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Editorial on the Research Topic

Emerging Roles for Type 2-associated Cells and Cytokines in Cancer Immunity

Type 2 immune responses have mainly been studied in the context of parasite infections and allergic
diseases. However, emerging evidence suggests important roles for Type 2 immunity in multiple
additional physiological and pathological settings (1). In fact, Type 2-associated cells, such as
eosinophils, mast cells, basophils, Type 2 innate lymphoid cells (ILC2), as well as the cytokines IL-4,
IL-5, IL-13, IL-33 and thymic stromal lymphopoietin (TSLP) are now considered a significant
signaling and effector cell axis in metabolism, tissue remodeling, neuroinflammation and cancer.
This Research Topic collects relevant studies on the emerging role of some Type 2-associated cells
and cytokines in the modulation of cancer progression and anti-tumor immune responses.

Among the Type 2 cytokines, IL-33 and TSLP are epithelial-derived alarmins capable of
activating a plethora of innate and adaptive immune cell populations, thereby affecting tumor
immune control. Some Type 2-associated cells, such as mast cells, eosinophils and basophils, display
pleiotropic activities within the tumor microenvironment (TME). On the one hand, they can
provide growth and angiogenic factors to promote tumor growth. On the other hand, they can exert
tumor cytotoxicity through degranulation and release of soluble mediators. In a mini review article,
Eissmann et al. debate the role of the IL-33/ST2 axis and mast cells in the regulation of
gastrointestinal cancer. Mast cells can regulate IL-33 bioactivity through the release of tryptase
and chymase that cleave the immature full-length form of IL-33 into the mature form of the
cytokine. Several immune cells, including mast cells, express ST2 at various levels on their cells
surface and respond to IL-33 in the TME of gastrointestinal cancers. During pre-cancerous
inflammation, a functional cooperation between IL-33 and mast cells promotes the restoration of
the epithelial barrier and the regeneration of gastrointestinal epithelium. In colorectal cancers
however, albeit the expression of IL-33 and the prevalence of mast cells are not necessarily
associated, both appear to have a tumor-promoting role in most pre-clinical and human studies. In
gastric cancers, the authors discuss an interesting study involving an IL-33/mast cell/macrophage
axis that promotes tumor growth. Here, activation of mast cells by IL-33 resulted in the secretion of
macrophage attracting factors and subsequent accumulation of pro-angiogenic and pro-
tumorigenic macrophages in the gastric tumors. Finally, the authors discuss the possibility of
org November 2021 | Volume 12 | Article 81112514
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harnessing the IL-33/mast cell axis taking into account the
dichotomous role they play in gastrointestinal tumors and
other cancers.

IL-33 is a pleiotropic cytokine that can activate both innate
and adaptive immune cells (and stimulate both Th1 and Th2
responses), which result in dichotomous roles in tumor
immunity, clearly depending on the tumor type and the nature
of the TME. In another mini review article, Andreone et al. focus
on the anti-tumoral mechanisms exerted by IL-33, via
stimulation of several different immune effector cells. Recent
literature indicates that IL-33 can sustain the effector activity of
CD8+ T cells and NK cells and promote the functions of CD4+ T
lymphocytes in the TME. Moreover, IL-33 can activate the
cytotoxic functions of eosinophils and basophils promoting
tumor killing. In addition, IL-33/ST2 stimulation enhances the
anti-tumor functions of ILC2 cells through multiple
mechanisms, including recruitment of eosinophils and cross-
presenting DCs, ultimately resulting in tumor cytotoxicity.
Finally, recent evidence demonstrating that IL-33 can
modulate the expression of immune checkpoints (i.e., PD-1/
PD-L1 and CTLA-4) in certain immune cells opens perspectives
for targeting the IL-33/ST2 axis to increase immunotherapy
efficacy. This is of specific interest as although immune
checkpoint inhibitors are one of the most promising avenues
in cancer immunotherapy only a subset of patients demonstrate
a clinical response. Therefore, it is critically important to identify
predictive biomarkers for a beneficial response to ICI therapy
and to understand the role of all immune cells and soluble
mediators in cancer immunotherapy.

Another epithelial-derived alarmin, TSLP, is a lymphopoietin
commonly expressed in the skin, gut and lung tissues. Expression
of TSLP and/or its receptor is found in several human cancers
and may be associated with the induction of a Type 2-prone
TME. In a review article, Protti and De Monte debate Th2-
dependent and Th2-independent roles of TSLP in several cancer
types and the possible therapeutic targeting of this cytokine.
Several studies on human and mouse tumors found either pro-
or anti-tumor activity of TSLP, mostly based on the association
between TSLP expression and the development of predominant
Th2 inflammation in the tumor, or direct TSLP signaling on
tumor cells. Protti and De Monte propose a model by which
TSLP released by tumor cells and cancer-associated fibroblasts
can activate Type 2 immunity to foster cancer progression via
myeloid TSLP-expressing DCs and M2 macrophages in the
stroma, which ultimately allow TSLP-DCs to activate Th2 pro-
tumoral responses in the tissue draining lymph node. In view of
the pro-tumor vs. antitumor function of TSLP in different tumor
types, its possible manipulation for therapeutic purposes will
need further investigation.

Finally, in a detailed review, Marone et al. discuss the
functional characteristics of mouse and human basophils, and
how these may dictate tumor fate. Basophils are a Type 2-
associated cell subset whose role in cancer is only beginning to
be studied. They are a rare immune cell subset representing <1%
of human peripheral blood leukocytes but they can accumulate
Frontiers in Immunology | www.frontiersin.org 25
in inflamed tissues and possess powerful effector mechanisms.
Basophils can modulate cancer progression through the
production of a plethora of angiogenic factors (e.g., VEGF-A,
VEGF-B, HGF, ANGPT1 and CXCL8). Furthermore, basophils
can release DNA extracellular traps (ETs), which have an
antibacterial function but may also promote metastasis and
cancer-associated thrombosis, as described for neutrophil ETs.
Basophils can also produce a variety of cytokines (e.g., IL-3, IL-4,
IL-6 and IL-13) and display plasticity of phenotype and function
under the influence of the TME. In addition, under appropriate
stimulation, basophils can acquire tumoricidal properties
in vitro. The generation of genetically engineered mouse
models has allowed studying the functional role of basophils in
pancreatic ductal adenocarcinoma (PDAC) in vivo. Here, the
authors propose a model in which basophils recruited to the
tumor-draining lymph nodes (TDLN) skew towards Th2 and
M2 polarization through the production of IL-4 and by this
mechanism play a relevant pro-tumorigenic role in PDAC
progression. Overall, this review underlines that despite the
established presence of basophils in human and experimental
cancers, further investigation is required to elucidate the role of
basophils in tumor immunity.

In sum, it is becoming increasingly clear that Type 2-
associated cells and soluble mediators are an important part of
the TME and can be central orchestrators of cancer development.
The published articles in this Research Topic aim to provide a
better understanding of the mechanisms operated by Type 2
immune effectors and their interplay with other components of
the TME in specific tumor types. We hope this collection will
inspire future work exploring and harnessing these overlooked
immune components for future therapeutic strategies
against cancer.
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IL33 and Mast Cells—The Key
Regulators of Immune Responses in
Gastrointestinal Cancers?
Moritz F. Eissmann*, Michael Buchert and Matthias Ernst*

Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia

The Interleukin (IL-)1 family IL33 is best known for eliciting type 2 immune responses

by stimulating mast cells (MCs), regulatory T-cells (Tregs), innate lymphoid cells (ILCs)

and other immune cells. MCs and IL33 provide critical control of immunological

and epithelial homeostasis in the gastrointestinal (GI) tract. Meanwhile, the role of

MCs in solid malignancies appears tissue-specific with both pro and anti-tumorigenic

activities. Likewise, IL33 signaling significantly shapes immune responses in the tumor

microenvironment, but these effects remain often dichotomous when assessed in

experimental models of cancer. Thus, the balance between tumor suppressing and tumor

promoting activities of IL33 are highly context dependent, and most likely dictated by the

mixture of cell types responding to IL33. Adding to this complexity is the promiscuous

nature by which MCs respond to cytokines other than IL33 and release chemotactic

factors that recruit immune cells into the tumor microenvironment. In this review, we

integrate the outcomes of recent studies on the role of MCs and IL33 in cancer with

our own observations in the GI tract. We propose a working model where the most

abundant IL33 responsive immune cell type is likely to dictate an overall tumor-supporting

or tumor suppressing outcome in vivo. We discuss how these opposing responses

affect the therapeutic potential of targeting MC and IL33, and highlight the caveats

and challenges facing our ability to effectively harness MCs and IL33 biology for

anti-cancer immunotherapy.

Keywords: interleukin 33 (IL33), mast cell (MC), innate immunity, ST2, gastrointestinal (GI) malignancies, tumor

microenvironment (TME), therapy targets, cytokine signaling

INTRODUCTION

The tumor microenvironment (TME) is a complex collection of cellular and extra cellular matrix
(ECM) components. Interactions and communications between the various components of the
TME are orchestrated by a multitude of signaling molecules, including the cytokine interleukin
(IL)33. IL33 was first discovered in 2003 as a nuclear factor in HEVEC cells (NF-HEV) (1) and
later identified as an IL1 family cytokine and ligand for the interleukin 1 receptor like 1 receptor
(IL1RL1, or commonly referred to as ST2) (2).

IL33 is expressed in fibroblasts, endothelial and epithelial cells (1, 3, 4) as well as in many cancer
cells [reviewed in (5, 6)]. Depending on stimulation or disease context, this cytokine is produced
by additional cells such as MCs (7), dendritic cells, macrophages, neutrophils, eosinophils, B cells
and red blood cells (8–11). Anatomically, the expression of IL33 is highest in barrier tissues like
the skin, the air ways and the GI tract, where IL33 release activates innate and adaptive immune

7
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responses upon tissue injury or various infections [reviewed
in (12)]. Indeed, tissue resident innate immune cells are the
proposed first responder for released IL33, and MCs are
present at all these environment-tissue interfaces (13). In
general, necrotic or necroptotic cell death is required for its
release (14–21), nevertheless, multiple studies suggest release
of IL33 from living cells (22–25), suggesting various modes
of active secretion and passive release with and without
necrotic/necroptotic cell death depending on cell type and
stimuli. Further research is required to unravel the exact
mechanisms of IL33 release.

IL33 cytokine exerts its activity via binding to a heterodimeric
receptor consisting of its primary receptor ST2 and a co-receptor,
IL1 receptor accessory protein (IL1RAP) (26, 27) triggering
downstream signaling pathways including MYD88, IRAK1/4,
MAP kinases and NF-kB (2, 12). Importantly, the various
biological outputs following engagement of the IL33-ST2 axis are
heavily dictated by the cellular context, which we will further
summarize in this review, with a special focus on interaction
and importance the innate-immune mast cells for IL33 signaling
in cancer. Besides acting as an extracellular ligand conferring
activity through its cognate ST2 receptor on targets cells, ST2-
independent nuclear IL33 can act as transcriptional repressor
in fibroblast, endothelial and immune cells (28, 29). Likewise,
nuclear IL33 also promotes immune suppressive functions
independent of ST2 in regulatory T (Tregs) cells (30), and cell
intrinsic IL33 plays a role in B cell development (31).

IL33—RESPONSIVE CELLS IN THE TUMOR
MICROENVIRONMENT

Since the identification of ST2 as the cognate receptor of IL33,
various cell types have been shown to express ST2 and to respond
to IL33 stimulation. However, there is a significant difference in
the quality and quantity of ST2 expression among various cell
types. Innate lymphoid cell type 2 (ILC2), Tregs andMCs express
the ST2-receptor constitutively, while all other cell types that
respond to extracellular IL33 are either ST2 negative at steady-
state and only induce ST2 expression upon activation, or express
ST2 on minor cell subsets in specific biological processes in a
tissue-dependent manner (32).

ILC2 Cells
A significant subset of innate lymphoid cell type 2 (ILC2) are
constitutive ST2 expressers. However, the proportion of ST2
positive ILC2s can vary depending on tissue origin and disease
context (32–37). Stimulation of ILC2s by IL33/ST2-signaling is
critical for their activation, induces their expansion within tissues
and triggers secretion of the type 2 cytokines IL-5 and IL-13.
This classic type 2 (innate) immune response contributes to anti-
helminth immunity, lipid metabolism and to the development
of various allergic diseases such as asthma, atopic dermatitis,
allergic rhinitis, and chronic rhinosinusitis (12, 13, 38–40).
Recently, it was reported that IL33-activated tumor infiltrating
ILC2s (TILC2) restrict pancreatic tumor growth. Moreover, IL33
induces the expression of inhibitory checkpoint receptor PD-1
in TILC2s. Antibody-mediated PD-1 blockade leads to TILC2

expansion and activation, resulting in augmented anti-tumor
immunity, and enhanced tumor control (41).

Treg Cells
Depending on the tissue and disease setting, a significant
proportion of Tregs constitutively express the ST2 receptor
(32–37). IL-33/ST2 signaling in Tregs has been shown to promote
Treg frequency and immunosuppressive capacity in colitis and
tissue injury models as well as graft vs. host disease (35, 42). In
cancer, IL33/ST2 signaling in Tregs seems particularly important
in colon cancer, where the frequency of ST2-expressing Tregs is
higher and ST2-expression is upregulated compared to normal
colon tissue. Signaling through the ST2 receptor can increase
frequency, activity and migratory potential of Tregs, which
is associated with increased colonic tumor burden (43–45).
However, there are also studies that demonstrate increased Treg
density upon genetic ST2 ablation (34).

Mast Cells
While MCs can confer their functions through cell-cell contacts,
their predominant way of shaping their cellular environment
occurs via release of preformed or newly synthesized mediators.
These paracrine acting molecules include growth factors,
proteases, leukotrienes, cytokines and chemokines which in turn
modulate biological processes and responses including: tissue
remodeling, angiogenesis, pro/anti-inflammatory responses,
immunosuppression, and cellular proliferation, survival,
recruitment, maturation and differentiation (46, 47).

MCs provide critical nodes for IL33 signaling in innate
immune cells. In external surface organs, where epithelial cells
express high levels of IL33, the number of MCs is highest (48).
MC’s are first responders during infections, where IL33 acts
as an alarmin following its release as a cellular danger signals
(49). The dual importance of IL33 and MCs in allergies is well
established (50), yet critical roles for the IL33-MC axis have also
been uncovered in allergic, autoimmune, inflammatory disease as
well as cancer and other diseases (51, 52). In addition, MCs can
potentiate the biological impact of IL33, because chymases and
tryptases released by activated MCs process full-length IL33 into
a truncated and biologically more active mature protein (53). In
addition, MCs have been described to also produce IL33 (7).

MCs appear to be the only cell type which constitutively
express high levels of ST2 independent of their tissue origin or
maturation/activation status (33, 54). Importantly, activation of
MCs by IL33 leads to the release of a plethora of factors that act
on various cell types in the TME and influence their recruitment,
rate of proliferation and their state of activation, differentiation
and polarization (Figure 1) (46, 55–65).

The striking overlap of cell types which respond to IL33 and
mast cell-released mediators highlights the importance of the
IL33-MC axis for the biological outcome and demonstrates the
potential of MCs as amplifiers and regulators of IL33-mediated
processes. However, most past studies have investigated the roles
of IL33/ST2 and of MCs separately. We and others have begun to
better integrate these closely related aspects of innate cell biology
in the context of GI cancer, since this organ system is known for
both high IL33 expression and high density of MCs.
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FIGURE 1 | Interactions between IL33, activated MCs and ST2-positive responder cells. Fibroblasts, endothelial and epithelial/tumor cells are the major source of

IL33 in the tumor microenvironment, and can in turn be stimulated by IL33. IL33 activates MCs and in turn MC -released chymases/tryptases cleave full length IL33

into highly active mature IL33. Subsequently, both IL33 (via ST2 receptor binding on target cells) and activated MC (via mediator release; depicted in blue) action

innate immune cells: eosinophils, basophils, neutrophils, myeloid derived suppressor cells (MDSC), macrophages (Mφ), natural killer cells (NK), type 2 innate lymphoid

cells (ILC2), dendritic cells (DC), and adaptive immune cells: natural killer T cells (NKT), regulatory T cells (Treg), CD4T cell subsets (Th1/2/17), CD8T cells (CD8), and

B cells. Mast cell mediator abbreviations: TNFα, Tumor necrosis factor alpha; TGFβ, Transforming growth factor beta; HA, Histamine; PAF, Platelet activating factor; IL,

Interleukin; VEGFa, Vascular endothelial growth factor A; FGF2, Fibroblast growth factor 2; SCF, Stem cell factor; PGD2, Prostaglandin D2; Hep, Heparin; CXCL1,

C-X-C-motif chemokine; CCL, C-C motif chemokine ligand; LTD4, Leukotriene D4; Cd1d, Cluster of differentiation 1 family glycoprotein; PD-L1, Programmed

death-ligand 1; LTC4, Leukotriene C4.

Other Cell Types
Besides the constitutively ST2-expressing ILC2, Tregs and MCs,
there are various cell types, which don’t express ST2 at steady
state but expression can be induced or is present in minor
cellular subsets. These include endothelial cells (66, 67), epithelial
and epithelial-derived cancer cells (68, 69), fibroblasts (34,
70) and other non-immune cell types. Importantly, fibroblasts,
endothelial and epithelial cells are also the major cellular sources
of IL33 production in the tumor microenvironment (Figure 1)
(3–5). The immune cells that respond to IL33 in a ST2-
dependent manner (in addition toMCs, Tregs and ILC2s) are the
innate immune cells: eosinophils, basophils, neutrophils, myeloid
derived suppressor cells (MDSC), macrophages (Mφ), natural

killer cells (NK), dendritic cells (DC), and the adaptive immune
cells: natural killer T cells (NKT), CD4T cell subsets (Th1/2/17),
CD8T cells, and B cells (Figure 1) (71–80).

IL33 AND MAST CELLS IN
GASTROINTESTINAL CANCER

Various reviews try to group the IL33-responding immune
cell types based on their role in tumor growth, whereby
MCs, (tumor associated) macrophages and Tregs are considered
pro-tumorigenic, while CD8, NK, NKT, and DC conferring
predominantly anti-tumorigenic functions (6, 74, 77, 81). Beside
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these “classical activities,” for many of these cells both anti- and
pro-tumorigenic roles have been described and formost cell types
their functions might be tumor-type and -stage dependent.

The role of IL33 in cancer has been reviewed recently (81, 82).
IL33 expression correlates with poor prognosis in some cancers,
but predicts good outcomes in others (77). Likewise for MCs,
high mast cell infiltration can correlate either with poor or good
prognosis depending on the tumor type (65).

Pre-cancerous Inflammation
Chronic inflammation or infection often precedes neoplastic
transformation. Accordingly, IL33 expression is elevated in
colonic epithelial cells and myofibroblasts of ulcerative colitis
patients (83, 84) and in the chronically inflamed stomachs of
patients infected with H. pylori or during bouts of acute gastritis
(85, 86). Meanwhile, increased MC numbers are readily detected
in patients with ulcerative colitis, gastritis and various other
inflammatory disorders of the GI tract [reviewed in (87)] and
have been attributed a disease-promoting role (88).

Conversely, simultaneous ablation of MCP-6/7, mouse
orthologs of the human b tryptases TSAB1/2, significantly
protected mice from dextran sodium sulfate (DSS)-induced
colitis (89). While thi observation suggests that MCs may
promote the inflammatory environment that mediates DSS-
dependent destruction of the epithelial layer, the role of MC
during the subsequent “wound-healing reaction” remains less
clear. Although, it has been noted that tryptase-expressing MCs
persist for several weeks at the site of the original injury (90).
Consistent with a role for MC to not only release various
leukocyte attracting chemokines, but to also induce proliferative
effects on fibroblasts and other “bystander” cells (91). In turn,
soluble factors from fibroblasts, including IL-33 can then feed-
forward on MC and shape their phenotype (92). Indeed, in
response to DSS administration, IL33 activated MCs in the
colonic epithelium, which subsequently promoted restoration of
epithelial barrier function and regeneration of epithelial tissues
(93). In accordance with this, Rigoni et al. observed exacerbated
colitis in MC-deficient Kitw−Sh mice (94). Collectively these
preclinical studies suggest a functional connection between IL33
and MCs during inflammation-associated regeneration of the GI
epithelium. Similarly, tumors, “wounds that do not heal,” may
co-opt these wound-healing associated IL33-mast cell immune
responses (95).

Intestinal and Colorectal Cancer
Although IL33 is elevated in colorectal cancer (CRC) patients
when compared to normal tissues, in some studies its levels were
reduced when comparing late vs. early stage disease (70, 96–98).
Mast cell infiltration is associated with poor prognosis in
colorectal cancer patients [reviewed in (65)], and at least
one study also associated high IL33 expression with poor
survival outcomes for metastatic CRC (99). Meanwhile, IL33-
ST2 mechanisms underpinning pro- and anti-tumoral roles in
CRC have been studied in mice. Maywald et al., observed
reduced intestinal polyposis in IL33-deficient ApcMin mice,
which was associated with a lack of IL33-mediated mast cell
and myofibroblast activation (70). A tumor promoting role for

IL33 was confirmed independently (44). However, two separate
studies reported elevated tumor burden in MC-deficient ApcMin

mice when compared to their MC-proficient counterparts (100,
101). Meanwhile, intestinal polyps in Apc1468 mutant mice
have increased IL33 expression and reduced numbers of MCs
contribute to the anti-tumoral effect of IL10-deficiency (54) and
5-lipoxygenase-deficiency (102).

In the classic carcinogen-induced mouse model of sporadic
colon cancer (6x AOM), colon tumors displayed increased
expression of IL33 and ST2. However, mast cell numbers were
unchanged, while ST2-deficieny increased number and size of
the colon tumors. Surprisingly, the tumor suppressive role of
the IL33-ST2 signaling pathway occurred independently of MC
abundance, but was mediated by mesenchymal (stem) cells
and associated with a strong interferon gamma (IFNγ) gene
expression signature (34).

However, in the AOM/DSS inflammation-associated CRC
model, ST2-deficient mice had reduced tumor burden, possibly
owing to ST2-expressing Tregs although these authors neither
investigated the number nor activation status of MCs (43).
Using the same model, Mertz et al. also observed reduced
tumor burden in ST2-deficient mice (98). Using adoptive bone
marrow chimeras, these authors attributed the anti-tumor effect
to both the radio-resistant and radio-sensitive cell compartments
and demonstrated an involvement of several hematological
cell types (98). The latter observation was consistent with
earlier work demonstrating reduced colonic tumor burden
in MC-deficient c-KitW−sh mice following the AOM/DSS
challenge (94).

Gastric Cancer
IL33-mediated spasmolytic polypeptide-expressing metaplasia
(SPEM) in the stomach of mice is associated with a strong
Th2 cytokine response, suggesting an involvement of MCs
(103). In human gastric cancer cell lines, IL33 promoted
epithelial-to-mesenchymal transition in vitro and xenograft
tumor growth in an ST2-dependent manner (104). Recently,
we illustrated that MC numbers are elevated in human gastric
cancer specimens and that high expression of an IL33-MC
activation gene signature predicts poor survival of intestinal-
type gastric cancer in patients (33). Utilizing mouse models,
we identified an IL33-MC-macrophage axis promoting gastric
cancer growth where either ST2-deficiency, lack of MCs or
lack of macrophages all restricted gastric cancer growth in the
preclinical gp130FF mouse model of inflammation-associated
gastric cancer. IL33-mediated activation of MCs and subsequent
secretion of macrophage attracting factors form part of a
mechanism resulting in the accumulation of pro-angiogenic
and pro-tumorigenic macrophages in the gastric tumors. In
ST2-deficient gp130FF mice, ILC2 and Treg density was not
altered, while frequency of MCs was decreased and associated
with reduced tumor growth. Conversely, adoptive transfer of
ST2-proficient MC stimulated tumor growth in ST2-deficient
gp130FF mice, demonstrating that IL33-ST2 signaling within
MCs is part of the tumor promoting effect of IL33 in gastric
cancer (33).
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Other Cancers of the Gastrointestinal Tract
IL33 administration promoted the growth of Kras and TGFbR2
mutant biliary tract cancers (105) and in mouse models with
constitutively active AKT/YAP pathway (106, 107). Moreover,
IL33 is overexpressed in human gallbladder cancer patients (108).
However, in pancreatic cancer patients high IL33 expression
and high number of tumor-infiltrating ILC2s correlated with
better survival (41). This is consistent with the observation in
a pancreatic cancer mouse model, that IL33 activated tumor–
associated ILC2s mediated anti-tumor immunity. MCs were
not investigated in this study, even though MC’s pancreatic
tumor promoting functions are known (109). Finally, IL33 is
highly expressed in patients with esophageal squamous cell
carcinoma. In corresponding cell lines, IL33 overexpression
promoted migration and invasiveness, while IL33 knockdown
inhibited the metastatic potential of these cells (110).

THERAPEUTIC TARGETING OF THE
IL33-MC AXIS

In recent years, a number of studies have identified compounds
that inhibit IL-33 mediated activation of MCs. Amongst
those are natural compounds from plants like berberine
(111), methoxyluteolin (112), and resveratrol (113) or
ES-62 produced from parasitic worms (114) as well as
various other drug classes including didox (synthetic
ribonucleotide reductase inhibitor) (115), chondroitin
sulfate (glycosaminoglycan) (116), triochastatin A (histone
deacetylase inhibitor) (117) and the growth factor TGFb1 (118).
However, in all these studies, drug effects were investigated
exclusively in vitro. In vivo testing in preclinical animal
models is required to increase the impact of these findings
and investigate their IL33-MC axis specificity and potential
off-target effects.

A promising example for an unbiased high-throughput
approach to identify IL33-MC modulating drugs was published
by Ramadan et al., They conducted a high-throughput screen
of over 70,000 small molecules utilizing an AlphaLISA assay,
which measures ST2-Fc fragment binding to IL33 (119). The lead
compounds were then demonstrated to exhibit activity in vitro as
well as in vivo in mouse models for graft vs. host disease.

Targeting IL33/ST2
Development and characterization of inhibitors of IL33-ST2
signaling is an active field of research. Various synthetic
molecules, antibodies and natural compounds either
targeting the IL33-ST2 interaction directly, or inhibiting
MyD88-IRAK and other downstream signaling pathways, or
disrupting production of mediators are in now pre-clinical
testing (74).

Targeting the IL33-ST2 interaction strategies are favored
due to the knowledge gained from the naturally occurring
soluble ST2 receptor isoform (sST2), a secreted “decoy receptor,”
which binds IL33 and thereby sequestering the ligand from
binding to membrane-bound ST2. High sST2 expression has

been associated with anti-tumor responses in several cancers
(120). However, the most advanced modalities targeting the
IL33-ST2 interaction are antibodies, with five different anti-
IL33 or anti-ST2 antibodies being tested in clinical phase 1
trials and found to be safe for use in humans (NCT02170337,
NCT01928368, NCT02958436, NCT02999711, NCT03112577,
NCT02345928, NCT03096795). Currently, there are multiple
phase 2 trials ongoing/completed investigating the efficacy of
IL33-ST2 inhibition against various allergic and inflammatory
diseases and diabetic kidney disease (Table 1A).

To date, no clinical trials have been conducted in cancer
patients. Indeed, only a limited number of studies have used IL33-
ST2 neutralizing antibodies in preclinical tumor models in vivo
(Table 1B). Strikingly, all these studies demonstrated anti-tumor
effects of anti-IL33 and anti-ST2 antibody treatments. However,
as a cautionary tale, multiple studies demonstrate anti-tumor
effects upon administration of recombinant IL33 (34, 41).

Targeting MCs
A plethora of strategies to target MC receptors, intracellular
signaling components and MC-derived mediators have been
tested, with some now being used in the clinic. Traditionally,
agents targeting MCs were studied and applied in allergies and
related disorders (129, 130). Accordingly, mast cell stabilizers,
drugs like Cromolyn sodium, Nedocromil, and Lodoxamide,
which block MC degranulation are utilized for indications like
asthma and other allergic diseases (130).

A number of tyrosine kinase inhibitors including Nilotinib,
Sunitinib, Dasatinib, Imatinib, and Masitinib are in clinical trials
or in clinical practice as anti-cancer drugs (130). All these small
molecule inhibitors have high affinity for the tyrosine kinase
receptor KIT, in addition to other tyrosine kinases. KIT is a
key molecule for MC development, proliferation, survival and
function and inhibition of KIT reduces MC numbers and inhibits
their function. For example, Imatinib was shown to reduce
asthma symptoms in a MC-dependent manner (131), yet the
impact of these TK inhibitors on MCs and their contribution
to the anti-tumor effect has not been investigated systematically.
In the first instance, it would be important to establish whether
tumors with high MC numbers respond better to anti-KIT
tyrosine kinase inhibitors.

The field of targeting IL33-ST2 signaling is quickly
progressing, with neutralizing antibodies being the most
promising agents. While these antibodies advance rapidly in
clinical trials for various inflammatory disorders, their use as
anti-cancer agents is only just beginning. More work is required
to better dissect tumor-promoting from tumor suppressing roles
conferred by the IL33-ST2 axis in order to predict in which
tumor microenvironment inhibition of IL33-ST2 signaling or
MCs will be beneficial.

CHALLENGES FOR THE FIELD

The importance of IL33 and MCs in GI cancer has been well
documented. In recent years, there has been some progress in
understanding the mechanisms of how the IL33-MC axis acts
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TABLE 1A | Clinical trials utilizing antibodies targeting IL33/ST2.

Antibody Company Clinical trial Phase Indication Status/Results

MSTT1041A, Genentech/ NCT02918019 2b Uncontr. severe asthma Completed

AMG 282,

RG6149

Amgen NCT03747575 2 Atopic dermatitis Active, not recruiting

(anti-ST2)

REGN3500, Sanofi/Regeneron NCT03387852 2 asthma Completed, met 1st & 2nd endpoint

SAR440340 NCT03546907 2 COPD* Recruitment completed

(anti-IL33) NCT03736967 2 Atopic dermatitis Recruiting

NCT03738423

GSK3772847, GSK/ NCT03207243 2a Severe asthma Recruitment completed

CNTO 7160

(anti-ST2)

J&J NCT03393806 2 Asthma with AFAD* Active, not recruiting

ANB020, Anaptysbio NCT02920021 2 Peanut allergy Completed (121)

Etokimab NCT03469934 2 Eosinophilic asthma Recruitment completed

(anti-IL33) NCT03533751 2 Atopic dermatitis Completed (122)

NCT03614923 2 Chron. Rhinosinusitis with NP* Recruiting

MEDI3506 AstraZeneca NCT04170543 2a Diabetic kidney disease Recruiting

(anti-IL33) NCT04212169 2 Atopic dermatitis Recruiting

*COPD, chronic obstructive pulmonary disease; *AFAD, allergic fungal airway disease; *NP, Nasal Polyps.

TABLE 1B | Studies utilizing antibodies IL33/ST2 in tumor models in mice.

Reference Antibody Cancer model Result MCs analyzed

Guabiraba et al. (123) Anti-IL33, anti-mouse, clone 396118,

MAB3626, R&D

CT26 colon cancer cell line

subcutaneous

aIL33+Irinotecan ->

anti-tumor effect

No

Nakagawa et al. (105) Anti-IL33, R&D KTC-K19CreERT extrahepatic

cholangiocarcinoma mice

Anti-tumor effect No

Wu et al. (124) Anti-IL33, anti-human, MAB36254,

R&D

Renal cancer cell lines 786O and

OSRC2 subcutaneous in nude BalbC

Anti-tumor effect No

Anti-ST2, anti-human, Clone

MAB523, R&D

Anti-tumor effect No

Zhou et al. (125) Rabbit anti-mouse, R&D CT26 colon cancer cell line

subcutaneous

Anti-tumor effect No

Rabbit anti-mouse, R&D Anti-tumor effect No

Kim et al. (126) Anti-ST2, anti-mouse, clone 245707,

MAB10041, R&D

KrasG12DxCCSP-Cre lung cancer

model

Anti-tumor effect No

Lin et al. (127) Anti-ST2, monoclonal anti-human,

R&D

Ln229 glioma cell line subcutaneous

in NSG mice

Anti-tumor effect NSG are MC-def.

Maywald et al. (70) Anti-ST2, mu-IgG1-FC–anti-muST2,

Amgen

ApcMin intestinal cancer model Anti-tumor effect Yes, MC number + activation

decreased in IL33KO/anti-St2

treated tumors

Kudo-Saito et al. (128) Anti-IL33, anti-mouse, R&D B16F10 melanoma subcutaneous

and intravenous

Anti-tumor Yes, MC increased in BM

metastasis

in GI cancers. While there is an increasing interest in targeting
this signaling node in various diseases, the few drug candidates
currently undergoing clinical testing have not been utilized in
cancer trials yet. This is due to the dichotomous actions of IL33
and MCs in cancer. Below we dicuss some of the aspects of
IL33 and MC biology which need to be addressed in order to
advance the field toward harnessing IL33/MCs targeting as a
novel treatment option for GI cancers.

Diversity of Cell Types Responding to IL33
While there is now ample evidence that the IL33-MC axis is
important for many cancers, the multitude of cell types in
the TME able to respond to IL33 and mediated either pro-
or anti-tumorigenic effects presents a formidable challenge for
predicting the outcome of anti-IL33/anti-ST2 therapies. We
propose that a detailed investigation of the spatial distribution
of IL33-expressing cells and ST2-presenting responder cells
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in combination with full immunophenotyping of tumors will
help addressing these issues. Since oxidation of IL33 in the
extracellular space occurs rapidly and drastically reduces its
ability to bind ST2 and trigger downstream signaling activation
(132), we speculate that only the ST2-expressing cells in
close spatial proximity of IL33-rpoducing cells will respond to
IL33. Novel technologies like multiplex immunofluorescence
microscopy, will allow spatial identification of cell types
expressing IL33 and ST2, enabling prediction of responder
cell types. Because Tregs and ILC2s are also constitutively
expressing ST2, these cell types should be the included in
studies attempting to predict anti-tumor effects of IL33-
ST2 inhibition.

Also, further research is required to better understand
the temporal dimension of IL33 secretion and the cell types
responding during early vs. late stages of tumorigenesis.
Indeed some studies suggest that IL33 expression is decreased
in more advanced disease (97, 98) while serum levels of
IL33 increased in patient with advanced gastric cancer
(133). Tissue resident ST2-expressing cells, like MCs and
ILC2s are the dominant IL33 responders during the early
stages of tumor development. However, it is not known
whether these cells can lose their responsiveness to IL33
in the changing tumor microenvironment, for example,
by downregulating expression of ST2, nor has it has been
investigated whether the dominant IL33 responses shift with
increasing tumor size and progression of disease toward ST2-
positive cells newly recruited into the tumors. Nevertheless,
there is significant evidence of the role of MCs and IL33
in late stage cancers, particular in the context of tissue
remodeling, epithelial to mesenchymal transition and invasion
(104, 128, 134, 135).

MC Heterogeneity
Many effects of IL33 are mediated through MC activation.
However, the true extent of MC heterogeneity within the TME
is not well understood. Only a few whole transcriptome studies
are published, all of them were performed on bulk MCs isolated
from healthy mice or humans. As part of the FANTOM5 project,
Motakis et al. (136) elucidated the transcriptome of human
skin MCs and compared against ex vivo cultured MCs. They
found MC-specific gene signatures distinguishing the skin MCs
from various other cell types, and discovered significant changes
in gene expression profiles suggesting significant de-or trans-
differentiation associated with in vitro propagation of MCs
cultured (136). This warrants careful interpretation of findings
obtained from in vitro studies. Transcriptional profiling of MCs
from various tissues against other major immune cell lineages,
revealed not only distinct differences between the various
cell types but also considerable transcriptional heterogeneity
between MCs recovered from different tissues (137). Indeed, a
recent review suggested to replace the currently used system
of histological classification of MCs with a system based on

MC protease expression to more accurately reflect the tissue-
specific versatility of MCs (138). Single cell sequencing studies
of cancer-associated MCs are required to elucidate the true
extent of mast cell heterogeneity to better understand the
various biological consequences of mast cell activation in the
cancer setting.

Diversity of Mast Cell Activation Signals
Following on from the initial study by Schmitz et al., the
ability of IL33 to activate MCs has been studied extensively
(2, 139). However, MCs are key sentinel cells that express
many receptors on their surface (46, 140), resulting in
a multitude of environmental factors able to trigger
their activation.

Allergen IgE-mediated activation of MCs was the first to be
identified and is well characterized in the context of allergic
pathologies, yet many other factors can activate MCs in an
IgE-independent manner (52, 139).

Numerous studies have shown that IL33-elicited responses
in MCs differ from IgE stimulation and that IL33-mediated
responses in MCs are modified, and often potentiated,
when secondary stimuli like IgE, substance P or IL3 are
present (112, 141–144). Further research is required to
uncover other MC-activating factors present in the tumor
microenvironment and how they impact IL33 signaling and
MC activation.

CONCLUSIONS

Diverse functions for both IL33 and mast cells were uncovered
in the context of cancer initiation and progression. However,
only by focusing on the IL33/MC axis, rather than studying
these key regulators of immunity separately, and by utilizing
novel technologies, will the full potential of targeting IL33
signaling and MC activation be discovered and exploited for
anti-cancer therapies.
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Basophils were identified in human peripheral blood by Paul Ehrlich over 140 years

ago. Human basophils represent <1% of peripheral blood leukocytes. During the

last decades, basophils have been described also in mice, guinea pigs, rabbits,

and monkeys. There are many similarities, but also several immunological differences

between human and mouse basophils. There are currently several strains of mice with

profound constitutive or inducible basophil deficiency useful to prove that these cells have

specific roles in vivo. However, none of these mice are solely and completely devoid

of all basophils. Therefore, the relevance of these findings to humans remains to be

established. It has been known for some time that basophils have the propensity to

migrate into the site of inflammation. Recent observations indicate that tissue resident

basophils contribute to lung development and locally promote M2 polarization of

macrophages. Moreover, there is increasing evidence that lung-resident basophils exhibit

a specific phenotype, different from circulating basophils. Activated human and mouse

basophils synthesize restricted and distinct profiles of cytokines. Human basophils

produce several canonical (e.g., VEGFs, angiopoietin 1) and non-canonical (i.e., cysteinyl

leukotriene C4) angiogenic factors. Activated human and mouse basophils release

extracellular DNA traps that may have multiple effects in cancer. Hyperresponsiveness

of basophils has been demonstrated in patients with JAK2V617F-positive polycythemia

vera. Basophils are present in the immune landscape of human lung adenocarcinoma

and pancreatic cancer and can promote inflammation-driven skin tumor growth. The

few studies conducted thus far using different models of basophil-deficient mice have

provided informative results on the roles of these cells in tumorigenesis. Much more

remains to be discovered before we unravel the hitherto mysterious roles of basophils in

human and experimental cancers.

Keywords: angiogenesis, angiopoietins, basophil, cancer, cysteinyl leukotrienes, cytokines, vascular endothelial

growth factors
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INTRODUCTION

Peripheral blood basophils and tissue mast cells were described
over 140 years ago by Paul Ehrlich the founder of modern
Immunology (1, 2). Basophils have been characterized in humans
(3), guinea pigs (4), mice (5, 6), rabbits (7) and monkeys
(8). Basophils represent <1% of human peripheral leukocytes,
whereas mast cells are ubiquitous in essentially all tissues (9, 10).
Basophils share some characteristics with mast cells, including
the presence of similar, but distinctive basophilic granules within
the cytoplasm (11), surface expression of the full tetramer (αβγ2)
form of the high affinity receptor for IgE (FcεRI) and release
of proinflammatory mediators such as histamine and cysteinyl
leukotrienes (12, 13). These similarities had initially generated the
erroneous hypothesis that basophils represented the circulating
precursor/counterpart of tissue mast cells. This concept is no
longer accepted, as there is now ample evidence that human
basophils and mast cells differ morphologically, ultrastructurally,
immunologically, biochemically, and pharmacologically (13–
15). In a series of eloquent studies, Ann M. Dvorak carefully
described and compared the distinctive morphological and
ultrastructural features of human basophils and mast cells
(11). Figure 1 illustrates the striking ultrastructural differences
between human peripheral blood basophils and lung mast cells
(18). In addition to highlighting key ultrastructural differences
between basophils and mast cells, Dr. Dvorak also pioneered
the characterization of mouse basophils. In fact, there was
early belief that questioned the existence of basophils in
mice. However, Dr. Dvorak’s meticulous work clearly identified
mouse basophils as a rare, and often elusive, population of

FIGURE 1 | Morphologic and ultrastructural differences between human basophils and mast cells. (A) Human peripheral blood basophil shows irregular blunt surface

processes and a polylobed nucleus with condensed chromatin pattern. The cytoplasm contains large-membrane bound secretory granules filled with electron dense

particles and/or finely granular material (11) X 21,500. (B) Isolated human lung mast cell has a narrow surface fold and single lobed nucleus with partially condensed

chromatin pattern. The cytoplasm is filled with a large number of membrane-bound secretory granules that have an extremely variable ultrastructural pattern (16, 17).

The cytoplasm also contains six non–membrane-bound spherical lipid bodies that are larger than secretory granules, are osmophilic and do not contain scrolls

(16, 17) X 14,000. Photos kindly provided by Ann M. Dvorak and reproduced with permission from Marone et al. (18).

granular cells typically found in bone marrow, with some
ultrastructural characteristics similar to human basophils (6, 11,
19).

BASOPHIL DEVELOPMENT

Like other myeloid lineages basophils develop from
hematopoietic stem cells in the bone marrow (20). IL-3 is
generally viewed as the most important growth factor for
basophil development, both in humans and mice (21, 22).
Indeed, human and murine basophils can be generated in
vitro by culturing bone marrow cells in the presence of
recombinant IL-3 (23–25). More recently, it has been proposed
that thymic stromal lymphopoietin (TSLP) is another growth
factor important for the development of mouse basophils
(26). Interestingly, IL-3- and TSLP-elicited murine basophils
differ in terms of gene expression and functions, suggesting
heterogeneity among these basophil populations (27). A study
has suggested clinical relevance to this concept in reporting
evidence that a small percentage (? 10%) of basophils isolated
from asthmatic patients express the TSLP receptor and respond
directly to TSLP by releasing histamine and cytokines (28).
In contrast, subsequent studies have failed to confirm these
findings, showing that human basophils lack expression of the
IL-7Rα subunit of TSLP receptor (29) and are unresponsive to in
vitro stimulation with TSLP (29, 30). Collectively, these findings
illustrate some of the controversies yet to be resolved between
human and mouse basophils, but also those within each species
(13, 31, 32).
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PROINFLAMMATORY AND
IMMUNOREGULATORY
MEDIATORS/CYTOKINES RELEASED BY
BASOPHILS: HUMAN VS. MOUSE

Many phenotypic markers have been identified on human and
mouse basophils, with some minor differences worth noting.
For example, basophils from both species express of a variety
of activation-linked markers, namely FcεRI (33, 34), but also
the degranulation marker, CD63 (35–37), as well as CD203c –
an ecto-nucleotide pyrophosphatase/phosphodiesterase (15, 36,
38, 39). In contrast, human basophils express the IgG receptors
FcγRIIA, FcγRIIB, and minute amounts of FcγRIIIB, whereas
mouse basophils express FcγRIIB and FcγRIIIA (40, 41). As
indicated above, both human and mouse basophils express
receptors for IL-3 (CD123) (26, 42), but also for GM-CSF
(CD116) (43), and IL-33 (ST2) (44–47). Again, it remains unclear
whether they similarly express the heterodimeric receptor for
TSLP (26, 28–30). To date, only human basophils are reported
to express IL-5 receptors (CD125). Human basophils express
tropomyosin receptor kinase A (TrkA)(48, 49)—the high affinity
receptor for nerve growth factor (NGF) and that this factor
mediates functional activity (50). In contrast, there are currently
no reports that mouse basophils express TrkA. Both human
and mouse basophils share the expression of a variety of
chemokine receptors (13, 51–56), but it remains to be determined
if mouse basophils express CCR1 and CXCR1 (57). These
phenotypic comparisons between human and mouse basophils
are summarized in Table 1.

There are several proinflammatory mediators found
preformed in human basophils, including histamine (≃ 1
pg/cell), basogranulin (57, 77) and very low concentrations of
tryptase (78). Human (79) andmouse basophils release granzyme
B (80), which possesses cytotoxic effects on cancer cells (81, 82).
Both human and mouse basophils rapidly synthesize cysteinyl
leukotriene C4 (LTC4) through the 5-lipoxygenase pathway (83).
There is evidence that mouse basophils metabolize arachidonic
acid through cyclooxygenase activity to form prostaglandin
D2 (PGD2) and prostaglandin E2 (PGE2) (72, 84). In contrast,
there is currently no solid evidence that highly purified human
basophils can produce measurable levels of PGD2, or any
other lipid mediator generated through the cyclooxygenase
pathway (85).

With regard to the cytokines secreted by human vs. mouse
basophils, there are several similarities and differences. First,
it is now well-accepted that both human and mouse basophils
produce IL-4 (44, 86–97) and IL-13 (44, 89, 92, 94, 97–
100). Several reports show that mouse basophils additionally
produce IL-6 (44, 73, 101) and TNF-α (44, 73). There are at
least two publications reporting TNF-? production by human
basophils (88, 102). Numerous attempts to detect this cytokine
in supernatants of highly purified human basophils activated by
IgE-mediated stimuli have produced negative results. Certainly,
other cell types (e.g., monocytes, DCs) produce copious amounts
of TNF-? and IL-6 (103, 104), thus making it possible that even
low-level contamination with these cells could skew the basophil

TABLE 1 | Comparison of the phenotypic differences between human and mouse

basophilsa,b.

Phenotypic Marker Human

Basophil

Mouse

Basophil

References

FcεRI ++ ++ (34)

FcγRIIA + - (33, 40, 58)

FcγRIIB + + (33, 40, 58)

FcγRIIIA - + (33, 40, 58, 59)

FcγRIIIB ± - (33, 40, 58, 60)

CD63 + + (35–37)

CD203c + + (15, 36, 38, 39)

(CD123) IL-3Rα ++ ++ (26, 42)

(CD116) GM-CSFRα + + (43)

(CD125) IL-5Rα + ND (43)

TSLPR – + (26, 28–30, 32)

(ST2) IL-33R + + (44–47)

CCR1 + ND (13, 51)

CCR2 ++ + (13, 51–53)

CCR3 ++ ± (13, 51, 61)

CCR5 + – (13, 51, 53)

CXCR1 ++ ND (13, 51)

CXCR2 + + (13, 51, 62)

CXCR4 + + (13, 51, 62, 63)

CRTH2 ++ + (51, 55, 62, 64, 65)

CD200R + + (56, 66)

CD300a + + (67–69)

CD300c + + (68, 70)

CD300f + + (68, 70)

PD-L1 + ND (50)

VEGFR2 + ND (57)

NRP1/2 + ND (57)

TrKA + ND (48, 49)

ND, not done.
aSeveral key surface markers are used to characterize human [IgE+, FcεRI+, CCR3+,

(CD123)IL-3Rα+, CD63+, CD203c+ ] (15, 36, 57, 61, 71) and murine basophils (FcεRI+,

KIT−, CD49b+, CD200R3+) (35, 62, 72–76) by flow cytometric analysis.
bThis table essentially includes the phenotypic characteristics of peripheral blood human

and mouse basophils. Phenotypic and/or molecular characteristics of human (50) and

mouse basophils in tissues (26, 39, 44, 53, 55, 62) are also included.

+: means “expressed”; ++: means “highly expressed”; – means “not expressed”; ±:

means “probably expressed under certain circumstances”.

findings. This issue must be taken into consideration each time
any cytokine is reportedly made by basophils. Nevertheless,
consistent with the general theme of this review, it is becoming
apparent that basophils secrete several angiogenic factors that,
when combined with the cytokines thus far mentioned, point
to a possible role for these cells in wound healing and/or
tumorigenesis (as further discussed below). In particular, vascular
endothelial growth factor-A (VEGF-A) (57), angiopoietin-1
(ANGPT1) (105), hepatocyte growth factor (HGF) (44, 106),
and amphiregulin (71, 107, 108) are all reportedly produced
by human basophils, with some of these also made by
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TABLE 2 | Comparison of the mediators differently produced by human and mouse basophils.

Mediator Human

Basophil

Mouse

Basophil

References

Cytokines IL-3 + + (21, 109)

IL-4 ++ + (44, 87–91, 93–97,

110, 111)

IL-5 – ND (86)

IL-6 ± + (44, 73, 89, 95, 101)

IL-8/CXCL8 + ND (86, 88–90, 112)

IL-13 + + (44, 88, 89, 92, 94,

97–100)

IL-31 + + (113)

TNF-α ± + (44, 73, 88, 95, 102)

Chemokines CCL3 + + (100, 114)

CCL5 + ND (112)

CXCL10 + ND (112)

Angiogenic factors VEGF-A + ND (57)

VEGF-B + ND (57)

ANGPT1 + ND (105)

HGF + + (44, 106)

LTC4 + + (83, 115)

Amphiregulin + + (71, 107, 108)

Extracellular DNA Traps + + (116–118)

Granzyme B + + (78, 79)

ND, not done.

+: means “expressed”; ++: means “highly expressed”; – means “not expressed”; ±: means “probably poorly expressed”.

mouse basophils (44). Table 2 summarizes the cytokines/factors
produced by human vs.mouse basophils.

There are many other fundamentals of basophil biology not
discussed herein, but have been extensively reviewed elsewhere
(13, 86, 119–123). In this review, we focus our discussion
instead on the relatively novel concept of how basophils and
their mediators/cytokines may play a role in promoting or
limiting tumorigenesis.

DIFFERENCES BETWEEN PERIPHERAL
BLOOD AND TISSUE BASOPHILS

The life-span of peripheral blood basophils has been calculated
to be relatively short (? 2.5 days in mice) (124) and therefore
newly generated basophils are constantly supplied from the bone
marrow to the blood (20). It has long been thought that basophils
circulate in peripheral blood and are rarely present in tissues
unless during specific kinds of inflammation, reported both in
mice (62, 73, 124–126) and in humans (50, 127–131). However,
this dogma has been recently challenged by a study in mice
whereby the authors found that basophils are present in all phases
of lung development (44). Lung-resident basophils localize in
close proximity of alveoli and, interestingly, exhibit a specific
phenotype, highly divergent from peripheral blood basophils.

IL-33 and GM-CSF produced in the pulmonary environment
mediate the specific gene signature of lung alveolar basophils.
Importantly, lung basophils are essential for transcriptional
and functional development of alveolar macrophages and their
polarization toward the M2 state. The latter finding raises the
intriguing possibility that in pathologies characterized by M2
macrophages, as happens in many tumors (132, 133), basophils
may be involved in regulating the activity of tumor-associated
macrophages. This experimental study has several relevant
pathophysiological implications. First, it demonstrates that tissue
resident basophils exhibit a specific phenotype, different from
circulating basophils. Second, the tissue microenvironment can
modulate the specific gene signature of resident basophils
through exposure to cytokines (e.g., IL-33, GM-CSF). Third,
lung resident basophils can influence the transcriptional and
functional development of macrophages. The observations of this
elegant study represent important premises for future research.

We would like to suggest that any difference between
circulating and tissue basophils should be confirmed in
human models, given the differences between human and
murine basophils. Moreover, studies are urgently needed to
characterize the possible roles of tissue basophils residing in
the tumor microenvironment (TME) of different human tumors
in order to identify novel potential prognostic biomarkers and
therapeutic targets.
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CANONICAL AND NON-CANONICAL
ANGIOGENIC FACTORS PRODUCED BY
BASOPHILS

Angiogenesis, the formation of new blood vessels from
preexisting ones via a process called sprouting, represents
one of the hallmarks of cancer (134, 135). Angiogenesis is a
highly complex process that may occur under physiological
conditions, such as during embryonic development. Pathological
angiogenesis can occur in inflammation and in cancer and
is driven by the coordinated overexpression of several
proangiogenic factors (136). Unlike wound healing, where
angiogenesis undergoes a resolution phase, tumor angiogenesis
continues abnormally in growing cancers supported by
angiogenic factors produced by both cancer cells and infiltrated
immune cells (137, 138). The VEGF family (VEGF-A, VEGF-B,
VEGF-C, VEGF-D) and their receptors (VEGFR1, VEGFR2,
VEGFR3) play intricate roles in initiating and promoting
tumor and inflammatory angiogenesis (136). Activated
human basophils release substantial amounts of VEGF-A,
the most potent proangiogenic molecule (57). VEGFs are
potent chemotactic stimuli for human basophils through the
engagement of VEGFR2expressed in these cells (57, 139). Thus,
VEGFs produced by tumor cells and by several immune cells in
TME (136, 139–141) can induce basophil chemotaxis through
the activation of VEGFR2 on their surface.

The angiopoietin/Tie receptor system is another player in
tumor angiogenesis. Angiopoietins (ANGPTs) are a group of
growth factors that are involved in regulating vascular functions
(142). ANGPTs and their receptors (Tie1 and Tie2) participate
in inflammatory and tumor angiogenesis (143). ANGPT1
binds with high affinity to the Tie2 receptor on endothelial
cells and promotes endothelial stabilization (144). By contrast,
ANGPT2, released by activated endothelial cells, causes vascular
permeability. Human basophils constitutively express ANGPT1
and ANGPT2 mRNAs (105). In vitro basophil activation causes
the release of ANGPT1. Hepatocyte growth factor (HGF) is
one of the most powerful angiogenic factors (145) and human
basophils are a major source of HGF (106). Recently, it has
been demonstrated that mouse lung-resident basophils express
a specific gene signature including Hgf (44).

The cysteinyl leukotrienes (cys-LTs) are lipid mediators
initially characterized for their proinflammatory activities (146).
The cys-LTs include leukotriene C4 (LTC4), LTD4, and LTE4.
LTC4 is de novo synthesized by several immune cells (146,
147) and is the major lipid mediator produced by activated
human basophils (83, 115). LTC4 is converted by the extracellular
enzymes, γ -glutamyl transpeptidases to LTD4 and to LTE4
by the membrane-bound dipeptidases (146). Cys-LTs activate
three distinct receptors (CysLTRs) CysLT1R, CysLT2R, and
CysLT3R (148–150). Recent evidence demonstrates that LTC4

and LTD4 were equipotent in forming tubes in the Matrigel in
vitro assay of angiogenesis (151). The proangiogenic activities
of LTC4 and LTD4 were also confirmed in vivo and were
found to be mediated by the engagement of CysLT2R on blood
endothelial cells (BECs). CysLT2R deficiency and pharmacologic

antagonism reduced tumor growth and the formation of lung
metastases in a mouse model of Lewis lung carcinoma (151).
These novel findings emphasize the importance of cys-LTs as
non-canonical angiogenic factors in cancer. It is possible to
speculate that LTC4 released by circulating basophils can activate
CysLT2R overexpressed in tumor BECs (151), thus contributing
to angiogenesis. It has been suggested that CysLT2R might
represent a possible pharmacologic target in tumor growth and
metastases formation (151).

FORMATION OF EXTRACELLULAR DNA
TRAPS BY BASOPHILS

Extracellular traps (ETs) are DNA structures released by activated
immune cells, including neutrophils, eosinophils, mast cells,
macrophages, and basophils (116, 117, 152–155). ETs released
by these cells are draped with proteins from primary granules
(e.g., myeloperoxidase and elastase) (156), secondary granules
(e.g., lactoferrin and pentraxin 3) (156, 157), and tertiary
granules (e.g., matrix metalloproteinase 9) (156). Initial studies
highlighted the antibacterial activity of ETs (154, 158, 159).
During the last years, there has been increasing evidence that
ETs, particularly neutrophil extracellular traps (NETs), have a
role in different aspects of cancer (160). For instance, it has
been demonstrated that NETs can promote cancer metastasis
in mouse models and in humans (161–164). Moreover, it has
been found that NETs formed during lung inflammation awaken
dormant cancer cells (165). Neutrophils from patients with
myeloproliferative neoplasms associated with JAK2V617F somatic
mutation have an increase in NET formation and thrombosis and
mice with knock-in of JAK2V617F have an increased propensity
for NET formation and thrombosis (166). Recently, we have
demonstrated that anaplastic thyroid cancer cells can induce
the release of mitochondrial DNA traps by viable neutrophils
(167). Collectively, these studies indicate that NETs can sustain
several aspects of tumor growth, the formation of metastasis, and
promote cancer-associated thrombosis. Activated human and
mouse basophils can form extracellular DNA traps (BETs) in vitro
and in vivo (116–118). Future studies should investigate whether
BETs modulate tumor growth and the formation of metastasis in
preclinical models and/or in human cancer.

BASOPHIL-DEPLETED MICE TO
INVESTIGATE BASOPHIL FUNCTIONS
IN VIVO

It seems pertinent to review the mouse models currently
employed to investigate basophil functions in vivo. Basophil-
depleted mice will certainly play a critical role in discerning the
functions of this granulocyte in cancer. Indeed, several models of
basophil-deficient mice have been developed and are undergoing
testing for this very purpose.

Initially, studies were performed using administration of
antibodies that transiently deplete basophils. These antibodies
recognize either the FcεRI (MAR-1) (168) or the activating

Frontiers in Immunology | www.frontiersin.org 5 September 2020 | Volume 11 | Article 210322

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Marone et al. Basophils and Cancer

receptor CD200R3 (Ba103) (169). Although these antibodies
can deplete basophils, they can also deplete/activate other
cells (e.g., mast cells, DCs, monocytes) expressing FcεRI (169–
171). Furthermore, Ba103 is FcR-dependent and might activate
myeloid cells and NK cells (168). Studies using these depleting
antibodies have led to the controversial conclusion that basophils
have a role as antigen-presenting cells (APCs) during Th2
polarization (95, 172, 173). Several new mouse strains with
constitutive or inducible depletion of basophils have recently
been generated (119). The Bas-TRECK and theMcpt8DTR are two
diphtheria toxins (DT)-inducible basophil depletionmicemodels
(125, 174). The latter models are characterized by a transient
depletion of more than 90% of basophils. The Mcpt8DTR mice
express the human diphtheria toxin (DT) receptor (DTR), which
makes it possible to induce a transient (∼ 5 days) depletion
of basophils after intraperitoneal treatment with DT (125). The
Mcpt8 gene is specifically expressed by basophils (175, 176) and
encodes mouse mast cell protease 8 (mMCP-8), a granzyme B-
like protease stored in the secretory granules of basophils (175).
Although the expression of Mcpt8 is specific to basophils among
mature cells, it is still transiently expressed at the progenitor stage
to a sufficient level to allow their depletion by a high dose of
DT in the Mcpt8DTR mice (177). Injection of DT in Bas-TRECK
mice also causes efficient (≥90%) depletion of basophils (174). In
this model, the human DTR was inserted under control of the 3’
proximal enhancer in the IL4 locus.

Basoph8 (Mcpt8IRES−YP−Cre) (178), Mcpt8-Cre (179) and
P1-Runx1 (180) are three different mouse models showing
constitutive depletion (∼90%) of basophils. The Mcpt8-Cre
model was developed by engineering a bacterial artificial
chromosome transgenic mouse that expresses the Cre
recombinase under control of the regulatory elements of
Mcpt8 (179). Mcpt8-Cre mice are constitutively deficient for
basophils; therefore, this model is suitable for experiments
that need long-term ablation of these cells. In the Basoph8
(Mcpt8IRES−YP−Cre) mice an IRES-YFP-Cre cassette was inserted
before the start codon of the Mcpt8 gene (178). The dysruption
of the distal (P1) promoter of the transcription factor Runx1
resulted in >90% depletion of basophils indicating that Runx1
plays a critical role in the development of mouse basophils
(180). Runx1P1N/P1N mice have markedly reduced numbers
of basophils in bone marrow, spleen and peripheral blood
(180). Recently, a new mouse model (Mcpt8ìCre/+Il4fl/fl) was
established by crossing two mouse stains, Mcpt8iCre/+ and
Il4fl/fl mice (74). These mice are selectively deficient for IL-4
only in basophils and are thus suitable to assess the role of
basophil-derived IL-4 in different pathophysiological conditions,
including cancer. Several excellent reviews have analyzed in
details the different mouse models to investigate basophil
functions in vivo (75, 119, 181, 182).

It is important to emphasize that previous studies using
antibody-depleted basophils (114) and genetically engineered
models (62, 91) provided contrasting results on the role of
basophils in cancer. Moreover, it should be pointed out that
even newmousemutants have some hematological abnormalities
(177). Therefore, results obtained with basophil-deficient mouse
models should be interpreted with caution.

PERIPHERAL BLOOD BASOPHILS AND
HUMAN CANCER

It has been well-known for some time that basophilia can occur
during the advanced phase of chronic myeloid leukemia (CML)
(183). The transcription factor IKAROS is markedly reduced
in bone marrow from CML patients (184). Overexpression of
the dominant-negative isoform of IKAROS in CD34+ cells
from CML patients resulted in inhibition of IKAROS activity
and increased differentiation into basophils (184). Basophils
from CML patients express HGF, which promotes CML cell
expansion in an autocrine fashion (106). In a mouse model
of CML it has been shown that basophil-like leukemia cells
promote CML development by producing the chemokine CCL3
(185). In this model basophil-derived CCL3 negatively regulates
the proliferation of normal hematopoietic stem/progenitor cells
and promotes the expansion of leukemia cells (186). There
is also evidence that basophilia is an independent risk factor
for evolution of myelodysplastic syndrome to acute myeloid
leukemia (187, 188).

Peripheral blood basophils have also been associated with
certain solid tumors (189). Basopenia appears to be associated
with poor prognosis of colorectal cancer (190, 191), whereas
circulating basophils have no predictive role in breast cancer
(192), ovarian cancer (54) and oral squamous cell carcinoma
(193). Of note, high relative circulating basophils positively
associated with improved outcome in melanoma patients
undergoing immunotherapy with nivolumab plus ipilimumab
(194). On the other hand, baseline basophil count may predict
recurrence in patients with high-grade bladder cancer receiving
bacillus Calmette-Guérin (BCG) following resection (195).
Finally, in a mouse model of breast cancer, a low percentage
of circulating basophils correlated with an increased number of
pulmonary metastases, suggesting a protective role of basophils
in this model (196).

Basophils and Polycythemia Vera
Polycythemia vera (PV) is a myeloproliferative neoplasm
characterized by clonal stem cell proliferation of erythroid,
megakaryocytic, and myeloid cell lines (197, 198). An activating
Janus kinase 2 (JAK2) mutation (JAK2V617F or exon 12
mutation), leading to an overactive JAK-STAT signaling pathway
is found in more than 90% of PV patients (199, 200).
Pruritus is a common symptom in PV patients (198, 201) and
basophil-derived mediators have been implicated in this disorder
(202). Absolute basophil counts have been found increased in
JAK2V617F-positive PV patients compared to control subjects
(203). The expression of CD63, a surface marker of basophil
activation, is increased in PV patients with pruritus compared
to controls. Finally, PV basophils are hyperresponsive to IL-
3 compared to basophils from normal donors. Collectively,
these findings indicate that JAK2V617F mutation is associated
with hyperreactivity of PV basophils. The latter observation is
likely responsible for pruritus in PV patients. Given the role of
basophils as major source of Th2 cytokines (e.g., IL-4), we cannot
exclude the possibility that the hyperresponsiveness of these cells
might play a role in the possible evolution of PV patients.
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Basophils and Ovarian Cancer
In a recent study, Bax and co-workers examined the role of
basophils in ovarian cancer patients (204). They found that
higher percentage of circulating basophils from ovarian cancer
patients was positively associated with improved overall survival.
Furthermore, by protein and gene expression analyses they
detected resting (CCR3, CD123, FcεRI) and activated basophils
(CD63, CD203c) in ovarian tumors. Whereas, gene expression
for tumor-resident basophils was not associated with patient
survival outcomes, gene signatures for activated basophils were
positively associated with improved progression-free and overall
survival. This study suggests that activated basophils, either in
circulation or in tumor, are associated with a survival benefit in
ovarian cancer patients.

BASOPHILS AND LUNG CANCER

It has been well-known for some time that murine (62, 73,
124, 125) and human (127–131) basophils have a propensity
to migrate into the site of inflammation, including the lung.
Whether this influx contributes to the supply of tissue resident
basophils that promote M2 polarization of lung macrophages
(44) remains to be determined. Nonetheless, the evidence
that lung-resident basophils acquire the expression of several
cytokines due to the exposure to lung-specific signals (e.g., IL-33,
GM-CSF), emphasizes the plasticity of these cells. Thus, basophils
migrating into tissue may take on completely new roles, based
on the cytokine environment they encounter. The observation
that the pulmonary microenvironment may condition the
transcriptional and functional development of immune cells has
recently been extended to the oncological context. Single-cell
transcriptomics of human and mouse lung cancers revealed that
blood and tumor neutrophils and monocytes strongly differed in
their gene expression (205). Interestingly, basophils were present
in mouse lung tumors. Lavin and collaborators compared the
simultaneous single-cell analysis of the immune compartments
in early (stage I) lung adenocarcinoma, non-involved lung tissue
(nLung), and peripheral blood of each patient (50). Basophils
were present in both solid tumor site and nLung. A percentage
of basophils in the tumor were PD-L1+. This study demonstrates
that, as early as in stage I disease, basophils are present in the
immune landscape of nLung adenocarcinoma.

In a related example of how the TME can influence
basophil function, Schroeder and collaborators demonstrated
that highly purified human basophils release histamine and
produce IL-4 and IL-13 when co-cultured with the lung
carcinoma cell line, A549 (30). Remarkably, these responses
required that basophils express IgE, yet occurred independently
of allergen, and were suppressed pharmacologically by inhibitors
of FcεRI signaling. It was subsequently determined that the
IgE-binding lectin, galectin-3, expressed on the A549 cells,
was responsible for basophil activation (206). In support of
these findings, basophils co-cultured with microspheres coated
with galectin-3 also secreted IL-4 and IL-13. Galectin-3 is
implicated as a biomarker and/or factor contributing to the
pathogenesis of a wide range of conditions, including cancer,

cardiovascular disease, autoimmunity, wound healing, and
chronic inflammation in general (207). Overall, these findings
illustrate a novel mechanism by which galectin-3 expressed by
human lung carcinoma cells can activate basophils (and likely
other cell types) to release several immunoregulatory cytokines
and proinflammatory mediators. Additional studies are required
to elucidate the exact role of galectin-3 in activating basophils,
and how the mediators and cytokines released by these cells
contribute to human and experimental lung cancer.

BASOPHILS AND MELANOMA

The role of basophils has been evaluated in a mouse model
of melanoma in which Treg depletion was induced (114).
Treg depletion in Foxp3DTR mice was associated with tumor
infiltration of basophils and CD8+ T cells leading to rejection
of melanoma. Basophils promoted CD8+ lymphocyte infiltration
into the tumor through the production of CCL3 and CCL4.
Depletion of basophils, through administration of MAR1 (i.e.,
anti-FcεRI), in Foxp3DTR melanoma-bearing mice prevented the
rejection of melanoma, suggesting a pivotal role of basophils
in this model. However, as previously mentioned, MAR1 can
also deplete/activate other immune cells (e.g., mast cells, DCs,
monocytes) expressing FcεRI (170, 171). Thus, the possible role
of basophils in melanoma will need to be confirmed using the
newer genetically engineered basophil-deficient mouse models.

We recently explored the anti-tumor activity of IL-33, a
cytokine known to induce tumoricidal functions in eosinophils
(208, 209) on bone marrow-derived murine basophils.
Incubation of basophils with IL-33 upregulated granzyme
B mRNA and the surface expression of CD63 (80), indicating
phenotypic and functional activation. When IL-33-activated
basophils were co-cultured with metastatic B16-F10 melanoma
cells, tumor cell-growth was substantially inhibited, as compared
to melanoma cells co-cultured with resting basophils. These
preliminary findings suggest that, under appropriate stimulation,
basophils can acquire tumoricidal properties in vitro. Whether
similar activity occurs in vivo remains to be determined, but it is
an area of ongoing investigation.

BASOPHILS AND PANCREATIC CANCER

In the mid 1990s, AnnM. Dvorak showed ultrastructural features
of piecemeal degranulation of human basophils in the stroma of
pancreatic cancer (11). More recently, Protti and collaborators
elegantly investigated the role of basophils and their mediators
in experimental and human pancreatic cancer (91). In a large
cohort of pancreatic ductal adenocarcinoma (PDAC) patients,
they found basophils expressing IL4 in tumor-draining lymph
nodes (TDLNs) of PDAC. Importantly, the presence of basophils
in TDLNs was an independent negative prognostic biomarker
of patient survival after surgery. The authors also examined the
possible role of basophils in an orthotopic model of pancreatic
cancer using the Mcpt8-Cre basophil deficient (179) and WT
mice. At 8 weeks after implant, tumor was found in 80%WT, but
in none of basophil-deficient mice. The authors demonstrated
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the presence of basophils in TDLNs in this model of pancreatic
cancer and provided evidence that cancer-associated fibroblasts
(CAFs) released TSLP which activated DCs to produce IL-3
fromCD4+ T cells. IL-3-activated basophils produced substantial
amounts of IL-4. It was further determined that DCs and
CD14+ monocytes produced CCL7 which was responsible
for basophil migration into TDLNs. Based on these findings,
schematically illustrated in Figure 2, the authors concluded that
basophils can favor both Th2 and M2 polarization through the
production of IL-4, thus playing a relevant pro-tumorigenic role
in PDAC progression. Consistent with this latter concept of IL-4
driving M2 development, our own in vitro studies point to the
importance of basophil-derived IL-4 (and IL-13) in promoting
M2-like cells (211).

There is compelling evidence that CD4+ CD25+ Foxp3+

regulatory T cells (Tregs) contribute to maintain immune

tolerance in the TME (212, 213) particularly in pancreatic cancer
(214). A recent study has shown that Tregs can induce the
expression of activationmarkers (CD69, CD203c, and CD13) and
promote the release of several cytokines (IL-4, IL-8, IL-13) from
human basophils (90). Tregs induced basophil activation through
the release of IL-3. It has been suggested that Tregs might also
promote tumor evasion by activating basophils to augment and
sustain Th2 responses in TME by secreting IL-3 (215).

IGE, BASOPHILS AND SKIN CANCER

IgE is an ancient and the least abundant circulating
immunoglobulin isotype (216). It has been suggested that
IgE has evolved to provide protection against helminths (217)
and environmental toxins such as venoms (218–220). Moreover,
dysregulated IgE responses can cause a variety of allergic

FIGURE 2 | Proposed model of how basophils are recruited and activated in tumor draining lymph nodes (TDLNs) in the context of pancreatic cancer. It has been

previously demonstrated (210) that cancer-associated fibroblasts (CAFs) can produce TSLP that engages TSLP receptor on dendritic cells (DCs). TSLP-conditioned

DCs migrate into TDLNs were they prime CD4+ T cells for early IL-3 production. Monocytes, which are driven to differentiate toward a M2-type by activated CAFs,

release the basophil chemoattractant CCL7/MCP3 (52). Basophils are recruited from afferent arterial blood into lymph nodes and are activated by IL-3 to express IL-4.

Basophils are a major source of IL-4 contributing to both Th2 and M2 polarization. The percentage of basophils in TDLNs is an independent negative prognostic factor

of survival after surgery of pancreatic cancer patients (91).
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disorders (221, 222). IgE binds with very high affinity to FcεRI
on mast cells and basophils and remains bound to its receptor
for the life of these cells (223). It has been demonstrated
that once-weekly topical application of the carcinogen 7,12-
dimethylbenz [a] anthracene (DMBA) to the skin of WT mice
led to the development of squamous-cell carcinomas (SCCs)
after 8–15 weeks associated with high concentrations of serum
IgE and infiltration of IgE-bearing basophils in skin and tumors
(224). The same group of investigators extended the previous
observation by demonstrating that topical application of the
proinflammatory agent 12-0-tetradecanoylphorbol-13-acetate
(TPA) (2x a week for 2 weeks) to the skin of WT mice increased
serum IgE and IgE-bearing basophils in the skin (62). Using a
two-stage inflammation drivenmodel of epithelial carcinogenesis
(DMBA and subsequent exposure to TPA) (225), they found
that mice lacking IgE (lgh7−/−) were less susceptible to tumor
development compared to WT mice. IgE-bearing basophils
(Mcpt8+) accumulated inside skin tumors of WT mice. In
this model, IgE-signaling was necessary for activation and
histamine release from basophils. Infiltrating tissue basophils
showed expression of Cxcr2, Cxcr4, and Ptger2 (CRTH2, the
PGD2 receptor). Blocking CXCR4 with a neutralizing antibody
selectively reduced basophil infiltration to the inflamed skin.
TSLP and IL-3, abundantly expressed in inflamed skin, increased
the surface expression of CXCR4 on basophils, allowing their
recruitment to the skin in response to CXCL12. Blocking TSLP
and IL-3 simultaneously with neutralizing antibodies abolished
basophil recruitment to the skin. The Mcpt8Cre/+ mice, which
have normal mast cell numbers but strongly reduced basophils
(179), were less susceptible to tumor growth. Together, these
results indicate that in this inflammation-driven model of
epithelial carcinogenesis, tumor promotion is mediated via
FcεRI signaling in skin-infiltrating basophils.

CONCLUSIONS AND OUTSTANDING
QUESTIONS

For several decades, basophils were considered erroneously
as primary effector cells participating solely in allergic
disorders (226, 227). The concept that they might possess
immunomodulatory roles became more widely appreciated
when murine (5) and human basophils were shown to
produce a variety of cytokines (e.g., IL-4, IL-3, and IL-13)
(21, 89, 92, 93, 97, 99, 110), which at the time, were thought to
be made only by Th2 cells. In addition, there is now compelling
evidence that human basophils can synthesize several canonical
(57, 86, 105, 106) and non-canonical angiogenic factors (151).
It has long been known that human (127–131) and mouse
(62, 73, 124–126) basophils have a propensity to migrate
from peripheral blood into sites of inflammation. Moreover,
basophils were identified in human lung (50), gastric (127, 128),
pancreatic (11, 91) and ovarian cancer (204). It was recently
shown, at least in mice, that basophils are present in all phases
of lung development (44), and display a divergent phenotype
from peripheral blood. These resident basophils can favor
M2 polarization of lung macrophages, as occurs in several

tumors (132, 133). Studies are urgently needed to characterize
the presence and the state of activation of basophils in TME
and their possible roles in early vs. late stages of human and
experimental tumors.

Human basophils are a major source of several canonical
angiogenic factors such as VEGF-A and VEGF-B (57), HGF
(106), ANGPT1 (105), and CXCL8 (86, 89, 90, 228). An
elegant study has recently demonstrated that LTC4 and LTD4,
also produced by human basophils (83), promote tumor
angiogenesis and metastasis through the engagement of CysLT2R
on endothelial cells (151). Collectively, these findings suggest
that further in vitro and in vivo investigations should evaluate
the roles of canonical and non-canonical angiogenic factors
produced by basophils in experimental and human tumors.

Activated human and mouse basophils release BETs (116–
118). There is mounting evidence that extracellular DNA traps
have multiple effects in cancer (160) favoring tumor growth
(167), awakening dormant cancer cells (165), and promoting
metastasis in mouse models and in humans (161, 164). Further
studies should evaluate the presence of BETs in experimental
and human cancers and whether basophil extracellular traps
modulate tumor growth and the formation of metastasis in vivo.

There are contemporary and developing models/techniques
that should greatly facilitate this area of investigation. For
example, basophil-deficient mice are powerful models for
analyzing basophil functions in vivo, but, in some instances,
have produced erroneous findings. For example, models using
antibody-depleted basophils (168, 169) can often result in the
activation of other immune cells (170, 171). Indeed, such
models provided highly controversial results on the role of
basophils as APCs (95, 170, 172, 173, 229, 230). It is therefore
not surprising that basophils may appear to play a protective
(114) or a pro-tumorigenic role (62, 91) depending on the
experimental model utilized. In general, mouse models with
constitutive or inducible basophils depletion should be preferred,
but need to take into consideration that even new mouse
mutants can have hematologic abnormalities (177) and/or show
incomplete removal of basophils. Studies attempting to evaluate
basophil functions in a complex and heterogeneous disorder,
such as cancer should be performed using multiple genetically
engineered models of basophil deficiency.

In conclusion, the last years have witnessed exceptional
progress in our understanding of basophil biology. Recent studies
have demonstrated that basophils are present in the immune
landscape of human (50, 91, 204) and experimental (62, 91)
tumors, play a role in lung development and M2 macrophage
polarization (44), and participate in canonical (57, 105, 106,
145) and non-canonical angiogenesis (151), and release BETs
(117, 118). Further investigations are required before we unravel
the mysterious role of basophils in experimental cancer and,
more importantly, in humans. The elucidation of basophil
role in tumor immunity will require studies of increasing
complexity beyond those assessing their microlocalization.
High dimensional analysis, particularly single-cell RNA-seq of
immune landscape of human and experimental tumors will be
of paramount importance in characterizing basophil role in
different human and experimental cancers.
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The thymic stromal lymphopoietin (TSLP) is an IL-7-like cytokine originally cloned from a

murine thymic stromal cell line, and subsequently a human homolog was identified using

database search methods. Human TSLP is mostly expressed in epithelial cells, among

which are keratinocytes as well as stromal cells such as fibroblasts and immune cells.

Human TSLP was first described to activate myeloid dendritic cells, which prime naïve

T helper cells to produce high concentrations of Th2 cytokines, thus representing a key

cytokine in triggering dendritic cells-mediated allergic Th2 inflammation. TSLP and/or its

receptor has been shown to be expressed in several tumor types, where TSLP expression

is associated with functional activities that can be associated or not with the induction

of a Th2-prone tumor microenvironment, i.e., Th2-dependent and Th2-independent

mechanisms. These mechanisms involve tissue- and immune cell target-dependent

tumor-promoting or tumor-suppressive functions in different or even the same tumor

type. Here we report and discuss the Th2-dependent and Th2-independent roles of TSLP

in cancer and possible therapeutic targeting.

Keywords: TSLP, tumor cells, cancer associated fibroblasts, dendritic cells, Th2 inflammation, CD4+ Th2, TSLPR,

IL-1

INTRODUCTION

The thymic stromal lymphopoietin (TSLP) is an IL-7-like cytokine originally cloned from a
murine thymic stromal cell line (1), and a cDNA clone encoding human TSLP was then identified
using database search methods (2, 3). A low affinity TSLP receptor (TSLPR) was isolated (4–7),
most closely related to the common γ-chain (6). Subsequently, a functional high-affinity TSLPR
complex was defined as a heterodimer formed by the TSLPR and the IL-7 receptor α-chain (5, 6).
This receptor combination results in predominant STAT-5 activation and increased cell survival,
proliferation, and differentiation to TSLP stimulation (2, 8–10).

TSLP is primarily expressed by epithelial cells at barrier surface, with the highest levels in skin,
gut, and lung (11). Expression has been also described in smooth muscle cells and fibroblasts
(12). Moreover, dendritic cells (DCs) (13), and possibly other immune cells such as mast cells,
can produce TSLP (14). Analysis of the expression profile of TSLPR and IL-7 receptor α-chain
subunits showed the highest co-expression of the two receptors in myeloid DCs (3). Several other
immune cells from the innate (i.e., macrophages, monocytes, masts cells, neutrophils, eosinophils,
NKT cells, and ILC2 cells) and adaptive (i.e., B cells, T cells, Th2 cells, CD8+ T cells, and regulatory
T cells [Tregs]) immunity are a cellular target for TSLP, as well as other non-immune cells, such

34

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.02088
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.02088&domain=pdf&date_stamp=2020-09-16
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:protti.mariapia@hsr.it
mailto:demonte.lucia@hsr.it
https://doi.org/10.3389/fimmu.2020.02088
https://www.frontiersin.org/articles/10.3389/fimmu.2020.02088/full


Protti and De Monte Role of TSLP in Cancer

as platelets and sensory neurons (14, 15). TSLP expression is
induced by proinflammatory stimuli, comprising IL-1 (16, 17).

TSLP had been initially implicated in allergic diseases, where
it creates a predominant Th2 microenvironment, mostly through
DC activation (i.e., upregulation of OX40L, CD80, and CD86)
(18), by phosphorylation of several STAT proteins and NFκB
(8, 10). More recently, a role for TSLP has been also reported in
chronic inflammatory and autoimmune disorders and in cancer
(14, 15). We refer readers interested in comprehensive synopses
on the role of TSLP in several disease settings to those reviews.
Here, we focus exclusively on the literature regarding TSLP
expression and function in cancer with special emphasis on the
association or not with Th2 inflammation.

TSLP ISOFORMS IN CANCER

Two TSLP isoforms have been identified in human bronchial
epithelial cells (19) and are termed long- (i.e., the original
one) and short-form TSLP. The short-form TSLP mRNA is
constitutively expressed in bronchial and colonic epithelial cells,
keratinocytes, and lung fibroblasts (19). Short-form TSLP is
believed to exert homeostatic and anti-microbial activities (15,
20), and expression of one or the other or both isoforms in barrier
surface diseases have been reported (20).

In cancer the expression of the two isoforms was evaluated in
breast (21) and pancreatic (22) cancers. In breast cancer cells both
isoforms were upregulated upon stimulation with IL-1β (21). In
pancreatic cancer associated fibroblasts (CAFs), variable levels of
short-form TSLP mRNA were expressed at the steady state that
did not significantly increase upon activation, whereas long-form
TSLP mRNA levels significantly increased after activation with
proinflammatory cytokines (22), suggesting that the inducible
form of TSLP was primarily the long one.

TSLP IN CANCER: HISTORICAL
PERSPECTIVE

The first identification of a role for TSLP in cancer was
in pancreatic (23) and breast cancers (24, 25), in which
TSLP, secreted by either CAFs or tumor cells, respectively,
was found to exert tumor-promoting functions through the
establishment of predominant Th2-type inflammation in the
tumor microenvironment. Previous studies from the same
authors reported the presence of carcinoembryonic antigen-
specific Th2 cells in the blood of pancreatic cancer patients
undergoing surgery that correlated with the presence of
predominant GATA-3 positive lymphoid cells in the tumor
stroma (26), and of inflammatory IL-13 secreting Th2 cells
in primary breast cancer that contributed to accelerate tumor
development in a humanized mouse model (27). In addition, in
the 4T1 mouse model of breast cancer, an allergic response in the
lung was required to favor metastasis formation (28). These data

Abbreviations: CAF, cancer associated fibroblasts; CTCL, cutaneous T cell

lymphoma; DC, dendritic cell; LN, lymph node; TDLNs; tumor-draining LNs;

Tregs, regulatory T cells; TSLP, thymic stromal lymphopoietin; TSLPR, TSLP

receptor; WT, wild-type.

prompted the authors to look for mechanisms leading to Th2
inflammation in these tumors, and they hypothesized that, due
to its function in Th2 allergic responses, TSLP could be a relevant
candidate to investigate.

Following the first reports in pancreatic and breast cancer,
several studies also in other tumors found either pro-tumor
or anti-tumor activity of TSLP, and through Th2-dependent as
well as Th2-independent mechanisms. This distinction is mostly
based on the association between TSLP expression and the
development of predominant Th2 inflammation in the tumor or
direct TSLP signaling on TSLPR expressing tumor cells. These
studies are summarized in Table 1.

Th2-DEPENDENT MECHANISMS OF TSLP
IN CANCER

Chronic inflammation is associated with tumor development and
progression (50, 51). While Th1-dependent acute inflammation
has been associated with tumor rejection, Th2-dependent
chronic inflammation is believed to enable tumor growth (52,
53). As mentioned above, TSLP promotes predominant Th2-type
inflammation in different tumors and mediates pro-tumor but
also anti-tumor functions (Table 1). In order to exert its Th2
polarizing effects, TSLP can either indirectly act through myeloid
DC conditioning that supports Th2 cell priming/differentiation
from naïve CD4T cells (18) or directly bind to CD4+ T cells,
which upregulate the TSLPR upon activation (54, 55), with
higher expression on Th2 compared with Th1 and Th17 cells (9),
suggesting that direct TSLP-TSLPR signaling occurs in antigen-
specific memory T cells.

Th2-dependent mechanisms of TSLP in cancer have been
reported in pancreatic, breast, skin, gastric, and oropharyngeal
cancers, with pro- and anti-tumor effects, as detailed below.

Pancreatic Cancer
A tumor-promoting function for TSLP was demonstrated in
pancreatic cancer, where predominant Th2 (GATA-3+) over
Th1 (T-bet+) cells within the lymphoid infiltrate in the tumor
stroma was associated with reduced survival in pancreatic
cancer patients, thus implying an active role for Th2 immunity
in tumor progression (23). TSLP expression in the tumor
was significantly higher than in the surrounding tissue, and,
as reported above, it was supported by CAFs activated by
tumor-derived cytokines. In vitro studies demonstrated that
DCs activated with the supernatant of activated CAFs induced
TSLP-dependent Th2 cell polarization of naïve CD4+ T cells
(Figure 1B). Importantly, in vivo TSLPR expressing DCs were
present in the tumor stroma and in tumor-draining but not
in non-draining lymph nodes (LNs). The following studies
identified a complex crosstalk in the tumor microenvironment
and tumor-draining LNs (TDLNs) relevant to the establishment
of TSLP-dependent Th2-type inflammation in pancreatic cancer.
The authors reported that tumor-derived IL-1, released by tumor
cells and inflammasome adaptor ASC-activated M2 cells, is
crucial for TSLP secretion by CAFs (22) (Figure 1A), and that
IL-4 derived by basophils, recruited into TDLNs by alternatively
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TABLE 1 | TSLP expression and pro-tumor or anti-tumor function in human and mouse cancers.

Tumor type TSLP

expression

TSLP

function

Human/

Mousemodels

Th2-dependent

mechanisms

Th2-independent

mechanisms

Clinical correlates References

Pancreatic

cancer

CAFs Pro-tumor Human CAF-derived TSLP activates

myeloid DCs with Th2

polarizing capability (IL-13

producing CD4T cells).

CD11c+TSLPR+ cells are

present in the tumor and

tumor draining LNs

GATA-3+/T-bet+ cells ratio

is an independent predictive

factor of survival after

surgery in pancreatic cancer

patients

(23)

Pancreatic

cancer

Skin

keratinocytes,

systemic

Anti-

tumor

KPC cells (29)

subcutaneously

implanted in

K14-TSLPtg mice

GATA-3 cells in the tumor of

K14-TSLPtg are significantly

increased compared to WT

mice

Tumors in K14-TSLPtg grow

less than in WT mice

(30)

Breast cancer Tumor cells Pro-tumor Human and

humanized

NOD/SCID/β2m

KO mice

subcutaneously

implanted with

human breast

cancer cells

Tumor cell-derived TSLP

activates myeloid DCs with

Th2 polarizing capability

(IL-13 and TNFα producing

CD4T cells).

CD11c+OX40L+ are

present in the tumor

Anti-OX40L and anti-TSLP

antibodies significantly

prolong survival in

humanized

immune-deficient mice

(25)

Breast cancer 4T1 tumor

cells

Pro-tumor 4T1 cells

subcutaneously

implanted in

TSLPR KO mice

TSLP-TSLPR signaling in

Th2 cells

4T1 cells grow significantly

less in TSLPR KO mice and

give less metastases in the

lung

(24)

Breast cancer 4T1 tumor

cells

Pro-tumor 4T1 cells

subcutaneously

implanted in

TSLPR KO mice

Immune response is shifted

toward Th1 in TSLPR KO

mice

4T1 cells grow significantly

less in TSLPR KO mice and

give less metastases in the

lung but more in the brain

(31)

Breast cancer Skin, systemic Anti-

tumor

K14-

TSLPtgPYMttg

mice

PYMttg cells

implanted in

TSLPR KO

GATA-3 cells in the tumor of

K14-TSLPtgPYMttg are

significantly increased

compared to single

transgenic PYMttg mice

Tumor lesion numbers are

significantly lower in double

transgenic mice

(30)

Breast cancer Myeloid cells Pro-tumor Orthotopic implant

of TSLP- and

TSLPR-deficient

4T1 cells

MMTV-PyMT mice

Tumor-derived IL-1α

induces TSLP expression in

myeloid cells that in turn

activated anti-apoptotic

pathways in TSLPR+ tumor

cells

TSLP expression in lung is

necessary for metastases

TSLP deficient mice

implanted with 4T1 cells

have smaller primary tumors

and fewer lung metastases

than WT mice

Lung metastases are

reduced by

anti-TSLP antibody

(32)

Breast cancer 4T1 and

KCMH-1 cells

Pro-tumor 4T1 orthotopic

implantation in

syngeneic mice

Tumor-derived TSLP

induces the expression of

tissue remodeling and

angiogenic genes in alveolar

macrophages

Reduced lung metastases in

TSLP-KO bearing mice

(33)

Breast cancer 4T1 cells Pro-tumor 4T1 orthotopic

implantation in

syngeneic mice

TSLPR KO mice

TSLP promotes pre-B cell

emigration from the bone

marrow, and their

survival/expansion in the

periphery.

Tumor cells favor conversion

of pre-B cells into regulatory

B cells that affect antitumor

immunity and favor

lung metastases

Reduced lung metastases in

TSLP-KO bearing mice

(34)

Lung cancer Tumor cells Pro-tumor Human TSLP-conditioned DCs

induce Tregs TSLP

expression in the tumor

correlates with the number

of FoxP3+ Tregs

TSLP expression correlates

with pathologic type, stage,

tumor size, and LN

metastases

(35)

(Continued)
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TABLE 1 | Continued

Tumor type TSLP

expression

TSLP

function

Human/

Mousemodels

Th2-dependent

mechanisms

Th2-independent

mechanisms

Clinical correlates References

Cervical

cancer

Tumor cells Pro-tumor Human Tumor-derived TSLP

induces recruitment and

proliferation of eosinophils

that in turn promote tumor

cell proliferation and inhibit

apoptosis

(36)

Cervical

cancer

Tumor cells Pro-tumor Human TSLP promotes

angiogenesis through

eosinophil-derived factors

(37)

Cervical

cancer

Tumor cells Pro-tumor Human TSLP promotes tumor cell

proliferation and invasion

(38)

Skin cancer Keratinocytes Anti-

tumor

Mice KO in Notch

signaling

CD1 mice treated

with DBA and TPA

Tumors in KO compared to

WT mice are infiltrated by an

higher percentage of Th2

Blocking TSLP signaling

induces skin tumorigenesis

(39)

Skin cancer Keratinocytes Anti-

tumor

Notch and/or

β-catenin mutant

mice crossed with

TSLPR KO mice

Mice constitutively

expressing

β-catenin and

TSLPR KO

TSLP-TSPR signaling

increased CD8T cell fitness

and reduced CD11b+Gr1+

cells

TSLP-TLSPR signaling

protects against tumor

formation

(40)

Skin cancer Keratinocytes Anti-

tumor

Barrier protein

deficient mice

(EPI-/-) treated

with DMBA and

TPA

TSLP and NKG2D

restrained skin

carcinogenesis

(41)

Cutaneous

T-cell

lymphoma

Keratinocytes Pro-tumor Human and EL-4

and MBL-2 cell

model

TSLP induces IL-4 and

IL-13 expression by tumor

cells through STAT5

activation

TSLP signaling induces

proliferation of TSLPR+

tumor cells

Anti-TSLP antibody in

mouse models reduces

tumor formation

(42)

Colorectal

cancer

Tumor cells Anti-

tumor

Human and

xenograft model

(subcutaneous

injection of human

tumor cells in nude

mice)

TSLP-TSLPR signaling

induces apoptosis

TSLP administration in

mouse models inhibits colon

tumor growth

(43)

Gastric cancer Tumor cells Pro-tumor Human TSLP overexpression

correlates with LN

metastases

(44)

Gastric cancer Tumor cells Pro-tumor Human Previous report (45) showed

that infection by H. pylori

induces release of TSLP

from gastric cells that in turn

trigger a Th2 response

through DC activation

Prognosis in patients with

TSLP+ tumor is worse than

in patients with TSLP−

tumors

TSLP serum levels are

independent

prognostic indicators

(46)

Ovarian

carcinoma

Tumor cells Pro-tumor Human TSLP is an independent

predictive factor of reduced

survival

(47)

Oropharyngeal

squamous cell

carcinoma

Tumor cells Pro-tumor Human High IFNγ, and low IL-4,

TSLP, and TGF-β correlates

with increased survival

Low TSLP expression is a

good prognostic factor

(48)

B cell

precursor

acute

lymphoblastic

leukemia

Not reported Pro-tumor TSLP-TSLPR signaling

induces tumor cell

proliferation and signal

transduction

(49)
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FIGURE 1 | Development of TSLP-dependent protumor Th2 inflammation in cancer. (A) TSLP secretion by tumor cells and CAFs is primarily induced by

tumor-derived IL-1. IL-1 is released directly from tumor cells or myeloid DCs and M2 macrophages within the stroma under the influence of tumor cell-derived

alarmins, among which the inflammasome adaptor ASC. (B) Myeloid DC conditioned by TSLP (TSLP-DC) prime and polarize naïve CD4+ T cells toward a Th2

phenotype through TSLP-TSLPR and OX40-OX40L signaling. (C) TSLP-DC migrate to TDLNs where they prime CD4+ Th2 cells that secrete IL-3. M2 macrophages

present in TDLNs secrete MCP3 that recruit basophils, which after activation by Th2-derived IL-3, secrete the IL-4 required for GATA-3 stabilization in CD4+ Th2 cells.

(D) TSLP directly induces CD4+ T cell polarization toward Th2 and/or expansion of Th2 effectors through TSLP-TSLPR signaling.

activated M2 macrophages, stabilizes the Th2 polarization (56)
(Figure 1C), thus adding further complexity to the crosstalk
within the tumor microenvironment that leads to predominant
Th2 inflammation in pancreatic cancer (57). M2 macrophages
and CD4+ Th2 present in the tumor microenvironment possibly
mediate tumor progression by favoring invasion and metastasis
formation, as it has been shown in a breast cancer model (58).

In contrast with the data reported in the human disease,
tumor growth was reduced in a transplantable mouse model of
pancreatic cancer, where transgenic mice overexpressing TSLP
in the skin (K14-TSLPtg) were subcutaneously injected with
syngenic pancreatic cancer cells, compared to the wild-type
(WT) controls (30). Tumors from these transgenic mice had
increased numbers of infiltrating CD4+ Th2 cells compared to
WT mice, suggesting that in this model TSLP and Th2 cells
exerted tumor-suppressive function in the context of a systemic
Th2-polarized environment.

At difference with the transplantable K14-TSLPtg mouse
model reported above (30), very recently DePinho and
collaborators (59), using a transgenic mouse model of pancreatic
cancer carrying an inducible oncogenic KRAS mutation,

demonstrated a tumor-promoting function for Th2 cytokines
from the tumor microenvironment, thus recapitulating the
human disease. In this model, activation of cancer cells carrying
the mutated KRAS by IL-4 and IL-13, which were secreted by
the Th2 cells present in the tumor microenvironment, triggered
the JAK1-STAT6-MYC pathway that in turn activated glycolysis
crucial for tumor progression.

Breast Cancer
Concomitantly and similarly to human pancreatic cancer, a
tumor-promoting role for TSLP was demonstrated in breast
cancer (25). The authors showed that human breast cancer cells
directly produce TSLP, and that tumor cell derived-TSLP induces
in vitro OX40L expression on DCs (25) (Figure 1B). OX40L-
expressing DCs were found in primary breast tumor infiltrates
and in vitro they drove the development of inflammatory
Th2 cells (i.e., producing IL-13 and TNF-α). Importantly, in a
xenograft mouse model, anti-TSLP or anti-OX40L neutralizing
antibodies inhibited breast tumor growth and IL-13 production.
Studies from the same group (21) showed that, similarly to
pancreatic cancer (22), IL-1β, which was released bymyeloid DCs
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under the influence of tumor-derived factors (i.e., alarmins), was
key for TSLP secretion by breast cancer cells (Figure 1A).

A role for TSLP in breast cancer progression and metastasis
to the lungs was also reported in Olkhanud et al. (24). In the
4T1 orthotopic murine model TSLP was produced by cancer
cells that directly acted on TSLPR-expressing CD4+ T cells to
induce their Th2 differentiation (Figure 1D). TSLP was also
expressed by human breast metastases in the lung, and in the
murine model the metastatic potential of different 4T1 cell clones
was associated with their ability to secrete TSLP. In vivo TSLP
functional inactivation either by silencing or by using TSLPR KO
mice demonstrated the role of tumor-derived TSLP in inducing
a metastases prone environment in the lungs. This was due to
secretion by CD4+ T cells of pro-tumor Th2 cytokines (i.e.,
mainly IL-10 and IL-13), possibly with activation of CD4+ NKT
andmyeloid suppressive cells (60, 61), and tumor-derived CCL17
that in turn recruited Tregs already described to have a pro-
metastatic role in breast cancer (28).

The function of TSLP in favoring development of primary
breast cancer and lung metastasis was subsequently confirmed
in the same 4T1 transplantable model where cancer cells
were grown in TSLPR KO mice (31). Lack of functional
TSLPR mitigated Th2 polarization as well as the establishment
and growth of primary breast tumors and lung metastases.
Unexpectedly, in the same model brain metastases were found
enhanced, suggesting a protective role for TSLP in this site.

In contrast with the results discussed above, Demehri et al.
(30) found a tumor-suppressive role for TSLP in murine
models of breast carcinogenesis. In order to determine the
impact of systemic TSLP on the early stages of breast cancer
development, the authors used twomurine models. In one model
they crossed the MMTV-polyoma middle T (PyMttg) breast
cancer-prone with the K14-TSLPtg mice (K14-TSLPtgPYMttg),
whereas in the other model WT mice were topically treated
with calcipotriol, which is known to induce TSLP expression in
mouse keratinocytes (62). In both experimental settings breast
cancer cells were exposed to high levels of circulating TSLP, were
arrested at an early adenoma-like stage, and were prevented from
advancing to late carcinoma and metastases. In both models
CD4+ Th2 cells were shown to mediate the tumor-suppressive
effects of TSLP.

A further level of discussion on the pro- vs. anti-tumor role for
TSLP in breast cancer was shared by Soumelis and collaborators
(63), who did not find TSLP expression in the majority of human
tumor samples examined as well as TSLPR expression in tumor
infiltrating immune or stromal cells, suggesting lack of TSLP-
TSLPR signaling in breast cancer.

Skin Cancer
Conflicting results were also reported in skin cancer. Demehri
et al. (39) reported a tumor-suppressive role for TSLP in skin
carcinogenesis by using mice with clonal loss of Notch signaling
in their skin. In this model, high levels of TSLP released by
barrier-defective skin caused severe inflammation that resulted
in gradual elimination of Notch-deficient epidermal clones and
resistance to skin carcinogenesis. Overexpression of TSLP in
WT skin by chemical induction with calcipotriol also caused

resistance to tumorigenesis. As in the breast cancer models
reported above, CD4+ Th2 cells mediated the tumor-suppressive
effect of TSLP in these models of skin carcinogenesis.

In contrast, Takahashi et al. (42) reported that cutaneous T
cell lymphoma (CTCL) lesions in advanced stages exhibited a
Th2-dominant phenotype. In vitroCTCL cell lines and peripheral
blood mononuclear cells from Sezary syndrome patients showed
increased IL-4 and IL-13 expression in response to TSLP, through
the activation of STAT5.

Gastric Cancer
In gastric cancer patients TSLP expression in the tumor
correlated with worse prognosis, and high serum concentration
of TSLP was identified as an independent prognostic factor
of reduced survival (46). A previous study from the same
group (45) had shown that Helicobacter pylori infection induced
gastric epithelial cells to secrete inflammatory cytokines, among
which are TSLP. In addition, in vitro DCs conditioned by the
supernatant of Helicobacter-infected epithelial cells triggered
differentiation of T cells with a mixed Th1/Th2 profile, and TSLP
was found to be responsible for the Th2 cytokine production.

Oropharyngeal Squamous Cell Carcinoma
Finally, analyses of surgical specimens of oropharyngeal
squamous cell carcinoma indicated that high IFN-γ and low
IL-4, low TSLP, and low TGFβ expression was associated with
better prognosis in oropharyngeal squamous cell carcinoma
patients (48).

Collectively, in the majority of studies TSLP and Th2
inflammation exerted pro-tumor activity. Conflicting results
were reported in pancreatic, breast, and skin cancers.

Th2-INDEPENDENT MECHANISMS OF
TSLP IN CANCER

In the majority of models Th2-independent mechanisms of
TSLP in cancer rely on direct TSLP-TSLPR signaling in TSLPR-
expressing tumor cells involving apoptotic pathways, tumor cell
proliferation, signal transduction, and activation of remodeling
and proangiogenic gene signatures (Table 1).

Th2-independent mechanisms of TSLP in cancer have been
reported in breast, lung, cervical, skin, and blood cancers, with
pro- and anti-tumor effects, as detailed below.

Breast Cancer
In breast cancer, three studies (32–34) demonstrated a tumor-
promoting role for TSLP. In one study (32), TSLP produced
by myeloid cells after activation with tumor cell-derived IL-1α
activated anti-apoptotic pathways in TSLPR-expressing tumor
cells, through Bcl-2. Experiments in TSLP KO mice then
showed that TSLP signaling was required for metastatic disease
progression to the lung. In another study (33), tumor cell-derived
TSLP induced invasive and angiogenic gene expression profiles in
alveolar macrophages. Depletion of alveolar macrophages but not
macrophages from the circulation impacted lung lesion growth.
A role for TSLP in driving lung metastases was also recently
reported in Ragonnaud et al. (34), where tumor cell-derived TSLP
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induced pre-B cell emigration from the bone marrow through
CXCR4 and α4β1 downregulation and promoted their survival
and expansion. These pre-B cells were induced by tumor cells to
differentiate into regulatory B cells that in turn downmodulated
anti-tumor immunity and promoted lung metastases.

Lung Cancer
A tumor-promoting function for TSLP was described in lung
cancer (35), where TSLP expression in the tumor tissue was
higher compared to the normal counterpart. In vitro experiments
showed STAT-1,−3, and−5 phosphorylation in TSLP-DCs that
favored recruitment and differentiation of Tregs, possibly
through CCL22 and TGFβ secretion, respectively, and in lung
cancer patients the prevalence of Tregs correlated with TSLP
expression in the tumor.

Cervical Cancer
Several studies reported a pro-tumor role for TSLP in cervical
cancer (36–38). Tumor cells under hypoxia expressed TSLP,
and TSLPR was expressed in both tumor cells and vascular
endothelial cells. TSLP caused the release of CCL17 by tumor
cells with recruitment of eosinophils that in turn induced
proliferation and restricted tumor cell apoptosis through
up-regulation of Ki-67 and Bcl-2, respectively (36) and of
proangiogenic factors (37). TSLP also promoted proliferation
and invasion of cervical cancer cells by downregulating
microRNA-132 (38).

Gastric and Ovarian Cancer, and B Cell
Precursor-Acute Lymphoblastic Leukemia
A pro-tumor activity for TSLP was described in gastric (44)
and ovarian (47) cancer patients where TSLP overexpression in
tumor compared to normal tissue correlated with LN metastases
(44), and TSLP expression was identified as an independent
predictive factor of reduced survival (47). In addition, Vetter
and collaborators (49) showed that in a fraction (about 20%)
of patients with B cell precursor-acute lymphoblastic leukemia
tumor cells expressed the TSLPR, and in vitro stimulation
of leukemic cells with TSLP enhanced their proliferation and
induced activation of STAT-5 signaling.

Skin Cancer
Conflicting results were instead obtained in skin cancer, where
TSLP production by keratinocytes was associated with both
pro-tumor and anti-tumor activity. In CTCL, fibroblast-derived
periostin mediated TSLP production by keratinocytes that in
turn directly stimulated in vitro tumor cell growth in TSLPR-
expressing tumor cells, and in vivo TSLP inhibition reduced
tumor formation in EL-4 and MBL-2 cell mouse models (42).
A Th2-dependent tumor-promoting role for TSLP in CTCL
was also described (see above). On the contrary, in another
study Di Piazza et al. (40), using several transgenic and
knockout mouse models, demonstrated that TSLP prevented
skin carcinogenesis. This effect was mediated mainly by CD8+

T cells, possibly because TSLP-TSLPR signaling increased
their survival/proliferation. In addition, ablation of the TSLP-
TSLPR signaling induced recruitment and/or development of

CD11b+Gr1+ cells that was dependent on epithelial-specific
Wnt/β-catenin signaling. These cells directly promoted tumor
growth by increased provision of Wnt ligands and not indirectly
by acting on T cells. In partial agreement with the report of Di
Piazza et al. (40), Cipolat et al. (41) showed that barrier proteins
KO (EPI-/-) mice are highly resistant to developing tumors when
treated with DMBA and TPA. TPA induced an exaggerated atopic
response, immune infiltration, and elevated levels of circulating
TSLP. This could be normalized by blocking TSLP or NKG2D
but not CD4+ T cells. However, it is difficult to explain why mice
with lesions > 2mm had higher levels of TSLP compared with
those with lesions < to 2 mm.

Colorectal Cancer
Finally, an anti-tumor role for TSLP was reported in colorectal
cancer (43), where its expression in the tumor was significantly
lower than in surrounding tissues, and negatively correlated with
clinical staging in colorectal cancer patients. At difference with
the anti-apoptotic function reported (2), in this model TSLP
enhanced in vitro tumor cell apoptosis through caspase-3,−8,
and−9 activation, and TSLP administration in xenograft models
reduced tumor growth.

Collectively, in the majority of studies through Th2-
independent mechanisms, TSLP exerted pro-tumor activity (i.e.,
breast, lung, cervical, and blood cancers). Conflicting results were
reported in skin cancer.

CONCLUSION

In the past decade a role for TSLP has been clearly identified
in several cancers with somewhat conflicting results, depending
on the tumor but even within the same tumor type. In human
studies TSLP expression was always associated with a pro-tumor
function with the exception of colorectal cancer, whereas an
anti-tumor function was found in those mouse models (i.e.,
pancreatic, breast, and skin cancers), in which high levels of
systemic TSLP were reached (Table 1). These data possibly
suggest that, independently of the tumor type, also the local
vs. the systemic expression of TSLP highly affects its final
functional outcomes.

In the majority of studies TSLP-dependent Th2 inflammation
was associated with tumor-promoting functions; however,
in mouse models of breast and skin carcinogenesis, Th2 cell
polarization was associated with tumor-suppressive functions.
Possible explanations for these discrepancies can be envisaged.
In breast (30) and skin carcinogenesis (39), where transgenic
mice express TSLP in their skin keratinocytes, high levels
of systemic TSLP were also present (see above), suggesting
a possible generalized skew in Th2-type immune responses.
Indeed, in these models Th2 cell responses are the only possibly
induced tumor-elicited immune responses. Another possible
and interesting explanation might be related to different
phases of disease development (i.e., early vs. more advanced
stages). It has been reported (64) that IL-13 derived from
intraepithelial lymphocytes regulates tissue homeostasis during
skin injuries and protects against skin carcinogenesis. It is
tempting to speculate that, especially at barrier sites, Th2 cell

Frontiers in Immunology | www.frontiersin.org 7 September 2020 | Volume 11 | Article 208840

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Protti and De Monte Role of TSLP in Cancer

responses might be relevant in early stages carcinogenesis
when tissue repair is ongoing. However, when tumors are
established, Th2 cells/cytokines become not only insufficient
compared to Th1 cells/cytokines as anti-tumor effectors
but also promote a chronic tissue repair program, which
facilitates the activation of a pro-angiogenic and pro-metastatic
tumor microenvironment.

Recently, asthma exacerbations were prevented by an anti-
TSLP monoclonal antibody (65), making this therapy also
available in tumor types, in which a proven tumor-promoting
role of TSLP has been established. In addition, preclinical
evidence also suggested the possibility to manipulate the TSLP
secretion by modulation of its production. Indeed, IL-1 was
shown to be a key factor for activation of TSLP secretion in
both pancreatic (22) and breast cancer (21), where the use of
the IL-1R antagonist anakinra reduced TSLP availability in vitro
and in vivo. On the opposite side, treatment with calcipotriol,
which increases TSLP levels, in combination with 5-fluorouracil

was superior to combination with Vaseline in reducing actinic
keratosis lesions (66).

Collectively, whereas a role for TSLP in cancer is firmly
established, manipulation of its expression for therapeutic
purposes will need further definition of its pro-tumor vs. anti-
tumor function in the different tumor types.
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Interleukin-33 (IL-33) is an epithelial-derived cytokine that can be released upon tissue
damage, stress, or infection, acting as an alarmin for the immune system. IL-33 has long
been studied in the context of Th2-related immunopathologies, such as allergic diseases
and parasitic infections. However, its capacity to stimulate also Th1-type of immune
responses is now well established. IL-33 binds to its specific receptor ST2 expressed by
most immune cell populations, modulating a variety of responses. In cancer immunity, IL-
33 can display both pro-tumoral and anti-tumoral functions, depending on the specific
microenvironment. Recent findings indicate that IL-33 can effectively stimulate immune
effector cells (NK and CD8+ T cells), eosinophils, basophils and type 2 innate lymphoid
cells (ILC2) promoting direct and indirect anti-tumoral activities. In this review, we
summarize the most recent advances on anti-tumor immune mechanisms operated by
IL-33, including the modulation of immune checkpoint molecules, with the aim to
understand its potential as a therapeutic target in cancer.

Keywords: IL-33, tumor microenvironment, tumor immunity, eosinophils, ILC2, CD8 T cells, immune
checkpoints, basophils
INTRODUCTION

Interleukin-33 (IL-33) was initially described by JP Girard’s group as a nuclear factor from high
endothelial venules (NF-HEV) (1). It was later rediscovered, by a computational sequence search, as
an IL-1 family member (2). Although initially defined as an immune component of Th2 response,
its pleiotropic contribution to the immune response has now emerged. Hence, IL-33 has been
involved in different immune processes, such as inflammatory diseases, allergies, infections and
cancer (3). IL-33 is expressed as a nuclear factor by different types of cells, such as endothelial cells,
Abbreviations: AML, acute myeloid leukemia; BMDC, bone marrow-derived DC; CTLA-4, cytotoxic T-lymphocyte-
associated protein 4; DC, dendritic cells; HMGB1, high-mobility group box 1 protein; IL-33, Interleukin-33; ILC2, type 2
innate lymphoid cells; LA, lactic acid; LDHA, lactate dehydrogenase A; PDAC, pancreatic ductal adenocarcinomas; PD-1,
programmed cell death-1; Tc9, IL-9 producing CD8+ T cells; TILC2, tumor-infiltrating ILC2; TME, tumor microenvironment.
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fibroblasts, epithelial cells and other stromal cells (4). In the
tumor microenvironment (TME), these cells, together with
tumor cells and some immune infiltrating cells, are an
important source of IL-33 (5, 6). Like high-mobility group box
1 protein (HMGB1), IL-33 is released outside the cell after stress
or damage and acts as an alarmin that activates the immune
response (7). Two different isoforms of IL-33 have been
described: the IL-33 full-length form (IL-33 FL) and the IL-33
mature form (8, 9). Several inflammatory proteases, mostly
derived from neutrophils and mast cells, can process IL-33 FL
into the mature form, endowed with superior (10- to 30-fold)
bioactivity (4). Since both neutrophils (10) and mast cells (11)
are recruited in the TME, these proteases may be abundantly
present thus amplifying IL-33 activity. On the other hand, the
pro-inflammatory action of IL-33 may be controlled by
oxidation (12) or proteolytic cleavage by apoptotic caspases
(13), leading to IL-33 inactivation. Therefore, the balance
between different proteases as well as the nature of tumor cell
death (necrotic vs apoptotic) may dictate the activity of IL-33
within the TME.

IL-33 binds to a heterodimer formed by its primary receptor ST2
and the co-receptor IL-1 receptor accessory protein (IL1RAP). This
activates a signal cascade through MyD88-IRAK-dependent
pathway, and leads to NF-kB, c-Jun N-terminal kinase (JNK) and
mitogen-activated protein kinase (MAPK) activation (2), which
results in the release of a plethora of soluble mediators by different
immune cells (14). IL1RAP is constitutively expressed at low levels
by virtually all cells, including immune cells (15). ST2 is expressed
primarily by cells involved in Th2 response, such as Th2 cells,
eosinophils, basophils, mast cells, a subset of regulatory T cells
(Treg) and type 2 innate lymphoid cells (ILC2), but also by Th1
cells, CD8+ T cells, NK cells, macrophages, neutrophils, dendritic
cells (DC) and B cells (16, 17). A soluble form of ST2 (sST2) exists as
a decoy receptor that prevents IL-33 binding to the transmembrane
receptor (18). Tumor, epithelial and immune cells express sST2 at
various levels, which may contribute to regulate the availability of
IL-33 in the TME (19).

The IL-33/ST2 axis has a controversial role in cancer
immunity, since both pro- and anti-tumoral functions have been
reported. This dichotomy seems to depend on multiple factors,
such as the composition of the TME and tissue of tumor origin,
and has been reviewed recently (16). In this mini review, we will
focus on the anti-tumor effects of IL-33/ST2, with emphasis on the
most recent advances on immune mechanisms and their potential
exploitation for future therapeutic options.
IL-33 PROMOTES THE EFFECTOR
FUNCTIONS OF CD8+ T AND NK CELLS

Several studies demonstrated that IL-33 expression positively
correlates with CD8+ T and NK cell recruitment and activation
in the TME. Transgenic expression of IL-33 in B16 or 4T1 tumor
cells (20) or in the host (21), as well as exogenous administration
of the recombinant protein (22) induce the recruitment of
activated (IFN-g+ CD107+) CD8+ T and NK cells in the TME,
Frontiers in Immunology | www.frontiersin.org 245
which inhibited tumor growth in mice. In a breast cancer model,
IL-33 induced the recruitment and activation of NK cells to the
lung that prevented pulmonary metastasis onset (23). IL-33 can
increase the cytotoxicity of CD8+ T cells and NK cells also
in vitro, indicating a direct action (21). Both FL and mature IL-33
isoforms acted as adjuvants in an HPV DNA vaccination model
promoting antigen-specific CD8+ T cell expansion and
degranulation that resulted in regression of established TC-1
lung tumors (24). Although these findings point to a similar
biological activity of FL and mature IL-33 isoforms, the
possibility that FL IL-33 is converted into the mature form
once released in the TME and exposed to local proteases
cannot be excluded (9, 24).

Mechanistically, the ability of IL-33 to induce tumor-reactive
IFN-g+ CD107+ CD8+ T and NK cells was recently shown to be
dependent on MyD88 signaling in a mouse model of Lewis lung
carcinoma (25). Furthermore, the IFN-inducing DNA sensor
STING promoted tumor cytotoxicity by stimulating some
chemokines (CXCL10 and CCL5) and IL-33, which
participated in NK cell infiltration and activation in a mouse
model of NK-sensitive melanoma (26). These studies reveal a
possible link between IL-33 and IFN-related response in cancer
immunity, as already reported in IgG4-related autoimmune
diseases (27).

The role of endogenous IL-33 in mediating CD8+ T cell-
dependent antitumor responses was also demonstrated. In
murine hepatocellular carcinoma, tumor-derived IL-33
promoted the expansion of IFN-g+ CD4+ and CD8+ T cells,
increased CTL cytotoxicity and inhibited tumor growth (28).
Induction of IL-33 production by stromal cells following LCMV-
based vector immunotherapy elicited protective anti-tumor
CD8+ T cell effector responses (29). In a colon carcinoma
model, endogenous IL-33 promoted IFN-g expression by both
CD4+ and CD8+ T cells, increased CD8+ T cell infiltration over
Treg cells and augmented CD8+ T cell-mediated antitumor
responses (30). These observations imply that endogenous
levels of IL-33 by tumor and stromal cells may support cancer
immune surveillance by CD8+ T cells.

IL-33 can promote the effector functions of CD8+ T cells also
through stimulation of DC. IL-33 administration in tumor-
bearing mice activated DC and increased Ag cross-presentation
to CD8+ T cells in melanoma (31) and acute myeloid leukemia
(AML) models (32). One group reported that IL-33-stimulated
DC expand a population of cytotoxic IL-9 producing CD8+ T
cells, termed Tc9, endowed with potent anti-tumor activity in
melanoma-bearing mice (33). The relevance of Tc9 cells in
human cancers is still unclear.

Notably, IL-33 is implicated in the differentiation of T cells
into tissue-resident memory T (TRM) cells, a recently identified
CD8+ T cell population found in various human cancers and
correlating with favorable outcome (34). These cells express the
integrins CD103 and CD49a and the C-type lectin CD69, and are
characterized by in situ proliferation, location and persistence in
close contact with malignant cells, via binding of CD103 to
tumor E-cadherin (35). Whether and how IL-33 can affect TRM

in cancer warrants investigation.
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MODULATION OF CD4+ T CELL
FUNCTIONS BY IL-33 IN THE TME

Both conventional and regulatory CD4+ T cells are direct targets
of IL-33. IL-33 can promote the recruitment and the
immunosuppressive functions of Treg cells expressing ST2,
favoring tumor growth and immunoevasion (36–39). On the
other hand, IL-33 can activate conventional Th cells, inducing
their phenotypic polarization, clonal expansion, and cytokine
production (40). IL-33 preferentially promotes Th2 response,
which is classically believed to contrast tumor immunity,
although its role appears ambivalent (41). Under some
conditions, such as in the presence of IL-12, IL-33 can induce
Th1 responses (42, 43). In an HPV-associated mouse tumor
model, IL-33 promoted IFN-g and TNF-a production by
antigen-specific CD4+ T cells (24). Similarly, IL-33 was
reported to amplify IFN-g+ CD4+ T cells in mouse models of
hepatocellular (28) and colon carcinoma (30, 44). These data
demonstrated that IL-33 has the capacity to promote Th1-
mediated anti-tumor response.

Lastly, IL-33 also promotes the differentiation of IL-9-
producing Th cells (45), which exert potent antitumor activity
in certain solid cancers, such as melanoma (46). Therefore, IL-33
can differently regulate CD4+ T cell polarization and function in
the TME. A comprehensive analysis of cytokine profiles activated
by IL-33 in various cancers may help clarify the CD4+ T cell
subsets (including Treg) targeted by IL-33 in relation to the
specific TME and anti-tumor response elicited.
IL-33 ACTIVATES EOSINOPHILS,
BASOPHILS, AND MAST CELLS

Eosinophils infiltrate most human and experimental cancers
where they play diverse roles (47). Migration to the TME can
be mediated by eotaxins (eotaxin-1/CCL11, eotaxin-2/CCL24,
eotaxin-3/CCL26) that bind the CCR3 receptor highly expressed
on eosinophils (47, 48) and by alarmins (i.e., HMGB1 and IL-33)
released from dying tumor cells (22, 49). Whereas HMGB1 is a
direct chemoattractant for eosinophils (50), IL-33 appears to
recruit eosinophils only indirectly, via stimulation of tumor-
released chemokines, such as CCL24 (51, 52), or through the
activation of IL-5 producing ILC2 (53–55) and mast cells (56).

Several studies demonstrated the role of eosinophils in
mediating the anti-tumoral activities of IL-33. Injection (22) or
tumor expression (57) of IL-33 in melanoma-bearing mice
inhibited tumor growth and this effect was abolished upon
eosinophil depletion by injections of anti-Siglec-F mAb. In
models of transplantable and colitis-associated colorectal
cancer, tumor growth reduction induced by IL-33 was
abrogated in eosinophil-deficient DdblGATA-1 mice, but was
restored by adoptive transfer of eosinophils activated with IL-33
ex vivo (52). Mechanistically, eosinophils can exert anti-tumor
activity partly by promoting the recruitment of CD8 T cells (22,
58). In fact, eosinophils are an important source of chemokines
(CCL5, CXCL9, CXCL10) that attract CD8+ T cells in TME (58)
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and can be up-regulated by administration of IL-33 (22).
Moreover, eosinophils can exert direct tumor cytotoxicity (22,
51, 52). In a model of pulmonary melanoma metastasis,
eosinophil depletion caused the inhibition of metastasis
formation in mice receiving IL-33, without apparent
involvement of cytotoxic CD8+ T cells, thus suggesting an
active role of eosinophils in the lung (22). In fact, IL-33 can
directly activate human (59, 60) and mouse (52, 61) eosinophils
by up-regulating activation markers (i.e. CD69), adhesion
molecules (i.e., ICAM-1 and CD11b/CD18), and the
degranulation markers CD63 and CD107a, resulting in the
killing of several tumor cell types (51, 52, 62, 63). Once
activated with IL-33, these granulocytes exert tumor cytotoxic
functions through contact-dependent degranulation, involving
polarization of eosinophilic effector proteins (eosinophil cationic
protein, eosinophil peroxidase, and granzyme B) and
convergence of lytic granules to the immunological synapses
(51). This study provides the first evidence that eosinophils
during degranulation employ a mechanism similar to that used
by NK cells (64).

IL-33 is able to activate murine and human basophils,
increasing histamine and cytokine production in vitro and
promoting their expansion in vivo (16, 65–67). IL-33 can
synergize with IL-3 to induce IL-9 production in human
basophils (68), which may support tumor immunity (69). In
human basophils, IL-33 alone does not directly induce
degranulation but can enhance IL-3- and anti-IgE-mediated
degranulation (67, 70). Recently, our group reported that
mouse basophils stimulated with IL-33 up-regulate the
expression of granzyme B and of the degranulation marker
CD63 and induce melanoma cell killing in vitro (71). Although
the role of basophils in cancer immunity is still unclear (72), this
latter observation may broaden the spectrum of immune effector
cells that can be activated by IL-33 within the TME.

Mast cells infiltrate several types of experimental and human
tumors (56, 73). IL-33 activates human mast cells to release
several cytokines (74) and enhances immune complex-triggered
activation of human mast cells (75). Furthermore, IL-33
increases the expression of ICAM-1 (76) and MHC-II (77),
and promotes the survival (78) and degranulation (79) of
murine mast cells. However, due to the wide range of
mediators they release, it is difficult to define the pro- or anti-
tumorigenic activity of mast cells (11).
IL-33 AS AN ENHANCER OF ANTI-TUMOR
ACTIVITIES OF ILC2

ILC2 constitutively express ST2 and respond directly to IL-33,
which is necessary for their expansion, recruitment and
activation (80, 81). Two distinct subsets of ILC2 have been
described: resident natural ILC2 and inflammatory ILC2,
which can be induced upon IL-33 stimulation (81). High
numbers of ILC2 can be found in many IL-33-enriched
tumors, although their role in cancer immunity remains
controversial (82). Ikutani et al. first described an anti-tumoral
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role of ILC2 in a mouse model of melanoma. In this study,
systemic IL-33 injections expanded IL-5-producing ILC2 that
induced eosinophil recruitment, which were critical to suppress
pulmonary metastases (54). In another study, inoculation of
IL-33-expressing EL4, CT26 or B16.F10 tumor cells induced
MyD88-dependent intratumoral expansion of ILC2 in mice that
were indispensable for IL-33-mediated antitumor activity
independently of eosinophils (83). In this model, ILC2 exerted
anti-tumoral activity through production of CXCL1 and CXCL2.
Binding of these chemokines to tumor cell-expressed CXCR2,
which was sustained by the hypoxic TME created by IL-33,
resulted in tumor cell apoptosis. This study first demonstrated
that activated ILC2 can be cytotoxic for tumor cells.

A recent study on the B16.F10 melanoma model showed that
TME acidification caused by lactic acid (LA) produced by the
tumor impaired ILC2 survival and function (55). This prevented
tumor infiltration of ILC2 and resulted in rapid tumor growth.
Accordingly, gene expression analysis in human cutaneous
melanomas revealed an inverse correlation between lactate
dehydrogenase A (LDHA, the enzyme responsible for LA
production) and markers associated with ILC2. In vivo
interference with LDHA in B16.F10 tumors or administration
of IL-33 to tumor-bearing mice increased the number of
intratumoral ILC2 and restored ILC2 ability to contrast tumor
progression. IL-33 also induced an increase in the number of
tumor infiltrating eosinophils. This study reveals an anti-
tumorigenic role of IL-33/ILC2/eosinophils axis controlled by
glucose metabolism.

Moral and co-workers reported that ILC2 infiltrate human
and mouse pancreatic ductal adenocarcinomas (PDAC) (84).
High frequencies of tumor-infiltrating ILC2 (TILC2) were found
in “hot” tumors (enriched in CD8+ T cells), and correlated with
better survival and high expression of IL-33. By comparing the
effects of IL-33 deficiency (or exogenous administration) on
orthotopic PDAC and heterotopic skin tumor growth, the
authors demonstrated that TILC2 have tissue-specific effects on
PDAC immunity that depended on IL-33/ST2. In fact, pancreatic
TILC2, unlike skin TILC2, expressed ST2 and responded to
IL-33. In orthotopic PDAC, IL-33/TILC2 axis primed tissue-
specific CD8+ T cell immunity through recruitment of cross-
presenting CD103+ DC.

Overall, these studies suggest that despite the divergent effects
of ILC2 in tumor immunity, proper activation, such as with
IL-33/ST2 stimulation, may promote the anti-tumor functions of
these cells through multiple mechanisms, including recruitment
of eosinophils and cross-presenting DCs, and tumor cytotoxicity.
Given the tissue-specific phenotypes of ILC2, it is possible that
such mechanisms may vary depending on the tissue of
tumor origin.
MODULATION OF IMMUNE
CHECKPOINTS BY IL-33

Cancer immunotherapy targeting immune checkpoints has
proven effective in treating “hot” tumors through the
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restoration of preexisting T cell responses. Programmed cell
death-1 (PD-1) promotes apoptosis of antigen-specific T-cells,
while it sustains regulatory T cell development and function (85,
86). In the TME, up-regulation of PD-1 on T cells occurs in
response to activation due to tumor antigens (87), while
overexpression of its ligands (PD-L1 and PD-L2) on cancer
cells is a well-known immune escape mechanism (88). PD-1 is
expressed on a variety of different immune cell types, such as
T cells, B cells, NK, myeloid cells, mast cells and innate lymphoid
cells (89, 90). Mouse ILC2 express PD-1 in different percentages
depending on their tissue of origin and its expression is enhanced
by IL-33 stimulation, resulting in impaired Th2-type cytokine
production (91, 92). In a mouse model of obesity, TNF-a
triggered the expression of IL-33 by pre-adipocytes, which was
responsible for PD-1 upregulation on ILC2 (92). Interaction
between PD-1+ ILC2 and PD-L1hi M1 macrophages resulted in
impaired production of IL-5 and IL-13 by ILC2. These findings
point to a role of IL-33 in PD-1/PD-L1 pathway.

Emerging data indicate that IL-33 may modulate the PD-1/
PD-L1 axis also in cancer. In an AML model, Qin et al. observed
that IL-33 induced not only an increase of PD-1 expression on
CD8+ T cells in peripheral blood, but also higher levels of PD-L1
on tumor cells (32). IL-33 treatment combined with PD-1
blockade prolonged the survival of leukemic mice, providing
the first evidence that IL-33 may increase the therapeutic efficacy
of immune checkpoint inhibitors. Recently, Moral et al. carried
out similar studies on the PDAC mouse model. They showed
that IL-33 treatment increased the expression of PD-1 on TILC2,
but not in draining LN ILC2, indicating selective activation in the
tumor immune compartment (84). Combination of IL-33 and
anti-PD-1 reduced tumor growth and improved the survival of
PDAC mice in an ILC2-dependent fashion. Of note, this study
demonstrated that IL-33 activated TILC2 were direct targets of
anti-PD-1. Thus, activation of ILC2s with IL-33 may be a
strategy to increase immunotherapy efficacy in ILC2-
infiltrated cancers.

IL-33 can affect PD-1/PD-L1 signaling in other immune cells.
In a breast cancer model, IL-33 administration increased the
percentage of NKp461+ PD-1+ cells in the TME, while these cells
were less frequent in ST2-deficient mice (93). Furthermore, in
the B16.OVA melanoma model, systemic administration of
IL-33 combined with injection of dectin-1-activated bone
marrow-derived DC induced activation and PD-1 expression
in OVA-specific CD4+ T cells (45). The same group reported that
administration of IL-33 reduced the expression of the checkpoint
molecules PD-1, LAG-3 and 2B4 on CD8+ T cells in mice
immunized with “resting” DC (33). Although these two studies
suggest that the modulation of immune checkpoints in T cells by
IL-33 occurs via stimulation of DC, the possibility that IL-33
could also directly activate T cells cannot be excluded. Overall,
these findings suggest that IL-33 can affect the PD-1 pathway in
several immune cells. Understanding the mechanisms by which
IL-33 targets PD-1 in various cancer types may help improving
immunotherapy protocols.

The role of IL-33 in the modulation of cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) pathway has been less explored.
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CTLA-4 is constitutively expressed in regulatory T cells and it is
up-regulated in conventional T cells upon activation, where it
functions as an inhibitory signal of T cell response (94). In a
B16.F1 melanoma pulmonary metastasis model, IL-33 increased
the frequency of CD8+ T cells expressing PD-1, KLRG-1 and
CTLA-4 (95). Hollande et al. reported that tumors expressing high
levels of endogenous IL-33 (i.e., Hepa 1-6 and EMT6) respond to
combined CTLA-4/PD-1 blockade partially through the help of
eosinophils (57). Although this study does not directly address
whether IL-33 is relevant for up-regulation of these immune
checkpoint molecules, it suggests that local IL-33 and eosinophils
recruitment in the TME may promote immunotherapy efficacy.
This hypothesis is supported by an increasing number of reports
that show a positive correlation between eosinophilia and clinical
response to anti-PD-1 and anti-CTLA-4 in cancer patients (47,
96, 97).
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CONCLUDING REMARKS

Although the role of IL-33 in cancer immunity remains
controversial, it appears that this alarmin has beneficial
effects in certain types of experimental tumors, particularly
melanoma (16, 20–22, 31, 51, 57). The current literature
suggests that the anti-tumor properties of IL-33 are
attributable to its capacity to stimulate CD8+ T cells, NK, DC,
eosinophils and ILC2 (Figure 1). Eosinophils are recruited
early in the TME and may play a role in the first
containment of tumor development (98). A similar function
may be potentially played by ILC2, mast cells and basophils.
Although relatively rare in human cancers, these cells can
release several soluble mediators that may orchestrate tumor
immunity in various manners (11, 47, 56, 71, 72, 82). For
example, following stimulation with IL-33, eosinophils and
FIGURE 1 | Anti-tumoral mechanisms of interleukin-33 (IL-33) in the tumor microenvironment (TME). IL-33 administration or its physiological expression within the
TME leads to direct or indirect recruitment of several immune effector cells such as eosinophils, ILC2, DC, NK cells, CD8+, and CD4+ T cells, establishing an immune
cross-talk or directly controlling tumor growth. ILC2 cells can: 1) directly induce tumor cell killing through CXCL1/CXCL2 release and binding to tumoral CXCR2, 2)
promote the recruitment of eosinophils via IL-5 production, 3) release CCL5 that facilitates CD103+ DC recruitment and cross-priming of CD8+ T cells. Following
IL-33 exposure, eosinophil recruitment may result in: 1) direct tumor cell killing via adhesion-dependent degranulation and 2) release of CD8+ T cell-attracting
chemokines (CCL5, CXCL9, CXCL10). Moreover, IL-33 can activate NK, CD8+ T (directly or via stimulation of cross-presenting DC) and CD4+ T cells, promoting
anti-tumor effector responses. These events may be hindered by concomitant recruitment of ST2+ Treg cells. Lastly, IL-33 also up-regulates programmed cell
death-1 (PD-1) on T lymphocytes (especially CD8+ T), NK cells and ILC2, as well as CTLA-4 on T cells, suggesting that this cytokine may improve the therapeutic
response to immune checkpoint inhibitors.
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ILC2 produce chemokines attracting CD8+ T cells (22) and
DCs (84), respectively, thus contributing to the initiation of
adaptive responses. Furthermore, release of Th2 cytokines, (i.e.,
IL-4 and IL-5) by basophils, mast cells and ILC2 may promote
the recruitment of eosinophils and macrophages that control
tumor progression (99, 100). Direct stimulation of NK, CD8+

and CD4+ T cells by IL-33 has been reported to promote Th1-
associated anti-tumor responses in several tumor models (20,
21, 23–26, 28–30). Induction of IL-9 producing CD4+ (45) and
CD8+ (33) T cells by IL-33 may also contribute to anti-tumor
immunity. However, IL-33 can induce and amplify Th2
responses in the TME, which may support tumor
progression. Moreover, stimulation of ST2+ Treg cell
recruitment in the TME (3, 16) may further dampen anti-
tumor responses. Therefore, tissue-specific environmental
factors that shape the local immune TME may dictate the
balance of immune responses induced by IL-33. This aspect
should be carefully considered when harnessing the IL-33/ST2
axis in tumors particularly enriched in Treg cells, such as breast,
lung and gastrointestinal cancers (101).

IL-33 appears to increase the expression of PD-1/PD-L1 and
CTLA-4 molecules on certain immune cells (Figure 1) and to
improve immunotherapy efficacy of checkpoint blockade in
some cancer models. The modulation of these and other
checkpoint molecules by IL-33 and the immune targets in each
cancer type remain to be fully elucidated. In this view, targeting
Frontiers in Immunology | www.frontiersin.org 649
IL-33/ST2 in specific immune cell populations may be a
promising strategy to increase the therapeutic response to
immune checkpoint inhibitors. Since TRM cells express high
levels of immune checkpoint molecules (i.e., PD-1, CTLA-4
and Tim-3), these cells are regarded as key targets of immune
checkpoint inhibitors dictating immunotherapy efficacy (102).
Future investigation should be directed to evaluate whether
targeting the IL-33/ST2 pathway may increase the density of
TRM cells in the TME and improve the response to immune
checkpoint blockade.
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