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Editorial on the Research Topic

Celebrating the Diversity of Genetic Research to Dissect the Pathogenesis of

Parkinson’s Disease

INTRODUCTION

Parkinson’s disease (PD) is the fastest growing neurological disorder worldwide, taking into
account age-standardized rates for prevalence, disability and deaths (1). PD is characterized by a
clinical symptomatology involving both motor and non-motor symptoms. According to the Global
Burden of Disease study (2018), the global burden of this disorder has more than doubled over the
past two decades from 2.5 million patients in 1990 to 6.1 million patients in 2016 (2).

In this editorial and eBook, we highlight the research done on PD by members of a global
consortium known as the Genetic Epidemiology of Parkinson’s disease (GEoPD) Consortium.
We begin the editorial by providing a brief history of how GEoPD was started and how it has
subsequently developed into an international endeavor. We then briefly summarize the completed
and ongoing projects, and conclude with the future vision of this unique consortium.

FROM FRIENDS ON A ROAD TRIP TO AN INTERNATIONAL
ROADMAP FOR SOLVING THE PUZZLES OF PD

GEoPD is a group of researchers dedicated to promoting education, scientific research, and
translational development in PD. It is the longest running worldwide Consortium on PD, operating
since 2004, and initially funded by a Michael J. Fox Foundation award to form “global genetic
consortia.” GEoPD enables unfettered access to a “family” of multi-disciplinary expertise, including
specialty neurologists, geneticists, biologists, epidemiologists or statisticians. From its inception,
GEoPD has always maintained its tradition of diversity and inclusion with an active and growing
membership from more than 60 sites and 30 countries on six continents.

The democratization of data, resources, projects and funding are long-established principles.
To ensure open, honest collaboration and transparency without politics and control, GEoPD
has always maintained an elected leadership. The GEoPD President is elected from and by a

6
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Steering Committee, for which eachmember serves a 2-year term
that is renewable. Election to the Steering Committee is based
on past contributions to the Consortium including: (1) directing
a collaborative project, and/or; (2) directing a Core service (as
specified below), and/or; (3) hosting the annual meeting.

Participation and projects are funded by and collectively
for the members, generally through grants and sponsorships
from different funding agencies and national societies. Projects
include whole exome and genome sequencing, custom array
genotyping, and studies that range from longitudinal assessment
of idiopathic PD to monogenetic parkinsonism in families,
to analyses of genetic and environmental variables using a
Mendelian randomization approach.

The first GEoPD meeting was organized by Demetrius
(“Jim”) Maraganore in 2004 in Greece and was attended by
six investigators that included Alexis Elbaz, Matt Farrer, and
Rejko Kruger, who remain active members of the Consortium
as Core leaders, and as past and current GEoPD Presidents. The
six of them drove in a minibus from Athens, in the southeast,
to Ioannina in the northwest, via Patras (Figure 1). Their tour
guides on this fateful journey were Jim Maraganore and John
Ioannidis. In part, the mission was to visit the ancestral origin of
the alpha-synuclein p.A53T mutation, the first genetic mutation
to be associated with familial late-onset parkinsonism. Focused
on PD and genetic epidemiology, it was a remarkable journey
of scientific discovery. They jointly elected to share that journey
with likeminded colleagues around the world and Rejko Kruger
coined the name “GEoPD” on the minibus. Ever since, one
member of the Consortium has elected to host the meeting in
a different part of the globe.

The aptly described GEoPD “World Tour” is CME-accredited
and provides a forumwhere colleagues catch up, in person and/or
virtually, and discuss their work and the latest developments
in PD research. It is an educational opportunity that openly
shares unpublished data and insights, that engagingly debates
controversy in the field, and in a convivial setting. A central
part of the meeting is reserved for a “data blitz” session that
gives members ∼10min to highlight unpublished data and seek
the help and collaboration of the entire membership. As a first
exemplary project, GEoPD assessed the role of alpha-synuclein
beyond autosomal dominantly inherited PD and established
common regulatory polymorphisms in the SNCA gene as a
risk factor for sporadic PD worldwide (3). This first global
confirmation of SNCA as a risk factor in sporadic PD was
subsequently confirmed by an unbiased approach in the era of
genome-wide association studies (GWAS) (4).

DEVELOPING A TRULY INTERNATIONAL
COLLABORATION

GEoPD is currently organized into five cores, each having a
specificmandate about one of the following areas: bioinformatics,
biology, clinical, communications, epidemiology, and statistics.
The consortium’s main mission is to promote multi-investigator
research projects. Annual Meetings, held since 2005, offer a
valuable forum for consortium members to discuss unpublished
data and ideas, highlight research questions or needs, and identify

global opportunities for partnership. These in-person meetings
are organized and hosted each year in a different country by
one of the members; the first “official” meeting was organized
in Paris, France in 2005, and subsequent meetings took place in
Santorini (Greece, 2006), Trondheim (Norway, 2008), Tübingen
(Germany, 2009), Toronto (Canada, 2010), Evanston (USA,
2011), Seoul (South Korea, 2012), Lübeck (Germany, 2013),
Vancouver (Canada, 2014), Tokyo (Japan, 2015), Luxembourg
(Luxembourg, 2016), Cairns (Australia, 2017), Paris (France,
2018), Cape Town (South Africa, 2019), and in 2020 the first
virtual meeting (due to the Coronavirus-2019 pandemic) hosted
by the group in Milan, Italy.

Using the large multi-ethnic clinical and genetic datasets
(currently including over 40,000 PD patients and 40,000
controls, mainly of European and Asian origins), multiple
advanced analyses are performed to assess emerging mutations
or variants associated with PD, and several studies have
been published. We have examined the role of ∼120 LRRK2
coding variants in ∼15,000 individuals, to implicate frequent
substitutions in idiopathic PD and neuroprotection (5).
Additionally, interactions between LRRK2 and PARK16
(RAB7L1; RAB29) variants were not replicated in GEoPD
efforts (6). Similarly, we have not been able to provide any
evidence of an interaction of LRRK2 p.R1398H, which has a
protective effect, with MAPT or SNCA variants (7). We have
also questioned the role of intermediate size repeat expansions
in SCA2, SCA3, SCA6, and SCA17 (8), or C9orf72 expansions
(9), as risk factors for idiopathic PD and our findings excluded a
major role of any of these intermediate/expanded repeats in PD
pathogenesis. Overall, the GEoPD consortium has contributed
more than 20 original, globally collaborative articles to advance
our understanding of the genetic architecture of PD [(3, 5–23),
Markopoulou et al.; Rajan et al.]. Recently, a unique global
initiative from our consortium aims to identify all patients and
relatives with SNCA multiplications to inform alpha-synuclein
targeted therapeutic development (22). Longitudinal clinical
assessments, genealogic information, genotyping data, and SNCA
locus breakpoints from 59 families with SNCA multiplications
are publicly available via a website that has been created as a
forum for data exchange.

ONGOING PROJECTS

Details about the ongoing collaborative projects of the
consortium can be found at the GEoPD website (https://www.
geopd.net/projects). These include: Monogenic PD (a project
to collect clinical and genetic information on mutation-positive
monogenic PD individuals to inform genotype-phenotype
correlations (21); LONG-PD a prospective study to assess
disease progression, treatment response and outcomes in a
longitudinal manner over >10 years in different ethnic cohorts
of PD patients; Courage PD (COmprehensive Unbiased Risk
factor Assessment for Genetics and Environment in Parkinson‘s
Disease); RVCD (a study identifying rare sequence variants
segregating in Mendelian forms of PD); and the Trios project,
which aims to study PD-affected individuals and both of their
biological parents using whole exome sequencing.
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FIGURE 1 | Founding members of GEoPD in Greece in 2004. Permission for publishing this figure has been obtained from the five individuals shown.

THE FUTURE VISION OF GEoPD

Over the past two decades, GEoPD has significantly contributed
to the genetic dissection of PD, and established genetics as
an entry point to decipher molecular mechanisms underlying

neurodegeneration in this increasingly common age-related
disorder. The mission of GEoPD is to inspire and unite

researchers, at a global scale, to advance multidisciplinary
research on genetic and environmental causes of PD, and to

share insights and resources to enable translational neuroscience
and clinical applications. The democratically elected structure

of GEoPD allows direct and equal participation of all member
sites worldwide; intellectual scientific contributions to the
GEoPD enterprise, publicly voiced, discussed and ratified by the
membership, are then supported by the efforts of the collective.
Hence, the science is neither convened nor limited by the desires
and constraints of funding agencies, nor political influence.
This concept provides assurance that each site can jointly own
and participate in federated data and sample infrastructure.
Furthermore, this vision continues to draw new members
from countries whose populations remain underrepresented in
worldwide research, to promote their research in a global effort.

The advance of large-scale genotyping technologies and
high-throughput sequencing has not yet directly translated
into corresponding advances in elucidating the missing
heritability of PD. New strategies are required to disentangle the
complex genetic architecture of PD, to establish the molecular
pathogenesis of this disorder, and to inform therapeutic

development. To date, most genetic discoveries have been made
in Caucasians of European ancestry, but these populations do not
include the genetic diversity of different ethnicities worldwide.
Identifying new genes, consolidating candidate genes and
defining the impact of genetic variability in diverse populations
has been a priority for GEoPD since its inception. This is
underscored by the outreach to underrepresented populations
at the first African GEoPD meeting in 2019 which served as the
basis for this Frontiers eBook.

To fully capitalize on opportunities for genotype-phenotype
correlations, GEoPD has addressed the emerging need for
deep clinical phenotyping in PD and control cohorts (i.e., to
improve stratification of patient heterogeneity, inform prognosis
and enhance clinical trials). This is reflected by our efforts to
harmonize clinical data-capture across GEoPD sites worldwide
[e.g., in the LONG-PD study (led by Katerina Markopoulou) or
Minimal Dataset initiatives available to all sites via the Elixir node
for translational medicine data in Luxembourg].

Our understanding of genotype-phenotype correlations is
currently limited due to a lack of systematic assessment of the
functional role of novel gene regulatory variants and splicing
defects (e.g., via differential regulation of gene expression).
The increasing number of novel PD genes and risk variants
being identified further underscores the need for functional
validation of novel mutations using models to define disease-
relevant molecular pathways. “Mechanism-based” stratification
of molecular heterogeneity will inform genetically-stratified
patient participation in clinical trials, and the first targeted
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treatment options (i.e., precision medicine). In this context,
patient-based induced pluripotent stem cells (iPSC) including
isogenic controls, provide an essential tool to study different
disease-related variants in defined genetic backgrounds.

While rare mutations in monogenic forms of PD pave the
way for precision medicine, the biological pathways impacted
can reveal generic mechanisms that apply to larger groups of
idiopathic patients (24). Many more genes have been revealed
by genome-wide association meta-analyses that assess frequent,
polymorphic variants of minor effect, although that polygenic
risk is not predictive (25). However, recent innovations in
whole genome sequencing, distributed cloud computing and
artificial intelligence promise far greater breakthroughs in
medical research discovery. We now have the opportunity to
define the joint contribution of all genetic variants, including
those of intermediate frequency and modest effect, provided
that sample sizes are sufficiently large. The collaborative spirit
of the GEoPD consortium strongly supports these larger scale
international initiatives. Hence, we have embraced the Global
Parkinson’s Genetics Program (GP2) effort, led by Andrew
Singleton, supported by the US National Institutes of Health and
the recent Aligning Science Across Parkinson’s (ASAP) initiative,
that provides the opportunity to synergize and maximize the
precious research contribution of people worldwide, with and
without PD.

The 21 articles appearing in our first eBook in “Frontiers
in Neurology: Neurogenetics Research Topic” highlights the
breadth and depth of our scientific inquiry, and come from
researchers working in Africa, Asia, Australia, Europe and North
America. This reflects our expanding international collaborative

effort, including the elected host site for the next GEoPD Annual
Meeting in Omsk in southwestern Siberia in October 2021.

We welcome new members to join us by visiting our website
at https://www.geopd.net/component/users/?view=registration.
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The study of consanguineous families has provided novel insights into genetic causes of

monogenic parkinsonism. Here, we present a family from the rural Khyber Pakhtunkhwa

province, Pakistan, where three siblings were diagnosed with early-onset parkinsonism.

Homozygosity mapping of two affected siblings and three unaffected family members

identified two candidate autozygous loci segregating with disease, 8q24.12-8q24.13

and 9q31.2-q33.1. Whole-exome sequence analysis identified a single rare homozygous

missense sequence variant within this region, CCN3 p.D82G. Although unaffected family

members were heterozygous for this putative causal mutation, it was absent in 3,222

non-Parkinson’s disease (PD) subjects of Pakistani heritage. Screening of 353 Australian

PD cases, including 104 early-onset cases and 57 probands from multi-incident families,

also did not identify additional carriers. Overexpression of wild-type and the variant CCN3

constructs in HEK293T cells identified an impaired section of the variant protein, alluding

to potential mechanisms for disease. Further, qPCR analysis complemented previous

microarray data suggesting mRNA expression of CCN3 was downregulated in unrelated

sporadic PD cases when compared to unaffected subjects. These data indicate a role

for CCN3 in parkinsonism, both in this family as well as sporadic PD cases; however, the

specific mechanisms require further investigation. Additionally, further screening of the

rural community where the family resided is warranted to assess the local frequency of

the variant. Overall, this study highlights the value of investigating underrepresented and

isolated affected families for novel putative parkinsonism genes.

Keywords: parkinson, genetic, CCN3, NOV, early-onset, extracellular matrix

INTRODUCTION

In most cases, the cause of Parkinson’s disease (PD) is unknown, and although the risk may be
influenced by a number of common genetic (1) and environmental factors (2), only a minority
of cases can be ascribed to known genetic causes. These rare monogenic causes of parkinsonism
often arise in and are detected through the study of consanguineous families from remote regions.
Notably, mutations in DJ-1 (3), PINK1 (4, 5), DNAJC6 (6), SYNJ1 (7), PLA2G6 (8), and the
putative genes PODXL (9) and ADORA1 (10) were identified in consanguineous parkinsonism
families. While most PD cases do not possess these rare genetic variants, their discovery provides
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insight into the cellular mechanisms involved in the development
of the disease, and ongoing screening of affected families is a
powerful platform to identify further candidates. To this end,
a consanguineous family from a rural district in the Khyber
Pakhtunkhwa province, Pakistan, who presented with early-onset
parkinsonism but had screened negative for known causes of
recessive parkinsonism, underwent further genetic analysis. This
study reports the finding of a rare, putatively pathogenic, p.D82G
mutation in CCN3 (also known as NOV) in this family. The gene
encodes a secreted matricellular protein, which may have a role
in adhesion, cellular signaling, cell migration, angiogenesis, and
calcium homeostasis (11).

MATERIALS AND METHODS

Genetic Analysis
Due to the remote location of the family, only the proband (IV:3)
was available for diagnosis by an expert movement disorder
specialist. Details of the family were acquired through interviews
with the proband. DNA was extracted from venous blood
donated by patients from the Khyber Pakhtunkhwa province,
Pakistan (Ethics: Ref. 65/IRBEB/PGMI/LRH), using the phenol
chloroform method, and from Queensland, Australia (Ethics:
Ref. ESK/04/11/HREC), using a salting-out method described
previously (12).

Approximately 300,000 single-nucleotide polymorphisms
(SNPs) were genotyped using the HumanCytoSNP-12 BeadChip
and the iScan system (Illumina) in the two patients IV:3 and
IV:5, as well as three unaffected members, III:2, III:5, and
IV:4. All samples had SNP call rates >95%. Homozygosity
mapping was performed using GenomeStudio (Illumina) and
Homozygosity Mapper (13). Copy number variation (CNV)
detection was performed using the cnvPartition plugin within
GenomeStudio (Illumina).

Whole-exome sequencing (WES) was performed in patient
IV:3 using the Nextera Rapid Capture Exome Enrichment
chemistry and sequenced under the 2× 75-bp pair-end
configuration on the MiSeq sequencer (Illumina) at the Griffith
University DNA sequencing facility. The sample produced
an average read depth of 30× over the 45-Mb target
region, with ∼93.5% of calls above Q30. The data were
prepared as recommended by the Genome Analysis Toolkit
(GATK) developers (14). Sequence variants differing to the
human consensus sequence hg19/GRCh37 were identified by
the HaplotypeCaller algorithm (GATK) and annotated by
ANNOVAR (15). Variants were filtered by the following
parameters: (1) missense variants; (2) gnomAD minor allele
frequency (MAF) <0.001; (3) homozygous.

Themutationwas confirmed by Sanger sequencing, which was
performed by amplifying the region surrounding the mutation
using the following primers: 5′-GGTTTCTCCTTGTCTCGCCT-
3′ (forward) and 5′-GCTGCAGGAGAAGAGGTCAA-3′

(reverse). Amplification products then underwent BigDye
Terminating v3.1 reaction which were analyzed on the genetic
analyzer 3130× l (Applied Biosystems) at the Griffith University
DNA sequencing facility.

High-Resolution Melt Analysis
High-resolution melt (HRM) analysis was used in 320 Australian
PD samples to assess genetic variants in the 135-bp region
surrounding the putative mutation, encompassing 57% of
exon 2. HRM primers were 5’-GCTCATGCTGTCTGGTGTGT-
3′ (forward) and 5′-GATTACCGTGCAGATGCCA-3′ (reverse).
Briefly, products were amplified using the GoTaq kit (Promega)
with 1.5mM MgCl2, 200µM dNTPs (Bioline), 200 nM primers
(Sigma-Aldrich), and 1µM dsDNA binding Syto9 dye, with the
following PCR profile on a RotorGene 6000 (QIAGEN Inc.):
95◦C for 2min followed by 40 cycles of 95◦C for 15 s, 60◦C for
15 s, and 72◦C for 15 s. Fluorescence was acquired at the 72◦C
step, and the product underwent high-resolution melt between
83◦ and 93◦C.

Quantitative PCR
Quantitative PCR (qPCR) was used to verify observations
from microarray data of human olfactory neurosphere-derived
(hONS) cells (16), available at www.ebi.ac.uk/arrayexpress
(Accession: E-TABM-724). Total RNA was extracted from hONS
cells donated by nine unrelated idiopathic Queensland PD cases
and eight unaffected controls using TRIzol (Thermo Fisher
Scientific) at 60–80% confluence. RNA (200 ng) was converted to
cDNA using the SuperscriptIII First-Strand Synthesis SuperMix
kit (Thermo Fisher Scientific). qPCR analysis amplified CCN3 as
well as endogenous controls RPL13 and TBP, using the following
primers: CCN3 forward 5′-CGGCGGTAGAGGGAGATAAC-3′,
CCN3 reverse 5′-GCCTGTAAGCTGCAAGGGTA-3′, RPL13
forward 5′-CCTGGAGGAGAAGAGGAAAGAGA-3′, RPL13
reverse 5′-TTGAGGACCTCTGTGTATTTGTCAA-3′, TBP
forward 5′-CCACTCACAGACTCTCACAAC-3′, and TBP
reverse 5′-CTGCGGTACAATCCCAGAACT-3′. Products
were amplified using the PowerUp SYBR green kit (Applied
Biosystems), the thermal cycling conditions were UDG activation
50◦C for 2min, polymerase activation 95◦C for 2min, followed
by 40 cycles of 95◦C for 15 s, 60◦C for 15 s, and 72◦C for 1min.
A relative standard curve was used to determine the expression
of CCN3 to the geometric mean of RPL13 and TBP. Statistical
analysis was conducted in R (v3.5.1). Briefly, two outliers
(controls) were removed for high values [relative expression
(log2): 2.3 and 1.7]. Normality and Levene’s test of equal variance
were assessed using the ggplot2 (v3.0) and car (v3.0-5) packages.
A Student’s t-test was conducted under the assumptions of
normal distribution and equal variance using the stats (v3.5.1)
package. The Bonferroni correction was used to control for
multiple comparisons.

V5-Tagged Expression Construct Design
Briefly, cDNA was prepared from a control hONS cell line and
theCCN3 coding sequence, lacking the stop codon, was amplified
using the Pfusion HF polymerase (New England Biolabs). Next,
the CCN3 amplicon was inserted into pDONR201 and then into
the pEF-DEST51 expression vector using the Gateway BP and LR
Clonase II Enzyme mix, respectively (Thermo Fisher Scientific).
The c.A245G (NM_002514) point mutation was introduced by
the QuikChange Lightning Multi Site-Directed Mutagenesis
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Kit (Agilent Technologies) using the following primers: 5′-
CTGGAGCCATGCGGCGAGAGCAGTGGC-3′ (forward) and
5′-GCCACTGCTCTCGCCGCATGGCTCCAG-3′ (reverse).
Correct sequence identity was verified by Sanger sequencing.

Cell Culture and Transfection
HEK293T cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM; Thermo Fisher Scientific) supplemented
with 10% fetal calf serum (FCS; Thermo Fisher Scientific)
at 37◦C in a humidified atmosphere with 5% CO2. For
immunoblot experiments, 75,000 cells were plated into a
24-well plate overnight (NuncTM) and transiently transfected
using Lipofectamine 2000 (Thermo Fisher Scientific). For
immunostaining experiments, cells were plated at a density
of 37,500 cells overnight on poly-ornithine (Sigma-Aldrich)-
coated glass coverslips. The cells were either fixed or lysed
48 h post-transfection, and supernatants were also collected by
centrifugation for 10min at 300 × g to remove cell debris and
analyzed. Lysis was performed using 10mM Tris, 150mM NaCl,
1mM EDTA, and 1% Triton-X100, incubated for 15min on
ice followed by centrifugation for 5min at 4◦C. Fixation was
achieved by incubating coverslips in 4% paraformaldehyde (PFA)
for 10 min.

Immunoblotting
Immunoblots were performed using Tris-Glycine gels
and standard sodium dodecyl sulfate–polyacrylamide
gel electrophoresis (SDS-PAGE) protocols. Nitrocellulose
membranes were probed with rabbit-anti-V5 (1:3,000; Cell
Signaling Technology) and mouse-anti-α-tubulin (1:18,000;
Sigma-Aldrich) antibodies overnight at 4◦C, followed by goat-
anti-mouse-680RD and goat-anti-rabbit-800CW secondary
antibodies (both 1:24,000 LI-COR) for 60min at room
temperature. Membranes were imaged on an Odyssey-Fc
imaging system (LI-COR).

Immunostaining
Coverslips were permeabilized and blocked in PBS containing
10% horse serum and 0.3% Triton-X100 for 60min. CCN3
was detected using rabbit-anti-V5 antibody (1:1,000) for
90min at room temperature and detected using donkey-
anti-rabbit-555 secondary antibody (1:1,000, Thermo Fisher
Scientific). Coverslips were counterstained with 4′,6-diamidino-
2-phenylindole (DAPI; Sigma-Aldrich) and imaged on an
Olympus FV1000 confocal microscope.

RESULTS

Patient IV:3 was diagnosed with levodopa-responsive
parkinsonism at the age of 31 after developing rigidity and gait
abnormalities. The symptomatology progressed, and at the age
of 36 presented with severe rigidity, frequent falling events, mild
tremor, hypomimia, difficulty swallowing, and a stooped posture.
Magnetic resonance imaging (MRI) scans were unremarkable
(data not shown). The proband had reported patient’s IV:5
and IV:6 also presented with similar symptomatologies, while
the parents were not affected (Figure 1A). CNV analysis and

WES in IV:3 excluded known causes of genetic parkinsonism,
including PARK2 and SNCA dosage. Homozygosity mapping
of the two affected siblings suggested that two autozygous loci,
8q24.12-8q24.13 and 9q31.2-q33.1, segregated with disease.
Collectively, these encompassed 97 protein-encoding genes.

WES identified one missense variant in these genes with a
MAF <0.001, CCN3 p.D82G (exon 2, c.A245G, NM_002514)
on chromosome 8 using the parameters described. Subsequent
Sanger sequencing showed that the affected sibling (IV:5) was
also homozygous for this mutation, while the unaffected brother
(IV:4), mother (III:5), second-degree relative (III:2) were found to
be heterozygous for this mutation (Figure 1A). By inference, the
father (III:6) would also be heterozygous for this mutation. The
variant resided in the insulin-like growth factor binding domain
of the CCN3 protein (Figure 1B).

The variant was rare, with a MAF of 4.012 × 10−6 in the
gnomAD dataset, and was not identified in the exomes of 168
Pakistani subjects from the Greater Middle East (GME) Variome
Project (17); 3,222 subjects of Pakistani heritage (18); or 3,044
subjects from the AnnEx database, which contained a mixture
of ethnic groups and movement disorders, including those with
parkinsonism as the predominant phenotype (https://annex.can.
ubc.ca). Further, HRM analysis and previous WES data did not
identify the mutation in 353 Australian PD samples, including
104 early-onset cases (age at onset <50 years) and 57 probands
from multi-incident families. The variant had a CADD score of
24.7 (19), which was suggestive of a deleterious variant.

To assess if the p.D82G mutation had any effect on the
CCN3 protein, both CCN3WT (wild-type) and CCN3D82G were
expressed in HEK293T cells. Due to the fact that CCN3 is
a secreted protein, CCN3WT was primarily detected in the
cell culture medium as expected (Figure 2A), with barely any
detectable protein within the cell (Figure 2B). Furthermore,
CCN3D82G was also detected at a similar level in the cell culture
medium (Figure 2A). However, when the CCN3D82G cell lysate
was analyzed, we detected a significant increase in cellular CCN3
protein (27.65 ± 13.01 fold increase, p < 0.05; Figure 2B).
We next investigated the subcellular localization of CCN3D82G.

by immunofluorescence staining of HEK293 cells transfected
with either CCN3WT or CCN3D82G. Subcellular localization
confirmed CCN3WT was detectable in less transfected cells
than the CCN3D82G (Figure 2C), suggesting the CCN3D82G had
impaired secretion when compared to CCN3WT.

We next investigated the expression of CCN3mRNA in hONS
cells derived from unrelated sporadic cases and controls to
validate observations frommicroarray data (16), which suggested
that CCN3 was decreased by 7.3% in PD patients (p < 0.01;
Figure 3). Interestingly, the qPCR analysis confirmed CCN3
expression was downregulated in PD cases by 52.8% (p < 0.001)
when compared to RPL13 and TBP (Figure 3).

DISCUSSION

Here we present evidence that a rare homozygous mutation in
CCN3 found in a family in rural Pakistan may be a novel cause
of parkinsonism. After excluding other causes of early-onset
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FIGURE 1 | (A) Pedigree of family carrying CCN3 p.D82G homozygous mutation. Solid shapes indicate those affected by parkinsonism. Squares represent males,

circles represent females, and diamonds represent undefined. * indicates an inferred genotype. Non-essential pedigree information has been omitted or modified to

protect the privacy of the family. (B) Schematic of mutation location in protein structure. SP, signal peptide; IGFBP, insulin-like growth factor binding protein; VWFC,

von Willebrand factor type C; TSP1, thrombospondin type-1 repeat; CK, cysteine-knot, C-terminus. Dashed vertical line represents mutation location.

parkinsonism within affected family members, homozygosity
mapping and WES identified only one suitable candidate for
disease: CCN3 c.A245G (p.D82G). Prior to this study, the
mutation had only been reported once as a heterozygous variant
in a European subject above 80 years of age in the gnomAD
dataset (20). We did not detect the variant in 353 Australian
samples, which included 57 multi-incident families and 104
early-onset cases. Further, the mutation was not detected in three
other WES datasets with a combined total of 6,434 samples
of which 3,390 were of Pakistani heritage. These data suggest
the mutation is very rare across multiple populations; however,
screening the community from the same rural district as the
family may provide further insight into the local frequency of

the sequence variant. Although the CCN3 aspartic acid residue
at position 82 is multi-allelic, the reported rate of the asparagine
and glutamic acid amino acid changes were still rare (20), have
lower CADD scores compared to the glycine substitution, 24.4
and 18.2, respectively (19), and may have different effects on
protein function. Notably, glycine is achiral and has been noted to
affect flexibility in protein conformation (21, 22). Hence, we still
consider this mutation as a good candidate for disease in affected
members of this family.

Notably, we observed that a portion of the CCN3D82G protein
is consistently retained within the cell, while still being able
to be secreted. This suggests that the aspartic acid residue
in the insulin-like growth factor (IGF)-like binding domain is
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FIGURE 2 | CCN3D82G has impaired secretion. (A) V5 Immunoblot of cultured supernatant from non-transfected (NT) and CCN3WT− and CCN3D82G-expressing cells.

(B) Immunoblots of lysates from non- NT and CCN3WT− and CCN3D82G-expressing cells probed with either V5 or α-tubulin. (C) Immunofluorescence imaging of eGFP

(enhanced green fluorescent protein) and CCN3WT− and CCN3D82G-expressing cells.
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FIGURE 3 | Comparing CCN3 mRNA expression between cases and controls from microarray and qPCR data. Expression data were normalized to control-derived

hONS samples and displayed on a log scale. qPCR data were normalized to geometric mean of RPL13 and TBP. Error bars represent standard error. **p < 0.01,

***p < 0.001.

important for normal secretion. This finding is interesting as
the CCN3 IGF-like binding domain has little to no IGF binding
affinity (23), thus supporting the importance of this domain for
another function.

Mechanisms in which this aberrant CCN3 protein may lead
to disease are unclear. It is noteworthy that CCN3 mRNA is
expressed in developing human brains and has been detected
in the substantia nigra, pontine abducens, thalamic nuclei, and
striatum at 32 weeks gestation (24). Further, the CCN3 protein
was observed in motor neurons of the ventral horn (25). Thus,
CCN3 may have a role in the development of the nervous
system. Alternatively, chemokines CCL2 and CXCL1 in rat
astrocytes were found to increase upon recombinant CCN3
protein exposure (26), suggesting a possible neuroinflammatory
role. Further investigation is strongly warranted to characterize
potential mechanisms affected by the aberrant CCN3 protein.

It is also noteworthy that hONS cells from sporadic PD cases
had a lower expression of CCN3. These primary human cells
were previously shown to encapsulate aspects of disease, such
as metabolic, oxidative (16, 27), and mitochondrial phenotypes
(28). Consistently, the disease-specific decreased expression was
also observed through microarray analysis (16). These data
suggest CCN3 expression may have a role in sporadic disease, or
conversely, disease statusmay have an effect onCCN3 expression.
This observation also warrants further investigation.

CONCLUSION

While we cannot exclude mutations residing outside the exome,
the evidence presented in this study indicates that the best
candidate for disease in this family was the rare homozygous
CCN3 p.D82G mutation. Notably, the mutation impaired
secretion of the CCN3 extracellular matrix protein; however,
the pathway affected by the aberrant protein within the affected
family requires further investigation. We propose that other
consanguineous families with early-onset parkinsonism from
this region should also be examined for this and other rare
variants. Interestingly, this study also presents evidence to
suggest that CCN3 expression is downregulated in idiopathic
PD; however, the molecular causes of this downregulation
and the role CCN3 has in idiopathic PD also require further
elucidation. Nevertheless, this study has identified a strong
interesting parkinsonism candidate, CCN3, highlighting the
utility of screening isolated affected families for identification of
putative disease-causing genes.
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This minireview discusses our current understanding of the olfactory dysfunction that

is frequently observed in sporadic and familial forms of Parkinson’s disease and

parkinsonian syndromes. We review the salient characteristics of olfactory dysfunction

in these conditions, discussing its prevalence and characteristics, how neuronal

processes and circuits are altered in Parkinson’s disease, and what is assessed by

clinically used measures of olfactory function. We highlight how studies of monogenic

Parkinson’s disease and investigations in ethnically diverse populations have contributed

to understanding the mechanisms underlying olfactory dysfunction. Furthermore, we

discuss how imaging and system-level approaches have been used to understand the

pathogenesis of olfactory dysfunction. We discuss the challenging, remaining gaps in

understanding the basis of olfactory dysfunction in neurodegeneration. We propose

that insights could be obtained by following longitudinal cohorts with familial forms

of Parkinson’s disease using a combination of approaches: a multifaceted longitudinal

assessment of olfactory function during disease progression is essential to identify not

only how dysfunction arises, but also to address its relationship to motor and non-motor

Parkinson’s disease symptoms. An assessment of cohorts having monogenic forms of

Parkinson’s disease, available within the Genetic Epidemiology of Parkinson’s Disease

(GEoPD), as well as other international consortia, will have heuristic value in addressing

the complexity of olfactory dysfunction in the context of the neurodegenerative process.

This will inform our understanding of Parkinson’s disease as a multisystem disorder

and facilitate the more effective use of olfactory dysfunction assessment in identifying

prodromal Parkinson’s disease and understanding disease progression.

Keywords: olfactory dysfunction, genetics, idiopathic Parkinson’s disease, longitudinal studies, biomarker,

cognition, monogenic Parkinson’s disease, neurodegeneration

INTRODUCTION

Since Ansari and Johnson (1) first reported that olfactory dysfunction (OD) occurs in Parkinson’s
disease (PD), OD has been evaluated using tests of odor identification, odor discrimination,
odor-threshold detection and electrophysiology (2–4). OD is not PD-specific and is prevalent in
aging and other diseases, particularly in neurodegenerative disorders such as Alzheimer’s disease,
Huntington’s disease, and rapid-eye-movement sleep-behavior disorder (5–12). OD can severely
impact the quality of life, affecting interpersonal and eating habits, patient safety, and nutritional
intake (13–15). Because OD is prominent in PD (16, 17) and its onset may signal prodromal PD,
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it is important to understand how and when OD arises, the
mechanisms underlying its association with PD progression, and
identify interventions for OD.

OD PREVALENCE IN PD

Cross-sectional studies revealed that OD occurs in sporadic
PD prior to the initiation of dopaminergic therapy [reviews:
(3, 4, 18–20)]. The reported prevalence of OD in sporadic PD
varies substantially: 45–50% (1, 21, 22), 70–80% (2, 23), and 90–
97% (24, 25). This may reflect challenges in PD diagnosis, OD
measurement, sample size, normative group selection, and age.
Prevalence of OD generally decreases when adjusted for age-
related norms, as the prevalence of OD is over 50% past age 65
and 62–80% past age 80 (26, 27).

Interestingly, OD in monogenic PD exhibits variable
penetrance and expressivity. In manifesting carriers with
GBA (β-glucosylceramidase), SNCA (α-synuclein, point or
gene-multiplication), LRRK2 (leucine-rich repeat kinase
2), PINK1 (PTEN-induced kinase 1), or DJ1 (PARK7:
Parkinsonism-associated deglycase) mutations, and in MAPT
(microtubule-associated protein tau)-associated frontotemporal
dementia and parkinsonism, OD-penetrance overlaps with that
in sporadic PD [(28–64); reviews: (3, 65–68)]. While different
studies report varying, sex- or allele-differential OD prevalence
in mutation carriers relative to sporadic PD controls [tabulated
in Doty (3)], two key OD features seen in sporadic PD persist
in many monogenic forms. First, while many carriers are
hyposmic when they phenoconvert to show motor symptoms,
some carriers have mostly preserved olfaction (28, 40). Second,
the distribution of OD in monogenic PD cohorts is similar
to sporadic PD (Figure 1). The striking exception is PRKN
(parkin RBR E3-ubiquitin protein ligase) and VPS35 (VPS35
retromer-complex component) manifesting carriers, who have
normal olfaction or only mild OD (70–75). As discussed below,
the preserved olfaction in PRKN carriers and possibly some
subsets of LRRK2 carriers appears related to an absence of
Lewy bodies (LBs) in the olfactory bulb and/or the olfactory
system (76–78).

Mutations in LRRK2, PINK1, GBA, SNCA, and PRKN have
similar effects on OD across ethnically and geographically diverse
populations. Hence, if a mutation causes OD, its effect-size
on OD-related neurodegenerative processes is large relative to
genetic background and environmental exposure. Since these
mutations increase substantially PD risk, targeted investigations
of non-manifesting mutation carriers of LRRK2, PINK1, GBA,
and SNCA provide a unique opportunity to understand OD
in PD.

OD CHARACTERISTICS IN PD

Though many fundamental questions about OD in PD have been
raised for some time (24, 79, 80) and studied in diverse patient
cohorts and contexts, consensus answers are not always available,
as described below. Sometimes, conflicting findings reflect the
tests used or their interpretation. As discussed more fully by

FIGURE 1 | Univariate density estimates of scores on the University of

Pennsylvania Smell Identification Test (UPSIT) in five PPMI cohorts (69).

Cohorts: 198 healthy controls (HC, black) age-matched with 491 sporadic

Parkinson’s disease patients (SPD, blue, ≥2 of resting tremor, bradykinesia, or

rigidity, with resting tremor or bradykinesia required, or either asymmetric

resting tremor or asymmetric bradykinesia; PD diagnosis ≤2 years; Hoehn and

Yahr stage I–II; scan-confirmed dopaminergic deficit; ≥30 years at diagnosis;

no dopaminergic medications ≥6 months after baseline assessment), 310

asymptomatic genetic Parkinson’s disease patients who have a mutation, or

are a first-degree relative of an individual having a mutation, in LRRK2, SNCA,

or GBA (GENUN, gold), 220 symptomatic genetic Parkinson’s disease patients

who have a mutation in LRRK2, SNCA, or GBA (GENPD, red), and 61

individuals selected for REM-behavior sleep disorder and/or hyposmia (PROD,

cyan). Shading in the table cells indicates the P-value (white: P ≥ 0.05, black:

P < 0.001) obtained from pairwise non-parametric bootstrap tests of equal

densities using 1,000 permutations.

Doty (81), while the results on psychophysical tests of OD (tests
of odor identification, odor discrimination, or odor-threshold
detection) are strongly correlated, they vary in reliability and
sensitivity and assess different neurophysiological, neurological,
and/or psychological aspects. Most often, OD is evaluated using
tests of odor identification. Using those tests, variable OD
is seen in all studies of sporadic PD and those monogenic
PD forms resembling sporadic PD (SNCA, GBA, LRRK2),
including at motor-symptom onset. Figure 1 (69) illustrates
this using univariate density estimates of odor-identification-
test scores obtained from the Parkinson’s Progression Marker
Initiative (PPMI). While the score distributions of early-stage,
dopamine-transporter-scan positive, dopaminergic-treatment
naïve sporadic PD (blue), and age-matched healthy controls
(black) are distinct, both groups have normosmic, hyposmic,
and anosmic membership. This is also observed in manifesting
SNCA, GBA, and LRRK2 carriers (red line), which here have a
score distribution like sporadic PD. Indeed, anosmia is not always
seen in manifesting carriers in nuclear families with monogenic
PD (28, 52). Hence, like PD motor symptoms, OD has variable
penetrance in sporadic and some monogenic PD. Unlike them,
OD is frequently seen in otherwise healthy aging and other
neurodegenerative diseases, suggesting that OD can result from
a confluence of processes.
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ThoughOD in PDpresents non-uniformly, community-based
prospective studies demonstrated that it can appear up to 4 years
before motor-symptom onset (79, 80); in MAPT carriers it can
appear 2 years before symptom onset (52). Consequently, OD
has been used in biomarker panels for predicting risk and/or
progression of PD [(59, 82–88); reviews: (18, 19, 89–91)]. For
this purpose, it is important to elucidate: (1) whether OD in PD
is distinguishable from OD in other diseases and aging; (2) how
its onset and progression relates to motor-symptom onset and
progression; (3) whether OD severity is associated with disease
stage, duration, or predicts disease progression; and (4) what
clinical tests of OD measure in the context of the disease process.
Well-designed studies of OD in monogenic PD can address
each issue.

DISTINGUISHING FEATURES OF OD IN PD

Central to understanding whether the etiology of OD in PD is
shared with that in the elderly or other neurodegenerative
diseases is identifying whether OD has PD-specific
characteristics. PD does affect supra-threshold estimates of
perceived odor intensity, which appears spared in Alzheimer’s
disease, schizophrenia, and the elderly (92), but does not affect
the trigeminal system (93). Combined with imaging, it can
help distinguish disorders whose initial presentation overlaps
with PD, such as progressive supranuclear palsy, cortico-basal
degeneration, or multiple system atrophy [(94–96); reviews:
(20, 97)].

Many studies have identified a set of odors or pattern of OD
that best evaluates OD in their cohort (98–107). Most often
however, the odor sets are dissimilar in different PD populations
(108). This likely reflects odor identification being influenced
strongly by prior exposure and population variation in odorant-
receptor alleles. Multiple analyses have indicated that there is
not odor-selective hyposmia in PD. Highly compelling is an
odor-item analysis indicating that the discriminatory power
of odor subsets is not shared across independently selected
groups (109). Additional support comes from longitudinally
evaluating hyposmia in subjects with sporadic PD, subjects
without neurodegenerative disease, and in MAPT-mutation
carriers. They reveal odor-identification irreproducibility as a
general feature of OD: subjects do not misidentify the same
odors on replicate odor-identification tests (52). In a longitudinal
study of sporadic or monogenic PD subjects recruited from
ethnically diverse populations, comparison of results across
populations would be facilitated by using a universal olfactory
test that is independent of odor-specific insensitivity or prior
experience (110).

HOW IS OD RELATED TO DISEASE ONSET
AND PROGRESSION?

The etiological mechanisms underlying the variable presentation
of both PD motor symptoms and OD remain unclear. The
olfactory epithelium in PD appears normal (111), but it is
unknown whether PD impacts its neurogenic niche (112), the

functional integration of axons from differentiating olfactory-
receptor neurons into the olfactory bulb, and how either process
impacts OD. α-Synuclein deposits are found in the olfactory bulb
and anterior olfactory nucleus at Braak stage I (113–115), and
glomerular volume is reduced by half in PD (116). Since the
olfactory bulb plays a critical role in the spatiotemporal coding of
smell, OD early in disease might reflect the incomplete inhibition
of olfactory inputs at the level of the olfactory bulb (117) and the
reported increase in dopaminergic neurons (118, 119). Studies
of OD in monogenic PD offer a compelling hypothesis for the
variable expressivity of OD: early OD reflects LB development in
the olfactory bulb. LBs are prominent neuropathological features
in monogenic PD forms with OD (SNCA,GBA, PINK1, andDJ1),
but not in PRKN-related PD where olfaction is preserved (28–
64, 70–77). Progressive OD is also seen in mice expressing forms
of human α-synuclein exhibiting olfactory-bulb Lewy pathology
(78, 120, 121). ATP13A2 (ATPase cation transporting 13A2)
carriers exhibit OD (65) but not LB (122), but show atypical
PD. Since LB and olfactory dysfunction are not always seen in
LRRK2 carriers, and some LRRK2 alleles have fewer LB (40–
49, 76, 77, 123), additional support for this hypothesis would
come if the relatively preserved olfaction in a subgroup of LRRK2
carriers were also associated with fewer olfactory-bulb LB. If
this hypothesis is correct, screening hyposmic individuals using
PET ligands under development to image LB in the olfactory
bulb (124)1 would help identify those having increased risk of
developing PD-motor symptoms.

Early olfactory deficits are consistent with the olfactory vector
hypothesis for PD pathogenesis and the caudo-rostral spread
of LB pathology (113–115). It is interesting however, that some
individuals with normal olfaction lack olfactory bulbs (125). This
suggests that the establishment and maintenance of olfactory
circuits has considerable functional plasticity. The projections
of the olfactory tract form circuits spanning multiple cortical
areas, including the entorhinal and orbitofrontal cortices and
utilize multiple neurotransmitter systems (Figure 2). Therefore,
olfactory-bulb pathology may not be the sole determinant of
OD. As discussed below, early OD associated with olfactory bulb
LB can be followed by later cholinergic denervation (126, 127).
It will be important to address the extent to which OD in
PD is associated with a loss of functional plasticity, whether
it reflects the differential progression of the neurodegenerative
process in one or multiple anatomical regions, the contributions
of degenerative or compensatory changes in dopaminergic,
or other neurotransmitter systems, including substance P and
acetylcholine (128, 129), and how these associations relate to later
motor-symptom onset and progression.

OD has significant, moderate to strong associations with
nigrostriatal degeneration (105, 130, 131). In one study,
98.7% of PD subjects with imaging evidence of nigrostriatal
dopaminergic denervation had OD (130). There, however,
most still retained some olfactory function: 24.6% were
anosmic and 73.2% were hyposmic [N = 183, motor-disease
duration = 6.4 ± 4.3 year, Hoehn and Yahr (H&Y) stage 1–5].

1https://www.michaeljfox.org/grant/18f-labeled-alpha-synuclein-ligands-pet-

imaging-lewy-bodies
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FIGURE 2 | Simplified schematic representation of central nervous system structures and connections involved in olfaction, memory, and motor control. The figure

aims to illustrate the complexity of the connections of the olfactory system, associative cortices, thalamus, and the basal ganglia that may be differentially affected at

different stages of Parkinson’s disease. While the arrows represent anatomical and functional connectivity, not all known interconnections are included in this

schematic representation. Differential neuronal loss and associated decrease in key neurotransmitter (acetylcholine, dopamine, etc.) levels at any of these structures

has the potential to differentially affect their function and connectivity, thus directly and indirectly contributing to olfactory dysfunction. While in PD LB preferentially

involve the brainstem at disease onset, their distribution in the olfactory and cortical areas depends on disease stage (113, 114). OE, olfactory epithelium; OB,

olfactory bulb; AON, anterior olfactory nucleus; PRC, perirhinal cortex; ERC, entorhinal cortex; AM, amygdala; FC, frontal cortex; TC, temporal cortex; PFC, prefrontal

cortex; OFC, orbitofrontal cortex; HP, hippocampus; TH, thalamus; MC, motor cortex; STR, striatum; SNC, substantia nigra pars compacta; GPi/SNr, globus pallidus

interna/substantia nigra pars reticulata; GPe, globus pallidus externa; STN, subthalamic nucleus; BS, brainstem.

Consistent with these findings, screens for hyposmia increase
the likelihood of identifying subjects with abnormal dopamine
transporter binding (91). This may be a causal association or
reflect coincident processes. Deficits in cholinergic transmission
are a common element in OD in different diseases (132),
and neurodegeneration affecting cholinergic circuits is found
even early in PD [Figure 2, (133–136)]. Indeed, cholinergic
denervation of the limbic archicortex in PD subjects at H&Y 2.5
± 0.5 is a more robust determinant of poor odor-identification
test scores than nigrostriatal dopaminergic denervation (126).
When groups of PD patients having mild motor deficits and
varying degrees of OD were compared, there was a more
significant reduction of a putative cholinergic marker (i.e., short
latency afferent inhibition of the motor cortex) when olfactory
event-related potentials (a direct measure of the processing of
olfactory information) were absent, than when only their latency
and/or amplitude was altered (137). Curiously, a history of
smoking (cholinergic stimulation) is also associated with better
olfaction in PD (138).

The use of shared neural substrates in the premotor frontal
and orbitofrontal cortex by olfaction and cognition (Figure 2),

and the contribution of cholinergic deficits to OD provides a
potential mechanism for why greater OD appears to identify
the subset of sporadic and monogenic PD patients at greater
risk of future cognitive impairment [(59, 107, 139–149); reviews:
(27, 150)]. Thus, genome-wide screens in PD subjects for
variants that influence risk of severe OD or protect from
developing OD may identify genetic factors that increase risk
of, or offer protection from, cognitive impairment in PD.
PD-associated changes to central brain networks, brain-region
specific structural integrity, and functional connectivity also are
associated with OD (151–161). The importance of functional
connectivity is highlighted by theta-specific phase coupling
between the piriform cortex and hippocampus in the rapid
differentiation of odor stimuli (162), and the ability of anosmic
subjects having diminished functional connectivity to activate
an olfaction-related functional network (163). A possible partial
restoration of functional connectivity may explain why deep-
brain stimulation of the subthalamic nucleus (DBS-STN) leads
to modest odor-identification test score improvement (164–166).
To obtain mechanistic insights into the variable presentation
of OD, its relationship to motor symptom presentation and
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later cognitive dysfunction, it would be fruitful to longitudinally
study carriers of monogenic PD mutations utilizing functional
imaging to evaluate how functional connectivity is altered during
prodromal PD and disease progression.

Since olfactory system LB increase with advancing
neuropathological PD stage (113–115) and many non-motor
PD symptoms such as cognitive and autonomic dysfunction
often increase in severity with disease progression, it is unclear
why the severity of hyposmia is not consistently associated with
motor signs, disease stage, or duration. This is especially striking
because the density of synuclein-pathology in the olfactory
bulb is positively correlated with motor scores (165). Some
cross-sectional studies reveal that diminished scores on olfactory-
function tests are associated with increased disease duration
(167, 168), while others do not (22, 23, 25, 117, 148, 169, 170).
Some studies have reported associations with more severe
disease (22, 148, 168, 169, 171, 172) but others have not
(24, 25, 117, 170, 173–175), even though hyposmia severity is
associated with lower dopamine transporter activity (168). While
OD does not always develop in parallel with other non-motor
symptoms in either sporadic or monogenic PD (65), resolving
whether it does develop in parallel with motor symptoms has
implications for management. In one study of PD subjects with
similar striatal dopamine transporter activities, normosmic
individuals had lower levodopa-equivalent dose requirements
than did hyposmic individuals at 2.5 years of follow-up (22),
suggesting that a relative lack of OD may be associated with a
clinically more benign disease course.

The conflicting results about whether OD relates to disease
progression might be explained if OD does not appear gradually,
but rather in a stepwise irreversible manner. Variability in the
occurrence of LB within the olfactory bulb could be related
to the degree of inhibition of olfactory inputs (117) and/or
increase in dopaminergic neurons (118). This could contribute
to variable expressivity in initial OD that remains relatively stable
over time, possibly due to functional plasticity. Stepwise onset
could arise from the convergence of multiple failing processes.
While a primary early contributor is almost certainly the loss
of functionality within the olfactory bulb, later contributions
could derive from other olfactory-system regions. These could
include the asynchronous stepwise failure of compensatory
mechanisms and/or the onset of dysfunction in circuits involved
in associative processing and interpretation of smell. Joining
the gradual loss of functionality in the olfactory bulb to either
of these processes would lead to a stepwise onset of OD in
PD. In this scenario, different levels of OD would be observed
upon breaching different functional lintels. A continuous scaled-
test score distribution would be observed in a population, but
longitudinally followed individuals would show stepwise score
decline. Since many newly diagnosed cases are normosmic or
hyposmic, whether or not an association is observed between
OD and motor function in a cross-sectional study would depend
strongly on the cohort’s initial constitution.

Whether OD shows stepwise progression could be addressed
by obtaining longitudinal data on OD in large PD cohorts.
To date, most studies (e.g., PPMI) assess OD only at baseline.
Hyposmia can be stable over periods of 2–6 years in sporadic

PD (24, 117), MAPT mutation carriers (52), and GBA mutation
carriers (50). Therefore, to assess the progression of OD
accurately, follow-up longer than 5 years will be necessary. A
more efficient approach is to assess the progression of OD in non-
manifesting carriers from monogenic PD cohorts where disease
risk is substantially increased, and the genetic cause is known. A
longitudinal study using imaging methodologies able to evaluate
when LB appear, the integrity of multiple neurotransmitter
systems, and functional connectivity would help address the
relative contribution of each to the onset and progression of OD
and motor symptoms.

WHAT DO OLFACTORY-FUNCTION TESTS
ASSESS ABOUT THE DISEASE PROCESS?

The stability of measurements of OD in PD suggests that it may
be challenging to use them to directly assess the prodromal and
symptomatic disease process outside of monogenic PD cohorts.
Intriguingly, PD subjects often subjectively assess their olfactory
ability as better than evaluated by validated clinical measures
(13, 24, 176–178). One study (176) found 91% hyposmic subjects
using the UPSIT, an objective odor-identification test, vs. 55%
using a subject’s subjective assessment. Lower scores on clinical
tests have implications for a patient’s quality of life. Patients
unaware of their olfactory deficit may be at greater risk of harm
because they may be unable to detect smoke or spoiled foods
(178). However, this concern may be tempered if the perception
of the patient is not fully captured by the objective assessment.

An explanation for the discrepancy between the objective
and subjective assessments comes from finding that a loss
of awareness of hyposmia is associated with mild cognitive
impairment in PD (177). PD patients who overrate their sense
of smell or are aware of their hyposmia have worse executive
function than those who are objectively and subjectively
normosmic (13). Memory is strongly related to olfaction, and
deficits in olfaction and verbal learning/memory in PD are
associated (107, 126, 179–182). Deficits in cognitive processes
also indirectly contribute to lower scores on forced-choice
odor-identification tests (69). Consequently, discrepancies in
the metacognitive knowledge of hyposmic individuals—self-
awareness of their olfactory ability—and objectively measured
OD may reflect testing-related cognitive challenges in memory
or decision making. This lack of metacognitive knowledge may
be a sensitive biomarker of early cognitive decline (13). A lack
of metacognitive knowledge may also identify individuals whose
olfactory system can have functionality restored. If a subject’s
perceptual reality is better than their objectively assessed ability,
some of the neural substrates used for processing olfactory
information should be preserved. Assessing metacognitive
knowledge within longitudinal studies of monogenic PD could
help identify the neural substrates preserved when metacognitive
knowledge does not match objective measurements, and which
are lost when individuals self-perceive anosmia. This has
pragmatic considerations for managing cognitive decline.

Identifying individuals whose olfactory system could have
functionality restored also identifies candidates for potential
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OD therapy. While motor symptom treatment is a primary
concern in PD, improving non-motor symptoms like OD will
improve patient quality of life (13, 183). Simple strategies to
improve OD are lacking presently. While DBS-STN modestly
improves OD (163–166), DBS-STN is currently used to treat
motor complications of levodopa therapy in patients with
an at-least 4 year disease duration. It will be informative to
assess if other treatments currently under development, such
as α-synuclein antibody therapy, gene-editing therapy or other
molecular treatments specific to monogenic forms of PD, also
have a beneficial effect on OD.

CONCLUSION

Elucidation of the mechanisms underlying OD in PD and
their relationship to the onset and progression of motor and
cognitive symptoms will contribute to comprehensive measures
of OD being used to better understand, identify and manage
PD. Well-characterized monogenic cohorts identified within the

GEoPD and other international consortia (184) can serve as the
ideal substrate for multifaceted longitudinal studies needed for
this purpose.
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Introduction: The gut-brain hypothesis proposes that Parkinson’s disease (PD)

pathology may start in the gut and later spread to the brain in a prion-like manner. As PD

pathology is redundant in the appendix and tonsils, which are important gut-associated

lymphoid tissues, we examined whether appendectomy and tonsillectomy were

associated with later PD risk.

Methods: The nested case-control study included 78,650 PD patients born in

1900–1980 and with a diagnosis of PD between 1964 and 2010. For each PD patient,

we randomly selected 40 non-PD controls individually matched for sex and year of birth

at the date of PD diagnosis. Appendectomy and tonsillectomy before PD diagnosis

were ascertained from the Swedish Patient Register from 1964 onward. We calculated

odds ratios (OR) with 95% confidence intervals (CI) using conditional logistic regression

adjusting for country of birth, highest achieved education, COPD, comorbidity index, and

number of hospital visits.

Results: Overall, we found 16% lower risk of PD linked to previous appendectomy

(OR = 0.84, 95%CI: 0.80–0.88) and 8% lower risk of PD linked to previous tonsillectomy,

although not statistically significant (OR = 0.92, 95% CI: 0.81–1.04). A 7 and 15%

lower risk of PD was also noted ≥20 years after appendectomy and tonsillectomy,

respectively. Similar associations were observed for men and women but were stronger

for PD diagnosed after age 60.

Conclusion: Appendectomy and potentially also tonsillectomy were associated with a

lower risk PD. A potential mechanism may involve surgical removal of alpha-synuclein

redundancy in the appendix and tonsils.

Keywords: Parkinson’s disease, appendectomy, tonsillectomy, nested case-control, register-based

INTRODUCTION

The so-called dual-hit hypothesis about the pathogenesis of idiopathic Parkinson’s disease (PD)
states that neutrophic pathogens may enter the brain through two portals— the nasal cavity and
the gut (1–3). Deposition of alpha-synuclein has been found throughout the entire gut with most
dense expression in the appendix of both PD patients and healthy individuals (4). Although still
controversial, there is evidence that alpha-synuclein pathology may be transported from cell to cell
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and thereby spread from the nasal cavity or gut to the brain (2, 3).
Mounting evidence has also linked neuroinflammation with PD
development (5).

The tonsils and the appendix are important gut-associated
lymphoid tissues in the mucosa-associated immune system (6).
Surgical procedures to remove these organs often occur in early
childhood or adolescence due to recurrent or acute infections,
which may cause long-term alteration in immune function.
Previous studies have linked these procedures to risk of multiple
sclerosis (7) and inflammatory bowel diseases (8). Given the
potential spread of alpha-synuclein from the nasal cavity and gut
to the brain and the involvement of the tonsils and appendix in
immune function, one might hypothesize that surgical removal
of these organs may lower the risk of PD. However, previous
results are inconclusive, two studies reported that appendectomy
was linked to lower risk of PD or delayed PD onset (9, 10),
whereas four other studies suggested either a slightly increased
PD risk after appendectomy or no association (11–14). Evidence
for tonsillectomy and PD risk is scarce; one study reported no
association between tonsillectomy and PD risk (15).

We aimed to evaluate the association of appendectomy and
tonsillectomy with PD risk in Swedish nationwide registers.
In addition to examining appendectomy and tonsillectomy
as binary exposures, we also explored the potential temporal
relationship between these surgeries and PD risk and the impact
of sex and age on the associations.

MATERIALS AND METHODS

Swedish Health and Population Registers
The Swedish Patient Register was established in 1964–1965
and collects information on dates of admission and discharge
of hospitalizations, surgical procedures, and medical diagnoses
(16, 17). Coverage of this register became complete in 1987
and was expanded to cover surgical day-care procedures in
1997 and outpatient visits in 2001 (18). The Causes of Death
Register records nationwide information on deaths since 1952,
and the Total Population Register contains information on dates
of immigration and emigration (19). The Swedish Population and
Housing Censuses were conducted every 5 years from 1960 to
1990 to collect detailed information on housing, civil status, and
socioeconomic status (20).

Ascertainment of PD
PD cases were identified from the Patient Register using Swedish
revisions of International Classification of Diseases (ICD) codes
(i.e., ICD-7: 350 in 1964–1968; ICD-8: 342 in 1969–1986; ICD-
9: 332.0 in 1987–1996; and ICD-10: G20 from 1997 onward).
Both primary and secondary PD diagnoses were considered. PD
is assigned as the primary diagnosis in the Patient Register when
PD is considered the main reason for hospitalization, whereas
it is assigned as a secondary diagnosis when another condition
is considered the main reason. In a previous validation study,
compared to clinical workup, positive predicted value (PPV) for
inpatient PD diagnosis was 70.8% for primary or secondary PD
diagnosis and increased to 80.3% when restricted to primary
diagnosis (21).

Ascertainment of Appendectomy and
Tonsillectomy
Information on appendectomy was obtained from the Patient
Register according to the Swedish Classification of Operations
and Major Procedures codes (4510, 4511, 4517, 0058 in 1964-
1996, and JEA00, JEA01, JEA10 from 1997 onward). Information
on tonsillectomy was obtained using the codes 2710 and 2720
in 1964-1996, and EMB10, EMB20, EMB30, EMB99 from
1997 onward.

Study Design
We conducted a nested case-control study based on individuals
who were born between 1900 and 1980 and who participated in
the Swedish Population and Housing Census in 1970 or 1980. PD
cases were identified from the Patient Register between January
1, 1964 and December 31, 2010. For each PD case, we randomly
selected 40 controls who were alive and living in Sweden without
previous PD diagnosis, individually matched to the PD patient
on sex and year of birth on the date of PD diagnosis. Date of
PD diagnosis is hereafter referred to as index date. The final
study population encompassed 78,650 PD cases and 3,146,000
non-PD controls.

Co-variates
We retrieved information on country of birth (Swedish vs.
non-Swedish born) from the Total Population Register and
data on educational attainment (≤9, 10–12, ≥13 years, or
unknown) from the Swedish Register of Education. Smoking
has consistently been linked to lower risk of PD (22) and also
to higher risk of appendectomy (23) and tonsillitis, which is
the main indication for tonsillectomy (24). As self-reported
information on smoking was not available, we used lifetime
chronic obstructive pulmonary disease (COPD) as a proxy
for smoking similar to a previous study (25). We obtained
information on comorbidity from the Patient Register between
1964 and index date, and further weighted and categorized this
information according to Deyo’s modification of the Charlson’s
Comorbidity Index (0, 1–2, or ≥3 points) (26) ICD codes were
presented in our previous study (25). As a measurement of
surveillance bias related to comorbidity, including appendicitis
or tonsillitis, such that these individuals may have more frequent
hospital visits and therefore greater likelihood of receiving PD
diagnosis compared to others, we obtained information on
number of hospital visits before index date from the Patient
Register (both inpatient and outpatient), categorized according
to tertiles (0–1, 2, or≥3 visits). Age at index date was categorized
as <60, 60–69, 70–79, or >80 years.

Statistical Analysis
The associations between appendectomy, tonsillectomy, and PD
risk were expressed as odds ratios (ORs) with 95% confidence
intervals (CIs) estimated from conditional logistic regression.
We first analyzed the combined effect of appendectomy and
tonsillectomy in relation to PD risk. Individuals who underwent
either appendectomy or tonsillectomy or both were defined as
exposed and were compared with individuals who had neither
surgery regarding PD risk. Second, we performed separate
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regression analyses for appendectomy and tonsillectomy in
relation to PD risk. We performed the above described analyses
in two adjustment steps: first, conditional on sex and birth year
matched sets; second, additionally adjusted for country of birth,
educational attainment, COPD, comorbidity index, and number
of hospital visits. We performed temporal relationship analyses
exploring PD risk ≥5, ≥10, and ≥20 years after surgeries.
We conducted sub-analyses including interaction terms between
surgery and sex, as well as surgery and age at index date
(<60, 60–69, 70–79, or ≥80). In addition, we performed a
sensitivity analysis restricted to PD cases identified through
primary diagnosis. We used Stata 15 and SAS 9.4 for statistical
analyses with 2-sided alpha of 0.05.

RESULTS

The distributions of sex and year of birth were balanced between
PD cases and controls due to matching (Table 1). The mean
age (±SD) at PD diagnosis was 74.0 ± 9.19 years. Individuals
who were born outside of Sweden, had ≤9 or 10–12 years of
education, or had COPD showed lower PD risk. Individuals with

unknown educational attainment, more comorbidities, or more
frequent hospital visits had a higher risk of PD.

Appendectomy and PD Risk
We identified a total of 80,028 individuals who had an
appendectomy. We observed a marginally significant 2%
decreased PD risk after an appendectomy after adjusting for
sex and birth year matching pairs (Table 2, model 1), and 16%
decreased PD risk (HR = 0.84, 95% CI = 0.80–0.88) when
additionally adjusted for country of birth, highest achieved
education, COPD, comorbidity index, and number of hospital
visits (Table 2, model 2). In the temporal relationship analyses,
we noted 31, 24, and 22% lower risk of PD with in 5, 10, and
20 years after the surgery, respectively. The inverse associations
remained statistically significant with 13, 12, and 7% decreased
PD risk observed more than 5, 10, or 20 years post the surgery
(Table 2, model 2). We found similar results for men and women
and slightly stronger associations for PD diagnosed after age 60
(Table 2, model 2). Similar results were observed when restricted
to PD defined through primary diagnosis (Table S1).

TABLE 1 | Characteristics of Parkinson’s disease (PD) cases and controls from the Swedish total population 1,964–2,010, N = 3,224,650.

PD cases, N (%) Controls, N (%) OR (95% CI)a P-valueb

Total 78,650 (100) 3,146,000 (100)

Sex

Male 43,533 (55.4) 1,741,320 (55.4)

Female 35,117 (44.6) 1,404,680 (44.6)

Age at index date, years

<60 5,827 (7.4) 234,176 (7.4)

60–69 16,041 (20.4) 641,304 (20.4)

70–79 36,039 (45.8) 1,440,524 (45.8)

≥80 20,743 (26.4) 829,996 (26.4)

Born in Sweden <0.01

Unknown 2 (0) 815 (0)

No 4,464 (5.7) 186,688 (5.9) 0.95 (0.92–0.98)

Yes 74,184 (94.3) 2,958,497 (94) 1

Highest achieved education, years <0.0001

Unknown 25,126 (31.9) 955,824 (30.4) 1.81 (1.72–1.90)

≤9 30,247 (38.5) 1,273,971 (40.5) 0.89 (0.86–0.91)

10–12 15,861 (20.2) 640,729 (20.4) 0.92 (0.89–0.95)

>12 7,416 (9.4) 275,476 (8.8) 1

Chronic obstructive pulmonary disease

(COPD)

<0.0001

No 74,818 (95.1) 2,930,034 (93.1) 1

Yes 3,832 (4.9) 215,966 (6.9) 0.69 (0.67–0.72)

Comorbidity index <0.0001

0 50,235 (63.9) 2,167,220 (68.9) 1

1–2 21,768 (27.7) 749,584 (23.8) 1.29 (1.27–1.31)

≥3 6,647 (8.5) 229,196 (7.3) 1.31 (1.27–1.34)

Number of hospital visits <0.0001

0–1 24,021 (30.5) 1,310,741 (41.7) 1

2 20,913 (26.6) 755,964 (24.0) 1.72 (1.69–1.76)

≥3 33,716 (42.9) 1,079,295 (34.3) 2.19 (2.15–2.24)

aLogistic regression conditional on birth year and sex; bWald-test p-value for categorical variables.
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TABLE 2 | Appendectomy and risk of Parkinson’s disease (PD), nationwide

case-control analysis.

N PD cases Controls Model 1aa Model 2b

N OR (95% CI) OR (95% CI)b

Appendectomy

No 76,742 (97.6) 3,067,880 (97.5) 1 1

Yes 1,908 (2.4) 78,120 (2.5) 0.98 (0.93–1.02) 0.84 (0.80–0.88)

Years before index date

<5 232 (0.3) 11,104 (0.4) 0.84 (0.73–0.95) 0.69 (0.60–0.79)

≥5 1,676 (2.1) 67,016 (2.1) 1.00 (0.95–1.05) 0.87 (0.83–0.92)

<10 511 (0.6) 22,371 (0.7) 0.91 (0.84–1.00) 0.76 (0.69–0.83)

≥10 1,397 (1.8) 55,749 (1.8) 1.00 (0.95–1.06) 0.88 (0.83–0.93)

<20 1,025 (1.3) 44,027 (1.4) 0.93 (0.87–0.99) 0.78 (0.73–0.83)

≥20 883 (1.1) 34,093 (1.1) 1.04 (0.97–1.11) 0.93 (0.87–0.99)

Stratified by Sex

Male 874 (1.1) 36,133 (1.1) 0.97 (0.90–1.03) 0.84 (0.78–0.90)

Female 1,034 (1.3) 41,987 (1.3) 0.98 (0.92–1.05) 0.85 (0.80–0.90)

Stratified by age at index date, years

<60 253 (0.3) 9,538 (0.3) 1.06 (0.94–1.21) 0.90 (0.79–1.02)

60–69 444 (0.6) 17,756 (0.6) 1.00 (0.91–1.10) 0.85 (0.77–0.93)

70–79 776 (1.0) 32,535 (1.0) 0.95 (0.89–1.02) 0.82 (0.76–0.88)

≥80 435 (0.6) 18,291 (0.6) 0.95 (0.86–1.05) 0.86 (0.78–0.94)

aLogistic regression conditional on birth year and sex; bLogistic regression conditional

on birth year and sex, and additionally adjusted for country of birth, highest achieved

education, COPD, comorbidity index, and number of hospital visits.

Tonsillectomy and PD Risk
We identified 9,341 individuals who underwent tonsillectomy.
There was a trend that previous tonsillectomywas associated with
a lower risk of PD in the fully adjusted model (Table 3, model
2), with a more prominent a risk reduction for tonsillectomy
performed more than 20 years before PD diagnosis, but the
associations were not statistically significant (Table 3, model 2).
Similar results were observed when restricted to PD defined
through primary diagnosis (Table S2).

DISCUSSION

In this nationwide nested case-control study, we found a lower
PD risk in relation to appendectomy and a non-significant trend
toward lower PD risk in relation to tonsillectomy. The inverse
associations were generally stronger within 20 years after surgery
but remained statistically significant more than 20 years post-
surgery. The associations were similar in men and women, but
stronger after age 60 compared to before.

According to Braak’s hypothesis, alpha-synuclein, the
hallmark for PD pathology, may originate in the gut and later
migrate to the brain via the vagus nerve (1). In line with this,
deposits of alpha-synuclein have been observed in the entire
gastrointestinal tract more than 20 years before PD onset (27).
Notably, however, out of the entire gastrointestinal system,
mucosal alpha-synuclein was most abundant in the appendix in
individuals without neurological disease (28). Alpha-synuclein
aggregates were equally abundant in normal and inflamed

TABLE 3 | Tonsillectomy and risk of Parkinson’s disease (PD), nationwide

case-control analysis.

N PD cases Controls Model 1aa Model 2b

N OR (95% CI) OR (95% CI)b

Tonsillectomy

No 78,409 (99.7) 3,136,900 (99.7) 1 1

Yes 241 (0.3) 9,100 (0.3) 1.06 (0.93–1.21) 0.92 (0.81–1.04)

Years before index date

<5 26 (0) 954 (0) 1.09 (0.74–1.61) 0.91 (0.62–1.34)

≥5 215 (0.3) 8,146 (0.3) 1.06 (0.92–1.21) 0.92 (0.80–1.05)

<10 59 (0.1) 2,014 (0.1) 1.17 (0.90–1.52) 0.98 (0.75–1.27)

≥10 182 (0.2) 7,086 (0.2) 1.03 (0.89–1.19) 0.90 (0.77–1.04)

<20 136 (0.2) 4,699 (0.1) 1.16 (0.98–1.37) 0.98 (0.83–1.16)

≥20 105 (0.1) 4,401 (0.1) 0.95 (0.79–1.16) 0.85 (0.70–1.03)

Stratified by Sex

Male 141 (0.2) 5,247 (0.2) 1.08 (0.91–1.27) 0.92 (0.78–1.09)

Female 100 (0.1) 3,853 (0.1) 1.04 (0.85–1.27) 0.91 (0.75–1.11)

Stratified by age at index date, years

<60 93 (0.1) 3,081 (0.1) 1.21 (0.98–1.50) 1.02 (0.83–1.26)

60–69 63 (0.1) 2,600 (0.1) 0.97 (0.75–1.25) 0.83 (0.64–1.07)

70–79 62 (0.1) 2,489 (0.1) 1.00 (0.77–1.28) 0.88 (0.68–1.13)

≥80 23 (0) 930 (0) 0.99 (0.65–1.50) 0.90 (0.60–1.36)

aLogistic regression conditional on birth year and sex; bLogistic regression conditional

on birth year and sex, and additionally adjusted for country of birth, highest achieved

education, COPD, comorbidity index, and number of hospital visits.

appendiceal tissue (10). More intriguingly, we and others
reported lower PD risk more than 20 years after vagotomy
(i.e., a surgical procedure resecting the vagus nerve) (25, 29).
This evidence collectively suggests that the appendix may act
as a reservoir for alpha-synuclein, and, in line with our results,
removing the appendix may be linked to lower risk for PD.

Braak’s hypothesis was further extended to the dual-hit
hypothesis stating that environmental neurotrophic pathogens
may spread to the brain from the nasal gateway as well as from
the gut (2, 3). Moreover, there is an increasing recognition of PD
as a “prion-like” disease supported by the observations of cell-to-
cell α-synuclein transmission in grafted neurons in PD patients
(30, 31) and the spread of intragastrical injected α-synuclein from
the enteric nerve system to the brain in mice (32). The tonsils
and the appendix are important gut-associated lymphoid tissues
that together with mesenteric lymph nodes, protect hosts against
gastro-intestinal infections (6). In transmissible prion-disease,
such as Creutzfeld Jakob disease, prions first accumulate within
gut-associated lymphoid tissues such as tonsils and the appendix,
and later spread to the brain via the enteric nervous system
(6). A similar pattern may be hypothesized for the spreading of
alpha-synuclein in PD.

One potential explanation for our observed decreased PD risk
related to appendectomy is bias. Residual confounding is one
potential bias that needs to be considered. Cigarette smoking has
been consistently linked to lower risk of PD (22), and although
evidence is scarce, it has also been associated with higher risk of
appendicitis (23) and chronic or recurrent tonsillitis (24). As this
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was a register-based study, we unfortunately lacked information
on cigarette smoking, but we adjusted for COPD as a proxy for
smoking. Another potential bias is reverse causation, which can
be present if PD patients would be less likely to be diagnosed with
or undergo appendectomy compared to the general population,
for example due to very advanced PD. Further, PD has a long
prodromal phase (33) and there is a delay between onset of
PD symptoms to first inpatient register diagnosis of about 7
years (21). Taking advantage of the long follow-up time in our
study, we performed temporal analyses that addressed this issue.
Even though we found a stronger inverse association during
the period shortly before appendectomy compared to the period
longer before, we still observed a statistically significant inverse
association more than 20 years before appendectomy. If the
hypothesis that appendectomy or tonsillectomy protects against
PD is true, a dose-response effect might be expected, such that
the inverse association would be stronger with longer duration
between surgery and PD. We may speculate that one reason
that we did not observe such pattern is reverse causation, but
we find it unlikely that our results are explained entirely by
reverse causation. Another potential bias is incomplete coverage
of the Patient Register before it became nationwide. Individuals
who lived in counties covered by the register may be more
likely to have both surgery and PD diagnoses captured and vice
versa, but this would introduce an underestimation of an inverse
association, meaning that the true association would be even
stronger than the one observed.

Our results are in line with the previous studies that reported
lower PD risk after appendectomy (9, 10). The Killinger et al.
study (10) was also based on Swedish register data, but we used a
different study design and different definitions of appendectomy
and PD, resulting in that our study identifiedmore than 3 times as
many PD cases with appendectomy. We also adjusted for several
co-variates, including COPD as a proxy for smoking, which they
did not. Three previous studies reported that appendectomy was
not related to PD risk (11, 13, 14) and one reported higher
PD risk after appendectomy (12). Potential explanations include
differential definitions of PD cases and controls, surveillance
bias, which may result in an artificial positive association
between PD and surgery, and inadequate length of follow-
up precluding exploration of a potential long-term protective
effect of appendectomy on PD. Our results for tonsillectomy
were consistent with the Danish study that reported 5% non-
significant lower risk of PD after tonsillectomy.

The main strengths of this study are the large population-
based sample of more than 3.2 million individuals and the
long study period between 1964 and 2010, which allowed
us to examine the time-dependent relationship between
appendectomy, tonsillectomy, and risk of PD. We used a
rigorous matching design and adjusted for several covariates
to reduce confounding. We performed sensitivity analysis
restricted to primary PD diagnosis to test the robustness of the
results. The study also has some limitations. First, PD register

diagnoses are not perfect and there is a delay between onset of
motor symptoms and first inpatient register PD diagnosis (21).
However, the potential misclassification of PD is likely to be
non-differential with regard to appendectomy or tonsillectomy,
which would result in diluted estimates of the associations.
Second, due to lack of information in the registers we were not
able to control for potential confounding by lifestyle factors and
medication use.

In conclusion, our data suggest that appendectomy and
potentially also tonsillectomy are associated with a decreased risk
of PD. A potential mechanism may be the surgical removal of
alpha-synuclein redundancy in these organs. Our data provide
additional evidence supporting the importance of the gut-to-
brain axis in PD etiology.
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Over the past two decades, our understanding of Parkinson’s disease (PD) has been

gleaned from the discoveries made in familial and/or sporadic forms of PD in the

Caucasian population. The transferability and the clinical utility of genetic discoveries

to other ethnically diverse populations are unknown. The Indian population has been

under-represented in PD research. The Genetic Architecture of PD in India (GAP-India)

project aims to develop one of the largest clinical/genomic bio-bank for PD in India.

Specifically, GAP-India project aims to: (1) develop a pan-Indian deeply phenotyped
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clinical repository of Indian PD patients; (2) perform whole-genome sequencing in 500

PD samples to catalog Indian genetic variability and to develop an Indian PD map for

the scientific community; (3) perform a genome-wide association study to identify novel

loci for PD and (4) develop a user-friendly web-portal to disseminate results for the

scientific community. Our “hub-spoke” model follows an integrative approach to develop

a pan-Indian outreach to develop a comprehensive cohort for PD research in India.

The alignment of standard operating procedures for recruiting patients and collecting

biospecimens with international standards ensures harmonization of data/bio-specimen

collection at the beginning and also ensures stringent quality control parameters for

sample processing. Data sharing and protection policies follow the guidelines established

by local and national authorities.We are currently in the recruitment phase targeting

recruitment of 10,200 PD patients and 10,200 healthy volunteers by the end of 2020.

GAP-India project after its completion will fill a critical gap that exists in PD research and

will contribute a comprehensive genetic catalog of the Indian PD population to identify

novel targets for PD.

Keywords: Parkinson’s disease, genetic diversity, genome-wide association study, common genetic variation,

biobank

BACKGROUND

Parkinson’s disease (PD) is the second most common
neurodegenerative disorder in adults over the age of 60
years (1). According to the Global Burden of Disease study
(2018), the worldwide burden of PD has more than doubled
over the past two decades from 2.5 million patients in 1990–6.1
million patients in 2016 (2). India is home to nearly 0.58 million
persons living with PD as estimated in 2016, with an expected
major increase in prevalence in the coming years (2). Despite
the large number of people affected with PD, insights into
the underlying genetic and environmental risk factors specific
to the Indian population are limited. This is in contrast to
the Caucasian population in whom easy access to the patient
cohort and the population homogeneity have driven initial
large scale genome-wide studies (3, 4). Despite the success,
the constraints of performing studies in a single homogenous
population became apparent as well. This is because the
Caucasian population contains only a subset of genetic diversity
(5). Populations vary in terms of allele frequency, linkage
disequilibrium (LD) patterns, and differences in effect estimates.
This provides a scientific rationale that no single population
is sufficient to fully uncover the variants underlying disease
in all populations, and makes it imperative to pursue genetic
research in diverse populations to capture the genetic diversity of
a disease.

About 5–10% of PD is monogenic and inherited in an
autosomal dominant or recessive manner. The large majority
of patients have a sporadic disease. To date, 90 PD loci
have been identified explaining a missing heritability in a
range of 16–36% (3). It is also increasingly recognized that
additional loci with varying degrees of minor allele frequency
and effect size remain to be discovered which might account
for the remaining missing heritability. Most of the PD loci

have been identified in cohorts that are heavily biased toward
persons with Caucasian ancestry (3, 4). This generates issues
of reproducibility in a global context. For instance, variants
in leucine-rich repeat kinase 2 (LRRK2), glucocerebrosidase
(GBA), and alpha-synuclein (SNCA) genes identified in the
western population have been shown to pose negligible risk
to the Indian patients (6–9). Novel variants in the known
genes or novel genes may be associated with PD risk in the
genetically more diverse Indian population (10). Variations in
allele frequency in genetically heterogeneous populations may
provide adequate power to GWA studies with smaller sample
sizes for the enriched loci. For example, the discovery of an
association at a new putative locus at chr1 (PARK16) in the
Japanese population for PD underscores the need to study
ethnically diverse populations. The associated SNP, rs823128,
which was shown to be protective against the development
of PD specifically in the Asian population has a minor allele
frequency∼20% in the Japanese population as compared to only
3% in the Caucasian population (11). With this minor allele
frequency, individual GWAS in the Caucasian populations had
very little power to detect an association, even though the SNP
was well-tagged with arrays. The 1,000 Genomes project which
uses the combinatorial approach of exome and whole-genome
sequencing suggests that individuals from different populations
carry different profiles of rare and common variants and that low-
frequency variants show substantial geographic differentiation,
thus arguing in favor of diversifying genetic research especially
in populations which have so far been underrepresented in
gene mapping such as the Indian population (12). In addition
to the potential for new gene discovery, the inclusion of
ethnically diverse cohorts provides an opportunity to cross-
validate newly identified loci, which has direct implications
for the global applicability and scalability of potential novel
therapeutic targets.

Frontiers in Neurology | www.frontiersin.org 2 June 2020 | Volume 11 | Article 52437

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Rajan et al. GAP-India: GWAS in Indian PD

We initiated the Genetic Architecture of Parkinson disease in
India (GAP-India) project to provide for the first time, a large-
scale genetic catalog of the Indian PD population. This paper
describes the design of the GAP-India project including the study
sites, subject recruitment, clinical assessments, biospecimens
processing, plan for data analysis and sharing, capacity building,
and the ethical and regulatory frameworks within which
we operate.

STUDY DESIGN

GAP-Indiastudy aims to understand the genetic architecture
of PD in the Indian population through large scale sample
collection and federated data analysis models. The study aims to
collect pan-Indian genetic and phenotypic data and will develop
one of the largest clinico-genomic PD resources for the scientific
community from India. To achieve our objectives, we have
formed a trilateral consortium, the Luxembourg-German-Indian
Alliance on Neurodegenerative diseases and Therapeutics
(Lux-GIANT) (Figure 1). The “knowledge-sharing” model
aims to build capacity and exchange programs to integrate
clinical/genetic centers and harmonize data collection with
Luxembourg and German centers. Lux-GIANT follows a
decentralized model and based on expertise, different cores have
been created (Figure 2). For example, the central clinical core
in India is established at the Sree Chitra Tirunal Institute for
Medical Sciences and Technology (SCTIMST), Trivandrum,
Kerala. Given the diversity and vastness of India, apart
from the central clinical core, three high volume academic
movement disorders centers across India have been identified
and established as nodal centers to recruit participants with a
pan-India representation. These four clinical nodes are further
connected to twenty clinical sub-centers which are spread
throughout India. The central clinical core is responsible for
coordinating patient recruitment and biospecimen collection
with nodal centers. The nodal centers supervise the patient
recruitment and biospecimen collection at the sub-centers.
Similarly, genomics, functional and bioinformatics cores have
been established in Luxembourg, Germany, and India. The
functional core at the National Brain Research Center, Manesar,
India, is mandated to develop the Lux-GIANT iPSCs biobank.
The functional core in India coordinates its activities with
the functional cores in Germany and Luxembourg. This has
been done to share protocols and develop common functional
protocols to perform functional studies. The array processing
will be done at the Center for Cellular and Molecular Biology
(CCMB), Hyderabad. The central genomics/bioinformatics core
at Tubingen will coordinate data generation with the local center
and subset of samples will be processed in Germany for quality
control purposes.

PROJECTED COHORT AND STUDY SITES

The GAP-India study revolves around a network of clinical
sites in India organized in a “hub and spoke” manner. Patient
recruitment at each nodal or sub-center will be supervised by

a neurologist with specific expertise in Movement Disorders.
Subjects will be enrolled at all the sub-centers and the four
nodal centers (SCTIMST, Trivandrum; All India Institute of
Medical Sciences, New Delhi; National Institute for Mental
Health and Neurosciences, Bengaluru and Nizams Institute of
Medical Sciences, Hyderabad). The nodal centers are all high-
volume academic centers with established movement disorders
programs. The sub-centers include additional public sector
teaching hospitals, larger multispecialty hospitals, and neurology
clinics in the private sector.

Genetic evidence indicates that most Indians descended from
a mixture of two divergent populations: Ancestral North Indians
(related to Central Asians, Middle Easterners, and Europeans)
and Ancestral South Indians (not closely related to other genetic
groups) and almost all the current inhabitants are admixtures
of these two broad groups to varying extents (13). Within
the population, allele frequency changes between subgroups
are larger than in European populations, owing to founder
effects maintained by a transition to endogamy about 1,900–
4,200 years ago (14). The 1,000 genomes project contains about
500 genomes from the Indian subcontinent (including India
and geographically neighboring countries), from five diverse
linguistic groups, yet the Ancestral North Indian component is
prominent in this dataset (15). Within the linguistic groups too,
population substructures were evident suggesting that careful
matching of cases and controls from within the same ethno-
linguistic groups is necessary to avoid false positive associations.

Geographical locations of the enrolling sites in India were
chosen to consider this unique population structure and to
enable a pan-Indian representation (Supplementary Figure 1).
The study aims to enroll 10,200 PD patients and 10,200 healthy
volunteers over 1 year. Furthermore, GAP-India aims to develop
a cohort of 25,000 cases and 25,000 controls by 2024. The four
nodal centers will directly enroll about 6,000 patients and the
remaining subjects will be enrolled at the sub-centers. The sample
size was chosen to take into consideration the statistical power
to detect a risk associated variant in GWAS as well as the
feasibility of attaining it within the timeframe of the project. The
extensive multi-centric nature of the project helps in covering
diverse genetic subgroups and meeting recruitment goals within
the timelines.

SUBJECT RECRUITMENT

Subjects will be recruited from the Movement Disorder clinics
or Neurology clinics run by the PIs of nodal and sub-
centers. A detailed history and systemic and general neurological
examination will be performed in all subjects. Research staff at
all recruiting centers will be trained in the standard operating
procedures including clinical assessments and familiarized with
online data entry systems before site initiation. Subjects who
meet all the following inclusion criteria will be recruited in the
patient group: (1) clinical diagnosis of PD as per United Kingdom
Parkinson’s Disease Society Brain Bank (UKPDSBB) diagnostic
criteria (16), (2) age more than 18 years and (3) Asian Indian
ethnicity. Subjects meeting any of the following criteria will be
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FIGURE 1 | Overall flow chart describing the details of the Lux-GIANT consortium. The consortium follows the “hub-spoke” model. The Lux-GIANT has established

three main cores: genomics, clinical, and functional genomics. The University of Tubingen is the coordinator site. Luxembourg site aims to strengthen functional

genomics and system biology. Functional core from India, National Brain Research Center, will be responsible for developing and maintaining iPSCs. Four main

clinical-nodes capturing most of India are formed. These four nodes are connected to clinical sub-centers which span throughout India. The “central clinical node”

aims to streamline the administrative process, which is required for clearance and sample shipment. The different nodes within India are connected with the main

“central clinical node” for continuous update of cohort and members.

FIGURE 2 | Clinical, genomics, bioinformatics, and functional cores in the Lux-GIANT consortium.
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excluded: (1) cognitive or psychiatric dysfunction sufficiently
severe enough to impair the patient’s ability to provide informed
written consent (2) red flags or additional neurological signs
raising suspicion of atypical Parkinsonism. Patients who have
previously undergone surgical procedures such as pallidotomy,
thalamotomy, or Deep Brain Stimulation will not be excluded.
Healthy volunteers will be recruited through advertisements
displayed on the hospital campus. They will be gender-
matched and should belong to the same geographic–ethnic
background as the patients. A detailed history and standard
neurological examination will be performed before inclusion
as controls. Volunteers with a family history of PD or other
neurodegenerative diseases will be excluded from the control
group. All subjects will be recruited after obtaining written
informed consent and with the approval of the Institutional
Ethics Committee. Centralized monitoring of recruitment rates
and fidelity to operating procedures will be done by the clinical
nodal center, SCTIMST.

CLINICAL ASSESSMENTS AND
BIOSPECIMEN COLLECTION

Trained personnel at each clinical site will collect clinical and
demographic data. The demographic data collected includes
information on the geographical origin within India. Structured
questions will capture information related to environmental
exposures known to be associated with PD including pesticides,
fungicides, insecticides, and other chemicals, smoking, caffeine,
and head injury. Patients will be asked to report if they ever held
a job requiring exposure to pesticides, herbicides, fungicides,
insecticides, rodenticides, and fumigants and whether they were
exposed to these chemicals at their place of residence through
self-use or via another person. Lifetime smoking history of
100 or more cigarettes will be documented. History of head
injury or concussion including falls, sporting activities, violence,
and car or other accidents in childhood or adulthood will be
queried. Patients will also be asked about exposure to caffeinated
coffee in quantities more than once per week for 6 months or
longer. Years of education will be documented. Furthermore,
our environmental exposure data collection will align with the
environmental questionnaire from the Genetic-Epidemiology of
Parkinson disease (GEoPD) consortium to harmonize the dataset
across the ongoing studies. A structured history and clinical
examination will be conducted to collect data regarding onset
symptoms, motor fluctuations, and dyskinesias, medications,
and non-motor symptoms. Non-motor symptoms included in
the interview are cognitive impairment, psychosis, depression,
sweating abnormalities, seborrhea, sleep disorders including
REM behavioral disorder, restless legs, hyposmia, orthostatic
hypotension, constipation, dysphagia, and urinary/fecal
incontinence. Data from Computerized Tomography (CT),
Magnetic Resonance Imaging (MRI), Dopamine Active
Transporter- Single Photon Emission Computed Tomography
(DaT SPECT) will be collected if available. The family history will
be probed for consanguinity and to identify any known relations
with PD, dementia, tremor, or other neurological disorders.

For patients who have undergone functional neurosurgery, the
target, time since surgery and other details will be collected. The
motor symptoms at the time of recruitment will be assessed
by the Unified Parkinson’s Disease Rating Scale (UPDRS Parts
I- IV) (17). Subjects will be screened for cognitive dysfunction
using the Montreal Cognitive Assessment (MoCA) and for
depression using the Beck’s Depression Inventory (BDI- II)
(18, 19). Validated regional language versions of MoCA will be
used for non-English speaking subjects. Demographic and risk
factor information will be collected from the control group.
Clinical terminologies have been standardized to enable data
harmonization with existing research groups and also build a
phenotypic information resource for this particular population
of PD patients.

The whole blood samples will be collected at each recruiting
center 10–15ml of blood samples collected in EDTA tubes will
be processed for DNA extraction using the salting-out method.
The quantity and quality of DNA will be analyzed using a micro-
volume UV/visible spectrophotometer (Nanodrop, Thermo
Fischer). Additionally, the quality will also be checked by
agarose gel electrophoresis. Those samples with an A260/280

ratio of 1.8–2.0 and A260/230 ratio of >2.0 will be stored
in 1.2ml screwcap cryovials barcoded with a unique sample
ID at SCTIMST Biobank (−80◦C), in aliquots. The samples
received from the nodal centers and sub-centers will be again
checked (using Nanodrop and agarose gel) at SCTIMST to
ensure the quality and quantity of DNA that is required for
the genotyping. For sequencing, 50 µl of 50–100 ng/µl DNA
will be transported in 96-well microtiter plates sealed with
peelable heat seals in a waterproof container and dry ice. At the
time of collection, specimens will be de-identified by avoiding
any personal identifiers on the label. Specimen labels and data
collection instruments will be labeled by center-specific serial
numbering. No direct personal identifiers will be stored in
the online data capture system and quasi-identifiers like date
of birth are flagged as such and de-identified by the system
before export. Only the site PIs hold identifying information if
required for re-identification at a later stage. The central clinical
node and other investigators with access to the online database
will not have access to direct personal identifiers. Biospecimens
collected at the sub-centers will be transported to the nodal
centers for DNA isolation. All biospecimens are finally routed
to the clinical core at SCTIMST, Trivandrum for storage and in
consenting subjects, longer-term bio-banking. In keeping with
the existing regulatory framework in India, to promote capacity
development, array processing and genotyping will be done at
the Center for Cellular and Molecular Biology, Hyderabad. The
genetic core at Tübingen will perform the bioinformatics analysis
and a subset of specimens will be processed at the Lux-GIANT
genotyping core facility in Munich for quality control purposes.
All clinical and genetic data will be stored on a shared electronic
platform with access restrictions and security protocols in place.
Functional validation of putative pathogenic variants including
patient-specific induced pluripotent stem cell modeling will be
done at the National Brain Research Center, Gurgaon, India.
In this way, the study is designed to comprehensively capture
clinical and genetic information from a large Indian cohort in
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a manner that enables integration with existing international
cohorts. DNA isolation from whole blood will be done at the
four nodal centers and centralized quality control monitoring
at SCTIMST, Trivandrum. DNA specimens from consenting
subjects will be maintained in a biorepository at SCTIMST for
potential future research.

DATA ANALYSIS

For genetic analysis, a two-stage design will be followed.
Currently, the arrays available for genotyping lack in-depth
genetic variability information from the Indian population. GAP-
India aims to address this issue by performing whole-genome
sequencing (WGS) of around 500 subjects covering the north,
south, east, and west of India.

Whole-Genome Sequencing
The data generated from whole-genome sequencing will be
analyzed using the megSAP pipeline (https://github.com/imgag/
megSAP) developed at the Institute of Medical Genetics and
Applied Genomics, University Hospital of Tübingen (Tübingen,
Germany). In brief, SeqPurge (v. 2020_03) will be used for
adapter and quality trimming (20), Burrow-Wheeler Aligner
mem (BWA mem (v.0.7.17) for read mapping (21), samblaster
(v. 0.1.24) for duplicate removal (22), ABRA2 (v. 2.22) for
indel-realignment (23), freebayes (v. 1.2.0) for calling of small
variants (24), ClinCNV (v. 1.16.1) for CNV calling (25), Manta
(v. 1.6.0) for structural variant calling (26), and Ensembl VEP (v.
96.3) for variant annotation (27). Furthermore, additional tools
available from the ngs-bits toolset (https://github.com/imgag/
ngs-bits) will be used for data cleaning.

GWAS Analysis
Study Population and Genotyping
The analysis cohort will represent ∼10,200 PD cases and
10,200 controls of Indian ancestry, genotyped with Illumina’s
Global Diversity Array (GDA) containing neurodegenerative
specific content.

Quality Control
GenomeStudio will be used to cluster the genotyping array using
the GenCall algorithm and preliminary QC will be implemented
in GenomeStudio as described elsewhere (28). Data will be
exported in the standard PLINK format and downstream QC
procedures and statistical analysis will be conducted using the
latest PLINK (http://pngu.mgh.harvard.edu/_purcell/plink) and
R software packages (http://www.r-project.org/), installed on a
Linux based computation resource (29). The post-GenomeStudio
QCwill be broadly divided into threemain steps comprising of (i)
Sample and genetic marker quality (ii) Population structure (iii)
Genotyping consistency. Furthermore, QC will be implemented
independently in each Indian subpopulation covering north,
south, east, and west of India.

Sample and Genetic Marker Quality
Firstly, all samples and SNPs with missing rate>1% will be
excluded. Concerning genetic marker quality, we would exclude

SNPs with MAF<0.01 and HWE p-value <1 × 10−10 in cases
as well as HWE <1 × 10−6 in controls (30). Allele frequencies
will be checked with Indian sub-populations represented in the
Haplotype Reference Consortium (HRC). Furthermore, allele
frequency consistency across different batches of genotyping
datasets will be checked to rule out the batch effect.

Population Structure
Individuals deviating ±3 SD from the samples’ heterozygosity
rate mean will be excluded. Only those males will be included
which have an X chromosome homozygosity estimate of more
than 0.8. On the other hand, only those females will be included
which have an X chromosome homozygosity estimate of less
than 0.2. Related samples will be filtered based on identity by
descent (IBD) coefficient>0.1 (31). Principal component analysis
(PCA) will be used to detect population outliers using the
first ten principal components and the outlier samples will be
removed. We identified five populations representing the Indian
subcontinent in phase 3 1,000 Genomes Project (KGP): two
from the northwestern region [Gujarati Indian in Houston, TX
(GIH) and Punjabi in Lahore, Pakistan (PJL)], two from Southern
region [Indian Telugu in the UK (ITU) and Sri Lankan Tamil
in the UK (STU)] and one from Eastern region [Bengali in
Bangladesh (BEB)]. The five Indian subcontinent populations
marked as South Asain population in the PCA plot of the
worldwide population showed a clear demarcation emphasizing
the need to diversify the genomic research in under-represented
populations to identify population-specific novel genetic loci for
complex diseases (Figure 3).

Imputation
Imputation will be carried out using the Haplotype reference
consortium (HRC) as a reference panel consisting of individuals
from more than 26 worldwide populations (32). The SNPs with
imputation info score of less than 0.7 will be discarded.

Association Analysis
Post-QC and imputation, association analysis will be conducted
for each sub-population using binary logistic regression analysis
assuming an additive genetic model adjusting for age, sex, and
relevant principal components. A conventional genome-wide
significance threshold of 5 × 10–8 will be used to identify
the significant SNPs. The fixed meta-analyses inverse-variance
weighting of log-ORs will be implemented inMETAL to combine
summary statistics across all the Indian sub-populations (33).
Genome inflation factor λ will be computed using the median
χ²-statistics. Lastly, Manhattan and QQ plots will be constructed
to visualize the results. All the summary statistics will be
made available publicly. Heterogeneity in allelic effect sizes
between different Indian sub-populations contributing to the
meta-analysis will be assessed using Cochran’s Q statistic.

Polygenic Prediction
We will further use genome-wide complex trait analysis (GCTA)
to perform conditional and joint analysis to identify the top
variants that account for heritable variation among different loci
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FIGURE 3 | The PCA plot using the phase 3 1,000 Genomes Project showing the distribution of the South Asian population among the worldwide populations (left),

and sub-populations from different regions of the Indian subcontinent (right).

(34). Polygenic risk score profiling will be done in a standard
weighted allele dose manner (35).

Biological Annotation
We will further integrate our GWAS summary statistics with
expression and network data using Functional Mapping and
Annotation of Genome-Wide Association Studies (FUMA)
to perform the tissue specificity and pathway enrichment
analysis (36).

The genomics/bioinformatics core in Tubingen will be
responsible for data integration and analysis.

Data Management and Sharing
To ensure seamless data exchange among Lux-GIANT partners,
we have established a secure data management and analysis
platform. At this moment this platform is equipped with
REDCap, a state-of-the-art EDC (Electronic Data Capturing)
system (https://www.project-redcap.org) widely used in various
clinical and translational projects and is hosted at the “clinical
core” site, SCTIMST. The Lux-GIANT REDCap instance is
aligned with the Genetic Epidemiology of Parkinson disease
(GEoPD) consortium minimal dataset Case Report Forms
(CRFs). This will ensure uniform clinical data collection across
various participating countries in GEoPD that are spread across
five continents. This will facilitate cross-study data pooling
and analysis for future multinational projects. All Indian nodal
centers and sub-centers taking part in this study are collecting
pseudonymized data into this secure and access-controlled
instance centrally. All the identifiable information of each study
participant stored separately at each site in a corresponding
hospital system and only authorized clinical people from that
site to have access to it. This setup is aligned with European
general data protection regulations (GDPR) as well as Personal
Data Protection Bill (PDP) 2019. This pseudonymized clinical
data, as well as the corresponding molecular data, will be served
to all Lux-GAINT partners via the “data core” site established

at Tubingen by leveraging the infrastructure established by
the German Network for Bioinformatics and Infrastructure
(de.NBI, https://cloud.denbi.de). Through the dashboard of the
de.NBI Cloud Site Tubingen the allocation of the desired
resources (number of virtual CPU cores, number of virtual
machines (VMs), amount of storage and RAM) will be covered.
Furthermore, to provide secure access to the VMs to researchers,
so-called security groups will be created, which can be seen
as a VM specific firewall to control incoming and outgoing
network traffic connections. To provide an additional layer
of security to Lux-GIANT genomics data, a private network
will be added to the Lux-GIANT cloud project to protect the
network traffic from and to the volume where the genomics data
reside. In addition to the network traffic protection, a certificate-
based approach will be used to grant specific permissions (read,
write) on a per-user base. The certificates will be distributed
to the particular person using a state-of-the-art asymmetric
encryption technique. The whole process starting with the project
application is illustrated in Figure 4. For further details, please
see (37). The system-infrastructure, as created, will provide a
secure environment to handle and process sensitive patient data
in a restrictive and responsible way using cloud resources. To
complement our cloud-based activities, the “data integration”
site, ELIXIR-Luxembourg Node (ELIXIR-LU) will FAIRify this
data by making them Findable, Accessible, Interoperable, and
Reusable (38). All the meta-data will be shared through the
ELIXIR data catalog (https://datacatalog.elixir-luxembourg.org)
that facilitates the Findability of the data. Both clinical and
associated molecular data will be curated, harmonized, and
integrated into a discovery analytics system—Ada (https://ada-
discovery.github.io). It will be hosted in the de.NBI cloud
Tubingen and will facilitate the data exploration and analysis
through intuitive web interface rich with dynamic visual analytics
and advanced machine learning (Deep Learning).

GAP-India aims to share data at the end of a 2-year embargo

period, consistent with guidelines followed by other consortia’s
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FIGURE 4 | Data management and access workflows in the Lux-GIANT network.

such as H3AfricaConsortium. The purpose of the 2-year embargo
period is to give Lux-GIANT researchers a reasonable time-frame
to analyze and publish their data before others do. The GAP-
India project aims to develop an extensive data sharing plan
designed to maximize the utility of its data for the scientific
community. Lux-GIANT cloud portal through which GAP-India
data will share data fall into two categories: (i) controlled access,
and (ii) open access.

The controlled access via the Lux-GIANT portal hosted on
the de.NBI Cloud will be given to researchers/institutes who

will comply with the data protection and ethical regulations, as
described in the GDPR, and PDP 2019. The open-access data
which does not require prior ethical clearance will be made
available to the scientific community either via the Lux-GIANT
Portal or PDgene database.

Regulatory and Ethical Framework
GAP-India project aims to address two main issues: (1) To
generate the most comprehensive PD genome-phenome catalog,
including iPSC biobank of the Indian PD population, and (2)
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to develop scientific and infrastructure capacities in India which
have so far lagged in PD genomics research.

One of the major reasons that hinder the collaboration in
the genomic era between various research consortia which are
primarily led by institutions either in the USA and/or Europe
and under-represented population such as India were concerns
that data generated from the under-represented population will
not be properly represented by the local stakeholders. GAP-
India aims to dispel this notion of “scientific imperialism” by
developing the “knowledge-sharing” model and also establishing
the guidelines which adequately protect the interests of local
investigators as well.

The data generated from the GAP-India project follows
the strict ethical guidelines, as stipulated by the Indian
Medical Council of Research (ICMR)- HMSC for international
collaborative research and follows the provisions of ICMR
guidelines for biomedical research in India (39). All the clinical
recruiting sites obtain ethical approval from their specific ethics
committee according to local protocols.

The GAP-India project involves multi-centers across India.
There exists a considerable disparity in access to and protocols
for regular health care among patients. Therefore, various ethical
considerations have arisen during the development stage of the
GAP-India project. Specifically, the following issues have been
considered. (1) return of genetic results generated from the study,
and how they will be received; (2) providing information about
genetic findings to patients and care-providers; (3) concerns
about stigmatization; and (4) ensuring equity and fairness
in collaboration.

As per the Indian guidelines, we are mandated to return
actionable results, with the potential to improve the health
outcome of the participants. For this, a re-identification process
will be followed through the PI of the recruiting center. Genetic
counseling and guidance will be offered in case of such a return
of results. Incidental findings that are not actionable will not be
returned (39).

One of the major spin-offs from this study will create a core
network of clinicians and researchers dedicated to PD genetics in
India. A long-term biorepository and capacity building in terms
of infrastructure and skill upgradation are additional advantages.
Taken together, GAP-India aims to develop a dedicated pool of
researchers and health care professionals to raise PD awareness
in India.

The GAP-India study and the LUX-GIANT network aim to
address a critical gap in knowledge regarding the genetic origins
of PD, by leveraging the population diversity afforded by as a
yet unaddressed population. We expect to generate novel data
that may drive targeted therapies and make them applicable on
a global scale.
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The burden of Parkinson’s disease (PD) is becoming increasingly important in the context

of an aging African population. Although PD has been extensively investigated with

respect to its environmental and genetic etiology in various populations across the globe,

studies on the African continent remain limited. In this Perspective article, we review some

of the obstacles that are limiting research and creating barriers for future studies. We

summarize what research is being done in four sub-Saharan countries and what the key

elements are that are needed to take research to the next level. We note that there is large

variation in neurological and genetic research capacity across the continent, and many

opportunities for unexplored areas in African PD research. Only a handful of countries

possess appropriate infrastructure and personnel, whereas the majority have yet to

develop such capacity. Resource-constrained environments strongly determines the

possibilities of performing research locally, and unidirectional export of biological samples

and genetic data remains a concern. Local-regional partnerships, in collaboration with

global PD consortia, should form an ethically appropriate solution, which will lead to a

reduction in inequality and promote capacity building on the African continent.

Keywords: Parkinson’s disease, Africa, public health, awareness, epidemiology, genetics

INTRODUCTION

Mirroring global trends, life expectancy on the African continent has greatly increased in recent
decades, paralleling economic growth, and related to a decline in a number of infectious diseases.
The World Health Organization reports that overall life expectancy at birth in Africa is currently
61.2 years (1). As a result of improved control of the HIV epidemic, malaria and diarrhoeal
diseases, non-communicable disorders (NCD) have become increasingly important as a public
health concern for Africa (2), which is a global pattern observed initially in higher income countries.
The common movement disorder, Parkinson’s disease (PD), is one example of an important
neurological NCD in the aging African population.

Exploring the epidemiology and genetic etiology of NCDs is essential in order to dissect
out patterns of disease susceptibility, environmental clustering, and medication responses at
a population level, as well as on an individual basis. In this Perspective article, we provide
an overview of the main difficulties that we consider to be hindering the progress of PD
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epidemiological and genetic research on the African continent,
and the solutions needed. We also provide summaries of the
healthcare infrastructure in four African countries [represented
by the four neurologists listed as authors; Tanzania (MD), Nigeria
(MK), Mali (TC), and South Africa (JC)], and of the research
done in these countries to illustrate the local obstacles but also
the potential global opportunities for the field.

OBSTACLES TO PD RESEARCH ON THE
AFRICAN CONTINENT

Limited Number of Neurologists
Epidemiological patterns are heavily dependent on the power of
detection of disease, which is an interplay of diagnostic factors
as well as the accuracy of determining the correct diagnosis in the
general population. In the case of PD, the first and foremost factor
in this is the availability of neurologists. On the African continent,
there is a wide discrepancy in the number of neurologists and
medical facilities between different countries.

Some urban centers may have comprehensive neurological
and auxiliary services available, consisting of neurologists,
neurosurgeons, neurophysiologists, and related equipment
(such as electro-encephalography, electromyography, and
nerve conduction studies). However, even in these centers,
accessibility to such services by the general population is limited
due to financial restrictions and barriers related to cultural
perception of disease. Reviewing the situation in Africa as a
whole, neurological services are either scarce or not available,
as illustrated by a survey conducted in 2005 that included 11
countries that were entirely without neurological services (3).
Currently, in most countries in Africa, there is still a dearth
of neurologists, nurses, physiotherapists, and other allied
professions due to limited training facilities for neurologists
within Africa, as well as emigration of skilled personnel to more
economically developed countries. Although, some research
on the clinical and epidemiological aspect of PD has been
conducted, genetics research of PD is limited in Africa, as a
result of poor awareness and lack of facilities. The low number
of scientific publications on PD mirrors the low density of
neurological professionals (Figure 1). As can be seen in the
figure, the Northern African Arabic countries bordering the
Mediterranean Sea and South Africa at the tip of the continent
are the two regions with better access to neurological surveillance
and care than the remainder of Africa.

Public Health Education and PD
A potential obstacle for access to neurological care may be
preconceived beliefs that exist among the community about
neurological conditions. Erroneous beliefs may arise from the
absence of knowledge and education regarding a particular
disorder, as well as culturally determined perceptions. Public
health education is therefore of considerable importance.
Absence of such education, or the cultural inappropriateness
of educational content (for instance by direct translation of
information leaflets and videos from other global regions) might
lead not only to ongoing lack of recognition of medical disorders
but also to missing out on the benefits of effective treatments.

If one is not attuned to the specific culturally appropriate
requirements of a region, the impression might arise that there is
a resistance toward receiving educational information. However,
with an approach adjusted to the specific ethnic, geographical, or
religious needs of a target population, the same information may
be better understood and therefore accepted.

Stigma Associated With PD
In a Northern Tanzanian door-to-door survey in a semi urban
setting, it appeared that many people suffering from PDmet with
various misconceptions about the disorder (4). Similarly, in a
study conducted in South Africa, there was lack of knowledge
about PD, with half of the members of the community believing
that patients with PD should not live within the community
(5). Ideas about guilt, witchcraft, and presumed mental disease
all attribute to stigmatization. Such factors delay or prevent
correct diagnosis or access to appropriate treatment for PD.
The Tanzanian setting does have access to basic neurological
services close to the survey area (6), which highlights the fact
that targeting a community’s perception of disease is potentially
as important as is the improvement of structural facilities such
as neurology clinics, laboratory diagnostics, and brain imaging.
When educational material for patients and their caregivers
is made available by a direct translation of quality material
available from websites such as the International Parkinson and
Movement Disorder Society (MDS; www.movementdisorders.
org), it is expected to correctly reflect currently available
evidence-based information. However, whether its contents will
actually appeal to groups other than those in high-income
regions, is less clear. In addition to appropriate translation,
stigma due to superstitious beliefs and misconception (4, 5) also
needs to be addressed in the educational material in order address
target populations respectfully and effectively.

Consequently, we believe that some of the main challenges for
PD research faced on the African continent are:

• Stigma of a visible impairment and the perception that the
disease may be caused by a curse or is a bad omen.

• Delay in diagnosis and treatment due to traditional medicine
being used as a first step for the majority of patients outside
urbanized regions.

• Low rate of healthcare insurance coverage preventing
affordability of long-term treatment in chronic disorders such
as PD.

• Denial of a positive family history of a possibly genetic
condition so as to prevent discredit to individuals or
their relatives.

PD RESEARCH IN FOUR AFRICAN
COUNTRIES

In this section, we highlight the situation regarding PD research
in four countries, Mali, Nigeria, South Africa, and Tanzania to
illustrate the obstacles and the opportunities. A summary of the
resources and infrastructure currently available for PD studies
in each country is provided in Table 1. This table clearly shows
the severe shortages of suitable resources, infrastructure and
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FIGURE 1 | A schematic diagram of African countries indicating the number of published articles on Parkinson’s disease per country (source: https://www.ncbi.nlm.

nih.gov/pubmed/). The search was conducted in December 2019 and the term “Parkinson” was used in addition to the country name for all countries located on the

African continent (Algeria-Zimbabwe); the ensuing results were then reviewed for being appropriate as a publication related to Parkinson’s disease. Duration of search

extended from 2019 until 1952.

facilities in comparison to developed countries. However, despite
this, high quality research has been done in these countries, as
indicated below.

Table 1 also shows the problems with treatment
strategies for PD in Africa. In this setting, after clinically
diagnosing parkinsonism, drug treatment usually starts with a
levodopa/carbidopa trial. Dopamine agonists are unavailable
in the majority of African countries. Treatment can be called
unsuccessful when about one gram of levodopa/carbidopa daily
for a number of weeks does not elicit a significant treatment
response. Practically however, the high cost of the treatment may
necessitate patients to terminate this titration prematurely, or to
reduce dosage frequency to once daily or very low dosages. There
will be a proportion of patients who would have responded better
had there been no financial limitations. Physiotherapy is also a
useful treatment modality, but is best given in limited sessions
due to long travel distances and low resources. Physiotherapy in

lower income regions is aimed at education and low frequency
follow up: patients and relatives may attend for a few days
consecutively, perform home exercises and return a number of
months later.

Tanzania
Tanzania, situated in East Africa, is one of the few countries in
Sub-Saharan Africa where door-to-door prevalence data on PD
are available from a survey of a semi urban and rural area (7). This
survey also examined perception of disease, including that PD
is considered to be an age-related phenomenon, which does not
require treatment, or that it may be a punishment for having done
something wrong (4, 7). The research group who conducted the
survey has been funding levodopa therapy for newly diagnosed
patients identified from the survey, in addition to following up
the patients (8), and also studying physiotherapy interventions
(9). A nearby tertiary referral center in Moshi, at the foot
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TABLE 1 | Summary of healthcare and clinical resources available for the clinical management of Parkinson’s disease in four sub-Saharan African countries.

Mali Nigeria South Africa Tanzania

Population size (millions)* 20 206 59 59

No. of neurologists** 20; (∼1 per million people) 200; (∼1 per million people) Private sector 120; State sector 25; (∼2.5

per million people)

8 (∼1 per 7 million people)

No. of movement disorder

specialists**

2 40 with special interest in movement

disorders

Private sector, 15 with special interest in

movement disorders; State sector, 2

None

Top three neurological conditions Head trauma; stroke; CNS infections Epilepsy; stroke; degenerative spinal cord

disease

Stroke; epilepsy; peripheral neuropathy Stroke; CNS infections; paraplegia

Prevalence of Parkinson’s

disease

Unknown 67/100,000 [community-based

study; (13)]

Unknown 20/100,000 [community-based

study; (7)]

Healthcare infrastructure Three teaching hospitals; seven regional

hospitals

85 tertiary hospitals (teaching hospitals

and federal medical centres) of which 75

are public and 10 are private; 3,993

secondary hospitals of which ∼75% are

private

400 state hospitals; 200 private hospitals 269 hospitals of which 120 public or

parastatal. Of these, seven teaching

hospitals are connected to a medical

school including four zonal referral

hospitals; six additional specialized

hospitals.

Medication funding TB, HIV-AIDS, malaria treatment, and

cesarean delivery free; Health insurance

rate below 20%, most out of pocket

TB, HIV-AIDS treatment, and vaccination

free; Health insurance rate below 10%,

most out of pocket

Three payment options i.e., full paying,

partially subsidized or free of cost (based

on income); <10% of population has

health insurance

TB, HIV-AIDS treatment and

vaccinations free; Health insurance rate

below 10%, most out of pocket

No. of CT/MRI scanners** 20 CT scanners; 4 MRI scanners 100 CT scanners; 50 MRI scanners 265 CT scanners; 150 MRI scanners 22 CT scanners; 8 MRI scanners

No. of PET/DAT scanners** Unavailable Unavailable Six PET scanners; DAT unavailable One PET scanner; DAT unavailable

Levodopa medication availability Available only in the capital city and some

districts. There is no insurance coverage

for L-dopa medication

Subject to global availability, predominantly

25/250 strength; <5% covered by Health

Insurance

Widespread availability, predominantly

25/100 and 25/250 strength

Subject to global availability, ∼10%

have coverage by healthcare insurance

DBS surgery availability Unavailable Unavailable Available Unavailable

No. of human geneticists 3 30–50 >200 Unavailable

No. of laboratories with human

genetics expertise

Two labs [Neurosciences Department at

the Point G Teaching Hospital, Faculty of

Medicine, University of Sciences,

Techniques and Technologies of Bamako

(USTTB)]

30 >50 Two labs (Muhimbili National Hospital

and Kilimanjaro Clinical Research

Institute)

*Country population size taken from https://www.worldometers.info/population/countries-in-africa-by-population/.
**Numbers are approximates as surveys have not been done.

DAT, Dopamine transporter; DBS, Deep brain stimulation; CNS, central nervous system; CT, Computerized tomography; MRI, magnetic resonance imaging; PET, positron emission tomography.
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of Mount Kilimanjaro, also has neurologists available for this
patient population (6). However, a limited number of patients
follow up to obtain levodopa maintenance therapy, illustrating
that there are additional, obstacles to care in an African rural
population over and above the availability of a neurologist.

A levodopa containing crop, Mucuna Pruriens, is presently
being studied for its medicinal properties in Moshi. Its use as
monotherapy or add-on medication in PD has proven to be
successful in Bolivia and Ghana (10, 11). The crop is being grown,
and will be roasted and ground at the hospital premises using
readily available facilities since Moshi is known for its coffee
industry, which uses the same procedures. The availability of
locally sourced medication of this nature may also allow patients
with chronic illness to grow their own medicine at home, and
titrate it themselves for daily use. In the framework of the
above study, an assessment on candidate and pharmacologically
relevant genes (e.g., Catechol-O-methyltransferase; COMT) will
be performed. To date, only one genetically confirmed PD
kindred is known from the East African region, which was
identified in North Tanzania and is due to a homozygous PRKN
deletion (12).

Nigeria
Nigeria is the most populous and diverse nation in Africa with
a growing population estimated to be over 200 million people,
and home to many different ethnic groups speaking three major
languages and over 250 other languages. Community based
studies on the prevalence of PD obtained an age adjusted rate
of 67 per 100,000 which is low compared to the frequency
observed in African Americans (13). The clinical profile, etiology
of Parkinsonism and PD and their complications have been
described and are similar to the clinical profile in other regions
of the world (14–16). Similarly, there have been studies on
the non–motor features of neuropsychiatric impairment (17),
cognitive impairment (18, 19), depression (20), gait instability
(21), autonomic (22), gastrointestinal (23), and respiratory (24)
involvement in PD. Studies to dissect the risk factors and etiology
of PD among Nigerians include biochemical and pathological
studies. Some authors observed the occurrence of Lewy bodies
(25, 26), xenobiotics (27), and risk factors such as manganese
among blacksmiths (28) and increased levels of trace metals
(29). A few genetic studies have also been conducted and did
not detect pathogenic mutations in PRKN (parkin), LRRK2, and
ATXN3 (30–32).

The challenges to care include low numbers of health care
personnel, poor access to care, late presentation, as well as
lack of medicine availability (33). However, new technologies,
particularly telemedicine, have been identified as a promising
area to improve access to care, especially for patients in rural
communities (33). Educational campaigns and awareness efforts
to tackle misconceptions as well as a multidisciplinary team care
approach at the community level are anticipated to improve
access and quality of care (34, 35).

Mali
Mali is situated in the midst of the Sahara Desert between North
African and sub-Saharan African countries. The demography is

diverse and consists of Sub-Saharan ethnic groups living in the
southern part of the country (black African origins) and nomadic
racial groups (Arabic-Berber origins) living in the northern part
of the country (36). The two ethnic groups share similar historic,
cultural and religious traditions with each other, and there
are high rates of consanguinity. These features are also shared
with neighboring countries, namely the North African countries
across the Sahara Desert and the sub-Saharan countries in the
South. Almost all facilities and health care personnel in Mali are
located in a geographic area representing <10% of the country,
where only 14% of the population live (37). PD is not regarded as
an urgent health priority when compared to the disease burden
of infectious diseases and other NCDs. Long-term availability of
medication, follow up and patient education are also lacking.

Due to a lack of trained movement disorders specialists
and severe constraints in health care infrastructure, only two
hospital-based studies of PD have been conducted in Mali. From
January 2012 to November 2013, all cases of PD were collected
using in-patient and out-patient visit data at Point G Hospital
in Bamako, which is the main teaching hospital in Mali. Among
the 8,372 patients seen at the Neurology Department, 60 patients
(0.7%) had PD (38). Mostly, individuals aged 61–80 years were
affected, the frequency of young onset cases was 12.2%, and a
positive family history of PD was present in 7.3%. Another study
done in 2016 revealed non-motor signs in 90% of all patients
with PD (39). To date, there are no published genetic studies on
PD patients fromMali.

South Africa
South Africa has been described as a “melting pot,” since the
country is ethnically diverse due to its history, comprising people
from a range of different ancestral backgrounds. South Africa has
reasonably well-established healthcare and facilities for clinical
management of PD but there are wide discrepancies in facilities
between different provinces (largely as a legacy of the apartheid
era) and between the urban and rural areas. The PD research
group is based in Cape Town and was initiated in 2006. As the
country has some of the best resources and infrastructure for
human genetics studies on the continent, the focus of the PD
research group is to study the genetic etiology of the different
ethnic groups by establishing a DNA bank of clinically well-
characterized PD patients. Initially, the group concentrated on
familial and early onset PD, of all ethnic origins, but more
recently, a focus has been on recruitment of South African
patients of Black African ancestry. The group has identified
pathogenic mutations, albeit at low frequencies, in all of the
commonly associated PD genes, as elaborated on in the next
section. Recently, a PTRHD1 mutation was identified in a Xhosa
family with Parkinsonism and intellectual disability (40).

GENETICS OF PD IN AFRICAN
POPULATIONS

As has been highlighted bymany previous reports, genetic studies
on African populations have been very limited (35, 41–43). All
of the published studies and their findings are summarized in
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Supplementary Table 1. On the African continent, most of the
work has been done on patients from North African Arabic
countries where the frequency of the LRRK2 G2019S mutation
was reported to be as high as 41% of patients (44) due to the
presence of genetic founder effects. A number of studies have
been conducted in South Africa but the mutation detection rate
has been low (32, 40, 45–55). The other studies have been done
in Nigeria (30–32), Tanzania (12), Zambia (56), and Ghana (57)
but for the vast majority of the countries in Africa, no genetic
studies have been reported. This is a striking omission since
African populations have the oldest genomes and the greatest
genetic diversity in the world, and are therefore likely to reveal
novel insights into disease mechanisms and pathways underlying
PD (58).

Notably, findings conducted on LRRK2 and in particular,
the G2019S mutation, have revealed interesting findings
(Supplementary Table 1). Although common in North African
Arabic populations, this mutation has not been identified in a
single individual of Black African ancestry (30, 31, 49, 56, 57).
A recent study conducted in South Africa found that 8 out of 647
patients screened were G2019S-carriers but all are of Ashkenazi
Jewish origin except one (whose grandfather was German) (49).
In a study on African Arabic patients in Tunisia, G2019S-carriers
had similar PD symptoms to non-G2019S idiopathic PD cases
but had a younger age at onset (AAO), a more benign phenotype
and less cognitive impairment (59). In the South African study,
the average AAO of the eight G2019S carriers was 56.6 years
(SD 10.9), they had typical PD symptoms, and the homozygous
mutation carrier did not exhibit a more severe disease to the
others, although two patients had severe lower limb dystonia
(49). It is plausible that patients of Black ancestry harbor other
mutations in LRRK2 but this would require comprehensive
screening of all 51 exons of this gene.

In summary, genetic studies in African populations have the
potential to be of great benefit for PD research globally but have
largely been unexplored.

SOLUTIONS NEEDED

In order to tackle the major challenges and obstacles to care of
PD patients and to facilitate more research on this disorder, we
believe the following issues need to be urgently addressed: lack
of awareness and wrong perceptions, lack of trained personnel
and the unavailability of drugs. To tackle the lack of awareness,
awareness campaigns, and culture specific educational materials
need to be developed in the local languages. Governments should
improve awareness and reduce stigma through the use of radio
and television jingles, adverts, and drama. Celebrities in each
country who have the disease could be encouraged to talk about
PD. This will improve awareness in the populations and may
encourage patients to seek care earlier than they do currently.
Observance of World Parkinson’s Day (on 11 April annually)
in healthcare institutions as well as obtaining sponsorship for
other events such as quiz competitions and arts and cultural
activities amongst school learners would be important. It has
been observed that school learners can help to raise awareness

of neurological disorders among the older members of the
family (60).

In addition, in the short term, training of multidisciplinary
teams comprising primary care physicians, and geriatricians as
well as training of neurology nurses has been established in some
parts of Africa and should be encouraged. The training of other
team members such physiotherapists, occupational and speech
therapists, and dieticians, should be promoted through local
neurological and international societies such as the International
Parkinson and Movement Disorder Society. A previous review
suggested that tele-neurology can be deployed for training of
health care workers through local, regional, and intercontinental
networks (61).

To tackle the problem of the non-availability and un-
affordability of drugs, a multisectorial strategy involving
governments, pharmaceutical organizations, and other key
stakeholders is necessary. It will be important for governments
across Africa to include drugs for PD in the National Drug
Formulary and to enroll patients in the health insurance
programme. Incorporating PD care into health insurance
systems will also enable patients to have access to neuroimaging
(62). Neuroimaging facilities are becoming more widely available
in Africa, but the cost of investigation is not affordable for
most patients.

Finally, a holistic approach to care could be developed and
implemented. The organization of PD support groups and clubs
as well as organization of community-based rehabilitation will
help in the care of patients living in rural communities.

CONCLUSIONS

The genetic and environmental diversity across the African
continent provides a wealth of information and opportunities
for research into the epidemiological patterns of PD occurrence,
its clinical phenotypes and the genetic and environmental causal
factors. However, there is large variation in neurological and
genetic research capacity across the African continent, and
many unexplored areas in African PD research. Some countries
are relatively well-equipped, but most are severely resource-
constrained. A low resource environment strongly limits the
possibilities of performing research locally, and therefore
unidirectional export of genetic material to scientifically more
developed countries remains a major concern. Local and regional
partnerships can form an ethically appropriate solution, reducing
inequalities, and promoting capacity building. There is also
the possibility for collaboration of these partnerships with
global consortia studying the genetic etiology of PD [Genetic
Epidemiology of Parkinson’s Disease (GEoPD; www.geopd.net)
and The International Parkinson Disease Genomics Consortium
(IPDGC; www.pdgenetics.org)], to provide training in genomics
and bioinformatics to African scientists.

Furthermore, a major concern for the adequate treatment
of PD patients is the availability of affordable levodopa-
containing medication. Various African countries have
difficulties in obtaining levodopa for their patients largely
due to manufacturing capacity and supply chain constraints,
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which has prompted the need for development of alternative
therapies. The levodopa-containing plant Mucuna Pruriens
thrives in the subtropics and can be grown by patients for their
own use. Options such as these and others should be considered
to provide African-based solutions to uniquely African problems
when dealing with the emerging PD pandemic (63).
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Pathogenic variants in the gene encoding RAB39B, resulting in the loss of protein

function, lead to the development of X-linked early-onset parkinsonism. The gene is

located within a chromosomal region that is susceptible to genomic rearrangement,

and while an increased dosage of RAB39B was previously associated with cognitive

impairment, the potential role of dosage alterations in Parkinson’s disease (PD) remains

to be determined. This study aimed to investigate the contribution of the genetic variation

in RAB39B to the development of early-onset PD. We performed gene dosage studies

and sequence analysis in a cohort of 176 individuals with early-onset PD (age of onset

≤50 years) of unknown genetic etiology. An assessment of the copy number variation

over both coding exons and the 3′ untranslated region (UTR) of RAB39B did not identify

any alterations in gene dosage. An analysis of the UTRs identified two male individuals

carrying single, likely benign, nucleotide variants in the 3′UTR (chrX:154489749-A-G

and chrX:154489197-T-G). Furthermore, one novel variant of uncertain significance was

identified in the 5′UTR, 229 bp upstream of the start codon (chrX:154493802-C-T). In

silico analyses predicted that this variant disrupts a highly conserved transcription factor

binding site and could impact RAB39B expression. The results of this study do not

support a significant role for genetic variation in RAB39B as contributing to early-onset

PD but do highlight that additional molecular studies are required to determine the

mechanisms regulating RAB39B expression and their association with the disease.

Genetic investigations in larger parkinsonism/PD cohorts and longitudinal studies of

individuals with cognitive impairment due to an altered dosage ofRAB39Bwill be required

to fully delineate the contribution of RAB39B to parkinsonism.

Keywords: parkinson’s disease, RAB39B, DNA polymorphisms, gene dosage, copy number variation

INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative condition that manifests with a
spectrum of motor symptoms including tremor, rigidity, bradykinesia, and gait disturbances.
PD can be classified according to initial clinical presentation as early-onset PD (<50
years) or late-onset PD (>60 years). Despite a difference in disease onset, a post-mortem
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TABLE 1 | Sequencing primers.

Primer name Sequence Amplicon size

hRAB39B 5′UTR F TGGCAGTTTGAACGACAGAG 397bp

hRAB39B 5′UTR R GCTCTGCAGGTCTCCTTGG

hRAB39B 3′UTR 1F CATGCTCTCCTACTTGAACTGAA 1,000bp

hRAB39B 3′UTR 1R CCTGGCCAAGTGATTTTCAT

examination of the central nervous system in both classifications
demonstrates the hallmark pathological features of the disease,
including neuron loss in the substantia nigra pars compacta
and the presence of intraneuronal α-synuclein (α-syn)-positive
inclusions, termed as Lewy bodies.

Currently, the molecular mechanisms underlying the
development and the progression of PD remain largely
unknown, and most disease cases are idiopathic. However, in
a subset of ∼10% of cases, the disease etiology is genetic—the
result of a monogenic mutation (1). Pathogenic variants in
PD-associated genes can be point mutations or small in/dels that
affect protein function or gene expression or can be larger copy
number variants (CNV) that impact gene dosage. For example,
protein-disrupting mutations and gene dosage alterations,
which do not encompass the entire gene and result in loss of
function, are an important mutation mechanism in recessive
parkin-mediated PD (2). Similarly, multiplication of the entire
gene encoding α-syn (SNCA), with associated increased dosage,
expression, and elevated SNCA steady-state level, correlates
with severity and disease progression in dominant PD (3–5).
Genome-wide association studies have also identified additional
risk loci contributing to the burden of the disease, including
susceptibility alleles that can modulate the risk of developing
PD through dysregulated gene expression. For example, the
non-coding polymorphisms of the SNCA locus that impact
promoter or enhancer activity correlate with a strong risk of
developing sporadic PD (6–8).

Loss-of-function mutations in RAB39B were originally
identified in two independent families who displayed the clinical
features of early-onset Parkinson’s disease (EOPD) with non-
progressive intellectual disability and macrocephaly (9). RAB39B
is a member of the RAB GTPase family with a putative role
in vesicle trafficking. Several subsequent studies of the coding
sequence and the splice junctions of RAB39B in large PD cohorts
failed to identify additional pathogenic mutations, suggesting
that the single-nucleotide variants in RAB39B that directly
disrupt protein function are a rare cause of PD (10–14). However,
genetic validation of the gene has been established by the
identification of six additional causal RAB39Bmutations, to date,
in unrelated PD patients and families [reviewed in Ciammola
et al. (15)]. Notably, a pedigree of European origin carrying a
missense mutation in RAB39B (c.574G>A, p.G192R) manifested
X-linked dominant PD in males, but the heterozygous females
presented with later-onset parkinsonism and no intellectual
disability (16). This potentially reduced penetrance in females
suggests that the relative level of RAB39B expression may have
an impact on the clinical presentation of PD.

RAB39B is located at Xq28 in a region flanked by low-
copy repeats, making it susceptible to chromosomal aberrations
mediated by a non-allelic homologous recombination. Indeed
duplications at the Xq28 region, including the genes methyl
CpG-binding protein 2 and GDP dissociation inhibitor 1, are
frequently observed in males with intellectual disability and
brain malformations (17). A single study investigating RAB39B
copy number in a familial Chinese PD cohort (n = 195) did
not identify any cases with dosage alterations (12). However,
duplication and triplication of RAB39B have been previously
reported to be associated with the development of X-linked
intellectual disability (XLID) in male children (18, 19). It was not
reported if the affected individuals presented with a movement
disorder at the time of assessment.

The collective results, to date, have implicated RAB39B in the
development of EOPD and parkinsonism. Although an altered
dosage of RAB39B has been reported to cause XLID, it has not
been associated with the development of PD to date. To further
investigate the potential role of RAB39B in PD, we screened an
EOPD cohort for CNV that could lead to an altered dosage of
the gene. In addition, we performed sequence analysis of the
untranslated regions (UTR) and immediately upstream of the
putative transcription start site (TSS) to identify variants with the
potential to dysregulate RAB39B expression.

MATERIALS AND METHODS

Patient Samples
Prior to commencing the study, appropriate institutional ethics
approval and informed consent from patients were obtained.
Genomic DNA isolated from the whole blood of 232 individuals
diagnosed with EOPD (onset ≤50 years) was made available
by author GDM. This EOPD cohort, consisting of 71 females
and 161 males with mean age of onset of 42.7 ± 6.5 years,
comprises participants in the Queensland Parkinson’s Project in
Queensland, Australia (20) and is representative of a Caucasian
population. All patient DNA samples were collected under
protocols approved by the Griffith University Human Research
Ethics Committee (Project ESK/04/11/HREC). The samples were
previously sequenced to exclude mutations in known PD-
associated genes, including SNCA (MIM 163890), PARK2 (MIM
602544), DJ1 (MIM602533), PINK1 (MIM 608309), and LRRK2
(MIM 609007). The samples were also previously screened for
variants in the coding region of RAB39B (MIM 300774). A subset
of the cohort (176 individuals, consisting of 58 females and 118
males with mean age of onset of 42.6 ± 6.5 years) was utilized in
this study.

Sequencing
We amplified genomic DNA corresponding to regions of the
upstream regulatory region, the 5′UTR and the 3′UTR of
RAB39B, using the primers detailed in Table 1 and Figure 1.
Sanger sequencing was performed using Big Dye Terminator v3.1
(Applied Biosystems, 4336697), according to the manufacturer’s
instructions, on 3730 Genetic Analyzer platform (Applied
Biosystems). The sequences were aligned and analyzed using
Sequencher 5.0 software (Genecodes). The detected variants
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FIGURE 1 | Depiction of sequencing and copy number variant analyses performed for RAB39B in this study (black text) and previously (gray text) of an early-onset

Parkinson’s disease cohort. The three variants identified in the study are indicated.

were annotated using Varsome (https://varsome.com/) and
filtered with GnomAD (https://gnomad.broadinstitute.org/). The
variants not present in GnomAD were considered as novel. The
pathogenicity of the variants was predicted using Combined
Annotation Dependent Depletion (CADD) (https://cadd.gs.
washington.edu/snv) and Deleterious Annotation of genetic
variants using Neural Networks (DANN) (21), two in silico
prediction tools designed to annotate both coding and no-
coding variants. The reference cDNA and genomic sequences
utilized for RAB39B were NM_171998.4 and GRCh37/hg19,
respectively. The novel variants identified in this study have
been submitted to the LOVD gene-specific database for
RAB39B (https://www.lovd.nl/).

CNV Analysis
We performed an analysis of RAB39B CNV by quantitative
real-time PCR (RT-PCR), utilizing commercially available
Taqman assays interrogating exon 1, exon 2, or the 3′UTR of
RAB39B (Life Technologies, Hs00817269_cn, Hs00745075_cn,
and Hs02637133_cn, respectively; Figure 1). The reactions were
duplexed with the human RNaseP copy number reference assay
(Life Technologies, 4403326) and 10–20 ng gDNA amplified on
a LightCycler LC480 II (Roche) according to the manufacturer’s
instructions. Each sample was assessed in triplicate. The
threshold cycle was determined using LightCycler LC480
software 1.5.1.62 SP2, and RAB39B copy number was calculated
using the 11CT method.

RESULTS

We screened for CNVs over both coding exons of RAB39B
and the 3′UTR by quantitative RT-PCR (Figure 1) but did not
identify any variations in RAB39B exon or gene dosage. In
addition, we analyzed 404 bp of sequence upstream of the
initiating codon and 1,021 bp downstream of the termination
codon for sequence variants in RAB39B in 176 individuals with
EOPD of unknown genetic etiology (Figure 1). We identified

three male individuals carrying single-nucleotide variants. One
variant of uncertain significance (chrX:154493802-C-T) was
identified in the 5′UTR, 229 bp upstream of the ATG start
codon and close to the predicted TSS of Refseq NM_171998.4
(Figure 2A), of a male patient with a disease onset age of 50
years. This nucleotide is highly conserved (GERP 4.6) and the
variant is predicted to disrupt a consensus activator protein-1
(AP-1) transcription factor binding site located within a DNase
1 hypersensitive peak (Figure 2B). This is a novel variant not
previously identified in GnomAD, with in silico support of
pathogenicity utilizing DANN (score 0.98) and CADD (score
21.2). Due to the study design of the Queensland Parkinson’s
Project (22), we were unable to test if the variant was de novo
or perform functional studies of the variant in patient-derived
cells. No intellectual issues were reported at the time of patient
examination and there was no familial history of parkinsonism.
Two likely benign variants were identified in the 3′UTR region
of RAB39B. One variant was identified in a male patient
with disease onset age of 48 years (NM_171998.4:c.∗339T>C;
chrX:154489749-A-G). This rare variant (rs781919581) has an
average allele frequency of 0.00086 in GnomAD, with DANN
and CADD scores of 0.75 and 5.29, respectively. The second
variant was identified in a male patient with a disease onset age
of 49 years (NM_171998.4:c.∗891A>C; chrX-154489197-T-G).
This rare variant (rs143765586) has an average allele frequency
of 0.00087 in GnomAD, with DANN and CADD scores of 0.66
and 1.67, respectively.

DISCUSSION

RAB39B is a member of the RAB GTPase family with a
putative role in vesicle trafficking in neurons. While there
is considerable genetic and functional evidence demonstrating
the loss of function mutations that cause an early-onset
familial parkinsonian disorder in males, a potential broader
role in idiopathic PD remains to be fully tested. Previously,
we investigated a Caucasian EOPD cohort (n = 187) for
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FIGURE 2 | In silico analyses of the 5′ region of RAB39B. (A) Screenshot of the UCSC browser (hg38, chrX:155,264,156-155,264,850) examining the 5′ region of

RAB39B. The location of the chrX:154493802-C-T variant is depicted by the red dotted line. The blue sequences represent Refseq NM_171998.3 (outdated) and

NM_171998.4, respectively. Spliced human expressed sequence tags are shown in black. The lower tracks demonstrate that the variant is located within a region of

DNase 1 sensitivity and displays high vertebrate conservation compared to immediate flanking sequence. The final track demonstrating GERP scores represents an

analysis of the corresponding sequence using the hg19 dataset. (B) An alignment of the 5′ region of RAB39B showing the reference genomic sequence (top) with the

variant sequence (middle). The predicted AP-1 transcription factor binding site is in bold highlight. The sequence logo (bottom) generated from ENCODE data

demonstrates the core AP-1 consensus sequence and the conservation of each nucleotide.

alterations in the coding regions of RAB39B and found no
variants of significance (9). In this study, we investigated a
subset of this EOPD cohort for CNVs and non-coding variants

that could potentially result in the dysregulated expression of
RAB39B. Although the non-coding variants may not directly
impact protein function, they can alter the protein levels in
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neurodegenerative diseases such as PD by modulating mRNA
synthesis, stability, localization, and translation. Non-coding
polymorphisms in SNCA, PARKIN, and DJ1 have all been
previously identified to be associated with the development
of PD in cohort screens (23–27). For example, while protein-
disrupting mutations in parkin are a common cause of
recessive EOPD (28), the variants in the promoter/5′UTR region
that affect parkin expression are associated with idiopathic
PD (29).

We did not identify any CNV alterations in the 176
samples analyzed, suggesting that increased RAB39B dosage
may not be associated with EOPD. While screening additional
large cohorts will further test this hypothesis, longitudinal
studies of individuals with XLID secondary to duplication
and triplication of RAB39B (18, 19) will also inform whether
an increased dosage of RAB39B can cause a parkinsonian
phenotype. Given that the PD phenotype associated with
the loss of RAB39B function appears to manifest later in
life compared to intellectual disability [>20 years; (15)], it
is probable that if the affected individuals are going to
develop parkinsonism, it will be at a later age than the time
of report.

Screening of the non-coding regions ofRAB39B revealed three
variants, one immediately proximal to the TSS and two within
the 3′UTR. Both UTR variants were classified as likely benign
according to the ACMG guidelines (30). In contrast, an in silico
analysis identified that the upstream variant chrX:154493802-
C-T was novel, with predictions supportive of pathogenicity.
Our analysis of both expressed sequence tags and genomic
conservation around the variant suggests that it disrupts a
highly conserved AP-1 transcription factor binding site. We
hypothesize that this motif is important for regulating the
RAB39B expression, and the variant likely downregulates the
expression by preventing the binding of important transcription
factors such as AP-1. The AP-1 family of transcriptional factors
can modulate a wide range of molecular functions, one of
which is neuronal plasticity (31). The AP-1 regulation of
neuron-enriched RABGTPases has not been previously reported,
although one study demonstrated that AP-1 can regulate
RAB11A promoter activity and thus endosomal recycling (32).
Interestingly, a phylogenetic analysis of the RAB GTPase family
shows that RAB39 shares the most recent common ancestor
with RAB11 (33), suggesting that the transcriptional regulation
of some RAB GTPases may be evolutionarily conserved.
Currently, knowledge of the transcriptional regulation of
RAB39B is lacking. Specifically, the promoter region, primary
TSS, and important transcription factors for RAB39B have
yet to be identified and functionally characterized. Therefore,
while our analysis of the chrX:154493802-C-T variant is
consistent with a potential effect on RAB39B expression, in the
absence of functional validation, the significance of the variant
remains uncertain.

Overall our results are consistent with previous reports
suggesting that the genetic variation in RAB39B is a rare
cause of EOPD. A genetic analysis of the UTRs and the

regulatory regions of RAB39B has not been reported
previously; our identification of a novel 5′ variant, with
in silico predictions supporting pathogenicity, warrants
further investigation. Moreover, a recent study in a small
cohort of individuals with idiopathic PD suggested that
steady-state levels of RAB39B in brain tissue might be
decreased (34). Therefore, further genetic and functional
studies are required to determine the consequences of
dysregulated RAB39B expression and test its potential role
as a susceptibility gene associated with PD or parkinsonism
more broadly.
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Multiple studies implicate heterozygous GBA mutations as a major genetic risk factor for

Parkinson’s disease (PD); however, the frequency of mutations has never been examined

in PD patients from the Irish population. We prospectively recruited 314 unrelated Irish PD

patients (UK Brain Bank Criteria) and 96 Irish healthy controls (without any signs or family

history of parkinsonism) attending. The Dublin Neurological Institute (DNI). Complete

exon GBA Sanger sequencing analysis with flanking intronic regions was performed.

The GBA carrier frequency was 8.3% in PD and 3.1% in controls. We identified a

number of potentially pathogenic mutations including a p.G195E substitution and a

p.G377C variant, previously described in a case study of Gaucher’s disease in Ireland.

On genotype–phenotype assessment hallucinations, dyskinesia, and dystonia were more

prevalent in GBA-PD. The genetic etiology of PD in Ireland differs from the continental

Europe as seen with the lower LRRK2 and higher than in most European countries GBA

mutation frequency. Determining genetic risk factors in different ethnicities will be critical

for future personalized therapeutic approach.

Keywords: GBA, glucocerebrosidase, Ireland, sequencing, Parkinson’s disease

INTRODUCTION

Glucocerebrosidase gene (GBA) encodes B-glucocerebrosidase enzyme hydrolyzing
glucocerebroside to glucose and ceramide. While homozygous or compound heterozygous
GBA mutations alter glucocerebrosidase activity and result in a recessive lysosomal-storage
disorder, Gaucher’s disease, heterozygous variants have been implicated in Parkinson’s disease
(PD) pathogenesis (1–3). In fact, GBA mutations have been identified as one of the strongest
known genetic risk factors for PD (5–20% of PD patients are reported to harbor GBA mutations
depending on ethnicity) (2). Initially, GBA-related PD was thought to reflect the clinical phenotype
of idiopathic PD (3); however, current evidence suggests unique motor (e.g., frequent falls, freezing
of gait, dyskinesia, faster progression), non-motor [autonomic symptoms, younger age at onset
(2.6–0.9 year earlier age at onset)] (4), increased prevalence of rapid eye movement (REM) sleep
behavior disorder (RBD) and daytime sleepiness (5) features and cognitive impairment (frequent
cognitive decline and hallucinations) (5–7).
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The GBA gene is located on chromosome 1q22 and
consists of 11 coding exons. The existence of a highly
homologous pseudogene (GBAP1) (sharing 96% of exonic
sequence) located 16 kb downstream of the functional GBA
gene makes GBA sequencing studies challenging (8). Sequencing
of all exons and using long-range PCR primers specific for
the functional GBA gene is the most reliable method for
genetic screening. However, many centers continue to restrict
the analysis to the most common variants or exons where
most of the mutations are reported (exons 9 and 10) (9). GBA
p.L444P and p.N370S are the two most common pathogenic
substitutions among 335 reported, responsible for 50–70% of
cases (1). Based on homozygous and compound heterozygous
mutations resulting in specific subtypes of Gaucher’s disease,
GBA mutations can be classified as “mild” (p.N370S and
p.R496H) and “severe” [p.L444P, p.D380A, p.R131C, p.D409H,
p.R463C, p.R257Q, p.V394L, c.1263-1317del, and RecNciI-a
recombinant allele (p.L444P-A456P-V460V)] (10). Carriers of
mild mutations are reported to have 2.2-fold higher risk of
PD and mean age at onset of 58.1 (±10.6), while carriers of
severe mutations have 9.92- to 21.29-fold increased risk of
PD and mean age at onset of 52.1 (±11.2) (10, 11). GBA
p.E326K homozygous and compound heterozygous mutations
do not cause Gaucher’s disease; thus, there may be a distinct
mechanism predisposing to PD in carriers of p.E326K. Until
recently, believed to be a benign polymorphism, now p.E326K
is an established risk factor (large meta-analyses) causing rapid
motor progression of PD (β = 3.42; 95% CI, 0.66–6.17;
p = 0.02) (12, 13), cognitive decline, and the development
of RBD among those who did not have the disorder at
baseline (5, 6, 11). Similarly, there is an emerging trend in
the literature to classify p.T369M as a risk variant (with the
reported effect size similar to that of p.E326K, baseline RBD,
associated cognitive decline, and higher hazard ratio of reaching
H&Y3) (4, 6, 14, 15).

The prevalence of GBA mutations can vary according to
ethnicity (10) (e.g., mutations are common in Ashkenazi
Jewish populations). Locally derived data are important for
further genetic characterization, development of local guidelines,
enrolment in clinical trials, and search for the disease-
modifying treatments. Large Irish families, small population
size of the country (Republic of Ireland population, 4.79
million in 2017, as per the most recent census) (16), and
relative isolation from the continental Europe make the
Irish population ideal for genetic studies. We and others
reported that genetics of PD in the Irish population differs
from that in the continental Europe, e.g., LRRK2 mutations
are rare (17). We have shown in a recent epidemiological
study that the population structure in Ireland differs from
the rest of the Europe, and this may be related to the
Celtic ancestry (18). We have also demonstrated that the
prevalence of another neurological condition, amyotrophic
lateral sclerosis (ALS) in Ireland, differs from other European
countries (19). The prevalence of GBA in PD and genotype-
phenotype correlation has never been studied in Ireland, and we
hypothesized that similarly to LRRK2, it may differ from that in
other populations.

METHODS

Ethical Approval
The ethical approval (1/378/1,300) was granted by the Mater
Misericordiae University Hospital (MMUH), Dublin, Ireland.
Informed written consent was obtained.

Design
This is an observational cross-sectional study.

Participants
Three hundred fourteen unrelated Irish patients over age 18
diagnosed with PD (UK Brain Bank Criteria) were recruited from
a tertiary referral center, Dublin Neurological Institute (DNI), at
the MMUH, Dublin, Ireland. Patient’s attending the DNI reside
in the Dublin city or rural areas of the country. To expand the
diversity of participants, an additional notice about the study
recruitment was posted on the Irish Parkinson’s Association
website. Secondary and atypical forms of parkinsonism were
excluded. Ninety-six healthy controls (friends or spouses of
patients) without any signs or family history of parkinsonism,
over age 18 were recruited from the DNI.

Sequencing and Data Analysis
Genomic DNA was isolated from peripheral blood lymphocytes
using QIAmp Blood Midi Kit. Genetic analysis was performed at
the Department of Neuroscience, Mayo Clinic, Jacksonville, FL,
USA. All PD patients were prescreened for the most common
genetic causes of autosomal dominant disease (LRRK2, SNCA,
VPS35) and patients with young onset PD (YOPD) (age, <50)
also for autosomal recessive PD (PARKIN, PINK1, DJ1). PD
patients (n = 314) were tested for specific point mutations;
LRRK2 p.G2019S, SNCA p. A53T, and p.A30P and VPS35
p.D620N (TaqMan Allelic Discrimination Assay, on Quant
Studio System Real-Time PCR System). Multiplex ligation-
dependent probe amplification (MLPA) analysis was employed
to determine the dosage alterations in SNCA. PD patients with
YOPD (n = 81) were investigated by Sanger sequencing of all
coding exons plus 25 base pairs of exon–intron boundary of
PARKIN (12 exons), PINK1 (8 exons), and DJ1 (6 exons) genes.
MLPA analysis was also performed.

GBA sequencing of all 11 coding exons plus 25 base pairs
of exon–intron boundary was performed on all patients and
96 controls and confirmed bidirectionally. PCR and primer
sequences are available in Supplementary Tables 1, 2. The
pathogenicity of the variants was determined based on the
current literature and in silico tools [Polyphen v2 (20), SIFT (21),
Mutation Taster (22)] (Table 1). Results are presented in Table 2.
Both newer and well-established historical nomenclature (GBA
protein−39 amino acids) for GBA variants annotation was used.

Samples from two patients were tested for β-glucosidase
enzyme level and chitoriosidase level by the use of a validated
functional assay (fluorimetric assay method) (23) at the Guy’s
Hospital, London, United Kingdom.

Statistical Analysis
Statistical analysis was performed using IBM SPSS Statistics,
Version 22.0. Cohort characteristics were assessed using
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TABLE 1 | Pathogenicity prediction results for GBA genotypes found in Irish Parkinson’s disease (PD) patients and controls: pathogenic/risk variants, predicted

pathogenic, and VUS genotypes.

GBA

Protein

GBA Protein

(-39aa)

Genotype rs # Exon Mutation

Taster

Polyphen

2

SIFT dbSNP ClinVar Literature Irish Study

Pathogenic/risk GBA variants

E365K E326K G > A rs2230288 8 Path Benign Tolerated Path Risk Risk Risk

T408M T369M C > T rs75548401 8 Polymorphism Benign Tolerated VUS VUS Risk Risk

F255Y F216Y T > A rs74500255 7 Path Probably

Path

Tolerated Path Path Path Path

N409S N370S A > G rs76763715 9 Path Possibly

Path

Path Path Path Path Path

D448H D409H G > C rs1064651 9 Path Benign Tolerated Path Path Path Path

L483P RecNcil T > C rs421016 10 Path Path Path/Tolerated Path Path Path Path

A495P Recombinant G > C rs368060

V499V G > C rs1135675

Predicted pathogenic

G416C G377C G > T No rs 9 Path Probably

Path

Path N/A N/A 1 patient

Gaucher’s

Predicted

Path

Variants of unknown significance

G234E G195E G > A rs74462743 6 Path Probably

Path

Path SNV N/A 1 patient

Gaucher’s

VUS

R301H G > A rs140955685 7 Polymorphism Benign Tolerated SNV N/A VUS

R368C C > T rs374306700 8 Path Probably

Path

Path VUS VUS VUS

GBA Protein (−39aa) the conventional nomenclature for GBA alleles following Human Genome Variation Society (HGVS) recommendation referring to the processed protein and

excluding the 39-residue signal peptide. GBA Protein, the alternative nomenclature; Path, pathogenic; VUS, variant of unknown significance; SNV, single-nucleotide variant.

descriptive statistics. Bivariate associations between categorical
variables were calculated using Pearson chi-square tests (X2) or
Fisher’s exact tests (when expected cell counts ≤5 observations,
e.g., genotype frequencies comparison). Where continuous
variables were normally distributed, independent sample t-tests
were used, and where not, Mann–Whitney U-tests. The results
were deemed statistically significant where p < 0.05. Two
hypotheses were tested. The first was that the presence of a
GBA variant increased the risk of PD in the Irish population.
Logistic regression model was used to control for age and gender.
The second hypothesis was that the GBA variant carriers have
earlier age-at-PD onset (14). A linear regression model was fitted
with age at onset as the dependent variable and the presence or
absence of aGBA variant as the independent variable (gender as a
covariate). Linear and logistic regressionmodels were used to test
whether the frequency of the motor complications, wearing off,
dyskinesia, dystonia, freezing of gait, hallucinations, dementia,
and Unified Parkinson’s Disease Rating Score part III (UPDRS-
III) differed between carriers and non-carriers. Gender, age, and
disease duration were considered as covariates. In the sensitivity
analysis, each of the motor complications was also controlled for
medications, UPDRS-III score, and disease subtype.

RESULTS

We screened 314 Irish patients with PD of which 62.4% (n =

196) were male and 37.6% (n = 118) were female, with mean
age at inclusion of 64.94 ± 10.69 years, mean age at onset of
56.23 ± 12.04 years, and mean disease duration of 8.62 ± 6.97

years. The majority had tremor-predominant disease (55.7%),
followed by postural instability gait disorder (PIGD) (34.1%)
and mixed subtypes (10.2%). Motor complications were seen in
43.3%. Family history of PD was present in 173 patients (55.1%).
A group of 96 Irish controls [51% men (n = 49), 49% women (n
= 47), mean age at inclusion (61.15± 14.5)] was studied to assess
the mutation frequency in the ethnically matched population.

We examined 314 patients for genes associated with
autosomal dominant PD. Among 314 patients, we identified
one PD patient with LRRK2 G2019S mutation positive for GBA
benign intronic variant (exon 7−18 bp). We did not identify any
carriers of p.A53T or p.A30P in SNCA or p.D620N in VPS35.
There were no patients with SNCA dosage alterations.

On examination of the 81 patients with YOPD, we identified
one homozygote carrier (p.G430D/p.G430D), three compound
heterozygote (p.Leu112fsX163/p.R275W; p.G430D/Ex 4&5del;
p.R275W/Ex3 del), and three heterozygote carriers [p.R275W/wt.
(n = 1); p.P437L/wt (n = 2)] in PARKIN gene. None of
the PARKIN gene carriers had variants in GBA detected. No
homozygous or compound heterozygous carriers of PINK1 or
DJ1 were detected.

We detected 26 carriers of GBA pathogenic/risk variants in
PD and 3 in controls [p.E326K, P.T369M, p.N370S, p.F216Y,
p.D409H, and RecNcil (p.L444P-A456P-V460V)] (Tables 2, 3).
These variants were found in 8.3% of PD patients and 3.1%
of controls (p = 0.08, X2). The result remained non-significant
after controlling for age and gender [odd’s ratio (OR), 3.2
(p = 0.06; 95%CI, 0.94–10.97). RecNcil and p.N370S carrier
frequency in PDwas 1.9% [RecNcil, n= 3, minor allele frequency
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TABLE 2 | Pathogenic/risk variants and variant of unknown significance (VUS) genotypes, carrier frequency, and minor allele frequency in Irish Parkinson’s disease (PD)

patients and controls and comparison to ExAC and GnomAD databases.

GBA

protein

GBA protein

(-39aa)

Genotype rs # Exon PD

het/homo

PD carrier

frequency

PD

MAF

Controls

het/homo

PD carrier

frequency

PD

MAF

ExAC

MAF

GnomAD

MAF

Pathogenic/risk GBA variants

T408M T369M C > T rs75548401 8 6/0 1.92% 0.96% 4/0 2.37% 1.18% 0.98% 0.94%

E365K E326K G > A rs2230288 8 12/1 4.14% 2.23% 3/1 2.37% 1.48% 1.20% 1.23%

F255Y F216Y T > A rs74500255 7 1/0 0.33% 0.16% 0/0 0% 0% 0.02% 0.00%

N409S N370S A > G rs76763715 9 3/0 0.96% 0.48% 0/0 0% 0% 0.36% 0.20%

D448H D409H G > C rs1064651 9 1/0 0.32% 0.16% 0/0 0% 0% 0.01% 0.02%

L483P RecNcil

recombinant

T > C rs421016 10 3/0 0.96% 0.48% 0/0 0% 0% 0.39% 0.14%

A495P G > C rs368060 3/0 0.96% 0.48% 0/0 0% 0% 0.01% 0.01%

V499V G > C rs1135675 3/0 0.96% 0.48% 0/0 0% 0% 0.02% 0.03%

Predicted pathogenic

G416C G377C G > T No rs 9 1/0 0.32% 0.16% 0/0 0% 0% Not

reported

Not

reported

Variants of unknown significance

G234E G195E G > A rs74462743 6 1/0 0.32% 0.16% 0/0 0% 0% – 0.00%

R301H G > A rs140955685 7 0/1 0.32% 0.32% 0/0 0% 0% 0.01% 0.02%

R368C C > T rs374306700 8 1/0 0.32% 0.16% 0/0 0% 0% 0.00% 0.00%

GBA Protein (−39aa) the conventional nomenclature for GBA alleles following Human Genome Variation Society (HGVS) recommendation referring to the processed protein and

excluding the 39-residue signal peptide. GBA Protein, the alternative nomenclature; MAF, minor allele frequency; het, heterozygote; homo, homozygote; n, number.

(MAF)= 0.48%; p.N370S, n= 3, MAF= 0.478%); these variants
represented 18.2% (6/33) of the pathogenic/risk variants and
were not present in controls. The frequency of GBA mutations
in familial PD was 8.1% (n = 14) and 8.6% (n = 12) in sporadic
PD. The most common variants detected in PD were the risk
variants: p.E326K (12 heterozygotes including p.E326K/G377C
and p.E326K/T369M and 1 homozygote, p.E326K/E326K) and
p.T369M (n = 6, including mentioned above p.E326K/T369M),
followed by the pathogenic variants: RecNcil (n= 3) and p.N370S
(n = 3) (Tables 2–4). Additionally, we detected three variants of
unknown significance (VUS), p.G195E, p.R301H, and p.R368C,
in three PD patients and none in controls (Tables 1, 4). We
also identified 11 carriers of benign, known intronic variants
(rs140335079, T > A: three heterozygotes, five homozygotes;
exon 7–17 bp, G > C: one homozygote; rs377143075, T > C:
two heterozygotes).

Themean age at onset for themildmutation carriers (p.N370S
n = 3) was 66 (±4.58) years, while for the severe mutations
(p.D409H, n = 1; RecNcil, n = 3), it was 50 (±13.56) years (p
= 0.11, independent t-test). The mean age at onset for the risk
variants carriers (p.E326K, n = 12; p.T369M, n = 6 including
p.E326K/p.T369M) was 54.66 (±11.15).

We found a VUS p.R301H variant, which has not been
previously reported either in ExAC (24) or gnomAD (24)
databases in a homozygous state. The affected was a man with
PIGD from age 57 years, normal cognition, and Hoehn and Yahr
(H&Y) stage 3 who was asymptomatic for Gaucher’s disease.
We detected two very interesting variants. p.G195E reported in
Gaucher’s disease, but not in PD, predicted to be pathogenic
by in silico tools (25) in a 69-year-old man. β-Glucosidase
enzyme level was measured, and it was at 10.3 nmol/h/mg

protein (normal range, 8.4–32.8), and plasma chitoriosidase level
was normal. The patient had unilateral, tremor-predominant,
levodopa-responsive PD and normal cognition from age 54 years
(Figure 13-1). Later on, his cognition declined (MoCA score
was 25/30: visuospatial/executive abilities and delayed recall were
affected), but hallucinations were not present. He had mild
drooling of saliva during the nighttime and REM sleep behavior
disorder (RBD). His medications included carbidopa/levodopa
25/100mg four times daily, mirabegron 50mg for urinary
frequency, and citalopram 15mg for well-controlled depression.
He was also on a continuous positive airway pressure (CPAP)
machine for an obstructive sleep apnea. His MRI brain was
normal, and dopamine transporter single photon emission
computerized tomography (DaT scan) showed a decreased
dopamine tracer uptake more pronounced on the left side of the
brain. On examination he was hypophonic, had slight rigidity in
all limbs, and was bradykinetic more on the right than on the left
side. He had bilateral postural and kinetic hand tremor without
rest tremor. He did not have any other motor complications.

There was a PD history in his maternal aunt (deceased)
(Figure 12-13), maternal uncle (deceased) (Figure 12-10) and
in his 67-year-old cousin (deceased) (Figure 13-8). He had
tremor-predominant PD since age 51 years and was positive
for the same variant. Initially, he was started on mirapexin
for 2 years. He developed hallucinations at age 56 (benign,
mainly animals) treated with quetiapine 25mg in the morning
and 50mg at night. He became forgetful, developed dementia
(MoCA score, 7/30), and was commenced on donepezil 10mg
once a day and memantine 10mg twice a day. He then
was switched to carbidopa/levodopa preparation 25/100mg
two tablets three times daily. His other non-motor symptoms
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TABLE 3 | Genotype–phenotype correlation in risk variants of GBA carriers with Parkinson’s disease (PD).

ID Genotype Sex Familial

PD

Age

(years)

Onset

(years)

First

symptom

Duration

(years)

Subtype UPDRSIII H&Y Cognitive

decline

Motor HallucinationsFOG

1 E326K/wt M – 69 62 Bradykinesia 7 PIGD 51 2 + Dyskinesia wearing

off

– –

2 E326K/wt M – 64 59 Bradykinesia 5 PIGD 10 2 – – – –

3 E326K/wt M – 51 43 Tremor 8 Tremor 15 1 – Wearing off – –

4 E326K/wt F – 75 73 Tremor 2 Tremor 17 2 + – – –

5 E326K/wt F + 72 50 Tremor 22 PIGD 25 3 + Dyskinesia wearing

off dystonia

+ -

6 E326K/wt F + 64 64 Tremor 0 Tremor 13 1 – –

7 E326K/wt F + 71 65 Pain 6 PIGD 24 2 – Dyskinesia

8 E326K/wt M + 65 43 Gait 22 Mixed 9 2 PDD Dyskinesia wearing

off

– –

9 E326K/wt F + 61 56 Writing 5 Tremor 20 1 – – – –

10 E326K/wt F + 62 58 Tremor 4 Tremor 14 1 – – – –

11 E326K/E326K F – 65 49 Bradykinesia 16 PIGD 20 2 + Dyskinesia + +

12 E326K/T369M F – 77 62 Tremor 15 Mixed missing 3 PDD Dyskinesia wearing

off

+ +

13 E326K/G377C M + 54 39 Tremor 15 Mixed 7 1 – Dyskinesia Wearing

off

– –

14 T369M/wt M – 54 44 Tremor 10 Tremor 22 2 – – – –

15 T369M/wt M – 79 69 Tremor 10 Tremor 54 3 – Dyskinesia wearing

off

– –

16 T369M/wt M – 86 61 Tremor 25 Tremor 44 2 – – + –

17 T369M/wt F – 61 55 Tremor 6 Tremor 27 2 – – – –

18 T369M/wt M + 38 32 Bradykinesia 6 PIGD 36 2 – Dyskinesia wearing

off dystonia

– –

FOG, freezing of gait; H&Y, Hoehn and Yahr score.

TABLE 4 | Genotype–phenotype correlation in GBA pathogenic variants and variants of unknown significance carriers with Parkinson’s disease (PD).

ID Genotype Sex Familial

PD

Age

(years)

Onset

(years)

First

symptom

Duration

(years)

Subtype UPDRSIII H&Y Cognitive

decline

Motor HallucinationsFOG

Pathogenic variants

19 F216Y/wt M + 56 53 Tremor 3 Tremor 28 2 – – – –

20 N370S/wt F + 82 67 Tremor 15 Tremor 31 2 + – – –

21 N370S/wt M – 64 61 Tremor 2.5 Mixed 46 2 PDD – – –

22 N370S/wt F + 78 70 Tremor 8 PIGD 9 2 – Dyskinesia – –

23 RecNcil F – 61 56 Tremor 5 Tremor 9 2 – – – –

24 RecNcil F + 59 54 Tremor 5 PIGD missing 2 PDD Wearing off + -

25 RecNcil F + 33 30 Bradykinesia 3 Mixed 13 1 – Dyskinesia wearing

off dystonia

– –

26 D409H/wt M + 64 60 Tremor 3.5 Tremor 24 1 – Wearing off – –

Variants of unknown significance

27 R368C/wt M – 61 55 Bradykinesia 7 PIGD 28 2 – – – –

28 R301H/R301H M – 59 57 Bradykinesia 2.5 PIGD 37 3 – – – –

29 G195E/wt M + 69 54 Tremor 15 Tremor 28 1 + – – –

FOG, freezing of gait; H&Y, Hoehn and Yahr scale.

included depression—stable on venlafaxine (effexor XL) 150 and
75mg, and RBD. He was unable to turn in bed and get out of
a chair without help and had freezing of gait episodes. There
was no wearing off or dyskinesia present. He needed assistance

with cutting food, dressing up, and hygiene. His swallow became
affected with occasional choking episodes; therefore, he was
commenced on thickened fluid diet. He had a urinary catheter
in situ due to the difficulties arising from the urinary urgency.
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FIGURE 1 | Family pedigree of the patient with GBA p.G195E variant in exon 6, rs74462743: red, affected with Parkinson’s disease (PD); blue, tested and positive for

p.G195E variant; green, tested and negative for p.G195E variant; arrow, proband; diagonal line, deceased.

The biggest problem was agitation in the evening. At the time
of recruitment, he was wheelchair bound, and his UPDRS-
III score was 28. On examination, there was slight, however
ongoing, resting tremor and bilateral, severe bradykinesia, and
rigidity. The dopamine uptake on the DaT scan at age 65 was
reported as profoundly decreased. The variant was absent in two
asymptomatic siblings of the proband age 57 and 67 (Table 3).
Neurological examination was normal in both cases, and MoCA
test was 30/30 in the sister (Figure 13-7) and 29/30 in the brother
(Figure 13-5). There were no subtle signs of Gaucher’s disease
with normal hematology, biochemistry, and liver tests.

The second interesting variant found was p.G377C (c.1246G
> T) variant (not reported in databases), predicted to be
pathogenic by in silico tools (Tables 1, 2) in a 54-year-old man
(Figure 23-1). On further analysis, the β-glucosidase enzyme
level was 10.8 nmol/h/mg protein (normal range, 8.4–32.8).
The enzyme level in simultaneous controls was 13.6, 14.2,
and 14.4. The level of plasma chitotriosidase was normal (as
expected in a heterozygous asymptomatic for Gaucher’s disease
patient). The patient had tremor-predominant PD and normal
cognition since age 39 years. There were no hallucinations.
At 42 years old, he developed dyskinesia, which was treated
by a deep brain stimulator (DBS) at age 49. He also had
dystonia and micrographia (the majority of the words was
not legible when written). At the time of recruitment, he
was on amantadine 100mg twice a day, selegiline 5mg, slow
release levodopa preparation at night (half-sinemet CR), and
carbidopa/levodopa 50/12.5mg five times a day. On examination,
there was hypophonia, moderately stooped posture, and slow
gait. PD was present in his mother diagnosed at age 45
(Figure 22-6), who died at 73, maternal aunt diagnosed in her
70s (deceased at 78) (Figure 22-9), and maternal grandfather
(Figure 21-3).

On genotype-phenotype assessment between 26mutation/risk
variant carriers and 285 non-carriers, the median age at onset
in both groups was the same (57 years), carriers were more
likely to be a female (53.8% carrier women vs. 46.2% carrier
men, p = 0.08, X2), and the majority (65.4%) of carriers
had late onset PD (n = 17, p = 0.31, X2) and reported
having a positive PD family history (53.8%, n = 14, p =

0.87, X2) (Table 5). However, these results were statistically
non-significant (Table 1). Cognitive problems were present in
34.6% of carriers in comparison to 29.8% in non-carriers;
however, the p-value was non-significant. Hallucinations were
four times more prevalent in carriers than non-carriers [p
= 0.01, OR 3.97 (95%CI 1.434–11.015), Fisher’s exact test].
This remained true after adjusting for age, gender, disease
duration, dementia, cognitive impairment, and medications.
While additionally controlled for the presence of Parkin
homozygous/compound heterozygous or LRRK2 mutations, the
prevalence of hallucinations in GBA mutation carriers remained
significantly higher than in GBA non-carriers [p = 0.04,
OR 4 (95%CI 1.1–15.3)]. In terms of motor complications
dyskinesia [p = 0.003, OR 3.36 (95%CI 1.46–7.75, X2 test)]
and dystonia [p = 0.009, OR 12.261 (95% CI 2.34–64.212,
Fisher’s exact test)] were more prevalent in carriers vs. non-
carriers and were independently associated with the carrier
status after controlling for age, gender, disease duration,
medications, UPDRS III score, and subtypes. When the
presence of dyskinesia and dystonia was controlled for the
presence of PARKIN homozygous/compound heterozygous or
LRRK2 mutations, the result for dyskinesia remained significant
[dyskinesia: p = 0.007, OR 4.37 (95%CI 1.49–12.85)], but it
became non-significant for dystonia (p = 0.088). There was
no association found between other variables and GBA status
(Table 5).
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FIGURE 2 | Family pedigree of the patient with GBA p.E326K variant in exon 8 and p.G377C variant in exon 9: red, affected with Parkinson’s disease (PD); blue,

tested and positive for p.E326K/G377C variant; arrow, proband; diagonal line, deceased.

DISCUSSION

GBA mutations carried in the heterozygous state are a strong
risk factor for developing α-synucleinopathy including PD. GBA
variants also appear to act as phenotypic modifiers affecting
cognition and motor progression of PD. The frequency of GBA
variants differs across populations (9, 26, 27), and herein, we

show that patients with PD in Ireland have a relatively high
frequency of GBA mutations (PD, 8.3%; controls, 3.1%). The
frequency is higher than that of the Portuguese (6.1%, 14/230)
(28), Greek (4.7%, 8/172) (29), Flanders–Belgian population
(4.5%, 12/266) (30), and British (4.2%, 33/790) (10), and slightly
above the average European carrier frequency (6.7%, 76/1,130)
(16). The carrier frequency both in Irish patients and controls was
high when compared to that reported in most European studies

with the exception of Spain (9.8%, 22/225) (31). The higher GBA
frequency in Spain could be related to the higher rate of Jewish
ancestry in the Iberian Peninsula (32).

While the number of p.N370S and RecNcil carriers was

equal in Irish PD (with no carriers of p.L444P found), it has
been reported that p.N370S is more prevalent in the Europeans
and Ashkenazi Jews (70%), and p.L444P is the most common
mutation in Chinese (62%) (27, 33). It could be argued that
p.T369M should not be included in our pathogenic/risk group, as
the number of p.T369M carriers was greater in the control group
p.T369M (n = 6) than in the PD group (n = 5 heterozygotes
and n = 1 compound heterozygote with p.E326K); however, we
did include p.T369M variant in the pathogenic/risk group in
agreement with the most recent literature (4, 6, 14, 15).

We detected a p.G377C (p.G416C, c.1246G > T) variant. The
G > T nucleotide change in position 416 has not been found
in the available databases; however, a change G > A (p.G416S,
rs121908311) in the same position is classified as pathogenic. The

β-glucosidase enzyme level in a heterozygote carrier within the
normal range found in our patient is consistent with the report
by Alcalay et al. (26) (p.E326K does not cause Gaucher’s disease
even in a homozygote state, and the enzymatic level is also within
the normal range) (26). The p.G377C variant was described in
one case study of Gaucher’s disease from Northern Ireland (34)
as a compound heterozygote, but not in PD. Only homozygous
or compound heterozygous variants cause Gaucher’s disease;
therefore, p.G377C was necessary to contribute to the disease
in the case report by Illingworth (34). Moreover, the level of
plasma chitotriosidase was 8,000 in the Illingworth (34) case,
further supporting symptomatic Gaucher’s disease (the level of
chitotriosidase is only elevated in symptomatic patients with
Gaucher’s disease). Taken together, these evidence support the
likely pathogenicity of this variant.

We also identified a p.G195E variant implicated in Gaucher’s
disease (25) that cosegregated with PD, which merits further
investigation (the at-risk siblings are now older than the affected,
but we cannot exclude the development of PD at a later age due
to the intrafamilial PD heterogeneity). This finding may suggest
a more significant role of p.G195E in PD; however, this variant
needs to be further explored.

There was no association of gender with pathogenic/risk
variants in PD in keeping with findings from Lesage et al. where
there was no difference detected (9). Male/female ratio was also
reported 5:1–3:2 in other studies (35). Combined MCI-PD (n
= 5/26) and PDD (n = 4/26) occurred in 34.6%. This is in
keeping with other studies (24–48%) (36). The more common
cognitive decline (six-fold increased dementia risk) has been
reported in the literature (5, 6, 31), but the prevalence of
cognitive impairment and dementia analyzed either separately
or as one group in our study did not differ between carriers
and non-carriers (however, the sample was small). The GBA
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TABLE 5 | Genotype–phenotype assessment in GBA pathogenic/risk variants

carriers with Parkinson’s disease.

GBA pathogenic and risk

variants carriers n = 26

Non-carriers

n = 285

p-value

Gender n (%) n (%)

Women 14 (53.8%) 104 (36.5%)

Men 12 (46.2%) 181 (63.5%) 0.08a

Median (range) Median (range)

Age at assessment 64 (33–86) 67 (32–89) 0.58c

Age at onset 57 (30–73) 57 (16–85) 0.68c

n (%) n (%)

Early onset PD < 50 7 (26.9%) 74 (26%) 0.91a

Median (range) Median (range)

Disease duration 6 (0–25) 7 (0.5–50) 0.95c

Family history n (%) n (%)

Yes 14 (53.8%) 158 (55.4%)

No 12 (46.2%) 127 (44.6%) 0.88a

Cognition n (%) n (%)

MCI-PD 5 (19.2%) 54 (18.9%) 1b

PDD 4 (15.4%) 31 (10.9%) 0.51b

Hallucinations 6 (23.1%) 20 (7%) 0.01b

Motor complications 14 (53.8%) 122 (42.8%) 0.27a

Wearing off 11 (42.3%) 92 (32.3%) 0.29a

Dyskinesia 11 (42.3%) 51 (17.9%) 0.003a

Dystonia4 3 (11.5 %) 3 (1.1%) 0.009b

Freezing of gait 3 (11.5%) 31 (10.9%) 1b

DBS in situ 1 (3.8%) 6 (2.1%) 1b

n = 24 n = 278

Median (range) Median (range)

UPDRS-III score 21 (7–54) 22 (3–83) 0.18c

UPDRS-III

categories

n (%) n (%)

<32 (mild) 19 (79.2%) 224 (80.6%)

33–58 (moderate) 5 (20.5%) 52 (18.7%)

> 58 (severe) 0 (0%) 2 (0.7%) 0.1d

Falls 3 (11.5%) 25 (8.8%) 0.71b

Medications n (%) n (%)

Levodopa 22 (84.6%) 230 (80.7%) 0.79b

MAOBI 16 (61.5%) 169 (59.3%) 0.82a

Dopamine agonists 11 (42.3%) 131 (46%) 0.72a

Madopar

(levodopa+benserazide) 1 (3.8%) 26 (9.1%) 0.7b

Anticholinergics 1 (3.8%) 23 (8.1%) 0.51b

Amantadine 2 (7.7%) 28 (9.8%) 0.76b

Duodopa 0 (0%) 4 (1.4%) 1b

Apomorphine 1 (12.5%) 7 (2.5%) 1b

Subtype

Tremor-predominant 13 (50%) 161 (56.5%) 0.52a

PIGD 8 (30.8%) 97 (34%) 0.73a

Mixed 5 (19.2%) 27 (9.5%) 0.16b

First symptom

Tremor 18 (69.2%) 190 (66.7%) 0.79a

Bradykinesia 5 (19.2%) 59 (20.7%) 0.85a

(Continued)

TABLE 5 | Continued

GBA pathogenic and risk

variants carriers n = 26

Non-carriers

n = 285

p-value

Stiffness 0 (0%) 6 (2.1%) 0.67b

Writing difficulties 1 (3.8%) 5 (1.8%) 1b

Pain 1 (3.8%) 1 (0.4%) 0.16b

Speech problems 0 (0%) 2 (0.7%) 1b

Gait problems (all) 1 (3.8%) 22 (7.7%) 1b

Loss of arm swing 0 (0%) 3 (1.1%) 1b

Shuffling 0 (0%) 12 (4.2%) 0.4b

Dragging a leg 1 (3.8%) 6 (2.1%) 1b

Balance problems 0 (0%) 1 (0.4%) 1b

aPearson chi square test, bFisher exact test, cMann–Whitney U-test, dLinear by linear

Armitage exact trend test. Bold value indicates statistically significant.

mutation/risk variant presence was independently associated
with hallucinations in our study in keeping with other studies
(31). The three-fold higher occurrence of dyskinesia in the GBA
carrier group in comparison to non-carriers in our study is in
keeping with other reports. The higher occurrence of dyskinesia
suggests that GBA carriers may be more sensitive to medications
and genetic assessment in the appropriate patient should be taken
into consideration (5, 9, 36) (similarly to the levodopa sensitivity
and more frequent dyskinesia resulting in small levodopa doses
being used for parkin mutations carriers). While the number of
patients with YOPD in the study (n = 81) may seem high, and
this group is interesting in itself from the genetic perspective,
these were neither specifically preselected for the recruitment nor
were they related in any way (only probands were reported in
this study).

There are several strengths of our study including the
examination of the GBA prevalence in Irish PD for the
first time, the full sequencing of coding regions (and exon-
intron boundaries) of the GBA gene on the 3.14% of the
Irish PD population (314 PD patients recruited/10,000 number
of PD patients in Ireland) (limited screening for p.N370S
and p.L444P would result in 81.8% of the mutations being
missed in our study), comparison to the ethnically matched
control group with a high genotyping success rate, and
comprehensive investigation of other causes of autosomal
dominant and recessive PD (making this study the most
comprehensive and up-to-date report of genetics of PD in the
Irish population).

Our study also has a few limitations: it was an observational
cross-sectional study; therefore, the progression of the disease
could not be assessed, and a longitudinal study should be
performed in the future. It should be noted that we were
unable to reliably determine phase for the two individuals with
a presumed compound heterozygous carrier state, both carried
the risk variant E326K (E326K/T369M, n = 1; E326K/G377C, n
= 1); however, these subjects would fall into the risk/pathogenic
group regardless of being in “cis” or in “trans” status.
While we acknowledge the small sample size of the control
group in comparison to the PD group most likely leading
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to the non-significance of the GBA prevalence data, in our
opinion, having a control group is an important part of any
GBA study.

With the advent of new screening technologies, GBA carriers
will be encountered more frequently in our clinics, and it
will be essential to prepare a mutation-specific approach to
the management of PD. Efforts to find a disease-modifying
treatment for GBA carriers with PD are ongoing. There are
currently two clinical trials underway, one trial examining
ambroxol, an over-the-counter medication used to reduce mucus
production in respiratory tract disorders, and its influence
on motor and cognitive progression in GBA carriers, and a
placebo controlled phase 2 double-blind study (MOVES-PD) of
GZ/SAR4027671—a molecule capable of crossing brain-blood
barrier (37, 38). Another recently completed trial showed that
the target engagement and CSF penetration were accomplished
in PD patients treated with oral ambroxol. While the CSF
glucocerebrosidase activity decreased, the glucocerebrosidase
protein levels and alpha-synuclein levels increased and UPDRS-
III score improved by a mean of 6.8 points. Notably, these
changes occurred both in patients with and without GBA
mutations (39). There are no recommendations of how to
proceed, where the risk of PD is disclosed, but preventative
approaches may be rapidly approaching. Patients should be
informed about the increased possibility of cognitive decline,
depression, falls, autonomic vulnerability, family (35) planning,
and disease progression [carriers are reported to die earlier at
75.7 years (SD 5.5) than non-carriers 80.9 (6.6)] (40). Treatment
options for GBA mutation carriers should be a little bit distinct
and focus on the avoidance of medications increasing the risk of
falls (lowering blood pressure), worsening cognitive status, and
deferral of levodopa therapy (36). Further research is required,
but personalized therapeutic approach for PDmay be closer than
we might think.

CONCLUSION

We present the most comprehensive and up-to-date overview of
genetics of PD in the Irish population. We, for the first time,
showed the link between GBA and PD in Ireland. In agreement
with our hypothesis, the findings of our study suggest that
the GBA prevalence in PD is higher than in most European
countries, and genetic background of Irish PD patients warrants
further studies.
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Background: Parkinson’s disease (PD) is a common neurodegenerative disorder,

characterized by a clinical symptomatology involving both motor and non-motor

symptoms. Motor complications associated with long-term dopaminergic treatment

include motor fluctuations and levodopa-induced dyskinesia (LID), which may have

a major impact on the quality of life. The clinical features and onset time of

motor complications in the disease course are heterogeneous, and the etiology

remains unknown.

Objective: We aimed to identify genomic variants associated with the development of

motor fluctuations and LID at 5 years after the onset of PD.

Methods: Genomic data were obtained using Affymetrix Axiom KORV1.1 array,

including an imputation genome-wide association study (GWAS) grid and other GWAS

loci; functional variants of the non-synonymous exome; pharmacogenetic variants;

variants in genes involved in absorption, distribution, metabolism, and excretion of drugs;

and expression quantitative trait loci in 741 patients with PD.

Results: FAM129B single-nucleotide polymorphism (SNP) rs10760490 was nominally

associated with the occurrence of motor fluctuations at 5 years after the onset of PD

[odds ratio (OR) = 2.9, 95% confidence interval (CI) = 1.8–4.8, P = 6.5 × 10−6].

GALNT14 SNP rs144125291 was significantly associated with the occurrence of LID (OR

= 5.5, 95% CI = 2.9–10.3, P = 7.88 × 10−9) and was still significant after Bonferroni

correction. Several other genetic variants were associated with the occurrence of motor

fluctuations or LID, but the associations were not significant after Bonferroni correction.

Conclusion: This study identified new loci associated with the occurrence of motor

fluctuations and LID at 5 years after the onset of PD. However, further studies are needed

to confirm our findings.

Keywords: genome-wide association study, genomic variants, Parkinson’s disease, motor fluctuations,

levodopa-induced dyskinesia
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INTRODUCTION

Parkinson’s disease (PD) is a chronic, progressive
neurodegenerative disorder characterized by a heterogeneous
clinical symptomatology involving both motor and non-
motor symptoms (1–3). The pathological hallmarks of
PD are abnormal accumulation of alpha-synuclein (α-syn)
aggregates, Lewy bodies, and Lewy neurites (4, 5). The α-
synucleinopathy in PD involves not only dopaminergic neurons
in the substantia nigra pars compacta of the midbrain but also
other vulnerable neurotransmitter systems in the central nervous
system (6, 7).

Levodopa is the most effective and potent medication for the
treatment of motor symptoms of PD (8), and early treatment
with levodopa increases life expectancy (9). However, long-
term treatment of patients with PD with levodopa can result
in the occurrence of motor fluctuations and dyskinesias. These
late motor complications can become major causes of disability
and reduce the quality of life of patients (10). To date, the
pathophysiological mechanisms underlying motor fluctuations
and levodopa-induced dyskinesia (LID) in patients with PD
remain unclear.

Over the last two decades, rare variants of more than
20 genes have been reported to cause genetic PD (11). The
common genetic risk factors for sporadic PD have been
identified by genome-wide association studies (GWAS). To
date, 90 independent genetic variants have been identified as
risk factors for sporadic PD (12). Although previous GWAS
and other genetic studies have indicated the importance
of genetic contribution to the development of PD, the
contribution of genetic factors to specific phenotypes of
PD has not been well-studied. Identification of genetic
risk factors for the major clinical phenotypes of PD may
provide important insights into the underlying molecular
mechanisms and valuable information for potential adjustments
to overcome genetic heterogeneity in clinical trials. This GWAS
aimed to identify the genetic variants associated with the
occurrence of motor fluctuations and LID in patients with
sporadic PD.

MATERIALS AND METHODS

Patients
We included 741 patients who were diagnosed with PD
(Supplementary Figure 1). Experienced movement disorder
specialists (SJC, HSR, MJK, JK, and YJK) made the diagnosis of
PD using the clinical diagnostic criteria of the United Kingdom
Parkinson’s Disease Society Brain Bank (13). All patients were
enrolled from the clinical practice of the Department of
Neurology of the Asan Medical Center, Seoul, South Korea,
between January 1, 2011 and April 30, 2016. All patients were
born and resided in South Korea. All patients were unrelated and
ethnic Koreans without any foreign ancestry. The Institutional
Review Board (IRB) of Asan Medical Center approved the study,
and all patients provided an informed consent in accordance with
the IRB regulations.

Clinical Assessment
Motor fluctuations were defined as alternating between periods of
good motor symptom control (on-time) and periods of reduced
motor symptom control (off-time), which were dependent on
the scheduled intake time of levodopa and other dopaminergic
medications (14). The time between the onset of PD motor
symptoms and the occurrence of motor fluctuations was assessed
in each patient.

LID was defined as involuntary choreiform or dystonic
body movements, which occur most frequently when levodopa
concentrations are at its highest (peak-dose dyskinesia) or, less
commonly, at the beginning or end of levodopa administration,
or both (diphasic dyskinesia) (14). The time between the onset
of PD motor symptoms and the occurrence of LID was assessed
in each patient. PD onset was defined as the onset of first motor
symptoms in patients with PD.

The presence of motor fluctuations or LID was determined
using the clinical history and Unified Parkinson’s Disease Rating
Scale (UPDRS) part IV. Dystonia that occurred in the morning
before taking a medication was not considered as LID (15).

Genomic Analysis
Genotype data were obtained using the Korean Chip (K-CHIP),
obtained from the K-CHIP consortium. K-CHIP was designed
by the Center for Genome Science, Korea National Institute

TABLE 1 | Demographic and clinical characteristics of patients.

Characteristic Patients

Total sample, n 741

Men, n (%) 325 (43.9)

Women, n (%) 416 (56.1)

Age at onset of PD, years, mean ± SD (range) 57.1 ± 0.1 (28–87)

Disease duration, years, mean ± SD (range) 10.8 ± 4.5 (5–31)

Patients with motor fluctuations, n (%) 554 (74.8)

Duration between PD onset and development of

motor fluctuations, years, mean ± SD (range)

6.9 ± 3.4 (1–24)

Patients with levodopa-induced dyskinesia, n (%) 496 (66.8)

Duration between PD onset and development of

levodopa-induced dyskinesia, years, mean ± SD

(range)

7.2 ± 3.4 (1–21)

Patients with motor fluctuations at 5 years after PD

onset, n (%)

219 (29.6)

Duration between PD onset and development of

motor fluctuations, years, mean ± SD (range)

3.9 ± 1.1 (1–5)

Patients with levodopa-induced dyskinesia at 5 years

after PD onset, n (%)

172 (23.2)

Duration between PD onset and development of

levodopa-induced dyskinesia, years, mean ± SD

(range)

3.9 ± 1.1 (1–5)

MMSE score (range) 26.1 ± 3.2 (10–30)

MoCA score (range) 22.6 ± 5.6 (3–30)

PD, Parkinson’s disease; SD, standard deviation; MMSE, Mini-Mental State Examination;

MoCA, Montreal Cognitive Assessment.
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of Health, Korea (4845-301, 3000-3031) (www.cdc.go.kr). K-
CHIP uses Affymetrix Axiom Customized Biobank Genotyping
Arrays (Affymetrix, Santa Clara, CA, USA) and contains
827,783 variants. K-CHIP consists of an imputation GWAS grid
[505,000 Asian-based grid with minor allele frequency (MAF)
>5% in Asians]; exome contents [84,000 Korean-based grid
with MAF >5%, in Koreans; 149,000 coding single-nucleotide
polymorphisms (cSNPs); and insertions and deletions on the
basis of data from 2000 whole exome sequences and 400
whole genome sequences with MAF> 0.1%]; new exome/loss of
function contents (44,000 variants); expression quantitative trait
loci (17,000 variants); absorption, distribution, metabolism, and
excretion genes; and other miscellaneous variants.

Sample Quality Controls
The primary sample quality control was as follows: samples with
low call rate (<0.95%) were excluded from the analysis because
of the possibility of low DNA quality or experimental error;
high heterozygosity was excluded from the analysis because of

low DNA quality or possible contamination of samples. The
entire sample distribution was checked, and low-quality samples
were excluded if they deviated significantly from the entire
sample distribution. SNP pruning was also performed. Because
cryptic first-degree relative and multidimensional scaling (MDS)
analyses are very time consuming when using whole data, only
representative SNP information based on linkage disequilibrium
were selected from the data. Due to the possibility of population
stratification, samples that deviated from the whole sample were
excluded from the analysis by assessing the MDS. If there were
more than a certain number of SNPs with only one sample, the
possibility of errors due to DNA quality and technical artifacts
was excluded.

Secondary sample quality control consisted of genotype
calling, excluding samples deemed to be of low quality based on
the primary sample quality control criteria and sex-inconsistent
samples. Samples that did not satisfy the quality control criteria
after a repeat sample quality control were excluded. SNP data
were excluded from the cryptic first-degree relative analysis

FIGURE 1 | Manhattan plots. (A) The plot shows P-values for association analyses between 583,535 SNPs and the occurrence of motor fluctuations 5 years after the

onset of Parkinson’s disease (PD). The most significant association observed is with a locus on chromosome 9 (rs10760490). (B) The plot shows P-values for

association analyses between 583,535 SNPs and the occurrence of levodopa-induced dyskinesia 5 years after the onset of PD. The most significant association

observed is with a locus on chromosome 2 (rs144125291). P-values are log-transformed (y-axis) and plotted against chromosomal position (x-axis).
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because statistical analysis assumes the independence for each
sample in most cases.

SNP Quality Controls
An SNPolisher analysis was performed to exclude low-quality
SNPs. SNPs with low call rates were excluded when the call rate
was <95% because errors in the calling process can occur due
to probe design and clustering analysis problems. If the Hardy–
Weinberg equilibrium (HWE) test P-value of a specific SNP
is low, it indicates a probable error in the genotype clustering
process; therefore, the HWE P < 10−6. If the frequency of a
genetic variation is extremely different from that in Korean and
Asian populations, there may be a genotype clustering error.
Therefore, we excluded cases where the difference in MAF
was >0.2. Both cases and controls were excluded if the MAF
was <1%.

Statistical Analysis
The associations of each genetic variant with the occurrence of
motor fluctuations and LID were investigated using multiple
logistic regressionmodels. We used the Cochran–Armitage trend
test and the Jonckheere–Terpstra test, and adjusted all analyses
by sex and age at onset of PD. For each genetic variant, we
calculated the odds ratio (OR), 95% confidence interval (CI), and
two-tailed P-value. For sensitivity analyses, similar analyses were
performed for patients aged ≥50 years at onset of PD to further

adjust for the effects of age at onset of PD on the occurrence
of motor fluctuations and LID. The P-values from the primary
analyses were assessed for significance using the Bonferroni
correction for multiple comparisons. Clustering quality control
was performed by visual inspection of analytic data of SNPs with
a P < 0.0001. Markers that did not clearly separate between
different genotypes and were not closely located in the same
genotype were excluded (Supplementary Figure 2). Manhattan
plots and quantile–quantile plots were constructed for P-values
for all genotyped variants that passed quality controls.

The statistical analysis was performed using the PLINK
program (version 1.90, NIH-NIDDK Laboratory of Biological
Modeling, Bethesda, MD, USA), Haploview (version 4.2, Daly
Lab at the Broad Institute, Cambridge, MA, USA), LocusZoom
(version 1.4, University of Michigan, Department of Biostatistics,
Center for Statistical Genetics, Ann Arbor, MI, USA), and
R (version 3.1.2, Free Software Foundation, Inc., Boston,
MA, USA).

RESULTS

Patients
Clinical and genotyping data were obtained from 741 patients
with PD who were followed for at least 5 years after the onset of
PD. The demographic and clinical features of study patients are
summarized in Table 1. The study group consisted of 325 men

TABLE 2 | Top 20 genomic variants associated with the occurrence of motor fluctuations, in decreasing order of statistical significance.

Gene SNP Chr Position Region relative to

gene

Allele

(minor/major)

Minor allele

frequency

(case/control)

OR (95% CI) P-value

FAM129B rs10760490 9 130335418 Intron A/G 0.08/0.03 2.93 (1.80, 4.77) 6.50E−06

SNX29 rs150380018 16 12569788 Intron G/T 0.04/0.01 6.53 (2.54, 16.79) 8.35E−06

C5orf52 rs10051838 5 157102159 Missense A/G 0.17/0.09 2.09 (1.50, 2.91) 9.07E−06

STK10 rs77462941 5 171598434 Intron C/T 0.13/0.23 0.50 (0.36, 0.68) 9.41E−06

FAM163A rs6680679 1 179753147 Intron G/A 0.14/0.07 2.15 (1.50, 3.07) 2.01E−05

NAV2 rs7949975 11 19985339 Intron G/C 0.33/0.23 1.71 (1.33, 2.19) 2.05E−05

LOC392452 rs2022502 23 45540415 Upstream, downstream C/T 0.20/0.10 2.39 (1.58, 3.62) 2.48E−05

GALNT13 rs6710932 2 154872606 Intron A/G 0.08/0.16 0.45 (0.31, 0.66) 2.81E−05

NFYB rs75845252 12 104539534 Upstream T/C 0.09/0.04 2.62 (1.64, 4.19) 2.97E−05

RBMS3-

AS3

rs13068014 3 29170975 Downstream A/C 0.30/0.20 1.71 (1.33, 2.20) 3.31E−05

AKR1C4 rs191812506 10 5272947 Downstream, upstream C/T 0.05/0.01 4.14 (2.01, 8.55) 3.31E−05

GALNTL6 rs77688865 4 172563203 Upstream, downstream G/T 0.05/0.01 3.69 (1.90, 7.19) 4.17E−05

GALNT14 rs144125291 2 31106055 Downstream, upstream T/C 0.05/0.02 3.47 (1.84, 6.52) 4.35E−05

DPP6 rs59309371 7 153938863 Intron T/C 0.25/0.36 0.59 (0.46, 0.76) 4.51E−05

CTU1 rs117770234 19 51614232 Upstream A/G 0.04/0.01 4.43 (2.03, 9.68) 4.78E−05

CDH8 rs138852987 16 61482087 Downstream, upstream C/T 0.06/0.02 3.29 (1.79, 6.05) 5.01E−05

DIO3 rs11624718 14 102069522 Downstream, upstream G/A 0.39/0.50 0.63 (0.50, 0.79) 5.20E−05

SLC25A21 rs8010937 14 37324893 Intron A/C 0.13/0.07 2.12 (1.46, 3.07) 5.32E−05

PPP6R3 rs61188641 11 68336714 Intron G/A 0.04/0.01 4.63 (2.05, 10.47) 5.58E−05

LOC339593 rs6040792 20 11597971 Upstream, downstream C/T 0.25/0.16 1.74 (1.33, 2.28) 5.83E−05

SNP, single-nucleotide polymorphism; Chr, chromosome; OR, odds ratio; CI, confidence interval.
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TABLE 3 | Top 20 genomic variants associated with the occurrence of levodopa-induced dyskinesia, in decreasing order of statistical significance.

Gene SNP Chr Position Region relative to

gene

Allele

(minor/major)

Minor allele

frequency

(case/control)

OR (95% CI) P-value

GALNT14 rs144125291 2 31106055 Downstream, upstream T/C 0.07/0.01 5.45 (2.87, 10.33) 7.88E−09

C17orf51 rs139221627 17 21715699 Upstream T/C 0.07/0.02 4.68 (2.51, 8.73) 1.20E−07

C21orf37 rs208892 21 18813490 Intron A/G 0.40/0.26 1.90 (1.47, 2.45) 5.74E−07

LRPPRC rs10495912 2 44305461 Upstream, downstream A/G 0.07/0.02 4.03 (2.24, 7.24) 5.81E−07

CBFA2T3 rs150854091 16 89028784 Intron A/G 0.08/0.02 3.64 (2.10, 6.33) 1.12E−06

TMEM132C rs1531246 12 128999121 Intron G/C 0.18/0.09 2.28 (1.62, 3.21) 1.60E−06

SCGB1D4 rs953169 11 62083542 Upstream G/A 0.45/0.31 1.80 (1.41, 2.31) 2.57E−06

TMEM158 rs118109628 3 45279523 Downstream, upstream A/G 0.03/0.003 9.35 (2.96, 29.55) 3.91E−06

LRPPRC rs12185607 2 44296280 Upstream, downstream T/G 0.10/0.04 2.86 (1.79, 4.57) 5.25E−06

ADAM10 rs118049686 15 58895720 Intron A/G 0.06/0.02 4.07 (2.11, 7.86) 6.93E−06

LRPPRC rs17031893 2 44283172 Upstream, downstream G/A 0.08/0.03 3.24 (1.89, 5.55) 6.96E−06

EXTL3 rs73564758 8 28521861 Intron, downstream G/A 0.05/0.01 4.58 (2.20, 9.52) 8.96E−06

ZNF138 rs117999072 7 64228326 Upstream, downstream A/G 0.08/0.03 3.15 (1.84, 5.37) 1.06E−05

TTC30B rs6737342 2 178419117 Upstream, downstream G/A 0.07/0.02 3.37 (1.90, 5.98) 1.19E−05

HSPH1 rs143639498 13 31696395 Downstream C/T 0.05/0.01 4.48 (2.15, 9.32) 1.25E−05

LOC389602 rs10281583 7 155811374 Downstream A/G 0.18/0.09 2.11 (1.50, 2.97) 1.30E−05

DUSP26 rs147270897 8 34132814 Intron, upstream C/T 0.04/0.01 5.39 (2.31, 12.57) 1.36E−05

SOX17 rs183607239 8 55390249 Downstream, upstream G/A 0.03/0.004 7.50 (2.59, 21.75) 1.40E−05

RPL32P3 rs6795866 3 129064722 Exon, downstream G/A 0.05/0.01 4.59 (2.15, 9.80) 1.70E−05

TMX1 rs10129471 14 51782967 Intron, downstream,

upstream

T/C 0.08/0.03 3.12 (1.81, 5.38) 1.71E−05

SNP, single-nucleotide polymorphism; Chr, chromosome; OR, odds ratio; CI, confidence interval.

FIGURE 2 | Representative regional plots for genetic variants that showed associations with the occurrence of levodopa-induced dyskinesia 5 years after the onset of

Parkinson’s disease. (A) rs144125291, (B) rs10495912, (C) rs117999072, (D) rs6737342, and (E) rs6795866.
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TABLE 4 | Demographic and clinical characteristics of patients aged ≥50 years at

onset of Parkinson’s disease.

Characteristic Patients

Total sample, n 578

Men, n (%) 247 (42.7)

Women, n (%) 331 (57.3)

Age at onset of PD, years, mean ± SD (range) 61.1 ± 7.1 (50–87)

Disease duration, years, mean ± SD (range) 10.3 ± 3.9 (5–27)

Patients with motor fluctuations, n (%) 403 (69.7)

Duration between PD onset and development

of motor fluctuations, years, mean ± SD (range)

7.1 ± 3.2 (1–20)

Patients with levodopa-induced dyskinesia, n (%) 354 (61.1)

Duration between PD onset and development

of levodopa-induced dyskinesia, years, mean ±

SD (range)

7.3 ± 3.2 (1–19)

Patients with motor fluctuations 5 years after PD

onset, n (%)

141 (24.4)

Duration between PD onset and development

of motor fluctuations, years, mean ± SD (range)

3.9 ± 1.2 (1–5)

Patients with levodopa-induced dyskinesia 5 years

after PD onset, n (%)

115 (19.9)

Duration between PD onset and development

of levodopa-induced dyskinesia, years, mean ±

SD (range)

4.0 ± 1.1 (1–5)

MMSE score (range) 25.8 ± 3.2 (10–30)

MoCA score (range) 21.8 ± 5.7 (3–30)

PD, Parkinson’s disease; SD, standard deviation; MMSE, Mini-Mental State Examination;

MoCA, Montreal Cognitive Assessment.

(43.9%) and 416 women (56.1%). The mean age at onset of PD
was 57.1 years, while the mean disease duration from the onset of
PD to the last follow-up was 10.8± 4.5 years.

Motor Fluctuations
Five years after the onset of PD, 219 (29.6%) patients exhibited
motor fluctuations. No difference was observed between patients
with PD with motor fluctuations (92 men, 42.0%) and those
without motor fluctuations (233 men, 44.6%) (P = 0.480) in
terms of sex. The mean age at onset of PD was lower in
patients with motor fluctuations than in those without motor
fluctuations (54.0 ± 10.3 years vs. 58.4 ± 9.7 years, P < 0.001).
The mean disease duration between the onset of PD and the
last follow-up was shorter in patients with motor fluctuations
than in those without motor fluctuations (9.5 ± 4.0 years vs.
11.3 ± 4.6 years, P < 0.001; Supplementary Table 1). The
583,535 SNPs that passed quality controls were genotyped and
analyzed. Quantile–quantile plots were made for the presence of
LID at 5 years after onset of PD (Supplementary Figure 3A),
and a Manhattan plot is described in Figure 1A. The top 20
SNPs associated with the occurrence of motor fluctuations are
listed in Table 2. FAM129B SNP rs10760490 was nominally
associated with the occurrence of motor fluctuations at 5
years after onset of PD (OR = 2.9, 95% CI = 1.8–4.8,
P = 6.5 ×10−6). However, FAM129B SNP rs10760490 and
other SNPs were not significant after Bonferroni correction
(Table 2).

Levodopa-Induced Dyskinesia
Five years after the onset of PD, 172 patients had LID (23.2%).
No difference was observed between patients with LID (75 men,
43.6%) and those without LID (250 men, 43.9%) (P = 0.892) in
terms of sex. The mean age at onset of PD was lower in patients
with LID than in those without (55.2 ± 10.7 years vs. 57.7 ±

9.8 years, P = 0.007). The mean duration between disease onset
and the last follow-up was shorter in patients with LID than in
those without LID (9.1 ± 3.5 years vs. 11.3 ± 4.6 years, P <

0.001; Supplementary Table 2). After quality controls, 583,379
SNPs were genotyped and analyzed. Quantile–quantile plots were
made for the occurrence of LID (Supplementary Figure 3B), and
a Manhattan plot is described in Figure 1B. The top 20 SNPs
associated with the occurrence of LID 5 years after the onset of
PD are listed in Table 3. The GALNT14 SNP rs144125291 had
the lowest P-value and was significantly associated with LID even
after Bonferroni correction (OR = 5.5, 95% CI = 2.9–10.3, P =

7.88 × 10−9; Table 3). The representative regional association
plots of rs10495912, rs117999072, rs6737342, and rs6795866
showed other risk variants within 150 kb (Figures 2A–E).

Sensitivity Analysis for Patients With PD
Aged ≥50 Years at the Onset of PD
The clinical features of patients with PD are presented in
Table 4 and Supplementary Tables 3, 4. Five years after the
onset of PD, 141 (24.4%) of 578 patients with PD exhibited
motor fluctuations. A Manhattan plot is described in Figure 3A.
The top 20 SNPs associated with the occurrence of motor
fluctuations are listed in Table 5. RABL6 SNP rs191519045 had
the lowest P-value, but none of the SNPs were significant after
Bonferroni correction. Representative regional association plots
of rs72850586, rs76767606, and rs12408511 showed other risk
variants within 150 kb (Supplementary Figures 4A–C).

Five years after the onset of PD, 115 (19.9%) of 578
patients with PD had LID. A Manhattan plot is described in
Figure 3B. The 20 SNPs associated with the occurrence of LID
are listed in Table 6. None of these SNPs were significant after
Bonferroni correction. Regional association plots of rs117999072,
rs149201992, and rs6907129 showed other risk variants within
150 kb (Supplementary Figures 4D–F).

DISCUSSION

We found several genetic variants that showed associations
with motor fluctuations and LID in patients with PD. The
occurrence of motor fluctuations was associated with genetic
variants in FAM129B, SNX29, C5orf52, and STK10 with P <

1.0 × 10−5, although the associations were not significant
after Bonferroni correction. The occurrence of LID was most
significantly associated with GALNT14 SNP rs144125291, and
this association was significant after Bonferroni correction.

The pathophysiology of LID in PD is not well-understood.
The functional state of the basal ganglia may be characterized by
changes in the neuronal firing rate and oscillatory neuronal
activity, which become excessive and possibly have a
pathogenic role in the occurrence of abnormal corticostriatal
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FIGURE 3 | Manhattan plots. (A) The plot shows the P-values for association analyses between 580,128 SNPs and the occurrence of motor fluctuations 5 years after

Parkinson’s disease (PD) onset in patients aged ≥50 years at disease onset. The most significant association observed is with a locus on chromosome 9

(rs191519045). (B) The plot shows P-values for association analyses between 579,399 SNPs and the occurrence of levodopa-induced dyskinesia 5 years after onset

of PD in patients aged ≥50 years at disease onset. The most significant association observed is with a locus on chromosome 3 (rs118109628). P-values are

log-transformed (y-axis) and plotted against chromosomal position (x-axis).

connectivity (16). These mechanisms have been implicated in the
pathophysiology of LID in PD. A polymorphism in brain-derived
neurotrophic factor, recognized as modulating human cortical
plasticity, affects the time to onset of LID in PD in addition to the
response to rTMS (17, 18). Further studies using non-invasive
brain stimulation techniques may be warranted to clarify the role
of those genetic variants in LID.

GALNT14 SNP rs144125291 is located in the intergenic region
27,276 bases downstream of the gene variant for GALNT14.
The GALNT14 gene encodes a Golgi protein that is a member
of the polypeptide N-acetylgalactosaminyltransferase protein
family (19). This enzyme catalyzes the transfer of N-acetyl-D-
galactosamine to the hydroxyl group on serines and threonines
in target peptides (19). Alterations in this gene may play a role
in cancer progression and response to chemotherapy in several
types of cancer (20–26). Some genes, such as LRRK2 and PRKN,
may be associated with both cancer and PD (27–30). GALNT14
contributes to breast cancer invasion by altering cell proliferation

and motility, by altering the expression levels of EMT genes,
and by stimulating MMP-2 activity (31). MMP-2 is reported
to play a role in the inflammatory response (32). GALNT14
may also cause abundant post-translational modifications, such
as glycosylation, which is closely related to tumor growth and
metastasis as well as resistance to chemotherapy (33). The
development of LID in patients with PD is also related to altered
post-synaptic transcription factors and maladaptive plasticity in
the nigrostriatal neurons (34). Although the precise pathogenic
mechanisms of LID remain unclear, chronic inflammation in the
brain and altered post-synaptic plasticity may play key roles in
the development of LID (34–36). GALNT14 SNP rs144125291
may affect the basal level of neuroinflammation in the brain or
maladaptive post-synaptic plasticity. However, further functional
studies are needed to elucidate the precise role of GALNT14
in LID.

Several other genes also showed possible association with
the occurrence of LID, including LRPPRC. LRPPRC SNP
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TABLE 5 | Top 20 genomic variants associated with the occurrence of motor fluctuations in patients aged ≥50 years at onset of Parkinson’s disease.

Gene SNP Chr Position Region relative to

gene

Allele

(minor/major)

Minor allele

frequency

(case/control)

OR (95% CI) P-value

RABL6 rs191519045 9 139707344 Intron, exon G/A 0.04/0.002 17.66 (3.89, 80.15) 3.81E−07

PPP6R3 rs61188641 11 68336714 Intron G/A 0.05/0.01 8.40 (2.97, 23.79) 1.91E−06

SAYSD1 rs72850586 6 39153495 Upstream, downstream G/A 0.05/0.01 8.40 (2.97, 23.77) 1.92E−06

SAYSD1 rs72850539 6 39137869 Upstream, downstream A/G 0.05/0.01 8.36 (2.95, 23.66) 2.05E−06

DIO3 rs11624718 14 102069522 Downstream, upstream G/A 0.35/0.49 0.51 (0.39, 0.68) 2.28E−06

ANTXR1 rs56216132 2 69377298 Intron A/C 0.50/0.35 1.87 (1.42, 2.46) 6.07E−06

MAP3K2 rs147429309 2 128136163 Intron, upstream T/G 0.05/0.01 6.99 (2.63, 18.57) 6.61E−06

FAM129B rs10760490 9 130335418 Intron A/G 0.10/0.03 3.24 (1.89, 5.55) 7.10E−06

ZNF92 rs190170956 7 65066217 Upstream, downstream C/T 0.04/0.003 10.62 (2.90, 38.88) 9.74E−06

SNX29 rs150380018 16 12569788 Intron G/T 0.04/0.004 8.75 (2.76, 27.69) 1.00E−05

TBC1D5 rs73817453 3 18117165 Intron A/G 0.05/0.01 5.38 (2.33, 12.42) 1.20E−05

LINC00460 rs117816291 13 106915837 Upstream, downstream A/G 0.05/0.01 5.38 (2.33, 12.42) 1.20E−05

GRPR rs12009947 23 16108832 Upstream, downstream T/C 0.22/0.41 0.41 (0.27, 0.62) 1.31E−05

TBC1D5 rs76767606 3 18064472 Intron A/G 0.05/0.01 5.63 (2.34, 13.56) 1.61E−05

CMAHP rs6456661 6 25214720 Upstream, downstream A/G 0.05/0.01 6.04 (2.38, 15.29) 1.79E−05

NUPR1L rs146088024 7 56232344 Downstream, upstream C/A 0.06/0.01 4.98 (2.21, 11.21) 1.99E−05

XPO6 rs142186210 16 28138044 Intron, exon G/A 0.05/0.01 5.96 (2.35, 15.09) 2.12E−05

GBE1 rs6798680 3 81905441 Intron, upstream,

downstream

A/C 0.38/0.48 0.56 (0.42, 0.73) 2.40E−05

RYR2 rs12408511 1 237842915 Intron T/A 0.10/0.04 2.92 (1.74, 4.91) 2.47E−05

PFKP rs117516530 10 2966617 Upstream, downstream G/A 0.17/0.08 2.31 (1.55, 3.43) 2.58E−05

SNP, single-nucleotide polymorphism; Chr, chromosome; OR, odds ratio; CI, confidence interval.

rs10495912 showed a possible association with LID and
is an intergenic variant located 60,028 bases upstream of
LRPPRC. LRPPRC encodes a leucine-rich pentatricopeptide
motif-containing protein that predominantly localizes to the
mitochondria. The pentatricopeptide repeat (PPR) protein family
plays a major role in RNA stability, regulation, processing,
splicing, translation, and editing (37). LRPPRC regulates energy
metabolism, and the maturation and export of nuclear mRNA.
LRPPRC mutations have been found to cause Leigh syndrome in
a French–Canadian population and are associated with reduced
levels of LRPPRC and lower steady-state levels of mitochondrial
transcripts (38). Leigh syndrome is an inherited neurometabolic
disorder characterized by the occurrence of severe and deadly
acidotic crises due to a tissue-specific deficiency in cytochrome
c oxidase (38). An LRPPRC intronic variant can affect the normal
splicing of LRPPRC and has been associated with susceptibility to
PD (39). Mitochondrial susceptibility in the putamen is reported
to play a role in the development of dyskinesia in patients with
PD (40), suggesting that abnormal energy metabolism caused by
LRPPRC variants may be associated with the occurrence of LID.
However, further genetic and functional studies are needed to
elucidate the role of LRPPRC in the development of LID.

Of the genes associated with the occurrence of motor
fluctuations, FAM129B showed the lowest P-value (OR = 2.93,
95% CI = 1.8–4.8, P = 6.5 × 10−6). Knockdown of FAM129B
in HeLa cells accelerates the onset of apoptosis induced by
TNF-α (41). Activation of the inflammatory response is closely

associated with the pathogenesis of PD, and the increased release
of pro-inflammatory cytokines such as TNF-α, interleukin-
1β, and interferon-γ has been observed in the post-mortem
brain of a PD patient (42). In addition to susceptibility to
PD, neuroinflammation in the striatum as well as in the
substantia nigra pars compacta may play an important role in
the development of motor fluctuations in PD via presynaptic
and post-synaptic mechanisms. The storage hypothesis for motor
fluctuations posits that the loss of presynaptic dopaminergic
terminals reduces the capacity for storage of dopamine in
the striatum, thereby inhibiting the ability to compensate for
oscillations in plasma levodopa levels, and neuroinflammation
may contribute to this effect (43). Neuroinflammation and
chronic overproduction and abnormal release of TNF-α by
microglia may also contribute to the post-synaptic mechanisms
of motor fluctuations, which may be associated with complex
striatal functional abnormalities in basal ganglia motor circuits
(44). Further functional studies are necessary to investigate the
precise role of FAM129B in neuroinflammation in PD.

TBC1D5, which showed a possible association with the
occurrence of motor fluctuations in patients with PD aged
over 50 years, functions as a GTPase-activating protein for
RAB7 and inhibits recruitment of the VPS35/VPS29/VPS26
subcomplex to membranes (45). The retromer complex is a key
component of the endosomal protein sorting machinery and
mediates cargo selection through a trimeric complex comprising
VPS35/VPS29/VPS26, which is recruited to endosomes by
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TABLE 6 | Top 20 genomic variants associated with the occurrence of levodopa-induced dyskinesia in patients aged ≥50 years at the onset of Parkinson’s disease.

Gene SNP Chr Position Region relative to

gene

Allele

(minor/major)

Minor allele

frequency

(case/control)

OR (95% CI) P-value

TMEM158 rs118109628 3 45279523 Downstream, upstream A/G 0.04/0.002 20.95 (4.56, 96.32) 3.26E−08

C21orf37 rs208892 21 18813490 Intron A/G 0.43/0.25 2.26 (1.67, 3.05) 6.84E−08

PCSK6 rs12908851 15 102042815 Intron, upstream,

downstream

T/C 0.07/0.01 6.82 (3.05, 15.24) 8.15E−08

DUSP26 rs147270897 8 34132814 Intron, upstream C/T 0.05/0.01 8.62 (3.20, 23.24) 3.89E−07

ZNF138 rs117999072 7 64228326 Upstream, downstream A/G 0.09/0.02 4.33 (2.32, 8.08) 6.42E−07

CHD9 rs149201992 16 52837183 Downstream, upstream C/T 0.07/0.01 5.81 (2.63, 12.82) 1.04E−06

HESX1 rs191751991 3 57241967 Intron, upstream G/A 0.04/0.003 12.65 (3.40, 47.12) 1.35E−06

EVA1C rs141704048 21 33771938 Upstream, downstream G/A 0.04/0.003 12.53 (3.36, 46.66) 1.54E−06

GALNT14 rs144125291 2 31106055 Downstream, upstream T/C 0.07/0.01 5.23 (2.48, 11.03) 1.56E−06

LOC284080 rs75357358 17 48123894 Downstream, upstream A/C 0.04/0.003 12.45 (3.34, 46.38) 1.68E−06

CBFA2T3 rs150854091 16 89028784 Intron A/G 0.08/0.02 4.30 (2.24, 8.26) 2.28E−06

CYP39A1 rs6907129 6 46597608 Intron T/G 0.04/0.01 8.36 (2.83, 24.69) 5.10E−06

CYP39A1 rs6905960 6 46597262 Intron G/A 0.04/0.01 8.34 (2.82, 24.64) 5.25E−06

CYP39A1 rs7749491 6 46598263 Intron G/A 0.04/0.01 8.32 (2.82, 24.58) 5.41E−06

CYP39A1 rs16874881 6 46596379 Intron T/A 0.04/0.01 8.30 (2.81, 24.53) 5.57E−06

RNU6-21P rs11648356 16 62206339 Downstream, upstream T/C 0.07/0.01 4.94 (2.31, 10.53) 5.58E−06

CA8 rs72661489 8 60908452 Downstream, upstream T/C 0.05/0.01 6.32 (2.55, 15.64) 5.85E−06

MIR378C rs60808734 10 132367515 Downstream C/A 0.05/0.01 6.30 (2.55, 15.61) 6.04E−06

CDH8 rs58952871 16 62050053 Intron C/T 0.07/0.01 4.89 (2.29, 10.43) 6.45E−06

PLCB1 rs58120268 20 8120394 Intron G/A 0.07/0.01 4.89 (2.29, 10.43) 6.45E−06

SNP, single-nucleotide polymorphism; Chr, chromosome; OR, odds ratio; CI, confidence interval.

binding to RAB7a and SNX3 (46). This retromer function is
closely linked to PD. VPS35 mutations are a rare cause of
autosomal dominant late-onset PD. The clinical features of
PD with VPS35 mutations were as follows: lower onset age,
good response to levodopa, and motor complications (47).
VPS13C mutations are a rare cause of autosomal recessive
early-onset PD. The clinical features of PD with VPS13C
mutations suggested that the progression is rapid and severe
(48). Thus, VPS-related variants might be associated with motor
complications in patients with PD. RYR2, which also associates
with the occurrence of motor fluctuations in patients with PD
aged over 50 years (P = 2.5 × 10−5), encodes a ryanodine
receptor. Ryanodine receptors are intracellular calcium release
channels found in the endoplasmic reticulum of all cells, with
RYR2 predominating among the three isoforms (RYR1, RYR2,
and RYR3) (49). When cellular Ca2+-regulating systems are
compromised, synaptic dysfunction, impaired plasticity, and
neuronal degeneration occur, such as in PD (50). Functional
studies are needed to clarify the roles of TBC1D5 and RYR2 in
the occurrence of motor fluctuations in PD.

The genetic association studies using a small number
of pre-specified genetic region were able to determine the
genetic risk variants for LID. A previous study reported that
the Val158Met variant of catechol-O-methyltransferase was
associated with LID (51). In another previous study, 229 (45.5%)
of 503 Korean patients with PD experienced LID during the
mean disease duration of 10.9 years (52). In their candidate

gene association study, only the p.S9G variant of dopamine
receptor D3 was associated with the occurrence of diphasic
dyskinesia (52). However, these studies had limitations as
only a limited number of candidate genes were selected due
to their incomplete understanding of the pathophysiology of
motor complications. Our GWAS investigated a genome-wide
set of genetic variants, and this hypothesis-free GWAS may
provide a comprehensive evaluation of genetic risk factors for
motor complications.

This study has limitations. First, our study used retrospective
clinical data. Motor fluctuations and LID are closely related to
the pattern and dosage of dopaminergic medications, which were
not randomized due to the inherent limitations of a retrospective
study. The prevalence of motor fluctuations (29.6%) and LID
(23.2%) was slightly lower in the present study than in the
previous clinical studies (53, 54); however, this rate of motor
complications may be dependent on the patterns of prescribing
dopaminergic medications (55, 56). Recently, the prevalence of
motor complications is now ∼20–28%, which is comparable
to what we observed (57, 58). Motor fluctuations and LID are
complex phenomena where several factors may contribute to
their development and further studies are required to better
understand their pathophysiology (59). Second, we assessed the
UPDRS for the evaluation of LID, but we did not use more
specific assessment tools, such as Unified Dyskinesia Rating
Scale, due to practical issues. Hence, future studies should
perform a more detailed clinical assessment of LID. Third, our
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sample size was small compared with that of the traditional
GWAS. Deep phenotyping in larger samples is challenging; thus,
a well-designed GWAS on clinically important issues should
be conducted.

In conclusion, this study provides new insights into the
genetic contributions to motor fluctuations and LID in PD.
Future collaborative longitudinal genomic studies are needed to
further investigate the genetic risk factors associated with motor
fluctuations and LID in patients with PD.
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Background: Different factors influence severity, progression, and outcomes in

Parkinson’s disease (PD). Lack of standardized clinical assessment limits comparison

of outcomes and availability of well-characterized cohorts for collaborative studies.

Methods: Structured clinical documentation support (SCDS) was developed within the

DNA Predictions to Improve Neurological Health (DodoNA) project to standardize clinical

assessment and identify molecular predictors of disease progression. The Longitudinal

Clinical and Genetic Study of Parkinson’s Disease (LONG-PD) was launched within the

Genetic Epidemiology of Parkinson’s disease (GEoPD) consortium using a Research

Electronic Data Capture (REDCap) format mirroring the DodoNA SCDS. Demographics,

education, exposures, age at onset (AAO), Unified Parkinson’s Disease Rating Scale

(UPDRS) parts I-VI or Movement Disorders Society (MDS)–UPDRS, Montreal Cognitive

Assessment (MoCA)/Short Test of Mental Status (STMS)/Mini Mental State Examination

(MMSE), Geriatric Depression Scale (GDS), Epworth Sleepiness Scale (ESS),

dopaminergic therapy, family history, nursing home placement, death and blood samples

were collected. DodoNA participants (396) with 6 years of follow-up and 346 LONG-PD

participants with up to 3 years of follow-up were analyzed using group-based trajectory

modeling (GBTM) focused on: AAO, education, family history, MMSE/MoCA/STMS,

UPDRS II-II, UPDRS-III tremor and bradykinesia sub-scores, Hoehn and Yahr staging

(H&Y) stage, disease subtype, dopaminergic therapy, and presence of autonomic

symptoms. The analysis was performed with either cohort as the training/test set.
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Results: Patients are classified into slowly and rapidly progressing courses by AAO,

MMSE score, H &Y stage, UPDRS-III tremor and bradykinesia sub-scores relatively

early in the disease course. Late AAO and male sex assigned patients to the rapidly

progressing group, whereas tremor to the slower progressing group. Classification is

independent of which cohort serves as the training set. Frequencies of disease-causing

variants in LRRK2 and GBA were 1.89 and 2.96%, respectively.

Conclusions: Standardized clinical assessment provides accurate phenotypic

characterization in pragmatic clinical settings. Trajectory analysis identified two different

trajectories of disease progression and determinants of classification. Accurate

phenotypic characterization is essential in interpreting genomic information that is

generated within consortia, such as the GEoPD, formed to understand the genetic

epidemiology of PD. Furthermore, the LONGPD study protocol has served as the

prototype for collecting standardized phenotypic information at GEoPD sites. With

genomic analysis, this will elucidate disease etiology and lead to targeted therapies that

can improve disease outcomes.

Keywords: longitudinal monitoring, Parkinson’s disease, structured clinical documentation, motor symptoms,

non-motor symptoms

INTRODUCTION

Parkinson’s disease (PD), the second most common
neurodegenerative disease has an insidious onset and a long pre-
symptomatic and symptomatic course. Four cardinal features
that include resting tremor, bradykinesia, rigidity, and postural
instability define the motor aspects of the disease. Different
disease subtypes have been described including a tremor-
predominant, akinetic/rigid predominant and mixed subtype
(1). Non-motor features, including cognitive dysfunction,
anosmia, anxiety, depression, sleep disorders, and autonomic
dysfunction are also observed either alone or in varying
combinations. Simuni et al. reported that for the Primary
Progression Markers Initiative (PPMI) cohort, the higher
baseline non-motor scores were associated with female sex and
a more severe motor phenotype (2). Longitudinal increase in
non-motor score severity was associated with older age and
lower CSF aβ1–42 at baseline.

The temporal profile of the motor symptom appearance
and progression is rather variable. A number of different
patient cohorts have been followed longitudinally for different

lengths of time and identified predictors of disease progression.

Mollenhauer et al. analyzing the De Novo Parkinson (DeNOPA)
cohort reported that baseline predictors of worse progression of

motor symptoms included male sex, orthostatic blood pressure

drop, diagnosis of coronary artery disease, arterial hypertension,
elevated serum uric acid, and CSF neurofilament light chain

(3). In the DeNOPA cohort, predictors of cognitive decline
in PD were previous heavy alcohol abuse, current diagnoses
of diabetes mellitus, arterial hypertension, elevated periodic
limb movement index during sleep, decreased hippocampal
volume by MRI, higher baseline levels of uric acid, C-
reactive protein, high density lipoprotein (HDL) cholesterol, and

glucose levels. In their cohort, risk markers for faster disease
progression included cardiovascular risk factors, deregulated
blood glucose, uric acid metabolism, and inflammation. Lawton
et al. reported four clusters from the Tracking Parkinson’s
and Discovery cohorts: one with fast motor progression and
symmetrical motor disease, poor olfaction, cognition, and
postural hypotension; a second with mild motor and non-
motor disease and intermediate motor progression; a third
with severe motor disease, poor psychological well-being, and
poor sleep with an intermediate motor progression; and a
fourth with slow motor progression with tremor-dominant,
unilateral disease (4). From the PPMI cohort, Aleksovski et al.
reported that the postural instability gait disorder (PIGD)
subtype was characterized by more severe disease manifestations
at diagnosis, greater cognitive progression, and more frequent
psychosis than tremor predominant patients (5). From the
PPMI cohort, Latourelle et al. identified higher baseline MDS-
UPDRS motor score, male sex, and increased age, as well
as a novel Parkinson’s disease-specific epistatic interaction,
as indicative of faster motor progression (6). De Pablo-
Fernandez et al. reported that the presence of autonomic
symptoms contributed to a more rapid and severe disease
course (7).

Comparing the findings of the different reported cohorts
indicates partially overlapping clinical predictors. At the same
time though, they reveal a variable clinical assessment. Here, we
present an analysis of disease trajectory by GBTM in two large PD
patient cohorts from five different countries followed at a routine
clinical practice setting using identical clinical measures (8). We
find that over an interval of 13 years, there are two trajectories,
one with a more benign and another with a more severe disease
progression. Patients can be reliably assigned to either group
relatively early in their disease course.
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FIGURE 1 | Group-based Trajectory Modeling flowchart.

FIGURE 2 | Hoehn and Yahr (H&Y) stage groups in the DNA Predictions to Improve Neurological Health (DodoNA) and Longitudinal Clinical and Genetic Study of

Parkinson’s Disease (LONG-PD) cohorts. (A) The model trained on DodoNA data (training set). (B) The model trained on the LONG-PD data (test set). (C) The

validation for the LONG-PD prediction trained on NS data against the test set.
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METHODS

Clinical Information
Two patient cohorts with PD were included in the study: (1) the
DNA Predictions to Improve Neurological Health (DodoNA)
cohort, which includes patients that are followed longitudinally
in the Department of Neurology at NorthShore University
HealthSystem in Evanston, Illinois and (2) the Longitudinal
Clinical and Genetic Study of Parkinson’s Disease (LONG-PD)
cohort that includes PD patients enrolled by clinician
investigators from Norway, Greece, South Korea, and Sweden.
These investigators entered their clinical data through REDCap, a
web-based database. The patient information that was submitted
from the four different sites is referred to as the LONG-PD cohort
in aggregate. The cohorts included both previously diagnosed
and naïve patients. A copy of the study protocol is available in
the Supplemental Information.

The DodoNA Cohort
The goal of interpreting variation in DNA to predict neurological
disease led to naming the NorthShore cohort as the “DodoNA”
cohort after the Dodona oracle of ancient Greece. The content
of the electronic medical record-based (EPIC systems) SCDS
toolkit was developed through frequent movement disorder
neurologist meetings aimed to reach a consensus on the

essential data elements that conform to Best Practices in the
treatment of PD, parkinsonism, or tremor patients, taking
into consideration relevant literature and American Academy
of Neurology (AAN) guidelines (9), and the International
Consortium for Health Outcomes Measurement (ICHOM)
guidelines (10). The criteria for which rating scales and score

test measures to include in the toolkit were: (a) to obtain
clinically relevant information in a standardized manner that

can be performed at regular intervals; and (b) that the

standardized assessment can be performed during an office
visit within the time limitations that are imposed by a routine

office visit. The toolkit content consists of discretized fields
that record detailed information regarding initial and current

symptoms, medication history and treatment response, and
imaging results, as well as score test measures, including the
Geriatric Depression Scale (GDS) (11), Epworth Sleepiness Scale
(ESS) (12), United Parkinson’s Disease Rating Scale (UPDRS)
(13), Part I—Mentation, Behavior and Mood, UPDRS Part
II—Activities of Daily Living (ADLs), UPDRS-Part III—Motor
Score, UPDRS-IV—Complications of Therapy (COT), UPDRS-
Part V—Hoehn and Yahr staging (H&Y), UPDRS-Part VI—
Schwab & England Score (S&E), and the Short Test of Mental
Status (STMS) (14) that are autoscored. For cognitive assessment,
initially, the MoCA (Montreal Cognitive Assessment) (15)
was used. However, due to licensing permissions, the STMS

FIGURE 3 | Mini-Mental State Examination (MMSE) score groups in the DodoNA and LONG-PD cohorts. (A) The model trained on DodoNA data (training set). (B)

The model trained on the LONG-PD data (test set). (C) The validation for the LONG-PD prediction trained on NS data against the test set.
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FIGURE 4 | Motor Score groups in the DodoNA and LONG-PD cohorts. (A) The model trained on DodoNA data (training set). (B) The model trained on the LONG-PD

data (test set). (C) The validation for the LONG-PD prediction trained on NS data against the test set.

FIGURE 5 | Unified Parkinson’s Disease Rating Scale (UPDRS) (UPDRS)-III Tremor sub-score groups in the DodoNA and LONG-PD cohorts. (A) The model trained on

DodoNA data (training set). (B) The model trained on the LONG-PD data (test set). (C) The validation for the LONG-PD prediction trained on NS data against the test

set.
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was subsequently used. Both scores (MoCA and STMS) can
be converted to the Mini-Mental State Examination (MMSE)
published nomograms (16) (unpublished data, with permission
of Dr. Bradley Boeve, Mayo Clinic, Rochester, MN, USA),
and therefore, all cognitive scores are recorded as the MMSE
converted score.

The implementation of the toolkit has been cost effective, and
the annual follow-up rates using the toolkit exceeded 85%.

The LONG-PD Cohort
The clinical information for the LONG-PD cohort was entered by
the neurologists from the four participant sites in the REDCap
web-based tool designed for the electronic capture and sharing
of data (http://project-redcap.org/). NorthShore built a REDCap
form mirroring the DodoNA SCDS toolkit. A working group
refined the form and defined required fields for all sites. The
finalized formwas presented at the annual meeting of the Genetic
Epidemiology of Parkinson’s Disease (GEoPD) Consortium in
Vancouver, Canada (2015). All of the teams (DodoNA project,
LONG-PD) are members of GEoPD. The REDCap format was
chosen because it provides an easily accessible Interface for
collecting and validating data, as well as automated data export to
statistical packages in a secure, de-identified manner (SPSS, SAS,
Stata, R).

Data Treatment
Subjects were excluded that experienced onset of symptoms 10
years or more prior to their initial visit or that had less than two
valid visits (at 1 year or greater intervals). Prior to assessment,
subject scores were assumed to be unknown, and the study was
limited to a 13-year period covering all patient visits in the
cohort. Missing motor assessment scores were imputed as zero
for calculation of patient tremor and bradykinesia sub-scores.

Statistical Analysis
Group-based trajectory modeling (GBTM) was applied to
identify latent subgroups within the patient cohorts, given their
covariates and assessment scores over time (17, 18). Assessment
scores were taken on an annual basis during initial and annual
follow-up visits. GBTM assigns individuals to separate latent
subgroups with posterior probabilities over time and regression
parameters to define the trajectory of those subgroups. The
DodoNA cohort data were used as the training set and the
LONG-PD data as the test set. The test set data were entered
into the DodoNA model, and the output was compared to the
LONG-PD test set for validation. This approach is illustrated in
Figure 1.

Trajectories were calculated based on the year of the reported
initial symptom when the patient is seen for the first time in the
movement disorder clinic, thus extending the trajectory duration

FIGURE 6 | UPDRS-III Bradykinesia sub-score in the DodoNA and LONG-PD cohorts. (A) The model trained on DodoNA data (training set). (B) The model trained on

the LONG-PD data (test set). (C) The validation for the LONG-PD prediction trained on NS data against the test set.
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FIGURE 7 | Activities of Daily Living (ADL) scores in the DodoNA (A) and LONG-PD (B) cohorts. (C) The validation for the LONG-PD prediction trained on NS data

against the test set.

to a maximum of 13 years that included at least 5 years of follow-
up for the DodoNA cohort and 3 years of annual follow-up
for the LONG-PD cohort. This choice to include the interval
from the reported initial motor symptom allows a more accurate
assessment of the disease course as often the patients come to the
clinic at different points in the disease process.

We tested models with one to two subgroups using
either constant or linear terms. The best-fitting results were
selected using the lowest Bayesian information criterion (BIC)
value. We used fixed covariates including patient gender, age
of onset of symptoms, positive family history of PD with
multiple-member instances, tremor predominance, presence
of autonomic symptoms (orthostatism, urinary incontinence,
constipation) individually and in combination, levodopa therapy,
dopaminergic therapy, and years of education. Each of the fixed
covariates was then measured across assigned subgroups to
determine group membership totals and statistical significance
across subgroups (Wilcoxon rank sum test for continuous
variables: age of onset, years of education; Pearson’s chi-squared
test for count data: all other covariates).

Latent subgroup classes in GBTM cannot be externally
validated. However, we attempted to validate whether GBTMs
trained on the DodoNA cohort would be predictive of patient
subgroup membership in the LONG-PD cohort. To do this, we
trained GBTMs on the DodoNA patient cohort (the “training”

set), and using their covariate estimates with respect to baseline,
predicted subgroup membership when applied to LONG-PD
patients for each sub-score. As a validation measure, we
separately applied GBTM to the LONG-PD cohort using the
same external model parameters (number of subgroups to stratify
patients, shape of subgroup trajectories) and assumed these
results to be the ground truth “test” set. We validated the overall
results of the prediction and test sets using confusion matrices
and statistics to assess the GBTM predictive value. The GBTM
analysis was also performed in reverse with the LONG PD cohort
as the training set and the DoDoNA cohort as the test set.

All data were analyzed using STATA/IC 16.0 using the PROC
TRAJ package, and the significance level was set at 0.05.

RESULTS

Statistical Analysis
Assignment of Patients to Different Disease

Trajectories Based on Individual Clinical Scores
Individual clinical parameters were assessed for their effect on
disease trajectory: With each clinical score with the exception
of the tremor sub-score, two separate trajectories are clearly
identified: one with a slower and less severe and one with a more
rapid and more severe trajectory: for the H&Y stage (UPDRS-
V) the group with a slower progression includes 73.2% of the
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cohort (Figure 2A). This is also observed in the LONG-PD
cohort (Figure 2B) for 75.8% of the cohort. The validation for the
LONG-PD prediction trained on the DodoNA test set is shown in
Figure 2C with a sensitivity of 0.9777 and a specificity of 0.7922.

For the MMSE scores, a similar separation is seen with the
larger subset [83.8% in the DodoNA cohort (Figure 3A) and
89.8% in the LONG-PD cohort (Figure 3B)] having a slower
progression. The validation for the LONG-PD prediction trained
on the DodoNA test set is shown in Figure 3C with a lower
sensitivity of 0.54286 and a specificity of 0.99678. The apparent
improvement of the MMSE scores, Figure 3B probably reflects
the smaller sample size of the LONG-PD cohort.

For the UPDRS-III score, two groups are identified, with
the slower progression group including 62% of the DodoNA
cohort (Figure 4A) and 57.2% of the LONG-PD cohort
(Figure 4B). The separation of the two trajectories appears less
clear in the LONG-PD cohort, possibly reflecting treatment
effects and shorter duration of follow-up. The validation for
the LONG-PD prediction trained on the DodoNA test set

is shown in Figure 4C with a sensitivity of 0.8366 and a
specificity of 0.9444.

For the tremor sub-score of UPDRS-III, two groups are again
identified: the slower progression group of the DodoNA cohort
including 47.2% (Figure 5A) and the LONG-PD cohort 51%
(Figure 5B). The validation for the LONG-PD prediction trained
on theDodoNA test set is shown in Figure 5Cwith a sensitivity of
0.7857 and a specificity of 0.4479. The lower specificity that likely
reflects the presence of tremor may not accurately reflect disease
severity as it may be more sensitive to treatment effects.

For the bradykinesia sub-score of UPDRS-III, two groups
are again identified: the slower progression group of DodoNA
cohort including 62.7% (Figure 6A) and the LONG-PD cohort
including 24.7% (Figure 6B). The validation for the LONG-PD
prediction trained on the DodoNA test set is shown in Figure 6C

with a sensitivity of 1.000 and a specificity of 0.4648. The lower
specificity likely indicated that sub-scores may not accurately
reflect disease severity, as they only represent separate cardinal
features and do not assess rigidity and postural instability.

FIGURE 8 | Convergence scores for MMSE (A), H&Y stage (B), UPDRS-III (C), and UPDRS-II (D) for the DodoNA cohort.
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The UPDRS-II ADL score separates patients in two different
trajectories, with 66.2% of the DodoNA cohort (Figure 7A) and
78.9% of the LONG-PD cohort (Figure 7B) showing a slow
trajectory. The validation for the LONG-PD prediction trained
on the DodoNA test set is shown in Figure 7C with a sensitivity
of 0.9892 and a specificity of 0.7313. It is important to note that
the UPDRS-II score reflects historical information and subject to
a subjective assessment.

To determine adherence to a particular group identified in
the GBTM, convergence graphs were generated based on the
assumption that the group assignment at year 13 is the “true
group.” In addition, convergence graphs provide information
regarding the time point in the disease course where patients
can be reliably classified to their “true group.” The time point
in which the two trajectories appear to be horizontal reflects
the time point when the group assignments “converge” to their
“true groups.” For H&Y stage for both the DodoNA and LONG-
PD cohorts, year 9 represents the time point in which group

assignment more closely reflects the “true group” assignment
(Figures 8B, 9B). For the MMSE score in the DodoNA cohort,
this time point is delayed at year 10 (Figure 8A), whereas in the
LONG-PD cohort, it occurs earlier in year 8 (Figure 9A). For
UPDRS-III and II, that time point is later (Figures 8C,D, 9C,D).
Taken together, these results point to the H&Y stage and the
MMSE as reliable predictors of trajectory group assignment and
identify a point relatively early in the disease trajectory in which
group assignment can be made.

To further investigate the possibility of the misclassification
rate for group assignments, misclassification graphs were
generated assuming that the assignment at year 13 is the “true
group,” complementing the convergence analysis. In the case
of H&Y trajectory, convergence was at year 9. At year 9, the
misclassification (i.e., 1-accuracy) is 0.05, representing a 5% error
rate for group 2 and almost 0% error for group 1 assignment.
Based on these graphs, the H&Y stage provides an “acceptable
error rate” in both cohorts (Figures 10, 11).

FIGURE 9 | Convergence scores for MMSE (A), H&Y stage (B), UPDRS-III (C), and UPDRS-II (D) for the LONG-PD cohort.
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FIGURE 10 | Misclassification scores for MMSE (A), H&Y stage (B), UPDRS-III (C), and UPDRS-II (D) for the DodoNA cohort.

To ascertain the reliability of the analyses, the LONG-PD
cohort was used as a training set and the DodoNA cohort as
the test set. Both types of analyses provided similar results (data
not shown).

Covariates Contributing to Trajectory Group

Assignment
From the covariates entered into the model, the following
contribute to group assignment: older AAO for both cohorts
and male sex only for the DodoNA cohort assign patients
to the more severe group (group 2) and tremor-predominant
disease subtype to the benign group (group 1). Interestingly for
tremor scores in the DodoNA cohort only, years of education
assigns patients to group 1. Bradykinesia and AAO in the
DodoNA cohort only assign patients to group 2. The tremor-
predominant subtype in the LONG-PD, but not the DodoNA

cohort, assigns patients to group 1. Interestingly, levodopa and
dopaminergic therapy are not significant for the DodoNA cohort
but are significant for the LONG-PD cohort. Complications of
therapy do not contribute to group assignment (data not shown).
Cognitive impairment at disease onset likely assigns patients
to group 2. The differences noted between the two cohorts
may reflect different sample sizes or genetic background effects.
Group counts are shown in Table 1 and the effect of covariates
in Tables 2, 3. To assess whether the presence of autonomic
symptoms contributes to a more rapid and severe course in PD,
we also assessed both cohorts for the presence of autonomic
symptoms. Orthostatism, urinary incontinence, and constipation
were the most prevalent autonomic symptoms. Therefore, we
included these in the analysis, individually and in combination.
They did not contribute, either individually or in combination,
to a more severe disease course in our cohorts.
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FIGURE 11 | Misclassification scores for MMSE (A), H&Y stage (B), UPDRS-III (C), and UPDRS-II (D) for the LONG-PD cohort.

Genotypes were assessed for the presence of LRRK2 and
GBA mutations. The prevalence of LRRK2 and GBA pathogenic
variants was 1.89%and 2.96%, respectively. The vast majority of
these were in the DodoNA, a United States-based cohort. In
combination with the lack of significant contribution of family
history to the disease trajectory, this suggests that in these two
cohorts, at least some genetic factors do not contribute to the
disease trajectory.

DISCUSSION

Longitudinal monitoring of PD over long time intervals is
essential in order to obtain a more accurate characterization of
patterns in the disease course and clinical outcomes, as well as
to gain insights into disease etiology. Here, we present a group-
based trajectory modeling analysis of five ethnically different PD
patient cohorts from the United States (the DodoNA cohort) and

from Norway, South Korea, Greece, and Sweden (the LONG-
PD cohort) within the GEoPD consortium (https://geopd.lcsb.
uni.lu/). The trajectory analysis is based on standardized clinical
assessment that takes place at annual intervals in the routine
office setting. The choice of clinical assessment parameters
reflects a consensus among clinicians with different backgrounds
and practice modes and which would facilitate data collection
and entry using a web-based format. The analysis of a maximum
of 13-year disease course identifies two distinct groups: a
slower and more benign course and a faster, more malignant
course. Clinical predictors of group assignment include male
sex, age at disease onset, presence of tremor as a predominant
clinical feature, years of education, and cognitive impairment at
onset. Interestingly, levodopa/dopaminergic therapy and family
history do not contribute to group assignment. The significance
of beneficial effect of years of education for assignment to
a particular disease trajectory is supported by the findings
of Lee et al., which implicate a passive reserve hypothesis
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TABLE 1 | Group counts from the DNA Predictions to Improve Neurological

Health (DodoNA) and Longitudinal Clinical and Genetic Study of Parkinson’s

Disease (LONG-PD) cohorts.

DodoNA cohort Group 1 Group 2

Hoehn and Yahr (H&Y) stage 291 (73.48%) 105 (26.52%)

Mini Mental State Examination

(MMSE)

59 (14.9%) 337 (85.1%)

Unified Parkinson’s Disease Rating

Scale (UPDRS)-III

251 (63.38%) 145 (36.62%)

UPDRS-II 266 (67.17%) 130 (32.83%)

Tremor sub-score 188 (47.47%) 208 (52.53%)

Bradykinesia sub-score 247 (63.01%) 145 (36.99%)

LONG-PD cohort Group 1 Group 2

H&Y 269 (77.75%) 77 (22.25%)

MMSE 35 (10.12%) 311 (89.88%)

UPDRS-III 203 (58.67%) 143 (41.33%)

UPDRS-II 279 (80.64%) 67 (19.36%)

Tremor sub-score 182 (52.6%) 164 (47.4%)

Bradykinesia sub-score 86 (24.86%) 260 (75.14%)

for motor/non-motor symptoms of PD (19). The somewhat
unexpected lack of contribution of family history in group
assignment may reflect the diverse genetic background of the
two cohorts.

Adherence to a particular group occurs at mid-stage disease
and remains stable thereafter for the study interval. Interestingly,
complications of therapy do not appear to contribute to the
assignment to individual trajectories. It is interesting to point
out that while there is significant overlap between cohorts for the
different covariates, there are covariates in which the two cohorts
diverge. This may be explained by the different cohort sizes, but
it may also reflect different genetic, environmental, and cultural
factors. The prevalence of LRRK2 disease causing variants in
sporadic PD has been reported between 0.5 and 2% (20, 21) and
that of GBA between 2.3 and 9.4% (22) in the U.S. population,
similar to what we find in our cohort. It seems unlikely that
the low percentage of LRRK2 and GBA disease-causing variants
drives trajectory classification as there is a lack of contribution
of family history to trajectory classification. This suggests that
genetic factors are not likely to have at best a modest effect.

The GBTM analysis presented here has several strengths: (a)
it employs easily assessed standardized clinical parameters that
can be assessed at annual intervals and identifies predictable
patterns of disease progression; (b) the analysis is performed
over a long disease duration (maximum of 13 years); (c) it
identifies individual clinical predictors of trajectory patterns;
(d) the accurate clinical phenotypic characterization provides
an essential background for genotype–phenotype correlations,
currently ongoing in our study; (e) it provides an informative
template for large-scale clinical and genomic studies.

Our study has also some limitations. Since the intent of
this study was to assess measures that could be evaluated in
a routine clinical setting, a limitation is its assessment of a

TABLE 2 | Summary statistics, DodoNA cohort: AAO and YOE are continuous

covariates and their group values represent within-group means.

H&Y stage Group 1 Group 2 P-value

AAOa 66.0 75.0 <0.0001

YOEb 16.0 16.0 <0.0001

FH>1c 12 5 0.7817

FH 69 22 0.6594

TDS 71 4 <0.0001

LDd 254 90 0.8103

DPe 94 23 0.0605

Male sex 221 64 0.0050

MMSE

AAO 75.0 67.0 <0.0001

YOE 15.0 16.0 <0.0001

FH>1 2 15 1.0000

FH 11 80 0.4899

TPSf 8 67 0.3354

LD 52 292 0.9176

DP 9 108 0.0141

Male sex 48 237 0.1134

UPDRS-III (Motor)

AAO 67.0 72.0 <0.0001

YOE 16.0 16.0 <0.0001

FH>1 11 6 1.0000

FH 59 32 0.8388

TPS 60 15 0.0014

LD 212 132 0.0871

DP 80 37 0.2221

Male sex 171 114 0.0337

UPDRS-II (ADL)

AAO 68.0 70.0 <0.0001

YOE 16.0 16.0 <0.0001

FH>1 12 5 0.9660

FH 63 28 0.7268

TPS 59 16 0.0266

LD 231 113 1.0000

DP 83 34 0.3592

Male sex 188 97 0.4837

UPDRS-III Tremor sub-score

AAO 69.0000 68.0000 <0.0001

YOE 16.0000 16.0000 <0.0001

FH>1 8 9 1.0000

FH 51 40 0.0809

TDS 0 75 <0.0001

LD 171 173 0.0322

DP 60 57 0.3831

Male sex 130 155 0.2819

UPDRS-III bradykinesia sub-score

AAO 65.0 74.0 <0.0001

YOE 16.0 16.0 <0.0001

FH>1 9 8 0.5569

FH 60 31 0.5354

TPS 67 8 <0.0001

LD 211 133 0.2263

DP 81 36 0.0999

Male sex 177 108 0.8198

Other covariates are binary, and as such, their values represent within-group sums of

positive membership. P-values display statistical significance across groups.
aAAO, age at onset; bYOE, years of education; cFH, family history; dLD, levodopa therapy;
eDP, dopaminergic therapy; fTPS, tremor-predominant subtype.
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TABLE 3 | Summary statistics from the LONG-PD cohort: AAO and YOE are

continuous variables and their group values represent within-group means.

Group 1 Group 2 P-value

H&Y stage

AAO 61.0 67.0 <0.0001

YOE 12.0 10.0 <0.0001

FH>1 26 6 0.7816

FH 29 11 0.5183

TPS 75 4 <0.0001

LD 248 61 0.0024

DP 142 39 0.8400

Male sex 139 36 0.5273

MMSE

AAO 69.0 62.0 <0.0001

YOE 6.0 12.0 <0.0001

FH >1 1 31 0.2269

FH 2 38 0.4014

TPS 8 71 1.0000

LD 24 285 0.0003

DP 13 168 0.0860

Male sex 16 159 0.6681

UPDRS-III (Motor)

AAO 59.0 67.0 <0.0001

YOE 12.0 10.0 <0.0001

FH>1 18 14 0.9176

FH 23 17 1.0000

TPS 56 23 0.0173

LD 186 123 0.1371

DP 115 66 0.0694

Male sex 105 70 1.0000

UPDRS-II (ADL)

AAO 61.0 67.0 <0.0001

YOE 11.0 10.0 <0.0001

FH>1 26 6 1.0000

FH 32 8 1.0000

TPS 67 12 0.3645

LD 264 45 <0.0001

DP 150 31 0.3337

Male sex 135 40 0.1267

UPDRS-III tremor sub-score

AAO 62.0 63.0 1.0000

YOE 12.0 11.0 1.0000

FH>1 21 11 0.1729

FH 26 14 0.1332

TPS 39 40 0.5981

LD 152 157 0.0005

DP 80 101 0.0015

Male sex 101 74 0.0689

UPDRS-III bradykinesia sub-score

AAO 62.0000 62.0000 1.0000

YOE 10.0000 12.0000 <0.0001

FH>1 9 23 0.8146

FH 12 28 0.5445

TPS 31 48 0.0013

LD 60 249 <0.0001

DP 30 151 0.0003

Male sex 46 129 0.6183

Other variables are binary, and as such, their values represent within-group sums of

positive membership. P-values display statistical significance across groups.

narrower spectrum of phenotypic characteristics than other
comprehensively studied cohorts such as the PPMI, DeNOPA,
and LABS-PD cohorts (2–6, 23). Specifically, in our cohorts, CSF
analyses, SPECT scans, quantitative olfactory assessment, and
polysomnograms were not obtained routinely. Since the study
protocols of other longitudinally studied cohorts vary in aims and
scope, direct comparisons with our study are challenging. These
issues would be better addressed by a meta-analysis.

A second limitation of our study is the lack of autopsy data.
However, over a quarter of participants underwent SPECT scans
that were abnormal. In the absence of autopsy data, an abnormal
SPECT scan in the context of clinically definite PD (Bower
criteria) confirms the clinical diagnosis. In that context, it should
also be pointed out that the diagnosis of PD in our study was
assessed and confirmed at each annual interval.

A strength of this study is that detailed information on
comorbidities, head injury, complications of dopaminergic
therapy, autonomic dysfunction (orthostatic symptoms,
anhidrosis/hyperhidrosis, urinary incontinence), sleep disorders,
dysphagia, anxiety, and depression have been, and continue
to be, collected at annual intervals. As the study is ongoing,
these will continue to be analyzed to inform conclusions
regarding the spectrum of factors that contribute to the
disease course in intervals longer than 5 years. It is important
to point out that the focus of the analysis presented here
is to identify individual, clinical parameters that reflect the
cardinal features of the disease as well as assess the effect
of other covariates on those parameters. Furthermore, it is
important to stress that the clinical data collected in the
DodoNA and LONG-PD cohorts are pragmatic and can
be easily collected within routine clinical practice settings
worldwide. Identifying what features in this simplified,
reproducible set of clinical parameters can predict disease
course complements findings from other longitudinally followed
disease cohorts.

In conclusion, the longitudinal study of the DodoNA and
the LONG-PD cohorts combines clinically meaningful, easily
obtainable information from ethnically different PD cohorts
and demonstrates that clinical parameters assessed in the
routine office setting can help predict clinical outcomes in
PD as well as inform our understanding of the underlying
neurodegenerative process. Large international consortia
to understand genetic risk factors contributing to PD have
been formed where phenotypic information is sketchy and
often minimal. This work demonstrates that a detailed
phenotypic characterization is essential in informing and
interpreting the data from such consortia. The development
of the LONG-PD protocol has led to the adoption of a
somewhat simplified version of phenotypic information
collection by a majority of the GEoPD participating sites and
can be easily adapted for genomic information obtained by
other international consortia. Ongoing genotype–phenotype
analyses will identify molecular predictors of the disease
trajectories. Longer longitudinal follow-up of >10 years will help
determine whether the adherence to the identified trajectories
remains stable or whether splintering occurs as the disease
process advances.
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We are gradually becoming aware that there is more to Parkinson’s disease (PD) than

meets the eye. Accumulating evidence has unveiled a disease complexity that has not

(yet) been incorporated into ongoing efforts aimed at slowing, halting or reversing the

course of PD, likely underlying their lack of success. There is a substantial latency

between the actual onset of PD pathology and our ability to confirm diagnosis, during

which accumulating structural and functional damagemight be too advanced for effective

modification or protection. Identification at the earliest stages of the disease course in

the absence of Parkinsonism is crucial if we are to intervene when it matters most.

Prognostic and therapeutic inferences can only be successful if we are able to accurately

predict who is at risk for developing PD and if we can differentiate amongst the

considerable clinicopathologic diversity. Biomarkers can greatly improve our identification

and differentiation abilities if we are able to disentangle cause and effect.

Keywords: Parkinson’s disease, complex syndrome, pre-diagnostic period, biomarker, disease modification

PARKINSON’S DISEASE-MODIFICATION AND
NEUROPROTECTION ARE NOT YET AVAILABLE

Despite efforts to develop new treatments that can slow, stop or even reverse the trajectory of PD
(disease modification) and preserve neural integrity and function (neuroprotection), none have
yet been successfully demonstrated (1). The primary reason for this lack of success remains our
incomplete understanding of the exact cause(s) of PD, and factors involved in subsequent disease
progression (2). Arguably, many of the previous clinical trials aimed at developing new treatments
were methodologically and conceptually flawed (2) by assuming that PD can be defined as a
single diagnostic entity, without taking into consideration the complexity, diversity and timing
of pathogenesis (3–5). Furthermore, past study designs show little or no regard for the state of
neuronal degeneration at time of enrollment, or the inter- and intra-individual clinicopathologic
heterogeneity (2). This is exemplified by the PD models used to investigate potential new
treatments, which have been criticized for their lack of complexity and true representation of the
natural course of PD in humans (3). In human trials, the sensitivity and specificity of outcome
measures have also received considerable scrutiny, as most are highly subjective, still firmly rooted
in the motor domain and unable to accurately assess therapeutic target engagement (6). In vitro
cellular modeling using person specific stem cells or induced pluripotent stem cells has shown
considerable potential as a method to closely reproduce specific pathological circumstances and
directly study neurodegenerative processes and mechanisms and the effects of interventions (7–9).
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In that regard, in vitro cellular modeling has been referred to
as “the most robust and phenotypically similar model for PD”
(8). The limitation of course is that the complexity of PD is
still not fully accounted for, with the requirement to focus on
specific aspects of PD while ignoring others (9). Complementary
approaches that can mitigate for the unaccounted aspects would
be required in order to advance.

We will fail to make progress in the development of
new therapeutic strategies until we take into consideration
the full natural history of the disease process and associated
clinicopathologic diversity under this banner.

In the current perspective we aim to discuss emerging
concepts and recent insights into the natural history of PD that
will be important to consider before viable disease-modifying
therapies can become a reality.

PD IS MORE THAN MEETS THE EYE

To date, clinical and scientific approaches to PD have mainly
focused on few primary features, subsequently reducing it
to a single diagnostic entity and viewing symptomatology
through a dopaminergic lens (Figure 1) (10, 11). The
characteristic clinical features in PD are observed as a
deterioration of motor function expressed as bradykinesia,
resting tremor, muscular rigidity and postural instability
(12). The underlying pathological characteristics include
an ongoing gradual loss of dopaminergic neurons in the
nigrostriatal pathway, as well as the presence and proliferation
of eosinophilic inclusions called Lewy bodies and Lewy neurites
(11, 12). Over time, neural integrity becomes increasingly
compromised eventually leading to an unsustainable dopamine
deficiency ultimately resulting in functional complications and
subsequent disability.

As definitive diagnostic confirmation is still only possible
through post-mortem histopathological examination, available
diagnostic criteria aim to increase the level of clinical diagnostic
certainty in vivo (13). Current diagnostic criteria require the
presence of a combination of cardinal motor symptoms to
establish Parkinsonism, a group of neurological disorders with
overlapping pathologic and symptomatic expressions (14). A
combination of additional supportive features, red flags and
exclusion criteria for differential diagnosis, then serve to further
strengthen the clinical diagnostic certainty for PD, resulting
in either clinically established or clinically probable PD (14).
Symptomatic management, by way of compensation for the
ensuing dopamine deficiency, remains the gold standard of
clinical treatment (15). Although symptomatic management is
successful at maintaining quality of life, especially during earlier
stages of PD, long-term pharmacotherapy is associated with
development of treatment-related motor complications that are
difficult to manage (11). Furthermore, treatment options for
non-motor symptoms remain limited (16).

Motor symptomatology is still considered the defining
characteristic of PD; however, it is now widely recognized
that a range of non-motor features (Table 1) form an
integral part of the symptomatology (17). Although

TABLE 1 | An overview of the most common non-motor features by category.

Category Non-motor symptom

Autonomic Constipation**

Salivation

Bladder dysfunction

Sexual dysfunction

Respiratory dysfunction

Cardiovascular dysfunction

Fatigue

Excessive sweating

Mood and behavior Depression**

Anxiety**

Panic attacks

Impulse control disorder

Visual hallucinations*

Delusions*

Dementia

Apathy

Sensory Pain

Olfactory dysfunction**

Insomnia

Sleep REM sleep behavior disorder**

*Mostly medication related.

**Common prodromal symptoms.

dopaminergic cell loss is considered the predominant
pathological hallmark of PD, degeneration is not restricted
to the nigrostriatal pathway. Neurotransmitter deficiency
due to extranigral degeneration, including the serotonergic,
noradrenergic, cholinergic, GABAergic, and glutamatergic
systems, underlie numerous neuropsychiatric, autonomic,
sensory, and sleep disorders, as well as the non-levodopa
responsive motor symptoms of PD (18, 19). Furthermore,
neuropathological evidence suggests that the presence of
α-synuclein aggregates and Lewy pathology also extends
to extranigral structures, including the cerebral cortex,
olfactory structures, brainstem, spinal cord and even
peripheral tissues (20). Naturally expressed throughout the
CNS and many other tissues, α-synuclein is a presynaptic
protein (21, 22). The exact function is still unknown, but
α-synuclein is thought to play a role in the regulation of
neurotransmitter release (23). Increased expression and
accumulation of abnormal α-synuclein aggregates is thought
to be neurotoxic and associated with pathological processes of
PD (22, 23).

IS IT TIME TO REDEFINE PD?

Not only do these pathological findings provide an explanation
for the wide range of non-motor symptomatology, indicating a
more complex and systemic nature of PD, they also hint toward
possible extranigral origins and earlier disease onset. To that
effect, Braak et al. (20) proposed a six-point staging system,
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FIGURE 1 | The PD continuum with an extended disease course that includes a combination of risk factors that can pre-dispose or cause PD (0); a preclinical phase,

where the pathology has started but no signs are present; a prodromal phase, where non-motor symptoms dominate, but motor symptoms can be present; and the

classic or clinical phase often viewed through a dopaminergic lens, delineated by the clinical diagnosis (1) and mortality (2), with Levodopa therapy and/or deep brain

stimulation (DBS) forming essential therapies for symptomatic management. Several risk factors (like age and lifestyle) also have the potential to affect disease

progression. The Braak six-point staging scheme (A) spans across the entire PD continuum, while the Hoehn & Yahr symptom progression scale, for reference (B), is

confined to the classic PD phase. Different biomarkers are better suited at different points along the continuum depending on pathological and clinical evidence.

based on post-mortem histopathological evidence of abnormal
α-synuclein accumulation throughout the nervous system of
individuals with differing disease durations. They describe a
rather systematic propagation of α-synuclein aggregates along
interconnected neural networks, starting in the lower brainstem
and anterior olfactory system and progressing to cortical
areas with advancing disease. The pathology only reaches
dopaminergic cells in the substantia nigra toward stages three and
four, relating to the classic motor symptomatology.

In an effort to explain the extranigral origin, Braak et al. (24)
proposed a dual hit hypothesis where an environmental pathogen
likely enters the body through the nasal and gastric routes and
then spreads via the dorsal motor nucleus of the vagus nerve
and olfactory bulb to more central neuronal structures. A prion-
like concept of disease progression has since been put forward
that proposes a cell-to-cell spread of abnormal α-synuclein
(25, 26) The concept was the result of findings of neuronal
grafting studies, where, at autopsy after more than a decade
of survival, host-to-graft propagation was found in some of
the transplanted dopaminergic neurons (25). Since then several
studies using animal and cellular models have supported the α-
synuclein transmission concept (27–31). This is also problematic
for new treatments efforts that focus on regeneration, where

patient specific induced pluripotent stem cells are transplanted.
Apart from the risks associated with regeneration medicine, such
as unwanted biological effects and immune response, toxicity,
neoplasm formation, disease transmission, reactivation of latent
viruses, to rejection of the cells by the body (7), the transplanted
cells would again be susceptible to α-synuclein propagation,
compromising their long term health. Further evidence now
suggests that different species or strains of α-synuclein can exert
different effects depending on their folded state (32). Different
oligomeric forms in particular seem to have different pathogenic
effects including toxicity, which is suspected to contribute to the
clinicopathological diversity of PD (33).

Although there is considerable support for the Braak
hypothesis, some studies have shown that not all PD cases
follow the systematic pathological progression (34). Higher stage
pathology and subsequent symptomatology, such as primary
dementia with Lewy bodies, has been found in absence of
pathology in lower stage structures (35, 36). The presence of
Lewy pathology in otherwise healthy individuals is also well-
recognized (37). Furthermore, some genetic variants of PD
do not express characteristic Lewy pathology. In addition, the
considerable pathological and symptomatic heterogeneity of
PD undermines strict systematic progression (20). Different
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patterns of pathological progression are most likely underlying
the considerable clinical variability seen in PD. Studies have
since shown that Lewy pathology and α-synuclein spread can
occur in bi-directional manner along interconnected networks
(38). This can partly explain some of the discrepancies in
the Braak hypothesis, but considerable discussion remains on
the topic.

As it stands, the traditional concept of PD as just a movement
disorder is gradually making way for a more comprehensive and
encompassing definition that recognizes the innate complexity
of PD as a syndrome and the multiple affected neuroanatomical
structures (nigral and extranigral) that lie at the foundation
of the broad symptomatic range. Redefining PD as a multi-
system neurodegenerative disorder (39) not only acknowledges
the widespread spatial organization of neurodegeneration
and possibly a peripheral origin, but also implies earlier
temporal progression along a much more extended
disease continuum.

THE CONCEPT OF PD WITHOUT
PARKINSONISM

It is now widely accepted that the classic PD course actually
represents a relatively late stage of a broader process of disease
(40). The extended PD course acknowledges a considerable pre-
diagnostic phase, during which the underlying pathology has
commenced, but symptomatology is either absent, non-specific
or too subtle to meet current diagnostic criteria (1) (Figure 1).
The pre-diagnostic phase is commonly further subdivided into an
“at risk” phase, a preclinical or premotor phase and a prodromal
phase, depending on clinicopathologic manifestations (40).

The earliest phase in the PD continuum, when the
pathology is thought to have commenced, but clinical signs and
symptomatology are lacking, is referred to as the preclinical
phase (40). As the pathology progresses, compromises to neural
integrity and function steadily increase to a point where
symptomatology becomes manifest (41). During this prodromal
phase, several non-motor symptoms are especially common
(Table 1), including olfactory dysfunction, constipation, anxiety,
depression, sympathetic denervation and REM sleep behavior
disorder (40, 42). The non-motor features associated with
the prodromal phase are non-specific and are generally easily
disregarded as common aspects of normal aging (41). However,
most, if not all individuals with PD have indicated the presence of
one or more of these features prior to their diagnosis (42). Subtle
motor symptoms also start to emerge during the prodromal
phase as the underlying pathology slowly progresses (42). It
is worthwhile noting that for clinical and scientific purposes
subdividing the PD course, whether classic or pre-diagnostic,
into different phases can be a meaningful way to deal with
the complexity. In reality, definite phases are almost certainly
unlikely and the PD course, in all probability, represents a
continuum of transient states along which multiple factors
continuously interact, with positive or negative impact (43).

If we are to move forward clinically and scientifically, we first
need to come to grips that PD can be present in the absence

of Parkinsonism. We then need objective and reliable measures
to accurately identify those at risk of developing PD or those
in the earliest developmental stages when traditional motor
symptomatology has not (yet) emerged.

CURRENT TREATMENTS ARE TOO LITTLE,
TOO LATE TO AFFECT PROGRESSION

As mentioned in the previous section, PD is now considered
much more than just a movement disorder and the pathology
extends well-beyond the nigrostriatal neural networks,
potentially even originating in sites peripheral to the CNS.
This has considerable implications on how we need to consider
the timing of key milestones in the disease trajectory. It is now
evident, that by the time the cardinal motor features manifest
and diagnosis can be made, a vast majority of dopaminergic
cells have already been lost (1, 44). The underlying pathology
has been able to spread insidiously for years and compensatory
mechanisms are no longer able to cope with the steadily
increasing dopamine deficiency, resulting in overtly observable
motor features (11, 45). In this regard, the cardinal motor
features, traditionally used as diagnostic criteria, should instead
be considered determinants of clinical progression of PD. Since
most clinical trials are designed with PD diagnosis as minimum
inclusion criterion, we argue that the compromises to neural
integrity and function at this stage are already too advanced for
disease modifying or protective therapies to take effect (1, 5).
This stark realization is further supported by the fact that, on
average, very few dopaminergic terminals remain in the striatum
as early as 5 years following a formal clinical diagnosis and the
commencement of dopaminergic therapy (46). At the moment,
however, these motor symptoms are the only criteria available
to guide PD diagnosis and subsequent therapeutic approaches.
Any attempt at disease modification would have to commence as
early as possible and this will require a reconsideration of how
and when the diagnosis is made, what specific disease-related
processes need to be targeted and how aggressive these need to
be treated.

HOW CAN WE IDENTIFY THOSE AT RISK
BEFORE THE EMERGENCE OF
SYMPTOMS?

The specific causes of PD remain unknown, and there is
no clarity as to when the actual onset of PD occurs (47).
Moreover, endophenotypes associated with early stages in the
PD continuum are also factors that may pre-dispose for the
development of classic movement PD (48) (Figure 1). Thus,
there is a major challenge in distinguishing between true
“symptoms” of a disease process from “risk factors” that
are “associated” but neither necessary nor sufficient to result
in disease.

Combinations and interactions of risk factors (e.g., lifestyle,
environment, genetic, and aging) might differ between
individuals, which may explain the considerable clinical
and pathological diversity of PD. Although the risk factors can
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offer important clues for the pre-disposition of developing PD,
even in the presence of certain risk factors, we currently lack the
ability to accurately predict if and when pathological conversion
will occur in most instances. As mentioned earlier, PD onset
most likely does not involve a single triggering event, but is rather
the consequence of a sequence of transient aggravating processes
that tip the balance and sets the pathological progression in
motion further along the disease continuum.

As the contribution of individual risk factors is thought
to be relatively small, gene-environment interactions and how
they can inform prediction of future PD in neurologically
healthy populations have received considerable attention (49).
Risk stratification studies, for instance, have started to model
incidence scores using a range of known risk and prodromal
factors and assigning each a value before calculating their
predictive scores using specific algorithms or regression models
(50–54). None of these models have yet been incorporated
into clinical practice and have only been used for research
purposes. Careful consideration of risk stratification attempts
and many other investigations that try to elucidate the cause,
progression and heterogeneity of PD reveals an ongoing difficulty
in our ability to distinguish between cause and effect (55).
Included factors are often based on observational associations,
which lack essential definitive conclusions to make causal
inferences and may be the result of inverse causation (55, 56).
As eloquently pointed out by Chen (57), symptoms expressed
in the pre-diagnostic phase several years before diagnosis, but
at the time not suspected to be part of PD, might have
impacted the factors that are now thought of as protective,
such as smoking, physical activity, caffeine consumption. For
instance, physical activity might be reduced in individuals
in the prodromal stages of PD because of their prodromal
features and probably not the other way around (57). It is
important to realize that etiological factors may play different
roles in the cause and/or progression of PD and would
have to be monitored over long periods of time before we
can make meaningful interpretations about their positive or
negative implications.

CAN BIOMARKERS HELP TO USEFULLY
STRATIFY CASES ACCORDING TO
CAUSALITY?

The closer we get to the beginning of the PD continuum,
the greater the reliance on pathogenic evidence and the
availability of independent objective markers to identify those
at risk, already converted and beyond (Figure 1). While
the motor features continue to be the primary criteria for
identification of PD, the last few years has seen a surge for
the development of objective and independent diagnostic
and prognostic biological markers for PD, especially for
the asymptomatic phases. A biomarker is defined as “a
characteristic that is objectively measured and evaluated
as an indicator of normal biological processes, pathogenic
processes or pharmacologic responses to a therapeutic
intervention” (58).

A growing number of markers have been proposed as effective
screening tools for PD, including clinical, imaging, biochemical,
and genetic (59). Different types of markers focus on specific
features of PD, such as signs and symptoms, structural and
functional integrity, accumulation and aggregation of abnormal
proteins and other products of molecular processes as well as
variations in the genetic make-up. Therefor, some biological
markers are more applicable than others in certain phases of PD
as they span the entire disease course, from the risk phase to
clinical expression.

Although a multitude of biomarkers for PD have been
proposed no biomarker can definitively predict PD onset. Some
markers are more focused on the earliest phases of PD than
others, but each could provide unique information regarding the
presence and progression of PD. Crucially, individual biomarkers
may lack sensitivity and specificity for accurate diagnosis and
combinations of biomarkers implemented at the right time may
be needed to achieve this. More importantly, the validation of
individual and combinations of biomarkers is required for early
diagnostic potential (59).

THE WAY AHEAD

We are making great strides in the efforts to understand the
complexity of PD and the subsequent implications for the
development of new diagnostic, prognostic and therapeutic
methods, but many questions remain. We now know that
the motor phenotype of PD is merely a milestone in a far
more extended disease trajectory. Although at some point, most
cases converge to increasing levels of movement difficulties
and functional impairment in the course of the disease,
the underlying cause, pathological pathways and molecular
mechanisms might be considerably different, which needs
to be reflected by future identification, stratification and
therapeutic strategies.

Paradoxically, objective diagnostic tools are needed for
intervention with new therapies when it matters most, but
development of new therapies to effectively change the disease
course requires new objective diagnostic tools. One intermediate
way to deal with this paradox is to focus on the populations with
an above average pre-disposition for developing PD, such as those
with a genetic susceptibility or those with disorders like RBD or
olfactory dysfunction that are known for a high risk of conversion
to the PD phenotype. Prospective studies in these groups
could subsequently inform most optimal therapeutic strategies
aimed at modification and protection. In turn, these results can
then inform new strategies in the treatment of sporadic forms
of PD.

In the absence of a cure for PD, the Holy Grail seems the
development of new therapies that impact the actual pathological
processes. Although disease modification has successfully been
shown in PD models, we are not sure if these treatments will
ever work in humans. Regardless of whether it is possible, a
lot of work can still be done to increase the effectiveness of
current symptomatic therapies aimed at maintaining quality of
life and wellness. Especially when we learn how to stratify cases
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more effectively and use this information to tailor symptomatic
approaches to maximize impact on patients’ quality of life and
wellness. Fundamentally what is needed to move forward in our
search for PD solutions is a better understanding of the natural
progression of PD and the underlying pathological processes
and mechanisms.
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Introduction: Impulse control disorders (ICDs) frequently complicate dopamine agonist

(DA) therapy in Parkinson’s disease (PD). There is growing evidence of a high heritability

for ICDs in the general population and in PD. Variants on genes belonging to the reward

pathway have been shown to account for part of this heritability. We aimed to identify

new pathways associated with ICDs in PD.

Methods: Thirty-six Parkinsonian patients on DA therapy with (n = 18) and without

ICDs (n = 18) matched on age at PD’s onset, and gender was selected to represent

the most extreme phenotypes of their category. Exome sequencing was performed, and

variants with a strong functional impact in brain-expressed genes were selected. Allele

frequencies and their distribution in genes and pathways were analyzedwith single variant

and SKAT-O tests. The 10 most associated variants, genes, and pathways were retained

for replication in the Parkinson’s progression markers initiative (PPMI) cohort.

Results: None of markers tested passed the significance threshold adjusted for multiple

comparisons. However, the “Adenylate cyclase activating” pathway, one of the top

associated pathways in the discovery data set (p = 1.6 × 10−3) was replicated in the

PPMI cohort and was significantly associated with ICDs in a post hoc pooled analysis

(combined p-value 3.3 × 10−5). Two of the 10 most associated variants belonged to

genes implicated in cAMP and ERK signaling (rs34193571 in RasGRF2, p = 5 × 10−4;

rs1877652 in PDE2A, p= 8× 10−4) although non-significant after Bonferroni correction.

Conclusion: Our results suggest that genes implicated in the signaling pathways linked

to G protein-coupled receptors participate to genetic susceptibility to ICDs in PD.

Keywords: Parkinson’s disease (PD), dopamine agonists (DA), impulse control disorders (ICD), pharmacogenetics,

exome sequencing
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INTRODUCTION

Impulse control disorders (ICDs) and related behaviors are
defined by the failure to resist an impulse to perform a self-
rewarding act that will cause longer-term harm to oneself
or others. Their prevalence is estimated between 1 and 3%
in the general population while it raised up to 17% in
treated Parkinsonian patients (1, 2). Common manifestations
in Parkinson’s disease (PD) are pathological gambling (PG),
hypersexuality, and compulsive eating and buying. Clinical risk
factors associated with ICDs in PD include younger age, younger
age of PD onset, unmarried status, current smoking, novelty
seeking traits, and family history of gambling (1, 3, 4). Above
all, ICDs in PD are strongly associated with the dopamine
replacement therapy as demonstrated by a similar prevalence
of ICDs in untreated Parkinsonian patients as compared to
healthy controls (5) and their independent association with
dopaminergic drugs, particularly dopamine agonists (1).

A high heritability has been suggested for ICDs in the
general population, estimated to 40–60% in twin studies for
pathological gambling (6, 7) and in ICDs in PD patients
(8). Genetic association studies have found associations with
candidate variants in genes coding monoamine and glutamate
receptors, transporters, and metabolism enzymes in both the
general population (9, 10) and in PD (11–14). ICDs are also
more frequent and more severe in PD patients with PRKN
mutations (15). The reward pathway—involving ventral areas of
basal ganglia and its related cortical structures—is thought to play
a central role in the pathophysiology of ICDs as suggested in
several studies (16, 17). However, these variants explain only a
small part of the phenotype’s variance, estimated to be 15–21%
for pathological gambling in the general population (9).

Rare genetic variants or combinations of variants may explain
this and new strategies that are being developed to explore
genetic contribution to complex traits. For instance, significant
genes in the course of diabetes mellitus or cystic fibrosis have
been discovered by comparing exome data of extreme phenotype
groups, reasonably supposed to be enriched in causal variants (18,
19). Moreover, when several genetic variants in a gene or group of
genes may contribute to the trait, aggregation tests, by evaluating
the cumulative effect of multiple variants, are particularly
relevant. The power gained with this method, compared to a
single test, allows considering a smaller sample (20).

In this proof-of-concept study, we propose an unbiased
approach by comparing exome sequences of two extreme
phenotypes of Parkinsonian patients with and without ICDs. Our
main objective was to identify new genes and pathways associated
to ICDs in PD.

METHODS

Patients and Study Design
Patients were selected from a multicenter, national, case-control
study named Behavioral ADdiction and GEnes in Parkinson’s
disease (BADGE-PD) conducted in France between 2012 and
2015 in 13 centers of the clinical research network for Parkinson’s
disease (NS-PARK/FCRIN) (21). Three hundred four patients

were included with (n = 172) or without (n = 132) ICDs or
related behaviors. Common inclusion criteria were diagnosis
of PD according to the UK Parkinson’s Disease Society brain
bank (22) and age older than 30 years. The study consisted
of one visit at the expert center for PD with a neurological
and neuropsychological evaluation and a blood sample for DNA
extraction. All patients were evaluated by a face-to-face interview
with a neuropsychologist with the French PD behavioral scale,
validated for the assessment of ICDs and related behaviors in PD
(23). This scale explores and quantifies the different components
of hyper- and hypo-dopaminergic behaviors in PD, each item
being rated on a 5-point scale (severe disorder: 4, marked
disorder: 3, moderate disorder: 2, mild disorder: 1, absence of
disorder: 0). Patients with ICDs were defined as having two items
with a score of ≥ 2 or at least one item with a score of ≥ 2 on the
following items: eating behavior, creativity, hobbying, risk-taking
behavior, compulsive shopping, punding, pathological gambling,
and hypersexuality. Control PD patients were selected to have
no more than one of the previous item with a score of 1. All
patients had to be of European Caucasian ancestry for at least two
generations, and patients with and without ICDs were matched
for age and sex. In addition, patients in the control group had
more than 5 years since PD diagnosis and were exposed to a
dopamine agonist of at least 300mg of levodopa equivalent daily
dose (LEDD). LEDD were calculated as previously described
(24). The study was conducted according to international good
clinical practice guidelines and submitted to local regulatory and
ethical committees. All patients signed an informed consent form
prior any procedure. The study was sponsored by the Assistance
Publique Hôpitaux de Paris.

For this ancillary study, we selected an extreme phenotype
(EP) population corresponding to 36 cases: 18 PD patients with
ICDs (cases) and 18 PD patients without ICDs (controls). Cases
were selected in descending order of behavioral scale in PD’s
scores. The five following items were considered: eating behavior,
creativity, compulsive shopping, pathological gambling, and
hypersexuality. Controls were selected considering the same
items if scoring 0 in all of them. Cases and controls were matched
for gender and age at PD onset and had been treated with
ropinirole or pramipexole, the twomajor dopamine agonists used
in this cohort.When several controls were available for matching,
the patient exposed to the highest dose of DA was selected.
Finally, as mutations or risk genetic variants have been shown
to be associated with neuropsychiatric symptoms in PD patients
(15, 25), patients were screened for the G2019S variant on LRRK2
gene and for pathogenic mutations on PRKN gene.

Replication
For replication, we used the Parkinson’s progression markers
initiative (PPMI) data set (https://www.michaeljfox.org/ppmi-
clinical-study, data downloaded on April 20, 2016), selecting
cases and controls with similar criteria than for the hypothesis-
generation cohort. In this cohort, ICD behaviors were screened
by using the Questionnaire for Impulsive-Compulsive Disorders
in Parkinson’s disease (QUIP) (26) at each visit. Among the
431 de novo Parkinsonian patients included in the cohort, we
selected as cases the patients who developed ICD (QUIP>0)
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during follow-up (n = 52) while treating with pramipexole or
ropinirole (n = 45) with a QUIP = 0 at baseline (n = 30)
and available exome sequencing data (n = 27). For controls, we
selected patients with QUIP scores remaining null throughout
the follow-up (n= 127) treated with ropinirole or pramipexole (n
= 107) with a dose> 290mg LEDD for more than 3months (n=
29) and exome sequencing data available (n = 28). The 10 most
associated genetic variants, genes, and pathways were selected for
replication using the whole exome sequencing data.

Sequencing, Variant Calling, and
Annotation
Exomes from the 36 selected patients were sequenced on an
Illumina NextSeq 500 with the MedExome kit, and the resulting
reads were aligned to the hg19 reference genome with BWA
applying duplicate removal with Picard Tools MarkedDuplicates.
We performed GATK base quality score recalibration, indel
realignment, and SNP and INDEL discovery and genotyping
across all samples simultaneously using HaplotypeCaller,
followed by variant quality score recalibration according to the
GATK Best Practices recommendation: GATK-HaplotypeCaller
primary QC was applied at the variant level, excluding any
variants that were not flagged as “PASS” by the VQSR algorithm,
thus excluding variants outside the 95% sensitivity tranches (i.e.,
the lowest 5% of recalibrated quality scores). Finally, variants
were annotated using the SnpEff tool and GENome MINing
software (GEMINI, version 0.18.0) (27).

For all 36 samples, mean coverage on target was above 84, and
90% of targeted regions were covered at least at 30X.

Data Analysis
Genetic variants were filtered to keep variants likely to have
a functional impact based on the Combined Annotation
Dependent Depletion (CADD) score (28) as made available in
GEMINI (27). Expression values of genes were obtained from the
Brain eQTL Almanac (http://www.braineac.org). Variants with a
CADD score ≥ 12.37 were kept for further analysis, according
to published recommendations (29), if also lying in genes
expressed in at least one region among putamen, substantia nigra,
thalamus, frontal cortex, and temporal cortex. For a pathway
to be considered expressed in these brain regions and kept for
analysis, 95% or more of its genes should be expressed in at least
one of the latter brain areas. Furthermore, pathways were kept for
analysis if at least 80% of their genes were represented by at least
one variant in the experiment while a minimum of two variants
per gene was required for gene-wise test and a minimum allele
count of 4 for single-variant testing. For population description,
paired sample t-test, McNemar, and χ

2 or Fisher’s exact tests
were used for group comparisons of quantitative and qualitative
variables, using Statistica (version 9.1) software.

Association of single variants with the case/control status
was tested using the likelihood ratio test as made available in
the Efficient and Parallelizable Association Container Toolbox,
version 3.2.6 (EPACTS). Group-wise tests were conducted using
SKAT-O tests as made available in EPACTS on both genes and
Reactome pathways (30, 31). The significance threshold was
adjusted with Bonferroni’s method regarding the number of tests

TABLE 1 | Clinical features of the study population.

Features ICDs +

(n = 18)

ICDs –

(n = 18)

p-value

PD age onset, yearsm 49.4 (7.3) 49.8 (7.4) 0.88

Males, n, (%)m 11 (61) 11 (61) 1

Disease duration, yearsa 7.5 (4.6) 9.3 (6.2) 0.33

MDS-UPDRS

Part I 2.4 (1.9) 0.8 (1.3) 0.005

Part II 10.4 (3.0) 7.9 (4.2) 0.05

Part III 15.0 (10.3) 18.0 (10.3) 0.38

Part IV 4.5 (3.3) 3 (1.9) 0.13

Hoehn & Yahr stage ≤ 2, n (%) 16 (88.9) 12 (66.7) 0.13

Family history of addiction (alcohol

or PG), n (%)

9 (50) 6 (33) 0.25

MMSE 28.8 (1.2) 28.5 (1.7) 0.57

Treatment

Prami/Ropi, n/n (%/%) 9/9 (50/50) 13/5

(72.2/27.8)

0.29

DA LEDD, mg/day 258.7 (96.6) 370.3 (65.9) 0.0003

Total LEDD, mg/day 707.6 (541) 940.3 (379.9) 0.13

Results are given as mean (SD), otherwise specified. mreferred to matching criteria.
aat onset of behavioral addictions for cases and at inclusion for control subjects. PG,

pathological gambling; MMSE, Mini Mental State Evaluation; Prami, Pramipexole; Ropi,

Rominirole. Student t-test for paired samples and the McNemar test were run for

quantitative and qualitative variables, respectively.

ran: 6,953 for variants, 4,769 for genes, and 123 for pathways
leading to a threshold for significance of 7.2 × 10−6, 1 × 10−5,
and 4.1× 10−4, respectively.

For the replication stage, combined p-values were obtained
using the Fisher test when SKAT-O p-values were found to be
nominally significant in both EP and PPMI cohorts. P-values
were considered as significant when passing the Bonferroni-
corrected significance threshold considering the number of tests
run during the discovery and replication phases (6,963 for
variants, 4,779 for genes, and 133 for pathways, resulting in a
threshold of significance of 7.2 × 10−6, 1 × 10−5, and 3.8 ×

10−4). Tests were adjusted on age at PD diagnosis and gender.

RESULTS

Population
The demographic and clinical characteristics of the 36 selected
patients with extreme phenotypes (cases, n = 18; controls, n =

18) are described in Table 1. Cases and controls were similar in
terms of PD age onset, disease duration, motor severity (MDS-
UPDRS 3 and Hoehn & Yahr stage), and cognitive assessment
(MMSE). Cases had significantly higher scores than controls at
the MDS-UPDRS part I, which was related to a higher score at
item I.6 assessing addictive behaviors (respectively, 2.4 vs. 0.8,
p = 5 × 10−3). DA doses were significantly higher in control
subjects (370.3 vs. 258.7 mg/day, p = 3 × 10−4) due to the study
design (controls were recruited based on the absence of ICD
behaviors despite high doses of DA). Among the cases, all had at
least two different ICDs, five patients had a maximum score of 4
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for at least one item, and eight patients accumulated at least two
types of ICDs with a score equal to 3. There was no difference
in ropinirole/pramipexole or gender distributions regarding to
the type of ICDs except for hypersexuality, which was exclusively
present in males (see Supplementary Data 1).

Single-Variant Analysis
After quality controls, 354,174 variants were available for further
analyses. Among the 34,981 with a CADD-score ≥ 12.37, 26,418
satisfied the condition of a minimal occurrence of 4 in the
cohort for the single test. After selection upon brain expression
of genes, 6,953 variants remained for further analyses. The 10
most associated variants are shown in Table 2. Five variants were
exonic missense—in PDCD6IP, RasGRF2, ACAN, COL12A1, and
OMA1—and 4 variants were intronic—in GDA, PGK1, ITGA6,
and PDE2A. The last variant was nonsense in the IL17RB gene.
Two variants (rs34193571 RasGRF2, rs1877652 PDE2A) were
involved in intracellular signal transduction, related to ERK,
and cAMP signaling pathways. Three variants were laid on
genes belonging to the pathway of focal adhesion (rs2293647,
rs3743398, and rs970547 on ITGA6, ACAN, and COL12A1). No
mutation was found in the LRRK2 or PRKN genes.

Genes Analysis
Of the 19,962 genes covered by the MedExome kit, 6,250 were
represented by at least two variants with a CADD score ≥ 12.37.
After selection upon brain expression, 4,769 genes remained for
association testing. The 10 most associated genes upon SKAT-
O test are shown in Table 3. Four of them, DOCK4, RasGRF2,
ITGA6, and ITGA11, were linked to the ERK pathway. PDE2A
belongs to cAMP signaling. For some genes, such as PDE2A
and RasGRF2, association was led by only one frequent variant,
which was strongly associated in the single test. For others, as
for DOCK4 andMYH14, association resulted from different rare
variants laying in this gene in different individuals of the cohort
(see Supplementary Data 2).

Pathways Analysis
Of the 1,816 pathways extracted from the Reactome database,
1,130 were represented by at least two variants with a CADD
score ≥ 12.37. Among them, only 312 had more than 95%
of their genes expressed in the brain’s regions of interest, and
the 123 that had more than 80% of their genes represented
by at least one variant were considered for further analysis.
The five most associated pathways using SKAT-O are shown in
Table 4. The most associated one (R-HSA-446343, “Localization
of the PINCH-ILK-PARVIN complex to focal adhesions” from
Reactome database, p-value 1.52 × 10−3) was related to focal
adhesions with a total of eight variants (two of which were
unique, i.e., found only once in the cohort) tested. The second
most associated pathway was the adenylate activating pathway
(R-HSA-170660, “Adenylate cyclase activating pathway”, p =

1.56× 10−3) with a total of 29 (10 of which were unique) variants
tested distributed on eight genes.

TABLE 3 | SKAT-O on genes results (top 10 genes).

EP PPMI

Gene tested variants p-value tested variants p-value

ANAPC5 3 (0) 0.0005 6 (2) NS

PDE2A 2 (0) 0.0009 10 (2) NS

FANCA 4 (1) 0.0009 0 NA

SGK494 2 (0) 0.0013 6 (2) NS

DOCK4 9 (4) 0.0016 NA NA

APOL5 2 (0) 0.0018 4 (1) NS

RasGRF2 2 (1) 0.0019 NA NA

ITGA6 3 (0) 0.0019 18 (1) NS

ITGA11 7 (4) 0.0020 21 (4) NS

MYH14 7 (4) 0.0031 26 (3) NS

Tested variants are reported as number of tested variants (number of unique variants, i.e.,

found only once in the cohort).

TABLE 2 | Single test association study results (top 10 variants).

Variant ID Variant distribution in EP cohort p-value

ID Gene Annotation MAF (EXAC) MAF (EP) AAC AAC Case AAC Control RR EP PPMI

rs3203777 PDCD6IP V383I 0.44 0.50 36 11 25 0.4 0.0001 NS

rs3802506 GDA intronic 0.16 0.17 12 11 1 11.0 0.0002 NA

rs2007039 PGK1 intronic 0.22 0.18 13 0 13 0.0 0.0002 NA

rs34193571 RASGRF2 S753P 0.08 0.10 7 7 0 14.0 0.0005 NS

rs2293647 ITGA6 intronic 0.05 0.10 7 7 0 14.0 0.0007 NA

rs3743398 ACAN P864L 0.21 0.22 16 3 13 0.2 0.0008 NS

rs1877652 PDE2A intronic 0.28 0.31 22 17 5 3.4 0.0008 NA

rs970547 COL12A1 G3058S 0.22 0.28 20 4 16 0.3 0.0008 NS

rs1043261 IL17RB Stop 0.08 0.08 6 0 6 0.0 0.0011 NS

rs17117678 OMA1 I329L 0.10 0.14 10 1 9 0.1 0.0012 NS

Minor Allele Frequency (MAF) is given according to EXAC data for Caucasian population and in extreme phenotype (EP) cohort. AAC, Alternative Allele Count in all population and in

case and control groups; NS, non-significant. RR referred to the ratio of allele frequency in case and in control groups. If the allele count was equal to zero in control group, the value

was replaced by 0.5 to enable the division.
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TABLE 4 | SKAT-O on pathways results (top 5 pathways).

Pathway EP PPMI combined p-value

Name Tested variants p-value Tested variants p-value

R-HSA-446343 Localization of the PINCH-ILK-PARVIN complex to focal adhesions 8 (2) 0.0015 32 (6) 0.6072 NA

R-HSA-170660 Adenylate cyclase activating pathway 29 (10) 0.0016 29 (10) 0.0210 3.3.10−5*

R-HSA-5467333 APC truncation mutants are not K63 polyubiquitinated 7 (4) 0.0156 27 (4) 0.925 NA

R-HSA-1483152 Hydrolysis of LPE 5 (4) 0.0231 29 (4) 0.4554 NA

R-HSA-4411364 Binding of TCF/LEF:CTNNB1 to target gene promoters 20 (9) 0.0233 66 (12) 0.4361 NA

Tested variants are reported as number of tested variants (number of unique variants). EP, Extreme phenotypes cohort. P-value from SKAT-O tests on pathways in EP and in PPMI

cohorts are reported. Combined p-values obtained with a Fisher test are reported in the last column. Combined p-values with a Fisher test were only calculated when both p-values in

EP and in PPMI cohorts were found nominally significant (i.e., < 0.05). *Significant p-value after Bonferroni correction.

None of the variants, genes, or pathways tested passed
the significance threshold adjusted with Bonferroni’s method
(significance threshold of 7.2 × 10−6, 1 × 10−5, and 4.1 × 10−4

for a single test, SKAT-O on genes and pathways, respectively), in
the discovery phase only.

Replication
The replication data set consisted of 59 patients (27 cases and 28
controls). Mean age at PD diagnosis was 58 years old in both
groups. There were seven women in the cases and seven in the
controls. Pramipexole was the most frequent DA in each group:
60 and 76% in cases and controls, respectively. Doses of DA were
significantly higher in controls than in cases (372 LEDD vs. 193
mg/day LEDD, p < 0.001).

We applied the same analysis for the 10 most associated
variants, genes, and pathways. Only the “adenylate cyclase
activating pathway” replicated in the PPMI cohort (Table 4, p =
2 × 10−2 in the PPMI cohort and p = 1.56 × 10−3 in the EP
cohort, resulting in a Fisher combined p-value of 3.3 × 10−5).
Twenty-nine variants were tested in the EP and PPMI cohorts
(see Supplementary Data 3 and 4). In the EP cohort, variants
laid on eight different genes:ADCY 1, 3, 4, 5, 6, 8, 9, andGNAL. In
the PPMI cohort, the nine genes encoding the adenylate cyclase
from 1 to 9 were represented by at least one variant. Six variants
of the 29 tested in each cohort were common to both cohorts,
resulting in a total of 52 variants tested for this pathway. For
five of them (rs3181385 on ADCY4, rs3730071, rs115315671,
rs55770045 onADCY6, and rs2228949 onADCY8), the effect was
observed in the same direction in both cohorts.

DISCUSSION

In this study comparing whole exome sequences from two
extreme phenotypes, we found enrichment of functional variants
laying on brain-expressed genes of the “adenylate cyclase
activating pathway” in PD patients with ICDs. This result is
in accordance with a recent genome-wide association study
founding an association between pathological gambling and the
cAMP protein kinase signaling (32).

The dopamine replacement therapy that has been strongly
associated with ICDs in PD patients activates dopamine
receptors, 7-transmembrane domain G protein-coupled

receptors (GPCR), regulating adenylate cyclase activity. D2-like
receptors inhibit adenylyl cyclase, whereas stimulation of D1-like
receptors leads to its activation through Galpha(olf) in the
striatum (33). Cyclic-AMP then acts as a second messenger
by activating the protein kinase A (PKA), which, in turn,
phosphorylates several substrates and activates transcription
factors. In the case of concomitant glutamatergic activation,
the extracellular regulated kinase (ERK) MAPK pathway is also
activated in medium spiny neurons in the striatum (34). These
different routes converge to alteration in gene expression (35),
which is supposed to underlie long-term neuronal plasticity
induced by dopamine in the striatum (36). ERK activation in
the ventral striatum has been shown to play a central role in the
reward-associated pathway and in addictive behaviors related to
alcohol (37) and psychostimulant consumption (38). In mice,
activation of the ERK pathway in the dorsal striatum has been
shown to underlie abnormal involuntary movements, dyskinesia,
developed in response to chronic L-DOPA (39). In our study,
the pathway directly related to cAMP signaling the “Adenylate
cyclase activating pathway” was found to be associated with ICDs
in both EP and PPMI cohorts.

Interestingly, although below the significance threshold, many
of the most associated variants or genes tested were linked to the
cAMP and ERK-dependent pathways.

The most associated variant in our study was a missense
variant (rs3203777) in the PDCD6IP gene, also named DRIP4
for dopamine receptor interacting protein 4. This gene encodes
a protein that has been shown to upregulate D1 and D3 receptor
expression (40).

In addition, the rs1877652 variant, enriched in patients with
ICDs, is an intronic variant of the PDE2A gene encoding the
phosphodiesterase 2A controlling cAMP rates and is shown
to play a key role in the modulation of the signal induced
by dopamine in rodents (41). Seven patients with ICDs and
none of the controls had a coding variant on RasGRF2
(rs34193571), previously associated with alcohol addiction
(42), and coding a protein that mediates calcium-dependent
activation of the ERK pathway, modulating the presynaptic
effect on the activation of the basal ganglia mesolimbic
pathway (43).

Several top associated variants, genes, and pathways were
related to integrin systems, which also act on ERK signaling via
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downstream transducers, including the focal adhesion kinase,
FAK. Integrin and its downstream effectors have been shown to
be involved in structural changes that occurred in the dendritic
tree within the addiction to alcohol (44) or cocaine process
(45). A rare variant, rs2293647, lying in the integrin subunit α

6 gene ITGA6, was found only among cases (p = 7 × 10−4)
while the rs3743398, a variant lying on the ACAN gene belonging
to the aggrecan family, was found more frequently in controls,
suggesting a protective role. The most associated pathway in the
EP cohort was related to the integrin system although it was not
replicated in the PPMI cohort.

None of these variants was previously found to be associated
with ICDs in PD or in the general population. However, most
previous studies focused on candidate gene coding receptors,
transporters, or metabolism enzymes of the reward pathway
but did not investigate their downstream signaling effectors
(9–14).

The main limitation of our study is the small sample sizes
of both our hypothesis generation and the replication data sets,
which partly resulted from our stringent inclusion criteria (high
doses of DA, severe ICDs, or no ICDs at all), and our results
deserve further replication in larger cohorts. The underpowered
analysis may explain that only one pathway was replicated and
that most of the p-values obtained were far from reaching the
adjustment for themultiple comparison threshold of significance.
The lack of replicated results might also be due to differences
between the two cohorts in terms of exome sequencing coverage
or phenotypic definition of ICDs in the two cohorts. The selection
of extreme cases strongly associated with DA-induced ICDs
might have biased our results toward genes directly interacting
with these drugs, which was the purpose of the design of
the study. Our results also suggest that genetic susceptibility
to ICDs in PD would rather result from the combination of
multigenic variations than unique rare variants with strong
effects, which was already suggested for ICDs in the general
population (9).

This study highlights the potential important role of
enrichment of functional variants in genes coding proteins
of intracellular signaling cascades beyond neurotransmitter
receptors in the genetic susceptibility of ICDs. Subjects
with stronger signal transduction of GPCRs might be at
higher risk to develop ICDs when exposed to dopaminergic
therapy in PD. How these pathways interfere with drugs
or increase the individual susceptibility to ICDs remain to
be explored. The combination of clinical, neuroimaging,
and exome sequencing data focused on the study of the
polymorphism of the different pathways could help in
providing some predictability, in the future, for ICDs in
PD patients.
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screened with TaqMan assays for LRRK2 Gly2019Ser. In the absence of this mutation,

the coding sequences of the three genes were analyzed by Sanger sequencing and/or

next-generation sequencing. The data for the three genes were analyzed according to

age at onset, family history, ethnic origin and clinical features. We identified 160 index

cases (8.9%) with known pathogenic variants: 138 with pathogenic LRRK2 variants

(7.6%), including 136 with the Gly2019Ser mutation, 19 with SNCA point mutations

or genomic rearrangements (1.1%), and three with the VPS35 Asp620Asn mutation

(0.16%). Mutation frequencies were higher in familial than isolated cases, consistent with

autosomal dominant inheritance (12.0 vs. 7.3%; OR 1.7, 95% CI [1.2–2.4], p = 0.001).

PD patients with LRRK2 variants were more likely to have higher rates of late-onset PD

(>50 years; OR 1.5, 95% CI [1.0–2.1], p = 0.03), whereas those with SNCA mutations

tended to have earlier age at onset disease (≤50 years, p = 0.06). The clinical features

of LRRK2 carriers and those without any pathogenic variants in known PD-associated

genes were similar. The likelihood of detecting disease-causing mutations was higher in

cases compatible with autosomal dominant inheritance.

Keywords: Parkinson’s disease, LRRK2, G2019S, SNCA, VPS35, autosomal dominant inheritance, genotype-

phenotype correlations

INTRODUCTION

Heterozygous sequence variants of LRRK2 or VPS35, and
mutations or genomic rearrangements in SNCA cause
monogenic Parkinson’s disease (PD) with autosomal dominant
(AD) inheritance [reviewed in (1)]. Only seven of the hundred
or so variants of LRRK2 reported to date (Asn1437His,
Arg1441Gly/Cys/His, Tyr1699Cys, Gly2019Ser, and Ile2020Thr),
which appear to be clustered in functionally important regions
highly conserved throughout evolution, have been demonstrated
to be pathogenic on the basis of co-segregation with the disease
and absence or rarity in specific control populations (2). The
most common of these mutations, LRRK2 Gly2019Ser, has a
reported frequency of 0% to above 40%, depending on the
population considered (3), mostly due to a common founder
effect (4). SNCA mutations are the second most common cause
of autosomal dominant inherited PD; genomic duplications
have been detected in ∼1–2% of families with AD PD. Other
SNCA mutations, such as whole-locus triplications and a few
missense mutations (Ala53Thr/Glu/Val, Glu46Lys, Ala30Pro,
and Gly51Asp), are extremely rare [reviewed in (1)]. Finally,
VPS35 was the first PD-causing gene to be identified by next-
generation sequencing (NGS) in large multi-incident families
(5, 6). Subsequent studies in multiple ethnic groups, including a
large multi-center study, indicated that Asp620Asn was the only
pathogenic variant, with a relative frequency ranging from 0.1
to 1% in familial PD, depending on population background (7).
As the phenotype of AD PD closely resembles that of idiopathic
PD, we assumed that rare variants of genes causing AD PD
might also contribute to the etiology of isolated PD in the
French population.

Abbreviations: AAO, age at onset; AD, autosomal dominant; LRRK2, leucine-rich

repeat kinase 2; MMSE, mini mental state examination; PD, Parkinson’s disease;

VPS35, vacuolar protein sorting 35.

In this study, we aimed at determining the relative frequencies
of knownmutations of three genes, LRRK2, SNCA, andVPS35, in
a large cohort of familial and isolated cases. The high prevalence
of the LRRK2 Gly2019Ser mutation provided us with a unique
opportunity to compare in details clinical characteristics between
carriers of this mutation and patients with no known mutations
of PD-associated genes.

MATERIALS AND METHODS

Patients
In total, 673 PD patients from 592 families and 1,213
isolated cases without known consanguinity were recruited
from 1990 onwards, through the French Parkinson Disease
Genetics Network (the PDG group, Supplementary Material).
All participants underwent a detailed medical and family
history, and a family tree were drawn. Familial cases compatible
with AD inheritance, and referred to here as AD PD
cases, were defined as AD cases with at least one other
affected relative in a different generation, identified by an
examination of secondary cases (n = 146) or on the basis
of family history (n = 446). PD was diagnosed according to
the clinical diagnostic criteria of the UK Parkinson Disease
Society Brain Bank (PDSBB) (8). Comprehensive standardized
interviews and neurological examinations were performed by
movement disorder experts. Motor and non-motor symptoms
were assessed by evaluating Unified Parkinson Disease Rating
Scale (UPDRS) scores, Hoehn and Yahr staging, autonomic
dysfunction, sleep, cognitive [Mini Mental State Examination
(MMSE)], neuropsychological and behavioral scores. Early
onset was defined as the onset of symptoms before the age
of 51 years.

Informed consent was obtained from all participants, and
genetic studies were approved by local ethics committees.
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Most index cases were of European ancestry (n = 1,530;
84.8%), mostly French (n= 1,202; 78.6%); the others were North
African (n = 221; 12.2%) or of other origins, including Asian,
Sub-Saharan African or “mixed” origins (n = 42; 2.3%); or of
unknown origin (n = 12; 0.7%). This study included 226 index
cases from families with PD compatible with AD inheritance
reported elsewhere (9, 10).

Methods
Genomic DNA was obtained from peripheral blood lymphocyte
or saliva samples (OrageneTM DNA Self-Collection Kit, DNA
Genotek), by standard protocols. Patients with variants of the
GBA risk factor (n = 153), or with variants of genes for which
the causal role in AD PD was uncertain, such as GIGYF2 (n =

6), EIF4G1 (n = 2), and c9ORF72 (n = 4), were not included
in this study. In addition, we excluded 25 (23 with bi-allelic
PRKN mutations and two with bi-allelic PINK1 mutations) of
the 1,089 PD index cases who have been screened for autosomal
recessive (AR)-PD associated genes [814 by gene panel/exome
sequencing (see below) and 275 by direct sequencing of the two
most frequent AR PD genes, PRKN and PINK1].

All index cases were genotyped in duplicate for LRRK2
Gly2019ser, by the TaqMan allelic discrimination Assay-
By-Design method, in accordance with the manufacturer’s
instructions, with 8 ng of DNA mixed with the TaqMan
Genotyping Master Mix (Thermo Fisher Scientific Inc.)
and custom-produced TaqMan SNP genotyping assays
[C_63498123_10 (rs34637584), Thermo Fisher Scientific
Inc.] on an Applied Biosystems PRISM 7000 sequence detection
system (Thermo Fisher Scientific Inc.) or LightCycler R© 480
machine (Roche, Life Technologies SAS). All patients found not
to carry LRRK2 Gly2019ser were then screened for pathogenic
variants of the coding sequences of LRRK2, SNCA, and VPS35,
by Sanger sequencing (n = 855), targeted sequencing of a
customized next-generation sequencing (NGS) gene panel
containing the 22 most prevalent PD-associated genes (n = 404;
Supplementary Table 1), or available whole-exome sequencing
(n = 410), as previously described (11, 12). We considered
known pathogenic mutations of the three genes.

Sanger sequencing was used to confirm variants and co-
segregation analyses were performed, where possible. SNCA
rearrangements were detected by semi-quantitative multiplex
PCR (13) or by the SALSA multiplex ligation-dependent
probe amplification method (MLPA, MRCHolland, Amsterdam,
the Netherlands; http://www.mlpa.com), according to the
manufacturer’s instructions.

Statistical Analysis
Demographic and clinical characteristics are expressed as means
and standard deviations for continuous variables and as counts
and percentages for qualitative variables, separately for each
group (i.e., with and without mutation). These characteristics
were compared between patients with the LRRK2 Gly2019ser
mutation (LRRK2+) and those with no mutations of genes
known to be associated with PD (genetically undefined PD), in
Welch’s t-tests for continuous variables and Fisher’s exact tests
for qualitative variables.

We used generalized linear models (GLMs) to compare
clinical features between patients with the LRRK2 Gly2019ser
mutation and those with genetically undefined PD, with
adjustment for sex, age at onset (AAO), and disease duration.
Disease duration was not included in models of clinical features
at onset. We used GLMs with identity links and normal
distributions for continuous clinical features, and GLMs with
logit links and Bernoulli distributions for binary clinical features.
Fisher type II tests were performed to test each effect, and effect
size was estimated with Cohen’s f2. We corrected for multiple
testing by the Benjamini-Hochberg method. Residual normality
and heteroskedasticity were checked visually. Influencers and
outliers were checked by calculating hat values and Cook
distances. Only patients with no missing data for the covariables
included in the models, such as AAO, sex, and disease duration,
were retained for analysis. Statistical analyses were performed
with R 3.6.1.

RESULTS

Demographic and Clinical Data
Table 1 shows the baseline demographic and clinical
characteristics of the 1,805 PD index cases included in the
study. Men (n = 1,106, 61.3%) and early AAO cases (mean 47.4
[SD 12.5]; range 9–86 years; Table 1) were overrepresented,
particularly among isolated cases (mean 46.1 [SD 12.5]; range:
9–79 years) as opposed to familial cases (mean 50.0 [SD 12.1];
range 10–86 years).

Summary of the Mutations Identified
We identified seven different knownmutations of LRRK2, SNCA,
and VPS35 in 160 of the 1,805 PD index cases (8.9%, 95%
confidence interval (CI): [7.6–10.2]). With the exception of rare
cases with the homozygous LRRK2Gly2019Ser mutation (n= 6),
all the knownmutations and gene multiplications identified were
heterozygous. We found that 136 of the 138 LRRK2 mutation
carriers (7.5% of index cases, 95% CI [6.4–8.9]) carried the
Gly2019Ser mutation; 13 of these patients had already been
reported elsewhere (9). Two index cases carried the rare LRRK2
Arg1441His mutation (9). SNCA mutations were found in 19
index cases (1.1%, 95% CI [0.63–1.6]), including 11 families
already reported (13–15): one with whole-gene triplications, 14
with duplications, one with the Gly51Asp mutation, and three
with the Ala53Thr mutation. The three PD index cases with
the only VPS35 mutation identified, Asp620Asn (0.17%) were
described in a previous report (10).

The LRRK2 Gly2019Ser mutation was more common in PD
index cases of North-African origin (100/221, 45.2%; 95% CI
[38.7–51.8]) than in Europeans (36/1,530, 2.4%; 95% CI [1.7–
3.2]) (Fisher’s exact test: odds ratio (OR) = 34.3, 95% CI [22.0–
53.8], p < 0.0001; Table 2). By contrast, SNCA point mutations
and locus triplications/duplications were found mostly in PD
index cases of European ancestry, accounting for 1.2% (18/1,530)
of such patients, whereas only one case of North-African
ancestry (0.45%, 1/221) carried an SNCA duplication. VPS35
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TABLE 1 | Baseline demographics for our study population.

All index cases AD PD index cases Isolated cases

n = 1,805 n = 592 n = 1,213

Sex, n (%)

Male 1,106 (61.3) 342 (57.8) 764 (63)

Female 699 (38.7) 250 (42.2) 449 (37)

Ancestry, n (%)

Europeans 1,530 (84.8) 525 (88.6) 1,005 (82.8)

North-Africans 221 (12.2) 55 (9.3) 166 (13.7)

Other/mixed origins 42 (2.3) 11 (1.9) 31 (2.6)

Unknown origins 12 (0.7) 1 (0.2) 11 (0.9)

Age at onset, (SD) 47.4 (12.5) 50.0 (12.1) 46.1 (12.5)

Range, years 9–86 10–86 9–79

Age at examination, (SD) 55.8 (13.3) 57.9 (12.5) 54.9 (13.5)

Range, years 12–88 16–88 12–85

Early-onset (≤50 years), n (%) 1,065 (62.7) 311 (54.6) 754 (66.8)

Late-onset (>50 years), n (%) 634 (37.3) 259 (45.4) 375 (33.2)

Disease duration, (SD) 8.4 (6.8) 7.8 (6.7) 8.8 (7.4)

Range, years 0–52 0–52 0–46

Frequencies were compared in Fisher’s exact tests for qualitative traits and means were compared in Welch’s t-tests for continuous variables. Age-at-onset was missing for 106

index cases.

AD, autosomal dominant; PD, Parkinson’s disease; SD, standard deviation.

mutations were identified exclusively in patients of European
origin, accounting for 0.20% (3/1,530) of these individuals.

Overall, mutations were more frequently identified in familial
(71/592, 12.0%; 95% CI [9.5–14.9]) than in isolated cases
(89/1,213, 7.3%; 95% CI [5.9–9.0], Fisher’s exact test: OR 1.7, 95%
CI [1.2–2.4], p = 0.001), particularly for SNCA (2.4%, 14/592 vs.
0.41%, 5/1,213, Fisher’s exact test: OR 5.9, 95% CI [2.1–16.3], p=
0.0003;Table 2). An analysis of PD cases according to age at onset
(≤50 years vs. >50 years) showed that LRRK2 mutations were
more frequent among late-onset PD cases (61/636, 9.6%; 95% CI
[7.4–12.2] vs. 71/1063, 6.7%; 95% CI [5.3–8.4], Fisher’s exact test:
OR 1.5, 95% CI [1.0–2.1], p = 0.03; Table 2). By contrast, SNCA
mutation carriers tended to have an earlier AAO (16/1063, 1.5%
vs. 3/636, 0.5%, p = 0.06).

Clinical Characteristics of Mutation
Carriers and Comparison of LRRK2
Gly2019Ser Mutation Carriers (LRRK2+)
With Individuals With No Known PD
Mutations (Genetically Undefined PD)
Co-segregation analyses identified 193 PD patients as mutation
carriers: 151 with LRRK2 Gly2019Ser and five with Arg1441His
mutations, 29 with SNCA (see below) and eight with VPS35
Asp620Asn mutations.

SNCA

The clinical characteristics of the 29 PD patients carrying either
SNCA rearrangements [triplications (n = 2) and duplications (n
= 21)] or missense mutations [Ala53Thr (n = 3) and Gly51Asp
(n = 3)] are shown in Table 3. All but three of the families

concerned originated from France. The remaining three families,
originating from Italy, Turkey and Morocco, all had SNCA
duplications. Within this cohort, SNCA duplications were the
most frequentmutation identified (14/19, 73.7%), followed by the
Ala53Thr mutation (3/19, 18.8%). Disease onset occurred earliest
in patients with the Ala53Thr mutation (mean 34.7 [SD 7.6],
range 26–40 years).

Patients carrying the Ala53Thr mutation had an extra-
pyramidal parkinsonian syndrome, but with heterogeneity
between patients with the same mutation: Patient 1172-001, with
both SNCA Ala53Thr and a heterozygous PRKN Thr240Met
variant, had atypical PD, with a poor response to levodopa, early
motor fluctuations and cerebellar signs. He rapidly developed
impulse control disorders. This patient currently displays no
cognitive decline. He had a bilateral subthalamic deep brain
stimulation (STN-DBS). He received clozapine treatment for
delusions with a beneficial effect. Patient 1219-001 presented a
parkinsonian syndrome that responded well to levodopa, but
developed severe dysarthria. She underwent unilateral internal
globus pallidus (GPi)-DBS. This patient presented no major
cognitive and behavioral signs other than an alteration of
executive functions. A third PD patient, 196-016 presented early-
onset (26 years) typical PD that responded well to levodopa.
Detailed clinical data are provided in Supplementary Table 2.

Both SNCA locus triplications and Gly51Asp mutation were
associated with early-onset atypical parkinsonism (mean AAO:
42.0 years [SD 8.5], range: 36–48 years and mean AAO:
42.0 [SD 15.7], range: 31–60 years, respectively). The patients
with SNCA triplications were characterized by severe cognitive
impairment in one of two carriers, dysautonomia, a poor
response to levodopa in both patients. The three Gly51Asp
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TABLE 2 | Overall frequencies of LRRK2, SNCA, and VPS35 mutations according to index case ethnicity, family history of Parkinson’s disease and age at onset.

Europeans North-

Africans

North-Africans

vs. Europeans

OR, 95% CI, p

AD PD Isolated

cases

AD PD vs.

isolated cases

OR, 95% CI, p

EO-PD LO-PD LO-PD vs.

EO-PD

OR, 95% CI, p

n = 1,530 n = 221 n = 592 n = 1,213 n = 1,063 n = 636

All LRRK2, n (%,

95% CI)

38 (2.5%,

[1.8–3.4])

100 (45.2%,

[38.6–52.0])

OR = 32.5,

[21.4–49.2],

p < 0.0001

54 (9.1%,

[6.9–11.7])

84 (6.9%,

[5.6–8.5])

OR = 1.3,

[0.9–1.9],

p = 0.11

71 (6.7%,

[5.3–8.4])

61 (9.6%,

[7.4–12.2])

OR = 1.5,

[1.0–2.1],

p = 0.03

Gly2019Ser n (%) 36 (2.4%) 100 (45.2%) 52 (8.8%) 84 (6.9%) 71 (6.7%) 59 (9.3%)

Arg1441His n (%) 2 (0.13%) 0 (0%) 2 (0.34%) 0 (0%) 0 (0%) 2 (0.32%)

All SNCA, n (%,

95% CI)

18 (1.2%,

[0.7–1.9])

1 (0.45%,

[0.01–2.5])

OR = 0.38,

[0.05–2.9],

p = 0.50

14 (2.4%,

[1.3–3.9])

5 (0.41%,

[0.1–1.0])

OR = 5.9,

[2.1–16.3],

p = 0.0003

16 (1.5%,

[0.9–2.4])

3 (0.47%,

[0.1–1.4])

OR = 0.31,

[0.09–1.1],

p = 0.06

Triplications n (%) 1 (0.065%) 0 (0%) 1 (0.17%) 0 (0%) 1 (0.094%) 0 (0%)

Duplications n (%) 13 (0.85%) 1 (0.5%) 11 (1.9%) 3 (0.25%) 11 (1.0%) 3 (0.47%)

Ala53Thr n (%) 3 (0.20%) 0 (0%) 1 (0.17%) 2 (0.16%) 3 (0.28%) 0 (0%)

Gly51Asp n (%) 1 (0.065%) 0 (0%) 1 (0.17%) 0 (0%) 1 (0.094%) 0 (0%)

VPS35

Asp620Asn, n (%,

95% CI)

3 (0.20%,

[0.04–

0.57])

0 (0%) p = 1 3 (0.51%,

[0.1–1.5])

0 (0%) p = 0.04 2 (0.19%,

[0.02–0.7])

1 (0.16%,

[0.0–0.9])

OR = 0.84,

[0.08–9.2], p = 1

Total mutations, n

(%, 95% CI)

59 (3.9%,

[2.9–4.9])

101 (45.7%,

[39.0–52.5])

OR = 21.0,

[14.5–30.4],

p < 0.0001

71 (12.0%,

[9.5–14.9]

89 (7.3%,

[5.9–9.0])

OR = 1.7,

[1.2–2.4,

p = 0.001

89 (8.4%,

[6.8–10.2]

65 (10.2%,

[8.0–12.8]

OR = 1.3,

[0.9–1.8],

p = 0.22

Age at onset was missing for 106 cases, including 6 with the LRRK2 G2019S mutation. We also considered patients with missing AAO data examined at an age ≤50 years (n = 26) to have early-onset PD.

AD, autosomal dominant; CI, confidence intervals; EO, early-onset; LO, late-onset; OR, odds ratio; PD, Parkinson’s disease.
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mutation carriers had shorter disease duration (mean: 3.7 years
[SD 3.1], range: 1–7 years), a mild-to-moderate response to
levodopa, frequent psychiatric symptoms but no dementia or
autonomic dysfunction (Supplementary Table 2). By contrast,
AAO was highest in patients with SNCA duplications (mean
AAO: 45.3 years [SD 6.3], range: 36–56 years), consistent
with typical PD and a good response to levodopa (100%),
with more than 50% of these patients reporting levodopa-
induced motor complications. Non-motor symptoms, including
depression/psychosis and dysautonomia, were present in about
one third of the reported cases, but cognitive decline was
less frequent (18.8%, 3/16). Detailed clinical characteristics
for PD patients with SNCA multiplications are provided in
Supplementary Table 3.

VPS35

Five of the eight PD patients carrying VPS35 Asp620Asn
mutations have been described before (10). The three
newly genotyped patients were relatives of patient 838–006
(Supplementary Table 4). Briefly, patients carrying VPS35
mutations had features similar to those with idiopathic PD,
with a mean AAO of ∼57 years (range: 38–71 years, Table 3):
all patients presented the classical triad, with akinesia as the
predominant symptom at onset (100%), but a much lower
frequency of tremor as an initial symptom (37.5%), a good
response to levodopa (100%), with <37% of those treated
developing dyskinesias and motor fluctuations, and a low rate of
dysautonomia (2/8, 25%), with no cognitive or neuropsychiatric
symptoms or atypical signs.

LRRK2

We compared the clinical features of the LRRK2 G2019S+ PD
patient (LRRK2+) group with those of PD patients with no
mutations of known PD-associated genes, excluding subjects
with missing data for the covariables included in the models,
such as sex, AAO, and disease duration: 135/151 LRRK2+ and
1,552/1,693 PD patients without mutations were included in the
final analysis (Table 4). The proportion of men was greater in
the genetically undefined PD patient group than in the LRRK2+
group (61.1 vs. 51.9%, p = 0.04). The mean AAO of the LRRK2
Gly2019Ser carriers was 4 years higher than that of non-carriers
(p < 0.001). The Gly2019Ser carriers were more likely to be
of North-African ancestry (p < 0.001) and to report a family
history of PD (p < 0.02). They had a higher UPDRS III score
during the “OFF” state and a higher Hoehn and Yahr score
during the “ON” state than non-carriers, but these results were
no longer significant after adjustment for AAO and disease
duration. The frequencies of signs at onset and at examination,
the degree of response to treatment, motor complications and
non-motor signs, including cognitive impairment and autonomic
dysfunction were similar in both groups.

Clinical comparisons between heterozygous (n = 144) and
homozygous (n = 7) Gly2019Ser mutation carriers revealed no
significant differences in sex (men: 52.1 vs. 42.9%, OR 1.4, CI
[0.31–6,7], p = 0.71), AAO (mean 51.4 [SD 12.1] vs. mean 53.7
[SD 11.2] years, p = 0.62), disease duration (mean 8.7 [SD 6.7]

vs. 9.1 [SD 4.5] years, p = 0.87) or clinical presentation, but the
number of homozygous carriers was small.

Unlike LRRK2 Gly2019Ser carriers, all patients with the
Arg1441His mutation were French and all reported a family
history of PD. They had a shorter disease duration (mean: 5.2
years [SD 5.1], range: 2–14 years vs. mean 9.0 years [SD 8.0],
range: 0.5–63 years), were more likely to develop an akinetic-
rigidmotor phenotype (80 vs. 53%), had a slightly better response
to levodopa (100 vs. 90%), and an absence of cognitive and
neuropsychiatric symptoms, but a similar mean age at onset (52.6
years [SD 9.6], range: 39–64 years vs. 51.4 years [SD 12.1], range:
29–86 years).

DISCUSSION

This is one of the largest national multi-center studies to
investigate the frequency of variants of the three major genes
unequivocally linked to AD PD—LRRK2, SNCA, and VPS35—
and their associated phenotypes in a large cohort of >1,800
French and North African index PD cases. We report an
overall mutation frequency of 8.9% across both populations,
the LRRK2 G2019S mutation being the most frequently
identified variant (7.5%), particularly in familial rather than
isolated cases. However, the frequency of mutations differed
considerably between populations. We confirm here that the
LRRK2 Gly2019Ser mutation is the principal genetic cause of
PD in our cases of North-African ancestry, reaching an overall
frequency of 45% (100/221) and 62% (34/55) in familial cases.
By contrast, this mutation was present at a much lower rate of
2.4% (36/1,530) in our native French PD cases. Our findings are
consistent with those of previousmulti-center studies (16). SNCA
duplications were the second most common type of mutations,
identified in 14 index cases (0.78%). SNCA duplication carriers
were mostly of European ancestry, particularly French (93%),
tended to be predominantly females, probably due to random
or recruitment bias, and had a higher frequency of a family
history of PD. We also identified three unrelated PD patients
carrying the SNCA Ala53Thr mutation. Although generally rare,
this mutation appears to be particularly common in the Italian
and Greek populations, due to a founder effect (17, 18). Only
four individuals without Greek or Italian ancestry have been
reported to carry this mutation, in haplotypes different from
those reported in Greek and Italian families (19–22). Additional
haplotype analysis would determine the ancestral origin of our
three French mutation carriers. Other rare known mutations
were also identified in our study: VPS35 Asp620Asn and LRRK2
Arg1441His in three and two AD PD families, respectively. At
least 25 LRRK2 Arg1441His carriers, including those described
here, have been reported to date [(3); www.mdsgene.org]. Most
were Caucasian, and all but one case reported a family history
of the disease. This pathogenic variant was not found in more
than 6,000 healthy controls tested (23) and is very rare in the
Genome Aggregation Database (GnomAD) (1/31,298 alleles); it
is therefore very likely to be pathogenic. Consistent with this
conclusion, the Arg1441His variant affects the same amino-
acid residue as two other recurrent PD-causing mutations
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TABLE 3 | Summary of the clinical data for patients carrying SNCA, VPS35, and LRRK2 Arg1441His mutations identified in this study.

SNCA rearrangements SNCA missense mutations VPS35 LRRK2

Triplicationsa Duplicationsa Ala53Thr Gly51Aspb Asp620Asnc Arg1441Hisd

No. of carriers (index cases) 2 (1) 21 (14) 3 (3) 3 (1) 8 (3) 5 (2)

No. of index cases with family history

of PD

1/1 11/14 (78.6%) 1/3 (33.3%) 1/1 3/3 (100%) 2/2 (100%)

Sex (M:F) 2:0 7:14 1:2 1:2 5:3 2:3

Mean age at onset (SD) [range], years 42 (8.5) [36–48] 45.3 (6.3)

[36–56]

34.7 (7.6)

[26–40]

42.0 (15.7)

[31–60]

57.1 (10.7)

[38–71]

52.6 (9.6)

[39–64]

Mean age at examination (SD)

[range], years

50 (11.3)

[42–58]

52.2 (6.0)

[43–64]

42.7 (17.5)

[28–62]

45.7 (18.7)

[32–67]

65.0 (10.1)

[52–80]

57.9 (10.0)

[42–66]

Mean disease duration (SD) [range],

year

8 (2.8) [6–10] 6.3 (3.9) [1–16] 8.2 (12.0)

[0.5–22]

3.7 (3.1) [1–7] 7.9 (5.4) [1–17] 5.2 (5.1) [2–14]

Signs at onset

Akinesia 1/2 (50%) 14/18 (77.8%) 3/3 (100%) 2/2 (100%) 7/7 (100%) 4/5 (80%)

Tremor 2/2 (100%) 6/18 (33.3%) 1/3 (33.3%) 0/2 (0%) 3/8 (37.5%) 1/4 (25%)

Micrographia 0/2 (0%) 8/18 (44.4%) 1/2 (50%) 1/2 (50%) 3/6 (50%) 2/5 (40%)

Dystonia 0/2 (0%) 0/17 (0%) 0/3 (0%) 0/2 (0%) 0/8 (0%) 1/4 (25%)

Clinical signs at examination

Tremor 2/2 (100%) 11/19 (57.9%) 2/3 (66.7%) 1/3 (33.3%) 6/8 (75%) 4/4 (100%)

Bradykinesia 2/2 (100%) 19/19 (100%) 3/3 (100%) 3/3 (100%) 8/8 (100%) 5/5 (100%)

Rigidity 2/2 (100%) 19/19 (100%) 3/3 (100%) 3/3(100%) 8/8 (100%) 5/5 (100%)

Asymmetry 1/2 (50%) 16/17 (94.1%) 3/3 (100%) 3/3 (100%) 8/8 (100%) 5/5 (100%)

Apraxia NA 0/16 (0%) 0/3 (0%) 0/2 (0%) 0/8 (0%) 0/5 (0%)

Dysarthria NA 3/15 (20%) 1/3 (33.3%) 0/2 (0%) 0/8 (0%) 0/3 (0%)

Mean (or value) UPDRS III OFF (/108)

(SD) [range], year

51 (7.1) [47, 56] 40.7 (23.7)

[5–86]

47.7 (20.4)

[30–70]

13 25 (9.9) [18–32] 23.8 (23.3)

[2–56]

Mean (or value) UPDRS III ON (/108)

(SD) [range], year

44.5 (2.1)

[43–46]

17.7 (13.2)

[4–48]

34 (1.4) [33–35] 7 21.9 (8.1)

[8–33]

10.5 (9.5)

[0–19]

Mean (or value) Hoehn and Yahr ON

(/5) (SD) [range], year

NA 1.9 (0.64) [1–3] 3 1.5 2.3 (0.5) [2–3] 1.3 (0.3) [1–1.5]

Treatment and its complications

Levodopa responsiveness# 0/2 (0%) 15/15 (100%) 2/3 (66.7%) Mild to

moderate

5/5 (100%) 5/5 (100%)

Dyskinesias NA 9/15 (60%) 2/3 (66.7%) 2/3 (66.7%) 2/8 (25%) 1/4 (25%)

Motor fluctuations NA 8/15 (53.3%) 2/3 (66.7%) 2/3 (66.7%) 3/8 (37.5%) 3/4 (75%)

Dystonia NA 3/15 (20%) 0/3 (0%) 1/3 (33.3%) 0/8 (0%) 2/4 (50%)

Non-motor signs

Cognitive impairment

(MMSE<24/30)

1/2 (50%) 3/16 (18.8%) 0/3 (0%) 0/2 (0%) 0/8 (0%) 0/5 (0%)

Dysautonomia* 2/2 (100%) 6/16 (37.5%) 1/3 (33.3%) 0/2 (0%) 2/8 (25%) 2/5 (40%)

Depression/neuropsychiatric

disorders

NA 4/16 (25%) 1/3 (33.3%) 2/3 (66.7%) 0/8 (0%) 0/5 (0%)

Patients previously reported by.
a Ibanez et al. (13) and Books et al. (15).
bLesage et al. (14).
cLesage et al. (10).
dLesage et al. (9).
#Levodopa responsiveness was defined as a >30% improvement in subjective perceived motor symptoms.

*Dysautonomia included at least one of the following three signs: orthostatic hypotension, erectile dysfunction, and/or urinary problems.

AD, autosomal dominant; MMSE, Mini Mental State Examination; NA, not available; PD, Parkinson’s disease; UPDRS III, the motor subsection of the Unified Parkinson’s Disease

Rating Scale.

(Arg1441Cys and Arg1441Gly). Finally, previous haplotype
analyses did not support the hypothesis of a common founder for
the Arg1441His variant, instead suggesting that there might be a

mutational hotspot. Following initial reports of the existence of
several VPS35 variants (5, 6), pathogenicity has been confirmed
only for the Asp620Asn variant. Consistent with our findings,
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TABLE 4 | Comparison of demographic and clinical characteristics of patients with Parkinson’s disease by LRRK2 mutation status (LRRK2 carriers vs. patients without

mutations in known Parkinson’s disease-associated genes).

LRRK2 G2019S+ and patients without mutations;

unadjusted comparisons

LRRK2 G2019S + and patients without mutations; adjusted

comparisons

LRRK2+ n = 135

(8%)

Genetically undefined PD

n = 1,552 (92%)

p-value Coefficient or OR (CIs)

(reference: non-mutation

carriers)
∫

p-value p-value

adjustedU

Demographic characteristics

Sex (% male) 70/135 (51.9%) 949/1,552 (61.1%) 0.04*

Age at onset (SD), years 51.6 (12.8) 47.3 (12.8) <0.001*

Age at examination (SD),

years

60.6 (13.3) 55.7 (13.4) <0.001*

Disease duration (SD),

years

9.0 (8.0) 8.4 (7.0) 0.32

Ancestry <0.001*

European 43/135 (31.9%) 1,390/1,543 (90.0%)

North-African 92/135 (68.1%) 110/1,543 (7.1%)

Other/Mixed origins 0/135 (0.00%) 43/1,543 (2.8%)

Family history of PD 0.02*

AD PD 61/135 (45.2%) 536/1,552 (34.5%)

Isolated cases 74/135 (54.8%) 1,016/1,552 (65.5%)

Clinical characteristics

Levodopa

responsiveness#
69/77 (89.6%) 788/958 (82.3%) 0.12 1.76 [0.81;3.80] 0.13 0.44

Symptoms at onset

Dystonia 8/101 (7.9%) 125/1,306 (9.6%) 0.72 0.88 [0.41;1.87] 0.74 0.78

Akinesia 57/108 (52.8%) 805/1,332 (60.4%) 0.13 0.75 [0.50;1.11] 0.15 0.44

Tremor 72/107 (67.3%) 809/1,350 (59.9%) 0.15 1.32 [0.87;2.01] 0.19 0.44

Micrographia 22/102 (21.6%) 454/1,314 (34.6%) 0.009* 0.50 [0.31;0.81] 0.003* 0.06

Symptoms at examination

Bradykinesia 109/111 (98.2%) 1,369/1,411 (97.0%) 0.77 1.73 [0.41;7.26] 0.42 0.63

Rigidity 106/111 (95.5%) 1,333/1,406 (94.8%) 1.00 1.12 [0.44;2.85] 0.80 0.80

Tremor 89/111 (80.2%) 1,040/1,397 (74.4%) 0.21 1.32 [0.81;2.15] 0.25 0.50

Asymmetry 105/108 (97.2%) 1,313/1,366 (96.1%) 0.79 1.64 [0.50;5.40] 0.38 0.62

Motor features

UPDRS III ON (/108) (SD) 19.5 (13.4) 18.7 (13.2) 0.57 −0.73 [−3.62;2.16] 0.62 0.76

UPDRS III OFF (/108) (SD) 38.9 (18.2) 32.5 (17.6) 0.02* 4.91 [−0.33;10.14] 0.07 0.44

Hoehn and Yahr ON (/5)

(SD)

2.2 (1.0) 2.0 (0.9) 0.03* 0.13 [−0.06;0.31] 0.17 0.44

Hoehn and Yahr OFF (/5)

(SD)

2.7 (1.1) 2.4 (1.0) 0.21 0.18 [−0.18;0.54] 0.33 0.59

Motor complications

Dyskinesias 52/98 (53.1%) 537/1,164 (46.1%) 0.21 1.42 [0.90;2.25] 0.13 0.44

Motor fluctuations 58/98 (59.18%) 640/1,164 (55.0%) 0.46 1.18 [0.75;1.86] 0.48 0.66

Dystonia 27/98 (27.6%) 303/1,164 (26.0%) 0.72 1.11 [0.68;1.80] 0.68 0.77

Non-motor features

Dysautonomia* 9/94 (9.6%) 111/1,214 (9.1%) 0.85 0.84 [0.40;1.75] 0.64 0.76

MMSE score (/30) (SD) 27.4 (3.7) 28.2 (3.2) 0.07 −0.56 [−1.41;0.28] 0.19 0.44

Data are given as the mean ± standard deviation for continuous variables and as counts (percentages) for qualitative variables.

Welch’s t-test was used to compare the groups for continuous variables and Fisher’s exact test was used for binary variables. Coefficients for continuous clinical features and odds

ratios (ORs) for binary clinical features, confidence intervals (CIs) and P-values were calculated from GLMs with mutation status, sex, age, and disease duration, for all variables except

for onset variables, for which only mutation status, sex, and age at onset were added. Linear models were used for continuous variables; GLMs with logit link and Bernoulli distributions

were used for binary variables.
#Levodopa responsiveness was defined as a >30% improvement in subjective perceived motor symptoms.

*Dysautonomia included at least one of the following three signs: orthostatic hypotension, erectile dysfunction, and/or urinary problems.

AD, autosomal dominant; MMSE, CI, Confidence Intervals; Mini Mental State Examination; OR, Odds Ratio; PD, Parkinson’s disease; UPDRS III, the motor subsection of the Unified

Parkinson’s Disease Rating Scale.
UP corrected for multiple testing by the Benjamini-Hochberg procedure.

*p < 0.05.
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this recurrent mutation has been identified predominantly in
families of Caucasian descent affected by ADPD. Ameta-analysis
of 21,824 PD patients from 15 case-control studies performed
worldwide from 2011 to 2016 identified an overall mutation
frequency of 0.12% (0.29% in familial cases and 0.023% in isolated
cases) [reviewed in (24)], and an absence of this mutation from
healthy controls and the GnomAD public database.

The clinical features of our LRRK2mutation carriers, whether
heterozygous or homozygous, were indistinguishable from
those of patients with no mutations in known PD-associated
genes. These features overlapped those of typical, idiopathic
PD. In our study, patients with the G2019S mutation had
a mean AAO of ∼52 years, a high proportion of patients
with late AAO (>50 years), a good response to levodopa, a
predominance of tremor as a first symptom of PD, about a
quarter had cognitive impairment, about 10% had dysautonomia,
but no other atypical signs after a mean disease duration
of ∼10 years. Although the clinical features of the LRRK2
Gly2019Ser carriers compared with patients with idiopathic
PD in literature are conflicting [meta-analysis in (25)], even
for the same ethnic PD population [i.e., of North-African
origin; (26–31)], our data are consistent with those of 724
LRRK2 mutation carriers listed in the MDSGene database.
Like LRRK2 mutation carriers, VPS35 Asp620Asn carriers had
a phenotype very similar overall to that of idiopathic PD:
absence of atypical signs, excellent levodopa response, normal
cognition, and absence of neuropsychiatric features. However,
the mean AAO of our patients appeared to be later (57 years)
than that reported in a recent meta-analysis (51 years) (32),
due to the presence of multiple affected relatives with a late
onset of disease within the same family (see Supplementary

Table 4). Lastly, SNCA mutation carriers had motor features
similar to those of idiopathic PD, but an overall earlier
AAO, a shorter disease course, a higher frequency of motor
complications, a higher frequency of non-motor signs and
symptoms (cognitive decline in 17%, autonomic dysfunction
in 39%, and psychotic symptoms, and depression in 32%).
Atypical signs have also been observed in rare PD patients
carrying the SNCA Gly51Asp mutation (14). In this study, we
also identified a rare known variant of SNCA, His50Gln, in the
homozygous state. This variant has been described as a causal
variant associated with late-onset PD, dementia, and dystonia
(33, 34), but a revaluation in larger datasets of PD patients
and controls, including the GnomAD database (23/282,808
alleles), provided no evidence of pathogenicity for this variant
(35). However, interestingly, the 42 year-old female patient
carrying the His50Gln variant in our cohort had clinical features
similar to those observed in carriers of other types of SNCA
mutation carriers. She presented an early AAO (32 years), an
excellent response to levodopa, motor complications, akinetic-
rigid parkinsonism, and dystonia, an absence of cognitive decline
and neuropsychiatric symptoms, but the presence of autonomic
dysfunction and atypical neurological signs, such as postural
instability, REM sleep behavior disorder (RBD) and impulse
control disorders (see Supplementary Table 2). However, in this
study, the SNCA His50Gln was found using our customized
gene panel and in absence of whole exome/genome sequencing

to detect other possible pathogenic mutations, its pathogenicity
remains inconclusive.

The principal strength of this national multi-center study is
the large group of well-phenotyped and genotyped patients and
family members recruited at the 16 different PDG centers, and
the use of a standardized protocol, ensuring comparable, and
consistent clinical data reporting and diagnoses at each center.
This enabled us to refine the estimated prevalence of mutations
in genes causing AD PD in France. We show that our population,
althoughmixed, has a relatively high frequency of SNCA, LRRK2,
and VPS35 mutations. However, the clinical data were cross-
sectional, most patients were European or North African, and our
populations were biased toward EO cases.

In most instances, the phenotypes of cases due to AD PD
mutations are indistinguishable from those of cases without
mutations, demonstrating the need for genetic analysis for
their identification. Gene-specific disease-modifying therapies
are currently being developed and tested. More generalized
genetic testing is therefore required in PD patients, to identify
those most likely to benefit from personalized care (36).
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Cancer and Parkinson’s disease (PD) define two disease entities that include opposite

concepts. Indeed, the involved mechanisms are at different ends of a spectrum related

to cell survival - one due to enhanced cellular proliferation and the other due to premature

cell death. There is increasing evidence indicating that patients with neurodegenerative

diseases like PD have a reduced incidence for most cancers. In support, epidemiological

studies demonstrate an inverse association between PD and cancer. Both conditions

apparently can involve the same set of genes, however, in affected tissues the expression

was inversely regulated: genes that are down-regulated in PD were found to be

up-regulated in cancer and vice versa, for example p53 or PARK7. When comparing

glioblastoma multiforme (GBM), a malignant brain tumor with poor overall survival, with

PD, astrocytes are dysregulated in both diseases in opposite ways. In addition, common

genes, that are involved in both diseases and share common key pathways of cell

proliferation and metabolism, were shown to be oppositely deregulated in PD and

GBM. Here, we provide an overview of the involvement of PD- and GBM-associated

genes in common pathways that are dysregulated in both conditions. Moreover, we

illustrate why the simultaneous study of PD and GBM regarding the role of common

pathways may lead to a deeper understanding of these still incurable conditions.

Eventually, considering the inverse regulation of certain genes in PD and GBM will help

to understand their mechanistic basis, and thus to define novel target-based strategies

for causative treatments.

Keywords: Parkinson’s disease, glioblastoma multiforme, pleiotropy, cancer, neurodegeneration

CANCER AND NEURODEGENERATION

The Inverse Association of Parkinson’s Disease and Cancer
There is now accumulating evidence for an inverse association between Parkinson’s Disease (PD)
and cancer (1–3). Studies suggest that people affected by a neurodegenerative disorder have a
reduced incidence for most cancers (4, 5). Molecular studies showed that there is an inverse
correlation of the expression of shared genes in PD and cancer: genes down-regulated in PD
can be up-regulated in cancer and vice versa (6, 7). These inversely correlated gene expression
may affect the same pathways in opposite ways, either involving genetic or environmental factors
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(5, 8, 9). Shared genetic pathways deregulated in opposite ways
are a major focus, particularly those favoring apoptosis and
cell proliferation, influencing cell cycle control, DNA repair,
and kinase signaling (4). Common mechanisms such as chronic
inflammation (10) and immunosenescence, and common risk
factors like diabetes and obesity, have been implicated in both
conditions (11, 12).

Parkinson’s Disease
PD is a neurodegenerative disease characterized by three cardinal
motor symptoms: tremor, rigidity and bradykinesia resulting
from loss of dopaminergic neurons in the substantia nigra pars
compacta (13). PD affects 1–2% of the population over 60 years
(14). Age of onset before the age of 40 is seen in <5% of the cases
in population-based cohorts, which is typical of familial cases
of PD with underlying genetic cause like mutations in SNCA,
Parkin, PINK1, DJ-1, LRRK2, ATP13A (Table 1). Monogenic
forms of PD are rare. In general, genetic factors are claimed to be
involved in 5–10% of the cases (14). Histopathological hallmarks
of PD are proteolytic inclusions called Lewy bodies (LB) and
Lewy neurites containing α-synuclein (47). Cellular hallmarks of
PD are an impairment of proper functioning of molecular and
organelle degradation pathways like the ubiquitin–proteasome
system and autophagy (48). In particular, the process of removing
defective mitochondria from the cells is known to be impaired
in PD (49). This process is a special form of autophagy, called
mitophagy (50), and is regulated by the PD-linked proteins
PINK1 and Parkin (51). The impairment of autophagy, lysosomal
and mitochondrial function in PD can lead to the accumulation
of α-synuclein and defective mitochondria (52) and, ultimately,
to neurodegeneration. The diagnostic of PD is mostly a clinical
diagnosis as it is based on neurological tests when the PD
patients already show motor symptoms. Due to the complexity
and heterogeneity of PD, the etiology is not yet fully understood.
Therefore, there is no cure for PD and no treatment that will stop
the progress of the disease and treatment is only symptomatic,
e.g., levodopa therapy. This is why it is important to investigate
underlying mechanisms of PD to stratify causative treatments.

Glioblastoma Multiforme
Glioblastoma multiforme (GBM) is the most malignant tumor
of the central nervous system. GBM tumors are most likely
developing from astrocytes (53). Based on their histological
and clinical features, astrocytomas are classified into four
different subtypes according to the WHO classification: Pilocytic
astrocytoma, diffuse astrocytoma, anaplastic astrocytoma, and
GBM. Pilocytic and diffuse astrocytoma are characterized
by a rather low growth rate, while anaplastic astrocytoma
and GBM show common uncontrolled proliferation and
diffuse tissue penetration (54). GBM is characterized by poor
prognosis, low survival rates, and extremely limited opportunities
for therapy. Symptoms of GBM are rather unspecific like
increased intracranial pressure, including headache and focal
or progressive neurologic deficits. Seizures are the presenting
symptom in 25% of patients and can occur at a later stage of
the disease in 50% of patients (55). Malignant gliomas are the
third leading cause of cancer death for people aged between

15 and 34, accounting for 2.5% of the global cancer death toll.
GBM has a maximum incidence in patients aged more than
65 years, and is mainly affecting the cerebral hemispheres (54).
A cellular hallmark of GBM and all cancers is the so-called
Warburg effect which describes the phenomenon that cancer
cells use aerobic glycolysis to produce ATP (56). GBM cells are
characterized by increased glucose uptake and lactate production
(57). GBM cells also use oxidative phosphorylation (OXPHOS)
(57). The hypoxic GBM tumor environment allows the constant
expression of hypoxia inducible factors 1 alpha and 2 alpha (HIF-
1α, HIF-2α). Hypoxia and hypoxia-stabilized HIFs regulate GBM
metabolism by stabilizing genes involved in metabolism like
the glucose transporters GLUT1 and GLUT3, thereby sustaining
an increased glucose uptake of the GBM cells (57). Also, the
enzyme catalyzing the first step in glycolysis, hexokinase, is
hypoxia/HIF regulated (57). As for PD, the diagnosis of GBM is
typically made when first symptoms occur and rely on clinical
examination and neuroimaging methods. However, mostly both
diseases are diagnosed at an advanced stage of tumor growth
or neurodegeneration, respectively. Treatment strategies of GBM
are based on a multidisciplinary approach. Current standard
therapy is a combination of maximal safe surgical resection of
the tumor and subsequent radiation and chemotherapy with
temozolomide (Temodar R©), an oral alkylating agent. However,
even with advances in surgical resection, the prognosis for GBM
patients remains poor, with a median survival of 15 months (55).

COMMON GENES IN PD AND GBM

A common set of genes like the tumor suppressor p53, epidermal
growth factor and its receptor EGF(R), the glyoxalase and
deglycase DJ-1 and biological processes are deregulated in
opposite directions in PD and GBM (6). Particularly, there
is evidence that PD-associated genes are involved in GBM
pathogenesis (Table 1). A summary of publications examining
and exhibiting the involvement of PD-associated genes in GBM
is shown in Table 1. Consistent with PD-associated genes being
involved in GBM, it is important to note that mutations in
the same gene can behave differently if they are germline or
somatic mutations. For example, mutations in PARK2 affecting
the Parkin protein can cause neuronal cell death in PD if they
are present in the germline, or increased cell survival in GBM if
they are present in somatic cells like astrocytes (Figure 1). (25).
Pathways that are affected in PD and GBM are overlapping but
are regulated inversely by alternatively regulated genes. These
pathways are regulating cell proliferation and cell metabolism as
well as mitochondrial clearance (1). In the following, examples
for inversely regulated pathways in PD and GBM are illustrated
and the role of commonly involved genes in both diseases in the
regulation of these pathways will be outlined.

Pro-Survival Signaling
Pro-survival signaling is one of the most important pathways
regulating and sustaining cell proliferation. Once dysregulated,
uncontrolled cell proliferation can lead to tumorigenesis. This
is why cell proliferation and apoptosis need to be in a tight
equilibrium, which is well controlled by many mediators.
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TABLE 1 | Overview PD-genes in GBM.

PD-associated gene GBM Function Involvement in disease

PARK1 (SNCA) (15–23) Important role in maintaining an adequate supply of synaptic

vesicles in presynaptic terminals

Meningioma: (24)

PARK1 was shown to contribute to

malignant progression of tumors

PARK2 (Parkin) (25–33) Regulation of autophagy, important for mitochondrial

maintenance

Autophagy pathway

PARK5 (UCHL1) (21, 34) Hydrolase activity, removes and recycles ubiquitin molecules

from degraded proteins

Ligase activity, links together ubiquitin molecules for use in

tagging proteins for disposal

Degrades not needed proteins

UCHL1 acts as a colorectal cancer

oncogene via activation of the

β-catenin/TCF pathway through its

deubiquitinating activity (35)

PARK6 (PINK1) (23, 36, 37) Regulation of autophagy, important for mitochondrial

maintenance

PINK1 is a Negative Regulator of

Growth and the Warburg Effect in

Glioblastoma

PARK7 (DJ-1) (38–41) ROS scavenger, antioxidative role, cyto-protective Pro-tumor survival, mitochondrial

dysfunction

PARK8 (LRRK2) Somatic mutations [The Cancer

Genome Atlas (TCGA)] (42)

GTPase and kinase function LRRK2 has been associated

with a diverse set of cellular functions and signaling pathways

including mitochondrial function, vesicle trafficking together

with endocytosis, retromer complex modulation and

autophagy

LRRK2 mutation carriers have a pos.

correlation with cancer incidence (43)

PARK9 (ATP13A2) Somatic mutations [The Cancer

Genome Atlas (TCGA)]

P5 subfamily of ATPases which transports inorganic cations

as well as other substrates

ATPase that plays a role in

intracellular cation homeostasis and

the maintenance of neuronal integrity

PARK15 (FBXO7) (44) F-box protein

Phosphorylation-dependent ubiquitination

Oncogenic properties of FBXL10, but

also tumor suppression by FBXL10

has been reported (45, 46)

FIGURE 1 | Cell fate of astrocytes depending on mutational status. A germline mutation in a PD-associated gene might result in a neurodegenerative cell whereas a

somatic mutation can lead to a tumor cell.

P53—The Master Controller of Cell Proliferation and

Its Regulation in PD and GBM
One key player in the regulation of cell proliferation is the tumor
suppressor p53. p53 is upregulated in PD, but downregulated in
GBM (Figure 2A) (58–60).

p53 inhibits cell proliferation by both blocking cell cycle
progression and promoting apoptotic cell death (Figure 2A).
This way, p53 provides a clear prevention from stem cell

tumor growth and thereby GBM development. p53 itself is also
regulated via several stress signals occurring during malignant
progression like genotoxic damage, oncogene activation, loss of
normal cell contacts, and hypoxia (Figure 2A). This leads to a
model where growth inhibitory functions of p53 are normally
held dormant, to be unleashed only in nascent cancer cells (61).
In PD, the level of p53 and its activity in neurons can increase
not only as a result of oxidative stress and DNA damage, but
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also due to aberrant regulation of its expression for example by
mutated or incorrectly cleaved proteins involved in the process
of neurodegeneration (58). An increase in p53 expression and
its activation results in enhanced expression of genes that are
responsible for apoptosis and/or cell cycle arrest and may trigger
neuronal cell death (58). In line, Mogi et al. found increased
levels of p53 protein in the nigrostriatal dopaminergic region in
PD patients compared to controls (62). It was shown that p53
regulates α-synuclein expression since the α-synuclein promoter
harbors a p53 responsive element (63). Therefore, an increase in
p53 in PD could not only lead to increased apoptosis induction
but also to an increase in expression of potentially dysfunctional
α-synuclein and to its subsequent aggregation (63). Kato et
al. found that DJ-1 inhibits the transcriptional activity of p53
(Figure 2A) (64). Loss of DJ-1 protein in PD could thereby
lead to increased expression of p53 target genes leading to cell
death. In GBM, p53 is frequently downregulated or inactivated
by mutations leading to a reduction in apoptosis induction
(Figure 2A) (65) and p53 inactivation positively correlates with
GBM tumor invasiveness (66). Zheng et al. showed that central
nervous system (CNS)-specific deletion of p53 and Phosphatase
And Tensin Homolog (PTEN) in the CNS of mice leads to
a high-grade malignant glioma phenotype resembling human
GBM (67). These results are in line with the data found at The
Cancer Genome Atlas in the exploration mode when looking at
the TCGA-GBM data set, which reports PTEN, p53 and EGFR
as the most frequently mutated tumor suppressor genes in GBM
(https://portal.gdc.cancer.gov).

EGFR Signaling in PD and GBM
EGFR is downregulated in PD and upregulated in GBM
(Figure 2A). EGFR activates the phosphoinositide 3-kinase
(PI3K)-Akt pathway (Figure 2A). The PI3K/Akt signaling
pathway is known as one of the most important kinase
cascades that mediates crucial cellular functions such as survival,
proliferation, migration, and differentiation (68). Activated
receptor tyrosine kinases (RTKs) like EGFR activate PI3K
through direct binding or through tyrosine phosphorylation of
scaffolding adaptors, which can then bind and thereby activate
PI3K (Figure 2A). PI3K phosphorylates phosphatidylinositol-
4,5-bisphosphate (PIP2) to generate phosphatidylinositol-3,4,5-
trisphosphate (PIP3), in a reaction that can be reversed
by the PIP3 phosphatase PTEN. AKT can then activate its
downstream targets like mTOR, eventually leading to cell
proliferation (Figure 2A). It was shown that EGFR endocytosis
and degradation are accelerated in Parkin-knockout cells from
mouse brain, and EGFR signaling via the PI3K/Akt pathway
is reduced (69). Fallon et al. propose that Parkin delays EGFR
internalization and degradation, thereby promoting PI3K/Akt
signaling (69). Therefore, by decreasing the efficiency of EGFR-
mediated Akt signaling in neurons, the loss of Parkin leads to
neuronal degeneration (69). In post-mortem brains of idiopathic
PD patients, protein levels of EGF and EGFR were shown
to be decreased in the prefrontal cortex and the striatum
(70). Mutations in EGFR are commonly occurring in GBM
(71). These mutations result in EGFR gene amplification and

intrinsic alterations of the EGFR structure (71). Brennan et al.
showed that gene amplification and mutation of EGFR results
in enhanced EGFR activation and is found in about 60% of
GBM (72). The most common EGFR mutation in GBM is
EGFRvIII, which is caused by the deletion of exon 2–7 leading
to constitutively activated EGFR (71, 73, 74). It was shown that
EGFR is overexpressed in most of primary GBM and some of the
secondary GBM and that EGFR overexpression is associated with
more aggressive GBM (75).

PTEN/PI3K/Akt Signaling in PD and GBM
In PD, PTEN/PI3K/Akt signaling is down-regulated and
therefore causes decreased pro-survival signaling (76). In
GBM, PTEN/PI3K/Akt signaling is upregulated (77–79). PTEN
negatively regulates PI3K (Figure 2A), thereby inhibiting
PI3K/Akt mediated proliferation and cell survival. In PD
patient-derived post mortem brains, Sekar et al. found an
increase in PTEN levels (80). Absence of PTEN protected
dopaminergic neurons in PTEN knockout mice from neuronal
death after neurotoxin treatment (81). In another mouse
model, depletion of PTEN attenuated the loss of tyrosine
hydroxylase-positive (dopaminergic) cells after neurotoxin
treatment (82). An increase in PTEN in PD results in decreased
pro-survival signaling leading to increased neuronal cell
death. In line, it was shown that the ratio of phospho-
Akt/total-Akt decreases in dopaminergic neurons indicating a
decrease in activation of the pro-survival signaling mediated
by Akt upon phosphorylation (83). Overall, an impaired
PTEN/PI3K/Akt signaling in PD leading to neuronal cell death
can be due to mutations in PD-associated genes regulating
Akt signaling [e.g., DJ-1 (84), (Figure 2A)], excessive Akt
dephosphorylation, inhibition of Akt activation or oxidative
stress (85). In GBM, PTEN/PI3K/Akt signaling is upregulated
due to EGFR overexpression or loss of PTEN (78). Mutations
or homozygous deletions of PTEN were shown in 36% of
the GBM cases that were studied by McLendon et al. and
86% of the GBM harbored at least one genetic event in the
receptor tyrosine kinase PI3K pathway (86). High level of
phosphorylated Akt was shown to correlate with a poor
prognosis for patients with GBM (87). Mutations in the
phosphatidylinositol-4,5-bisphosphcxate 3-kinase catalytic
subunit alpha (PIK3CA), which is one subunit of PI3K, were
shown to induce gliomagenesis (77).

The PD-Associated Oncogene DJ-1 and Regulation

of Cell Proliferation in PD and GBM
The protein DJ-1 was shown to be inversely regulated in
PD and GBM. (Figure 2A). Homozygous mutations in PARK7
(DJ-1) resulting in loss of protein lead to PD (88). DJ-1
expression was shown to be increased in GBM (38, 89, 90).
Wang et al. found that high DJ-1 and high β-catenin expression
in GBM were significantly associated with high grade and
poor prognosis in glioma patients, suggesting DJ-1 levels in
GBM as a strong independent prognostic factor (89). DJ-
1 also accelerates transformation of tumor cells by c-Myc
activating the Erk pathway (91). Hinkle et al. found that GBM
tumor tissue expressed DJ-1 protein at significant levels, and
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typically in a cytoplasmic, non-nuclear manner. They found that
immunostaining intensity of DJ-1 varied directly with strong
nuclear p53 expression and inversely with EGFR amplification
(38). In addition to the fact that DJ-1 negatively regulates
pro-apoptotic p53 (Figure 2A) (92), and EGFR signaling is
crucial for gliomagenesis (72), these observations suggest that
DJ-1 might be involved in tumorigenesis of GBM (38). Toda
et al. found that in a serial transplantation study, DJ-1
knockdown resulted in a prolonged survival of mice in secondary
transplantation (39). DJ-1 is known to counteract ROS, among
others via Nrf2 stabilization leading to the expression of
endogenous antioxidant synthesis and ROS-eliminating enzymes
like glutathione (Figure 2A) (93, 94). It was shown that a
reduction in DJ-1 protein is associated with reduced Nrf2
transcriptional activity and that in PD patients, Nrf2 activation
is associated with dysregulated downstream gene expression (93,
95). In contrast, it was found that Nrf2 overexpression accelerates
proliferation and oncogenic transformation of glioma cells and
that GBM patients have reduced overall survival when Nrf2 levels
are upregulated (Figure 2A) (96).

Immune-Signaling
The innate immune system obtains various functions in health
and disease. It represents the first line of defense against
infection and it is involved in many different processes like
tissue repair, wound healing and the clearance of apoptotic cells
and cellular debris. An excessive or non-resolving activation
of the innate immune system can result in systemic or local
inflammatory complications and cause or contribute to the
development of neurodegeneration and cancer. In the brain, the
innate immune cells are represented by microglia, which regulate
brain development, brain maturation, and homeostasis. An
impairment of functional microglia through abnormal activation
or decreased functionality can occur during aging and during
neurodegeneration and the resulting inflammation was shown to
be involved in neurodegenerative diseases and cancer (97).

Hypoxia and HIF-1α in PD and GBM
It is well known that hypoxia-inducible factor-1α (HIF-1α) plays
an important role in gliomagenesis due to its angiogenesis-
promoting effects (98). While HIF-1α is upregulated in GBM, it
was shown that HIF-1α is impaired in PD (Figure 2B) (99, 100).

Treatment with MPTP, a prodrug to the neurotoxin
MPP+, which causes Parkinsonism symptoms by destroying
the dopaminergic neurons, was shown to inhibit HIF-1α
accumulation in mice and in dopaminergic cell lines (99).
Moreover, Milosevic et al. found that a conditional knock-
down of HIF-1α in mice resulted in a 40% decrease in
expression of tyrosine hydroxylase, a known marker for
dopaminergic neurons, in the substantia nigra of mice
(101). In healthy individuals, HIF-1α mediates protection
of dopaminergic neurons by regulation of iron homeostasis,
improved defense against oxidative stress by upregulation
in response to reactive oxygen species (ROS) (Figure 2B)
and mitochondrial dysfunction (100). PD is characterized
by an accumulation of iron in dopaminergic neurons of
the substantia nigra (102). Free cytosolic iron can lead to

oxidative stress and trigger α-synuclein aggregation (102).
HIF-1α influences iron homeostasis by expression of its target
genes ferroportin and heme oxygenase in the substantia nigra
which are known to be involved in the attenuation of iron
accumulation (100). This way, HIF-1α can counteract iron
accumulation (Figure 2B). However, in PD, downregulation
of HIF-1α can lead to a dysregulation in iron homeostasis
eventually leading to iron accumulation (Figure 2B). In turn,
iron accumulation decreases HIF-1α activity, because iron is
a necessary cofactor for prolyl hydroxylases that inactivate
HIF-1α via subsequent ubiquitinylation through von Hippel-
Lindau factor (VHL) (Figure 2B) (102, 103). HIF-1α target
genes Erythropoietin (EPO) and vascular endothelial growth
factor (VEGF) (Figure 2B) have been shown to contribute
to the protection of neurons from PD pathogenesis (100).
EPO was shown to be neuroprotective against dopaminergic
neurotoxins (104). In rat explants of the ventral mesencephalon,
VEGF treatment was shown to be mitogenic for endothelial
cells, astrocytes, and could promote growth and survival of
neurons and specifically dopaminergic neurons (105). There
are accumulating data which suggest that the activation of
HIF-1α can exert neuroprotective effects through the induction
of intrinsic adaptive mechanisms in neuronal and non-neuronal
cells (106). Lee et al. showed that stabilization of HIF-1α leads
to the upregulation of several proteins involved in iron efflux
and mitochondrial integrity and bioenergetics, cell components
that are compromised in PD. This is why Lee’s data emphasize
the concept that the pharmacological induction of HIF-1α could
have neuroprotective effects in PD cells and mice models, with
a beneficial impact on dopamine synthesis, iron homeostasis,
antioxidant defenses and mitochondrial dysfunction (107).

In contrast to these observations in PD, in GBM, HIF-
1α levels are increased (Figure 2B) (108). Liu et al. found
that HIF-1α expression was associated with high grade glioma
and the overall survival of glioma patients, which indicates
that HIF-1α could predict prognosis and provide clinical
insights into the therapeutic strategy for GBM patients (109).
The lack of oxygen in the GBM microenvironment results
from inappropriate neovascularization, irregular blood flow,
and excessive consumption of oxygen from the uncontrolled
proliferating GBM cells (110). The hypoxia in the GBM
tumor induces the expression of genes involved in tumor
cell growth and angiogenesis like the signal transducer and
activator of transcription 3 (STAT3), which triggers the
synthesis of HIF-1α that subsequently induces activation of T-
regulatory cells (Tregs) and the production of VEGF (111).
Tregs are important modulators of the immune response,
and VEGF has known immunosuppressive effects. Moreover,
the hypoxic microenvironment causes the transformation
of CNS macrophages into tumor-associated macrophages
(TAMs), which are capable of adopting immunosuppressive
and tumor-supportive phenotypes. Via the STAT3 pathway,
this transformation triggers TAMs to enhance angiogenesis and
tumor cell invasion (26, 112). Furthermore, HIFs are critical for
the upregulation of glycolysis (Figure 2B) (113). Hypoxia is also a
known regulator of many other innate immunological functions
like cell migration, apoptosis, phagocytosis of pathogens,

Frontiers in Neurology | www.frontiersin.org 6 August 2020 | Volume 11 | Article 898130

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Mencke et al. Bidirectional Relation PD and GBM

antigen presentation and production of cytokines, chemokines,
and angiogenic and antimicrobial factors (113). In summary,
HIF is an important factor in the regulation of the tumor
microenvironment due to its central role in promoting
proangiogenic and invasive properties. Since HIF activation
results in angiogenesis and the emerging vasculature is often
abnormal, this leads to a vicious cycle that causes further hypoxia
and HIF upregulation in GBM (98).

Interleukins and Immune Escape
In PD, increased cytokine levels in response to cellular stress
can lead to neuronal cell death whereas in GBM, cytokines like
interleukins IL-1β, IL-6, and IL-8 released by the tumor cells,
inhibit the immune response and allow the tumor cells to escape
the eradication by the immune system (Figure 2B).

IL-6 was found to be increased in the nigrostriatal region
and in the cerebrospinal fluid of patients with PD (114).
Further, Hofmann et al. found that patients with more severe
PD had higher IL-6 levels compared to patients with a milder
phenotype (114). In addition, a study from Chen et al. found
that patients with PD had elevated levels of transforming growth
factor-beta 1 (TGF-β1), IL-6, and IL-1β in cerebrospinal fluid
compared to controls (115). In line, it is described that, in
autopsy brains of PD, the number of activated microglia, which
were among others TNF- α, and IL-6-positive, increased in the
substantia nigra and putamen during the progress of PD (116).
The activated microglia in PD was observed in various brain
regions like the nigro-striatal region, the hippocampus and the
cerebral cortex. The levels of IL-6 and TNF- α mRNAs increased
in the hippocampus of PD patients (116). It is postulated
that cytokines (IL-1β, TNF-α, IL-6) from activated microglia
(117) in the substantia nigra and putamen may be initially
neuroprotective, but may later turn to be neurotoxic during PD
pathogenesis (116).

In contrast to PD, in GBM, the cells can profit from
the cytoprotective effects of specific cytokines like IL-1β, IL-
6, and IL-8 leading to increased robustness regarding cellular
stress (118). As already mentioned, GBM arises from glial
cells with surrounding brain parenchyma that contains CNS
cells like astrocytes, neurons and microglia, as well as a
distinctive extracellular matrix composition. GBM induces a
tumor microenvironment characterized by immunosuppressive
cytokines secreted by tumor cells, microglia and tumor
macrophages. IL-6, IL-10, and TGF-β, and prostaglandin-E
collectively inhibit both the innate and adaptive immune systems
leading among others to the suppression of natural killer cell
activity, T-cell activation and proliferation and induction of T-
cell apoptosis (119). IL-1β is a known master pro-inflammatory
cytokine that triggers various malignant processes driving
oncogenic events such as proliferation and invasiveness (118,
120). Elevated levels of IL-1β were observed in many different
GBM cell lines (121) and in human GBM tumor specimens (122).
IL-6 was shown to be overexpressed in GBM clinical samples
and cell lines and IL-6 gene expression seems to correlate with
the aggressiveness of the tumor (123). It was shown that IL-6
is secreted by GBM cells and sustains the cell proliferation by
activation of STAT3 pro-survival pathway (124). IL-6 is produced

by GBM cells in response to external stimuli or intrinsic factors,
for example oncogenic mutations (118). IL-1β and TNF-α induce
stabilization of IL-6 mRNA and increase IL-6 biosynthesis (125).
Like IL-6, IL-8 is highly expressed and secreted from GBM cell
lines, tumor stem cells and human specimens (118). It was shown
that the expression of the constitutively active mutant EGFRvIII
is associated with significantly higher expression of IL-8 induced
by nuclear factor kappa B (NF-κB) (Figure 2B) in human GBM
specimens and GBM cell lines (126). In a similar manner as
the regulation of IL-6, IL-8 expression can be enhanced by
TNF-α, IL-1β or macrophage infiltration (127). Thus, elevated
levels of one cytokine like TNF-α for example can lead to an
increase in other cytokines. These findings of elevated cytokines
and their associated roles in GBM underline the importance of
specific cytokines for immune escape mechanisms and tumor
proliferation and invasiveness observed in GBM pathogenesis.

Toll-Like Receptors in PD and GBM
Toll-like-receptors (TLRs) are receptors that recognize distinct
molecular patterns like lipopolysaccharides, single and double
stranded RNAs, hemagglutinin, viral proteins etc. (128), and
allow an appropriate immune response to be initiated. The
TLR family consists of 10 members (TLR1-10) in humans with
different expression profiles and ligands (129). TLR2 is essential
for the recognition of peptidoglycans and lipoproteins, whereas
TLR4 recognizes bacterial lipopolysaccharide (LPS) (130). TLR2
and TLR4 are both the most important TLRs with regard to
innate immune response as they are both implicated in the
recognition of endogenous ligands involved in the inflammatory
response regardless of the source of infection (131). This is why
the implication of TLR2 and TLR4 in PD and GBM will be
discussed in the following.

TLR2 and TLR4 are frequently upregulated in PD and
downregulated in GBM allowing the tumor cells to escape
clearance by the innate immune system. TLR2 and TLR4 were
shown to be upregulated in many α-synuclein-overexpressing
or toxin-induced animal models (132–135), and accumulating
evidence from human studies further implicates these receptors
in the pathogenesis of PD (136). Clinical studies revealed that
TLR2 expression is increased in PD (137). It was shown that
microglial TLR2 is increased in the substantia nigra and the
hippocampus in the early stages of PD, but not during the late
stages (138), while another study found that TLR2 is increased in
the striatum of advanced PD patients (135).

In contrast, GBM cancer stem cells downregulate TLR4 to
evade immune suppression (139). Alvarado et al. showed that in
GBM, cancer stem cells have low TLR4 expression which enables
cell survival by avoiding inhibitory innate immune signaling (e.g.,
clearance by dendritic cells, cytotoxic T cells, and natural killer
cells) that aims to suppress self-renewal of the GBM stem cells
(140). This is why TLR agonists that trigger antitumoral immune
signaling are being discussed as therapy for GBM (141).

Mitochondria and Metabolism
Mitochondria and cellular metabolism are closely linked.
Mitochondria host many enzymatic reactions of cellular
metabolism like the tricarboxylic acid (TCA) cycle and oxidative
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phosphorylation (OXPHOS) which generate ATP from pyruvate
in the presence of oxygen (Figure 2C). In age-related disease, like
PD and GBM, damaged mitochondria lead to impaired cellular
metabolism (142).

Cellular Metabolism in PD and GBM
The human brain, even though constituting only 2% of the total
body weight, uses ∼20% of the body’s total oxygen consumption
and 60% of our daily glucose intake (143). Furthermore, the brain
needs a constant supply of glucose since it lacks fuel stores and
cannot store glycogen. This is why cellular changes in glucose
metabolism can have high impact on brain cell homeostasis,
proliferation and viability.

It was shown that glycolysis and mitochondrial function like
respiration are decreased in individuals with PD (Figure 2C)
(144–146). In GBM, increased glycolytic activity results from
certain oncogenic alterations like c-Myc amplification, PTEN
deletion or mutations in p53 (Figure 2C) (147, 148).

While mitochondrial dysfunction in PD can cause
increased generation of ROS and subsequent oxidative damage
(Figure 2C), it can also result in failing neuronal compensation
of their insufficient ATP generation (149). Activation of
glycolysis in neurons leads to excessive oxidative stress and
apoptosis, suggesting that neurons are predominantly restricted
to OXPHOS (150). In line, Hall et al. showed that the majority
of ATP used by neurons is produced by OXPHOS (151).
Powers et al. found that overexpression of α-synuclein in N27
dopaminergic cells resulted in an impairment in glycolysis, a
reduction in glycolytic capacity and mitochondrial respiration
(152). This is why an increase in glycolysis as counteract
mechanism to neuronal energy failure induced by mitochondrial
dysfunction in PD eventually leads to neuronal cell death
(153–155). Neurons also metabolize glucose via the pentose
phosphate pathway (PPP) to maintain their antioxidant status
(156). It was shown that inhibition of the PPP in neuronal cell
models causes cell death (157). In rodents, PPP inhibition caused
dopaminergic cell death causing motor deficits that resemble
Parkinsonism (158). Using postmortem human brain tissue,
Dunn et al. characterized glucose metabolism via the PPP in
early sporadic PD and controls and observed a down-regulation
of PPP enzymes in patients compared to controls (156). This
observation suggests that the impairment of the PPP is an early
event in sporadic PD (156).

In the absence of oxygen, pyruvate can be metabolized into
lactate, a process known as glucose fermentation or anaerobic
glycolysis. Rapidly proliferating cells, such as cancer cells, also
have the ability to ferment glucose into lactate, even in the
presence of abundant oxygen; this process is called aerobic
glycolysis. It has been observed already decades ago, that cancer
cells, even in aerobic conditions, tend to favor metabolism via
glycolysis rather than OXPHOS, which is preferred by most
other cells. This phenomenon is called the Warburg effect
(56, 159). This is why, in contrast to PD neurons, GBM
cells ferment glucose into lactate, even in the presence of
abundant oxygen (Figure 2B). Even though ATP production
is less efficient in aerobic glycolysis when compared to ATP
production via complete oxidative metabolism of glucose, it

is being hypothesized that GBM cells use aerobic glycolysis
to generate precursors for anabolism to grow and are able to
generate enough ATP to sustain their cellular function (160).
Bymodulating glycolysis and alteringmitochondrial metabolism,
GBM cells generate biomass, namely nucleotides, lipids, proteins,
and NADPH by using glycolytic/TCA intermediates (160).
Knockdown of glycolytic genes strongly inhibits GBM growth
further emphasizing that glycolytic enzymes are essential
for GBM growth (148). GBM cells also generate large
amounts of lactate for several pro-tumor growth functions
(161). Li et al. found that EGFR activation in GBM cells
promotes the translocation of phosphoglycerate kinase (PGK1)
into mitochondria (162, 163). In the mitochondria, PGK1
phosphorylates and activates pyruvate dehydrogenase kinase that
phosphorylates and thereby inhibits pyruvate dehydrogenase
and thus mitochondrial pyruvate consumption which eventually
leads to enhanced lactate production (162, 163). In addition
to the aerobic glycolysis, GBM cells also utilize TCA and
OXPHOS (160).

The differential expression of metabolic genes in neurons
and astrocytes might explain the differences in glycolysis and
OXPHOS rates. For example, neurons lack 6-phosphofructose-
2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) since it is
continuously degraded by the ubiquitin-proteasome pathway.
PFKFB3 regulates the biogenesis and degradation of fructose-
2,6-bisphosphate, a known glycolytic activator. In contrast, in
astrocytes, PFKFB3 is activated by adenosine monophosphate-
activated protein kinase (AMPK) and promotes glycolysis (149).
In line, it was shown that the expression of PFKFB3 is higher
in mouse astrocytes than in murine neurons due to proteasomal
degradation in the neurons (164). In neurons, the activation of
PFKFB3 results in enhanced glycolysis but eventually leads to cell
death since neurons lose their ability to generate glutathione, an
essential antioxidant involved in the management of oxidative
stress. This means that unlike astrocytes, neurons use glucose
to maintain their antioxidant status and not for bioenergetic
purposes (164). These findings might help to explain why PD
neurons fail to increase their glycolysis rates and why increased
glycolysis leads to sustained cell proliferation in astrocyte-
originating GBM cells.

EPIDEMIOLOGY OF PD AND CANCER

Epidemiological evidence suggests that patients with PD have a
reduced incidence of primary CNS tumors (165, 166). In contrast,
there are a few epidemiological studies that show a positive
association of PD with benign and malignant brain tumors, but
not specifically with GBM (167–169). However, the problem
with these studies is that they do not distinguish between the
types of brain cancer, e.g., meningioma or astrocytoma. The
described increased risk of all types of brain cancers in PD might
be caused by diagnostic misclassification and detection bias.
Increased incidence of meningioma in PD patients for example
might result from the fact that the symptoms can be wrongly
diagnosed as a sign of PD, if the intracranial tumor leads for
example to a compression of the basal ganglia resulting in PD
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symptoms (170–173). Moreover, a positive association of brain
tumors and PD can be caused by detection bias as brain tumors
can be diagnosed during the clinical work-up for PD (174). Since
patients diagnosed with parkinsonism are more likely to have a
Magnetic Resonance Imaging at the time of diagnosis, this may
explain a higher risk of detecting silent brain tumors (173, 175).
The close temporal association between diagnosis of PD and the
incidence of brain tumors further leads to the suggestion that
brain tumors might be misdiagnosed as PD or vice versa (176).
Specifically, for GBM, as it is lethal, it is difficult to study PD in
individuals who survived GBM. This is why future studies should
focus on evaluating the risk of GBM in PD patients.

Interestingly, there is an increased risk of melanoma in
PD patients compared to controls (177–179). In 1985, Dr.
Rampen reported a 55-year-old male with PD who developed a
local recurrence of a primary melanoma and multiple primary
melanomas 4 years after primary excision and 4 months
after starting levodopa (180). An increased risk of malignant
melanoma in PD patients has been confirmed since in many
studies (8, 176, 181, 182). Several hypotheses could account for
this association. Since levodopa is ametabolite in the biosynthesis
of dopamine and melanin which involves the enzyme tyrosinase,
and increased tyrosinase activity is found in melanoma, it was
initially hypothesized that levodopa could enhance and stimulate
growth on any residual melanoma tissue (183). However, recent
studies have refuted a causal association for several reasons (178,
184). In particular, the observation that the risk of melanoma
is increased in PD patients before diagnosis argues against an
effect of levodopa. Additional explanations may be the existence
of shared genetic or environmental factors, or the common
embryonic origin of melanocytes and neurons from neural crest
cells (178, 185). In addition, mechanistic links caused by common
mutations or other alterations in a number of genes or proteins
in PD and melanoma could explain the co-occurrence of PD and
melanoma (184). Common mechanisms that are dysregulated
in PD and melanoma are for example cellular detoxification,
melanin biosynthesis or oxidative stress response (184).

Future studies should investigate underlying mechanisms of
decreased risk of some cancers and increased risk of other cancers
like melanoma in PD patients.

CONCLUSION

PD and GBM are two highly complex disease entities
characterized by multiple cellular changes. Similar mutations
within the same gene, for example Parkin (25), can have inverse
effects, depending on whether they are germline or somatic
mutations and depending on the type of cell in which they

occur: a dividing cell in GBM or a post-mitotic neuron in PD.
One could hypothesize that neurons are primarily unaffected
in GBM due to their postmitotic state. On the contrary,
somatic mutations causing tumorigenesis can spread through
proliferative astrocytes.

Another inverse association of PD and GBM that
requires future causal investigation is the time frame of the
pathophysiology of both diseases. While PD is a chronic,
generally slowly progressing neurodegenerative disease
characterized by gradual neuronal loss, GBM is a rapidly
progressing disease with rapid proliferation of glial cells
in a much shorter time frame. Possible explanations for
these observations are that in PD, the neuronal loss can be
compensated for a long time whereas the aggressiveness of
GBM due to highly infiltrative growing and metastasizing
cells that also display a vast cell heterogeneity leads to a rapid
disease progression.

In this review, we showed that there are common pathogenic
mechanisms involved in PD and GBM including inversely
deregulated pro-survival and immune signaling, mitochondrial
dysfunction and metabolic alterations. There is an inverse
regulation for p53, EGF(R), PTEN/PI3K/Akt, DJ-1, HIF-1α in
PD and GBM. Due to the complexity of both PD and GBM
etiology and pathogenesis, future studies need to unveil so far
unknown mechanisms of both diseases that will help to better
understand and to compare both diseases and to explain why
common inverse dysregulated cellular pathways can lead to
two such different diseases. Eventually, a deeper understanding
of the pathological mechanisms underlying PD and GBM will
guide the identification of possibly shared drug targets that
need to be modulated inversely for causative treatment of
both diseases.
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Several mutations in leucine-rich repeat kinase-2 (LRRK2) have been associated with

Parkinson’s disease (PD). The most common substitution, G2019S, interferes with

LRRK2 kinase activity, which is regulated by autophosphorylation. Yet, the penetrance

of this gain-of-function mutation is incomplete, and thus far, few factors have been

correlated with disease status in carriers. This includes (i) LRRK2 autophosphorylation

in urinary exosomes, (ii) serum levels of the antioxidant urate, and (iii) abundance of

mitochondrial DNA (mtDNA) transcription-associated 7S DNA. In light of a mechanistic

link between LRRK2 kinase activity and mtDNA lesion formation, we previously

investigated mtDNA integrity in fibroblasts from manifesting (LRRK2+/PD+) and

non-manifesting carriers (LRRK2+/PD−) of the G2019S mutation as well as from

aged-matched controls. In our published study, mtDNA major arc deletions correlated

with PD status, with manifesting carriers presenting the highest levels. In keeping with

these findings, we now further explored mitochondrial features in fibroblasts derived

from LRRK2+/PD+ (n = 10), LRRK2+/PD− (n = 21), and control (n = 10) individuals.

In agreement with an accumulation of mtDNA major arc deletions, we also detected

reduced NADH dehydrogenase activity in the LRRK2+/PD+ group. Moreover, in affected

G2019S carriers, we observed elevated mitochondrial mass and mtDNA copy numbers

as well as increased expression of the transcription factor nuclear factor erythroid

2-related factor 2 (Nrf2), which regulates antioxidant signaling. Taken together, these

results implicate mtDNA dyshomeostasis—possibly as a consequence of impaired

mitophagy—in the penetrance of LRRK2-associated PD. Our findings are a step forward

in the pursuit of unveiling markers that will allow monitoring of disease progression of

LRRK2 mutation carriers.

Keywords: leucine-rich repeat kinase-2 (LRRK2), G2019S, Parkinson’s disease, penetrance, mitochondria,

mitochondrial DNA (mtDNA), fibroblasts

INTRODUCTION

Parkinson’s disease (PD) is the secondmost common neurodegenerative disorder with a prevalence
of 1% over the age of 60 years old (1). The majority of cases are sporadic, and only 5–10% suffer
from a familial form (2). PD is characterized by a progressive loss of dopaminergic neurons within
the substantia nigra. The ensuing lack of neurotransmitter dopamine in the basal ganglia results in
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motor symptoms such as tremors, rigidity, bradykinesia, and
postural instability (2).

To date, at least 12 genes have been unequivocally associated
with the development of familial PD (3), including the gene
coding for leucine-rich repeat kinase 2 (LRRK2) (4). There are
seven definitely pathogenic mutations in LRRK2 (5). The most
frequent genetic cause of PD, the G2019S substitution, is found in
4–5% of familial cases and ∼1% of sporadic cases in the general
population. Among Ashkenazi Jews and North African Arab
Berbers, the mutation explains 15–40% of PD cases, respectively
(1). By contrast, in Europe, only 1–7% of PD patients harbor this
nucleotide change (6), and it is even rarer in Asian populations
(2). The LRRK2 G2019S mutation is inherited with reduced
penetrance (7). Thereby, the risk to develop motor symptoms
increases with age, ranging from 28% at 59 years to 74% at
79 years (8). However, the molecular determinants of LRRK2-
G2019S penetrance are largely unknown.

LRRK2 is a large protein (268 kDa) composed of 51 exons.
Its enzymatic core comprises two main structures: a GTPase
and a serine-threonine kinase domain. The G2019S mutation
is situated in the kinase domain and increases LRRK2 kinase
activity, which in turn causes hyperphosphorylation of LRRK2
targets (6). The cellular function of LRRK2 has not been fully
elucidated, but there is evidence for an involvement of the protein
in endocytosis, retromer complex modulation, autophagy, and
mitochondrial homeostasis (2). Specifically, mutations in LRRK2
have been shown to interfere with the removal of mitochondria
from microtubules during the initiation phase of mitophagy (9).
In addition, altered respiratory chain function coinciding with
increased oxidative stress and morphological changes has been
observed in cellular models of LRRK2-PD (10). In the presence
of the G2019S mutation, mitochondrial DNA (mtDNA) lesions
accumulate in patient-derived neurons (11)—a process that can
be reversed by kinase inhibitor treatment (12).

Tomonitor the movement disorder not only at the clinical but
also at the molecular level, there are increasing scientific efforts to
identify biological markers of LRRK2-PD onset and progression.
However, thus far, few candidates have been described that
distinguish PD patients with LRRK2 mutations and such carriers
who do not (yet) show the typical hallmarks of the motor
disorder. First, the assessment of LRRK2 phosphorylation rates
in urinary exosomes revealed higher levels in manifesting
(LRRK2+/PD+) compared to non-manifesting (LRRK2+/PD−)
individuals harboring the common G2019S mutation in LRRK2
(13). Second, a linkage analysis in Tunisian Arab-Berbers
identified a polymorphism in dynamin 3 (DNM3) as a penetrance
modifier (14). Third, serum levels of the antioxidant urate
were shown to be reduced in LRRK2+/PD+ compared to
LRRK2+/PD− individuals (15). Fourth, mtDNA transcription
was altered in LRRK2+/PD+ cases (16). Lastly, our own research
previously demonstrated an increase in the mitochondrial
reactive oxygen species (ROS) scavenger superoxide dismutase
(SOD)2 (17) and an accumulation of somatic mtDNA major
arc deletions in fibroblasts from LRRK2+/PD+ compared to
LRRK2+/PD− individuals (18).

To further elucidate the role of the mitochondria in defining
the penetrance of LRRK2-associated PD, we built on our

published research in fibroblasts from controls, LRRK2+/PD−,
and LRRK2+/PD+ cases. Extending the mtDNA integrity and
oxidative stress analyses, we now assessed mtDNA abundance
as well as functional parameters such as transcriptional and
respiratory chain complex activities.

MATERIALS AND METHODS

Study Cohort
Study participants were recruited at movement disorder clinics
in Lübeck (Germany) and Trondheim (Norway). All participants
gave written informed consent, and the study was approved by
the local ethics committees. Genetic testing was performed as
previously described (19). Individuals with the G2019S mutation
in LRRK2 were examined by movement disorder specialists
for clinical signs of PD. Mutation carriers diagnosed with PD
according to the MDS Clinical Diagnostic Criteria were included
in the LRRK2+/PD+ group. By contrast, non-manifesting
carriers who did not fulfill these criteria were classified as
LRRK2+/PD−. Demographic data of the cohort are summarized
in Table 1. All individuals were of Caucasian descent.

Cell Culture
Dermal fibroblasts from 10 LRRK2+/PD+ cases, 21
LRRK2+/PD− individuals, and 10 age-matched healthy
controls were phenotyped. Fibroblasts were cultivated in
Dulbecco’s modified Eagle’s medium (DMEM) high glucose
without pyruvate (Life Technologies, 41965-039), supplemented
with 12% fetal bovine serum (Life Technologies, 10500064) and
1% penicillin/streptomycin (Life Technologies, 15140163),
and were incubated at 37◦C and 5% CO2. Cells were
split with Trypsin-EDTA (Life Technologies, 25300-096)
when sub-confluent.

Mitochondrial DNA Copy Number and 7S
DNA Analysis
DNA was extracted using the QIAmp DNA Mini Kit (Qiagen,
51306) following the manufacturer’s instruction. Transcription-
associated 7S DNA and copy number were assessed using a

TABLE 1 | Demographics of the study cohort.

Controls LRRK2+/PD− LRRK2+/PD+

N 10 21 10

Number of

men (%)

4 (40%) 7 (33.33%) 4 (40%)

Mean age (SD),

years

60.8 (13.11) 58.52 (15.35) 66.00 (12.45)

Median age (IQR),

years

65 (54.75–69.00) 55 (52.5–66.5) 66 (57.25–77.5)

Mean age at onset

(SD), years

- - 55.89 (9.87)

Median age at

onset (IQR), years

- - 57.00 (48.00–64.00)

LRRK2, leucine-rich repeat kinase-2; PD, Parkinson’s disease; LRRK2+/PD−, non-

manifesting LRRK2 G2019S mutation carriers; LRRK2+/PD+, manifesting LRRK2

G2019S mutation carriers; IQR, interquartile range; SD, standard deviation.
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real-time PCR approach based on TaqMan probes. A probe
targeting themtDNA genemitochondrial NADH-dehydrogenase
1 (MT-ND1), located in the minor arc and typically spared from
deletions, was measured relative to the nuclear-encoded single-
copy gene beta-2-microglobulin (B2M) to quantify the amount
of wild-type mtDNA copies (MT-ND1:B2M). In addition,
with a probe targeting the non-coding region (NCR) of the
mitochondrial genome, the proportion of transcriptionally active
mtDNAmolecules was assessed. During transcription, 7S DNA is
incorporated in the NCR forming a triple-stranded displacement
loop (D-loop) (20). By measuring the NCR relative to MT-
ND1, the abundance of 7S DNA per mitochondrial genome can
be determined.

Quantification was achieved using a dilution series of an
internal standard. Multiplex real-time PCR was performed
using genomic DNA, LightCycler 480 Probes Master reaction
mix (Roche, 04707494001), TaqMan probes, and primers
(Supplementary Table 1) as specified in the manufacturer’s
guidelines. The PCR reaction was run on a LightCycler 480
(Roche, 05015243001). The samples were denatured for 10min at
95◦C. Amplification ran over 45 cycles with a denaturation step
of 10 s at 95◦C, primer annealing of 30 s at 60◦C, and elongation
of 3 s at 72◦C.

Nuclear Factor Erythroid 2-Related Factor
2 and Mitochondrial DNA Gene Expression
RNA was extracted using the RNeasy Mini Kit (Qiagen, 74106)
following the manufacturer’s instructions. cDNAwas synthesized
using the SuperScriptTM III Reverse Transcriptase (Invitrogen,
18080044) using 400 ng of RNA as starting material. PCR was
performed using iQ SYBR Green (Biorad, 170-8885). Primer
sequences are shown in Supplementary Table 2. The expression
of NADH dehydrogenase 1 (MT-ND1), NADH dehydrogenase
4 (MT-ND4), cytochrome b (MT-CYTB), cytochrome c oxidase
(MT-CO1), and nuclear factor erythroid 2-related factor 2 (Nrf2)
was normalized to β-actin (ACTB) expression. The PCR reaction
was run on a LightCycler 480. The samples were denatured
for 5min at 95◦C. Amplification ran over 45 cycles with a
denaturation step of 10 s at 95◦C, primer annealing of 10 s at
60◦C, and elongation of 10 s at 75◦C.

Mitochondrial Function Assessment
Mitochondrial Isolation
Mitochondria were isolated from frozen fibroblast pellets from
three LRRK2+/PD+ (mean age± SD: 59.7± 5.7 years) and three
LRRK2+/PD− (mean age ± SD: 65.3 ± 20.6 years) individuals.
Briefly, pellets were washed and mechanically lysed with a
pestle in homogenization buffer [10mM Tris pH 7.4 (T1503,
Sigma)], 1mM ethylenediaminetetraacetic acid (EDTA, Sigma,
E5134), and 250mM sucrose (Sigma, 84100) with protease and
phosphatase inhibitors (Thermo Fisher Scientific, 78440). Pure
mitochondrial pellets were obtained after serial centrifugation
steps and used in subsequent enzymatic assays.

Mitochondrial Enzyme Kinetics
NADH:ubiquinone oxidoreductase and cytochrome c oxidase
activities were evaluated adapting well-established protocols,

which measure the kinetics of NADH to NAD+ oxidation by
complex I (21) or the oxidation of reduced cytochrome c by
complex IV (22), respectively. We downsized the assays to
96-well plate format and used a microplate reader (BioTek
Cytation 5) to follow absorbance. The detection of respiratory
chain enzyme activities requires exposure of those mitochondrial
enzymes, which was achieved by three cycles of snap freezing
(liquid nitrogen) and thawing of the samples. Finally, complex
I and IV activities were normalized to mitochondrial mass,
which was determined by citrate synthase kinetic analysis as
previously reported (23). Three (citrate synthase and complex
IV) to six (complex I) independent replicates per sample
were performed.

Statistics
For statistical analyses, GraphPad Prism software (version
8.3.0) was used. The ROUT test was used to evaluate the
presence of outliers. Datasets were then independently tested
for the assumptions of parametric data. More precisely,
normality (Shapiro–Wilk, D’Agostino, and Pearson tests) and
homoscedasticity (Brown–Forsythe test) were evaluated. As
parametric assumptions were not met, Mann–Whitney and
Kruskal–Wallis (followed by Dunn’s post-hoc test) tests were
therefore utilized. Differences were considered significant (∗)
when p-values were below 0.05. Moreover, to assess the impact
of age on the different outcomes, we estimated regression models
with age as a covariate. We also tested the interaction of each
outcome and age. However, these analyses indicated no impact
or interaction of age on the reported results.

RESULTS

Decreased Complex I Activity in
Manifesting Carriers of the G2019S
Mutation
We have recently reported that the accumulation of mtDNA
deletions serves as a discriminator between affected and
unaffected LRRK2 mutation carriers (18). The mtDNA deletions
studied encompass MT-ND4, which codes for a subunit of
complex I. To understand if those mtDNA deletions have an
impact on respiratory chain function in LRRK2+/PD+ patients,
we assessed the activity of complexes I and IV in a subset
of the previously investigated samples. The quantification of
NADH:ubiquinone oxidoreductase activity relative to citrate
synthase activity showed significantly reduced complex I
function (Mann–Whitney test: p = 0.003) in the LRRK2+/PD+
group [median: 0.26, interquartile range (IQR): 0.16–0.37]
compared to the LRRK2+/PD− group (median: 0.49, IQR:
0.26–0.70) (Figure 1A). By contrast, analyzing cytochrome c
oxidase activity relative to citrate synthase activity did not
reveal differences between the two groups (LRRK2+/PD−,
median: 0.035, IQR: 0.027–0.040; LRRK2+/PD+, median:
0.023, IQR: 0.014–0.037; Mann–Whitney test: p = 0.114)
(Figure 1B).

Frontiers in Neurology | www.frontiersin.org 3 August 2020 | Volume 11 | Article 881141

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Delcambre et al. Penetrance of LRRK2-PD

Altered Antioxidant Signaling in
Manifesting Carriers of the G2019S
Mutation
A recent study measuring serum levels of the antioxidant urate

in carriers of LRRK2 mutations reported reduced levels in

the LRRK2+/PD+ group (15). Bakshi et al. (15) speculated

that the resulting increase in ROS levels may induce the
NF-E2-related factor 2–antioxidant responsive element (Nrf2–

ARE) pathway. Considering this study and literature indicating

that ROS induces nicks and subsequent somatic mutations in
the mitochondrial genome (24), we decided to test whether
our previously observed penetrance-associated mtDNA deletion
phenotype (18) could be due to impaired antioxidant signaling.

Quantifying the expression of the transcription factor Nrf2 in
our cohort, we observed significantly increased mRNA levels
in LRRK2+/PD+ individuals (median: 1.18, IQR: 0.92–1.38)
compared to controls (median: 0.79, IQR: 0.65–1.03; Kruskal–
Wallis followed by Dunn’s tests: p = 0.033). By contrast,
LRRK2+/PD− individuals (median: 0.92, IQR: 0.78–1.10)
showed no upregulation (Figure 2A, Supplementary Table 3).

Increased Mitochondrial Mass in
Manifesting Carriers of the G2019S
Mutation
In a groundbreaking penetrance study, Fraser et al. (13)
observed enhanced LRRK2 autophosphorylation in urinary

FIGURE 1 | Respiratory chain complex and citrate synthase activities. (A) NADH dehydrogenase activity (complex I, CI; Mann–Whitney test: p = 0.003) and (B)

cytochrome c oxidase (complex IV, CIV; Mann–Whitney test: p = 0.114) normalized to citrate synthase (CS) activity in non-manifesting [leucine-rich repeat kinase-2

(LRRK2)+/PD−, n = 3] and manifesting carriers (LRRK2+/PD+, n = 3) of the G2019S mutation in LRRK2. (C) CS activity relative to cell number, with one sample

serving as an internal standard (Mann–Whitney test: p = 0.001). Experiments performed on six (CI) or three (CIV and CS) independent replicates. **p < 0.01.

FIGURE 2 | Nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant signaling and mitochondrial DNA (mtDNA) copy number. (A) Nrf2 gene expression

normalized to β-actin (ACTB) in controls (n = 9) as well as non-manifesting [leucine-rich repeat kinase-2 (LRRK2)+/PD−, n = 20] and manifesting carriers

(LRRK2+/PD+, n = 10) of the G2019S mutation in LRRK2. Kruskal–Wallis test and Dunn’s post-hoc test: controls vs. LRRK2+/PD−, p > 0.99; controls vs.

LRRK2+/PD+, p = 0.03; LRRK2+/PD− vs. LRRK2+/PD+, p = 0.12. (B) MtDNA copy number in control (n = 8), LRRK2+/PD− (n = 19), and LRRK2+/PD+ (n =

10) individuals. Kruskal–Wallis test and Dunn’s post-hoc test: controls vs. LRRK2+/PD−, p > 0.99; controls vs. LRRK2+/PD+, p = 0.36; LRRK2+/PD− vs.

LRRK2+/PD+, p = 0.02. Experiments performed on three independent replicates. *p < 0.05.
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exosomes from LRRK2+/PD+ compared to LRRK2+/PD−
cases. In light of an established mechanistic link between

LRRK2 kinase activity and lysosomal dysfunction (25), we
speculated that mtDNA disintegration and elevated oxidative

stress might be the consequence of impaired mitochondrial

clearance in LRRK2+/PD+ individuals. To test this hypothesis,
we determined the citrate synthase activity to cell number

ratios as an indicator of mitochondrial mass in our fibroblast

samples. We observed a significant increase (Mann–Whitney

test: p = 0.001) in the LRRK2+/PD+ group (median: 1.74,
IQR: 1.38–3.30) compared to the LRRK2+/PD− group

(median: 0.95, IQR: 0.88–1.31) (Figure 1C). Moreover,
mtDNA copy number analysis also revealed increased levels
in LRRK2+/PD+ (median: 19.68, IQR: 7.11–34.77) compared

to LRRK2+/PD− fibroblasts (median: 4.98, IQR: 3.32–7.46;
Kruskal–Wallis followed by Dunn’s tests: p = 0.024) (Figure 2B,
Supplementary Table 3).

Impaired Mitochondrial DNA Transcription
Initiation in Carriers of the G2019S
Mutation Independent of Disease Status
Further highlighting the role of mtDNA maintenance in
determining LRRK2-PD penetrance, an increase in mtDNA
transcription-associated 7S DNA was recently detected in
LRRK2+/PD+ compared to LRRK2+/PD− fibroblasts (16). By
measuring the abundance of 7S DNA per mtDNA molecule
(MT-ND1), we observed a significant decrease (Mann–Whitney
test: p = 0.003) in all LRRK2 G2019S carriers (median: 0.80,
IQR: 0.75–0.87) compared to controls (median: 0.93, IQR: 0.82–
0.97) (Figure 3A). However, contrary to the abovementioned
study, we detected no difference in the 7S DNA:MT-ND1
ratios between manifesting (median: 0.84, IQR: 0.74–0.87) and
non-manifesting (median: 0.79, IQR: 0.76–0.85; Kruskal–Wallis
followed by Dunn’s tests: p > 0.99) carriers (Figure 3B,
Supplementary Table 3).

FIGURE 3 | Transcription of the mitochondrial genome. (A) Mitochondrial DNA (mtDNA) transcription-associated 7S DNA normalized to MT-ND1 in controls (n = 10)

and leucine-rich repeat kinase-2 (LRRK2) G2019S mutation carriers (n = 31). Mann–Whitney test: p = 0.003. (B) 7S DNA:MT-ND1 ratios in controls (n = 10) and

non-manifesting (LRRK2+/PD−, n = 21) and manifesting carriers (LRRK2+/PD+, n = 10) of the G2019S mutation in LRRK2. Kruskal–Wallis test and Dunn’s

post-hoc test: controls vs. LRRK2+/PD−, p = 0.009; controls vs. LRRK2+/PD+, p = 0.14; LRRK2+/PD− vs. LRRK2+/PD+, p > 0.99. (C) Mitochondrial gene

expression derived from averaging the mRNA levels of MT-ND1, MT-ND4, MT-CO1, and MT-CYTB in controls (n = 9) and LRRK2 G2019S mutation carriers (n = 28).

Mann–Whitney test: p = 0.04. (D) MtDNA gene expression in control (n = 9), LRRK2+/PD− (n = 19), and LRRK2+/PD+ individuals (n = 9). Kruskal–Wallis test and

Dunn’s post-hoc test: controls vs. LRRK2+/PD−, p = 0.12; controls vs. LRRK2+/PD+, p = 0.49; LRRK2+/PD− vs. LRRK2+/PD+, p > 0.99. Experiments were

performed using three independent replicates. **p < 0.01; *p < 0.05.
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We then tested whether mtDNA-encoded genes were
differentially expressed in the LRRK2+/PD+ and LRRK2+/PD−
groups. We averaged the expression of the polycistronic
transcripts of MT-ND1, MT-ND4, MT-CYTB, and MT-CO1. In
line with our results for the 7S DNA:MT-ND1 ratios, we observed
a significant decrease in mtDNA gene expression in all G2019S
mutation carriers, independent of the disease status (median:
0.62, IQR: 0.46–0.93) compared to controls (median: 0.94,
IQR: 0.62–1.21; Mann–Whitney test: p = 0.044) (Figures 3C,D,
Supplementary Table 3).

DISCUSSION

There is a myriad of biological pathways implicated in LRRK2-
dependent neurodegeneration including cytoskeletal dynamics,
autophagy, trafficking, and mitochondrial dysfunction (1).
However, the pathophysiology for penetrance of mutations in
LRRK2 still remains an enigma.

Elevated phosphorylation of Ser-1292 in urinary exosomes
has been shown to predict LRRK2 mutation status and risk
for PD (13). Additionally, LRRK2 kinase activity has an
impact on mtDNA integrity, where the LRRK2 G2019S mutants
present with increased mtDNA lesions compared to kinase-
dead (D1994A) mutants in rat cortical neurons (12). These
mtDNA findings in model organisms seem to be translatable
to patient-derived cell lines. Our group recently reported an
accumulation of mtDNA deletions in LRRK2 G2019S patient-
derived fibroblasts. The mtDNA deletions correlated with disease
status: themanifesting carriers presented a higher load ofmtDNA
deletions than non-manifesting carriers and controls (18).

In this study, we further investigated mitochondrial
function and related factors. In LRRK2+/PD+ compared
to LRRK2+/PD− fibroblasts, we found reduced complex
I activity but no changes in complex IV activity. NADH
dehydrogenase deficiency is a hallmark of PD pathology (10)
and has been proposed to play a role in the penetrance of LRRK2
mutations (26). Our data do not exclude the dysfunction of other
mitochondrial respiratory complexes. Indeed, besides complex I,
the G2019S mutation in LRRK2 also compromised the function
of respiratory chain complexes III and IV in previous studies
(27). Furthermore, reduced cellular ATP levels and a loss in
mitochondrial membrane potential were observed in fibroblasts
from PD patients harboring the G2019S LRRK2 mutation (28).
However, in the context of LRRK2-PD penetrance, somatic
mtDNA deletion accumulation appears to primarily affect
complex I function.

Somatic mtDNA major arc deletions may be a result of
impaired antioxidant signaling in LRRK2+/PD+. Situated in
close vicinity to the respiratory chain, the mitochondrial genome
is permanently exposed to free radicals, which can cause single-
and double-strand DNA breaks. If such nicks remain unrepaired,
somatic mtDNAmutations arise (24). Recently, a blood screen in
∼1,500 LRRK2+/PD− and LRRK2+/PD+ individuals revealed
reduced urate serum concentrations in the latter group (15).
Urate can modulate antioxidant signaling, including the Nrf2–
ARE pathway (15). When quantifying Nrf2 gene expression in
our samples, we found increased mRNA levels in LRRK2+/PD+

compared to control fibroblasts, suggesting a compensatory
upregulation in affected individuals.

Via nuclear respiratory factor 1 (NRF-1), Nrf2 can act
on the mitochondrial transcription factor A (TFAM), thereby
interfering with mtDNA gene expression (29). During the
initiation phase of mtDNA transcription, a small DNA fragment
is incorporated in the D-loop region of the mitochondrial
genome. This, so-called 7S DNA, can serve as a marker
of mtDNA molecules undergoing transcription. A study
quantifying 7S DNA in fibroblasts from four LRRK2+/PD+
and five LRRK2+/PD− cases showed elevated 7S DNA levels
and an increase in mtDNA heavy-strand transcription in
manifesting carriers (16). Moreover, contrary to what was
previously observed in postmortem nigral neurons from
idiopathic PD patients (30), the authors found increased 7S
DNA:mtDNA ratios in sporadic patients compared to controls
(16). When testing the abundance of 7S DNA in a larger
number of controls (n = 10) and LRRK2+/PD− (n = 21)
and LRRK2+/PD+ (n = 10) cases, we did not observe a
penetrance-specific phenotype. By contrast, 7S DNA:mtDNA
ratios were reduced in all individuals with LRRK2 G2019S
independent of affection status. In line with these results,
we detected a reduction in mtDNA gene expression in
all mutation carriers. Thus, whether impaired mtDNA gene
expression contributes to penetrance-associated mitochondrial
dysfunction in LRRK2-associated PD warrants further studies in
replication cohorts.

Overall, LRRK2 mutations cause mitochondrial dysfunction
in multiple model systems including patient-derived cell lines.
Mutant LRRK2 can interfere with mtDNA maintenance,
mitochondrial dynamics, trafficking, and mitophagy
(10, 11, 28, 31). LRRK2 pathogenic point mutations have
been shown to impair mitophagy in patient induced pluripotent
stem cell (iPSC)-derived neurons in a kinase-dependent
manner. Wild-type LRRK2 forms a complex with Miro1,
which connects mitochondria with kinesin motor proteins that
transport cargo along microtubules. During the initial phase
of mitophagy, LRRK2 mediates the removal of Miro1 from
depolarized mitochondria, thereby reducing mitochondrial
motility. In the presence of the G2019S mutation, the LRRK2-
Miro1 complex is disrupted, causing delays in the induction of
mitophagy (9). In light of these findings, mtDNA disintegration,
respiratory chain dysfunction, and increased mitochondrial
mass and mtDNA copy numbers in LRRK2+/PD+
cases may be different signs of impaired turnover of
damaged mitochondria.

In conclusion, we showed that mitochondrial phenotypes
such as somatic mtDNA deletions or respiratory chain
complex I activity can serve as markers of LRRK2 G2019S
penetrance in peripheral tissues. Further experiments are
required to understand whether, unlike LRRK2+/PD−
individuals, LRRK2+/PD+ cases present a faulty mitophagy
system. Moreover, despite the recognized value of patient
fibroblasts for PD research, inherent model limitations
warrant further investigations in iPSC-derived neurons.
The latter model will allow the investigation of the
contribution of mtDNA disintegration to the selective death of
dopaminergic neurons.
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University, Cape Town, South Africa, 4Departments of Developmental and Experimental Psychology, Utrecht University,
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The loss of ventral striatal dopaminergic neurons in Parkinson’s disease (PD) predicts

an impact on the reward system. The ventrostriatal system is involved in motivational

processing and its dysfunction may be related to non-motor symptoms such as

depression and apathy. We previously documented that patients with PD had blunted

Blood Oxygen Level Dependent functional magnetic resonance imaging (BOLD fMRI)

reward task related activity during both reward anticipation (i.e., in the ventral striatum)

and reward outcome (i.e., in the orbitofrontal cortex). Evidence for the modulation of

brain function by dopaminergic genes in PD is limited. Genes implicated in dopamine

transmission, such as the dopamine transporter gene (DAT1) may influence the clinical

heterogeneity seen in PD, including reward processing. This study therefore sought

to determine whether genetic differences in the DAT gene are associated with brain

activity associated with response to reward in PD patients and controls. A sample of

PD cases on treatment (n = 15) and non-PD controls (n = 30) from an ethnic group

unique to South Africa were genotyped. We found a three-way interaction between

GENOTYPE × BOLD fMRI REWARD × DIAGNOSIS [F (1, 40) = 4.666, p = 0.037, partial

η
2
= 0.104]. PD patients with the DAT1 homozygous 10/10 repeat genotype showed a

relative decrease in orbitofrontal cortex reward outcome related activity compared to the

patient group who did not have this repeat. PD patients with other genotypes showed an

expected increase in orbitofrontal cortex reward outcome related activity compared to

controls. Given the small sample size of the PD group with the 10/10 repeat, these results

should be considered preliminary. Nevertheless, these preliminary findings highlight the

potential modulation of dopamine transporter polymorphisms on orbitofrontal reward

system activity in PD and highlight the need for further studies.

Keywords: DAT1, SLC6A3, Parkinson’s disease, monetary incentive delay, orbitofrontal cortex, ventral striatum,

functional magnetic resonance imaging
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INTRODUCTION

Parkinson’s disease (PD) is characterized by decreased
dopaminergic availability in the brain, especially in the striatum
(1). Changes in striatal dopaminergic tone in PD have been
related to cognitive as well as reward processing abnormalities
(2). Further, differences in fronto-striatal reward processing have
been demonstrated in both medicated and unmedicated patients
(2, 3). Specifically, blunted neural activity related to performance
on a reward task was found to be a distinguishing factor in PD
patients when compared to similarly aged controls (3). Brain
activity patterns associated with reward may be linked to the
non-motor symptoms of PD such as apathy (4) and impulsivity
(5), and warrant investigation.

There is a growing body of literature documenting an
association between candidate genes involved in the dopamine
system and reward related brain activity (6–8). This includes
the commonly occurring 10-repeat allele of the 40 bp variable
number tandem repeat (VNTR) polymorphism within the
Dopamine Active Transporter (DAT1) gene, also referred to
as solute carrier family 6 member 3 (SLC6A3). Although the
individual frequencies of the DAT1 repeats differ between
ethnic groups, the 10-repeat allele is still the most common
with frequencies ranging from 37 to 93% across several
ethnic groups (9). The majority of in vitro studies have
shown that the 10-repeat allele is associated with increased
DAT1 expression in comparison to a commonly occurring 9-
repeat (10–12). Increased DAT1 expression leads to increased
activity of DAT1 and increased dopamine uptake, which results
in a decrease of dopamine levels in the synapse, and this
could potentially be related to poorer reward related activity
in the ventral-striatal system. Using single photon emission
computed tomography (SPECT), subjects homozygous for the
DAT 10-repeat allele had a 22% relative increase in DAT
protein availability in homozygous DAT 10-repeat homozygotes
compared to those with the 9-repeat/10-repeat genotype (10).
Using Quantitative real-time Reverse Transcription Polymerase
Chain Reaction (RT-PCR), it was shown that increased levels
of DAT1 expression were associated with the number of 10-
repeat alleles (11). Radioligand binding and immunoblotting
techniques also revealed statistically significant differences in
DAT expression attributable to the DAT1 genotype, with lower
the DAT1 density for the 9- and 10-repeat variants (12). Not
all studies have found increased expression of DAT1 associated
with this allele, with some reporting the opposite (13). Blood
oxygen level dependent functional MRI (fMRI) nevertheless
demonstrated relatively decreased reward anticipatory activity
in the ventral striatum as well as decreased reward outcome
related activity in the orbitofrontal cortex during a Monetary
Incentive Delay (MID) reward processing task in individuals
with the DAT1 10/10 repeat, compared to those with the 9/9
repeat (6). The MID is known to robustly activate the ventral
striatum during reward anticipation and orbitofrontal cortex
during positive reward outcome (14). This finding was replicated
in another reward processing study examining orbitofrontal and
ventral striatal activity in DAT1 10/10-repeat vs. 9/9 repeat
carriers, showing greater responses to smoking vs. non-smoking

cues (15). However, there were contrasting findings in a study
examining the impact of genotype on reward processing thought
to underlie long-term memory formation where the DAT1
10-repeat homozygotes demonstrated increased striatal activity
compared with 9/10-repeat heterozygotes (8).

As the relationship between DAT1 genotypes and reward
processing is further clarified, it is important to examine the
impact that the DAT1 genotype could have on the course
of illnesses such as PD, where disease related alterations in
dopamine tone are particularly evident (16). To our knowledge,
there are no studies that have examined the relationship between
the DAT1 genotype and abnormalities in brain activation
associated with reward processing in PD.

Previously, we identified a relative decrease in both
anticipatory activity seen in the ventral striatum and reward
outcome related activity in the orbitofrontal cortex in PD (3).
Here, we aim to investigate the potential modulating effects of
the DAT1 10/10 genotype on these brain changes in a subsample
of 15 PD patients and 30 matched healthy controls, drawn from
a larger cohort, who were genotyped and underwent fMRI whilst
performing a monetary incentive delay task (17, 18). Given the
aforementioned findings in the literature, we predicted that
PD patients relative to controls, with the DAT1 10/10 repeat
genotype, compared with DAT1 heterozygotes, would have
the lowest levels of reward related activity in both the ventral
striatum during anticipation and in the orbitofrontal cortex
during reward outcome.

MATERIALS AND METHODS

The study participants form part of a larger cohort examining
the genomic and environmental signatures that are common
to PD, Posttraumatic Stress Disorder, Schizophrenia and
metabolic syndrome (named the “Shared Roots” study, MRC-
RFA-UFSP-01-2013). The study has been approved by Health
Research Ethics Committee (HREC N13/08/115) of Stellenbosch
University, Tygerberg Hospital, Cape Town, South Africa, with
annual renewal.

All participants were recruited from the same geographical
region in Cape Town, South Africa, were unrelated and matched
to socioeconomic status (lower to middle income status). All
self-identified as “mixed ancestry” which refers to an ethnic
population unique to South Africa and resulting from an
admixture of individuals of African, European and Asian
ancestral origins (19). This is the first published report on
DAT1 genotypes in a South African Mixed Ancestry population.
A diagnosis of PD was clinically confirmed by a neurologist
according to MDS diagnostic criteria (20). A healthy (non-
PD) control group was recruited and matched for ethnicity.
Controls did not have current significant psychopathology or
other significant confounding medical conditions.

Clinical Assessments
All participants received a full clinical examination. They were
screened for any confounding psychopathology using the Mini-
International Neuropsychiatric Interview (MINI version 6.0.0).
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The Unified Parkinson’s Rating Scale (UPDRS) (Version 3.0)
was completed for the PD patients (21). Handedness was
determined by the Edinburgh Handedness Inventory (22).
All participants were asked to take their PD medication as
normal, prior to scanning. All participants received a urine
drug screen immediately before their MRI scan. Participants
with severe head injury, confounding intra-cranial pathology,
current severe psychopathology and/or drug abuse and other
medical conditions that could confound behavioral as well as
fMRI measures were excluded.

Genotyping of 40 bp DAT1 VNTR
Polymorphism
Venous whole blood was collected from all study participants
for the genetic analyses. Genomic DNA was isolated with
the use of an in-house phenol/chloroform method prior to
2016 and a salting-out precipitation method (Gentra Puregene
Blood Kit), for samples collected post 2016. Polymerase chain
reaction (PCR) amplification was performed using primers DAT1
forward: 5′-ATGGGGGTCCTGGTATGTCT-3′ and reverse: 5′-
GGCACGCACCTGAGAGAAAT-3′; that were designed using
OligoAnalyzer (www.idtdna.com/oligoanalyzer), BLAST (www.
ncbi.nlm.nih.gov/BLAST/) and primerBLAST (www.ncbi.nlm.
nih.gov/tools/primer-blast/) for optimal binding to the region
of interest. PCR was performed in 25 µl reactions which
contained 0.4µM DAT1 forward and reverse primers (Inqaba
biotecTM, South Africa), 0.075µM of each dNTP, 0.25U GoTaq R©

G2 Flexi DNA Polymerase, 1x Colorless GoTaq R© Flexi Buffer,
1.5mM MgCl2 solution (Promega, Madison, WI, USA) and 30
ng genomic DNA. The PCR conditions comprised of: initial
denaturation at 95◦C for 10min; followed by 35 cycles of
denaturation at 93◦C for 1min, annealing at 58◦C for 30 s
and extension at 72◦C for 1min; and a final extension step
at 72◦C for 10min using a thermocycler (Applied Biosystems,
GeneAmp R© PCR System 2700, Singapore). The PCR product was
visualized using electrophoresis on a 1% SeaKem R© LE Agarose
gel (Consort Electrophoresis Power Supply, 800 Series, E844,
Belgium). Genotyping was carried out by comparing the size of
the PCR product, visualized on the agarose gel, to the expected
product size determined based on the reference DNA sequence
(NM 001044.5) in Ensembl (www.ensembl.org/index.html).

Monetary Incentive Delay (MID) fMRI
Paradigm
All participants performed a modified version of the MID task
(23). To enhance task comprehension, as well as keep the number
of scan acquisitions to a minimum, only reward and neutral cues
were used in this task. The task is described in detail elsewhere
(23). Briefly, during each scan trial participants were required to
respond as rapidly as possible when a target cue was presented.
A smiling face immediately preceded the target, to indicate a
potentially rewarding trial, and a neutral face was presented prior
to neutral trials. After seeing the face cue, a blue star was shown
for a short pseudo random interval immediately followed by the
target cue (i.e., reward anticipation). If a participant responded
in time to the target cue, a screen with green lettering appeared

indicating the total reward won (i.e., reward outcome). If a
participant did not respond in time, red letters appeared. During
reward trials, the monetary reward was incrementally increased
(fixed increments of ZAR10) (see Figure 1).

The reward anticipation period as well as the inter-trial
interval were “jittered” to reduce collinearity between reward
anticipation and reward outcome (mean duration 3,286ms,
range 779–6,729ms; mean duration 3,535ms, range 1,029–
6,979ms, respectively). The reward outcome period was 2,000ms
per trial. The entire task therefore consisted of 60 trials, with a
mean duration of 9,571ms (range 4,946–16,107ms), resulting in
a total task duration of 9min 35 s.

To ensure an equal number of rewarded and unrewarded
trials, the duration of the target cue was adapted to the fastest
response time of the participant during a training session. By
matching task performance across subjects in this way, we
controlled for differing levels of performance across the groups.
The target score was set to approximately ZAR150 (∼10 USD)
for each group.

Behavioral Data Analysis
Neutral correct trials and rewarded trials were compared between
case-control (diagnostic) and DAT1 genotype groups using a
repeated measures analysis of variance (RMANOVA), modeling
for REWARD (i.e., neutral correct vs. rewarded trials) ×

DIAGNOSIS (i.e., PD and controls) × GENOTYPE (i.e., DAT1
10/10 repeat vs. other genotypes) interaction effects. Monetary
reward across diagnostic and genotype groups was compared
with a standard t-test. If the 3-way modeling for REWARD ×

DIAGNOSIS×GENOTYPE interaction was significant, post-hoc
testing was performed to identify whether the 3-way interaction
was driven by disease status or genotype.

Image Acquisition
Scans were acquired on a 3T Siemens Allegra at the Combined
Universities Brain Imaging Center (CUBIC). A total of 360
whole-brain 2D-EPI images (TR = 1,600ms, TE = 23ms,
flip-angle: 72.5 degrees, FOV: 256×256, 30 slices, 4mm isotropic
voxels) were acquired in 9min 35 s. For image registration,
a T1 ME-MPRAGE weighted structural scan was acquired
(TR= 2,530ms; TE1 = 1.53ms TE2 = 3.21, ms, TE3 = 4.89ms,
TE4 = 6.57ms, flip-angle: 7 degrees, FoV: 256mm, 128 slices, 1
isotropic voxel size) (24).

Image Pre-processing
Images were analyzed using SPM12 (http://www.fil.ion.ucl.ac.uk/
spm/software/spm12/). Pre-processing and first-level statistical
analysis was undertaken as previously described (3). In brief,
pre-processing involved correction for slice timing differences,
re-alignment to correct for head motion, spatial normalization
to the Montreal Neurological Institute template brain, and
spatial smoothing to accommodate inter-individual differences
in neuro-anatomy. Head motion parameters were analyzed to
ensure that the maximum motion did not exceed a predefined
threshold (scan-to-scan >2 mm).
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FIGURE 1 | Schematic representation of the Monetary Incentive Delay task. Rand, South African Rand (ZAR).

First Level fMRI Statistical Analysis
The pre-processed time-series data for each participant was
analyzed using a standard general linear model (GLM) analysis.
The model consisted of six factors of interest, representing
haemodynamic changes time-locked to trial periods of (1)
anticipation of receiving a potential reward, i.e., during and

after the presentation of the reward cue (reward anticipation),
(2) the lack of reward anticipation during and after a neutral
cue (neutral anticipation), (3) feedback reflecting when money
was received for a successful reward trial (reward outcome),
(4) feedback when no reward was received, (5) feedback
reflecting when the button was pressed in time during a neutral
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TABLE 1 | Demographics of the 45 study participants.

Patients Controls

n = 15 n = 30

Mean SD Mean SD Test score p-value

Age 61.59 9.56 56.56 6.59 t = 2.070 0.04*

Sex (M/F) 11/4 12/18 X2
= 4.447 0.04*

Handedness (R/L) 14/1 29/1 X2
= 0.262 0.61

Months since diagnosis 56.6 41.92

LED (mg/day) 560 307.76

Hoehn & Yahr staging 2.57

ADL (best/worst) 73.33/65.33

Reward Won (ZAR) 118.67 121.67 t = −0.309 0.76

fMRI motion parameters

Mean motion 0.09 0.03 0.10 0.03 t = −1.141 0.26

Maximum motion 0.47 0.28 0.52 0.31 t = −0.517 0.61

Total number of movements 124.87 80.20 138.27 64.75 t = −0.604 0.55

Mean rotation 0.001 0.0003 0.001 0.0004 t = −0.867 0.39

Maximum rotation 0.006 0.0025 0.008 0.0070 t = −0.803 0.43

*Significant at p < 0.05 level.

trial (neutral correct outcome), and (6) feedback reflecting an
incorrect response in a neutral trial, i.e., when the target was
missed when no reward was offered (Figure 1). The onset
of the factors modeling anticipation (duration range 1,529–
7,479ms) was at the presentation of the cue, while the onset
of the factors modeling feedback (duration: 2,000ms) was at
the presentation of the target, including the button press to
the target and subsequent feedback (see Figure 1). Motion
parameters from the realignment procedure were included as
factors of no interest. Low frequency drifts were removed from
the signal by applying a high-pass filter with a cut-off frequency of
128 Hz.

Region of Interest Analyses
Primary analyses were performed in one region of interest (ROI):
the combined bilateral ventral striatum for anticipation, and
combined bilateral orbitofrontal cortex for reward outcome,
based on previous findings (23). These regions were defined
using the Automated Anatomical Labeling (AAL)-atlas (25) and
the Oxford-GSK-Imanova Striatal Connectivity Atlas for the
ventral striatum (26). For each participant, the mean activation
level (expressed as percent signal change) during the contrasts
of interest specific to reward anticipation and reward outcome
(reward anticipation, neutral anticipation, reward outcome, and
neutral correct outcome) was averaged over all the voxels of each
ROI using SPM12 and customMATLAB R2019a scripts.

Similar to the behavioral data analysis, these values were
used in a RMANOVA, testing for main and group effects in
activation levels between neutral vs. potentially rewarding trials,
reward anticipation vs. reward outcome, and correct neutral
trials vs. positive reward outcome. As in the behavioral analysis,
we modeled for a REWARD × DIAGNOSIS × GENOTYPE
interaction effect.

RESULTS

The Shared Roots cohort comprised 81 PD patients and 79
controls. All participants were genotyped for the 40 bp DAT1
VNTR. Data was originally collected from 2 separate scan sites.
Due to the low number of controls relative to patients available
at the second site (n = 6 with DAT1 10/10 genotype, n = 2 with
other genotypes) which resulted in an unbalanced sample for the
second scan site, we chose only to include data from the first scan
site. Of these, 18 patients and 39 controls had fMRI, T1 structural
scan and genotype data. Three PD patients and seven controls
were excluded due to the presence of motion or other scanner
related artifacts. Two controls were excluded due to poor task
performance. This resulted in a final sample of 15 patients and
30 controls. The demographics of the 45 study participants are
reflected in Table 1. There was a small but significant difference
in age between the cases and controls. We therefore included age
as a covariate in all analyses. Although there were significantly
fewer females present in the patient group than in the control
group, we chose not to correct for this in our final model, as we
found no sex-based differences on the MID in our larger sample
(3, 18). Patient and control groups were also matched in terms of
several important motion parameters (Table 1) (27).

Similar to European cohorts, the DAT1 10/10 repeat was
the most commonly occurring repeat in the sample (45.8%),
followed by the 10/9 repeat. Interestingly, our sample contained
few DAT1 9/9 repeats (4.2%, see Figure 2) unlike cohorts of
European ancestry where it is often frequent. Importantly, there
was no significant difference in the frequencies of the genotype
subgroups, which were balanced between patients and controls
(X2

= 2.179, p = 0.14). As we had an a priori hypothesis for the
DAT1 10/10 repeat and had observed a relatively low frequency of
the other repeats, we divided the sample into two groups: a “10/10
repeat” genotype group compared to all the other genotypes.
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FIGURE 2 | The frequencies of DAT1 variable number tandem repeat (VNTR) for PD patients (n = 15) and healthy controls (n = 30). The percentage of DAT1 VNTR

frequencies are depicted with the individual counts (n) displayed above each genotype bar.

FIGURE 3 | (A,B) Region of interest analysis of the Monetary Incentive Delay task. Graphs showing task related activity during the Monetary Incentive Delay task in

the orbitofrontal cortex during reward feedback.

No Difference Observed in Behavioral Data
Since the task was adjusted according to participant’s
performance level, patients and controls received an equal
amount of reward [t(43) = −0.309, p = 0.759]. Both patients
and controls appropriately responded more rapidly to rewarded
trials [F(1, 41) = 5.633, p = 0.022], but there was no REWARD ×

GENOTYPE interaction effect [F(1, 41) = 0.103, p= 0.749].

No Reward Anticipation Effect Observed in
the Ventral Striatum
Contrary to our hypothesis, we found no main effect for reward
anticipation in the ventral striatum [F(1, 41) = 1.615, p = 0.211],
nor a DIAGNOSIS interaction effect [F(1, 41) = 2.227, p= 0.143].

Reward Outcome Effect Observed in the
Orbitofrontal Cortex
Although there was no main effect for reward outcome in the
orbitofrontal cortex [F(1) = 1.172, p = 0.285], there was a
three-way REWARD×DIAGNOSIS× GENOTYPE interaction
effect [F(1, 40) = 4.666, p = 0.037], while controlling for age,
in line with our hypothesis (see Figure 3). As predicted, after
post-hoc testing, Parkinson’s patients who have the DAT1 10/10
genotype demonstrated a decrease on average in bold signal from
neutral to rewarded trials, whereas those with other genotypes
demonstrated a normal increase in activity [F(1) = 1.678, p =

0.22, partial η
2
= 0.123). Interestingly, controls demonstrate

the opposite effect, showing a relative increase in those that
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have the DAT1 10/10 repeat, with an absent response for the
other genotypes [F(1) = 3.017, p = 0.094, partial η

2
= 0.101].

Uncorrected post-hoc testing however failed to yield significant
results. A marginally larger effect was noted when comparing
patients with and without the DAT1 10/10 genotype (partial η

2

= 0.123), than when comparing controls with and without the
genotype (partial η

2
= 0.101). This suggests that the three-way

interaction effect in our main analysis was driven more by the
patients with and without the DAT1 10/10 genotype relationship.
As post-hoc testing could not adequately distinguish between the
various subgroups and given the small sample size, particularly
that of the Parkinson’s group with the DAT1 10/10 repeat (n= 5),
these results should be considered exploratory.

The blunted response in the control group which did not have
the DAT1 10/10 repeat can still be expected for this age group.
Results remained unchanged, however, when the age covariate
was removed. A sample using a wider age range would be needed
to adequately address this question.

Exploratory Whole Brain Voxel Wise
Analysis
As we had a specific hypothesis, directed at specific brain
regions we did not focus on whole brain analyses. Whole brain
exploratory analysis did not yield any additional information.

DISCUSSION

We investigated the potential genetic underpinnings of reward
processing abnormalities seen in PD compared to healthy
controls. As predicted, we found evidence for poorer reward
outcome-based reactivity in the orbitofrontal cortex for patients
with the DAT1 10/10 genotype compared to those with other
genotypes. Contrary to our hypothesis, we found no such
differences in the ventral striatum during reward anticipation.
To our knowledge this is the first-time reward-related functional
genotypes have been investigated in PD.

Our finding that DAT1 10/10 carriers had abnormal reward
outcome related activity in the orbitofrontal cortex could reflect
an increased vulnerability for PD-related dopaminergic cell loss
in this region. Indeed, it has been shown that the DAT1 10/10
genotype is associated with lower synaptic dopamine availability
due to possible increased levels of dopamine transporters (10).
Not all studies reported this however, with some suggesting
the opposite (13). Our results corroborate a potential hypo-
dopaminergic state in the DAT1 10/10 group, as BOLD fMRI
activity has been found to correlate with dopamine reactivity
in this region (14). However, further exploration of this link
with more direct methods such as the use of positron emission
tomography (PET) would be needed to confirm this. Although
the DAT1 10/10 genotype is one of the more common functional
variants reported in the literature, it is possible that there
are other unexamined variants that are stronger predictors of
dopaminergic hypofunction. Our results confirm that DAT1
10/10 is a potential predictor of reward function variability in
diseased states. As our present sample only includes patients
on treatment, we cannot account for potential treatment effects.

It could be that PD medication has an impact on the normal
dopaminergic tone of the ventral tegmental area, which could
also have a differential impact across genotypes. As our patients
were not assessed while medication free and dopamine activity
was not directly measured, we cannot comment on treatment
effects. Further treatment effect studies are advised. Interestingly,
although Parkinson’s patients without the 10/10 DAT1 repeat
showed a normal increase in reward outcome related activity,
controls without the 10/10 repeat showed a relatively flattened
out response. The absence of a response in the controls could be
age related, as a similar flattened out response has been observed
in similarly aged healthy controls in previous studies (3, 18). The
relative increase in reward outcome related activity Parkinson’s
patients without the DAT 1 10/10 repeat could possibly reflect
treatment effects. Again, future studies investigating medication
and genotype interaction effects in larger number of patients and
controls are needed to substantiate this finding.

Contrary to our previous findings, we did not find any
reward anticipatory related activity in the ventral striatum in
this particular sub-sample, nor any effect of genotype in this
region for this subgroup. The absence of a reward anticipation
effect could be explained by poor data quality or poor task
comprehension. This was unlikely to be the case in our study as
our groups also showed low levels of motion and did not differ
on important measures of motion. All groups also demonstrated
good task comprehension, as they increased their response
times appropriately during rewarded trials. Another potential
explanation is the relative older age of the current subsample,
which could explain the general lack of signal for this region.
Indeed, it has been found that ventral striatal but not orbito-
frontal activity per se, decreased with normal aging (18).

Although our findings do indeed substantiate our hypothesis
that reward related functioning is related, at least in part, to DAT1
genotype, our sample is small, and therefore these findings should
be considered as exploratory. Although we found significant
differences in the orbitofrontal regions, we cannot completely
rule out similar findings for the ventral striatum due to our
limited sample size. Furthermore, although our study supports
functional associations with the commonly occurring DAT1
genotype, this does not necessarily mean that it is the only or even
the best predictor of reward related functioning. Future, larger
studies should also explore other dopamine-related genes such as
catechol-O-methyltransferase (COMT) (6).

Despite these limitations, our study has important
implications. Reward related function loss, and PD non-
motor symptoms by extension, could be exacerbated in certain
vulnerable genotypes. This should be considered in future studies
of genetic vulnerability and treatment in PD. Genetic risk factors
could potentially play an important role in the non-motor
symptoms of PD.
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Induced pluripotent stem cell-derived organoids offer an unprecedented access to

complex human tissues that recapitulate features of architecture, composition and

function of in vivo organs. In the context of Parkinson’s Disease (PD), human midbrain

organoids (hMO) are of significant interest, as they generate dopaminergic neurons

expressing markers of Substantia Nigra identity, which are the most vulnerable to

degeneration. Combined with genome editing approaches, hMO may thus constitute

a valuable tool to dissect the genetic makeup of PD by revealing the effects of

risk variants on pathological mechanisms in a representative cellular environment.

Furthermore, the flexibility of organoid co-culture approaches may also enable the

study of neuroinflammatory and neurovascular processes, as well as interactions with

other brain regions that are also affected over the course of the disease. We here

review existing protocols to generate hMO, how they have been used so far to

model PD, address challenges inherent to organoid cultures, and discuss applicable

strategies to dissect the molecular pathophysiology of the disease. Taken together, the

research suggests that this technology represents a promising alternative to 2D in vitro

models, which could significantly improve our understanding of PD and help accelerate

therapeutic developments.

Keywords: Parkinson’s disease, IPS (induced pluripotent stem) cell, organoid, midbrain, dopamine, genetics

PARKINSON’S DISEASE

Pathophysiology
Parkinson’s Disease (PD) is the second most frequent neurodegenerative disorder after Alzheimer’s
Disease. It affects over 10 million people worldwide, with an estimated yearly cost of 52 billion
dollars in the United States alone, and an increasing prevalence due to an aging population (1).
Although PD has historically been characterized by its motor symptoms (bradykinesia, tremor,
and rigidity), the frequent co-occurrence of cognitive and psychiatric symptoms (such as apathy,
depression, and executive dysfunction) have led to the revaluation of PD as a quintessential
neuropsychiatric disorder (2).

At the cellular level, the central hallmark of PD is the misfolding and aggregation of α-
synuclein (α-syn), a protein involved in neurotransmitter release, membrane remodeling and
vesicle recycling, into toxic ß-sheet rich fibrillar aggregates (3). While impairments in protein
synthesis, folding, and degradation have been extensively linked to α-syn aggregation and toxicity,
recent advances have also highlighted the importance of lipid dysregulation in its pathological
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mechanisms (4). In most cases, these alterations lead to the
accumulation of α-syn aggregates along with mis-trafficked lipid
vesicles and organelles into inclusions termed Lewy Bodies
(LB) and neurites (5, 6), which are considered to be the main
histological manifestation of PD. While it remains unclear
whether LB themselves play a harmful, protective or even
“neutral bystander” role in PD (7), α-syn-associated pathology
eventually induces the degeneration of vulnerable cells through
altered mitochondrial, proteasomal, and autophagy-lysosomal
pathways (6, 8).

This vulnerability has been linked to several cellular
characteristics: elaborate neuronal arborization with many
vesicular release sites (enriched in α-syn), elevated intracellular
calcium concentrations due to autonomous pacemaker activity,
and higher basal levels of mitochondrial oxidative stress (9).
These characteristics are all found in the dopaminergic (DA)
neurons of the substantia nigra (SN), which are the most
affected neuronal type in PD. Their progressive degeneration
leads to a massive loss of DA release within cortico-basal
ganglia networks, and the emergence of both motor and
psychiatric symptoms of PD (10). The symptomatology is further
broadened by alterations of other neuronal types throughout the
course of the disease, although to a lesser extent (11). These
include other neuromodulator-producing neurons [cholinergic
(12), noradrenergic (13), and possibly serotonergic (14, 15)],
enteric neurons (16), as well as cortical neurons, in which
comorbid Alzheimer’s Disease pathology can arise in later
stages (17, 18). Additionally, microglia and astrocyte-mediated
neuroinflammatory processes are also known to contribute
to neurodegeneration and the progression of synucleinopathy
(19, 20).

PD is also a highly heterogeneous disease, as patients
can present significant differences for example regarding age
of onset (21), adherence to Braak staging (9), alteration in
neurotransmitter systems (22–27) and symptom presentation (9,
21, 28, 29). This heterogeneity thus suggests that the etiology of
PDmay involve a diversity ofmolecular and cellularmechanisms,
which remain to be fully identified.

Molecular Basis
Much of our understanding of the pathological mechanisms of
PD come from the study of relatively rare, high risk/monogenic
forms of the disease. To this day, 19 disease-causing genes
have been identified, amongst which 10 are autosomal dominant
(including mutations in SNCA, which encodes α-syn, and in the
Leucine Rich Repeat Kinase 2 / LRRK2 gene), and 9 autosomal
recessive (including PRKN, PINK1) (30). PD cases due to
mutations in those genes however only represent 5–10% of all
cases. Interestingly, the G2019S LRRK2 mutation has a variable
penetrance, as it can lead to both sporadic and familial PD (31).

The most recent GWAS meta-analysis to date has identified
90 common genetic variants with medium to low effect sizes
that were associated with PD (32). This study also found that
the expression of candidate genes was exclusively enriched in
neuronal cell types (with the strongest enrichment residing in
SN DA neurons, followed by pallidal, thalamic, and cortical
neurons), a striking contrast with recent reports on the genetic
architecture of Alzheimer’s Disease which heavily implicated

peripheral and CNS glial cell types (33) (blood, spleen,
lung, and microglia). Gene ontology analyses also revealed
enrichment for pathways referring to cellular stress responses
and suggest a potential implication of neuro-inflammatory
mechanisms. Interestingly, no significant association with
other neuromodulator-producing neurons (serotonergic,
noradrenergic, cholinergic) was revealed in these analyses, thus
highlighting the centrality of DA and DA-associated networks in
PD pathophysiology. This result may nevertheless be due to the
fact that this study did not account for PD subtypes (21), which
may be associated with alterations in different neurotransmitter
systems (22–27). In this regard, future studies integrating large
cohort GWAS data with patient stratification strategies may help
identify molecular mechanisms driving PD heterogeneity.

Amongst the most highly significant and best characterized
risk variants are those in the beta-glucocerebrosidase (GBA) gene.
Such variants seem to impair lysosomal function and can lead to
an increase in PD risk between 2- and 19-fold, and are associated
with amore severe clinical profile regarding symptomatology and
progression rate (21, 30). Interestingly, the presence of multiple
risk variants in a single patient (referred to as the “polygenic
load”), has also been shown to influence age of disease onset, but
not the rate of progression (34).

Recent population studies have yielded PD heritability rates
ranging between 0.22 and 0.27 (32, 35), suggesting that a
majority of cases may be due to the interaction of genetic and
environmental factors [rural living and pesticide exposure are
well-known risk factors, while tobacco, coffee, and moderate
alcohol consumption may be protective, see review (36)], and
to stochastic processes. Mosaicism may for instance be a non-
negligible contributor to the pathogenesis of sporadic PD (37), as
changes in copy numbers of the SCNA gene have been observed
in patient SN DA neurons (38). Nevertheless, only a minor
fraction of the disease’s heritability (16–36% depending on its
prevalence) can be explained by the most recently identified
risk loci (32), indicating that much of the “missing heritability”
remains yet to be uncovered. This may be partly achieved
through better understanding of epistatic interactions and the
functional annotation of the non-coding genome, in which a
majority of the single nucleotide polymorphisms (SNPs) fall.
Indeed, like many other complex polygenic human diseases, the
etiology of sporadic PD is likely attributable to the interactive
effects of a high numbers of variants on the regulation of large-
scale genetic networks (39). A growing body of research is
for example revealing how non-coding variants affecting long
range enhancer/promoter interactions or non-coding RNA may
be involved in PD pathophysiology (40–43). However, as non-
coding sequences tend to be less conserved between species,
appropriate human models of the disease are thus required to
expand our understanding of the molecular basis of PD.

MODELING PD IN VITRO

Reproducing Midbrain Development
in vitro
Given the importance of DA degeneration in PD, human induced
pluripotent stem cell (hiPSC)-derived DA cultures constitute
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highly relevant biological models to study the associated
molecular mechanisms in vitro.

Midbrain DA (mDA) neurons are found in 3 separate
nuclei: the Substantia Nigra pars compacta (SN, forming the
A9 group), Ventral Tegmental Area (VTA, A10 group,) and
Retrorubral Field (RRF, A8 group). A9 mDA neurons, which
primarily project to sensorimotor and associative striatal areas
(putamen and caudate nucleus), as well as some cortical
areas, are particularly vulnerable to neurodegeneration in
PD (10, 11).

In order to generate mDA neurons in vitro, several protocols
have been established based on our understanding of midbrain
development [see in depth reviews (44, 45)]. To summarize,
stem cells are initially directed toward a neuroectodermal
fate through TGFβ/activin/nodal and BMP pathways inhibition
[referred to as dual SMAD inhibition (46)], using different
combinations of molecules. SHH, WNT, and FGF8 signaling
are then typically modulated in order to specify midbrain
floor plate identity, from which mDA progenitors arise. Cells
are then differentiated and matured through the use of
neurotrophic factors such as brain and glial-derived neurotrophic
factors (BDNF, GDNF) and Ascorbic Acid, a commonly used
antioxidant. Correct specification should induce the expression
of transcription factor (TF) FOXA1/2 in mDA progenitor cells,
which in turn regulates the expression of LIM homeobox
TFs LMX1A and LMX1B. These TFs are required for the
specification and differentiation of mDA neurons, notably by
up-regulating NURR1, PITX3, and Tyrosine Hydroxylase (TH),
which together constitute essential markers of mDA neuron
identity. The differentiation and survival of mDA neurons
is then regulated by EN1/2 homeobox genes, which remain
expressed in adult neurons (44). It is worth noting that
these differentiations protocols do not generate SN-like mDA
neurons specifically, but rather a diversity of mDA subtypes
(47), out of which some neurons express markers of A9 or
A10 identity.

hiPSC-Derived Models of PD in 2D
The development of these protocols triggered a wave
of characterization studies aiming at identifying altered
phenotypes of 2D mDA cultures derived from patient
hiPSCs carrying monogenic (PAKR2, PINK1, LRRK2,
SNCA, GBA, and OPA1) or sporadic forms of the disease.
These phenotypic effects have been well-described in
the literature, both at the cellular and molecular levels
[see reviews (48–51)]. To summarize, several converging
pathological mechanisms that contribute to the vulnerability
of human mDA neurons were reproduced in vitro,
including reductions in neuronal arborization, increases
in α-syn expression, oxidative stress, and mitochondrial
dysfunctions (decreased respiration and ATP production,
impaired mitochondrial biogenesis), as well as altered
cellular stress responses [such as the unfolded protein and
integrated stress responses, which involve the endoplasmic
reticulum (52–54)].

While these experiments helped validate hiPSC-derived
mDA neurons as human cellular models of PD and achieve a

better understanding of the cellular and molecular dysfunctions
involved, only a few studies have however reported mDA
degeneration (55, 56). Not surprisingly, the weeks-long
differentiation of these DA neurons (up to 3 months) raises
the limitations of these 2D cultures relatively to human
development, in particular regarding neuronal maturity
and the establishment of synaptic connections to other
cell types. This has partially been taken into account using
microfluidic devices that recreate direct contacts between
mDA neurons and striatal medium spiny neurons (57), or
using co-cultures with astrocytes (58). These approaches
however do not allow the development of mDA neurons
concomitantly with other cell types as it happens in vivo,
which contributes to DA maturity and may be involved in
PD mechanisms.

Developing 3D Midbrain Organoids
In this context, the rise of human stem-cell derived brain 3D
organoid cultures, which recapitulate features of the brain’s
composition, organization, and function (59), has led to
significant advances in our understanding of neurodevelopment
and in disease modeling. Although midbrain and mDA markers
have been found to spontaneously arise in non-directed whole
brain organoids (60), the proportions of cells expressing such
markers tends to be small and highly variable, thus warranting
the development of more directed differentiation protocols.
While some approaches have led to the development of
“neurospheres,” which contain an increased proportion of DA
neurons (along with excitatory, inhibitory neurons as well as
glial cells) (61), most efforts have been directed at specifically
reproducing mesencephalic development in the dish, in order
to generate mDA neurons in representative human “midbrain
organoid” (hMO) structures.

Tieng et al. (62) were the first to adapt a widely-used 2D
differentiation protocol (63) to 3D suspension through the
use of microwells to create homogeneously sized embryonic
bodies, which were then placed on an orbital shaker for 3
weeks, before being seeded and grown at air-liquid interface.
Although the suspension-culture phase of their protocol was
short, they proved that such an approach could efficiently
generate mDA progenitor cells (∼80% of all cells expressed
FOXA2 and LMX1A) as well as TH-expressing cells after
only 3 weeks. Following these results, 3 new protocols were
published within 1 year (64–66), describing the generation
and long term maintenance of hMO (up to 5 months). These
papers were the first to provide in depth characterization
of the model, and proof that these organoids could be
maintained in long term cultures in order to favor neuronal
maturation. Although each protocol presents differences in
timing, specific molecules used and their concentrations, these
approaches mainly rely either on the sequential (65) or
simultaneous (62, 64, 66) use of morphogens to induce midbrain
floor plate identity, as described earlier (see Figure 1 for
graphical summary). In order to promote nutrient and oxygen
diffusion throughout the hMO, all of these initial protocols
relied on the use of orbital shakers, as well as hydrogel
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FIGURE 1 | Summarized hMO differentiation strategies. hMO differentiation protocols aim at reproducing essential dynamics of in vivo human midbrain development,

which are represented by the drawings in the middle section: (1) midbrain specification using dual SMAD inhibition and WNT modulation; (2) midbrain floor plate (mfp)

induction through modulation of SHH and FGF8, and (3) differentiation and maturation of midbrain dopaminergic neurons using neurotrophic factors (see Table 1 for

details in hMO models of PD). Each step is associated with the generation of cell types that can be identified in vivo and in hMO models using the mentioned markers.

Starting from hiPSC-derived embryonic bodies (EB), the described protocols have either relied on the use of sequential or simultaneous patterning strategies,

represented as the top and bottom branches, respectively. Optional modifications to the protocol include expansion of mfpNeural Progenitor Cells (mfpNPC), hydrogel

embedding, use of orbital shakers or microfluidics devices, aging strategies, and DA treatment. The generated hMO typically contain mDA neurons expressing

markers of A9 and A10 terminal differentiation, and long-term cultures may favor the apparition of neuromelanin granules, which can be enhanced through DA

stimulation. Features of floor plate organization in ventricle, intermediate, and mantle zones (VS, IZ, MZ) may also be revealed using markers of mDA progenitors (65).

This organization is particularly evident in hydrogel-embedded organoids, as this process favors apico-basal polarization. SB, SB431542; DM, dorsomorphin; CHIR,

CHIR99021; A83, A-83-01; SHH, sonic hedgehog; SAG, smoothened agonist; FGF8: fibroblast derived growth factor 8; BDNF/GDNF, brain/glial-derived neurotrophic

factor; AA, ascorbic acid; cAMP, cyclic AMP; LDN, LDN193189; PM, purmorphamine; TGFß3, Transforming growth factor beta 3; FGF20, fibroblast derived growth

factor 20.

embedding in some cases to promote apico-basal orientation and
cellular proliferation.

These organoids developed features of organization similar to
the midbrain floor plate, namely a ventricular zone containing
OTX2+ FOXA2+ cells, as well as intermediate (LMX1A+
NURR1+) and mantle layers containing progressively maturing
neurons (MAP2+ TH+). Several markers of pan-mDA neuronal
identity have been consistently observed in hMO, including the
dopamine transporter (SLC6A3 / DAT), DOPA decarboxylase
enzyme DDC, and TF PITX3 (65, 67). While each study tried
to estimate the proportions of mDA neurons in the hMO,
differences in the methodologies and protocols used have led
to variable results. For instance, by using FACS approaches,
Jo et al. (65) found that at 2 months of differentiation, 22%
of all cells were MAP2+ TH+, while Monzel et al. (66)
found at the same timepoint a much higher yield of cells
expressing essential markers of mDA identity: 61% were
TH+FOXA2+LMX1A+. Nevertheless, both studies found
that neuromelanin (NM) granules spontaneously appeared in
long term cultures, their structures resembling those found in
adult human SN tissue. Exogenous DA treatment could also

significantly increase the accumulation of NM, suggesting that
these granules may indeed be by-products of DA metabolism
(65). While the authors did not try to dissect the diversity
of mDA subtypes generated, which is in of itself a complex
endeavor in vivo [see review (68)], NM-containing cells were
indeed found to be enriched in transcripts expressed in A9
SN mDA neurons such as KCNJ6 (GIRK2) and ALDH1A1
(47, 65, 69). Interestingly, ALDH1A1 may be particularly
implicated in mDA neuron vulnerability to degeneration in PD
(70). Some neurons were also found to be positive for CALB1,
a marker of A10 VTA identity (65, 66). No study has however
aimed at identifying A8 RRF-like neurons, likely due to the
fact that they do not have a clear molecular signature (68).
These organoids were also found to produce DA, and mDA
neurons showed characteristic electrophysiological pacemaker
activity which was responsive to the use of D2/D3 agonist
quinpirole. Beyond mDA neurons and their progenitors,
excitatory and inhibitory neurons (62, 65) were found in these
hMO, as well as astrocytes and myelinating oligodendrocytes,
consistent with the composition of the midbrain
(65, 66).
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hMOhold a number of advantages over their 2D counterparts.
RNA sequencing of hMO for instance showed that their
transcriptomic profile was closer to that of prenatal midbrain
samples compared to 2D cultures (63), with higher expression
of mDA markers such as ALDH1A1 and KCNJ6 (GIRK2), as
well as glial markers OLIG3 and SLC1A3 (EAAT1/GLAST).
Interestingly, markers of non-dopaminergic catecholaminergic
neurons such as DBH and SLC6A2 (NET), which frequently
arise in 2D cultures, were also found to be significantly
decreased in hMO, thus highlighting the importance
of the 3D environment for proper mDA specification.
Tieng and colleagues (62) also showed that mDA neurons
derived from 3D cultures expressed higher levels of TH and
presented varicose-like neurites reminiscent of A9 neuronal
morphology, which had not previously been observed in
2D cultures. Furthermore, the spontaneous or dopamine-
induced apparition of neuromelanin granules (65–67) is a
remarkable feature as it has rarely been found in 2D cultures
(55, 71).

More recent evolutions of these protocols have confirmed
the initial observations, as well as aimed at increasing the
quality and reproducibility of hMO (67, 72–76) and better
estimating their yield of mDA neurons. For instance, using
a high content image analysis approach, Smits et al. (73)
showed that TH+ cells composed 62% of all cells after 1
month of differentiation, while Ahfeldt et al. (74) found
using a knock-in TH:tdtomato line, that TH+ cells composed
∼38% of total cells at a similar timepoint. Such differences
are likely to arise from cell line effects as well as protocol
variations. Kwak et al. (67) recently aimed at establishing ideal
conditions to maximize mDA neuron generation in hMO, by
testing out different combinations of molecules for SMAD
inhibition and modulating WNT signaling. These modifications
allowed them to approximately double their yield of TH+

cells compared to commonly used molecule combinations (86%
TH+ cells by day 28), and to efficiently suppress cortical
marker expression. By 4 months of culture, their hMO were
also producing higher concentrations of DA than previously
reported. Taken together, these findings support the relevance
of hMO cultures to obtain mDA neurons expressing markers
of terminal differentiation (such as NM production) in a 3D
environment that reproduces the neuronal and glial composition
of the human midbrain.

Midbrain Organoid Models of PD
The first two in-depth reports of PD modeling in hMO focused
on the effects of the LRRK2 G2019S mutation, which has
been associated with both sporadic and familial forms of the
disease due to its variable penetrance (31), and which constitutes
the most common genetic risk factor for PD. To do so, the
researchers relied on Crispr-Cas9 gene editing to either introduce
the mutation in a control hiPSC line (77), or to combine
this with a correction in a mutant patient line (73). Smits
et al. (73) found that while the number of mDA progenitors
(FOXA2+TH- cells) was significantly increased after 1 month
of differentiation in LRRK2 vs. control hMO, an apparent
impairment of differentiation led to a reduction in the number

and complexity of mDA neurons (FOXA2+TH+) after longer
periods of culture (day 70). Interestingly, the increase in the
number of progenitors was significantly higher in LRRK2 PD
hMO compared to those from controls with the knock-in
mutation. This result thus highlights the importance of the
genetic background in the penetrance of the LRRK2 G2019S
variant (31). In line with these findings, Kim et al. (77) observed
that while LRRK2 G2019S hMO were no different in size
compared to controls, mDA neurite length and expression
of mDA identity markers were decreased (such as TH, DAT,
NURR1, PITX3, EN1) by day 60. The LRKK2 hMO also
contained higher levels of phosphorylated α-syn in endosomal
compartments, and higher expression levels of markers of
mitophagy and autophagy. The authors also identified TXNIP [a
thiol-oxidoreductase that induces lysosomal dysfunction and DA
cell death when overexpressed (78)] as an important mediator
of LRRK2-G2019S pathological mechanisms, and proved that
knocking-down its expression reversed the accumulation of
phosphorylated α-syn.

More recently, an extensive report from Ahfeldt et al. (74)
used hMO to study the roles of 3 severe PD-associated mutations
(in PRKN/PARK2, DJ1/PARK7, and ATP13A2/PARK9) through
genomic editing of a healthy control hiPSC line. RNAseq
analyses of TH+ cells after 1 month of differentiation found
that PRKN–/– mDA neurons showed the highest amount of
differentially expressed genes (1641) compared to controls.While
proteomics analyses revealed a dysregulation of the autophagy-
lysosomal pathway in all cell lines, the PRKN–/– mDA
neurons also showed an upregulation of pathways associated
with oxidative phosphorylation, mitochondrial dysfunction,
and Sirtuin signaling, as well as a significant depletion of
mitochondrial proteins. Supporting these results, they found
a significantly higher level of mitochondrial reactive oxygen
species (ROS) in TH+ cells from PRKN−/− hMO compared
to their TH- counterparts and to control cells (both TH+ and
TH–). Furthermore, while the mDA neuronal population was
significant reduced in PRKN−/− organoids (from 40 to 17% of
all cells), there were no significant differences in the other two
cell lines. The authors showed that this deficit was not due to an
impairment in mDA generation, but rather to the death of newly
differentiated TH+ neurons, which could be linked to a 3-fold
increase in SNCA protein expression in these hMO. Interestingly,
the expression of VTA marker CALB1 was 4x higher in the
PRKN−/− hMO, suggesting that A9-like neurons may have been
more severely affected by the early neuronal death, thus leading
to a bias in subtype generation. It is however not known if other
mutations would have provoked a similar phenotype at later
timepoints, although mDA neurons inDJ1−/− and ATP13A2−/−

hMO also tended to show increases in mitochondrial ROS.
Reports of decreased mDA identity and impairment of

mitochondrial function were supported by two additional studies
which partly relied on hMO. For instance, SNCA A53T-mutated
hMO recapitulated the increased expression of eEF2K mRNA
found in post-mortem patient SN (79). eEF2K, also known
as Calmodulin-dependent protein Kinase III (CamKIII), is a
crucial regulator of protein synthesis and synaptic plasticity,
and is involved in a-syn mediated mitochondrial toxicity (79).
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Mutations in PINK1, which encodes a mitochondrial kinase,
have also been linked to reduced TH+ counts in hMO (80).
Taken together, these studies suggest that hMO constitute a
valid translational model to investigate the effects of different
PD-associated mutations, as they reproduce elements of cellular
pathology involving oxidative stress found in post-mortem tissue
(81) (see Table 1 for summary).

Interestingly, a recent study focusing on a novel variation
in the POLG1 gene (Q811R), previously linked to progressive
external ophthalmoplegia and parkinsonism (75), found
significant increases in hMO TH+ cells after 100 days of culture
compared to those from a gender-matched control. This study
also reported an increased production of NM in response to
DA treatment, which may have neurotoxic effects in the long
run. Although no deficits in mitochondrial respiration were
observed, metabolic and proteomics data indicated an increased
level of glycolysis, which was specific to neurons. The striking
differences from previously mentioned results (reduced mDA
neuron counts and impaired mitochondrial respiration) indicate
that POLG1-related PD may thus entail different pathological
mechanisms. However, as isogenic lines were not used as controls
in this study, the experiments should be replicated to confirm
these findings.

hMO may also be of use to study sporadic forms of PD,
including the effects of PD-associated environmental stressors.
So far, only one study has aimed at deriving hMO from patients
with sporadic PD (82). The authors found, in line with previous
articles, a decrease in TH expression after 1 month of culture
of hMO derived from 2 sporadic patients, compared to those
from 2 healthy controls. This effect might have been linked to
early decreases in FOXA2 and LMX1A expression. They however
also measured an increase in the expression of PTX3, which
encodes a protein (Pentraxin 3) involved in neuroinflammatory
responses that is increased in the plasma of PD patients (84).
Nevertheless, as hiPSC-based studies of sporadic diseases are
hard to control for, additional studies with increased statistical
power are needed to further explore sporadic PD mechanisms
in hMO. Sporadic PD dynamics may also be probed through
exposure to mitochondrial stressors such a rotenone and MPTP,
which have been shown to preferentially affect mDA neurons in
hMO and related cultures (67, 77, 85).

As discussed earlier, the 3D nature of hMO favors better
modeling of the in vivo midbrain over 2D cultures, and may
by extension provide a better translational value when studying
neurodegenerative disorders such as PD. A study for instance
showed that in plated cultures of LRRK2 G2019S mDA neurons,
most of the PD phenotype (such as a reduction of the number and
arborisation complexity of TH+ cells, impaired mitochondrial
function and increased apoptosis) appeared only when Matrigel
was used to recreate a 3D environment (86). Similarly, when
comparing the transcriptome of hMO to 2D cultures of LRRK2
G2019S-derived mDA neurons, Kim et al. (77) found that
the genes differentially expressed in hMO were enriched for
transcripts found in post-mortem PD tissue. In support of this
finding, the expression of TXNIP, which they proved to be central
to pathophysiological mechanism in LRRK2 G2019S, showed
4-fold higher expression in hMO compared to 2D cultures.

Altogether, these studies indicate that 3D hMO cultures may
constitute a significant improvement over 2D cultures as in vitro
platforms to model PD.

FUTURE TECHNOLOGICAL CHALLENGES

Challenges Inherent to Organoid Culture
It is somewhat surprising that several essential features of
PD pathophysiology can be modeled in relatively young
stem-cell derived structures, which may conceptually be
better suited to study pathologies with clearly recognized
neurodevelopmental components such as autism spectrum
disorder (ASD), schizophrenia, lissencephaly, and many others
(87). Furthermore, the reprogramming of differentiated patient
cells to iPSC-states is known to have a “rejuvenating” effect by
erasing many crucial aging-related epigenetic marks (88). Brain
organoids have however also proven to be able to reproduce
strong aging-related cellular phenotypes of Alzheimer’s Disease
(AD) (89–91). As tracking the earliest stages of PD or AD is an
inherently difficult task, these results thus support the possibility
that important neurodevelopmental aspects of such diseases may
have been overlooked [see reviews (92, 93)].

However, another complementary possibility is that these
severe phenotypesmay partly be a by-product of organoid culture
limitations. Indeed, although 3D organoid models constitute
significant advances compared to their 2D counterparts, their
density and size restrain the proper diffusion of oxygen and
nutrients to all cells, leading to a well-known necrotic core.
Brain organoids are also characterized by an upregulated reliance
on glycolysis and high levels of ER stress, which may impair
neuronal differentiation and promote mitochondrial stress (94),
an aggravating factor in the context of neurodegeneration.
Furthermore, while glial cells play an essential role of clearance
in disorders such as PD and AD [see reviews (95, 96)],
gliogenesis mainly happens in later stages of organoid culture
(after 6 months in forebrain organoids) (97), and typically
does not include microglial cells, unless differentiation protocols
favor their apparition (98). In this sense, the stressful culture
conditions and incomplete glial support may trigger and/or
speed up pathophysiological cascades primed by genetic risk
variants in PD hMO, and lead to the early apparition of severe
neurodegeneration-related phenotypes.

Reducing in vitro Culture Artifacts
An essential endeavor to answer these questions will be to
develop strategies to reduce culture-related artifacts, and to
modulate cellular maturation in order to study early and
later stage neurons and glia. Several studies have already
started addressing these issues. For instance, it is now
clear that transplantation inside rodent brains can effectively
vascularise the organoids, correct artifacts linked to in vitro
culture and significantly enhance neuronal maturation (94,
99, 100). These improvements nevertheless come at the
expense of uncontrolled interactions between the host and
grafted tissue, and synaptic integration into the host brain
(100). It is however for now not known what effects such
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TABLE 1 | Summary of studies using hMO to model PD.

References Genetic risk

variants

Cellular

Stressors

Protocol %TH+

cells

(controls)

PD-related phenotype Therapeutic

approaches

SMADi WNT SHH FGF8 Maturation Scaffolding,

agitation

Jan et al. (79) SNCA A53T / DM (1µM)

SB (10µM)

CHIR (3µM) PM

(0.5–0.75µM)

/ BDNF, GDNF

(10 ng/mL) cAMP

(500 µM) AA (200 µM)

TGFß3 (1 ng/mL)

Matrigel +

orbital shaker

/ ↑ eEF2K mRNA, linked to

mitochondrial stress

/

Kim et al. (77) LRRK2

G2019S

AO removal,

MPTP

(200–500µM)

Unclear CHIR (3µM) SHH

(100 ng/mL)

FGF8

(100 ng/mL)

BDNF, GDNF

(20 ng/mL)

AA (200µM) until

day 45

Matrigel +

orbital shaker

60% (Day 60) ↓ mDA neuron mRNA

markers, neurite length

↑ α-syn, mitophagy &

autophagy markers, MPTP

sensitivity

• Description of an “aging”

strategy (–AO) for hMO

• Identification of TXNIP as a

mediator of

LRRK2 pathology

• Therapeutic strategies

rescue elements of

phenotype

LRRK

inhibition &

TXNIP knock-

down

Smits et al.

(73)

LRRK2

G2019S

/ LDN (250 nM)

SB (10µM)

CHIR

(3–0.7µM)

SAG (0.5µM) / BDNF, GDNF

(10 ng/mL)

cAMP (500µM)

AA (200µM)

TGFß3 (1 ng/mL)

DAPT (10µM)

/ 54% (Day 70) ↑ mDA progenitor cells

↓ Number and complexity of

mDA neuons

• Implication of

genetic background

/

Chumarina

et al. (75)

POLG1 Q11R / LDN (100 nM)

SB (10µM)

CHIR (0.8µM) SAG

(1–2 µM)

SHH

(200 ng/mL)

FGF8

(100 ng/mL)

BDNF, GDNF

(10 ng/mL) cAMP

(500µM)

AA (200µM)

TGFß3 (1 ng/mL)

DA (50 µM) start.

day 30

/ 40% (Day

100)

↑ Number of mDA and

DA-induced NM accumulation

↑ Neuronal reliance on

glycolysis

• No alterations in

mitochondrial function

/

Ahfeldt et al.

(74)

PRKN−/−

DJ1−/−

ATP−/−

/ LDN (100 nM)

SB (10µM)

CHIR

(1µM)

SAG (1 µM)

PM (2 µM)

/ BDNF, GDNF

(10 ng/mL) cAMP

(100µM)

AA (200µM)

DAPT (10µM)

SpinQ

agitation

40% (Day 35) • Different molecular & cellular

phenotypes / mutation

• Dysregulation of

autophagy-lysosomal

pathways in all lines

↑ Mitochondrial stress, SNCA

expression, in PRKN−/−

↑ early death of mDA neurons

in PRKN−/− (A9 specific?)

/

(Continued)
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TABLE 1 | Continued

References Genetic risk

variants

Cellular

Stressors

Protocol %TH+

cells

(controls)

PD-related phenotype Therapeutic

approaches

SMADi WNT SHH FGF8 Maturation Scaffolding,

agitation

Kwak et al.

(67)

/ MPTP

(10–100µM)

Best: DM

(2µM)

A83 (2µM)

CHIR (Best:

3µM)

SAG (2µM) FGF8

(100 ng/mL)

BDNF, GDNF

(10 ng/mL) cAMP

(125µM)

AA (200µM)

DA (50 µM) start.

week 8

Matrigel (+I/L)

+ orbital

shaker

86% of

neurons (Day

35)

↑ Vulnerability of mDA

neurons to MPTP toxicity

/

Chlebanowska

et al. (82)

Sporadic PD / SB (10µM)

Noggin (200 ng/mL)

CHIR (0.8µM) SHH

(100 ng/mL)

FGF8

(100 ng/mL)

BDNF, GDNF

(10 ng/mL) cAMP

(125µM)

AA (100µM)

Matrigel (+I/L)

+ orbital

shaker

/ ↓ TH expression

↑ Pentraxin 3 (PTX3)

expression

/

Monzel et al.

(83)

/ 6OHDA

(50–500µM)

DM (1µM)

SB (10µM)

CHIR (3µM) PM

(0.5–0.75µM)

/ BDNF, GDNF

(10 ng/mL) cAMP

(0.5mM)

AA (200µM)

TGFß3 (1 ng/mL)

Matrigel +

orbital shaker

∼50% (Day

42)

↑ Vulnerability of mDA

neurons to 6OHDA toxicity

/

Jarazo et al.

(80)

PINK1

Q456X/I368N

PRKN

R275W

/ DM (1µM)

SB (10µM)

CHIR (3µM) PM

(0.5–0.75µM)

/ BDNF, GDNF

(10 ng/mL) cAMP

(500µM)

AA (200µM)

TGFß3 (1 ng/mL)

Matrigel +

orbital shaker

∼45% (Day

30)

↓ Number of mDA neurons in

PINK1 hMO

• HP-β-CD treatment

increases

mDA neuron counts in PINK1

and PRKN hMO

HP-β-CD

DM, dorsomorphin; SB, SB431542; CHIR; CHIR99021; PM, purmorphamine; BDNF/GDNF, brain/glial-derived neurotrophic factor; AA, ascorbic acid; cAMP, cyclic AMP; LDN, LDN193189; SAG, smoothened agonist; I/L, short treatment

with insulin (2.5 µL/mL) and laminin (200 ng/mL), mDA neuron, midbrain dopamine neuron; NM, neuromelanin.
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transplantations approaches would have on neurodegeneration-
related phenotypes in organoid grafts.

Animal-free approaches may however also be of use.
Biophysics studies of allometric scaling have for instance
highlighted the importance of culture medium, hydrogel
composition and microfluidic device uses in the context of 3D
cultures (101–105). First of all, the composition of commonly
used media for hMO culture should be scrutinized. Indeed, such
composition may be partly responsible for the cellular stress
and differentiation defects observed in several brain organoid
cultures (94), as the abnormally high levels of glucose used
in the vast majority of hMO protocols are known to impair
the normal metabolic reprogramming of neural progenitor
cells to neurons (106) through increased oxidative and ER
stress (107). Furthermore, recent reports suggest that using
culture medium with more physiological levels of glucose may
be more adapted for neuronal maturation and modeling of
neurological disorders (108–110). Secondly, the development of
synthetic hydrogels as alternatives to animal-derived Matrigel
and Geltrex may provide enhanced control and reproducibility
of the 3D environment in which organoids grow (105). Thirdly,
in order to compensate for diffusion limitations in organoids,
two approaches have been described. Cakir et al. (111) for
instance showed that cortical organoids genetically engineered
to express hETV2, which encodes a transcription factor involved
in endothelial differentiation, spontaneously formed a vascular-
like network in vitro which dramatically reduced markers of
cell death and hypoxia without the need for transplantation.
Alternatively, microfluidic devices may also help increase oxygen
and nutrient diffusion throughout the organoids, as evidenced
in hMO cultures (112). Finally, electromagnetic stimulation may
also be of interest to enhance neuronal differentiation (113, 114),
including in hMO (115).

Addressing Variability in Organoid Differentiations
Organoid cultures have also gained notoriety for being highly
variable, which can be a major issue for disease modeling
and testing therapeutic approaches. This variability can be
traced down to several crucial factors: differences due to
the heterogenous genetic backgrounds of hiPSC cell lines,
variations in hiPSC culture and differentiation protocols used,
as well as batch effects. Nevertheless, each of these aspects
may be addressed in order to improve the reproducibility of
the model.

For instance, regarding the variability imputable to genetic
background heterogeneity, several approaches may be adopted.
The most straightforward path when studying variants carrying
a high risk and penetrance is to generate isogenic controls
using Crispr-Cas9 gene editing. Alternatively, in order to study
lower-risk variants with reduced penetrance, more elaborate
strategies may be necessary, such as relying on hiPSC lines
from related donors, or taking into account polygenic risk
scores in patient and control selection criteria in order to
recreate a continuous variable for risk scores (116), an approach
that has seen recent applications in the field of schizophrenia
research (117).

Furthermore, the way in which hiPSC cells are cultured
in the lab may have an important effect on their ability to
generate reproducible organoid structures. Indeed, a recent
study from Watanabe et al. (118) revealed that commonly used
feeder-free hiPSC culture conditions (compared to fibroblast-
supported), reduced their ability to generate reproducible high-
quality cortical organoids by altering their pluripotency state. The
authors however showed that these defects could be alleviated
through the use of TGFß superfamily agonists, which increase the
quality of organoid differentiation toward different brain areas as
well as reproducibility across cell lines.

Importantly, the variability in brain organoid cultures was
initially identified in whole-brain organoids, which rely on
very little to no exogenous patterning, and which are very
sensitive to cell line and batch effects (60). Several studies have
since shown that this variability could be significantly reduced
through the use of cytokines to guide and restrict organoid
differentiation toward a specific regional fate. While this was
initially demonstrated in forebrain organoid protocols (97, 119),
a recent study fromNickels and colleagues (76) showed that hMO
protocol refinement could also significantly reduce cell line and
batch variability. Taken together, these approaches can thus help
cut back on multiple sources of variability in hMO generation
and improve their translational value for PD modeling and
therapeutic discovery.

Aging in a Dish
As aging is the main risk factor for PD (120), understanding
its mechanisms and reproducing them in vitro may also help
build better disease models. At the molecular level, aging is
associated with changes affecting the DNA’s structure, content
(reduced telomere length and mitochondrial copy numbers,
increased DNA damage), epigenetic modulation (methylation
clocks can reliably predict chronological age), and has identifiable
transcriptomic, proteomic and metabolomic signatures [see
reviews (121, 122)]. At the cellular level, aging is also
characterized by a progressive accumulation of oxidative stress
and mitochondrial dysfunction, a global increase in the number
of cells baring features of senescence, as well as chronic low-
grade inflammation (122). In the context of PD, both molecular
(123, 124) and cellular dynamics (9) of aging have been identified
as altered.

In this regard, perhaps the most problematic limitation of
hMO as model systems for neurodegenerative diseases is that
they rely on the use of cellular reprogramming, which has a
rejuvenating effect on thesemolecular and cellular processes (88).
Studies of epigenetics, transcriptomics, have for instance shown
that organoids reproduce fetal molecular signatures of the human
brain (125, 126). While this limitation does not prevent the study
of disease-associated molecular aging mechanisms using hiPSC-
derived cultures—a recent report showed that retinal organoids
derived from Down Syndrome patients had a faster rate of DNA
aging compared to controls (127)—it is a major obstacle to study
aged states in vitro.

In order to bypass this limitation and reproduce
aging phenotypes in a dish, several types of approaches
have so far been described. Vera et al. showed that
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manipulation of telomere length, one of the molecular
hallmarks of aging, through telomerase inhibition could
induce other markers of aging (increased expression
of γH2AX, a common marker of DNA damage, and
increased oxidative stress) and accentuate PD phenotypes
in hiPSC-derived 2D mDA cultures (128). A previous
report from that group also found that a similar effect
could be induced through overexpression of Progerin, the
abnormal protein responsible for premature aging in Progeria
syndrome (55).

Another more indirect alternative is to rely on the induction
of cellular states associated with aging, for example through
manipulation of oxidative stress in vitro with toxins (such as
6-OHDA, MPTP) or through changes in media formulation.
For instance, in their 2019 paper, Kim et al. (77) removed
antioxidants from the hMO culture medium after 45 days of
culture (hMO-AO). While they did not provide a comparison
with hMO+AO, they found that after 2 months of differentiation
over a third of cells contained NM granules [compared to
7% at 146 days using a similar protocol with AO (65)],
two thirds expressed markers of mature A9 neurons such
as GIRK2, and over 40% expressed high levels of DNA
damage (γH2AX+). Transcriptomics analyses also showed
that control hMO-AO showed enrichment for “aged” human
midbrain transcripts, and genes differentially expressed in
LRRK2-G2019S hMO-AO were enriched for transcripts found
in post-mortem PD midbrain tissue, thus supporting the
relevance of their aging strategy. In this context, the basal
level of ER stress characterizing organoid cultures (94) may
also in of itself constitute an indirect aging strategy through
alterations of global homeostatic mechanisms, including calcium
homeostasis (129).

Finally, direct reprogramming of somatic cells such as
fibroblasts into neural lineage cells (iNeurons, or iN) through
transgenic expression of transcription factors (such as ASCL1
and NEUROG2), non-coding RNA, or even using small molecule
cocktails, may constitute the most elegant way of inducing
aging-related processes in vitro. Indeed, “aged” iNs preserve
multi-level marks (epigenetic, genomic, transcriptomic, and
proteomic) of aging and environmental interactions (130).
This approach allows iN to maintain phenotypes such as
defective mitochondrial function compared to hiPSC-derived
neurons (131). While mDA neurons have already been generated
using this approach (132), adapting this technology to hMO
generation may however prove to be challenging, as published
protocols for now rely on the direct conversion to post-mitotic
neuronal types.

Enhanced Organoid Designs
The use of hMO can also be expanded by taking advantage
of the flexibility of organoid cultures (see Figure 2A for
graphical summary). For instance, organoids can be completed
with non-neuronal lineage cells that do not typically arise
during neural organoid differentiations, but which may be
of interest for disease modeling. In the context of PD, co-
culturing hMO with microglia-like and endothelial cells could
for example enable researchers to study neuroinflammatory

mechanisms involving glial activation and brain-blood-barrier
disruption (133).

Several teams have indeed shown that hiPSC-derived
microglia-like cells (iMG) (134–136) as well as immortalized
human microglia (137) could efficiently colonize organoids
when cultured together. These integrated microglial cells
develop extensive ramified branching, and respond to challenges
such as physical injury, stimulation with lipopolysaccharides,
corticosteroids and amyloid-β-42 (amyloid-β-42) oligomers, as
well as infection with Zika and Dengue viruses (135, 137–
139). Two studies in particular showcase how iMG-organoid
co-cultures may be of use to model neurodegenerative diseases.
First of all, Lin et al. (89) showed that iMG carrying an APOE4
genotype (a high AD risk allele of the APOE gene) had an
altered morphology and reduced ability to clear extracellular Aβ

aggregates in organoid co-cultures compared to their (low-risk)
isogenic APOE3 counterparts. Secondly, a study from Song et al.
(139) proved that iMG were sensitive to the regional identity
of the brain organoids they integrated (in this study, dorsal vs.
ventral forebrain), and that this microenvironment impacted
their response to Aβ-42 stimulation. Given that microglia
play an important role in PD pathophysiology (96) and are
influenced by regional specificities (140, 141), such co-cultures
approaches may thus constitute a relevant strategy to study
neuroinflammatory interactions.

Furthermore, as alterations in blood-brain barrier (BBB)
function contribute to neuroinflammatory processes in PD,
assessing the interaction between endothelial cells (ECs),
pericytes and hMO may also be of interest. While this may
be partly achieved through in vivo transplantation in rodents,
the fact that the vascularization originates from the host (99,
100) may be a considerable limitation to study pathological
cellular interactions. More elaborate strategies can however help
overcome this issue. For instance, the transgenic induction
of hETV2 expression in organoids mentioned earlier (111)
leads to the formation of a vascular structure reproducing
key elements of BBB identity and function in vitro, which is
sensitive to the disrupting effects of Aβ-42 oligomers. As an
alternative, a vascular system can also be initiated in vitro
by co-culturing organoids with hiPSC- or human umbilical
vein-derived ECs, before proceeding to transplantations (142,
143).

Nevertheless, despite mDA neuron neurodegeneration being
the central element of PD pathology, there is also evidence of
a loss of cholinergic, adrenergic, and potentially serotonergic
neurons over the course of the disease, which alters cortical
and basal ganglia function and has been linked to several non-
motor symptoms (11–15). Moreover, cortical regions can also be
affected by Amyloid-ß and Tau pathology, which are associated
with PD dementia (17, 18). In this context, using organoids
differentiated toward different brain regions can help address the
extended PD picture. Newly characterized brainstem organoids
are particularly relevant as their composition encompasses
midbrain and hindbrain structures, in which arise not only mDA,
but also serotoninergic, cholinergic, and noradrenergic neurons
(144). Cortical, subpallial, and thalamic organoids have also
been well-characterized (145), and may be studied independently
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FIGURE 2 | Developments and applications of hMO cultures. (A) Potential developments of hMO cultures include aging strategies, fusions with other brain region

organoids, co-cultures with non-neuronal lineage cells (such as microglia, endothelial cells), use of microfluidics or “organ on a chip” approaches, and in vivo

transplantations. (B) hMO constitute relevant biological platforms to study the effects of PD-associated genetic and environmental factors on cellular function and

molecular networks. Such approaches may lead to a better understanding of the molecular basis of PD, help identify new therapeutic targets, and develop

personalized medicine approaches.

or fused with hMO/brainstem organoids to recreate elements
of basal ganglia circuitry involved in PD (146–148). Such
structures, named “assembloids,” could thus be used to study
cellular interactions andmolecular phenotypes in interconnected
structures and to address more complex questions in vitro.
For instance, what are the effects of genetic and environmental
risk factors on different neuromodulator-producing cell types
and their connectivity to forebrain structures? Why are
striatal cells, despite receiving massive inputs from the SN,
seemingly less vulnerable to synucleinopathy compared to
cortical neurons (9)?

Finally, beyond the central nervous system (CNS), there
is increasing evidence for an important role of the enteric
nervous system (ENS) in PD pathophysiology (16), which may
be addressed using intestinal or engineered ENS organoids
(149). In this regard, a first study comparing the transcriptomic
profiles of intestinal and neural organoids derived from LRRK2
G2019S patient hiPSCs to those from healthy controls reported
a wide range of alterations in biological processes and pathways
in both models, suggesting that this path should be further
explored (150).

Tools to Explore the Molecular Basis of PD
Using hMO
While hMO have for now mainly been used to study
the effects of high-risk variants on cellular and molecular
phenotypes, combining the access to human tissue provided by
organoids with GWAS and -OMICs data provides an unbiased
approach to further explore the genetic networks, cell types and
developmental stages implicated in PD pathophysiology (see
Figure 2B for graphical summary).

For instance, while GWAS data is often integrated with
expression quantitative trait loci (eQTL) and post-mortem data
to predict candidate risk genes with some tissue specificity,
recently developed approaches may help researchers extract
additional relevant information. For example, H-MAGMA (Hi-
C-coupled MAGMA) can further improve candidate gene
identification by incorporating chromatin interaction profiles
from human brain tissue across neurodevelopmental stages
(151). Cell-type specificity may also be explored more finely
by integrating GWAS data with single-cell RNA sequencing
(scRNAseq) datasets from the target tissue. Such an approach
recently allowed Bryois et al. (152) to reveal a significant
association of PD with cholinergic, monoaminergic, and enteric
neurons as well-oligodendrocytes using scRNAseq data from
a whole CNS. Although the main findings of this study were
replicated in post-mortem human tissue, their identification
approach relied on the analysis of protein-coding genes
expressed in the CNS of adolescent mice. In this context, hMO
scRNAseq datasets (153) may thus constitute more relevant
tools to explore the cell types (and subtypes) involved in PD
pathophysiology. Single-cell approaches may also constitute
an ideal readout to assess the molecular effects of somatic
mosaicism (such as SNCA CNVs), which can be induced
in organoids through the use of transfection and mixing
approaches (154).

Furthermore, considering that PD SNPs mainly fall into non-
coding regions of the genome (32), combining readoutmodalities
such as RNAseq, ChIP-seq, ATAC-seq, and proteomics can help
dissect complex molecular networks by including non-coding
elements and epigenetic modifications. For example, Inoue et al.
(155) used a combination of multiple modalities including
lentivirus-based massively parallel reporter assay to identify

Frontiers in Neurology | www.frontiersin.org 11 September 2020 | Volume 11 | Article 1005166

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Galet et al. Midbrain Organoids for PD Modeling

key regulatory elements and dynamics involved in the neural
induction of embryonic stem cells. They also found a significant
enrichment of neurological disorder GWAS variants in regions
withH3K27ac histonemodifications. A similar approachwas also
recently applied to forebrain organoid models (126). The authors
used a combination of RNA-seq and ATAC-seq to map changes
in gene expression, chromatin accessibility, and transcription
factor dynamics in purified neuronal and glial lineages over
20 months of differentiation. They then also incorporated
GWAS risk gene mapping to identify specific cell types and
neurodevelopment stages involved in ASD and schizophrenia.
Multimodal -OMICs integration has also proven to be a useful
strategy to identify the repertoires of long non-coding RNAs
(lncRNA) in mDA neurons (41), in which GWAS SNP mapping
identified 8 lncRNA possibly involved in PD pathophysiology.
With the development of single-cell approaches [see recent
reviews (156, 157)], identification of cell subtypes involved in
PD pathophysiology may further increase our understanding of
the disease.

CRIPSR-based technology may also be of particular use
to explore the molecular networks involved in PD, notably
through the use of genetic perturbation screens, and through
enhanced disease modeling [see review (158)]. Indeed, Crispr-
based techniques offers an unprecedented method to model the
polygenic liability of complex disorders such as PD in vitro.
In a proof of concept experiment, Schrode et al. (159) used
Crispr-based allelic conversion and activation/inhibition to
manipulate four risk genes associated with schizophrenia in
hiPSC-derived neuronal cultures, and demonstrated a synergistic
effect on synaptic function. Furthermore, combining such
approaches with the use of environmental stressors associated
with PD may constitute a unique opportunity to model
gene ∗ environment interactions in vitro. For instance, while
several studies using hMO and related 3D cultures have
shown mDA neuronal vulnerability to acute treatment with
mitochondrial toxins such as rotenone, MPTP, and 6-OHDA
(67, 77, 83, 85), studying the interaction of lower to medium risk
genetic variants with chronic, low-dose environmental stressors
may allow us to reproduce idiopathic trajectories of PD in
a dish.

Therapeutic Opportunities
Organoids also constitute a relevant platform to identify
novel therapeutic compounds and to assess their efficacy
on specific phenotypes. Kim et al. (77) showed that alpha-
synuclein accumulation could be reduced in LRRK2 G2019S
hMO through treatment with a LRRK2 kinase activity inhibitor
(GSK2578215A), but also by knocking down the expression
of TXNIP, which their study had identified as a central
mediator of G2019S pathology. Jarazo et al. (80) also found
that treatment with the HP-ß-CD compound improved mDA
neuronal differentiation in PINK1 and PRKN-mutated hMO,
likely through increased mitophagy.

A few elements should be heeded regarding therapeutic
developments using hMO. First of all, as organoid generation is
prone to variability, taking measures to reduce this confounding
factor (detailed in section Addressing variability in organoid

differentiations) is essential to accurately assess the potential of
therapeutic targets. Secondly, the organoids generated should be
extensively characterized, in order to best plan the modalities
of therapeutic testing and to help identify the appropriate
readouts to quantify the effects. In this sense, disease-modifying
treatments targeting deficits in early differentiation of mDA
neurons may require different modalities and readouts than
those aiming at increasing the survival of compromised,
mature cells.

In the long run, hMO technology opens up perspectives for
personalized medicine. The study by Ahfeldt et al. (74) identified
at least two distinct molecular phenotypes in hMO derived from
either PRKN−/−, or ATP13A2/DJ1mutated lines, indicating that
familial PD mutations induce different pathological cascades,
which may call for different therapeutic strategies. Furthermore,
personalized medicine approaches may also be explored in cases
of non-familial PD. An initial experiment for example proved
that cellular alteration in hiPSC-derived neurons from patients
with Bipolar Disorder were reversed by lithium treatment only
if the patients were also responsive to the medication (160).
More recently, Lang et al. (161) proved that mDA neurons
from patients carrying an identical variation in a common risk
gene (GBA N370S) could be stratified based on their molecular
profile using RNA sequencing. Clinical follow-up confirmed
that their strategy had indeed isolated a patient who proved
to be non-responsive to levodopa treatment, and who received
a revised diagnosis of progressive supra nuclear palsy. They
also identified a causative role of the mis-localization of a
class IIa histone deacetylase (HDAC4) in the remaining cell
lines, which was then also observed in 2 out of 4 idiopathic
PD-derived mDA neuron lines. As modulating the activity or
localization of HDAC4 alleviated the cellular PD phenotype, this
study suggests that deriving personalized medicine approaches
from hiPSC-derived cultures may indeed be a reality in the
foreseeable future.

Finally, transplantation of hMO into PD patients’ brains to
compensate for their loss of mDA neurons also constitutes
a promising therapeutic endeavor. Recent studies have
demonstrated that stem cell-derived mDA neurons or mDA
progenitors could indeed functionally integrate into striatonigral
circuits (162), and provide some symptomatic relief in a non-
human primate model of PD without forming tumors (163). As
organoids have been shown to efficiently integrate into rodent
neural circuits after transplantation (100), using dopamine-
producing hMO may prove to be a useful development for
therapeutic purposes. In this regard, a recent patent (115)
indicates that hMO transplantation in a unilateral 6OHDA
mouse model of PD could reduce turning behavior in response
to an apomorphine challenge, suggesting that the hMOmay have
functionally integrated into the host organism.

CONCLUSION

Since their first description in 2014, hMO have proven to
efficiently generate functional, NM-producing mDA neurons
with A9/A10-like identity in structures that recapitulate features
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of composition and organization of the human midbrain. PD
modeling studies using hMO have also shown their ability to
reproduce elements of the disease, such as α-syn accumulation
and impairment of mitochondrial function. Interestingly, some
mutations did not elicit such phenotypes, suggesting that hMO
may also be suited to investigate PD heterogeneity. Whether
the observed phenotypes are due to developmental or aging-
related pathological mechanisms remains however unclear, as
limitations inherent to hiPSC-derived organoid cultures might
for now prevent the dissociation of such aspects. Nevertheless,
recent studies suggest that these limitations can be overcome
through optimisation of culture systems, “aging” strategies and
transplantation into host organisms. Future development of
hMO co-culture systems will also help study neuroinflammatory
processes and interactions with other brain areas involved in
PD pathophysiology. Combined with genetic engineering and

multimodal molecular readouts, hMOmay thus provide a crucial
platform to explore the molecular basis of PD, with direct
therapeutic implications.
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The expected increase in prevalence of Parkinson’s disease (PD) as the most common

neurodegenerative movement disorder over the next years underscores the need for

a better understanding of the underlying molecular pathogenesis. Here, first insights

provided by genetics over the last two decades, such as dysfunction of molecular and

organellar quality control, are described. The mechanisms involved relate to impaired

intracellular calcium homeostasis and mitochondrial dynamics, which are tightly linked

to the cross talk between the endoplasmic reticulum (ER) and mitochondria. A number

of proteins related to monogenic forms of PD have been mapped to these pathways,

i.e., PINK1, Parkin, LRRK2, and α-synuclein. Recently, Miro1 was identified as an

important player, as several studies linked Miro1 to mitochondrial quality control by

PINK1/Parkin-mediated mitophagy and mitochondrial transport. Moreover, Miro1 is an

important regulator of mitochondria-ER contact sites (MERCs), where it acts as a sensor

for cytosolic calcium levels. The involvement of Miro1 in the pathogenesis of PD was

recently confirmed by genetic evidence based on the first PD patients with heterozygous

mutations in RHOT1/Miro1. Patient-based cellular models from RHOT1/Miro1 mutation

carriers showed impaired calcium homeostasis, structural alterations of MERCs, and

increased mitochondrial clearance. To account for the emerging role of Miro1, we

present a comprehensive overview focusing on the role of this protein in PD-related

neurodegeneration and highlighting new developments in our understanding of Miro1,

which provide new avenues for neuroprotective therapies for PD patients.

Keywords: Miro1, Parkinson’s disease, mitochondrial dynamics, mitophagy, calcium signaling

INTRODUCTION

The mitochondrial Rho GTPase Miro1 was first described in yeast, and these studies already
reported a link ofMiro1 to calcium homeostasis. Yeast strains devoid of theMiro1-ortholog Gem1p
displayed a calcium-dependent growth defect (1). Later, mammalian Miro1 was described as an
adaptor for calcium-dependent mitochondrial transport (2–4).
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The link between Miro1 dysfunction and Parkinson’s disease
(PD) arose from studies that identified Miro1 as a target of
the PD-associated proteins PINK1 and Parkin. These proteins
are mutated in autosomal recessively inherited early-onset PD,
and functional studies revealed a key role of PINK1-mediated
phosphorylation of Parkin for the regulation of mitophagy
as a key mechanism in mitochondrial quality control (5, 6).
Therefore, the functional interplay of Miro1 with these key
proteins for the maintenance of mitochondrial homeostasis was
the first link between mitochondrial dynamics and degradation
(7, 8). Further studies in vivo revealed that the overexpression
of Miro1 in flies led to loss of dopaminergic neurons (9),
likely due to a delay of clearance of dysfunctional mitochondria
via mitophagy triggered by an excess of Miro1. In contrast,
knockout of Miro1 in primary mouse neurons caused a decrease
in dendrite complexity as a result of impaired mitochondrial
distribution (10). The link between Miro1 dysregulation and
neurodegeneration was further substantiated by first studies
in human patient-based models showing that impaired Miro1
degradation, and the resulting inhibition of mitophagy, was
a shared phenotype in fibroblasts and neurons from different
sporadic and monogenic PD patients (11, 12). Recently,
our group described the first mitochondria-related cellular
phenotypes in fibroblasts from PD patients carrying mutations
in RHOT1, the gene encoding the Miro1 protein (13, 14), thereby
further supporting the involvement of Miro1 in the pathogenesis
of PD.

Investigations in yeast showed that Gem1p not only is
involved in the regulation of mitochondrial function but
also regulates the interplay between mitochondria and the
endoplasmic reticulum (ER) (15, 16). This interplay came into the
focus of PD research, since several PD-associated proteins were
recently identified as regulators of mitochondria-ER contact sites
(MERCs), i.e., PINK1, Parkin, LRRK2, or α-synuclein (17–20), all
of which are also interacting with Miro1 (7, 11, 12, 21).

Moreover, Miro1 was associated with peroxisomal transport
(22–24). Aberrant peroxisome-related metabolism was observed
in PD patients (25), and mice with impaired peroxisome
activity displayed increased aggregation of α-synuclein (26),
providing another potential link between Miro1 and PD via
altered peroxisome function. Together, these findings point
to an emerging role of Miro1 in neurodegeneration in
PD that underscores the need for summarizing the current
knowledge about Miro1 and new developments that provide new
perspectives for future causative therapies in PD.

STRUCTURE AND PHYSIOLOGICAL
FUNCTION OF THE MIRO1 PROTEIN

In mammals, two Miro GTPases, named as Miro1 and Miro2,
are encoded by the RHOT1 and RHOT2 genes located on
chromosome 17. Miro1 and Miro2 are both ubiquitously
expressed, consisting of 662 amino acid residues, and display
a 60% peptide sequence homology (27–29). Miro GTPases are
conserved in almost all eukaryotes containingmitochondria (30),
and they were first considered as atypical members of the RAS

superfamily of GTPases, particularly as two of the 23 members of
the RHO (Ras homolog) protein subfamily (27).

However, in contrast to other RHO family members, Miro
GTPases contain no C-terminal cysteine and they also lack the
typical RHO insert, which led to their classification as a definite
subfamily of small GTPases (29, 31–34).

Structurally distinct N-terminal and C-terminal GTP-binding
motifs are present in both Miro proteins, with a linker region
(called “MiroS”) connecting two EF-hand domains to the C-
terminal GTPase domain (35, 36).

In contrast to the yeast Miro1 homolog Gem1p, which needs
both GTPase domains to maintain its function as an adaptor
for transport (34, 37), the influence and requirement of these
two GTPase domains on mitochondrial trafficking have been
widely debated in metazoans, especially in neurons. Several
studies suggested that the N-terminal and C-terminal GTPases
of Miro1 might have different functions. For instance, it was
shown in fly and rat neurons that the C-terminal GTPase
domain of Miro is only involved in retrograde transport, while
its N-terminal GTPase domain is essential for mitochondrial
transport in both retrograde and anterograde directions (2, 38).
However, another study provided evidence that alterations of
mitochondrial transport in Drosophila neurons were exclusively
caused by mutations in the N-terminal GTPase domain, but not
in the C-terminal GTPase domain of dMiro (Drosophila homolog
of mammalian Miro1) (37).

Further reinforcing this hypothesis, only mutations in the
N-terminal GTPase domain led to the disruption of the
mitochondrial network in mammalian cells (28). Moreover,
recent work developed by Kalinski et al. describes that the
deacetylation of the lysine 105 on the N-terminal GTPase domain
ofMiro1 could inhibit mitochondrial transport in primarymouse
neurons, subsequently affecting axonal growth (39).

While earlier structural studies were performed on
dMiro, recent work gave us new insights on human Miro1,
demonstrating that both N-terminal and C-terminal GTPases
were not only structurally but also functionally different. The
N-terminal GTPase was shown to have exclusively GTPase
activity, while the C-terminal GTPase also displayed NTPase
activity (34, 36, 40), thus making Miro1 the only currently
known human protein that contains two different GTPase
domains (41). On the other hand, the C-terminal GTPase
domain seems to be crucial for the calcium-related functions
of Miro1, by interacting with and stabilizing the two EF-
hand domains of the protein, which are involved in calcium
binding (35, 42).

Miro1 also contains two ligand-mimicking α-helices (LM1
and LM2), which connect each canonical EF hand to a non-
canonical “hidden” EF-hand domain (hEF) (35). The calcium-
binding amino acids are exposed to the cytosol via an helix-
loop-helix-motif in both EF hands, facilitating a conformational
change of the protein upon binding to calcium (43, 44).

Moreover, Miro1 harbors a C-terminal transmembrane
domain (TMD), which anchors the protein into the outer
mitochondrial membrane (OMM), exposing the protein and
the N-terminal GTPase to the cytoplasm (2, 35). Fransson
et al. demonstrated that the deletion of the TMD in both
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mammalian Miro proteins led to their mislocalization to the
cytoplasm, proving that the TMD is required for mitochondrial
targeting (28).

Our group recently described the first heterozygous mutations
in the human RHOT1 gene, found in four individuals diagnosed
with PD (13, 14). The identified mutations R272Q, T351A, and
R450C were located within highly conserved protein domains
of Miro1: R272Q within the LM1 of the N-terminal EF-hand
domain, T351A within the C-terminal EF-hand domain, and
R450C within the C-terminal GTPase domain (13, 14). The
T610A mutation is located within the C-terminus section of
the protein, close to the TMD (14). The homology models
of the 3D structure of the Miro1 protein showed that all
four mutations were localized on the protein surface and
exposed to the cytosol. Due to their position, these mutations
could therefore impact on calcium binding and sensing,
GTP hydrolysis, and mitochondrial localization features of
Miro1 (13, 14).

MIRO1 AND PARKINSON’S DISEASE

Mitochondria are the main source of cellular energy, and
on top of that, they have an essential role in intracellular
calcium buffering and regulation of lipid homeostasis (45, 46).
For these reasons, dopaminergic neurons critically depend on
mitochondrial function, since they require a constant supply of
energy and calcium to maintain the integrity of their long axons
and to regulate their pacemaking activity for the release and
recycling of neurotransmitters (47, 48).

Mitochondrial dyshomeostasis is a central factor in PD
pathophysiology, and indeed several genes involved in the
development of familial PD are associated with mitochondrial
homeostasis (49–51). Increasing evidence indicates that proteins
encoded by several PD-linked genes physically interact with
Miro1, modifying its function and hence contributing to the
dysregulation of neuronal integrity. For this reason, the link
between Miro1 and neurodegeneration is a topic of growing
interest in PD research.

Bioinformatic analyses indicated that PINK1 and Parkin
are direct protein interactors of Miro1 (52). In line with
this structural finding, several studies described functional
links between these proteins using in vitro cellular models
from different species. Functional connections between PINK1,
Parkin, and Miro1 were first described in flies, where PD-
associated deletions in Drosophila PINK1 were shown to cause
disruption of mitochondrial transport in neuronal axons through
interaction with dMiro in a Parkin-dependentmanner (9, 53). On
top of affecting mitochondrial movement, the loss of PINK1 and
Parkin in flies promoted the disruption of other mitochondrial-
related mechanisms, such as impairment of mitochondrial
clearance, altered the abundance ofmitochondria-ER appositions
and mitochondrial calcium overload, finally leading to the death
of dopaminergic neurons (9, 17). Notably, all these mentioned
phenotypes were rescued by a reduction in the amount of dMiro
protein in these cells (9, 17), emphasizing the importance of

the multifunctional role of Miro1 for mitochondrial homeostasis
in PD.

Despite the clear link between mitochondrial dyshomeostasis
in PD and Miro proteins, single-nucleotide polymorphisms
(SNPs) in RHOT1/2 were not associated with PD using genome-
wide association studies (GWAS) (54), and recent meta-analyses
of GWAS data did not identified RHOT1/2 as risk loci for
PD (55, 56). However, GWAS are not designed to detect rare
variants due to a minor allele frequency of the used SNPs of
>5% in most studies, and therefore, sequencing methods to
identify rare variants are needed. Of note, gene-based association
clustering methods recently allowed the identification of RHOT2,
the gene encoding for Miro2, as a PD-associated gene (57).
Recently, our group identified the first heterozygous mutations
in the RHOT1 gene in four independent PD patients by exome
sequencing (13, 14), further strengthening the impact of Miro1 in
the development of PD and defining RHOT1 as a potential novel
risk gene for the pathogenesis of this disorder.

The knowledge about the role of human Miro1 in
neurodegeneration, particularly in the pathogenesis of PD,
is growing rapidly. In the next sections, we will discuss the
molecular and cellular effects of mutant human Miro1 in PD.

MIRO1 AS A TARGET FOR
PINK1/PARKIN-MEDIATED MITOPHAGY

An impressive number of studies over the last 30 years
shed light on the so-called mitochondrial life cycle, during
which these highly dynamic organelles continuously experience
fission and fusion events to meet the functional needs of
the cells. Maintaining this mitochondrial network requires
the coordinated activity of mitochondrial biogenesis and
clearance pathways, which ensure the replacement of damaged
organelles withmetabolically activemitochondria. Consequently,
impairing this fine-tuned quality control mechanism leads to
the accumulation of dysfunctional mitochondria, which in turn
increases oxidative stress and deteriorates cellular activity (58,
59). Removal of damaged mitochondria is even more important
in post-mitotic cells like neurons, which are not able to dilute
harmful components through cell division.

In accordance, mitochondrial dysfunction plays an essential
role in a large number of neurodegenerative diseases, including
PD, and the accurate mitochondrial turnover is now considered
a key neuroprotective mechanism against chronic disease
conditions (60).

Mitochondrial degradation is a well-orchestrated process
involving the two main intracellular clearance machineries,
namely, the ubiquitin–proteasome system (UPS) and the
autophagy pathway (61). The PD-linked PINK1 and Parkin
proteins are the master and commander of this multistep
mechanism: (i) the mitochondrial kinase PINK1 selectively
recognizes depolarized mitochondria and rapidly accumulates
on their surface, where it starts a massive phosphorylation of
ubiquitinated proteins; (ii) the cytosolic ubiquitin-ligase Parkin
recognizes PINK1-catalyzed phospho-ubiquitin and translocates
to mitochondria, supplying further ubiquitin chains to PINK1
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FIGURE 1 | The role of Miro1 in mitophagy. (A) Lysosomal degradation of dysfunctional mitochondria requires the stop of mitochondrial transport and detachment

from the cytoskeleton. Mitochondrial damage leads to the accumulation of PINK1 at mitochondria and the recruitment of the E3 ubiquitin ligase Parkin. PINK1

(Continued)
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FIGURE 1 | phosphorylates and activates Parkin, which in turn ubiquitinates proteins at the outer mitochondrial membrane, including Miro1. Additionally, PINK1 might

also phosphorylate ubiquitin chains on mitochondrial proteins. Ubiquitinated proteins, including Miro1, are then targeted for proteasomal degradation, thereby

disconnecting mitochondria from the cytoskeleton and stopping transport. Isolated mitochondria are then ready for uptake by autophagosomes. LRRK2 was shown

to be involved in the removal of Miro1 from the surface of impaired mitochondria. (B) In cell models expressing PD-associated mutations in PINK1, Parkin, or LRRK2,

the proteasomal degradation of Miro1 is impaired, consequently interfering with the arrest of mitochondrial transport and the initiation of mitophagy. This figure was

created using elements from Servier Medical Art, licensed under a Creative Common Attribution 3.0 Generic License (www.smart.servier.com).

and amplifying the signal in a positive feedback loop; (iii) Parkin
ubiquitinates a number of substrates on the OMM, leading to the
inhibition of mitochondrial fusion and arrest of mitochondrial
movement; (iv) the coating of dysfunctional mitochondria with
phospho-ubiquitin chains recruits specific components of the
autophagic receptor machinery to mitochondria, which are then
engulfed by autophagosomes; and (v) finally degraded into
lysosomes (62).

Miro1 plays an essential role in this process, being one of the
first substrates of Parkin E3-ligase activity. As a key component
of the mitochondrial transport machinery that anchors the
organelle to the motor proteins of the cytoskeleton, Miro1
is ubiquitinated by Parkin and consequently degraded by the
UPS (Figure 1A), which leads to mitochondrial arrest and
facilitates mitophagy (7–9, 36, 42, 63, 64). Particularly in the
context of PD, PD-associated mutations in Parkin were shown to
disrupt the ubiquitination of Miro1 for proteasomal degradation
in patient-derived fibroblasts, leading to the inhibition of
Miro1 turnover and the subsequent failure of mitochondrial
arrest for mitophagy (Figure 1B) (7). Further supporting the
functional interaction of Miro1 with other PD gene products
linked to mitochondrial quality control, previous findings also
showed that Miro1 physically interacts with PINK1 and is
phosphorylated by the kinase on the serine 156, which could
represent a signal for the following ubiquitination by Parkin
(7, 65).

In addition to the PINK1-Parkin axis, Miro1 removal from
the OMM of depolarized organelles could also be mediated by its
association with other PD-related proteins (Figures 1A,B). Two
studies supported this hypothesis by the discovery that LRRK2
and α-synuclein cooperate with Miro1 to stop mitochondrial
movement prior to mitophagy (11, 12). In fact, the pathogenic
PDmutations LRRK2 G2019S and α-synuclein A53T disrupt this
process, resulting in Miro1 accumulation, delayed mitochondria
arrest, and impaired mitophagy activation in patient-derived
fibroblasts and induced pluripotent stem cell (iPSC)-derived
neurons (11, 12).

Based on these findings, clearing Miro1 from depolarized
mitochondria is emerging as a potential neuroprotective
mechanism against PD, as the failure of its removal from
mitochondria was demonstrated in cells from PD patients.
Interestingly, in some PD cases, Miro1 degradation is impaired
even in the presence of functional Parkin and LRRK2, indicating
the existence of additional mechanisms accounting for Miro1
removal from dysfunctional mitochondria (66). Hence, Hsieh
et al. demonstrated that genetically or pharmacologically
reducing Miro1 levels improved mitochondrial arrest, activated
mitophagy, and prevented dopaminergic neurodegeneration in

both iPSC-derived human neurons and flymodels of PD, without
significantly affecting the movement of healthy mitochondria
(11, 12, 66).

Further confirming an important role for Miro1 in the
pathogenesis of PD, we recently described mitophagy alterations
in fibroblasts from PD patients harboring heterozygous
mutations in the RHOT1 gene encoding Miro1 (13, 14).
Interestingly, all mutant fibroblast lines demonstrated alterations
in mitophagy flux, but the resulting phenotype was different
depending on theMiro1 mutation. In fact, the R272Q and R450C
mutants demonstrated increased levels of mitophagy compared
to controls, reflected by increased mitochondria co-localizing
with LC3 puncta and decreased Parkin protein levels under
baseline conditions. CCCP treatment was not sufficient to
further increase mitophagy, suggesting that mitophagy was
already running at maximal capacity (13). In contrast, the
T351A and T610A mutants displayed no increase in mitophagy
under baseline conditions. CCCP treatment leads to increased
co-localization of LC3 puncta with mitochondria in control cells,
but not in Miro1-T351A or -T610A fibroblasts, suggesting an
impaired mitophagy mechanism in these mutants (14).

It is worth noting that, in contrast to the increased mitophagic
turnover observed in R272Q mutant fibroblasts, iPSC-derived
neurons harboring the same Miro1 mutation displayed an
opposite phenotype compared to the fibroblasts (67). Mitophagy
was not inducible in Miro1-R272Q neurons, either by oxidative
stress or by CCCP treatment. Furthermore, bafilomycin A1
treatment did not lead to an accumulation of the autophagic
cargo protein p62 in these cells, suggesting a reduced autophagic
turnover (68). Based on these observations, mitophagy seems to
be regulated differentially in fibroblasts and neurons.

Remarkably, the mitophagy phenotype in these cells seems
to be tightly related to the degree of topographic association
between mitochondria and ER, as represented by the distance
between both organelles (68). In 2018, McLelland et al. described
that the initiation step of mitophagy in human cancer cell
lines and iPSC-derived neurons occurs at mitochondria and
ER appositions where the cleft that separates both organelles is
wider than ∼30 nm (Figure 2A) (69). These “wide” appositions
serve as a platform for Parkin-mediated ubiquitination of OMM
proteins at depolarized mitochondria, subsequently promoting
the uncoupling of mitochondria from the ER and the mitophagy
process (13, 14). This hypothesis was drawn from the observation
that iPSC-derived neurons from a PD patient with a deletion
in Parkin did not show a decrease of these “wide” MERCs after
initiation of mitophagy with CCCP (Figure 2B) (69). Fitting,
our results showed that Miro1-mutant lines with an unchanged
number of “wide” MERCs compared to controls displayed the
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FIGURE 2 | The role of MERCs in mitophagy and the contribution of

PD-associated proteins. (A) Mitophagy also requires the untethering of

impaired mitochondria from the ER. Therefore, PINK1 and Parkin work

together to ubiquitinate and phosphorylate proteins involved in subtypes of

MERCs (i.e., Grp75, VDAC, Mfn2, and Miro1) for subsequent proteasomal

degradation and disassembly of MERCs, allowing the degradation of impaired

mitochondria. (B) In cells with impaired PINK1 or Parkin function, MERCs

(Continued)

FIGURE 2 | are not disassembled upon mitochondrial dysfunction, hence

hampering the initiation of mitophagy. This figure was created using elements

from Servier Medical Art, licensed under a Creative Common Attribution 3.0

Generic License (www.smart.servier.com).

ability to induce mitophagy after CCCP treatment (13, 14), while
mutants with reduced amount of “wide” MERCs revealed a
deficit to initiate mitophagy after treatment with CCCP (14).
These findings suggest that the regulation of mitochondrial
quality control by Miro1 might crucially depend on the structure
of MERCs.

MIRO1 AS A REGULATOR OF
MITOCHONDRIAL-ER CONTACT SITES

MERCs are discrete areas of proximity between mitochondria
and the ER that coordinate essential physiological processes,
such as lipid biosynthesis, cellular calcium handling, and
mitochondrial homeostasis (70–72). These mechanisms are
reported to be affected in neurodegeneration (73, 74); hence,
MERCs are one of the most studied organelle juxtapositions and
a current spotlight in PD research (75).

Several mitochondria-related proteins involved in PD
pathogenesis modulate the physiological function of the MERCs
by acting as regulatory factors. Overexpression of Parkin in HeLa
cells was shown to increase physical and functional coupling
between mitochondria and ER, stimulating mitochondrial
calcium uptake and ATP production, while Parkin knockdown
had the opposite effect (18). Similarly, overexpression of α-
synuclein and DJ-1 proteins increased the number of MERCs
in HeLa cells, subsequently increasing mitochondrial calcium
uptake (18, 76). LRRK2 was recently found to also modulate
MERC amount and function, since LRRK2-null MEFs express
reduced MERC abundance and dysregulated mitochondrial
calcium uptake (77). Moreover, α-synuclein was found in
MERCs from mouse and human brain tissue, where it seems
to modulate mitochondrial morphology (78). Like α-synuclein,
PINK1 was recently found to also localize to MERCs, and its
continuous degradation in healthy mitochondria is regulated
by the interplay of mitochondria and the ER (79). It is worth
noting that the PD-related proteins PINK1, Parkin, LRRK2, and
α-synuclein that are involved in MERCs have also been shown to
directly or indirectly interact with Miro1 (7, 11, 12, 21). Hence,
impaired mitophagy and dysregulation of MERCs seems a shared
feature in different cases of PD.

The relationship between Miro proteins and MERCs started
to be investigated when, in 2011, two research groups identified
Gem1p, the yeast ortholog of mammalian Miro1, as a crucial
regulator of the ER-mitochondrial encounter structure (ERMES),
a protein complex that tethers mitochondria and ER in yeast
(15, 80). Association of Gem1p to ERMES controls phospholipid
exchange for lipid biosynthesis between mitochondria and ER
(15) and regulates mitochondrial division and morphology (81–
83). The localization of dMiro at MERCs was also demonstrated
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FIGURE 3 | Phospholipid synthesis and autophagosome formation at MERCs. (A) Phospholipids are synthesized in mitochondria and the ER, requiring the exchange

of metabolites at MERCs. Phosphatidylserine (PS) is synthesized in the ER, shuttled to mitochondria via MERCs, where it is transferred into phosphatidylethanolamine

(Continued)
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FIGURE 3 | (PE) and shuttled back into the ER. PE is necessary for the assembly of isolation membranes at the ER for the integration of cytosolic LC3-I into the

autophagosome membrane, forming LC3-II. (B) A number of studies suggest that Miro1 is involved in phospholipid shuttling via MERCs. Disruption of Miro1 function

might impair phospholipid synthesis, consequently interfering with the formation of autophagosomes. This figure was created using elements from Servier Medical Art,

licensed under a Creative Common Attribution 3.0 Generic License (www.smart.servier.com).

in Drosophila neural stem cells and dopaminergic neurons (17,
84), as well as mammalian Miro1 in COS-7 cells, HeLa cells,
MEFs, human fibroblasts, and human iPSC-derived neurons
(14, 15, 67, 84, 85).

In human-derived cells, the contribution of Miro1 in lipid
exchange and biosynthesis was confirmed by the discovery
that patient-derived fibroblasts with PD-associated mutations
in Miro1 displayed an altered formation of autophagosomes,
which is dependent on the conversion of phosphatidylserine
(PS) to phosphatidylethanolamine (PE) at MERCs (13, 14). In
mammalian cells, PS is synthesized in the ER, transferred through
the MERCs to the mitochondria, and transformed into PE (72).
A fraction of the mitochondrial-generated PE is then shuttled
back to the ER for the generation of isolation membranes, where
PE is used for the lipidation of specific adaptor proteins that
recruit autophagic cargoes (Figure 3A) (86, 87). In our studies,
none of the Miro1-mutant fibroblast lines showed an increase
in the amount of newly synthesized autophagosomes following
starvation conditions (13, 14). In line with these results, all
Miro1-mutant fibroblast lines showed an overall reduction in
MERCs, suggesting that PD-associated Miro1 mutations disturb
the formation of appositions between mitochondria and ER,
affecting lipid exchange and, consequently, autophagy initiation
(Figure 3B) (13, 14).

In contrast to our observations in patient-derived fibroblasts,
Miro1-R272Q neurons showed an increased number of contacts
between mitochondria and ER (67). Remarkably, only control
neurons exhibited accumulation of the autophagic cargo protein
p62 upon bafilomycin A1 treatment, but not Miro1-R272Q
neurons (67). These results point toward a functional impairment
of MERCs that may affect the initiation of autophagy in patient-
derived neurons, possibly triggered by the pathogenic effect of
mutant Miro1.

Importantly, two Miro1 interactor proteins, PINK1 and

Parkin, were also shown to be involved in the organization and
lipid-related function of MERCs (Figure 4A). Neurons derived

from flies and patients carrying mutations in PINK1 and Parkin

displayed increased amounts ofMERCs and a disturbed exchange

of the phospholipid PS, resulting in an impaired synthesis of
dense core vesicles from the ER (Figure 4B) (88). Altogether,
these findings argue in favor of an important role of Miro1 in
lipid homeostasis at MERCs and an impairment of this function
in conditions linked to neurodegeneration.

Other studies in metazoans also supported a key role of
Miro in the regulation of MERCs. In Drosophila neural-
derived cultures, Polo kinase-induced phosphorylation
of dMiro enhances the localization of dMiro to MERCS
and the interaction with calcium transporters to regulate
calcium homeostasis and the integrity of the tethering
complex (17, 84). Moreover, in our studies, we were able

to observe a reduced co-localization of Miro1 with MERCs
in Miro1-mutant fibroblasts from PD patients compared
to control fibroblasts (14) and, conversely, an increased
co-localization of Miro1 with MERCs in Miro1-R272Q
iPSC-derived neurons (67), underscoring the importance
of Miro1 localization to MERCs and a potential role
in neurodegeneration.

As mentioned in the previous section, MERCs were recently
shown to act as regulators of mitophagy initiation (Figure 2A).
Coupled mitochondria and ER in human iPSC-derived
dopaminergic neurons are untethered upon Parkin-mediated
ubiquitination of MERC-residing proteins, such as Mfn2 and
VDAC (63, 89, 90), as a starting point for mitochondrial
clearance (69). Based on the evidence that targeting of Miro1
by the PINK1/Parkin pathway is required as an initial step for
mitophagy (7, 9, 91), these studies provide strong evidence that
PINK1/Parkin-mediated mitophagy is organized at MERCs
and that Miro1 might be directly involved in that process.
Indeed, fibroblasts obtained from PD patients harboring Miro1
mutations show significant alterations in mitophagy flux
accompanied by dysregulation of the abundance of specific
subtypes of MERCs, supporting the previous hypothesis
(13, 14).

Moreover, based on the increased amount of overall
MERCs and impaired CCCP-induced mitochondrial clearance
observed in iPSC-derived Miro1-R272Q neurons, we speculate
that damaged mitochondria may not uncouple from the
ER, consequently hampering the initiation and flux of
mitophagy (67).

In conclusion, the communication between mitochondria
and ER is crucial to maintaining cellular homeostasis and
is a potential investigation target of growing interest in
neurodegenerative diseases, such as PD.Miro1 was demonstrated
to be crucially involved in the regulation of the function of
the MERCs; therefore, the study of this interaction between
Miro1, mitochondria, and ER will help to better comprehend the
complex pathogenicity of PD.

MIRO1 AS A REGULATOR OF CELLULAR
CALCIUM HOMEOSTASIS

Calcium ions act as important second messengers that control
several cellular mechanisms. Therefore, cytosolic calcium levels
need to be tightly regulated, and cells manage to maintain
calcium homeostasis mainly via buffering calcium by specific
organelles, such as the ER and mitochondria (84, 92).

One of the main functions of Miro1 is to orchestrate
calcium homeostasis in mitochondria and calcium-dependent
mitochondrial positioning. To fulfill this function, calcium-
binding is facilitated via both of its EF-hand domains (33, 93) and
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FIGURE 4 | Phospholipid synthesis and the formation of dense core vesicles at MERCs. (A) Phospholipids are required not only for the formation of

autophagosomes, but PS is also required to provide membranes for dense core vesicles. (B) Fly neurons expressing mutant PINK1 or Parkin show impaired formation

of dense core vesicles, resulting in alterations of neurotransmission. This figure was created using elements from Servier Medical Art, licensed under a Creative

Common Attribution 3.0 Generic License (www.smart.servier.com).
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the C-terminal GTPase domain (35, 42). Miro1 was suggested to
have a high calcium-binding affinity (33) and consequently binds
calcium only upon elevation of cytosolic calcium levels (3, 42, 94).

Interestingly, Chang et al. found in 2011 that intra-
mitochondrial calcium levels correlated with mitochondrial
transport speed, suggesting that mitochondrial transport was
not only controlled by cytosolic calcium transients but also by
mitochondrial matrix calcium levels (4). Furthermore, primary
mouse neurons overexpressing Miro1 with calcium-insensitive
EF-hand domains showed a decreased influx of calcium into
the mitochondrial matrix, suggesting that Miro1 also regulates
intra-mitochondrial calcium levels (4).

This finding was later supported by a study in primary fly
neurons. Knockdown of dMiro caused a decreased histamine-
induced calcium uptake in the mitochondrial matrix, while
overexpression of dMiro led to increased calcium uptake (84).
Lee et al. concluded that dMiro specifically promotes the flux of
calcium from the ER to mitochondria and that this mechanism
is independent of mitochondrial transport and intracellular
distribution (Figure 5A) (84).

While the effect of intra-mitochondrial calcium levels on
mitochondrial transport seems surprising at first glance, it is
known that increased cytosolic calcium transients lead to an
unavoidable influx of calcium into the mitochondrial matrix (4).
The observed regulation of mitochondrial matrix calcium by
Miro1 (4, 84) raised the question how a protein bound to the
OMM and facing the cytosol can possibly regulate the influx of
calcium into the matrix.

Uptake of calcium into mitochondria is facilitated by the
mitochondrial calcium uniporter (MCU), a protein complex of
several subunits residing in the inner mitochondrial membrane.
Only in 2018, Niescier et al. revealed that the N-terminus of
the MCU reaches through the mitochondrial intermembrane
space and the outer membrane to directly interact with Miro1
(Figures 5A,B). This study finally solved the question how
Miro1 residing in the outer membrane is able to regulate intra-
mitochondrial calcium homeostasis (95).

Regulation of mitochondrial matrix calcium levels is
important for mitochondrial energy production (96–98).
Hence, loss-of-function mutations in Miro1 were suggested
to affect mitochondrial energy production by disrupting the
mitochondrial matrix calcium uptake (86). Indeed, the ATP
production was decreased in brains of Drosophila larvae
expressing the loss-of-function mutation dMiro B682 (84), in
GemA (ortholog of Miro) knockout Dictyostelium discoideum
(30), and in fibroblasts from patients carrying PD-associated
Miro1 mutations (13). Together, these findings suggest that
Miro1 plays a crucial role in the maintenance of mitochondrial
function via regulation of mitochondrial calcium levels.

The importance of Miro1 for the maintenance of calcium
homeostasis in the context of PD was highlighted in our
recently published studies with PD patient-derived fibroblasts
(13, 14). In these studies, we used thapsigargin, an inhibitor
of the sarco-/ER calcium ATPase (99). When the ER calcium
uptake was blocked by thapsigargin treatment: (i) calcium
levels in the cytosol rose rapidly due to depletion of the ER
calcium store (100), and (ii) calcium buffering relied on other

mechanisms, i.e., mitochondrial calcium uptake. We found
that buffering of cytosolic calcium after thapsigargin treatment
was delayed in patient-derived fibroblasts harboring mutations
in Miro1 (13, 14), suggesting that mitochondrial calcium
buffering is impaired in Miro1-mutant fibroblasts. In addition,
combined treatment of thapsigargin with the MCU inhibitor
Ru360 (4, 101, 102) caused a reduction in cytosolic calcium
buffering in the control fibroblast lines similarly toMiro1-mutant
fibroblasts. These results confirmed that calcium buffering relies
mostly on mitochondria when calcium uptake via the ER is
blocked (13, 14).

Our studies also supported previous observations where
mutations in the EF-hand domains of Miro1 caused an elevation
of the frequency of calcium spikes and an increase in the time
constant of calcium transients in primary rat astrocytes (103).
A similar disruption of calcium homeostasis with increased
frequency and amplitudes of calcium spikes was observed in rat
hippocampal cultures with deletion of Miro1 EF-hand domains
(Miro1-1EF) (104). In contrast, overexpression of wild-type
Miro1 led to decreased thapsigargin-induced calcium spikes in
primary fly neuron cultures (84).

Maintenance of calcium transients is important for the
function of astrocytes and neurons. High levels of calcium
enter the cell at active synapses and need to be buffered via
mitochondria (103, 104). Impaired cellular calcium homeostasis
is a shared phenotype observed in different models of PD
(105–110). In line with this, iPSC-derived neurons with
heterozygous Miro1-R272Q display a significantly higher
peak of cytosolic calcium and delayed buffering capacity
after ionomycin treatment compared to control neurons
(67). Hence, one might speculate that mutations in Miro1
drive neurodegeneration by impairing calcium homeostasis,
subsequently affecting mitochondrial function and energy
production in the pathogenesis of PD. Indeed, Drosophila
expressing loss-of-function mutations in the EF-hand domains
of dMiro show a decreased neuronal survival because the
impaired Miro-mediated calcium-dependent mitochondrial
positioning affects calcium homeostasis and thereby increasing
the susceptibility to glutamate excitotoxicity (3).

Another function of Miro1 is the regulation of
mitochondrial dynamics in a calcium-dependent fashion.
Glutamate application to primary rat neuronal cultures
caused a reduction in mitochondrial length. However, these
calcium-dependent changes in mitochondrial morphology
were abolished in cells expressing Miro1-1EF (104). In
2018, Nemani et al. revealed that this Miro1-mediated
calcium-dependent mitochondrial fragmentation was
independent of the mitochondrial fission protein Drp1, the
mitochondrial membrane potential, or the production of reactive
oxygen species (ROS) and is an important prerequisite of
mitophagy (94).

In our studies, PD patient-derived Miro1-mutant fibroblasts
and iPSC-derived Miro1-R272Q neurons demonstrated
an increased mitochondrial fragmentation after treatment
compared to control cells. This finding was not surprising
given the delayed buffering of calcium transients and resulting
retained high levels of calcium in the cytosol (13, 14, 67).
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FIGURE 5 | Miro1 is involved in calcium regulation at MERCs. (A) Calcium homeostasis is tightly regulated. ER and mitochondria buffer cytosolic calcium transients

and specialized subtypes of MERCs composed of IP3R, VDAC, MCU, and Miro1 are required for regulation of calcium uptake. Miro1 acts as sensor of cytosolic
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FIGURE 5 | calcium levels, interacting directly with the MCU and orchestrating the mitochondrial calcium uptake at MERCs. PD-associated proteins PINK1, Parkin,

α-synuclein, and DJ-1 participate in the regulation of calcium homeostasis at MERCs. (B) Impaired PINK1 or Parkin function leads to clustering of Miro1 and

subsequent mitochondrial calcium overload that facilitates mitochondrial dysfunction and apoptosis. Additionally, impaired Miro1 function leads to disruption of cellular

calcium homeostasis by alterations of mitochondrial calcium buffering. This figure was created using elements from Servier Medical Art, licensed under a Creative

Common Attribution 3.0 Generic License (www.smart.servier.com).

Our findings imply that mutations in Miro1 cause an
impairment of calcium homeostasis, resulting in decreased ATP
production and increased calcium-dependent mitochondrial
fragmentation, thereby contributing to the pathogenesis
of PD.

MIRO1 AND ORGANELLAR MOVEMENT IN
PARKINSON’S DISEASE

Mitochondrial Transport
Miro1 is a well-known adaptor for the mitochondrial transport
machinery, forming a complex with the motor proteins dynein,
kinesin, and myosin and thereby allowing mitochondrial
movement along the cytoskeleton (2, 28, 37, 111, 112).

This function of Miro1 is especially crucial in neurons, as
anterograde mitochondrial transport (from soma to synapses)
is necessary to provide ATP and ensure calcium buffering at
highly energy-demanding areas, such as synapses (113). An
appropriate mitochondrial distribution is even more essential
in dopaminergic neurons, because their pacemaking activity
requires high-energy supply and makes them more vulnerable to
excitotoxicity (113).

Retrograde mitochondrial movement is as well essential for
the physiology of neurons in vivo, since lysosomal degradation of
damaged mitochondria takes place mostly in the neuronal soma
(113, 114).

Guo et al. first demonstrated the importance of dMiro for
anterogrademitochondrial transport in neurons fromDrosophila
larvae (37). However, other studies reported that the expression
of the null alleles B682 and SD32 within the first GTPase
domain of dMiro, which cause the loss of the protein through its
premature truncation, promoted a reduction in both anterograde
and retrograde transport of mitochondria (111). Interestingly,
the N-terminal GTPase domain of dMiro seems to be crucial
for mitochondrial transport along axons and dendrites (38).
In accordance, expression of the N-terminal GTPase loss-of-
function mutation dMiroT25N led to premature death and
aborted development of Drosophila puparium, a phenotype
likely due to an accumulation of dysfunctional fragmented
mitochondria in the soma of their sensory and motor neurons
(38). Recently, inhibition of mitochondrial transport was linked
to HDAC6-mediated deacetylation of the N-terminal GTPase
domain of Miro1 in rodents (39). In addition, Miro1 knockout
mice displayed a reduced number of mitochondria in distal
dendrites, accompanied by a lower dendritic complexity and
increased neuronal death (10). Of note, these mice are still
expressingMiro2, suggesting that although both isoforms (Miro1
and Miro2) are involved in mitochondrial transport, they are not
able to fully substitute each other (10).

From themolecular point of view, regulation of mitochondrial
transport by mammalian Miro1 and Miro2 proteins occurs
through the formation of a complex with the trafficking kinesin-
binding proteins 1 and 2, so-called TRAK1 and TRAK2 (2,
115, 116). In particular, the building of the Miro/TRAK1/2
complex on the mitochondrial surface leads to the recruitment
of the motor proteins kinesin and dynein for anterograde and
retrograde transport, respectively (Figure 6A) (3, 117, 118).

However, the involvement of TRAK1 and TRAK2
differentially regulates mitochondrial transport. TRAK1
predominantly facilitates anterograde and retrograde movement
in axons via interaction with kinesin or dynein, while TRAK2 is
mostly found in dendrites binding to dynein and thus supporting
retrograde movement (41, 119).

Mitochondrial transport is regulated by cytosolic calcium
levels via the calcium sensorMiro1, and in 2009, two independent
studies proposed different mechanisms of how calcium binding
to Miro1 regulates mitochondrial transport. MacAskill et al.
showed that Kif5 directly binds to Miro1 in vitro (93). Upon
elevation of calcium levels, the EF-hand domains of Miro1 bind
calcium, inducing a conformational shift and a decoupling of
Miro1 and Kif5, as shown by co-immunoprecipitation in rat
brain samples. Thus, the mitochondrial transport machinery
is disassembled in order to derail mitochondria from the
cytoskeleton (93).

In contrast, Wang and Schwarz found that kinesin is binding
to Miro indirectly via Milton (Drosophila homolog of TRAK1/2)
(3). Elevation of cytosolic calcium levels and the subsequent
calcium binding to Miro allows a direct interaction of Kif5
with Miro, thereby detaching the whole transport machinery
complex from the cytoskeleton and stopping mitochondrial
transport in HEK cells and rat hippocampal cells. Hence, Kif5
was associated with the Miro/Milton complex on both moving
and stationary mitochondria (3). This mechanism of calcium-
dependent regulation of transport enables the fine-tuned arrest
of mitochondria at sites of high-energy demand and cytosolic
calcium levels, i.e., synapses (Figure 6A) (42, 103, 104).

Dysfunction of Miro1 causes alterations in mitochondrial
transport. In rat hippocampal neurons, overexpression of
Miro1 caused an increased recruitment of TRAK2 to the
mitochondria, increasing the number of organelles transported
to neuronal processes, while disruption of the Miro1-binding
domain of TRAK2 led tomitochondrial transport arrest, showing
a significant decrease in mitochondrial number in neuronal
processes (93).

Miro1 is also known to interact with other PD-related proteins
influencing mitochondrial transport in neurons. For example,
wild-type LRRK2 and α-synuclein proteins were shown to
bind to Miro1 on moving mitochondria, creating a complex
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FIGURE 6 | Miro1 mediates calcium-dependent regulation of mitochondrial transport. (A) Miro1 is anchored to the outer mitochondrial membrane and links

mitochondria to the motor proteins kinesin and dynein via interaction with TRAK1/2. Upon elevation of cytosolic calcium levels (i.e., at active synapses), calcium binds
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FIGURE 6 | to the EF-hand domains of Miro1, leading to a conformational shift of Miro1 and a decoupling of mitochondria from the cytoskeleton. Thus, mitochondria

are stopped at sites of high calcium levels, providing ATP and calcium buffering. PINK1/Parkin-mediated phosphorylation and ubiquitination of Miro1 and its

subsequent proteasomal degradation also leads to arrest of mitochondrial transport, allowing lysosomal degradation of dysfunctional mitochondria. (B) Cells

expressing PD-associated mutations of α-synuclein or PINK1 failed to remove Miro1 from the surface of impaired mitochondria, causing dysregulation of

mitochondrial transport and delayed mitophagy. This figure was created using elements from Servier Medical Art, licensed under a Creative Common Attribution 3.0

Generic License (www.smart.servier.com).

that regulates the removal of Miro1 from the OMM and,
therefore, promoting the detachment of mitochondria from
the transport machinery (11, 12). Interestingly, the G2019S
PD-associated mutation in LRRK2 disturbed this complex,
inhibiting Miro1 removal from the transport machinery, thus
delaying mitochondrial arrest in PD patient-derived fibroblasts
and neurons (11). Moreover, the overexpression of wild-type
α-synuclein and/or the PD-associated A53T mutation led to
the stabilization of the α-synuclein-Miro1 complex in PD flies
and human iPSC-derived neurons, preventing mitochondria to
detach from the transport machinery and subsequently leading
to a delayed mitochondrial arrest (Figure 6B) (12).

Furthermore, the PD-related protein PINK1 was also
identified as an interaction partner of Miro1 in human
neuroblastoma cells and primary fly neurons for the trafficking
of mitochondria, and the loss of PINK1 led to aberrations
in mitochondrial morphology and dynamics (7, 65). In
addition, PD-associated PINK1 deletions promoted the
movement of mitochondria via the stabilization of dMiro
(Figure 6B), consequently leading to synaptic overgrowth and
death of Drosophila dopaminergic neurons (21). Liu et al.
showed in Drosophila muscle and dopaminergic neurons that
downregulating dMiro could rescue mitochondrial transport and
distribution defects observed in mutant PINK1 flies, whereas
overexpressing dMiro alone led to mitochondrial enlargement
and dopaminergic neuronal death (9).

Intercellular Mitochondrial Transfer
Converging evidence supports the notion that mitochondria can
be transferred between mammalian cells, in order to replace
damaged organelles and prevent death of the recipient cell. There
are different approaches to analyze the transfer of mitochondria
between cells in co-cultures. One way is to label mitochondria
of donor cells and recipient cells in red or green, respectively,
allowing the detection of cells with mixed mitochondria after co-
culture (120). Another approach is to label only the mitochondria
from the donor cells in order to detect their transfer into recipient
cells labeled with GFP, phalloidin, or cell tracker dyes (121–124).

Since the first observation of this phenomenon in human
stem cells (125), intercellular transfer of mitochondria was also
noticed between healthy and cancer cells (126–128) and, more
relevant to neurodegeneration, between astrocytes and neurons.
In particular, by using co-culture experiments, Hayakawa et al.
demonstrated that transfer of mitochondria from astrocytes
to neurons improved mitochondrial function of the latter,
resulting in increased neuronal recovery and survival after
stroke (129). The molecular mechanisms ensuring intercellular
mitochondrial transfer between neuronal cell types have not been
fully elucidated yet; either the selective formation of tunneling

nanotubes (TNT), the establishment of gap junctions, or the
release of extracellular microvesicles containing mitochondria
have been observed in different non-neuronal models (126, 128,
130, 131).

Despite the fact that the last stage of the transfer is
still being debated, it is widely accepted that intercellular
mitochondria donation requires a fully functional mitochondrial
transport machinery. In light of its fundamental role in
regulating mitochondrial movement along microtubules, a
strong body of evidence indicates that Miro1 also plays a
key role in mitochondrial transfer between different cell types,
including non-neuronal cells (120–123). For instance, inhibition
of mitochondrial complex I activity by rotenone treatment
significantly decreased Miro1 protein levels in mesenchymal
stem cells (MSCs), leading to impaired transfer of mRFP-
labeled mitochondria to recipient primary mouse epithelial cells
containing mGFP-labeled mitochondria. Consequently, Miro1-
depleted MSCs displayed reduced donor activity compared
to control cells, a phenotype specifically linked to impaired
mitochondrial movement along microtubules (120).

Importantly, Gao et al. recently demonstrated that Miro1,
as well as Miro2, participates in the transfer of mitochondria
between brain cells, as displayed by a reduced mitochondrial
transfer efficiency from neurons expressing mito-DsRed to
GFP-labeled astrocytes upon shRNA-mediated Miro1 or Miro2
downregulation. Conversely, mitochondrial transfer increased
when Miro1 or Miro2 were ectopically expressed (124).

Since mitochondrial transfer is activated by loss of respiratory
function in recipient cells, the presence of functional Miro1 in
donor cells is crucial to enhance mitochondrial transfer capacity
and rescue mitochondrial dysfunction in injured cells. This
mechanism is extremely important for many neurodegenerative
diseases including PD, as it may represent a key neuroprotective
approach in stem cell-based regenerative medicine. At the same
time, the transfer of damaged mitochondria between different
cell types may also trigger the spread of PD pathology to other
brain regions and therefore needs to be taken into account for
the design of targeted therapies (132).

Peroxisomal Transport
Until recently, Miro1 was described as an entirely mitochondrial
protein (27, 28, 133). However, in 2017 Costello et al. revealed
that Miro1 was also localized to peroxisomes in COS-7
cells (22). The peroxisomal receptor/chaperone PEX19 was
found to be necessary for the integration of Miro1 into the
peroxisomal membrane (23). Recent findings suggest that the N-
terminal GTPase domain regulates the direct interaction of the
transmembrane domain of Miro with Pex19 (134).
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In 2018, Okumoto et al. showed that the localization of Miro1
to mitochondria or peroxisomes depends on the alternative
splicing of exons 19 and 20. The resulting different insertions
between the C-terminal GTPase domain and the transmembrane
domain determine the organelle-targeting specificity of Miro1.
Variant-1 of Miro1 does not contain either the exon 19 or the
exon 20 and localizes exclusively to mitochondria. Variant-3
contains exon 20 and is likewise found only on mitochondria.
In contrast, variant-2 contains exon 19 and localizes partially to
peroxisomes, whereas variant-4 containing both exons 19 and
20 is localized mostly to peroxisomes and to a minor extent to
mitochondria (24).

In human cancer cells, Miro1 variants−1 and−2 were
predominantly expressed, while variants−3 and−4 showed low
expression levels of 10% compared to variants−1 and−2 (24).
However, in contrast to this study, Covill-Cooke et al. recently
showed that Miro1 variants lacking exon 19 as well as Miro2 are
able to localize to peroxisomes in MEFs (134).

Initially, the study of Castro et al. suggested the main
function of Miro1 in the regulation of peroxisomal transport
and transport-dependent peroxisomal proliferation in fibroblasts
(23). Nevertheless, the role of Miro in peroxisomal movement
was questioned later. The knockout of Miro1 or Miro2
or a double knockout of both proteins did not reveal
any effect on long-range microtubule-dependent peroxisome
transport in MEFs (134). Interestingly, knockout of Miro2
revealed a significant reduction in median net displacement of
peroxisomes in MEFs. This short-range peroxisomal movement
was independent of the integrity of the actin and microtubule
cytoskeleton but followed the oscillating movements of the ER,
suggesting that Miro might regulate short-range peroxisome
transport via the interaction with the ER (134).

While the results of the study by Covill-Cooke suggest that
the main function of Miro at peroxisomes is independent of
transport, their study demonstrated a major impact of Miro on
peroxisome size and number. Double knockout of Miro1 and
Miro2 in MEFs caused a significant reduction in peroxisome
size, accompanied by increase in peroxisome number (134). This
phenotype is likely caused by an increased interaction of the
fission proteins Drp1 and Fis1 at peroxisomes, indicating that
Miro proteins regulate Fis1-/Drp1-dependent fission not only of
mitochondria (135) but also of peroxisomes (134).

Of note, the single knockout of Miro1 or Miro2 had no
effect on peroxisome size or number, while overexpression of
Miro1, but not Miro2, caused an increase in peroxisome size.
This result suggests that peroxisome morphology is mainly
regulated by Miro1, and Miro2 has the ability to compensate
for Miro1 impairment in peroxisomes (134). This is interesting
because other studies demonstrated that Miro2 was not able
to compensate for the lack of Miro1 on mitochondrial level
in murine brains (10, 136). Future investigations will be
necessary to uncover the differential functions of Miro1 and
Miro2 in mitochondria and peroxisomes and their impact in
neurodegeneration. Peroxisomes are critically involved in lipid
metabolism and defense against ROS (137, 138). The physical
link to mitochondria and the ER is important for peroxisomal
proliferation and function (139, 140). Given the crucial roles of

Miro1 at mitochondria and MERCs, further investigations are
needed to elucidate Miro1 functions outside of mitochondria.

To date, peroxisomal dysfunction in the pathogenesis of
neurodegenerative diseases like PD is not well understood. A
previous study showed a reduction in plasmalogen levels in blood
plasma of PD patients (25). Plasmalogens are phospholipids
synthesized in peroxisomes, which are involved in the defense
against ROS. Interestingly, mice deficient in the peroxisomal
proteins Pex2, Pex5, or Pex13 showed an elevation of α-synuclein
oligomers and α-synuclein phosphorylation in brain tissue. The
observed α-synuclein aggregation correlated with changes of
peroxisomal lipid synthesis instead of being associated with
mitochondrial dysfunction or oxidative stress (26).

The calcium handling function of peroxisomes is largely
unknown. Previous studies showed that increased cytosolic
calcium concentrations lead to an elevation of peroxisome
calcium levels, suggesting that peroxisomes might play a role
in calcium homeostasis (141). The newly identified role of
Miro1 as adaptor for peroxisomal transport, together with the
known function of Miro1 in calcium homeostasis, raises the
question whether Miro1 is also involved in peroxisomal calcium
handling. Furthermore, it remains to be investigated how calcium
transients regulate Miro1-mediated peroxisomal transport and
distribution and how this would influence peroxisomal function
in the healthy state and in the context of PD.

OUTLOOK

The emerging role of Miro GTPases in brain health and disease
provides unique opportunities for a better understanding of
neuronal homeostasis and indicates these proteins as potential
therapeutic targets and entry-points for precision medicine.
Especially from the perspective of neurodegeneration, the roles
of Miro1 as an adaptor for mitochondrial transport and as
a PINK1/Parkin-mediated mitophagy substrate are of high
relevance in the context of brain disorders, in particular for
PD. In this review, we showed that Miro1 is not only a
crucial component of the mitochondrial transport machinery
and mitochondrial quality control, but it is also an important
regulator of mitochondrial and cytosolic calcium homeostasis,
mitochondria and ER interface, and peroxisomal dynamics.
Based on a variety of in vitro, ex vivo, and in vivo studies
performed in yeast, animal, and human models, Miro GTPases
stand no longer as exclusive mitochondrial proteins, but
their recently discovered key functions further extend their
physiological role to other organelles and cellular compartments.

Based on genetic studies, a direct link of Miro1 to
neurodegeneration in PD was established. Together with the fact
that Miro1 physically and functionally interacts with a number of
PD-related proteins, Miro1 has recently been proposed both as
a molecular signature in PD and as a therapeutic target, which
could be used as a biomarker for the diagnosis and treatment
of PD (66). Hsieh et al. were able to rescue impaired mitophagy
and neuronal cell death by pharmacologically removing excess
Miro1. Treatment with the compound called “Miro1 reducer”
in combination with CCCP lead to Miro1 degradation and
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induction of mitophagy in fibroblasts derived from PD patients.
Additionally, iPSC-derived neurons from PD patients displayed
significant death after induction of oxidative stress via antimycin,
while control neurons did not show cell death under these
conditions. Remarkably, treatment with the “Miro1 reducer”
rescued iPSC-derived neurons from PD patients under antimycin
stress, thereby demonstrating that the removal of excess Miro1 is
neuroprotective (66).

Another possible approach for pharmacological intervention
was demonstrated by Lee et al. in 2016. This study revealed
that the recruitment of Miro1 to MERCs depends on the
phosphorylation of the N-terminal GTPase domain by Polo
kinase, thereby critically regulating mitochondrial calcium
uptake and mitochondrial energy production (84). Specific
inhibition of Polo kinase with BI2536 reduced the localization
of Miro1 to MERCs and also caused a destabilization of MERCs
(84). This finding is especially interesting in the light of increased
numbers of MERCs and enhanced localization of Miro1 to
MERCs observed in iPSC-derived Miro1-R272Q neurons (67).
Thus, pharmacologically targeting regulators of Miro1 function
such as Polo kinase offers another promising approach for
personalized medicine but also bears the risk of unwanted
side effects.

Future studies should focus on the impact of Miro1 on
neuronal homeostasis, and the establishment of screening
campaigns on cellular phenotypes in patient-based cellular
models should be performed to rescue impaired Miro1 function.
Identified compounds may be applicable to patients beyond
monogenic PD, as impaired Miro1 function was also identified
in sporadic PD (11, 12, 66). Further applications beyond PD

may be also considered, as functional associations between
Miro1 and key proteins causative of other neurodegenerative
diseases, such as Alzheimer’s disease (142, 143), amyotrophic
lateral sclerosis (144, 145), and Charcot–Marie–Tooth disease
(146), were discovered during the past years.
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Background: Recent advanced technologies, such as high-throughput sequencing,

have enabled the identification of a broad spectrum of variants. Using

targeted-gene-panel resequencing for Parkinson’s disease (PD)-associated genes,

we have occasionally found several single-nucleotide variants (SNVs), which are

thought to be disease-associated, in PD patients. To confirm the significance of these

potentially disease-associated variants, we performed genome association analyses,

using next-generation target resequencing, to evaluate the associations between the

identified SNVs and PD.

Methods: We obtained genomic DNA from 766 patients, who were clinically diagnosed

with PD, and 336 healthy controls, all of Japanese origin. All data were analyzed using Ion

AmpliSeq panel sequences, with 29 PD- or dementia-associated genes in a single panel.

We excluded any variants that did not comply with the Hardy–Weinberg equilibrium in the

control group. Variant frequencies in the PD and control groups were compared using

PLINK. The identified variants were confirmed to a frequency difference of P < 0.05, after

applying the Benjamini–Hochberg procedure using Fisher’s exact test. The pathogenicity

and prevalence of each variant were estimated based on a public gene database.

Results: We identified three rare variants that were significantly associated with PD:

rs201012663/rs150500694 in SYNJ1 and rs372754391 in DJ-1, which are intronic

variants, and rs7412 in ApoE, which is an exonic variant. The variants in SYNJ1 and

ApoE were frequently identified in the control group, and rs201012663/rs150500694 in

SYNJ1 may play a protective role against PD. The DJ-1 variant was frequently identified

in the PD group, with a high odds ratio of 2.2.

Conclusion: The detected variants may represent genetic modifiers or disease-related

variants in PD. Targeted-gene-panel resequencing may represent a useful method for

detecting disease-causing variants and genetic association studies in PD.

Keywords: next generation sequencing, panel resequencing, genetic association study, Parkinsion’s disease,

missing heritability
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INTRODUCTION

Parkinson’s disease (PD) is the second-most frequent
neurodegenerative disorder, associated with motor and non-
motor symptoms (1). Clinical symptoms are characterized by
tremor, rigidity, bradykinesia, and gait disturbances. To date,
advanced genetic methods have revealed several genes associated
with both familial and sporadic PD (2). Initially, genes were
identified based on large pedigrees associated with Mendelian
forms of PD, using positional cloning and linkage analyses,
which resulted in the identification of SNCA (3), LRRK2 (4, 5),
PRKN (6), and PINK1 (7). Later, next-generation sequencing
(NGS) was used to identify additional causative genes, such
as ATP13A2 (8), CHCHD2 (9), VPS13C (10), and PSAP (11).
Furthermore, genome-wide association studies (GWASs) have
identified single-nucleotide variants (SNVs) and other rare
variants associated with sporadic PD (12–14). The explained
heritability ranged from 16 to 36%, even in the latest large
GWAS, as reported in 2019 (15).

Many genome-association studies, including GWAS, have
been conducted for PD; however, some unrevealed genetic
background remains, referred to as “missing heritability” (13,
14, 16). Missing heritability is the difference between heritability
estimated from twin studies and GWAS, as GWAS has only
been able to detect some of the heritability estimated from
twin studies (17). Many explanations for missing heritability
have been proposed, including unrevealed variants with smaller
effects, rarer variants that are poorly detected by the currently
available genotyping arrays, copy number variants that cannot be
detected by available arrays, and the low power to detect gene–
gene interactions (16). Variants of GBA are known to be strong
risk factors for sporadic PD but have not been detected byGWAS,
likely due to a low minor allele frequency.

We have developed a targeted-gene-panel resequencing
protocol to screen 29 PD-associated genes, simultaneously.
Panel resequencing has both advantages and disadvantages
because it can identify multiple types of variants, including
pathogenic variants, risk-associated variants, and rare variants of
uncertain significance. Therefore, determining which variants are
disease-associated can be difficult. A previous report describing
Mendelian genes showed that rare functional variants occurred
more frequently in sporadic PD cases than in control cases,
indicating that Mendelian genes may be associated not only
with familial PD but also with sporadic PD, which may be
assessable using panel resequencing (18). In our analyses,
through targeted-gene-panel resequencing, rare variants were
identified in ∼40% of PD patients with a family history or
early-onset PD (data not shown), and pathogenic variants
were found in an even smaller percentage of patients. We
also identified several putative disease-associated variants in
PD patients. We hypothesized that these variants may play
a role in PD onset and could account for some degree of
missing heritability. Thus, we aimed to implement target-panel
resequencing, to identify associations between SNVs and familial
or early-onset PD. Our method contributes to expanding the
understanding of missing heritability among familial and early-
onset PD patients.

MATERIALS AND METHODS

Participants
The present study was approved by the ethics committee of
Juntendo University, Tokyo, Japan, and all participants provided
written informed consent to participate in the genetic research.
We collected DNA samples from the Juntendo PD DNA bank,
which included 766 patients with PD, who were clinically
diagnosed using standard criteria (1), and 336 healthy control
subjects. Among these, 407 PD patients had a family history of
PD (average age at onset: 54.6± 15.77 years, range 6–88), and the
remaining 359 PD patients were without family history (average
age at onset: 42.0 ± 11.22 years, range 9–83). We also collected
data regarding the Hoehn and Yahr stages for each PD patient.
The healthy controls were defined as individuals without any
individual or family history of neurodegenerative disorders. An
overview of the clinical characteristics of the included PDpatients
and healthy controls is shown in Table 1.

Processing Data Output From the Ion
Torrent System
The sequencing analysis of the Ion AmpliSeq panel (Thermo
Fisher Scientific, Waltham, MA, USA) was performed using
the Ion Chef System (Thermo Fisher Scientific) and the
Ion S5 Sequencer (Thermo Fisher Scientific), according to
the manufacturer’s instructions. Our Ion AmpliSeq panel
(Thermo Fisher Scientific, IAD103177_182) included 29 PD- and
dementia-related genes (Table 2), and its coverage was 98.34%
(829 amplicons, missed: 1,646 bp) (manuscript in preparation).
The output data were obtained as a variant call format (VCF)
file from the Ion torrent system. VCF files were processed using
vcftools (19).

Statistical Analysis to Compare the
Frequencies of Non-rare Variants
We confirmed all samples with a mean depth >100 and excluded
those amplicons with read depths smaller than 10. The analyzed
variants were confirmed to exist among the target sequences
and to have read depth of coverages >45. We also calculated
the coverage percentage. During the variant-screening stage,
we excluded all variants that did not comply with Hardy–
Weinberg equilibrium (HWE; P < 0.05) within the control
group (Figure 1). We analyzed only the control group during
the variant-screening stage because performing HWE analysis
while including PD patients would introduce bias. During the
analysis stage, the variant frequencies observed for the PD and
healthy non-PD groups were compared using PLINK 1.9 (20). To
verify this comparison, variants with a frequency difference of P
< 0.05, based on the performance of the Benjamini–Hochberg
procedure and Fisher’s exact test, were analyzed using the
genotyping data available in 4.7KJPN, from the Japanese Multi
Omics Reference Panel (jMorp) (21), and a genome aggregation
database (gnomAD) (22). The scheme used for the analysis is
presented in Figure 1. To confirm the presence of significant
variants identified during the association study, we conducted
Sanger sequencing on three cases with the variant and three cases
without the variant, during the panel resequencing experiment.
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TABLE 1 | Demographic data of the analyzed subjects.

PD patients Controls

Total number of subjects 766 336

Gender (female:male) 366:400 114:222

Average age at onset 48.6 ± 15.35 NA

Average age at examination 57.0 ± 14.14 62.2 ± 16.36

Hoehn and Yahr stage (On phase) 2.32 ± 1.06 NA

Hoehn and Yahr stage (Off phase) 3.09 ± 1.83 NA

Subjects with known pathogenic mutations 61 0

Subjects with family history 407 NA

Average age at onset 54.6 ± 15.77 NA

Average age at examination 62.6 ± 13.57 NA

Subjects without family history 359 NA

Average age at onset 42.0 ± 11.22 NA

Average age at examination 50.7 ± 11.88 NA

PD, Parkinson’s disease; NA, not applicable.

The data are presented as the mean ± standard deviation.

RESULTS

The percentage of coverage was calculated, showing that
99.7% of the total dataset was read at a depth of least 1×,
98.9% at 20×, 97.9% at 100×, and 84% at 500×. During
the variant screening stage, we identified 796 variants in our
healthy controls, of which 749 were retained after screening
for HWE compliance (P < 0.05) and were included in the
association analysis performed using PLINK. We conducted
Sanger sequencing on nine significant variants with p-values
below 0.05 after performing the Benjamini–Hochberg procedure
for Fisher’s exact test, and five of them (chr1:65830299
T>G, chr1:65830300 T>G, chr3:184033555, chr2:233620927-
233620929, and chr1:205743943) were not validated and
excluded from the analysis. All of the false-positive variants
were positioned around the tandem repeat of mononucleotides
that was considered to cause false positives. Table 3 shows the
top 15 variants that had the lowest p-values based on Fisher’s
exact test.

Four variants were significantly associated with PD:
rs201012663 and rs150500694 in SYNJ1, rs372754391 in
DJ-1, and rs7412 in ApoE (Table 4). The two SYNJ1 variants,
rs201012663 and rs150500694, were considered to represent
a single variant because they are located four bases apart and
demonstrated the same frequency in our subjects and public gene
databases, which suggests that these variants are strongly linked
(Tables 3, 4). The SYNJ1 variants are both located in an intron,
with an odds ratio of 0.37. The DJ-1 variant (rs372754391)
was also intronic and was more frequently identified in the PD
cohort than in controls, with an odds ratio of 2.2. However,
its frequency in the public database was quite large compared
with the frequency in our data. The ApoE variant was exonic
and was more frequently observed in the control group than
in the PD group, with an odds ratio of 0.39. The ApoE variant
was one of the single-nucleotide polymorphisms (SNPs) that
determine the ApoE genotype. The E2 ApoE genotype was

TABLE 2 | PD- and dementia-related genes analyzed by resequencing.

Genes related to PD Genes related to dementia

SNCA (PARK1,4) MAPT

parkin (PARK2) PSEN1

UCH-L1 (PARK5) GRN

PINK1 (PARK6) APP

DJ-1 (PARK7) APOE

LRRK2 (PARK8)

ATP13A2 (PARK9)

GIGYF2 (PARK11)

HTRA2 (PARK13)

PLA2G6 (PARK14)

FBXO7 (PARK15)

VPS35 (PARK17)

EIF4G1 (PARK18)

DNAJC6 (PARK19)

SYNJ1 (PARK20)

DNAJC13 (PARK21)

CHCHD2 (PARK22)

VPS13C (PARK23)

GCH1

NR4A2

RAB7L1

BST1

C19orf12

RAB39B

FIGURE 1 | Scheme of analysis. PD, Parkinson’s disease; SYNJ1,

Synaptojanin 1; APOE, Apolipoprotein E.

more frequently observed in the control group, whereas the
E4 genotype was more frequently observed in the PD group
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(Table 5). No significant differences in age, age at onset, or
Hoehn and Yahr scores were observed between patients with and
without detected variants (Table 6).

We do not have data for four variants (rs16856139,
rs11931532, rs11931074, and rs1994090) that were previously
identified in a GWAS performed in Japanese PD patients because
these variants were absent from our target panel (13). LRRK2
G2385R (rs34778348), which is a risk factor for PD in East
Asian individuals, was the 21st most significant variant identified
among our cohort (23). Except for rs34778348, none of the
currently known risk variants for PD were detected.

DISCUSSION

We performed a genetic case–control analysis, using NGS data
from our Ion AmpliSeq panel. We identified three variants
in three different genes: the combination of rs201012663 and
rs150500694 in SYNJ1, rs372754391 in DJ-1, and rs7412 in
ApoE. None of these three variants were reported as PD-
related variants when we searched a GWAS catalog on June 8,
2020 (24). Our identified variants might account for missing
heritability in PD. Targeted resequencing could perform deeper
reads of selected genes associated with phenotypes than the
microarrays that are normally used in GWAS. Thus, targeted
resequencing-based association studies may be able to identify
risk variants that have not been previously identified by
GWAS (17).

The three identified variants have never previously been
reported as variants associated with PD. In our study, variants
in SYNJ1 (rs201012663 and rs150500694) showed a higher
frequency in the control group than in the PD group.
SYNJ1 is known to be a causative gene for early-onset
Parkinsonism, with atypical characteristics, such as seizures,
dystonia, and dementia, with an autosomal-recessive inheritance
pattern (25, 26). This gene encodes the protein Synaptojanin
1, a polyphosphoinositide phosphatase that is concentrated
at synapses (27, 28). Synaptojanin 1 is associated with
synaptic vesicle endocytosis. The variants identified in SYNJ1
(rs201012663/rs150500694) in this study have not previously
been reported to be pathogenic variants. Synaptojanin 1 is
also known to play a role in the pathogenesis of Alzheimer’s
disease (AD), associated with a PI (4, 5)P2 imbalance. The
haploinsufficiency of SYNJ1 protects cells from the neurotoxic
actions of Aβ42 (29). The variants rs201012663/rs150500694
might play a similarly protective role against alpha synuclein-
mediated neurotoxicity.

The identified variant in DJ-1 might be interesting, due
to the high odds ratio of 2.2. However, this variant may be
specific to ethnicity because the frequency of this variant among
our healthy controls was lower than that observed in public
databases. This variant was not recorded in jMorp, one of
the largest genomic databases in Japan, suggesting its rarity
in the Japanese population. DJ-1 was initially identified as
an oncogene and was later found to cause familial PD (30).
DJ-1 has also been associated with other disorders, including
stroke, familial amyloidotic polyneuropathy, and type 2 diabetes
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TABLE 4 | Details of the detected variants with significant value.

Gene symbol SYNJ1 DJ-1 APOE

dbSNP153 rs201012663 rs150500694 rs372754391 rs7412

Position chr21:34050937-34050941 chr1:8029508-8029510 chr19:45412079

Reference/alternative AATATA/AATT GGG/GAA C/T

Exon or intron Intron Intron Exon

Allele frequency in PD 0.2004 (307/1,532) 0.09465 (145/1,532) 0.01762 (27/1,532)

Genotype in PD (alt/alt, alt/ref, ref/ref) 70, 167, 529 4, 137, 625 0, 27, 739

Allele frequency in control 0.4048 (272/672) 0.04464 (30/672) 0.04315 (29/672)

Genotype in control (alt/alt, alt/ref, ref/ref) 61, 150, 125 1, 28, 307 0, 29, 307

Odds ratio 0.367 2.237 0.398

gnomAD 2.1 EAS NA NA 0.07511 (947/12,608)

gnomAD 3.0 EAS 0.4181 (1,297/3,102) 0.4178 (1,297/3,104) 0.6263 (1904/3040) 0.6352 (1,936/3,048) 0.08029 (251/3,126)

jMorp 0.4257 0.4257 NA 0.044

p-value (PD vs. gnomAD 3.0) <0.001 <0.001 <0.001

p- value (control vs. gnomAD 3.0) 0.2767 <0.001 0.0003

SYNJ1, Synaptojanin 1; APOE, Apolipoprotein E; PD, Parkinson’s disease; gnomAD, genome aggregation database; EAS, east Asia; NA, not applicable; jMorp, Japanese Multi Omics

Reference Panel; dbSNP, the Single Nucleotide Polymorphism Database; alt, alternative allele; wild, reference allele.

The variant in SYNJ1 is recorded separately as rs201012663 and rs150500694 in dbSNP153, in gnomAD, and in jMorp.

The variant in DJ-1 is recorded as rs372754391 in dbSNP153 and registered separately as two single variants in gnomAD.

TABLE 5 | Allele frequencies in patients, according to APOE genotype.

PD (n = 1,532) Controls (n = 672)

Genotype

of APOE

Allele

frequency (%)

Allele

frequency (%)

p-value (PD

vs. control)

E1 0 0 NA

E2 1.76 4.32 0.0006

E3 86.88 87.5 0.3728

E4 11.36 8.18 0.0137

E, epsilon; PD, Parkinson’s disease; NA, not applicable; APOE, Apolipoprotein E.

(30–33). DJ-1 has several functions, including transcriptional
regulation, antioxidative stress reactions, chaperone, protease,
and mitochondrial regulation (30). DJ-1 is expressed in almost
all cells, including neurons and glial cells. DJ-1 protein contains
three cysteine residues, C46, C56, and C106. C106 is likely to
be influenced by oxidative stress and oxidized into SOH, SO2H,
and SO3H (34–36). DJ-1 containing a C106 residue that has been
oxidized to SO3H is thought to represent an inactive form (37).
In the brains of PD patients, excessively oxidized forms of DJ-1
have been observed (38). The identified mutation might facilitate
oxidation, inactivating DJ-1.

APOE genotypes have previously been associated with an
increased risk of AD (39, 40). rs7412 is one of two SNVs that have
been defined in common allelic APOE variants. APOE4 is known
to represent a strong risk factor for AD. The variant (rs7412)
identified in our study is included in APOE1 or APOE2, which
are known to decrease the risk of AD. rs7412 was significantly
rare in the PD group in our study. In our study, APOE2

was significantly rare in the PD group, whereas APOE4 was
significantly frequent in the PD group. Larger research studies
have concluded that APOE epsilon had no association with PD
onset (41). Differences between our study and past studies may
be due to the smaller sample size included in our study and
differences in the ethnicities of the participants.

In our study, SNVs detected in previous GWAS were not
identified in our cohort because most of the reported risk-
associated SNVs have been identified in non-coding regions,
which were not included in our targeted panel (42). Targeted
resequencing can cover more SNVs within the targeted exons
than DNA microarrays, which are commonly used in GWAS.
Our method might enable the detection of SNVs in exons or near
exons that are not included in the SNP chips used for GWAS.
Our target panel was designed to include all exons and the 25 bp
up- and downstream of the exon–intron boundaries. Therefore,
our method allowed the discovery of PD-related variants that
were not detected by GWAS. The inclusion of patients with a
family history or early-onset PD in our cohort might facilitate
the detection of susceptibility-associated variants, with deep
genetic backgrounds. For example, mutations in GBA are more
frequently identified in familial PD patients than in sporadic PD
patients (43). However, our panel resequencing approach also has
several disadvantages. This approach cannot be used to identify
novel genes associated with PD and does not cover the majority
of introns and transcriptional regulatory regions. The variants
detected in this study may also be associated with sporadic PD,
similar to GWASs that identified causative genes associated with
sporadic PD that were previously reported to be causative genes
for familial PD (SNCA, MAPT, and LRRK2) (44).

Our study includes the following limitations: (i) the sample
size is too small to satisfy genome-wide significance, (ii) the lack
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TABLE 6 | Clinical characteristics of patients, according to the presence of the identified variants.

Presence of the variant Age Age at onset Hoehn and Yahr scale Disease duration (years)

SYNJ1 rs201012663 rs150500694 + 58.0 ± 17.73 48.5 ± 15.67 2.3 ± 1.11 9.35 ± 9.18

– 56.6 ± 15.28 48.7 ± 15.22 2.33 ± 1.05 8.01 ± 8.14

p-value 0.209200773 0.96096438 0.81537244 0.05363004

DJ-1 rs372754391 + 57.0 ± 15.06 49.9 ± 15.48 2.41 ± 1.11 7.07 ± 6.96

– 57.0 ± 24.72 48.4 ± 23.42 2.30 ± 1.06 8.73 ± 8.78

p-value 0.972443834 0.304154621 0.315455549 0.016077725

APOE rs7412 + 58.8 ± 14.44 49.3 ± 15.92 2.10 ± 0.88 9.48 ± 9.75

– 57.0 ± 14.14 48.7 ± 15.25 2.33 ± 1.07 8.39 ± 8.45

p-value 0.60125477 0.84599687 0.22211054 0.57046758

SYNJ1, Synaptojanin 1; APOE, Apolipoprotein E.

Data are presented as the mean ± standard deviation.

The p-values were calculated by Student’s t-test, comparing PD patients with the variant with those without the variant.

of a second cohort to confirm our results, (iii) the possibility of
sampling bias in the control group because the allele frequencies
of variants in the public database were different from those
identified in our healthy control group, (iv) the absence of any
functional analysis to support our results, and (v) the lack of copy
number variant evaluations.

We developed a new approach for surveying susceptibility-
associated variants by using targeted resequencing, which may
represent an effective method for revealing hidden disease-
associated variants. Further studies that include additional
patients remain necessary to confirm the suitability of this
approach for the identification of disease-associated variants.
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Background: The article is devoted to one of the most common neurodegenerative

diseases in the world—Parkinson’s disease (PD), the prevalence of which in Russia

reaches 140–150 people per 100,000 people. The clinical and anamnestic profile of

a patient with PD is presented, the prevalence of motor and non-motor symptoms is

reflected, and a comparative characteristic of the neurological deficit in the Siberian

population of patients with other cohorts of patients with Parkinson’s disease in different

countries and ethnic groups is presented.

Methods: We studied 140 patients with Parkinson’s disease. A comprehensive

assessment of neurological status was performed using the “Unified Parkinson’s Disease

Rating Scale (UPDRS).” In addition, we used the Beck Depression and MoCA scale test.

Assessment of the presence and severity of olfactory dysfunction was performed using

the Sniffin Stick odor identification test. The stage of PD was evaluated according to the

classification of M. M. Hoehn and M. D. Yahr.

Results: The cohort of the study was dominated by overweight patients with a higher

level of education, with concomitant arterial hypertension, coronary heart disease, and

dyslipidemia. The severity of motor and most non-motor symptoms directly correlates

with the duration of PD and the stage of the disease. The predominant form of the disease

was a mixed form, which was also noted in research cohorts in Canada and the UK. The

Siberian cohort tends to be more prevalent in hyposmia, daytime sleepiness, orthostatic

hypotension, and depressive and REM disorders.

Conclusion: Our data show the importance of a comprehensive assessment of both

motor and non-motor neurological deficits as well as the analysis of comorbid disorders

and risk factors for the occurrence and progression of Parkinson’s disease. They also

show the prevalence of certain motor and non-motor symptoms in the Siberian cohort

of patients with Parkinson’s disease.

Keywords: Parkinson’s disease, Siberia (Russia), hyposmia, cognitive impairment, depression
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BACKGROUND

Parkinson’s disease is a chronic progressive brain disease mainly
associated with the degeneration of dopaminergic neurons of
the substantia nigra with intraneuronal accumulation of the α-
synuclein protein and the formation of intracellular inclusions
(Lewy bodies). These are manifested by a combination of
hypokinesia with rigidity, resting tremor, and postural instability,
as well as a wide range of non-motor manifestations (mental,
autonomic, sensory, etc.) (1–3).

Parkinson’s disease is classified as a predominantly motor
disorder, although clinical non-motor polymorphism in recent
years has been the subject of extensive research (4–6).
This is explained by a significant influence of non-motor
symptoms on the quality of life, the progression of disability
sometimes exceeding the negative effects of motor neurological
deficit (7–9).

To date, there are no specific instrumental or laboratory
markers of this disease that could be reliably used in everyday
clinical practice. Despite the rapid scientific and technological
advances in medicine, the diagnosis of PD in routine practice
remains clinical and relies on the identification of cardinal motor
signs of parkinsonism (hypokinesia, rigidity, rest tremor, and
postural disorders) and the absence of atypical symptoms. In
relation to this, a rigorous study of the clinical features and
characteristics of the course of the disease is extremely important
and is the key to success in a complex diagnostic process.

The study of the features of the course of various progressive
diseases, including Parkinson’s disease, is relevant in connection
with the climatogeographic features of the Omsk Region, located
in the south of theWest Siberian Plain. The geographical location
features open this territory for the interference of air masses:
northern Arctic, warm southern Central Asian, dry western
Central Asian, and cold eastern. The different nature of the
air flow leads to sharp changes in temperature, making the
whole weather of the region unstable. The climate of Omsk
is continental temperate. According to https://world-weather.
ru, obtained during long-term observations of air temperature,
it is possible to present all the features of the climate in the
Omsk region:

The lowest average temperature is−16.9◦C (in January).
The highest average temperature is+18.9◦C (in July).
Absolute minimum is−50◦C.
Absolute maximum is+40◦C.

From these data, it can be seen how large the temperature
fluctuations during the year: 40◦ between average values and
90◦ between the minimum and maximum. This is one of the
features of the continental climate. Omsk is characterized by the
predominance of clear sunny days even in the autumn-winter
period—from 223 to 300 during the year. The cloudiest month
is December; in May, the number of such days is minimal. These
climatogeographic features may probably influence the course of
chronic progressive diseases, such as Parkinson’s disease.

In accordance with the urgency of the problem, a retrospective
clinical and epidemiological assessment of the clinical course of
Parkinson’s disease in the south of western Siberia was performed
at Omsk State Medical University.

In accordance with the urgency of the problem presented at
the Omsk State Medical University, a retrospective clinical and
epidemiological assessment of the clinical course of Parkinson’s
disease in the south of western Siberia was carried out. The aim
of our study is to assess the impact of climatic, geographical, and
ethnic factors on the course of Parkinson’s disease in the Siberian
cohort of patients.

METHODS

Patients
All patients (Russians residing in the Siberian part of Russia)
were diagnosed with PD at the Omsk State Medical University.
All patients with PD were selected and studied according to the
international Unified Parkinson’s Disease Rating Scale (UPDRS)
and Hoehn and Yahr scores (10, 11). The diagnosis of PD was
based on the UK PD Brain Bank Criteria (12). In addition,
the Beck Depression Scale and Montreal Cognitive Assessment
(MoCA) test was used (13). The severity of olfactory dysfunction
was performed using the Sniffin Stick odor identification test.

In this work, we evaluated the clinical and epidemiological
features of the course of the disease in 140 patients with
Parkinson’s disease. A retrospective analysis of medical
documentation and an assessment of clinical parameters at the
onset of the disease and at the time of the examination were
carried out.

These were the criteria for inclusion of patients in the study:

- A reliable diagnosis of Parkinson’s disease in accordance
with the criteria of the European Federation of Neurological
Societies (EFNS) in conjunction with the Movement Disorders
Society 2013.

- Signed informed consent to participate in the study.
- The absence of other neurodegenerative diseases in the patient.

Criteria for exclusion of patients from the study:

- Secondary parkinsonism and parkinsonism—plus identified at
the initial visit.

- The presence of severe concomitant somatic pathology in the
stage of decompensation.

- The patient’s refusal to participate in the study.
- Patient involvement in other clinical studies.
- The patient has other diseases that have a genetic component
in the pathogenesis, due to the high risk of distorting the
information received.

Statistical Analysis
Descriptive statistics for qualitative accounting features are
presented in the form of absolute values, percentages, their
standard errors (m), and standard deviations (σ). Data for
variational series with non-parametric distribution are described
as medians and quartiles (Me [25th; 75th percentile]). For
comparison of non-parametric data, the Mann–Whitney U
criteria were used. The critical level of significance of the tests
is determined at p ≤ 0.05. Statistical processing of the results
was carried out using Statistica 10 licensed software packages
(StatSoft, USA).
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TABLE 1 | Risk/protective factors for patients with Parkinson’s disease.

Risk/protective factors Patients with PD Patients with PD (%)

(abs)

Industrial contact with pesticides 8 5.7

Household contact with pesticides 44 31.4

Smoking 31 22.1

Quit smoking after the onset 6 4.3

Never smoke 103 73.6

Drink at least 1 cup of coffee per day 78 55.7

Do not drink coffee 62 44.3

Mild traumatic brain injury 14 10

The study was approved by the Ethics Committee of the Omsk
State Medical University.

RESULTS

According to inclusion/exclusion criteria, 140 patients with
Parkinson’s disease were included in the study, including 55 men
and 85 women (the majority of patients had PD with the overage
duration of 3–10 years with the symptoms effectively managed by
combination of adequate treatment options (dopamine agonists,
levodopa, amantadine). The ratio of men and women in the
group was 1:1.5, with a predominance of females. The age
of patients ranged from 37 to 82 years (median [25th; 75th
percentile], 67 years [61; 73]): women, 85 (66.3 ± 9.5; age,
68 years [61; 72]), and men, 55 years (66.5 ± 9.7; age, 68
years [61; 74]). The average age of all patients at the time of
the examination was 66.4 ± 9.5 years. Treated patients with
PD received different medications (dopamine receptor agonists:
pramipexole in a dosage of 1.5 mg/day or piribedil in a dosage
of 150 mg/day, L-dopa in a dosage of 150–200 mg/day, and
amantadine in a dosage of 300 mg/day), either as monotherapy
or in various combinations.

The studied group of patients consisted of 14 (10%)
Mongoloids and 126 (90%) patients of the European race. By
the level of education, the group was divided into the following
categories: 13 (9%) people had secondary education, 25 (18%)
patients received secondary special education, and 102 (73%)
patients graduated from higher educational institutions.

The average weight in the main group was 76.0± 14.3 kg (73.5
[65; 86]). The average height in the study group was 165.4 ±

8.0 cm (164.0 [160; 170]). Thus, the average body mass index is
27.8 ± 4.7 (27.0 [24.7; 30.7]), which indicates the predominance
of patients with overweight.

The study conducted an analysis of risk factors for the
development of PD and protective factors. The data are presented
in Table 1.

The analysis of anamnestic information about the presence
of concomitant diseases showed that patients with PD are quite
comorbid and usually have several nosological forms in the
structure of the diagnosis. The data are presented in Table 2.

TABLE 2 | Comorbidity of patients with Parkinson’s disease.

Diseases Patients with PD (abs) Patients with PD (%)

Ischemic stroke 4 2.9

Malignant neoplasms 3 2.1

Coronary heart disease 44 31.4

Arterial hypertension 55 39.3

Dyslipidemia 28 20

Diabetes 12 8.6

Hyperthyroidism 3 2.1

The presence of depressive symptoms was reported by 4
(2.9%) patients with PD, but depression of varying severity
during the assessment of the Beck depression scale conducted in
the framework of this study was detected in 46 (71%) of the 65
patients examined. The average level of depression in the group
was 15.6± 9.1 points, which corresponds to mild depression.

MOTOR SYMPTOMS IN THE SIBERIAN
COHORT

In the study group of patients, the stage was determined
according to the classification of Hen-Yar (1967): in 31 patients,
one stage of the disease was established, in 63 patients, two stages,
in 45 patients, three stages, and in one patient, four stages of
the disease.

The average disease duration in the observed group of
patients was 6.9 ± 4.9 years. The debut of PD with motor
symptoms was noted in 129 (92.1%) patients, the debut with
non-motor symptoms was detected in 11 (7.9%) patients with
PD. Of the motor symptoms of the debut, the obligate symptom
was hypokinesia, which was anamnestically established in all
140 (100%) patients. Other motor symptoms of PD debut
in frequency were arranged in decreasing order as follows:
resting tremor−76 (54.3%) patients, muscle rigidity−65 (46.4%)
patients, and postural instability in PD debut was not noted.

In the analysis of the current clinical picture in patients with
PD, hypokinesia was detected in 140 (100%) patients, resting
tremor was diagnosed in 95 (67.9%) patients, rigidity in 97
(69.3%), and postural instability in 43 (30.7%) patients with PD.

Thus, the increase in the frequency of occurrence of the main
motor symptoms of Parkinson’s disease in the Siberian cohort
over a 7-years period was 14% for resting tremor, 23% for muscle
rigidity, and 31% for postural instability.

In our cohort of patients, 98 (70%) patients with a mixed
form of the disease, 22 (16%) patients with a rigid-trembling
form, and 20 (14%) patients with an akinetic-rigid form of
Parkinson’s disease were observed. We compared our data
on motor deficiency with other cohorts of patients that were
collected and systematized this year (14). The data are presented
in Table 3.

Table 3 presents numerous studies of motor deficiency in
Parkinson’s disease in various ethnic groups (14–26).
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NON-MOTOR SYMPTOMS IN THE
SIBERIAN COHORT

The most frequent non-motor symptoms of PD debut in
the study group were constipation in 47 (33.6%) patients,
cognitive impairment in 24 (17.1%) of 140 patients, behavioral
disturbances in the REM phase of sleep in 24 (17.1%) of patients,
insomnia diagnosed in various variations in 38 (27.1%) patients,
daytime sleepiness in 43 (30.7%) patients, subjective olfactory
sensation dysfunctions at the time of the motor debut of PD in
19 (13.6%) patients, unscheduled weight loss in 8 (5.7%) patients,
anhydrosis of the skin in 7 (5%) patients, sweating already in
the debut of PD in 21 (15%) patients, seborrhea (indicated as
an additional non-motor symptom of the debut of PD) in 4
(2.9%) patients, orthostatic hypotension in 35 (25%) patients,
dysphagia in 5 (3.6%) patients, and a dysfunction of the pelvic
organs by the type of night urination and fecal incontinence in
17 (12.1%) patients.

In the analysis of current non-motor symptoms, cognitive
impairment was detected in 61 (43.6%) patients, psychotic
disorders in the form of hallucinations in 7 (5%) patients,
behavioral disturbances in the REM phase of sleep in 65 (46.4%)
patients, olfactory dysfunction in 28 (20%), daytime sleepiness
in 84 (60%), insomnia in various variations in 59 (42.1%)
patients, unplanned weight loss in 12 (8.6%) patients, orthostatic
hypotension in 80 (57.1%), dry skin in 6 (4.3%), hyperhidrosis in
29 (20.7%), dysphagia in 21 (15%), constipation in 85 (60.7%),
and night urination in 41 (29.3%) patients.

Thus, the increase in the prevalence of non-motor symptoms
of Parkinson’s disease in the Siberian cohort for a 7-years period
was constipation in 27%, cognitive impairment in 27%, REM
disorders in 29%, hyposmia in 6%, orthostatic hypotension
in 32%, insomnia in 15%, daytime sleepiness in 29%, and
nocturia in 17%. BP progression over a 7-years period is shown
in Figure 1.

Olfactory test (Sniffin Stick) or Sniffin Sticks odor
identification test (Bürghard firm, Hamburg, Germany)
was performed in 83 patients, and the average score was 7.6
± 3.3, which corresponds to anosmia. Identification test:
the ability to detect odors from the proposed four names.
The patient is given a pencil to inhale the smell and are
offered four options, one of which he must choose. The result
is the sum of the positive answers. A result of <8 points
corresponds to anosmia, 9–11 points to hyposmia, and 12–16
points to normosmia. In this group of patients, olfactory
dysfunction reaching the degree of anosmia was diagnosed
in 47 (56.2%) patients, hyposmia in 26 (31.3%) patients, and
normosmia in 11 (12.5%) patients. The data are presented in
Figure 2.

A statistical analysis of a group of patients with Parkinson’s
disease at the onset of the disease and at the time of the study,
taking into account the average duration of the disease course of
6.9 ± 4.9 years using the non-parametric Mann-Whitney U-test,
showed significant differences in the severity of the main motor
and non-motor symptoms. At the time of the study, patients had
more pronounced resting tremor (U = 1,021.5; p < 0.0000001),
general bradykinesia (U = 1,854; p < 0.001), and rigidity (U =
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FIGURE 1 | Features of the clinical picture in the debut of PD and at the time of the examination, taking into account the average duration of the disease.

FIGURE 2 | The prevalence and severity of olfactory dysfunction in the study group of patients with PD.

1,630.0; p < 0.0007). When comparing the severity of non-motor
symptoms in the debut of BP and after 7 years, more pronounced
constipation (U = 1,387.5; p < 0.000001), cognitive impairment
(U = 1,683.5; p< 0.0002), behavioral disorders were noted in the
REM phase of sleep (U = 1,775.5; p < 0.0004), insomnia (U =

1,082.5; p < 0.0000001), daytime sleepiness (U = 1,534.0; p <

0.000008), orthostatic hypotension (U = 1,826.0; p < 0.000008),
and hyposmia (U = 836.0; p < 0.00004). There is also a tendency
to increase the severity of night urination (U = 1,814.5; p< 0.02).

We compared the results of evaluating some non-motor
symptoms in our cohort of patients with Parkinson’s disease with

symptoms in other cohorts of patients around the world; data for
which were systematized this year (27). The data are presented in
Table 4.

Table 4 shows the prevalence of major non-motor
symptoms identified during studies in different corners of
the globe (8, 28–37).

The average score during neuropsychological testing of the
cognitive sphere using the Montreal scale for assessing cognitive
functions was 23.4 ± 3.9, which corresponds to moderate
cognitive impairment. A score of 20 and lower was scored by 13
(15.1%) patients, and in the range of 21–25 points, 43 (51.8%)

Frontiers in Neurology | www.frontiersin.org 5 November 2020 | Volume 11 | Article 538782205

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Rozhdestvensky et al. Parkinson’s Disease in the Siberian Population

T
A
B
L
E
4
|
S
o
m
e
n
o
n
-m

o
to
r
sy
m
p
to
m
s
in

p
a
tie
n
ts

w
ith

P
D
b
y
c
o
u
n
tr
y.

S
tu
d
y

Y
e
a
r

C
o
u
n
tr
y

To
ta
l
s
tu
d
y

p
a
rt
ic
ip
a
n
ts

M
e
a
n

y
e
a
rs

s
in
c
e

d
ia
g
n
o
s
is

A
n
o
s
m
ia

(%
)

D
y
s
p
h
a
g
ia

(%
)

C
o
n
s
ti
p
a
ti
o
n

(%
)

N
o
c
tu
ri
a

(%
)

W
e
ig
h
t

c
h
a
n
g
e

(%
)

M
e
m
o
ry

p
ro
b
le
m
s

(%
)

H
a
ll
u
c
in
a
ti
o
n
s

(%
)

D
e
p
re
s
s
io
n

(%
)

O
H

(%
)

E
D
S

(%
)

In
s
o
m
n
ia

(%
)

R
B
D

(%
)

H
y
p
e
rh
id
ro
s
is

(%
)

D
u
n
c
a
n

2
0
1
4

U
K

1
5
8

0
.5

4
4

2
0

4
2

2
5

2
3

5
4

2
2

3
7

3
2

2
5

1
8

3
5

1
0

R
o
m
e
n
e
ts

2
0
1
2

U
S
A

7
0

3
.8

2
1

1
6

3
0

6
8

2
1

4
2

1
2

3
8

3
8

1
4

4
1

3
8

1
9

H
u
i-
ju
a
n
L
i

2
0
1
5

C
h
in
a

8
2

5
.1

4
5

3
3

6
7

8
7

2
9

9
5

1
5

6
7

3
8

7
3

7
8

5
2

6
5

C
o
se
n
tin

o
2
0
1
3

P
e
ru

3
0
0

5
.8

3
6

2
2

5
6

7
7

5
3

6
1

2
0

8
1

4
8

3
3

4
8

3
6

4
3

K
h
e
d
r

2
0
1
3

E
g
yp

t
1
1
2

6
.2

1
0

2
4

5
2

6
0

3
3

3
0

1
3

4
7

5
4

3
9

4
6

1
5

2
1

C
h
e
o
n

2
0
0
8

S
K
o
re
a

7
4

6
.4

2
8

3
1

6
6

6
8

3
5

6
1

1
8

6
5

6
4

2
6

5
6

3
5

6
0

R
o
d
ríg

u
e
z-

V
io
la
n
te

2
0
1
1

M
e
xi
c
o

2
3
2

6
.6

3
4

3
3

5
8

6
2

2
8

4
7

1
9

6
7

4
6

2
8

4
7

3
3

3
9

M
a
rt
in
e
z-
m
a
rt
in

2
0
0
7

In
te
rn
a
tio

n
a
l

5
4
5

7
2
9

2
8

5
3

6
2

1
8

4
5

2
3

5
0

2
8

3
1

4
6

3
6

3
0

Ta
n
ve
e
r

2
0
1
8

P
a
ki
st
a
n

9
7

7
2
6

2
8

6
0

7
7

3
8

5
9

3
0

5
2

5
3

4
1

5
3

3
6

3
7

B
o
st
a
n
tjo

p
o
u
lo
u

2
0
1
3

G
re
e
c
e

1
6
6

7
.1

2
6

1
4

4
6

5
2

7
3
1

2
4
2

2
8

9
2
6

2
7

2
1

C
h
a
u
d
h
u
ri

2
0
1
0

U
K
,

G
e
rm

a
n
y,

S
p
a
in

2
4
2

8
4
3

2
7

4
8

6
5

2
3

5
1

1
7

4
9

3
9

3
5

4
7

3
9

3
1

R
o
zh

d
e
st
ve
n
sk
y

2
0
2
0

R
u
ss
ia

1
4
0

6
.9

5
6

1
5

6
1

4
1

9
4
4

5
7
5

5
7

6
0

4
2

4
6

2
1

A
n
y
d
a
ta
th
a
t
w
a
s
n
o
t
a
va
ila
b
le
is
re
p
la
c
e
d
w
it
h
a
d
a
s
h
.

O
H
,
o
rt
h
o
s
ta
ti
c
h
yp
o
te
n
s
io
n
;
E
D
S
,
e
xc
e
s
s
iv
e
d
a
yt
im
e
s
le
e
p
in
e
s
s
;
R
B
D
,
R
E
M
s
le
e
p
b
e
h
a
vi
o
r
d
is
o
rd
e
r.

patients were observed; the normal values of this test [i.e., 26–30
were noted in 28 (33.1%) patients with PD].

CONCLUSION

Of course, factors such as ethnicity (38), geographical location of
the region of residence (39), diet (40), overall life expectancy (41),
genetic characteristics of the population (42, 43), and presence
of concomitant diseases (44) affect the development and nature
of the course of both neurodegenerative and other chronic
progressive neurological diseases. A comparative assessment of
the clinical parameters of Parkinson’s disease in populations is
to some extent difficult due to the variability of approaches for
obtaining clinical data and their interpretation. In addition, the
UK PD Brain Bank Criteria used in most studies provide a
diagnostic accuracy of only 82.7% for the diagnosis of Parkinson’s
disease (45). This indicator, of course, affects the statistical
reliability of clinical and epidemiological studies of Parkinson’s
disease and can lead to some distortion, especially in the early
stages, when the clinical picture is usually incomplete, the
response to dopaminergic drugs is uncertain, or signs of atypical
parkinsonism have not yet appeared. Despite significant advances
in understanding the pathogenetic aspects of this disease, we still
lack clear imaging or biochemical markers to accurately diagnose
Parkinson’s disease.

In our work, we estimated the prevalence of motor and
non-motor neurological deficits, as well as some risk factors
and concomitant diseases in the Siberian cohort of patients
with Parkinson’s disease. The predominant debut of BP is the
motor debut. The progression of the disease is characterized
by an increase in the frequency of both motor and non-motor
symptoms. When comparing the prevalence of motor symptoms
with other cohorts of patients (Table 3), we found the greatest
similarity with Canadian (24) and, to a lesser extent, UK (15)
cohorts of patients, in which mixed forms of Parkinson’s disease
also prevailed. This similarity may be due to the close climatic
and geographical features of western Siberia and Canada with a
sharply continental climate, and the predominance of patients
of the European race in our cohort. The analysis also noted the
predominance of tremor in the structure of the clinical picture of
Parkinson’s disease in the Italian (14, 23), Norwegian (18, 26),
and South Korean (16) cohorts. Against this background, a
study of Reinoso et al., conducted in 2014, which shows the
predominance of an akinetic-rigid form or postural instability
with gait disorders of up to 66.5% in a cohort of patients
with Parkinson’s disease (21), looks quite interesting. The ratio
of disease forms in the US (22) and China (19) cohorts was
approximately equal.

In this article, we compared the prevalence of non-motor
symptoms of Parkinson’s disease in Siberian and other cohorts
around the world. Based on these data, the Siberian cohort
demonstrates a greater prevalence of olfactory disturbances,
daytime sleepiness, orthostatic hypotension, depressive
disorders, and behavioral disorders in the REM phase of
sleep compared with cohorts similar in terms of the duration of
Parkinson’s disease (29–33, 35, 36). However, the prevalence of
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dysphagia, nocturia, weight changes, and hallucinations turned
out to be lower than in the cohorts of patients similar in terms of
sample size and duration of the disease. It is possible to consider
these parameters only tentatively, since they have differences
in the methodology for assessing non-motor symptoms,
cohorts have ethnic differences, which probably affect the
final result.

In the study group of patients, mild depressive symptoms,
mild cognitive impairment, and severe olfactory impairment
(anosmia) were noted.

The severity of motor and most non-motor symptoms
directly correlates with the duration of PD and the stage of
the disease, which is confirmed by most clinical trials of this
disease (46–48).

The comorbidity of patients with Parkinson’s disease is
an urgent public health problem. A study by Mollenhauer
et al. reflected the negative dynamics of the rapid progression
of Parkinson’s disease in patients with cardiovascular risk
factors, impaired regulation of blood glucose levels, impaired
uric acid metabolism, and inflammation (49). According to
Huang Y.F. in patients with PD, the risk of stroke is higher
than in the population (50). In the Siberian cohort of
patients with Parkinson’s disease, women with higher education,
overweight, concomitant arterial hypertension, coronary heart
disease, and dyslipidemia predominated. The predominance of
females in the analyzed cohort of patients with Parkinson’s
disease is probably associated with regional features of a
higher medical demand for females. The data obtained during
the study are consistent with the results of other studies
in various cohorts and in different parts of the world (51–
53).

Smoking as a protective risk factor in Parkinson’s disease
is confirmed by a large number of scientific studies (54–
57). Our data indirectly confirm and are consistent with
previously published studies. The analysis found that
75% of respondents never smoke. The study found that
household contact with various pesticides is relevant for 30%
of respondents.

The Siberian cohort of patients with Parkinson’s disease has its
own peculiarities in the clinical picture of the disease, in questions
of comorbidity, which necessitates further studies of various
clinical, epidemiological, and genetic aspects of the disease using
unified protocols to better understand the nature of the disease.
The results presented in the article indicate the main directions
of further deeper study of this pathology.
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Background: The Latino population is greatly understudied in biomedical research,

including genetics. Very little information is available on presence of known variants

originally identified in non-Hispanic white patients or novel variants in the Latino

population. The Latino population is admixed, with contributions of European, African,

and Amerindian ancestries. Therefore, the ancestry surrounding a gene (local ancestry,

LA) can be any of the three contributing ancestries and thus can determine the presence

or risk effect of variants detected.

Methods: We sequenced the major exons and exons of reported Latino-specific

variants in GBA and LRRK2 and performed genome-wide genotyping for LA

assessments in 79 Latino Parkinson disease (PD) patients, of which ∼80% identified

as Caribbean Latino.

Results: We observed five carriers of LRRK2 p.G2019S, one GBA p.T408M, and three

GBA p.N409S on European as well as three GBA p.L13R on African LA backgrounds.

Previous Latino variant GBA p.K237E was not observed in this dataset. A novel

highly conserved and predicted damaging variant LRRK2 p.D734N was identified in

two unrelated individuals with African LA. Additionally, we identified rare, functional

variants LRRK2 p.P1480L and GBA p.S310G in one individual each heterozygous for

European/Amerindian LA.

Discussion: Additional functional analysis will be needed to determine the pathogenicity

of the novel variants in PD. However, the identification of novel disease variants in the

Latino cohort potentially contributing to PD supports to importance of inclusion of Latinos

in genetics research to provide insight in PD genetics in Latinos specifically as well as

other populations with the same ancestral contributions.
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INTRODUCTION

Parkinson disease (PD) is the second most common
neurodegenerative disease next to Alzheimer disease (AD),
affecting individuals of all races and ethnicities. Most studies of
PD, however, have been conducted in individuals of European
(non-Hispanic whites, NHW) and Asian descent. Interestingly,
incidence rates of PD are slightly higher in Latinos than for
NHW (1, 2), indicating a clear disregard of the field to include
Latinos in PD research. The bias toward NHW leads to health
disparities for PD diagnosis and treatment. Many of the disparity
reports however make no distinctions for NHW vs. Latinos,
compared to for example NHW vs. African Americans (3).
Therefore, the health disparities experienced by Latinos are likely
understudied and underestimated despite the fact they are the
fastest-growing and now largest minority in the US (18.3%) (4).

To date, >50 genes/loci have been identified for PD in
European or Asian-descent studies (5). It is not known at
what frequency NHW PD variants occur in other racial/ethnic
groups or if entirely different variation or separate genes play a
role in these other groups. Variants unique to a specific racial
background have been reported for PD, such as PINK1 variants
that are predominantly identified in Asian patients (6). Ethnic-
specific mutations have been found in several genes influencing
complex disease, most notably in late-onset AD, and the effects of
these genetic differences vary between populations (7–11).

Interestingly, genetic research in admixed populations such
as the Latino population can provide insight in genetic
contribution on many backgrounds because of their complex
and variable genetic admixture. Latino populations collectively
trace their ancestry to three continental groups; European,
Amerindians, and West African (12–14), though contributions
to contemporary Latino populations vary geographically (15–18).
Interestingly, specifically for the Caribbean, there is high
variability in ancestry contribution among and even within
different Latino groups of this region (19). These contributions
of various origins also lead to the observation that even though
an individual’s global ancestry (“average” ancestry) might mostly
resemble European, African (American) or Amerindian, their
genome is a mosaic of contributions. Therefore, local ancestry
(LA), or the ancestral background of a particular (“local”)
chromosomal region or haplotype (i.e., LRRK2 locus), can be
highly variable between different genomic regions and between
individuals of the same population group. More recently,
different variant size effects have been demonstrated for the
same variant on different LA, i.e., lower risk of APOEε4 for
AD on African vs. European or Japanese background (20),
clearly indicating the importance of understanding LA for
disease variants.

A small number of studies have reported results of genetic
analyses in small (secondary) Latino datasets (21–26). These
analyses often summarize across all Latino PD patients,
regardless of ancestry, due to the small sample size. Given the
high variability of admixture in these populations (described
above), caution is warranted for the interpretation and
extrapolation of these results. The only larger cohort, Latin
American Research Consortium on the Genetics of PD

(LARGE-PD, PI Dr. Mata) consisting of 1,150 Latino patients
originating from southern South America, reports an enrichment
of a novel variant in PD gene LRRK2 (p.Q1111H, rs78365431)
in Peruvian and Chilean PD patients and controls (27) as
well as a GBA mutation (p.K237E, rs773409311) in Colombian
patients only (28), suggesting these variants originated from the
Amerindian genetic background in these patients. Though these
studies are an important first step, more elaborate analyses in the
full range of Caribbean, Central, and South America are needed.
The data presented here is the first report on variants in a cohort
highly enriched for Caribbean Latino patients, complementing
the reported dataset of LARGE-PD.

MATERIALS AND METHODS

Human Subject Research Compliance
The presented study was approved by the Institutional Review
Board at the University of Miami and informed consent for the
survey was obtained from all participants.

Sample Dataset
All PD participants were enrolled locally in Miami, FL, through
collaboration with the University of Miami Department of
Neurology Movement Disorders Division (Drs. Singer and
Luca) or through ascertainment efforts in Puerto Rico through
collaboration with Dr. Vinuela of the Movement Disorders
Group at Manatí Medical Center in Manatí, PR.

Genotyping Chip
We performed genome-wide genotyping using Illumina’s Global
Screen Assay (GSA) with Multiple Disease content version 2
(GSAMDv2), at the Center for Genome Technology at John
P. Hussman Institute for Human Genomics. Quality control
analyses were performed using the PLINK software, v.2 (29).
Samples with a call rate <90% and with excess or insufficient
heterozygosity (± 3 standard deviations) were excluded. Sex
concordance was checked using X chromosome data. To
eliminate duplicate and related samples, relatedness among the
samples was estimated by using identity by descent (IBD). SNPs
available in samples with the call rate <97%, or those not in
Hardy–Weinberg equilibrium (p< 1x e-5), were eliminated from
further analysis.

Illumina’s CNVpartition program (Illumina, San Diego, CA)
was used with default settings to evaluate presence of copy
number variations in the genotyping data.

The genotyping data was used for determination of ancestries
as well as presence of few variants (potentially) contributing
to PD included on the chip (LRRK2 p.G2019S, p.Q1111H,
and PARK2 p.R275W).

Global and Local Ancestry Determination
Standard principal component analysis (PCA) using the Eigen-
strat program (30) was performed to establish global ancestry for
the participants. Reference datasets from the Human Genome
Diversity Project (HGDP) data, i.e., European (/NHW), West
African, Amerindian, were used in the analysis (31).
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To determine LA at the genomic region surrounding the
known PD genes, we phased the genotyping data using
SHAPEITtoolver.2 (32) and the same reference datasets as for
the PCA. We then used the RFMix ancestry software (33) to
estimate LA for the whole genome (for reference) and around
LRRK2, GBA, and PARK2 in particular. These LA blocks are
defined by variants common in specific ancestral populations
spread across a large region, up to several Mb, depending on
LD structure. The same reference populations (NHW, West
African, Amerindian) used for phasing are used in the LA
estimation. RFMix then compares each genomic region to the
reference populations to infer the ancestral origin of each
haplotype. Admixture plots identifying overall percentage of
ancestral contributions are created using the ADMIXTURE
program (34).

Sanger Sequencing
We performed Sanger sequencing for exons in major PD
genes for late-onset PD harboring known pathogenic variants
(LRRK2 p.R1441 hotspot codon, p.G2019S, GBA common
variants, SNCA), as well as harboring newly identified variants
putatively contributing to Latino PD reported by Velez-Pardo
et al. (28). Additionally, we extended LRRK2’s analyses to
all exons coding for functional domains Roc and Kinase, as
well as exons harboring putative pathogenic variants identified
in NHW patients in-house and by collaborators (personal
communication). In total, these exons include LRRK2 exon 17-
19, exon 29-31, exon 34, exon 36, exons 38-44, GBA exons
2-11, and SNCA exons 2-3 (primer sequences are available
upon request).

TaqMan Genotyping
To confirm the observed homozygous status of variant PARK2
p.R275W on the genotyping chip, we performed TaqMan
genotyping (C__27532069_20, Thermo Fisher Scientific) on
all participants using the recommended protocol. Data were
analyzed on QuantStudio (Life Technologies).

Variant Annotation
Novel variants are annotated for conservation (PhastCons/GERP,
values over 2 and 0.5 are considered conserved by consensus) and
functional effect in the protein using PolyPhen2 (35) as well as
Combined Annotation Dependent Depletion algorithm (CADD)
score. A score over 20 indicates top 1% of highest CADD
scores (most evidence for functional potential of the position)
genome-wide. Additionally, we queried the genome aggregation
database [gnomAD, (36)] holding exonic/genomic data of
140,000 individuals, including 17,000 “Latino” individuals.

RESULTS

A total of 79 Latino patients are included in this report,
79.7% identified as Caribbean (originating from Cuba, PR,
Dominican Republic, or mixed/undefined). Other countries of
origin reported by participants include Colombia, Peru, Ecuador,
El Salvador, Guatemala, Brazil, Mexico, or unknown. Sample
characteristics are described in Table 1. Nineteen out of 79

TABLE 1 | Sample characteristics.

N (%) Avg AAO

(range)

M/F

ratio

FamHx

P/N+U

ALL 79 (100) 54.4 (29–69) 42/37 19/60

Caribbean 63 (79.7) 63 (40–69) 36/27 16/47

Puerto rico 37 (46.8) 55.6 (40–67) 19/18 14/23

Cuba 22 (27.8) 53.6 (42–69) 15/7 1/21

Dominican republic 2 (2.5) 49 (1 unknown) 1/1 0/2

Undefined 2 (2.5) 57.5 (53–62) 1/1 1/1

Other 16 (20.3) 53.2 (29–68) 6/10 3/13

Colombia 2 (2.5) 55.5 (55–56) 0/2 0/2

Peru 2 (2.5) 54 (49–59) 0/2 1/1

El Salvador, Guatemala,

Brazil, Ecuador, Mexico

(1 each)

5 (6.3) 55.5 (44–68) 2/3 1/4

Unknown 7 (8.9) 50.2 (29–64) 4/3 1/6

avg AAO, average age at onset; M/F, male/female; FamHx, family history (defined as first-

or second-degree relative); P, positive; N, negative; U, unknown.

patients reported a first or second degree relative with PD
(positive family history, FamHx+; 24%). Analyses of global
ancestry (Figure 1) and ancestral contributions (admixtures,
Figure 2) determined that the vast majority of this cohort has
a high percentage of European ancestral contribution, though
highly variable contribution from both African and Amerindian
ancestry is observed (0 to ∼80%, Figure 2). Contribution of
other ancestries (e.g., East Asian) was minimal (<2%, data
not shown).

Detection of Known Variants in Selected
Exons of Major PD Genes
We set out to determine the frequency of rare (MAF<1%)
known variants originally identified in NHW patients in the
Latino cohort. Using genotyping and Sanger sequencing data,
we identified five heterozygous carriers of LRRK2 p.G2019S
(5/79 = 6.3%, 1/19 FamHx+ = 5.3%) of various origins, two
heterozygous carriers of GBA p.A495P (2/79 = 2.5%, 0/19
FanHx+) from Puerto Rico, three carriers of GBA p.N409S (3/79
= 3.8%, 0/19 FamHx+) of various origins, one heterozygous
carrier of GBA p.T408M (1/79 = 1.2%, 0/19 FamHx+) from
Cuba, three carriers of GBA p.L13R from Puerto Rico (3/79
= 3.8%, 1/19 FamHx+ = 5.3%), and a homozygous carrier of
PARK2 p.R275W (confirmed by TaqMan genotyping, 1/79, 0/19
FamHx+ or 2/158 alleles = 1.2%) from Puerto Rico (Table 2).
We did not observe any variants in SNCA, on the LRRK2 p.R1441
(C/G/H/S) hotspot or GBA p.L483P. No larger copy number
variations in major PD genes detectable by the genotyping chip
were observed.

We also evaluated presence of reported putative Latino
specific and/or Latino PD contributing variants, i.e., LRRK2
p.Q1111H and GBA p.K237E. We did not observe either of these
variants in the current dataset.

When examining the LA for LRRK2, GBA, and PARK2
for the variant carriers, we determined that all variant
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FIGURE 1 | Principal component analyses. Estimation of relationship to ancestral groups from Human Genome Diversity Project (HGDP). Aqua = Puerto Ricans.

Orange = Cubans. Purple = Caribbean Latinos (including Dominican Republic, mixed or undefined Caribbean origin). HGDP datasets included Europeans (yellow),

Africans (green), and Amerindians (brown).

FIGURE 2 | Representation of ancestral admixture in Latino cohort. Subjects are sorted on the X-axis based on percentage of Amerindian ancestry contribution

(0–80%, displayed in blue). Colors in each vertical line represent that individual’s ancestral admixture. Red = African, Orange = European, Blue = Amerindian.

carriers are homozygous for European LA at the genomic
location where they carry a variant, except for one carrier
of GBA p.A495P (Amerindian/European) and all three
carriers of GBA p.L13R (2 × African/European and 1x

African/Amerindian). Interestingly, p.L13R is common in the
African population (7.7% in gnomAD), vs. <0.5% in other
population groups, and considered benign for GBA function
in ClinVar.
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TABLE 2 | Known rare variants (MAF<1%) identified in major exons of PD genes.

Gene Variant #carriers Countries of origin Avg AAO Likely local ancestry gnomAD overall (%)

LRRK2 G2019S 5 2x PR, Brazil, Guatemala, unknown 56 (47–61) European 0.05

GBA T408M 1 Cuba 58 European 0.6

N409S 3 Cuba, PR, unknown 55.7 (45–64) European 0.2

A495P 2 PR Unknown Amerindian/European 0.01

L13R 3 PR 51.67 (41–59) African 0.007

MAF, minor allele frequency; Avg AAO, average age at onset; PR, Puerto Rico; gnomAD, genome aggregation database.

Identification of Additional Variants in
Selected Exons of Major PD Genes
We identified five heterozygous carriers of rare new variants
(Table 3) with varying levels of in-silico support for pathogenicity
(Table 4); LRRK2 p.D734N (2 individuals), p.P1480L, p.R1941H,
and GBA p.S310G.

The two individuals carrying the LRRK2 p.D734N variants are
from PR; only one reports a positive family history. No DNA
of the other affected in the family was available for segregation
analyses. This variant has only been reported once in gnomAD in
an additional Latino individual. LA analyses in these individuals
(Amerindian/African and African/European) suggest that this
variant might be located on an African background. The variant
is predicted to be highly deleterious and is conserved. This
variant has not been reported in PD context before, so no
information is available in ClinVar. Both individuals presented
with mild idiopathic PD with predominant tremor and postural
changes and reported loss of smell and constipation. One further
presented with short-term memory problems and the other with
possible REM sleep behavior disorder.

The patient carrying LRRK2 p.P1480L variant identified
Ecuador as country of origin and reported no positive family
history to their knowledge. The variant was not present in
140,000 individuals from gnomAD (including 17,000 Latinos),
though p.P1480S on the same codon is reported in only one
European individual (0.000004% overall in gnomAD). The
position is highly conserved, and the variant is predicted
to be damaging. LA analyses showed that this patient is
heterozygous for Amerindian and European ancestry at the
LRRK2 locus. The patient presented with idiopathic PD with
tremor, bradykinesia, and rigidity and underwent successful deep
brain stimulation surgery.

Variant LRRK2 p.R1941H was identified in a Cuban patient
with no family history for PD, is classified as a Variant
of Unknown Significance to PD in ClinVar, and has been
observed in European, Latino, and African genomes in gnomAD
(0.0001%). In silico predictions are inconsistent in supporting
a damaging role of this variant. The individual carrying the
variant is homozygous for European ancestry at the LRRK2 locus.
The patient presented with idiopathic PD with mild tremor,
rigidity of the neck and leg, postural instability, and moderate
facial hypokinesia.

The patient carrying GBA p.S310G is from PR and reports
no family history for PD. The variant has been reviewed to be
(likely) pathogenic for GBA function in ClinVar and has not

been observed in European or Latino individuals from gnomAD
but is rare in East Asian individuals. LA analyses identified both
Amerindian and European ancestry at the GBA locus for the
carrier. The patient presented with mild idiopathic PD with
predominant tremor and postural changes.

DISCUSSION

Here we sequenced exons with reported pathogenic or strong
risk variants for PD in three known PD genes (LRRK2, GBA,
and SNCA) to evaluate presence of these variants originally
identified in NHW patients in a Latino cohort enriched for
Caribbean patients. Additionally, we extended LRRK2’s analyses
to all exons coding for functional domains Roc and Kinase, as
well as exons harboring putative pathogenic variants identified
in NHW patients in-house and by collaborators (personal
communication). We used genome-wide genotyping data to
determine ancestral background of identified variants and
presence of few extra variants included on the chip (e.g.,
PARK2 R275W). We identified five carriers of LRRK2 p.G2019S
as well as more common GBA p.T408M and p.N409S in
one and three patients, respectively, all on putative European
background. As these variants have been frequently reported in
European patients, this suggests these variants were introduced
to the Latino population through their European ancestor.
Additionally, we identified benign variants GBA p.L13R common
in African populations, in three individuals, and p.A495P in one
individual. LA analyses supported p.L13R was indeed introduced
through an African ancestor. p.A495P was identified in two
patients who are heterozygous for European and Amerindian
LA at the variant location. No ancestry-specific variants were
located close enough (∼10 kb) to the variant to allow us to
phase the variants with its ancestral background (defined by
variants across up to several Mb surrounding the gene) in
cloning experiments. Independent of the reported observation
here of GBA p.A495P, this variant has been identified across
populations with rare instances reported in Africans, Latinos,
East Asians, and Europeans in gnomAD. This reoccurrence on
different backgrounds might indicate a tolerance of GBA for
changes on this position, suggesting this variant is likely benign,
which is also reflected in ClinVar’s assessment of its relevance to
GBA function.

Interestingly, we identified four more variants with varying
levels of evidence for impact in PD. The presence of LRRK2
p.R1941H in individuals of all populations in gnomAD suggests
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TABLE 3 | New variants (MAF<1%) identified in selected exons of major PD genes.

Gene Variant N Country of origin AAO FamHx P/N Likely local ancestry gnomAD overall (%)

LRRK2 D734N 2 PR 67 / 60 1/1 African 0.000008

P1480L 1 Ecuador 44 0/1 Amerindian/European Not observed

R1941H 1 Cuba 42 0/1 European 0.000127

GBA S310G 1 PR 58 0/1 Amerindian/European 0.000021

MAF, minor allele frequency; AAO, age at onset; FamHx P/N, family history positive/negative; U, unknown; PR, Puerto Rico; gnomAD, genome aggregation database.

TABLE 4 | In silico evidence for novel variants.

Gene Variant GERP Phast Cons PolyPhen2 CADD gnomAD NFE (%) gnomAD AFR (%) gnomAD Lat (%) gnomAD EAS (%)

LRRK2 D734N 5.94 0.579 Probably damaging 25.5 0 0 0.00003 0

P1480L 5.53 0.935 Probably damaging 29 – – – –

R1941H 4.85 1.000 Possibly damaging 23.6 0.00019 0.00004 0.00028 0.00005

GBA S310G 3.51 0.985 benign 26.5 0 0.00004 0 0.00020

gnomAD, genome aggregation database; NFE, non-Finish Europeans; AFR, African; Lat, Latinos; EAS, East Asian.

tolerability for this variant, thus reducing the likelihood that
this variant is a major player in PD. Data on LRRK2 p.D734N
and p.P1480L and GBA p.S310G however support potential
pathogenic roles of these variants. LRRK2 p.D734N is predicted
to be highly functional and is very rare in the general population
being identified only once in another Latino individual. Though
one patient presented with positive family history, unfortunately
no DNA was available for the others affected for segregation
analyses. However, the observation of this variant in two
independent PD patients on African LA, rarity in the general
population (including African individuals), and strong in silico
evidence supports the hypothesis that this variant might be a
novel pathogenic variant for PD in individuals with African
background. The identification in just Latino individuals, and not
European or African groups, could suggest that this variant was
introduced more recently in Latin history.

Both variants LRRK2 p.P1480L and GBA p.S310G have
been identified each in one patient who is heterozygous for
European and Amerindian LA at the variant location and does
not report family history preventing segregation analyses. No
ancestry-specific variants were located close enough (∼10 kb)
to either variant to allow for phasing of the variants on its
ancestral background. Both variants are highly conserved and
are predicted to have a (strong) effect on protein function.
LRRK2 p.P1480L has not been reported previously in any general
population, though a variant on the same codon (p.P1480S)
was observed in one European individual. No information on
this variant is available; however, it is located in the highly
conformational Roc domain of LRRK2 and affects a proline
residue, which are often involved in providing curvature in
protein structures, suggesting a potential consequence for the
domain structure due to this variant. Additional data of other
carriers or families or functional analyses would be needed
to assess its impact for PD. In contrast, GBA p.S310G has
been observed in Gaucher’s disease patients before and has
been reviewed to be pathogenic by ClinVar. It has been
seen very rarely in East Asian individuals in gnomAD. LA
analyses in the variant carrier did not identify East Asian
ancestry in this region (<1% in patient overall), indicating

that this variant might have arisen independently in different
populations. All patients carrying these new rare variants
presented with classic idiopathic PD without atypical features;
often with predominant tremor; and reporting no hallmarks
differentiating them from other idiopathic PD. Screening in
more (Caribbean) Latino PD cohorts or extensive single
molecule sequencing will be needed in the future to confirm
pathogenicity of these new potential PD variants and determine
the ancestral origin of these variants in the Latino population.
This first report on identification of novel variants in selected
exons with higher likelihood of impactful variants in major
PD genes in a Caribbean enriched cohort indicates that we
can identify novel variants in the Latino population with
variable evidence for involvement in PD pathogenesis. This
is supported by the identification of the Colombian-specific
variant GBA p.K237E (28) when querying GBA in a larger
continental Latin dataset. Extending these analyses to more
exons, more genes and larger cohorts will greatly increase
the number of novel variants we identify in Latino PD
patients and will further the field’s understanding of PD in the
Latino population.

Furthermore, inclusion of admixed population in
genetic research is especially valuable because of their
varied ancestry. As evidenced here by potential pathogenic
variant LRRK2 p.D734N and previously by Velez-Pardo
for GBA p.K237E, variants identified in Latino populations
specifically can provide insight in variants on African
and Amerindian background, both of which also play
a major role in other, equally underserved, populations
(African American/Amerindian).

Generally, the lack of information for other racial
and ethnic populations (albeit in genetics specifically or
biomedicine overall) leads to health disparities as study
of a limited population pool creates biases in findings
and only benefits the limited population in the end (37).
Expanding genetic studies of complex diseases, such as
PD, to Latino populations is crucial to meeting the needs
of this increasing US demographic. The identification of
novel variants in Latino cohorts not previously identified
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further support the importance of inclusion of participants
across race/ethnicity.
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Objective: To investigate the expression level of the maternally expressed gene-3

(MEG3) of the free long non-coding RNA (lncRNAs) in the plasma of Parkinson’s disease

(PD) patients and its relationship with the disease.

Methods: Thirty PD patients (PD group) who treated at Xuanwu Hospital of Capital

University of Medical Sciences between January 2017 and December 2019 were

selected as the research objects and 30 healthy subjects were enrolled in the study during

the same period as the control group. Cognitive function was assessed according to

the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA)

were used to evaluate cognitive function, Non-Motor Symptoms Scale (NMSS) was

used to evaluate severity of non-motor symptoms. The relative expression of lncRNAs

MEG3 in plasma was measured by PCR, and the levels of neuron-specific enolase (NSE),

nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in plasma were

measured by ELISA, and the relationship with these all indexes was analyzed.

Results: The NMSS score of PD group was significantly higher than that of the control

group, while the MMSE and MoCA scores were significantly lower than that of the control

group (P < 0.05); The relative expression of lncRNAs MEG3, NGF and BDNF levels of

PD group were significantly lower than that of the control group, and NSE level was

significantly higher than that of the control group (P < 0.05); The H&Y stage and NMSS

score in PD group were negatively correlated with the relative expression of lncRNAs

MEG3, the levels of NGF and BDNF (P < 0.05), and positively correlated with NSE

(P < 0.05); The MMSE and MoCA scores in PD group were positively correlated with

the relative expression of lncRNAs MEG3, NGF, BDNF levels (P < 0.05), and negatively

correlated with NSE (P < 0.05); The relative expression of lncRNAs MEG3 in PD group

was positively correlated with NGF, BDNF levels (P < 0.05), and negatively correlated

with NSE (P < 0.05).

Conclusion: The expression of lncRNAs MEG3 in the plasma of PD patients was

downregulated compared to that of healthy control subjects, and its expression level

was closely related to the aggravation of non-motor symptoms, cognitive decline, and PD
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stage. These associations may reflect the synergism of the increase of NSE and decrease

of NGF and BDNF levels, highlighting plasma lncRNA MEG3 as a new candidate

biomarker of PD.

Keywords: Parkinson’s disease, long non-coding RNAs, MEG3, cognitive function, non-motor symptoms

INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative
disease and the second most common neurodegenerative disease
worldwide, following Alzheimer’s disease, affecting 2–3% of the
global population ≥65 years of age, and the incidence rate
has been increasing steadily every year (1, 2). The number
of PD patients in China was estimated at about 5 million
in 2019, accounting for half of the world’s total number of
cases, affecting quality of life for the patients and imposing
an economic burden on society (3). Clinical manifestations
include resting tremor, bradykinesia, muscle rigidity,balance
disorders, and postural instability. With non-motor symptoms,
other symptoms appear such as REM sleep behavior disorders
(or RBD), olfactory dysfunction, constipation, pain, fatigue, sleep
disorders, autonomic dysfunction, and cognitive dysfunction that
seriously affect the quality of life of patients; in particular, the
incidence of cognitive dysfunction reaches 80% or more among
patients with PD (4–6).

The main pathogenic mechanisms include phasic stimulation
of dopamine receptors, non-physiological levodopa-to-
dopamine conversion in serotonergic neurons, hyperactivity of
corticostriatal glutamatergic transmission, and overstimulation
of nicotinic acetylcholine receptors on dopamine-releasing axons
(7). However, the pathogenesis of PD is complex, involving
genetic, environmental, and other factors, remaining a topic of
continuous research and exploration. Current research suggests
that the pathogenesis of PD includes oxidative stress leading to
mitochondrial dysfunction, endoplasmic reticulum stress leading
to abnormal protein folding, neuroinflammation, and alterations
in the microecology-gut-brain axis and genes. The central link of
these mechanisms involves a multi-molecular pathway network,
and synergistic effects induce the degeneration of dopaminergic
neurons (8). The majority of PD patients have typical motor
symptoms, and about half of the dopaminergic neurons are
lost irreversibly. Therefore, mining early biomarkers is of great
significance for the diagnosis, treatment, and prognosis of PD.

With the rapid development of gene detection technology,
the role of epigenetic modification has emerged as an important
link between genetic and environmental interactions in central
nervous system diseases, becoming a hot spot in clinical
research in recent years. Epigenetic modifications include
DNA methylation, histone modifications, and non-coding RNA
(ncRNA)-mediated expression regulation. NcRNAs do not
encode proteins and are now increasingly recognized to play
an important role in gene transcription and in disease. Indeed,
in the last decade, unprecedented numbers of ncRNAs with
novel functions have been discovered. Among the various types
of ncRNAs, long non-coding RNAs (lncRNAs) play important
regulatory roles in physiological processes such as neuronal
differentiation, and brain development and function, along with

pathological processes such as cerebral ischemia-reperfusion
injury, glioma, neurodegeneration, and sex-related diseases (3, 9).

LncRNAs are protein-free transcripts, but occupy a large part
of the transcription output. They are involved in the regulation of
epigenetic, transcription, and post-transcriptional processing in
cell homeostasis, and have attracted increased research attention
in biomedicine, with particular focus of the roles of lncRNAs
in normal neurodevelopment and neurogenerative diseases
(including Alzheimer’s disease, Huntington’s disease, and PD)
(10, 11). However, this field is still in its infancy, and the function
of most identified lncRNAs remains unclear.

The lncRNA maternally expressed gene-3 (MEG3) is a
maternal-encoded allele that is imprinted in a gene cluster in
the distal part of murine chromosome 12, corresponding to
human chromosome 14. Previous studies have shown thatMEG3
acts as a tumor suppressor; its expression is lost in a variety
of cancer tissues, and overexpression of MEG3 could inhibit
tumor formation (12–14). Recent studies have shown thatMEG3
is overexpressed in patients with ischemic stroke and induced
the apoptosis of neurons, but is downregulated in patients with
glioma and Huntington’s disease (15, 16). These findings suggest
that MEG3 may be an important epigenetic regulatory factor
of the brain and neurons. To explore the potential role of the
lncRNA MEG3 in the pathogenesis of PD, in this study, we
compared MEG3 plasma expression levels in patients with PD
and healthy subjects, and evaluated the relationship with clinical
characteristics and disease severity.

MATERIALS AND METHODS

Subjects
Plasma samples were obtained from 30 patients diagnosed with
PDwho were treated at XuanwuHospital of Capital University of
Medical Sciences, Beijing, China (kind gift from Professor Shun
Yu) between January 2017 and December 2019. All patients met
the PD diagnostic criteria according to the diagnostic reference
standard of the neurology branch based on United Kingdom
Parkinson’s Disease Society Brain Bank clinical diagnostic criteria
(UKPDSBB) (17). All patients had been newly diagnosed with PD
and had not received any relevant treatment before enrollment
in the study. The exclusion criteria were patients with severe
heart, liver, kidney, and other organ dysfunction; patients with
mental illness, malignant tumor, or other central nervous system
diseases; and a history of substance or alcohol abuse. In addition,
30 healthy subjects were enrolled in the study during the same
period as the control group. There was no statistically significant
difference in age and gender between the two groups (P > 0.05),
and the general data were comparable (Table 1).

The severity of the disease in PD patients is evaluated by the
modified H&Y scale. Stage 0 means no symptoms or signs. Stage
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TABLE 1 | Comparison of general information between the two sets of data.

Groups Samples Age Gender Basic diseases

Male Female Arterial hypertension Type 2 diabetes

PD group 30 67.19 ± 8.12 17 13 19 13

Control group 30 68.63 ± 7.17 15 15 18 15

T/X2 0.728 0.268 0.071 0.268

P 0.469 0.605 0.791 0.605

Duration of disease (years) H&Y classification Motor symptoms

1 1.5 2 3 4 Tremor Non-tremor Postural instability

4.13 ± 1.50 4 4 8 9 5 8 12 10

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

1 means unilateral limb involvement. Stage 1.5 means unilateral
limb involvement with symptoms of limb muscle involvement.
Stage 2 means bilateral limbs are involved but there is no balance
disorder. Stage 2.5 is mildly involved both limbs with mild
balance disorder. Stage 3 is moderately involved both limbs with
obvious postural disorder, but can take care of themselves and
turn around slowly. Stage 4 is severely affected both limbs, barely
able to walk or stand independently. Stage 5 is bedridden or living
in a wheelchair.

Fasting peripheral blood was collected from all subjects on the
morning after admission, and plasma was separated for analysis
of lncRNAMEG3 levels. All subjects provided informed consent
for participation in the study, which was approved by the hospital
ethics committee.

Polymerase Chain Reaction (PCR)
Total RNA in the plasma was extracted by the Trizol method,
which was used as a template for reverse transcription to
obtain cDNA. cDNA was then used as a template for real-
time fluorescence PCR with the lncRNA MEG3 upstream
primer 5′-GCATTAAGCCCTGACCTTTG-3′ and downstream
primer 5′- TCCAGTTTGCTAGCAGGTGA-3′, synthesized by
Sangon Biotech (Shanghai) Co., Ltd. GAPDH served as
the internal reference. The relative expression levels were
calculated according to the cycle threshold (Ct) value using the
formula 2−11Ct.

Enzyme-Linked Immunosorbent Assay
(ELISA)
Plasma levels of nerve-related factors, including neuron-specific
enolase (NSE), nerve growth factor (NGF), and brain-derived
neurotrophic factor (BDNF), were measured by ELISA. ELISA
kits were purchased from Shanghai Thermo Scientific and
Biological Co., Ltd. The specific operation steps were carried
out in accordance with the instructions. Within 30min, the
absorbance value at 450 nm was measured with a microplate
reader (Thermo Scientific, FC type), and a standard curve
was drawn based on the standard substance. Measure the
corresponding sample concentration, repeat the measurement

for each sample three times and take the average value as the
final concentration.

Disease Severity Evaluation
Cognitive function was assessed according to the Mini-Mental
State Examination (MMSE) and Montreal Cognitive Assessment
(MoCA). The Non-Motor Symptoms Scale (NMSS) was used to
evaluate the severity of non-motor symptoms. The NMSS score
mainly reflects the severity of the patient’s non-motor symptoms,
such as sleep disorders, autonomic dysfunction, cognitive and
psychiatric symptoms, etc. The higher the score, the more
severe the above symptoms; both MMSE and MoCA are widely
used in clinical practice. The cognitive function screening scale
reflects the mental state and the degree of cognitive impairment.
The higher the score, the better the cognitive function, and
the MMSE<27 or MoCA<17 points indicate the presence of
cognitive impairment; all three scores can be used evaluation of
neurodegenerative state in PD patients.

Statistical Analysis
Measurement data are presented as the mean ± standard
deviation, and were compared between the groups using
Student t-tests. Count data are presented as percentage
and were compared using the chi-square test. The plasma
biochemical indices were analyzed by Spearman and Pearson
correlation coefficients and multivariate Logistic regression
was used to analyze the relationship between H&Y scale
and other indicators. The relationship between plasma
lncRNA MEG3 levels and various quantitative indices was
assessed by a linear regression model. SPSS 16.0 software
was used for all statistical analyses; P < 0.05 was considered
statistically significant.

RESULTS

Comparison of Scores and Plasma
Biochemical Markers Between Groups
The PD patient group included 17 males and 13 females, ranging
in age from 57 to 78 years with a mean age of 67.19 ± 8.12
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TABLE 2 | Comparison between various scores and plasma biochemical indexes

between two groups.

Variable Groups t p

PD group Control group

NMSS score 58.38 ± 33.89 24.69 ± 17.27 4.851 0.000

MMSE score 24.63 ± 4.41 28.69 ± 0.70 4.980 0.000

MOCA score 18.44 ± 4.62 26.44 ± 1.46 9.044 0.000

MEG3 expression level 0.57 ± 0.19 0.94 ± 0.36 4.979 0.000

NSE (µg/mL) 17.55 ± 7.13 11.08 ± 4.53 4.195 0.000

NGF (pg/mL) 25.92 ± 3.26 30.78 ± 3.54 5.531 0.000

BDNF (pg/mL) 27.38 ± 3.52 32.19 ± 3.78 5.101 0.000

years. Among them, there were 19 patients with hypertension
and 13 patients with diabetes. The control group comprised 15
males and 15 females, aged 55–79 years with a mean age of 68.63
± 7.17 years, including 18 patients with arterial hypertension
and 15 patients with Type 2 diabetes. There were no significant
differences in age, gender, and basic diseases between the two
groups (all P > 0.05), and the general data were comparable.

The NMSS scores of the PD group were significantly higher
than those of the control group, whereas the MMSE and MoCA
scores were significantly lower in the patient group. The relative
expression levels of plasma lncRNA MEG3, NGF, and BDNF in
the PD group were significantly lower than those in the control
group, whereas the NSE level was significantly higher than that of
the control group (Table 2).

Relationship Between Disease and Plasma
Markers in PD Patients
There was a significant positive correlation between the H&Y
stage and NMSS score in PD patients, and a significant negative
correlation between MMSE and MoCA scores. The H&Y stage
and NMSS scores of PD patients were negatively correlated with
the relative expression level of lncRNA MEG3, and with the
levels of NGF and BDNF, and were positively correlated with
plasma NSE levels. By contrast, MMSE and MoCA scores in
PD patients were positively correlated with the levels of lncRNA
MEG3, NGF, and BDNF, and were negatively correlated with NSE
levels. In addition, the relative expression level of plasma lncRNA
MEG3 was positively correlated with NGF and BDNF levels, and
negatively correlated with NSE levels (Table 3).

Multivariate Logistic Regression Analysis
of H & Y Scale and Other Indexes
All the above-mentioned factors related to H&Y scale were
used as independent variables to assign values. For H&Y scale,
“≤2” was regarded as mild and “>2” was regarded as moderate
to severe (18). Multivariate Logistic regression analysis was
performed. The results showed that age, disease course, NMSS
and NSE was significantly positively correlated with disease
stage, while MMSE, MoCA scores and the relative expression
of lncRNA MEG3 levels were significant negatively correlated
with disease stage, and the differences were statistically significant
(P < 0.05) (Table 4).

Linear Relationship Between Plasma
lncRNA MEG3 and Other Indicators
As shown in Figures 1A–F, linear correlation analyses showed
that the plasma lncRNAMEG3 level in PD patients was negatively
correlated with NMSS score (r = −0.284, P = 0.002), and
positively correlated with MMSE (r = 0.255, P = 0.004) and
MoCA (r = 0.186, P = 0.017) scores. Plasma lncRNA MEG3
levels were negatively correlated with NSE levels in PD patients
(r=−0.181, P= 0.019), and positively correlated with NGF (r=
0.131, P = 0.049) and BDNF (r = 0.351, P = 0.001) levels.

DISCUSSION

Recent studies have shown that the lncRNA MEG3 is associated
with glioma, Huntington’s disease, stroke, and other neurological
disorders, suggesting a potentially new clinical biomarker (15,
16), it can block the cell cycle by activating the p53 pathway,
leading to cell replication senescence or apoptosis. In this study,
we compared the levels of lncRNAMEG3 and biochemical brain
markers in the plasma of PD patients with those of healthy
control subjects. The results showed that the relative expression
levels of plasma lncRNA MEG3 are reduced in PD patients
compared to those of the healthy population, shows that lncRNA
MEG3 is one of the most important potential molecular in the
diagnosis of PD or selection of therapeutic potential targets.

The mature MEG3 lncRNA is composed of 10 exons and
is abundantly expressed in the brain, adrenal glands, placenta,
breast, and liver tissues. Previous studies have demonstrated that
the expression level of MEG3 is reduced in cancer cells, and
upregulation of MEG3 expression could inhibit tumor growth;
therefore,MEG3 was initially considered to function mainly as a
tumor suppressor (12, 13). Lin et al. (12) found that upregulation
of MEG3 expression in the HeLa cervical cancer cell line can
inhibit the PI3K/AKT/Bcl-2/Bax/P21 signaling pathway, thus
inhibiting the proliferation, invasion, and migration of HeLa
cells and promoting their apoptosis. Han et al. (13) found that
the lncRNA MEG3 methylation level increased successively in
the serum of healthy subjects, patients with low-stage cervical
cancer, high-stage cervical cancer, and cervical cancer with lymph
node metastasis, indicating that MEG3 methylation might be a
marker of disease progression in cervical cancer. Subsequently,
lncRNA MEG3 expression was found to be downregulated in
glioma tissue cells. Zhang et al. (10) reported that lncRNA
MEG3 inhibited glioma cell growth in vitro by regulating the
mir-96-5p/MTSS1 signaling pathway, and was involved in cell
proliferation and apoptosis regulation. Earlier studies indicated
that lncRNA MEG3 also showed a downregulated trend in the
brain tissues of patients with Huntington’s disease, and Meg3-
knockout affected the expression of genes in the cerebral cortex
of mice, leading to increased cortical microvascular density
and enhanced expression of genes related to angiogenesis (19).
Collectively, these studies suggest that MEG3 may also be an
important epigenetic regulatory factor in brain development by
regulating the gene expression profile to correspond to neuron
activity. However, clinical studies on its regulatory pathway are
scarce, and no consensus has been reached to date.
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TABLE 3 | The relationship between scores and plasma biochemical indexes in PD patients.

NMSS score MMSE score MOCA score MEG3 expression level NSE NGF BDNF

H&Y Grade r 0.594** −0.824** −0.592** −0.559** 0.834** −0.651** −0.396*

P 0.001 0.000 0.001 0.001 0.000 0.000 0.030

NMSS score r 1.000 −0.810** −0.708** −0.532** 0.362* −0.643** −0.662**

P 0.000 0.000 0.002 0.049 0.000 0.000

MMSE score r −0.810** 1.000 0.698** 0.505** −0.648** 0.630** 0.597**

P 0.000 0.000 0.004 0.000 0.000 0.001

MOCA score r −0.708** 0.698** 1.000 0.431* −0.450* 0.449* 0.508**

P 0.000 0.000 0.017 0.013 0.013 0.004

MEG3 expression level r −0.532** 0.505** 0.431* 1.000 −0.426* 0.362* 0.593**

P 0.002 0.004 0.017 0.019 0.049 0.001

NSE r 0.362* −0.648** −0.450* −0.426* 1.000 −0.557** −0.469**

P 0.049 0.000 0.013 0.019 0.001 0.009

NGF r −0.643** 0.630** 0.449* 0.362* −0.557** 1.000 0.719**

P 0.000 0.000 0.013 0.049 0.001 0.000

**Significantly correlated at 0.01 level (bilateral).

*Significantly correlated at the 0.05 level (bilateral).

TABLE 4 | Multivariate Logistic regression analysis of H&Y classification and other indexes.

Relevant factor β SE Wald χ
2 value OR (95%CI) P-value

Age 1.057 0.413 6.549 2.878 (1.132 – 4.558) 0.010

Duration of disease 1.289 0.382 11.385 3.629 (1.473 – 6.052) 0.001

NMSS score 0.783 0.348 5.060 2.188 (1.440 – 3.038) 0.024

MMSE score −1.331 0.369 13.011 3.785 (1.064 – 6.057) 0.000

MOCA score −0.751 0.341 4.850 2.119 (1.113 – 3.036) 0.028

NSE 1.289 0.382 11.385 3.629 (1.473 – 6.052) 0.001

MEG3 expression level −0.668 0.329 4.122 1.950 (1.205 – 2.671) 0.043

We found that the NMSS score of PD patients was
significantly higher, whereas the MMSE and MoCA scores were
significantly lower than those of the control group.

The main pathological characteristic of PD is dopaminergic
neuron degeneration, which will lead to striatum dopaminergic
denervation and loss of function of the dopaminergic nerve,
resulting in secondary effects to the temporal lobe, cortex,
thalamus, with reduced neurotransmitter synthesis and secretion
in the hypothalamus, ultimately resulting in impaired cognitive
function. Accordingly, in the H&Y scale of patients with PD,
NMSS scores are positively correlated, whereas MMSE and
MoCA scores are negatively correlated with disease severity,
motor symptoms, and degree of cognitive damage (2).

NSE, BDNF, and NGEF are well-established biomarkers of
cognitive impairment in PD patients, indicating that they may
play a pathogenic role (20). In this study, plasma NGF and
BDNF levels in PD patients were significantly lower, whereas
NSE levels were significantly higher than those in the healthy
controls. NSE is an acidic protease that is unique to neurons and
neuroendocrine cells. When neurons in the brain are damaged
in PD, a large amount of NSE enters the blood circulation;
thus, the elevated level of NSE in plasma is related to disease
severity. Brain tissue BDNF and NGF are neurotrophic factors

(nutrients required for neuronal differentiation and development
in the brain) that play roles in repairing damaged neurons and
regulating synaptic functions, and participate in memory and
learning; therefore, their deficiency is also closely related to the
progression of neurodegenerative diseases and the occurrence
of cognitive dysfunction (21, 22). We found that the H&Y
stage and NMSS score were negatively correlated with NGF and
BDNF levels, and were positively correlated with NSE levels. By
contrast, MMSE andMoCA scores in PD patients were positively
correlated with NGF and BDNF levels and negatively correlated
with NSE levels, confirming these close associations with PD
severity and cognitive impairment.

To our knowledge, this is the first clinical study to explore the
expression of lncRNAMEG3 in patients with PD. Methylation is
one of the most well-studied epigenetic changes in degenerative
diseases of the nervous system. Methylation is a dynamic
process that regulates gene expression: normal cells tend to be
hypomethylated, whereas brain tissues exhibit a higher level
of methylation than other tissues, especially in genome repeat
regions. DNAmethylation typically occurs at cytosine-guanosine
dinucleotide (CpG) sites with a GC content >55%. Methylation
can bind transcriptional activators to DNA to inhibit gene
expression or cause conformational changes in chromosomes
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FIGURE 1 | (A) Plasma lncRNA MEG3 level in PD patients was negatively correlated with NMSS score (r = −0.284, P = 0.002). (B) Plasma lncRNA MEG3 level in PD

patients was positively correlated with MMSE score (r = 0.255, P = 0.004). (C) Plasma lncRNA MEG3 level in PD patients was positively correlated with MOCA score

(r = 0.186, P = 0.017). (D) Plasma lncRNA MEG3 level in PD patients was negatively correlated with NSE levels (r = −0.181, P = 0.019). (E) Plasma lncRNA MEG3

level in PD patients was positively correlated with NGF levels (r = 0.131, P = 0.049). (F) Plasma lncRNA MEG3 level in PD patients was positively correlated with

BDNF levels (r = 0.351, P = 0.001).

leading to gene silencing. The 5′-end of lncRNA MEG3 is rich
in CpG dinucleotides, in which a large amount of DNA is
methylated, and DNA methylation in the functional region of
MEG3 may lead to expression silencing (23). Since the brain
tissue and peripheral blood show highly similar methylation
modes, methylation levels in the peripheral blood can reflect
those in the brain tissue. Tan et al. (24) suggested that the SNCA
level in peripheral blood leukocytes and low LRRK2methylation
levels can be used as potential biomarkers for PD. In addition, the
levels of peripheral blood free small RNAs such as microRNAs
can be used for the diagnosis of PD (25). Despite the accuracy
of this approach, there are also some problems to overcome. For
example, the transcription levels in the blood do not entirely
reflect the local levels in the brain tissue, and expression levels
can vary in different brain regions at the same time and in
different conditions. In PD, the dopaminergic neurons are lost
in the substantia nigra, and the blood–brain barrier can lead to
low permeability. Therefore, further clinical samples from PD
patients are needed to verify the free lncRNA MEG3 expression
levels (26).

We found that the relative expression level of plasma lncRNA
MEG3 was negatively correlated with the H&Y stage and NMSS
score, but positively correlated with MMSE and MoCA scores,

indicating that the downregulation of lncRNAMEG3 expression
may be one of the possible pathogenic mechanisms of PD.
Moreover, the positive correlations between lncRNA MEG3
and NGF or BDNF levels, and negative correlations with NSE
levels suggest synergistic effects with nerve-related factors in
the development and progression of PD. However, this study
can provide only a preliminary discussion on the association of
plasma lncRNA MEG3 with PD, and the mechanism remains
to be further elucidated with animal model experiments. In
addition, due to the limitation of the number of samples, we
did not rule out monogenic forms of PD, which also brings a
little regret for the final result. We look forward to increasing
the sample size in the later experimental verification stage
and to evaluate whether different PD subtypes show different
biomarker signals.

In summary, the expression of lncRNA MEG3 in the plasma
of PD patients was downregulated compared to that of healthy
control subjects, and its expression level was closely related to the
aggravation of non-motor symptoms, cognitive decline, and PD
stage. These associationsmay reflect the synergism of the increase
of NSE and decrease of NGF and BDNF levels, highlighting
plasma lncRNA MEG3 as a new candidate biomarker
of PD.
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