About this Research Topic
Disorder is an inherent property of natural and of most artificially made materials, which plays a crucial role in fracture. Most notably, on the micro-scale, the fracture of disordered materials proceeds in intermittent bursts characterized by scale-free statistics, while the front of propagating cracks and the surface left behind exhibit a high degree of roughness. On the macro-scale, the ultimate strength of disordered materials shows a strong statistical variation with an average depending on the sample size. Such findings showed that a comprehensive understanding of the fracture of disordered materials can only be achieved in the framework of statistical physics. During the last three decades the fiber bundle model became a generic modelling framework of the statistical physics of fracture and provided essential contributions, for instance, to reveal emerging universal features of fracture, to clarify its analogy to phase transitions and critical phenomena, and to unveil relations of observables that can be exploited to forecast the imminent catastrophic failure.
Recent applications of the fiber bundle model have covered a fascinating diversity of systems such as the failure of compressed nano-pillars, rupture of collagen fibers in cells, statistics of force chains in granular materials, enhanced stability of soils due to reinforcement by plant roots, initiation of snow avalanches and landslides in mountains, development of failure forecast methods for fracture and earthquakes. Even in the broader context of complex systems and non-equilibrium phase transitions, the fiber bundle model has proven successful, providing an excellent testing ground of ideas.
This Research Topic focuses on the theoretical and methodological developments, as well as on the cross-disciplinary applications of the fiber bundle modelling approach. We call for contributions to discuss the present status and promising future directions where the fiber bundle model may play a relevant role.
The Research Topic is intended to cover subjects such as:
- Statistical physics of fracture and breakdown phenomena
- Fracture-failure as a critical phenomenon
- Statistics and dynamics of avalanches
- Time dependent fracture (fatigue and creep)
- Fracture propagation in disordered media
- Design of novel materials (hierarchically structured and metamaterials, etc.)
- Failure forecast methods
- Application of FBM in modelling rock-fracturing, landslides, snow avalanches, etc.
Keywords: Fiber bundle model, Damage, Fracture, Statistical physics, Materials science
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.