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Editorial: The Fiber Bundle
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Editorial on the Research Topic

The Fiber Bundle

A long time has passed since Fredrick Thomas Peirce, an Australian physicist working for the British
Cotton Industry Research Association, published the paper Tensile tests for cotton yarns: “the weakest
link” theorems on the strength of long and of composite specimens in 1926 [1]. In it, he describes a
simplified model for failure of yarn where the variations of the strength in the yarn competes with
increased load it carries when there is a failure. Here it is in modern language: Imagine a set of fibers
of equal length clamped between two parallel stiff plates. The fibers all have the same elastic constant,
so that when the plates are moved apart, all the fibers carry the same load, which is the total load on
the plates divided by the number of fibers. Assume each fiber has its own strength, that is the
maximum load it can carry before it fails irreversibly. As the fibers fail one by one, the load on the
remaining fibers increases as there are fewer and fewer left to share the total load.

Such a model seems overly simple. It cannot possibly contribute to our understanding of fracture
phenomena! The mathematical statistician Henry Daniels did not think so. He did his PhD on the
strength of fiber bundles and in 1945 he published a seminal paper on his work that moves the model
beyond the strength of yarn [2], reshaping it into a general model for failure processes. Up to the
point when he published his paper, we find six papers referring to the Peirce paper [1].1 In the decade
that follows 1945, there are 35 references to the Peirce paper, but the titles have now changed. We
find e.g., “The Fracture of Metals” [3].2

It is in the seventies that the fiber bundle model really gains traction within the mechanics
community [4]. Together with the statistics community, the subtleties of the model is gradually
uncovered, while at the same time variants of it is being proposed, e.g., the Local Load Sharing
Model [5].3

The statistical physics community, those with a background in critical phenomena, had in the mid
eighties began to discover that fracture in fact is a very interesting problem with properties that
sometimes created a déjà vu feeling among them [6]. This resulted in the creating of the Fuse Network
Model [7]. This was network of fuses, e.g. a square lattice, where each link would be a fuse with a trip
current drawn from some statistical distribution. What would happen when the current running
through this network was increased? A lot of things would happen: there would be avalanches of
fuses blowing simultaneously, there would be localization, i.e., the fuses that blew would be
concentrated in some region, there would be instabilities where suddenly a crack of blown fuses
would form zipping through the network. The problem with the fuse model, however, was that it was
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1There is one exception among the six: “A Study of the Moisture in Soybeans” [11]. The reference to Peirce is for a property of
cellulose fibers he mentions unrelated to the model.
2Peirce is lauded in Reference [3] for his paper [1] being the first discussion strength as extreme value problem, and not for
his model.
3The original Peirce model is by now called the Global Load Sharing Model.
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almost impossible to approach it analytically—it was a model for
the computer, and the computer only. The book by Herrmann
and Roux from 1990 (and reprinted in 2014) covers the status of
the field at that time [6].

In 1989 Sornette published a paper entitled Elasticity and
Failure of a Set of Elements Loaded in Parallel [8]. This was the
entrance of the fiber bundle model into the statistical physics
community. It was the perfect model in some sense. It was almost
as rich as the fuse network model, but it was at the same time
simple enough to be analytically tractable to a considerable
degree. In some sense, the fiber bundle model is gaining a
status in the physics of fracture community similar to that of
the Ising model in the critical phenomena community. Two
reviews of the fiber bundle model have appeared in this
community [9, 10]. There are hundreds of papers, if not more,
that have appeared over the last years in this field.

The aim of this Research Topic has been to display some of the
richness of ideas and uses that the fiber bundle model has
produced. The eleven papers it contains does indeed do that.
Hopefully, the research papers among them spawn new work and
the reviews are useful for those that considers entering this field.

We describe the papers in the order in which they have been
published.

The first paper (Kjellstadli) concerns the burst distribution in
the global load sharing fiber bundle model. Earlier work had
determined it for large bursts, but here Kjellstadli finds it for small
bursts. This is important as large bursts are rare compared to
small bursts so that the statistics is much better for the latter.

The second paper (Capelli et al.) uses the fiber bundle model to
investigate failure of layers of snow, failures that can lead to
avalanches.

Paper three (Domanski) implements the local load sharing
fiber bundle model on a small-world network. The avalanches
that are generated in such networks may be very relevant for other
systems that has an underlying small-world structure, such as the
financial markets.

Paper four (Hansen) is a review of the extreme value
distributions, which are central for the fiber bundle model.
Rather than approaching the subject in the traditional
way, the entire review is built around the formula
limn→∞(1 + x/n)n � exp(x).

Paper five (Chakrabarti et al.) is a review of how the dynamics
in the fiber bundle model generates cooperativity. The failure
dynamics has been demonstrated through recursion relations and
their fixed-point solutions. In addition, the authors analyze the
noise-induced failure dynamics through theory, simulation, and

real data (Earthquake catalog) analysis discussing also the
emergence of self-organizing mechanism in the model.

Paper six (Halász et al.) generalizes the fiber bundle model in
order to describe the mechanical response of systems which
undergo a sequence of stick-slip cycles like granular packings,
biological materials, or tectonic plates. With analytic calculations
and computer simulations the authors explore the capabilities of
the approach.

Paper seven (Arango-Restrepo et al.) introduces heat exchange
with the surroundings and thereby place the fiber bundle model
in a thermodynamical context. This is important for the use of the
fiber bundle model for e.g. polymeric systems.

Paper eight (Roy and Biswas) considers the energy avalanche
statistics in the local load sharing fiber bundle model. A non-
linear relation of the avalanche size and the released elastic energy
is established and a scale free energy distribution is revealed with
a high degree of robustness.

Paper nine (Engelbrecht-Wiggans and Phoenix) places the
fibers in an elastically responding matrix in order to model creep
rupture in fiber-reinforced composites.

Paper ten (Dȩbski et al.) tests out a prediction based on the
fiber bundle model for when catastrophic failure of a loaded
structure is imminent. The authors use a discrete element system
to demonstrate that indeed the fiber bundle model
prediction holds.

Paper eleven (Roy) constructs the phase diagram of the fiber
bundle model in the three-dimensional parameter space of
threshold disorder, range of load sharing, and system size. He
explores the complex phase structure of the model and
characterizes the emerging failure modes.
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Burst Distribution by Asymptotic
Expansion in the Equal Load Sharing
Fiber Bundle Model
Jonas T. Kjellstadli*

PoreLab, Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway

We derive an asymptotic series expansion for the burst size distribution in the equal load

sharing fiber bundle model, a predominant model for breakdown in disordered media.

Earlier calculations give expressions with correct asymptotic behavior for large bursts,

but low accuracy for small bursts, up to an order of magnitude off. The approximations

from the expansion we present here give relative errors of at most several percent when

compared with exact results or simulation results for large systems. We also solve the

burst size distribution exactly for the Weibull threshold distributions.

Keywords: fiber bundle model, equal load sharing, asymptotic series expansion, fracture, burst size distribution

1. INTRODUCTION

The fiber bundle model [1–4] is a prime example of what Bouchaud calls a metaphorical model [5];
that is, a model which reveals mechanisms that lie hidden beneath layers of complexity in realistic
models and are completely lost in phenomenological models. Even in its simplest form, the equal
load sharing (ELS) model, the number of papers written on the fiber bundle model may now be
counted in the thousands. This is evidence of great richness.

The distribution of bursts, or avalanches, is important in the study of fiber bundle models. Its
behavior can signal how close the bundle is to catastrophic failure, even in single samples [6]. There
are many variations of the fiber bundle model, but we will only study the ELS model here. We
will also limit ourselves to continuous (i.e., infinitesimal) load increase; finite load increases gives a
different distribution of bursts [7, 8].

For the ELS model with continuous load increase, Hemmer and Hansen [9] demonstrated that
bursts follow a power law with an exponent 5/2 for a wide class of disorder distributions. Sornette
[10] derived this power law behavior separately with a different approach. This work was followed
up Pradhan et al. [6, 11], who showed that the power law exponent changes to 3/2 as the bundle is
approaching catastrophic failure. Raischel et al. [12] showed that this kind of crossover is present
also in the γ -model [13], which has a variable range of interaction with the equal and local load
sharing model as its two limits.

By following the development of the crossover burst size—that is, the burst size that constitutes
the watershed between bursts following the 5/2 law and the bursts following the 3/2 law—it is
possible to quantitatively measure of how far the bundle is from collapse. However, this approach
has the problem that it requires knowledge of large (and hence rare) bursts, which have poor
statistics. It would be better to predict failure from the smallest bursts, which happen often and
can be measured with higher accuracy. This makes it important to have access to accurate analytic
estimates of these values to compare with. Hence, we provide in this article a method to analytically
calculate the burst distribution accurately for small bursts.
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Kjellstadli Burst Distribution by Asymptotic Expansion

2. THE EQUAL LOAD SHARING FIBER
BUNDLE MODEL

Consider an equal load sharing fiber bundle model with N fibers
[1, 2]. The externally applied force (or load) F is distributed
identically on all intact fibers, and a fiber acts as Hookean spring
until its elongation reaches a certain threshold, where it breaks.
Due to the equal load sharing, fibers will always fail in order from
smallest to largest threshold as the load increases.

The thresholds are drawn independently from a probability
density p(t), with a corresponding cumulative distribution P(t) =
∫ t
−∞ p(u)du. Let {tk} be the ordered sequence of thresholds, such
that t1 ≤ t2 ≤ · · · ≤ tN . Then the force Fk required to break the
kth fiber is

Fk =
(

N + 1− k
)

tk. (1)

Equation (1) shows that Fk consists of two factors: the decreasing
number of intact fibers N + 1 − k, and the increasing threshold
tk of the kth fiber. Due to the irregularities of {tk}, Fk doesn’t
increase or decrease smoothly. Instead, it fluctuates up and down
around a general increasing trend. Or decreasing, depending on
where in the fracture process we are.

If the force F is the control parameter during the breaking
process, this causes bursts (or avalanches) of several fibers that
break under the same load. There is a burst of size 1 beginning
with the failure of the kth fiber if Fk > Fj for j < k, Fk+j ≤ Fk for
j < 1, and Fk+1 > Fk. This simply means that when the force
reaches Fk, 1 fibers break under that load with no further load
increase required, and the burst stops at the 1 + 1th fiber, which
is strong enough to withstand the load.

The average of Equation (1) over samples is the load curve [4]

σ (x) = x
[

1− P(x)
]

, (2)

which is also the limit of equation (1) as N → ∞. Here σ = F/N
is the applied force per fiber in the bundle, both broken and
intact, and x is the elongation of the fiber bundle. For most
threshold distributions σ has a single parabolic maximum at
elongation xc, where 1− P(xc) = xcp(xc).

The burst distribution is usually defined asD(1): the expected
number of bursts of size 1 during the breaking of a single fiber
bundle [3, 4, 9]. This definition makes D(1) ∝ N for large
systems, and hence it diverges as N → ∞. We will instead use
the notation D̄(1) = D(1)/N, with the physical interpretation
that 1D̄(1) is the fraction of fibers broken in bursts of size 1 —
which converges to a finite number as N → ∞.

Hemmer and Hansen [9] showed that for continuous load
increase, the burst distribution to first order in N has the
asymptotic behavior (as 1 → ∞)

D̄(1) ∼ C1−5/2, (3)

where C = (2π)−1/2 xcp(xc)
2
[

2p(xc)+ xcp
′(xc)

]−1
. This result is

universal for threshold distributions where the load curve has a
single parabolic maximum.

Pradhan et al. [6, 11] generalized this asymptotic behavior to
threshold distributions starting from a lower limit t0 ≥ 0, and
found that there is a crossover

D̄(1) ∼ C1−5/2
(

1− e−1/1c
)

∝

{

1−3/2 for 1 ≪ 1c

1−5/2 for 1 ≫ 1c,

(4)

with 1c = 4πC2p(xc)
−2 (t0 − xc)

−2 and C as in Equation (3).
This crossover to a different exponent as t0 increases has been
proposed as a method to detect imminent failure [3, 6, 11].

Equation (4) is also an asymptotic behavior in the limit 1 →
∞, and hence it also requires information about large bursts
(which are rare events) to predict failure. Our goal is to find a
way to calculate the burst distribution accurately for small bursts,
which the asymptotic expressions in Equations (3, 4) cannot do.
To this end, we use a threshold distribution with a lower limit
t0 ≥ 0. The burst distribution is then, to first order in N [4],

D̄(1) =
11−1

1!

∫ xc

t0

[

a(t)e−a(t)
]1

a(t)−1

×
[

1− a(t)
]

p(t)dt

(5)

for t0 < xc, where

a(t) =
tp(t)

1− P(t)
. (6)

At xc, the critical elongation of Equation (2), this function
satisfies a(xc) = 1.

3. EXACT BURST DISTRIBUTION

Is it possible to solve the burst distribution exactly? The deciding
factor is the function a(t). Instead of first choosing a threshold
distribution and then checking whether Equation (5) is solvable,
we can instead do it in the opposite order: choose a function a(t)
for which the integral can be solved, and then use Equation (6) to
find the corresponding threshold distribution.

3.1. Constant a(t)
The simplest expression would be a constant a(t), which implies
a(t) = 1 because a(xc) = 1. This gives D̄(1) = 0 when inserted
into Equation (5). To see why, set a(t) = 1 in Equation (6), which
gives the differential equation

p′(t)

p(t)
= −

2

t
, (7)

with the normalized solution P(t) = 1− t0/t for t ∈ [t0,∞). This
makes the load curve in Equation (2) constant: σ (x) = t0, i.e.,
xc = t0. Thus, there is no burst distribution and D̄(1) = 0.

3.2. Power Law a(t)
Other than a(t) = 1, the most intuitive choice for a solvable
integral is a power law a(t) = C(k)tk with k > 0. Inserting this
into Equation (6) gives the first-order differential equation

p(t)+ C(k)tk−1P(t) = C(k)tk−1 (8)
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Kjellstadli Burst Distribution by Asymptotic Expansion

for P(t). It can be solved with the integrating factor method:

multiplying the equation with µ(t) = exp
(

∫ t
t0
dτ C(k)τ k−1

)

=

exp
[

C(k)
(

tk − tk0

)

/k
]

and integrating from t0 to t gives the

solution

P(t) =
C(k)

k

[

1− e
C(k)
k

(

tk0−tk
)]

. (9)

Normalization on the interval [t0,∞), i.e., P(t = ∞) = 1, yields
C(k)/k = 1. Thus,

P(t) = 1− et
k
0−tk , (10)

which is a Weibull distribution with shape parameter k and a
lower limit t0. The lower limit corresponds to breaking all fibers

with thresholds t < t0 from a fiber bundle with P(t) = 1 − e−tk .
Hence the lower limit is equivalent to studying a bundle with

P(t) = 1−e−tk that has already sustained a damage d = 1−e−tk0 .
The Weibull distribution in Equation (10) has a critical

extension xc = k−1/k, which gives a(xc) = 1, as required for
consistency. We can now solve the burst distribution exactly
for the Weibull distribution. Inserting a(t) = ktk and p(t) =
ktk−1et

k
0−tk into Equation (5) gives

D̄(1) =
11−1

1!

∫ k−1/k

t0

(

ktke−ktk
)1 (

ktk
)−1

×
(

1− ktk
)

ktk−1et
k
0−tkdt.

(11)

Use the substitution z = tk to get

D̄(1) =
(

k1
)1−1

1!
et

k
0

[

∫ 1/k

tk0

z1−1e−z(k1+1)dz

−k

∫ 1/k

tk0

z1e−z(k1+1)dz

]

.

(12)

Combining integration by parts and induction yields

∫ 1/k

tk0

dz zne−αz =
n!

αn+1






e−αtk0

n
∑

i=0

(

αtk0

)i

i!

−e−α/k
n

∑

i=0

(

α/k
)i

i!

]

,

(13)

which gives the exact burst distribution

D̄(1) =
11−1et

k
0

1!(k1 + 1)

[

e−(1+1/k)

−
(

ktk0

)1

e−tk0(k1+1)

]

+
(

k1
)1−1

e−k1tk0

1(k1 + 1)1+1

1−1
∑

i=0

[

(k1 + 1)tk0

]i

i!

−
(

k1
)1−1

et
k
0−(1+1/k)

1(k1 + 1)1+1

1−1
∑

i=0

(k1 + 1)i

i!ki
.

(14)

FIGURE 1 | Burst distribution D̄(1) for a Weibull threshold distribution with

k = 2 and t0 = 0. The exact result (black) is Equation (14) and the asymptotic

result (red) is Equation (4). The simulation results (turquoise) were found by

averaging D̄(1) over 106 sample systems with N = 10242.

This expression can easily be evaluated for small bursts, which is
what we are interested in. Equation (14) for k = 2 and t0 = 0
is shown in Figure 1 together with the asymptotic result from
Equation (4) and simulation results. The agreement between the
exact and simulation results is excellent, particularly for small 1
where finite size effects from the simulations are negligible. The
asymptotic result from Equation (4) is inaccurate for small 1—
it is 35% smaller than the exact result for 1 = 1—but becomes
more and more accurate as 1 increases, which is consistent with
the fact that Equation (4) is asymptotically correct in the limit
1 → ∞.

For the special case 1 = 1, Equation (14) becomes

D̄(1 = 1) =
et

k
0

(k+ 1)2

[

ke−(1+1/k)

+
(

1− (k+ 1)ktk0

)

e−(k+1)tk0

]

.

(15)

For large bursts Equation (14) is impractical to use, but for
1 ≫ 1c the first term is dominant. The equation then simplifies
to

D̄(1) ≃
11−1e−1

1!(k1 + 1)
et

k
0−1/k ≃

et
k
0−1/k

√
2πk

1−5/2, (16)

via Stirling’s approximation, 1! ≃
√
2π111e−1. This is the

expected asymptotic power law fromEquation (3) for theWeibull
distribution from Equation (10).

4. ASYMPTOTIC SERIES EXPANSION

The simplicity of the Weibull threshold distribution is an
exception, and for other threshold distributions we cannot expect
to find an exact result for the burst distribution. We therefore
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return to Equation (5) to make an asymptotic series expansion,
and note that the equation has the form of a Laplace integral [14]

I(1) =
∫ xc

t0

f (t)e1φ(t)dt, (17)

with

f (t) = p(t)
1− a(t)

a(t)
(18)

φ(t) = −a(t)+ ln(a(t)). (19)

For large 1 the integral is dominated by a small interval around
the maximum of φ(t) in the interval [t0, xc]. In our case φ has its
maximum at a(t) = 1, i.e., at the critical extension xc, the upper
limit of integration. Hence the asymptotic behavior of Equation
(17) as 1 → ∞ is

I(1) ∼
∫ xc

xc−ǫ

f (t)e1φ(t)dt (20)

where ǫ is a small number. In the small interval [xc − ǫ, xc] we
can Taylor expand f (t) and φ(t) around xc,

f (t) = f1(t − xc)+ f2(t − xc)
2

+ f3(t − xc)
3 + · · ·

φ(t) = φ0 + φ2(t − xc)
2 + φ3(t − xc)

3

+ φ4(t − xc)
4 + · · ·

(21)

Note that fn and φn are not identical to the nth derivatives of
f (t) and φ(t) evaluated at xc, only proportional to them. The
exact expressions for these coefficients in terms of a(t) are shown
in Equations (34, 36). Also note that the vanishing terms f0 =
f (xc) = 0 and φ1 ∝ φ′(xc) = 0 (φ has its maximum at xc) are not
included here.

In the limit 1 → ∞, when the interval [xc − ǫ, xc] can be
chosen arbitrarily small, the two first terms in the expansion of
φ will dominate the others. We therefore separate these terms by
factorizing the exponential in the integrand of Equation (20) as

e1φ(t) = exp
(

1φ0 + 1φ2(t − xc)
2
)

× exp
(

1
[

φ3(t − xc)
3 + φ4(t − xc)

4 + · · ·
])

,
(22)

and then Taylor expand the second factor

exp
(

1
[

φ3(t − xc)
3 + φ4(t − xc)

4 + · · ·
])

= 1

+ 1
[

ξ1,3(t − xc)
3 + ξ1,4(t − xc)

4 + · · ·
]

+ 12
[

ξ2,6(t − xc)
6 + ξ2,7(t − xc)

7 + · · ·
]

+ · · · ,

(23)

which defines ξn,m. Inserting these expansions into Equation (20)
and extending the lower integration limit back down to t0 gives

I(1) ∼ e1φ0

∫ xc

t0

e1φ2(t−xc)
2

×
[

f1(t − xc)+ f2(t − xc)
2 + · · ·

]

×
{

1+ 1
[

ξ1,3(t − xc)
3 + · · ·

]

+12
[

ξ2,6(t − xc)
6 + · · ·

]

+ · · ·
}

dt.

(24)

The standard approach is to extend the lower limit of integration
to−∞ because the integral over [−∞, xc − ǫ] is subdominant to
the integral over [xc − ǫ, xc] in the limit 1 → ∞ [14]. But our
goal is to use the asymptotic series to calculate an approximation
for D̄(1) for small 1, and we know that the lower limit t0 is
important for small bursts [6].

To solve this integral, multiply the Taylor expansions and
separate terms with even and odd powers of t − xc into Ieven(1)
and Iodd(1), respectively. The odd terms are

Iodd(1) = e1φ0

∫ xc

t0

e1φ2(t−xc)
2

×
{[

f1(t − xc)+ f3(t − xc)
3 + · · ·

]

+ 1
[

ω1,5(t − xc)
5 + ω1,7(t − xc)

7 + · · ·
]

+ 12
[

ω2,7(t − xc)
5 + ω2,9(t − xc)

9 + · · ·
]

+ · · · } dt,

(25)

whereωn,m is defined in Equation (38). Then choose u = 1φ2(t−
xc)

2, which yields

Iodd(1) =
e1φ0

21φ2

∫ 0

1φ2(t0−xc)2
eu

×

{

[

f1 + f3
u

1φ2
+ · · ·

]

+ 1

[

ω1,5

(

u

1φ2

)2

+ ω1,7

(

u

1φ2

)3

+ · · ·

]

+ 12

[

ω2,7

(

u

1φ2

)3

+ ω2,9

(

u

1φ2

)4

+ · · ·

]

+ · · ·

}

du,

(26)

We can now group these terms by the integrands’ dependence on
1:

Iodd(1) =
e1φ0

21φ2

(

�0(1)+ �1(1)1−1

+�2(1)1−2 + · · ·
)

,

(27)

where �n—see Equation (40)—-depends on 1 due to the lower
limit of integration.
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The even terms in t − xc are

Ieven(1) = e1φ0

∫ xc

t0

e1φ2(t−xc)
2

×
{[

f2(t − xc)
2 + f4(t − xc)

4 + · · ·
]

+ 1
[

ω1,4(t − xc)
4 + ω1,6(t − xc)

6 + · · ·
]

+ 12
[

ω2,8(t − xc)
8 + ω2,10(t − xc)

10 + · · ·
]

+ · · · } dt.

(28)

Since φ2 < 0, choose u =
√
−1φ2(t − xc). Then

Ieven(1) =
e1φ0

√
−1φ2

∫ 0

√
−1φ2(t0−xc)

e−u2

×

{[

f2

(

u
√
−1φ2

)2

+ f4

(

u
√
−1φ2

)4

+ · · ·

]

+ 1

[

ω1,4

(

u
√
−1φ2

)4

+ ω1,6

(

u
√
−1φ2

)6

+ · · ·

]

+ 12

[

ω2,8

(

u
√
−1φ2

)8

+ ω2,10

(

u
√
−1φ2

)10

+ · · ·

]

+ · · ·

}

du.

(29)
Grouping these terms by the integrands’ dependence on 1 yields

Ieven(1) =
e1φ0

√
−1φ2

(

21(1)1−1 + 22(1)1−2

+23(1)1−3 + · · ·
)

,

(30)

with 2n as shown in Equation (39).
Combining Equations (27, 30) with φ0 = −1 (from Equation

36) and Equation (5) gives the full asymptotic series for the burst
size distribution as

D̄(1) ∼
11−1e−1

1!

[

1

21φ2

(

�0(1)+ �1(1)1−1 + · · ·
)

+
1

√
−1φ2

(

21(1)1−1 + 22(1)1−2 + · · ·
)

]

=
11−2e−1

1!

(

C1(1)+ C2(1)1−1/2

+C3(1)1−1 + C4(1)1−3/2 + · · ·
)

.
(31)

Unfortunately, the “coefficients” Cn depend on 1, and the terms
in the asymptotic series must therefore be evaluated separately
for each value of 1. To do this evaluation, the relations between
the various coefficients that have been introduced in the series
expansions are needed.

4.1. Coefficient Expressions
To define the coefficients from the asymptotic series expansion,
use

An(1, t0) ≡
∫ 0

1φ2(t0−xc)2
du euun

Bn(1, t0) ≡
∫ 0

√
−1φ2(t0−xc)

du e−u2u2n
(32)

for the integrals that will show up in the expressions.

4.1.1. Definition of f

To determine the coefficients fn, expand Equation (18) around
a = 1:

f (t) = p(t)
[

(1− a)+ (1− a)2 + (1− a)3 + · · ·
]

. (33)

Then Taylor expand a(t) and p(t) around xc as a(t) = 1+ a1(t −
xc)+a2(t−xc)

2/2+· · · and p(t) = p0+p1(t−xc)+p2(t−xc)
2/2+

· · · , where an ≡ a(n)(xc) and pn ≡ p(n)(xc) are the nth derivatives
of a(t) and p(t) evaluated at xc. Comparison with Equation (21)
gives the relation

fn =
n−1
∑

m=0

pm

m!

n−m
∑

l=1

(−1)ll!

×
∑

∑∞
i=1 ki=l

∑∞
i=1 iki=n−m

n−m−l+1
∏

i=1

1

ki!

(ai

i!

)ki
,

(34)

where n ≥ 1 since f0 = 0, and ki ∈ N.

4.1.2. Definition of φ

To determine φn, expand Equation (19) around a = 1:

φ(t) = −1−
(1− a)2

2
−

(1− a)3

3
−

(1− a)5

4
− · · · . (35)

Then expand a(t) = 1+ a1(t − xc)+ a2(t − xc)
2/2+ · · · in the

above equation. Comparison with Equation (21) gives

φ0 = −1

φ1 = 0

φn = −
n

∑

m=2

(−1)m

m

∑

∑∞
i=1 ki=m

∑∞
i=1 iki=n

m!

×
n−m+1
∏

i=1

1

ki!

(a(i)

i!

)ki
,

(36)

where n ≥ 2 and ki ∈ N.

4.1.3. Definition of ξ

From Equation (23) we get

ξn,m =
∑

∑∞
i=3 ki=n

∑∞
i=3 iki=m

m−3n+3
∏

i=3

φ
ki
i

ki!
, (37)

Frontiers in Physics | www.frontiersin.org 5 November 2019 | Volume 7 | Article 20111

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Kjellstadli Burst Distribution by Asymptotic Expansion

where n ≥ 1,m ≥ 3n, and ki ∈ N.

4.1.4. Definition of ω

Comparing Equation (24) with Equations (25, 28) yields

ωn,m =
m−1
∑

i=3n

fm−iξn,i, (38)

where n ≥ 1 andm ≥ 3n+ 1.

4.1.5. Definitions of 2 and �

By examining the expressions in Equations (29, 30) we see that
the coefficients 2n(1) are

2n(1) =
f2nBn(1, t0)

(−φ2)n

+
2n−1
∑

i=1

Bn+i(1, t0)

(−φ2)n+i
ωi,2(n+i),

(39)

with n ≥ 1 and Bn from Equation (32). Similarly, from Equations
(26, 27) we get

�n(1) =
f2n+1An(1, t0)

φn
2

+
2n
∑

i=1

An+i(1, t0)

φn+i
2

ωi,2(n+i)+1,

(40)

with n ≥ 0 and An from Equation (32).

4.1.6. Definition of C

From Equation (31), we get

C2n−1(1) =
�n−1(1)

2φ2

C2n(1) =
2n(1)
√
−φ2

,

(41)

where n ≥ 1.

4.2. Crossover
We know from Equation (4) that around 1c, the burst
distribution contains a crossover from 1−3/2 to 1−5/2 behavior.
Does Equation (31) reproduce this? The first term in the series is

C1(1)
11−2e−1

1!
≈

�0(1)

2
√
2πφ2

1−5/2

=
f1A0(1, t0)

2
√
2πφ2

1−5/2.

(42)

Using the Stirling approximation 1! ≈
√
2π11+1/2e−1 and

inserting for f1, A0(1, t0), and φ2 from Equations (32, 34,
36) gives

C1(1)
11−2e−1

1!
≈

−p0a1

2
√
2πφ2

1−5/2

∫ 0

1φ2(t0−xc)2
eudu

= C1−5/2
(

1− exp [−1/1c]
)

,

(43)

whereC = (2π)−1/2xcp0(2p0+xcp1)
−1 is the same as in Equation

(3) and 1c = 2a−2
1 (xc − t0)

−2 = 4πC2p20(xc − t0)
−2 is the same

as in Equation (4).
The first term of the asymptotic series is exactly Equation

(4), and the asymptotic series therefore reproduces the known
crossover behavior in the limit 1 → ∞.

5. APPROXIMATION FOR SMALL BURSTS

The asymptotic expansion in Equation (31) is done in the limit of
infinitely large bursts, and one should not expect the series to give
a perfect approximation of D̄(1) when 1 is finite. In general, the
infinite series might not converge for finite 1. However, one can
still use the asymptotic series to find an approximation for D̄(1)
for small bursts.

5.1. Optimal Approximation for Finite Burst
Size
For a finite 1 we use the general procedure outlined by Bender
and Orzag [14]:

First choose a fixed value of 1. Then locate the smallest
term (in absolute value) of the asymptotic series in Equation
(31):Cm(1)11−2−(m−1)/2e−1/1!. When summing the series up
to (but not including) a certain term, then that term gives a
measure of the error from the exact result [14]. Hence, we sum
the asymptotic series up to (but not including) the smallest term,
so that we get the smallest possible error estimate. If term number
m is the smallest one, the optimal approximation is

D̄(1) ≈
m−1
∑

i=1

Ci(1)
11−2−(i−1)/2e−1

1!
. (44)

Note that this method is applicable even when the infinite
asymptotic series does not converge. The caveat is that it has
to be done separately for each value of 1 where we wish to
approximate the burst distribution.

There is a practical limit to how many terms from Equation
(31) one can calculate. The smallest term m must be chosen
among the terms that are calculated. Hence we cannot guarantee
that the smallest term we find is the smallest one in the entire
infinite series. If it is not, then the accuracy of the approximation
will be reduced.

Truncating the series at the smallest term does not necessarily
give the best approximation. For certain values of 1 there
will exist better choices of truncation. However, Equation (44)
provides the method with the best guaranteed error without a
priori knowledge of the burst distribution.

5.2. Comparison With Exact Result
To test the accuracy of Equation (44) we compare it with the
exact result from Equation (14) for theWeibull distribution. This
is easier than relying on simulations, as both expressions are
derived in the limit N → ∞ where there are no finite size effects.

We have calculated the first 13 terms of Equation (31) for small
to intermediate burst sizes. With this limitation of 13 terms, we
use Equation (44) to calculate the optimal approximation. For a
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FIGURE 2 | Optimal approximation from Equation (44) with 13 available terms

(turquoise) and exact result (black) for the burst distribution. The first term of

the asymptotic series (red), which is Equation (4), is shown for comparison.

The threshold distribution is a Weibull distribution with k = 1 and t0 = 0.

FIGURE 3 | Relative errors for the burst distribution with respect to the exact

result from Equation (14): for the optimal approximation from Equation (44)

with 13 available terms (black) and for the first term of the asymptotic series

(red), which is Equation (4). The threshold distribution is a Weibull distribution

with k = 1 and t0 = 0.

Weibull distribution with k = 1 and t0 = 0, Figure 2 shows
this approximation, the exact result from Equation (14), and
Equation (4). The corresponding relative errors with respect to
the exact solution, calculated as

∣

∣D̄exact − D̄approximation

∣

∣ /D̄exact,
are shown in Figure 3.

Both approximations converge to the exact solution as 1 →
∞, but the optimal approximation converges much faster and is
consistently a better estimate of the exact result. From Figure 3,
we see that the ratio between the two relative errors is at
its smallest for small bursts, but the difference is still big, as

FIGURE 4 | Optimal approximation from Equation (44) with 13 available terms

(turquoise) and exact result (black) for the burst distribution. The first term of

the asymptotic series (red), which is Equation (4), is shown for comparison.

The threshold distribution is a Weibull distribution with k = 1 and t0 = 0.8.

evident from Figure 2. For the smallest bursts, the optimal
approximation gives an estimate of the exact result withmoderate
accuracy (relative errors of order 10%), whereas Equation (4) is
unusable as an estimate (relative errors of order 50%− 80%).

The errors in the optimal approximation seem to stem from
the fact that 13 terms is insufficient to find the smallest term
in the asymptotic series for small 1. With 13 available terms,
we can achieve higher accuracy with other parameters for the
threshold distribution. For aWeibull distribution with k = 1 and
t0 = 0.8, we show the exact solution, optimal approximation, and
Equation (4) in Figure 4, with the corresponding relative error of
the optimal approximation in Figure 5.

In this case, with t0 = 0.8 much closer to xc = 1, 13
terms seem to be sufficient to locate the smallest term in the
asymptotic series even for small 1. Hence the errors of the
optimal approximation (of order 10−9 for the smallest bursts) are
negligible, as seen from Figure 5. In the figure we have not shown
the errors of Equation (4), since they are on a completely different
scale from the errors of the optimal approximation, roughly 24%
for the smallest bursts.

5.3. Comparison With Simulations
To test the general applicability of the asymptotic expansion, we
also use Equation (44) with the uniform threshold distribution
on [t0, 1] (which has xc = 1/2), a widely used probability
distribution in the study of fiber bundles [3, 4]. Since the exact
solution is valid only for Weibull distributions, we compare the
asymptotic series results with simulation results for large systems
(N = 10242) where finite size effects for small 1 are small.
As with the Weibull distributions, we again calculate the first
13 terms of Equation (31), and then use them to calculate the
optimal approximation via Equation (44).

Figure 6 shows a comparison of the optimal approximation,
simulation results, and Equation (4) for the uniform threshold
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FIGURE 5 | Relative error for the burst distribution with respect to the exact

result from Equation (14) for the optimal approximation from Equation (44) (with

13 available terms). The threshold distribution is a Weibull distribution with

k = 1 and t0 = 0.8.

FIGURE 6 | Optimal approximation from Equation (44) with 13 available terms

(turquoise) and simulation results (black, N = 10242, 106 samples) for the burst

distribution. The first term of the asymptotic series (red), which is Equation (4),

is shown for comparison. The threshold distribution is uniform on [0, 1].

distribution with t0 = 0. The corresponding relative
errors with respect to the simulation results, calculated as
∣

∣D̄simulation − D̄approximation

∣

∣ /D̄simulation, is shown in Figure 7.
The optimal approximation is accurate to within a few percent
for small bursts, and the relative error decreases rapidly as 1

increases, as in Figures 3, 5. However, the error quickly begins
to increase again, presumably due to finite size effects from the
simulations. Equation (31) is derived from Equation (5), which
is only exact in the limit N → ∞. Equation (4) becomes more
accurate as 1 increases, but is consistently less accurate than the
optimal approximation.

FIGURE 7 | Relative errors for the burst distribution with respect to simulation

results that are averaged over 106 sample systems of size N = 10242: for the

optimal approximation from Equation (44) with 13 available terms (black) and

for the first term of the asymptotic series (red), which is Equation (4). The

threshold distribution is uniform on [0, 1].

FIGURE 8 | Optimal approximation from Equation (44) with 13 available terms

(turquoise) and simulation results (black, N = 10242, 106 samples) for the burst

distribution. The first term of the asymptotic series (red), which is Equation (4),

is shown for comparison. The threshold distribution is uniform on [0.45, 1].

Figure 8 shows a comparison of the optimal approximation,
simulation results, and Equation (4) for the uniform threshold
distribution with t0 = 0.45, with corresponding relative
errors in Figure 9. In this case neither approximation
becomes more accurate as the burst size increases, but
Equation (4) is much more accurate than for t0 = 0.
However, the optimal approximation is still more accurate
than Equation (4), with relative errors roughly an order of
magnitude smaller.
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FIGURE 9 | Relative errors for the burst distribution with respect to simulation

results that are averaged over 106 sample systems of size N = 10242: for the

optimal approximation from Equation (44) with 13 available terms (black) and

for the first term of the asymptotic series (red), which is Equation (4). The

threshold distribution is uniform on [0.45, 1].

6. DISCUSSION AND CONCLUSION

In the equal load sharing fiber bundle model, we have
found an analytic solution of the burst size distribution
for Weibull threshold distributions: Equation (14). This is a
significant improvement over previous results, which describe
the asymptotic behavior as the burst size diverges.

The exact result is impractical to use for large burst sizes1, but
can easily be evaluated for small 1. In this sense it complements
the existing asymptotic result; Equation (14) can be used for small
1, and for sufficiently large 1 we can use Equation (4) instead.
Together, these results provide a highly accurate way to calculate
the burst size distribution for Weibull threshold distributions.

For other threshold distributions where the burst distribution
cannot be solved exactly, another method is needed to calculate
the burst distribution for small 1. We have therefore derived the
full asymptotic series expansion for the burst size distribution,
Equation (31). Even if the full infinite series is valid only in the
limit 1 → ∞, it can still be used to find approximations for
small 1 through Equation (44).

Our results indicate that, with a fixed number of available
terms, this optimal approximation is more accurate the smaller
xc − t0 is. This seems to stem, at least partially, from the fact that
more terms are needed in the asymptotic series expansion to find
the smallest term.

The accuracy of the optimal asymptotic approximation
depends on the threshold distribution and the number of

calculated terms.With 13 terms, the relative error for the smallest
bursts ranges from several percent to ∼ 10−9 for the Weibull
and uniform threshold distributions we have investigated. This
is consistently more accurate than Equation (4).

Neither Equation (44) nor Equation (4) take finite size effects
into account, since they are derived in the limit of infinitely big
systems. The optimal approximation provides decent estimates
of simulation results from large systems, when finite size
effects are small, but the accuracy should be expected to be
much smaller when comparing with results from small system
sizes. It might be possible to use a similar approach that also
incorporates finite size effects, but then one would first need to
derive an expression like Equation (5) that contains the finite
size effects.

Estimating the burst distribution via Equation (44) is much
more computationally efficient than relying on simulations of
very large systems. However, simulations can in theory give
more accurate estimates, provided that the simulation results
converge to the thermodynamic limit quickly enough when the
system size increases. Then one can use results for different
system sizes to extrapolate to N → ∞. Simulations should
still be preferred when studying finite size effects, especially for
small systems where simulations are not time-consuming. The
optimal asymptotic approximation gives decent estimates for
simulations results from large systems, as shown in Figures 7,
9, but we expect the accuracy to be smaller for smaller
system sizes.
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Snow is a highly porous material with properties that may strongly differ depending on

the environmental conditions. On slopes, the layered snowpack may fail and avalanches

occur. Hence, knowing how snow deforms and fails is essential for understanding and

modeling snow avalanche release and flow. The response of snow to imposed load

or deformation and the failure behavior depends on the rate of the applied load or of

displacement and follows from the complex, foam like, microstructure of snow and the

properties of ice. The mechanical response and failure of snow can well be captured

with fiber bundle models (FBM). We review the use of FBMs for studying snow failure.

In particular, we show how FBMs have been used for studying the micromechanical

processes, such as ice sintering and viscous deformation, to reproduce the results

of snow failure experiments. Moreover, FBMs can reproduce signatures of acoustic

emissions (AE) preceding snow failure, ease the AE interpretation, and shed light on

the underlying progressive failure process.

Keywords: fiber bundle model, snow, avalanche, sintering, healing, viscosity, acoustic emissions, failure

INTRODUCTION

Studying snow failure and its dependency on the rate of the applied load or of displacement is of
particular interest for snow avalanche formation. Among the various types of avalanches, dry-snow
slab avalanches are the most hazardous and cause the largest number of fatalities—at least about
200 per year worldwide (e.g., [1]). Slab avalanches start by a failure nucleating under mixed-mode
loading in a weak layer below a cohesive slab. Once this so-called initial crack reaches a critical size
it propagates within the weak layer across the slope, leading to detachment and downhill sliding of
the slab provided the slope-parallel gravitational force overcomes friction (e.g., [2]). The formation
of this initial crack is still not fully understood for the case of spontaneously releasing avalanches
and a crucial point for modeling avalanche release.

Snow is a highly porous material constituted by an ice matrix formed by ice grains welded
together whereas the pore space is filled with air. Themechanical properties of snow are determined
by its microstructure and the mechanical properties of ice. The loading or displacement rate
dependency of the mechanical and failure properties of snow are believed to be due to two ice
properties: ice sintering—i.e., ice bonds form on contact immediately with bond strength increasing
with time—and the viscous deformation of ice (e.g., [3]).

Fiber bundle models have been widely used for studying snow failure (e.g., [4, 5]). Moreover,
since FBMs replicate the macroscopic mechanical properties and failure behavior of materials
through a large set of single elements with simple mechanical properties, they are an ideal
choice for studying the micromechanical drivers of snow failure. We provide a review of the
use of the fiber bundle model in snow science. We first describe the FBMs that have been

17

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.00236
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.00236&domain=pdf&date_stamp=2020-07-17
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:achille.capelli@slf.ch
https://doi.org/10.3389/fphy.2020.00236
https://www.frontiersin.org/articles/10.3389/fphy.2020.00236/full
http://loop.frontiersin.org/people/950824/overview
http://loop.frontiersin.org/people/1012204/overview
http://loop.frontiersin.org/people/317475/overview


Capelli et al. Studying Snow Failure With FMBs

used for simulating snow failure. Then we describe the inclusion
of fiber healing and viscous fibers in FBM and discuss the
effects of these properties on the bundle mechanics and failure
dynamics. In a third part, we demonstrate how FBMs can
reproduce the results of snow failure experiments. Finally, we
introduce the use of FBMs to study the effects of sound wave
attenuation and of acoustic emissions (AE) for snow failure
prediction and application of AE to provide early warnings for
snow avalanche prediction.

Fiber Bundle Models
Originally developed for studying the strength of cotton yarns
[6, 7] fiber bundle models (FBM) are a family of statistical models
widely used for studying the failure of heterogeneous materials
[8, 9]. In a FBM the material consists of a set of single elements
(fibers) with heterogeneous strengths (Figure 1). An external
load or displacement is applied to the fiber bundle and the single
fibers fail when the load exceeds the strength. For load-controlled
FBMs the load of the failing fibers is redistributed to intact fibers
possibly causing a cascade of further fiber failures. The complex
damage process of the bulk material arises from the interaction of
multiple fibers (load redistribution) and the heterogeneous fiber
strengths representing the material disorder. In the classical FBM
the fibers are assumed to respond in a linearly elastic manner.
The influence of local microscopic mechanisms on the global
failure (i.e., failure of the whole system) can be investigated by
changing the mechanical properties of the fibers [10]. There exist
numerous applications as the study of local load distribution
(e.g., Hansen and Hemmer [11] Hidalgo et al. [12]), creep failure
[13, 14], or fatigue [15]. Moreover, FBMs are used to analyze the
failure process in the context of critical phenomena and phase
transitions [9, 16].

Snow
Snow is a highly porous material (porosity 0.5–0.95) consisting
of an ice matrix with air filling the connected pore space1.
The ice matrix is a continuous structure, as shown by micro-
CT images (Figure 2; e.g., [17]), consisting of welded discrete
ice elements (grains). The snow microstructure (e.g., size, form
and connectivity of the ice matrix elements) strongly influences
the snow mechanical properties (e.g., [18, 19]). Moreover, the
high homologous temperature (i.e., temperature near to the
melting point) of ice under natural conditions leads to peculiar
material properties. The ice matrix undergoes a continuous
recrystallization known as snow metamorphism. The type and
speed of metamorphism depends on meteorological conditions.
At isothermal conditions the crystal shape is first transformed
from dendritic to small rounded particles and later from
smaller to larger round particles, as the water vapor pressure
is higher with higher curvature of the ice surface. This type
of metamorphism generally increases the strength of snow
[20–22]. Faceting (or temperature gradient) metamorphism
is induced by the temperature gradients typically caused by
snow surface cooling due to emission of longwave radiation.

1For wet snow at 0◦C, we additionally have water within the pore space. Within

this paper, we consider dry snow only.

Temperature gradients cause vapor transport from warmer to
the cooler ice surfaces leading to the growth of large faceted
and depth hoar crystals if the vapor flow persists (e.g., [23]).
Faceting metamorphism generally reduces snow strength and
can lead to the formation of weak layers. Simultaneously, the
gravitational load induced by the overlaying snow can contribute
to compaction of the snowpack (settlement) and increase of
snow strength.

The large range in porosity and microstructure of snow
leads to corresponding large differences in physical properties.
For example, the elastic modulus spans over several orders of
magnitude depending on density and snow type (e.g., [18]).
Therefore, a great challenge for finding a unified model for
describing the snow microstructure is given by the broad
range of density and snow types. Moreover, the ice particles
bond immediately on contact (sintering) and the bond strength
increases with time [24, 25] allowing to heal damage in the
snow. The increase of bond strength with time is initially fast,
then gradually slows down, but nevertheless continues with time
leading to the increase of strength and stiffness over several days
for new or sieved snow (e.g., [19, 22]).

Finally, the ice is subjected to viscous deformation or creep
(e.g., [26, 27]) leading to snow creep and relaxation of localized
stress. These phenomena result in the highly rate dependent
failure behavior of snow. Whereas under high strain rates
(ǫ̇ > 10−3 s−1) snow fails in a brittle manner with very
little deformation before fracture, at low strain rates (ǫ̇ <

10−3 s−1) snow can sustain large strain and undergoes ductile
failure—i.e., large irreversible deformation occurs before failure
or the snow does not fail at all [28]. Sintering is considered
one of the driving mechanism of the rate dependence of
snow failure by some authors [4, 29, 30]. On the other hand,
Kirchner et al. [31] used an open foam model including
viscous deformation and a ductile-to-brittle transition in ice
(at much lower strain rates ǫ̇ = 10−6 s−1) to reproduce
the ductile-to-brittle transition in snow. Moreover, the stress
and time dependent creep deformation of ice may cause the
relaxation of local load concentrations and influence the damage
process. More recently Löwe et al. [3] developed a scalar model
with rate-dependent, elastoplastic constitutive law and sintering
that correctly reproduces mechanical experiments. Hence, a
combination of the above-mentioned effects contributes to the
ductile-to-brittle transition observed for snow.

Slab Avalanche Formation
Snow avalanches are a serious hazard for human life and
infrastructures in snow-coveredmountainous regions around the
world; they cause on average about 100 fatalities annually in the
European Alps [32]. The majority of avalanche accidents are due
to dry-snow slab avalanches (see Figure 3A) [33]. For the release
of a slab avalanche a so-called weak layer below cohesive slab
layers is necessary. Weak layers typically consist of large poorly
bonded crystals (Figure 3B, mainly faceted crystals and depth
hoar, surface hoar, or new snow layers [34]). After an initial
crack of sufficient size has formed in the weak layer, the crack
propagates below the slab due to the stress concentrations at the
crack tip, which is caused by lack of support of the weight of
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FIGURE 1 | Schematic representation of (A) displacement-controlled FBM in shear [4] and (B) load-controlled FBM in tension [5]. The fiber width illustrates the

variability in fiber strength.

FIGURE 2 | Micro-computed tomography image of a snow sample (Snow

Physics Group, SLF).

the overlaying slab over the cracked area. The critical crack size
when rapid self-propagation starts, depends on both weak layer
and slab properties, primarily the specific fracture energy of the
weak layer and the thickness, density and stiffness of the slab
layers [35, 36]. Crack propagation in the weak layer arrests by
slope perpendicular fracture through the slab (Figure 3B). Once
the slab is detached, it slides downslope if the gravitational force
overcomes the friction, generally for slope angles >30◦ [37], and
an avalanche is released (Figure 3A).

In case of artificially triggered avalanches the initial crack
is caused by rapid near-surface loading due to e.g., a skier or
an explosion. For natural (spontaneous) avalanches the load
increase is much slower (additional weight due to precipitation
or snow drift by wind), and the initial crack is believed to be
the result of a progressive damage process at the microscale
[34]. The exact processes involved in initial crack formation
are, however, not well-understood. It is therefore fundamental
to increase our understanding of snow avalanche formation by
modeling snow failure.

Models in Snow Mechanics
Snow failure leading to avalanche release is a process involving
different scales with different types of heterogeneity—going from
the snow microstructure, through the vertical variation in snow
properties (stratigraphy), to the spatial variability at the slope-
scale. Modeling snow and avalanche formation requires dealing
with these heterogeneities at the different respective scales.
Generally different models are applied at the different scales.
The microscopic snow structure and ice properties must be
considered for modeling snow mechanical properties and failure
initialization. Snow stratigraphy and mechanical properties of
snow need to be considered for modeling crack propagation
(e.g., [36, 38, 39]). At the slope-scale, spatial variations of snow
stratigraphy and terrain are essential to model avalanche release
(e.g., [40, 41]). More recently, Gaume et al. [2] introduced a
model based on the material point method that can cope with
both snow stratigraphy and terrain variability covering the multi-
scale processes involved in avalanches: from failure initiation and
crack propagation to avalanche flow [42, 43]. However, even these
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FIGURE 3 | (A) Dry-snow slab avalanche (R. Pajarola). (B) Snow weak layer (surface hoar) buried below a cohesive slab. On the right side the weak layer is intact. On

the left side the weak layer failed leading to volumetric collapse of the porous structure. The black lines are a schematic representation of the FBM. Reprinted from the

Journal of Glaciology with permission of the International Glaciological Society [4].

advanced models rely on appropriate parametrizations of snow
including correct failure behavior and rate-dependent response.

Models aiming to reproduce the mechanical behavior of snow
and the failure process have to take into account both the snow
microstructure as well as the mechanical properties of ice. These
models can be grouped into (i) Continuum models that include
some parametrization of the microstructure – e.g. the snow
viscosity model of Bartelt and von Moos [44], the open-cell foam
model for snow [45, 46], or other models considering damage
healing [3, 47, 48]. (ii) Models reproducing the microstructure
in simplified form with discrete elements (beams, spheres) with
some random variations such as the discrete element models
[49–51]. (iii) Models that use the full 3-D representation of
the microstructure obtained by micro-tomography as input for
a finite-element model (e.g., [52–54]). Statistical models as the
FBM belong to the second group of models.

FIBER BUNDLE MODELS APPLIED TO
SNOW

The FBM was first applied to snow by Reiweger et al.
[4]. Incorporating healing of broken fibers representing the
fast sintering of broken bonds in snow, they were able to
reproduce the characteristics of displacement-controlled snow
failure experiments for different strain rates. Capelli et al. [5]
introduced a load-controlled FBM including both healing of
broken fibers and viscous deformation and described the effects
of these two mechanisms on the failure behavior. With the same
model it was possible to reproduce the mechanical characteristics
and the concurrent acoustic emissions (AE) characteristics of
load-controlled snow failure experiments with different loading
rates spanning over the ductile-to-brittle transition [55]. Acoustic
emissions are acoustic waves generated by the occurrence of
damage in solid materials. An example of AE is the crackling
noise produced by wood under load (e.g., [56]). AE are widely
used for monitoring the damage process of heterogeneous
materials (e.g., [57]). Attenuation of acoustic waves is a limitation

for the application of AE for early warning, since it reduces the
detection range and alters the AE signature. Attenuation in snow
is particularly high due to the high porosity (e.g., [58]). The
attenuation of AE is therefore particularly critical for applications
aiming at using AE for early warning of snow avalanches.
Faillettaz et al. [59] used a FBM for studying the effects of
attenuation of AE on the failure prediction and proposed to
use co-detection of AE for natural hazard early warning. Their
FBM results were supported by AE data from snow failure
experiments. In the following sections, we recap the working
principle of the FBMs applied to snow.

Fiber Strength Distribution
The intrinsic disorder of heterogeneous materials (such as snow)
is represented in the FBM by a large number of fibers with
varying strengths (Figure 1). The Weibull distribution, which is
commonly used for strength distributions in statistical models
[8], was also employed in snow models for fiber strength [4, 5,
55]. The density function for the fiber strength σth is given by:

p
(

σth
∣

∣µ, k
)

= kµ−kσth
k−1e

−
(

σth
µ

)k

, (1)

where µ is a scaling factor and k controls the amount of
damage in the system (lower k correspond to larger amount of
disorder). The disorder parameter k should depend on the snow
microstructure. There is, however, no measurement method that
allows determining k, so k must be assumed. Reiweger et al. [4]
looked at the sensitivity to k in the range of 0.5 to 3 on the
FBM and used k = 0.7 for fitting their mechanical experiments.
Further studies used the value k = 1.1 [5, 55].

Displacement-Controlled FBM
In the displacement-controlled model presented by Reiweger
et al. [4] a constant shear rate is imposed (Figure 1A). Assuming
elastic fibers, the stress on the single fibers increases linearly with
fiber strain. If the stress on a fiber reaches its strength, the fiber
fails. Thus, the total stress on the fiber bundle decreases. When
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half of the fibers failed, the entire bundle is considered as broken.
Reiweger et al. [4] introduced a variation to the classical FBM.
They assumed that the fibers are subjected to shear perpendicular
to the initial direction. The fiber elongation 1l is then:

1l =
√

l20 + 1x2 − l0, (2)

where1x is the shear deformation of the bundle and l0 is the fiber
length. The stress is then given by:

σ = Eǫ = E
1l

l0
, (3)

where E is the elastic modulus. Introducing shear deformation
shifts the stress-strain curve toward higher deformations [4],
since initially the fiber stress increase is slower than for the FBM
with displacement parallel to the fibers (Equations 2, 3).

Load-Controlled FBM
In case of load-controlled FBMs [5, 55], the load on the fibers
is increased step wise to the strength of the weakest fiber that
consequently fails. As a fiber fails, its load is distributed to
the other surviving fibers according to a redistribution rule
(Figure 1B). For the FBM described by Capelli [5] a “democratic”
or “equal” load-sharing rule was used. Meaning that the load was
redistributed equally to the surviving fibers. This is equivalent to
the assumption of stiff plates clamping the fibers and makes the
spatial position of the fibers irrelevant (0 dimensional material).
Other models use local load-sharing rules, where the load is
distributed to the neighboring fibers only [59]. With local load-
sharing rules the fiber position becomes relevant (one or more
dimensional material). Distributing the load of failing fibers
among the surviving fibers can cause a cascade of failures. The
number of fibers failing in a cascade following a failure due to
load increase is expressed as the burst size S. For linear elastic
fibers the bundle strain ǫJ is obtained from the sum of the strain
increase at each load increase step up to the step J:

ǫJ(σ ) =
∑J

j=0
1ǫel,j =

∑J

j=0

1

UjE
1σj

︸ ︷︷ ︸

load increase

+
1

UjE

∑

kǫsj

σk,j

︸ ︷︷ ︸

redistribution

, (4)

where Uj is the fraction of intact fibers, σk,j is the load of the fiber
k, and Sj is the set of fibers that failed at the load step j.

FBM WITH HEALING FIBERS

When two ice particles are brought in contact, a bond
is immediately created with increasing bond strength with
increasing time [25, 60]. This process, known as sintering, allows
damage in snow to heal with time. The FBM is well-suited to
study the effects of healing on the mechanical properties of snow
as implementing a healing mechanism is quite straight forward.
Healing has been incorporated in FBMs in different ways in
the past, e.g., in the stick-slip FBM the fibers regain strength
immediately after failure [61, 62].

Reiweger et al. [4] were the first to apply a FBM to snow
that included healing of broken fibers (Figure 4A). In their

displacement-controlled FBM at each time step1t a broken fiber
regains strength with the probability ps depending on the number
of brocken fiber Nb available for forming a new bond with ps =
pmax

Nb
N . The strength of a new bond is initially zero but increases

with time:

σth,i (t) =
(

1− e
−t
ts−t

)

σth,i,final (5)

for t < ts where ts is the sintering time and σth,i,final is drawn from
the same initial distribution.

Similarly, fiber healing has been implemented in the load-
controlled FBM with the probability of a broken fiber to regain
strength during the time 1t being:

ps(1t) =
(

1− e
−1t
tp

)

Nb

N
(6)

with the characteristic time tp [5]. In this case, it was assumed that
the fibers regain full strength immediately.

The fiber healing speed is higher with either lower
characteristic time or lower loading rate. If the characteristic
time in the model by Capelli et al. [5] is compared to that of
Reiweger et al. [4], then the sintering probability in Reiweger
et al. [4] is linear with pmax = 1t

tp,Reiw.
. The characteristic time

used by Reiweger et al. [4] for fitting the model to mechanical
experiments was tp,Reiw. = 1t

pmax
= 0.66 s. Capelli et al. [55]

reported a larger characteristic time of healing tp,Cap. = 20 s. The
difference in time scale may be due to the different snow type and
testing mode (displacement- vs. load-controlled). Additionally,
in the model by Reiweger et al. [4] the strength of the new
bonds increases with time. The speed of the strength increase
is controlled by the sintering time ts = 1.09 s (Equation 7). A
DEM model for snow including bond sintering on contact with
increasing bond strength using a similar sintering time ts = 1 s
was proposed by Mulak and Gaume [50].

Effect of Healing on Mechanical Behavior
and Failure Dynamics
For both displacement- and load-controlled FBMs healing results
in higher stress at equal strain and in higher stress and strain
at failure [4, 5]. Healing counterweighs the damage process as
broken fibers regain strength. The number of intact fibers in
the bundle increases so that they can support a higher load
or, equivalent, a higher load is needed for equal deformation.
Therefore, the material becomes stiffer and has higher strength.

The effects on the failure behavior differ between
displacement- and load-controlled FBMs. For the displacement-
controlled FBM, Reiweger et al. [4] reproduced the
ductile-to-brittle transition of snow with the introduction
of healing. For large displacement rates the healing process is
slower than the damage process and does not affect the bundle’s
failure. After reaching the bundle strength the stress rapidly
decreases and all fibers fails (brittle failure). For low strain rates,
as the damage in the bundle increases and steady-state is reached
(i.e., the damage process is compensated by healing of fibers),
the number of broken fibers remaine constant with increasing
strain and ductile failure is observed (Figure 5). The type of the
stress-strain curve in the steady-state regime is controlled by
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FIGURE 4 | (A) Load evolution for a single fiber when healing is included. The load increases until the strength σth,1 is reached and the fiber fails. After a certain

random time, the fiber heals and is assigned a new strength σth,2 independent of the previous strength; subsequently it may fail and sinter again. (B) Relaxation of load

on the single fibers toward the mean load 〈σ 〉 for the FBM assuming viscoelastic fibers (schematic in inset). The speed of the load relaxation is controlled by the

characteristic loading time tr. Figures adapted from [5].

the fiber strength distribution. With higher disorder (Weibull
parameter k ≤ 1), strain strengthening and creep (increase of
strain at constant stress) is observed. Whereas, with low disorder
(k ≥ 1) failure (stress peak) is followed by strain softening and
final creep.

For the load-controlled FBM the steady state is not “visible”
since when the imposed stress exceeds the bundle strength (stress
peak in displacement-controlled strain-stress curve) all fibers
fail. On the other hand, stress control allows observing the
failure dynamics arising as the load sharing causes a catastrophic
cascade of fiber ruptures resulting in the complete failure of
the bundle. In the load-controlled FBM the damage process
diverges approaching failure (e.g., [9, 16]). The fiber failure

rate dS
dσ

, which is commonly known as susceptibility, diverges

approaching failure at σc with dS
dσ

∼ (σc − σ )−α . The order
parameter O (σ ) = U (σc) − U (σ ) approaches zero following
a power law with O (σ ) = (σc − σ)κ , where U (σ ) is the
fraction of broken fibers. With healing the amount of damage
(portion of broken fibers) immediately before failure is lower.
Moreover, with healing the exponent α decreases, whereas the
exponent κ increases (Figure 6) indicating that the period before
failure, where the damage process accellerate, is shorter—a sign
of increased brittleness. For the FBM the bursts size S is generally
power-law distributed with P (S) ∼ S−b, similarly to the
Gutenberg–Richter law for earthquakes (e.g., [9]). Generally, an
apparent decrease of the exponent b toward failure is observed.
This is explained by a truncated power-law distribution P (S) ∼
S−τ exp ( S

S0
) with diverging cut-off burst size S0 ∼ 1−γ and

1 = σc−σ
σc

(e.g., [63, 64]). The exponents are linked by b =
τ + 1

γ
. Capelli et al. [5] reported a decrease of b with increasing

healing rate when all events were considered, whereas near to
failure the exponent was unaffected by healing. This is equivalent
to a constant exponent τ whereas the exponent γ increases
with increasing healing rate (Figure 6). In the context of failure
prediction, faster acceleration and lower apparent decrease of
exponent bmeans that that time lag for prediction decreases and
prediction becomes more difficult, yet not impossible.

FBM WITH VISCOUS FIBERS

As ice is a viscous material, Capelli et al. [5] introduced
ice viscosity in their FBM assuming that the fibers are
Maxwell elements (Figure 4B) with the corresponding
constitutive equation:

ǫ̇i =
σi

η
+

σ̇i

E
(7)

where σi is the stress on a single fiber, E is the fiber’s elastic
modulus and η its viscosity. Incorporating viscosity results in the
relaxation of load inhomogeneity in the bundle with time. The
load is redistributed from the older fibers carrying more load to
the younger ones carrying less load. The load of the single fiber i
converges exponentially toward the mean load with:

σi (t + 1t) = 〈σ 〉 + (σi (t) − 〈σ 〉) e−
1t
tr , (8)

where 〈σ 〉 is the intact fiber mean load, and the ratio between
elastic modulus E and viscosity η is the characteristic relaxation
time tr = E

η
determinig the speed of relaxation (Figure 4B). In

the model by Capelli et al. [5] the load inhomogeneity is due to
the healing process, since new fibers initially do not carry load. If
fiber viscosity is included, a viscous term is added to Equation (4)
for the bundle strain ǫJ :

ǫJ (σ ) =
J

∑

j=0

(

1ǫel,j + 1ǫvisc,j
)

=

elastic part
︷ ︸︸ ︷

J
∑

j=0

1

UjE
1σj

︸ ︷︷ ︸

load increase

+
1

UiE

∑

kǫsj

σk,j

︸ ︷︷ ︸

redistribution

+

viscous part
︷ ︸︸ ︷

J
∑

j=0

1

η

〈σ 〉j
Ui

1tj, (9)

Frontiers in Physics | www.frontiersin.org 6 July 2020 | Volume 8 | Article 23622

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Capelli et al. Studying Snow Failure With FMBs

FIGURE 5 | FBM simulation results with varying shape factor k for the Weibull distributions of single fiber strength: (A) k = 0.5; (B) k = 1; and (C) k = 3. For each

shape factor, stress–strain curves for three different strain rates (1× 10−2, 7.2× 10−5, and 5× 10−6 s−1) are given. The vertical arrows mark the point where the

bundle fractures, while the horizontal arrows indicate that the bundle is still intact but the simulation was stopped. Reprinted from the Journal of Glaciology with

permission of the International Glaciological Society [4].

The magnitude of the effects of viscosity can be expressed with
the characteristic load σr = σ̇ tr = σ̇

η
E . Load relaxation and

viscous deformation are higher for low characteristic loads σr .

Effect of Viscous Fibers on Mechanical
Behavior
If viscosity is added to the FBM, fiber deformation can be divided
in an elastic and a viscous part. With the Maxwell model for
viscoelasticity, the elastic deformation takes place immediately as
the load is applied, whereas the viscous deformation increases
linearly in time with the strain rate depending on the applied
load (Equation 7). For high values of viscosity or high loading
rate, the bundle deformation is mainly elastic. For lower values
of loading rate or viscosity, the deformation is predominantly
viscous and strain at equal stress is larger than with primarily
elastic deformation (Figure 7A and [5]).

Effect of Viscous Fibers on Failure
Dynamics
Fiber viscosity also has consequences for the internal distribution
of fiber load. The viscous deformation rate is higher for fibers
carrying higher load. Therefore, the fiber load relaxes toward the
mean fiber load, transferring load from fibers carrying high loads
to fibers carrying low loads. This is equivalent to a load transfer
from older fibers to newly healed fibers, since with equal load-
sharing fiber healing is the only source of load inhomogeneity.
The load inhomogeneity in the bundle decreases for lower tr

FIGURE 6 | Critical exponents for different increasing healing speeds. The

healing speed increases with decreasing healing load σp = σ̇ tp.

leading to a more efficient distribution of load resulting in a
bundle strength increase [5]. Load relaxation has a large effect
on the failure dynamics. For high load relaxation speed the
acceleration of damage prior to failure is suppressed (Figure 7A).

No divergence of strain rate and fiber failure dS
dσ

is observed;
the order parameter O (σ ) develops from a power law decrease
approaching failure at σc with O(σ ) = (σc − σ)κ to a linear
decrease (Figure 7B). Fiber failure burst size distribution is
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FIGURE 7 | (A) Stress-strain relations of FBM for different relaxation characteristic loads σr and a constant sintering characteristic load σp = 1.5 × 10−2. The strain

was scaled with the strain at failure ǫc. The inset shows the strain at failure ǫc as a function of the relaxation characteristic load σr. (B) Evolution of the order parameter

O toward failure for different σr and constant σp = 1.5 × 10−2. The characteristic times tr/p were scaled to characteristic loads with σr/p = σ̇ tr/p. Reprinted from [5].

also affected by load relaxation. Both exponents b and τ of
the burst size distribution P (S) increase with increasing load
relaxation speed indicating a shift to a larger share of small
failure bursts.

The absence of damage acceleration suggests that load
relaxation changes the type of transition at failure from
continuous to abrupt indicating a change of the universality class.
This interpretation is supported by the change of the power law
exponent τ . Load relaxation causes a shift in the distribution
of fiber strength with increasing main strength and decreasing
disorder. Therefore, the fibers are likely to fail abruptly as a
critical load is reached. A similar change in the type of transition
at failure was reported by Biswas and Sen [65] for a FBM where
the load of failing fibers was redistributed according to the
fiber strength.

REPRODUCING SNOW FAILURE
EXPERIMENTS

The FBMs presented above were used to reproduce snow failure
experiments with the aim to investigate the micromechanical
principles governing the macroscopic mechanical behavior of
snow. In particular the FBM allowed to study the rate dependent
mechanical response of snow with the well-known ductile-to-
brittle transition [28].

Displacement-Controlled Experiments
With the FBM including healing Reiweger et al. [4] reproduced
the displacement-controlled snow failure experiments at different
strain rates presented by Schweizer [66]. Their FBM very well-
captured the observed ductile-to-brittle transition (Figure 8)
and reproduced the higher strength and strain at failure with
decreasing strain rate. Both, snow samples and fiber bundle,
showed brittle failure behavior for high strain rates (> 3 ×
10−4 s−1) and for low strain rates ductile failure followed by
strain softening and creep. The stress-strain relations obtained
with the FBM had a convex form at low strain. The convexity

FIGURE 8 | Comparison of FBM and experimental results for

displacement-controlled conditions. Reprinted from the Journal of Glaciology

with permission of the International Glaciological Society [4].

is due to the arrangement of the fibers relative to the load.
When the fibers are loaded in shear the fiber stress initially
increases just slowly (Equation 2). The experimental curves
did not show any convexity. The simple spatial arrangement
of the fibers in the FBM can obviously not fully reproduce
the complex structure of the ice matrix. A FBM with load
parallel to the fibers (pure tension) would better fit the
experimental results. Indeed, recent DEM studies suggest that
under mixed-mode loading (compression and shear) the ice
matrix mainly failed in tension [67]. The FBM results support
this view.

Load-Controlled Experiments and
Concurrent Acoustic Emissions
Capelli et al. [55] applied the FBM including healing of broken
fibers and viscous fibers for modeling load-controlled snow
failure experiments at different loading rates (32, 128, and
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FIGURE 9 | FBM and experimental results for load-controlled conditions. The

dotted line indicates the FBM results. Reprinted from [55].

400 Pa s−1) and the concurrent acoustic emissions [68]. Using
parameters in agreement with the snow values reported in the
literature, they reproduced the main features of the experimental
results. The stress-strain relations found in experiments and
obtained with their FBM were similar with higher stress and
strain at failure and higher strain at equal stress for lower
loading rates (Figure 9). Capelli et al. [55] compared the energy
of the AE with the elastic energy released at fiber failure—i.e.,
they assumed that the elastic energy stored in the fiber failing

in a failure burst U =
∑

j σ
2
j

2 E is equivalent to the energy of
measured AE. The FBM exhibited features similar to the loading
rate dependent AE signatures observed for the snow failure
experiments. For both, FBM and experiments, the AE energy rate
increased toward failure and the energy distribution exponent τ

was higher for the fast loading rates (Figure 10). Also, Pradhan
et al. [69] claim that the elastic energy exhibits a peak prior to
failure that can be used to predict the failure point of FBM.
The elastic energy is, however, difficult to quantify for the snow
experiments since the displacement measured includes elastic as
well as viscous deformation. However, there were also differences
between FBM and experimental results. For the FBM an apparent
decrease of the exponent b, indicating a divergence of the cut-off
energy of a truncated power law (see section FBM With Healing
Fibers) was present for all loading rates. For the experiments, the
apparent decrease of bwas not observed for the low loading rates,
although the exponent at failure τ was higher for low loading
rates (Figure 10A). Moreover, the divergence in the damage
process at failure for high loading rates, that is visible in the

strain rate and the energy rate dU
dσ

, was not observed in the
experimental results.

The substantial differences in the failure dynamics of snow
for different loading rates could only be reproduced with the
FBM by including both healing of broken fibers and viscous
deformation with resulting load relaxation. It follows that both,
healing and load relaxation, are essential for understanding and
modeling snow failure and should be taken into account in
future models, which aim at reproducing snow behavior at low
loading rates.

ATTENUATION OF AE AND
CONSEQUENCES FOR FAILURE
PREDICTION

The amplitude of acoustic waves propagating in natural media
decreases with distance from the source due to geometrical
spreading, absorption and scattering. Faillettaz et al. [59]
introduced signal attenuation into the load-controlled FBM with
equal and local load-sharing, which was developed by Faillettaz
and Or [70]. The amplitude attenuation was computed for each
fiber failure burst (i) assuming that the amplitude is proportional
to the burst size S and (ii) accounting for geometrical spreading
only (decrease of amplitude with A (r) ∼ 1

r for the distance
from the source r). The attenuated amplitude Aa of the burst
Sj measured at the sensor at position xsensor is then: Aa =
∑

i∈Sj
1

‖xi−xsensor‖ , with xi being the position of the failing fiber

i. Faillettaz et al. [59] showed that attenuation changes the
frequency distribution of the recorded fiber failure bursts. The
apparent decrease of the power law exponent (b → τ ) is less
pronounced when signal attenuation is taken into account. The
decrease of the power law exponent is considered useful for
assessing the stability of geological structures (e.g., [63]).

However, for real cases where attenuation is present the
decrease is less prominent and occasionally hard to detect.
Therefore, using the decrease of the exponent as precursor
to failure for early warning purposes is limited. To overcome
this problem Faillettaz et al. [59] proposed the number of co-
detections (event detected by multiple sensor) as precursor to
catastrophic failure, since small events are generally detected by
nearby sensors only, whereas large events may be detected also
by sensors at larger distances. Faillettaz et al. [59] tested the co-
detection method with AE data from laboratory snow failure
experiments [71]. An increase of the AE maximum amplitude
was registered one second before failure, whereas a significant
increase in the number of co-detections was recorded 10 s before
failure increasing the early warning time lag by a factor 10.

CONCLUSIONS

The fiber bundle model (FBM) consists of a large number of
fibers with variable strengths following simple mechanical laws
(e.g., elastic or viscoelastic). Through the disorder and load
sharing (fiber interaction) a complex behavior arises. FBMs are
used to reproduce failure of heterogeneous materials and to
study effects of micromechanical processes on global failure.
For these reasons, the FBM is well-suited for studying the
failure of snow. The displacement or loading rate dependence of
snow failure observed experimentally, in particular the ductile-
to-brittle transition, was reproduced. Whereas, displacement-
controlled experiments were reproduced by including healing,
for reproducing load-controlled experiment both healing and
load relaxation (viscosity) were necessary. In particular, the
loading rate dependent failure dynamics revealed by the AE
signature preceding snow failure were reproduce only with both
healing and load relaxation. Therefore, the results of the FBM
studies on snow point out the importance of considering healing
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FIGURE 10 | Evolution of b-value with increasing load σ up to failure at σc for three different loading rates for: the AE energy EAE (A) and the FBM burst elastic energy

U (B). Adapted from [55].

and viscosity for modeling snow, especially at low displacement
or loading rates. The FBMwith healing and load relaxation shows
that for low loading rates there is a lack of failure precursors
suggesting that in some cases failure prediction is not possible.

The similarity between the fiber failure bursts in FBMs and
the AE produced prior to failure is useful not just for interpreting
the AE signatures, but can also be used for studying the effects
of acoustic wave attenuation of the recorded AE. Using a FBM
Faillettaz et al. [59] showed that the attenuation reduces the
applicability of AE as precursor to failure. As alternative they
suggested to use co-detection of AE for early warning and
demonstrated the working principle with a FBM [59].

Simplicity is a strength of the FBM since it allows to study the
effects of simple micromechanical drivers on failure. However,
reproducing the complex 3D microstructure of snow is not
possible. Nevertheless, it is important to include the findings

obtained with FBM into models able to reproduce the 3D snow
microstructure, such as the discrete element model (DEM). Rate
dependent snow failure experiments at different temperatures in
combination with FBM may be used for separating the effects
of healing and viscosity since both ice sintering and viscosity
are temperature dependent. The understanding of the damage
process in snow gained with FBM should be applied to slope-
scale models for studying natural avalanche release. The snow
FBM may be even incorporated into a slope scale model as it has
been done for modeling landslide release [72].
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Spreading of Failures in Small-World
Networks: A Connectivity-Dependent
Load Sharing Fibre Bundle Model
Zbigniew Domanski*

Institute of Mathematics, Czestochowa University of Technology, Czestochowa, Poland

A rich variety of multicomponent systems operating under parallel loading may be mapped
on and then examined by employing a family of the Fiber Bundle Models. As an example,
we consider a system composed of N immobile units located in nodes of a network G and
subjected to a growing external load F imposed uniformly on the units. Each unit,
characterized by a load threshold δ, is classified as reliable or irreversibly failed,
depending on whether δ is bigger, or respectively smaller, than the load felt by the
unit. A pair of interdependent units is uniquely indicated by an edge of G. Initially all the
units are reliable. When a unit fails, its load is distributed locally among interdependent
neighbors if they are reliable, or is otherwise shared globally by all the reliable units.
Because of the growing F and the loads that are transferred according to such a see-saw
switch between the local and global sharing rules (sLGS), a set of nodes, that holds the
reliable units, evolves as G→∅. During the evolution, a subset Gc ⊂ G emerges that
represents the limiting state of the system’s functionality when the smallest group of nc
reliable units sustains the highest load Fc. We concentrate on how the Fiber Bundle Model
and switching Local-Global-Sharing conspire to drive the system toward Gc. Specifically,
we assume that {δ}G are quenched-random quantities distributed uniformly over (0, 1) or
governed by the Weibull distribution and networks G are the Watts-Strogatz “small-world”
graphs with the rewiring probability p that characterizes possible rearrangements of edges
in G. We have identified a range of values of p, where the mean highest load
fc(N) � 〈Fc〉/N, supported by reliable units, scales linearly with the average global-
clustering coefficient of the host network. Similar scaling holds for 〈nc〉 and 〈Fc/nc〉.
We have also found that in the large N limit fc(N)→ f∞c > 0, for all values of p and both
considered distributions of {δ}G. The symbol 〈 . . . 〉 represents averaging over {δ}G and a
suitable ensemble of networks {G}.
Keywords: failure evolution, fiber bundle model, switchable load sharing, simulations, small-world network,
statistics

INTRODUCTION

Numerous systems, encountered in nature as well as in different areas of science and technology, are
multicomponent, i.e., they are composed of a great number of functionally identical units. When
loaded, the units process a given task in a fully parallel manner. It happens, however, that a unit
becomes overloaded and fails. Its load has to be undertaken by other units, which in turn may trigger
subsequent overloading followed by resulting failures. Such a chain of failures gradually degrades the
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system performance and leads to an avalanche of failures. It may
even happen that the avalanche becomes self-sustained giving rise
to a catastrophe which overwhelms all the units. Different factors
characterize a given system. This is important to identify those
working together that push the system toward the catastrophic
avalanche.

The Fiber Bundle Model (FBM) is a particular case of a wide
class of cascading processes on networks [1]. It offers a flexible
approach to study how multicomponent systems evolve under
varying load [2–8]. The flexibility refers to such aspects as: a)
range and symmetry of interactions among units [9], b) rate of
load’s variation, c) heterogeneity/uniformity of units [10, 11]),
or d) varying quality of units [12, 13], to name a few. The aspects
a) and b) especially refer to ingredients of the FBM that play a
major role when a given system is mapped onto a bundle of
interacting fibers [14]. Exemplary problems, from an ample set
of systems expressed in the FBM framework, cover research
fields that span from geophysics including earthquakes, snow or
landslides, to technology with electrical and mechanical
engineering systems.

In this context, we consider a toy model of failures spreading
in a set of interconnected units. Our model consists of N units
that reside at nodes of an undirected simple graph G whose
edges represent pairs of interdependent units. The units are
either reliable or irreversibly failed, and we assume that an
externally applied load F is distributed identically on all reliable
units. When F starts growing, some units begin to suffer from
insufficient strength to bear the load and they fail. Their loads
remain in the system and are shared either by the nearest
neighboring units, if they are reliable, or by all other reliable
units. If on a given node a failure emerges, this node is removed
from the graph together with corresponding edges, i.e., G is
reduced to G′ ⊂ G. This means that under growing F, an initially
connected G evolves toward the empty graph. In other words,
unbounded growth of F pushes the set of reliable units to
extinction. If the growth of F is sufficiently slow, then a
distinct group of reliable units may be selected in the course
of evolution:

G0IG(F > 0)IG(F′ > F)I . . .IG(Fc > . . . > F)→∅ (1)

This group, identified by nodes of Gc � G(Fc), is the smallest
group of units that remain reliable under the highest load Fc, i.e., a
load F > Fc will trigger an ultimate, self-sustained avalanche of
failures that overwhelms the entire system. The chain of
inclusions 1 displays graphs that are stable under consecutive
values of F whereas intermediate graphs, induced exclusively by
loads sharing processes to be precise, are omitted for the sake of
simplicity. We use the subscripts “c” to mark that the load Fc is
critical to the systems and that Gc represents the smallest non-
empty stable configuration that precedes extinction. We call this
configuration the critical configuration.

Within this work we are interested in questions like: how small
a group of units can be and/or to what extent we can apply the
external load while still preventing the extinction of reliable units.
Subsequently, we apply the FBM to study evolving failure on
“small-world” networks that are omnipresent in life and
technology. Specifically, we will focus on a family of random

graphs generated by theWatts-Strogatz model [15]. The reason is
that such graphs reveal short average path lengths and high
clustering that are key features of social networks [16].

MODEL DESCRIPTION

Take a locally overloaded system which detects a failure of a unit.
In the first instance the system attempts to solve the problem
locally by distributing the load among nearest neighbors of the
failed unit. If such a neighborhood does not exist, the entire set of
reliable units is engaged into sharing the load from the unit being
lost. Such a mode of load transfer yields a significant impact on
the system’s strength. Whenever an island of reliable units
emerges during the evolution, its terminal load is shared
globally by the system. This means that the net load
transferred to reliable units that are located on the outer
island’s perimeter is lower than it would be if the local load
sharing (LLS) rule has been in operation. In consequence, the
switching Local-Global-Sharing (sLGS) mitigates the expansion
of a dominantly large cluster (DLC) of failed units and thus, the
strength of the system becomes higher than that one
corresponding to the LLS rule [5].

In the following, we consider an ensemble of units assigned
to nodes of a graph G and characterized by quenched load
thresholds {δ}G. Each unit, initially considered reliable, either
stays reliable or switches irreversibly to failed if the load, acting
on the unit becomes higher than corresponding δ. Units are not
perfect and differ in their efficiency to sustain the load. Hence,
the corresponding δs are different. For the sake of simplicity we
assume that {δ}G are quench-random quantities. We employ two
distributions, assuming that thresholds are: i) uniformly
distributed over the segment (0, 1) or ii) assigned according
to the Weibull pdf. Specifically, the second distribution is
employed to analyze networks with components of
technological nature.

Watts-Strogatz Model and Small-World
Networks
There exists an ample set of papers that discuss the Watts-
Strogatz model in details [17]. Hence, for the purpose of our
model, it is sufficient to present the simplest exemplary graph and
sketch how its modifications enable a smooth passage from an
ordered network to disordered ones through a multitude of
“small-world” graphs. One such passage is shown in Figure 1.
The presented graphs are generated in two steps:

• a ring over N nodes is created and each node is connected
with its k nearest neighbors, k is even.

• for every node with uniform independent probability p, each
edge is rewired to a node that is selected uniformly at
random while avoiding loops and edge duplication.

These steps are illustrated in Figure 1, e.g., the first step
corresponds to the graph with p � 0. In simulations we will
employ graphs with k � 4.
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Among the different characteristics of a network, one is
particularly important in the view of our study, namely the
global clustering coefficient C defined as:

C � 3 × number of triangles
number of connected triples

, (2)

where nodes of a triangle form a 3-clique, and a connected triple
is a tree.

Applying External Load
We have assumed the external load F is distributed identically on
all reliable units. Consider a load fi that locally acts on i-th unit,
out of M reliable ones that are present at a given stage of
evolution. This fi combines F/M with a load generated by
shared loads agglomerated from previous failures that affected
other units. An important feature of such a process is that the
shared loads transferred from failed units and the externally
applied load may together activate bursts of subsequent
failures. The bursts may become self-sustained and they either
eliminate all the reliable units or they cease and freeze the system
in a stable configuration.

We consider a configuration G(F) being stable, if under a
given F all reliable units keep their states unchanged. When no
reliable unit exists the corresponding configuration is the empty
graph ∅. Along with this notation, { f (Ft)}G(Ft ) is the pattern of
load detected locally at nodes of G(Ft).

In order to identify Fc, along with the size of the smallest set of
reliable units, we increase the load stepwise, according to the
method known as quasi-static loading. In detail, when F � 0 all
units are reliable and the initial configuration is stable.
Consecutive load steps are adjusted according to the rule: if
Ft > 0 and the system attains a stable configuration G(Ft), then
Ft+1 � Ft +min[{ f (Ft) − δ}G(Ft)] will either drive the system to
another stable configuration G(Ft+1) or initiate an avalanche of
failures that destroys all still reliable units, i.e., the system reaches
the configuration ∅.

From this, we derive the stopping rule:

G(Ft)≠∅∧G(Ft+1) � ∅0Ft � Fc∧nc � |G(Fc)| (3)

where nc � |G(Fc)| is the size of G(Fc), i.e., the size of the smallest
group of reliable units. We use this rule in simulations.

Load Sharing Rule
The load transfer requires a rule that indicates how a load released
by a failure is shared by other reliable units. We define our rule in
a following way: the reliable network neighbors are obliged to
equally share the load if they are accessible and all the reliable
units acquire the load in the contrary case.

From this definition’s point of view, our rule “dynamically”
switches between two rules, which are known in the FBM
framework as global load sharing (GLS) and LLS. These rules
correspond to two extremal ranges of load transfer. In the GLS
rule, a load originating from a failed unit is transferred equally to
all the reliable units and thus, the range of transfer is maximal.
The LLS rule, in turn, engages only the nearest neighbors of a
node that fails, so the range of load transfer is minimal. As a
consequence, the load distributed according to the GLS rule is the
least harmful for the system, whereas the LLS represents the most
damaging method of the load distribution.

In simulations, we call this rule the sLGS and assume that the
load transfer is an almost instantaneous process that happens
simultaneously. We can mathematically express the sLGS in a
framework for cascading processes on networks [18]. For this
purpose, let ÂG be the adjacency matrix of G, whose nonzero
entries Aij

G � 1 appear only if the units i and j are interdependent
and let ki � ∑ |G|

j≠ i A
ij
G denotes the degree of node i at the stage tG of

evolution characterized by G. With this notation, a fraction of
load fi transferred from the failed unit i to a reliable unit j reads

Δfj←i � [Aij
G ·

1
ki
+ (1 − Aij

G) 1

|G| − nG
] · fi, (4)

where nG represents the number of nodes that fail at the stage tG
and are not neighbors to site i.

Equation 4 has a structure that resembles schemes of load
transfer known from the literature. Namely the mixed-mode load
sharing (MMLS) [19] and the heterogeneous load sharing (HLS)
[20] merge together the LLS and the GLS in order to study a

FIGURE 1 | Exemplary “small-world” networks generated by the Watts-Strogatz model with mean node degree k � 4 and growing probability p of rewiring.
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crossover behavior in FBM on regular lattices. The MMLS
employs a constant quota q to split each transferred load into
two streams: a portion q of the load goes to nearest neighbors
under the LLS rule and the remaining portion is transferred
according to the GLS rule. Thereby, the MMLS folds the LLS and
the GLS in a manner that both rules are simultaneously activated
in each failure. This is in contrast to the HLS, which in turn
assigns units to two groups in order to discriminate between units
located in “rigid nodes” and those residing in a “flexible” fraction
of the support. If the “rigid” unit fails then the GLS transfers its
load whereas the LLS governs the transfer from the “flexible” unit.
The MMLS and the HLS are static, i.e., the corresponding values
of q and sets of nodes at which q-weighted sharing rules operate
are chosen and fixed prior to loadings. We also want to mention
the modified LLS rule [21]. By employing the scheme
Δfj←i � Aij

G · (fi/ki), this rule sheds loads released from isolated
clusters of failed nodes rather than transferring these loads to
remaining intact parts of the system.

It is worth noting that rules, similar to the sLGS have been
applied recently in such contexts as a strategy for stopping failure
cascades [22] or clogging in multichannel supply systems [23].

A Range of Possible Applications
The above-described load sharing rule operating among units
interconnected through a small world network may serve as a toy
model of cascading failures in economy or technology. A general
scenario we have in mind concerns a default initiated by an
unsupported on-site demand that spreads through the system in a
form of a contagion from the defaulter, either to units which are
closely associated or to other ones. Clearly, when a unit switches
into default this affects other units. Depending on the context,
units could be: a) institutions, as, e.g., banks belonging to an
interbank network, b) workers with beneficial loans from a

company, borrowers in micro financial markets or c) elements
of power grids, especially of small scale smart grids. With this
same spirit a load could be seen as a demand, e.g., for liquidity or
electric power. Below we list some basic facts that are relevant to
our model.

Interbank Market
Undirected graphs are suitable to modeling interbank networks,
especially in the context of a financial contagion [24, 25]. Among
representations which are convenient and applied in studies, a
possible one connects a pair of banks by an undirected edge
whenever there exists an interbank liability or claim [25]. When
an ensemble of interdependent banks is mapped onto a graph,
one can analyze its static and dynamic properties. A class of small
world graphs certainly is relevant in this context. It was shown,
e.g., that the interbankmarket of ∼ 900 Austrian banks is a small-
world network [25].

Microeconomy
Many companies offer beneficial loans to its employees.
Specifically, to those suffering financial troubles. These
employees-debtors, being colleagues and friends, are frequently
mutual guarantors and can thus be considered as members of a
resulting social network.

Power Grids
The small world topology is frequently reported as present in
power grid networks [26–28]. This is equally true for large scale
installations involving nationwide power systems in the US or
Europe as well as for medium or small power grids [29, 30].
Particularly, in smart grids of renewable energy sources, such as
small-scale photovoltaic systems or small-wind turbines [31, 32],
the small world topology is beneficial. For example, networks

FIGURE 2 | Calculated distributions of Fc/N (left diagram) and nc/N (right diagram) for an increasing number of units: N � 100 (white triangles), N � 200 (black
triangles), N � 400 (white diamonds) and N � 600 (black diamonds). Each value of N corresponds to a population of 2,500 load thresholds {δ i}i ∈ {1,...N} distributed
uniformly over (0, 1) and an exemplary Watts-Strogatz graph with p � 0.2. The solid lines are drawn according to Eq. 5with parameters estimated from the simulations.
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with small world connectivity can significantly enhance their
robustness against different attack by simultaneous increase of
the rewiring probability and average degree [33].

RESULTS AND DISCUSSION

In order to acquire data necessary to build reliable empirical
distributions, we have adopted two computational schemes that
correspond to small and large numbers of units. In the first
scheme, for each N, an ensemble of Mδ load-threshold
distributions {δi}i∈ {1,...N} is generated. Then, for each selected
value of p ∈ [0, 1] a separate ensemble {G(s)(N , p)}s�1,...,MG of
Watts-Strogatz graphs G(N , p) is formed and stored. This
means that for each chosen pair (N , p), two corresponding
ensembles {δi}i�1,...,N and G(N , p) allow us to probe Mδ ·MG
different realizations of failure evolution for the uniform as well
as for the Weibull distributions of {δ}. To study networks with
N ≤ 103, we employ the first scheme with Mδ � 2500 and
MG � 400. The second scheme involves systems with
1, 200≤N ≤ 21, 600. For each chosen values of (N , p), a set
consisting of 104 pairs ({δi}i�1,...,N,G(N , p)) is generated. The
two computational schemes allow us to probe 106 or 104

different realizations of failure evolution for a small or large
N regime, respectively.

We use both computational schemes for uniformly distributed
load thresholds. In simulations with the Weibull distribution we
consider ρ � 2, 3, 5 and 8. For all these ρ we conduct simulation
following the first computational scheme. In the large N limit, we
restrict ourselves to distributions with ρ � 2 only.

Subsequently, when averaging a quantity Y over either {δ} or
{G} alone, we denote the respective mean by Y

δ
and Y

G
, whereas

the symbol 〈Y〉 refers to averaging Y over both ensembles.

Maximal Supported Load and Minimal
Number of Reliable Units
Following the described computational schemes, we have
collected large data sets containing detailed information about
how the maximal load, together with the minimal number of
units, vary when we pass through all pairs {δi}i�1,...,N,G(N , p) of
stored ensembles.

The gathered data turn out to be skewed independently of
what distribution governs {δ}. Specifically, the data pointed to Fc
are positively skewed whereas the data related to nc reveal
negative skewness. This can be seen in Figure 2 for chosen
values of N and p � 0.2. Interestingly, we were able to fit all
data by one family of probability distributions (p.d.), namely by
the three-parameter skew-normal p.d. [34] defined as:

ϕ(x) � erfc( − α x−μ�
2

√
σ)���

2π
√

σ
exp[ − (x − μ�

2
√

σ
)2], (5)

where μ, σ and α are the location, scale and shape parameters,
respectively.

We have rigorously examined the data sets employing a
number of goodness of fit tests, including the Cramer-von
Mises and Anderson-Darling tests [35] and have accepted
ϕ(·), Eq. 5, as the distribution that best fits the empirical
distributions of Fc/N and nc/N . A selection of correct
distribution for gathered data sets is an important task.

FIGURE 3 | Estimated functional dependence of μF on rewiring
probability p: μF � a + b(1 − c · p)3, with a � 0.2128 ± 0.0006, b �
0.01228 ± 0.005 and c � 0.741 ± 0.079 for N � 100. Each data point
corresponds to averaging over 106 samples.

FIGURE 4 | Scaled mean critical number of reliable units 〈nc〉/N for
N � 100. The sample size equals 106. The Inset shows empirical distribution
of nc/N computed from 2,500 uniform distributions of load thresholds for an
exemplary Watts-Strogatz graph with p � 0.2.
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Appropriate methods exist to establish confidence sets and
perform hypothesis tests, including an universal procedure
[36]. In this regard we should mention that a substantial
portion of our data sets is satisfactorily modeled by the three-
parameterWeibull p.d. also.We opt, however, for representing all
data by Eq. 5 because the skew-normal p.d. works correctly for
almost all data sets and for those when both models are

acceptable, the skew-normal p.d. returns higher values of
maximized likelihood function and greater p-values than the
Weibull p.d.

We have also estimated values of the parameters μ, σ and α.
The gathered data yield estimate functional dependences of μ, σ
and α on model parameters N , p and ρ. As an example, consider
empirical p.d. of Fc/N related to different values of rewiring
probability p ∈ [0, 1]. The corresponding skew-normal p.d.
reads:

FIGURE 5 | Left panel: The logarithmic size dependence of system strength for networks that: are ordered (p � 0), disordered (p � 1) and correspond to the
weakest system (p � 0.06). The lines are drawn following Eq. 7 with coefficients shown in the right panel. Right panel: The ultimate system strength f∞u and exponent α
(Inset) computed for different values of p according to the best fit given in Eq. 7. Black marks represent the best fit to data of which some examples are shown in the left
panel. The error bars indicate 95% confidence intervals. Data in both panels refers to {δ} distributed uniformly over (0, 1).

FIGURE 6 | The system’s strength scaled by size in the large N limit.
Inset: the logarithmic dependence of scaled system strength for: p � 0.02
(minimum of f∞w ), p � 0.11 (Bw ∼ 00f∞w ∼ 1/log(N), see Eq. 8 and Figure 7)
and p � 1 (maximally disordered network). Data correspond to the
Weibull distribution of {δ} with ρ � 2. The sample size is equal to 104 for each
data point.

FIGURE 7 | Amplitudes Aw (Inset) and Bw of fc in the large N limit for
systems with {δ} governed by the Weibull p.d., see Eq. 8. Each data point
results from an averaging of over 104 samples.
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ϕ(Fc/N , N , p) � erfc( − αF(N , p) Fc/N−μF(N ,p)�
2

√
σF(N,p) )���

2π
√

σF(N , p)
exp[ − (Fc/N − μF(N , p)�

2
√

σF(N , p) )2].
(6)

We have directly written that μ, σ and α are functions of N
and p whereas parameters characterizing distributions of {δ} are
omitted. We have estimated the functional dependences of
these coefficients on model parameters. For instance, in
Figure 3, we present how the location parameter μ varies
with p, while keeping constant values of N. The resulting
fitting function turns out to be a polynomial of the third
order in p.

Since the location parameter μF grows with p and Fc/N is
positively skewed (αF > 0) then the corresponding mean 〈F〉c/N
increases. This is because 〈Fc〉/N � μF +

�
2

√ · αF · σF/
��������
π(1 + α2)√

.
Similar calculations yield estimators related to nc and Fc/nc. As an
example, an average critical number of units 〈nc〉/N is presented
in Figure 4 for uniformly distributed {δ}. Data related to the
Weibull distribution with exemplary values of ρ are displayed in
Figure 12.

It should be pointed out that when p is growing, the resulting
networks become more and more disordered and the
probability that a given node has a low degree increases.
Hence, the sLSG activates all the reliable units more
frequently than it happens in networks generated with a
small value of p.

Large N Limit
Even though the applications mentioned in Section 2.4 refer to
networks composed of about 102–104 units, it is worth addressing
the questions on how the sLGS drives a very large system and how
such the system converges to attain its ultimate strength. In the
following we report relevant details.

It is known that the LLS model on a complex network behaves
similarly to the GLS model giving rise to a non-vanishing critical
strength fc in the large N limit [5]. Formally, the family of Wats-
Strogatz graphs covers the spectrum of networks ranging from
the locally regular (p � 0) to the maximally disordered (p � 1)
ones. The locally regular network is the only exception in this
family because under the LLS the strength fc decays
as ∼ 1/log(N). Is this thus obvious that, the sLGS, by
switching between the LLS and the GLS, does the same?

Based on results of simulations of large-N systems, we have
found that: i) fc → f∞c > 0, ii) f∞c depends quantitatively on p and
{δ}G0

, and iii) f∞c depends qualitatively on probability distribution
that generates {δ}G0

. For the uniform p.d.

f uc (z � 1/log(N), p) ∼ f∞u (p) + Au(p) · zα(p) (7)

while for the Weibull p.d. the best fit reads

f wc (z � 1/log(N), p, ρ) ∼ f∞w (p, ρ) + Aw(p, ρ) · z + Bw(p, ρ) · z2,
(8)

where the subscripts u and w stand for the uniform and Weibull
distributions, respectively. The estimated system’s strength f∞u
and the exponent α are displayed in Figure 5. Correspondingly,
for the Weibull p.d. f∞w is presented in Figure 6 whereas the
amplitudes Aw,Bw are shown in Figure 7.

These plots illustrate a variety of ways in which fc converges
toward f∞c . For both distributions of {δ}, the locally regular
network (p � 0) sustains f∞c > 0. For small values of p the
ultimate system strength rapidly decreases, attains its
minimum and then increases. Until p ∼ 0.2 the growth of fc is
fast, then moderate, until p ∼ 0.5. For p> 0.5 the strength varies a
little and saturates around value 0.77 × f∞c (GLS), where
f∞c (GLS) is the ultimate strength for the GLS rule,
i.e., f∞c (GLS) � 0.25 for uniformly distributed {δ} and f∞c (GLS) �
(ρ · e)− 1/ρ for the Weibull distribution. As shown in Figure 7,
except for p<∼ 0.003, the amplitude Bw is negative up to
0.11< p* < 0.12, then becomes positive. This means that
f wc (1/log(N)) is concave down for p< p*. Therefore, the speed
of convergence of f wc (1/log(N)) grows when 1/log(N) tends to
zero. Passing p*, the function f wc becomes concave up and the
speed of its convergence toward f∞w slows down.

A deep minimum of f∞u at p ∼ 0.06, seen in Figure 5, and
correspondingly that of f∞w at p ∼ 0.02, displayed in Figure 6,
result from an interplay between a slightly perturbed order of the
locally regular network and the activity of the GLS-component of
the sLGS rule. This can be qualitatively explained by adopting
arguments formulated in [5]: (i) when a complex network is
progressively loaded, the FBM with the LLS rule behaves as the
GLS model because clusters of failed units appear, continuously
grow and glue into a DLC, (ii) due to the small-world effect,

FIGURE 8 |Mean critical load per reliable unit: white plot marks - internal
load 〈Fc/nc〉 and black plot marks - external load 〈Fc〉/〈nc〉. The sample size
is equal to 106 for each data point. The dashed lines are only visual guides.
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reliable units remain closely to each other and to the DLC and
thus, the system resembles the GLS model, (iii) on an ordered
network which is spatially uniform, clusters of failed units
originate and extend in an equal condition and the DLC
emerges abruptly. Now consider the argument (iii) in
conjunction with the sLGS rule engaged on a network with
p ∼ 0. Since the network is almost regular and highly clustered
the LLS component prevails over the GLS one in the early stages
of the loading process. The sLGS rule with its frequently activated
LLS component continues operating until the network becomes

fragmented. Then, the GLS component starts to allocate
terminal loads from failed fragments to units that are still
reliable. From there, the process behaves similarly to that
with the GLS rule. Contrary to the case of the LLS rule, the
resulting system strength does not vanish. It is, however, smaller
than that corresponding to the GLS rule. When p increases, the
arguments (i) and (ii) come into the picture. First,
for 0.01<∼ p<∼ 0.1, the average path length begins to decrease
whereas networks are still highly clustered albeit no more locally
ordered. Even that such conditions support a gradual DLC
emergence, the average path length is not sufficiently small
to facilitate the DLC growth. This, combined with the lack of
local ordering favor the LLS component activity on clusters
bigger than those appearing within an almost ordered network.
In consequence, the system strength passes through its
minimum. Networks with p roughly bigger than 0.1 enter a
scenario characterized by the argument (i). The sLGS differs
from the LLS, however. As it was already stated in the beginning
of Section 2, whenever an island of reliable units appears its

TABLE 1 | Estimated coefficients in Eq. 9: 〈Y〉 � u + w · (1 − ξ · p)3, for systems
with N � 100 units and uniformly distributed δs.

〈Y〉 u w ξ

〈Fc〉/N 0.2309 ± 0.002 −0.0120 ± 0.02 1.039 ± 0.032
〈nc〉/N 0.5802 ± 0.004 0.0569 ± 0.002 0.707 ± 0.078
〈Fc/nc〉 0.4042 ± 0.002 −0.0519 ± 0.0015 0.734 ± 0.061
C
G

0.0358 ± 0.0004 0.4605 ± 0.0008 1.099 ± 0.007

FIGURE 9 | (A)Calculatedmean empirical global clustering coefficientC
G
as a function of p for employed sets of 400Watts-Strogatz graphs, each with connectivity

k � 4. The solid line is given by Eq. 9 with: u � 0.0358 ± 0.0004,w � 0.4605 ± 0.0008, ξ � 1.1 ± 0.007, for N � 100 and u � 0.0085 ± 0.0017,w � 0.488 ± 0.001, ξ �
1.076 ± 0.001 for N � 600). The dash-dotted line represents C∞(p) � C(0)(1 − p)3, valid in the limit N→∞, where C(0) � (3/4)(k − 2)/(k − 1) [37]. The diagrams
(B–D) refer to: 〈Fc/N〉, 〈nc/N〉, and 〈Fc/nc〉, respectively on a linear scale for the C

G
. Straight lines represent Eq. 10 and are drawn in accordance with parameters

presented in Table 2. The dashed lines are visual guides. The sample size is equal to 106 for each data point. Load thresholds are distributed uniformly.
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terminal load is transferred by the sLGS to all other reliable units
and not to the closest ones. This inhibits the DLC growth and
increases the system strength correspondingly.

Within our numerical approach, it is difficult to precisely
estimate f u,wc in the very close vicinity of p � 0. For this reason, we
were unable to analyze the continuity of f∞u,w when p→ 0.
Therefore the question arises whether f∞u,w(p � 0) is an isolated
point of the ultimate system strength.

Internal vs. External Load From a
Reliable-Unit’s Point of View
When considering its future reliability, a prospective unit behaves
as an outer observer whose forecast is limited to the external load
F. When entering the system, the unit is confronted with an
internal-load impact. It is thus worth discussing to what extent
these two points of view differ.

We have assumed that during the evolution, the external load
F is distributed identically on reliable units and is growing
stepwise along the rule that was discussed in Subsection 2.3.

Having initially G0 ≠∅, F0 � 0, { f (0)}G0
� {0}G0

, the rule yields
consecutive Ft :

if G(Ft)≠∅ then

Ft+1 � Ft +min[{δ − f (Ft)}G(Ft )]∧G(Ft)→G(Ft+1) ⊂ G(Ft)
else
Fc � Ft∧nc � |G(Fc)|

end if

This iterative chain involves successive patterns of local load
{ f (Ft)}G(Ft) that are strongly affected by the load-sharing rule,
i.e., the mLGS in our case.

Now, consider nt units that are reliable at the stage t of the
evolution. Let us choose one of them, say the i-th unit. This means
that δi > fi, where fi is the local load at node i. When Ft → Ft+1 > Ft
then nt → nt+1 < nt and the pattern of local load becomes
{ f (Ft+1)}G(Ft+1). The state of our chosen unit is now
determined by the difference between the quenched value of δi

and the updated ~f i. While δi remains unchanged, the updated ~f i
increases because of a growing Ft+1/nt+1 > Ft/nt and new shared
loads, possibly assigned to the unit at the stage t. Clearly, internal-
load distributions are subject to non-trivial variations that can be
observed during the evolution.

It is important to make a distinction between impacts of
external and internal loads on units. To obtain a closer look at
these different impacts, we compare Ft/nt with { f (Ft)}G(Ft) for a
given network G(Ft) in the course of evolution. As an illustrative
example, we compare the impacts at critical configuration
resulting from averaging over 106 samples. Figure 8 displays
〈Fc〉/〈nc〉 and 〈{ f (Fc)}Gc

〉 � 〈Fc/nc〉.
Analyzing computed values, we detect that the mean internal

load prevails over the mean external one for all values of p. In
networks withN ∼ 102, the relative difference is of the order of 0.01
and thus, is relevant to a prospective unit. Such a difference should
be taken into account when forecasting long-term reliability,
especially when considering units with low values of their δs.

Small-World Properties at Critical
Configuration
When the sLGS rule is in operation, a load is assigned according
to accessibility of reliable units, i.e., either locally or globally. If the
hosting network reveals a relatively strong local connectivity, then
the sLGS looks like the LLS.

A lasting presence of reliable nearest-neighbours depends on a
connectivity of an underlying network. Independently of the
value of rewiring probability p, random graphs generated by
the Watts-Strogatz model preserve the number of edges and
mean-node degree. This means that when p grows, we pass from
ordered to disordered networks, keeping the numbers of nodes
and edges unchanged. For intermediate values of p, the resulting
networks turn out to be locally clustered, whereas randomly

TABLE 2 | Estimated coefficients in Eq. 10: 〈Y〉 � aN + bN · CG
N , N � 100 and 600, {δ}: distributed uniformly over (0, 1).

〈Y〉 a100 b100 (p− ,p+ )100 a600 b600 (p− ,p+ )600
〈Fc〉/N 0.232+0.001−0.001 −0.0255+0.0003−0.0003 (0.02, 0.60) 0.2127+0.0004−0.0004 −0.0395+0.0005−0.0005 (0.10,0.38)
〈nc〉/N 0.586+0.001−0.001 0.120+0.005−0.005 (0.12, 0.40) 0.5924+0.0008−0.0008 0.2130+0.006−0.006 (0.10,0.38)
〈Fc/nc〉 0.398+0.001−0.001 −0.105+0.005−0.005 (0.12, 0.50) 0.3579+0.0008−0.0008 −0.1640+0.005−0.005 (0.24,0.40)

FIGURE 10 | Mean strength of the system vs. mean global clustering
coefficient for growing number of units. The linear scaling (11) between the
ultimate strength f∞c and C∞ � 1

2 (1 − p3) is clearly seen.
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rewired edges reduce the mean path lengths. Thus, there exists a
range of p, where networks belonging to {G0(N , p)} resemble a so-
called “small-world” environment, i.e., they reveal a relatively
strong clustering and a short mean path length.

We thus expect that the “small-world” properties would mark
their presence in data sets related to Fc, nc and Fc/nc. When
analyzing the data together with values of the global clustering
coefficient C, defined by the Eq. 2 and computed for
corresponding networks, we notice that for a given value of N,
formula

〈Y〉(p) � u + w · (1 − ξ · p)3 (9)

best fits the quantity 〈Y〉 that represents the following mean:
〈Fc/nc〉, 〈Fc〉 and 〈nc〉. Detailed information is presented in
Table 1. Because the same fit (9) also holds for C

G(N , p) we
can relate 〈Y〉 directly to C

G
. Interestingly, it appears that the

corresponding relation is linear for a range p ∈ {p−N , p+N } that
depends on N, namely:

〈Y〉 � a + b · CG
(10)

Figure 9 displays respective relations for systems with
uniformly distributed {δ}. Appropriate coefficients are
presented in Table 2. In the large N limit, the relation (10) is
valid for uniformly distributed {δ}G. An example of such
persistence is shown in Figure 10 where for p ∈ (0.14, 0.44)
the ultimate strength scales linearly as:

f∞u � (0.1982 ± 0.0013) − (0.089 ± 0.007) · C∞, (11)

with C∞ � (1/2) · (1 − p)3 [37]
When sets {δ}G are drawn from the Weibull distribution the

relations (9) and (10) are present in systems with N ∼ 102, see
Figure 11. When ρ>∼ 5 the relation (10) disappears gradually with
an increase in N, as it is shown in Figure 12. This indicates that
when ρ grows an ascending degree of order among load
thresholds homogenizes the system and suppresses the linear
relation between network’s clustering and system’s strength.

FIGURE 11 | Upper panels: Mean system’s strength per reliable unit at critical configuration: (left) as function of pwith solid lines drawn according to 9 and (right)
on a linear scale for the respectivemeanC

G
. Bottom panels: Mean system’s strength andmean number of reliable units at critical configuration, scaled by systems sizeN,

as functions of mean empirical clustering coefficient calculated for corresponding networks. Results were obtained from 106 samples with the Weibull distribution of {δ}
for each data point.
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It should be noticed that the expressibility of 〈 · 〉 in
C
G(N , p) is not due to a kind of approximation or

simplification that come from beyond the model but reflects
a role that the small world structure of networks plays in
maintaining functionalities of systems with strong to moderate
load-threshold-disorder. It is also worth mentioning that the
presented scaling results from: (i) the sLSG rule that allocates
loads and (ii) the quasi-static method of load’s growth. It
remains to be verified whether the scaling (10) is valid for other
loading schemes.

SUMMARY

We have investigated the evolution of failure among units that
live at nodes of “small-world” networks and are exposed to a
growing load. By introducing the sLGS rule of load transfer,
which switches between the LLS and GLS rules depending on
the accessibility of local interdependent nodes, we were able to
mimic unit failures, and thus follow the evolution of the system
toward the limit of its functionality. In particular, by

employing the Watts-Strogatz random graphs to simulate
the networks, we have collected data sufficient to form
empirical distributions of the maximal load Fc, that would
be safely supported by the minimal number nc of reliable units.
These quantities have turned out to be skewed and adequately
fitted by appropriate skew-normal distributions. The obtained
distributions reflect: i) how Fc, nc and Fc/nc depend on number
of units, and ii) how strongly they are affected by an amount of
a network’s disorder, which is controlled by the rewiring
probability p with which the links among interdependent
nodes are modified.

The simulations show that if p is within the range of values
given in Table 2 then 〈Fc〉, 〈nc〉 and 〈Fc/nc〉 are linearly related
to the global clustering coefficient averaged over the set of
employed graphs. It should be noted, however, that even
though our model sits on the Watts-Strogatz “small-world”
networks, the obtained results are insensitive to the mean
shortest path between pairs of nodes. This due to the sLGS
rule that engages either the nearest-neighbouring nodes of a
given node or all the other ones. Therefore, no distribution of
distances appears in the presented results.

FIGURE 12 | Scaled mean critical quantities: 〈Fc/nc〉, 〈Fc〉/N and 〈nc〉/N for different values of Weibull shape parameter ρ and system sizeN as functions of p. The
solid lines represent Eq. 9 with coefficients estimated from data. The sample size equals 106.
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We are conscious of the fact that our simplified model of
failure evolution involves some less realistic assumptions. Among
the most serious is that we have considered each link between a
pair of units as a reciprocally profitable relation. The other less
strict assumption is that we allow the load thresholds be
identically distributed. Our model can be tailored to fit a
particular realistic scenario, e.g., by employing directed graphs,
we would prevent some less reliable units from being
interdependent.
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The Three Extreme Value
Distributions: An Introductory Review
Alex Hansen*

PoreLab, Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway

The statistical distribution of the largest value drawn from a sample of a given size has only
three possible shapes: it is either a Weibull, a Fréchet or a Gumbel extreme value
distributions. I describe in this short review how to relate the statistical distribution
followed by the numbers in the sample to the associate extreme value distribution
followed by the largest value within the sample. Nothing I present here is new.
However, from experience, I have found that a simple, short and compact guide on
this matter written for the physics community is missing.

Keywords: extreme value statistics, statistical analysis, Weibull analysis, Gumbel distribution, Frechet distribution,
Weibull distribution

1 INTRODUCTION

Extreme value statistics offers a powerful tool box for the theoretical physicist. But it is the kind of
tool box that is not missed before one has been introduced to it—perhaps a little like the smart phone. It
concerns the statistics of extreme events and it aims to answer questions like “if the strongest signal I
have observed over the last hour had the value x, what would the strongest signal expected to be if
measured over hundred hours?” Furthermore, if I divide up this hundred-hour interval into a hundred
1-h intervals, what would be the statistical distribution of strongest signal in each 1-h interval?

It is the latter question which is the focus of this mini-review.
There is no lack of literature on extreme value statistics, see e.g., [1–5] or simply google the

term. We find it used in connection with spin glasses and disordered systems [6], in connection
with 1/f noise [7], in connection with optics [8], in connection with fracture [9] or the fiber
bundle model [10], in diffusion processes [11] etc. There are plenty of examples from diverse
fields of physics.

So, there is no lack of material for the novice that has seen a need for this tool. The problem is that
it is not so easy to penetrate the literature, which is often cast in a rather mathematical language
which takes work to penetrate. The aim of this mini-review is to present the theory behind and the
main results concerning the extreme value distributions in a simple and compact way. We will
present nothing new. For a longer, wider and more detailed review of extreme value statistics, Fortin
and Clusel [12] or Majumdar et al. present exactly that [13].We have a statistical distribution p(x)
and its associated cumulative probability

P(x) � ∫x

−∞
p(x′)dx′, (1)

which is the probability to find a number smaller than or equal to x. We draw N numbers from this
distribution and record the largest of the N numbers. We repeat this procedureM times and thereby
obtainM largest numbers, one for each sequence.What is the distribution of theseM largest numbers
in the limit when M→∞, which then defines the extreme value distribution?
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It turns out that depending on p(x), the extreme value
distribution will have one of three functional forms:

• The Weibull cumulative probability

Φ(u) � { e− (− u)α for u< 0,
1 for u≥ 0,

(2)

where we assume α> 0. Note that Φ(−∞) � 0. The corresponding
Weibull extreme value distribution is

ϕ(u) � { α(− u)α−1e− (− u)α for u< 0,
0 for u≥ 0.

(3)

• The Fréchet cumulative probability

Φ(u) � { 0 for u≤ 0,
e− u

− α
for u> 0. (4)

Also here we assume α> 0. Note that Φ(∞) � 1. The Fréchet
extreme value distribution is

ϕ(u) � { 0 for u≤ 0,
αu− α− 1e− u− α

for u> 0. (5)

• The Gumbel cumulative probability

Φ(u) � e−e
−u
, (6)

where −∞< u<∞, so that Φ(−∞) � 0 and Φ(∞) � 1. The
corresponding Gumbel extreme value distribution is given by

ϕ(u) � e−u−e
−u
. (7)

The questions are 1. which classes of distributions p(x)
lead to which of the three extreme value distributions and 2.
what is the connection between x and u in each case? It turns
out that.

• distributions where p(x) � 0 for x > x0 and
p(x) ∼ (x0 − x)α− 1 as x→ x−0 , see Eq. 10, lead to the
Weibull extreme value distribution,

• distributions where p(x) ∼ x−α−1 as x→∞, see Eq. 24 lead
to the Fréchet extreme value distribution,

• and distributions where p(x) falls of faster than any power
law as x→∞, see Eq. 53 lead to the Gumbel extreme value
distribution.

Furthermore, we will find that.

• for the Weibull extreme value distribution, u is given in
terms of x in Eq. 13,

• for the Fréchet extreme value distribution, u given in terms
of x in Eq. 27,

• for the Gumbel extreme value distribution, u is given in
terms of x in Eqs 51 and 43.

We summarize these results in Table I.
The discussion that will now follow, will be built on the

following relation. We draw N numbers from the probability
distribution p(x): x1, x2,/, xN . The probability that all the N
numbers are smaller than or equal to a value x is

Prob[x1 ≤ x, x2 ≤ x,/, xN ≤ x] � ⎡⎢⎢⎢⎢⎢⎣∫x

−∞
p(x′)dx′⎤⎥⎥⎥⎥⎥⎦

N

� P(x)N ,

(8)

where P(x) is the cumulative probability 1. Our task is to figure
out the limit Prob[x1 ≤ x, x2 ≤ x,/, xN ≤ x] � P(x)N →Φ(u) as
N→∞, and what is u � u(x) as we approach this limit.

Rather than the conventional approach (see e.g., [10]) to this
subject based on the Fréchet, Fisher and Tippett stability criterion
[1], I will base the entire discussion on the relation

lim
N→∞

(1 + x
N
) � ex. (9)

I believe this to be the simpler and more intuitive way.

2 WEIBULL CLASS

We consider here probability distributions p(x) having the form

p(x) � { bα(x0 − x)α−1 for x→ x−0 ,
0 for x > x0,

(10)

where b is positive. We note that 0< α< 1 leads to a diverging
probability density as x→ x−0 . We furthermore note that α � 1
implies that p(x) approach a constant when x→ x−0 — which for
example is the case when the distribution is uniform. The
corresponding cumulative probability is given by

P(x) � { 1 for x ≥ x0,
1 − b(x0 − x)α for x→ x−0 .

(11)

The extreme value cumulative probability for N samplings is
given by

P(x)N � [1 − b(x0 − x)α]N , (12)

for x→ x−0 . We introduce the variable change

x − x0 � ,
u

(bN)1/α (13)

where the reader should note that b is defined by the original
distribution 10. Equation 12 then becomes

P(x)N � [1 − (−u)α
N

]N

. (14)

In the limit of N→∞, this becomes
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Φ(u) � lim
N→∞

P(x)N � e−(−u)
α

, (15)

for negative u. Hence, we have that

Φ(u) � { e− (− u)α for u< 0,
1 for u≥ 0,

(16)

which is theWeibull cumulative probability, valid for all values of
u even though we only know the behavior of p(x) close to x0. The
Weibull probability density is given by

ϕ(u) � dΦ(u)
du

� { α(− u)α−1e− (− u)α for u< 0,
0 for u≥ 0.

(17)

We note that the Weibull distribution resembles a stretched
exponential. This is correct for α< 1. However, α≥ 1 is muchmore
common in the wild.

We express the Weibull cumulative probability in terms of the
original variable x using Eq. 13,

Φ(u) � Φ((bN)1/α(x − x0)) � e−Nb(x0−x)
α � ~Φ(x). (18)

Hence, in terms of the original variable x, the Weibull extreme
value distribution becomes

~ϕ(x) � d ~Φ(x)
dx

� Nbα(−x)α− 1e−Nb(x0−x)
α

. (19)

2.1 Weibull: An Example
We now work out a concrete example. Let us assume that p(x) is
given by

p(x) �
⎧⎪⎨⎪⎩

0 for x < 0,
α(1 − x)α−1 for 0≤ x ≤ 1,

0 for x > 1,
(20)

i.e., b � 1 and x0 � 1 in Eq. 10. The cumulative probability is then

P(x) �
⎧⎪⎨⎪⎩

0 for x < 0,
1 − (1 − x)α for 0≤ x ≤ 1,

1 for x > 1.
(21)

From Eq. 19 and we have that

~ϕ(x) � Nα(1 − x)α− 1e−N(1−x)α . (22)

We show the distribution 20 with α � 3 together with the
corresponding extreme value distributions for N � 100 and
N � 1, 000, Eq. 19 in Figure 1A.

Using a random number generator producing IID numbers1 r
uniformly distributed on the unit interval, we may stochastically
generate numbers that are distributed according to the
probability density p(x) given in 20. We do this by inverting
the expression P(x) � r, where the cumulative probability is given
by 21. Hence, we have

x � 1 − r1/α, (23)

where we have also used that rmay be substituted for 1 − r in 21.We
generate a sequence of sequences of numbers using this algorithm,
each sequence having length N. We then identify the largest value
within each sequence. We chose N � 100 and N � 1, 000, in each
case generating 107 such sequences. The histograms based on the
random numbers themselves, and of the extreme values for each
sequence of length either 100 or 1,000 we show in Figure 1B. This
figure should be compared to Figure 1A.

The Weibull distribution, Eq. 17 is much used in connection
with material strength [15]. This is no coincidence. Consider a
chain. Each link in the chain can sustain a load up to a certain
value, above which it fails. This maximum value is distributed
according to some probability distribution. When the chain is
loaded, it will be the link with the smallest failure threshold that
will break first causing the chain as a whole to fail. Hence, the
strength distribution of an ensemble of chains is an extreme value
distribution, but with respect to the smallest rather than the
largest value. The link strength must a positive number. Hence,
the link strength distribution is cut off at zero or some positive
value. The distribution close to this cutoff value must behave as a
power law in the distance to the cutoff, e.g., due to a Taylor
expansion around the cutoff. The corresponding extreme value
distribution, which is the chain strength distribution, must then
be a Weibull distribution.

3 FRÉCHET CLASS

We now assume that the probability distribution p(x) behaves as
p(x) � bαx−α−1 for x→∞, (24)

TABLE 1 | Summary of main results.

p(x) ϕ(u) u � u(x)

Weibull bα(x0 − x)α− 1 for x→ x−0 α(−u)α−1e−(−u)α for u≤ 0 u � (bN)1/α(x − x0)
0 for x ≥ x0 0 for u> 0

Fréchet bαx−α−1 for x→∞ αu−α−1e−u−α for u≥ 0 u � (bN)− 1/αx
0 for u< 0

Gumbel f ′(x)exp[−f(x)] for x→∞ where d[1/f ′(x)]/dx→ 0 exp[−u − e−u] for −∞< u<∞ u � Np(xN)(x − xN) where P(xN) � 1 − 1/N

1IID variables. Independent and identically distributed random variables, a
terminology used in some communities.
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and the corresponding cumulative probability behaves as

P(x) � 1 − bx−α for x→∞. (25)

The extreme value cumulative probability for N samplings is
given by

P(x)N � [1 − bx−α]N , (26)

for x→∞. We introduce the variable change

x � (bN)1/αu, (27)

where b comes from the original distribution 24. We now plug
this change of variables into Eq. 26 to find

P(x)N � [1 − b((bN)1/α u)− α]N � [1 − u−α

N
]N . (28)

In the limit of N→∞, this becomes

Φ(u) � lim
N→∞

P(x)N � e−u
−α
, (29)

where u≥ 0 is given by Eq. 27. We see that Φ(u)→ 0 as u→ 0+.
Furthermore, for u< 0, the function is no longer real. Hence, we

define Φ(u) � 0 for u< 0. The ensuing extreme value cumulative
probability is then given by

Φ(u) � { 0 for u≤ 0,
e− u

− α
for u> 0, (30)

which is the Fréchet cumulative probability. The Fréchet
probability density is given by

ϕ(u) � dΦ(u)
du

� { 0 for u≤ 0.
αu− α− 1e− u

− α
for u> 0. (31)

We express the Fréchet cumulative probability in terms of the
original variable x using Eq. 27,

Φ(u) � Φ( x

(bN)1/α) � e−Nx
−α � ~Φ(x). (32)

Hence, in terms of the original variable x, the Fréchet extreme
value distribution becomes

FIGURE 2 | (A) The curve that has its maximum at x � 1 is the probability
distribution 34 with α � 3. The curve that has its maximum in the middle is
~ϕ(x), Eq. 36 with N � 100 and the curve that has its maximum to the right is
~ϕ(x) with N � 1,000. (B) The histograms shown here are based on data
according to the probability distribution 34with α � 3. The histogram having its
maximum to the left shows all the generated data. The histogram having its
maximum in the middle shows the largest number among each sequence of
numbers of length 100, and the histogram having its maximum to the right
shows the largest number among each sequence of numbers of length 1,000.
For each sequence length, 107 such sequences were generated.

FIGURE 1 | (A) The curve that has its maximum at x � 0 is the probability
distribution 20 with α � 3. The curve that has its maximum in the middle is
~ϕ(x), Eq. 22 with N � 100 and the curve that has its maximum to the right is
~ϕ(x) with N � 1,000. (B) The histograms shown here are based on data
according to the probability distribution 20with α � 3. The histogram having its
maximum to the left shows all the generated data. The histogram having its
maximum in the middle shows the largest number among each sequence of
numbers of length 100, and the histogram having its maximum to the right
shows the largest number among each sequence of numbers of length 1,000.
We generated 107 sequences for both cases.
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~ϕ(x) � d ~Φ(x)
dx

� Nαx−α−1e−Nx
−α
. (33)

3.1 Fréchet: An Example
We consider the distribution

p(x) � { 0 for x ≤ 1,
αx− α− 1 for x > 1,

(34)

The corresponding cumulative probability is given by

P(x) � { 0 for x ≤ 1,
1 − x− α for x > 1. (35)

Using Eq. 33, we find the corresponding Fréchet extreme value
distribution to be

~ϕ(x) � Nαx−α−1e−Nx
−α
, (36)

valid for all x > 1. We show p(x) and the corresponding ~ϕ(x) for
α � 3 and N � 100 and N � 1, 000 in Figure 2A.

In order to compare with numerical results, we generate
numbers distributed according to 34 by solving the equation
P(x) � r where r is drawn from a uniform distribution on the unit
interval. From Eq. 35, we get

x � r−1/α. (37)

We generate a sequence of numbers using this algorithm,
grouping them together in sequences of N � 100 or N � 1, 000.
We generate 107 such sequences. The histograms based on the
random numbers themselves generated with Eq. 37, and of the
extreme values for each sequence of length either 100 or 1,000 we
show in Figure 2B. This figure should be compared to Figure 2A.

4 GUMBEL CLASS

We now assume we have a probability distribution that takes the
form

p(x) � f ′(x)e−f (x) for x > x0, (38)

where f ′(x) � df (x)/dx. We have that x0 is any number, positive
or negative, and f (x) is an increasing function of x. We will later
on introduce a sufficient criterion imposed on p(x) to produce
the Gumbel distribution, see Eq. 53. This criterion is equivalent to
f (x) fulfilling

lim
x→∞

d
dx

( 1
f ′(x)) � 0. (39)

This criterion is e.g., fulfilled by any polynomial f (x).
The cumulative probability is

P(x) � 1 − e−f (x) for x > x0. (40)

We do not care about the form of p(x) or P(x) for x ≤ x0.
The extreme value cumulative probability for N samplings is

given by

P(x)N � [1 − e−f (x)]N , (41)

for x > x0. We introduce the variable change

~u � f (x) − f (xN), (42)

where xN is given by

P(xN) � 1 − 1
N
. (43)

Even though xN is defined by 43, we may interpret its meaning.
We do so in the conclusion, see Eq. 71. From Eq. 40 we then have
that

f (xN ) � ln N. (44)

Let us now define

Δx � x − xN . (45)

We then expand f (x) around xN ,

f (x) � f (xN + Δx) � ∑∞
n�0

f (n)(xN)
n!

Δxn, (46)

where f (n)(x) � dnf (x)/dxn. If we now set

Δx � 1
f ′(xN ), (47)

so that the first order term in the expansion becomes constant as
N increases, we will have that

f ′(xN )Δx +∑∞
n�2

f (n)(xN)
n!

Δxn � 1 +∑∞
n�2

f (n)(xN)
n! f ′(xN)n. (48)

Hence, if we have that

lim
N→∞

f (n)(xN)
f ′(xN)n � 0, (49)

for n≥ 2, then in this limit, we will find

f (x) � f (xN) + f ′(xN)Δx � f (xN) + u, (50)

where we define

u � f ′(xN)Δx � Np(xN)(x − xN). (51)

Here we have used Eqs (40) and (44).

4.1 Sufficient Criterion for the Gumbel Class
If we combine Eq. 49 for n � 2 with Eqs 38 and 40, we find

lim
N→∞

f ′′(xN )
f ′(xN )2 � lim

N→∞

d
dx

[1 − P(x)
p(x) ]

x�xN
� 0, (52)

which is equivalent to
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lim
x→∞

d
dx

[1 − P(x)
p(x) ] � 0. (53)

Equation 53, which is equivalent to Eq. 39, is in fact a
sufficient condition for 49 to hold for all n> 1. We may show
this through induction. We have that

f (n+1)(x)
f ′(x)n+1 � 1

f ′(x)
d
dx

(f (n)(x)
f ′(x)n ) + f (n)(x)

f ′(x)n+2. (54)

If condition 52 is fulfilled, that is when the expression above is
zero in the limit x→∞ for n � 2, we also have that

lim
N→∞

f (3)(x)
f ′(x)3 � 0, (55)

since both terms on the right hand side of Eq. 54 are zero in this
limit. We now assume Eq. 49 to be true for some n> 3. We then
have that

lim
N→∞

f (n+1)(xN)
f ′(xN)n+1 � 0, (56)

again due to both terms on the right hand side of Eq. 54 are zero
in this limit. This completes the proof.

4.2 Return to the Derivation
We now combine Eq. 42 with Eq. 41 to find

P(x)N � [1 − e−u−f (xN )]N � [1 − e−u−lnN]N � [1 − e−u

N
]N . (57)

In the limit of N→∞, this becomes

Φ(u) � lim
N→∞

P(x)N � e−e
−u
, (58)

which is the Gumbel cumulative probability. Here −∞< u<∞.
The Gumbel probability density is given by

ϕ(u) � dΦ(u)
du

� e−u−e
−u
. (59)

We express the Gumbel cumulative probability in terms of the
original variable x using Eq. 51,

Φ(u) � Φ(Np(xN)(x − xN)) � e−e
−Np(xN )(x− xN ) � ~Φ(x). (60)

Hence, in terms of the original variable x, the Gumbel extreme
value distribution becomes

~ϕ(x) � d ~Φ(x)
dx

� Np(xN)e−Np(xN )(x− xN )−e−Np(xN )(x− xN ) . (61)

4.3 An Example: The Gaussian
Here is an example: the Gaussian. The Gaussian probability
density is given by

p(x) � e−x
2/2σ����
2πσ

√ , (62)

where σ is the square of the standard deviation. The cumulative
probability is

P(x) � 1
2
[1 + erf( x���

2σ
√ )], (63)

where erf(z) is the error function. In order to verify that the
Gaussian generates the Gumbel extreme distribution, we use the
sufficient condition 53,

lim
x→∞

d
dx

[1 − P(x)
p(x) ] � lim

x→∞

���
π

2σ

√
ex

2/2σx[1 − erf( x���
2σ

√ )] � 0.

(64)

The Gaussian cumulative probability in Eq. 63 has the
asymptotic form

FIGURE 3 | (A) The Gaussian and the corresponding Gumbel
distributions for σ � 1 andN � 100 andN � 1,000. (B) The histograms shown
here are based on data generated using the Box-Müller algorithm which
produces numbers distributed according to a Gaussian. Here σ � 1. The
histogram with the maximum to the left shows all the generated data. The
histogram with its maximum in the middle shows the largest number among
each sequence of numbers of length 100, and the histogram with the
rightmost maximum shows the largest number among each sequence of
numbers of length 1,000. For each sequence length, 107 such sequences
were generated.
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P(x) � 1 −
���
σ

2π

√
e−x

2/2σ

x
, (65)

for large x. We determine xN solving Eq. 43 using this asymptotic
form. We find

xN �
���������
σW(N2

2π
)

√
, (66)

where W(z) is the Lambert W function, also known as the
product logarithm, which is the solution to the equation
W(z)exp[W(z)] � z. For large arguments, it approaches the
natural logarithm, W(z)→ log(z) as z→∞ [16]. This gives us

Np(xN) �
���������
1
σ
W(N2

2π
)

√
, (67)

when inserting the expression for x � xN , Eq. 66 into Eq. 62.
Thus we may now express the variable u in the Gumbel
cumulative probability 57 in terms of the variables x, σ and N
using Eq. 51,

u � x

���������
1
σ
W(N2

2π
)

√
−W(N2

2π
). (68)

We show in Figure 3A the Gaussian and the corresponding
Gumbel distributions for σ � 1 and N � 100 and N � 1, 000. We
find that x100 � 2.375 and x1000 � 3.115. These are the confidence
intervals for 99% and 99.9%.

We show in Figure 3B a histogram based on numbers
distributed according to a Gaussian distribution using the
Box-Müller algorithm [14]. These numbers were grouped
together in sets of either N � 100 or N � 1, 000 elements. I
generated 107 such sets. The figure displays the two extreme
distributions for the two set sizes. This figure should be compared
to Figure 3A. In contrast to the two other extreme value
distributions, we see that there are visible discrepancies
between the calculated Gumbel distributions in Figure 3A and
the extreme value histograms in Figure 3B. We see furthermore
that the histogram for N � 1, 000 is closer to the calculated
Gumbel distribution than the histogram for N � 100. This is
due to the very slow convergence induced by the Lambert W
functions. Slow convergence is typical for the Gumbel extreme
value distributions. This slow convergence has been analyzed and
recently and through clever use of scaling methods remedied [17].

5 CONCLUDING REMARKS

We summarize the main results presented in this mini-review in
Table I.

We have only discussed the distributions associated with the
largest values of x except for the Weibull extreme value
distribution, Section 2. It is, however, easy to work out: just
transform x→ − x. Otherwise, the story presented here is rather
complete.

There is one remark that needs to be made, though. In the
derivation of the Gumbel extreme value distribution, Section 4,
we defined a variable xN in Eq. 43. First of all, xN defined in Eq. 43
may be calculated for any cumulative probability P(x) and it has
an interpretation making it very useful.

The probability density for the largest among N numbers
drawn using the probability distribution p(x) is given by

pN(x) � dP(x)N
dx

� NP(x)N− 1p(x). (69)

We calculate the average of the cumulative probability P(x)
for the extreme value based on N samples,

〈P(x)〉 � ∫∞

−∞
P(x)pN(x)dx � ∫1

0
PNdP � N

N + 1
� 1 − 1

N + 1
.

(70)

For large N, we may write this as

〈P(x)〉 � P(xN) � 1 − 1
N
, (71)

using here Eq. 43. Hence, we may interpret xN as the x value
corresponding to the average confidence interval of the largest
observed value in sequences of N numbers. It is essentially the
typical size of the extreme value for a sample of size N.
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Cooperative Dynamics in the Fiber
Bundle Model
Bikas K. Chakrabarti 1,2, Soumyajyoti Biswas3 and Srutarshi Pradhan4*

1Saha Institute of Nuclear Physics, Kolkata, India, 2S. N. Bose National Centre for Basic Sciences, Kolkata, India, 3SRMUniversity-
AP, Andhra Pradesh, India, 4PoreLab, Department of Physics, Norwegian University of Science and Technology, Trondheim,
Norway

We discuss the cooperative failure dynamics in the fiber bundle model where the individual
elements or fibers are Hookean springs that have identical spring constants but different
breaking strengths. When the bundle is stressed or strained, especially in the equal-load-
sharing scheme, the load supported by the failed fiber gets shared equally by the rest of the
surviving fibers. This mean-field-type statistical feature (absence of fluctuations) in the load-
sharing mechanism helped major analytical developments in the study of breaking
dynamics in the model and precise comparisons with simulation results. We intend to
present a brief review on these developments.

Keywords: fiber bundle model, dynamic cooperation, fixed-point solution, Universality, noise-induced failure
dynamics, self-organization

1 INTRODUCTION

Fiber bundle model (FBM) has been used widely for studying the fracture and failure [1] of
composite materials under external loading. The simplicity of the model allows us to achieve analytic
solutions [2–4] to an extent that is not possible in any other fracture models. For these very reasons,
FBM is widely used as a model of breakdown that extends beyond disordered solids. In fact, FBMwas
first introduced in connection with textile engineering [5]. Physicists took interest in it recently to
explore the critical failure dynamics and avalanche phenomena during such stress-induced failures
[6–9]. Apart from the classical fracture–failure in composites, FBM has been used successfully for
studying noise-induced (creep/fatigue) failure [10–14] where a fixed load is applied on the system
and external noise triggers the failure of elements. Furthermore, it was used as a model for other
geophysical phenomena, such as snow avalanche [15], land slides [16, 17], biological materials [18],
or even earthquakes [19]. In this review article, we concentrate only on the cooperative dynamical
aspects in FBM.

F. T. Peirce, a textile engineer, introduced the fiber bundle model [5] in 1926 to study the strength
of cotton yarn. Later, in 1945, Daniels discussed some static behavior of such a bundle [20] and the
model was brought to the attention of physicists in 1989 by Sornette [21] who started analyzing the
failure process. Even though FBM was designed initially as a model for the fracture or failure of a set
of parallel elements (fibers), having different breaking thresholds, with a collective load-sharing
scheme, the failure dynamics in the model shows all the attributes of the critical phenomena and the
associated phase transition. It seems, due to the usefulness and richness, FBM plays the same role (in
the field of fracture) as the Ising model in magnetism [22].

In FBM, a number of parallel Hookean springs or fibers are clamped between two horizontal
platforms (Figure 1). The breaking strengths of the springs or fibers are different. When the load per
fiber (stress) exceeds a fiber’s own threshold, it fails. The load it carries has to be shared by the
surviving fibers. If the lower platform deforms under loading while the upper platform remains rigid,
fibers in the neighborhood of the just-failed fiber will absorb more of the load compared to fibers
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sitting further away, and this arrangement is called the local-load-
sharing (LLS) scheme [23, 24]. If both the platforms are rigid, the load
has to be equally distributed among all the surviving fibers, which is
called the equal-load-sharing (ELS) scheme. Intermediate load
redistribution schemes are also studied (see, e.g., [25]), where a
part of the load is shared locally within a few fibers and the rest is
shared globally among all the fibers.

How does cooperative dynamics set in? In the case of ELS, all the
intact fibers carry the load equally. When a fiber fails, the stress level
increases on the remaining fibers and that can trigger more fiber
failures (successive failure). As long as the initial load is low, the
successive failures of the fibers remain small, and though the strain
(stretch) of the bundle growswith increasing stress (load), the bundle
as a whole does not fail. Once the initial load reaches a “critical”
value, determined by the fiber strength distribution, the successive
failures become global (catastrophic) and the bundle collapses.

We arrange this review article as follows: In the short
introduction (Section 1), we elaborate the concept of the
fiber bundle model and its evolution as a fracture model.
Section 2 deals with the equal-load-sharing FBM where we
demonstrate the dynamic behavior of FBM with evolution
dynamics and their solutions. Analytic results are compared
with numerical simulations in this section. In Section 3, we
discuss noise-induced failure dynamics in FBM through
theory, simulation, and real data analysis. The self-
organizing mechanism in FBM is discussed in Section 4.
We reserve Section 5 for discussions on some works that
would help to understand the cooperative dynamics in FBM.
Finally, we have a short Summary and Conclusion section
(Section 6) at the end.

2 EQUAL LOAD SHARING FBM

We consider an FBM having N parallel fibers placed between two
rigid bars. Each fiber follows Hook’s law with a force f to the
stretch value x as f � κx, where κ is the spring constant. To make
things simpler, we consider κ � 1 for all the fibers. Each fiber has a
particular strength threshold value and if the stretch x exceeds
this threshold, the fiber fails irreversibly. We are interested in the
equal-load-sharing (ELS) mode (the bars are rigid), and by
construction of the model, the applied load has to be shared
equally by the intact fibers.

Other than the analytical treatment of the model, several
aspects of the model are also explored numerically. The
implementation of the model, particularly in the equal
load sharing version we discuss here, is straightforward.
The load is initially applied to each fiber equally. The
fibers having failure thresholds less than the applied load
are irreversibly broken. The load carried by those fibers is
redistributed equally among the remaining fibers, which can
cause further breaking. The redistribution continues until no
new fibers are breaking. The external load is held constant
during the whole redistribution process. This is due to the
separation of time scales of externally applied loading rate
and the internal (elastic) relaxation processes within
materials. After the end of each redistribution cycle, the
external load is further increased to continue the
dynamics. This process continues until the entire system is
broken. The critical strength, avalanche statistics, and other
critical exponents are calculated from this dynamics, which,
as we will see, match well with the analytical results.

2.1 Fiber Strength Distributions
The fiber strength thresholds are drawn from a probability
density of p(x). The corresponding cumulative probability is

P(x) � ∫x

0
p(y)dy. (1)

The most used threshold distributions are uniform and
Weibull distributions (see Figure 2) in the FBM literature.

For a uniform distribution, we can write

p(x) � 1; P(x) � x, (2)

where, the range of function is between 0 and 1. The cumulative
Weibull distribution has the form:

P(x) � 1 − exp(−xk), (3)

where, k is the shape parameter or the Weibull index. The
corresponding probability distribution takes the form:

p(x) � kxk−1exp(−xk). (4)

The shapes of the uniform andWeibull distributions are shown
in Figure 2. The range of definition is between 0 and ∞.

2.2 The Critical Values
When we stretch the bundle by applying a force, the fibers fail
according to their thresholds, the weakest first, then the next

FIGURE 1 | A cartoon of the fiber bundle model where a macroscopically
large number (N) of Hookean springs, with identical spring constants but
different breaking thresholds, hang parallelly from an upper rigid bar and a load/
force F is applied at the lower horizontal rigid bar (not allowing any local
deformation of the bar and consequent local stress concentration). If any spring
fails at any time, the (extra) load is sharedby the surviving fibers at that time. In the
equal-load-sharing scheme, considered here, this extra load is shared equally by
all the surviving fibers (x denoting the strain of the surviving fibers).
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weakest, and so on. If Nf fibers have failed at a stretch value of x,
the force on the bundle is

F � (N − Nf )x � N(1 − P(x))x, (5)

as κ � 1. The normalized force (F/N) versus the stretch x curve
looks like a parabola (Figure 3).

It is obvious that the maximum of the force value is the
strength of the bundle, and the corresponding stretch value (xc) is
called the critical stretch beyond which the bundle collapses.
Therefore, we can define two distinct phases of the system: stable
phase for 0< x ≤ xc and unstable phase for x > xc.

The critical stretch value can be obtained easily by
setting dF(x)/dx � 0:

1 − xcp(xc) − P(xc) � 0. (6)

1. Uniform threshold distribution

Substituting the p(xc) and P(xc) values for uniform
distribution, we obtain

xc � (1
2
). (7)

Now inserting the xc value in the force expression (Eq. 5),
we get

Fc
N

� 1
4
; (8)

which is the critical strength of the bundle (Figure 3).

2. Weibull threshold distribution

In the case of Weibull distribution, at the force-maximum, by
inserting the P(x) and p(x) values into the expression (Eq. 6), we
obtain

exp(−xkc) − (xckxk−1c exp(−xkc)) � 0. (9)

One can get the critical stretch value

xc � k−1/k; (10)

and the corresponding critical force value

Fc
N

� k−1/k exp(−1
k
). (11)

For k � 1, xc � 1.0 and (Fc/N) � (1/e) (Figure 3).

FIGURE 3 | Normalized force (F/N) against extension x for a fiber bundle with uniform (xc � 0.5) and Weibull xc � 1, (1/3)1/3 , (1/5)1/5 for k � 1, 3, 5, respectively,
distributions of strengths (thresholds).

FIGURE 2 | The uniform and Weibull distributions of fiber strengths (thresholds).
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2.3 Different Ways of Loading
Now, we will discuss how the load or stress can be applied on the
bundle. In the FBM literature, the most common loading
mechanism discussed [26, 27] is the -weakest-link-failure
mechanism of loading. This loading process ensures a
separation in time scales between external loading and internal
stress redistribution. This is equivalent to a quasi-static approach,
and noise/fluctuation in the threshold distribution influences the
breaking dynamics as well as the avalanche statistics.

A fiber bundle can also be loaded in a different way by
applying a fixed amount of load at a time. In that case, all fibers
having a failure threshold below the applied load, fail. The stress
on the surviving fibers then increases due to load redistribution.
The increased stress may drive further failures, and so on. This
iterative breaking process continues until an equilibrium is
reached where the intact fibers (those who can support the
load) is reached. One can also study the failure dynamics of the
bundle when the external load on the bundle is then increased
infinitesimally, but by a fixed amount (irrespective of the
fluctuations in the fiber strength distribution as discussed
above). Indeed, as shown recently in Biswas and Chakrabarti
[28], the universality class of the dynamics of such fixed loading
(even for the same ELS mode of load redistribution after
individual fiber failure) will be different from that for the
quasi-static (or weakest link failure type) loading discussed
above and is given by the Flory statistics [29] for linear
polymers, accommodating the Kolmogorov-type dispersion in
turbulence [30].

2.4 The Cooperative Dynamics
We are going to discuss the cooperative dynamical behavior of the
breaking processes for the bundle loaded by fixed amount per step
(following the formulations in the References [1, 2, 4, 8, 26,
27, 31]).

Let us assume that an external force F is applied to the fiber
bundle. The stress on the bundle (the external load per fiber) is

σ � F/N. (12)

Let us call Nt to be the number of surviving fibers after t steps
in the stress redistribution cycle, with N0 � N .

Now, the effective stress becomes

σ t � Nσ/Nt . (13)

Therefore, NP(Nσ/Nt) of fibers will fail in the first stress
redistribution cycle. The number of intact fibers in the next cycle
will be

Nt+1 � N − NP(Nσ/Nt). (14)

Using nt � Nt/N , Eq. (14) takes the form of a recursion
relation,

nt+1 � 1 − P(σ/nt), (15)

with σ as the control parameter and n0 � 1 as the start value.
The character of an iterative dynamics is determined by its

fixed points (denoted by *) where a dynamical variable remains
exactly at the same value it had in the previous step of the

dynamics. In other words, a fixed point is a value (of a dynamical
variable) that is mapped onto itself by the iteration. The dynamics
stops or it becomes locked at the fixed point.

One can find out the possible fixed points n* of (15), which
satisfy

np � 1 − P(σ/np), (16)

and the solutions of the breaking dynamics at the fixed point.

2.5 The Critical Exponents
If we consider that the fiber strengths follow uniform distribution,
the recursion relation can be written as

nt+1 � 1 − σ/nt , (17)

Consequently, at the fixed point, the relation assumes a simple
form

(np)2 − np + σ � 0, (18)

with solution

n* � 1
2
± (σc − σ)1/2. (19)

Here the critical stress value is σc � (1/4), beyond which the
bundle collapses completely. In Eq. 19, the upper sign gives
np > nc, which corresponds to a stable fixed point. From this
solution, it is easy to derive the order parameter, susceptibility,
and relaxation time (all defined below).

The fixed-point solution gives the critical value (σ � σc).

np
c �

1
2
. (20)

Therefore, the fixed-point solution can be presented as

np(σ) − np
c ∝ (σc − σ)β, β � 1

2
. (21)

Clearly, n*(σ) − n*c can be considered like an order parameter,
which shows a clear transition from nonzero to zero value at σc.

The susceptibility is defined as χ � −dnp/dσ and the fixed-
point solution gives

χ∝ (σc − σ)− c, c � 1
2
; (22)

which follows a power law and diverges at the critical point σc.
The dynamical approach very near a fixed point is very

interesting, and this can be investigated by expanding the
differences nt − n* around the fixed point. In the case of
uniform distribution, the recursion relation (Eq. 17), gives

nt+1 − np � σ

np
− σ

nt
� σ

ntnp
(nt − np)x σ

np2
(nt − np). (23)

Clearly, the fixed point is approached with exponentially
decreasing steps:

nt − n*∝ e−t/τ, (24)

where τ is a relaxation parameter, dependent on stress value:
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τ � 1/ln(np2/σ) � 1/ln⎡⎣(1
2
+

�����
1
4
− σ

√
)2/σ⎤⎦. (25)

At the critical stress, σ � σc � 1/4, the argument of the
logarithm is 1 and apparently τ is infinite. As the critical stress
is approached for σ→ σc.

τx
1
4
(σc − σ)− θ with θ � 1

2
. (26)

This divergence clearly shows the character of the breaking
dynamics, that is, it becomes very slow at the critical point.

2.6 Universal Behavior
The recursion relation and the fixed point solutions demonstrated
the dynamic critical behavior for the uniform distribution of the
breaking thresholds. Now the question arises—how general the
results are? The universality of the cooperative breaking dynamics
can be verified by considering a different distribution of fiber
strengths. We are now going to examine the situation for a
linearly increasing distribution (Figure 4) within the
interval (0, 1),

p(x) � { 2x, 0≤ x ≤ 1,
0, x > 1.

(27)

From the force–stretch relationship, the average force per
fiber is

F(x)/N � { x(1 − x2), 0≤ x ≤ 1,
0, x > 1. (28)

Therefore, the critical point is

σc � 2
3

�
3

√ . (29)

In this case, the breaking dynamics can be written as a
recursion relation:

nt+1 � 1 − (σ/nt)2, (30)

and the fixed-point equation is

(np)3 − (np)2 + σ2 � 0, (31)

that is, a cubic equation in n*. Clearly, there are three solutions of
n* for a value of σ. At the critical stress value, σc � 2/3

�
3

√
, the only

acceptable solution of Eq. 31 is

np
c �

2
3
. (32)

We want to investigate the breaking dynamics in the
neighborhood of the critical point. Therefore, we insert n � 2/3 +
(n − nc) into (Eq. 30), with the result

4
27

− (n − nc)2 − (n − nc)3 � σ2 � ( 2
3

�
3

√ + σ − σc)
2

� 4
27

+ 4
3

�
3

√ (σ − σc) + (σ − σc)2.
(33)

We get (to leading order)

(n − nc)2 � 4
3

�
3

√ (σc − σ). (34)

Obviously, for σ ≤ σc the order parameter behaves as

n(σ) − nc ∝ (σc − σ)β, β � 1
2
, (35)

in accordance with (Eq. 21). The susceptibility χ � −dn/dσ gives

χ∝ (σc − σ)− c, c � 1
2
. (36)

We can also discuss how the stable fixed point is
approached from below. From Eq. 30, one can write,
around the fixed point,

nt+1 − np � σ2

np2
− σ2

n2
t

� σ2

np2n2
t

(n2
t − np2)x(nt − np) 2σ

2

np3
. (37)

The approach is clearly exponential,

nt − np ∝ e−t/τ with τ � 1
ln(np3/2σ2). (38)

The argument of the logarithm becomes 1 exactly at the
critical point; therefore, τ diverges when the critical state is
approached. The nature of such divergence assumes the same
form,

τ∝ (σc − σ)− θ, θ � 1
2
, (39)

which is similar to the model with a uniform fiber strength
distribution, Eq. 26.

We can now conclude that the ELS FBM with a linearly
increasing fiber strength distribution possesses the same
critical power laws as the ELS FBM with a uniform fiber
strength distribution. This confirms that the critical properties

FIGURE 4 | The linearly increasing fiber strength distribution.
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of cooperative breaking dynamics are universal. A general
treatment for verifying universality in ELS FBM can be found
in Reference [26].

2.7 Two-Sided Critical Divergence
When a fixed amount of load is applied on the system, the
iterative breaking process ends with one of the two possible end
results. Either the whole bundle collapses, or an equilibrium
situation is reached where intact fibers can hold/support the
applied load/stress. Thus, the final fate of the bundle depends on
whether the external stress σ on the bundle is postcritical (σ > σc),
precritical (σ < σc), or critical (σ � σc). It is interesting to know
how the breaking dynamics is approaching the critical point
(failure point) from below (precritical) and above (postcritical)
stress values.

In the case of uniform fiber strength distribution when the
external stress approaches the critical value of σc � 1/4 from a
higher value, that is, in the postcritical region, the number of
necessary iterations needed for the whole system to break increases
as the critical point is approached. Close to the critical point, the
number of iterations shows a square root divergence [8]:

tfx
1
2
π(σ − σc)− 1/2. (40)

Similarly, in the precritical region, when the external stress
approaches the critical value of σc � 1/4 from below, the number
of iterations has again a square root divergence [8] (for uniform
distribution) close to the critical point:

tf � 1
4
ln(N)(σc − σ)− 1/2. (41)

The only difference is that, in precritical case, the amplitude of
the square root divergence has a system-size-dependence, which
is absent in the postcritical case.

We can conclude that in ELS FBM, the breaking dynamics
shows a two-sided critical divergence in terms of the number of
iteration steps needed to reach critical points from below
(precritical) and above (postcritical) (Figure 5). The
theoretical details of the exact solutions can be found in
References [8, 26].

2.8 Avalanche Dynamics With Fixed Amount
Loading
The number of fibers (S) breaking between two successive stable
conditions of the fiber bundle is called an avalanche. The distribution
of the avalanche sizes P(S) shows a power-law tail for the large S
limit [6], which is a sign of the criticality discussed above. This is
experimentally widely observed for driven disordered systems in
general [31] and for quasi-brittle/ductile fracture in particular.While
the details of the avalanche dynamics seen in the fiber bundle model
with quasi-static load increase has been discussed elsewhere in this
special issue [32], here we briefly describe the avalanche dynamics
for fixed amount load increase, that is, when the system is in a stable
condition, a fixed amount of load δ is added, which restarts the
dynamics. As before, the number of fibers breaking until the system
reaches the next stable state constitutes an avalanche. Clearly, this
type of avalanche is a result of the cooperative breaking dynamics,
and it is not arising due to any fluctuations in stress levels or in fiber
strength distribution. We will describe below how to calculate
theoretically the distribution of such avalanches.

The load curve, in terms of the threshold values, can be
written as

F(x) � Nx(1 − x). (42)

For the uniform threshold distribution in (0, 1) (see Eq. 5).
The load increases between 0 and N/4 with an increment of δ.
Therefore, the values of the load are mδ, with

FIGURE 5 | Postcritical and precritical relaxation: Numerical data are for a
bundle with N � 106 fibers having uniform threshold distribution and averages
are taken over 105 samples. Lines are showing theoretical estimates.

FIGURE 6 | Phase boundary (σ0 vs. T plot) for three different types of
fiber strength distributions with N � 20000. Data points are simulation results
and solid lines are analytic estimates (Eq. 50) based on mean-field arguments.

Frontiers in Physics | www.frontiersin.org February 2021 | Volume 8 | Article 6133926

Chakrabarti et al. Cooperative Dynamics in the FBM

54

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


m � 0, 1, 2, . . . ,N/4δ. The threshold value for load mδ can be
obtained from (Eq. 4) as

xm � 1
2
(1 − ����������

1 − 4mδ/N√ ). (43)

The average number of fibers broken due to the increase of
load from mδ to (m + 1)δ is

S � N
dxm
dm

� δ����������
1 − 4mδ/N√ . (44)

The number of avalanches of size between S and S + dS is
obtained from the corresponding interval of the variable m, that
is, P(S)dS � dm. From the equation above, we have

dS
dm

� 2S3

(Nδ). (45)

Therefore, the avalanche size distribution is given by

P(S) � dm
dS

� 1
2
NδS−3, for S≥ δ. (46)

Indeed, it is possible to show [26] that for an arbitrary
threshold distribution, p(x), the large S asymptotic limits of
the avalanche size distribution is

P(S) ∼ CS−3, (47)

with C � (Nδp(xc)2/2p(x) + xcp′(xc)), with the mild assumption
that the load curve has a generic parabolic form with a
critical point.

3 NOISE-INDUCED FAILURE IN FBM

So far we have discussed the classical stress-induced failure of fibers
without the presence of noise. A noise-induced failure scheme for
the fiber bundle model can be formulated [13, 14, 33] for which the
cooperative failure dynamics can be solved analytically.

As in the previous sections, we consider a bundle of N parallel
fibers clamped between two rigid bars. A load or force (F � σN)

is applied on the bundle. The fibers have different strength
thresholds (x), and there is a critical strength σc [1] for the
whole bundle, so that the bundle does not fail completely for
stress σ ≤ σc, but it fails immediately for σ > σc. Now we introduce
noise (T) in the system and assume that each fiber having the
strength of xi has a finite probability Pf (σ,T) of failure at any
stress σ induced by a noise T:

Pf (σ,T) �
⎧⎪⎨⎪⎩

Cexp[ − 1
T
(xi
σ
− 1)], 0≤ σ ≤ xi,

1, σ > xi.
(48)

Here C is a prefactor. Pf (σ,T) increases as T increases and for
a fixed value of T and σc, as we increase σ, the bundle breaks more
rapidly. The motivation behind (Eq. 48) comes from the time-
dependent behavior or the so-called creep behavior of materials,
observed in real systems [10, 26]. It is obvious that the strength of
elements/fibers degrades in time due to external influences like
moisture, temperature, etc.

Such a noise-induced failure scheme will produce two
different failure regimes depending on the stress and noise
levels—continuous breaking regime and intermittent breaking
regime. In the continuous breaking regime, we can calculate the
failure time (step) as a function of stress and noise values.
However, in the intermittent breaking regime, one can define
the waiting time between two consecutive failure phases.

The phase boundary can be determined through a mean-field
argument that at σ � σ0, at least one fiber must break to trigger
the continuous fracturing process. After this single failure, the
applied load has to be redistributed on the intact fibers (due to
ELS) and the effective stress will surely increase (more than σ0),
which in turn enhances failure probability for all the intact fibers.
Following this logic, in the case of a homogeneous bundle where
all the fibers have identical strength, xi � 1 (and σc � 1), at the
phase boundary NPf (σ0,T)≥ 1 giving

N exp[ − 1
T
( 1
σ0

− 1)]≥ 1. (49)

which finally gives

FIGURE 7 | Failure time versus σ (left) and versus T (right) for a homogeneous bundle having identical fibers with a strength of 1 (σc � 1 as well). The data are for
simulations over a single realization with a system size of N � 1000000, and the solid lines are the theoretical estimates following (Eq. 55).
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σ0 ≥
1

1 − T log(1/N). (50)

In absence of noise, when T � 0, the above equation gives
σ0 � 1 � σc, which is consistent with the static FBM results [1].
This analytic estimate overlaps with the data obtained from
simulation (Figure 6). It shows that the continuous and
intermittent fracturing regimes are separated by a well-defined
phase boundary, which depends on both the stress level and the
noise level [33].

In the case of heterogeneous FBMs where fibers have different
strength thresholds, keeping in mind that in absence of noise T,
we should always get σ0 � σc, one can make a conjecture that

σ0 ≥
σc

1 − T log(1/N). (51)

The numerical data for the heterogeneous cases (Figure 6)
having uniform and Weibull-type fiber strength distributions
supports the conjecture well [33].

Identification of such a phase boundary has important
consequences in material-fracturing and in other similar
fracture-breakdown phenomena. During material/rock
fracturing, acoustic emission (AE) measurements can record
the burst or avalanche events in terms of AE amplitude and
AE energy [34]. Therefore, AE data could reveal the correct
rupture-phase of a material body under stress. Once a system
enters into continuous rupture phase, the system collapse must be
imminent. Thus, identification of the rupture phase can guide us
to visualize the final fate of a system. It can also help to stop
system collapse, if it is possible to withdraw external stress in time
before the system enters into continuous rupture phase.

We will now discuss cooperative dynamics in both these
regimes in the following sub-sections.

3.1 Continuous Breaking Regime
In the continuous breaking regime, one can describe the breaking
dynamics in an FBM through a recursion relation [14]. Let us
consider a homogeneous bundle having N fibers with exactly the

FIGURE 8 | Failure time versus σ (left) and versus T (right) for bundles having uniform strength distributions. The data are for simulations over 1000 realizations with a
system size of N � 106, and the solid lines are the theoretical estimates following (Eq. 56).

FIGURE 9 | Left: The simulation results for the waiting time distributions for three different types of fiber strength distributions, withN � 20000. All the curves can be
fitted with the Gamma form exp(−tW /a)/t1−cW , where c � 0.15 is for the homogeneous case and c � 0.26 is for uniform andWeibull distributions.Right:we show the data
collapse of the waiting time distributions with system sizes for uniform fiber strength distribution.
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same strength thresholds of 1; therefore, critical (or failure)
strength of the bundle is σc � 1. Now, we consider a noise-
induced failure probability for breaking of each fiber in the
continuous regime:

Pf (σ,T) �
⎧⎪⎨⎪⎩

σ

σc
exp[ − 1

T
(xi
σ
− 1)], 0≤ σ ≤ xi,

1, σ > xi.
(52)

As all the fibers are identical, xi � 1 � σc. The prefactor is a
function of stress level σ, and this is a careful choice to get a
solution of the recursive dynamics, which we will describe below.

We denote the fraction of total fibers that remain intact at time
(step) t by nt and the breaking dynamics can be written as

nt+1 � nt[1 − Pf(σ

nt
,T)]. (53)

In the continuum limit, the above recursion relation can be
presented in a differential form

−dn
dt

� σ

σc
exp[ − 1

T
(σc
σ
n − 1)]. (54)

Giving the failure time

tf � T exp(−1
T
)[exp( σc

σT
) − 1]. (55)

The simulation result shows (Figure 7) the exact agreement
with this theoretical estimate.

In the case of heterogeneous bundles where fibers have
distributed strengths, the failure times seem to follow another
form [14]:

tf � T exp(−1
T
)[exp( σc

σT
+ 1
T
) − 1]. (56)

This form was obtained through a trial and error approach. It
is extremely difficult (as of now) to write the recursion relation for
noise-induced failure dynamics in the case of heterogeneous
systems. The simulation results have been compared with the
formula above, and the agreement (Figure 8) is quite
satisfactory [14].

3.2 Intermittent Regime
As we discussed before, in the intermittent fracturing phase,
simultaneous breaking events (avalanches) are separated by
waiting times (tW) of different magnitudes. The waiting time
distribution can be fitted with a Gamma distribution [33] for both
homogeneous and heterogeneous bundles

D(tW)∝ exp(−tW/a)/t1−cW (57)

where c � 0.15 for homogeneous case and c � 0.26 for
heterogeneous cases (Figure 9). Here a is a measure of the
extent of the power law regime, and it seems that the power
law exponent does not change with the variation of σ, T,
and N [33].

In the waiting time distributions, the power law part
dominates for small tW values and exponential law dominates

for bigger tW values. The inherent global load sharing nature is
responsible for the power law part of the Gamma distribution, as
power law usually comes from a long range cooperative
mechanism [6, 35, 36]. The exponential part of the Gamma
distribution is contributed by the noise-induced failure factor
Pf (σ,T). For large tW values, one can eventually treat the failures
to be independent. If P indicates the noise-induced failure
probability within tW , then the probability
D(tW) � A(1 − P)tWN ∼ exp(−PtWN), where A is a constant.
The normalization of D(tW) requires A ∼ N. Though for
smaller values of tW , one cannot ignore the correlations
between successive failures (responsible for the power law part
in D(tW)), the exponential scaling behavior for D(tW) can be
easily obtained from the above. As shown in the inset of Figure 9,
the plot of D(tW)/N against tWN gives good data collapse for
differentN values. Such a data collapse indicates the robustness of
the Gamma function form. It is not clear yet whether the Gamma-
type distribution is a direct consequence of the failure probability
function (Eq. 48). It needs more investigations with various other
types of possibilities for Eq. 48.

Apparently, the modeling scheme for noise-induced rupture
process is not limited to any particular system, rather it is a
general approach and perhaps it can model more complex
situations like rupture-driven earthquakes. In literature, we
can find evidences of stress-localization around fracture/fault
lines in an active seismic-zone. Also, there are several factors
that can help rupture evolution, like friction, plasticity, fluid
migration, spatial heterogeneities, chemical reactions, etc. To
some extent, such stress redistribution/localization can be taken
into account through a proper load sharing scheme and a noise
term (T) can in principle represent the combined effect of all
other factors.

To compare the waiting time results of the model system with
real data, the California earthquake catalog from 1984 to 2002
[37] has been analyzed [33] to study the statistics of waiting times

FIGURE 10 | Gamma-fitting (dotted lines) to the waiting time
distributions in California catalog (1984–2002).
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[38–40] between earthquake events. First, a cutoff (mc) has been
set in the earthquake magnitude, so that all earthquake events
above this cutoff magnitude will be considered for the analysis.
The distribution of waiting times shows similar variation for
different cutoff values. It seems [33] waiting time distributions for
all the data sets follow a Gamma distribution [38]:

D(tW)∝ exp(−tW/a)/t(1−c)W ; (58)

with same γ (x 0.1) and different a values for different cutoff
levels: a � 30, 120, 500, 2000, respectively, formc � 2.5, 3.0, 3.5, 4.0
(see Figure 10).

The similarities in waiting time statistics and scaling forms
suggest that slowly driven (noise-induced) fracturing process and
earthquake dynamics (stick-slip mechanism) perhaps have some
common origin.

4 INTERFACE PROPAGATION IN THE
FIBER BUNDLES: SELF-ORGANIZATION
AND DEPINNING TRANSITION
So far we have considered FBM versions that are globally loaded,
that is, all the fibers in the system are loaded equally from the
initial time, and the load remains equal on each surviving fiber,
given that the load sharing is equal. This necessarily implies that
the damage or failures in the system could occur at any point;
indeed, there is no notion of distance in this form of the model.

However, in fracture dynamics, particularly in the mode-1
variant of it, a front could propagate in the direction transverse to
that of the loading. A fracture front necessarily implies damage
localization within a region with a lower dimension than that of
the system, that is, a front-line in two dimensions or a front
surface in a three-dimensional system. Indeed, front propagation
driven through a disordered medium is not limited to fracture; it
also happens in the vortex lines in superconductors [41],
magnetic domain walls in magnetic materials with impurities
[42], contact line dynamics in wetting [43], and so on.

In the context of FBM, it is possible to capture the dynamics of
a front propagating through a disordered medium by considering
a localized loading of the system (when the fibers are arranged in

a square lattice and the load is applied at an arbitrarily chosen
central site; see Figure 11) in dimension higher than one (in one
dimension, the damage interface is a point and hence cannot
increase). The external load is increased at a low and constant rate
(maintaining the separation of time scales between applied
loading rate and redistribution process) [44]. Initially, the
system is not loaded anywhere except for the one fiber at an
arbitrarily chosen central site. As the external load increased
beyond the failure threshold of the said central fiber, it breaks and
the load carried by that fiber is redistributed among the fibers that
are in the damage boundary (in the beginning just the four
nearest neighbors). Therefore, the fibers that are newly exposed to
the load after an avalanche carry a lower load compared to those
accumulating loads from the earlier avalanches. This process
keeps a compact structure of the cluster of the broken fibers. The
localized nature of the load redistribution is justified from the fact
that the newly exposed fibers are further away from the point of
loading and therefore carry a smaller fraction of the load at the
original central site.

FIGURE 11 | A schematic representation of locally loaded fiber bundle model and the resulting interface propagation. From [44].

FIGURE 12 | The avalanche size distributions are plotted for zero and
finite lower cutoffs for Model II. The distribution function is a power law with an
exponent value of 1.50 ± 0.01, which is also our estimate from scaling
arguments. Inset: The distribution of avalanche duration is plotted for
Model II. This also shows a power law decay with an exponent value of
2.00 ± 0.01. From [44].
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As the damage perimeter increases, so does the number of
fibers on that perimeter. This implies that for an avalanche, the
load per fiber will decrease along the damage boundary. But due
to a further increase in the load, this value will subsequently
increase, initiating another avalanche. In the steady state, the load
per fiber value will fluctuate around a constant and the system is
said to have reached a self-organized state. In this state, the failure
of fibers in the process of avalanches has a scale-free size
distribution, which suggests that it is a self-organized critical
(SOC) state (where external drive and dissipation balance and the
critical point becomes an attractive fixed point [31]).

The steady-state value of the load per fiber and the
corresponding avalanche size distribution can be calculated
for a variant of this model where the load redistribution is
uniform along the entire damage boundary, that is, every fiber
along the damage boundary gets the same fraction of load in a
redistribution process. We discuss this for the Weibull
distribution below, but this is true for other distributions
as well.

The Weibull distribution in its general form can be written as

Wα,β(x) � αβxα−1e−βx
α
, (59)

where α and β are the two parameters. We can consider the
particular case when α � 2 and β � 1. The failure threshold of a
fiber is greater than x with a probability that is proportional to∫∞
x
x′e

−x′
2

dx′ ∼ e−x2 . Given that the probability density function
for force is uniform, the probability of a fiber having a load
between x and x + dx is e−x2P(x)dx, with P(x) � c
(unnormalized). The normalization gives c∫∞

0
e−x2dx � 1,

implying c � 2/
��
π

√
. Hence, the normalized probability density

function for the load on the surviving fibers is

Dσ(x) � 2��
π

√ e−x
2
. (60)

Similarly, the probability that the load is lower than x is
proportional to x. Using the form for threshold distribution
( ∼ xe−x2 ), the probability density function for the threshold
distribution of the survived fibers becomes

Dth(x) � 4��
π

√ x2e−x
2
. (61)

Both of these functions are in good agreement with numerical
simulations. Also, the saturation value of the average load per
fiber can be calculated as

∫∞

0
xDσ(x)dx � 2��

π
√ ∫∞

0
xe−x

2
dx � 1��

π
√ , (62)

which is again in good agreement with simulations.
The size distribution of avalanches is a power law with the

exponent value close to 3/2 (see Figure 12), which is in agreement
with the scaling prediction of avalanche size distributions in SOC
models for the mean field. The distribution of the avalanche
duration, that is, the number of redistribution steps for an
avalanche, is a power law with an exponent value close to
2.00 ± 0.01, which is again in agreement with the scaling
predictions of the SOC models in mean field.

For estimating the avalanche size exponent, it can be assumed
that the average load per fiber on the damage boundary has a
distribution, which is Gaussian around its mean:
P(σ) ∼ e−(σ−σc)

2/δσ . Hence, from a dimensional analysis, mean-
squared fluctuation is δσ ∼ (σ − σc)2. Also, the avalanche size S
scales as (δσ)− 1 , as it may be viewed as the number of broken
fibers after a load increase of δσ. This gives

(σ − σc) ∼ S−1/2. (63)

The probability of an avalanche being of the size between S and
S + dS is D(S)dS. Now, the deviation from the critical point scales
[1] with the cumulative size of all avalanches up to that point;
giving (σ − σc) ∼ ∫∞

S
D(S)dS. If we take D(S) ∼ S−c, then

(σ − σc) ∼ S1−c. (64)

By comparing Eqs. 63 and 64, we have c � 3/2. So, the
probability density function for the avalanche size becomes
D(S) ∼ S−3/2, which fits well with simulation results (Figure 12).

5 SOME RELATED WORKS ON THE
DYNAMICS OF FBM

In this section, we would like to bring attention to some related
works on the dynamics of FBM which, we believe, may be
regarded as essential reading in this field.

As we have discussed in detail in the earlier sections, there has
been considerable progress in characterizing the failure dynamics
in the fiber bundle model through tools describing critical
phenomena. One crucial step toward that direction is to
identify the universality class of the model. That often needs a
coarse grained description of the model, writing down the free
energy form suited for the dynamics and then identifying the
symmetries and consequently the universality class. One such
step was done in Ref. [45] by writing down a mesoscopic
description of the ELS-FBM. By specifically, writing the time
evolution of the order parameter n(σ) − nc � η and the driving
field (stress increase) as J � σc − σ, the dynamics is described by

zη

zt
� −η2 + J. (65)

Writing in terms of the density of intact fibers n,

zn
zt

� λn(1 − n) − σ, (66)

with λ � 1. This equation has a particle-hole symmetry for zero
external field σ � 0; hence, it is generally expected to be in the
CDP or compact domain growth universality class of non-
equilibrium phase transition [46]. Although done for the ELS
version, this approach of relating fiber bundle model dynamics to
nonequilibrium critical phenomena through a Langevin equation
could provide useful insights into more realistic versions.

Among other attempts to relate fracture and in particular FBM
dynamics with different universality classes, a relatively less
explored route is that of the hydrodynamics of turbulence.
The analogy between the velocity fluctuation in turbulence
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and surface roughness due to fracture have been explored before
[47]. However, given that FBM is able to provide a reasonably
consistent picture for fracture dynamics, its association with
hydrodynamics of fracture is a crucial question. In Ref. [28],
the relation between the Kolmogorov energy dispersion in
turbulence and avalanche dynamics in the FBM was explored.
Specifically, the vortex lines in a fully developed turbulence can be
mapped to self-avoiding walk (SAW) picture of polymers [48].
Then, following Flory’s theory [29], the Kolmogorov energy
dispersion becomes

Eq ∼ q−1/]F , (67)

where q is the wave number, ]F is the Flory exponent, and d is the
spatial dimension. Then, drawing the parallel with the energy
dispersion in avalanche dynamics in the FBM (see Eq. 47), we get
Eq ∼ q−d/3 for the mean field case (i.e., d � du, the upper critical
dimension). By taking du � 6, which is consistent for the FBM
[49], we get back the Flory mean field result Eq ∼ q−2. In parallel,
by taking the correlation length as inverse of the wave number q,
and using finite size-scaling arguments, one can show that ]d �
2/3 in the mean field limit, where ν is the correlation length
exponent. Again using d � 6 as the upper critical dimension, one
gets ] � 1/4.

It may be noted that there is also a gratifying consistency in the
main results discussed above. In the ELS FBM, the critical
exponents β, γ and ν for the order parameter, breakdown
susceptibility and correlation length respectively satisfy the
Rushbrooke scaling relation (incorporating the hyperscaling
relation) [50] : 2β + c � d], with β � 1/2 � c along with the
value of the upper critical dimension d � 6 and ] � 1/4.

Given that the fiber bundle is essentially an ensemble of
discrete elements having finite failure thresholds, under the

condition of conserved load, it can serve as a generic model
for intermittent progress toward catastrophic failure in a wide
variety of systems. Such systems can be roads carrying traffic,
power grids, or redundant computer circuitry. In several of such
cases, the load redistribution following the failure of an individual
element (say, traffic jam along one road, failure of one power
station, etc.) is controllable to some extent–a freedom lacking in
the case of stressed disordered solids. Under such circumstances,
it is useful to ask the question as to how the total load-carrying
capacity of the system could be maximized by a suitable load
redistribution rule [51].

It is rather straightforward to establish that the maximum
limit of σc would be achieved when the maximum number of
fibers carry loads to their fullest capacity. For a uniform
distribution of the failure thresholds in (0, 1), it is possible
to show that for loading in a discrete step the limiting value for
the critical load is

�
2

√ − 1 and for quasi-static loading, it is 3/8.
The remaining question, therefore, is to find the rule of load
transfer following a local failure that can achieve the global
failure threshold in the closest proximity to the
abovementioned limits.

Intuitively, it is clear that a higher share of load should be
transferred to the fibers with higher capacity. Generally, it is
useful to assume that the transfer rule would be of the form
A(fi − σ i)b, where fi and σ i are, respectively, the failure threshold
and load of the i-th element; A is an appropriate constant to
ensure load conservation and b is a parameter.

The dynamics, as discussed before, depends on whether the
load is applied in a discrete step or gradually. The maximization
of the strength of the system would also, therefore, depend on the
loading protocol. The only parameter to tune here is b. It is
possible to calculate analytically that the maximum strength is
indeed achieved with this redistribution rule for b � 1 for the

FIGURE 13 | The phase diagram in the b − σc plane (b represents the anisotropy in the load redistribution process) is shown for (a) discrete step and (b) quasi-static
loading for various fractional errors in the knowledge of the threshold values of the individual fibers (curves from top to below are for e � 0.0,0.1, 0.2, 0.3, 0.4, 0.5, 0.75).
The upper bounds for both cases are shown, which are reached for b � 1 (a) and b→∞ (b). From [51].
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discrete step loading and b→∞ (practically achieved for b ≈ 10)
for quasi-static loading (see Figure 13).

An important information in implementing the redistribution
rule is the exact knowledge of the failure thresholds of all the
surviving elements. This requirement may not be always fulfilled.
Assuming that there is a (fractional) error e in the knowledge of
the failure thresholds, numerical simulations show (see
Figure 13) that the redistribution rule still gives better results
than a uniform redistribution. Therefore, in situations where the
load redistribution is controllable, the redistribution rule
mentioned above gives the best possible outcome.

We would like to mention that cooperative dynamics appears
in another class of fiber bundle models where fibers are treated as
viscoelastic elements [52–54]. The readers can go through [55]
(appearing in the same research topic: The fiber bundle) for a
review on viscoelastic fiber bundle models.

6 SUMMARY AND CONCLUSION

One can easily see that the fiber bundle model (FBM) introduced
by Peirce [5] in 1926 as a model to understand the strength of
composite materials is extremely elegant. As mentioned before,
the model consists of a macroscopically large number of parallel
fibers/springs with linear elastic behavior and of identical length.
The breaking thresholds, however, are different for each fiber and
are drawn from a probability distribution. All these fibers/springs
hang from a rigid horizontal platform. The load on the bundle is
applied at the lower horizontal platform. This lower platform has
been assumed here to be rigid, implying that the stress or load
share per surviving fibers/springs is equal, irrespective of how
many fibers or springs might have broken (equal load sharing or
ELS scheme). It may be mentioned that we have not discussed
here the extensive studies on fiber bundle models with local load
sharing (LLS) schemes, for which the readers may be advised to
consult Refs. [1, 26], and the “impregnated fiber bundle” models
for which the readers may be referred to Refs. [56, 57].

As discussed in this review, the failure dynamics of the FBM
under the ELS scheme of load sharing have been analyzed for
long, both analytically as well as numerically by several
distinguished groups of investigators from engineering,
physics, and applied mathematics. The results may be briefly
summarized as follows: After introducing the model, we have
described the dynamics of the equal load sharing (ELS) fiber
bundle model in Section 2. Specifically, in this section, we discuss
and summarize works (Refs. [1, 2, 4, 8, 28], see also [26, 40, 41])
related to the cooperative failure dynamics in the ELS fiber bundle
model having a large number of fibers with different strength
thresholds. We start this section by describing the force
displacement relation (load curve) when the bundle is
stretched by an amount x. The maximum point of this curve
gives the strength of the whole bundle. One can easily derive the
strength of the bundle for different fiber threshold distributions.
We have chosen uniform and Weibull distributions as examples
and derive bundles’ strength as critical displacement (xc) and
critical force (Fc). Next, we describe how to formulate the
dynamics of failure through a recursion relation in case of

loading by discrete steps when fiber thresholds are uniformly
distributed. The solution of the recursion relation at the fixed
point gives some important information of the failure dynamics:
Order parameter goes to zero following a power law as the applied
stress values approach a critical value and both susceptibility and
relaxation time diverge at the critical stress following well-defined
power laws (see [4, 8, 42]). To check the universality of the failure
dynamics, we choose different types of fiber strength distributions
(linearly increasing) and derive the fixed-point solutions. The
exponent values of the power laws for order parameter,
susceptibility, and relaxation time variations are exactly the
same as the model with a uniform distribution and therefore
the failure dynamics in ELS fiber bundle model is universal. In
addition, we present the exact solutions for pre- and post-critical
relaxation behavior which we believe is one of the most important
theoretical developments in this field. In the last part of this
section, we present an analysis on the avalanche statistics for
loading by a fixed amount. Such a loading scheme introduces a
different mechanism for the avalanche sizes of simultaneous
breaking of fibers. We discuss using analytical calculations that
the exponent of the avalanche size distribution (P(S)) for discrete
loading would be −3, which is different (−5/2) from the same in
the case of quasi-static loading situation [6].

In Section 3, we summarize some recent developments
(Refs. [11–16, 47, 49, 56]) in the cooperative dynamics of
noise-induced failure in ELS fiber bundle models. In addition
to applied stress, the noise factor plays a crucial role in
triggering the failure of individual fibers. The trick here is
how to define the failure probability of individual fibers as a
function of applied/effective stress and the noise level.
Normally, noise-level remains constant during the entire
failure process, but the stress level increases gradually due
to stress redistribution mechanism. The choice of the
probability function should satisfy the fact that without the
noise factor the noise-induced failure model must reproduce
the classical failure scenario (discussed in Section 2). We start
this section by presenting a noise-induced failure probability
for individual fiber failure. The choice of stress and noise level
dictates whether the system is in continuous breaking regime
or in intermittent breaking regime. Through a mean-field
argument, one can easily find out the phase diagram
separating these two regimes (Eq. 50; Figure 6).
Apparently, the continuous breaking regime is easy to
analyze. For a homogeneous bundle, where all the fibers are
identical (strengths are the same), one can write down the
failure dynamics as a recursion relation (Eq. 53). The solution
gives an exact estimate for the failure time (steps) as a function
of applied stress (σ) and noise level (T) (Eq. 55). Simulation
results show perfect agreement with the theoretical estimates
(Figure 7). When we consider a strength distribution among
the fibers in the model, it becomes extremely difficult to
construct the recursion relation for the failure dynamics.
One reason could be that during the failure process the
strength distribution gets changed with time. However, the
simulation results (Figure 8) for the failure time of
heterogeneous bundles follow similar variation with applied
stress and noise level with an extra noise factor (Eq. 56). Next,
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we discuss the other regime, that is, the intermittent failure
regime where there is waiting time between the two failure
phases. The distribution of the waiting time is the most
important aspect in this regime. Simulation results on
homogeneous and heterogeneous bundles show that the
waiting time distribution follows a Gamma distribution
(Eq. 57) and a data collapse confirms the universal nature
of such distribution function (Figure 9). Surprisingly, waiting
time distribution from earthquake time series (California
catalog) seems to follow a similar Gamma distribution
(Figure 10).

In Section 4, we have considered self-organized fracture front
propagation in a fiber bundle model where the fracture front
adjusts its size in a self-organized way to meet the increasing load
on the bundle and several features of the self-organized dynamics
can still be analyzed in a mean field way; see, for example,
Figure 12 for the avalanche size distribution, which fits well
with D(S) ∼ S−3/2.

As already mentioned (in Section 2), the universality class of
the dynamics of fixed load increment during the ongoing
dynamics of failure in the bundle (until its complete failure)
will be different from that for the quasi-static (or weakest link
failure type) loading during its dynamics. And, as discussed in
Section 5, it is given by the Flory statistics for linear polymers,
when fracture dynamics in the bundle is mapped to turbulence
and one utilizes the Kolmogorov-type dispersion energy cascades
[28]. In particular, we already obtained ([3]; see Eqs. 35 and 36)
the order parameter exponent, β � 1/2 � c, the susceptibility
exponent. Employing the Rushbrooke scaling 2β + c � d]
(where ν denotes the correlation length exponent), we get d] �
3/2 here in conformity with finite-size scaling results. As
discussed in [28] (see also the discussions in Section 5), by

mapping the avalanche size distribution (Eq. 47) to the
Kolmogorov energy dispersion in turbulence (Eq. 67) and
identifying S with the energy and inverse correlation length as
the wave vector q, we got the upper critical dimension du for FBM
in the ELS scheme to be 6. This suggests that the correlation
length exponent ν value here is 1/4.

As discussed in this review, the absence of stress
concentrations or fluctuations around the broken fibers
allows mean-field-type statistical analysis in such equal load
sharing fiber bundle models. This feature of the models helped
major analytical studies for the breaking dynamics and also
allowed precise comparisons with computer simulation
results.
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Stick-Slip Dynamics in Fiber Bundle
Models with Variable Stiffness and Slip
Number
Zoltán Halász1,2*, Imre Kállai 3 and Ferenc Kun1,2

1Institute for Nuclear Research (Atomki), Debrecen, Hungary, 2Department of Theoretical Physics, Doctoral School of Physics,
Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary, 3Diehl Aviation Hungary Kft, Debrecen, Hungary

We present an extension of fiber bundle models to describe the mechanical response of
systems which undergo a sequence of stick-slip cycles taking into account the changing
stiffness and the fluctuating number of slip events of local material elements. After
completing all stick-slip cycles allowed, fibers can either ultimately break or can keep
their final stiffness leading to softening or hardening of the bundle, respectively. Under the
assumption of global load sharing we derive analytic expressions for the constitutive
response of the bundle with both quenched and annealed disorder of the failure thresholds
where consecutive slips occur. Our calculations revealed that on the macro-scale the
bundle exhibits a plastic behavior, which gets more pronounced when fibers undergo a
higher number of stick-slip cycles with a gradually degrading stiffness. Releasing the load a
permanent deformation remains, which increases monotonically for hardening bundles
with the maximum deformation reached before unloading starts, however, in the softening
case a non-monotonous behavior is obtained.We found that themacroscopic response of
hardening bundles is more sensitive to fluctuations of the number of stick-slip cycles
allowed than of the softening ones. The quenched and annealed disorder of failure
thresholds gives rise to the same qualitative macro-scale behavior, however, the
plastic response is found to be stronger in the annealed case.

Keywords: fiber bundle, stick-slip, plastic behaviour, varying stiffness, fluctuating slip number

1 INTRODUCTION

Fibre bundle models (FBM) are one of the most important theoretical approaches to the damage and
fracture of disordered materials [1]. In the framework of FBMs, the specimen is discretized as a
bundle of parallel fibers which are subject to an external load along the fibers’ direction [2, 3]. The
Young modulus of fibers is typically assumed to be constant so that materials’ heterogeneity is
entirely represented by the randomness of the strength of fibers. Even in their simplest form, FBMs
provided a deep insight into the process of damaging of heterogeneous materials [2, 4, 5] making also
possible to embed fracture processes into the general framework of statistical physics [1, 6, 7] and to
clarify its analogy to phase transitions and critical phenomena [8–13].

Soon after the introduction of the basic concept of FBMs by Peires in 1927 [14], the model had
been extended to capture time dependence and fatigue effects [15]. During the past decades
subsequent developments of the model have demonstrated that varying the mechanical response
[16] (brittle, plastic) and rheological (visco-elastic) behavior [17–20] of individual fibers,
furthermore, the degree of strength disorder [21–23], range of load sharing (local, global) [11,
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24, 25] following breaking events, and the way of loading [19, 20,
26] (quasi-static, creep, fatigue) the model is able to capture a
broad spectrum of materials’ behavior. Due to this flexibility, the
model has gained a wide variety of applications from the fracture
of fiber reinforced composites [25, 27], through granular
materials, where force chains were treated as load bearing
fibers [28, 29], to the rupture of biological materials [30].

Recently, we have proposed an extension of FBMs [31, 32] to
describe the mechanical response of systems with a complex
micro-structure which respond to external loading by local
rearrangements, for instance, of particles like in granular
materials [28, 33] and in agglomerates of dipolar particles
[34], or by an activation of internal stored length such as
spider silk [35]. A special area where stick-slip dynamics can
be exploited for technological applications, is the development of
nanocomposites, in particular carbon nanotube (CNT)
composites, where CNTs are embedded in a polymeric matrix.
One of the interesting properties of CNT nanocomposites is the
ability to absorb vibrational energy which, together with high
strength and fatigue tolerance, makes them perfect candidates for
new multifunctional composite structures [36]. Recent
experimental studies have revealed that the damping
enhancement can be attributed to the CNT-matrix stick-slip
caused by the severe elastic mismatch which leads to shear
stress localization at the interfaces [37]. To represent the
microscale complexity underlying stick-slip dynamics, fibers of
our model were assumed to undergo a sequence of stick-slip
events: when the local load reaches a failure threshold the fiber
does not break, instead its load drops down to zero but the fiber
has the ability of support load again. The model has been
successfully applied to analyze the mechanical response of
sheared granular materials [33] and the effect of root
reinforcement on the stability of soils [29]. Complementing
the stick-slip FBM with a healing mechanism it proved to be
capable to describe the failure process of snow [38, 39].

In the basic setup of the model it is assumed that fibers keep
their original stiffness during their entire damage history [31,
32], which is a crude simplification. It is reasonable to assume
that restructuring events give rise to a degradation of the local
stiffness or to hardening, e.g., due to damage or activating
stored length inside the material, respectively. Additionally,
fibers of the bundle are allowed to undergo the same number of
slip events although in an extended sample the number of
possible restructurings may have a spatial variation. To make
the stick-slip FBM more realistic, in the present paper we
resolve these limitations by allowing for the change of the
stiffness of fibers as a result of slip events, and we capture the
fluctuations of the number of stick-slip cycles allowed for fibers.
Under the assumption of global load sharing, we derive analytic
expressions for the macroscopic constitutive response of the
bundle both for quenched and annealed disorder of failure
thresholds where slip is activated. The stiffness change is
treated in a multiplicative way which allows for a unified
framework of stiffness degradation and stiffening. We
demonstrate that the stick-slip dynamics results in a plastic
behavior on the macro-scale and explore consequences of the
new degrees of freedom of the model.

2 STICK-SLIP DYNAMICS WITH VARYING
STIFFNESS

The model consists of N parallel fibers which are characterized by
the same initial stiffness value E � 1. Under an increasing external
load σ fibers have a linearly elastic behavior up to a threshold load
σth. When the load on a fiber exceeds the failure threshold we
assume that the fiber does not break, instead it slips and gets
extended by increasing its equilibrium length until the load drops
down to zero. Heterogeneity of the material is represented by the
randomness of the slip thresholds, which are sampled from a
probability distribution p(σ th). The slip event is instantaneous in
the sense that it does not take time, however, after slipping has
been completed the fiber can support load again. As an important
step of generalization of the model we let the fibers’ stiffness
change after slipping in a multiplicative way, i.e. the stiffness is
updated as

E′ � aE, (1)

where a≥ 0 is the stiffness parameter of the model. Note that the
special case a � 0 captures the immediate irreversible failure of
the fiber right at the first slip which essentially results into the
same dynamics as the classical fiber bundle model [2, 4, 40]. The
parameter choice a � 1 recovers the original stick-slip model
where stiffness does not change during the loading history of
fibers [31, 32]. In our present study we focus on the parameter
ranges 0< a< 1 and a> 1, which represent stiffness degradation
and stiffening of fibers following slipping, respectively. For
practical applications of the model, stiffness degradation
(a< 1) is typically caused by internal damage of material units
represented by fibers. Stiffness increase (a< 1) occurs, for
instance, in granular materials under compression where the
restructuring of force chains may be accompanied by stiffening
[28], and in biological materials like spider silk which respond to
an increasing load by the activation of stored length [41].

After the slip has been completed, the fiber gets sticked so that
it can support load again described by the constitutive law

σ � aE(ε − εth), (2)

where ε denotes the strain of the fiber. Eq. 2 takes into account
that the relaxed length of the fiber is extended with the strain
threshold εth � σth/E of slipping. This dynamics has the
consequence that fibers may fulfill again the slipping condition
and can eventually undergo a stick-slip sequence representing the
gradual restructuring of the material. In order to describe such
sequences we set the number of allowed slip events K ≥ 1, which is
first assumed to have a fixed value for all the fibers of the bundle.
It follows from Eq. 1 that after k stick-slip cycles the stiffness E′ of
the fiber has the value

E′ � akE, (3)

which can be greater or lower than the initial value E, for a> 1 and
a< 1, respectively. It is a crucial question at which threshold loads
the subsequent slip events occur. In the simplest case we can
assume that the threshold value σth is fixed for the entire history
of a fiber which provides a representation of the quenched
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disorder of the materials’ micro-structure. It can also occur that
after restructuring events the local physical properties of the
system change which can be captured by assigning a new
threshold value to the fiber from the same probability
distribution p(σth) each time a slipping occurred (annealed
disorder).

For the interaction of fibers we assume global load sharing in
such a way that fibers are stretched between two hard loading
plates which ensure a global response of the entire system
following local slipping events. However, global load sharing
does not imply equal load of fibers in our stick-slip system
since fibers which suffered a different number of slips have
different stiffnesses and relaxed lengths, hence, they keep
different loads. After fixing the type of disorder the threshold
strains of slips can be determined from the corresponding stress
thresholds. A fiber which has slipped k times at the consecutive
strain thresholds ε(1)th , ε(2)th , . . . , ε(k)th up to the externally imposed
strain ε, keeps the load

σ � akE(ε − ε(1)th − ε(2)th −/ε(k)th ), (4)

where the sum of failure thresholds εk0 � ∑k
j�1ε

(j)
th determines the

relaxed length εk0 of the fiber. In the following we derive the
macroscopic constitutive relation of the bundle for the cases of
quenched and annealed disorder of slipping thresholds with
global load sharing. Our main goal is to explore the
consequences of the changing stiffness and of the fluctuations
of the number of slip events fibers can experience.

2.1 Quenched Disorder of Failure
Thresholds
Quenched disorder means that slips of a fiber always occur at the
same stress threshold σ th, assigned to it in the initial state of the
system. However, the corresponding threshold strains are not
constant, which is illustrated in Figure 1, where the damage
history of a single fiber is presented with a stiffness parameter

a< 1. It can be observed that in spite of the constant threshold
load σ th, the strain values ε(1)th , ε(2)th , ε(3)th , . . . where slips occur,
gradually increase due to the degrading stiffness. It follows from
Eq. 4 that the threshold strains ε(k)th (k � 1, . . . ,K) of consecutive
slips of a fiber are determined by its initial strain threshold ε(1)th
and by the stiffness parameter a of the model as

ε(k)th � ε(1)th

ak− 1
. (5)

The relaxed length ε(k)0 of the fiber after the kth slip is the sum
of all previous threshold strains which yields

ε(k)0 � ε(1)th (1 + 1
a
+ 1
a2

+/ + 1
ak−1

). (6)

For the sum of the geometric series inside the brackets we
introduce the shorthand notation S(a, k) so that Eq. 6 simplifies
to ε(k)0 � ε(1)th S(a, k). Here the value of S(a, k) can be cast into the
closed form S(a, k) � (a− k − 1)/(a−1 − 1) for a≠ 1. The above
expressions are valid both for gradual degradation a< 1 and
stiffening a> 1, resulting in an increasing and decreasing
sequence of strain thresholds of slip events, respectively. Note
that in the particular case of the original stick-slip model with
a � 1, the sum S(a, k) takes the value S(a, k) � k.

2.1.1 Derivation of the Constitutive Equation With
Varying Stiffness
To obtain a closed analytic form for the constitutive equation, we
assume strain controlled loading of the bundle between two hard
plates. At a given strain ε during the loading process, the bundle is
a mixture of subsets of fibers which are either intact (no slip), or
have suffered different number of slip events k, where 1≤ k≤K
holds. Based on Eqs 4–6 the failure index k of fibers can be
expressed in terms of their initial failure thresholds ε(1)th and the
externally imposed strain ε as

ε(1)th < ε, k � 0, (7)

FIGURE 1 |Mechanical response of a single fiber in the case of quenched disorder when the slipping threshold σ th is fixed for the entire damage history of the fiber.
The value of a is set to a � 0.8 so that gradual stiffness degradation occurs through the subsequent stick-slip periods. Since the stiffness is changing, the threshold
strains of slipping are increasing ε(1)th < ε(2)th < ε(3)th , in spite of the fixed stress threshold σth of the fiber.
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ε

S(a, k)< ε
(1)
th < ε

S(a, k + 1), 1≤ k<K ,
ε

S(a,K)< ε
(1)
th , k � K ,

where the failure index k � 0 stands for intact fibers.
The macroscopic constitutive response of the system can be

obtained by summing up the load σk(ε) kept by the subsets of
fibers which suffered exactly k slip events

σ(ε) � ∑K
k�0

σk(ε). (8)

The partial loads σk(ε) can be expressed in terms of the
disorder distribution as

σ0(ε) � Eε[1 − P(ε)] for k � 0, (9)

σk(ε) � akE∫ε/S(a,k)

ε/S(a,k+1)
[ε − ε1S(a, k)]p(ε1)dε1 for 1≤ k<K ,

(10)

σK(ε) � aKE∫ε/S(a,K)

εmin
th

[ε − ε1S(a,K)]p(ε1)dε1 for k � K,

(11)

where the first, second, and third terms provide the contribution
of intact fibers, of the fibers which have suffered exactly 1≤ k<K
slip events, and of the fibers which have completed all the K stick-
slip cycles, respectively. Note that the integration limits capture
the separation of the subsets of fibers given by Eq. 7. In the
limiting case of small deformation ε→ 0 only the first term Eq. 9
has a finite contribution recovering the expected linear behavior
σ(ε) ≈ Eε with the initial stiffness. In the opposite limit ε→ +∞

only the last term Eq. 11 survives which expresses that after the
number K of allowed slip events the fibers still keep load and a
linear behavior emerges

σ(ε) ≈ aKE(ε − S(a, k)〈ε(1)th 〉) (12)

With the asymptotic stiffness Ea � aKE. On the right hand side
〈ε(1)th 〉 denotes the average slip threshold in the initial state of the
bundle. Between the two limits, at intermediate strains the second
term Eq. 10 controls the macroscopic response as fibers gradually
undergo more and more slip events.

The constitutive behavior of the stick-slip bundle is illustrated
in Figure 2 for several values of the maximum number K of slip
events at a fixed value of the stiffness parameter a � 0.8. For the
explicit calculations we considered exponentially distributed slip
thresholds with the probability density function

p(σ th) � λe−λσth , (13)

where the parameter λ is set to λ � 1. This disorder distribution
has the advantage that all the expressions of Eqs 9–11 can be
obtained analytically. When presenting the results we rescale the
stress σ and strain ε with the fracture strength σ0c and ε0c of a
simple equal load sharing FBM of the same threshold distribution
where fibers break when the load exceeds their strength. Note that
the constitutive equation of this classical FBM coincides with
σ0(ε) of Eq. 9. It can be seen that at intermediate strains a plastic
behavior emerges which gets more pronounced for higher values
of K, i.e. the hardening curves tend to asymptotic straight lines
according to Eq. 12 which are preceded by longer and longer
plateau regimes in spite of the degrading stiffness. The model can
also account for the ultimate breaking of fibers after completing

FIGURE 2 | Constitutive behavior of the stick-slip bundle with quenched
disorder of the sliding thresholds according to Eq. 8 including both cases of
remaining stiffness (continuous lines) and ultimate failure of fibers (dashed
lines) after completing K slip events. The arrows highlight unloading
curves, which start at different strains εm of the constitutive curve of the
softening bundle of K � 5. The value of the stiffness parameter is a � 0.8.

FIGURE 3 | The effect of the value of the stiffness parameter a on the
macroscopic behavior of a bundle where all fibers are allowed to perform
K � 10 stick-slip cycles. Constitutive curves of hardening (continuous lines)
and softening (dashed lines) bundles are also included. The slip
thresholds are exponentially distributed. Fibers keep their final stiffness so that
all bundles are hardening even if the asymptotic regimes are not visible for the
lowest a.
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the allowed number K of stick-slip cycles by omitting the term of
σK(ε) in Eq. 8. Fiber breaking implies that in the limit ε→∞ the
load bearing capacity of the bundle gradually diminishes so that
σ(ε)→ 0 follows, however, increasing the number of slip events K
a broader plastic plateau emerges similar to the hardening
bundles (see Figure 2).

2.1.2 Effect of the Varying Fiber Stiffness on the
Macroscopic Response of Stick-Slip Bundles
The value of the stiffness parameter a has an important effect on
the overall behaviour of the system. It can be inferred from Eqs 5,
6 that for the stiffening case a> 1 consecutive slip events rapidly
follow each other so that the asymptotic regime Eq. 12 is reached
at a relatively low strain. Decreasing a at a constant value of K, the
plastic regime preceding hardening gets more-and-more
extended (see Figure 3 for illustration). For the lowest values
of the stiffness parameter a the hardening regime is approached
only at very high strains which hinders the precise structure of the
σ(ε) curves in Figure 3. That’s why we further analyze the
emergence of the plateau regime at low a values in Figure 4
using logarithmic scale on the horizontal axis presenting also the
partial loads σk(ε) of the subsets of fibers of different failure
indices. It can be observed that lowering the stiffness parameter,

the plastic plateau develops as a steady regime decorated with
some oscillations. It can be seen that for higher a values, where the
stiffness slowly degrades, the curves of σk(ε) strongly overlap
each other and their peak load rapidly decreases with k. As a
decreases the steady state emerges because the σk(ε) curves get
more-and-more separated while their peak load increases
approaching σc of the classical FBM, which coincides with
σk�1(ε). In the limit of a→ 0 the steady stress regime
disappears because the σk(ε) functions become almost
completely separated (see Figure 4D).

The separation of the σk(ε) curves in the low a limit also
reveals that their functional form is essentially the same,
determined by the constitutive equation of the classical fiber
bundle model σk�0(ε). The overall shape of the constitutive curve
of FBMs has a high degree of robustness for a broad class of
disorder distributions [2], which implies the robustness of the
macroscopic behaviour of the stick-slip FBM presented above,
against the distribution of slip thresholds p(ε(1)th ).

It is a very important consequence of the stick-slip dynamics
that upon unloading σ→ 0 the bundle a permanent deformation
εr remains which depends on the maximum deformation εm
reached before unloading sets on. If fibers keep their last stiffness
value after K stick-slip cycles, the permanent deformation

FIGURE 4 | Emergence of the plateau regime as the stiffness parameter a decreases at a fixed value of the maximum number K � 5 of stick-slip cycles allowed for
fibers. The partial loads σk(ε) Eqs 9–11 kept by the subsets of fibers which have suffered exactly k slip events are also shown for k � 0, 1, 2,3, 4, 5 for four different values
of the stiffness parameter a: (A) 0.8, (B) 0.5, (C) 0.2, and (D) 0.05. The constitutive curve of the entire bundle σ(ε) is also presented for both hardening (continuous red
line), and softening (dashed red line). On the horizontal axis logarithmic scale is used due to the large strains involved at low a.
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monotonically increases and it has an upper limit εmax
r , which can

be realized if the unloading starts along the asymptotic linear
regime of a hardening bundle. The value of εmax

r can be obtained
from Eq. 12 using the condition σ(εmax

r ) � 0, which yields

εmax
r � S(a,K)〈ε(1)th 〉. (14)

For intermediate starting points εm, the remaining
deformation εr can be determined by applying the condition
σ(εr) � 0 in the constitutive equation Eq. 8 taking also into
account that along the unloading curve no slip events occur.
This leads to the final form

εr �
∑K−1

k�1 a
kS(a, k)∫εm/S(a,k)

εm/S(a,k+1) ε1p(ε1)dε1 + aKS(a,K)∫εm/S(a,K)
εmin
th

ε1p(ε1)dε1
1 − P(εm) +∑K−1

k�1 ak ∫εm/S(a,k)
εm/S(a,k+1) p(ε1dε1) + aK ∫εm/S(a,K)

εmin
th

p(ε1)dε1
,

(15)

which converges to εmax
r in the limit εm →∞. Note that the

starting point of unloading εm appears in the upper bound of the
integrals. The permanent deformation εr of hardening bundles is
presented in Figure 5 for several values of the maximum slip
number K. It follows from Eqs 14, 15 that for increasing the
number of slip events K and decreasing the stiffness parameter a,
hardening bundles store a higher plastic deformation, which is
also supported by the numerical results of the figure.

Examples of unloading curves are presented in Figure 2 for the
case of softening bundles, where fibers break after K slips. Since
no slip can occur under a decreasing load, the unloading curves
are always straight lines and their slope, i.e. the unloading
modulus decreases with increasing εm. The analytic expression

of the unloading modulus Eu coincides with the denominator of
Eq. 15 multiplied by the initial stiffness E of fibers

Eu � E[1 − P(εm) +∑K−1
k�1 a

k ∫εm/S(a,k)

εm/S(a,k+1)
p(ε1)dε1

+ aK ∫εm/S(a,K)

εmin
th

p(ε1)dε1]. (16)

The expression shows that the unloading modulus Eu at a
given εm is the weighted average of the moduli Eak of the subsets
of fibers with slip numbers k � 0, 1, . . . ,K , where the weights are
determined by the distribution p(ε1) of the slip thresholds. In the
limit εm →∞, the unloading modulus Eu converges to the
asymptotic value Eu → Ea � EaK .

For the unloading modulus of softening bundles the last term
inside the brackets has to be skipped to take into account the
ultimate breaking of fibers. It can also be inferred from Figure 2
that the permanent deformation of softening bundles is not
monotonous, i.e. the εr(εm) function has a maximum and
decreases when unloading along the tail of the softening
regime of the constitutive curve σ(ε). This behavior can be
realized in Figure 2 by the changing order of the end points
of the unloading curves. Figure 5 demonstrates that even the
maximum value of the remaining deformation of softening
bundles is significantly smaller than the corresponding
maximum permanent deformation εmax

r of the hardening ones.
It follows from Figure 4 that once a plastique plateau can be

identified, its extension is practically the same for hardening (no
breaking) and softening (breaking after K slips) bundles. At a
given parameter set a,K , the extension of the plateau can be
characterized by the asymptotic value εmax

r of the remaining
deformation Eq. 14 of hardening bundles. It is interesting to
note that in the case of a> 1 the value of S(a,K) in Eq. 14
converges to S ≈ 1/(1 − a−1) for K→∞, which implies a finite
limit of the permanent deformation

εmax
r → 1

1 − a−1
〈ε(1)th 〉, (17)

and hence, of the extension of the plateau, when fibers get stiffer
after slip events. However, for the case of stiffness degradation
a< 1, the sum S(a,K) does not have a finite limit for large K
values giving rise to a monotonically broadening plateau as the
maximum slip number K increases.

3 FLUCTUATING MAXIMUM NUMBER OF
SLIP EVENTS

Fiber bundle models with stick-slip dynamics can be applied to
understand damage accumulation and fracture in a large variety
of systems where micro-scale restructuring plays a dominating
role. However, in the present form of the model the maximum
number of allowed stick-slip cycles is fixed for all the fibers, which
is a very strong constraint and limits the applicability of themodel
under realistic conditions. In this section we extend the model to
capture the effect of the fluctuating slip number K.

FIGURE 5 | Permanent deformation εr of hardening (continuous lines)
and softening (dashed lines) stick-slip bundles as function of the maximum
deformation εm reached before unloading started for different values of the slip
number K at the stiffness parameter a � 0.8. The remaining deformation
εr is scaled with the corresponding maximum value εmax

r of the hardening case
given by Eq. 14. For softening bundles a non-monotonous behavior is
obtained. Additionally, even the maximum values of the εr(εm) curves fall
below the corresponding curves of hardening bundles.
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We assume that K is a random variable which is sampled from
a probability density function g(K) defined over the range
0≤K <∞ with the normalization condition

∑∞
K�0

g(K) � 1. (18)

Note that the possibility of fibers with K � 0 is included, which
implies that some fibers remain always intact during the loading
process.

The constitutive equation σ(ε) of the stick-slip fiber bundle
with fluctuating maximum number of slip events K can be
obtained by averaging the contributions of subsets of fibers of
constant K Eqs 9–11 with the distribution g(K)

σ(ε) � (g(0) + [1 − g(0)][1 − P(ε)])Eε+
∑∞
K�1

g(K)∑K−1
k�1

Eak ∫ε/S(a,k)

ε/S(a,k+1)
[ε − S(a, k)ε1]p(ε1)dε1+

∑∞
K�1

g(K)EaK ∫ε/S(a,k)

εmin
th

[ε − S(a, k)ε1]p(ε1)dε1.
(19)

The first term of the right hand side of Eq. 3 represents the
load kept by intact fibers taking into account that a fiber can be
intact either because it can never slip K � 0, or because it is
damageable K > 0 but at the current strain it has not experienced
any slip k � 0. The second term stands for those fibers which have
slipped exactly k times and still can undergo further stick-slip
cycles k<K with the samemaximum value K, while the last one is
the contribution of the fibers which have completed all allowed
stick-slip cycles and still support load with their final stiffness.

g(K) � 〈K〉Ke−〈K〉
K!

, (20)

which we use for explicit calculations to demonstrate the
outcomes of the generic derivations. Here the parameter 〈K〉
denotes the average of the slip number K inside the bundle.
Assuming that flaws responsible for slip events occur in an
uncorrelated manner along fibers, the Poissonian distribution
controlled by the average 〈K〉 gives an adequate description of
the statistics of the maximum slip number K [42]. Figure 6
presents a comparison of the constitutive curves of the stick-slip
bundle with constant and Poisson distributed maximum number
of slip events in such a way that the constant Ks are set to be equal
to the average 〈K〉 of the Poissonian. It can be seen that the
functional form of the two sets of constitutive curves is practically
the same. For low values ofK � 〈K〉 the corresponding curves fall
relatively close to each other, however, deviations increase with
increasing 〈K〉. The reason is that the standard deviation of the
Poissonian distribution growth as the square root of the average����
〈K〉

√
so that at higher 〈K〉 the distribution Eq. 20 gets broader

and the fluctuations of K become more relevant. The fluctuating
K affects also the asymptotic form of σ(ε) of hardening bundles

σ(ε) ≈ Eε⎡⎣g(0) + ∑∞
K�1

g(K)aK⎤⎦ − E〈ε(1)th 〉∑∞
K�1

g(K)aKS(a,K),

(21)

which yields

Ea � E⎡⎣g(0) + ∑∞
K�1

g(K)aK⎤⎦ � E〈aK〉, (22)

and

FIGURE 6 | Comparison of the constitutive curves of stick-slip bundles
with constant (dashed lines) and fluctuating (continuous lines) maximum
number of slip events for the case of hardening at the stiffness parameter
a � 0.8. The constant K values are set to be equal to the average 〈K〉 of
the Poissonian distribution. A natural choice for g(K) is the Poisson
distribution.

FIGURE 7 | Comparison of the constitutive curves of stick-slip bundles
with constant (dashed lines) and fluctuating (continuous lines) maximum
number of slip events for the case of softening at the stiffness parameter
a � 0.8. The constant K values are set to be equal to the average 〈K〉 of
the Poissonian distribution.
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εmax
r � 〈ε(1)th 〉∑∞

K�1g(K)aKS(a,K)
〈aK〉 , (23)

for the asymptotic Young modulus Ea and for the maximum
value of the permanent deformation εmax

r , respectively. Note that
the average value 〈aK〉 is calculated with the distribution g(K) of
the maximum slip number K, while the average threshold 〈ε(1)th 〉
is determined by the disordered strength of fibers p(εth).

The constitutive response of softening bundles with
fluctuating maximum slip number can also be obtained from
Eq. 3 by skipping the last term, which represents the contribution
of fibers with failure index k � K . Figure 7 compares the behavior
of softening stick-slip bundles with constant and fluctuating
maximum slip numbers where the average 〈K〉 was set to be
equal to the fixed K values of the corresponding bundles. It is
interesting to note that contrary to the hardening case, deviations
of the corresponding constitutive curves are more pronounced
for small deformations. The position of the maxima of the
corresponding σ(ε) curves nearly coincide, however, bundles
of fluctuating K keep a lower load than their constant K
counterpart. As the deformation ε increases the curves cross
each other indicating the higher load bearing capacity of bundles
with fluctuating K. For large deformation ε→∞ the stress must
converge to zero with a constant maximum slip number,
however, the final stiffness of bundles with fluctuating K is not
zero. This is the effect of those fibers which are not allowed to
slide K � 0, resulting in a finite asymptotic stiffness
Ea � g(0)E � e−〈K〉E. Increasing the average slip number 〈K〉
the fraction of unbreakable fibers exponentially goes to zero
making the difference of constant and fluctuating K bundles
larger for low values of K (see Figure 7).

4 ANNEALED DISORDER OF FAILURE
THRESHOLDS

In materials with a complex micro-structure slip events may be
followed by a change of the local material properties. In our fiber
bundle model this behavior can be captured up to some extent by
assigning a new threshold value to the fiber after each slip event
from the same probability distribution p(σ th). This type of
annealed disorder leads to a constitutive behavior qualitatively
similar to the case of the quenched one, however, with a more
complicated dynamics. After k slip events the load σ kept by a
fiber is given by Eq. 4 of the general model construction, however,
now the stress threshold σ th is not fixed for the fiber, instead after
each consecutive slip event a new threshold is generated σ(i)th from
the same distribution p(σth). It has the consequence that the
threshold strains ε(1)th , ε(2)th , . . . , εkth of consecutive slips events can
be obtained as

ε(k)th � σ(k)
th

akE
� εk
ak
, (24)

where εk � σ(k)th /E are strain values which have the same
distribution p(εth) for the entire history of the fiber. Eq. 24
shows that although the stress thresholds σ(k)th are generated with
the same distribution, the corresponding strain values εk still have

to be transformed to obtain the strain thresholds, where fiber slips
occur. The constitutive behavior of a single fiber and the relation
of the variables ε(k)th and σ(k)th are illustrated in Figure 8.

Based on the above expressions the constitutive equation σ(ε)
of the entire bundle with a fixed number of allowed slip events K
can be cast into the form

σ � Eε[1 − P(ε)]+
E ∑K−1

k�1
ak ∫ε

εmin
th

∫ε−ε0

εmin
th

/∫ε−∑k

j�0εj/aj
εmin
th

∏k

j�1dεjp(εj/aj)⎡⎢⎢⎣1 − P⎛⎝ε −∑k
j�0

εj/aj⎞⎠⎤⎥⎥⎦⎛⎝ε −∑k
j�0

εj/aj⎞⎠+

+EaK ∫ε

εmin
th

/∫ε−∑k

j�0 εj/aj
εmin
th

∏k

j�1dεjp(εj/aj)⎛⎝ε −∑k
j�0

εj/aj⎞⎠.

(25)

where again the load bearing contributions of the subsets of fibers
of different slip numbers k � 0, 1, . . . ,K are summed up: the
first term represents the load kept by fibers which are intact k � 0
at the deformation ε; the second one is the sum of the
contributions of fibers which have undergone exactly 1≤ k<K
slip events, and the last term captures the load bearing capacity of
fibers after completing all the allowed K slip events. Note that the
products of probability density functions occur due to the
independence of consecutive slip events, additionally, the
upper bounds of the integrals have also complex dependencies.

The constitutive responses of stick-slip bundles with quenched
and annealed disorder are compared in Figure 9 for the case of
hardening with fixed values of the number of slip events K. It can
be observed that the two sets of curves have a qualitatively similar
behavior. For K � 1 there is no difference between the two types
of disorder so that the corresponding curves must coincide,
however, larger quantitative differences of quenched and
annealed responses are observed for higher K values. The
sequence of independent identically distributed failure
thresholds of annealed disorder gives rise to broader plateau
regimes with a higher value of the mean stress along the plateau.
For large deformation both sets of curves converge to asymptotic
straight lines whose slope Ea � aKE does not depend on the type
of disorder. Due to the qualitative similarities of the macroscopic
responses of quenched and annealed disorder stick-slip bundles,
we skip the details of further comparisons.

5 DISCUSSION

We presented an extension of fiber bundle models of stick-slip
dynamics incorporating the effect of stiffness change of the fibers
after slip events, and the fluctuations of the number of stick-slip
cycles fibers can experience under an increasing external load.
Stick-slip dynamics implies that when the load of a fiber exceeds
its local strength the fiber does not break, instead it slips which
increases its relaxed length. As a consequence, the load of the fiber
drops down to zero, however, the fiber retains its load bearing
capacity. The stick-slip FBM has a high degree of complexity
making it flexible to describe various materials’ behaviors. In
order to enhance the applicability of the model, we introduced a
parameter which controls the change of fibers’ stiffness after slip
events in a multiplicative way allowing for both gradual
degradation and stiffening. During their loading history fibers
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can undergo a sequence of stick-slip cycles. In our model
construction the failure thresholds where slip is activated can
be either fixed for the entire failure process of the fiber (quenched
disorder), or it can be sampled from a probability distribution
(annealed disorder) representing fixed structural disorder of
materials and the effect of the local change of the material’s
behavior after slip events, respectively. As another novel element
of our study, the maximum number of slip events is treated as a
random variable inside the bundle sampled from a probability
distribution. The total number of slip events allowed and the
threshold loads where slip is activated are independent random
variables. After completing all the stick-slip cycles a fiber can
either keep its final stiffness or it can suffer ultimate breaking,
which result in global hardening and softening of the bundle in
the limit of high deformation, respectively.

We analyzed the model in the mean field limit, i.e. global load
sharing (GLS) was assumed. However, in stick-slip FBMs GLS
does not imply equal load on fibers, because at a given strain fibers
of the bundle can have different relaxed lengths and stiffness
values. We derived closed analytic forms for the macroscopic
constitutive response of the bundle both for quenched and
annealed disorder of the slip thresholds. These results showed
that on the macro-scale the bundle exhibits a plastic behavior, i.e.
the σ(ε) curves develop a plateau regime which becomes broader
with increasing number of slips. We analyzed in details the role of
the changing stiffness of fibers in the emergence of the plastic
plateau. Our calculations revealed that the stiffness parameter
controls the degree of overlap of the contributions of fiber subsets
of different failure index. In the limit of low stiffness parameter
a≪ 1, the plastic plateau is decorated with well separated
maxima, while for slowly degrading stiffness a(1 and high
values of the slip number K a smooth horizontal plateau is
obtained.

Releasing the load on the bundle, a permanent deformations
remains, which increases monotonically with the maximum
deformation reached before unloading started for hardening
bundles, while in the softening case a non-monotonous
behavior is obtained. The permanent deformation of softening

bundles proved to be smaller than that of their hardening
counterpart. The asymptotic value of the permanent
deformation of hardening bundles can be used to characterize
the extension of the plateau regime at different stiffness
parameters a. Our calculations revealed that increasing the
number of allowed slips K the extension of the plateau has a
finite limit for stiffening bundles a> 1, while it diverges for
stiffness degradation a< 1.

We showed that fluctuations of the number of stick-slip cycles
allowed for fibers affect the behavior of both hardening and
softening bundles. Comparing hardening bundles of constant and
fluctuating slip numbers with the same average value revealed
that larger fluctuations result in a narrower plastic regime
affecting also the asymptotic stiffness and the permanent
deformation of the bundle. For softening bundles the

FIGURE 8 | Constitutive behavior of a single fiber with annealed disorder of the slip thresholds. The value of the stiffness parameter is a � 0.8 so that the fiber
stiffness gradually decreases (compare to Figure 1). The consecutive thresholds σ(k)th are drawn from the same probability distribution p(σth), then the corresponding
strain thresholds ε(k)th are obtained from Eq. 24.

FIGURE 9 |Comparison of the constitutive curves of hardening stick-slip
bundles with quenched (dashed lines) and annealed (continuous lines) failure
thresholds for several values of the fixed number of allowed slip events K at the
stiffness parameter a � 0.8.
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fluctuations of the slip number result in lower and higher load
bearing capacities at small and large deformations, respectively,
compared to their constant slip number counterparts.

Annealed disorder of slip thresholds results in a qualitatively
similar macroscopic response to quenched disorder, however, its
description involves a higher mathematical complexity.

Here we focused on the effect of the changing stiffness and
fluctuating slip number of fibers on the macroscopic behavior of a
stick-slip FBM, and demonstrated that varying its parameters the
model is capable to capture several aspects of the macro-scale
consequences of stick-slip dynamics. The constitutive curves with
the softening regimes and oscillations along the plateau can only
be realized in strain controlled experiments. Under stress
controlled loading slip events are followed by a load
redistribution inside the bundle which can induce further slips
and eventually can trigger an entire avalanche of slipping fibers
until the bundle gets stabilized. As to the next, we are going to
explore the effect of the varying stiffness and fluctuating slip
number on dynamics and statistics of slip avalanches, which can
have a relevance for the understanding of restructuring
avalanches of granular materials and of earthquakes.

Although, the model is complex, still it could be further
extended to fit to specific applications. For instance, when
consecutive slip events result in the accumulation of internal
damage of fibers, the degradation of fibers’ stiffness may be
accompanied by the reduction of fibers’ strength. This
correlation of local strength and stiffness can be captured by
the model in such a way that at slip events fibers get a new failure
threshold (annealed disorder) from a distribution which has the
same functional form as the original one, however, its average is
gradually reduced. Due to its flexibility, the model can serve as a
starting point to develop more realistic micro-mechanical models
of carbon nanotube reinforced polimeric composites where the
high damping ability of the material originates from the stick-slip
occurring at the CNT-matrix interface. Our approach can
complement recently developed micro-mechanical models of
CNT nanocomposites [43–45] providing an efficient

framework for the representation of two sources of disorder
(local strength and slip number), degradation and stiffening
after slip events, and softening or hardening after the
maximum slip number is reached. Work in this direction is in
progress.
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Stress rupture (sometimes called creep-rupture) is a time-dependent failure mode

occurring in unidirectional fiber composites under high tensile loads sustained over long

times (e. g., many years), resulting in highly variable lifetimes and where failure has

catastrophic consequences. Stress-rupture is of particular concern in such structures as

composite overwrapped pressure vessels (COPVs), tension members in infrastructure

applications (suspended roofs, post-tensioned bridge cables) and high angular velocity

rotors (e.g., flywheels, centrifuges, and propellers). At the micromechanical level, stress

rupture begins with the failure of some individual fibers at random flaws, followed by

local load-transfer to neighboring intact fibers through shear stresses in the matrix.

Over time, the matrix between the fibers creeps in shear, which causes lengthening

of local fiber overload zones around previous fiber breaks, resulting in even more fiber

breaks, and eventually, formation clusters of fiber breaks of various sizes, one of which

eventually grows to a catastrophically unstable size. Most previous models are direct

extension of classic stochastic breakdown models for a single fiber, and do not reflect the

micromechanical detail, particularly in terms of the creep behavior of the matrix. These

models may be adequate for interpreting experimental, composite stress rupture data

under a constant load in service; however, they are of highly questionable accuracy under

more complex loading profiles, especially ones that initially include a brief “proof test” at a

“proof load” of up to 1.5 times the chosen service load. Such models typically predict an

improved reliability for proof-test survivors that is higher than the reliability without such a

proof test. In our previous work relevant to carbon fiber/epoxy composite structures we

showed that damage occurs in the form of a large number of fiber breaks that would not

otherwise occur, and in many important circumstances the net effect is reduced reliability

over time, if the proof stress is too high. The current paper continues our previous work

by revising the model for matrix creep to include non-linear creep whereby power-law

creep behavior occurs not only in time but also in shear stress level and with differing
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exponents. This model, thus, admits two additional parameters, one determining the

sensitivity of shear creep rate to shear stress level, and another that acts as a threshold

shear stress level reminiscent of a yield stress in the plastic limit, which the model also

admits. The new model predicts very similar behavior to that seen in the previous model

under linear viscoelastic behavior of the matrix, except that it allows for a threshold shear

stress. This threshold allows consideration of behavior under near plastic matrix yielding

or even matrix shear failure, the consequence of which is a large increase in the length-

scale of load transfer around fiber breaks, and thus, a significant reduction in composite

strength and increase in variability. Derivations of length-scales resulting from non-linear

matrix creep are provided as Appendices in the Supplementary Material.

Keywords: failure probabilities, stress rupture behavior, proof testing, composite overwrapped pressure vessels,

local load sharing model, Weibull distribution, non-linear viscoealsticity

INTRODUCTION

From a materials engineering perspective, stress rupture

(sometimes called creep-rupture) is a time-dependent failure

mode in unidirectional, continuous fiber composites that are
primarily loaded in tension over long time periods and

whose failure is typically catastrophic. Such composites, often
consisting of carbon fibers in an epoxy matrix, operate at

either ambient temperatures, or temperatures well below the
matrix glass transition temperature. Examples of such structures

include composite overwrapped pressure vessels (COPVs),
tension members in infrastructure applications such as cables

in suspended roofs, post-tensioned bridge platform cables,
and rotors spinning at high angular velocity such flywheels,

centrifuges and propellers, where hoop and radial stresses
become very large. In such cases, stress rupture failure is explosive

resulting in sudden release of potential and/or kinetic energy and
in the case of COPVs the stored contents can also be combustible.

Typically, stress-rupture occurs with little or no warning, and its
unpredictable nature necessitates large safety factors even when a
considerable experimental data base exists to support various life
prediction methodologies.

In engineering applications, which are often subject to life-
safety requirements, much of the concern stems from the fact
that reliabilities in such structures must be extremely high (e.g.,
probability of failure <10−8) over a specified lifetime (typically
many years) under a specified service load. No amount of brute-
force testing can directly demonstrate such reliabilities, especially
when test objects in the laboratory necessarily differ from actual
service components in key respects, such as being much smaller
in overall material volume under load. Thus, size effects are a key
issue, and predicting stress-rupture lifetime, and particularly the
lower tail of the lifetime distribution for a given load, inevitably
requires sophisticated modeling in light of any previous, or
simultaneously generated, test data.

The general experimental approach to characterizing the
stress-rupture behavior of such a carbon fiber/epoxy structures
in applications is to first determine the strength distribution
of subscale artifacts, such as epoxy-impregnated strands, or
small laboratory scale pressure vessels, which have been filament

wound using the same materials. Typically, a Weibull strength
distribution is observed, and the Weibull scale and shape
parameter values are estimated. Then several fixed stress levels
are selected, and for each level multiple test artifacts are placed
under test and failures recorded over time, which in many cases
requires many months and sometime years to gather sufficient
lifetime data for prediction purposes. Typically, the lifetime data
is also found to be of Weibull form, but with extremely high
variability (lowWeibull shape parameter value typically less than
unity). Furthermore, statistical estimation techniques, such as
maximum likelihood, must be used to deal with censored test
samples, since at lower stress levels, only a few of the test samples
may have failed.

While methods vary for analyzing and presenting such
strength and stress-rupture data, the general approach is often
to plot the mean lifetime (or Weibull lifetime scale parameter)
vs. fixed stress level on log-stress vs. log-lifetime coordinates, and
to fit a power law, i.e., lifetime varies as stress level to a negative
power, which is often of the order of 100 in magnitude. Some
effort may also be made to estimate the shape parameter for
Weibull lifetime at each stress level, hopefully the same for each,
and from the results, to determine a stress level that results in
the desired high reliability, i.e., low probability of failure over the
chosen structural component lifetime.

The previously mentioned approaches to modeling stress-
rupture lifetime are discussed in detail in [1–4] where it is
shown that such a lifetime estimation approach is fraught with
many serious difficulties some of which are as follows: First,
there are serious practical limitations in sample sizes that can
be tested at each stress level. Second, since the variability in
lifetime is very high, the uncertainty in any reliability estimate
is also very high to the point of resulting in unusable reliability
bounds (much less providing the ability to select between
competing models, which are typically phenomenological).
Third, the typically used “proof test” approach to screen
out weaker, and presumably, lower reliability specimens is
fraught with difficulties, such as what proof stress level to
use, and whether damage is caused to the structure in the
act of proof testing that cancels any potential benefit, perhaps
even making the structure even less reliable. Thus there is
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a need for the development of sophisticated models that
consider the micromechanics and statistics of fiber load-sharing
and failure, and which are reasonably tractable and whose
predictions can be defended. Since we are most interested
in the high reliability (low probability of failure) region of
various distributions, we are able to take advantage of various
power-law approximations to the lower tails of various Weibull
distributions to construct reliability estimates. This is seen
throughout the derivations.

Before developing the model, and in view of the broad
audience, we provide some context regarding the breadth of
fiber bundle models that have played a key role in the study
of failure processes in a heterogeneous materials, as conducted
in statistical physics, materials, and mechanics communities.
Some excellent reviews from various perspectives are provided
in [5–10]. The simplest versions focus on material strength
in response to an applied load, and where individual fibers
are assumed to have variability in their strengths following
some probability distribution, such as uniform or Weibull,
the latter being common to engineering applications [9, 10].
Under a tensile bundle load some fibers fail, and their
loads are transferred to their survivors, some of which may
also fail due to their increased loads, leading to more load
redistribution, and so on. Depending on applied bundle load,
the bundle may either reach a stable state where some smaller
group of surviving fibers are strong enough to support the
bundle load, or, all survivors are exhausted and the bundle
collapses. As discussed below, details on the evolution of this
failure process depend on the bundle load magnitude, the
fiber strength distribution, the bundle size (number of fibers),
and critically on the mechanism by which fibers share and
redistribute load.

In the simplest bundle models, load-sharing mechanisms fall
between two extremes: (i) equal load-sharing (ELS) where the
loads of failed fibers are redistributed equally onto all survivors,
and (ii) local load sharing (LLS), where the loads of failed
fibers are transferred onto their closest surviving neighbors,
as expanded upon in [5–10]. Under ELS fiber failure patterns
tend to be diffuse and percolation-like, whereas under LLS,
clusters of breaks nucleate and grow reminiscent of catastrophic
cracks. The contrast in the two pattern types depends on
the variability in fiber strength. Larger variability results in
increasingly similar failure patterns across the load redistribution
range from ELS and LLS, however, that the bundle strength
statistics ultimately differ as bundle size grows indefinitely, as
shown in [9, 10].

In statistical physics, various aspects are of interest, such as
critical behavior, recursive failure dynamics, universality classes,
burst distributions and avalanches, precursors (warnings) of
global failure, cross-over behavior, and localization in terms
of forming of critical clusters vs. mean field analysis [5–
8]. In both the physics and engineering communities size
effects are a key issue [9–13] because the size scales of
multiple laboratory test samples are necessarily orders of
magnitude smaller than their monolithic structural counterparts
in applications. Approaches to the study of such models vary
from being purely analytical (requiring various simplifying

assumptions but yielding profound insight) to numerical Monte
Carlo methods where fiber strengths and load redistribution for
evolving failure configurations are directly calculated. Numerical
simulation has limitations, however, because bundle structures
of interest can have more than 108 fiber elements (e.g., carbon
fiber/epoxy composite overwrapped pressure vessels) whereas
eventual scaling behavior may be inconclusive in bundles of
104 to 105fiber elements, and require 103replications to obtain
accurate statistics. Additionally, while some researchers use
mean field approaches, attempting to calculate the limiting
strength of bundles approaching infinite size, others focus
on obtaining distributions for strength of finite-size bundles
especially deep into their lower tails particularly when high
reliability is of concern. For instance finding a particular
bundle load for which the failure probability is <10−ℵ may
be of interest, where ℵ ≥ 8 (sometimes referred to as the
“number of nines” of the reliability, 1 − 10−ℵ) would require
at least 10ℵ+1 = 109 replications, currently a computationally
prohibitive number. How to extend to such low probability levels
for large-scale structures such as carbon-fiber/epoxy pressure
vessels is a key challenge and is where theoretical modeling and
scaling arguments become powerful tools, as is addressed in
this paper.

Generalizations of simple fiber bundle models for material
strength, particularly for longer structures, typically assume
fiber flaw occurrence along an individual fiber following a
compound Poisson point process in distance and flaw strength
(local failure stress). When the flaw strength follows a power
law, the result is a Weibull distribution for fiber strength
vs. length that satisfies weakest link statistics. We call this a
Weibull-Poisson (WP) fiber strength model. For long bundles
with fibers bonded together in a flexible matrix, or in a stiff
matrix but where the matrix has a low yield strength or the
fiber-matrix interface is weak and slip occurs, ELS generalizes
to global load-sharing (GLS). Under GLS a fiber can fail at
multiple locations along its length, however, at any cross-
sectional composite plane, a locally failed fiber may still carry
some load depending on the distance from the plane to its closest
break. In cases where LLS still applies at a cross-section, behavior
also depends on whether the bundle is planar (i.e., each fiber
has only two flanking neighbors) or the fibers are packed in a
square, hexagonal or random array in which case failing fibers
have many neighbors onto which to redistribute their loads.
Thus, milder versions of LLS emerge at a plane where some
load is transferred to next-nearest and even further neighbors
following some power-law decay in lateral distance. In both
GLS and LLS failure tends to concentrate in transverse planes
whereby material failure is well-described using a chain-of-
bundles approach [9, 13], which means that size effects become
important [11–13].

The failure of heterogeneous materials typically involves time-
dependence of some form, and in accommodating such features,
fiber bundle models become more complex, but also richer
in features, as can be seen in [14–55]. Time dependence can
enter into the bundle failure process in various ways: First,
the fiber breakdown process may be thermally activated as for
instance in [14–29], or may involve time-dependent kinetics of
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flaw growth in the fiber as in [30, 31]. On the other hand, the
matrix may creep, or the fiber/matrix interface may slip over
time, thus causing relaxation in broken fibers and overloading
of others [32–55], thus altering the length scale of fiber-to-fiber
load transfer.

In the case of the former where fiber load-sharing, ranging
from ELS to LLS, is by itself time independent, many models
for time-dependent fiber failure involve a breakdown rule with
the fiber failure rate depending on fiber stress level raised to a
power, or as an exponential in fiber stress level. These rules are
often tied to activation energy ideas of molecular bond failure,
depending on the absolute temperature. In such cases, the fiber
lifetime distribution under fixed loadmay be taken as exponential
(constant hazard rate over time) and in others, a memory integral
of past stress history is involved. This integral then becomes
the argument of a second function controlling the shape of the
lifetime distribution, and when of power form and the fiber is
under a constant stress, Weibull fiber lifetime results. Several
works specifically focus on such time-dependent fiber bundles as
well as more elaborate network and lattice extensions, a sampling
of which are discussed in [14–29]. In papers involving varying
ranges of lateral load transfer somewhere between the ELS and
LLS extremes, crossovers frommean-field to short range behavior
are seen where break clusters form and instability is seen. To
span ELS to LLS, the degree of localization also depends on
the magnitude of the power-law breakdown exponent. Even in
LLS bundles, one may see ELS-like diffuse fiber failure when the
power-paw exponent approaches two and especially below 1 as
shown in [24–27].

The works [14–29], which span the last 25 years of research,
reveal surprising consistency in the overall behavior observed, in
terms of size effects, localization in cluster growth and the types
of lifetime distributions obtained, especially in the lower tails.
Numerical Monte Carlo methods have become more efficient
and computational power has increased, for a bundle with a
given geometric and load-sharing complexity, by two to three
orders of magnitude in size, which has been critical to providing
insight into ultimate convergent (or divergent) behavior as the
size scale increases. Fortunately, analytical models with various
idealizations based on LLS and GLS modeling approaches have
proven very effective in uncovering characteristics of bundle
lifetime distributions deep into their lower tails. In cases where
a clear choice between an LLS vs. a GLS modeling approach is
ambiguous, it often happens that the two approaches result in
surprisingly similar lifetime distribution shapes.

Other bundle models with time-dependent fibers (or analogs
at the molecular scale) involve unique approaches [32–34]
to specialized circumstances. For instance [32], which models
a metal-matrix composite, involves a creeping, elasto-plastic
matrix, and fibers that have some mix of strength behavior
and time dependent degradation, all treated in a finite-element
framework. Another approaches fiber behavior using a kinetic
Monte-Carlo algorithm based directly on thermal fluctuations
[33]. In another, fibers constitute a molecular network and a
molecular dynamics approach is used [34].

Yet another group of models [35–37], involve fibers that
are essentially elastic but upon failure undergo slow relaxation

behaving as Maxwell elements. In [35], the fiber strength follows
a uniform distribution and the modeling is purely GLS with
broken fibers slowly shedding load to their survivors. In [36] fiber
strengths are assumed Weibull a with shape parameter of two,
whereupon bundle lifetime was found to be lognormal. In [37]
the load-sharing ranged between GLS and LLS using a power-
law, variable range of interaction rule, and again Weibull fiber
strength. The two universality classes associated with GLS vs. LLS
extremes appeared robust.

The focus in the current paper is on time-dependent bundle
models where the fibers are brittle, initially continuous, time-
independent, and that are aligned in a polymer matrix that
itself supports negligible tensile load. The fibers have WP
strength properties and time dependence enters through matrix
shear creep around fiber breaks, which over time increases
the length-scale of fiber load transfer at breaks. Examples of
models in an ELS-GLS framework are described in [38–41],
where in [38–40] plots of stress level vs. the logarithm of
the mean lifetime is of interest, whereas in [41] the interest
is on the residual composite strength after considerable time
spent under constant load. These models do not focus on
the nature of the lifetime distribution over time given the
applied stress level. Of particular interest are such bundle models
under LLS, several of which are discussed in [42–55]. The
first two models [42, 43] are predecessors to the model we
develop later and involve both theory and experiments on the
strength and creep-rupture of seven-fiber, micro-composites
of carbon fibers in an epoxy. They demonstrate various
features of interest in the current paper, including Weibull
fiber strength, distributions for micro-composite strength with
Weibull “envelopes” having segments predicted by LLS theory,
Weibull lifetime distributions also having Weibull envelope
segments, and lastly, plots of log-load vs. log-lifetime behavior
whose slopes depend on the shape parameter for fiber strength
and the power-law creep exponent in time. Also, [44] contains
a supporting analytical/numerical model for composite creep-
rupture involving Weibull fibers with planar and hexagonal fiber
packing in a linearly viscoelastic matrix.

Two related works [45, 46], present both theory and
experimental results on the strength and lifetime of epoxy-
impregnated carbon fiber strands. The models, however,
are largely phenomenological and do not directly build on
micromechanical LLS behavior with matrix creep. Nonetheless,
such microstructural behavior arguably underlies the behavior
observed. Time-dependence is reflected in the epoxy creep
compliance, including time-temperature shift factors. This
framework provides coherence to both the strength and the
lifetime distributions obtained, respectively, at various strain
rates and fixed stress levels, and at temperatures from 298◦K
to 443◦K. Strand strength followed a Weibull distribution, and
lifetime distributions were shown where the scale parameter had
log-log dependence through a function of normalized time based
on the matrix creep response. Overall, the experimental behavior
seen is consistent with the model results we develop later.

In a sequence of papers by Bunsell et al. [47–55], a model
has been developed that considers the lifetime of unidirectional
carbon fiber-epoxy composites under sustained loads, and where
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the main application is filament wound pressure vessels. In
[47] the work begins with numerical modeling of the micro-
mechanisms of fiber-to-fiber load transfer resulting from WP
fiber failures. In [48], the load-transfer mechanism over time
is altered by relaxation due to the viscoelastic and plastic
behavior of the matrix, also causing locally increasing loads on
neighboring fibers. In larger scale structures, these processes are
used in [49] to model fiber break progression in a multi-scale
framework, involving representative volume elements (RVEs)
applicable to both strength and lifetime testing. In the latter,
delayed fiber failures occur as new flaws are exposed thus leading
to growing fiber break clusters and their coalescence into a critical
damage state causing composite failure. Their model is applied
in [50] to carbon fiber-epoxy matrix pressure vessels where the
issue of proof testing is raised, and where the authors comment
as follows:

“At present, there are no proof testing techniques or in-

service reliability assessments techniques, which are mentioned in

standards that are suitable or based on the failure processes known

to control lifetimes of composite structures.”

Later in the same paragraph, the authors say:

“A hydraulic [proof] test on a composite pressure vessel has only one

clear outcome, which is that fibers, which ordinarily would not have

broken, fail during the test and the vessel is closer to failure than it

was before the test, as is illustrated in Figure 2.”

Much of their work in [50] is directed at determining an
appropriate proof test level, for both new pressure vessels and
pressure vessels that have seen pressurized service over long time
periods. Investigating the issue of proof-testing is also a primary
focus in the model we develop later.

In later works [51–55], these authors extend their RVE
modeling in terms of the formation and evolution of small
clusters of breaks called of i-plets of various sizes (e.g., two-
plets, four-plets, eight-plets, 16-plets, 32-plets, . . . ). The focus
is on critical damage states in tension testing [51], sustained
loading over time [52], and laminated structures [53]. The work
in [54, 55] looks deeper into critical damage states in terms of i-
plets as precursors to imminent failure and on the possibility of
determining a lower threshold for applied composite stress below
which the lifetime becomes infinite [55]. Overall, the impressive
multi-scale model developed in [47–55] is computationally
intensive so that Monte Carlo replications beyond a few 100
samples are currently impractical. Except in [55] where 100
replications were performed, the focus was largely on mean
lifetime behavior, rather than the form of lifetime distributions,
particularly in their lower tails. Nonetheless the overall failure
process is qualitatively very similar to that which we develop later,
and thus, some of our results may be of use in extending their
models in [47–55].

As with many models described previously, a key assumption
in the model we develop later is that individual carbon fibers are
time independent, that is, essentially immune from creep rupture
at typical temperatures of interest. This has been established in

the work of Farquhar et al. [56]. A second assumption is that
the mechanics of fiber stress-relaxation and load transfer around
fiber breaks is accurately described by a non-linear matrix creep
law, including a matrix plastic-like yielding effect. Over the past
two decades there have beenmany papers [57–62], that have used
micro-Raman spectroscopy and other techniques to measure
time-dependent stress-relaxation and load transfer around fiber
breaks in arrays of carbon fibers in an epoxy matrix. These
experiments have been interpreted using sophisticated shear-
lag modeling in [59–62] assuming elastic fibers and a linearly
viscoelastic matrix, and which reveal the occurrence of varying
degrees of shear yielding and debonding at the fiber-matrix
interface, particularly at fiber strains approaching fiber failure.
Thus, the assumption of a linearly elastic-perfectly bondedmatrix
requires revision, as will be key in our modeling approach in later
sections. Indeed, there are several theoretical works [63–67] that
allow us to make such revisions.

Our model involves the growth of clusters of fiber breaks to
critical size. The concept of critical cluster formation under LLS
has been a feature of various models discussed earlier. In this
work we draw heavily on the mechanics of fiber load transfer
around breaks as pioneered in the work of Hedgepeth and NASA
associates [68–70]. The clusters in our model are idealized as
growing in a planar fashion, whereas one might expect fiber
breaks to be staggered out of plane. However, near planar cluster
growth is often seen [71], and in effect clusters act as though
they are increasingly planar as the length scale of load transfer
increases over time [44]. We especially note a body of work
[9, 10, 44, 72–76] specifically devoted to growth of clusters of fiber
breaks to critical size, and the associated probability calculations
through analysis and Monte Carlo simulation. Actual clusters
seen in Monte Carlo simulations over time often have a far more
random shape than the idealized clusters we consider. However,
despite their differing appearance, upon reaching catastrophic
instability the resulting failure distributions are remarkably
similar to the point where only a small scaling adjustment is
necessary to create congruence deep into the lower distribution
tails. This behavior holds up even for Weibull shape parameters
in the range of 2 or 3, which is below those for carbon fibers
of interest in this paper. A group of recent papers [74–76]
is very insightful regarding the nature of the critical cluster
concept in LLS, and the limited role played by local ELS behavior
within small groups of fiber failures but embedded within an
overall LLS framework, and resulting distributions shapes and
size scaling. These findings are remarkable and when experiment
does not match theory, one may better focus more broadly on
variability introduced in fabrication of a structure, rather than
just on shortcomings in modeling assumptions. For instance, in
[77] various fiber packings were considered including square,
hexagonal and random, and yet the results proved surprisingly
robust. Similar robust behavior was noted in [26, 27] working
with distorted triangular lattices. Such details are less important
that might first be suspected, which perhaps explains why fiber
bundle models, with all their idealizations, work so well in the
first place.

The focus of this paper, therefore, is to revisit and further
develop our previous model [78] that took into account not
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only the statistical failure of individual fiber elements in the
composite, but also linearly viscoelastic matrix behavior in shear
as the matrix locally transfers loads from broken fibers elements
to neighboring intact fiber elements over a length-scale that
increases over time.

As was described above in the context of a wide range of
fiber bundle models, stress rupture is caused by fiber breakage
occurring over time, where individual fiber breaks ultimately
form clusters that increase in size until one becomes unstable
and the composite fails catastrophically. A key aspect is that the
load once carried by a broken fiber is locally transferred to its
neighboring fibers through shear in the matrix, thus creating
stress concentrations in these neighbors, which then grow in
time especially as fiber breaks form in clusters that grow. A
key driver of the failure process is that the local length-scale
of these overloads increases over time as the matrix creeps in
shear so that, over time, more and more fiber flaws are exposed
to stresses that cause them to fail, despite having survived the
applied service load absent any stress-concentrations, or even
loads from a proof test. Thus, a critical aspect of this stress-
rupture process occurring in the composite over time, is that it
occurs even if the fibers themselves are immune to stress-rupture,
which is essentially the case for carbon fibers.

The stress rupture failure process described above is the
basis for the stochastic fiber breakage (SFB) model [78], which
accounts for the relevant micromechanics of fiber-to-fiber load
transfer in the presence of matrix creep, and the statistics of
fiber strength and flaw occurrence in determining the overall
lifetime distribution. Several other models have been applied
to describe stress-rupture composite lifetimes; however, these
models have largely been phenomenologically based on single
fibers, as described in [14–19, 79], some of which are compared
in [1]. In developing the micro-mechanically based SFB model in
[78], many simplifying assumptions were necessary.

One key assumption was that the matrix is linearly
viscoelastic, and creeps in shear following a power-law in time.
This assumption has been used in shear-lag modeling [63–65]
and mathematically builds on models assuming elastic fibers
and an elastic matrix. Associated with this assumption, however,
is that the matrix and the fiber/matrix interface are immune
to failure in shear, which may be an unrealistic assumption
when fiber breaks first occur, or clusters become large. Of
course, over time, matrix creep relaxes these initially high
shear stresses, however, it is known that in many circumstances
of high fiber volume fraction and fiber strength the initial
shear stresses around fiber breaks exceed the matrix yield
strength or interfacial shear strength for fiber-matrix debonding.
The SFB model in [78] does not accommodate such non-
linear matrix phenomena, although qualitatively and using
rough approximations, their consequences can be appreciated as
significant when they occur. Thus, to accommodate such non-
linear matrix behavior in shear, Mason et al. [66] investigated
the case where the matrix undergoes non-linear creep in shear,
both in stress and time. The current paper extends the SFB by
incorporating the non-linear results in [66] into our previous
model in [78].

Lastly, we discuss the effect of proof testing on composite
lifetime in this revised version of the SFB model with non-linear
matrix behavior, and how the additional parameters that arise
allow us to accommodate non-linear matrix behavior such as
plastic-like matrix yielding, yet preserve the overall character of
the results.

Section Overview of Context of the Stochastic Fiber
Breakage Model and Forms of Key Results provides a brief
overview of the context of the SFB model in applications as
well as various distribution forms that will expanded upon
in subsequent sections. Section Modeling the Instantaneous
Composite Strength and Determining its Distribution provides
a derivation of the distribution for “short-term” composite
strength, in circumstances where the timescale for matrix creep
is assumed too short to affect the strength behavior, as was
the case in [78]. However, certain parameters will be defined
in anticipation of non-linear matrix effects that will require
revisions to the model of [78].

Section Modeling Composite Lifetime in Stress Rupture
and Determining its Distribution derives the distribution
for composite lifetime, building on the methods used in
Section Modeling the Instantaneous Composite Strength and
Determining its Distribution and previously in [78], but also
incorporating non-linear viscoelastic behavior to the matrix,
using a variation of the load transfer length explored in [66]
and expanded upon in Appendices A–D (All Appendices are
provided in the Supplementary Material linked to the paper).
In Appendix A, context is provided for how various parameters
arise and the roles they play, particularly with respect to
the growth in time of the characteristic load-transfer length.
Appendices B,C derive results accommodating shear-driven
increases in the length scale of load-transfer on surviving fibers
around a growing cluster of fiber breaks. In Appendix D we
discuss a simpler version of the non-linear creep model in
[66], which is analytically solvable for all the 3-fiber cases in
Appendix A, including those where the exponent on time is not
unity. The behavior of crucial quantities, such as the length scale
of fiber load transfer over time, turn out to be virtually identical.

Section Lifetime Distribution of a Composite Component that
has Survived a Proof Test derives the distribution for lifetime of
a composite component that has survived an initial proof-test up
to some fraction of its initial strength (or has been overloaded by
somemultiplier of its ultimate service stress). Section Results and
Discussion summarizes the influence of non-linear matrix creep
on various parameters governing the distributions for composite
strength and lifetime, and illustrates various results and non-
linear effects in graphical formwhere the effects of varying certain
key parameters are discussed, paying special attention to more
subtle volume effects.

Section Conclusions concludes with some comments on key
distinguishing features of the model that result from extending
into the non-linear range the viscoelastic matrix creep behavior
in our previous work [78]. We also provide some additional
context on the overall stress-rupture problem in unidirectional
composite structures that goes beyond the task of developing a
model, as was done in this paper.
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OVERVIEW OF CONTEXT OF THE
STOCHASTIC FIBER BREAKAGE MODEL
AND FORMS OF KEY RESULTS

Load Profiles Applied to the Composite
and Desired Strength and Lifetime
Distributions
Ramp Loading to Determine Composite Strength
The first load history of interest is the ramp loading for
determining the composite strength. This is given by:

σ (t) = Rt, t ≥ 0 (1)

where t is time and the parameter, R > 0, is the loading rate
or stress rate. Typically, R is sufficiently fast to cause failure
in 20–200 s, and where such failure times are shorter than
a particular characteristic time, tc, for matrix creep in shear,
especially the fraction of time spent closer the failure load where
most fiber breakage occurs. As such, the time-dependence of the
matrix is typically ignored when modeling composite strength
behavior, and we can treat the matrix as though it is purely
elastic (though there will be exceptions and subtleties worthy
of discussion).

In this case, the goal is to calculate the distribution function,
HV (σ ), for the strength of the composite, in terms of applied
stress level, σ > 0, which will turn out to be approximately
of Weibull form with scale and shape parameters, σ̂V and α̂,
respectively, that are to be determined from the model and where
V is the composite volume expressed as the total number of fiber
elements it contains, each with characteristic length, δc. Note that
applied stress is to be interpreted as applied force divided by
some overall fiber material cross-sectional area of the structure,
and will not the same as the elevated local stress on a particular
fiber element that happens to be next to a newly broken fiber
element, and thus, is also supporting part of that fiber element’s
original load.

Constant Load in the Study of Composite

Stress-Rupture Lifetime
The second load history of interest is that used in modeling
composite lifetime in stress rupture. In this case, applied stress
is assumed to be constant over all time, i.e.,

σ (t) = σ̄ , t ≥ 0 (2)

where σ̄ > 0 is the applied stress level (fiber force over overall
fiber material cross-sectional area of the loaded structure), and in
practice, is typically only a fraction of theWeibull scale parameter
for composite strength measured using the ramp loading (1), that
is, σ̄ < σ̂V . In reality, the initial loading of the composite up to
stress level, σ̄ , cannot be performed instantaneously and typically
requires an initial ramp loading following load-history (1), where
R is sufficiently rapid. However, time-dependence of the matrix
under such initial loading rates, typically has a negligible effect
on the resulting lifetime distribution at times of interest well-
beyond the characteristic time, tc, mentioned above. Note that

this applied stress can only be supported as long as the elevated
local fiber stresses near some growing cluster of fiber breaks in
the material, have not reached the point where cluster growth
becomes unstable and catastrophic.

In this case, the goal is to calculate the distribution function,
HV (t; σ̄ ), for the lifetime of the composite, for times, t ≫ tc,
which will also be of the Weibull form with scale and shape
parameters, t̂V and β̂ , respectively, and where V is the previously

defined composite volume. We will find that t̂V = tc
(

σ̄ /σ̂V
)−ρ̂

where ρ̂ is a power-law exponent that will characterize the
dependence of the lifetime on the inverse of the applied stress
level, σ̄ .

Stress-Rupture Lifetime of a Composite Following a

Brief Proof Test at Higher Load
Typically manufactured composite structural components, prior
to being put into service, are subjected to a “proof test” where
a ramp loading (1), is applied up to proof stress level, σp, which
may be significantly higher than the ultimate service stress, σ̄ , and
which ismaintained for some proof hold time, tp, typically several
minutes, after which the applied stress is lowered to the service
stress level, σ̄ ≤ σp, which is kept constant thereafter (Here we
admit the possibility that the proof test is minimal, i.e., the stress
level is simply the ultimate service stress). There can be variations
to this loading profile whereby after time, tp, the applied stress is
lowered from σp to near zero and the component is stored for
some time before later being put into service at constant stress
σ̄ . For the purposes of this paper, however, it suffices to use the
simplified load profile:

σ (t) =
{

σp, 0 ≤ t < tp
σ̄ , t ≥ tp

(3)

The rationale for this practice is that applying a proof test
to stress level, σp ≥ σ̄ , will “weed out” inferior composite
structural components, thus improving the overall reliability of
components that pass the proof test and are put in service. As
is discussed later, classic models used for composite lifetime
in stress rupture typically support this strategy, and the higher
the proof stress, the better. We shall show, however, that the
more detailed model developed in this paper does not universally
support such a strategy, since proof-testing inflicts damage in the
form of broken fibers that otherwise would have remained intact.
This can negatively influence composite reliability atmuch longer
times. This is a critical issue raised by Bunsell and Thionnet [50],
as previously mentioned.

In this case we are interested in the conditional distribution
for lifetime, HV

(

t| t ≥ tp, σp, σ̄
)

, given t ≥ tp, that is, given the
component survived the proof test loading under stress σp up to
time t = tp, which means HV

(

t| t ≥ tp, σp, σ̄
)

= 0 when t = tp.
The resulting lifetime distribution has a complex but insightful
structure, though it does not neatly collapse to a Weibull form,
even when σp = σ̄ .
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MODELING THE INSTANTANEOUS
COMPOSITE STRENGTH AND
DETERMINING ITS DISTRIBUTION

Distribution for Fiber Strength in Tension
and Size (Length) Effect
Fibers in the composite are initially continuous having diameter,
d, and Young’s modulus, E. We assume the WP fiber strength
model applies, such that a fiber element of length, δ, follows a
Weibull distribution for tensile strength, σ , of the form:

Fδ (σ ) = 1− exp

(

−
δ

δc

(

σ

σδc

)ζ
)

, σ ≥ 0 (4)

where δc is a characteristic length mentioned earlier and
described in more detail below, and σδc and ζ are the fiber
Weibull scale and shape parameters, respectively, corresponding
to length δc. A critical feature of (4) is that increasing the element
length, δ, increases the probability of element failure at stress
level, σ , since more strength limiting and randomly occurring
flaws are exposed. Note also that the Weibull scale parameter for
fiber strength at length, δ, is simply:

σδ = σδc(δc/δ )1/ζ (5)

which reveals the inverse dependence of fiber strength on length,
δ, and its sensitivity to ζ . This becomes a key component of
the stress-rupture model for lifetime since matrix creep in shear
has the effect of increasing over time, t, the effective overload
lengths on fiber segments adjacent growing clusters of fiber
breaks. However, the fibers and their randomly occurring flaws
are themselves time independent, and segments of fixed length
and under a fixed load do not undergo stress rupture.

A Taylor series expansion of (4) results in a convenient lower
tail approximation, namely:

Fδ (σ ) ≈
δ

δc

(

σ

σδc

)ζ

, 0 ≤ σ < σδ , (6)

which is of power-law form. This approximation happens to
be extremely accurate for typical values of ζ , since fiber stress
levels, σ , in the composite failure model typically satisfy 0 ≤
σ≪σδc . Later the composite stress-rupturemodel will involve the
formation and growth of clusters of fiber breaks that have formed
under an applied composite stress level, σ . Intact neighbors
next to a cluster of i fiber breaks will thus be subject to stress
Kiσ > 1, whereKi is the fiber stress concentration induced by the
cluster (as will be described in more detail in sub-section Stress
Concentrations and Break Cluster Growth Parameters for Failing
Fiber Elements below). If the cluster grows in size such that
[[Mathtype-mtef1-eqn-77.mtf]], then under (6), Fδ (Kiσ) → 1,
whereas under (4), Fδ (Kiσ) → 0.632 > 1/2 . Either way, the
fiber break cluster has reached instability and catastrophic failure
results. However, (6) greatly simplifies the calculations.

Characteristic Elastic and Statistical
Length Scales for Fiber Load
Redistribution Near Breaks
Using the classic shear-lag model [68, 69], Hedgepeth et al.
described the load transfer process from broken to intact fibers in
a composite where fibers are arranged in either a planar, square
or hexagonal array within a flexible matrix. Fundamentally, a
characteristic elastic length, δe, emerges that depends on various
mechanical and geometric parameters of the fiber and matrix
and their spacing, these being the fiber Young’s modulus, E, fiber
cross-sectional area, A, fiber diameter, d, matrix instantaneous
elastic shear modulus, Ge, effective width, w, of matrix between
two fiber surfaces, and the effectivematrix thickness, which is also
taken as d.

For fully elastic behavior, δe is typically expressed in terms of
these parameters as [9, 63–65]:

δe = d

√

E

Ge

A

d2
w

d
≈ d

√

E

Ge

w

d
(7)

the latter assuming the approximation A ≈ d2, The dominating
influences on δe are the fiber diameter, d, the square root of
the fiber to matrix stiffness ratio,

√
E/Ge , and the square root

of the matrix width between the fibers divided by its thickness
√

w/d . In simple terms, the ratio w/d is related to the fiber
volume fraction, Vf, and whether the fibers are arranged as a
planar tape (planar fiber array) or as a hexagonal array, whereby
Vf ≈ 1/

(

1+ κw/d
)

where κ ≈ 2 for a planar fiber array
and κ ≈ 3 for a hexagonal array. Thus, for a given fiber volume
fraction, the ratiow/d will be smaller for a hexagonal vs. a planar
array, however, the effect is mitigated by the square-root since√
2/3 = 0.816, and thus, for a given Vf the effect on δe is no

more than 20%.
Along a neighboring fiber close to a fiber break, its overload

profile in terms of fiber stress is roughly triangular with the
peak stress occurring adjacent to the break. However, the
effect of the triangular stress profile, in terms of determining
its probability of failure can be modeled using an “effective,
rectangular overload profile” at peak stress, but over some shorter
length depending on the Weibull shape parameter, ζ , for fiber
strength. This calculation requires accounting for the statistical
rate of occurrence along the fiber of flaws of varying strength,
as characterized by the WP fiber strength model [9, 10]. In
our earlier work [78], this characteristic length, called δc in (4)
through (6), was chosen as δ̂c, which in our current notation and
under linear viscoelastic behavior in [78] is:

δ̂c ≡
4

ζ + 1
δe. (8)

One factor of “2” arises because the overload profile extends over
length 2δe spanning the break. The other factor, 2/(ζ + 1) ,
arises from triangular nature of the over-stress profile and its
integration within the WP fiber model over length 2δe [For more
details see Equations (85–88) in [9] and associated discussion
there]. The scaling factor, which is inversely proportional to ζ+1,
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results from the fact that the higher the value of ζ , the lower
the variability in fiber strength, which means there is a sparser
distribution of weaker flaws along the fiber. Thus, only the higher
stresses near the peak of the triangular overload region are likely
to cause fiber failure. Overall, the overloaded region is shortened
for larger values of ζ [We caution that the notation used here
is different from that in [78], since 2δe here is δ̂e in the previous
paper where both sides of the break were included. The definition
of δe in (7) is more in line with that in the literature, [9, 10, 68, 69],
and will simplify later comparisons].

In the current work the introduction of non-linear creep, and
in particular, effects associated with the applied composite stress
level, will require modification of δc, and we will find that taking
δc = δ̂c ≡ 4δe/(ζ + 1) , as in [78], does not account for the
matrix yielding effect that will need to be incorporated. A new
form of δc will be developed in Section Modeling Composite
Lifetime in Stress Rupture and Determining its Distribution
Fiber-to-Fiber Load Transfer at Fiber Breaks Under Linear
and Non-linear Matrix Creep in Shear and in Appendix A in
the Supplementary Material once the non-linear matrix creep
model has been introduced, and a scale parameter for composite
strength has been formulated; however, in this section δc needs
no further characterization.

Stress Concentrations and Break Cluster
Growth Parameters for Failing Fiber
Elements
In the absence of time dependence of the matrix, the failure
process in the composite involves the growth of clusters of fiber
breaks resulting from local stress local concentrations on intact
neighbors that are candidates for the next fibers to fail. Thus, in
accordance with the definitions in both [10] and [78], we let:

Ki =
{ √

1+ iπ/4 , planar fiber array,
√

1+
√
4i/π /π , hexagonal fiber array,

i = 0, 1, 2, . . .

(9)

be the stress concentration on a fiber next to a cluster
of i broken fibers, where we note that

√
4i/π = D, is

the diameter (dimensionless) of an approximately disc-shaped
cluster containing i tightly-packed fiber breaks (That is, the actual
cluster diameter is of order Dd). Also,

ck =
k−1
∏

j=0

Nj, k = 1, 2, 3, · · · (10)

is approximately the number of ways a cluster of k breaks can
grow one break at a time from a single triggering break, where
N0 ≡ 1 and Nj is the effective number of overloaded neighbors
next to a cluster of size j, one of which becomes the next fiber
failure. The number, Nj, is given in [10, 44, 78] as approximately,

Nj =
{

2, planar fiber array
φjγ , hexagonal fiber array

, j = 1, 2, 3, . . . (11)

where in a hexagonal array, φ and γ are parameters having the
respective ranges, 2.5 ≤ φ ≤ 6 and 0 ≤ γ ≤ 0.5 depending on

subtleties of the fiber packing geometry and other factors. These
all apply to the case of a linearly viscoelastic matrix.

InAppendix C in the SupplementaryMaterial we consider the
effects of non-linear matrix creep behavior of the matrix in shear
on the overload lengths of fibers next to a cluster of breaks of
size j, and find that the definitions of Nj change in both cases,
and in a hexagonal array γ can increase by as much as 1/2
depending on the degree of non-linearity in shear stress level.
These aspects will be explored in terms of determining Nj in (11)
and calculating ck in (10) when applying the model in Section
Results and Discussion.

Distribution Function for Composite
Strength
In determining the probability of composite failure as a function
of stress level, σ , under a ramp loading as described in (1), we
first focus on a quantity Wk (σ ), which is the probability of a
cluster of k fiber breaks forming at a particular location in the
composite under arbitrary stress, σ , starting with a single fiber
break, and where k ≥ 1is an arbitrary integer. These results are

used later in connection with a specific value of k = k̂, called the
critical cluster size for instability. Any group of k adjacent fiber
elements has the potential to become a cluster of k breaks, despite
being a rare event for a given group of k fibers. However, the
probability of obtaining at least one cluster of size k somewhere
in the composite is much larger, and the overall probability of
occurrence takes the weakest link form:

HV ,k (σ ) = 1− [1−Wk (σ )]V , σ ≥ 0, k = 1, 2, 3, . . . (12)

where V is the dimensionless volume of the composite in terms
of number of fiber elements of length δc, That is, V , is the total
length of fiber in the composite, 3, divided by δc. Note that (12)
holds even though two nearby groups of k fiber elements can
overlap each other and might ostensibly be viewed as statistically
dependent. In reality, they satisfy the concept of k-dependence
and essentially act independently (see Smith et al. for theorems
on the concept of k-dependence associated with rare events [72]].

Since V is large (12), is well-approximated by the
exponential form:

HV ,k (σ ) ≈ 1− exp [−VWk (σ )] , σ ≥ 0, (13)

reminiscent of theWeibull form, as described by Smith et al. [72].
The general expression for the strength of a cluster of k fibers,
Wk (σ ), as described in [9, 10, 78], is well-approximated by:

Wk (σ ) ≈ ck





k−1
∏

i=0

Fδc (Kiσ)



 , k = 1, 2, 3, . . . , σ ≥ 0. (14)

where Fδc (σ ), Ki and ckwere given previously by (6) and (9–
11), respectively.

Using the lower tail approximation in (6), we can rewrite
(14) as:

Wk (σ ) ≈ ck
(

K0K1K2 · · ·Kk−1

)ζ

(

σ

σδc

)kζ

, k = 1, 2, 3, 4, . . . .

(15)
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Combining Equations (13) and (15), and taking k = k̂, which
is the critical cluster size whose value is determined below,
we obtain an approximation for the failure probability of the
composite, HV (σ ), at a stress level σ , where:

HV (σ ) ≡ HV ,k (σ )
∣

∣

k=k̂
(16)

This can be rearranged into the Weibull form:

HV (σ ) ≈ 1− exp

(

−
(

σ

σ̂V

)α̂
)

, σ ≥ 0, (17)

Where,

σ̂V = σδc

(

Vc
k̂

)−1/
(

k̂ζ
)





k̂−1
∏

i=0

Ki





−1/k̂

, k̂ ≥ 1, (18)

is the effective Weibull scale parameter for strength and

α̂ = k̂ζ , k̂ ≥ 1, (19)

is the corresponding effective Weibull shape parameter.

In [78], we defined the critical cluster size, k̂, as the value k̄
satisfying Kk̄−1σ̂V < σδc ≤ Kk̄σ̂V . The idea there is that at such
composite stress level σ = σ̂V , the probability of failure of an
adjacent element to a cluster of size, of size k̄ − 1 is approaching
1−e−1 = 0.632 and adding onemore break to increase the cluster
to size k̄ pushes the failure probability to the point of instability,
and thus, catastrophic cluster growth with any further breaks.

For typical values of ζ , this choice works well in the case of a
planar array, since there only two neighboring fibers to a growing
cluster. However, in the case of a hexagonal array, the number
of overloaded neighbors, Nj, to a cluster of size, j, grows large,
especially for smaller ζ values. Thus, a point of instability for a

given stress value σ , will likely occur at a smaller cluster size, k̂,

than the k̄ value above, that is, the true k̂ would be overestimated
by the definition given in [78].

To address this issue, a more refined approach to determining

the k̂ associated with the onset of cluster instability is to first seek
stress values, σ = σk, for integer values, k ≥ 1, where Wk−1 (σ )

happens to intersect with Wk (σ ) when σ is locally varied; that
is, where Wk (σk) = Wk+1 (σk). These intersections result in a
set of stress values satisfying · · · < σk < σk−1 < · · · < σ2 <

σ1 < σδc , thus placing the focus on the probabilities of instability
and failure associated with a given stress level, σ , that happens to
fall between two successive values, say, σk ≤ σ < σk−1. Thus,
using (15) in the equality Wk (σk) = Wk+1 (σk) and canceling

common factors leads simply to Kkσk = σδc/N
1/ζ
k

. Then for σ̂V
satisfying σk < σ̂V ≤ σk−1 for a particular k value that we call

critical cluster size, k̂, we find that:

K
k̂−1

σ̂V <
σδc

N
1/ζ

k̂

≤ K
k̂
σ̂V . (20)

Thus, this result adjusts for the increased probability of instability
and failure resulting from a growing number, N

k̂
, of overloaded

neighbors to a cluster, any one of which could break and trigger
unstable cluster growth before the stress on such neighbors has
reached σδc (The exponent, 1/ζ arises from an equiprobability
tradeoff of increasing N

k
vs. decreasing stress level, σ , so that

N
k
σ ζ remains fixed).
From (9), (18), and (20) we find that solving for the correct

value of k̂ requires satisfying:

k̂ =















⌈

4
π

{

(

2−1/ζ σδc/σ̂V
)2 − 1

}⌉

, planar fiber array
⌈

π3

4

{

(

N
−1/ζ

k̂
σδc/σ̂V

)2
− 1

}2
⌉

, hexagonal fiber array

(21)

where “⌈�⌉” corresponds to the ceiling function, i.e., rounding up
the value of the argument to the next integer, since instability
requires growing to the next highest cluster size. While this

change in definition decreases k̂ as compared to that calculated
in [78], it has a negligible effect in the planar case for typical
values of ζ . However, it results in a major improvement in the
hexagonal case for smaller values of ζ , particularly since N

k̂
also

rapidly decreases with decreasing k̂.
Note that the approach in the current paper results in a

single Weibull distribution for strength for all stress levels
and associated probabilities of failure, whereas a more refined
analysis, as in [9, 10], leads to a strength distribution with a
more concave shape in stress level noticeable over probability
levels decreasing by many orders of magnitude (Later on, the
same will be true of the distribution for lifetime given the
applied load level). However, apart from greatly complicating the
analysis, such refinements make little if any practical difference
to the predictions for the material volumes and range of failure
probabilities of interest.

MODELING COMPOSITE LIFETIME IN
STRESS RUPTURE AND DETERMINING
ITS DISTRIBUTION

The fiber breakage model for stress-rupture of a unidirectional
composite relies not only on the elastic stiffness properties of
the fibers in tension, but also on the elastic stiffness and creep
properties of thematrix in shear. The fiber andmatrix viscoelastic
or viscoplastic properties and their dimensions with respect to
their local packing geometry (e.g., 2D hexagonal, or 1D planar)
determine the length scale, generally called δ (t), t ≥ 0 (of
with subscripts as appropriate), over which load is transferred
from a broken fiber to its adjacent intact neighbors. It is the
matrix creep behavior in shear, scaled by its elastic behavior,
that determines how this length-scale of fiber load transfer
grows over time, the consequence of which is the occurrence of
additional fiber failures over time at newly exposed flaws. Thus,
over time clusters of fiber breaks emerge and grow in both size
and length of overloading until a point of instability is reached,
and catastrophic failure is triggered. Below we explain how is
determined in both the linear and non-linear matrix creep.
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Length-Scales for Fiber Load Transfer
Under Linear Viscoelastic Matrix Creep
Previously in [78] we considered the case where the matrix is
linearly viscoelastic and that the matrix creeps in shear according
to a creep compliance with the power-law form:

J (t) = Je

(

1+
(

t

tc

)θ
)

, t ≥ 0, (22)

where Je ≡ 1/Ge is the instantaneous elastic creep compliance
(being the inverse of, Ge, the instantaneous elastic shear
modulus), tc, is a characteristic time for creep, and θ is a power-
law exponent, all being positive in value. Generally, under a time
varying shear stress, τ (s) , t ≥ 0, the shear strain follows the
convolution integral.

γ (t; τ (�)) =
t
∫

0

J (t − s)
dτ (s)

ds
ds

=
1

Ge

t
∫

0

(

1+
(

t − s

tc

)θ
)

dτ (s)

ds
ds (23)

Under a given fixed shear stress, τ̄ , the matrix shear strain is
γ (t, τ̄ ) = τ̄ J (t), and from (23) is,

γ (t, τ̄ ) =
τ̄

Ge

(

1+
(

t

tc

)θ
)

≈
τ̄

Ge

(

t

tc

)θ

, t ≫ tc. (24)

Typically tc is of the order seconds to minutes, whereas
the ultimate failure time of the composite in stress-rupture
applications is of the order of months to years, and even many
decades. Also, a typical value for a polymer matrix is θ ∼
0.25. In the case of a unidirectional composite with a large
number of fibers, the stress redistribution from a broken fiber to
its closest intact neighbors can be calculated using well-known
shear-lag models, which assume the fibers primarily support
tension and the much more flexible matrix primarily supports
shear. In the case of the linear viscoelastic creep function for the
matrix, and using the convolution (23), in an extensive analysis
using Laplace transforms, Lagoudas et al. [63] showed that the
length scale grows beyond the elastic length scale according to

δe

√

1+ (t/tc )θ , t > 0, and thus the characteristic length scale is

accurately described by:

δ (t) = δc

√

1+
(

t

tc

)θ

, t > 0 (25)

where δc is the characteristic statistical-elastic length scale for
instantaneous fiber load transfer given previously by (8), that
is, in this special case of linear viscoelasticity, δc = δ̂c.
Furthermore, the fiber stress concentrations, Ki, near clusters of

i fiber breaks still follow (9), and as time passes, transversely
somewhat misaligned breaks in a cluster act as though they are
increasingly aligned [58].

At much longer times, t, relative to the characteristic time for
creep, t = tc, and in keeping with the approximation in (23) we
simplify (24) to,

δ (t) ≈ δc

(

t

tc

)θ/2

, tc ≪ t, 0 < θ ≤ 1 (26)

where we note that the exponent on normalized time has now
become θ/2 . This reduction by one-half of the effect of the
matrix creep exponent on time, i.e., from θ to θ/2 , occurs
because matrix creep causes growth over time of the length-scale
along a fiber over which stress-redistribution occurs as the fiber
stress drops from the nominal far-field value, say σ , to zero at
the break. Consequently, to maintain force balance in the fiber,
the magnitude of the matrix shear stress necessarily diminishes
with time, effectively slowing down the growth of matrix creep in
shear compared to what one might deduce from (5).

Despite the reduction of the exponent, θ , in (24), to θ/2 in
(26), this approximation accurately describes the behavior of (25)
for longer times, t ≫ tc, and at t = tc gives the same value,
δc, as (25) does at t = 0. Thus, when considering probabilities
of failure associated very short times, or even when measuring
strength at times, 0 < t ≪ tc, accurate predictions are obtained
from lifetime probability calculations based on using the simpler
(26), and taking t = tc, as we discuss again later.

A key feature of matrix creep is ignored in simply using (25)
and (26), but is potentially important when a composite has an
isolated break or a small break cluster, and the applied composite
tensile stress suddenly increases or decreases at certain times, or,
when the composite stress is constant but a small break cluster
induces additional neighboring breaks at times t≫ tc, and grows
in size, or some combination of the two. In such cases, the shear
stress near fiber breaks can change substantially over time, and
the amount of stress redistributed from broken to intact fibers,
and the length scale over which it is applied, also changes over
time in ways wemodel using (26) but not accounting for behavior
implied by the stress history convolution (23). That said, the
key elastic length-scale of load transfer, δe, for a single break or
its counterpart for a small break cluster does not change (other
than increasing slightly in a stepwise fashion as more breaks
are added).

It turns out, however, that these result are surprisingly
accurate even for the case of a viscous matrix where (26) applies
exactly with θ = 1, and where the matrix viscosity is interpreted
as tcGe [44, 64, 65]. Thus, despite these potential complications
we are still able to use the forms (25) and (26) as well as the
instantaneous load-redistribution factors, Ki, around fiber breaks
obtained from elastic shear-lag analysis, as given in (9). That is,
in the case of elastic fibers and a linearly viscoelastic matrix, these
Ki happen to be determined from the elastic problem, via the
so-called “correspondence principle.”

Thus, for all breaks, we assume (25) and (26) apply irrespective
of when new breaks occurred; that is, the time of occurrence for
any new break is retroactively set to zero. Since θ is typically
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small (and θ/2 smaller still), the effect of retroactively assigning
all break times to zero, once they occur, makes little practical
difference to the model predictions, which if anything are slightly
conservative. Such a simplification yields surprisingly accurate
predictions in a stress-rupture setting, as was shown in [54] for
the more demanding case of a viscous matrix, θ = 1, especially
when a composite is loaded under constant stress that is well
below its breaking strength. Much of the reason for this is that
the fiber breaking process, while rapid initially, becomes slower
and slower as time progresses, and the spacing of breaks over
time tends to become logarithmic, until catastrophic instability
is reached. Consequently, log-scales in both time and stress level
are typically used to describe the composite stress rupture process
up to final failure.

Length Scales for Fiber Load Transfer
Under Non-linear Matrix Creep of Mason
et al. (1992)
In the case of non-linear matrix creep in shear, Mason et al.
[66], formulated and solved certain shear lag problems involving
a single broken fiber in the center of a planar composite under
tension, and having three fibers and five fibers, respectively. The
matrix creep law for shear strain, γ , was assumed to take the
following power-law form in both time and shear stress, which
we parameterize as:

γ (t; τ (�)) =
τy

Ge





1

tc

t
∫

0

(

τ (s)

τy

)ϕ/θ

ds





θ

, τ ≥ 0 (27)

whereτ (t) , t ≥ 0 is the applied shear stress that may vary with
time, 0 < θ ≤ 1 is again a fixed exponent reflecting the sensitivity
of creep strain growth with time, the new parameter, 1 ≤ ϕ < ∞
is a fixed exponent reflecting the sensitivity of creep strain growth
to shear stress level, andGe is a reference stress reminiscent of the
matrix elastic shear modulus. Also the other new parameter, τy, is
a reference shear stress that in the limit of large ϕ → ∞ will play
the role of a perfectly plastic matrix yield stress in shear, but in
the “linear” limit, ϕ → 1+, has no effect in (27) (Typically such
creep laws are described in terms of creep rate, ∂γ (t; τ (�))/∂t ,
which is how they are used in the shear-lag model, however, this
is easily calculated from 27).

Under constant shear stress, τ (s) = τ̄ , (27) reduces to,

γ (t, τ̄ ) =
τ̄

Ge

(

τ̄

τy

)ϕ−1( t

tc

)θ

, τ̄ > 0, t ≥ 0 (28)

and when ϕ → 1+ we recover the approximation given in (24)
for the case of a linearly viscoelastic matrix [As discussed in
Appendix D in the Supplementary Material, there is a simpler
version of (27) that leads to a creep-rate ∂γ (t; τ (�))/∂t , which
avoids a memory integral inherited form (27) but otherwise
results in (28). Fortunately, this simpler version yields results that
are virtually identical to those developed in Appendix C in the
Supplementary Material and used below].

While we have used an effective shear modulus, Ge, to
normalize the shear stress, τ̄ , the model in [66] does not

explicitly reflect the initial instantaneous elastic shear behavior
one might expect for a polymer matrix at time, t = 0, focusing
instead on matrix creep over longer times, t > 0. However,
initial elastic behavior may be important for determining the
characteristic elastic length scale, δe, of (7) for elastic load transfer
around a fiber break when determining the composite strength
distribution, (17), using (4).

In Appendix A in the Supplementary Material we discuss
solutions, based on (27), where we derive a characteristic length
scale for load transfer, δ̂ϕ (t), given by (A41) through (A43)
which covers both viscoelastic and viscoplastic cases. Recalling
(8), whereby δ̂c ≡ 4δe/(ζ + 1) , reflecting both the elastic
length scale δe and statistical effects through the Weibull shape
parameter, we use δ̂ϕ (t) to obtain the key length scale, δ (t, σ̄ ) =
4δ̂ϕ (t)/(ζ + 1) , i.e.,

δ (t, σ̄ ) =
4

ζ + 1
δe

(

σ̄

σy

)(ϕ−1)/(ϕ+1) ( t

tc

)θ/(ϕ+1)

(29)

This can be written as,

δ (t, σ̄ ) = δc

(

σ̄

σ̂V

)(ϕ−1)/(ϕ+1) ( t

tc

)θ/(ϕ+1)

(30)

where we have used the definition,

δc ≡ δ̂c

(

σ̂V

σy

)(ϕ−1)/(ϕ+1)

(31)

Where,

σy = 2τy δe
d

A
≈ 2τy

δe

d
(32)

is a critical “yield” stress [see Appendix A in the Supplementary
Material, and specifically, the discussion surrounding (A42),
motivating the emergence of the length scale, δe in (32)].

This result is consistent with (26) in the case of viscoelastic
creep at longer times. However, the length scale δ (t, σ̄ ) of (30)
reveals interesting effects in the case of non-linear creep: When
ϕ → 1+, we see that δ (t, σ̄ ) of (30) and (31) is consistent
with δ (t) derived from (26) in the case of linear viscoelasticity.
However, when ϕ → ∞, time dependence disappears, and
δ (t, σ̄ ) = δ̂cσ̂V/σy for all t ≥ 0 reminiscent of plastic
behavior. In general, σ̂V > σy and thus, δc will be larger than

δ̂c when ϕ > 1.
When deriving the distribution function (17), for composite

strength where effectively the loading time is of order tc or less,
the appropriate length-scale for fiber-to-fiber load transfer is, δc.
However, from (30) to (32), we see that when t = tc, we obtain
the length δ (tc, σ̄ ) which differs from δc when ϕ > 1 as reflected

by the factor,
(

σ̄ /σ̂V
)(ϕ−1)/(ϕ+1)

, whereas no such effect arose
in the case of a linear viscoelasticity, since ϕ = 1. This leads to
changes in (17) through (20) that must be accommodated.

Frontiers in Physics | www.frontiersin.org 12 March 2021 | Volume 9 | Article 64481586

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Engelbrecht-Wiggans and Phoenix Stochastic Fiber Breakage Part 2

As was done with the extension of (28) to (29) for non-
linear matrix shear strain behavior to accommodate initial elastic
effects, we also extend (30) to the form:

δ (t, σ̄ ) = δc

(

1+
(

σ̄

σ̂V

)ϕ−1( t

tc

)θ
)1/(ϕ+1)

. (33)

This has the correct asymptotic behavior of (30) as t/tc grows
large, and is consistent with the behavior of δ (t) derived from
(25) when ϕ = 1, as well as producing a fixed value, δc, when
t = 0, which also accommodates a yielding effect in (31).

As mentioned in the introduction, there are several
experimental works that demonstrate the effects of non-linear
matrix creep [57–62] on fiber stress relaxation and fiber-to-fiber
load transfer around breaks. These include observations of
matrix yielding and interface debonding and slip. The above
results are consistent with the behavior seen, and in large part,
were the motivation for revising this aspect of the previous
model [78].

Distribution Function for Composite
Lifetime in Stress Rupture
Next we model the occurrence of stress rupture in a composite
structure that has been loaded according to (2) for some time
period, and where the fixed applied stress level satisfies σ̄ <

σ̂V . The lifetime distribution function, HV (t; σ̄ ) , t > 0, which
gives the probability of stress-rupture failure occurring by time,
t, can be derived in a manner similar to that used to derive the
strength distribution (17), above. Using similar arguments, the
distribution function for composite lifetime also follows:

HV (t; σ̄ ) ≈ 1− exp
[

−VW
k̂
(t; σ̄ )

]

, t > 0 (34)

analogous to (13), whereW
k̂
(t; σ̄ ) is a characteristic distribution

function analogous to (14), but with an added time component:

W
k̂
(t; σ̄ ) ≈ c

k̂
Fδc (σ̄ )





k̂−1
∏

i=1

Fδc (Kiσ̄ , t)



 (35)

where k̂ is again defined by (21) (where the actual values of Njare
later called Nj,ϕ and specified in more detail). Also Fδc (σ̄ ) is as in
(4), i.e., using (33) with t = 0, and Fδc (σ̄ , t) in [78] is modified
to give:

Fδc (σ̄ , t) = 1− exp

(

−
δ (t, σ̄ )

δc

(

σ̄

σδc

)ζ
)

≈
δ (t, σ̄ )

δc

(

σ̄

σδc

)ζ

≈
(

σ̄

σ̂V

)(ϕ−1)/(ϕ+1) (
σ̄

σδc

)ζ( t

tc

)θ/(ϕ+1)

≈
(

σδc

σ̂V

)(ϕ−1)/(ϕ+1) (
σ̄

σδc

)ζ+(ϕ−1)/(ϕ+1)

(

t

tc

)θ/(ϕ+1)

, t ≫ tc (36)

where δ (t, σ̄ ) is given by (30), and the lower-tail approximation,
using (6), is always sufficiently accurate in this setting, since
0 < σ̄ ≪ σδc . Note that Fδc (σ̄ ), corresponding to t = 0, is also
given by (6). Thus, this added time component is based on the
assumptions of linear or non-linear matrix creep and shear lag in
a power law framework, as discussed below.

The key result used here for δ (t, σ̄ )as derived from results in
[66] was given earlier by (30) and (31). Upon substituting this
into the lower-tail approximation for Fδc (σ̄ , t), given in (36),
and then substituting the result into (35), we obtain after some
rearrangement and factoring:

W
k̂
(t; σ̄ ) ≈ c

k̂

(

σδc

σ̂V

)

(

k̂−1
)

ϕ−1
ϕ+1





k̂−1
∏

i=0

Ki





ζ+ ϕ−1
ϕ+1
(

σ̄

σδc

)ζ

(

(

σ̄

σδc

)ζ+ ϕ−1
ϕ+1
(

t

tc

)
θ

ϕ+1

)k̂−1

≈ c
k̂

(

σδc

σ̂V

)

(

k̂−1
)

ϕ−1
ϕ+1





k̂−1
∏

i=0

Ki





ζϕ
(

σ̄

σδc

)k̂ ζϕ− ϕ−1
ϕ+1

(

t

tc

)

(

k̂−1
)

θϕ
2

, t ≫ tc (37)

where

ζϕ = ζ +
ϕ − 1

ϕ + 1
. (38)

and

θϕ =
2θ

ϕ + 1
(39)

Substituting (37) into (34), we can write an expression for the
composite lifetime in the form:

HV (t; σ̄ ) ≈ 1− exp











−Vc
k̂

(

σδc

σ̂V

)

(

k̂−1
)

ϕ−1
ϕ+1





k̂−1
∏

i=0

Ki





ζϕ

(

σ̄

σδc

)k̂ζϕ− ϕ−1
ϕ+1
(

t

tc

)

(

k̂−1
)

θϕ
2











(40)

This can also be written as:

HV (t; σ̄ ) ≈ 1− exp







−

(

(

σ̄

σ̂V ,ϕ

)ρ̂ϕ t

tc

)β̂ϕ







, t ≫ tc (41)

where the lifetime shape parameter, β̂ϕ , is given by:

β̂ϕ =
(

k̂− 1
)

θϕ/2, (42)
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and the power-law exponent, ρ̂ϕ , is given by:

ρ̂ϕ =

(

k̂

k̂− 1

)

2

θϕ

(

ζϕ −
1

k̂

ϕ − 1

ϕ + 1

)

, (43)

and where the lifetime scale parameter, σ̂V ,ϕ , is given by:

σ̂V ,ϕ = σδc






Vc

k̂

(

σδc

σ̂V

)

(

k̂−1
)

(ϕ−1)/(ϕ+1)




k̂−1
∏

i=0

Ki





ζϕ






−1

k̂ ζϕ−(ϕ−1)/(ϕ+1)

= σδc

(

Vc
k̂

)
−1

k̂ ζϕ

(

1

1−(ϕ−1)/(ϕ+1) /(k̂ ζϕ)

)





k̂−1
∏

i=0

Ki





(

−1

k̂

)

(

1

1−(ϕ−1)/(ϕ+1) /(k̂ ζϕ)

)

4ϕ (44)

This scale parameter can be reduced to:

σ̂V ,ϕ = σδc









(

Vc
k̂

)−1/
(

k̂ ζϕ

)





k̂−1
∏

i=0

Ki





−1/k̂








1

1−(ϕ−1)/(ϕ+1) /(k̂ ζϕ)

4ϕ

(45)

Where,

4ϕ =
(

σ̂V

σδc

)1/
((

k̂

k̂−1

)(

ϕ+1
ϕ−1

)

ζ+1
)

(46)

and we note that since k̂≫ 1 we have approximately that:

4ϕ →
{

1, as ϕ → 1
(

σ̂V/σδc

)1/(ζ+1)
, as ϕ → ∞

(47)

Also, the exponent 1/
(

1− (ϕ − 1)/(ϕ + 1) /
(

k̂ ζϕ

) )

in the

first term of the right-hand side of (45) is typically very close
to unity.

Thus, the difference between σ̂V ,ϕ of (45) and σ̂V of (18) for
the strength distribution is almost completely dominated by the
factor, 4ϕ , and the effect of ϕ on the first factor on the right-
hand side of (45) is relatively small, since, ζϕ typically differs
little from ζ , which is the Weibull shape parameter for the fiber
strength distribution.

Retrieving Results for Linear Matrix
Viscoelasticity From the Non-linear Matrix
Creep Results
The linear viscoelastic version of the lifetime distribution given in
[78] is retrieved from the results above, simply by setting ϕ = 1,
in which case:

ζϕ = ζ , (48)

β̂ϕ = β̂ ≡
(

k̂− 1
)

θ/2, (49)

ρ̂ϕ = ρ̂ ≡

(

k̂

k̂− 1

)

2ζ

θ
, (50)

and

σ̂V = σδc






Vc

k̂





k̂−1
∏

i=0

Ki





ζ






− 1

k̂ ζ

(51)

since 4ϕ → 1 as ϕ → 1+ in (47). Thus, when ϕ = 1, the scale
parameter, σ̂V , for stress level is identical to that given by (18)
for the strength distribution and the shape parameter, α̂ of (19) is
simply ρ̂β̂ from (49) to (50), which does not involve ϕ.

Interpreting the Strength Distribution in the
Case of Non-linear Matrix Viscoelasticity
The assumption of non-linear viscoelastic behavior of the matrix
does mean, however, that the strength distribution (17), and
associated parameters require reinterpretation. In this case we
use σ̂V ,ϕ of (45) in place of σ̂V in (17) and replace α̂ by:

α̂ϕ = ρ̂ϕ β̂ϕ (52)

based on (49) and (50), which both involve ϕ. Furthermore,
a practically meaningful strength distribution can be extracted
from (41) by setting t = tc.

While both parameters β̂ϕ and ρ̂ϕ see effects from ϕ ≫ 1,

the product ρ̂ϕ β̂ϕ , and thus the effective α̂ϕ on the strength
distribution is little affected. Also, if we use (41) to calculate the
probability of failure by a fixed time, t ≈ tc, associated with
various stress levels, σ̄ , we see that the probability of failure vs.
stress level, σ̄ , also follows a Weibull distribution, with scale
parameter σ̂V ,ϕ of (55), but reduced in magnitude in comparison
to σ̂V of (18), because 4ϕ < 1 since typically σ̂V/σδc < 1. Also,
the Weibull shape parameter now becomes:

α̂ϕ = ρ̂ϕ β̂ϕ = k̂ζϕ −
ϕ − 1

ϕ + 1
(53)

By comparison, the Weibull distribution for composite strength
(17), has scale parameter, σ̂V , given by (18), and shape parameter,

α̂ = k̂ζ , given by (19), where implicit to the derivation is that the
timescale for the strength test is 0 < t ≪ tc whereby non-linear
matrix creep effects do not have time not come into play, other
than instantaneous plastic-like effects reflected in Nj in (20) used

to calculate k̂ (see later discussion whereNj becomesNj,ϕ). Such a
derivation requires thinking in terms of (33) rather than (30), the
latter being the basis for the derivation of the lifetime distribution
(41) and the extracted Weibull scale and shape parameters (45)
and (53) for strength.

One effect on Weibull strength behavior, is a slight shift in the
Weibull shape parameter for strength changing from α̂ at short
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times t≪ tc, to α̂ϕ at times t ≈ tc. However, this shift is relatively
small since from (53) and (19) we have:

k̂ζ = α̂ < α̂ϕ < α̂ +
(

k̂− 1
)

= k̂ (ζ + 1) − 1 (54)

where the upper bound occurs when ϕ → ∞. Thus, the
difference in theWeibull shape parameter for composite strength
is less than would occur by increasing the Weibull shape
parameter for fiber strength from ζ to ζ + 1.

In summary, the most important effect on Weibull strength is
seen in comparing the scale parameter, σ̂V , in (18), which is also
the scale parameter for stress level when modeling lifetime under
linear viscoelasticity, to σ̂V ,ϕ of (45).

Effects of Non-linear Matrix Behavior of
Determining the Effective Number of
Overloaded Fiber Elements Surrounding a
Break Cluster and Calculating the Critical
Cluster Size
The key results in the paper, especially the calculation of σ̂V in

(18) and σ̂V ,ϕ in (45) and k̂ itself in (20) require calculation of c
k̂

in (10), which in turn requires calculating Nj, j = 1, 2, · · ·, k̂ − 1
of (11). In Appendix A in the Supplementary Material we have
shown that in the case of non-linear matrix creep, the Nj values
for under a linear viscoelastic matrix or in the absence of time
dependence must be modified to

Nj,ϕ =















22/(ϕ+1)j(ϕ−1)/(ϕ+1),
planar fiber array

φπ (ϕ−1)/(ϕ+1)/2jγ+(ϕ−1)/(ϕ+1)/2,
hexagonal fiber array

, j = 1, 2, 3, . . .

(55)

and these values are used in (10) to calculate, c
k̂
. Clearly the

resulting effect depends on the value of ϕ, and as ϕ → ∞ results
in proportionality to the number of breaks, j, in the planar case,
and in the hexagonal case to

√

j together with a change in φ to
φ
√

π . However, when ϕ → 1+ there is no effect compared to
linear viscoelasticity.

For fiber Weibull shape parameter values, ζ ∼ 5, and
using Monte Carlo failure simulations as a basis for comparison,
Mahesh and Phoenix [44]. suggest the values φ = 2.5 and γ ≈
0.27 using (55) with ϕ → 1+, i.e., for Nj = Nj,1. On the other

hand, taking φ =
√
4π ≈ 3.54 and γ = 1/2 as in [5] has the

interpretation that Nj is the number of neighbors surrounding
a circular cluster of diameterD and containing approximately
j ≈ πD2/4 fiber breaks, as just noted. This results in:

Nj,ϕ = 2
(

√

π j
)1+(ϕ−1)/(ϕ+1)

, hexagonal fiber array,

j = 1, 2, 3, . . . (56)

However, this assumption effectively overcounts the number
of severely overloaded neighbors to growing approximately
hexagonal cluster that has incomplete rings, as some of the actual

neighbors tend to be shielded and loaded significantly less than
others, as discussed in [10, 72]. Nevertheless, non-linear matrix
effects have a considerable effect when ϕ is larger by substantially
increasing the effect of overloading of neighboring fibers to a
break cluster.

Regarding (11), (55), and (56) wemention interesting analyses
and Monte Carlo simulations in Mahesh and colleagues [74–
76] on bundles up to size 106, and which show why values
for γ and φ are difficult to establish, especially as the Weibull
shape parameter, ζ , decreases below 5. They show that the fiber
load-sharing during break cluster formation begins to have ELS-
like behavior in terms of the failure of small ELS bundles as
the cluster grows large. However, the eventual size effect and
distribution shape into the lower tail robustly retains LLS features
and weakest-volume scaling that is the basis for the model we
develop in this paper, especially for ζ values of interest.

LIFETIME DISTRIBUTION OF A
COMPOSITE COMPONENT THAT HAS
SURVIVED A PROOF TEST

Proof testing consists of loading a composite structure to some
proofing stress, σp > σ̄ , and holding that stress for at most a
few minutes, and then lowering the stress to, σ̄ , which is the
stress used in service. The idea is that applying a proof test
will weed out inferior structural components thus improving the
overall reliability of passing components put in service. Classic
models used for composite stress rupture support this strategy.
We shall determine whether this is true for themodels considered
in this paper.

We assume the simplified load profile given by (3) where we
recall that σp > σ̄ was the proof stress held for time 0 ≤ t < tp,
where tp was the proof hold time, after which the stress is reduced
to σ̄ for the life of the component. In studying the effects of
a proof test a special fiber break cluster size becomes relevant,
called kp = kp(σ̄ /σp ), and which satisfies Kkp−1σ̄ < σp ≤ Kkp σ̄ .
From (19) we obtain:

kp =











⌈

4
π

{

(

σp/σ̄
)2 − 1

}⌉

, planar fiber array
⌈

π3

4

{

(

σp/σ̄
)2 − 1

}2
⌉

, hexagonal fiber array
(57)

And typically, kp ≪ k̂. Clusters that form in the proof test that
are smaller than size kp will lead to overloads existing after time
tp, under stress σ̄ , that are smaller than the proof load itself,
i.e., Kkp−1σ̄ < σp. In contrast, clusters that form in the proof
test that are larger than kp will produce overloads, under stress
σ̄ , after time tp that are larger than the proof load itself, i.e.,
σp ≤ Kkp σ̄ . These two conditions give rise to much of the
complication in describing the probability of failure following a
proof test, as given in [78] [Note that special circumstances arise
where σp < σ̂V but σ̄ is so small that σp/σ̄ > σδc/σ̂V , and

thus, kp > k̂. This does not mean that a cluster of size kp actually
occurs, but rather it is one possible cluster size that was originally
considered in the theory in [78]].
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From Equation (72) in [78], the characteristic distribution
function following a proof test is:

W
k̂, kp

(

t; σp, σ̄
)

≈ c
k̂
Fδc

(

σp
)





k̂−1
∏

i=1

Fδc

(

Kiσp, tp
)





+
k̂−1
∑

k=1

ckFδc

(

σp
)

Nk,ϕ









k−1
∏

i=1

Fδc

(

Kiσp, tp
)









(

1− Fδc

(

Kkσp, tp
))Nk,ϕ

{

H
(

k− kp + 1
) (

Fδc (Kkσ̄ , t) − Fδc

(

Kkσ̄ , tp
))









k̂−1
∏

i=k+1

Ni,ϕFδc

(

Kiσ̄ , t − tp
)







+H
(

kp − k
) (

Fδc

(

σp, t
)

− Fδc

(

σp, tp
))

















(

k̂∨kp
)

−1
∏

i=k+1

NiϕFδc

(

σp, t − tp
)

























k̂−1
∏

i=kp

Ni,ϕFδc

(

Kiσ̄ , t − tp
)















,

t ≥ tp, t ≫ tc, and k̂ ≥ 2 (58)

where Fδc (σ̄ ) is as in (6), and Fδc (σ̄ , t) is as in (36), where (30)
describes the change in overload length as a function of time,
t, and stress, σ̄ , and where c

k̂
is given by (10), and Ni,ϕ by (55).

Furthermore, for any function gi, and any non-negative integers
q, r and i we define:

[[ q
∏

i=r

gi

]]

≡







q
∏

i=r
gi, 1 ≤ r ≤ q

1, 0 ≤ q < r

(59)

where the quantity in double-square parentheses is the usual
product unless q < r where it is unity. We also define a left-
continuous version of the “Heaviside function,” (i.e., H (0) ≡ 0,
instead of equaling “1”):

H (κ) ≡
{

0, κ ≤ 0
1, κ > 0

(60)

and define:

k1 ∨ k2 ≡ min
(

k1, k2
)

(61)

as the minimum of k1 and k2.
Substituting these into (58) and simplifying gives:

W
k̂, kp

(

t; σp, σ̄
)

≈ c
k̂

(

σδc

σ̂V

)

(

k̂−1
)

ϕ−1
ϕ+1





k̂−1
∏

i=1

Ki





ζϕ
(

σp

σδc

)k̂ζϕ− ϕ−1
ϕ+1

(

tp

tc

)

(

k̂−1
)

θϕ/2


1+
k̂−1
∑

k=1

(

tp

tc

)

(

k−k̂
)

θϕ/2
(

(

t

tc

)θϕ/2

−
(

tp

tc

)θϕ/2
)

(

t − tp

tc

)

(

k̂−k−1
)

θϕ/2
(

1−
(

σδc

σ̂V

)
ϕ−1
ϕ+1
(

Kkσp

σδc

)ζϕ
(

tp

tc

)θϕ/2
)Nk,ϕ















H
(

k− kp + 1
)

(

σ̄

σp

)

(

k̂−k
)

ζϕ

+H
(

kp − k
)

















(

k̂∨kp
)

−1
∏

i=k

1

Ki

















ζϕ

(

σ̄

σp

)

(

k̂−
(

k̂∨kp
))

ζϕ























(62)

In the case where ϕ = 1 this reduces to Equation (75) from [78].
Using (62) we can then write an expression for the composite
lifetime, following (34) and using (51) as:

HV

(

t; σp, σ̄
)

≈ 1− exp







−

(

(

σp

σ̂V ,ϕ

)ρ̂ϕ tp

tc

)β̂ϕ



1+
k̂−1
∑

k=1

q
k,k̂

(

t, σp
)

(

tp

tc

)

(

k−k̂
)

θϕ/2






H
(

k− kp + 1
)

(

σ̄

σp

)

(

k̂−k
)

ζϕ

+H
(

kp − k
)

















(

k̂∨kp
)

−1
∏

i=k

1

Ki

















ζϕ

(

σ̄

σp

)

(

k̂−
(

k̂∨kp
))

ζϕ





































, t ≥ tp

(63)

where

q
k,k̂

(

t, σp
)

=
(

tp

tc

)

(

k−k̂
)

θϕ/2
(

(

t

tc

)θϕ/2

−
(

tp

tc

)θϕ/2
)

(

t − tp

tc

)

(

k̂−k−1
)

θϕ/2
(

1−
(

σδc

σ̂V

)
ϕ−1
ϕ+1
(

Kkσp

σδc

)ζϕ
(

tp

tc

)θϕ/2
)Nk,ϕ

,

t ≥ tp (64)

Of special interest is the reliability of a structure, R
(

t | t ≥ tp
)

,
conditional on surviving a proof test. This is calculated in general
terms using Bayes theorem:

R
(

t | t ≥ tp
)

=
R (t)

R
(

tp
) =

1− F (t)

1− F
(

tp
) . (65)

The conditional reliability for lifetime, RV
(

t| t ≥ tp, σp, σ̄
)

,
under a sustained load, σ̄ , and for times t ≥ tp, conditioned
on survived an initial proof loading, σp ≥ σ̄ , up to time tp, is
given as:

RV
(

t| t ≥ tp, σp, σ̄
)

≈ exp







(

(

σp

σ̂V ,ϕ

)ρ̂ϕ tp

tc

)β̂ϕ









1−









1+
k̂−1
∑

k=1

q
k,k̂

(

t, σp
)

(

σ̄

σp

)

(

k̂−k
)

ζϕ









H
(

k− kp + 1
)

+H
(

kp − k
)

















(

k̂∨kp
)

−1
∏

i=k

1

Ki

















ζϕ

(

σ̄

σp

)

(

k−
(

k̂∨kp
))

ζϕ







































, t ≥ tp

(66)
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Thus, the conditional lifetime distribution following a proof test
is 1− RV

(

t| t ≥ tp, σp, σ̄
)

, yielding:

HV

(

t| t ≥ tp, σp, σ̄
)

≈ 1− exp







(

(

σp

σ̂V ,ϕ

)ρ̂ϕ
(

tp

tc

)

)β̂ϕ









1−









1+
k̂−1
∑

k=1

q
k,k̂

(

t, σp
)

×
(

σ̄

σp

)

(

k̂−k
)

ζϕ









H
(

k− kp + 1
)

+H
(

kp − k
)

















(

k̂∨kp
)

−1
∏

i=k

1

Ki

















ζϕ

(

σ̄

σp

)

(

k−
(

k̂∨kp
))

ζϕ







































, t ≥ tp (67)

Composite Lifetime Distribution Following
a Proof Test Under the Classic CPL-W
Model
Historically stress rupture failure is most commonly described
using the classic power law model in a Weibull framework (CPL-
W model) [1]. For this model, the probability of failure for an
arbitrary stress profile, σ (t) , t ≥ 0, is given by:

HV ,CPL-W (t, σ (�)) = 1− exp















−V







t
∫

0

(

σ (τ)

σref

)

ρ̃

dτ

tc







β̃














,

t ≥ 0. (68)

where the parameters have similar meanings as before, i.e., tc is
still a characteristic time constant and, σref, is a reference stress
scale parameter, β̃ is a lifetime shape parameter and ρ̃ is a power-
law exponent relating lifetime to stress level. However, under the
ramp loading (1), i.e., σ (t) = Rt, t ≥ 0, where R is the loading
rate, the strength distribution takes the form:

HV , CPL-W (σ ;R) = 1− exp







−V

(

(

σ

σref

)ρ̃
σ

R tc (ρ̃ + 1)

)β̃






,

σ ≥ 0 (69)

If σref is chosen originally to satisfy σref = R tc (ρ̃ + 1) then we
can rewrite (69) as:

HV , CPL-W (σ ;R) = 1− exp

{

−
(

σ

σ̃V

)α̃
}

(70)

where

α̃ = β̃ (ρ̃ + 1) (71)

and

σ̃V = V
−1/

(

β̃ρ̃
)

σref (72)

Thus, the CPL-Wmodel’s strength distribution is a standard two
parameter Weibull distribution, with a shape parameter of α̃ and
a scale parameter of σ̃V .

In the case of stress-rupture testing, where the applied load
is constant σ (t) = σ̄ , t ≥ 0 as in (2), then (69) yields the
familiar form:

HV , CPL-W (σ , t) = 1− exp







−

(

(

σ̄

σ̃V

)ρ̃ t

tref

)β̃






, t ≥ 0.

(73)

Thus, the CPL-W model for strength and lifetime is similar to
that of current SFB model, but with a slightly different strength
shape parameter, β̃ (ρ̃ + 1), in (69) vs. ρ̂ϕ β̂ϕ from (42) and (43).

Using (67) in the CPL-W model, the lifetime distribution
having survived the proof test is:

HV , CPL−W

(

t| t ≥ tp, σp, σ̄
)

= 1− exp







[

(

σp

σ̃V

)ρ̃ tp

tref

]β̃



1−

(

1+
(

σ̄

σp

)ρ̃ t − tp

tp

)β̃










, t ≥ tp (74)

and noting that 0 < β̃ ≪ 1 we can expand the above to give:

HV , CPL−W

(

t| t ≥ tp, σp, σ̄
)

≈ 1− exp







[

(

σp

σ̃V

)ρ̃ tp

tref

]β̃

[

1−

(

1+ β̃

(

σ̄

σp

)ρ̃ t − tp

tp

)]}

, t ≥ tp (75)

which is accurate at least out to the time, t = ts in (73)
where the argument is unity and the failure probability is
HV , CPL-W (σ , ts) = 1 − e−1 = 0.632, so more than ½. For
transparency, we have written (75) in a form for easy comparison
to the corresponding result (67), from our model. For σ̄ < σp <

σ̃V , inspection of (75) or (74) compared to (73) shows that, in the
CPL-W model, proof testing will always reduce the probability
of failure (increase the reliability) at any later time for specimens
that “pass” (survive) the proof test.

Thus, despite these similarities in the strength and lifetime
distributions in the model developed in the paper vs. the CPL-
W model, for more complex loading profiles, such as a proof
test, these models will have very different results, with the CPL-W
model predicting an increased conditional reliability after a proof
test and the current model predicting a decreased reliability [78].

RESULTS AND DISCUSSION

We have introduced a new model that builds on our previous
model in [78] and involves two new parameters, ϕ and σy,
which account for non-linear effects in matrix creep and matrix
yielding in shear, respectively. In the limit of ϕ → 1+we
recover the previous model based on a linearly viscoelastic
matrix, whereupon the effects of σy also vanish. In this section
we study the subtle effects of varying these two new parameters,
beginning with their influence on characterizing the composite
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volume in the model, and followed by how they also influence
the distributions for composite strength and lifetime.

In such a complex model parametric studies are useful for
understanding the effects of the various parameters and their
combinations on overall behavior. In the examples below, we
choose to vary model parameter values keeping in mind that,
in practice, experimental values for several of these parameters
may not be readily accessible. More often, statistical data sets
are available from strength and lifetime tests on composite
samples in multiple replications, where the lifetime tests have
been replicated at several stress levels for various times (often
months, and sometimes years). Thus, we vary certain model
parameters governing fiber and matrix interactions at the
microscale in order to observe their effects on parameters
such as Weibull shape and scale parameters for strength and
lifetime, that are typically obtained from fitting actual test data
to models that are largely phenomenological [2]. This way the
“practical” effects of various parameter choices will become more
readily apparent.

Typical Parameter Values and Implications
on Interpretation of Volume of Material in a
Specimen or Component Being Loaded
This new model requires a more careful interpretation of
the role of the “volume” parameter, V , which happens to
be the number of material elements of length δc in the
composite, rather than the physical composite volume under
load expressed, for instance, as the total volume of fiber in
the loaded composite. In our parametric study, we naturally
desire to keep the physical composite volume constant for
all cases. However, as both ϕ and σy change in the new
model, so does the element length, δc, sometimes increasing
by an order of magnitude, which means that the number
of elements, V , must likewise decrease. Since δc, changes
according to (31), we can see that, V , varies following
the relation:

V ∝
(

σy/σ̂V
)(ϕ−1)/(ϕ+1)

. (76)

FIGURE 1 | Tows with fibers in a planar array and with matrix parameter, ϕ = 1.
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The definition of δc in (31), also involves (7), (8), and (32), and
thus, δc can also be written as:

δc = δ̂c

(

σ̂V

σy

)(ϕ−1)/(ϕ+1)

=
4

ζ + 1
δe

(

σ̂V

σy

)(ϕ−1)/(ϕ+1)

(77)

where δe ≈ d
√

(E/Ge )
(

w/d
)

and σy = 2τyδe/d . Also, σ̂V ,

given by (18), depends on ζ , and onV itself, although, it is largely

free of ϕ and σy except through minor effects on k̂.

Typical Values of Various Micromechanical

Parameters
Typically w/d ∼ 1/4 , E/Ge ∼ 200, and τy ≈ 35MPa, and
thus, δe ≈ d

√
(1/4 ) (200) = 7.07d and σy ≈ 2 (35) (7.07) ≈

500MPa. This value of the tensile stress level σy, which is
associated with driving matrix yielding shear around a fiber
break, turns out to be an order of magnitude smaller than values
typically obtained for σ̂V , hence the ratio, σ̂V/σy will have a
strong influence on the magnitude of the characteristic element

length δc in (77), and thus on number fiber elements,V , in a given
physical volume according to (76). Note that the effect on V in
(76) can result in no effect at all when ϕ = 1, to a reduction in V
by an order of magnitude when ϕ ≫ 1.

The implications of (76) and (77) are thus twofold: First, the
number of elements, V , changes in formulas such as (18) or (45)
for determining the Weibull scale parameter for strength, and

in (21) for determining the critical cluster size, k̂. Second, the
change in the volume parameter,V , in (76) is also associated with
a change in the failure probability of a fiber element in (6) or
(36), through the influence of δc on σδc . However, he effect of
non-linear viscoplasticity is also seen in the difference between
the Weibull scale parameters for strength, σ̂V of (18), and σ̂V ,ϕ of
(45), through the factor, 4ϕ , of (46). For instance, in the case of

a 2D array where k̂ = 8, ϕ = 4, ζ = 5, and using (9) and (20),
we obtain approximately σ̂V/σδc = 1/2.70 = 0.370, and thus
(46) gives:

4ϕ = (0.370)1/
(

1+
(

8
7

)(

5
3

)

5
)

= (0.370)1/10.52 = 0.910 (78)

FIGURE 2 | Tows with fibers in a planar array and matrix parameters, ϕ = 10 and σy = 0.5GPa.
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Hence, the effect on composite strength, as viewed through the
Weibull scale parameter, σ̂V ,ϕ , compared to σ̂V of the previous
model in [78], also amounts to a strength reduction of about
9%, which is distinct from the ultimate effect of (76) and (77)
in changing the number of fiber elements, V , despite assuming
a fixed overall composite volume.

Parametric Study of Effects of ϕ and σy on
Strength and Lifetime in Two Applications
To illustrate the implications of varying the two new parameters,
ϕ and σy, we study two particular applications of the carbon
fiber/epoxymatrix composites, namely: (i) the behavior of epoxy-
impregnated, carbon fiber yarns (often called carbon/epoxy tows)
building on fiber and matrix properties, and (ii) the behavior at a
larger scale of composite overwrapped pressure vessels (COPVs)
building on tow element and inter-tow interface properties.
which govern the length-scale of tow element load-sharing over
time. The values of various parameters for the cases of each
application are listed at the bottom of each figure. This includes

those parameters initially set in the model and those derived
from the model itself. For simplicity, in all cases we set the
characteristic matrix creep time as tc = 0.01 hour and the proof-
test time as, tp = 1 hour, however, result will be presented in
terms of scaled time, t/tc .

Note that the value of θϕ in (39) has been determined in each
application so that the power law exponent, ρ̂ϕ (or ρ̃), relating
lifetime to stress level generally lies in the range 86–114. Such
values are representative of carbon/epoxy composites (at ambient
temperatures). They also allow for easy comparison among the
cases as well as providing amore fruitful demonstration of certain
model features. For all but one case, the resulting Weibull shape
parameters for lifetime, β̂ϕ or β̃ , satisfy, 0 < β̂ϕ < 1, however
values vary considerably across the various cases, as do values for
theWeibull scale parameters for strength and load level, σ̂V , σ̂V ,ϕ
and σ̃V . Investigation of changes in behavior of these Weibull
strength and lifetime parameters with changes in ϕ and σy is a
key aspect of the study. These values are all given for each case at
the bottom of each figure.

FIGURE 3 | Tows with fibers in a planar array and matrix parameters ϕ = 10 and σy = 0.05GPa.
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Additional Parametric Details in the Application to

Carbon/Epoxy Tows
The first application involves predicting the strength and lifetime
distributions of carbon/epoxy tows assuming the fibers follow a
Weibull distribution for strength with shape parameter, ζ = 5,
and scale parameter σ

δ̂c
= 25 GPa. Here we note that δ̂c = δc

in the special case ϕ = 1, but not when ϕ > 1 and σy < σ̂V .

In the latter case δc > δ̂c from (31) and (32), and thus, σδc <

25 GPa based on (77). In this application to tow behavior we
consider both versions of fiber-to-fiber load-sharing: the first is
a planar fiber array, and the second, a fiber array with hexagonal
fiber packing and associated fiber stress redistribution, but also
assuming two different versions of the number of overload fibers
around a break cluster, i.e., (55) vs (56). Results are shown in
Figures 1–3 for a planar fiber array, and in Figures 4–6, for a
hexagonal fiber array, where Figures 4, 5 are under (55) and
Figure 6 is under (56). Among all six figures, Figures 1, 4, show
results for the special case, ϕ = 1, which also happen to serve as
results under the previous model [78] for a linearly viscoelastic

matrix. Thus, these figures provide a basis for comparison of
results from the previous model to the new model in Figures 2,
3, 5, 6, where ϕ > 1 and σy play a major role.

Additional Parametric Details in the Application to

COPVs
The second application involves predicting the strength of
COPVs based on tow strength properties, as specified for the tow
elements in the model, where by the Weibull shape parameter is
ζ = 20, and scale parameter is σ

δ̂c
= 8.0 GPa corresponding

to the case ϕ = 1, where δ̂c = δc. In Figure 7 we show
results for a planar array of tows and associated load-sharing,
and in Figure 8 we show results for tows in a hexagonal array
and sharing load accordingly with (56) governing the number
of overloaded neighbors to a cluster. In both cases we assume
ϕ = 10 and σy = 0.25 GPa for purposes of modeling interface
creep or tow slippage in shear between tows (Results for ϕ = 1
are not shown).

FIGURE 4 | Tows with fibers in a hexagonal array and matrix parameter, ϕ = 1, and with φ = 2.5 and γ = 0.27 in (55) for calculating number of susceptible fibers

around a cluster.
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FIGURE 5 | Tows with fibers in a hexagonal array and matrix parameters ϕ = 10 and σy = 0.50GPa, with φ = 2.5 and γ = 0.27 in (55) used to calculate number of

susceptible fibers around a cluster.

Plotted Quantities and Applied Loadings Used in

Each Particular Application and Case
For all cases plotted in Figure 1 through Figure 8, time begins
at t = 0, though the horizontal axes and plotting of the graphs
begins only at t = tp. For this reason, a virgin specimen initially
loaded at t = 0 can potentially fail before time tp, which is why
the failure probability at time, t = tpis already distinctly non-
zero. On the other hand, a proof-tested vessel sees its proof test
applied over the time period, 0 ≤ t < tp, and if it fails it is
replaced by one that has survived the proof test, at which point
time continues onward, i.e. tp ≤ t. Consequently, exactly at
time t = tp the probability of failure of the proof-tested vessel,
being a conditional probability of failure, is by definition zero.
However, because of the proof test it will have many broken fiber
elements that otherwise would not have occurred, had it been
a virgin specimen that survived to time t = tp. Thus, only a
short time later at some time, [[Mathtype-mtef1-eqn-619.mtf]],
its probability of failure shoots up beyond what occurs without
the proof test. This “overshoot” after the proof test is a key feature

of the model that generally does not occur for the classic CPL-W
model or other models.

These effects are seen in all the figures, where the solid blue
line represents the failure probability vs. time for a lifetime test
under a constant loading (2), i.e., absent a proof test, both for
the classic power-law (CPL-W) model and the current stochastic
fiber breakage (SFB) model (which happen to be the same when
parameter values in (73) and (41) are appropriately matched). In
cases involving a proof test under loading (3), the conditional
probability of failure vs. time following survival of the proof test
is given as a solid orange line for the SFB model, and a dashed
yellow line for the CPL-W model. Above each figure panel is
the loading condition for that particular case, where the results
presented for specific tow cases are in Figures 1–6, and specific
COPV cases in Figures 7, 8. The loading parameter “SR” in the
various cases refers to the stress ratio used for that figure panel,
which is the constant applied stress, σ̄ , in the lifetime test, divided
by the Weibull stress scale parameter, σ̂V ,ϕ , for that case. The
parameter “PR” refers to the proof stress ratio used in a particular
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FIGURE 6 | Tow lifetime distribution with fibers arranged in a hexagonal array with number of overloaded neighbors following (56), and with matrix parameters ϕ = 10

and σy = 0.50GPa.

case of a figure, being the ratio of the proof stress to the applied
stress in the lifetime test, σp/σ̄ . Note that each figure presents
plots for two different stress ratios and three different proof ratios
in tows and two different proof ratios in COPVs. Also kp refers to
the special proof cluster size defined by (57).

Common Features of Plots Associated With a Proof

Test, Whether for Tows or for COPVs
All figures show that when the stress in a proof test is the same
as the lifetime stress level, i.e., σp = σ̄ , the SFB and CPL-
W models predict the same results for probability of failure vs.
time, although with failure probabilities that are initially lower
than when no proof test is applied. However, when σp > σ̄ ,
the SFB model always predicts an higher probability of failure
compared to a standard lifetime test without a proof test, which is
sometimes higher by several orders of magnitude. In contrast, the
CPL-Wmodel predicts a lower probability of failure after a proof
test in the typical case where 0 < βϕ < 1, and typically by several
orders of magnitude. However, in the CPL-W model a higher

probability of failure does occur when βϕ > 1 (see Figures 4,
8), though not of the magnitude seen in the SFP model. This is a
critical difference between the two models, SFB vs CPL-W, also
discussed extensively in [78] for the special case ϕ = 1.

Additional Features of Effects of ϕ and σy on the

Strength Distribution of Tows
Figure 1 through Figure 3 show the lifetime distribution of a
carbon/epoxy tow assuming a planar fiber configuration and
planar load-sharing. Figures 1, 2 showing the effects of changing
ϕ from 1 to 10 when σy = 0.5GPa, and Figures 2, 3 demonstrate
the effect of further lowering σy by an order of magnitude to
σy = 0.05GPa, while maintaining ϕ = 10 (when ϕ = 1 there is
no effect from changing σy). In Figures 2, 3, choosing ϕ > 1 with
σy < σ̂V , requires reducing, V , the number of fiber elements in
the model, in order to maintain the same total material volume.
This reduction in V is associated with the previously mentioned,
increase in δc, which results in a decrease in σδc as well as a

decrease in the critical cluster size k̂ from the value k̂ = 10 in
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FIGURE 7 | COPV lifetime distribution where tows are modeled as being arranged in a planar array, and with matrix parameter ϕ = 10 and σy = 0.25GPa.

Figure 1, to k̂ = 7 in Figure 2 and to k̂ = 6 in Figure 3. This

reduction in k̂ causes a proportional lowering of the Weibull

shape parameter for strength, α̂ = k̂ζ in (19) from α̂ = 50
in Figure 1 down to α̂ = 30 in Figure 3, which happens to
be a more realistic value for tows compared to those obtained
experimentally, but still somewhat larger. This decrease in α̂

reflects an increase in the variability in tow strength.
A significant decrease also occurs in the Weibull scale

parameter for tow strength, σ̂V , from σ̂V = 7.80GPa in Figure 1

to σ̂V = 5.22GPain Figure 2 and then to σ̂V = 3.97GPa in
Figure 3 (Effects on σ̂V ,ϕ will be discussed later in connection
with lifetime behavior). This amounts to decreases of as much
as 50% in strength. Once again, the Weibull shape and scale
parameter values for tow strength associated with Figure 1

are overly optimistic compared to the more realistic values in
Figures 2, 3. Clearly non-linear matrix creep and yielding can
result in large effect in terms of lowering the composite strength
and increasing its variability compared to the case of ϕ = 1.

Figure 4 through Figure 6 provide results similar to those in
Figure 1 through Figure 3, but for the case of hexagonal fiber
packing and associated load-sharing. Figures 4, 5 involve using
the parameter values φ = 2.5 and γ = 0.27 in (55), which
determines the number of fibers around a cluster susceptible
to failure in growing a cluster. Figure 6 is similar to Figure 5,

except that now φ =
√
4π and γ = 0.5, as was used in (56),

for determining the number of susceptible neighbors. Otherwise
we maintain ϕ = 10 and σy = 0.5GPa. Reductions are again
needed in the number of fiber elements, V , with increasing δc,
to maintain the same overall material volume, and the result is a
large decrease in the critical cluster size k̂ from k̂ = 19 in Figure 4

to k̂ = 12 in Figure 5 and to k̂ = 10 in Figure 6. Likewise a
proportional lowering of the Weibull strength shape parameter,

α̂ = k̂ζ , occurs from α̂ = 95 in Figure 4 down to α̂ = 50
in Figure 6 as well as a large drop in the Weibull strength scale
parameter from σ̂V = 11.18GPain Figure 4 to σ̂V = 5.47GPa in
Figure 6, which is a reduction by one-half.

Once again, the values seen in Figure 4 for ϕ = 1 are overly
optimistic compared to the more realistic values in Figures 5,
6, as found in experiments, though still larger. Once again non-
linear matrix creep and yielding can result in a large decrease in
the strength of the composite and an increase in its variability.

Additional Features of Effects of ϕ and σy on the

Lifetime Distribution of Tows
Figure 1 through Figure 6 demonstrate the effects on the
composite tow lifetime distribution not only from changes in ϕ

and σy, but also from changes in the load-sharing arrangement
of the fibers in the tow (planar vs. hexagonal in two versions).
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FIGURE 8 | COPV where tows are modeled as being arranged in a hexagonal array under (56) for the number of overloaded tows around a cluster, and where ϕ = 10

and σy = 0.25GPa.

The latter changes are seen in comparing the two groups of
figures, namely Figure 1 through Figure 3with Figure 4 through
Figure 6.

In Figure 1 through Figure 3, a major effect of the decrease

seen in k̂ from k̂ = 10 in Figure 1 down to k̂ = 6 in Figure 3, is to
decrease the Weibull lifetime shape parameter, from β̂ϕ = 0.54

to β̂ϕ = 0.30. Likewise the lifetime stress scale, σ̂V ,ϕ , decreases
from σ̂V ,ϕ = σ̂V = 7.80GPa down to σ̂V ,ϕ = 3.70GPa, a
reduction by more than a factor of two. On the other hand the
effect on ρ̂ϕ is modest and its value increases from ρ̂ϕ = 93 in
Figure 1 to ρ̂ϕ = 114 in Figure 3. This is caused largely by the

dependence of ρ̂ϕ on k̂ in (43). Otherwise, the plots in Figure 1

through Figure 3 show very similar behavior, with much of the
difference in plotted probability values caused by the decrease
in β̂ϕ (and resulting increase in variability) thus increasing the
failure probabilities since the effect of σ̂V ,ϕ is scaled out, and the
change in ρ̂ϕ is comparatively smaller.

Similarly in Figure 4 through Figure 6, a major effect of the

decrease in k̂ from k̂ = 19 in Figure 4 down to k̂ = 10 in
Figure 6, is to decrease the Weibull shape parameter for lifetime
from β̂ϕ = 1.08 in Figure 4 to β̂ϕ = 0.54 in Figure 6. Note

that since β̂ϕ = 1.08 > 1, which means β̃ = 1.08 > 1
in the CPL-W model, a proof test in that model results in a
slight increase in the probability of failure over time compared

to having no proof test. Likewise the decrease in k̂ also results in a

large decrease in the Weibull lifetime stress scale, σ̂V ,ϕ , decreases
from σ̂V ,ϕ = σ̂V = 11.18GPa down to the more realistic
value, σ̂V ,ϕ = 5.28GPa, again by almost a factor of two. Both
parameters exhibit reductions by a factor of two. On the other
hand, the effect on ρ̂ϕ is a more modest increase from ρ̂ϕ = 88 in
Figure 4 to ρ̂ϕ = 106 in Figure 6, as a result of the dependence

of ρ̂ϕ on k̂ in (43).
Otherwise, the plots in Figure 1 through Figure 6 show

very similar behavior where much of the difference in plotted
probability values is caused by the decrease in β̂ϕ since the large
effect of σ̂V ,ϕ is scaled out, and the change in ρ̂ϕ is modest
by comparison. Generally, the effects seen in Figure 1 through
Figure 6 follow patterns previously discussed in [78].

Effects of ϕ and σy on COPV Strength Based on Tow

Elements Having Weibull Strength
Figures 7, 8 show results for COPV strength and lifetime
assuming tow elements have Weibull strength with shape
parameter ζ = 20 (a more conservative value than the theoretical
values in Figures 3, 6) and scale parameter that in both cases
turns out to be σδc = 7.1GPa. Both figures assume ϕ = 10
and σy = 0.25GPa for the interface between tows, and thus, the
value of σδc is lower than σ

δ̂c
= 8.0GPa for the case ϕ = 1 as a

result of a factor of about 10 increase in tow element length δc as
compared to δ̂c. This element length change also results in a factor
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of 10 reduction in V . Note that the results in Figure 7 assume
planar load-sharing among tows, whereas Figure 8 assumes tows
arranged and sharing load in a hexagonal configuration with (56)
governing the number of overloaded tow elements surrounding
a cluster of tow breaks.

The change in tow load-sharing mechanism leads to an

increase in the critical cluster size, k̂, from k̂ = 3 in Figure 7,

to k̂ = 5 in Figure 8. This in turn causes a proportional increase

in theWeibull shape parameter for strength, α̂ = k̂ζ in (19) from
α̂ = 60 in Figure 7 to α̂ = 100 in Figure 8, thus reflecting a
substantial decrease in the variability in COPV strength. There is
also a significant increase in theWeibull strength scale parameter,
σ̂V , from σ̂V = 4.25GPa in Figure 7 to σ̂V = 4.66GPa in
Figure 8. This increase in σ̂V of about 10% for a COPV is much
less than in the case of tows, largely because the starting value
of ζ is a larger value, 20, rather than 5, and the effect on the

value of k̂ is also much smaller. Nevertheless, changing the value
of ϕ from ϕ = 1 to ϕ = 10 together with the choice of
σy = 0.10GPa ≪ σ̂V does have the effect of decreasing the
COPV strength and increasing its variability (results for ϕ = 1
not shown).

Effects of ϕ and σy on the Lifetime Distribution of

COPVs in Stress-Rupture
Figures 7, 8 also demonstrate the effects on the composite
lifetime distribution of changes in the tow load-sharing
arrangement from a planar array to a hexagonal array. A major

effect is again to increase k̂ from k̂ = 3 in Figure 7 to k̂ = 5 in
Figure 8, which leads to an increase theWeibull shape parameter
for lifetime, from β̂ϕ = 0.60 to β̂ϕ = 1.20. Likewise the Weibull
lifetime stress scale, σ̂V ,ϕ , increases from σ̂V ,ϕ = 4.20GPa to
σ̂V ,ϕ = 4.62GPa. On the other hand there is a decrease in ρ̂ϕ ,
from ρ̂ϕ = 103 to ρ̂ϕ = 86, which in part also contributed to

the large increase in β̂ϕ . Otherwise, the plots show very similar
behavior, withmuch of the difference in plotted probability values
caused by the increase in β̂ϕ since the effect of σ̂V ,ϕ is scaled
out, and there a relatively smaller change in ρ̂ϕ . Again since

β̂ϕ = 1.20 > 1, and thus β̃ = 1.20 > 1 in the CPLW model,
a proof test in that model results in a substantial increase in the
probability of failure over time compared to having no proof test.
Once again, however, the increase is modest compared to the
large increase seen in the SFB model of the current work.

CONCLUSIONS

In this work we have generalized the SFB model derived in
[78], by extending the linearly viscoelastic matrix creep behavior
into the non-linear range. The linear viscoelastic version can be
obtained from the current model by setting ϕ = 1. Since the
general form of the SFB model does not change by adding non-
linear viscoelasticity, the conclusions regarding the detrimental
effects of proof testing still hold as were demonstrated in Figure 1
through Figure 8.

A key advantage of the current non-linear creep model over
the linear viscoelastic model with instantaneous shear modulus,
Ge, is that all the above factors can be accounted for directly in
the model when calculating the distribution for lifetime. This

eliminates the need, in the linear model, to artificially account for
fiber-matrix debonding or matrix shear failure and its effect on
increasing the value δc when trying to make strength predictions
using (17) or lifetime predictions using (41) together with (48)
through (51). This is the critically important aspect of the
new work.

Finally, the development of a stress-rupture model is certainly
an important aspect of the overall technological challenge of
designing and manufacturing highly reliable and human-safe
composite structures, such as COPVS. However, such efforts still
rely on the generation of experimental data, as well as drawing
on databases of previous experimental work and the modeling
approaches used to design the experiments and interpret the data.
A comparison of various models that have been used (which are
largely phenomenological such as the CPL-W model), is given
in [1]. General and parametric features of experimental data for
unidirectional composites that consist of a wide variety of fibers
in a polymermatrix, as well as commonly used statistical methods
(such as maximum likelihood) are discussed in [2]. Also, in
[2] uncertainty distributions on model parameters are obtained
using Monte Carlo simulation. In [3] a unified maximum-
likelihood method is developed for the CPL-W model with
the goal of reducing uncertainty in parameter and reliability
estimation. Finally, in [4] further maximum likelihood analysis
is devoted to removing bias and characterizing uncertainty in
both model parameters and reliability estimates. Monte Carlo
simulation is used to study uncertainty in the parameter and
reliability estimates and to assess bias. In both [3] and [4]
the method is demonstrated using strength and lifetime data
generated on small carbon/epoxy COPVs tested at the NASA
White Sands Test Facility over a two and a half year period.
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We study the local load sharing fiber bundle model and its energy burst statistics. While it

is known that the avalanche size distribution of the model is exponential, we numerically

show here that the avalanche size (s) and the corresponding average energy burst (〈E〉) in
this version of the model have a non-linear relation (〈E〉 ∼ sγ ). Numerical results indicate

that γ ≈ 2.5 universally for different failure threshold distributions. With this numerical

observation, it is then possible to show that the energy burst distribution is a power law,

with a universal exponent value of −(γ + 1).
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1. INTRODUCTION

It is well-known experimentally that quasistatically stressed disordered solids produce intermittent
response statistics [1], particularly in terms of acoustic emissions, that show scale-free size
distributions. These intriguing dynamics is seen universally across scales from microscopic
laboratory samples to the geological scale of earthquakes [2–6]. Empirically, the scale-free size
distribution of breaking progression is known in different communities for decades. For example,
in geoscience, this is known as the Gutenberg-Richter law, in magnetic domain walls as crackling
noise, and so on.

The interests of statistical physicists in this context stems from the universal nature of the
dynamics across length and energy scales. The scale-free variations of acoustic emissions, waiting
time statistics, etc., are independent of the microscopic details of the underlying systems, which
are very different from each other. Such behavior indicates critical dynamics, particularly self-
organized critical dynamics for the system, where the universality hypothesis is still applicable,
without having to fine-tune a driving parameter [7]. Such a phenomenon is therefore open for
analysis with the tools of critical phase transitions, universality and therefore is an important step
toward predictability of imminent failure [8–10].

As a consequence of the scale-free dynamics and potential applicability of the universality
hypothesis, many generic models were proposed over the years that reproduce such a scale-free
behavior. Such models include the fiber bundle model, random spring network, random fuse
model, the Burridge-Knopoffmodel, and so on [5, 11–13]. The common underlying feature of these
models is that they are threshold activated, driven, dynamical models. Particularly, for an external
driving parameter crossing a pre-assigned threshold value for a single unit of these models, that
unit is activated and influences the units in its “neighborhood,” which may in-turn get activated
and thereby initiating an “avalanche.” As can be guessed, this type of dynamics is often related to
sandpile models of self-organized criticality [14] and indeed such associations extensively explored
in the past [15].

The twomajor parameters that influence the nature of the response in suchmodels are the range
of interaction [16] and the strength of the disorder [17, 18]. It was explored, particularly in the fiber
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bundle model that for a moderate disorder, a scale-free avalanche
statistics is only recovered for a “sufficiently” long-range of
interaction [16, 19, 20]. In the random fuse model, where the
interaction range is not parameters to be tuned, it was shown
that the avalanche statistics is not a power-law in the large system
size limit [21, 22]. This is in apparent contradiction with the fact
that in reality, the interaction range in disordered elastic samples
is not infinite i.e., not a mean-field-like interaction. However,
experiments routinely reveal scale-free statistics.

One important distinction between the analytical and
numerical results of avalanche dynamics and that of the
experiments is that in the former it is the number of elements
failing in an avalanche that is the measurable quantity, while in
the latter it is the energy released in the avalanche. Now, in the
mean-field limit of the fiber bundle model, it is straightforward
to show that the avalanche size and the energy avalanche
size are proportional, hence the two distributions are identical
in shape. But this relation is no longer valid for local load
sharing variants. In those cases, therefore, it is crucial to explore
the size distributions of the energy emissions and compare
that with experiments. In this work, we consider the simplest
possible variant of the local load sharing fiber bundle model and
analyze the energy avalanche statistics of that model. We then
compare the results with experiments and also present a plausible
argument for its form.

2. DESCRIPTION OF FIBER BUNDLE
MODEL

After being introduced by Pierce [23], the fiber bundle model has
been proven to be important yet arguably the simplest model
to study failure processes in disordered solids. A conventional
fiber bundle model consists of a set of linear elastic fibers or
Hookean springs, attached between two parallel plates. The
plates are pulled apart by a force F, creating a stress σ =
F/L on L fibers. Once the stress crosses the breaking threshold
of a particular fiber, chosen from a random distribution, that
fiber breaks irreversibly. The stress of broken fibers is then
redistributed either globally among all surviving fibers (global
load sharing or GLS scheme) or among the surviving nearest
neighbors only (local load sharing or LLS scheme). For the GLS
scheme [23, 24] no stress concentration occurs anywhere around
the failed fibers as the stress of the failed fibers is shared among
all surviving fibers. On the other hand, in LLS scheme [25–
30], stress concentration is observed near a broken patch (set of
neighboring broken fibers) and increases with the size of such
patches. After such redistribution, the load per fiber increases
initiating failure of more fibers starting an avalanche. At the end
of an avalanche, either all fibers are broken (suggesting global
failure) or the bundle comes to a stable state with few broken
fibers where an increment of external stress is required to make
the model evolve further. The last applied stress just before
global failure is considered to be the nominal stress or strength
σc of the bundle. The fraction of fibers that survive at σc just
before global failure is defined as the critical unbroken fraction
of fibers (Uc).

3. NUMERICAL RESULTS

We have studied the fiber bundle model numerically in both
mean-field limit and with local load sharing scheme in one
dimension, though the major part of the paper will deal with
the latter only. Numerical simulations are carried out for system
sizes ranging in between 103 and 107 and are averaged over 102–
104 configurations. Our motive is to understand the dynamics
of avalanches and corresponding energy bursts emitted during
these avalanches as the model evolves with increasing externally
applied stress. Unless otherwise stated, we will use a uniform
distribution ranging from 0 to 1 in order to assign threshold
values to individual fibers beyond which it breaks.

3.1. Relation Between s and E
Figure 1 shows a comparison between different avalanches and
energy emitted during different avalanches for a bundle of size
105. The results are produced for a single configuration. As usual,
an avalanche is defined as the number of fibers broken in-between
two consecutive stress increments; k is the number of such stress
increments in this case. While presenting the energy spectrum
and the avalanches we have excluded the final avalanche leading
to global failure.

The left panel of Figure 1 shows the results for the GLS fiber
bundle model while on the right panel, we have shown the results
with the local load sharing (LLS) scheme. Note that the range of
k for the LLS model is much less than the range of k with the
GLS scheme. This is understandable since with the LLS scheme,
the model is more unstable due to stress concentration and a
large number of fibers are broken during the final avalanche.
The model evolves with a lesser number of stress increments in
this case prior to a global failure where the average size of the
avalanches are smaller compared to that in the GLS scheme. Now,
for an avalanche of size s, if n fibers with threshold values τ1, τ2,
τ3, · · · , τn break, then the amount of energy emitted during this
avalanche will be:

E(s) =
1

2

n
∑

i=1

τ 2i . (1)

This follows from the assumption of linear elastic (stress∝ strain)
behavior of individual fibers up until their individual (brittle)
failure points. With above formalism, for each stress increment
k, we will obtain an avalanche s(k) and a corresponding energy
burst of magnitude E[s(k)].

The energy spectrum follows a particular trend in the case of
the GLS scheme. Since with the GLS scheme the fibers break in
the increasing order of their threshold values, the energy emitted
at k+ 1-th load increment will be higher than the energy emitted
at k-th increment, even if the avalanche sizes happen to be the
same at k and k + 1. Due to this, the variations of s and E with
increasing k looks exactly the same, only the values are scaled
by a constant when we transfer from s to E. Such correlation
between s and E is not present in the case of the LLS fiber bundle
model. In the case of the LLS scheme, the fibers break due to the
interplay between the local stress profile and the threshold values
of the fibers themselves. Due to such dynamics, the fibers do not
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FIGURE 1 | The left panel, from top to bottom, shows the spectrum of energy values (E) with increasing number of avalanches k, avalanche sizes (s) with k and E vs.

s for a certain avalanche for a GLS FBM. The right panel does the same but for a LLS FBM. We can see that, in case of a GLS FBM, there is a direct correspondence

between the s and E values for a certain k. This means, higher s gives higher E. Since in case of GLS FBM, the fibers break in an increasing order of threshold values,

we get, E(k + 1) > E(k) even if s(k + 1) = s(k). We do not see this direct correspondence between the s and E values with local load sharing scheme. For example, the

red eclipses show the parts where only 1 fiber breaks at each k value but the corresponding E values show many different values without any particular order as the

fibers themselves do not follow any order while breaking. This uncorrelated behavior between s and E.

FIGURE 2 | The figure shows the variation of average energy 〈E〉 with
avalanche size s for both GLS and LLS fiber bundle model. We observe

〈E〉 ∼ s, for GLS FBM. On the other hand, for LLS scheme, 〈E〉 ∼ sγ , with

γ ≈ 2.5.

break in increasing order of their thresholds. Then, there might
be scenarios where E(k+ 1) < E(k) when s(k+ 1) = s(k) or even
s(k + 1) > s(k). The red ellipses in the right panel of Figure 1
shows this absence of correlation between s(k) and E[s(k)]. For

both ellipses, s = 1 for that period. In spite of that, we see a
fluctuation in energy values without a particular trend. This can
be clearly understood from the lower row of Figure 1 where E is
expressed as a function s. Clearly, in case of GLS FBM, E increases
in a linear manner with s while for LLS, the values of E and s
are completely uncorrelated. In the following, we will discuss this
relation between s and E in detail.

Figure 2 highlights how average of emitted energy 〈E〉 behaves
as a function of avalanche size s for a bundle of size 105 and
configuration 104. Results for both GLS and LLS schemes are
shown in the figure. We observe the following behavior:

〈E〉 ∼
{

s , for GLS,
sγ , with γ = 2.5 for LLS.

(2)

This behavior can be used to understand the relation between
distributions P(s) of avalanche size s and Q(〈E〉) of average
emitted energies 〈E〉. For this we simply need to implement a
change in variable1 scheme as follows:

Q(〈E〉) ∼ P[s(〈E〉)].|s′(〈E〉)| = P[s(〈E〉)].|
ds(〈E〉)
d〈E〉

| (3)

1Let’s assume x and y are a continuous functions with p.d.f f (x) and g(y). Also,

y = u(x) is a function with inverse, which means it is possible to find x = v(y). In

this circumstances, g(y) and f (x) can be expressed as: g(y) = f [v(y)].|v′(y)|, where
|v′(y)| = |dv(y)/dy|.
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Change in variable: GLS scheme

In case of GLS scheme, we observe

〈E〉(s) ∼ s

s(〈E〉) ∼ 〈E〉 (4)

This makes

s′(〈E〉) =
ds(〈E〉)
d〈E〉

∼ 1 (5)

We also know that the avalanche size distribution in case of GLS
scheme is a scale free distribution with an exponent 2.5 [31].

P(s) ∼ s−β , with β = 2.5 (6)

Then, combining Equations (3), (4), (5), and (6), we get,

Q(〈E〉) ∼ P(〈E〉).1 ∼ 〈E〉−β , with β = 2.5 (7)

Change in variable: LLS scheme

In case of LLS scheme, we observe

〈E〉(s) ∼ sγ

s(〈E〉) ∼ 〈E〉−γ (8)

This makes

s′(〈E〉) =
ds(〈E〉)
d〈E〉

∼ (−γ )〈E〉−(γ+1) (9)

where γ = 2.5. We also know that the avalanche size distribution
in case of LLS scheme is an exponential distribution [32].

P(s) ∼ e−s/s0 (10)

Then, combining Equations (3), (8), (9), and (10), we get,

Q(〈E〉) ∼ P(〈E〉).γ 〈E〉−(γ+1) ∼ γ e
−
〈E〉−γ

s0 E−(γ+1) (11)

In the limit of high E value, Equation (11) can be simplified
as follows

Q(〈E〉) ∼ 〈E〉−α where α = γ + 1 = 3.5 (12)

Above treatment shows that, in case of LLS scheme, in spite of
an exponential distribution for avalanche sizes, the distribution
of average emitted energy is still observed to be scale-free.
Numerically we have found that this scale free behavior holds
good for instantaneous values of E as well.

3.2. Distribution of s and E: Uniform
Distribution
Figure 3a shows the avalanche size distribution P(s) for a GLS
fiber bundle model with system size ranging from 103 to 105.
This scale-free decrease of P(s) with s is already known in the
literature. We also observe the same universal exponent 2.5 [31].
Figure 3b shows the corresponding distribution for the energy
emitted. We observe the same scale-free distribution for the
energy as well, with the same exponent 2.5. This behavior is
consistent with Equations (6) and (7), respectively.

Figure 4a, on the other hand, shows the avalanche size
distribution with the LLS scheme. The distribution is exponential
as derived analytically by Kloster et al. [32]. The inset of
the same results in log scale in order to compare them
with the previous claim by Zhang and Ding [33], that
P(s) shows a scale-free behavior with a very high exponent
closer to −4.8. This claim of scale-free nature is not
substantiated and the exponential form for P(s) is accepted in
the literature.

The distribution of energy in Figure 4b shows
a scale-free distribution, in spite of the fact that
the avalanche size distribution is an exponential
distribution. The exponent of the scale-free distribution
is observed to an increasing function of the size of
the bundle

Q(E) ∼ E−α(L) (13)

The above behavior is similar to Equation (12), but with a L
dependent exponent instead of a constant value. To compare
this L dependent exponent with the value in Equation (12), we
have to study the variation of α in Equation (13) in details
as the size of the bundle is increased. We have discussed
this next.

Figure 5 shows the system size scaling of the behavior in
Equation (13) as the size of the bundle is increased from 103 to
107. The behavior of Q(E) in Figure 4b tells us that the slope of
the distribution increases andQ(E) itself decreases as we increase
the size of the system. We assume this decrease in Q(E) with L to
be scale-free in nature and observed a nice collapse for all system
sizes. The scaling we adopted is as follows:

Q(E) = L−ξE−α(L) (14)

where α(L) scales to its value in the thermodynamic limit is a
scale free behavior: α(L) = α(∞)−L−η .Wewill show this scaling
explicitly later in this article. Taking logarithmic on both sides of
Equation (14) we get,

lnQ(E) = −ξ ln L− [α(∞)− L−η] lnE (15)

Figure 5a shows a good collapse with the results of Figure 4b
using the following values of the fitting parameters: α(∞) =
3.47, η = 0.14, and ξ = 0.55. In addition, Figure 5b also
shows the scaling of the exponent α explicitly as the model
starts approaching the thermodynamic limit. We observe the
following scaling,

α(∞)− α(L) ∼ L−η (16)
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FIGURE 3 | Distribution of energies for an uniform distribution (0,1) and system sizes ranging in between 103 and 105. The results are shown for GLS FBM. (a) We

already know that in the mean-field limit P(s) ∼ s−β , with β ≈ 2.5. (b) We observe Q(E) ∼ E−α where α ≈ 2.5 as well independent of the system size.

FIGURE 4 | Distribution of energies for an uniform distribution [0:1] and system sizes ranging in between 103 and 107. The results are shown for LLS FBM.

(a) Avalanche size distribution for LLS FBM is an exponential function: P(s) ∼ e−s/s0 , where s0 depends weakly on the system size. (b) Scale free distribution for

energy emitted: Q(E) ∼ E−α , where α is observed to increase slightly with system size.

FIGURE 5 | (a) The finite size effect of Q(E) is shown for uniform threshold distribution, which follows a scaling: lnQ(E) = −ξ ln L− [α(∞)− L−η ] lnE with η = 0.15,

ξ = 0.55, and α(∞) = 3.47. (b) System size scaling of the exponent α as we approach the thermodynamic limit: α(∞)− α(L) ∼ L−η , with η = 0.15 and α(∞) = 3.47.

(c,d) The least square fit error as a function of exponent η and α(∞), both with a minimum at a certain value. We consider the value of α(∞) and η which produces the

minimum error. This same procedure has been followed next while exploring the same thing for different threshold distributions.
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where η = −0.15 and α(∞) (= 3.47) has a value close to
γ + 1 (see Equation 12). The fitting and the exponent η is
calculated from the minimization of least square fit error. This
is shown in Figures 5c,d. We choose a certain value of η and
fit our numerical results. This in turn will produce a value of
α(∞) and corresponding least square fit error. The opposite
can also be done where we can fix a certain α(∞) value and
the least square fit gives us the value of η and error associated
with it. If we repeat this for a number of α(∞) or η values,
then we can express the error as a function of either of this
parameters η (see Figure 5c) or α(∞) (see Figure 5d). The dotted
line in Figure 5a corresponds to the value of α(∞) (= 3.47)

and η (= 0.15) for which the least square fit error is minimum
independent of whether the error is calculated with a constant
α(∞) or η.

3.3. Universality
So far, we have generated the numerical results where a
uniform distribution from 0 to 1 is used to assign random
thresholds to individual fibers. In this section, we will verify
the universality of our results. For this purpose, we will mainly
explore 4 other distributions: (i) linearly increasing from 0
to 1, (ii) linearly decreasing from 0 to 1, (ii) a Weibull

FIGURE 6 | (a) Distribution of energies for four different threshold distributions: (a) Linearly increasing [0:1], (b) Linearly decreasing [0:1], (c) Scale free distribution of

exponent 2 between 0 and 1, (d) Weibull distribution with scale factor 1.0 and Weibull modulus 1.0. The system sizes varies in between 103 and 107. The results are

shown for LLS FBM. We observe a scale free distribution for E: Q(E) ∼ E−α for all thresholds. The insets of figures (a–d) shows the system size collapse given by

Equation (15). (e–h) Shows the exponent α(L) to obey the scaling showed in Equation 16. The value of η for above mentioned distributions are 0.14, 0.12, 0.13, and

0.11 respectively, similar to what is observed in the system size collapse.
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FIGURE 7 | The figure shows the variation of average energy 〈E〉 with
avalanche size s for LLS fiber bundle model. We have produced the study for

five different threshold distributions. We observe for all distributions, 〈E〉 ∼ sγ ,

where γ has a value 2.5 independent of the nature of the distribution.

distribution with scale parameter 1 and Weibull modulus
1, and (iii) A power law distribution from 0 to 1 with
exponent 2.0.

In all these cases, the energy burst size distributions
were found to be scale-free with an exponent value
close to −3.5 (see Figures 6a–d), as is predicted from
Equation (12). The variation with system size also
universal across these different threshold distributions. The
insets of Figures 6a–d shows the same scaling given by
Equation (15) and observed in Figure 5a. These results
suggest that the scale-free nature of the energy burst size
distribution in the local load sharing fiber bundle model is a
universal feature.

Moreover, Figures 6e–h shows the system
size scaling of the exponent α(L) (see Equation
16) for all four threshold distributions: linearly
increasing, linearly decreasing, power law and
Weibull, respectively.

We have further checked that the relation between
an avalanche size and average energy burst size i.e.,
〈E〉 ∼ s2.5 is valid for all these threshold distributions,
as can be seen from Figure 7. This holds good with
the scale-free nature of energy burst distribution
that we observed in Equations 6(a)–(d) for all four
threshold distributions.

Finally, we have discussed in Table 1, all exponents that
we observed in relation to burst size distribution for all five
threshold distributions.

4. DISCUSSIONS AND CONCLUSIONS

The local load sharing fiber bundle model is known to be
lacking in reproducing the scale-free avalanche statistics
often seen in the experimental setup of fracturing brittle

TABLE 1 | The table shows the exponents α(∞) (Equation 16), η (Equation 15),

and ξ (Equations 14, 15) related to the system size scaling of the energy

size distribution.

Distributions α(∞) ξ η

Uniform 3.47 0.55 0.15

Linearly increasing 3.65 0.55 0.14

Linearly decreasing 3.62 0.55 0.12

Power law 3.55 0.60 0.13

Weibull 3.60 0.65 0.11

solids. In all the interpolation schemes between global
(equal) and local load sharing versions of fiber bundles,
the avalanche size distribution P(s) only show a cross-
over between the mean-field (P(s) ∼ s−β ) and local
load sharing (P(s) ∼ e−s/s0 ) limits. The mean-field limit,
however, is a rather idealized condition for modeling
real samples.

However, one important distinction between avalanche sizes
(s) of the fiber bundle model and what is usually measured
in the experiments is that in the latter case it is the energy
burst (E) emitted in an avalanche that is measured. However,
that distinction is not at all significant in the mean-field i.e.,
the global load-sharing limit of the model, because in that
limit 〈E〉 ∼ s. However, in the local load sharing version,
we numerically find 〈E〉 ∼ sγ . Given an exponential nature
for the avalanche size distribution in the local load sharing
limit and this numerical observation, it is possible to show
that the size distribution of the energy bursts is scale-free
[Q(〈E〉) ∼ 〈E〉−α] with α = γ + 1 (see Equation 12).
Moreover, we have numerically established that this same scale
free distribution exists for instantaneous values of the energy
emitted and not only for the average emitted energy. We have
then numerically checked that γ ≈ 2.5 for various different
threshold distributions (see Figure 6) and independently checked
that the size distribution exponent for the energy bursts are
close to −3.5 (see Figures 4, 7). Indeed, there are indications
in experiments with sandstones that the avalanche amplitude
distribution was exponential while the energy burst distribution
was found to be a power law (see e.g., [34, 35]). Our
results reproduce the same for the local load sharing fiber
bundle model.

In conclusion, the local load sharing fiber bundle
model is shown to have a non-trivial relation between
the avalanche size (number of fibers broken) and the
energy burst size (elastic energy released from the broken
fibers). Consequently, the energy burst size distribution is
shown to have scale-free nature, with an exponent value
independent of the threshold distributions of the fibers.
Given that experimentally one measures the energy released,
these results indicate that local load sharing fiber bundles
can have a significant role in modeling fracture of brittle
solids without having to resort to the equal load sharing
mean-field limit.
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A Thermodynamic Framework for
Stretching Processes in Fiber
Materials
A. Arango-Restrepo1,2, J. M. Rubi1,2,3 and Srutarshi Pradhan3*

1Departament de Física de La Matèria Condensada, Universitat de Barcelona, Barcelona, Spain, 2Institut De Nanociencia I
Nanotecnologia, Universitat De Barcelona, Barcelona, Spain, 3PoreLab, Department of Physics, Norwegian University of Science
and Technology, Trondheim, Norway

Fiber breakage process involves heat exchange with the medium and energy dissipation in
the form of heat, sound, and light, among others. A purely mechanical treatment is
therefore in general not enough to provide a complete description of the process. We have
proposed a thermodynamic framework which allows us to identify new alarming signals
before the breaking of the whole set of fibers. The occurrence of a maximum of the
reversible heat, a minimum of the derivative of the dissipated energy, or a minimum in the
stretching velocity as a function of the stretch can prevent us from an imminent breakage of
the fibers which depends on the nature of the fiber material and on the load applied. The
proposed conceptual framework can be used to analyze how dissipation and thermal
fluctuations affect the stretching process of fibers in systems as diverse as single-
molecules, textile and muscular fibers, and composite materials.

Keywords: fiber bundle model, alarming signal, mesoscopic nonequilibrium thermodynamics, Fokker–Planck
equation, dissipation, entropy production

1 INTRODUCTION

When external load/stretch is applied on fiber materials composed of elements with different
strength thresholds, weaker elements fail first. As the surviving elements have to support the load,
stress (load per element) increases and that can trigger more element failure. With continuous
loading/stretching, at some point the system collapses completely, that is, the external load/stretch is
above the strength of the whole system at that point. Such a system collapse is known as “catastrophic
failure” for that system.

There are several physics-based approaches [1–3] that can model such a scenario. Fiber bundle
model (FBM) is one of those models, and FBM has become a useful tool for studying fracture
and failure [4–6] of composite materials under different loading conditions. The simplicity of
the model allows achieving analytic solutions [5, 7] to an extent that is not possible in any of the
fracture models studied so far. For these reasons, FBM is widely used as a model of breakdown that
extends beyond disordered solids. In fact, fiber bundle model was first introduced by a textile
engineer [4]. Later, physicists took interest in it, mainly to explore the failure dynamics and avalanche
phenomena in this model [8–10]. Furthermore, it has been used as a model for other geophysical
phenomena, such as snow avalanche [11], landslides [12, 13], biological materials [14], or even
earthquakes [15].

Although stretching processes in FBM have been analyzed extensively [1–6], mainly by the
physics community, a concrete thermodynamic description for the stretching process is still
lacking in this field. In the efforts to unveil the stretching failure phenomena, thermodynamics
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seems to be an important tool because it allows
incorporating variables such as temperature, entropy,
reversible heat, entropy production rate, and energy
dissipation to thus unify stretching failure dynamics and
energy analysis, especially where surface effects, heat
release, and sound emission, due to energy dissipation, are
present when dealing with the stretching failure of fibrous
materials.

In this article, we intend to develop a thermodynamic
framework to analyze not only the energetics of the stretching
failure phenomena but also the dynamics by means of
nonequilibrium thermodynamic formalism at all scales, from a
single molecule to a macrostructure. We believe that our
thermodynamic framework could carry over to other problem
areas, eventually also outside the physical sciences such as
molecular biology and nanotechnology.

We arrange the article as follows: After the Introduction
(section 1), we give a short background of studies on
stretching of FBM in section 2. In several subsections of
section 2, we discuss strength and stability in FBM, energy
variations during stretching, and warning signs of
catastrophic failure. In section 3, we introduce a proper
thermodynamic framework of the stretching process and
analyze the mesoscopic regime and small-fluctuation
regime. All the simulation results are presented in
section 4, including dynamics and energetics, the
Fokker–Plank approach, and the role of fluctuations on
the stretching process. We make some conclusions at the
end (section 5).

2 BACKGROUND: STRETCHING OF A
FIBER BUNDLE

In 1926, F. T. Peirce introduced the fiber bundle model [4] to
study the strength of cotton yarns in connection with textile
engineering. Some static behavior of such a bundle (with equal
load sharing by all the surviving fibers, following a failure) was
discussed by Daniels in 1945 [16], and the model was brought to
the attention of physicists in 1989 by Sornette [17].

In this model, a large number of parallel Hookean springs or
fibers are clamped between two horizontal platforms; the upper
one (rigid) helps hanging the bundle, while the load hangs from
the lower one. The springs or fibers are assumed to have different
breaking strengths. Once the load per fiber exceeds a fiber’s own
threshold, it fails and cannot carry the load any more. The load/
stress it carried is now transferred to the surviving fibers. If the
lower platform deforms under loading, fibers closer to the just-
failed fiber will absorb more of the load than those further away,
and this is called the local load sharing (LLS) scheme [18]. On the
other hand, if the lower platform is rigid, the load is equally
distributed to all the surviving fibers. This is called the equal load
sharing (ELS) scheme. Intermediate range load redistribution is
also studied (see [19]).

2.1 Strength and Stability in a Fiber Bundle
Model
Let us consider a fiber bundle model having N parallel fibers
placed between two stiff bars (Figure 1). Under an external force,

FIGURE 1 | Illustration of the system. Under the application of a constant external force F, the set of fibres are stretched by a length x. As the fibers have different
strength thresholds, some of them break (yellow fibres) resulting in the increment of load for the non-broken fibres (grey fibres).
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the system responds linearly with an elastic force. The
dimensionless elastic force Fe for a given dimensionless stretch
value x (ranging from 0 to 1) is Fe � κx, where κ is the
dimensionless spring constant κ � keLm/F with ke as the elastic
constant of the material, Lm as the maximum stretching length,
and F as the external force (applied load). If the stretch x exceeds
this threshold, the fiber fails irreversibly. In the equal load sharing
(ELS) model, the bars are stiff and the applied load F is shared
equally by the intact fibers.

2.1.1 Fiber Strength Distribution
The strength thresholds of the fibers are drawn from a probability
density p(x). The corresponding cumulative probability is
given by

P(x) � ∫x

0
p(y)dy (1)

from which we can obtain the number of non-broken fibers as a
function of the average deformation of the set of fibers x:

n(x) � N[1 − P(x)]. (2)

The fraction of broken fibers, or damage, is then given by
m(x) � 1 − n(x)/N . For a uniform distribution, one has
p(x) � 1, P(x) � x, and n(x) � N(1 − x).

2.1.2 The Critical/Failure Strength
The bundle exhibits an elastic force

Fe(x) � N[1 − P(x)]κx. (3)

The normalized elastic force (Fe/N) vs. the average stretch x is
represented in Figure 2 for a uniform probability distribution.

The elastic force maximum is the strength of the bundle and
the corresponding stretch value (xc) is the critical stretch beyond
which the bundle collapses. Two distinct regimes of the system

can be recognized: one stable, for 0< x ≤ xc, and another unstable,
for x > xc.

The critical stretch value follows from the condition
dFe/dx � 0. In the case of a uniform threshold distribution,
using the corresponding values of p(xc) and P(xc), we obtain xc �
1/2.

2.2 Energies in Fiber Bundle Model During
Stretching
When N is large, one can express the elastic Ee and the breaking
Eb energies in terms of the stretch x as

Ee(x) � Nκ

2
x2[1 − P(x)] (4)

and

Eb(x) � Nκ

2
∫x

0
dy[p(y)y2]. (5)

For a uniform distribution within the range (0, 1), setting p(x) �
1 and P(x) � x in Eqs. 4, 5, we get Ee(x) � Nκ

2 x2(1 − x) and
Eb(x) � Nκ

6 x
3. Clearly, breaking energy increases steadily with the

stretch, but elastic energy reaches a maximum (see Figure 2).

2.3 The Warning Signal of a Catastrophic
Failure
The elastic energy reaches a maximum value which falls in the
unstable region of Figure 2, after the critical value of the
extension. Its knowledge is thus not useful to predict the
catastrophic failure point of the system. However, the
maximum value xmax of dEe/dx appears before xc (see
Figure 2). To obtain the relation between xmax and xc, we take
the derivative of dEe/dx, with respect to x, in which for a uniform
distribution, the solution of d2Ee(x)/dx2 � 0 gives

xmax � 2
3
xc. (6)

The rate of change of the elastic energy thus shows a peak before
the failure comes [20].

3 THERMODYNAMICS OF STRETCHING
PROCESSES

The stretching failure of fibers/materials is seen at a small scale,
for example, during stretching of molecules in biological objects
[21]. Similar stretching failure phenomena are also observed on a
much bigger scale, like in the case of bridges made of long cables
[22]. The observation in Ref. [20] that elastic energy variation
could be a useful indicator of upcoming stretching-induced
failure motivates us to construct a proper thermodynamic
framework for such stretching failure phenomenon. For this
purpose, we are going to introduce some new concepts like
thermal bath, irreversible energy dissipation, and entropy
production, and we believe that such a framework will help
explore some new features of stretching failure behavior in

FIGURE 2 | Force and energy against stretch x for a uniform distribution
of the fiber strengths in the bundle, that is, for p(x) � 1.

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 9 | Article 6427543

Arango-Restrepo et al. Thermodynamic Framework for Stretching Processes

113

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


general. In this section, we will compute the energy dissipated and
the heat released in the stretching process and show that
dissipation provides a warning signal of the failure.

3.1 Energetics
Due to the load F, the system experiences an external work W
which affects the elastic and breaking energies and the entropy S
as well. Energy conservation can thus be formulated as

W � ΔEe + ΔEb + TΔS, (7)

where TΔS is the heat released Qr in the process and ΔEd the
energy dissipated, with T the temperature. All the terms in this
equations are measured in units of FLmN . The elastic energy of
the fibers as a function of the elongation results from the elastic
energy per fiber times the number of unbroken fibers (Eq. 2):

ΔEe(x) � n(x)
N

φ(x), (8)

where φ(x) � κ
2x

2. The breaking energy results from the elastic
energy which transforms into kinetic and surface energy. An
infinitesimal change of this energy is related to the infinitesimal
change of the damage through dEb(x) � φ(x)dm(x). Therefore,
its total change is

ΔEb(x) � ∫x

0
φ(z)[zm(z)

zz
]dz. (9)

The work done by the external force is the sum of the work done
on each fiber:

W(x) � 1
FN

∑n(x)
i�1

wi(x) ≈ 1
FN

∫n

0
w(x)dn’, (10)

where the work per fiber w is

wi(x) � −∫x

0

F
n(y) dy. (11)

Changes in the entropy in the stretching process are expressed as

ΔS � ΔrS + ΔiS, (12)

where ΔrS is the entropy supplied to the system by its
surroundings and ΔiS is the entropy produced in the process.
The second law of thermodynamics states that ΔiS≥ 0, where the
zero value holds for reversible stretching (at quasi-equilibrium).
The entropy supplied can be positive or negative; the sign
depends on the interaction of the system with its surroundings
[23]. For a closed system that may exchange heat with the
surroundings, it is given by the Carnot–Clausius expression

ΔrS � Qr

T
, (13)

where Qr is the reversible or compensated heat, supplied for the
surroundings, and T is the temperature of the environment. The
irreversible change of the entropy, or the total entropy produced,
at average elongation x is given by

ΔiS � ∫  t

0

n(x)
N

σdt ’, (14)

where σ is the entropy production rate. The Goudy–Stodola
theorem relates the total energy dissipated ΔEd to the entropy
produced ΔiS [24]:

ΔEd � TΔiS. (15)

At this point, it is important to distinguish between reversible
heat Qr and dissipated energy Ed . The former is the energy in the
form of heat supplied from or toward the surroundings in order
to keep the temperature of the system constant. This quantity can
be measured, for instance, by using a calorimeter. The latter is the
free energy lost that can be transferred as heat, sound, or light, to
mention just few forms of energy. The energy dissipated is thus
not necessarily related to a measurable heat flux or to a
measurable temperature change in the neighborhood of the
system. This is the reason why reversible heat is frequently
referred on the literature as measurable heat [23].

3.2 Mesoscopic Nonequilibrium
Thermodynamics
When the fibers are immersed in a heat bath, their length can
fluctuate. The effect of these fluctuations is negligible when the
energy of the fibers is much greater than the thermal energy kBT ,
which is the limit of validity of a purely mechanical treatment. For
smaller system energies, the fluctuations become increasingly
important. This is the case, for example, in the stretching of
DNA [25]. Here, we analyze the dynamics of the elongation
fluctuations and compute the entropy production rate and the
energy dissipated in the process.

The probability density ρ(x, t) to find a fiber with length x at
dimensionless time t fulfills the continuity equation

zρ(x, t)
zt

� −zJ(x, t)
zx

(16)

ensuing from probability conservation. In this equation, J is the
probability current which vanishes at the boundaries (x � 0 and
x � 1). The entropy production rate σ of the stretching process
follows from mesoscopic nonequilibrium thermodynamics [26]:

σ(t) � −1
T
∫1

0
J(x, t) zμ(x, t)

zx
dx. (17)

By coupling linearly, the flux J and its conjugated thermodynamic
force (chemical potential gradient zμ/zx), we obtain the
dimensionless current

J(x, t) � −ρ(x, t) zμ(x, t)
zx

(18)

which corresponds to Fick’s diffusion law written in a
dimensionless form where t � t’D/L2m is the dimensionless
time and D is the diffusivity [26]. The chemical potential is

related to the free energy of the system through μ(x, t) � (zG
zn)

T,P

,
which in turn is given by

ΔG � ΔH − TΔrS

� ∫ n

0
∫x

0

1
n(y) dydn − n(x)φ(x)

N
+ kBT
FLm

n(x)lnρ(x) (19)
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with H being the enthalpy to which the elongation work and the
elastic (potential) energy contribute. From now on, we will use the
dimensionless force per fiber f � FLm/kBT . Taking the derivative
of the Gibbs free energy with respect to the number of non-
broken fibers n and considering Eq. 2, we obtain the chemical
potential

μ(x, t) � ∫x

0

1
n(y) dy − φ(x) + 1

f
lnρ. (20)

For large values of f, the entropic contribution is very small.
Notice that the signs of the enthalpic terms have been changed
because the external work is done in the direction of the
movement, while the elastic force has the opposite direction.

Substituting Eq. 20 in Eq. 18 and the resulting flux in Eq. 16,
we obtain the Fokker–Planck equation describing the evolution of
the probability distribution

zρ(x, t)
zt

� z

zx
[N ρ(x, t)

n(x) − ρ(x, t) zφ(x)
zx

+ 1
f
zρ(x, t)

zx
]. (21)

The average elongation of the fibers corresponds to the first
moment of the probability density ρ, and the solution of this
equation is

x(t) � ∫1

0
xρ(x, t)dx. (22)

Taking the time derivative of Eq. 22 and using the conservation
law (Eq. 16), we obtain

_x(t) � ∫1

0
J(x, t)dx (23)

from which we can interpret J as the local stretching velocity.

3.3 Small Fluctuation Regime
When fluctuations are very small, the variance of the probability
distribution takes very small values, and therefore, we could
approximate ρ(x, t) by a delta function centered on x:
δ[x − x(t)]. By combining Eqs. 18, 20 and substituting ρ(x, t)
by the delta function, we obtain

J(x, t) � δ[x − x(t)](1
f
+ N
n(x) − κx), (24)

where we have used the definition of φ. Integrating now Eq. 24 in
x, we obtain the stretching velocity

_x(t) � 1
f
+ N
n(x) − κx, (25)

where the first term on the right side is the entropic contribution,
the second results from the presence of the load, and the third is
due to the elastic force which opposes to the elongation of the
fibers. For very small fluctuations, the entropy production rate
Eq. 17 is σ(t) � _x

2
. Using this result into Eq. 14, and the equality

_x � dx/dt, we obtain the irreversible entropy change

ΔiS(x) � ∫x

0

n(x)
N

_xdx. (26)

4 RESULTS AND DISCUSSION

In this section, we obtain analytic expressions and numerical
results for the dynamics and energetics of the stretching process
assuming a uniform distribution of the strength thresholds of the
fibers, P(x) � x. In order to simplify the notation, from now on, x
will stand for the average value x.

4.1 Dynamics and Energetics for Small
Fluctuations
4.1.1 Dynamics
The average stretching velocity for a uniform distribution is
obtained from Eq. 25, which is now written as

_x(t) � 1
f
+ 1
1 − x

− κx. (27)

Its derivative with respect to the elongation given by

d _x(t)
dx

� 1

(1 − x)2 − κ (28)

has a minimum around x � 1 − ���
1/κ

√
, for κ≥ 1, indicating that for

large enough values of κ, the stretching velocity exhibits a non-
monotonic behavior. By integrating Eq. 27, we obtain the
expression relating t and x:

t � − 1
2κ

ln[1 − κx(1 − x)] − 1�������(4 − κ)κ√ {tan−1[
�
κ

√ (1 − 2x)����
4 − κ

√ ]
− tan−1(

�
κ

√����
4 − κ

√ )}.
(29)

For κ≥ 4, this equation diverges or is imaginary, which indicates
that the process is not possible. From this relation, we can
anticipate the asymptotic form of x through the behavior of
the inverse tangent.

4.1.2 Energetics
From the dynamic of the process, we can compute the work, the
energies, and the heat involved. The work follows from Eqs.
10, 11:

W � −x(lnx − 1). (30)

The breaking energy, computed from Eq. 9, is

ΔEb � κ

6
x3. (31)

As expected, the breaking energy increases as the elongation
increases. From Eq. 8, the elastic energy change is

ΔEe � κ

2
(1 − x)x2, (32)

and its derivative

dΔEe

dx
� κ

2
x(2 − 3x) (33)

From these expressions, we observe that the maximum of ΔEe is
located at x � 2/3, whereas the maximum of dΔEe

dx is found at
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x � 1/3. Through these values, we can analyze the different stages
of the process. At x � 1/3, the system loses its capacity to store
energy and the process enters a metastable regime. At x � xc, the
capacity to respond effectively to the action of the external load
decreases and the process enters an unstable state. Finally, at
x � 2/3, the system cannot store more energy in the form of
elastic energy and falls into an imminent failure regime.

On the other hand, the energy dissipated (Eq. 15) is

ΔEd ≈
x
f
(1 − x

2
) + x − κ

12
(4 − 3x)x3, (34)

which decreases when κ increases because at a large elastic
constant, more elastic energy can be stored to be subsequently
transformed into kinetic energy after the breaking of the fibers.
The first derivative of the energy dissipated, given by

dΔEd

dx
≈
1
f
(1 − x) + 1 − κ(1 − x)x2, (35)

must be positive, according to the second law which imposes that
0≤ κ≤ 13/2, for f ≫ 1. Combining this restrictionwith that inherent
to Eq. 29, we conclude that the stretching process is feasible for
0≤ κ≤ 4. Analyzing the derivative of the dissipated energy, we find
that it has a minimum at x ≈ 2/3, located close to the maximum of
the elastic energy. The dissipated energy may thus give us
information about the transition to the imminent failure regime.

Finally, the reversible heat Qr is obtained by using Eq. 7:

Qr � W − ΔEd − ΔEe − ΔEb (36)

Its derivative with respect to the elongation

dQr

dx
� −lnx − 1

f
(1 − x) − 1 − κx(1 − x)2 (37)

shows that the maximum of Qr depends on κ and is given by

x* ≈ (368 − 54κ + 4κ2)/1000. (38)

From this expression, one can see that for κ≥ 3/4, the maximum
of Qr lies before the maximum of the derivative of the elastic

energy. This result indicates that by measuring the maximum of
the reversible heat (the point at which the process becomes
exothermic dQr/dx < 0), we can know beforehand what is the
state at which the system reaches the metastable regime. For
0≤ κ≤ 3/4, the maximum lies in between x � 1/3 and x � 0.368,
that is, in the metastable region.

Another way to find alarming signals is to calculate the
intersection point of the curves dΔEe/dx and dQr/dx, x*,
which can be obtained from Eqs. 33, 37, for f ≫ 1:

x* ≈ (368 − 118κ + 24κ2 − 2κ3)/1000. (39)

For 1/3≤ κ≤ 4, this point is located at the metastable regime.
Thus, by measuring the heat released and computing the elastic
energy, we can estimate the value of elongation just before the
system enters the metastable region. Finally, from Eq. 28, we see
that for 1≤ κ≤ 9/4, the minimum of the stretching velocity is
located before the maximum of the change of the elastic energy
(x � 1/3), whereas for 9/4≤ x ≤ 4 it is situated in the metastable
regime, before the process reaches the unstable stage.

4.2 Fokker–Planck Approach
To analyze the dynamic and the energetics of the process in the
case in which fluctuations are not necessarily small, we will use
the Fokker–Planck equation (Eq. 21) from which we can obtain
the average elongation of the fibers and the energy dissipated. We
have solved this equation by implementing the finite difference
method in the software MATLAB 2017b. The results for ρ,
represented in Figure 3, show a Gaussian-like behavior. We
can observe that as the process progresses, the solution
displaces to the right. In the inset, we represent the variance
for f ≫ 1, which increases linearly with the elongation of the
fibers. The small value of the variance indicates that the
assumption of small fluctuations is justified in this case.

By using Eqs. 2, 22, we compute the average elongation and the
number of non-broken fibers which are represented in Figure 4.
Both quantities exhibit a quasi-linear behavior and an asymptotic
behavior close to the breaking point. This comes from the fact
that by decreasing the number of non-broken fibers, the force

FIGURE 3 | Probability density as a function of the elongation y at different times, for κ � 2. Gaussian-like solutions displace to the right because of the action of the
external force. The inset shows the variance of the probability distribution as a function of the average elongation of the set of fibers x. The variance increases linearly, then
nonlinearly, and finally it decays to zero.

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 9 | Article 6427546

Arango-Restrepo et al. Thermodynamic Framework for Stretching Processes

116

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


exerted per fiber increases, thus triggering an accumulative
effect, typical of catastrophic events. The inset of the figure
shows a non-monotonic behavior of the damage rate,
evidencing the competition between the elastic and external
forces in the stretching process in which finally the load force
per fiber becomes much higher and the rate increases
exponentially.

The stretching velocity _x follows from the dynamics of x. By
taking the derivative of _x with respect to x, we obtain the change
of the stretching velocity as a function of the average elongation.
In Figure 5, we show the behavior of both quantities for κ � 2.
We observe the existence of a minimum of the stretching velocity
around x � 0.29 which appears before the system reaches the
maximum change of the elastic energy (the transition toward the
metastable regime).

From the dynamics of the process, we can calculate the energy
dissipated by using Eqs. 14, 15, 17. Figure 6 shows the energetics
of the process. As predicted from the analytical results, we observe
a maximum of the elastic energy and of the reversible heat.
Furthermore, the maximum of Qr is located around x � 0.366,
independently of the values of κ. Additionally, the net reversible
heat at the end of the process (Qr(x � 1)) is zero, which shows
that the stretching process is endothermic at small deformations

and exothermic at larger deformations. The irreversible heat
released results in measurable changes in the temperature of
the environment.

The derivatives of the different energies with respect to x are
represented in Figure 7. Before the imminent failure regime, the
behavior of the temporal derivatives coincides with that of
the spatial derivatives due to the fact that in this regime, x is
linear in time, as follows from Eq. 29. The results obtained confirm
that the derivative of the elastic energy has a maximum at x � 1/3
and its primitive a maximum at x � 2/3, while the derivative of the
breaking energy always grows. They also confirm that both
derivatives take the same value at x � 1/2. The derivative of the
reversible heat always decreases, which indicates that the net flux of
reversible heat is much higher at the beginning of the process. The
curve of this derivative intersects that of the derivative of the elastic
energy around x � 1/5, for κ � 2, while for lower values of κ, the
intersection point moves to the right, being κ � 1/2 the highest
value of κ at which the crossing takes place before the process
reaches the metastable regime.

From Figure 7, we also confirm the fact that the derivative of
the dissipated energy is always positive, in accordance with the
second law of thermodynamics. Interestingly, the minimum of
this derivative is found around x � 1/2 (independently of the

FIGURE 4 | Average elongation of the set of fibers x (continuous line) and fraction of non-broken fibers n/N (dashed line) as a function of time t, for κ � 2. The inset
represents the rate of damage to the fiber bundle, which exhibits a non-monotonic behavior, thus evidencing the competition between elastic and external forces in the
stretching process.

FIGURE 5 | Stretching velocity _x (left grid, black continuous line) and absolute value of d _x/dx (right grid, gray continuous line) as a function of the average elongation
x, for κ � 2 represented in the logarithmic scale.
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value of κ), which is the same value at which the derivatives of the
elastic and breaking energy coincide.

4.3 Role of the Fluctuations in the Stretching
Process
The role that fluctuations play in the process can be estimated by
comparing the value of the relevant quantities when we use the
small fluctuation approach or when we adopt a Fokker–Planck
description for the same value of κ. Figure 8 shows the change of
the stretching velocity with position. In particular, for κ � 2, the
location of the minimum of this quantity computed from both
approaches is the same, meaning that close to the minimum the
system is practically insensitive to the presence of fluctuations.
However, for small elongations, the velocities are slightly
different, while at the imminent failure regime, they differ
considerably due to the presence of fluctuations.

As shown in Figure 9, energy dissipation and reversible heat
are affected by fluctuations at all stages of the process. The
dissipated energy is overestimated in the approach of small

fluctuations, whereas the reversible net heat (Qr(x � 1)) is
very sensitive to fluctuations, as concluded from the fact that
this quantity is different in both approaches.

Figures 8, 9 show that the small fluctuation approach
adequately describes the dynamics but not the energetics. The
high accuracy in the dynamics is due to the almost Gaussian
nature of the probability with a sufficiently small variance which
is represented in Figure 3. The observed disparity in the
reversible heat and energy dissipated lies in the approximation
used. Additionally, the small deviation of the stretching velocity is
accumulated, thus affecting the energy dissipated in the case of
small fluctuation. Differences between both approaches become
evenmore patent at smaller values of κ and fwhen the effect of the
fluctuations is less important.

5 CONCLUSION

We have proposed a thermodynamic framework that analyses the
role played by dissipation in a fiber stretching process, describes

FIGURE 6 | Energetics as the stretching progress, for κ � 2. The work doneW (dotted black line) is computed from Eq.10, the elastic energy ΔEe (continuous black
line) is computed from Eq. 8, the breaking energy ΔEb (dashed black line) is computed from Eq. 9, the dissipated energy ΔEd (dashed gray line) is computed from Eqs.
14, 17, and the reversible heat Qr (continuous gray line) is computed from Eqs. 7, 12. The metastable regime threshold (light blue line) is located at x � 1/3, the unstable
regime threshold (blue line) is located at x � 1/2, while the imminent failure threshold (red line) is located at x � 2/3.

FIGURE 7 | Derivatives for the energies of the stretching process as a function of the average elongation x, for κ � 2. dΔEe/dx: continuous black line; dΔEb/dx:
dashed black lines; dΔEd/dx: dashed gray line; and dQr /dx: continuous gray line. Metastable regime transition: light blue line at x � 1/3; unstable regime transition: blue
line at x � 1/2; and imminent failure regime transition: red line at x � 2/3.
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its different stages, and obtains new alarming signals before the
whole set of fibers break. Our thermodynamic framework has
identified relevant regimes (metastable, unstable, and imminent
failure) as well as provided new transition indicators in terms of
stretching velocity variation and entropy production rate, which
is an important quantity to measure the energy efficiency of
processes [27]. Specifically, we have shown that the maximum of
the reversible heat may emerge before the process enters into the
unstable regime. For some values of κ and small fluctuations, this
maximum is located in the stable regime. In the same line, we
found that the minimum of the entropy production rate is located
around the transition to the unstable regime, and that for small
fluctuations, this minimum defines the starting of the imminent
failure regime for all values of κ. We have also proved that when
the heat release flux is equal to the entropy production rate, in this
intersection, the system is close to the transition toward the
metastable regime. Similarly, we found that the minimum of the
stretching velocity is always located in the stable zone, but the
exact location strongly depends on the value of κ.

Under this approach, a more general analysis of the stretching
process as a function of κ � keLm/F could be performed to

investigate the effect of the relation between force and elastic
constant on the dynamics. Additionally, for a small system with a
low number of fibers, the approach can be applied to investigate
biological stretching failure processes such as fiber muscle
elongations and biochemical stretching as in DNA chains.
Finally, as the stretching process releases heat and dissipates
energy, we can have considerable temperature changes which can
influence the individual failure of elements [28–30]. Further work
is therefore needed on this issue.
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It has recently been reported that the equal load sharing fiber bundle model predicts

the rate of change of the elastic energy stored in the bundle reaches its maximum

before catastrophic failure occurs, making it a possible predictor for imminent collapse.

The equal load sharing fiber bundle model does not contain central mechanisms that

often play an important role in failure processes, such as localization. Thus, there is an

obvious question whether a similar phenomenon is observed in more realistic systems.

We address this question using the discrete element method to simulate breaking of a

thin tissue subjected to a stretching load. Our simulations confirm that for a class of virtual

materials which respond to stretching with a well-pronounced peak in force, its derivative

and elastic energy we always observe an existence of the maximum of the elastic energy

change rate prior to maximum loading force. Moreover, we find that the amount of energy

released at failure is related to the maximum of the elastic energy absorption rate.

Keywords: Fiber Bundle Model, Discrete Element Method, Bayesian error estimation, tensional fracturing, energy

variation, collapse point

1. INTRODUCTION

Fracturing, breaking, or more generally fragmentation of solid materials is a common physical
processes that we meet in our daily lives. At the same time, it is one of the most complex processes
covering a huge range of length and energy scales from atomic scale (breaking of chemical bonds)
up to earthquakes (kilometer scale). This, together with a huge diversity of materials composition
and variety of loading conditions leads to the aforementioned complexity. On the other hand, the
fracture processes are extremely important for both industry and society. There is thus no surprise
that a huge effort has been made to understand the fracture process in order to use it efficiently
in controlled conditions (industry) and to prevent catastrophic failures (engineering, earthquakes).
Furthermore, breaking/fracture dynamics plays central role in geophysical phenomena, such as
snow avalanches [1], landslides [2, 3] as well as in stretching in biological materials [4]. The study
of the breaking process has recently led to a discovery of a robust phenomenon which occurs before
catastrophic failure (collapse) of composite materials under stress [5]. It has been found that the
simple Fiber Bundle Model (FBM), a representative of fibrous materials, predicts existence of a
maximum of the elastic energy absorption rate prior to a catastrophic failure point, namely the
strain value at which the fiber bundle sustains the largest loading (stretching) force. Although the
FBM has been proved to be a very powerful theoretical tool [6] it is based on some simplifications
with respect to realistic processes. The obvious question thus arises if similar phenomena can also
be predicted by other methods capable of grasping more realistic breaking scenarios. To answer
this question, we have turned our attention toward numerical simulations of the breaking process
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by means of the Discrete Element Method (DEM) [7]. The two
methods, FBM and DEM, we are dealing with in this paper,
represent two complementary approaches to the study of fracture
or breaking processes.

The Fiber Bundle Model [8] represents an approach
which, through appropriate generalizations and simplifications,
attempts to grasp the most important elements of fracturing
process in composite materials. On the other hand, the
numerical Discrete Element Method [7, 9] has the capability of
describing more realistic failure processes using the principles
of a classical dynamics. Both methods exhibit some similarities
which make their conjecture an interesting and efficient way of
transferring theoretical concepts to realistic physical scenarios.
Let us briefly discuss this point. The basic feature of both
methods is a discrete representation of the medium under
investigation. The FBM represents it as a finite number of
fibers joining two clamps stretching the medium [6]. In the
DEM approach the medium is represented by an assemble
of interacting and bonded particles subjected to an external
loading. Upon this loading, the fibers in FBM and inter-
particles bonds in DEM, bearing part of an external load,
break according to assumed rules if the stretching force exceeds
some threshold values. The threshold probability distribution
of fibers strength and the model of inter-particle interactions
fully and uniquely determine the dynamics of the system.
In the current application we have further enhanced this
similarity by choosing in DEM simulations a classical, elastic-
brittle interaction model. It assumes that bonds joining near-
neighborhood particles are represented by perfectly elastic
“springs” which break if extended over some critical value, just
like the fibers in the FBM model. The fibers and inter-particle
bonds braking possibilities make both methods highly non-linear
and capable of addressing problems with non-trivially evolving
boundary conditions, like, for example, creating a free surface
by fracturing.

The most obvious difference between the two methods
is that fibers in FBM are clamped between two rigid bars,
which is not the case in the DEM approach. The inter-particle
bonds in DEM can be viewed as a “micro-fibers” joining only
neighborhood particles. However, it is worth to mention that
during a loading evolution a coherent behavior of these micro-
fibers can lead to the creation of macroscopic “super-fibers”
joining loading clamps, like fibers in the FBM. Moreover, if
particles are randomly packed, the inter-particle bonds are
randomly orientated in space, in contradiction to the FBM fibers
which are always parallel to the external load. Comparing both
approaches we would finally point out that DEM inherently
includes geometry of the analyzed body, while FBM does not.
At first sight, this seems to be in a favor of DEM but it also
leads to some serious shortages of the method. The inclusion
of geometrical aspects into fracture simulations mixes kinematic
(e.g., acoustic wave propagation effects) and dynamical effects
due to bond-breaking. It makes the inference about breaking
process much more complex. On the other hand, this feature
of DEM as well as the aforementioned similarities open up a
possibility of transmitting concepts from the FBM abstraction
level to the “real world.”

FIGURE 1 | (Left) the fiber bundle model—parallel fibers are placed between

two rigid bars and are stretched by an amount x by applying a force F at the

lower bar. (Right) The discrete element model—a thin tissue built of

interconnected spherical particles vertically stretched using a constant velocity.

The initial length of the fibers (left) and the initial height of the tissue are

also shown.

In this work we explore the possibility of verifying the
appearance of the maximum of an elastic energy absorption rate
prior to the catastrophic failure predicted by the FBM [5] is also
visible in DEM simulations. To answer this question, we have
designed a series of numerical simulations of stretching a thin
tissue. The limitation to such a quasi-two-dimensional case (often
referred to as a 2.5D problem) is fully intentional. On one hand,
we want to avoid possible complications introduced by a fully
3D approach, but on the other hand we wish to allow for a full
development of local inter-particle interactions, which requires a
full 3D neighborhood of each particle. The underlying concept
of the theoretical analysis and numerical simulations is sketched
in Figure 1, where the cartoon of stretched bundle of fibers and
the stretched thin tissue built of spherical particles are shown.
In the case of the FBM, stretched fibers break sequentially from
the weakest to the strongest. In case of the DEM simulations,
dragging up the upper horizontal edge of the tissue causes the
breaking of inter-particle bonds and finally leads to its failure. For
the sake of clarity, the most important parameters are graphically
illustrated in Figure 2 using an example of DEM simulated
loading curves, describing the evolution of dragging force, elastic
energy and its derivative with extension of the sample.

Answering the posed question goes through the following
steps: After the Introduction (section 1) we give a short
background of the studies on breaking of FBM in section 2.
In several subsections of section 2 we discuss strength and
stability in FBM, energy variations during breaking process
and the prediction concerning the existence of a “precursor”
of the collapse point. In the next section (section 3) the DEM
method is shortly presented, followed by a detailed description
of performed numerical simulations in section 4. The simulation
results are discussed in section 5, and we give some final remarks
and conclusions in section 6.

2. FIBER BUNDLE MODEL

When we stretch a system, composed of elements with
different strength thresholds, weaker elements fail first. As the
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Dȩbski et al. Criterion for Imminent Failure

FIGURE 2 | Illustration of parameters used in the analysis. In the case of the

DEM analysis, the vertical deformation (strain) parameters, x, xc, and xp, are

scaled by the initial height l0 of the tissue.

surviving elements have to support the force, stress (force
per element) increases and that can trigger more element-
failure. With continuous stretching, at some point the system
collapses completely.

There are several physics-based models [10–12] that can
describe such a scenario. The FBM is one of those models being
a useful tool for studying fracture and failure [6, 13, 14] of
composite materials under different stretching conditions. In
1926, Peirce introduced the Fiber Bundle Model [8] to study the
strength of cotton yarns in connection with textile engineering.
Some static behavior of such a bundle was discussed by Daniels
in 1945 [13] and the model was brought to the attention of
physicists in 1989 by Sornette [15], who then proceeded mainly
to explore the failure dynamics and avalanche phenomena in this
model [16–18].

The simplicity of the model allows one to achieve analytic
solutions [14, 19] to an extent that is not possible in any of the
other fracture model. For these reasons, FBM is widely used as a
model of fracture-failure that extends beyond disordered solids.

In the FBM (Figure 1), a large number of parallel Hookean
springs or fibers are clamped between two horizontal clamps; the
upper one (fixed) helps hanging the bundle while the load hangs
from the lower one. The springs or fibers are assumed to have
different breaking strengths. Once the load per fiber exceeds a
fiber’s threshold, it fails and can not carry load any more. The
load/stress it carried is now transferred to the surviving fibers.
If the lower platform deforms under loading, fibers closer to the
just-failed fiber will absorb more of the load compared to those
further away. Examples of such models are the Soft Clamp FBM
[20] or the one proposed by Hidalgo et al. [21]. The extreme
version of such models is the Local Load Sharing FBM [22]
where the forces carried by the failed fiber is absrobed by its
sucrviving neighbors. If the lower clamp is rigid, the load is
equally distributed to all the surviving fibers. This is the Equal
Load Sharing (ELS) FBM.

We will in the following only discuss the ELS FBM, which we
refer to as the FBM in the following.

FIGURE 3 | Force (black curve), elastic energy (blue curve), and elastic energy

change rate (red curve) against the stretch x for uniform distribution of the fiber

strengths in the bundle.

2.1. Strength and Stability of the Fiber
Bundle Model
Let us consider a fiber bundle model having N parallel fibers.
Each fiber responds linearly with a force f to the stretch value x
as f = κx, where κ is the spring constant. If the stretch x exceeds
the strength threshold, the fiber fails irreversibly.

The strength thresholds of the fibers are drawn from
a probability density p(x) described by the corresponding
cumulative probability P(x). For example, for the uniform
distribution on the unit interval we have

p(x) = 1; P(x) = x. (1)

If Nf fibers have failed at a stretch x, then the bundle carries
a force

F = (N − Nf )κx = N(1− P(x))κx (2)

which for the uniform distribution is a parabola as shown in
Figure 3.

The force-maximum is the strength of the bundle and the
corresponding stretch value xc is the critical stretch beyond
which the bundle collapses. Therefore, there are two distinct
phases of the system: stable phase for 0 < x ≤ xc and
unstable phase for x > xc. The critical stretch value is found by
setting dF(x)/dx = 0:

1− xcp(xc)− P(xc) = 0. (3)

and the solution for the uniform threshold distribution reads

xc =
1

2
. (4)

In a similar way, one may calculate the critical strength of the
bundle by putting xc value in the force expression (Equation 2).

Fc

N
=

1

4
. (5)
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2.2. Energy Variation and Warning Sign of
Collapse
Work of an external load stretching the bundle converts into
elastic energy of the fibers Ee and is partially released as damage
energy Ed of broken fibers. When N is large, one can express Ee

and Ed in terms of the stretch x as [5]

Ee(x) =
Nκ

2
x2

(

1− P(x)
)

, (6)

and

Ed(x) =
Nκ

2

∫ x

0
dy

[

p(y)y2
]

. (7)

For the uniform distribution within the range (0, 1), the
Equations (6, 7) reads

Ee(x) =
Nκ

2
x2(1− x), (8)

and

Ed(x) =
Nκ

6
x3. (9)

Clearly, the damage energy increases steadily with the stretch, but
elastic energy has a maximum. Setting dEe(x)/dx = 0, one gets
the condition for the position of the elastic energy maximum

2(1− P(xm))− xmp(xm) = 0, (10)

whose solution for the uniform distribution reads [5].

xm = 2/3 = 4/3 xc. (11)

Although the elastic energy has a maximum, it appears after the
critical extension value, i.e., in the unstable phase of the system.
Therefore, it can not help us to predict the catastrophic failure
point of the system.

The situation is different if we consider the rate of elastic
energy change E(x) = dEe(x)/dx which reads [5]

E(x) =
Nκ

2

[

2x
(

1− P(x)
)

− x2p(x)
]

. (12)

Now, one can demonstrate that E(x) has a maximum and,
this maximum appears before the critical extension value xc
(Figure 3). Indeed, one can calculate the value of stretch x = xp
at which E has a maximum.

Taking derivative of dE/dx,

dE(x)

dx
=

Nκ

2

[

2
(

1− P(x)
)

− 4xp(x)− x2p′(x)
]

; (13)

where p′(x) stands for derivative of p(x). Setting dE(x)/dx = 0 at
x = xp we get the following solution for the uniform distribution

xp =
2

3
xc. (14)

Thus, the rate of change of elastic energy shows a maximum
before the actual failure appears. This result has been proven
under weak conditions and demonstrated also for other
probability distributions [5]. The obvious question at this
moment is what information about upcoming failure this
“precursor” provide us with. To answer this question, let us
reformulate the problem at hand in the following way.

Let us assume that we know that maximum of the elastic
energy absorption rate occurs at given xp and let us assume that
its value at xp is Emax. Knowing these two values can we predict
quantitatively a failure time (measured in units of x) and can we
predict its size in term of the released elastic energy? The answer
can be obtained from equations describing the dependences of Ee

and E on x as well as conditions for their maxima. The relations
between xc, xm and xp for a general power law distribution

p(x) = (1+ α)xα ,
P(x) = x1+α ,

(15)

where α > 0 and 0 ≤ x ≤ 1 reads

xc =
(

3+α
2

)
1

1+α xp

xm = (2+ α)
1

1+α xp
(16)

For the purpose of later comparison with DEM simulations,
we introduce another parameter, δx, describing the delay of the
critical value with respect to xp: δx = xc−xp, and the coefficientŴ
quantifying a retardation of the point when elastic energy reaches
maximum xm with respect to xc:

xm = xc + Ŵ δx, (17)

in terms of the δx scale.
For the power law distribution, the explicit form for δx anf Ŵ

reads

δx =

[

(

3+ α

2

)
1

1+α

− 1

]

xp, (18)

and

Ŵ =
(2+ α)

1
1+α −

(

3+α
2

)
1

1+α

(

3+α
2

)
1

1+α − 1
. (19)

Both δx and Ŵ are monotonically decreasing functions of α and
reach their maxima for the uniform distribution: δx(α = 0) =
1/6 and Ŵ(α = 0) = 1, which means that in this case xp and xm
are symmetrically located with respect to xc.

Next, let us define yet another quantity Ar which relates the
maximum of elastic energy Ee(x) to the maximum of the energy
absorption rate E(x).

Ar =
Eemax

xp Emax
=

Ee(xm)

xpE(xp)
, (20)

so

Eemax = Arxp Emax (21)
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The xp factor assures not only the dimensionality of Ar but also
leads toArindependent of xp for power law distribution, as shown
below. For a given probability distribution Ar reads

Ar =
1

2

x3m p(xm)

3x3p p(xp)+ x4p p
′(xp)

. (22)

For the power law distribution (Equation 15) the explicit form of
Ar can be easily found

Ar =
1

2

(2+ α)
3+α
1+α

3+ α
. (23)

Let us note, that in this case Ar is constant, independent of xp,
and reaches its maximum value for uniform distribution Ar(α =
0) = 4/3.

Interpretation of Equations (16), (21), and (22) is quite simple.
For the considered power law distribution, the pair of parameters
(xp, Emax) fully determines the upcoming failure, both a moment
of its occurrence (xc) as well as the amount of elastic energy
(Eemax) which is released during the catastrophic failure.

3. DISCRETE ELEMENT METHOD

The Discrete Element Method (DEM) [7] is the numerical
method originally developed for simulating the behavior of
granular media. It represents a medium under consideration as
an ensemble of geometrical, perfectly elastic objects (originally
circles in 2D) that interact with each other by repulsive forces due
to surface contacts. The original Cundal idea has been extended
by incorporating more complex particle interaction schemes and,
particularly, by introducing bonds between particles—internal
forces [23, 24] joining particles in a single piece. This has changed
the DEM method to the modern simulation technique situated
between the molecular dynamics from one side and the fluid
(continuum) mechanics from other side [9, 25, 26].

The most important feature of the DEM method is a
mathematical representation of the medium by a set of
interacting finite size particles whose dynamics directly follows
from the Newton equations of motion. Such a direct approach
has an obvious advantage. It does not use any continuity,
conservation, or other assumptions typical for continuum
mechanics. One of themost important consequences is that DEM
is particularly suitable for solving problems with complex, non-
trivially evolving boundary conditions. This is just the case of a
fracturing process.

Finally, let us note that DEM is a particular numerical
technique of solving general multi-body static or dynamic tasks.
Thus, in the application discussed here it allows to simulate
temporal evolution of objects prior to fracture nucleation similar
to continuum mechanics, through a period of development of
a micro-fracture system and dynamical breaking like fracture
mechanics, and, finally, can also include post-failure dynamics.
This last issue is very interesting because laboratory data cannot
provide reliable information about just-after-failure situation,
which, on the other hand, seems to be crucial for large scale

(seismology) analysis and is also interesting from a theoretical
point of view [24, 27].

There exists a number of implementations of the DEM
method as ready-to-use software. Our choice for the analysis
presented here is the Esys-Particle software developed at the
University of Queensland, Australia [28, 29]. We have chosen
this particular software for many reasons as discussed in Debski
and Klejment [30]. A detailed description of the software can be
found in Abe et al. [28].

The Esys-Particle software provides a number of inter-particle
interaction models and methods of simulating external loads. In
our analysis we have used the standard elastic-brittle interaction
model [9, 24]. Themost essential element of this model are elastic
bonds joining pairs of neighborhood particles and representing
Hookean attracting or repulsing central force if bonded particles
change their relative distance:

EF = −knδr
Er
|Er|

, (24)

where Er is a vector of relative position of particles, δr denotes a
change of particle distance and kn is a strength of inter-particle
interaction (“spring constant”). However, if a distance between
the particles increases by more then a critical distance bd, the
bond breaks and disappears. If all bonds attached to a given
particle break it becomes the “unbonded particle.” Summarizing,
the used inter-particle interaction model is fully defined by a pair
of parameters (kn, bd).

DEM simulates temporal evolution of a given system by an
explicit time integration of equations of motion for all particles
including external and inter-particle forces. At each time step
positions and velocities of the particles and the acting forces
are calculated and used to move the particles from the current
to new positions. Then the time is increased by a predefined
time step and procedure is repeated until a stopping criterion
is met. Within the Esys-Particle software the Verlet integration
schemata is used what assure conservation of system energy [28].

4. NUMERICAL EXPERIMENT—SETUP
AND DATA PROCESSING

Our DEM simulations deal with the simplest fracture dynamics
task, namely the fracturing of materials under tensional load
(mode 1 in the standard fracture mechanics classification).
Taking into account the goal of the analysis, all performed
simulations were conducted using the setup shown in Figure 1

with the following details.
Firstly, to avoid possible complications due to the full 3D

analysis and speed up (lengthy) calculations we have considered
only a 2.5D case—a thin tissue. Its size was assumed to be: depth
D = 5 mm, height L = 25 mm, and width W = 80 mm. This
numerical sample was built of spherical particles with radii in
the range 0.2–0.6 mm distributed according to the log-normal
distribution truncated to this range. Particles were randomly
distributed in space, which we have achieved by means of the
GenGeo algorithm [28]—a part of the Esys-Particle software.
The sample consists altogether of almost 25,000 particles bonded
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by almost 125 thousand bonds. The same numerical sample was
used in all simulations.

Secondly, the time step of the evolution was chosen to
assure stability of computations and read dt = 10−7 s.
However, in many cases we have to go down to dt = 10−8 s,
especially for cases with very small kn and bd to get numerically
stable solutions. This was possible because of the reduced
dimensionality (2.5D) of the sample. Typically, to get the sample
break into two disconnect parts we need to perform around
106–107 time steps. Only in few cases we need to wait until
over 108 time steps are completed. The small time steps have
the advantage of providing us with a very dense sampling of the
evolution process.

In all simulations, the sample was numerically “glued” to the
bottom and the upper plates by assuming that the particles of the
uppermost and the lower-most layers of the samples interacted
with the appropriate plates much stronger than with each others.
In all simulations, the lower plate was fixed and the upper one
was moving up with a maximum velocity of 50 mm/s. This
dragging velocity has been selected as a tread-off between a
computational efficiency and an attempt of reaching a quasi-
static loading. It has been reached by gradual change of loading
velocity from zero to the prescribed value during an initial period
which varied depending on the (kn,bd) parameters used. In the
case of microscopic parameters for which breaking occurred at
large strains (larger than about 20%), this initial period was
relatively short and took 10,000 time steps. However, for cases
when samples break at much smaller strains, such a beginning of
loading was too abrupt and has often lead to numerical problems.
For such cases, we changed the loading velocity, much slower
extending the initial period up to 106 time steps, at the price of
slowing down computation by over two orders of magnitude.

Finally, we have performed a quite exhaustive scan over a
space of microscopic parameters (kn, bd). In each simulation,
all particle bonds have shared the same kn and bd parameters.
The scanned values of microscopic interaction parameters were
following. The threshold distance bd ranged between 10−3 mm
up to 5 mm. The scanned values of the strength of bonds kn
varied from 10 N/mm up to 107 N/mm. The scan of the (kn,
bd) space was not uniform mainly for technical reasons. The
region of large kn and simulatneously small bd was beyond
our current computational capacities since large kn requires
(numerical stability) very small dt and small bd would need a very
gentle loading. Estimated computational time for such a setup
was tens of weeks. Instead, we have put more attention to a region
of small knand a transition from small to large bd.

Yet another parameter of particles, namely their density was
kept constant in all simulations as a parameter less important
for the breaking dynamics. Its value was a priori set to ρ =
2.5 · 10−4g/mm3.

The goal of our DEM simulations was to create “realistic
data” which could support or falsify predictions of the fiber
bundlemodel. The richness of internal structure of the usedDEM
sample, a large range of explored interaction parameters, and the
natural difference between the twomethods discussed above have
opened a question how this comparison should be done. Should
we use all simulation results, or should we restrict ourselves to a

specific subset only. Our experience [30] has shown that among
simulated by DEM breaking mechanisms we can find both
brittle-like processes which can be adequately described by the
FBM method but also complex cases for which the FBM method
probably fails. Taking this into account we have finally decided
to accept for analysis only those simulation results for which
well-pronounced peaks in the loading force and elastic energy
derivative were visible. We have imposed no restrictions on the
variation of elastic energy. The reason for this selection criterion
was that only in such cases we could estimate the δx parameter
with acceptable accuracy and thus avoid serious problems with
an analysis of reliability of the obtained “numbers.” Nevertheless,
in some cases even this weak criterion has failed and some
simulations have to be rejected from analysis “by hand.” This
happened whenever the complexity of breaking process has lead
either to masking the critical value xc (very large estimation
errors), or made its identification doubtful when many local
maxima of the force were observed. Using a specific selection
criterion, no matter how weak it is, it always rises a question if the
obtained results are not biased by such selection. We will come
back to this point in the conclusion section. To summarize this
part, almost 200 DEM simulations were finally analyzed.

A comparison of DEM simulations with the FBM predictions
requires reading out of simulation data the position of maxima
(xc, xm, and xp) and corresponding values of Fc, E

e
max, and Emax.

It was usually quite easy in the case of Eemax but often problematic
for Emax, and Fc. This issue has raised the problem of a proper
treatment of appearing uncertainties. For this reason and tomake
the analysis as precise as possible we used a composite data pre-
processing schemata assuring the maximum required accuracy.
Considering xc, xp, and the corresponding Fc, Emaxvalues we have
used the following approach.

First, the curves F(x), Ee(x) were filtered (low pass). The
used filters (convolutional or non-convolutional type) and their
parameters were selected interactively. The goal of this filtering
was to remove the high frequency oscillations (see discussion
of noise origins below) from the data. The same filter was used
for both F(x) and Ee(x) to avoid relative phase shifts. Next,
the derivative E(x) of elastic energy was calculated. This has
been done using the pseudo-spectral approach (high-order finite
different method) as follows: For each x we have locally fitted a
3rd order polynomial to Ee(x) using near-neighborhood x points.

In the next step, the maximum of E(x) curve was estimated
using a local 3rd order polynomial fit around its noisy maximum
as shown in Figure 4. The xp and Emaxvalues were approximated
by a position and a value of the obtained fit. The same fitting
procedure was used for estimating the position of maximum of
F(x).

We have preferred this more complex procedure of estimating
the location of the maxima instead of an additional low pass
filtering of E(x) and direct search for it because this way we
have avoided an additional phase shift (introduced always by a
filtering procedure).

The obtained values of maxima location can, in principle,
be used to calculate the δx parameter. However, such a direct
approach unavoidably leads to loss of estimation precision. Since
this parameter is the most important for our analysis, we have
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Dȩbski et al. Criterion for Imminent Failure

FIGURE 4 | An example of simulated loading curves and the illustration of the

procedure of estimation of maxima of F (x) and E (x) curves by means of a

polynomial approximation. The maximum of E (x) is found by fitting a 3rd order

polynomial to an appropriate curve around its noisy maximum. The same

procedure was used for getting xc from F (x).

thus used yet another, more advanced Bayesian approach [31]
capable to explore information about δx provided by a given
dataset in the optimum way. The details of the method can be
found in, for example, Tarantola [31] and Debski [32] and here
let us recall only the most important points of the method.

A task of estimating the unknown parameters (here δx)
from a given data set can be cast into a task of joining of
the whole available information about the thought parameters.
This information comes from observation (data) theory (relation
between thought and measured quantities) and a priori
existing estimations. The important fact is that all information
contributing to the final estimation is essentially imprecise. Thus,
first of all any data are subjected to uncertainties due to the
limited accuracy of any measurement/simulation. Theoretical
uncertainties arise from possibly approximate relations between
thought parameters and those which have been measured or
simulated. Finally, the existing (if at all) a priori information is
often quite vague.

From the mathematical point of view, the idea of joining
information is formulated using the Bayesian interpretation of
probability [33]. It takes the form of constructing the so-called a
posteriori probability distribution, which in the most often met
situations reads [31, 32]

σ (m) = f (m) exp
(

−||datobs − dat(m)||
)

, (25)

where m stands for the thought parameters, datobs and dat(m)
are observational data and theoretical prediction for a given m,
and || · || stands for a norm measuring a “distance” between
observations and predictions. Finally, the f (m) is a probability
distribution describing our a priori knowledge. It can be proved
[31] that σ (m) provides the quantitative description of all
available information aboutm.

An application of this approach for estimation of the δx
parameters takes a few steps. First, we identify m with δx: m =
δx. Next, as “observational” data we chose the function F(x).
Finally, we have assumed that around their maxima the F(x) and

E(x) curves are similar enough so locally one can write

F(x) ≈ const.E(x+ δx). (26)

This last assumptions simply tells that the peak of E(x), when
scaled and shifted by δx, should coincide with the peak of F(x).
One can try to provide deeper arguments for such assumption,
based, for example, on the FBM prediction (see Figure 3), but in
our case it basically follows from the observation of an occurrence
of such coincidences (see, e.g., the upper left panel in Figure 5).

The choice of the norm || · || in Equation (25) should reflect
the expected observational and theoretical uncertainties [32]. In
cases of tasks with “data” represented by continuous functions,
the cross-correlation of datobs and dat(m) is most often used.
However, we have preferred another choice, namely

||datobs − dat(m)|| =
∑

i

|F(xi)− E(xi + δx)|, (27)

where | · | stands for the absolute value and the sum is over
all strain values in predefined range. This l1-based norm is
more robust than the classical cross-correlation norm (essentially
equivalent to least-squares norm) and easily accommodates even
large differences for a finite number of xi arguments [32].
However, if one or both curves have large gradients within
the summation range using such norm can lead to seriously
biased a posteriori probability distribution [31]. In consequence,
estimated solutions can also be subjected to uncontrolled
systematic errors.

While plotting the output results we used the convention
according to which a vertical elongation of the sample (strain)
was expressed by percentage of an initial sample height, i.e.,

x =
l− l0

l0
× 100% (28)

To enable the visualizations all plotted quantities, like elastic
energy Ee, its derivative (E), and stretching force F, etc., were
separately normalized.

5. RESULTS

The performed simulations have provided numerical evidence
that can be used to support or falsify the FBM prediction, thus
being a proxy of experimental measurements. Adopting this
point of view and by analogy to real experiments, the important
question arises about uncertainties inherent to the simulation
results. The simulations provide us with macroscopic quantities,
like total elastic energy absorbed by the sample and stored
in inter-particle bonds, deformation of the sample, number of
broken bonds, and total force acting on the upper, moving up
plate. They also provide data allowing to construct snapshots of
microscopic state of the sample at any time during the simulation.
Each of these quantities is subjected to uncertainties coming
from different sources. We have identified three of them, namely
numerical errors, statistical fluctuations and effects of additional
physical processes. Since the last issue is strictly connected with
observed breaking mechanisms, we describe uncertainty and
breaking mechanism analysis together.
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FIGURE 5 | Three examples of an estimation of the delay parameter δx using the Bayesian (probabilistic) approach. The curves F (x), E (x), and E (x+δx ) for the optimal

δx value are shown in the upper row. The lower row shows corresponding a posteriori probability distributions. The shown cases correspond to one of the best (almost

noise-free) simulation results (left column) with well matching F and E curves, a typical situation (middle column) and a “difficult” case when acoustic waves strongly

disturbed the breaking process.

5.1. Uncertainty Analysis
Numerical simulations, depending on the assumed aims, can
be viewed either as an extension of theoretical analysis toward
situations that cannot be treated analytically due to the
complexity of the problem or as an extension of experimental
data. This double point of view causes some controversy with
respect to how numerical errors should be treated. The first
(modeling) approach concentrates only on achieving the highest
possible theoretical accuracy as numerical simulations are treated
as a direct extension of the underlying theory. The error analysis
is in this case straightforward and concentrates on such issues as
the accuracy of the approximations to the underlying equations
and the stability of the numerical scheme that, by the way, can
be quite complex from a technical point of view. On the other
hand, if the simulation is to provide observational data, we need
a much broader approach to the uncertainty analysis. We have
to include not only the issue of numerical uncertainties, but
also characteristics of the simulated processes. This essentially
complicates matters.

The DEM method, like any other numerical implementations
of analytical models, has limitations and introduces unavoidably
some approximations resulting in numerical uncertainties. The
two most important factors are at present an accuracy of
approximations of derivatives in original continuous physical
equations and the stability of the time integration [34]. The
last issue has generated much attention and has lead to the
formulation of various so-called stability conditions (see, for
example [9] for an analysis). Their basic meaning is to assure that
none of the particles constituting the sample move too far from
their current positions in a single time step. If suchmotion should

happen, the interactions with neighborhood particles will lead to
extremely large, non-physical forces acting between neighboring
particles and as a consequence generate spurious high-frequency
oscillations or even blowing up the whole sample. This instability
is in fact the main source of numerical noise in DEM simulations
and can be controlled (diminished) by choosing appropriately
small time steps. However, it is very difficult to completely get
rid of this type of noise, especially if the simulations contain
large numbers of particles. In such systems, there is always a
finite chance that at a given evolution stage, internal forces will
exceed the stability limit due to fluctuations and the particles
(especially the smallest ones) will locally start high frequency
oscillations. However, in many cases such artificial oscillations
are quite efficiently dumped by the interactions with surrounding
particles during the next couple of time steps. If there remains as
stationary noise, the simulation can often be accepted and noise
can be removed by standard low pass data filtering. We refer to
this particular feature of DEM as soft stability.

The significant feature of the performed simulations is their
multi-body character. We model the behavior of a system of
a large number of interacting objects. We would then expect
the occurrance of statistical fluctuations in the macroscopic
variables, such as drag force, elastic energy, etc. From our point
of view, such fluctuations can be treated as a noise disturbing the
simulation results.

The last identified source of final uncertainties was the fact
that the DEM simulations inherently include the geometry
of the sample and (implicitly) the finite speed of stress
and strain development inside it. In consequence, we have
always simulated not only a “pure” breaking process but
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FIGURE 6 | Three types of noise encountered in performed simulations: numerical noise (left column), statistical fluctuations (middle column), and disturbances due to

additional physical processes (right column). The F (x), E (x), and Ee(x) curves are shown in the uppermost row, the corresponding a posteriori probability distributions

for δx parameter in the middle one, and selected snapshots of samples micro-structures in the lower-most row. The snapshots show the inter-particle bonds strains

and use the same color scale. See text for detailed explanations.

also additional physical processes, among which generating of
acoustic waves and stress diffusions were the most important.
Under some favorable conditions, these additional physical
processes seriously influenced our simulations and have not
allowed to identify the critical value at all. In most cases,
however, they only significantly contributed to the final,
a posteriori uncertainties.

The described types of simulation uncertainties are presented
in Figure 6, where examples of numerical noise, statistical
fluctuations and creation of acoustic waves and their influence
on observed parameters are shown. In addition, we include in
this figure (middle row) the a posteriori distributions for the
δx parameter estimated for the presented cases and examples
of snapshots of the internal state of the samples illustrating
mechanisms of generation of a given type of noise. For the
purpose of this illustration, we adopted special measures. First
of all, we have slightly increased the numerical noise (left column
in Figure 6 by enlarging the time step in this case. Moreover, we

have started this simulation with abrupt loading which has led to
some minor instabilities already at the beginning of simulation.
These continued as stationary high frequency noise. On the
other hand, to illustrate statistical fluctuation type noise (middle
column) we have decreased the evolution time step to diminish
the numerical noise and also have gently started loading. In the
last cases (right column), no special measures have been applied.

A few conclusions can be drawn from Figure 6. First of all,
we observe that the numerical noise and statistical fluctuations
lead to quite similar effects: a high frequency, low amplitude
oscillation visible in the F(x) and E(x) curves. In practice, these
two types of noise are indistinguishable. On the other hand, the
existence of acoustic waves leads to a characteristic undulation of
the F(x) curve and, in the presented case, has significantlymasked
the critical value and decreased the accuracy of the estimation
of xc. The conclusion is that a low-pas filtering of the data can
efficiently remove numerical and fluctuation noise, but not errors
introduced by additional physical processes.
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Secondly, the numerical noise can appear at any stage of
evolution and can hardly be visible as a disturbance of the
microscopic state (provided we are within a soft stability limit).
On the other hand, the statistical fluctuations appear only if
the sample has accommodated enough elastic energy uniformly
distributed over the whole sample making the system reach a
quasi-equilibrium state. The existence of acoustic waves is clearly
visible in the snapshots as a time propagating disturbance.

The most interesting is, however, a comparison of the
a posteriori distribution for δx parameters estimated by the
Bayesian inversion method (middle row in Figure 6) which
brings us information on how to identify how a given type of
noise influences the δx estimation. In all cases we have observed
a unimodal distribution whose shape essentially follows the l1
norm-based likelihood function we have used. The “width” of
this distribution is a measure of the accuracy of δx estimation.
The smallest uncertainties are (or can be) due to the numerical
noise. The statistical fluctuations lead to larger, though still
moderate uncertainties. Finally, the largest errors are potentially
introduced by the acoustic waves. Although the presented cases
are for illustration only and hence arbitrary chosen, they suggest
that the most important source of the final uncertainties are
acoustic waves, or more generally, additional physical processes
accompanying the breaking process in the DEM simulation
[30]. In the next section, we discuss, among other issues, the
contribution of the different observed breaking mechanisms to
the types of noise.

Finally, let us note that the contribution of the numerical
noise is not only small if the simulation is properly run, but
in principle it can be highly suppressed by reducing the time
step used. In practice, the reducing of time steps leads to much
longer, often unacceptable computations, so that some level of
numerical noise has to be accepted. Although it can easily be
removed by low pass filtering, it marks its existence in a posteriori
errors. It is not clear how the influence of statistical fluctuations
on the final uncertainties can be diminished. A more advanced
analysis, taking into account the possibility of resizing the sample,
is apparently needed in this case. Finally, the uncertainties due
to additional physical processes seems to be irreducible and
the only way of avoiding them is a proper selection of the
simulation setup.

5.2. Breaking Mechanisms
Within the set of performed simulations we have observed a
variety of different breaking mechanisms. Some of them were
qualitatively quite similar to the FBM predictions illustrated
in Figure 3, and some were apparently quite different. The
observed difference in simulated breaking processes were
obviously due to different values of the (kn, bd) parameters
because all others conditions (micro-structure of the sample
and loading conditions) were kept the same. It is thus obvious
that the richness of breaking modes arises directly from a non-
linearity of the breaking of particle-particle bonds controlled by
(kn, bd). However, we have to point out an important role of
microscopic structure of the sample in a fragmentation process.
Actually, for a given virtual material defined by (kn, bd) an
actually breaking process is determined by a micro-structure of

the sample—a particle distribution in the sample. It determines
which bonds break first, in which direction a fracture tip progress,
etc. In our case the particles are distributed randomly and the
sample is heterogeneous at the particles level. It introduces some
randomness to our simulations. In principle, it is the same for
all performed simulations because we have always used the same
sample. However, in reality it is not exactly a case because the
micro-structure of the sample is continuously changing from
the time the first particle-particle bond breaks. The complex,
non-linear feedback between a pair of (kn, bd) parameters and
the internal micro-structure during the breaking process causes
that at the breaking stage we are efficiently dealing with slightly
different samples for different (kn, bd) parameters.

For the purpose of our analysis we divide the observed
breaking mechanisms qualitatively in the following into four
categories, shortly describing their main features.

The first class of observed breaking mechanisms, referred
to as ductile-like, is characterized by a very wide maximum
of elastic energy around the failure point xc. An example of
variation of the force, elastic energy and its derivative with
the sample deformation is shown in Figure 7. This figure also
provides a histogram illustrating the change of the rate of bond
breaking during the simulation. Three snapshots of the sample’s
internal state illustrating this breaking mechanism ares shown in
Figure 8.

For this type of simulated breaking process, we observe a fast
initial absorption of external work and nucleation of fracturing
followed by a very slow destruction of the sample. During this
continuous damage stage, the force needed for keeping the
constant stretching speed exhibit significant fluctuations with
many local maxima. The breaking process was apparently much
more complex than predicted by FBM (Figure 3). For this type
of breaking mechanisms, it was impossible to identify the critical
strain xc at which samples reached the unstable phase. For this
reason we have not considered such cases in analysis that follows.
It is interesting, however, that even in this case the energy
absorption rate curve demonstrated a well-defined maximum,
which appeared prior to any loading force maximum as visible
in Figure 7—following in a sense the FBM predictions.

The second class of observed fracture process consists of
brittle-like processes during which collapse of the sample
occurred very quickly after the beginning of loading without
a visible “necking” of the sample. They always have a form
of tearing out a few uppermost (or lower-most) layers from
the remaining body of the sample in a cleavage-like process.
Figure 9 shows a post-failure state of the sample broken this
way and Figure 9 the corresponding loading curves and broken
bonds. Apparently, such a breaking scenario is most similar
to the one modeled by the FBM (Figure 3). An additional
advantage of this breaking mechanism is that a relatively high
accuracy of the δx estimation may be achieved due to neither
statistical fluctuations nor acoustic waves have adequate room
for development. However, such cases require a very gentle
beginning of loading to avoid numerical instabilities.

The collapse of the sample occurred at very small strains and
happened very quickly as a result of the bonds were breaking
only in a narrow strain range around a well-pronounced critical
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FIGURE 7 | An example of the ductile-like breaking mechanism. (Left) Force (F )—thick black curve, Elastic energy (Ee)—thin blue solid curve and the energy

absorption rate (E )—dashed red curve as functions of strain x. (Right) number of broken bonds in a fixed strain interval against x. A relatively fast increase of elastic

energy at an initial phase is followed by a long-lasting stage of slowly changing elastic energy (left). At this stage, a slow destruction of the sample is observed (right)

and the loading force needed to keep stretching speed constant exhibits significant fluctuations. The particle-particle interaction parameters for this case read:

kn = 107 N/mm, bd = 0.01 mm.

FIGURE 8 | Snapshots of the microscopic state of a sample undergoing a ductile-like breaking process at strains (x = 2, 7, 24%) indicated above the panels. Short

colored segments represent inter-particle bonds existing at a given loading stage and their extension with respect to initial values are mapped by colors. The

corresponding loading curves are shown in Figure 7.

FIGURE 9 | Snapshots of a microscopic state of a sample undergoing a pure brittle cleavage-like breaking process. Short colored segments represent the

inter-particle bonds existing at a given loading stage and their extension with respect to the initial values are mapped by colors. The corresponding loading curves are

shown in Figure 10.

value xc. The energy absorption rate curve E(x) has its maximum
ahead of the critical strain xc. We have observed mechanisms
of this type only for the smallest values of critical bonds strains
bd < 0.1mm regardless of the considered values of kn.

In many simulations we have observed a breaking mechanism
referred to as hyper-elastic. In a way similar to the brittle cases,
the damaged energy is released in a small well-localized region
around xc. What distinguishes this scenario from the brittle

scenario is a long initial stage of building-up the internal elastic
energy of the sample and as a consequence a significant necking
of the sample prior to breaking, typical for real ductile materials.
Figure 11 shows loading curves for such cases, and a sequence of
snapshots characteristic for this type of breaking process is shown
in Figure 12.

Apparently as Figure 12 demonstrates, in such cases we are
encountering a more complex breaking process than what is
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FIGURE 10 | An example of loading curves for the pure brittle cleavage-like breaking mechanisms (see Figure 7 for the description). In this case, the fracture occurs

at very small deformations and is very well-localized around the critical strain xc. The particle-particle interaction parameters for this case read: kn = 10 N/mm,

bd = 0.1 mm.

FIGURE 11 | Loading curves for the hyper-elastic breaking mechanisms (see Figure 7 for the description). In this case the fracture has occurred at relatively large

deformations but, like in the brittle cases, has been very well-localized around the critical strain xc, and the accumulated elastic energy is almost entirely and quickly

released. The particle-particle interaction parameters for this case read: kn = 105 N/mm, bd = 0.4 mm.

described in the FBM. However, in spite of this, the basic features
of the failure process seen in the FBM are still preserved. For this
type of fracturing we observe a well-pronounced peaks of F(x),
E(x), and usually a delayed but also well visible wider peak of
Ee(x). Only in such cases a favorable conditions for developing
statistical fluctuations occurred, because the sample (depending
on values of microscopic parameters kn, bd) could absorb and
store a large amount of internal energy. Simulations leading to
this type of breaking process were quite susceptible to generating
numerical noise which usually appeared around the critical
value because at this stage the internal forces approaches their
maximum values and numerical instabilities could easily develop.
If such a noise was stationary or was diminishing, the simulation
was accepted. Otherwise, the simulation was repeated with a
smaller time step. In some cases, especially for cases with shorter
initial stable phase we observed the development of acoustic
waves propagating through the sample. However, the energy they
were carrying was much smaller than the accumulated elastic
energy, so their existence practically lead to some increase of final
uncertainty only.

The final class of the observed mechanisms can be referred
to as semi-ductile. One of the distinct features of events of this
class is the presence of clearly visible acoustic waves in the stable
loading phase. In some cases they lead to a small undulation

of F(x), Ee(x) or its derivative. However, in some cases they
can completely dominate the loading phase of the evolution. In
such extreme cases they can even prohibit a precise identification
of the critical stretch. The loading curves for such an extreme
case when strong acoustic waves have been generated from the
beginning of the process is shown in Figure 13.

For events of this class we still can identify the critical value,
and the maximum of the energy absorption rate but often with
much lower accuracy. The Ee(x) curves are quite wide and their
maxima are often noticeably shifted toward larger x with respect
to xc similar to ductile cases. However, unlike the ductile cases,
F(x) is relatively smoothly decaying with increasing x. The slowly
decreasing of the elastic energy after reaching the critical value
indicates a complex breaking mechanism. Indeed, we observe
for such cases, the failure goes through the development of a
multi-crack-systems. The micro-crack interact with each other
and coalesce, which finally leads to a failure of the sample.
This breaking mechanism is much slower than the fracturing
process typical for hyper-elastic cases (fast horizontal fracture) or
brittle one (cleavage process). The series of snapshots shown in
Figure 14 illustrates both above mentioned features.

All analyzed DEM simulations are finally shown on the scatter
plot in Figure 15. The four categories of breaking mechanisms
are represented at this figure by different colors. In spite of
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FIGURE 12 | Snapshots of the microscopic state of a sample undergoing a hyper-elastic breaking process at selected (indicated above panels) strains. Short colored

segments represent inter-particles bonds existing at given loading stage and their extension with respect to initial values are mapped by colors. The corresponding

loading curves are shown in Figure 9. A release of an internal elastic stress by developing fracture system is clearly visible. The particle-particle interaction parameters

for this case read: kn = 105 N/mm, bd = 0.4 mm.

FIGURE 13 | Two examples of loading curves for semi-ductile breaking mechanisms with moderate (left) and strong amplitude acoustic waves generated and

developing from the beginning of loading (see Figure 7 for the description). The wavelength of the acoustic waves for the case shown in the left panel is about 1/3 of

critical strain and their presence manifest themselves in irregular increase of the loading force in the initial loading stage strain. In the case shown in the right panel

neither the critical stress xc nor the maximum of energy absorption rate can be found with acceptable accuracy due to the strong acoustic waves. The particle-particle

interaction parameters for the case shawn on left read: kn = 105 N/mm, bd = 0.05 mm and for the case shown on right kn = 102 N/mm, bd = 0.6 mm.

the fact that the proposed categorization is merely qualitative
conclusions are quite obvious. The brittle-like processes are
observed only for weak (small kn) and rigid (small bd) virtual
materials. On the other hand the hyper-elastic cases were
observed for stronger (large kn) but flexible (large bd) materials.
The semi-ductile cases were observed for intermediate values
of the (kn, bd) parameters with a probably (insufficient space

sampling) smooth transition toward the ductile type in a region
of small bd and large knparameters. Star symbols are used to
distinguished at Figure 15 cases for which the maximum of
elastic energy is a significantly delayed (Ŵ > 5) with respect to the
critical strain. Surprisingly, within the given set of simulated cases
such events are mostly located along the brittle—semi-ductile
boundary. This issue will be analyzed elsewhere.
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FIGURE 14 | Snapshots (at indicated deformations x) of the microscopic state of a sample undergoing a semi-ductile breaking process. The corresponding loading

curves are shown in right panel in Figure 13. The most essential features for this class of processes are: (a) the development and propagation of acoustic waves

(upper row) and (b) multi-crack fracturing pattern (lower row). The first visible signature of development of the fracture system, appearing at about 60% strain is

marked by a circle in the lower left panel and at 80% strain the sample is still far away from breaking apart. Such a slow failure process is typical for this class of

processes and differentiates it from hyper-elastic ones (see Figure 12). The particle-particle interaction parameters for this case read: kn = 102 N/mm, bd = 0.6 mm.

FIGURE 15 | The scatter plot of all analyzed events on the kn-bd plane.

Different colors represent different categories of observed breaking

mechanism: green—brittle, blue—hyper-elastic, yellow—semi-ductile,

red—ductile, respectively. The star symbols depict cases for which the

maximum of elastic energy is significantly delayed (Ŵ > 5) with respect to the

critical strain. For few cases we could not determine (for technical reasons) the

delay parameter Ŵ and such cases are left as open (white) circles. The region

of (kn, bd ) parameters for which strong acoustic waves were observed is

shaded in gray.

5.3. Signature of Imminent Failure
Answering the main question posed at the beginning of this
paper, let us begin the discussion of results by gathering the
information on the δx parameter from all analyzed numerical
simulations. The result is shown in Figure 16.

The most obvious conclusion from this figure is that within
the class of analyzed events we have always observed a positive
value of δx. Estimated uncertainties indicate the significance of

FIGURE 16 | The delay δx = xc − xp between the critical stress xc and the

strain at which the elastic energy absorption rate reaches maximum for all but

ductile-like simulation results. The dashed curves show the FBM predictions

for power law distributions with α = 0 and 5. The circled events show

systematically underestimated δx values due to used procedure of δx
calculation (see text for details).

this result. It holds for all observed critical strains xc. We observe
the monotonic, almost linear increase of δx with xc over the
range 0.01 < xc < 10. Distortions observed at the smallest
xc are most probably due to the resolution limit imposed by
a necessity of using a low pass filter to remove noise. Much
more interesting is a saturation of δx(xc) at large xc. Actually,
two effects are visible for the largest xc values. The first one
is the existence of a group of events for which δx values are
significantly smaller than the remaining ones. This group is
circled in Figure 16. A closer inspection of breaking mechanisms
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for this group of events reveales that all have the same breaking
pattern shown at the uppermost, middle panel in Figure 6. For
such curves with large gradients the used method of constructing
the likelihood function often fails [31] and leads to serious
under-, or overestimation of the parameters. This is exactly the
case for this group of events.

It could have been corrected, however we have not done it
since it would go beyond the main goal of the paper and was of
relatively low importance for the group of events we analyzed.
Besides this technical issue, we observe an apparent saturation of
the δx(xc) curve. This effect may have different origins. One of
them can be a finite size of the used sample. We are also recall
a limitation of the DEM method in connection with a proper
description of materials with large Poisson ratios [35]. However,
it can also be a signature of approaching the limits of applicability
of the FBMmodel. This issue requires further investigations.

The visible deviations at extremely small and large xc do
not, however, change the main conclusions, that for over
three orders of magnitude of xc the numerical DEM results
are in a very good agreement with the FBM predictions
concerning the positivity of δx and its dependence on xc. The
obtained results fits perfectly with the FBM predictions for
power law fiber strength distributions with exponents in the
range 0 < α < 5.

We provide complementary information and independent
support for the FBM predictions in the plot of the Ar coefficient
against xc, as shown in Figure 17. We have here plotted it
dividing all events into three categories with respect to the Ŵ

parameter. Let us recall here that according to Equation (17)
this dimensionless parameter measures the retardation of the
point when internal elastic energy reaches a maximum value with
respect to the critical value xc. The larger the parameter Ŵ, the
latter the elastic energy maximum, and the wider a peak of the
elastic energy. Two curves corresponding to the FBM predictions
for the power law distributions with exponents α = 0, and 5 are
also shown.

For the majority of events characterized by the critical strain
xc lower than about 10% we have obtained an almost constant
value of Ar in full compliance with the FBM predictions (see
Equation 23). The agreement for the power law distribution with
exponents in the range 0 < α < 5 is remarkably good, and the
range of α for which it holds agrees with the analysis for δx. In
the case of Ar we also observe a systematic deviations from the
FBM model for the largest xc. The reasons for this deviation are
most probably the same as in the case of δx parameters and will
be discussed elsewhere.

The most intriguing result shown in Figure 17 is, however,
the existence of a group of events for which values of Ar are
much larger than 4/3, i.e., the value predicted by FBM as the
superior limit. For these few exceptional events we have observed
Ar ∼ 3 and Ŵ over 5, (the FBM prediction is Ŵ < 1), thus
much beyond the FBM limits. It has to be noticed that these
exceptional events appear at critical strains for which other,
compliant with FBM solutions exist and they are not influenced
by the data processing methods, which was the case for the
δx parameter for the largest xc. Detailed examination of the
loading curves and the snapshots of the breaking process have

FIGURE 17 | The ratio Ar of the maximum of elastic energy released during

the final failure to the product of maximum of elastic energy increase rate and

xp against x. Horizontal lines shows the prediction of the FBM model for power

distribution with α = 0—red line and α = 5—blue line. Errors are mainly due to

imprecise estimation of xp and Emax . The plotted values have been divided into

three groups depending on the value of Ŵ expressing the retardation of the

energy maximum xm with respect to xc (see Equation 17): the maximum of

energy just follows the xc point (Ŵ < 1), intermediate case (1 < Ŵ < 5) and the

case when the energy maximum occurs far away from xc.

indicated that all these events exhibit semi-ductile, complex
breaking mechanism, and that is why their common feature are
large values of Ŵ. It is thus not astonishing that they do not fit the
FBM predictions for which the breaking mechanism is a simple
“one-step” process. When the critical value is reached the loading
process switches from the stable to the unstable phase leading to
an immediate breaking of the sample and hence release of the
whole reservoir of energy. It is astonishing that for this group of
events, the deviation from the FBM prediction for Ar we observe
simultaneously no departures from the FBM results concerning
the positivity of xc. Actually, observation of the existence of
such events is one of the two most important results of
our analysis.

6. DISCUSSION AND CONCLUSIONS

Considering the posed question whether the signature of
imminent failure predicted by the FBM method is also visible
in the DEM simulations, we can positively answer yes. In all
analyzed simulations we observe the existence of a precursory
maximum of an elastic energy absorption rate prior to the
critical strain at which the loading force reaches the maximum.
We have also observed a very good agreement of the DEM
simulation results with the FBM predictions for the variation
of the δx–a difference between the critical strain and the
strain at which precursor maximum occurs, and the Ar–
the scaled ratio of total absorbed energy and maximum of
the absorption rate parameters. The advanced error analysis
allows us to recognize and qualitatively take into account the
sources of major errors providing solid evidence for the above
conclusions. All these arguments provide a strong support
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for the Fiber Bundle Model. However, a few observed facts
forces us to pose some important physical questions and
prevent us from drawing too optimistic but possibly too
naive conclusions.

The first issue is a possible bias/limitation introduced by the
selection procedure we have applied to the DEM simulations.
We have considered only cases with a well-pronounced peak in
the force and the energy absorption rate curves. The motivation
of such selection is purely technical—we wished to assure a
satisfactory accuracy of identifying of the critical value and the
point at which the energy absorption rate reaches maximum.
Among almost 200 performed simulations, only eight have been
rejected due to failing this condition, which suggests it to be
quite reasonable. However, consequences of such a procedure,
even if it looks reasonable, go much beyond the technical issue
itself. Actually, the applied criterion resulted in restriction of
our analysis to processes in which force, energy absorption rate,
and also elastic energy (although it was not required) were
single-modal. By this we understand that the corresponding
loading curves were quite compactly localized around the
critical strain and do not exhibit a presence of significant
secondary local maxima. What is the physical meaning
of this fact?

The well-pronounced single, peaks in force, elastic energy,
and energy absorption rate function mean that the breaking
is essentially a “one-step” process. When initiate at the critical
strain it unavoidably leads to a breaking of an object apart and
release of the whole absorbed and stored internal energy. For
such cases, the DEM simulations indeed confirm the existence
of a precursory phenomena preceding the imminent failure, as
predicted by FBM [5]. The DEM simulations have shown that
this phenomenon also holds if more complex, but still essentially
“one-step” processes are considered. The situation changes
essentially if more complex breaking processes are considered.
The existence of such processes has recently been reported [30]
and in a restricted form of semi-ductile cases also appeared in
our simulations. For such processes we found a “soft” breaking
the FBM predictions: the Ar , and Ŵ parameters significantly
differs from the FBM predictions but the δx parameter follows
closely the FBM solution. An open question thus arises if the
existence of the precursor phenomenon predicted by FBM can
still be observed in case of more complex processes or not.
For example, one can imagine the breaking process consisting
of a series of smaller sub-failures. Will the system inform
us about an approaching final failure in such a case? The
answer is open.

Another, more elementary issue is related to how the external
work done by the loading forces is absorbed and stored in the
sample. In the fiber bundle model, the whole work is absorbed
as elastic energy of the stretched fibers. Upon breaking a fiber,
the elastic energy it has stored is released as the damage energy
[5] and, what is important, it decouples from the model. By
this we mean that the released energy does not influence the
state of remaining fibers. In the DEM method, the situation is

more complex. The energy released by a bond breaking is, in
the first step, converted directly to the kinetic energy of particles
originally joined by the bond. In the next steps, this “damage”
energy either transforms (most of it) into elastic energy of
remaining bonds attached to particles or remains to be a kinetic
energy of vibrating particles. The first situation occurs if particles
can hardly move or if they can carry a minimum kinetic energy
due to their small masses. If this situation occurs, DEM directly
mimics the FBM approach. However, DEM can also simulate an
opposite situation, when the released energy can (to some extent)
remain as kinetic energy of the originally bonded particles [30]
and so does not decouple from the system. The obvious questions
to be answered in the future are how such elastic-kinetic energy
conversion mechanism modifies the FBM predictions, is this
process responsible for the complexity of ductile-like breaking
process, and so forth.

In the light of the above comments, the results of our analysis
can be summarized in a general way as follows: When the
external force is stretching a body, part of its work (all in an
ideal case) converts into the internal energy of the body. If this
energy transfer is dominated by building up an elastic energy and
the final breaking of the body is a single-step process, then we
observe a robust signal-precursor of the upcoming failure. The
reaching of the maximum by the elastic energy absorption rate
is just a signature that a catastrophic failure is approaching. The
obtained results immediately poses further important questions.
The first, and the most important one is, what are the limits of
applicability of the FBM method when applied to description of
breaking solid materials. Another one is whether the inclusion
of mechanisms of conversion of the external work into kinetic
energy (heat) of particles/fibers change the conclusion about
relation between the maximum energy absorption rate and the
critical value or not.
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From Nucleation to Percolation: The
Effect of System Size when Disorder
and Stress Localization Compete
Subhadeep Roy*

PoreLab, Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway

A phase diagram for a one-dimensional fiber bundle model is constructed with a
continuous variation in two parameters guiding the dynamics of the model: strength of
disorder and range of stress relaxation. When the range of stress relaxation is very low, the
stress concentration plays a prominent role and the failure process is nucleating where a
single crack propagates from a particular nucleus with a very high spatial correlation unless
the disorder strength is high. On the other hand, a high range of stress relaxation
represents the mean-field limit of the model where the failure events are random in
space. At an intermediate disorder strength and stress release range, when these two
parameters compete, the failure process shows avalanches and precursor activities. As
the size of the bundle is increased, it favors a nucleating failure. In the thermodynamic limit,
we only observe a nucleating failure unless either the disorder strength is extremely high or
the stress release range is high enough so that the model is in the mean-field limit. A
complex phase diagram on the plane of disorder strength, stress release range, and
system size is presented showing different failure modes - 1) nucleation 2) avalanche, and
3) percolation, depending on the spatial correlation observed during the failure process.

Keywords: disordered systems, fiber bundle model, stress release range, nucleation and growth, percolation,
spatial correlation

1 INTRODUCTION

It is nearly a century since Alan Arnold Griffith developed his energy criterion for the fracture
propagation of cracks in near-continuous solids [1, 2]. His celebrated work has revolutionized the
world of materials science. Griffith considered a single sharp crack in an otherwise homogeneous
elastic medium. In Griffith’s theory, the crack propagation is considered as an equilibrium problem
where the balance between two energies: reduction of strain energy, and increment in surface energy
is measured during the crack propagation. He found that the critical stress σc to cause a crack of
length l, to extend is σc � (2Yg/πl)1/2 [3], where Y is Young’s modulus and g is the surface energy per
unit area. However, this is an idealized case that requires a pre-existing crack or notch in a
homogeneous medium to concentrate the applied stress. In general, the initiation of a fracture in a
solid is a much more complex process. Most engineering materials are far from homogeneous, there
will always be a distribution of dislocations, flaws, and other heterogeneities present. The nucleation
and propagation of a crack in heterogeneous systems are not understood because of the complexities
of the stress singularities at the crack tip [4]. As the applied stress is increased, micro-cracks are likely
to occur randomly on the heterogeneity and are uncorrelated. As the density of micro-cracks
increases, the stress fields of the micro-cracks interact and the micro-cracks become correlated. The
micro-cracks eventually may coalesce to form a through-going fracture. This irreversible process is a
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part of damage mechanics and is an integral part of the nucleation
and propagation of fracture in heterogeneous environments.

During the failure process of a disordered system, a complex
interplay is observed between quenched heterogeneities and local
stress concentration. The former one leads to non-localized
damage mechanics while the latter favors the formation of
localized cracks. As a consequence of this interplay, we observe
system size dependence of nominal stress distribution [5–7], scale-
free avalanche size statistics [8–11], self-affine crack morphology
[12], etc. In the limit of infinitesimal disorder strength, the crack
grows within a disordered system in a nucleating manner [13–16].
On the other hand, when disorder strength is infinitely high, the
effect of local stress concentration becomes irrelevant and the
failure process is random in space [17, 18] like percolation. The
reason behind the damage mechanics at high disorder is the
heterogeneities in a material that create energy barriers which
act as a resistance on the way of crack propagation and ultimately
arrest the crack motion: a phenomenon known as lattice trapping
or intrinsic crack resistance [19–24]. At intermediate disorder, the
situation is more interesting, where the failure process takes place
through a number of avalanches showing scale-free distributions of
energies emitted during the avalanches [9] and mean-field
exponents [25–28].

Tuning the strength of disorder is not achievable easily in
experiments. Though through heat treatment one can tune the
length scale of disorder in phase-separated glasses [29]. Earlier
experiments also studied the role of a varying disorder strength
during pattern formation in random spring network [30–32], the
study of roughness of a fracture surface [33], the transition from
nucleation to damage mechanics in random fuse network [34,
35], etc. Linear elastic fracture mechanics, on the other hand,
predicts the load distribution around an Inglis crack [36, 37] to be
1/r2-type where r is the distance from the crack tip. However, this
form for relaxation of local stress can be affected by many
parameters like correlation among defects [38] and effect of
the limited size of the sample [39]. This in turn can change
the dynamics of crack propagation.We will explore here the effect
all three important parameters: disorder strength, stress release
range and sample size in detail.

In this article, we study the spatial correlation during failure
process of a fiber bundle model (FBM) [40, 41]. Fiber bundle
model is very effective yet arguably the most simplest model to
understand failure process of heterogeneous materials. The effect
of a variable stress release range has already been observed in the
context of this model [42, 43]. With a very low stress release
range, the failure process is observed to be nucleating and at the
same time, the failure abruptness is affected by the size of the
bundle [42, 44]. The spatial correlation, in this limit, decreases as
the disorder strength is increased [45]. On the other hand, at a
very high stress release range (the mean-field limit), the failure
abruptness is not a function of system size and only controlled by
the strength of disorder [46]. A high thermal fluctuation as well
leads to a failure process, random in space, with the same
universality class of a site percolation [47]. When we combine
both the effects of stress release range and disorder strength, the
model produces rich relaxation dynamics with different modes of
failure − abrupt, non abrupt, nucleating, and random in space

[48]. The avalanche statistics as well as the effect of system sizes
has also been discussed recently in the context of fiber bundle
model [49, 50]. Moreover, the record statistics in the avalanche
statistics and study of elastic energy has been observed to be a
vital key to predicting an upcoming failure [51]. The occurrence
of different regimes with increasing disorder strength is also
observed in spin systems as well. Recent work in the random field
Ising model shows many small avalanches at high disorder and
depinning behavior when disorder strength is very weak. At an
intermediate critical value of disorder strength, avalanches of all
possible sizes are observed [52, 53]. A study similar to the present
one is explored in the context of random fuse network [34, 35]. In
the former study, the avalanche size distribution as well as the
system size scaling of average avalanche size and average crack
size. In the latter study, the authors have studied the masses of the
largest cluster, the mass of the backbone (the number of burnt
bonds forming the chain that effectively disconnects the bottom
from the top of the system), and how those masses scale with the
system size in order to compare them with percolation. Here we
carry out a study, similar to what was observed in the resistor
network for a variable stress release range and construct a phase
diagram on the plane of disorder, stress release range and system
size. We have mainly studied the behavior of crack density to
observe the spatial correlation. The crack density is explored
earlier by the same author [42, 48] but a systematic study with
system size, especially a systematic study of maximum crack
density with the size of the bundle was missing there. Such a
study is carried out in the present article and can offer a nice
insight into the fracture pattern.

2 DESCRIPTION OF FIBER BUNDLE
MODEL

After its introduction by Pierce in 1926 [54], the fiber bundle
model [40] has been proven to be very effective in understanding
the failure event of a disordered system. Due to this, fiber bundle
model is growing popularity among engineering, material science
as well as academics. This model is very effective yet arguably the
most simple model guided by threshold activated dynamics.

A conventional fiber bundle model consists of L parallel
Hookean fibers in between two plates which are pulled apart
creating a stress σ on each fiber. The fluctuation among the
strength values of individual fibers is the measure of disorder
within the model. In the present work, we chose such strength
values (h) from a power law distribution with a slope −1 and span
from 10−β to 10β.

p(h) ∼ h−1, 10−β ≤ h≤ 10β( )
0. (otherwise){ (1)

Here β is related to the span of the distribution and a measure
of disorder strength. We have chosen such a distribution as such
long-tailed power-law distribution [55] has already been observed
for the distribution of material strength. A certain fiber breaks
irreversibly when the stress applied on it exceeds its strength. The
stress of that fiber is then redistributed among rest of the model.
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Here, we have adopted a generalized rule for stress redistribution.
If σi is the stress on the broken fiber i, then the stress
redistribution on fiber j at a distance rij from fiber i will be as
follows

σj → σj +
r−cij
Z
σ i (2)

Where σ j is the stress on fiber j and Z is the normalization factor
given by

Z � ∑
i,k

r−cik (3)

Where k runs overall intact fibers. Two extreme limits of this
redistribution rule are global load sharing (GLS) [54] and local
load sharing (LLS) [4, 56] limit. c has a very low value for the
former case and stress of the broken fiber here is redistributed among
all surviving fibers in almost same amount. This is also the mean-field
limit of the model. In the other extreme limit, c has a very high value
and a large amount of the redistributed stress is carried by the
neighboring fibers of the broken one only. The effect of stress
concentration is most prominent here. Earlier studies show a
critical value cc of the stress release range, for both 1d [42] and 2d
[43], around which the model transit from the mean-field limit to the
local load sharing limit. After such redistribution, due to the elevated
local stress profile, further fibers may also break starting an avalanche.
With such a process, the bundlemay break through a single avalanche
or comes to a steady state with some fibers broken and some intact. In
the latter situation, the external stress is increased to break the next
weakest fiber starting a new avalanche. Such process goes on until all
fibers are broken.

3 NUMERICAL RESULTS

A one dimensional fiber bundle model is studied numerically with
varying disorder strength (β), stress release range (c), and system
sizes (L). In Local Load Sharing Fiber Bundle Model: Variation in β,
we explore the local load sharing limit of the model which can be
achieved by setting a very high c. On the other hand, Generalized
Model: Variation in Both β and c, deals with a generalized version of
the model where the stress of a broken fiber is redistributed
depending on the exponent c keeping β constant. β is varied
between 0.4 and 2.0 while c varies from 0 to 3. The size of the
bundle varies from 103 to 105.104 realizations (bundle replications)
are considered for our numerical simulation. Universality shows
numerical results for uniform and Weibull threshold distribution,
discussing the universal behavior of our result. Finally, inDiscussions
we have provided the concluding remarks on the present article.

3.1 Local Load Sharing Fiber Bundle Model:
Variation in β
In this section, we have studied the fiber bundle model in the local
load sharing limit. In this limit, the stress of a broken fiber is
redistributed among the nearest neighbors only. This scenario
can be achieved by setting a very high value of c.

We start our numerical simulation by observing the
characteristics of the patches (or cracks) that are generated
within the bundle during the evolution of the model. A certain
patch is defined by the combination of an intact fiber and a
broken fiber in its neighborhood. If we denote the intact fiber by 1
and broken fiber by 0, then any (1,0) or (0,1) combination on the
one-dimensional chain of fibers will be characterized as a patch or
crack. The patch density ρ at time t is defined by the number of
patches at that time, normalized by the size L of the system. We
also note the fraction B of broken fibers at time t. B is defined as
the number of broken fibers divided by size L of the system. Time,
in this case, is represented as the sum of stress increment and
redistribution steps (see Ref. 1 for details). Figure 1 shows the

FIGURE 1 | (A) Variation of patch density ρ with fraction broken B for β
values ranging from 0.4 to 2.0. The red dots denotes ρm, the maximum
possible patch density. The dotted line is the locus of B(1 − B) and represents
random failure events for a 1d bundle. (B) Variation of ρm as the disorder
strength β is varied continuously. We see three different regions (1) ρm is 1/L
here suggesting a single crack propagates through the bundle in a nucleating
manner (2) Here number of cracks originates and the number increases with β
(3) The failure process here random in space. ρm has a value close to 0.25
here. The system size is kept constant at 105.

1At a certain point during the evolution of the model, if it goes through m stress
increment with n1, n2, . . . , nm redistribution steps for 1st, 2nd, . . . , mth stress
increment, then the time corresponding to this scenario will be:m +∑

m
nm .
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variation of ρwith B for different disorder strength values ranging
in between 0.4 and 2.0 for a bundle of size L � 105.

Figure 1A shows a non-monotonic behavior of ρ when B
increases from 0 to 1. Earlier papers [42, 48] have already
discussed that such crack density shows a non-monotonic
behavior as the model evolves. B � 0 stands for the initial
configuration where all fibers are intact while we obtain B � 1
when all fibers are broken. The patch density ρ is zero for B � 0 as
no cracks are there in the bundle. On the other hand, when the
model is close to the failure point, there will be a single patch,
making ρ � 1/L when B approaches 1. At an intermediate B, ρ
reaches a maximum value ρm. Before this maxima, ρ is an
increasing function of B as new patches are generated within
the bundle. After the maxima, the patches start to coalesce with
each other and we observe a lesser and lesser number of cracks
with increasing time (hence increasing B). Figure 1A shows as
disorder strength is increased, ρm shifts to a higher value. We will
discuss the variation of ρm with disorder next. The dotted line in
the same figure is the locus of ρ � B(1 − B). This dotted line
represents failure events random in space for a 1d FBM. This can
be understood as follows. If B is the fraction of fibers broken, then
the probability of having a broken and an intact fiber will be B and
(1 − B) respectively. A patch then will be created by placing an
intact fiber beside a broken one, the probability of which will be
B(1 − B) on a 1d lattice. By equating dρ/dB for this locus to zero
we get the maximum ρm � 0.25 and the B value to be 0.5 at this
maxima. The failure pattern becomes more and more random
when β, the disorder strength, is high enough. On the other hand,
when the disorder strength is very low (β � 0.4), we see ρ � 1/L
independent of the value of B. This suggests a pure nucleating
failure starting from the very beginning until the global failure.

Figure 1B shows the variation of ρm explicitly when β is
continuously varied. We observe three different regions.

1) Nucleation (β ≤ 0.4) − Here ρm has a value close to 1/L. This
suggests that only a single crack is generated within the bundle in
this limit and this crack nucleates to create global failure. Due to
the low strength of the disorder, the failure process here is guided
by the local stress concentration at the crack tips.

2) Percolation (β ≥ 1.2) − In this limit the behavior of B vs ρ
matches closely with ρ � B(1 − B). ρm has a value close to 0.25.
The failure events are random in space here making it
reminiscent of percolation in 1d lattice. The failure process
is completely guided by the disorder strength and the local
stress concentration is almost non-existing.

3) Avalanche (0.4 < β < 1.2) − in the intermediate disorder
strength, there is an interplay between the disorder strength
and the local stress concentration. The failure process here
starts in a percolating manner but later the local stress
concentration takes over making the rest of the failure
events nucleating. We will be discussing this spatial
correlation in more detail later in this paper.

Figure 2A shows how the maximum patch density ρm
responds to the size of the bundle. The results are repeated for
three different β values 0.3, 0.7, and 1.2, in order to cover all
three regions − nucleation, avalanche, and percolation,

mentioned above. When disorder strength β is low (0.3),
ρm decreases with L in a scale-free manner with exponent −1.
This suggests that the maximum number of cracks observed
in the bundle decreases with increasing size and the model
goes towards nucleation more and more as the model
approaches the thermodynamic limit. On the other hand,
for β � 1.2, ρm is independent of L and saturates at a value
close to 0.25. As mentioned above, the failure process is
percolating here and remains the same irrespective of the
size of the bundle. In the intermediate disorder, where the
disorder strength and local stress concentration compete with
each other, we observe

ρm ∼ L−ξ(β) (4)

Where the exponent ξ is a function of β.
Figure 2B shows the variation of exponent ξ with the strength

of disorder β. ξ remains at 1 for low β where the failure is
nucleating, gradually decreases in region avalanche, and becomes
constant at 0 in the limit of percolation. The nature of patch
density remains the same in the percolation region (ξ � 0) only. In
both avalanche and nucleation, fewer patches grow as the size of

FIGURE 2 | (A) Effect of system size L on ρm for β � 0.3, 0.7 and 1.2. L is
varied in between 5 × 103 and 105. Three regions are observed here (1)
Nucleation: ρm ∼ L−1 (2) Avalanche: ρm ∼ L−ξ(β) (3) Percolation: ρm ∼ L0. (B)
Variation of ξ with β. ξ � 1 and 0 in the region 1 and 3 respectively. In the
intermediate region II, ξ decreases continuously with β.
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the bundle is increased, suggesting that the effect of the local
stress concentration becomes more prominent here as the model
goes towards the thermodynamic limit.

Here, we will discuss a dynamic parameter that helps us to
understand the onset of the nucleation process with time more
clearly. As explained earlier, time t here is analogous to the total
number of redistribution plus stress increment steps prior to the
global failure. We start by breaking the weakest fiber, say i, at time
t � 0 by the first stress increment. Let us assume further n1 fibers
break at the next time step (t � 1) upon redistributing the stress
carried by the weakest fiber. We consider the distance Δr between
these two consecutive events to be the minimum of distances
between fiber i and other n1 fibers that break after redistribution.
Here, Δr is not the exact lattice distance as only intact fibers are
considered while calculating it. The distance across a broken patch
is considered to be one independent of the size of the patch. This is
due to the LLS scheme that we have adopted. Whenever a fiber at a
notch breaks and the redistributed stress breaks the fiber at the
other notch, the failure is still nucleating, no matter how large this
patch is. Next, we square this distance and average it over 104

realizations to get 〈Δr2〉 at time t � 0. Next, we move our reference
frame to the fiber among those n1 fibers that had the minimum
distance from fiber i. Let’s denote this new fiber as j. If further n2

fibers break in the next redistribution, 〈Δr2〉 at t � 1 will be
calculated by the same procedure: find Δr from the minimum of
distances between fiber j and those n2 fibers, square it and average
over 104 realizations. Such a parameter was explored earlier by
Stormo et. al [57] in the context of the soft clamp model to point
out the onset of localization. Figure 3 shows this variation of 〈Δr2〉
with time t for β � 0.3, 0.7 and 1.2. For all three disorder strength
values, 〈Δr2〉 starts from a high value at low t and then decreases
towards 1 when t is high. A high value of 〈Δr2〉 suggests the fibers
that break consecutively are far from each other. This is a spatially
uncorrelated failure. On the other hand, when 〈Δr2〉 � 1, the
consecutive failures take place from the neighboring fibers only.
This behavior stands for pure nucleation. For β � 0.3, 〈Δr2〉
becomes 1 very fast and stays there independent of t until the
bundle reaches global failure. For β � 1.2, we observe the opposite
behavior where 〈Δr2〉 stays at a high value for a long time and falls
to 1 just before global failure. The former behavior is nucleating (1)
while the latter one is percolating (3). The visualization of the
failure process for both (1) and (3) is shown below Figure 3. The
x-axis of each plot is time and the y-axis is fiber index. The color
gradient is over the local stress profile. The yellow color stands for
the failed fibers. For (1), we see a single crack growing in a
nucleating manner from the very beginning. For (3), on the
other hand, there are no nucleating yellow-colored fibers and
the rupture events are spatially uncorrelated. For the avalanche
(2) behavior, there is a spatially uncorrelated failure in the
beginning as well as nucleation close to global failure. Figure 3
shows the point for β � 0.7 where 〈Δr2〉 becomes 1 indicating onset
of localized (nucleating) failure events.

Finally, we have constructed the phase diagram of disorder
strength β and system size L to show all three failure processes. In
Figure 4, 1/β is plotted against 1/L. This is done in this way so that
the origin (0,0) of this plot corresponds to L→∞ and β→∞, an
infinite disorder in the thermodynamic limit. As discussed
earlier, if the disorder strength is increased, we start with
nucleation, go through an avalanche, and finally reach

FIGURE 3 | Variation of 〈Δr2〉 with time t for three different disorder
strengths β � 0.3, 0.7 and 1.2. 〈Δr2〉 is average square distance between
consecutive rupture events. 〈Δr2〉 starts from a high value and decreases to 1
with time suggesting pure nucleation beyond this point. The spatial
correlation is shown explicitly for three different cases (1) nucleation (2)
avalanche and (3) percolation.

FIGURE 4 | Phase diagram of disorder strength β and system size L. 1/β
is plotted against 1/L to make the coordinate (0,0) represent infinite disorder at
thermodynamic limit. Three regions − nucleation, avalanche and percolation
are observed. The spatial correlation during fiber rupture is shown with
yellow being the broken patch.
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percolation behavior. The spatial correlation in rupturing events
are shown in the corresponding phases. Now, if the disorder
strength is kept constant and the size of the bundle is increased,
a percolating behavior moves towards avalanche and an
avalanche behavior moves towards nucleation. Due to weak
dependence of parameters like ρm on L (see Figure 2), it will not
be possible to see (as the system size has to be very high) this
change from percolation to avalanche if we are well inside the
percolation region. To see this change at relatively lower system
sizes, it is required to keep the disorder strength at a value so that
the model is closer to the percolation-avalanche interface. The
opposite happens if the system size is decreased instead of
increasing. This suggests we observe only nucleating failure
in the thermodynamic limit unless the disorder is infinitely high.
This effect of disorder was explored earlier in the context of
random fuse network by Shekhawat et al. [34] and Moreira et al.
[35]. We observe that the fiber bundle model in one dimension
follows the same trend.

3.2 Generalized Model: Variation in Both
β and γ
In this section, the model is studied with a continuous variation in
both c when β. We start our numerical simulation by observing
the spatial correlation through the rupture events with increasing
time as the bundle fails.

Figure 5 shows such correlation for β values ranging in
between 0.3 and 1.2 and c values within 0 and 3. For each
small figure, the x-axis shows the time t and the y-axis shows the
fiber index. From left to right, the figures are plotted for

increasing values of c keeping the disorder strength β
constant. On the other hand, from bottom to the top, the
figures are plotted with increasing β and keeping c constant.
We observe the following behavior:

For low β and high c, the fibers break in a nucleating manner.
Due to the low stress release range, the stress concentration plays
a crucial role and dominates the failure process. Moreover, due to
the low value of disorder strength, the probability that the fibers
break with redistribution (without any increment in external
stress) from the neighborhood is high. On the other hand, for high
β and low c, the fluctuation between threshold strength as well as
the stress release range is high. As a result, we observe rupture
events random in space and through increment in external stress.

Now, keeping the β fixed at a low value, as we decrease c, the
model slowly goes towards the mean-field limit. In this limit, the
stress of the broken fibers are redistributed among all surviving
fibers. This increases the chance that whenever one fiber breaks, the
next rupture event may take place from somewhere which is not
the neighborhood of the broken fiber. The failure process, in this
case gradually deviates from the nucleating behavior as c decreases.

Instead, if we keep c fixed at a high value and increase β, the
fluctuation among fiber strengths increases. Here, the stress of the
broken fiber is redistributed in the neighborhood (as c is high)
but due to this increase in fluctuation we will find more strong
fibers in this neighborhood that will finally arrest the growth of a
crack - a phenomena known as lattice trapping or intrinsic crack
resistance [19–24]. This forces the growth of a different crack
from a different place.

As discussed in Figure 5, a single crack or a number of cracks
are observed in the bundle depending on what the values of

FIGURE 5 | The figure shows spatial correlation during a failure process when β varies between 0.3 and 1.2 and c varies between 0 and 3. Nucleating failure is
observed for high c and low β. The spatial correlation reduces as c is decreases (pushes the model towards MF limit) or β is increased.
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disorder strength β and the stress release range c are. In Figure 6,
we have studied how the maximum number of cracks (ρm) varies
as we vary both β and c. At first, we observe the variation of ρm
with c for a constant value of β. The study is then repeated for β
values ranging in between 0.2 and 0.8.

For low c, ρm has a higher value and decreases as c increases
and crosses the critical value cc [42]. The results can be discussed
in three parts. At an intermediate disorder (0.3 ≤ β ≤ 0.5), ρm
saturates close to 0.25 for low c and decreases to 1/L when c is
high. A ρm value close to 1/L suggests there is only one crack that
propagates throughout the system. On the other hand, as already
discussed in the manuscript, ρm close to 0.25 suggests a failure
process random in space. In this limit, all three regions are
accessible with a variation in c.

At low β (<0.3), we observe that ρm goes to 1/L for high c but
does not approach 0.25 even if c is very low. In this limit, we do not
see a percolation like a random failure. This is due to very low
disorder strength, where the bundle breaks very abruptly before it
can reach the real maximum value of ρm (≈0.25) at low c. On the
other hand, for high β (>0.5), ρm reaches 0.25 easily at low c but do
not reach 1/L for high c. In this case, ρm does not reach 1/L even at
high c due to the intrinsic crack resistance caused by the high
fluctuation in threshold strength, which arrests an propagating crack
in the process. As a result, a nucleating failure is not observed here.

Figure 7A shows the system size effect of ρm for β � 0.6 and for
wide range of stress relaxation c (0 ≤ c ≤ 3). We observe ρm to
decrease in a scale-free manner with system size L,

ρm ∼ L−ζ (5)

Where ζ is an increasing function of c. At low c, ρm is almost
independent of L and saturates around 0.25. When c is high, ρm
responds to the change in L very sharply and decreases as L
increases.

The variation of the exponent ζ is shown in Figure 7B ζ has a
value close to 0 independent of disorder strength βwhen c low. At
such a low value of c, the model is in the mean field limit and
changing the system size does not change the dynamics of the
model. As c increases, the model slowly deviates from the mean-
field limit and the effect of local stress concentration becomes
more and more prominent. In this limit, ζ starts to increase
slowly. When c crosses a certain value that depends on β, ζ finally
reaches 1. A Higher value of β will require a higher c value in
order to obtain ζ � 1. Finally, when β is very high, ζ remains close
to 0 independent of the stress release range c. Here, the failure
process is random in space, independent of both β and c.

Figure 8 shows above mentioned three regions from the study
of the maximum number of cracks (ρm) when both disorder
strength β and the stress release range c are varied
simultaneously. The color gradient in Figure 8 is on ρm, with
a maximum value of 0.25 (lightest color) and minimum value of
1/L (darkest color) which is 10–5 as the size of our bundle is 105.
We observe ρm to have the lowest value for lowest possible β and
highest possible c.

This is due to the fact that fluctuation among local strength values
are minimum here and at the same time stress release range is also
minimummaking the local stress concentrationmost prominent. At

FIGURE 6 | Variation of maximum number of cracks (ρm) with c for β
values ranging in between 0.2 and 0.8. ρm has a high value for low c and
gradually decreases with c and tends to saturate towards a low value. For low
β, ρm decreases close to 1/L for high c, suggesting propagation of a
single crack. On the other hand, for low c and high β, ρm ≈ 0.25, suggesting a
failure process which is random in space.

FIGURE 7 | (A) System size effect of ρm for β � 0.6 and c between 0 and
3.We observe ρm ∼ L−ζ, where ζ is an increasing function of c. (B) Variation of ζ
with c for 0.2 ≤ β ≤ 1.2. For low c, ζ ≈ 0 independent of β. For high c, on the
other hand, ζ � 1 depending on whether β is low enough or not.
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this situation, as we decrease c, we go towards percolation (light color)
through avalanche region. The same behavior is observed (1→ 2→ 3)
if we increase β keeping c fix. The figure also shows the existence of cc
[42, 43], the value of c below which the model enters the mean-field
limit. For c < cc, we have almost an uniform gradient of light color
suggesting ρm is close to 0.25 here independent of β.We observe a very
small change in the color gradient if we increase c at a high β.

Figure 9 shows different regions − nucleation, avalanche and
percolation, with their unique nature of crack propagation during
the failure process when the disorder strength (β), stress release
range (c), and system size (L) are continuously varied. Figure 9A
shows the plane separating the region nucleation from avalanche.
The plane seems to diverge for high β. This is due to the fact that, at
high beta the fluctuation among fiber strength values will be high
and the c value will also have to be very high to make the local stress
concentration prominent enough to create nucleation. At the same
time, since an increasing L has already been seen to favor nucleating
failure, we achieve such nucleation at relatively lower c value at
higher L when β is kept fixed. Figure 9B, on the other hand, shows
the plane between avalanche and percolation. We observe the
same effect of L here − as L increases, the transition from
percolation to avalanche takes place at a lower value of c. At
the same time, as β increases, we have to go to a higher c value to
enter the avalanche region from percolation. The sudden upward
curvature of nucleation − avalanche plane at high β suggests that if
the disorder strength is extremely high, we might not get a
nucleation region. Similarly, the sudden downward curvature
of avalanche − percolation plane at low β suggests that if the
disorder strength is extremely low, we might not get a percolation
region.

FIGURE 8 | Histogram of ρm on the plane of c vs β. The brightest color
corresponds to ρm ≈ 0.25 while the darkest color stands for ρm ≈ 1/L. At low β,
as c increases, we go from region 3 (percolation) to 2 (avalanche) to 1
(nucleation). Same transition is observed when β decreases at high c.

FIGURE 9 | (A) and (B) respectively shows the plane of transition from
avalanche to nucleation and percolation to avalanche respectively. The three
parameters constructing the plane are: disorder strength (β), stress release
range (c) and system size (L).

FIGURE 10 | Variation of ρm for uniform (upper) and Weibull (lower)
distribution when both the disorder strength (δ or k) and stress release range
(c) is varied continuously. Three distinct regions (1) nucleation (2) avalanche
and (3) percolation, is observed independent of the choice of threshold
distribution.
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4 UNIVERSALITY

In this section we will discuss the universality of our study by
using two different distributions other than the power law. For
this purpose, we have adopted an uniform and a Weibull
distribution as described below:

p(h) ∼
1
2δ
, (0.5 − δ ≤ h≤ 0.5 + δ)

0. (otherwise)

⎧⎪⎨⎪⎩ (6)

Where δ is the half-width of the distribution as well as the
measure of the disorder strength.

p(h) ∼ k

λ
( ) h

λ
( )k−1

e−
h
λ( )k (7)

Where k and λ are the Weibull modulus and scale parameter
respectively. k controls the disorder strength in this case. We
vary δ from 0 to 0.5 while k is varied between 1 and 10. The
scale parameter λ is kept constant at 1. Similar to the power
law distribution, the uniform distribution is also a bounded
distribution while the Weibull distribution is open.

Figure 10 shows the variation of ρm when both disorder strength
and stress release range is tuned continuously. The results for uniform
distribution are shown in the left figure. The rightfigure shows the same
for the Weibull distribution. Similar to Figure 8, the color gradient
represents the variation in ρm that spans from 1/L to 0.25. The results
suggest that all three regions (1) nucleation (2) avalanche, and (3)
percolation, are observed independent of the choice of the threshold
distribution. As c increases, the model goes from the nucleating failure
to a failure process random in space. On the other hand, a spatially
correlated failure process is not observed by increasing δ up to 0.5 (the
distribution spans from 0 to 1) as the disorder strength is not large
enough. Though forWeibull distribution, both nucleating and random
failure is observed at high and low k respectively.

5 DISCUSSIONS

As we have already discussed, two major factors governing the mode
of failure in disordered solids are the strength of heterogeneities and
the effective range over which the stress field is modified following a
local rupture event. On the other hand, studies in random resistor
network model [34, 35] claims the failure mode, in the large system
size limit, to be always nucleation-driven unless the strength of
disorder is extremely high. Qualitatively this is the main finding of
the present paper as well as what was observed in the random fuse

network model earlier [34, 35]. The simplicity of the fiber bundle
model allows us to include extra parameters like stress release range
compared to the random fuse network model and study its effect as
well on the spatial correlation as the model evolves. The precursor
events (such as scale-free size distribution of rupture events prior to
global failure and scale free distribution of emitted energies during
such avalanches), previously seen in the statistical models [7, 58],
would imply that a nucleation-like failure would not be achievable
even in the large system size limit. Such precursor events are observed
experimentally [59] as well for which the extreme disorder is not
necessarily the physical condition. The stress release range (analogous
to fracture process zone in real experiments) comes into play here that
might cause a different mode of failure, other than nucleation, even
when the system size is high.

In conclusion, we present a detailed study in fiber bundle model
by varying main three parameters, strength of disorder, range of
stress relaxation and system size, that determines the dynamics of the
model as it is acted by an external stress. An increasing disorder
strength (increasing β) or stress release range (decreasing c) favors a
failure that is random in space. On the other hand, an increasing
system size makes the failure more and more nucleating. The
avalanche behavior is observed for all β or c. If β is very high
then it is difficult to achieve the nucleating behavior unless the value
of c is very high. On the other hand, when β is low, achieving
nucleating failure is easy but it is difficult to observe pure random
failure by decreasing c. Finally, for the intermediate β value, we
achieve both nucleation and percolation like failure by increasing
and decreasing c respectively.
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