About this Research Topic
Integrating magnetic metals, metal oxides, or their composites with carbon materials has been shown to improve their microwave absorption performance. However, there are still some great challenges in integrating metals with carbon materials. For instance, metals, metal oxides, or their composites possess high density and poor chemical corrosive resistance. These disadvantages may limit the practical applications of the metal/carbon composites as microwave absorption materials.
Due to impedance mismatching and limited loss mechanism, magnetic or dielectric materials with one single loss factor cannot display excellent EMW absorption performance. Therefore, through artificially adjusting electromagnetic parameters (complex permittivity and complex permeability), developing dielectric/magnetic composites with strong absorption capacity and broad absorption bandwidth has become a hot area of research within EMW absorbers.
We welcome studies looking at the design of the following materials to increase absorption properties:
• Dielectric loss-based microwave absorption materials, including carbon-based absorbers (amorphous carbon, CNTs, carbon fibers, graphene and others), semiconductors (ZnO, MnO2, Mos2, SiC and others)
• Magnetic loss-based microwave absorption materials, including magnetic metals and alloys, ferrites, etc.
• Polymer-based microwave absorption materials, including polypyrrole, polyamine, PEDOT, conductive polymer composites, etc.
• Various composite consisting of two or more constituents microwave absorption materials. Composites with delicate microstructures to obtain high-efficiency microwave absorption properties are of particular interest.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.