and Reynolds, 2013; Song et al., 2019). Despite its ease of
implementation and proved efficiency in inverse modeling
through various applications, ES is based on linear estimation
theory and its performance may suffer in highly nonlinear
problems (Evensen, 2018; Zheng et al., 2019). New approaches
are needed to assist inverse modeling associated with highly
nonlinear processes while maintaining computational efficiency.

Recent advances in machine learning, especially deep learning
models including deep neural networks (DNNs), shed new light
on inverse modeling by providing new ways to map the nonlinear
relationships between model inputs and outputs (Shen, 2018; Mo
et al., 2019). Neural networks have been an area of interest in
hydrology over the past several decades. Early applications of
neural networks to hydrology included a wide range of problems,
such as rainfall-runoff modeling, streamflow prediction,
groundwater modeling, water quality, water management,
precipitation forecasting, hydrological time series, and other
hydrologic applications (ASCE Task Committee, 2000). These
neural networks were shallow and were typically composed of

three layers: an input layer, a hidden layer, and an output layer.
Limited by the computational power, the hidden layers were
relatively small (5–20 nodes) and the model occasionally used a
second hidden layer. Neural networks have been found to
outperform other traditional statistical methods in a wide
variety of applications in water resources domains (e.g.,
forecasting daily streamflows) as recently reviewed by Oyebode
and Stretch (2018). However, such shallow neural networks may
not be sufficient when it comes to estimating parameters that are
related to indirect observations in a complex, highly nonlinear
manner, for which multiple layers with larger sets of neurons are
necessary. Neural networks capture nonlinearity by using
nonlinear activation functions in between layers. Increasing
the depths of the network, i.e., the number of hidden layers,
could improve its ability to represent more complex system
behaviors (Raghu et al., 2017; Shen, 2018), especially for
mapping highly nonlinear relationships between the model
inputs and outputs. Mo et al. (2019) successfully employed a
deep autoregressive neural network-based surrogate approach to
estimate the heterogeneous aquifer permeability as well as
groundwater contaminant sources with high accuracy and
computational efficiency. Canchumuni et al. (2019) compared
convolutional variational autoencoder and the ensemble
smoother with multiple data assimilation (ES-MDA) for the
parameterization of facies in a geological reservoir with
complex spatial distributions. They found that the DNN-based
method outperformed the standard ES-MDA in reconstructing
the spatial distribution of geologic facies.

The main objective of this study is to develop DNN-based
inverse modeling method to estimate the subsurface permeability
of a watershed from stream discharge data and test the accuracy
and robustness of the new approach. DNNs are built to map the
relationship between stream discharge time series and subsurface
permeabilities for several soil and geologic facies. An ensemble of
watershed simulations are performed using the Advanced
Terrestrial Simulator (ATS), a spatially distributed, fully
coupled surface and subsurface hydrologic model, to provide
training and validation datasets for the DNNs. The performance
of the DNN-based inversion is compared against the ES method
in terms of their estimation accuracy and computational
efficiency.

2 METHODOLOGY

2.1 Model Architecture
In this subsection, we describe the DNN-based models to
estimate five unknown subsurface permeability parameters
from the discharge time series data. A general description of
neural networks is available in the Supplementary Material. We
experiment with single-task learning (STL) and multi-task
learning (MTL) models. For this work, a task is estimating a
permeability parameter. An STL model estimates a single
permeability parameter from the discharge data using a DNN,
while an MTL model estimates all five parameters using a shared
DNN. MTL models may improve their performance by, as
summarized by Caruana (1997), “leveraging the domain-
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specific information contained in the training signals of related
tasks.” In other words, having one model learn multiple tasks
allows each task to benefit from the information used to train the
other tasks by developing unique features that will emerge from
estimating all the parameters together (Caruana, 1997).
Furthermore, MTL has been shown to reduce the risk of
model over-fitting (Baxter, 1997).

We built three different DNN architectures as shown in
Figure 1: 1) a multi-layer dense network which estimates a
single permeability parameter (DNN A1); 2) a multi-layer
dense network which estimates all five parameters using a
shared DNN with a single output layer with five nodes (DNN
A2), with each node responsible for estimating one permeability
parameter; and 3) a multi-layer dense network which estimates all
five parameters in a shared DNN with a sub-network for each
output node (DNNA3). DNNA1 is an example of STL and DNN
A2 and A3 are examples of MTL. Different from DNN A2, DNN
A3 branches out into five sub-networks after the first hidden
layer, with each sub-network responsible for one of the outputs.
The architectural design of DNN A3 not only allows for any
shared features developed from estimatingmultiple parameters to
be captured by the hidden layers before branching, it also allows
each of the sub-networks to develop features that are more
specific to the individual permeability parameters. Compared
to DNN A2, DNN A3 is a larger model with more model weights
to train. Consequently, it may require more data and more
computational resources to train.

3 STUDY SITE AND TRAINING DATA
GENERATION

To test the performance of the proposed DNNs in estimating
subsurface properties from discharge data, we applied the method
to a small catchment, the Rock Creek watershed, in Colorado
(CO). Ensemble forward simulations were performed to provide
sufficient training data for the DNNs that map the stream

discharge hydrograph to the permeabilities of various soil and
geologic layers. This section describes the study site, the forward
watershed model implemented using the Advanced Terrestrial
Simulator (ATS), and the generation of training data from
ensemble ATS simulations.

3.1 Study Site: Rock Creek
Rock Creek is a small (3 km2) primary catchment in the East
River watershed near Crested Butte, CO. The watershed is a high
alpine, snow dominated catchment, characterized as Dfb, or
warm summer, humid continental climate on the Koppen
classification system. It is characterized by majority aspen,
meadow, and mixed conifer vegetation types, and receives
approximately 70 cm of precipitation per year. This site is part
of theWatershed Function Science Focus Area of the Department
of Energy, and has a significant history of hydrologic studies on
mountainous, primary watersheds (Carroll et al., 2018; Hubbard
et al., 2018).

3.2 ATS Forward Model
ATS is an integrated, distributed hydrologic code that solves the
diffusion wave approximation of the St. Vernant equations for
surface flow coupled to Richards equation for flow in variably
saturated porous media in the subsurface (Coon et al., 2019). This
coupling is achieved through a continuous pressure, continuous
flux approach described by Coon et al. (2020) and Painter et al.
(2016). This code leverages the Mimetic Finite Difference method
to ensure accurate, efficient solution of the equations, in mixed,
conservative form [e.g., Celia et al. (1990)] on meshes that allow
distorted, arbitrary polyhedra, including the triangular prisms
used here. The resulting equations are solved using an implicit,
backward Euler time integration scheme which is solved using the
Nonlinear Krylov Acceleration approach of Carlson and Miller
(1998); Calef et al. (2013) and preconditioned using the Boomer
Algebraic Multigrid package in HYPRE (Falgout and Yang,
2002). This code has been benchmarked against a variety of
hydrologic codes in Kollet et al. (2017), and is shown to be

FIGURE 1 | Illustration of three DNN architectures. (A) The DNN A1 architecture; (B) The DNN A2 architecture; (C) The DNN A3 architecture. The input to each of
the models is the normalized discharge time-series data (see Sections 4.1 and 4.2). The output from DNN A1 is a single normalized permeability parameter. The outputs
from DNN A2 and A3 are five normalized permeability parameters.
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appropriate for solving problems of integrated hydrology (e.g.,
watersheds).

The baseline simulation was developed by using the
Watershed Workflow package (Coon, 2020) to bring together
a variety of data streams, delineate the catchment, and generate a
variable resolution mesh with refined resolution at the stream
network. Resolutions ranged from typical cell areas of 5,000 m2 at
the stream to 10,000 m2 away from the stream network. This
triangular surficial mesh was then elevated using Digital Elevation
Model (DEM) from the National Elevation Dataset (NED) 9 m
resolution dataset. In the work of Pribulick (2015), a base
subsurface structure was defined by three stratigraphic
layers–a soil layer of 1 m at the surface of the mesh, a near-
surface geology layer 9 m thick below the soil layer, and a bedrock
layer 20 m thick below the geologic layer. Based on the National
Resources Conservation Service (NRCS) soils database, two soil
types were identified and mapped within the soil layer. Using a
surface geology dataset from the United States Geological Survey
geological maps, three geologic material types were identified and
mapped within the geologic layer. The spatial distribution of the
soil and geological layers is demonstrated in Figure 2A. The

vertical resolution of the mesh gradually increased from Δz �
5 cm at the surface to 2 m at the 2 m depth, and it remained
constant at 2 m until the bottom of the model domain at a depth
of 30 m.

The model was first run for 20,000 days with constant
precipitation (∼ 556 mm/yr) and the permeabilities for all the
soil and geological layers adopted from the work of Pribulick
(2015) as the spin-up that resulted in steady state model outputs
at the final timestep, which was then used as the initial condition
for an 8-year transient simulation (2010 to 2017) driven by daily-
averaged meteorological data from the DayMet (Thornton et al.,
2016) dataset. The DayMet forcing is a 1 km raster that covers the
entire North America with only three pixels over our modeling
domain. Time series of precipitation, air temperature, incoming
shortwave radiation, and relative humidity were mapped onto the
mesh, and prescribed throughout the simulation. Additional
setup/inputs required for ATS are described in the
Supplementary Text S3.

To develop the training, validation and testing datasets for the
DNNs, we completed an ensemble of 597 ATS transient
simulations for the Rock Creek watershed, each simulation

FIGURE 2 | (A) Soil and geology distribution within the Rock Creek watershed. The zoom-in box shows the triangle meshes. (B) Permeability [log10 (m2)]
realizations for three geologic types. (C) Permeability [log10 (m2)] realizations for two soil types. (D) Ensemble of simulated discharge hydrographs from 597 realizations
compared with the observed discharge hydrograph.
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corresponded to a given set of soil and geology permeability
parameters randomly generated from their probability
distributions. Uniform distributions were assumed for all the
parameters, with the lower and upper bounds chosen to be one
order of magnitude below and above their values used in the
baseline transient simulations. Quasi-Monte Carlo sampling
method (Lemieux, 2009) was used to generate the permeability
realizations shown in Figures 2B,C. The ensemble of simulated
discharges in Figure 2D show reasonable match with the
observed discharges at the outlet with RMSE ranging from 4.3
to 5.2 mm/day), which is a strong evidence for a reasonable
conceptual model and sensitivity of the discharge to variations
in soil and geologic layer permeabilities. We only used the
discharge data from August 31, 2014 to August 31, 2016 to
train the DNNs such that the trained model can be used to
estimate the permeability of the real watershed from the limited
field observation data available in this region during the same
time window.

4 DNN TRAINING

4.1 Data Preprocessing and Preparation
Prior to training the DNNs, the discharge data D was log-
transformed and normalized via zero-mean and unit variance
using the following equation:

N(D) � [ln(D) − ln(Dt)]/σ[ln(Dt)], (1)

where ln(Dt) and σ[ln(Dt)] are the mean and standard deviation
of the log-transformed discharge in the training dataset,
respectively. Five of the permeability parameters were also log-
transformed and normalized via zero-mean and unit variance
using the same equation N, performed independently for each
of them.

4.2 Training of DNNs
The DNNs were designed and implemented with the Keras
python module (Chollet, 2015). In order to train the models,
we divided the ensemble of 597 ATS runs into training,
validation, and testing sets using roughly 70-15-15% divide
(477, 60, 60 runs), respectively. Each run contains 732 daily
measurements from August 31, 2014 to August 31, 2016, which
were used as the input for all the DNNs. The DNN models were
trained on the training set of 477 runs for 1,500 epochs with a
batch size of 10, using mean-squared error (MSE) as the loss
function and an Adam optimizer (Kingma and Ba, 2014). For
each DNN type, we performed a hyperparameter search by
varying the learning rate for training and the size of the layers
(see Supplementary Table S1 for the combinations of learning
rate and layer size). After the training was completed, each DNN
model configuration was run on the validation set to choose the
best model hyperparameters (i.e., model configuration) of a given
DNN architecture. Each DNN configuration was trained using
four different initialization seeds and results were averaged
during validation. For the DNN A1 models, we trained

separate models to estimate each of the five permeability
parameters. Supplementary Table S2 shows the best
hyperparameter combination for each model type based on
the MSE on the validation set. Then, the best model
configuration of each DNN architecture (e.g., DNN A1, A2,
A3) was run on the testing set, and their performance was
compared against each other.

4.3 Ensemble Smoother
We compared the DNNs against the ES approach in estimating
permeabilities to assess the importance of dealing with
nonlinearity between model inputs and outputs in inverse
modeling. We followed a similar training-testing strategy when
applying the ES method as used in the DNNs. We took the 537
realizations used in training and validation sets for DNNs as the
prior ensembles for the permeabilities and modeled responses,
then we perturbed each simulated hydrograph in the testing set
(60 realizations in total) by adding random observation errors
and used them as the synthetic observations, which were
assimilated by the ES to generate posterior ensemble of
permeabilities. The testing process yielded 60 sets of posterior
permeability ensemble given an observation error, which is a
hyperparameter for the ES approach. We considered a range of
relative errors for discharge observations: 0.005, 0.01, 0.015, 0.02,
0.03, 0.05, and 0.1. For each observation error, we computed the
correlation coefficient and root mean square error (RMSE)
between the 60 synthetic true permeability and the
corresponding 60 estimations from each of the 537 posterior
realizations. We found that the ES trained with relative error of
0.05 performed the best in terms of both correlation coefficient
and RMSE. More details about this analysis can be found in the
Supplementary Text S2. Therefore, we chose the ES trained with
a relative error of 0.05 for the comparison against the DNNs and
for estimating the permeability from real observations.

5 RESULTS AND DISCUSSION

5.1 Training Results of DNNs
Overall, we were able to successfully train the three DNN types to
estimate the permeability parameters from the simulated stream
discharge. As can be seen in the overall training loss for the DNN
A3 model (Figure 3A), the DNN model learns to estimate the
permeabilities during the training period. The overall and
individual validation losses plateau before or around epoch
600 as shown in Figure 3. For the permeability of s6
(Figure 3C), its training loss continues to decrease after its
validation loss plateaus, indicating an overfitting problem due
to insufficient training data or lack of useful information in the
discharge data to constrain the permeability. Similarly, the DNN
A3 model also overfits on the g1 permeability (Figure 3D), but to
a lesser extent as the validation loss is much closer to the training
loss. No overfitting problems were found for the permeabilities of
s3, g5, and g7 as their validation losses closely follows the training
losses as seen in Figures 3B,E,F. The training and validation
losses for the DNN A1 and DNN A2 models have similar
performance and the figures are available in the
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Supplementary Figures S3, S4. Therefore, the overall overfitting
of the DNNs can be mainly attributed to the overfitting on the s6
permeability, and to a lesser extent on the g1 permeability.

On the training set, all the three DNN types perform very well
in estimating the permeability parameters. As shown in Figure 4,
the one-to-one plots between the permeabilities estimated by the
DNNA3 model and the real permeabilities are distributed closely
along the 1:1 lines. The DNN A1 and A2 models achieve similar
levels of performance and their plots are available in the
Supplementary Figures S5, S6, respectively. All three models
yield R2 values greater than 0.99 for the s3, g1, g5, and g6

permeabilities (see Supplementary Table S3). All three DNNs
perform relatively worse in estimating the s6 permeability on the
training set, as evidenced by more scatters drifted from the 1:1
line in Figure 4, resulting in R2 values of about 0.96 from the
DNN A2 and A3 models, and an R2 of 0.89 from the DNN
A1 model.

5.2 Testing Results of DNNs
For the testing set, all the three DNN types perform very well in
estimating the s3, g5, and g7 parameters, with R2 values between
the predicted and true permeabilities for all DNN models above

FIGURE 3 | Training loss of the best DNN A3model. The blue line is the loss from the training set and the orange line is the loss from the validations set. The x-axis is
the epoch number. The y-axis is the model loss (MSE). (A) overall training loss of best DNN A3 model. The overall loss is the sum of the loss of the five permeability
parameters (B–F); (B) training loss for the s3 permeability parameter; (C) training loss for the s6 permeability parameter; (D) training loss for the g1 permeability
parameter; (E) training loss for the g5 permeability parameter; (F) training loss for the g5 permeability parameter.

FIGURE 4 |One-to-one plot of the DNN A3model permeability estimation when compared to the real estimation for the training set. Each plot is the DNN A3model
estimation for the given permeability parameter. Each dot represents a realization from the training set of ensembles. The x-axis is the log10 real permeability value, the
y-axis is the log10 estimated permeability value from the model. The red line is the one-to-one line.
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0.98. However, the R2 drops to ∼ 0.93 for the g1 permeability and
below 0.6 for the s6 permeability (see Supplementary Table S4).
The one-to-one scatter plots for DNN A3 in Figure 5 further
demonstrates the disparity in estimation accuracy between the
group of s3, g5, and g7 and the group of s6 and g1, which is similar
to the training results with increased deviation from the exact 1:1
line. The one-to-one plots for the DNN A1 and DNN A2 models
follow the same pattern and the plots are available in the
Supplementary Figures S7, S8, respectively.

The difficulty in estimating the s6 and g1 permeabilities might be
explained by the small areas covered by these two soil/geologic
layers (Figure 2A) and their distances from the outlet where the

discharges are measured. Thus, they may not contribute as much to
the simulated discharge compared to the other parameters. In other
words, the simulated discharges are not as sensitive to the s6 and g1
permeabilities, and consequently the discharges at the outlet are not
sufficiently informative for estimating the s6 and g1 permeabilities.

The performance of all three DNN architectures on the testing
set was compared using the squared errors between the estimated
and true log10-transformed permeabilities. Figure 6 shows the
three quartiles and ranges of the squared errors calculated from
the 60 realizations in the testing set using boxplots, while their
means and standard deviations are provided in Supplementary
Table S4. All the DNN architectures yield very similar results in
terms of the statistics of the squared errors for all the parameters.
Their mean squared errors (MSEs) differ by less than 1.1 × 10− 4
for the g7 permeability, around 4.8 × 10− 4 for the s3 permeability,
and within 1.3 × 10− 3 for the g5 permeability. Overall, the DNN
A1models slightly outperform the DNNA2 and DNNA3models
in terms of the means and medians of squared errors provided in
Figure 6 and Supplementary Table S4. The MTL models show
slight improvement over the STLmodels inMSE and R2 for the s6
permeability, suggesting the potential for the less sensitive
parameters to benefit from the joint features developed in
MTL models at little or no expense to the estimation accuracy
of other parameters. The performance difference between the
DNN A2 and A3 models appears negligible. Thus, in this case
study, it may not be necessary to add additional model complexity
using the sub-networks to develop parameter-specific features.

5.3 Estimation Sensitivity to Observation
Errors
To assess how sensitive the DNN-based parameter estimation is
to observation errors in the data used for inverse modeling, we
randomly selected a realization from the testing set and generated

FIGURE 5 |One-to-one plot for permeability estimated from the DNN A3 model against the true permeability in the testing set. Each plot is for a given permeability
parameter, and each data point represents a realization from the testing set. The x-axis is the log10 real permeability value, the y-axis is the log10 estimated permeability
value from the model. The red line is the one-to-one line.

FIGURE 6 | Box plot of the squared error of the DNNs on the testing set.
The x-axis is the permeability parameter. The y-axis is the squared error of the
estimated log10 of the permeability parameter compared to their true values.
The y-axis is plotted in log-scale for showing differences spanning over
several orders of magnitude. The results for different DNN architectures are
represented by the colors filling the box plots.
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100 realizations of noisy observed discharge time series (dn) by
adding random observation errors to the simulated discharges
(d), i.e.,

dn � d + ϵ p d p r, (2)

where r is a vector of the same size as d composed of random
samples drawn from a standard normal (Gaussian) distribution
with a mean of 0 and a standard deviation of 1, and ϵ is the
standard deviation of the noise, which is usually taken as 1/3 of
the observation error. For this study, we set ϵ � 0.0166 for a 5%
observation error. Then, we obtained 100 realizations of
estimated permeability set from each of the DNN model types
with the best configuration (the same ones used in Section 5.2)
from the 100 realizations of noisy discharges. The variability in
estimated permeabilities are shown in boxplots in Figure 7. It is
observed across all the DNNmodel types that the parameters that
can be accurately estimated (i.e., s3, g5, and g7) from the
discharge data show more robust performance under the
presence of the observation errors, whereas those that are
estimated less successfully (i.e., s6 and g1) are also more
vulnerable to the observation errors.

As discussed in Section 5.2, it is highly likely that there is less
information available in the discharge data for estimating
parameters with smaller spatial coverage, which consequently
limits DNNs in their ability to generalize beyond the training
data. The observation error further contaminates the useful
information (i.e., signal) in the data, thus exacerbating the
estimating inaccuracy.

5.4 Comparison With Ensemble Smoother
We compared the performance of DNN-basedmethods against the
ES method (with relative error of 0.05) in estimating the
permeability from the same discharge data using the squared

errors of the estimated permeability on the testing set, as shown
in Figure 8. To ensure a fair comparison, for each realization in the
testing set, we generated 100 noisy discharge time series assuming a
5% observation error, which led to 100 instances of estimated
permeability set that are compared to their corresponding synthetic
truth with squared errors calculated. Therefore, each boxplot in
Figure 8 associated with the DNN methods was generated from
6,000 samples of squared errors, whereas that for the ES method
was generated from 32,220 samples because each testing realization
has an ensemble of 537 posterior estimations. The comparison
shows that the DNNs significantly outperform the ES with much
smaller squared errors for all the five permeabilities. The MSE
across all five permeabilities for the DNNs (0.0568 for DNN A1,
0.051 for DNN A2, and 0.045 for DNN A3) is an order of
magnitude smaller compared to the MSE for the ES method
(0.634). Therefore, DNNs are promising alternatives for inverse
modeling, especially for using indirect data that are nonlinearly
related to the parameters of interest.

Additionally, we investigated the amount of training data
needed to achieve a similar level of accuracy using the full
amount of training data for the DNNs and the ES approach.
We trained the three DNNs using 50, 100, 200, and 300 realizations
from the training set with the same hyperparameters listed in
Supplementary Table S2. Then, we performed the ES-based
estimations with a relative error of 0.05 with the same four
training sets of various sizes. Finally, permeabilities on the
testing set were estimated using the DNNs trained on different
amount of data and the ES of various ensemble sizes and
compared. Both sets of estimations assumed a relative
observation error of 5%. As shown in Figures 9A–C that the
performance of DNNs keeps improving with the increasing
amount of training data increases. Nevertheless, the gain in
performance diminishes when the training data size is increased
from 300 to 477. Thus, we consider 300 realizations as sufficient for
achieving good training results for theDNNs in this case study. The
ES approach, on the other hand, does not show as much
improvement in estimation accuracy when increasing the
ensemble size (Figure 9D). Interestingly, the DNNs trained
with 50 realizations yield a lower MSE for all the s3, g1, g5, and
g7 permeability parameters than all of the ES variations, while
achieving equivalent performance for the s6 permeability.
Therefore, the DNNs may require less training information to
achieve equivalent or better performance than the ES. Moreover,
the DNNs can more effectively utilize the information in larger
training dataset than the ES approach to capture nonlinear
relationships.

We also compared the computation times needed for both
methods. The computational cost for DNN models is spent on
both the training and prediction phases, whereas the ES approach
does not have an explicit training phase. We were able to perform
the DNN-based and ES-based inversions on laptops without
involving the Graphics Processing Unit (GPU) or parallel
computing. The DNN A1 and DNN A2 models finished
training for 1,500 epochs in under 2 min. The DNN A3
finished training in just over 5 min. For estimating the
permeabilities from a single time series of stream discharge,
the DNNs took less than 0.4 ms on average. When estimating

FIGURE 7 | Sensitivity of model types to noise added to the simulated
discharge for ensemble 537. The boxplots represent the distribution of the
log10 estimated permeability value from the 100 noisy discharge vectors. The
yellow square dot are the synthetic permeability values for the simulation
(ensemble 537).
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all 60 stream discharges in the testing set, DNNs A1, DNN A2,
and DNN A3 took 0.87, 0.89, and 1.17 ms, respectively, on
average. For estimating the permeability for a single discharge
time series, the ES took approximately 40 ms to update the

permeability ensemble by assimilating the corresponding
discharge observations through matrix operations. The
computational costs spend on the inversion using either of the
methods are negligible compared to the computing resources

FIGURE 8 | Box plots of squared errors on permeabilities estimated by DNNs and ES for the testing set using relative observation error 0.05. The x-axis is the
permeability parameter. The y-axis is the squared errors of the log10-transformed permeability parameters. The y-axis is shown in log-scale. The boxplots are filled with
different colors corresponding to different estimation methods.

FIGURE 9 | Box plots of squared errors on permeabilities estimated by DNNs and ES for the testing set using relative observation errors of 0.05 with different
training data sizes. The x-axis is the permeability parameter. The y-axis is the squared errors of the log10-transformed permeability parameters. The y-axis is shown in log-
scale. Each color represents a number of realizations used to train the DNNs or ES (50, 100, 200, 300, 477). (A) the squared errors for the DNN A1 model; (B) the
squared errors for the DNN A2 model; (C) the squared errors for the DNN A3 model; (D) the squared errors for the ES.
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required to generate the training, validation and tesing datasets
from ensemble ATS simulations, which were approximately
324,768 cpu hours using the supercomputing resources at the
National Energy Research Scientific Computing Center (NERSC).

5.5 Permeability Estimation From Observed
Discharge for Real Systems
After achieving the adequate estimation performance on training
and testing the DNNs, we moved forward with estimating the soil
and geologic permeability parameters of the Rock Creek
catchment from the real observed discharge (Figure 2D) using
the DNNs trained and tested in Section 5.2. We generated 100
realizations of noisy discharge time series from the real observed
discharge assuming a relative observation error of 5%. The
ensembles of the estimated permeability parameters by DNNs
were used to generate the boxplots in Figure 10, compared
against the posterior estimates from the ES approach with a
relative observation error of 5%. Note that the prior boxplots were
generated from the prior parameter ensemble for the ES
approach, which was also used as the DNN training dataset. It
can be observed from Figure 10 that the DNN estimations for the
s3 and g7 permeabilities are distributed in the similar ranges as in
their training data, while the DNN estimations for the g5, g1 and
s6 permeabilities are significantly shifted away from their ranges
in the training dataset. The variability in results obtained from
different DNN types is substantially greater for the g5, g1 and s6
parameter group than the s3 and g7 group, which is consistent
with the difference in their sensitivity to the discharge time series
as revealed during the training and testing stages. Thus, the
estimated permeabilities for s3 and g7 are likely more accurate
(i.e., reasonable) than those for g5, g1 and s6.

Figure 10 also demonstrates that the ES approach yielded
vastly different estimations from the DNN models, except for the
g5 permeability, with relatively tighter distributions. The
considerable differences between the prior and posterior

distributions in parameters suggest that the estimations are
extrapolated from the training/prior data for this real
application, which is related to the fact that the ensemble of
the simulated hydrographs failed to encapsulate the observed
hydrograph in major recession periods as shown in Figure 2D.
DNNs appear to provide more realistic estimations for the s3 and
g7 permeability than the ES. The s3 permeability estimated by the
ES is unrealistically low for soils, even lower than the geologic
layers, which may be caused by extrapolation errors based on
linearized relation between model parameters and outputs.
DNNs, on the other hand, are better able to generalize in this
case by capturing the nonlinear relationships. To evaluate how
the estimated permeabilities change the model predictions of the
hydrograph at the outlet, we randomly selected 30 realizations
from the ensembles of permeabilities estimated by the DNN A1
and the ES to generate updated ensembles of predicted
hydrographs, which were then compared to the observations
to assess the improvement in model performance. We
encountered numerical model convergence issues for some

FIGURE 10 | Permeability estimations from the observed discharges from the DNNs and the ES using relative observation error of 0.05. The peach-colored
boxplots are the prior distributions for each permeability parameter. The gold-colored boxplots are the distribution of permeability estimations from the ES. Each of the
remaining colored boxplots is the corresponding distributions of DNN estimations. The orange crosses are the log10-transformed mean permeability value for the
corresponding distribution.

FIGURE 11 | Comparison between the observed discharge and the
predicted discharge from ATS using the estimated permeability values from
the DNN A1 and ES, respectively.
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permeability combinations with substantial contrast between the
low-permeability and high-permeabilities layers. Thus, not all
simulations were completed within the assigned wall clock time.
The ensemble simulation results in Figure 11 contain nine and
five sets of completed simulations for the DNN A1 and the ES,
respectively. Although the ensemble sizes of model runs may not
be sufficient for representing the full range of uncertainty in the
updated model predictions, we expect them to adequately
represent the mean model behaviors. Overall, the
permeabilities estimated by DNN A1 lead to much improved
prediction during year 2015 as compared to the prior predictions
in Figure 2D, whereas they cause considerable overpredictions in
peak discharges during year 2016. In contrast, the models with
the permeabilities estimated by the ES consistently overpredict
the discharges owing to the unrealistically low permeability
estimated for s3. It is worth noting that none of the simulated
hydrographs reproduces the same level of inter-annual variability
manifested in the real observations, which implies potential
deficiencies in the numerical model representation of the real
system. Further investigations are needed to identify additional
processes and parameters that may contribute to such inter-
annual variability.

6 CONCLUSION

In this paper, we developed a DNN-based inversion method to
estimate permeabilities of multiple soil and geologic layers within
a watershed from the observed stream discharge time series. We
successfully trained DNNs to map from the stream discharges to
the permeability set using the training/validation/testing data
generated through the ensemble watershed simulations. In
doing so, we found that the accuracy and robustness of DNN-
based estimations are influenced by the relevant information
content contained in the observation data with respect to the
parameters. In the watershed system we studied, permeability for
soil and geologic layers with larger spatial coverage can be
estimated more accurately from the observed discharge data,
and their estimations were more robust to observation errors.

In comparing the parameters estimated by the DNNs and the
traditional ES method from the same observation data, we found
that the DNNs consistently outperformed the ES algorithm. On
the testing set, the DNNs achieved an overall MSE an order of
magnitude lower than the ES method. The DNNs is more
effective in utilizing the information provided by larger
training dataset than the ES approach. By capturing the
nonlinear relationships between the model inputs and outputs
through multiple layers of neurons, DNNs yielded more realistic
permeability estimations for the real watershed system, leading to
improved match between model predicted and observed stream
discharges. However, improving the permeability used in the
model alone does not enable the models to capture the inter-
annual variability in the discharges, future work is needed to
identify additional processes and parameters that may contribute
to the unresolved inter-annual variability in system responses.

Note that the accuracy of DNN-based estimation of
permeability will be impacted by the accuracy of the mapped

distributions of soil and geologic layers, which directly impacts
how well a numerical model can represent a real system. During
training, the DNNs learn to estimate the permeabilities from the
simulated stream discharge for that given distribution map of soil
and geologic formation types. Therefore, a less accurate
distribution map will result in less accurate estimations of the
permeabilities for the watershed, leading to biases that cannot be
resolved by the inversion method. A facies-based approach [e.g.,
Song et al. (2019)] can be adopted to estimate the distribution of
soil types and geologic layers along with their permeabilities.

Our study has demonstrated that the DNNs can potentially be
a powerful tool to estimate parameters from indirect, relevant
observations. The success in linking permeability with stream
discharges using DNNs presents new opportunities to improve
the subsurface characterization of large-scale watersheds, which
has been limited by scarce subsurface characterization and
observation data. Our work also paves the way for developing
more general model calibration strategies that involve multiple
parameters and multiple types of observation data for complex
systems. Our next step is to expand the study to assist the multi-
process modeling for larger watersheds with more complex
subsurface structures. New DNN architectures with deeper
and bigger networks might be required to deal with the
increasing dimensionality in both model inputs and outputs.
Substantial computational resources may also be required to
generate sufficient training data for the DNN models if high-
resolution distributed models are used.
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