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Correlated activity in populations of neurons 
has been observed in many brain regions 
and plays a central role in cortical coding, 
attention, and network dynamics. Accurately 
quantifying neuronal correlations presents 
several difficulties. For example, despite 
recent advances in multicellular recording 
techniques, the number of neurons from 

which spiking activity can be simultaneously recorded remains orders magnitude smaller 
than the size of local networks. In addition, there is a lack of consensus on the distribution 
of pairwise spike cross correlations obtained in extracellular multi-unit recordings. These 
challenges highlight the need for theoretical and computational approaches to understand 
how correlations emerge and to decipher their functional role in the brain.

CORRELATED NEURONAL ACTIVITY 
AND ITS RELATIONSHIP TO CODING, 
DYNAMICS AND NETWORK ARCHI-
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A schematic of spike train correlations arising 
from shared inputs.
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Correlated and synchronous activity in populations of neurons
has been observed in many brain regions and has been shown
to play a crucial role in cortical coding, attention, and network
dynamics (Singer and Gray, 1995; Salinas and Sejnowski, 2001).
However, we still lack a detailed knowledge of the origin and func-
tion, if any, of neuronal correlations. In this Research Topic, new
ideas about these long standing questions are put forward. One
group of studies in this Research Topic investigates the interaction
of neuronal correlations with cellular and circuit mechanisms
at the level of single neurons and cell pairs. Bolhasani et al.
(2013) study the interaction between direct synaptic coupling
between two neurons with correlated stochastic input to the neu-
rons. They find that excitatory synaptic coupling can alter the
transfer of pairwise correlations from current input to spike out-
put. Interestingly, there is an optimal value of synaptic coupling
strength for which the sensitivity of output correlations to input
correlations is maximized.

Bird and Richardson (2014) study the interaction between
long term plasticity, synaptic vesicle depletion at multiple release
sites and presynaptic spiking correlations. They find that there is
an optimal number of release sites for driving postsynaptic spik-
ing when synchrony is present in the presynaptic spike trains.
Schwalger and Lindner (2013) investigated correlations between
the interspike intervals of oscillator model neurons with adap-
tation. They reveal a fundamental connection between interval
correlations and the phase response curve of the neuron model.
They also show that when firing rates are high, negative interval
correlations cause long-timescale variability of a model neuron’s
activity to be small.

A second group of studies in this Research Topic investigates
neuronal correlations on the level of networks. The key questions
that these studies addressing are: (1) How are pairwise and higher
order correlations generated in networks and which of them are
important for a given network? and (2) How should we uncover
and interpret spike train correlations in a given dataset?

Four studies Zhou et al. (2013), Grytskyy et al. (2013), Barreiro
et al. (2014), and Jahnke et al. (2013) have focused on the first
question.

Zhou et al. (2013) investigated coupled pairs of neurons receiv-
ing temporally correlated input currents. They show that pairs

of neurons may be more synchronized if they have some degree
of heterogeneity in their intrinsic properties. Temporal correla-
tions in the noise that these neurons receive may also promote
synchrony.

Grytskyy et al. (2013) have addressed how recurrent neu-
ral networks can support the generation of pairwise correla-
tions. The authors put forward a unified framework for the
generation of pairwise correlations in recurrent networks and
hypothesize that many different single model neurons, when cou-
pled to a network, may generate the same pairwise correlation
structures. Interestingly, the authors could show the equivalence
of different single neuron models in a linear approximation
to a model with fluctuating continuous variables. This could
be a useful tool for assessing correlations across models and
experiments.

In a complementary study, Barreiro et al. (2014) have focused
on the emergence of pairwise and higher order correlations in
retina models. The authors find that maximum entropy pairwise
models capture surprisingly well the network spiking dynamics.
What is surprising about these results is that higher-order correla-
tions in this type of models can be constrained to be far lower than
the statistically possible limits and that their strength depends
more on the structure of the common input than on the synaptic
connectivity profile.

Jahnke et al. (2013) focused on spike patterns rather than
correlations and proposed a mechanism for precise spike time
pattern generation and replay in neural networks that lack strong
densely connected feed-forward structures. The authors put for-
ward the hypothesis that a non-linearity in synaptic summa-
tion rules may explain the lack of observed strong feed-forward
structures in live networks.

A team lead by Sonja Grün has tackled the second ques-
tion, how spike correlations may be detected in a given data set.
Torre et al. (2013) have extended our methodical toolbox and
proposed a new method for the extraction of statistically overrep-
resented spike patterns that may be the functionally significant
“cell assemblies” proposed by Abeles (1982). The challenge this
study has taken on is to extract from large number of simultane-
ously recorded neurons candidate assemblies that are systemati-
cally co-activated. This search algorithm may help to reveal how
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precise multi-neuron synchronization patterns that go beyond the
standard pairwise analysis may relate to behavior.

In an opinion article, Zanin and Papo (2013) also address
the second question. They suggest that one has to be cautious
about interpreting neuronal correlations between neurons or
brain areas, because typical measurements of effective connec-
tivity might lead to false positives even when the neurons or the
brain areas are indeed performing independent computations.

A third group of studies in this Research Topic addresses the
computational advantages of neuronal correlations in the brain.
Kilpatrick (2013) studied neuronal networks that sustain bump
attractors, a well-established model for the maintenance of spatial
cues in working memory tasks (Funahashi et al., 1989; Wimmer
et al., 2014). In these models, the position of the bump undergoes
a diffusion process, implying that the encoded memory degrades
as the time progresses. Notably, Kilpatrick found that connect-
ing several areas with similar bump attractors resulted in an
increased stability of the stored memories because the variability
within the areas could be averaged out. However, if the variability
across areas was correlated, the diffusion of the bump attrac-
tor underwent larger variability. This study, therefore, suggests
that correlated noise across neuronal areas can impoverish the
precision of the encoding of spatial cues in working memory task.

In another study, Dipoppa and Gutkin (2013) found that cor-
relations might have a positive role in working memory tasks
by a mechanism that they named “correlation-induced gating.”
These authors and others have previously showed that correla-
tions tend to destabilize the memory trace of an item stored in
working memory. This result might suggest that correlations are
deleterious for working memory, but Dipoppa and Gutkin argue
that this is not the case: correlations in working memory circuits
can be strongly beneficial to suppress the harmful interference of
distractors, irrelevant items that do not need to be stored in mem-
ory to solve the ongoing task. This study, therefore, shows in an
elegant way how changing correlations within specific neuronal
population can allow for flexible gating of sensory information
into working memory circuits.

Previous works have showed that synchronization between
neuronal ensembles might play an important role in the binding
of features belonging to a same object (Engel and Singer, 2001).
In a theoretical work presented in this Research Topic, Finger
and Koenig (2014) took an important step forward by show-
ing that binding of features in natural images can be mediated
by phase synchronization in a network of neural oscillators. The
authors also found that the network, trained with natural images,
developed small-world properties, and even allowed binding of
features over long distances. This study strongly supports the idea
that neuronal correlations in the brain might play an important
computational role.

In a study where the LFP and single-cell activity were recorded
in the hippocampal formation of epileptic patients, Alvarado-
Rojas et al. (2013) found that activity of a sizable fraction of
neurons preceded interictal epileptiform discharges, as measured
by LFP activity.

These studies give conspicuous examples for the ambivalent
nature of neuronal correlations: in some conditions correlations
might be a signature of dynamic instability of the network, but in

other conditions correlations might be used to perform complex
and flexible computations, such as binding or information gat-
ing. Although these works have provided new clues about the role
of neuronal correlations, there are yet many unsolved questions,
such as how neuronal correlations are generated and propagated
(Moreno et al., 2002; Moreno-Bote and Parga, 2006; de la Rocha
et al., 2007; Ostojic et al., 2009; Renart et al., 2010; Rosenbaum
et al., 2010, 2011; Tchumatchenko et al., 2010; Cohen and Kohn,
2011; Tchumatchenko and Wolf, 2011; Helias et al., 2014) and
how correlations are shaped by limited information in sensory
inputs and by neuronal computations. It is clear that the study of
the impact of neuronal correlations on information transmission
and brain computation, and vice versa, is still an arena for exciting
new discoveries.
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Describing the collective activity of neural populations is a daunting task. Recent empirical
studies in retina, however, suggest a vast simplification in how multi-neuron spiking
occurs: the activity patterns of retinal ganglion cell (RGC) populations under some
conditions are nearly completely captured by pairwise interactions among neurons.
In other circumstances, higher-order statistics are required and appear to be shaped
by input statistics and intrinsic circuit mechanisms. Here, we study the emergence
of higher-order interactions in a model of the RGC circuit in which correlations are
generated by common input. We quantify the impact of higher-order interactions by
comparing the responses of mechanistic circuit models vs. “null” descriptions in which all
higher-than-pairwise correlations have been accounted for by lower order statistics; these
are known as pairwise maximum entropy (PME) models. We find that over a broad range
of stimuli, output spiking patterns are surprisingly well captured by the pairwise model. To
understand this finding, we study an analytically tractable simplification of the RGC model.
We find that in the simplified model, bimodal input signals produce larger deviations from
pairwise predictions than unimodal inputs. The characteristic light filtering properties of
the upstream RGC circuitry suppress bimodality in light stimuli, thus removing a powerful
source of higher-order interactions. This provides a novel explanation for the surprising
empirical success of pairwise models.

Keywords: retinal ganglion cells, maximum entropy distribution, stimulus-driven, correlations, computational

model

1. INTRODUCTION
Information in neural circuits is often encoded in the activity of
large, highly interconnected neural populations. The combina-
toric explosion of possible responses of such circuits poses major
conceptual, experimental, and computational challenges. How
much of this potential complexity is realized? What do statistical
regularities in population responses tell us about circuit architec-
ture? Can simple circuit models with limited interactions among
cells capture the relevant information content? These questions
are central to our understanding of neural coding and decoding.

Two developments have advanced studies of synchronous
activity in recent years. First, new experimental techniques pro-
vide access to responses from the large groups of neurons neces-
sary to adequately sample synchronous activity patterns (Baudry
and Taketani, 2006). Second, maximum entropy approaches
from statistical physics have provided a powerful approach to
distinguish genuine higher-order synchrony (correlations) from
that explainable by pairwise statistical interactions among neu-
rons (Martignon et al., 2000; Amari, 2001; Schneidman et al.,
2003). These approaches have produced diverse findings. In
some instances, activity of neural populations is extremely
well described by pairwise interactions alone, so that pairwise
maximum entropy (PME) models provide a nearly complete
description (Shlens et al., 2006, 2009). In other cases, while
pairwise models bring major improvements over independent

descriptions, it is not clear that they fully capture the data
(Martignon et al., 2000; Schneidman et al., 2006; Tang et al., 2008;
Yu et al., 2008; Montani et al., 2009; Ohiorhenuan et al., 2010;
Santos et al., 2010). Empirical studies indicate that pairwise mod-
els can fail to explain the responses of spatially localized triplets
of cells (Ohiorhenuan et al., 2010; Ganmor et al., 2011), as well
as the activity of populations of ∼100 cells responding to natural
stimuli (Ganmor et al., 2011). Overall, the diversity of empirical
results highlights the need to understand the network and input
features that control the statistical complexity of synchronous
activity patterns.

Several themes have emerged from efforts to link the corre-
lation structure of spiking activity to circuit mechanisms using
both abstract (Amari et al., 2003; Krumin and Shoham, 2009;
Macke et al., 2009; Roudi et al., 2009a) and biologically-based
models (Bohte et al., 2000; Martignon et al., 2000; Roudi et al.,
2009b); these models, however, do not provide a full description
for why the PME models succeed or fail to capture neural cir-
cuit dynamics. First, thresholding non-linearities in circuits with
Gaussian input signals can generate correlations that cannot be
explained by pairwise statistics (Amari et al., 2003); the deviations
from pairwise predictions are modest at moderate population
sizes (Macke et al., 2009), but may become severe as population
size grows large (Amari et al., 2003; Macke et al., 2011). The pair-
wise model also fails in networks of recurrent integrate-and-fire
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units with adapting thresholds and refractory potassium currents
(Bohte et al., 2000). The same is true for “Boltzmann-type” net-
works with hidden units (Koster et al., 2013). Finally, small groups
of model neurons that perform logical operations can be shown
to generate higher-order interactions by introducing noisy pro-
cesses with synergistic effects (Schneidman et al., 2003), but it is
unclear what neural mechanisms might produce similar distri-
butions. These diverse findings point to the important role that
circuit features and mechanisms—input statistics, input/output
relationships, and circuit connectivity—can play in regulating
higher-order interactions. Nevertheless, we lack a systematic
understanding that links these features and their combinations to
the success and failure of pairwise statistical models.

A second theme that has emerged is the use of pertur-
bation approaches to explain why maximum entropy models
with purely pairwise interactions capture circuit behavior in the
limit in which the population firing rate is very low (i.e., the
total number of firing events from all cells in the same small
time window is small) (Cocco et al., 2009; Roudi et al., 2009a;
Tkacik et al., 2009). Also in this regime, higher-order inter-
actions cannot be introduced as an artifact of under-sampling
the network (Tkacik et al., 2009), a concern at higher popu-
lation firing rates. However, the low to moderate population
firing rates observed in many studies permit a priori a fairly
broad range in the quality of pairwise fits. What is left to explain
then is why circuits operating outside the low population fir-
ing rate regime often produce fits consistent with the PME
model.

We approach this issue here by systematically characterizing
the ability of PME models to capture the responses of a class
of circuit models with the following defining features. First, we
consider relatively small circuits of 3–16 cells, each with iden-
tical intrinsic dynamics (i.e., spike-generating mechanism and
level of excitability). Second, we assume a particular structure for
inputs across the circuit. Each neuron receives the same global
input which, for example, represents stimuli in the receptive
fields of all modeled cells. Neurons also receive an independent,
Gaussian-like noise term. Third, the circuit has either no recipro-
cal coupling, or has all-to-all excitatory or gap junction coupling.
We begin with circuit models fully constrained by measured
properties of primate ON parasol ganglion networks, receiving
full-field and checkerboard light inputs. We then explore a sim-
ple thresholding model for which we exhaustively search over the
entire parameter space.

We identify general principles that describe higher-order spike
correlations in the circuits we study. First, in all cases we exam-
ined, the overall strength of higher-order correlations are con-
strained to be far lower than the statistically possible limits.
Second, for the higher-order correlations that do occur, the pri-
mary factor that determines how significant they will be is the
bimodal vs. unimodal profile of the common input signal. A sec-
ondary factor is the strength of recurrent coupling, which has a
non-monotonic impact on higher-order correlations. Our find-
ings provide insight into why some previously measured activity
patterns are well captured by PME descriptions, and provide pre-
dictions for the mechanisms that allow for higher-order spike
correlations to emerge.

2. RESULTS
2.1. QUANTIFYING HIGHER-ORDER CORRELATIONS IN NEURAL

CIRCUITS
One strategy to identify higher-order interactions is to com-
pare multi-neuron spike data against a description in which
any higher-order interactions have been removed in a principled
way—that is, a description in which all higher-order correlations
are completely described by lower-order statistics. Such a descrip-
tion may be given by a maximum entropy model (Jaynes, 1957a,b;
Amari, 2001), in which one identifies the most unstructured, or
maximum entropy, distribution consistent with the constraints.
Comparing the predicted and measured probabilities of differ-
ent responses tests whether the constraints used are sufficient
to explain observed network activity, or whether additional con-
straints need to be considered. Such constraints would produce
additional structure in the predicted response distribution, and
hence lower the entropy.

A common approach is to limit the constraints to a given sta-
tistical order—for example, to consider only the first and second
moments of the distributions, which are determined by the mean
and pairwise interactions. In the context of spiking neurons, we
denote μi ≡ E[xi] as the firing rate of neuron i and ρ̂ij ≡ E[xixj]
as the joint probability that neurons i and j will fire. The distribu-
tion with the largest entropy for a given μi and ρ̂ij is referred to as
the PME model.

We use the Kullback–Leibler divergence, DKL(P, P̃), to quan-
tify the accuracy of the PME approximation P̃ to a distribution
P. This measure has a natural interpretation as the contribution
of higher-order interactions to the response entropy S(P) (Amari,
2001; Schneidman et al., 2003), and may in this context be written
as the difference of entropies S(P̃)− S(P). In addition, DKL(P, P̃)
is approximately − log2 L, where L is the average likelihood (over
different observations) that a sequence of data drawn from the
distribution P was instead drawn from the model P̃ (Cover and
Thomas, 1991; Shlens et al., 2006). For example, if DKL(P, P̃) = 1,
the average likelihood that a single sample, i.e., a single network
response, came from P̃ relative to the likelihood that it came from
P is 2−1 (we use the base 2 logarithm in our definition of the
Kullback–Leibler divergence, so all numerical values are in units
of bits).

An alternative measure of the quality of the pairwise model
comes from normalizing DKL(P, P̃) by the corresponding distance
of the distribution P from an independent maximum entropy fit
DKL(P, P1), where P1 is the highest entropy distribution consis-
tent with the mean firing rates of the cells (equivalently, the prod-
uct of single-cell marginal firing probabilities) (Amari, 2001).
Many studies (Schneidman et al., 2006; Shlens et al., 2006, 2009;
Roudi et al., 2009a) use

� = 1− DKL
(
P, P̃

)
DKL (P, P1)

; (1)

a value of � = 1 indicates that the pairwise model perfectly
captures the additional information left out of the independent
model, while a value of � = 0 indicates that the pairwise model
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gives no improvement over the independent model. To aid com-
parison with other studies, we report values of � in parallel with
DKL(P, P̃) when appropriate.

We next explore and interpret the achievable range of
DKL(P, P̃) values. The problem is made simpler if, following pre-
vious studies (Bohte et al., 2000; Amari, 2001; Macke et al., 2009;
Montani et al., 2009), we consider only permutation-symmetric
spiking patterns, in which the firing rate and correlation do not
depend on the identity of the cells; i.e., μi = μ, ρ̂ij = ρ̂ for i �= j.
We start with three cells having binary responses and assume
that the response is stationary and uncorrelated in time. From
symmetry, the possible network responses are

p0 = P [(0, 0, 0)]

p1 = P [(1, 0, 0)] = P [(0, 1, 0)] = P [(0, 0, 1)]

p2 = P [(1, 1, 0)] = P [(1, 0, 1)] = P [(0, 1, 1)]

p3 = P [(1, 1, 1)] ,

where pi denotes the probability that a particular set of i cells spike
and the remaining 3− i do not. Possible values of (p0, p1, p2, p3)

are constrained by the fact that P is a probability distribution, so
that the sum of pi over all eight states is one.

To assess the numerical significance of DKL(P, P̃), we can com-
pare it with the maximal achievable value for any symmetric
distribution on three spiking cells. For three cells, the maxi-
mal value is DKL(P, P̃) = 1 (or 1/3 bits per neuron), achieved
by the XOR operation (Schneidman et al., 2003). This distri-
bution is illustrated in Figure 1A (right), together with two

distributions produced by our mechanistic circuit models—
illustrating observed deviations from PME fits for unimodal (left)
and bimodal (middle) distributions of inputs (see below). The
KL-divergence for these two patterns is 0.0013 and 0.091, respec-
tively. As suggested by these bar plots (and explored in detail
below), the distributions produced by a wide set of mechanistic
circuit models are quite well captured by the PME approximation:
to use the likelihood interpretation described above, an observer
would need to draw many more samples from these distributions
in order to distinguish between the true and model distributions:
≈1000 times and ≈10 times, respectively, in comparison to the
XOR operator.

To further identify appropriate “benchmark” values of
DKL(P, P̃) with which to compare our mechanistic circuit mod-
els, in Figure 1B we show plots of DKL(P, P̃) and � vs. firing rate
produced by an exhaustive sampling of symmetric distributions
on three cells. From this picture, we can see that it is possible to
find symmetric, three-cell spiking distributions that are poorly
fit by the pairwise model at a range of firing rates and pairwise
correlations, with the largest values of DKL(P, P̃) found at low cor-
relations (note that the XOR distribution has an average pairwise
covariance of zero (i.e., E[X1X2] = E[X1]E[X2])).

2.1.1. A condition for higher-order correlations
Possible solutions to the symmetric PME problem take the form
of exponential functions characterized by two parameters, λ1 and
λ2, which serve as Lagrange multipliers for the constraints:

P [(x1, x2, x3)] = 1

Z
exp [λ1 (x1 + x2 + x3)+

λ2 (x1x2 + x2x3 + x1x3)] . (2)

FIGURE 1 | A survey of the quality of the pairwise maximum entropy

(PME) model for symmetric spiking distributions on three cells. (A)

Probability distribution P (dark blue) and pairwise approximation P̃ (light
pink) for three example distributions. From left to right: an example from
the simple sum-and-threshold model receiving skewed common input; an
example from the sum-and-threshold model receiving bimodal common
input [specifically, the distribution with maximal DKL(P, P̃)]; a specific
probability distribution resulting from application of the XOR operator [for

illustration of a “worst case” fit of the PME model (Schneidman et al.,
2003)]. (B) DKL(P, P̃) vs. firing rate and � vs. firing rate, for a
comprehensive survey of possible symmetric spiking distributions on three
cells (see text for details). Firing rate is defined as the probability of a
spike occurring per cell per random draw of the sum-and-threshold model,
as defined in Equation (16). Color indicates output correlation coefficient ρ

ranging from black for ρ ∈ (0, 0.1), to white for ρ ∈ (0.9, 1), as illustrated in
the color bars.
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The factor Z normalizes P to be a probability distribution.
By combining individual probabilities of events as given by

Equation (2) the following relationship must be satisfied by any
symmetric PME solution:

p3

p0
=
(

p2

p1

)3

. (3)

This is equivalent to the condition that the strain measure of
Ohiorhenuan and Victor (2010) be zero (in particular, the strain
is negative whenever p3/p0 − (p2/p1)

3 < 0, a condition identified
in Ohiorhenuan and Victor (2010) as corresponding to sparsity in
the neural code).

For three-cell, symmetric networks, models that exactly satisfy
Equation (3) will also be exactly described via PME. Moreover,
note that probability models that meet this constraint fall on
a surface in the space of (normalized) histograms, given by
the probabilities pj. One can verify by straightforward calcula-
tions (see Appendix) that—given fixed lower order moments—
DKL(P, P̃) is a convex function of the probabilities pj. This has
interesting consequences for predicting when large vs. small val-
ues of DKL(P, P̃) will be found (see Appendix).

It is not necessary to assume permutation symmetry when
deriving the PME fit P̃ to an observed distribution P, or
in computing derived quantities such as DKL(P, P̃), and we
do not do so in this study. However, most of the distri-
butions we study are derived from mechanistic models that
are themselves symmetric or near-symmetric. Therefore, we
anticipate that the simplified calculations for permutation-
symmetric distributions will yield analytical insight into our
findings.

2.2. MECHANISMS THAT IMPACT BEYOND-PAIRWISE CORRELATIONS
IN TRIPLETS OF ON-PARASOL RETINAL GANGLION CELLS

Having established the range of beyond-pairwise correlations that
are possible statistically, we turn our focus to coding in retinal
ganglion cell (RGC) populations, an area that has received a great
deal of attention empirically. Specifically, PME approaches have
been effective in capturing the activity of small RGC popula-
tions (Schneidman et al., 2006; Shlens et al., 2006, 2009). This
success does not have an obvious anatomical correlate; there
are multiple opportunities in the retinal circuitry for interac-
tions among three or more ganglion cells. We explored circuits
composed of three RGC cells with input statistics, recurrent
connectivity and spike-generating mechanisms based directly
on experiment. We based our model on ON parasol RGCs,
one of the RGC types for which PME approaches have been
applied extensively (Shlens et al., 2006, 2009). In addition, by
examining how marginal input statistics are shaped by stimu-
lus filtering, we also reveal the role that the specific filtering
properties of ON parasol cells have in shaping higher-order
interactions.

2.2.1. RGC model
We modeled a single ON parasol RGC in two stages (for details
see section 4). First, we characterized the light-dependent excita-
tory and inhibitory synaptic inputs to cell k (gexc

k (t), ginh
k (t)) in

response to randomly fluctuating light inputs sk(t) via a linear-
nonlinear model, e.g.,:

gexc
k (t) = Nexc [Lexc ∗ sk(t)+ ηexc

k

]
, (4)

where Nexc is a static non-linearity, Lexc is a linear filter, and ηexc
k is

an effective input noise that captures variability in the response to
repetitions of the same time-varying stimulus. These parameters
were determined from fits to experimental data collected under
conditions similar to those in which PME models have been tested
empirically (Shlens et al., 2006, 2009; Trong and Rieke, 2008). The
modeled excitatory and inhibitory conductances captured many
of the statistical features of the real conductances, particularly the
correlation time and skewness (data not shown).

Second, we used Equation (4) and an equivalent expression
for ginh

k (t) as inputs to an integrate-and-fire model incorporating
a non-linear voltage and history-dependent term to account for
refractory interactions between spikes (Badel et al., 2007, 2008).
The voltage evolution equation was of the form

dV

dt
= F (V, t − tlast)+ Iinput(t)

C
, (5)

where F (V, t − tlast)was allowed to depend on the time of the last
spike tlast. Briefly, we obtained data from a dynamic clamp exper-
iment (Sharpe et al., 1993; Murphy and Rieke, 2006) in which
currents corresponding to gexc(t) and ginh(t) were injected into
a cell and the resulting voltage response measured. The input
current Iinput injected during one time step was determined by
scaling the excitatory and inhibitory conductances by driving
forces based on the measured voltage in the previous time step;
that is,

Iinput(t) = −gexc(t) (V − VE)− ginh(t) (V − VI) , (6)

We used this data to determine F and C using the procedure
described in Badel et al. (2007); details, including values of all fit-
ted parameters, are described in section 4. Recurrent connections
were implemented by adding an input current proportional to the
voltage difference between the two coupled cells.

The prescription above provided a flexible model that allowed
us to study the responses of three-cell RGC networks to a wide
range of light inputs and circuit connectivities. Specifically, we
simulated RGC responses to light stimuli that were (1) con-
stant, (2) time-varying and spatially uniform, and (3) varying
in both space and time. Correlations between cell inputs arose
from shared stimuli, from shared noise originating in the retinal
circuitry (Trong and Rieke, 2008), or from recurrent connec-
tions (Dacey and Brace, 1992; Trong and Rieke, 2008). Shared
stimuli were described by correlations among the light inputs sk.
Shared noise arose via correlations in ηexc

k and ηink
k as described in

section 4. The recurrent connections were chosen to be consistent
with observed gap-junctional coupling between ON parasol cells.
We also investigated how stimulus filtering by Lexc and Linh influ-
enced network statistics. To compare our results with empirical
studies, constant light, and spatially and temporally fluctuating
checkerboard stimuli were used as in Shlens et al. (2006, 2009).
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2.2.2. The feedforward RGC circuit is well-described by the PME
model for full-field light stimuli

We start by considering networks without recurrent connectivity
and with constant, full-field (i.e., spatially uniform) light stimuli.
Thus, we set sk(t) = 0 for k = 1, 2, 3, so that the cells received
only Gaussian correlated noise ηexc

k and ηinh
k and constant excita-

tory and inhibitory conductances. Time-dependent conductances
were generated and used as inputs to a simulation of three model
RGCs. Simulation length was sufficient to ensure significance
of all reported deviations from PME fits (see section 4). We
found that the spiking distributions were strikingly well-modeled
by a PME fit, as shown in the righthand panel of Figure 2A;
DKL

(
P, P̃

)
is 2.90× 10−5 bits. This result is consistent with the

very good fits found experimentally in Shlens et al. (2006) under
constant light stimulation.

Next, we introduce temporal modulation into the full-field
light stimuli such that each cell received the same stimulus,
sk(t) = s(t), where s(t) refreshed every few milliseconds with
an independently chosen value from one of several marginal
distributions. For our initial set of experiments, the marginal
distribution was either Gaussian (as in Ganmor et al., 2011) or
binary (as used in Shlens et al., 2006). For both choices, we
explored inputs with a range of standard deviations (1/16, 1/12,
1/8, 1/6, 1/4, 1/3, or 1/2 of a baseline light intensity) and refresh
rates (8, 40, or 100 ms). The shared stimulus produced strong
pairwise correlation between conductances of neighboring cells.
However, values of DKL(P, P̃) remained small, under 10−2 bits in
all conditions tested.

2.2.3. Impact of stimulus spatial scale
We next asked whether PME models capture RGC responses to
stimuli with varying spatial scales. We fixed stimulus dynamics
to match the two cases that yielded the highest DKL(P, P̃) under
the full-field protocol: for both Gaussian and binary stimuli, we
used 8 ms refresh rate and σ = 1/2. The stimulus was generated
as a random checkerboard with squares of variable size; each
square in the checkerboard, or stixel, was drawn independently
from the appropriate marginal distribution and updated at the
corresponding refresh rate. The conductance input to each RGC
was then given by convolving the light stimulus with its receptive
field, where the stimulus was positioned with a fixed rotation and
translation relative to the receptive fields. This position was drawn
randomly at the beginning of each simulation and held constant
throughout (see insets of Figures 3B,C for examples, and section
4 for further details).

The RGC spike patterns remained very well described by PME
models for the full range of spatial scales. Figure 3A shows this
by plotting DKL(P, P̃) vs. stixel size. Values of DKL(P, P̃) increased
with spatial scale, sharply rising beyond 128 μm, where a stixel
had approximately the same size as a receptive field center, illus-
trating that introducing spatial scale via stixels produces even
closer fits by PME models (the points at 512 μm correspond to
the full-field simulations).

Values reported in Figure 3A are averages of DKL(P, P̃) pro-
duced by five random stimulus positions. At stixel sizes of 128 μm
and 256 μm, the resulting spiking distributions differed signif-
icantly from position to position; in Figure 3B, we show the

probabilities of the distinct singlet [e.g., P(1, 0, 0)] and dou-
blet [e.g., P(1, 1, 0)] spiking events produced at 256 μm. Each
stimulus position created a “cloud” of dots (identified by color);
large dots show the average over 20 sub-simulations. Each sub-
simulation was identified by a small dot of the same color; because
the simulations were very well-resolved, most of them were con-
tained within the large dots (and hence not visible in the figure).
Heterogeneity across stimulus positioning is indicated by the dis-
tinct positioning of differently colored dots. At smaller spatial
scales, the process of averaging stimuli over the receptive fields
resulted in spiking distributions that were largely unchanged with
stimulus position, as shown in Figure 3C, where singlet and dou-
blet spiking probabilities are plotted for 60 μm stixels. Thus,
filtered light inputs were largely homogeneous from cell to cell,
as each receptive field sampled a similar number of indepen-
dent, statistically identical inputs; the inset of Figure 3C shows
the projection of input stixels onto cell receptive fields from an
example with 60 μm stixels. The resulting excitatory conduc-
tances and spiking patterns were very close to cell-symmetric (see
Figures S2B,C).

By contrast, spiking patterns showed significant heterogene-
ity from cell to cell when the stixel size was large, as illustrated
in Figure 3B. This arises because each cell in the population may
be located differently with respect to stixel boundaries, and there-
fore receive a distinct pattern of input activity; this is illustrated by
the inset of Figure 3B, which shows the projection of input stix-
els onto cell receptive fields from one such simulation. However,
PME models gave excellent fits to data regardless of heterogeneity
in RGC responses (see Figures S2E,F); as seen in Figure 3A, over
all 20 sub-simulations, and over all individual stixel positions, we
found a maximal DKL(P, P̃) value of 0.00811.

2.2.4. Conductance profiles and impact of stimulus filtering
Intrigued by the consistent finding of low values of DKL(P, P̃)
from the RGC model circuit despite stimulation by a wide vari-
ety of highly correlated stimulus classes, we sought to further
characterize the processing of light stimuli by this circuit. In par-
ticular, we examined the effects of different marginal statistics of
light stimuli, standard deviation of full-field flicker, and refresh
rate on the marginal distributions of excitatory conductances. We
focused on excitatory conductances because they exhibit stronger
correlations than inhibitory conductances in ON parasol RGCs
(Trong and Rieke, 2008).

With constant light stimulation (no temporal modulation) the
excitatory conductances were unimodal and broadly Gaussian
(Figure 2A, middle panel). For a short refresh rate (8 ms) or
small flicker size (standard deviation 1/6 or 1/4 of baseline light
intensity), temporal averaging via the filter Lexc and the approxi-
mately linear form of Nexc over these light intensities produced
a unimodal, modestly skewed distribution of excitatory con-
ductances, regardless of whether the flicker was drawn from a
Gaussian or binary distribution (see Figures 2B,C, center pan-
els). For a slower refresh rate (100 ms) and large flicker size (s.d.
1/3 or 1/2 of baseline light intensity), excitatory conductances
had multi-modal and skewed features, again regardless of whether
the flicker was drawn from a Gaussian or binary distribution
(Figure 2D). Other parameters being equal, binary light input
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FIGURE 2 | Results for RGC simulations with constant light and full-field

flicker. (A–C) (Left) A histogram and time series of stimulus, (center) a
histogram of excitatory conductances and (right) the resulting distribution of
spiking patterns. Stimuli are shown as deviations from a baseline intensity,
expressed as a fraction of the baseline. Right panels show the probability
distribution on spiking patterns P obtained from simulation (“Observed”; dark
blue), and the corresponding pairwise approximation P̃ (“PME”; light pink).
Each row gives these results for a different stimulus condition. (A) No stimulus
(Gaussian noise only). (B) Gaussian input, standard deviation 1/6, refresh rate

8 ms. (C) Binary input, standard deviation 1/3, refresh rate 8 ms. (D) Binary
input, standard deviation 1/3, refresh rate 100 ms. For panel (D), the data in the
left panel differs. (Left, top panel) The excitatory filter Lexc(t) (Equation 7) is
shown instead of a stimulus histogram; (Left, bottom panel) the normalized
excitatory conductance, as a function of time (red dashed line), is
superimposed on the stimulus (blue solid). (Center) The histogram of excitatory
conductances and (right) the resulting distribution of spiking patterns. Both the
form of the filter and the conductance trace illustrate that the LN model that
processes light input acts as a (time-shifted) high pass filter.

produced more skewed conductances. While some conductance
distributions had multiple local maxima, these were never well
separated, with the envelope of the distribution still resembling a
skewed distribution.

The mechanism that leads to unimodal distributions of con-
ductances, even when light stimuli are binary, is high-pass
filtering—a consequence of the differentiating linear filter in
Equation (7) and illustrated in Figure 2D. To demonstrate this,

Frontiers in Computational Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 10 | 13

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Barreiro et al. Beyond-pairwise correlations in microcircuits

we constructed an alternative filter with a more monophasic
shape [Equation (9), illustrated in Figure S1] and compared the
excitatory conductance distributions side-by-side. We saw a strik-
ing difference in the response to long time scale, binary stimuli:
the distributions produced by the monophasic filter reflected the
bimodal shape of the input. Interestingly, the resulting simulation
produced eight-times greater DKL(P, P̃) (Figure 4). This suggests
that greater DKL(P, P̃) may occur when ganglion cell inputs are
primarily characterized via monophasic filters, e.g., at low mean
light levels for which the retinal circuit acts to primarily integrate,
rather than differentiate over time.

In Figure 4A, we examine this effect over all full-field stimu-
lus conditions by plotting DKL(P, P̃) from simulations with the
monophasic filter, against DKL(P, P̃) from simulations in which
the original filter was used with the same stimulus type. An
increase in DKL(P, P̃) was observed across stimulus conditions,
with a markedly larger effect for longer refresh rates. This con-
sistent change could not be attributed to changes in lower order

statistics; there was no consistent relationship between the change
in pairwise model performance and either firing rate or pairwise
correlations (data not shown). Instead, large effects in DKL were
accompanied by a striking increase in the bi- or multi-modality of
excitatory conductances (see Figure 4B). In Figure 4C, we show
an example stimulus and excitatory current trace taken from the
simulation shown in Figure 4B: the monophasic filter allows the
excitatory synaptic currents to track a long-timescale, bimodal
stimulus with higher fidelity, transferring the bimodality of the
stimulus into the synaptic currents. This finding was robust to
specifics of the filtering process; we were able to reproduce the
same results by designing integrating filters in different ways (data
not shown).

2.2.5. Recurrent connectivity in the RGC circuit
We next considered the role of recurrence in shaping higher-
order interactions by incorporating gap junction coupling into
our simulations. We did this separately for each full-field stimulus

FIGURE 3 | Results for RGC simulations with light stimuli of varying

spatial scale (“stixels”). (A) Average DKL(P, P̃) as a function of stixel
size. Values were averaged over five stimulus positions, each with a
different (random) stimulus rotation and translation; 512 μm corresponds
to full-field stimuli. For the rest of the panels, data from the binary
light distributions is shown; results from the Gaussian case are similar.
(B,C) Probability of singlet and doublet spiking events, under stimulation
by movies of 256 μm (B) and 60 μm (C) stixels. Event probabilities are
plotted in 3-space, with the x, y , and z axes identifying the singlet

(doublet) events 001 (011), 010 (101), and 100 (110), respectively. The
black dashed line indicates perfect cell-to-cell homogeneity
(e.g., P[(1, 0, 0)] = P[(0, 1, 0)] = P[(0, 0, 1)]). Both individual runs (dots)
and averages over 20 runs (large circles) are shown, with averages
outlined in black (singlet) and gray (doublet). Different colors indicate
different stimulus positions. Insets: contour lines of the three receptive
fields (at the 1 and 2 SD contour lines for the receptive field center;
and at the zero contour line) superimposed on the stimulus checkerboard
(for illustration, pictured in an alternating black/white pattern).

FIGURE 4 | Comparison of RGC simulations computed with the

original ON parasol filter, vs. simulations using a more monophasic

filter. (A) DKL(P, P̃) for original vs. monophasic filter. Data is organized
by stimulus refresh rate (8, 40, and 100 ms) and marginal statistics
(Gaussian vs. binary). (B) Histograms of excitatory conductances for an
illustrative stimulus class, under original (top) and monophasic (bottom)

filters. The marginal statistics and refresh rate are illustrated by icons
inside black circles; here, binary stimuli with refresh rate 100 ms. The
input standard deviation (expressed as a fraction of baseline light
intensity) was 1/2. (C) Time course of stimulus and resulting excitatory
conductances, from simulation shown in (B): original (top)
vs. monophasic (bottom) filters.
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condition described earlier. In each case, we added gap junction
coupling with strengths from 1 to 16 times an experimentally
measured value (Trong and Rieke, 2008), and compared the
resulting DKL with that obtained without recurrent coupling
(Figure 5).

At the experimentally measured coupling strength (ggap =
1.1 nS) itself, the fit of the pairwise model barely changed
(Figure 5A) from the model without coupling. At twice the mea-
sured coupling strength (ggap = 2.2 nS), recurrent coupling had
increased higher-order interactions, as measured by larger values
of DKL for all tested stimulus conditions. Higher order inter-
actions could be further increased, particularly for long refresh
rates (100 ms), by increasing the coupling strength to four or
eight times its baseline level (ggap = 4.4 nS or ggap = 8.8 nS; see
Figures 5B,C). Consistent with the intuition that very strong cou-
pling leads to “all-or-none” spiking patterns, DKL(P, P̃) decreased
as ggap increased further, often to a level below what was seen in
the absence of coupling (Figure 5D). In summary, the impact of
coupling on DKL is maximized at intermediate values of the cou-
pling strength. However, the impact of recurrent coupling on the
maximal values of DKL evoked by visual stimuli is small over-
all, and almost negligible for experimentally measured coupling
strengths.

2.2.6. Modeling heavy-tailed light stimuli in the RGC circuit
Finally, we repeated the full-field, recurrent, and alternate filter
simulations previously described with light stimuli drawn from
either Cauchy or heavy-tailed distributions: such distributions

FIGURE 5 | The impact of recurrent coupling on RGC networks with

full-field visual stimuli. The strength of gap junction connections was
varied from a baseline level (relative magnitude g = 1, or absolute
magnitude ggap = 1.1 nS) to an order of magnitude larger (g = 16, or
ggap = 17.6 nS). In each panel, DKL(P, P̃) obtained with coupling is plotted
vs. the value obtained for the same stimulus ensemble without coupling,
for each of 42 different stimulus ensembles. (A) ggap = 1.1 nS
(experimentally observed value); (B) ggap = 4.4 nS; (C) ggap = 8.8 nS; (D)

ggap = 17.6 nS.

have been found to model the frequency of occurrence of lumi-
nance values in photographs of natural scenes (Ruderman and
Bialek, 1994). In contrast to previous results with Gaussian and
bimodal inputs, here we found very low DKL(P, P̃) over all stimu-
lus conditions: the largest values found were more than an order
of magnitude smaller than those obtained earlier. Specifically, for
all conditions, we found DKL(P, P̃) < 4.5× 10−4, over all 42 net-
work realizations; for many simulations, this number did not
meet a threshold for statistical significance (see section 4.1.7),
indicating that P and P̃ were not statistically distinguishable.
Using a more monophasic filter resulted in no apparent con-
sistent change to DKL(P, P̃). When gap junction coupling was
added, DKL(P, P̃) was maximized at an intermediate value; when
ggap = 8.8, all simulations produced a statistically significant
DKL(P, P̃) ≈ 3− 4× 10−3. However, overall levels remained rel-
atively low, roughly 1/2 the value achieved with Gaussian or
binary stimuli.

To explain these findings, we examined the excitatory input
currents: we found that over a broad range of refresh rates and
stimulus variances, the marginal distributions of excitatory input
conductances produced were remarkably unimodal in shape,
and showed little skewness (Figure 6A). By examining the time
evolution of the filtered stimuli (see Figure 6B), we see that heavy-
tailed distributions allow rare, large events, but at the expense of
medium-size events which explore the full range of the linear-
nonlinear model used for stimulus processing (compare the blue
with the red/green traces). When combined with the Gaussian
background noise, this produces near-Gaussian excitatory con-
ductances and, as may be expected from our original full-field
simulations, very low DKL.

We hypothesize that the methodology of averaging over the
entire stimulus ensemble may not capture the significance of rare
events that may individually be detected with high fidelity: DKL

was low even for full-field, high variance stimuli, which presum-
ably caused (infrequent) global spiking events. Additionally, an
important avenue for future work would be to test the ability
of our RGC model, which was trained on Gaussian stimuli, to
accurately model the response of a ganglion cell to stimuli whose
variance is dominated by large events. Recent work examining
the adaptation of retinal filtering properties to higher-order input
statistics found little evidence of adaptation; however, the stimuli
used in this work incorporated significant kurtosis but not heavy
tails (Tkacik et al., 2012).

2.2.7. Summary of findings for RGC circuit
In summary, we probed the spiking response of a small array
of RGC models to changes in light stimuli, gap junction cou-
pling, and stimulus filtering properties, and identified two cir-
cumstances in which higher-order interactions were robustly
generated in the spiking response. First, higher-order interac-
tions were generated when excitatory currents had bimodal
structure; we observed such structure when bimodal light stim-
uli was processed by a relatively monophasic filter. Secondly,
higher-order interactions were maximized at an intermediate
value of gap junction coupling; this value was, however, much
larger (eight times) than the experimentally observed coupling
strength.
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FIGURE 6 | Results for RGC simulations with heavy-tailed inputs.

(A) Histograms of excitatory conductances, for the original (left)
vs. monophasic (right) filter. The marginal statistics are heavy-tailed skew
(top) and Cauchy (bottom) inputs, and refresh rate is 40 ms for both panels.
The input standard deviation (expressed as a fraction of baseline light
intensity) was 1/2 for both simulations. (B) Sample 100 ms stimuli, filtered
by the original linear filter Lexc (top) and altered, monophasic filter
Lexc,M(bottom). Cauchy (blue solid), Gaussian (red dashed), and bimodal
(green dash-dotted) stimuli are shown.

2.3. A SIMPLIFIED CIRCUIT THAT EXPLAINS TRENDS IN RGC CELL
MODEL

2.3.1. Setup and motivation
In the previous section, we developed results for a computational
model tuned to a very specific cell type; we now ask whether these
findings will hold for a more general class of neural circuits, or
whether they are the consequence of system-specific features. To
answer this question, we considered a simplified model of neu-
ral spiking: a feedforward circuit in which three spiking cells
sum their inputs and spike according to whether or not they
cross a threshold. Such highly idealized models of spiking have
a long history in neuroscience (McCulloch and Pitts, 1943) and
have been recently shown to predict the pairwise and higher-
order activity of neural groups in both neural recordings and

more complex dynamical spiking models (Nowotny and Huerta,
2003; Tchumatchenko et al., 2010; Yu et al., 2011; Leen and
Shea-Brown, 2013).

In more detail, each cell j received an independent input
Ij and a “triplet”—(global) input Ic that is shared among all
three cells. Comparison of the total input Sj = Ic + Ij with a
threshold � determined whether or not the cell spiked in that
random draw. An additional parameter, c, identified the frac-
tion of the total input variance σ2 originating from the global
input; that is, c ≡ Var[Ic]/Var[Ic + Ij]. The global input was cho-
sen from one of several marginal distributions, which included
those used in the RGC model: Gaussian, bimodal, and heavy-
tailed. The independent inputs Ij were, in all cases, chosen from
a Gaussian distribution, consistent with our RGC model. When
the common inputs are Gaussian, our model is equivalent to
the Dichotomized Gaussian model previously studied by several
groups (Amari et al., 2003; Macke et al., 2009, 2011; Yu et al.,
2011), cf. (Tchumatchenko et al., 2010). For further details, see
section 4.2.

In the RGC model large effects in DKL were accompanied by
a striking increase in the bi- or multi-modality of excitatory con-
ductances. Why are bimodal inputs, shared across cells, able to
produce spiking responses that deviate from the pairwise model?
We use our simple thresholding model to provide some intu-
ition for how bimodal common inputs to thresholding cells lead
to spiking probabilities that violate the constraints (Equation 3)
which must hold for the pairwise model. For example, suppose
that the common input Ic can take on values that cluster around
two separated values, μA < μB, but rarely in the interval between;
that is, the distribution of Ic is bimodal. If μB is large enough
to push the cells over threshold but μA is not, then we see that
any contribution to the right-hand side of Equation (3), p2/p1,
depends only on the distribution of the independent inputs Ij;
if either one or two cells spike, then the common input must
have been drawn from the cluster of values around μA, because
otherwise all three cells would have spiked.

To be concrete, let P[x] refer to the probability of spiking event
x = (x1, x2, x3), and P[x | Ic ≈ μA] refer to the probability that x
occurs, conditioned on the event Ic ≈ μA. Then

P [(1, 0, 0)] = P [(1, 0, 0) | Ic ≈ μA] P [Ic ≈ μA]

+ P [(1, 0, 0) | Ic ≈ μB] P [Ic ≈ μB]

= P [(1, 0, 0) | Ic ≈ μA] P [Ic ≈ μA]

because P [(1, 0, 0) | Ic ≈ μB] = 0: for the same reason,

P [(1, 1, 0)] = P [(1, 1, 0) | Ic ≈ μA] P [Ic ≈ μA]

therefore

p2

p1
= P [(1, 1, 0) | Ic ≈ μA] P [Ic ≈ μA]

P [(1, 0, 0) | Ic ≈ μA] P [Ic ≈ μA]

= P [(1, 1, 0) | Ic ≈ μA]

P [(1, 0, 0) | Ic ≈ μA]
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On the other hand,

p3

p0
= P [Ic ≈ μB]+ P [(1, 1, 1) | Ic ≈ μA] P [Ic ≈ μA]

P [(0, 0, 0) | Ic ≈ μA] P [Ic ≈ μA]
.

By changing the relative likelihood of drawing the common
input from one cluster or the other, without changing the
values of μA and μB themselves (that is, change P [Ic ≈ μB]
and P [Ic ≈ μA] but leave the conditional probabilities (e.g.,
P [(1, 0, 0) | Ic ≈ μA]) fixed) one may change the ratio p3/p0

without changing the ratio p2/p1. Hence the constraint specify-
ing those network responses exactly describable by PME models
can be violated when the common input is bimodal.

In contrast, we may instead consider a unimodal common
input, of which a Gaussian is a natural example. Here, the dis-
tribution of the common input Ic is completely described by its
mean and variance; both parameters can impact the ratio p3/p0

(by altering the likelihood that the common input alone can trig-
ger spikes) and the ratio p2/p1. Each value of Ic is consistent with
both events p1 and p2, with the relative likelihood of each event
depending on the specific value of Ic; it is no longer clear how to
separate the two events. In the following sections, we will confirm
this intuition by direct evaluation of the resulting departure from
pairwise statistics.

2.3.2. Model input distributions
Motivated by our observations of excitatory currents that arose
in the RGC model, we chose several input distributions that
allow us to explore other salient features, such as symmetry
and the probability of large events. A distribution is called sub-
Gaussian if the probability of large events decays rapidly with
event size, so that it can be bounded above by a scaled Gaussian
distribution (see section 4). We considered two sub-Gaussian dis-
tributions; the Gaussian itself, and a skewed distribution with
a sub-Gaussian tail (hereafter referred to as “skewed”). We also
considered the two “heavy-tailed” distributions used as stimuli to
the RGC model—the Cauchy distribution, and a skewed distribu-
tion with a Cauchy-like tail (hereafter referred to as “heavy-tailed
skewed”). In these distributions, the probability of large events
decays polynomially rather than exponentially.

For each choice of common input marginal, we varied the
input parameters so as to explore a full range of firing rates and
pairwise correlations: specifically, we varied the input correlation
coefficient c in the range [0, 1], the total input standard deviation
σ in the range [0, 4], and the threshold � in [0, 3]. In all cases
the independent inputs Ij were chosen from a Gaussian distribu-
tion [of variance (1− c)σ2]. For each choice of input parameters,
we determine the resulting distribution on spiking states (as
described in section 4) and compute the PME approximation.

2.3.3. Unimodal common inputs fail to produce significant
higher-order interactions in three-cell feedforward circuits

We first considered common inputs chosen from a unimodal
(e.g., Gaussian) distribution. If Ic is Gaussian, then the joint dis-
tribution of S = (S1, S2, S3) is multivariate normal, and therefore
characterized entirely by its means and covariances. Because the
PME fit to a continuous distribution is precisely the multivari-
ate normal that is consistent with the first and second moments,

every such input distribution on S exactly coincides with its
PME fit. However, even with Gaussian inputs, outputs (which
are now in the binary state space {0, 1}3) will deviate from the
PME fit (Amari et al., 2003; Macke et al., 2009). As shown below,
non-Gaussian unimodal inputs can produce outputs with larger
deviations. Nonetheless, these deviations are small for all cases
in which inputs were chosen from a sub-Gaussian distribution,
and PME models are quite accurate descriptions of circuits with a
broad range of unimodal inputs.

We first considered circuits with either Gaussian or skewed
common inputs. Over the full range of input parameters, distri-
butions remained well fit by the pairwise model, with a maximum
value of DKL(P, P̃) (of 0.0038 and 0.0035 for Gaussian and
skewed inputs, respectively) achieved for high correlation val-
ues and σ comparable to threshold. In Figure 7A we illustrate
these trends with a contour plot of DKL(P, P̃) for a fixed value
of threshold (here, � = 1.5) and Gaussian common inputs (the
analogous plot for skewed inputs is qualitatively very similar,
Figure S3A).

Clear patterns also emerged when we viewed DKL(P, P̃) as
a function of output spiking statistics rather than input statis-
tics (as in Macke et al., 2011). Non-linear spike generation can
produce substantial differences between input and output cor-
relations; this relationship can vary widely based on the specific
non-linearity (Moreno et al., 2002; de la Rocha et al., 2007;
Marella and Ermentrout, 2008; Shea-Brown et al., 2008; Vilela
and Lindner, 2009; Barreiro et al., 2010, 2012; Tchumatchenko
et al., 2010; Hong et al., 2012). Figure 7B shows DKL(P, P̃) and�
for all threshold values (including the data shown in Figure 7A),
but now plotted with respect to the output firing rate. The data
were segregated according to the Pearson’s correlation coeffi-

cient ρ between the responses of cell pairs (ρ ≡ Cov(xi,xj)√
Var(xi)Var(xj)

=
ρ̂−μ2

μ(1−μ)
). For a fixed correlation, there was generally a one-to-one

relationship between firing rate and DKL(P, P̃). For these distri-
butions (Figure 7B, for Gaussian inputs; skewed inputs shown in
Figure S3B), DKL(P, P̃) was maximized at an intermediate firing
rate. Additionally, DKL(P, P̃) had a non-monotonic relationship
with spike correlation: it increased from zero for low values of
correlation, obtained a maximum for an intermediate value, and
then decreased. These limiting behaviors agree with intuition: a
spike pattern that is completely uncorrelated can be described by
an independent distribution (a special case of PME model), and
one that is perfectly correlated can be completely described via
(perfect) pairwise interactions alone.

We next considered circuits in which inputs were drawn from
one of two heavy-tailed distributions, the Cauchy distribution
and a heavy-tailed skewed distribution, defined earlier. Here, dis-
tinctly different patterns emerge: for a fixed �, DKL(P, P̃) is
maximized in regions of high input correlation and high input
variance σ, but relatively high values of DKL are achievable
across a wide range of input values (see Figure 7C for Cauchy
inputs; heavy-tailed skewed in Figure S3C). However, the max-
imum achievable values of DKL were achieved at intermediate
output correlations ρ ≈ 0.4 (see Figure 7D for Cauchy inputs;
heavy-tailed skewed shown in Figure S3D); this suggests that high
input correlations do not result in high output correlations.
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FIGURE 7 | Strength of higher-order interactions produced by the

threshold model as input parameters vary, and the relationship of

these higher-order interactions with other output firing statistics.

(A) For Gaussian common inputs: DKL(P, P̃) as a function of input
correlation c and input standard deviation σ, for a fixed threshold � = 1.5.
Color indicates DKL(P, P̃); see color bar for range. (B) For Gaussian
common inputs: DKL(P, P̃) vs. firing rate (Left) and the fraction of
multi-information (�) captured by the PME model vs. firing rate (Right).

Each dot represents the value obtained from a single choice of the input
parameters c, σ, and �; input parameters were varied over a broad range
as described in section 2. Firing rate is defined as the probability of a
spike occurring per cell per random draw of the sum-and-threshold model,
as defined in Equation (16). Color indicates output correlation coefficient ρ

ranging from black for ρ ∈ (0, 0.1), to white for ρ ∈ (0.9, 1), as illustrated in
the color bars. (C,D): as in (A,B), but for Cauchy common inputs. (E,F): as
in (A,B), but for bimodal common inputs.

This somewhat unintuitive finding may be explained by the
structure of the PDF of a heavy-tailed common input, which
favors (infrequent) large events at the expense of medium-
size events. For instance, the probability that a Cauchy input
is above a given threshold (P[Ic > � > E[Ic]]) is often much
smaller than for a Gaussian distribution of the same vari-
ance. However, an input can trigger at best one single spik-
ing event regardless of size: therefore a Cauchy common input
generates fewer correlated spiking events with larger inputs,
while a Gaussian common input triggers correlated spiking
events with smaller, but more frequent, input values. As a
result, heavy-tailed inputs are unable to explore the full range
of output firing statistics: Figure 7D shows that high out-
put correlations only occur at very low firing rates. Overall,
DKL(P, P̃) reaches higher numerical values than for sub-Gaussian
inputs, possibly reflecting the higher-order statistics in the input.
However, the maximal DKL(P, P̃) attained still falls far short
of exploring the full range of possible values (compare with
Figure 1B).

Finally, we examine the behavior of the strain, which
quantifies both the magnitude and sign of deviation from
the pairwise model (see Ohiorhenuan and Victor, 2010). It
has been previously observed that the strain is negative for
the DG model (Macke et al., 2011), a condition that has
been related to sparsity of the neural code and with which
our results agree (data not shown). However, we found that
any other choice of input marginal statistics, both posi-
tive and negative values are seen; for heavy-tailed common
inputs, positive values predominated except at very low firing
rates.

2.3.4. Bimodal triplet inputs can generate higher-order interactions
in three-cell feedforward circuits

Having shown that a wide range of unimodal common inputs
produced spike patterns that are well-approximated by PME fits,
we next examined bimodal common inputs. Such inputs sub-
stantially increased departures from PME fits in the ganglion cell
models described above. As in the previous section, we varied c,
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σ, and � so as to explore a full range of firing rates and pairwise
correlations.

As a function of input parameter values, DKL(P, P̃) is maxi-
mized for large input correlation and moderate input variance σ2

[see Figure 7E, which illustrates DKL(P, P̃) for a fixed threshold
� = 1.5]. Figure 7F shows DKL(P, P̃) values as a function of the
firing rate and pairwise correlation elicited by the full range of
possible bimodal inputs. We see that DKL(P, P̃) is maximized at
an intermediate (but relatively high: ν ≈ 0.4) firing rate, and for
intermediate-to-large correlation values (ρ ≈ 0.6− 0.8).

We find distinctly different results when we view �

(Equation 1), for these same simulations, as a function of output
spiking statistics (right panels of Figures 7B,D,F). For unimodal,
sub-Gaussian distributions (Figure 7B),� is very close to 1, with
the few exceptions at extreme firing rates. For heavy-tailed and
bimodal inputs (Figures 7D,F), � may be appreciably far from
1 (as small as 0.5) with the smallest numbers (suggesting a poor
fit of the pairwise model) occurring for low correlation ρ. This
highlights one interesting example where these two metrics for
judging the quality of the pairwise model, DKL(P, P̃) and�, yield
contrasting results.

Finally, we emphasize that while bimodal inputs can produce
greater higher-order interactions than unimodal inputs, the val-
ues of DKL(P, P̃) accessible by feedforward circuits with global
inputs remain far below their upper bounds at any given fir-
ing rate. The maximal values of DKL(P, P̃) reached by Cauchy
and heavy-tailed skewed inputs were 0.0078 and 0.0153; bimodal
common inputs reached a maximal value of 0.091. This is an
order of magnitude smaller than possible departures among sym-
metric spike patterns (compare Figure 1B). The difference is
illustrated in Figure S4, which compares the DKL(P, P̃) values
obtained in the thresholding model and those obtained by direct
exhaustive search at each firing rate by superposing the datapoints
on a single axis.

2.3.5. Mathematical analysis of unimodal vs. bimodal effects
The central finding above is that circuits with bimodal inputs can
generate significantly greater higher-order interactions than cir-
cuits with unimodal inputs. To probe this further, we investigated
the behavior of DKL(P, P̃) for the feedforward threshold model
with a perturbation expansion in the limit of small common
input. We found that as the strength of common input signals
increased, circuits with bimodal inputs diverged from the PME
fit more rapidly than circuits with unimodal inputs; the full cal-
culation is given in the Appendix. In brief, we determined the
leading order behavior of DKL(P, P̃) in the strength c of (weak)
common input. DKL(P, P̃) depended on c3 for unimodal distri-
butions, i.e., the low order terms in c dropped out; for symmetric
unimodal distributions, such as a Gaussian, DKL(P, P̃) grew as c4.
For bimodal distributions, DKL(P, P̃) grew as c2. Because of the c2

dependence, rather than c3 or c4, as the strength of common input
signals c increases, circuits with bimodal inputs are predicted to
produce greater deviations from their PME fits.

2.3.6. Impact of recurrent coupling
We next modified our thresholding model to incorporate the
effects of recurrent coupling among the spiking cells. To mimic

gap junction coupling in the RGC circuit, we considered all-to-
all, excitatory coupling, and assumed that this coupling occurs on
a faster timescale compared with the timescale over which inputs
arrive at the cells.

Our previous model was extended as follows: if the inputs
arriving at each cell elicited any spikes, there was a second
stage at which the input to each neuron receiving a connection
from a spiking cell was increased by an amount g. This repre-
sented a rapid depolarizing current, assumed for simplicity to add
linearly to the input currents. If the second stage resulted in addi-
tional spikes, the process was repeated: recipient cells received an
additional current g, and their summed inputs were again thresh-
olded. The sequence terminated when no new spikes occurred on
a given stage; e.g., for N = 3, there were a maximum of three
stages. The spike pattern recorded on a given trial was the total
number of spikes generated across all stages.

We then explored the impact of varying g for a single repre-
sentative value of σ and �, and several values of the correlation
coefficient c. We found that as g increased DKL(P, P̃) varied
smoothly, reflecting the underlying changes in the spike count
distribution. For small c (c = 0.02 shown in Figure 8A), where
the variance of common input is very small, the results var-
ied little by input type: for all input types DKL(P, P̃) reached
an interior maximum near g ≈ 1.7. As c increases, the distinc-
tions between inputs types become apparent (Figures 8B,C show
c = 0.2, 0.5, respectively): for most input types and values of c,
the value of DKL(P, P̃) reaches an interior maximum that exceeds
its value without coupling (i.e., g = 0). However, overall values
of DKL(P, P̃) remained modest, never exceeding 0.01 across the
values explored here.

2.3.7. Summary of findings for simplified circuit model
We examined a highly idealized model of neural spiking, so
as to explore the generality of our earlier findings in a small
array of RGC models. We found that our main results from the
RGC model—that higher-order interactions were most signif-
icant when inputs had bimodal structure, and that when fast
excitatory recurrence was added to the circuit, higher-order inter-
actions were maximized at an intermediate value of the recur-
rence strength—persisted in this simplified model. Moreover, we
were able to show that the first of these findings is general, in that
it holds over a complete exploration of parameter space.

2.4. SCALING OF HIGHER-ORDER INTERACTIONS WITH POPULATION
SIZE

The results above suggest that unimodal, rather than bimodal,
input statistics contribute to the success of PME models. Next,
we examined whether this conclusion continues to hold when we
increase network size. The permutation-symmetric architectures
we have considered so far can be scaled up to more than three cells
in several natural ways; for example, we can study N cells with a
global common input.

We considered a sequence of models in which a set of N
threshold spiking units received global input Ic [with mean 0 and
variance σ2c] and an independent input Ij [with mean 0 and vari-
ance σ2(1− c)]. As for the three-cell network models considered
previously, the output of each cell was determined by summing
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FIGURE 8 | The impact of recurrent coupling on the three-cell

sum-and-threshold model. Each plot shows DKL(P, P̃) as a function of g,
for a specific value of the correlation coefficient. In all panels, input
standard deviation σ = 1, threshold � = 1.5, N = 3 and symbols are as
described in the legend for (C). Abbreviations in the legend denote the
marginal distribution of the common input: G, Gaussian; SK, skewed; C,
Cauchy; HT, heavy-tailed skewed; B, bimodal. (A) For input correlation
c = 0.02, (B) c = 0.2, and (C) c = 0.5.

and thresholding these inputs. Upon computing the probability
distribution of network outputs (section 4), we fit a PME distri-
bution. Again, we explored a range of σ, c, and� and recorded the
maximum value of DKL(P, P̃) between the observed distribution
P and its PME fit P̃. Figure 9 shows this DKL/N [i.e., entropy per
cell (Macke et al., 2009)] for each class of marginal distributions.

We found that the maximum DKL(P, P̃)/N increased roughly
linearly with N for Gaussian, skewed and Cauchy inputs; for
heavy-tailed skew and bimodal inputs, DKL(P, P̃)/N appeared to
saturate after an initial increase (Figure 9). The relative order-
ing for unimodal inputs shifted as N increased; as N → 16, the
maximal achievable DKL(P, P̃) for sub-Gaussian inputs overtook
the values for heavy-tailed inputs. At all values of N, the val-
ues for Gaussian and skewed inputs tracked one another closely.
Regardless, the values for all unimodal inputs remained substan-
tially below the maximal value achievable for bimodal inputs.
Figure 9B shows that the probability distributions produced by
these inputs qualitatively agree with this trend: departures from
PME were more visually pronounced for global bimodal inputs
than for global unimodal inputs. In addition, the distributions for
heavy-tailed and sub-Gaussian inputs differed qualitatively, offer-
ing a potential mechanism for different scaling behavior. Using
the relationship between DKL and likelihood ratios (described

in section 2.1), at N = 16, the value DKL/N ≈ 0.1 for bimodal
global inputs corresponds to a likelihood ratio of 0.33 that a sin-
gle draw from P (single network output) in fact came from the
PME fit P̃ rather than from P; a likelihood <0.01 is reached for
four draws.

We next extended our model with recurrent coupling to N > 3
cells. In addition to the parameters for the uncoupled network,
we varied the coupling strength, g, for each type of input. As in
the N = 3 network, coupling was all-to-all. As for the small net-
works explored in an earlier section, DKL(P, P̃) generally peaked
at an intermediate value of the coupling strength g; however,
the value of g decreased as population size N increased (illus-
trated in Figure 10A, for c = 0.2). This may be attributed to
the increased potential impact of recurrence at larger popula-
tion sizes; as N increases, the number of potential additional
spikes that may be triggered increases; consequently the aver-
age recurrent excitation received by each cell increases, and
therefore the probability that one or two spikes will trigger a
cascade to N spikes. In Figure 10B we demonstrate that the
impact of this effect may be captured by plotting DKL(P, P̃) as
a function of an effective coupling parameter, g∗N/3. Here, we
plot the curves for six population sizes (N = 3, 4, 6, 8, 10, and
12) and five common input types; each curve was scaled by
normalizing DKL(P, P̃) by its maximum value. For many sets
of parameter values, the resulting curves line up remarkably
well, suggesting a universal scaling with the effective coupling
parameter.

We also explored the overall possible impact of recurrence on
higher-order interactions, by surveying a range of circuit param-
eters c, σ, � and g. The top panel of Figure 10C shows the
maximal DKL(P, P̃) per neuron, for each type of input, up to
population size N = 8. For unimodal inputs, recurrent coupling
increased the available range of higher-order interactions mod-
estly, compared with the range achieved with purely feedforward
connections; however, these values remained significantly lower
than those achieved for bimodal inputs.

Finally, we considered how higher-order interactions scale
with population sampling size. The spike pattern distributions
used to generate the last column of data points (N = 8) in the
top panel of Figure 10C were reanalyzed by sub-sampling the
spike pattern distributions on k < 8 cells. In each case, we chose
our sub-population to be k nearest neighbors (for our setup, any
subset of k cells is statistically identical). In the bottom panel of
Figure 10C, we show the maximal value of DKL(P, P̃) per sub-
sampled cell achieved over all input parameters (the curves for
Gaussian, skewed and Cauchy inputs are so close together so as to
be visually indistinguishable). This number increases or remains
steady as k increases, indicating that sub-sampling a coupled net-
work will depress the apparent higher-order interactions in the
output spiking pattern.

To summarize, the greater impact of bimodal vs. unimodal
input statistics on maximal values of DKL(P, P̃) persists in cir-
cuits with N = 3 cells up to N = 16 cells. Overall, for the cir-
cuit parameters producing maximal deviations from PME fits,
it becomes easier to statistically distinguish between spiking dis-
tributions and their PME fits as the number of cells increases in
feedforward networks.
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FIGURE 9 | The significance of higher-order interactions increases

with network size. (A) Normalized maximal deviation, DKL(P, P̃)/N, from
the PME fit for the thresholding circuit model as network size N
increases. For each N and common input distribution type, possible input
parameters were in the following ranges: input correlation c ∈ [0, 1], input
standard deciation σ ∈ [0, 4], and threshold � ∈ [0, 3]. (B) Example

sample distributions for different types of common input: from top,
bimodal, Gaussian, heavy-tailed skew, and Cauchy common inputs. For
each input type, the distribution that maximized DKL(P, P̃) for N = 16 is
shown. Each distribution is illustrated with a bar plot contrasting the
probabilities of spiking events in the true (dark blue) vs. pairwise
maximum entropy (light pink) distributions.

FIGURE 10 | The impact of recurrent coupling on the sum-and-threshold

model, for increasing population size. (A) DKL(P, P̃) as a function of the
coupling coefficient, g, for a specific value of population size N. In all plots,
input standard deviation σ = 1, threshold � = 1.5 and input correlation
c = 0.2. From top: N = 4; N = 8; N = 12. (B) Dnorm

KL (P, P̃) as a function of the
coupling coefficient, g, for populations sizes N = 3− 12. For each curve,
DKL(P, P̃) was scaled by its maximal value and plotted as a function of the
scaled coupling coefficient, g∗N/3, to illustrate a universal scaling with
effective coupling strength. The line style of each curve indicates the
population size N, as listed in the legend. The marker and line color indicate

the common input marginal, as listed in the legend for (A). (C) (Top) Maximal
value of DKL(P, P̃)/N, achieved over a survey of parameter values c, σ, �,
and g, as a function of the population size N (solid lines). For each input
marginal type, a second curve shows the maximal value obtained over only
feed-forward simulations (g = 0; dashed lines). The marker and line color
indicate the common input marginal, as listed in the legend for (A). (Bottom)
Maximal value of DKL(P, P̃)/k, achieved over a survey of parameter values c,
σ, �, and g, as a function of the subsample population size k. Data was
subsampled from the N = 8 data shown in the top panel, by restricting
analysis to k out of N cells.
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3. DISCUSSION
We used mechanistic models to identify input patterns and cir-
cuit mechanisms which produce spike patterns with significant
higher-order interactions—that is, with substantial deviations
from predictions under a PME model. We focused on a tractable
setting of small, symmetric circuits with common inputs. This
revealed several general principles. First, we found that these
circuits produced outputs that were much closer to PME predic-
tions than required for a general spiking pattern. Second, bimodal
input distributions produced stronger higher-order interactions
than unimodal distributions. Third, recurrent excitatory or gap
junction coupling could produce a further, moderate increase of
higher-order correlations; the effect was greatest for coupling of
intermediate strength.

These general results held for both an abstract threshold-
and-spike model and for networks of non-linear integrate-and-
fire units based on measured properties of one class of RGCs.
Together with the facts that ON parasol cell filtering suppresses
bimodality in light input, and that coupling among ON parasol
cells is relatively weak, our findings provide an explanation for
why their population activity is well captured by PME models.

3.1. COMPARISON WITH EMPIRICAL STUDIES
How do our maximum entropy fits compare with empirical stud-
ies? In terms of DKL(P, P̃)—equivalently, the logarithm of the
average relative likelihood that a sequence of data drawn from P
was instead drawn from the model P̃—numbers obtained from
our RGC models are very similar to those obtained by in vitro
experiments on primate RGCs (Shlens et al., 2006, 2009). For
example, in a survey of 20 numerical experiments under con-
stant light conditions (each of length 100 ms, with spikes binned
in 10 ms intervals), we find that DKL(P, P̃) ranges between 0 and
0.00029: similarly excellent fits were found by Shlens et al. (2006)
(in which cell triplets were stimulated by constant light for 60 s
with spikes binned at 10 ms), with one example given of 0.0008
(inferred from a reported likelihood ratio of 0.99944). These
values can increase by an order of magnitude under full-field
stimulation, as well as spatio-temporally varying stixel simula-
tions (bounded above by 0.007). We can view the 60 μm stixel
simulations as a model of the checkerboard experiments of Shlens
et al. (2006), for which close fits by the PME distribution were also
observed (likelihood numbers were not reported). Similarly, the
values of� produced by our RGC model are close to those found
by Schneidman et al. (2006); Shlens et al. (2006) under compa-
rable stimulus conditions. We obtain � = 99.5% (for cell group
size N = 3) under constant illumination, which is near the range
reported by Shlens et al. (2006) for the same bin size and stimulus
conditions (98.6± 0.5, N = 3− 7). For full-field stimuli we find
a range of numbers from 95.7% to 99.3% (N = 3).

With regard to the circuit mechanisms behind these excellent
fits by pairwise models, the findings that most directly address
the experimental settings of Shlens et al. (2006, 2009), are (1)
the finding that in the threshold model, unimodal inputs generate
minimal higher-order interactions, compared to bimodal inputs,
and (2) the particular stimulus filtering properties of parasol cells
can suppress bimodality that may be present in an input stimu-
lus, resulting in a unimodal distribution of input currents. First,

we believe that unimodal inputs are consistent with the white-
noise checkboard stimuli used in Shlens et al. (2006, 2009), where
binary pixels were chosen to be small relative to the receptive
field size; averaged over the spatial receptive field, they would
be expected to yield a single Gaussian input by the central limit
theorem. Second, temporal filtering may contribute to receipt of
unimodal conductance inputs by cells for the full-field binary
flicker stimuli that are delivered in Schneidman et al. (2006). With
the 16.7 ms refresh rate used there, under the assumption that the
filter time-scale of the cells studied in that paper is roughly similar
to that of the ON parasol cell we consider, the filter would aver-
age a binary (and hence bimodal) stimulus into a unimodal shape
(see Figure 2C, for example).

The simple threshold models that we have considered, mean-
while, give us a roadmap for how circuits could be driven in
such a way as to lower �. The right columns of Figures 7B,D,F
show � plotted as a function of firing rate for circuits of N = 3
cells receiving global common inputs; we observe that � ≈ 1 for
Gaussian inputs over a broad range of firing rates and pairwise
correlation coefficients, but that values of � can be depressed
by 25–50% in the presence of a bimodal common input. Indeed,
Shlens et al. (2006) showed that adding global bimodal inputs to
a purely pairwise model can lead to a comparable departure in�.
Our results are consistent with this finding, and explicitly demon-
strate that the bimodality of the inputs—as well as their global
projection—are characteristics that lead to this departure.

3.2. CONSEQUENCES FOR SPECIFIC NEURAL CIRCUITS
Our results make predictions about when neural circuits are likely
to generate higher-order interactions. A comprehensive study of
our simple thresholding model shows that bimodal inputs gen-
erate greater beyond-pairwise interactions than unimodal inputs.
This result can be extended to other circuits where a clear input–
output relationship exists, and be used to predict higher-order
correlations by analyzing the impact of stimulus filtering on a
statistically defined class of inputs. For example, the effect holds
in our model of primate ON parasol cells, where a biphasic fil-
ter suppresses bimodality in a stimulus with a timescale matched
to that of the filter. We can use these results to extrapolate to
other classes of RGCs or other stimulus conditions in which fil-
ters are less biphasic (Victor, 1999). Indeed, when we process long
time-scale bimodal inputs through a preliminary model of the
midget cell circuit, stimulus bimodality is no longer suppressed
and is associated with higher-order interactions (see Figure 4).
We predict that greater higher-order interactions will be found
for stimuli or RGC circuits that elicit bimodal activity that is
thresholded when generating spikes—in comparison to the para-
sol circuits and stimuli studied in Shlens et al. (2006, 2009).
We believe that this principle will be further applicable in other
sensory systems.

We found that recurrent excitatory connections further
increase higher-order interactions, which are maximized at an
intermediate recurrence strength; in particular, when the strength
of an excitatory recurrent input was comparable to the distance
between rest and threshold (Figure 8). For the primate ON para-
sol cells we considered, the experimentally measured strength of
gap junction coupling would lead to an estimated membrane
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voltage jump of ≈1 mV in response to the firing of a neighbor-
ing RGC, while the voltage distance between the resting voltage
and an approximate threshold is about 5–10 mV (Trong and
Rieke, 2008). Consistent with this estimate, we found that in
our ON parasol cell model, higher-order interactions were maxi-
mized when the strength of excitatory recurrence was eight times
its experimentally measured value. The experimentally measured
values of recurrence had little or no effect on higher-order inter-
actions. We anticipate that this result may be used to predict
whether recurrent coupling plays a role in generating higher-
order interactions in other circuits where the average voltage
jump produced by an electrical or synaptic connection can be
measured.

To apply our findings to real circuits, we must also consider
population size. A measurement from a neural circuit, in most
cases, will be a subsample of a much larger, complete circuit.
We addressed this question where it was computationally more
tractable, for the thresholding model. Here, we found that the
impact of higher-order interactions, as measured by entropy per
cell unaccounted for by the pairwise model (DKL/k), increases
moderately as subsample size k increases. Since recurrent con-
nectivity in our model is truly global, this is consistent with the
suggestion of Roudi et al. (2009a) and others that the entropy
can be expected to scale extensively with population size N, once
N significantly exceeds the true spatial connectivity footprint: we
may see different results with limited, local connectivity.

3.3. SCOPE AND OPEN QUESTIONS
There are many aspects of circuits left unexplored by our study.
Prominent among these is heterogeneity. Only a few of our sim-
ulations produce heterogeneous inputs to model RGCs, and all
of our studies apply to cells with identical response properties.
This is in contrast to studies such as Schneidman et al. (2006),
which examine correlation structures among multiple cell types.
For larger networks, feedforward connections with variable spa-
tial profiles also occur, between the extremes of independent and
global input connections examined here. It is also possible that
more complex input statistics could lead to greater higher-order
interactions (Bethge and Berens, 2008). Finally, Figure 9 indicates
that some trends in DKL(P, P̃) vs. N appear to become non-linear
for N � 10; for larger networks, our qualitative findings could
change.

Our study also leaves largely open the role of different reti-
nal filters in generating higher-order interactions. We have found
that the specific filtering properties of ON parasol cells sup-
press bimodality in light inputs, suggesting that other classes of
RGCs, such as midget cells, may produce more robust higher-
order interactions (compare panels in Figure 4B). This predicts
a specific mechanism for the development of higher-order inter-
actions in preparations that include multiple classes of ganglion
cells (Schneidman et al., 2006). For a complete picture, future
studies will also need to account for the possible adaptation of
stimulus filters in response to higher-order stimulus character-
istics (Tkacik et al., 2012); we did not consider the latter effect
here, where our filter was fit to the response of a cell to Gaussian
stimuli with specific mean and variance. An allied possibility is
that multiple filters will be required, as was found when fitting

the responses of salamander retinal cells to LN models (Fairhall
et al., 2006). Distinguishing the roles of linear filters vs. static
non-linearities in determining which stimulus classes will give
the greatest higher-order correlations is another important step.
Finally, we considered circuits with a single step of inputs and
simple excitatory or gap junction coupling; a plethora of other
network features could also lead to higher-order interactions,
including multi-layer feedforward structures, together with lat-
eral and feedback coupling. We speculate that, in particular,
such mechanisms could contribute to the higher-order interac-
tions found in cortex (Tang et al., 2008; Montani et al., 2009;
Ohiorhenuan et al., 2010; Oizumi et al., 2010; Koster et al., 2013).

A final outstanding area of research is to link tractable net-
work mechanisms for higher-order interactions with their impact
(or lack of impact) on information encoded in neural popula-
tions (Kuhn et al., 2003; Montani et al., 2009; Oizumi et al.,
2010; Ganmor et al., 2011; Cain and Shea-Brown, 2013). A sim-
ple starting point is to consider rate-based population codes in
which each stimulus produces a different “tuned” average spike
count (see for e.g., chapter 3 of Dayan and Abbot, 2001). One
can then ask whether spike responses can be more easily decoded
to estimate stimuli for the full population response (i.e., P) to
each stimulus or for its pairwise approximation (P̃). In our pre-
liminary tests where higher-order correlations were created by
inputs with bimodal distributions, we found examples where
decoding of P vs. P̃ differed substantially. However, a more com-
plete study would be required before general conclusions about
trends and magnitudes of the effect could be made; such a study
would include complementary approach in which the full spike
responses P are themselves decoded via a “mismatched” decoder
based on the pairwise model P̃ (Oizumi et al., 2010). Overall, we
hope that the present paper, as one of the first that connects cir-
cuit mechanisms to higher-order statistics of spike patterns, will
contribute to future research that takes these next steps.

4. MATERIALS AND METHODS
4.1. EXPERIMENTALLY-BASED MODEL OF A RGC CIRCUIT
We model the response of a individual RGC using data col-
lected from a representative primate ON parasol cell, following
methods in Murphy and Rieke (2006); Trong and Rieke (2008).
Similar response properties were observed in recordings from
16 other cells. To measure the relationship between light stim-
uli and synaptic conductances, the retina was exposed to a
full-field, white noise stimulus. The cell was voltage clamped
at the excitatory (or inhibitory) reversal potential VE = 0 mV
(VI = −60 mV), and the inhibitory (or excitatory) currents were
measured in response to the stimulus. These currents were then
turned into equivalent conductances by dividing by the driving
force of±60 mV; in other words

gexc = Iexc/(V − VE); V − VE = −60 mV

ginh = Iinh/(V − VI); V − VI = 60 mV

The time-dependent conductances gexc and ginh were now
injected into a different cell using a dynamic clamp procedure
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(i.e., the input current was varied rapidly to maintain the cor-
rect relationship between the conductance and the membrane
voltage) and the voltage was measured at a resolution of 0.1 ms.

4.1.1. Stimulus filtering
To model the relationship between the light stimulus and synaptic
conductances, the current measurements Iexc and Iinh were fit to
a linear-nonlinear model:

gexc(t) = Nexc [Lexc ∗ s(t)+ ηexc] ,
ginh(t) = N inh

[
Linh ∗ s(t)+ ηinh

]

where s is the stimulus, Lexc (Linh) is a linear filter, Nexc (N inh) is
a non-linear function, and ηexc (ηinh) is a noise term. The linear
filter was fit by the function

Lexc(t) = Pexc (t/τexc)
nexc exp (−t/τexc) sin (2πt/Texc) (7)

and the non-linear filter by the polynomial

Nexc(x) = Aexcx2 + Bexcx + Cexc. (8)

Fits minimized the mean-square distance between model and
data. Linh and N inh were fit using the same parametrization.

The noise terms ηexc
k , ηinh

k were fit to reproduce the statistical
characteristics of the residuals from this fitting. We simulated the
noise terms ηexc and ηinh using Ornstein–Uhlenbeck processes
with the appropriate parameters; these were entirely characterized
by the mean, standard deviation, and time constant of autocorre-
lation τη,exc

(
τη,inh

)
, as well as pairwise correlation coefficients

for noise terms entering neighboring cells. The noise correlation
coefficients were estimated from the dual recordings of Trong and
Rieke (2008).

Linear filter parameters computed (also listed in Table 1)
were Pexc = −8× 104s−1, nexc = 3.6, τexc = 12 ms, Texc =
105 ms, and Pinh = −1.8× 105 s−1, ninh = 3.0, τinh = 16 ms,
Tinh = 120 ms. Non-linearity parameters were Aexc = −8.3×
10−7 nS, Bexc = 7× 10−3 nS, Cexc = −0.95 nS, and Ainh =
1.67× 10−6 nS, Binh = 6.2× 10−3 nS, Cinh = 4.17 nS. Noise
parameters were measured to be mean(ηexc

k ) = 30, std(ηexc
k ) =

500, τη,exc = 22 ms, and mean(ηinh
k ) = −1200, std(ηinh

k ) = 780,
τη,inh = 33 ms. In addition, excitatory (inhibitory) noise to dif-
ferent cells ηexc

k , ηexc
j (ηinh

k , ηinh
j ) had a correlation coefficient of

0.3 (0.15).
For the filter demonstrated in Figure 4, we added a cosine

component to the previous filter, i.e.,

Lexc,M(t) = Pexc,M
(
t/τexc,M

)nexc,M exp
(−t/τexc,M

)
× [sin

(
2πt/Texc,M,S

)+ Rexc,M cos
(
2πt/Texc,M,C

)]
(9)

Here Pexc,M = −3.2× 105 s−1, nexc,M = 2, τexc,M = 12 ms,
Texc,M,S = 120 ms and Texc,M,C = 100 ms, and Pinh,M =
−3.5× 105 s−1, ninh,M = 2, τinh,M = 13.2 ms, Tinh,M,S = 132 ms
and Tinh,M,C = 110 ms, while Rexc,M = Rinh,M = 0.8.

4.1.2. Voltage evolution
We create a model of the cell as a non-linear integrate-and-fire
model using the method of Badel et al. (2007), in which the
membrane voltage is assumed to respond as

dV

dt
= F (V, t − tlast)+ Iinput(t)

C
(10)

where C is the cell capacitance, tlast is the time of the last
spike before time t, and Iinput(t) is a time-dependent input cur-
rent. We use the current-clamp data, which yields cell voltage
in response to the input current Iinput(t) = −gexc(t)(V − VE)−
ginh(V − VI), to fit a function F(V, t). When voltage data is seg-
regated according to the time since the last spike t − tlast, the I − V
curve is well fit by a function of the form

F (V, t − tlast) = 1

τm

(
EL − V +�Te(V−VT )/�T

)
(11)

where parameters are the membrane time constant τm, rest-
ing potential (EL), spike width �T and knee of the exponential
curve VT .

The values of these constants differed in each bin of voltage data;
to estimate these constants, we first extracted their values from each
mean I − V curve. We found that these constants, as a function of
t − tlast, were well fit by either a single exponential or a difference
of two exponentials, with relaxation to a baseline rate (as in Badel
et al., 2007, Figure 3). Specifically, we chose:

1

τm
= cτm,1 + cτm,2e−(t−tlast)/cτm,3

EL = cEL,1 + cEL,2

(
e−(t−tlast)/cEL,3 − e−(t−tlast)/cEL,4

)
�T = c�T ,1 + c�T ,2

(
e−(t−tlast)/c�T ,3 − e−(t−tlast)/c�T ,4

)
VT = cVT ,1 + cVT ,2e−(t−tlast)/cVT ,3 (12)

We obtained the coefficients by least-squares fitting to the above
functional forms: specifically, we found that (up to four digits):(
cτm,1, cτm,2, cτm,3

) = (0.3719 ms−1, 0.5412 ms−1, 13.2726 ms),(
cEL,1, cEL,2, cEL,3, cEL,4

) = (−59.4858 mV, 5.8966 mV, 8.3076 ms,
233.1114 ms),

(
c�T ,1, c�T ,2, c�T ,3, c�T ,4

)= (20.0487 ms,
19.0560 ms, 3.6280 ms, 2.4304 s), and

(
cVT ,1, cVT ,2, cVT ,3

) =
(−44.3323 mV, 25.1812 mV, 4.7653 ms). Coefficients are also
listed in Table 2.

The capacitance was inferred from the voltage trace data by
finding, at a voltage value where the voltage/membrane current
relationship is approximately Ohmic, the value of C that mini-
mizes error in the relation Equation (10) (Badel et al., 2007). The
estimated value was C = 28 pF.

4.1.3. Spiking dynamics: feedforward network
For simulations without electronic coupling, our model neu-
ron comprises Equations (10, 11) for V < Vthreshold; a spike was
detected when V reached Vthreshold = −30 mV; voltage was then
reset to Vreset = −55 mV. The cell was then unable to spike for an
absolute refractory period of τabs = 3 ms.

All simulations presented here were done in a three-cell net-
work.
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4.1.4. Spiking dynamics: recurrent network
Gap junction coupling was introduced as an additional current on
the right-hand side of Equation (10):

Igap,j

C
= − ggap

C

∑
k �=j

(
Vj − Vk

)
(13)

The coupling strength ggap was held constant during a simulation.
When coupling was present (i.e., when ggap �= 0), ggap was var-
ied from the measured level (1.1 nS) (Trong and Rieke, 2008) to
16 times this value (17.6 nS) between simulations. When present,
coupling was all-to-all.

As in the feedforward model, Equations (10, 11) were inte-
grated for V < Vthreshold, and a spike was detected when V reached
Vthreshold = −30 mV. To model the voltage trajectory immediately
following a spike, an averaged spike waveform was extracted from
voltage traces of the same ON parasol cell used to fit Equations (10,
11). This spike waveform was then used to replace 1 ms of the
membrane voltage trajectory during and after a spike; at the end
of the 1 ms, the voltage was released at approximately −58 mV.
The cell was unable to spike for an absolute refractory period of
τabs = 3 ms. A relative refractory period was induced by introduc-
ing a declining threshold for the period of 3–6 ms following a spike,
after which Vthreshold returns to−30 mV.

4.1.5. Cell receptive field and stimulation
We defined each cell’s stimulus as the linear convolution of an
image with its receptive field. The receptive fields include an ON
center and an OFF surround, as in Chichilnisky and Kalmar (2002):

sj (
x) = exp

(
−1

2

(
x − 
xj
)T

Q
(
x − 
xj

))
(14)

−k exp

(
−1

2
r
(
x − 
xj

)
Qr
(
x − 
xj

))

where the parameters k and 1/r give the relative strength and size
of the surround. Q specifies the shape of the center and was cho-
sen to have a 1 standard deviation (SD) radius of 50 μm and to be
perfectly circular. The receptive field locations 
x1, 
x2, and 
x3 were
chosen so that the 1 SD outlines of the receptive field centers will
tile the plane (i.e., they just touch). Other parameters used were
k = 0.3, r = 0.675.

Stimulation images were defined on a 512 μm × 512 μm grid
that overlapped all three receptive fields. For full-field stimuli,
light intensity was chosen be spatially constant and refreshed every
8, 40, or 100 ms by choosing independently from the specified
stimulus distribution (Gaussian, binary, Cauchy, or heavy-tailed
skew). For spatially variable stimuli, a checkerboard pattern was
imposed on the stimulation image: the intensity value in each
checkerboard square was chosen independently and refreshed

Table 1 | Parameters used to model the transformation of stimuli into synaptic conductances for the RGC model, as described in Equations

(7–9).

Model (MOD) PMOD (s−1) τMOD (ms) nMOD TMOD (ms) AMOD (nS) BMOD (nS) CMOD (nS)

exc −8× 104 12 3.6 105 −8.3× 10−7 7× 10−3 −0.95

inh −1.8× 105 16 3.0 120 1.67× 10−6 6.2× 10−3 4.17

exc,M −3.2× 105 12 2 120* −8.3× 10−7 7× 10−3 −0.95

inh,M −3.5× 105 13.2 2 132* 1.67× 10−6 6.2× 10−3 4.17

Additional parameters for monophasic filters

Model (MOD) TMOD, S (ms) TMOD, C (ms) RMOD

exc,M 120 100 0.8

inh,M 132 110 0.8

Asterisks (*) indicate parameters that are superceded by later rows; note that the monophasic filter equations contain two filtering timescales—for example Texc,M,S

and Texc,M,C, for the excitatory monophasic filter—and a relative weighting (e.g., Rexc,M).

Table 2 | Coefficients used to define refractory EIF model as specified in Equations (11, 12).

Parameter (PAR) cPAR,1 cPAR,2 cPAR,3 (ms) cPAR,4 (ms)

τm (actual fit: 1/τm) 0.3719 ms−1 0.5412 ms−1 13.2726

VT −44.3323 mV 25.1812 mV 4.7653

EL −59.4858 mV 5.8966 mV 8.3076 233.1114

�T 20.0487 ms 19.0560 ms 3.6280 2430.4

The parameters 1/τm and VT were fit to single exponentials as functions of time, with three free parameters. The parameters EL and �T were fit to differences

of exponentials and therefore have four parameters. Units in the first and second columns are as stated; coefficients in the third and fourth column are in units of

milliseconds (ms).
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at the appropriate interval. The checkerboard pattern was first
given a random rotation and translation relative to the receptive
fields: this was chosen at the outset of each batch of stixel sim-
ulations (for a total of five rotation/translation pairs per stixel
size, refresh rate, and stimulus distribution). Two example place-
ments are shown in Figures S2A,D for 256 μm and 60 μm pixels
respectively.

4.1.6. Numerical methods
All simulations and data analysis were performed using MATLAB.
Equations (10, 11) were integrated using the Euler method for
>105 ms with a time step of 0.1 ms. The synaptic noise terms,
ηexc

k and ηinh
k , as well as the light input, were generated indepen-

dently for each simulation. In response to uniform light stim-
uli, firing rates were 11.51± 0.38 Hz (standard deviations given
across a total of 60 cells; 3 cells each from 20 105 ms simula-
tions); 10 ms bins were used to discretize the spiking output. Firing
rates were higher for full-field stimuli, ranging from 12 to 43 Hz
(firing rates increased with stimulus variance); therefore shorter
(5 ms) bins were used to discretize spike output for all other
simulations. With this range of firing rates and bin size, multi-
ple spikes were very rare (occurring in <1% of occupied bins).
Empirical spiking distributions were computed from the binned
spike data.

For each stimulus condition, 20 simulations (or sub-
simulations) were run, for a total integration time of
> 20× 105 ms. These 20 sub-simulations were used to esti-
mate standard errors in both the probability distribution over
spiking events and DKL(P, P̃). Numbers reported in section 2 are,
unless specified otherwise, produced by collating the data from the
20 simulations.

To fit a maximum entropy model P̃ to an empirical probability
distribution P, we used standard methods that have been explained
elsewhere (Malouf, 2002). Briefly, we minimized the negative log-
likelihood function:

L (λ) = −
∑

x

P (x) log P̃ (x, λ) (15)

where

P̃ (x, λ) = Z−1
λ exp

(∑
k

λkfk (x)

)
;

Zλ is the partition function, fk, k = 1, . . . ,M is a set of functions or
“features” of the spiking state, and λ is a vector of parameters, each
of which serves as a Lagrange multiplier enforcing the constraint
EP̃[fk]. For the pairwise (PME) model on N cells, λ corresponds to
N firing rates and N(N − 1)/2 covariances, and the sum is over all
possible spiking states of the system. For N = 3 there are six such
parameters, and

log P̃ ({x1, x2, x3}, λ) = λ1x1 + λ2x2 + λ3x3 + λ1,2x1x2

+λ2,3x2x3 + λ1,3x1x3 − log Zλ.

The function in Equation (15) is a convex function of the param-
eters λ which will be minimized precisely (and uniquely) when P̃
matches the desired moments from P: e.g., EP[x1] = EP̃[x1]. Since

P̃ is in log-linear form, the result will be the maximum entropy
distribution that matches the desired moments (Malouf, 2002).
In principle any unconstrained gradient descent method may be
used; we used an implementation of the non-linear conjugate
gradient method. The Kullback Leibler divergence DKL(P, P̃) was
computed using the identity DKL(P, P̃) = S(P̃)− S(P), where S(P)
is the entropy of P, i.e., S(P) = −∑x P(x) log P(x).

4.1.7. Convergence testing
To test our finding that the observed distributions were well-
modeled by the PME fit, we also performed the PME analy-
sis on each of the 20 simulations for each stimulus condition.
While in general DKL(P, P̃) can be quite sensitive to perturba-
tions in P, the numbers remained small under this analysis. To
confirm that our results for DKL(P, P̃) are sufficiently resolved to
remove bias from sampling, we performed an analysis in which
we collect the 20 simulations in subgroups of 1, 2, 4, 5, 10, and
20, and plot the mean DKL with estimated standard errors. As
expected (e.g., Paninski, 2003), bias decreases as the length of sub-
group increases and asymptotes at—or before—the full simulation
length.

To provide a cross-validation test for the significance of our
reported DKL(P, P̃) values, we divided our data into halves
(which we denote P1 and P2, each including data from 10 sub-
simulations) and performed the PME analysis on one half (say
P1) to yield a model P̃1. We then computed DKL(P2, P̃1) and
DKL(P2, P1) (as in Yu et al., 2011), which we refer to the cross-
validated and empirical likelihood, respectively. The former tests
whether the PME fit is robust to over-fitting; the latter tests
how well-resolved our “true” distribution is in the first place.
Most cross-validated likelihoods fall on or near the identity line;
most empirical likelihoods are close to zero [and importantly,
significantly smaller than either DKL(P, P̃) or DKL(P2, P̃1), indi-
cating that DKL(P, P̃) is accurately resolved]. We conclude that
the deviations that we observe when these conditions are met can
not be accounted for by the differences in testing and training
data.

4.2. COMPUTATION OF SPIKING PATTERNS IN THE SIMPLIFIED MODEL
As a simplified model of a neural circuit, we consider a vari-
ant of the Dichotomized Gaussian (Amari et al., 2003; Macke
et al., 2009, 2011), in which correlated inputs are thresholded
to produce an output spike pattern. To be concrete, a set of N
threshold spiking units is forced by a common input Ic [drawn
from a probability distribution PC(y)] and an independent input
Ij [drawn from a probability distribution PI(y)]. To relate these
functions to the other free parameters in the model, PC(y) and
PI(y) were always chosen so that Ij and Ic had mean 0 and
variances (1− c)σ2 and cσ2, respectively (so that c yields the
Pearson’s correlation coefficient of the input to two cells). The out-
put of each cell xj is determined by summing and thresholding
these inputs:

xj = H
(
Ij + Ic −�

)
(16)

where H is the Heaviside function [H(x) = 1 if x ≥ 0; H(x) = 0
otherwise]. Conditioned on Ic, the probability of each spike is
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given by:

Prob
[
xj = 1 | Ic = a

] = Prob
[
Ij + a−� > 0

]
= Prob

[
Ij > �− a

]
=
∫ ∞
�−a

PI(y) dy

Similarly, we have the conditioned probability that xj = 0:

Prob
[
xj = 0 | Ic = a

] = Prob
[
Ij + a−� < 0

]
= Prob

[
Ij < �− a

]
=
∫ �−a

−∞
PI(y) dy

Because these are conditionally independent, the probability of any
spiking event (x1, x2, . . . , xN) = (A1,A2, . . . ,AN) is given by the
integral of the product of the conditioned probabilities against the
density of the common input.

Prob [x1 = A1, . . . , xN = AN ] =
∫ ∞
−∞

dy PC(y) (17)

N∏
j= 1

Prob
[
xj = Aj | Ic = y

]

The integral in Equation (17) is numerically evaluated via an adap-
tive quadrature routine, such at Matlab’s quad or integral.

Four distinct unimodal inputs were used; two with heavy tails
(Cauchy and heavy-tailed with skew), and two with sub-Gaussian
tails (Gaussian and skewed). A random variable X is sub-Gaussian
if the probability of large events can be bounded above by a scaled
Gaussian; that is, if there exist constants C, c > 0 such that

P (|X| > λ) ≤ C exp
(−cλ2)

for all λ (e.g., see Tao, 2012, p. 15).
Unimodal inputs Ij, Ic were chosen from different marginals

with mean 0 and variances (1 − c)σ2, cσ2, respectively (for sim-
plicity, we use σ2 to refer to the variance of a generic probability
distribution in the following three paragraphs). For Gaussian

inputs with variance σ2, P(x) ∝ e−x2/2σ2
; for skewed inputs,

P(x) ∝ (x + μ)e−(x+μ)2/2a, for x > −μ, where the parameter a

sets the variance 2a(1− π
4 ) and shifting by μ =

√
aπ
2 ensures that

the mean of P(x) is zero.
The heavy-tailed unimodal inputs were chosen so that the rate

of tail decay would mimic the I−2 luminance statistics found in
natural scenes (Ruderman and Bialek, 1994):

P(x) ∝ 1

x2 + 1
, −X < x < X

P(x) ∝ x(
x2 + 1

)3/2
, 0 ≤ x < X

for the Cauchy and heavy-tailed with skew distributions,
respectively. A finite support of X was necessary in order to ensure
the distributions had finite moments; X was chosen to be 1000.
Given X, the distributions were shifted and scaled to ensure mean
0 and variance σ2.

Bimodal inputs with variance σ2 were chosen in the following
way: in all cases, P(x) was chosen to be a discrete distribution with
support on two values {0,X} i.e., P(X) = p and P(0) = 1− p. If
possible (i.e., if σ2 ≤ 1/4), X was chosen to be 1; otherwise, X was
chosen so as to minimize the distance between 0 and X. Finally,
P(x) was shifted to have the desired mean value.
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Figure S1 | Biphasic vs. monophasic filters used in simulations illustrated

in Figure 4.

Figure S2 | Illustration of RGC simulations with light stimuli of varying

spatial scale (“stixels”). (A–C) For stixel size 60 μm, results for one

randomly chosen stimulus position. (A) Contour lines of the three

receptive fields (at 0.5, 1, 1.5, and 2 SD; and at the zero contour line)

superimposed on the stimulus checkerboard (for illustration, pictured in an

alternating black/white pattern). The red scale bar indicates 100 μm. (B)

Histograms of the excitatory conductances, for each cell. (C) Spike pattern

distribution, as obtained from computational simulations of the RGC

model (“Observed”; dark blue), and the corresponding pairwise fit

(“PME”; light pink). All eight spike patterns are shown, to allow for the

possibility of non-symmetric responses; the three different probabilities

labeled p1 correspond to P[(1, 0, 0)], P[(0, 1, 0)], and P[(0, 0, 1)]. (D–F) As

in (A–C), but for stixel size 256 μm. Panels (E,F) demonstrate that for this

input, both excitatory inputs and spiking responses are heterogenous

across the RGCs.

Figure S3 | Strength of higher-order interactions produced by the

threshold model as input parameters vary; relationship with other output

firing statistics. (A) For skewed common inputs: DKL(P, P̃) as a function

of input correlation c and input standard deviation σ, for a fixed threshold

� = 1.5. Color indicates DKL(P, P̃); see color bar for range. (B) For

skewed common inputs: DKL(P, P̃) vs. firing rate E[x1] (Left) and the

fraction of multi-information (�) captured by the PME model vs. firing rate

E[x1] (Right). In (B), possible input parameters were varied over a broad

range as described in section 2. Firing rate is defined as the probability of

a spike occurring per cell per random draw of the sum-and-threshold

model, as defined in Equation (16). Color indicates output correlation

coefficient ρ ranging from black for ρ ∈ (0, 0.1), to white for ρ ∈ (0.9, 1), as

illustrated in the color bars. (C,D): as in (A,B), but for heavy-tailed, skewed

common inputs.
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Figure S4 | The range of higher-order interactions produced by the

threshold model varies across input type. Here, all values of DKL(P, P̃)

produced by the three-cell threshold model (previously displayed in

Figures 7, S3) are superimposed to show the contrast between different

input distributions. By comparing these data with data from direct

sampling of all symmetric spiking distributions on three cells (from

Figure 1 and shown here in yellow), one can see that only a limited set of

output patterns are accessed by the feedforward thresholding model.

Firing rate is defined as the probability of a spike occurring per cell per

random draw of the sum-and-threshold model, as defined in

Equation (16).

REFERENCES
Amari, S. (2001). Information geometry on hierarchy of probability distributions.

IEEE Trans. Inf. Theory 47, 1701–1711. doi: 10.1109/18.930911
Amari, S., Nakahara, H., Wu, S., and Sakai, Y. (2003). Synchronous firing and

higher-order interactions in neuron pool. Neur. Comp. 15, 127–142. doi:
10.1162/089976603321043720

Badel, L., Lefort, S., Berger, T. K., Petersen, C. C. H., Gerstner, W., and Richardson,
M. J. E. (2008). Extracting non-linear integrate-and-fire models from exper-
imental data using dynamic I–V curves. Biol. Cybern. 99, 361–370. doi:
10.1007/s00422-008-0259-4

Badel, L., Lefort, S., Brette, R., Petersen, C. C. H., Gerstner, W., and Richardson,
M. J. E. (2007). Dynamic I-V curves are reliable predictors of natu-
ralistic pyramidal-neuron voltage traces. J. Neurophys. 99, 656–666. doi:
10.1152/jn.01107.2007

Barreiro, A. K., Shea-Brown, E. T., and Thilo, E. L. (2010). Timescales of spike-train
correlation for neural oscillators with common drive. Phys. Rev. E 81, 011916.
doi: 10.1103/PhysRevE.81.011916

Barreiro, A. K., Thilo, E. L., and Shea-Brown, E. T. (2012). A-current and type
I / type II transition determine collective spiking from common input. J.
Neurophysiol. 108, 1631–1645. doi: 10.1152/jn.00928.2011

Baudry, M., and Taketani, M., (eds). (2006). Advances in Network Electrophysiology
Using Multi-Electrode Arrays. New York, NY: Springer Press. doi: 10.1007/0-387-
25858-2_15

Bethge, M., and Berens, P. (2008). Near-maximum entropy models for binary
neural representations of natural images. Adv. Neur. Inf. Proc. Syst. 20,
97–104. doi: 10.1.1.68.3149

Bohte, S. M., Spekreijse, H., and Roelfsema, P. R. (2000). The effects of pair-wise
and higher-order correlations on the firing rate of a postsynaptic neuron. Neur.
Comp. 12, 153–179. doi: 10.1162/089976600300015934

Cain, N., and Shea-Brown, E. (2013). Impact of correlated neural activ-
ity on decision making performance. Neur. Comp. 25, 289–327. doi:
10.1162/NECO_a_00398

Chichilnisky, E. J., and Kalmar, R. S. (2002). Functional asymmetries in ON and
OFF ganglion cells of primate retina. J. Neurosci. 22, 2737–2747. doi: 20026215

Cocco, S., Leibler, S., and Monasson, R. (2009). Neuronal couplings between retinal
ganglion cells inferred by efficient inverse statistical physics methods. Proc. Natl.
Acad. Sci. U.S.A. 106, 14058–14062. doi: 10.1073/pnas.0906705106

Cover, T. M., and Thomas, J. A. (1991). Elements of Information Theory. New York:
Wiley. doi: 10.1002/0471200611

Dacey, D., and Brace, S. (1992). A coupled network for parasol but not
midget ganglion cells in the primate retina. Vis. Neurosci. 9, 279–290. doi:
10.1017/S0952523800010695

Dayan, P., and Abbot, L. (2001). Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press. doi:
10.1016/S0306-4522(00)00552-2

de la Rocha, J., Doiron, B., Shea-Brown, E., Josic, K., and Reyes, A. (2007).
Correlation between neural spike trains increases with firing rate. Nature 448,
802–806. doi: 10.1038/nature06028

Fairhall, A., Burlingame, C., Narasimhan, R., Harris, R., Puchalla, K., and Berry,
M. (2006). Selectivity for multiple stimulus features in retinal ganglion cells. J.
Neurophys. 96, 2724–2738. doi: 10.1152/jn.00995.2005

Ganmor, E., Segev, R., and Schneidman, E. (2011). Sparse low-order interaction
network underlies a highly correlated and learnable population code. Proc. Natl.
Acad. Sci. U.S.A. 108, 9679–9684. doi: 10.1073/pnas.1019641108

Hong, S., Ratte, S., Prescott, S., and De Schutter, E. (2012). Single neuron firing
properties impact correlation-based population coding. J. Neurosci. 32, 1413–
1428. doi: 10.1523/JNEUROSCI.3735-11.2012

Jaynes, E. T. (1957a). Information theory and statistical mechanics. Physiol. Rev.
106, 620–630. doi: 10.1103/PhysRev.106.620

Jaynes, E. T. (1957b). Information theory and statistical mechanics II. Physiol. Rev.
108, 171–190. doi: 10.1103/PhysRev.108.171

Koster, U., Sohl-Dickstein, J., Gray, C. M., and Olshausen, B. A. (2013). Higher
order correlations within cortical layers dominate functional connectivity in
microcolumns. ArXiv q-Bio/1301.0050.

Krumin, M., and Shoham, S. (2009). Generation of spike trains with con-
trolled auto- and cross-correlation functions. Neur. Comp. 21, 1642–1664. doi:
10.1162/neco.2009.08-08-847

Kuhn, A., Aertsen, A., and Rotter, S. (2003). Higher-order statistics of input ensem-
bles and the response of simple model neurons. Neur. Comp. 15, 67–101. doi:
10.1162/089976603321043702

Leen, D., and Shea-Brown, E. (2013). A simple mechanism for higher-order
correlations in integrate-and-fire neurons. ArXiv q-Bio.NC/1306.5275.

Macke, J. H., Berens, P., Ecker, A. S., Tolias, A. S., and Bethge, M. (2009). Generating
spike trains with specified correlation coefficients. Neur. Comp. 21, 397–423.
doi: 10.1162/neco.2008.02-08-713

Macke, J. H., Opper, M., and Bethge, M. (2011). Common input explains higher-
order correlations and entropy in a simple model of neural population activity.
Phys. Rev. Lett. 106, 208102. doi: 10.1103/PhysRevLett.106.208102

Malouf, R. (2002). “A comparison of algorithms for maximum entropy parameter
estimation,” in Proceedings of the Sixth Conference on Natural Language Learning
(Stroudsburg, PA), 49–55. doi: 10.3115/1118853.1118871

Marella, S., and Ermentrout, G. B. (2008). Class-II neurons display a higher degree
of stochastic synchronization than class-I neurons. Phys. Rev. E 77, 041908. doi:
10.1103/PhysRevE.77.041918

Martignon, L., Deco, G., Laskey, K., Diamond, M., Freiwald, W., and Vaadia,
E. (2000). Neural coding: higher-order temporal patterns in the neurostatis-
tics of cell assemblies. Neur. Comp. 12, 2621–2653. doi: 10.1162/089976600300
014872

McCulloch, W. S., and Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. Bull. Math. Biophys. 5, 115–137. doi: 10.1007/BF02478259

Montani, F., Ince, R. A. A., Senatore, R., Arabzadeh, E., Diamond, M. E.,
and Panzeri, S. (2009). The impact of high-order interactions on the
rate of synchronous discharge and information transmission in somatosen-
sory cortex. Phil. Trans. R. Soc. A 367, 3297–3310. doi: 10.1098/rsta.
2009.0082

Moreno, R., de la Rocha, J., Renart, A., and Parga, N. (2002). Response
of spiking neurons to correlated inputs. Phys. Rev. Lett. 89, 288101. doi:
10.1103/PhysRevLett.89.288101

Murphy, G. J., and Rieke, F. (2006). Network variability limits stimulus-evoked
spike timing precision in retinal ganglion cells. Neuron 52, 511–524. doi:
10.1016/j.neuron.2006.09.014

Nowotny, T., and Huerta, R. (2003). Explaining synchrony in feed-forward net-
works: are McCulloch-Pitts neurons good enough? Biol. Cybern. 89, 237–241.
doi: 10.1007/s00422-003-0431-9

Ohiorhenuan, I. E., Mechler, F., Purpura, K. P., Schmid, A. M., Hu, Q., and Victor,
J. D. (2010). Sparse coding and high-order correlations in fine-scale cortical
networks. Nature 466, 617–621. doi: 10.1038/nature09178

Ohiorhenuan, I. E., and Victor, J. D. (2010). Information-geometric measure of 3-
neuron firing patterns characterizes scale-dependence in cortical networks. J.
Comp. Neurosci. 30, 125–141. doi: 10.1007/s10827-010-0257-0

Oizumi, M., Ishii, T., Ishibashi, K., and Okada, M. (2010). Mismatched decoding in
the brain. J. Neurosci. 30, 4815–4826. doi: 10.1523/JNEUROSCI.4360-09.2010

Paninski, L. (2003). Estimation of entropy and mutual information. Neur. Comp.
15, 1191–1253. doi: 10.1162/089976603321780272

Roudi, Y., Nirenberg, S., and Latham, P. E. (2009a). Pairwise maximum entropy
models for studying large biological systems: when they can work and
when they can’t. PLoS Comp. Biol. 5:e1000380. doi: 10.1371/journal.pcbi.
1000380

Roudi, Y., Tyrcha, J., and Hertz, J. (2009b). Ising model for neural data: model qual-
ity and approximate methods for extracting functional connectivity. Phys. Rev.
E 79, 051915. doi: 10.1103/PhysRevE.79.051915

Ruderman, D. L., and Bialek, W. (1994). Statistics of natural images: scaling in the
woods. Phys. Rev. Lett. 73, 814–818. doi: 10.1103/PhysRevLett.73.814

Frontiers in Computational Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 10 | 28

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Barreiro et al. Beyond-pairwise correlations in microcircuits

Santos, G. S., Gireesh, E. D., Plenz, D., and Nakahara, H. (2010). Hierarchical inter-
action structure of neural activities in cortical slice cultures. J. Neurosci. 30,
8720–8733. doi: 10.1523/JNEUROSCI.6141-09.2010

Schneidman, E., Berry (II), M. J., Segev, R., and Bialek, W. (2006). Weak pairwise
correlations imply strongly correlated network states in a neural population.
Nature 440, 1007–1012. doi: 10.1038/nature04701

Schneidman, E., Still, S., Berry (II), M. J., and Bialek, W. (2003). Network
information and connected correlations. Phys. Rev. Lett. 91, 238701. doi:
10.1103/PhysRevLett.91.238701

Sharpe, L. T., Whittle, P., and Nordby, K. (1993). Spatial integration and sensitivity
changes in the human rod visual system. J. Physiol. 461, 235–246.
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APPENDIX
A.1 A MEASURE OF HIGHER-ORDER INTERACTIONS: DKL(P, P̃)

We begin by observing that when P̃ is a maximum entropy distri-
bution that approximates P (that is, it is log-linear, with coefficients
chosen to enforce equality of a set of moments), then the KL-
distance may be written as a difference of entropies (Cover and
Thomas, 1991; Malouf, 2002):

DKL
(
P, P̃

) = −S(P)+ S
(
P̃
)

Here, the entropy of a probability distribution P on {0, 1}3 is given

S(P) = −p0 log
(
p0
)− 3p1 log

(
p1
)− 3p2 log

(
p2
)

(18)

−p3 log
(
p3
)

if we use the fact that the distributions are permutation-symmetric
[i.e., p1 ≡ P(1, 0, 0) = P(0, 1, 0) = P(0, 0, 1)]. We take the loga-
rithms in the definitions of the entropy S and KL-divergence DKL

to be base 2, so that any numerical values of these quantities are in
units of bits. Using the fact that P must normalize to 1, we rewrite

S(P) = − (1− 3p1 − 3p2 − p3
)

log
(
1− 3p1 − 3p2 − p3

)
−3p1 log

(
p1
)− 3p2 log

(
p2
)− p3 log

(
p3
)

where the set of admissible distributions may now be described by
the convex tetrahedron in R

3, C = {p1, p2, p3 ≥ 0; 3p1 + 3p2 +
p3 ≤ 1}

We note that the set of distributions which satisfies a desired set
of lower order moments is given by an affine subspace (in R

3, a
line) which intersects this tetrahedron:

μ ≡ E[Xi] = p1 + 2p2 + p3

ρ̂ ≡ E[X2
i ] = p2 + p3

Denoting this set by Cμ,ρ̂, we note that Cμ,ρ̂ is a convex set and that

S(P̃) is constant on each Cμ,ρ̂.
By straightforward differentiation we can check that the Hessian

of −S(P) is positive definite, as long as the probabilities p0, p1, etc.
are strictly greater than zero:

−D2S(P) =
⎡
⎢⎣

3
p1

0 0

0 3
p2

0

0 0 1
p3

⎤
⎥⎦+ 1

p0

⎡
⎣9 9 3

9 9 3

3 3 1

⎤
⎦

Therefore −S(P) is convex on Cμ,ρ̂; since S(P̃) is constant,

DKL(P, P̃) is likewise convex on Cμ,ρ̂. As a consequence, if

DKL(P, P̃) has a local minimum, then it is unique and a global
minimum as well. Since DKL(P, P̃) ≥ 0 with equality if and only
if P = P̃, this minimum must be achieved occurs when P = P̃; the
maximum is likewise achieved on the boundary of the admissible
region Cμ,ρ̂.

A.2 A MEASURE OF HIGHER-ORDER INTERACTIONS: STRAIN
We define the strain,

γ = log

(
p3p3

1

p0p3
2

)
(19)

= log p3 − log p0 + 3 log p1 − 3 log p2

a potential measure of the importance of higher-order interac-
tions (Ohiorhenuan and Victor, 2010). By Equation (3), we can
see that γ = 0 precisely for a pairwise maximum entropy (PME)
distribution. We will show that as the distribution (p0, p1, p2, p3)

is moved away from the constraint surface while fixing lower-order
moments, the strain increases monotonically.

From the definition of lower-order moments,

μ = E[Xi] = p1 + 2p2 + p3

ρ̂ = E[XiXj] = p2 + p3

we can verify that in order to keep μ, ρ̂ constant, if p1 increases
by z (i.e., p1 → p1 + z), then we must also have p2 → p2 − z and
p3 → p3 + z. Then if each probability is strictly positive, then the
derivative

∂γ

∂z
= 1

p3 + z
+ 1

1− p3 − 3p1 − 3p2 − z
+ 3

p1 + z
+ 3

p2 − z

is strictly positive as well. In particular, it is strictly positive at z = 0
and will remain positive until z reaches a value such that one of the
denominators reaches 0. Therefore γ increases monotonically for
z > 0 and decreases monotonically for z < 0.

A.3 AN ANALYTICAL EXPLANATION FOR UNIMODAL vs. BIMODAL
EFFECTS

We consider an analytical argument to support the numeri-
cal results that bimodal inputs generate larger deviations from
PME model fits than unimodal inputs. As a metric, we consider
DKL(P, P̃)—where P and P̃ are again the true and model distri-
butions, respectively—when we perturb an independent spiking
distribution by adding a common, global input of variance c. To
simplify notation, the small parameter in the calculation will be
denoted ε = √c.

We now compute S(P) and S(P̃) (defined in an earlier
Appendix) by deriving a series expansion for each set of event
probabilities. We can compute the true distribution P using the
expressions derived in Equation (18); to recap, let the common
input Ic have probability density p(Ic), and the independent input
to each cell, x, have density ps(x). Let� be the threshold for gener-
ating a spike (i.e., a “1” response). For each cell, a spike is generated
if x + Ic > �, i.e., with probability

d(Ic) =
∫ ∞
�−Ic

ps(x)dx.
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Given Ic, this is conditionally independent for each cell. We can
therefore write our probabilities by integrating over Ic as follows:

p0 =
∫ ∞
−∞

p(Ic)(1− d(Ic))
3 dIc

p1 =
∫ ∞
−∞

p(Ic)d(Ic)(1− d(Ic))
2 dIc (20)

p2 =
∫ ∞
−∞

p(Ic)d(Ic)
2(1− d(Ic)) dIc

p3 =
∫ ∞
−∞

p(Ic)d(Ic)
3 dIc

We develop a perturbation argument in the limit of very weak com-
mon input. That is, p(Ic) is close to a delta function centered at
Ic = 0. Take p(Ic) to be a scaled function

p(Ic) = 1

ε
f

(
Ic

ε

)
(21)

We place no constraints on f (x), other than that it must be
normalized (E[1] = 1) and that its moments must be finite
(so that E[Ic], E[I2

c ], and so forth will exist, where E[g(x)] ≡∫∞
−∞ g(x)f (x) dx).

For the moment, assume that the function f (x) has a single
maximum at x = 0. To evaluate the integrals above, we Taylor-
expand d(x) around x = 0. Anticipating a sixth-order term to
survive, we keep all terms up to this order. This gives, for
small x,

d(x) ≈ d(0)+
6∑

k= 1

akxk + O(x7)

where a1 = ps(�) (the other coefficients a2-a6 can be given sim-
ilarly in terms of the independent input distribution at �).
Substituting this into the expressions for p0, etc., above, with p(Ic)

given as in Equation (21), gives us each event as a series in ε; for
example,

p3 = d3
0 +

(
3a1d2

0 E[x]) ε+ ((3a2
1d0 + 3a2d2

0)E[x2]) ε2 + . . . ,

where expectations are, again, with respect to the unscaled PDF
f (x). The entropy S(P) is now given by using these series expan-
sions in Equation (18).

We note that our derivation does not rely on the fact that the
distribution of common input is peaked at Ic = 0 in particular. For
example, we could have a common input centered around μ. The
common input distribution function would be of the form

p(Ic) = 1

ε
f

(
Ic − μ

ε

)

Changing ε regulates the variance, but doesn’t change the mean
or the peak (assuming, without loss of generality, that the peak
of f occurs at zero). The peak of p(Ic) now occurs at μ, and the

appropriate Taylor expansion of d(x) is

d(x) ≈ d(μ)+
6∑

k= 1

bk(x − μ)k + O(x7),

where the coefficients bk now depend on the local behavior of d
around μ. The expectations that appear in the expansion of p3,
and so forth, are now centered moments taken around μ; the cal-
culations are otherwise identical. In other words, the perturbation
expansion requires the variance of the common input to be small,
but not the mean.

For bimodal inputs, we consider a common input with a prob-
ability distribution of the following form:

p (Ic) =
(
1− ε2) 1

ε
f

(
Ic

ε

)
+ ε2 1

ε
f

(
Ic − 1

ε

)

so that most of the probability distribution is peaked at zero, but
there is a second peak of higher order (here taken at Ic = 1, with-
out loss of generality). Again, we approximate the integrals given in
Equation (20), and therefore the entropy S(P), by Taylor expanding
d(x);

d(x) ≈ d(0)+
6∑

k= 1

akxk + O(x7); (x ≈ 0)

≈ d(1)+
6∑

k= 1

bk (x − 1)k + O
(
(x − 1)7

) ; (x ≈ 1)

around the two peaks 0 and 1, respectively. For each integral we
have the same contributions from the unimodal case, multiplied
by (1− ε2), as well as the corresponding contributions from the
second peak multiplied by ε2 (these weightings are chosen so that
the common input has variance of order ε2, as in the unimodal
case). This makes clear at what order every term enters.

We now construct an expansion for the PME model P̃:

P̃ (x1, x2, x3) = 1

Z
exp (λ1 (x1 + x2 + x3)

+λ2 (x1x2 + x2x3 + x1x3))

We approach this problem by describing λ1 and λ2 as a series in ε.
We match coefficients by forcing the first and second moments of
P̃ to match those of P—as they must. Specifically, take

λ1 = λ̃+
6∑

k=1

εkuk + O
(
ε7)

λ2 =
6∑

k= 1

εkvk + O
(
ε7)

where λ1 = λ̃, λ2 = 0 are the corresponding parameters from the
independent case. The events p̃0, p̃1, p̃2, and p̃3 can be written as
a series in ε. We then require that the mean and centered second
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moments of P̃ match those of P; that is

p1 + 2p2 + p3 = p̃1 + 2p̃2 + p̃3

p2 + p3 −
(
p1 + 2p2 + p3

)2 = p̃2 + p̃3 −
(
p̃1 + 2p̃2 + p̃3

)2
.

At each order k, this yields a system of two linear equations in uk

and vk; we solve, inductively, up to the desired order; we now have
P̃, and therefore S(P̃), as a series in ε.

Finally, we combine the two series to find that in the unimodal
case,

DKL
(
P, P̃

) = S
(
P̃
)− S(P)

= ε6

[
a6

1

(
2 E[x]3 − 3 E[x]E[x2] + E[x3])2

2 (1− d0)
3 d3

0

]
(22)

+O
(
ε7)

If the first two odd moments of the distribution are zero

(something we can expect for “symmetric” distributions, such as a
Gaussian), then this sixth-order term is zero as well.

For the bimodal case

DKL
(
P, P̃

) = S
(
P̃
)− S(P)

= ε4

[
(d1 − d0)

6

2 (1− d0)
3 d3

0

]
+ O

(
ε5)

This last term depends on the distance d1 − d0, in other words,
how much more likely the independent input is to push the cell
over threshold when common input is “ON”. We can also view this
as depending on the ratio d1−d0

1−d0
, which gives the fraction of previ-

ously non-spiking cells that now spike as a result of the common
input.

The main point here, of course, is that DKL(P, P̃) is of order ε4

rather than ε6. So, as the strength of a common binary vs. unimodal
input increases, spiking distributions depart from the PME more
rapidly.
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Synchrony in a presynaptic population leads to correlations in vesicle occupancy at the
active sites for neurotransmitter release. The number of independent release sites per
presynaptic neuron, a synaptic parameter recently shown to be modified during long-term
plasticity, will modulate these correlations and therefore have a significant effect on the
firing rate of the postsynaptic neuron. To understand how correlations from synaptic
dynamics and from presynaptic synchrony shape the postsynaptic response, we study
a model of multiple release site short-term plasticity and derive exact results for the
crosscorrelation function of vesicle occupancy and neurotransmitter release, as well as
the postsynaptic voltage variance. Using approximate forms for the postsynaptic firing
rate in the limits of low and high correlations, we demonstrate that short-term depression
leads to a maximum response for an intermediate number of presynaptic release sites,
and that this leads to a tuning-curve response peaked at an optimal presynaptic synchrony
set by the number of neurotransmitter release sites per presynaptic neuron. These effects
arise because, above a certain level of correlation, activity in the presynaptic population
is overly strong resulting in wastage of the pool of releasable neurotransmitter. As the
nervous system operates under constraints of efficient metabolism it is likely that this
phenomenon provides an activity-dependent constraint on network architecture.

Keywords: long-term plasticity, short-term plasticity, synaptic depression, correlations and synchrony, voltage

fluctuations

1. INTRODUCTION
Synapses play a key role in transmitting and processing infor-
mation throughout the nervous system and long-term shifts in
synaptic efficacy are believed to underpin learning and memory
(Hebb, 2002; Markram et al., 2011). Synapses function through
release of neurotransmitters that then bind to receptors on the
postsynaptic cell and transiently alter the membrane conduc-
tance. Neurotransmitters in the presynaptic terminal are stored
and transported in vesicles (Fox, 1988; Hu et al., 2008). A num-
ber of vesicles are positioned at active sites where they have a
certain probability of being released when the presynaptic cell
spikes. Empty release sites are restocked after a variable period,
with an overall rate of a few Hz (Südhof, 2004). Both the number
of contacts per presynaptic cell and the activity in the presynaptic
network can generate correlations in the release of neurotrans-
mitter at synapses onto a single neuron; we demonstrate that
postsynaptic activity is governed by a balance between these two
sources of correlation.

The usage of vesicles due to presynaptic firing and stochas-
tic replenishment means that the number of vesicles available
for release is a highly dynamic quantity that is dependent on
the history of afferent activity. In the immature cortex, the rel-
atively high release probability and limited availability of vesicles
causes a progressive reduction in synaptic efficacy during a period

of sustained neuronal activity (Reyes and Sakmann, 1999; Chen
and Buonomano, 2012). This short-term reduction in synaptic
strength is known as vesicle depletion depression: an unstocked
active site cannot induce a postsynaptic response to any inci-
dent action potential (Abbot, 1997; Tsodyks and Markram, 1997;
Zucker and Regehr, 2002). The phenomenon is believed to play
a role in gain control (Abbot, 1997; Abbott and Regehr, 2004;
Rothman et al., 2009), information transmission (Zador, 1998;
Kilpatrick, 2012; Scott et al., 2012), and adaptation to sensory
stimuli (Furukawa et al., 1982; Hallermann and Silver, 2012).
The synaptic plasticity models introduced by Abbot (1997) and
Tsodyks et al. (1998) capture short-term depression accurately;
they match empirical data and allow a richness of network behav-
ior (Tsodyks et al., 1998) to emerge beyond that predicted by static
synapses. Such models consider the mean efficacy of the synapse,
averaged across several presentations of the same presynaptic
stimulus; the predicted postsynaptic response therefore varies
continuously. Several recent studies have considered a quantal
model of synaptic function incorporating short-term depres-
sion, with probabilistic vesicle release and replacement to reflect
trial-to-trial variability (Fuhrmann et al., 2002; de la Rocha and
Parga, 2005; Rosenbaum et al., 2012). The impact of stochas-
tic vesicle dynamics is particularly marked when mean synaptic
drive is insufficient to bring the postsynaptic neuron to threshold
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and spiking activity is governed by fluctuations in the system
(Gerstein and Mandelbrot, 1964; Kuhn, 2004). To induce post-
synaptic firing in such a system it is necessary for the variable
synaptic drive to exhibit coincidences; this occurs most regularly
when that drive is correlated.

Correlations in neurotransmitter release between different
sites can arise from two sources: from multiple contacts onto a
postsynaptic neuron from the same presynaptic cell and from syn-
chronous activity across the presynaptic population. The number
of sites between a pair of neurons is fixed over short timescales,
unlike the number of vesicles ready to release from the sites, but
can vary widely over longer periods (Loebel et al., 2013) following
potentiation or depression. Connections between neurons poten-
tiate and depress in the long term chiefly through changes in this
synaptic parameter—the number of independent release sites can
be seen as a fundamental unit of memory. Synchronous firing in
the presynaptic population emerges from the connectivity of neu-
ronal networks (Aertsen et al., 1989) and has relevance for encod-
ing sensory information (von der Malsburg, 1981; deCharms and
Merzenich, 1996; Averbeck et al., 2006), motor control (Baker
et al., 2001; Capaday, 2013) and decision making (Cohen and
Newsome, 2008; Cain and Shea-Brown, 2013). Recent work sug-
gests that modulation of correlations can be more significant for
neuronal coding than alterations in the presynaptic firing rate
(Seriès et al., 2004; Mitchell et al., 2009; Cohen and Kohn, 2011).
Population synchronization is a transient phenomenon relative to
the structural changes underlying long-term plasticity.

A detailed stochastic model of neurotransmitter dynamics at
the presynaptic terminal is required to analyze the effects of presy-
naptic synchrony, particularly when long-term plasticity varies
the structure of synapses through altering the number of release
sites. It can be noted that multiple contacts between cells and
transient correlations within a presynaptic population are likely
to introduce considerable redundancy in the usage of vesicles:
correlated events may lead to EPSPs many times larger than that
required to reach threshold. However, evidence points to the ner-
vous system operating under constraints of efficient metabolism
(Levy and Baxter, 2002; Taschenberger et al., 2002; Savtchenko
et al., 2012) suggesting such wastage would not commonly arise
in vivo. It is therefore of interest to examine the effect on the post-
synaptic cell of the interaction of partially synchronized afferent
drive with multiple contacts per presynaptic cell. To this end, we
analyze a model of a postsynaptic cell receiving input from a pop-
ulation of release sites distributed between different numbers of
presynaptic neurons and with different levels of synchrony.

Following the basic model definitions, we first derive exact
forms for the crosscorrelations of vesicle occupancies and release
at multiple contacts from the same and different presynaptic cells.
These correlations were previously derived by Rosenbaum et al.
(2012) using a diffusion and additive-noise approximation, and
our results show that this earlier method gave exact results for
these quantities. We then go on to calculate the exact voltage mean
and variance and, through comparison with the typical EPSP
amplitude, argue that synaptic noise can become significantly
non-Gaussian. We then derive two approximate limiting forms
for the firing rate for low and high correlations and demonstrate
that the postsynaptic response is optimal at intermediate levels of

afferent correlations. We finally show that this effect is robust for
neurons in which there is some level of synaptic homeostasis or
soft limit on the total number of release sites.

2. METHODS
We consider a population of N presynaptic neurons synapsing
onto a single postsynaptic neuron. A presynaptic neuron makes
synapses with n vesicle occupancy sites from each of which neu-
rotransmitter may be independently released with a probability
p on the arrival of a presynaptic action potential, occurring at a
constant Poissonian rate Ra. In between presynaptic action poten-
tials, empty release sites are restocked independently at a constant
Poissonain rate Rr . Initially, we consider that the total number of
release sites onto the postsynaptic cell is fixed at M = nN (exam-
ple configurations are provided in Figures 1A–C). The number
of independent release sites n was recently shown (Loebel et al.,
2013) to be the synaptic parameter most closely correlated with
the structural changes arising from long-term plasticity and so
we will consider the effects of varying n (while initially keeping M
constant) on the postsynaptic response. The binary variable x will
be used to signify vesicle release-site occupancy: x = 1 if present
or x = 0 if absent. The evolution of vesicle occupancy is given by
the stochastic differential equation

dx

dt
= (1− x)

∑
m

δ(t − tm)−
∑

k

�k(x)δ(t − tk) (1)

where m counts the restock events occurring at a rate Rr and k
counts the presynaptic action potentials occurring at a rate Ra.
The binary random variable �k(x) signifies whether a release was
successful at the kth action potential: if x = 1 then �k(x) = 1 with
probability p to model a successful release of neurotransmitter,
and is 0 otherwise to model a failed release from a stocked site;
if x = 0 then no release is possible and �k(x) = 0. The δs are

FIGURE 1 | We consider a population of N presynaptic neurons each

featuring n independent release sites onto a single postsynaptic cell.

(A) The stochastic dynamics are illustrated from left to right: if a vesicle is
present it is released (with probability p) when an action potential arrives
(Poissonian rate Ra); an empty release site; and restock of an empty
release site (Poissonian rate Rr ). (B,C) examples with M = nN = 9 with
(B) n = 1, N = 9 and (C) n = 3, N = 3 contacts and presynaptic neurons,
respectively. (D) Example spike trains for M = N = 6 correlated presynaptic
neurons that feature S = 3 synchronous spikes.
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Dirac delta functions and whenever a delta function multiplies a
dynamic variable it is assumed that the value of the variable used
is that immediately before the delta event occurs. In other words,
the equations are non-anticipating and should be interpreted in
an Itō sense (Gardiner, 2010).

2.1. CORRELATIONS FROM STRUCTURE
When a presynaptic neuron spikes, available vesicles at each of
the n sites release their contents independently with probability
p, and so the total number of release events is binomially dis-
tributed. Note that because these sites receive the same incoming
action potentials correlations will arise despite the independent
conditional release and restock events at each site. Globally, we
first hold the total number of release sites, given by M = nN,
constant so that the postsynaptic neuron receives a fixed overall
excitatory drive. In this study we set M = 5000, which is of-the-
order-of estimates by O’Kusky and Colonnier (1982), Megías et al.
(2001), and Spruston (2008). This has the effect of maintaining
the overall level of excitatory drive to the postsynaptic cell and in
biological terms can be seen as a constraint of metabolic efficiency
across the presynaptic population: as some contacts potentiate,
others die out. The effects of relaxing this condition are discussed
later. Recent analysis of long-term plasticity data has shown that
changes in EPSP amplitude are captured by models in which
the number of independent release sites n increases or decreases.
Depending on the protocol, n can potentiate or depress by a fac-
tor of 5 or more (Loebel et al., 2013); a typical range for n is 5–50.
However, contacts with a binomial n as low as 1 or as high as
100 sites have also been observed. Though the upper bound is
unbiological, for completeness we vary n between 1 and 5000 in
simulations.

2.2. CORRELATIONS FROM PRESYNAPTIC SYNCHRONY
The population of neurons driving a common target often
displays substantial synchrony in spiking activity (Salinas and
Sejnowski, 2000; Averbeck et al., 2006; Cohen and Kohn, 2011)
(see Figure 1D). Here we model correlations in the presynap-
tic population by using a variation of the Multiple Interaction
Process (MIP) introduced in Kuhn et al. (2003). We implement
the process by considering a master spike train with a constant
Poissonian rate NRa/S. For each spike in the master train we pick
S of the presynaptic neurons at random and assign a synchronous
spike in their trains. If S = 1 this would imply no correlations
in the presynaptic population and S = N would be a fully syn-
chronous presynaptic population. Note that the spiking of each
presynaptic neuron is Poissonian at rate Ra as required and also
that, given that one presynaptic neuron spikes, the probability
that a particular other presynaptic neuron has a spike at the
same time is c = (S− 1)/(N − 1). In reality, shared spikes will
not be entirely synchronous and so in later simulations (specifi-
cally, those leading to Figures 6, 7) we add independent, normally
distributed jitter to the spike times with mean 0 and standard
deviation τj following de la Rocha and Parga (2005) and Cohen
and Kohn (2011). Note that in Figures 5, 6A,B, 7 the curves are
truncated for increasing n because, for fixed S and fixed M = nN,
it is invalid to have S greater than N. This is also the case for
Figures 6B,C with increasing S.

2.3. POSTSYNAPTIC VOLTAGE
We treat the postsynaptic neuron as a leaky integrate-and-fire
model with each neurotransmitter release event causing the volt-
age to jump by an amount a. The membrane voltage V has a
resting value E and a spike threshold Vth. After a spike, V is reset
to E and held there for a time τr to model the refractory period. If
N presynaptic neurons each have n neurotransmitter release sites
then the postsynaptic voltage is governed by

τ
dV

dt
= E − V + aτ

N∑
i= 1

n∑
j= 1

∑
k

�
ij
k (xij)δ(t − ti

k) (2)

where τ is the membrane time constant, xij is the occupancy vari-
able for the ith presynaptic neuron’s release site number j and k
labels the order of incoming action potentials to release site with
occupancy xij. Note that the spike times ti

k are identical for all
release sites with the same presynaptic neuron i and that some
of the spike times will be common to release sites with distinct
presynaptic neurons, depending on the level of synchrony given
by the correlated MIP process parameterized by S. The values of
other parameters used in simulations (unless otherwise stated)
are given in (Table 1).

3. RESULTS
We first derive exact forms for the crosscorrelations of vesicle-
occupancy and of neurotransmitter-release time series. The latter
can then be used to calculate the exact membrane voltage vari-
ance. Two approximations of the postsynaptic firing rate then
lead us to the main result of the paper: that long-term synap-
tic plasticity—through its alternation of the synaptic parameter
n—sets the optimal postsynaptic response to a presynaptic popu-
lation with correlated firing. Throughout this section the notation
〈φ〉 denotes the steady-state expectation of the fluctuating quan-
tity φ.

For the calculation of the crosscorrelations of objects separated
by a time T, it is useful to consider how the steady-state expec-
tation of the product of the occupancy x with some quantity ψ
evaluated at an earlier time evolves with the separation time:

d

dT
〈x(T)ψ(0)〉 = 〈(1− x(T))ψ(0)〉Rr − 〈x(T)ψ(0)〉 pRa (3)

where the first term on the right-hand side is the rate that an
empty site is filled and the second term is the rate that a full
site releases its contents. This equation can be rearranged into the
form

τx
d

dT
〈x(T)ψ(0)〉 = 〈x〉 〈ψ〉 − 〈x(T)ψ(0)〉 (4)

where the time constant τx and steady-state occupancy 〈x〉 are

τx = 1

Rr + pRa
and 〈x〉 = Rr

Rr + pRa
. (5)

That the second quantity must be the steady-state occupancy 〈x〉
can be inferred by noting that in the limit T →∞ the expectation
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Table 1 | Typical parameters used for the figures.

Parameter Interpretation Value

V Postsynaptic membrane
voltage

Varies

S Number of presynaptic cells
that fire together

Varies

n Number of release sites per
presynaptic neuron

Varies

N Number of presynaptic
neurons

Varies

M Total number of vesicle
release sites (nN)

5000

Rr Rate at which empty vesicles
are replaced at release sites

2 Hz

Ra Rate of presynaptic spiking 2 Hz

p Probability of spike arrival
inducing neurotransmitter
release at a site with a
vesicle present

0.66

τj Jitter standard deviation
timescale

2 ms

E Resting membrane voltage −70 mV

Vth Threshold at which action
potentials are initiated

−55 mV

τr Refractory period of a neuron
after a spike

2 ms

τ Membrane time constant 10 ms

a EPSP amplitude induced by
neurotransmitter released
from a single vesicle

0.2 mV

〈x(T)ψ(0)〉 in Equation (3) loses its T dependence and factorises
into the product 〈x〉 〈ψ〉. Note that the exponential solution to
the differential Equation (4) implies that all crosscorrelations that
include the occupancy x take a simple exponential form

Crosscorr(x, ψ) = (〈xψ〉 − 〈x〉 〈ψ〉)e−t/τx (6)

where 〈xψ〉 is the expectation evaluated in the limit T → 0.

3.1. VESICLE OCCUPANCY CROSSCORRELATIONS
The autocorrelation of release-site occupancy can be calculated
by making use of the fact that for the binary variable x we have
x2 = x and so

〈
x2
〉 = 〈x〉. Putting ψ = x in equation (6) gives

Autocorr(x) = 〈x〉 (1− 〈x〉)e−|T|/τx = pRaRr

(Rr + pRa)2
e−|T|/τx (7)

where the extension of the exponential to negative times comes
from a symmetry argument. For the crosscorrelation between dif-
ferent release sites, with occupancy variables x and x′, we need to
distinguish between cases where the release sites either share the
same presynaptic neuron or have different presynaptic neurons
when deriving

〈
xx′
〉
. However, the derivation can be written in

the same form by introducing a quantity γ that is the proportion
of shared spikes: γ = 1 for release sites with the same presynap-
tic neuron or γ = c = (S− 1)/(N − 1) for different presynaptic
neurons. A steady-state equation for the zero-time expectation〈
xx′
〉

can be found by considering the state where both sites are
occupied and balancing the total rates into and out of this state

〈
x(1− x′)

〉
Rr +

〈
(1− x)x′

〉
Rr =

〈
xx′
〉
(2Rap− γRap2). (8)

The terms on the left-hand side represent the total rate into the
double occupancy state, whereas the terms on the right-hand side
multiplying the expectation are the combined rates of individual
vesicle release minus the coincidence term to prevent overcount-
ing of events. We now combine terms to obtain the required
expectation

〈
xx′
〉
γ
= 2Rr 〈x〉

2Rr + Rap(2− γp)
(9)

where the γ subscript will be used later to distinguish the different
cases. It can be inserted into Equation (6) with ψ = x′ to give

Crosscorr(x, x′) = γp2RaR2
r e−|T|/τx

(2Rr + pRa(2− pγ))(Rr + pRa)2
. (10)

Example plots of Equation (7), and Equation (10) for cases with
γ = 1 and γ = c are given in Figures 2A,C,E. It is interesting to
note that our exact results are identical to those previously cal-
culated in Rosenbaum et al. (2012) using a combined diffusion
and additive-noise approximation, validating their method up to
second-order statistics.

3.2. NEUROTRANSMITTER RELEASE CROSSCORRELATIONS
Though synchrony in the presynaptic population leads to
positive correlations for release-site occupancy, we now show
that the delayed restock following release leads to negative
cross-correlations in the release events themselves. Let χ(t) and
χ′(t) be trains of delta pulses representing neurotransmitter
release from sites with occupancies defined by x(t) and x′(t),
respectively, so that:

χ(t) =
∑

k

�k(x)δ(t − tk) (11)

where k counts incoming action potentials at the contact with site
occupancy x. In the steady state we have 〈χ〉 = pRa 〈x〉 because
the rate of release is equal to the release rate pRa given vesicle
occupancy multiplied by the occupancy probability 〈x〉. The auto
and crosscorrelations can be straightforwardly calculated using
the general result of Equation (6) by setting ψ = χ′ and noting
that

〈
χ(T)χ′(0)

〉 = pRa
〈
x(T)χ′(0)

〉
. However, some care needs to

be taken when considering the case T = 0. The result of Equation
(6) is valid in the limit T → 0; but there is an additional delta
function in the crosscorrelation when T = 0 with an amplitude
equal to the rate of simultaneous events in χ and χ′ that arises
from the delta functions in Equation (11). The autocorrelation
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FIGURE 2 | Release-site occupancy is correlated,

neurotransmitter-release events are anticorrelated. (A) Autocorrelation
of a release-site occupancy and (B) autocorrelation in neurotransmitter
release. (C,D) Crosscorrelations for distinct release sites sharing the same
presynaptic cell. (E,F) Crosscorrelations for release sites with different
presynaptic cells. The parameters were N = 500, n = 10, and S = 10 giving
the probability of synchronous spikes c = 0.018.

function for χ therefore takes the form

Autocorr(χ) = pRa 〈x〉 δ(T)− (pRa 〈x〉)2e−|T|/τx (12)

where the rate of simultaneous events for the autocorrelation is
just the mean release rate pRa 〈x〉 and prefactor of the exponen-
tial is only −〈χ〉2 because in the limit T → 0 the expectation
of 〈χ(T)χ(0)〉 is zero as there is no time for a restock. A similar
consideration gives the result for the crosscorrelation

Crosscorr(χ,χ′) = γp2Ra
〈
xx′
〉
γ
δ(T)

+ R2
ap2((1− γp)

〈
xx′
〉
γ
− 〈x〉2)e−|T|/τx (13)

where we are treating cases for which the release is from dis-
tinct contacts sharing the same presynaptic neuron γ = 1 or from
distinct presynaptic neurons where γ = c. In Equation (13) the
prefactor of the delta function arises from the rate of simul-
taneous releases, which is equal to the arrival of simultaneous
spikes γRa multiplied by the probability that each contact releases
a vesicle p2

〈
xx′
〉
γ
. The prefactor of the exponential shares the

same squared component −〈χ〉2 = −(pRa 〈x〉)2 as the autocor-
relation, but also has a non-zero contribution from

〈
χ(T)χ′(0)

〉
in the limit T → 0. This quantity is equal to the probability that
both sites are occupied

〈
xx′
〉
γ

multiplied by the probability of a

release from site x′ but no release from site x from a simulta-
neous presynaptic event, which is Rap(1− γp) multiplied by a

subsequent release from site x just afterwards due to a second
presynaptic spike, pRa. This exact result is again identical to that
derived previously using a diffusion and additive-noise approx-
imation (Rosenbaum et al., 2012). Example autocorrelation and
crosscorrelation functions are plotted in Figures 2B,D,F.

3.3. MEMBRANE VOLTAGE MEAN AND VARIANCE
The tonic component of the presynaptic drive can be character-
ized by the mean voltage, which is straightforward to calculate
in the absence of a threshold. The dynamics of this quantity can
be found by taking the expectation of Equation (2) to yield the
steady-state result

〈V〉 = E + aMτpRa 〈x〉 = E + aMτpRaRr

Rr + pRa
. (14)

Note that the mean voltage is independent of the synchrony S
and is also independent of release-site number n when M = nN
is held fixed.

The effect of correlated synaptic fluctuations on the postsynap-
tic neuron can also be characterized by deriving the steady-state
variance of the postsynaptic voltage (again in the absence of
a threshold-reset mechanism). This quantity is derived in the
Appendix using the auto and crosscorrelations of χ (Equations
12, 13) and takes the form

Var(V) = a2τNnpRa

2

(〈x〉 + (n− 1)p
〈
xx′
〉
1 + (N − 1)ncp

〈
xx′
〉
c

)

+ Nn(aτpRa)
2

1+ τRr + pτRa

(
(n− 1)(1− p)

〈
xx′
〉
1

+ (N − 1)n(1− cp)
〈
xx′
〉
c − Nn 〈x〉2) . (15)

The first term arises from the δ-functions in Equations (12, 13)
and the second term comes from the negative correlations in
vesicle release due to short-term depression (the terms featuring
exponentials in the same equations). For a related model (de la
Rocha and Parga, 2005) it was demonstrated that on increasing
the presynaptic rate a maximum can be seen in the conductance
fluctuations. The exact result of Equation (15) allows for this
effect of fluctuations in depressing synapses on the voltage itself to
be analyzed. Example variances as a function of presynaptic rate
are shown in Figure 3 and, as expected from the previous anal-
ysis of conductance fluctuations (de la Rocha and Parga, 2005),
the variance also shows a maximum at intermediate presynaptic
rates.

Though the voltage variance measures one aspect of presy-
naptic fluctuations, it misses its increasing shot-noise nature as
the correlations increase. Shot noise causes a non-Gaussian com-
ponent in the tails of the membrane voltage distribution that,
because they extend to the region of action-potential initiation,
can significantly affect the post-synaptic firing rate (Richardson
and Swarbrick, 2010). The mean EPSP amplitude can be used
to see this effect: it is proportional to the mean of the vesicles
released by a spike given the occupancy levels already computed,
and so

〈EPSP〉 = apnS 〈x〉 = apSnRr

Rr + pRa
. (16)
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As correlations from increasing n or S become stronger, the
mean EPSP amplitude increases. However, as noted above, the
mean voltage (Equation 14) does not change under increasing
n or S. Taken together, the implications are that in the limit of
high correlations the synaptic drive becomes temporally sparse
with large amplitude EPSPs generated from correlated events.
This effect can be seen in simulations of the model with dif-
ferent parameter regimes (Figure 4). For parameters N = 125,
n = 1, and S = 1 (no presynaptic synchrony) the presynaptic

FIGURE 3 | Exact voltage variance for a postsynaptic neuron receiving

multiple depressing synaptic contacts from a presynaptic population.

Three examples are given with different numbers of neurostransmitter
release sites per presynaptic neuron. For each case the synchrony was
S = 10.

spikes (Figure 4A) and neurotransmitter release (Figure 4D) are
uncorrelated, and in the full system with M = 5000 the EPSPs are
relatively small (Figures 4G,H) and the resulting voltage distri-
bution is close to Gaussian (Figure 4I). Increasing n (Figure 4B)
or S (Figure 4C) to 25 leads to correlations in neurotransmit-
ter release (Figures 4E,F), larger EPSPs (Figures 4J,K,M,N) and
a more variable and skewed membrane voltage (Figures 4L,O).
Note the right-hand tails from the skewed membrane voltages
under conditions of presynaptic correlation that extend toward
voltages where action potentials would be initiated.

3.4. RELEASE SITE NUMBER AND POSTSYNAPTIC RATE
As the analyses of the previous section and examples in Figure 4
demonstrate, for the case of few release sites and low synchrony
the voltage distribution is close to Gaussian. However, for the
case of many release sites the synchronous release events gener-
ate large EPSPs that are reminiscent of shot noise. With this in
mind, approximations for the firing of the postsynaptic cell may
be found for the cases of low n, when the voltage distribution is
roughly Gaussian, and high n for which the EPSP amplitudes are
of-the-order-of or larger than threshold.

3.4.1. Few release sites
For the low n approximation we rely on a recent observation
(Alijani and Richardson, 2011) that the firing rate of integrate-
and-fire neurons is relatively insensitive to temporal correlations
as long as the subthreshold voltage mean and variance are
matched. To this end we approximate the firing rate of the neuron
by a white-noise equivalent that has a voltage meanμ equal to that

FIGURE 4 | Membrane voltage distributions become markedly

non-Gaussian as correlations increase. (A–C) Rasters of presynaptic firing
with: (A) N = 125, n = 1, and S = 1; (B) N = 5, n = 25, and S = 1; (C)

N = 125, n = 1, and S = 25. (D–F) Rasters of neurotransmitter release for
these firing patterns. (G,J,M) EPSP histograms for the above n and S values,
but with N adjusted so that M = nN = 5000. (H,K,N) Histograms of the total

synaptic drive over an interval of the membrane time constant for the same
parameters. (I,L,O) Voltage histograms for the same parameters. Note that,
whereas the voltage is close to Gaussian for the single release-site and
no-presynaptic-synchrony case, it develops a tail to the right when
correlations arise either from multiple release sites or presynaptic
synchrony.
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of Equation (14) and variance σ 2 equal to that of Equation (15).
The firing rate of a leaky-integrate-and-fire neuron with these
parameters is given (Brunel and Hakim, 1999) by the reciprocal of

τ

∫ ∞
0

dz

z
e−z2/2 (ezzth − ezzre

)
(17)

where zth = (Vth − E − μ)/σ and in this case zre = −μ/σ .

3.4.2. Many release sites
For sufficiently large n the mean EPSPs are greater than that
required to bring the neuron to threshold apnS 〈x〉 � Vth − E,
and so each synchronous presynaptic event is likely to cause the
postsynaptic cell to spike. The postsynaptic cell receives input at
a total rate of NRa/S and so we can approximate the rate in the
large n case by

r ∼ NRa

S
= MRa

nS
. (18)

Therefore, increasing the presynaptic synchrony S will reduce the
postsynaptic response when n is large.

3.4.3. Optimal release-site number
Under conditions of a fixed number of release sites onto the
postsynaptic cell M = nN, increasing n has no effect on the
voltage mean (Equation 14), but increases the voltage variance
(Equation 15). Therefore, as n increases from an initially small
value, the approximation given by Equation (17) predicts that the
postsynaptic cell will fire at an increasing rate. However, from
Equation (18), which is valid for high n, we see that the postsy-
naptic firing rate decreases as n increases. Hence, there must be
an intermediate n for which the response of the postsynaptic cell
is optimized. This effect can be clearly seen in the examples given
in Figure 5 in which the postsynaptic rate is plotted as a function
of n for fixed M. The intersections of the two approximations for

FIGURE 5 | The postsynaptic firing rate exhibits a maximum as a

function of the number of pre-to-post release sites n. Firing-rate
simulations (solid lines), low n approximation (Equation 17; blue dashed
lines) and high n approximation (Equation 18; red-dashed lines) for various
levels of presynaptic synchrony S as a function of the number of release
sites n per presynaptic cell. The maximal postsynaptic response is close to
the intersection of the approximate forms and the optimum n decreases
with increasing synchrony S. Note that the curves are limited on their right
because of the restriction S ≤ N (the maximal allowable synchrony is equal
to the number of presynaptic neurons) so that the maximum n is n =M/S.
This upper bound on n holds for similar curves in later figures.

each curve provide an estimate for the optimal n, which decreases
as the presynaptic synchrony increases. It should be noted that
this effect, which has a maximum as a function of release-site
number at constant presynaptic rate, is a distinct phenomenon
to the tuning curve as a function of presynaptic rate analyzed in
de la Rocha and Parga (2005).

3.5. LONG-TERM PLASTICITY AND RESPONSE TO SYNCHRONY
The post-synaptic firing rate is sensitive to correlations arising
from multiple release sites, as discussed above, as well as to
presynaptic synchrony (de la Rocha and Parga, 2005). In par-
ticular, the firing rate has a maximal response at an optimal n
that is a function of the presynaptic synchrony as can be seen
in Figure 6. When neurotransmitter release is too strongly cor-
related in the presynaptic population, the postsynaptic response
weakens because the quantity of neurotransmitter released is in
excess of that necessary to take the postsynaptic cell to thresh-
old and therefore this limited resource is wasted. The reduction
in response to over-strong correlations gives rise to the optimal
responses in the space of n and S seen in Figures 6A–C. Note that
the band of optimal postsynaptic response is linear with negative
gradient in the n, S log–log plot and so the optimal synchrony in
the presynaptic population has an inverse relation to the number
of release sites n each presynaptic cell makes onto the postsynaptic
target.

Analyses of long-term plasticity data (over a 12 h period)
by Loebel et al. (2013) demonstrated that connections between
thick-tufted layer-5 pyramidal cells in the rat somatosensory cor-
tex alter their efficacy by changing the binomial parameter n, in
preference to probability of release or quantal amplitude. Among
the experiments analyzed certain connections potentiated four-
fold, from an effective binomial n of ∼25 to ∼100. Assuming
that the mean excitatory drive remains constant, this potenti-
ation would lead to the postsynaptic cell becoming maximally
responsive to signals encoded by weaker presynaptic synchrony
(see Figure 6C). It would also cease to amplify strongly correlated
stimuli as effectively. Other connections showed four-fold reduc-
tions in n from∼40 to∼10 under protocols that cause long-term
depression. In this case the postsynaptic cell would now act as a
better amplifier of stimuli encoded with larger correlations.

3.6. OPTIMAL RESPONSE AND SYNCHRONY JITTER
The effects of fluctuations in a synchronous presynaptic popula-
tion can be modeled by adding a Gaussian-distributed jitter, of
timescale τj, to the timing of each action potential. When the
individual components of the synchronous MIP event are too
dispersed temporally, i.e., when the jitter is greater than the mem-
brane time constant τj > τ, the MIP event will fail to integrate
in the postsynaptic cell. Under these circumstances the effect of
correlations is diminished, as illustrated in Figure 7. When jitter
is absent (Figure 7A), different values of presynaptic synchrony
S produce distinct and clearly defined optimal response curves.
With a physiological jitter timescale of τj = 2 ms (Figure 7B) the
curves for different synchronies shift upwards in n and the peak
postsynaptic firing rate falls, particularly for larger synchrony.
When τj = τ (Figure 7C) only relatively strong synchrony values
are significantly different from the independent case (S = 1).
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FIGURE 6 | Long-term plasticity that alters release-site number n sets

the sensitivity to presynaptic synchrony. (A) Postsynatpic rate as a
function of release-sites per presynaptic neuron n for different examples of
presynaptic synchrony S. (B) Heat map of the postsynaptic rate as a
function of presynaptic release-site number n and presynaptic synchrony S.
(C) Postsynaptic rate as a function of presynaptic synchrony S for different
examples of release-site number n. For these figures population spikes
have been jittered with a standard deviation of 2 ms. Note that in panel B

the optimal synchrony has an inverse dependency on the release-site
number. Long-term potentiation makes the postsynaptic cell more sensitive
to weak synchrony, whereas long-term depression sensitizes the cell to
stronger synchrony.

3.7. OPTIMAL-RESPONSE CURVES ARE A ROBUST FEATURE OF
SYNAPTIC HOMEOSTASIS

Throughout much of the above analysis we held the total number
of release sites M = nN constant and demonstrated an optimal
response curve in which the postsynaptic rate peaks at an inter-
mediate n, which is dependent on the presynaptic synchrony
S. The rationale for this choice is that, under conditions of home-
ostasis, synaptic potentiation (increasing n) amongst a subpopu-
lation of presynaptic neurons will occur at the expense of pruning
neurons that do not contribute to postsynaptic firing. This will
lead to the postsynaptic neuron receiving afferent drive from
fewer presynaptic neurons, though each of these will make more
contacts (and vice-versa for long-term depression). The theoreti-
cal results and simulations are not predicated on the assumption
of constant M and so it is interesting to investigate whether the
optimal-response effect persists if this restriction is relaxed. Using
the example S = 10 we plotted the postsynaptic rate as a func-
tion of the presynaptic neuron N and release site number n (see
Figure 8A). As expected the postsynaptic rate increases with an
increasing number of presynaptic neurons N or release sites n.
Plotted on the same figure is the curve N = M/n with M = 5000
that, because of its reciprocal relation will have low rates at either
asymptotes, and an intermediate maximum (see Figure 8B). Also
plotted is the curve N = M0 where M0 is a constant. This corre-
sponds to a scenario in which the entire presynaptic population

FIGURE 7 | Impact of synchrony jitter on the optimal response curves.

(A–C) Postsynaptic firing rate as a function of the number of release sites
per presynaptic neuron n for increasing jitter standard deviations τj . (A) No
jitter τj = 0. (B) Physiological levels of jitter τj = 2 ms. (C) Response curves
converge on the unsynchronized S = 1 case, as expected, when jitter is of
the order of the postsynaptic membrane time constant τj = 10 ms.

has either potentiated or depressed their contacts, thereby chang-
ing the number of release sites n a presynaptic neuron makes
without altering the total number of presynaptic neurons N. For
this case, which is arguably an extremum from the point-of-view
of homeostatis, the intermediate maximum is lost: the postsynap-
tic rate increases monotonically and loses its n dependence when
n is sufficiently large, as expected from the first form of Equation
(18). However, for intermediate cases of homeostasis of the form
N = Mκ/nκ with κ = 3/4, 1/2, 1/4 a maximal postsynaptic rate
again occurs at some intermediate n (see Figure 8B). Given the
dependence of the postsynaptic rate on n and N in Figure 8A it
can be seen geometrically that any curve in which there is a recip-
rocal relation between N and n will likely feature a maximum at
intermediate n and so the optimal-response curves are a robust
feature of a postsynaptic neuron in which there is some degree of
homeostatic restriction on the total number of afferent contacts.

4. DISCUSSION
We considered the effects of afferent correlations arising
from multiple neurotransmitter release sites and a partially
synchronized presynaptic population. We derived exact forms for
the crosscorrelations of vesicle release site occupancy and vesi-
cle release, and demonstrated that these are identical to those
recently obtained from a diffusion and additive-noise approxi-
mation (Rosenbaum et al., 2012), validating that approach up
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FIGURE 8 | Curves with a maximal postsynaptic rate at intermediate n
are a robust feature. (A) Intensity plot of the postsynaptic rate as a
function of presynaptic release site n and neuron number N for an example
with S = 10. Also plotted are the relations N =Mκ /nκ for
κ = 0, 1/4, 1/2, 3/4, 1, where κ = 1 corresponds to the homeostatic
scenario principally considered in this paper for which there is a restriction
M = nN on the total number of afferent contacts. The case κ = 0
corresponds to a scenario with no such restriction, and the other values of
κ are intermediate cases with varying degrees of homeostasis. (B) The
postsynaptic rate as function of n for the curves in the upper panel. Cases
for all values of κ, except κ = 0 in which there is no homeostatic restriction,
show a maximal response at intermediate n. The example curves given
have Mκ chosen so that they all pass through the point n = 25 and
N = 200.

to second-order statistics and explaining their perfect agreement
between theoretical and simulational results. We further calcu-
lated the exact variance of the membrane voltage, in absence of
spike threshold. This quantity extends previous calculations (de la
Rocha and Parga, 2005) of synaptic conductance fluctuations and
allows for an estimation of the postsynaptic rate in the low-
correlation Gaussian regime. For the high-correlation regime, due
to multiple release sites n or strong synchrony S, we argued that
the EPSPs become increasingly large, the nature of the synaptic
fluctuations increasingly shot-noise like, and so the postsynaptic
rate tends to the rate of synchronous presynaptic events. Combing
these two results for the low and high correlation regimes, we
demonstrated that the postsynaptic response is maximal for an
intermediate number of release sites or synchrony. The system

therefore exhibits a tuning-curve response to synchrony that can
be modulated by long-term plasticity, which alters the number of
release sites n.

Neurons respond maximally to specific stimuli when pro-
cessing sensory input. A coordination of long-term plasticity,
afferent synchrony and short-term depression therefore provides
a potential tuning mechanism for cells to achieve this sensitivity.
Efficient responsiveness would then depend on historical changes
in synaptic connectivity (Taschenberger et al., 2002; Loebel et al.,
2013) and the transient correlations evoked by a particular stim-
ulus (Averbeck et al., 2006; Cohen and Kohn, 2011). More gen-
erally, neuronal networks balance fidelity of signal transmission
with the metabolic costs associated with neurotransmitter recy-
cling (Levy and Baxter, 2002; Savtchenko et al., 2012). Although
a release of neurotransmitter beyond that necessary to induce a
postsynaptic spike may have medium-term conductance impli-
cations or counteract strongly fluctuating inhibition, an efficient
network would not be expected to exceed the degree of pairwise
connectivity that maximizes response to common spike frequen-
cies and correlations. On the other hand, signals encoded by small
numbers of cells would require highly potentiated connections to
transmit information with any degree of consistency. This implies
that across a neuronal network the degree of clustering would be
optimally balanced with individual synaptic weights.

To investigate maximal firing rate response to a defined excita-
tory drive, we have neglected the effects of synaptic inhibition.
As in vivo network behaviors arise from a balance of excita-
tion and inhibition, a development of the ideas presented here
along the above lines would need to incorporate inhibitory effects
on the total synaptic conductance. By altering the timescales on
which excitatory inputs are integrated, inhibitory drive could
allow a more finely-tuned response to afferent sub-populations
with varying degrees of temporal dispersion. Another extension
of this work would be to incorporate different forms of short-
term synaptic plasticity into the model. This would be particularly
appropriate when studying connections between specific cell-
types where there is experimental evidence for other forms of
synaptic dynamics. It is also likely that effects moderating synap-
tic depression, such as the increasing facilitation in the maturing
neocortex (Reyes and Sakmann, 1999) would lead to qualitatively
different behavior as cortical networks develop.
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APPENDIX
DERIVATION OF THE VOLTAGE VARIANCE
The voltage equation can be written in the form

τ
dV

dt
= E − V + aτζ (19)

where ζ is the summation of the release trains across the N
presynaptic neurons and each of their n contacts

ζ =
N∑

i= 1

n∑
j= 1

χij (20)

where χij takes the form of Equation (11) for the ith presynaptic
neuron’s jth contact. The autocorrelation of ζ is therefore com-
prised of Nn autocorrelations of χ in the form of Equation (12),
Nn(n− 1) crosscorrelations of χ for distinct release trains shar-
ing the same presynaptic neuron given by Equation (13) with
γ = 1 and N(N − 1)n2 crosscorrelations of χ for release trains
with different presynaptic neurons given by Equation (13) with
γ = c.

Taking expectations of both side of Equation (19) in the steady
state gives

〈V〉 = E + aτ 〈ζ〉 = E + aMτRap 〈x〉 . (21)

We can now solve Equation (19) to give

V − 〈V〉 = a

∫ t

−∞
dt′e−(t−t′)/τ (ζ(t′)− 〈ζ〉) (22)

so that the voltage variance can be written as an integral over the
autocorrelation of ζ, Autocorr(ζ) = 〈(ζ(t′)− 〈ζ〉) (ζ(t′′)− 〈ζ〉)〉

(V − 〈V〉)2 = a2
∫ t

−∞
dt′
∫ t

−∞
dt′′e−(t−t′)/τe−(t−t′′)/τAutocorr(ζ). (23)

As discussed above, the autocorrelation of ζ is the sum of the
various crosscorrelations of χ so that it must take the form

Autocorr(ζ) = αδ(t′ − t′′)+ βe−|t′−t′′|/τx (24)

where α and β are obtained from the prefactors of the terms in
Equations (12, 13) multiplied by their respective contributions.
Inserting Equation (24) into (23) and performing the integration
gives

Var(V) = a2
(

ατ

2
+ βτ2τx

τ+ τx

)
. (25)

On substituting the appropriate forms for α and β the result given
in Equation (15) is obtained.
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Synchronization has been suggested as a mechanism of binding distributed feature
representations facilitating segmentation of visual stimuli. Here we investigate this
concept based on unsupervised learning using natural visual stimuli. We simulate
dual-variable neural oscillators with separate activation and phase variables. The binding of
a set of neurons is coded by synchronized phase variables. The network of tangential
synchronizing connections learned from the induced activations exhibits small-world
properties and allows binding even over larger distances. We evaluate the resulting
dynamic phase maps using segmentation masks labeled by human experts. Our
simulation results show a continuously increasing phase synchrony between neurons
within the labeled segmentation masks. The evaluation of the network dynamics shows
that the synchrony between network nodes establishes a relational coding of the natural
image inputs. This demonstrates that the concept of binding by synchrony is applicable in
the context of unsupervised learning using natural visual stimuli.

Keywords: oscillation, binding, synchronization, normative model, unsupervised learning, scene segmentation,

object label, natural image statistics

1. INTRODUCTION
One of the central questions in neuroscience is how informa-
tion about a given stimulus is processed in a distributed network
of neurons such that it is perceived not only as a collection of
unrelated features but as a unified single object. The concept of
binding by synchrony has been proposed as a mechanism to coor-
dinate the spatially distributed information processing in the cor-
tex (Milner, 1974; Von Der Malsburg, 1981). Experiments in cat
visual cortex have confirmed that inter-columnar synchroniza-
tion indeed corresponds to a relational code that reflects global
stimulus attributes (Gray et al., 1989; Singer, 1999; Engel and
Singer, 2001). However, the physiological recordings in these early
studies were based on the presentation of artificially designed
stimuli. In a more recent study Onat et al. (2013) showed in
experiments that long-range interactions in the visual cortex are
compatible with Gestalt laws. This suggests that the concept of
binding by synchrony is also feasible in the case of natural visual
stimuli. It is still the center of a heated debate to what extend
synchronized activity represents a neural code of binding and
segmentation. Especially, how the neural system can learn this
relational coding when it is exposed to new stimuli is still an
open question. The most prominent possibility is that tangential
cortico-cortical connections in the visual cortex lead to synchro-
nized activity that implements Gestalt laws. Löwel and Singer
(1992) showed in cats with artificially induced strabismus that
selective stabilization of tangential connections occurs between
cells that exhibit correlated activity induced by visual experience.
Furthermore, König et al. (1993) found that the synchroniza-
tion of cortical activity is impaired in these cats with artificial
strabismus. These findings indicate that there is an important

interplay between unsupervised learning of tangential connec-
tions on behavioral time scales and their role in synchronization
phenomena on fast time scales.

The physiological experiments on binding by synchrony have
been accompanied by theoretical studies early on. Sompolinsky
et al. (1990) investigated how a model of coupled neural oscilla-
tors is able to process global stimulus properties in synchroniza-
tion patterns using abstractly defined neuronal activation levels
and predefined coupling strengths for the simulated network.
These simulation results showed that the coupling of neural oscil-
lators provides a viable mechanism implementing a coding of
perceptual grouping. Such previous work includes studies rang-
ing from networks build out of very simple elements to detailed
simulations containing many compartments per unit.

To investigate the functional role of synchronization and its
relation to coding, it is important to choose the right level of
abstraction in the model. A simplification from detailed spik-
ing neuron models to coupled phase oscillator models allows
us to analyze neuronal synchronization in a broader context of
a normative model involving unsupervised learning from natu-
ral stimuli. A review of these coupled neural oscillator models
was done by Sturm and König (2001), where the authors show
the derivation of simplified phase update equations from biolog-
ically measurable phase response curves. The simplifications in
coupled phase oscillators are based on the assumption that neu-
rons are close to their oscillatory limit-cycle and that a change
in the phase of the neuronal inputs induces only a small pertur-
bation to the neuronal phase. The phase update equation in our
model is based on the Kuramoto model of coupled phase oscilla-
tors (Kuramoto, 1984) in the sense that our model also assumes
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a very simple sinusoidal phase interaction function. This approx-
imation of the phase interaction by a sinusoidal function allows
us to use mathematical simplifications in the simulation of the
model.

Very similar to the work of Sompolinsky et al. (1990), we
extend the standard formulation of the Kuramoto model with a
second variable per neuron to encode the activation of the oscil-
lators. Therefore, in our model the state of a neuron is represented
by 2 degrees of freedom, which are separated into activation and
phase variables. This discrimination between coding of receptive
field features by activation and coding of relationships by phase is
a biologically motivated segregation of their different functional
roles. Maye and Werning (2007) specifically compare the syn-
chronization properties of these coupled phase oscillator models
with mean-field oscillator models based on the Wilson-Cowan
model (Wilson and Cowan, 1972). They state that the simplified
coupled phase oscillators allow decoupling the simulation time
constants of fast oscillatory time scales from slow rate coding time
scales. Another advantage is an easier analysis of the synchroniza-
tion patterns, because the direct encoding of the phase variables
means that all contextual relationships are coded at the same time.
Consequently, we use the dual variable phase model, because it is
suitable to answer fundamental questions about the interactions
between synchronization phenomena and contextual coding in
neural systems.

In contrast to these phase oscillator models, most recent work
on segmentation in networks of coupled neural oscillators is
based on the so called “local excitatory global inhibitory oscilla-
tor network” (LEGION) or similar variants of this model, which
was first proposed by Wang and Terman (1997). In LEGION the
dynamics of each oscillatory period of individual units is simu-
lated in detail by time-varying variables describing the internal
states of each neuron. In contrast, in our model the oscillatory
period is not simulated, but represented only implicitly in the
phase variables. Nonetheless, several aspects which we analyze in
this work were previously also investiged in LEGION. Namely,
similar to Li and Li (2011) we use a small-world topology, to
reduce the computational cost while still allowing binding by syn-
chrony over large distances. We also use parallel computations
to speed up the simulations, which was also previously done in
LEGION by Bauer et al. (2012).

The above-mentioned previous theoretical studies mostly
investigated the processing of artificial stimuli in close anal-
ogy to the physiological experiments. These stimuli are heavily
dominated by artificial geometric patterns as bars and gratings.
However, the concept of binding by synchrony makes much more
general claims about grouping of sensory representations of nat-
ural stimuli. By now a fair number of databases with images
considered to be natural is available. However, a problem with
generic natural stimuli is that segmentation is not only dif-
ficult, but no general ground truth is available. The LabelMe
database (Russell et al., 2008) is rather unique, as it contains a
large collection of images together with human labeled anno-
tations of image segments. In theoretical studies these labels
may serve as a ground truth to evaluate how the relative phases
between neurons are coding relational structures on natural
stimuli.

The processing of natural stimuli in neural systems can be
described as a normative approach in which the representation
of the input is learned by an optimization of computational
principles (Einhäuser and König, 2010). It has been successfully
employed in modeling receptive field properties of simple and
complex cells in primary visual cortex. Furthermore, response
properties of neurons in higher areas and other modalities have
been suggested to follow similar rules. This approach might be
extended to include the computational principles that under-
lie tangential interactions that directly influence synchronization
phenomena. This might answer the question whether the concept
of binding by synchrony can work in principle with unsupervised
learning and natural stimuli.

In this study we investigate whether the concept of binding
by synchrony, as has been investigated using abstract stimuli, is
viable for natural stimuli. The most important novelty of our
approach is the combination of these different concepts described
above into one single simulation model to allow the investiga-
tion of their interplay: Specifically, we combine normative model
approaches of unsupervised learning from natural stimuli with
the concept of binding by synchrony in a network of coupled
phase oscillators. Importantly, the data driven approach, that
utilizes general principles, minimizes the number of heuristics
and free parameters. We present large-scale simulations of neu-
ral networks encoding real-world image scenes. In the first stage
of our algorithm forward projections generate activation lev-
els of neurons corresponding to the primary visual cortex. In
the second stage these activation levels are used in a simula-
tion of tangential coupled phase oscillators. We present results
with forward projections based on designed Gabor filters that
are a good approximation of receptive fields in the primary
visual cortex. To allow later canonical generalization in higher
network layers, we also present results with forward projections
learned in a normative model approach with a sparse autoen-
coder using natural image statistics. In addition to these learned
forward weights, the structural connectivity of the phase simu-
lations is also learned unsupervised using the correlated activ-
ity induced by natural stimuli. Performance of the network is
tested using images taken from the LabelMe database. Thereby
we can investigate how synchronization phenomena might be
utilized in sensory cortical areas to bind different attributes of
the same stimulus and how it might be exploited for scene
segmentation.

2. MATERIALS AND METHODS
The overall network architecture of our simulation model consists
of two main parts: (1) Feedforward convolutional filters (red lines
in Figure 1) are used to generate the activation levels for neu-
rons in a layer corresponding to the primary visual cortex. On
top of each pixel is a column of neurons which encode different
features of a local patch in the input image (black bottom cuboid
in Figure 1). Each feature type is described by a weight matrix
which is applied using a 2-dimensional-convolutional operation
on each rgb-color-channel of the input image. (2) The obtained
activation levels in this 3-dimensional structure (black top cuboid
in Figure 1) are subsequently used to simulate sparse connections
(green lines in Figure 1) between coupled phase oscillators.
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FIGURE 1 | Network structure. Feedforward convolutional filters (red) are
applied on the input image vx,y,c (bottom) to generate the activation levels
hx,y,j of feature columns (red blocks in the top). These activations hx,y,j are
then transformed to activations of oscillators gx,y,j using simple local

regularization steps. The intralayer connections ek,j
δx,δy (green) simulate

these coupled phase oscillators which synchronize or desynchronize image
features.

We start with the description of the stimulus material
(section 2.1). This is followed by the description of the coupled
phase oscillator model (section 2.2) and the sampling mecha-
nism generating the horizontal sparse connections (section 2.3).
Afterwards we describe the underlying mechanism of the feedfor-
ward generation of activation levels (section 2.4).

2.1. NATURAL STIMULUS MATERIAL
As stimulus material in our simulations we use images of subur-
ban scenes from the LabelMe database (Russell et al., 2008). Due
to computational time constrains we have to restrict the evalua-
tions to a small subset of all available images in the database. In
addition, the database is not fixed but new images and segmenta-
tion masks are often added. We use only the first 50 images in the
folder 05june05_static_street_boston so that we have a consistent
and fixed dataset of well defined images.

These images have initially a resolution of 2560× 1920 pixels.
We first resize the images to 400× 300 pixels to further reduce
the computation time of the simulations. Subsequently we sub-
tract the mean pixel values and apply a smoothed zero-phase
(ZCA) whitening transformation (Bell and Sejnowski, 1997).
For an input image X the whitened pixel values are given by
XZCA = UDUTX, where U is a matrix containing the eigenvec-
tors of the covariance matrix of the image statistics and D is a
diagonal matrix with diagonal elements 1√

λi + 0.1
where λi are

the corresponding eigenvalues. This transformation applies local
center-surround whitening filters that decrease the correlations in
the input images. We implement this whitening transformation
using a convolutional image filter.

The images in the LabelMe database come along with human
labeled segmentation masks. These segmentation masks corre-
spond to objects that are perceived as a unique concept with an
associated abstract label like “tree,” “car” or “house.” We use these
supervised segmentation masks for later evaluations of binding in
the simulated phase maps. Please note that in our network simu-
lations this segmentation information is not used at any moment

in time. Instead, the network connectivity is based solely on
unsupervised learning using the statistics of neuronal activations.

2.2. COUPLED PHASE OSCILLATOR MODEL
Our network of coupled phase oscillators is based on the oscillator
model described by Sompolinsky et al. (1990). In the follow-
ing, we use the same motivational derivation of the phase update
equations. We model the probability of firing Px,y,k(t) per unit
time of a neuron at image position (x, y) encoding feature type k
at time t by an isochronous oscillator. In our simulations we rep-
resent the state of the neuronal oscillators by seperated activation
variables gx,y,k and phase variables�x,y,k. These two variables are
linked to the biological interpretation of firing probability by the
equation

Px,y,k(t) = gx,y,k
(
1+ λ · cos(�x,y,k(t))

)
, (1)

where the parameter 0 < λ < 1 controls the relative strength of
the temporal oscillation in relation to the overall firing probabil-
ity of the neuron. The phase progression is a periodic function
�x,y,k(t) = �x,y,k(t + 2π). In our work, the calculation of the
activation levels gx,y,k significantly differs from the simple arti-
ficial tuning curves used in Sompolinsky et al. (1990). A detailed
description of how these activation levels are obtained will be pre-
sented in section 2.4. The activation levels gx,y,k are normalized
by dividing by the local sum of all activation levels at each image
position such that

∑
k gx,y,k = 1∀x, y ∈ Z. In the simulations pre-

sented in this work the activation levels of each neuron are only
computed once from the input image using feedforward projec-
tions (red lines in Figure 1) and are then kept constant during the
simulation of the phase model. This simplification of constant
activation levels is based on the assumption that the stimulus
presentaion on behavioral timescales (≈ seconds) remains con-
stant during the phase synchronization which happens at very fast
timescales (i.e., gamma frequency≈ 40 Hz). Another argument to
support this assumption is that the visual cortex seems to oper-
ate in a regime of self-sustained activity (Stimberg et al., 2009)
and therefore we can assume constant activation levels during the
phase simulation.

After these activation levels V are computed, we simulate the
horizontal coupling between the phase oscillators. The phase con-
nections in our network are described by a weighted graph G =
(H, E)where the neurons gx,y,j ∈ H are the vertices organized in a

three dimensional block (Figure 1). An edge e
(j,k)
δx,δy ∈ E describes

synchronizing (positive) or desynchronizing (negative) connec-
tions from neurons gx,y,j to neurons gx+ δx,y+ δy,k. The phase of
each neuron is then modeled according to a differential equation
describing weakly coupled phase oscillators (Kuramoto, 1984)

d�x,y,k(t)

dt
= ω− 1

τ

∑
e
(j,k)
δx,δy∈E

gx,y,k · e(j,k)δx,δy · gx− δx,y− δy,j ·

sin
(
�x,y,k(t)−�x− δx,y− δy,j(t)

)
, (2)

where τ is the time scale of the phase interactions and ω is the nat-
ural frequency of the modeled neural oscillations. We assume that
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all neurons have the same intrinsic natural frequency ω and the

interaction strength gx,y,k · e(j,k)δx,δy · gx− δx,y− δy,j is proportional to
the activation levels of the pre- and post-sysnaptic neurons. Note
that our model is in contrast to the more common formulation
of the Kuramoto model with heterogeneous frequencies and fixed
homogenous all-to-all interaction strengths.

A major difference to the phase update equation used in
Sompolinsky et al. (1990) is that we neglect the noise term in
the differential equation of each oscillator. The noise term in
Sompolinsky et al. (1990) is used as the primary source of desyn-
chronization in the network. In contrast, in our work, we use a
normative model to learn not only synchronizing but also desyn-
chronizing connections (see section 2.3). For an easier analysis
and interpretation of the results, it is advantageous to have only a
single source for the desynchronization in the network. Therefore,
we decided to use a deterministic phase model, although it was
previously shown that noise is an important factor to control
the network coherence. In addition to a simpler interpretation
it reduces the number of model parameters and is also more
compatible to further applications of gradient descent learning to
change the strength of the phase interactions.

We can further simplify the equation by using the fact that we
model isochronous oscillators with homogeneous frequencies. In
Equation 2 all phase variables�x,y,k(t) have a constant phase pro-
gression with frequency ω. We can use a simple transformation
to a new variable, which represents only the phase offsets between
neurons:

ϕx,y,k(t) = �x,y,k(t)− ωt. (3)

This new phase variable ϕx,y,k(t) describes the relative phase of
neuron k to the global fixed network oscillation with frequency
ω. Substitution into the equation above leads to a simplified phase
update equation

dϕx,y,k(t)

dt
= −1

τ

∑
e
(j,k)
δx,δy ∈ E

gx,y,k · e(j,k)δx,δy · gx− δx,y− δy,j ·

sin
(
ϕx,y,k(t)− ϕx− δx,y− δy,j(t)

)
. (4)

In this equation it can be seen that the timescale τ of the phase
interaction strength is decoupled from the oscillatory timescale
1/ω. Please also note, that a change of the parameter τ would
not qualitatively change the results of our simulations. Instead it
would just linearly change the units of the time axes. Therefore,
we show the simulation results with the time axis measured in
iterations, which could be linearly scaled to arbitrary time units
to best fit to different biological measurements.

This phase update equation is used in our simulations to
model the horizontal connections in the network. It allows
directly specifying synchronizing interactions from neuron gx,y,j

to neuron gx+ δx,y+ δy,k with a positive connection weight e
(j,k)
δx,δy

and desynchronizing interactions with a negative weight respec-
tively. We simulate these coupled differential equations using a
4th-order Runge-Kutta method.

2.3. HORIZONTAL INTERACTION STRENGTHS
We use correlation statistics of the induced activation levels to set
the intralayer connection strengths similar to a simple Hebbian

learning rule. We write ρ
(k,m)
x,y to denote the Pearson cross-

correlation between the activations of feature type k at image
position (x̃, ỹ) and the activations of feature type m at the shifted
image position (x̃ + x, ỹ + y). Each correlation value in this ten-
sor is calculated from the correlation statistics over approximately
1 million network activations induced by 50 natural images and
presented at 236× 86 image positions.

These horizontal connections make up the coupling between
the neural oscillators. Instead of full connectivity, we use stochas-
tically sampled sparse directed connections from the correla-
tion matrix. To exclude noise in the correlation matrix, we
use the Benjamini-Hochberg-Yekutieli procedure (Benjamini and
Yekutieli, 2001) under arbitrary dependence assumptions with a
false-discovery rate of 0.05.

The probability of a positive (+1) or a negative connection
(−1) in the connectivity graph G = (H, E) is then given by

P
(

e
(j,k)
x,y = ±1

)
= η± ·

max
(

0,±ρ
(j,k)
x,y

)
∑

x̃,ỹ,m max
(

0,±ρ
(m,k)
x̃,ỹ

) , (5)

where η+ specifies the total number of afferent synchronizing
connections and η− the total number of afferent desynchronizing
connections per neuron. Therefore, synchronizing connections
exist only between naturally correlated features and desynchro-
nizing connections between anti-correlated features.

We sample this sparse tangential connection pattern such
that it is invariant to spatial shift transformations. The convo-
lutional structure of the forward projections leads to activation
and phase variables that are stored in a 3-dimensional block (top
of Figure 1) with two dimensions given by the spatial extend of
the image and one feature dimension. This convolutional struc-
ture can be exploited for the sparse horizontal connections to
significantly speed up the computation. Therefore, we specify the
properties of the coupled oscillator connections only for a generic
feature column. These connections are then applied at each image
position. Specifically, in our implementation each sampled tan-
gential connection is specified by 5 variables: the horizontal and
vertical connection length in image directions and the indices of
the afferent and efferent feature maps and the connection weight.
This has the advantage that the phase update equation can be
implemented as a vectorized convolutional operation although
the connection pattern is highly sparse.

2.4. FEEDFORWARD CONNECTIVITY
We compare the binding and segmentation performance of the
coupled neural oscillator model using two different ways to gen-
erate the activation levels for the neurons. We first describe
hand-crafted feedforward Gabor weights (section 2.4.1) and then
the unsupervised learning of receptive fields using a convolutional
autoencoder (section 2.4.2). Finally, activation functions are pre-
sented to further regularize the resulting feature representations
(section 2.4.3).
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2.4.1. Gabor filters
For reference we use a set of Gabor filters with specified orienta-
tion, frequency and color tuning to generate the activation levels
for the phase simulation. Thereby we can analyze the phase oscil-
lator network based on a regularly defined set of features that can
be parameterized.

We generate linear convolutional weights (marked in red in
Figure 1) using an approximate Gaussian derivative model, which
was shown to be a good fit for the receptive fields of simple cells
in the primate visual cortex (Young, 1987). We use only non-
directional three-lobe monophasic receptive fields (Young and
Lesperance, 2001) to reduce our model parameters. We imple-
ment the Gaussian derivative model using difference-of-offset-
Gaussians with a slightly larger center compared to surround
to code color offsets. The receptive fields that are used in our
simulations have a size of 12x12 pixels and are defined by

Wx,y = g2σ(y) ·
(−5 · gσ(x + σ)+ 10.1 · gσ(x)− 5 · gσ(x − σ)

)
,

(6)
where gσ(x) is a one dimensional Gaussian distribution with stan-
dard deviations σ = 1.5 pixels (or g2σ(y) with standard deviation
of 2σ = 3 pixels) and the coordinates x and y are rotated giving a
total of 8 orientations in steps of 22.5◦. The convolutional filters
are applied to the images with a stride of 2 pixels in both image
dimensions and are followed by a sigmoidal activation function
to scale the values to a reasonable interval between 0 and 1. We
apply each orientation filter separately to all color channels (red,
green, blue). Furthermore, we add features for the complemen-
tary color channels similar to the on-off discrimination in the
visual pathway from the retina to the visual cortex. The direct lin-
ear dependency between these pairs of opponent-color channels
is removed later with additional activation functions described in
section 2.4.3. In summary, we have a total of 48 convolutional
feature channels per image position: 8x orientations, 3x rgb-color
channels, 2x opponent-color channels. This overcomplete neu-
ral representation of the input images is used to generate the
activation levels for the phase simulations.

Cortical measurements show that the distribution of
non-directional monophasic simple cells is roughly uniformly
distributed between zero-, first- and second order Gaussian
derivatives (Young and Lesperance, 2001). We performed the
simulations presented here also with mixed receptive fields of
zero-, first- and second-order Gaussian derivatives and obtained
similar results. We present here only results with second order
Gaussian derivatives, because this reduces the number of model
parameters drastically.

2.4.2. Autoencoder filters
As a comparison to these regular hand-designed Gabor filters we
analyze the oscillatory network based on activation levels gen-
erated by unsupervised learned autoencoder weights. A good
overview of the concepts described in this section can be found
in Le et al. (2011b), where the authors analyze different opti-
mization methods for convolutional and sparse autoencoders. An
autoencoder learns a higher level representation from the stimu-
lus statistics such that the input stimuli can be reconstructed from
the hidden representations. In addition, we optimize the sparsity

of the activation levels in this representation, which was shown
to learn connection weights which resemble receptive fields in the
visual cortex (Olshausen and Field, 1996; Hinton, 2010; Le et al.,
2011a).

A common trick in unsupervised learning in neural networks
are shared connection weights to reduce the number of param-
eters that have to be learned, which can be accomplished by a
convolutional feed-forward network in the case of images (LeCun
et al., 1998; Lee et al., 2009). The structure of our convolutional
autoencoder is shown in Figure 2. The feedforward projections
that generate the activation of feature map j consist of convolu-
tional filters Wx,y,c,j (red lines in Figure 2) with input features c ∈
{1, 2, 3} (rgb-colors) and a bias term bj and is followed by a sig-
moidal activation function. Therefore, the hidden layer activation
map of feature j ∈ {1, 2, . . . , J} is described by

hx,y,j = f

(
3∑

c= 1

Wx,y,c,j ∗ vx,y,c + bj

)
. (7)

The hidden layer activation h of each input image sample is also
a 3 dimensional block (horizontal and vertical image dimensions
and the feature type). The weight matrix W is a 4 dimensional
structure which describes the connection weights from a convo-
lutional input block to one output column in the hidden layer.
The convolutional image operations (∗) are applied in the image
directions x and y between all combinations of input feature maps
c and all output feature maps j.

We use linear activation functions for the backward projec-
tions (blue lines in Figure 2) so that the output matches the scale
of the input images (zero-mean). We use another set of weights

Ŵx,y,j,c and bias terms b̂c to describe these backward connections.
Therefore, the activation in the reconstruction layer is given by

v̂x,y,c =
J∑

j= 1

Ŵx,y,j,c ∗ hx,y,j + b̂c, (8)

FIGURE 2 | Structure of the convolutional autoencoder. Convolutional
forward weights (red) compute the hidden layer activation levels and
convolutional backward weights (blue) generate the reconstruction of the
given input. The reconstruction layer is compared to the centered part
(dashed block) of the input layer.
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where J = 100 is the number of different feature types. During
the learning stage only the valid part (no zero padding) of the
convolutions are used for the forward and backward projections
to avoid edge effects of the image borders on the learned weights.
Similar to the Gabor filters the convolutional filters have a size of
12x12 pixels and are applied using a stride of 2 pixels leading to a
reduction in the resolution of the hidden layer.

We use the sum of 3 optimization functions to learn the
forward and backward weights of the autoencoder. The first opti-
mization term which is minimized is the reconstruction error
averaged over all positions and training samples s and is given by

�1 =
〈

1

2

∥∥∥v̂(s)x,y,c − v(s)x,y,c

∥∥∥2
〉

x,y,s
. (9)

The second term optimizes the sparseness of the hidden units as
described by Hinton (2010) and Le et al. (2011a) with

�2 = β ·
∑

j

KL
(

h̃
∥∥∥〈h(s)x,y,j〉x,y,s

)
, (10)

where KL is the Kullback-Leibler-divergence between two

Bernoulli distributions with expected values h̃ and 〈h(s)x,y,j〉x,y,s.
We set the desired average activation h̃ = 0.035.

The third term is a weight decay (L2-norm) of all forward and
backward weights and is given by

�3 = λ

2
·
⎛
⎝∑

x,y,c,j

W2
x,y,c,j +

∑
x,y,j,c

Ŵ2
x,y,j,c

⎞
⎠ . (11)

This optimization term pushes all connection weights toward zero
such that only the connections which help to extract useful fea-
tures remain. Therefore, it provides a regularization mechanism
during learning.

For the simulations presented in this paper we use a rela-
tive weighting between these optimization functions given by
β = 90 and λ = 0.3. The gradients of the optimization functions
are calculated using back propagation of error signals and were
checked using numerical derivatives. The sum of the three terms
described above is minimized with the limited memory Broyden-
Fletcher-Goldfarb-Shanno algorithm (L-BFGS), which uses an
approximation to the inverse Hessian matrix (Liu and Nocedal,
1989). We use the minFunc library of Mark Schmidt1 with default
parameters for line search with a strong Wolfe condition. We
use L-BFGS because it converges much faster in comparison to
standard gradient descent, especially in the case of autoencoders
with sparseness constrains (Le et al., 2011b). Another advantage
of L-BFGS is that extensive tuning of learning parameters as in
standard gradient descent methods is not necessary.

The training data consists of 1000 color patches (60 × 60
pixels) sampled from the folder 05june05_static_street_boston of
the LabelMe database (Russell et al., 2008). This corresponds to
625.000 training samples per convolutional fragment where the

1http://www.di.ens.fr/~mschmidt/Software/minFunc.html

forward weight matrix is applied. After 500 iterations the features
are mostly oriented patches and sensitive to different colors.

2.4.3. Regularization of activation levels
Although the Gabor and autoencoder filters are both followed
by a sigmoidal activation function, we further sparsify the acti-
vation levels hx,y,k with feature types k ∈ {1..K} in a similar way
to local cortical circuitry. We want to constrain the number of
active neurons, rather than the mean activation levels. Therefore,
we subtract at each image position the average local activation lev-
els. Subsequently a half-wave rectification is applied to constrain
the activation levels again to the positive domain with roughly
half of the neurons inactivated:

h̃x,y,k = max

(
0, hx,y,k −

∑K

j= 1
hx,y,j

)
. (12)

Consequently the hard sparseness (Rehn and Sommer, 2007)
is artificially increased and these inactivated neurons do not
take part in the coupling of phase oscillations (see section 3.1).
Thereby the number of possible interactions in the phase simula-
tions is reduced.

As a last step we have to normalize the activation levels at every
image position similar to local contrast adaptation in the visual
system. We want to make sure that the overall local activation
is uniform over the visual field such that an efficient coding of
regions of high contrast and regions of low contrast is possible
simultaneously. Therefore, we divide all activation levels by the
sum of activations over all features at each image location:

gx,y,k = h̃x,y,k∑K
j= 1 h̃x,y,j

. (13)

As a result we have sparse activation maps with a large proportion
of inactive neurons and the same average local activations at all
image positions.

3. RESULTS
In a first step we analyse the properties of the activation pat-
terns induced by the natural images (section 3.1). Subsequently
we evaluate the correlation statistics of these induced feature acti-
vations (section 3.2) and the resulting sparse connectivity pattern
(section 3.3). Based on this connectivity pattern we show simu-
lations of the coupled phase oscillator model and the resulting
dynamic phase maps (section 3.4). Finally, evaluations of these
binding maps are presented based on human labeled segmenta-
tion masks (section 3.5).

3.1. SPARSENESS OF ACTIVATION
The simulation of the coupled phase oscillators is based on the
activation levels that were generated from natural images. The
phase coupling is highly dependent on the type of feature rep-
resentation that is used to generate the activation levels. The first
reason is that the connectivity is based on the correlation between
features. The second reason is that also the actual strength of the
dynamic coupling is proportional to the current activation lev-
els. Therefore, the statistics of activation plays a crucial role in the
formation of the dynamic binding maps.
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Hand labeled photographs of suburban scenes from the
LabelMe database (Russell et al., 2008) are used to generate
feature representations with the linear convolutional forward
weights followed by a sigmoidal function. The linear convolu-
tional kernels of the Gabor receptive fields contain only one
spatial frequency and equally spaced orientations (Figure 3A).
In contrast, the learned weights of the sparse autoencoder
(Figure 3B) cover a diverse set of spatial frequencies, colors and
orientations.

We compare the activation levels of features obtained with
the regular Gabor weights and the autoencoder weights. A very
important characteristic of neuronal activations is the level of
sparseness. A high level of activation sparseness means that the
neuron is most of the time very silent and only rarely very active.
This analysis of sparse coding should not be confused with the
graph theoretic sparseness which will be analyzed in section 3.3. A
qualitative comparison of the activation histograms (Figure 4A)
shows that the autoencoder activations are sparser compared to
the Gabor activations. The phase model is based on the assump-
tion that the activation is restricted to the positive domain. Note
that this is in contrast to many normative models of early visual
processing which assume a feature code with a Gaussian distribu-
tion with zero mean. Furthermore, in our model we are mostly
interested in the “hard sparseness” of the activation levels, mean-
ing that the activation is most of the time exactly zero and only
rarely very high (Rehn and Sommer, 2007). A comparison with a
Gaussian distribution restricted to the positive domain with the
same mean (dashed line in Figure 4A) reveals that the feature
activations after the sigmoidal activation function are not nec-
essarily sparse in the context of a positive distribution with this
hard sparseness criteria.

The sigmoidal activation function is followed by the subtrac-
tion of mean, rectification and the division by the sum over
all features. The resulting histograms of these activation levels
(Figure 4B) show an increased hard sparseness for both types of
receptive fields. These additional preprocessing steps are similar
to local regulatory mechanisms in the cortex.

A B

FIGURE 3 | Receptive fields of the feed-forward connections generating

the activation levels for the phase simulations. (A) The regular Gabor
filters are generated with 8 different orientations and 6 different color
channels. (B) The convolutional autoencoder weights are learned by
optimizing the reconstruction cost, sparseness and weight decay.

A quantitative evaluation of the sparseness of the activation
levels is given by the kurtosis. We use the standard measure
of excess kurtosis but without mean normalization because the
phase model assumes a non-negative feature coding by activa-
tion. Therefore, we evaluate the hard sparseness of feature type

j with activation levels h(s)x,y,j by the kurtosis of a zero-centered
distribution given by

kurtj =

〈(
h(s)x,y,j

)4
〉

x,y,s(〈(
h(s)x,y,j

)2
〉

x,y,s

)2
− 3, (14)

where 〈.〉 is the mean over all image positions (x, y) and image
samples s from the labelMe database. The estimated median kur-
tosis over all receptive field types increases for the activations g
after the normalization steps described above in comparison to
the activations h before the normalizations (Table 1). A com-
parison with a Gaussian distribution, which has a kurtosis of 0,
reveals that the additional activation functions indeed increase
the sparseness and lead to a leptokurtic distribution of activa-
tions. Overall the activations generated by the autoencoder are
more sparse in comparison with the hand designed Gabor filters.

The additional activation functions are crucial for the subse-
quent phase simulations. The mean subtraction and half-wave
rectification increase the hard sparseness of activations. This
reduction in the number of active neurons leads to a reduction in

A

B

FIGURE 4 | Histogram of activation levels averaged over all feature

types. The distributions of activation levels are compared to a Gabor
distribution. (A) After sigmoidal activation function. (B) After mean
subtraction, half-wave rectification and division by the sum.

Frontiers in Computational Neuroscience www.frontiersin.org January 2014 | Volume 7 | Article 195 | 50

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Finger and König Segmentation in neural oscillator network

Table 1 | Median kurtosis of feature activations.

After sigmoid After normalizations1

activations hx,y,k activations gx,y,k

Gabor −1.96 2.61

Autoencoder −0.63 11.62

1After the subtraction of mean, half-wave rectification and division by the local

sum of the new activation levels.

the number of active tangential phase connections. Therefore, the
features in the input image do not only multiplicatively modu-
late the strength of the phase interaction but also deactivate many
phase connections entirely leading to a completely new effective
tangential connectivity pattern.

3.2. STATISTICS OF HORIZONTAL CROSS-CORRELATIONS
The horizontal connections between the coupled phase oscilla-
tors are sampled from the cross-correlations of induced activation
levels as described in equation 5. Therefore, we describe the hor-
izontal correlations in this section and evaluate the anisotropy
of receptive field types. The 4 dimensional cross-correlation ten-

sors ρ
(k,m)
x,y as defined in section 2.3 are shown in Figure 5 for

8 feature types. The Gabor receptive fields have a more regular
correlation matrix (Figure 5A) compared to the learned autoen-
coder receptive fields (Figure 5B). The correlations between the
activations of Gabor receptive fields are itself similar to high fre-
quency Gabor functions. In contrast, the receptive fields learned
by the autoencoder capture different spatial frequencies and a
variety of different colors which is also reflected in the spatial
cross-correlations. In both cases the horizontal cross-correlations
extend over visual space up to three times the receptive field
size. This suggests that the correlations indeed comprise higher-
order correlation statistics of the natural images and not only
interactions between overlapping receptive fields.

To analyze and compare the correlation tensor of the autoen-
coder and the Gabor filters, we calculate statistics for different
correlation distances in visual space. The indices of the tensor are
illustrated in the schematic in Figure 6A. For each distance r in

visual space we calculate statistics over ρ
(k,m)
j where

j ∈ Rr :=
{(

x, y
) ∈ Z

2

∣∣∣∣r − 1

2
≤
√

x2 + y2 < r + 1

2

}
. (15)

The mean absolute value of the cross-correlations decreases for
larger correlation distances r as shown in Figure 6B. The mean
standard deviation of these absolute correlation values over dif-
ferent spatial directions also decreases but with a steeper slope
(Figure 6C). To make a relative statement about the isotropy in
the correlation tensor we also calculate the coefficient of varia-
tion over different directions. Therefore, we define the average
anisotropy at radius r as

anisotropy(r) :=
〈

stdj∈Rr

(
ρ
(k,m)
j

)
meanj∈Rr

(
ρ
(k,m)
j

)
〉

k,m

(16)

This mean anisotropy averaged over all pairs of receptive field
types has a local maximum at visual distances of around 8–10
pixels (Figure 6D). This suggests that the short range phase con-
nections over this distance help more in the synchronization of
fine structures. The anisotropy has a local minimum at distances
around 15–16 pixels, where more long range phase connections
are dominantly used to fill-in segment pixels with similar colors.

3.3. SPARSELY CONNECTED OSCILLATOR NETWORK
The correlation values are used to sample the sparse connections
for the simulations of coupled phase oscillators. We restrict the
sampled connectivity pattern in simulations of natural scenes to
200 synchronizing and 200 desynchronizing afferent connections
per neuron if not stated otherwise. The phase simulations of natu-
ral image scenes are run in a network of 200× 150× 48 neurons
for Gabor features or 200× 150× 100 for autoencoder features
respectively. Therefore, the percentage of connections that are
actually formed compared to all possible connections assuming
full connectivity is approximately 0.014% in the case of Gabor fea-
tures and 0.007% for autoencoder features. Thus, this procedure
leads to a very sparse connectivity in comparison to a network of
all-to-all interactions.

We evaluate the sampled connectivity based on natural image
statistics using graph theoretic measures. The connectivity struc-
ture is represented as a graph G = (H, E) as described in sec-
tion 2.3. We compute the statistics not only over the graph
of all connections E but also for the subgraph of synchroniz-

ing connections E+ :=
{

e
(j,k)
x,y ∈ E

∣∣∣e(j,k)x,y = +1
}

and the subgraph

of desynchronizing connections E− :=
{

e
(j,k)
x,y ∈ E

∣∣∣e(j,k)x,y = −1
}

individually.
For a graph with edges E we calculate the fraction of intra-

feature connections as

μ =
∣∣∣{ek,m

δx,δy ∈ E
∣∣∣k = m

}∣∣∣∣∣∣{ek,m
δx,δy ∈ E

∣∣∣k �= m
}∣∣∣ · 100%. (17)

The most obvious observation is that the fraction of intra-feature
connections is larger for synchronizing connections in compari-
son to the desynchronizing connections (Table 2). The reason is
that positive correlations, which are used to sample these synchro-
nizing connections, are stronger between the same feature type
shifted over visual space. In contrast negative correlations and
thus desynchronizing connections are less likely to occur between
the same feature type shifted over visual space. Another observa-
tion is that the fraction of intra-feature connections of the Gabor
features is roughly twice as large as in the case of the autoencoder
features. The reason is that we use 100 autoencoder features and
only 48 Gabor features while the total number of sampled syn-
chronizing and desynchronizing connections per feature remains
constant.

A more elaborate evaluation of the sampled connectivity of
our network can be done using the clustering coefficient and the
small-world characteristics (Watts and Strogatz, 1998; Humphries
et al., 2006), which are also shown in Table 2. To define the local
clustering coefficient in an infinite graph G = (H, E), we analyze
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A B

FIGURE 5 | Cross-correlations between different feature activations

shifted in visual space. The shown cross-correlations are based on the
activation levels induced by natural images. Only a subset of 8 features is
shown. The patches on the top and left row show the forward weight
matrix of the receptive fields. The other patches show the spatial

correlation between these features. The feature weights are shown at the
same spatial scale as the shifts in the cross-correlations. (A) The
correlations between 8 oriented Gabor filters of one of the 6 color
channels are shown. (B) The correlations between 8 randomly choosen
autoencoder features are shown.

A B

C D

FIGURE 6 | The statistics of the correlation matrix evaluated for

different distances r in visual space. (A) Schematic to illustrate the
indices of the correlation tensor. In the top schematic the correlation
tensor is indexed by horizontal (x) and vertical (y) offsets in visual
space. In the bottom schematic the correlation tensor is indexed by
j ∈ Rr for a certain distance r in visual space. The other panels

compare the correlation tensor of Gabor filters (gray) and autoencoder
filters (black) for different distances r . All shown statistics are averaged
over all pairs of receptive field types k and m. (B) Mean over all
directions. (C) Standard deviation over different directions for a certain
pair of feature types. (D) The anisotropy averaged over all pairs of
receptive fields as described in the main text.

the connectivity of the neurons in a generic feature column at
position (x, y) = (0, 0). We define the neighbors of neuron g0,0,k

coding feature type k ∈ {1..K} as the set of all neurons which are
directly connected in the graph as

Nk =
{

gx,y,m ∈ H
∣∣∣ek,m

x,y ∈ E ∨ em,k
−x,−y ∈ E

}
, (18)

where we consider outbound (ek,m
x,y ) and inbound (em,k

−x,−y) con-
nections of the neuron. Then we define the local clustering

coefficient of a feature type k in our network as the fraction of the
number of direct connections between neighbors to the number
of pairs of neighbors:

γk =
∣∣{em,n

x,y ∈ E
∣∣gx̃+ x,ỹ+ x,m ∈ Nk ∧ gx̃,ỹ,n ∈ Nk

}∣∣
|Nk| · (|Nk| − 1)

(19)

We show the global clustering coefficients γ =< γk >k for
our sampled networks comprising only the synchronizing, only
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Table 2 | Graph theoretic statistics of the sparse connectivity pattern.

Gabor Autoencoder

All Sync. Desync. All Sync. Desync.

E E+ E− E E+ E−

Fraction of intra-feature connections μ 6.49% 12.87% 0.10% 3.12% 6.17% 0.07%

Global clustering coefficient γ (in 10−3) 3.21 3.53 0.64 3.18 2.49 1.27

Global clustering coefficient random γrandom (in 10−3) 2.35 1.11 1.25 2.18 1.03 1.18

Mean shortest path length λ 2.01 2.60 2.46 2.17 2.63 2.59

Mean shortest path length random λrandom 2.02 2.53 2.47 2.15 2.62 2.56

Small world index σsw 1.37 3.09 0.51 1.44 2.39 1.07

the desynchronizing or all connections in the second row of
Table 2.

The evaluation of the graph comprising all connections shows
that the mean clustering coefficient is roughly the same for the
Gabor and the autoencoder features. But the evaluation of graphs
individually reveals that the clustering coefficient of only the syn-
chronizing graph is higher for the Gabor features in comparison
to the autoencoder features. And reciprocally, the desynchro-
nizing connections show a stronger clustering in the case of
autoencoder features. An explanation for this difference is that
the autoencoder learns a more diverse set of receptive fields by
optimizing the reconstruction error. In comparison, the regu-
lar Gabor receptive fields cover only predefined colors, spatial
frequencies and orientations, which are not optimized to cover
a broad range of statistics in the input images. Therefore, the
correlation structure in the Gabor activations shows stronger
clustering. For comparison, we also show the corresponding clus-
tering coefficients γrandom of the equivalent networks with the
same connection lengths (measured in pixel distance) but rotated
by random angles and connected to random features.

We can further use the small-world index to measure the capa-
bility of neurons in our network to reach other neurons via a small
number of interaction steps. The small-world index is a quantita-
tive definition of the presence of abundant clustering of connec-
tions combined with short average distances between neuronal
elements, proposed by Humphries et al. (2006). It can character-
ize a large number of not fully connected network topologies. The
connectivity within the 3-dimensional grid of our model is sam-
pled such that it is invariant to shifts in the two image dimensions.
Therefore, we have to slightly adapt the small-world index for our
infinite horizontal sheet consisting of feature columns with iden-
tical connection patterns. We use the definition of the small-world
index

σsw = γ/γrandom

λ/λrandom
, (20)

where the shortest path lengths λ and λrandom measure the num-
ber of network hops needed to connect two neurons within our
sampled network and a random network respectively. We use the
average over all shortest path lengths between all pairs of neu-
rons within one feature column. A network graph must have a
small-world index σsw larger than one to meet the small-world
criteria. The evaluations show that the graph comprising the syn-
chronizing connections exhibits small-world properties while the

desynchronizing connections are closer to a random connectivity
and do not exhibit small-world properties (Table 2). The small-
world property might be helpful in the synchronization of distant
neurons.

3.4. PHASE SIMULATIONS
The resulting connectivity pattern is used in the phase simu-
lations. All shown simulations of the coupled phase oscillator
networks are initialized with random phase variables. The activa-
tion levels are only set once in the beginning and remain the same
throughout the phase simulations. During the simulations attrac-
tors are formed in the phase space and are localized in certain
image regions.

A simulation of the coupled phase oscillator model with local-
ized connectivity and with uniform activation levels shows that
pinwheel structures will form in the phase map (Figures 7A,B).
The connectivity length in the network determines the scale of
the pinwheels. During the simulation these pinwheels attract each
other and annihilate (Wolf and Geisel, 1998). The probability of
the formation of pinwheels decreases for network connectivity
patterns that are less locally dense but more sparse and spread
out.

In the next simulations we use several feature types to encode
different aspects of the input images. To visualize the resulting
3-dimensional structure of phase variables ϕx,y,k we calculate the
circular mean at each image position weighted by the correspond-
ing activation levels:

ϕ
avg
x,y := arg

(∑
k

gx,y,keiϕx,y,k

)
, (21)

where arg is the complex argument. We show the average phase
variables ϕ

avg
x,y coded as color hue to visually represent the circular

structure of the phase.
We use two simple artificial stimuli to demonstrate the basic

function of the phase simulation in the presence of structure in
the activation variables (Figures 7C,D). The stimuli of these sim-
ulations are artificially generated grayscale images containing bar
segments and circle segments (insets in Figures 7C,D). The con-
nectivity in both simulations is based on Gabor receptive fields
with horizontal connectivity obtained from statistics of natural
images. In the simulation of two collinear aligned bars the phase
of the neurons coding the two bars are synchronizing although the
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A B

C D

FIGURE 7 | Simulations of the coupled phase oscillator model. The
phase variables are shown as color hue. (A,B) Phase simulations of a
2-dimensional grid of 200x200 neurons with uniform activation levels after
100 network iterations. A regular local connectivity is used with maximum
length 3 (A) and 10 (B). Simulations in (C,D) use the Gabor receptive fields
and horizontal oscillator connectivity from the correlation statistics. The
input images are artificial stimuli of two collinear aligned bars (C) and of a
dashed circle (D) and are shown as an inset in the upper left corner. The
shown phase maps in (C,D) are the circular mean of the phase variables
weighted by the activation of the corresponding features. Panel (C) shows
the average phase after 20 network iterations and panel (D) after 40
network iterations.

two bars are not directly connected in the image (Figure 7C). This
suggests that the simulation can implement Gestalt laws of group-
ing, because neurons are grouped together by having the same
phase value. Specifically, a human observer could interpret these
two bars as one single continues line. Therefore, the simulation
can be interpreted as implementing the Gestalt law of continuity
because the neurons that are coding the two bars have the same
phase. Please note, that in the simulation the gap between the two
bars is not filled in because our model does not incorporate any
feedback from the phase variables to the activation variables. In
this study we focus on relational coding by phase variables and
therefore neglect any recurrent dynamics in activation variables.

The other simulation uses a dashed black circle as input
(Figure 7D). The phase map shows that all segments of the circle
are synchronizing to the same phase value. The synchronized state
of the circle means that the phase variables at different segments
of the circle code the global attribute and bind the individual
circle segments together. Similarly, humans usually perceive the
circle segments all together as one single object. This indicates
that the phase simulation can also implement the Gestalt law of
closure. Depending on the initialization of random phase vari-
ables, cases exist where the circle does not synchronize to one
coherent phase but forms a continuous phase progression one
or multiple times from 0 to 2π. On one hand these simulations
reproduce the previous studies demonstrating binding properties
of coupled neural oscillators. On the other hand, in these simula-
tions the connectivity is learned based on natural stimuli and not
hand crafted. Hence, it demonstrates that these Gestalt properties
are learned from the statistics of natural stimuli.

We next evaluate the concept of binding by synchrony also on
natural visual scenes. All following simulations in this paper use
color images from the LabelMe database (Russell et al., 2008) and
either the Gabor filters or the autoencoder filters to generate the
activation levels for the network. An example of a suburban scene
is shown in Figure 8A with the corresponding human labeled seg-
mentation masks in Figure 8B. We use the time constant τ = 1/3
for the simulations based on Gabor filters and τ = 1/30 for the
simulations based on autoencoder filters. These values were cho-
sen such that per iteration of the classical Runge-Kutta solver the
phase of not more than 1% of all neurons changes more than
π/2. The units of these time constants are arbitrary because our
model of coupled phase oscillators describes the change in phase
independent of the oscillation period. Examples of the resulting
phase maps are shown in Figure 8C for Gabor activations and
Figure 8D for autoencoder activations. The phase maps of sim-
ulations using autoencoder weights are blurred compared to the
Gaborfilters because the peak of the receptive fields are not nec-
essarily centered within the convolutional weight matrix, leading
to shifts in visual space between different feature maps at segment
boundaries. Yet in both examples an intuitive segmentation of the
original can be recognized again in the distribution of phase val-
ues. We see a constantly increasing phase synchrony in labeled
segments. This example suggests that high-level image objects are
likely to synchronize to a coherent phase.

3.5. EVALUATION OF PHASE MAPS
We evaluate the simulated dynamic phase maps and com-
pare them with human labeled binary segmentation masks of
high level image objects from the LabelMe database. We begin
with an evaluation of the resulting phase maps independently
from the labeled image masks to show global properties
of the coupled phase oscillator model and the influence of
the number of horizontal connections (section 3.5.1). This
is followed by an evaluation of the phase synchrony within
labeled segments with respect to the surrounding of the seg-
ments (section 3.5.2). Finally a local evaluation of the phase
maps at the boundaries of labeled segments is presented
(section 3.5.3).

3.5.1. Phase synchrony
Segmentation and binding of neurons in the network can only
be achieved if the phase variables are not random but also not
completely synchronized. Therefore, we will first evaluate the
local phase synchrony independent of segments in the image. We
define the synchrony in a population M of neurons as

pM =
∣∣∣∣∣
∑

m∈M gm · eiϕm∑
m∈M gm

∣∣∣∣∣ , (22)

where M is defined as a set of 3-dimensional indices describing
the position of the neurons.

In this section we analyze the simulation shown in Figure 8
in more detail and evaluate how the number of synchronizing
and desynchronizing connections effects the phase synchrony. We
evaluate the local phase synchrony at image position (x, y) for a
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A

C

D

B

FIGURE 8 | Phase simulations of a natural image of a suburban scene.

(A) A natural image from the LabelMe database is used as the input to
generate neuronal activation maps. (B) The LabelMe images are

accompanied by overlapping segmentation masks of labeled image regions.
(C,D) The circular mean of the phase maps evaluated at different network
iterations. Gabor filters were used in (C) and autoencoder filters in (D).

certain radius r by calculating pMx,y,r for neurons at positions

Mx,y,r =
{
(x̃, ỹ, k)

∣∣(x − x̃)2 + (y − ỹ)2 < r2,

(x, y) ∈ N
2, k ∈ {1..K}} , (23)

where K is the number of feature maps. We average this quan-
tity over all possible image positions (x, y). This mean local phase
synchrony is shown in Figure 9 for simulations using differ-
ent number of connections, different iterations and for different
radii r.

When the network has reached a steady state, the mean
local phase synchrony depends on the number of synchronizing
and desynchronizing connections (Figures 9A,D). The number
of synchronizing connections increases the average local phase
synchrony. In contrast, the number of desynchronizing connec-
tions can increase or decrease the average local phase synchrony
depending on the number of synchronizing connections. At first
sight, this may be counterintuitive. In the case of few synchro-
nizing connections, the desynchronizing connections repel the
associated phase variables from each other. This ultimately leads
to a clustering in the circular phase space evoked by desynchro-
nizing interactions. In the case of more synchronizing connec-
tions, the main force driving the network are attractor states and
therefore desynchronizing connections decrease the overall phase
synchrony.

The phase synchrony in the steady state condition increases
with the ratio between synchronizing and desynchronizing con-
nections up to a ratio of 16 times more synchronizing than desyn-
chronizing connections (Figures 9B,E). Interestingly, the phase

synchrony in the steady state condition decreases again in simula-
tions with more than 800 synchronizing connections and very few
desynchronizing connections. During the transient phase a very
low or high ratio leads to a faster convergence to a more synchro-
nized state. The slowest convergence is achieved at the cases with
4 times more desynchronizing connections or when the number
of synchronizing and desynchronizing connections is balanced.

The phase simulations show synchronization behavior at a
large variety of different spatial scales (Figures 9C,F). The level
of synchrony at the steady state decreases for increasing radius of
the phase synchrony evaluation. At all spatial scales the time to
reach the steady state synchrony level is roughly the same. Only
very localized regions over 1-2 pixel distances show a slightly
faster convergence to the final phase synchrony level. When not
otherwise stated we select in all simulations and evaluations an
intermediate parameter range with balanced synchronizing and
desynchronizing connections leading to rich dynamics. These
standard parameters are marked with blue circles in Figure 9.

3.5.2. Segmentation index
The dynamic binding and segmentation of the simulated phase
maps of natural images are evaluated using hand labeled segmen-
tation masks. Here a baseline is necessary to accommodate for
the higher probability of synchronization between neurons that
are close by. Consequently we use the labeled image masks on
the corresponding simulated phase maps and compare them to
a baseline using the same image masks on simulations of different
non-matching images.

The segmentation masks in the LabelMe database are speci-
fied as polygons on the images that are initially reduced in our

Frontiers in Computational Neuroscience www.frontiersin.org January 2014 | Volume 7 | Article 195 | 55

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Finger and König Segmentation in neural oscillator network

A B C

D E F

FIGURE 9 | The averaged local phase synchrony in circular image

regions for different simulation parameters. All evaluations are based
on the activation levels obtained from the image shown in Figure 8A.
Simulations in the top row (A–C) are based on Gabor weights;
simulations in the bottom row (D–F) are based on autoencoder
weights. Blue circles indicate the standard parameters for subsequent
evaluations. Colorbars of all panels are the same and shown on the
right. The panels in the left column (A,D) show the phase synchrony
after 20 iterations for different number of excitatory and inhibitory

phase connections per neuron. The panels in the center column (B,E)

show the phase synchrony for different ratios of excitatory to inhibitory
connections as a function of network iterations. These ratios correspond
to the diagonal elements marked with red arrows in panels (A,D). And
the shown time course of the average phase synchrony values are
from the same simulations. In the right panels (C,F) the phase
synchrony is shown for different sizes of the local circular region of the
evaluations. The red circle indicates the radius which was used in the
evaluations shown in the other panels.

simulation to a resolution of 400× 300 pixels. The convolutional
forward projections lead to a further reduction in the feature rep-
resentation to a grid of 200× 150 pixels. Therefore, we restrict
the evaluations of the phase maps to segmentation masks which
contain at least as many pixels as the specified patch size of the
forward projections (6× 6 neurons corresponding to 12× 12
pixels in the input image). In addition, segments occupying more
than half of the respective images are excluded to allow evalu-
ations against a baseline synchrony of the surrounding regions.
The range of labeled segments which is used in our evaluations
is shown as a horizontal bar in Figure 10. Only in evaluations
where the segment sizes are explicitly stated, we also evaluate these
otherwise excluded very small and very large segments.

The number of labeled segments in the database decreases for
larger segment sizes (Figure 10A). Yet the total area occupied by
segments in the different bins increases for larger segment sizes
(Figure 10B). Therefore, when applying labeled masks to non-
matching images small segments are highly likely to fall into
large segments where a large number of tangential connections

is functionally active. Consequently the phase synchrony within
labeled segments is not a sufficient baseline for an unbiased com-
parison with simulations of non-matching images. Therefore, we
need a baseline to control for the unequal distribution of segment
sizes and their occupied region in the images.

To accommodate for the statistics of segment sizes in the
evaluation of the matching and non-matching natural scenes,
we define a segmentation index (Figure 11) that sets the phase
synchrony in segments into the context of the surrounding
neurons. Concretely, the segmentation index evaluates how the
phase of neurons inside of segments is more or less synchro-
nized compared to the synchrony of random neurons inside and
outside of the segment. The neighborhood N of a segment Q
is generated using a diamond shaped grow operation on the
segmentation mask repeatedly until the number of neurons in
N is doubled compared to the original segment Q. Therefore,
N is the union of the segment Q and the surrounding R of
the segment (Q and R are annotated in the example shown in
Figure 11).
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A B

FIGURE 10 | Statistics of labeled image segments. (A) The histogram
of evaluated segments from the LabelMe database for different
segment sizes is shown. (B) The total area occupied by the segments

in the corresponding bins. The range of segment sizes (36–15000
pixels) that are used for subsequent evaluations are marked with a
horizontal bar.

FIGURE 11 | Evaluation using hand labeled image masks. The
evaluations compare the segmentation index of matching simulations and
segmentation masks (top row) to a baseline of non-matching simulations
and segmentation masks (bottom row). The images from the LabelMe
database (left column) are processed using the forward projections. The
resulting features are used to simulate the phase of the coupled neural
oscillators (middle column). The segmentation index of these phase maps
are then evaluated using the segmentations masks from the LabelMe
database (right column). The evaluation of the house in the top left is here
shown as an example. The segmentation index compares the phase
synchrony in the hand labeled region of the house (Q) to a baseline phase
synchrony within the neighborhood (Q ∪ R).

We calculate the phase synchrony values pQj and pNl for ran-
dom subsets Qj ⊂ Q and Nl ⊂ N where j, l ∈ {1, . . . , 100} and
Qj, Nl ∈ N

1000. We define the segmentation index of segment Q
as the difference between the mean synchrony within the segment
Q to the mean synchrony in the neighborhood N = R ∪ Q:

κ(Q,N) = 〈pQj〉j − 〈pNl 〉l. (24)

The segmentation index increases over simulation iterations for
matching and non-matching masks and images (Figure 12A).
The matching conditions have a steeper ascent and reach a higher
segmentation index compared to the non-matching conditions.
The difference between the matching segmentation index and
the non-matching segmentation index increases for both simula-
tions using Gabor weights and autoencoder weights (Figure 12B).
The simulations using regular Gabor receptive fields show larger
differences between matching and non-matching segmentation
indices compared to the autoencoder weights. The ratio between
matching and non-matching segmentation indices is roughly

the same for both types of receptive fields. This demonstrates
systematic binding in the phase maps of matching segments.

An evaluation for different segment sizes individually reveals
more differences between the Gabor and autoencoder features.
The evaluations of the matching conditions show that the seg-
mentation index increases for larger segments in the case of the
autoencoder features but decreases for larger segments in the
case of the Gabor features (Figure 12C). An explanation is that
the autoencoder contains more features with low spatial frequen-
cies while the Gabor features are restricted to one specific spatial
frequency.

The paired difference between matching and non-matching
evaluations shows that the Gabor filter and the autoencoder
have roughly the same performance for large segment sizes
(Figure 12D). For small segment sizes the autoencoder has a
decreased segmentation performance. One possible explanation
might be that the receptive field weights are not centered (com-
pare Figure 3) and therefore different feature neurons might be
slightly misaligned relative to the hand labeled segmentation
masks, which are defined as polygons with arbitrary precision on
the image.

Overall the results show a significant difference between the
matching and the non-matching segmentation indices for all eval-
uated segment sizes. The paired difference between the matching
and the non-matching conditions increases as the simulation of
the randomly initialized phase variables slowly converges to a
state with clusters in the circular phase space. After about 20 net-
work iterations the paired difference in the segmentation index
reaches a high plateau. Therefore, the coupled phase oscillator
model achieves a stable segmentation of the natural image scenes
with a coding of binding by synchrony.

3.5.3. Segment boundaries
To evaluate how well the phase maps segment different labeled
regions at their borders we calculate a metric at random locations
of segment boundaries. We sample 50 random locations from all
boundary lines of the segments in each simulated image from the
LabelMe database. At these locations we use the angle of the seg-
ment boundary to divide a local region into two semicircles with a
radius of 10 pixels such that one half lies approximately within the
segment and the other half outside of the segment (Figure 13A).
The mean phase difference between both semicircles decreases
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A B

C D

FIGURE 12 | Segmentation index. The mean segmentation index is shown
as a function of network iterations averaged over all segments with more
than 36 pixels in the top panels (A,B). The segmentation index is shown as a
function of different segment sizes after 20 network iterations in the bottom
panels (C,D). The panels on the left side (A,C) show the evaluations for

matching images (solid lines) and non-matching images (dashed lines)
individually. Panels on the right side (B,D) show the paired difference
between matching and non-matching evaluations. In all panels the activation
levels are obtained using Gabor filters (gray lines) and autoencoder filters
(black lines). The errorbars in all panels are 95% confidence intervals.

over simulation time (Figure 13B). The paired difference between
the phase difference in matching compared to non-matching
images shows that the phase difference over matching segment
boundaries is significantly larger (Figure 13C).

The evaluation of the phase difference as a function of the
size of this circular region shows that the segmentation perfor-
mance using autoencoder features decreases for very small regions
(Figures 13D,E). This might be due to the above described mis-
alignments between the learned receptive field centers. For very
large evaluation regions the performance decreases for both
receptive field types because the circular regions are likely to
extend beyond the hand labeled segment regions.

It is possible to evaluate the segmentation performance of
the dynamic binding maps without the need for a baseline on
non-matching images if we use an unbiased performance esti-
mator with a clearly defined chance level. Therefore, we measure
how well the phase map can predict the angle of the borders of
segmentation masks. We use the phase variables at randomly sam-
pled locations on segment boundaries (Figure 13A) and compute
the image direction with the largest change in the phase variables.
We define the local variance in phase at image position (x, y) as

ϑx,y = 1− 1

5 · K ·
∣∣∣∣∣

K∑
k= 1

eiϕx,y,k + eiϕx− 1,y,k + eiϕx,y− 1,k

+ eiϕx+ 1,y,k + eiϕx,y+ 1,k

∣∣∣∣∣ (25)

where the sum is over all k ∈ {1..K} feature maps. We use the
structure tensor of the local variance in phase to estimate the

principal directions. To compute the structure tensor we use a
Gaussian window function with a standard deviation of 3 pixels
and the second order central finite difference of the local variance
in phase. The eigenvector of the structure tensor gives an estimate
of the border direction of the segmentation mask. The evaluation
of the phase maps shows that the mean error in the estimation of
the boundary angles decreases over simulation time (Figure 13F).
A minimum is reached after around 20 network iterations with
an error of approximately 28◦ in comparison to the chance level
of 45◦. This demonstrates that the phase gradient systematically
aligns itself orthogonal to the segment boundaries.

4. DISCUSSION
Here we investigate the concept of binding by synchrony, as has
been previously studied with abstract stimuli, in the context of
unsupervised learning and natural stimuli. The model consists
of coupled phase oscillators with a connectivity based on natural
image statistics. Specifically, the correlation of neuronal activity
governs the structure of local horizontal connections in the net-
work. Hence the connections are not constructed according to a
heuristic or intuition, but solely data driven. Therefore, we can
expect it to generalize well to other cortical areas. We show that
the sampled sparse connectivity based on positive correlations
in induced activations by natural stimuli exhibits small-world
properties. We hypothesize that the small world property is a sig-
nature of Gestalt laws in the form of regular local correlations
(objects) that can be flexibly combined on a global scale. We
show that these horizontal connections influence the dynamics
of the phase variables such that an effective coding of contextual
relationships between active neurons is implemented by phase
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A B C

D E F

FIGURE 13 | Local evaluation of the phase segmentation. Results were
obtained using Gabor filters (gray) and autoencoder filters (black). (A)

Illustration of the randomly selected locations on segment borders and the
corresponding semicircles as described in the main text. (B) The local phase
difference at random segment border locations of matching images (solid
lines) and non-matching images (dashed lines). (C) The paired difference

between the local phase differences evaluated on matching and
non-matching images. (D) The mean local phase difference as a function of
different sizes of the local circular regions over which the phase is evaluated.
(E) The paired difference between matching and nonmatching images. (F)

The mean error in the estimated angle of segment boundaries. All errorbars
are 95% confidence intervals.

synchronization. Therefore, our results reveal that the concept of
binding by synchrony is viable for natural stimuli.

The evaluation of phase synchronization as a code for group-
ing and segmentation utilizes hand labeled image segments, cor-
responding to high level objects, as ground truth. The evaluations
reveal that the phase maps are binding active neurons together if
they encode different attributes of the same stimulus. It follows
that the phase variables are coding global stimulus attributes in
contrast to the coding of local stimulus attributes by the rate vari-
ables. The coding of these global contextual relationships is not
directly influenced by the rate variables but only by their indirect
modulation of the phase interactions. Furthermore, we illustrate
that discontinuities are formed in the phase maps at the borders
of segments and that these discontinuities can predict the orien-
tation of segment boundaries. Therefore, our results suggest that
the segmentation driven by bottom up dynamical processes using
natural image statistics matches to a certain degree the top-down
labeling of abstract image objects.

Our study connects three different subject areas: natural image
statistics, dynamical models of neural networks and normative
models of sensory processing. In the following we will discuss
the motivations and implications of our study from each of these
perspectives.

4.1. CHOICE OF NATURAL STIMULI
The choice of “natural” stimulus material is not as obvious as it
might seem. A more natural choice from a biological perspective
would be to use stimulus material generated by a moving agent.
For example videos from a camera mounted to a cat’s head were
used previously to analyze the spatio-temporal structure of natu-
ral stimuli (Kayser et al., 2003). A similar setup from a human
perspective is also possible (Açik et al., 2009). But time vari-
ant stimuli require more computational resources and the high
number of horizontal connections in our simulations is compu-
tationally expensive although it is implemented as a vectorized
operation. In addition, the analysis of the phase segmentation
maps would be more difficult in the case of moving stimuli
because of the unknown time lag between stimulus onsets and
the resulting dynamic phase maps. Therefore, we decided to not
use videos as stimulus material in the present study.

Differences in eye movements given different stimulus classes
might also play a role in shaping the statistics in the visual input
received by the primary visual cortex. There might be important
interactions between saccadic eye movements and the dynamics
of the horizontal connections in the visual cortex. One could sim-
ulate saccadic movements on static images using saliency maps
and use the resulting images for the feedforward processing in
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our model. But as with moving stimuli in general it would com-
plicate the analysis and would not contribute directly to the
understanding of the central questions of binding by synchrony.

The LabelMe database provides a large set of only static images.
It has the advantage that the images are accompanied by labeled
region masks of well defined objects. These high level labeled
masks are often overlapping in the case of part-based segmen-
tations of objects. The segmentation evaluation is tricky in the
case of occluded objects. But the LabelMe database allows us to
investigate the relationship between natural image statistics and
the coding of high level image concepts. Therefore, we think it is
a reasonable choice to use this database in our study.

4.2. BIOLOGICAL PLAUSIBILITY
As with most computational neural network models we have to
ask ourselves in how far it is biologically plausible. To advance
our knowledge about the underlying computation principles in
the cortex, it is always a good choice to model only the level of
detail which is necessary to explain the phenomena under investi-
gation. Thereby we assure that the abstraction level of the model
is as good as possible although it is very likely that some mech-
anisms below the level of detail modeled here play an important
role in synchronization phenomena. We implement in our simu-
lations the influence of correlated neuronal activity on large time
scales to the network connectivity. Based on these connections we
show how the dynamics on fast time scales can code for segmen-
tation and binding. Therefore, we have to model the behavioral
learning time scales (>days) to capture the natural image statistics
and the dynamical network time scales (<seconds) simultane-
ously. Therefore, we consider the chosen network architecture of
segregated rate and phase based coding suitable to investigate the
role of correlated neuronal activity on the network dynamics and
relational coding by synchronization.

The Kuramoto model restricts the dynamical interactions
between coupled oscillators to a scalar phase variable. Breakspear
et al. (2010) review this simplified model of coupled phase oscilla-
tors in the context of models of complex neurobiological systems.
They find that it captures the core mechanisms of neuronal
synchronization and a broad repertoire of rich, non-trivial cor-
tical dynamics. Studies of the Kuramoto model mostly focus
on regularly defined phase interactions without a separate net-
work variable representing the activation levels of the oscillator
neurons. This allows using mean-field approximations to fur-
ther simplify the analysis of the Kuramoto model. In contrast,
our study focuses on the simulation of heterogeneous connec-
tions which are modulated by heterogeneous activation levels
induced by natural stimuli. Therefore, our simulation model is
more similar to the diverse activations and connections found in
biological neural systems but this comes with the drawback that a
mean-field approximation is not warranted.

In principle two biological interpretations of the coupled phase
oscillator model are possible. A conservative standpoint is an
interpretation as a neural field model in which each network unit
of our simulation represents a functional module, i.e., a cortical
column, which is comprised of many biological neurons. In this
case the phase variables would represent the average phase of a set
of biological neurons, i.e., the phase of the local field potential.

A second possible more fine-grained interpretation in which the
phase oscillators represent individual biological neurons might
seem far-fetched and oversimplified on first sight. Nonetheless the
interpretation of the phase variables as spike timings might give
further ideas about possible extensions of our proposed model.
In this interpretation the oscillators represent the limit cycles
of the dynamics of spike generation of biological neurons. The
sinusoidal interaction function can then be related to an inte-
gral over the phase response function of a spiking neuron (Sturm
and König, 2001). Furthermore, the spike interpretation could
motivate the introduction of conduction delays in our model.
This in turn might further allow studying spike-timing dependent
plasticity in the context of a normative model.

Certainly, there are many phenomena that can only be mod-
eled by more detailed spiking neuron models. For example
spike-timing dependent plasticity could only be modeled with
the phase oscillator model if we assume regular oscillatory fir-
ing but not in the case of irregular firing. For example, the
ability of self-organizing recurrent networks (SORN) to learn
spatio-temporal structures in the input depends on spike-timing
dependent plasticity and irregular firing (Lazar et al., 2009).
Similarly, Buonomano and Maass (2009) showed that spatiotem-
poral processing of natural stimuli can emerge from the dynamics
of “hidden” neuronal states, such as short-term synaptic plastic-
ity. Irregular firing is also needed for synfire chains of successively
activated neural assemblies to explain the physiological mea-
surements of spike patterns recurring with millisecond precision
(Abeles, 1982). However, it might be possible to simulate some
properties of synfire chains if we add more hierarchical layers and
phase conduction in the feed forward projections in our model.
Kumar et al. (2010) analyzed the coexistence of firing rate prop-
agation and synchrony propagation in feed forward networks.
Last but not least, self-organized criticality and cortical avalanches
(Beggs and Plenz, 2003) can probably only be modeled with more
detailed spike-based neuron models because the phenomenon
requires a dynamical system of more complex coupled oscillators.

There are also other dynamical models of neural networks
that were analyzed in the context of scene segmentation (Tononi
et al., 1992). Wang and Terman (1997) described the local exci-
tatory global inhibitory oscillator network (LEGION), which is
comprised of units described by two differential equations that
explicitly model a stable periodic orbit alternating between two
phases with rapid transitions between them. This model has the
advantage that fast synchronization of the coupled oscillators
is possible. But it simulates each neuronal oscillation on a fast
timescale and the synchronization of a population of neurons
is only visible at certain simulated time points. In contrast, our
phase model simplifies the phase plane to a continues phase vari-
able averaged over many oscillatory periods, so that the phase
relationships between all pairs of neurons is explicitly represented
at all simulation time points. Another difference is that the imple-
mentation of LEGION involves many discontinuous operations
to reduce the computation time. These discontinues operations
prevent a normative model approach with optimizations using
gradient descent. The full continuous dynamics in our model
allows further optimizations of the horizontal connectivity using
gradient descent methods.
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In our model the forward connections are computed once and
are then fixed during the phase simulation of horizontal connec-
tions. This is a very simplified model compared to the ongoing
simultaneous processing of afferent and recurrent inputs in the
cortex. But it is compatible with the fact that self sustained activ-
ity in the cortex can be measured also in the absence of stimulus
inputs. Furthermore, computational models of cellular and net-
work behavior support the conclusion that the cortical network
operates in a recurrent rather than a purely feed-forward mode
(Mariño et al., 2005). Therefore, it makes sense to simulate the
lateral interactions decoupled from the time scale of forward
projections that generate the activation levels.

We use the correlated neuronal activation levels as the prob-
ability to form horizontal intralayer connections. It was shown
that the measured horizontal connectivity in the visual cor-
tex of cats is indeed proportional to the correlation between
receptive field wavelets in image statistics (Betsch et al., 2004).
Our choice to use a sparse connectivity pattern instead of full
connectivity with heterogenous connection strengths was ini-
tially intended as a computational shortcut to allow large-scale
simulations. This sparse connectivity is in line with biolog-
ical horizontal connectivity and reveals interesting properties
that deserve further investigation. In the brain the binding of
stimulus representations has to be distributed over many cor-
tical areas. It was shown with graph theoretic measures that
the sparse connectivity within the cortex is organized in hubs
and shows properties of small-world networks (Sporns et al.,
2004). One can speculate that this allows binding by tempo-
ral structure even between stimulus representations over distant
cortical regions. Also in our network model the sampled sparse
connection patterns generated from correlated neuronal activ-
ity were shown to have small-world properties in the case of
synchronizing connections. Accordingly, we see in our network
simulations fast synchronizations of distant neurons that are not
directly connected. And in future studies our model could be
extended to simulate even synchronizations between different
cortical regions.

In the cortex a wide range of oscillatory frequencies at dif-
ferent spatial scales occur with cross-frequency couplings. This
is highly prominent in different sleep stages (Belluscio et al.,
2012) and plays an important role in memory encoding (Friese
et al., 2012). Our model is highly simplified in the sense that
all neurons are assumed to have the same oscillatory natural
frequency. We simulate only horizontal connections between neu-
rons with similar physiological properties which are operating
in the same dynamical regime. In this context, the assumption
that all active neurons are close to a similar dynamical limit cycle
seems reasonable. In future work, several cortical rhythms could
be implemented using several phase variables per neuron. One
can conceive different algebraic structures which could efficiently
represent cross-frequency couplings in the cortex. This would
allow investigating fractal binding at different abstraction levels
and segmentation at different scales.

In summary, the architecture of our model captures many
important aspects of biological neural networks. In particular,
it models the dynamical properties used for contextual coding
and the unsupervised learning of statistics in natural stimuli. At

the same time, our model keeps the simplicity required for the
analysis of the network dynamics and allows relatively simple
evaluations of the resulting phase relationships.

4.3. COMPARISON WITH OTHER NORMATIVE MODELS
In recent years the abstraction from complex differential equa-
tions describing biological neural networks to normative models
of rate-based sensory processing improved our knowledge on the
underlying computational principles of the cortex (Olshausen
and Field, 2005). Unsupervised learning of the inherent statistics
in the sensory input seems to be one of the main mechanisms gov-
erning the structural connectivity between neurons in low level
sensory areas of the cortex (Olshausen and Field, 1996; Wiskott
and Sejnowski, 2002; Körding et al., 2004). On the other hand
relatively few studies have investigated the relationship between
unsupervised learning using correlated neuronal activity and the
coding of contextual relationships through binding by synchrony.
In this section we describe differences and similarities between
our model and other normative models of sensory processing in
the brain.

Wyss et al. (2006) and Franzius et al. (2007) show that rate-
coding neurons form a hierarchy of processing stages resem-
bling the ventral visual pathway. These studies use optimization
functions of optimal stability and decorrelation while exposing
the network to natural stimuli. Although these models provide
important insights into the information processing mechanisms
in the cortex, they don’t take into account the processing of con-
textual information and lack an implementation of relational
coding between different features. In a similar way to these stud-
ies, we use the statistics of natural stimuli not only to learn feature
representations but also to explain relational coding in the context
of binding by synchrony. This approach could allow combin-
ing multi-scale image segmentation and object recognition into
a hierarchical neuronal network model. A prerequisite for ana-
lyzing the segmentation by synchrony in a hierarchical network
is an unsupervised learning of the feed-forward connections to
generate the activation levels for higher network layers. We have
shown that the proposed segmentation by synchrony works with
receptive fields obtained from convolutional autoencoders, which
can be stacked to obtain the forward and backward connections
within a hierarchy. This allows a completely unsupervised learn-
ing of feed-forward, feed-back and intralayer connections using
natural image statistics. Binding and extraction of features can be
accomplished simultaneously within the hierarchy.

Biologically inspired autoencoder models were shown to be
efficient for unsupervised learning of receptive fields by minimiz-
ing the reconstruction error of the input (Coates et al., 2010).
Complex valued autoencoders have similar to our model 2 vari-
ables per network node (Baldi and Lu, 2012). To our knowledge
the available publications investigating complex valued autoen-
coders focus mainly on the aspect of learning compressed repre-
sentations of complex valued inputs. They do not directly address
the biological motivation of binding by synchrony. They are
usually strictly defined on the typical complex algebra and are
not described by a differential equation which corresponds to
coupled oscillators. The formalism of complex valued autoen-
coders might be adapted to allow further abstractions of our
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model. This could support our understanding of the underlying
computational principles of visual grouping and segmentation.

A very different and novel approach of coding contex-
tual informations in autoencoder networks are mean-covariance
restricted Boltzmann machines (Ranzato and Hinton, 2010). In
these models latent hidden factors are used to efficiently rep-
resent the contextual information in the input in addition to
the usual representation of pixel means in standard models of
restricted Boltzmann machines. It was shown that the model can
efficiently code pixel covariances in analogy to complex cells and
pixel means in analogy to simple cells. However, the coding of
contextual information in these models is limited to pair-wise
interactions in the input layer. Therefore, this kind of genera-
tive model can capture only a linear combination of second order
statistics so that contextual interactions between a large group of
neurons is only possible through direct connections. In contrast,
the grouping in our model is a dynamic process in which inter-
actions between neurons are possible without a direct connection
between them but through intermediate neurons. The reason is
that our model uses a dynamical system approach with recurrent
connections in contrast to probabilistic modeling of forward and
backward connections.

Some mathematical theories of cortical processing mecha-
nisms also take the contextual information into account. For
example the free energy principle (Friston, 2010) and the theory
of coherent infomax (Kay and Phillips, 2011) explicitly incor-
porate the context into single-variable local processors in the
network. In contrast, the model presented in this paper takes the
context into account in a separate phase variable, which codes
relational properties similar to the dynamics on fast time scales
in biological neural networks. Thereby our simulation allows to
model higher order relational structures with a limited num-
ber of horizontal connections. In contrast, in the mathematical
formalization of coherent infomax the contextual field input
is assumed to be integrated into a single variable output of a
local processor in the network. Thereby it doesn’t allow imple-
menting higher order relations between many local processors
if the computational resources are limited. This limitation is of
course only a matter of the used mathematical formalism and
doesn’t affect the general explanatory power of the free energy
principle or the theory of coherent infomax. Therefore, in a
broader sense our simulation model could be seen as an approx-
imate implementation of these abstract concepts, although we
use a biologically motivated architecture instead of a probabilistic
derivation.

Our study combines aspects of these normative models of
sensory processing and of detailed models of dynamical neu-
ral networks. We use only the statistics induced by natural
images to learn unsupervised the forward and tangential phase
connections. The supervised labeled segmentation masks are
only used to evaluate how phase synchrony corresponds to a
relational coding in the neural representation. Hence, the con-
cept can be phrased completely in the form of a normative
model. In future work, we plan to further formalize the model
and conceive more complex learning rules for the phase inter-
actions. These learning rules could replace the sampling of
sparse connections from the correlation of activation by a more

biologically motivated rule. For example, one could develop
learning rules based on spike-timing dependent plasticity if
phase delays are incorporated in the interactions of the net-
work. This would additionally allow modeling phase locking
between neurons and coding of syntactic relations in the network.
These extensions to our model could provide new insights into
the computational principles underlying higher order cognitive
processes.

5. CONCLUSIONS
Our study revealed that the concept of binding by synchrony
is viable in the context of unsupervised learning using natural
stimuli. We show that the structural connectivity based on cor-
related activity leads to relational coding in a neural network
model of coupled phase oscillators. The presented novel evalua-
tion methodology for image segmentation revealed that the phase
of neurons code global stimulus attributes. This strengthens the
evidence that phase synchronization plays a key role to coordi-
nate the spatially distributed information processing in the cortex.
One could further speculate on how higher level coordination and
binding between cortical areas might evolve from unsupervised
learning based on correlated neuronal activity.
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Neural firing is often subject to negative feedback by adaptation currents. These currents
can induce strong correlations among the time intervals between spikes. Here we
study analytically the interval correlations of a broad class of noisy neural oscillators
with spike-triggered adaptation of arbitrary strength and time scale. Our weak-noise
theory provides a general relation between the correlations and the phase-response
curve (PRC) of the oscillator, proves anti-correlations between neighboring intervals for
adapting neurons with type I PRC and identifies a single order parameter that determines
the qualitative pattern of correlations. Monotonically decaying or oscillating correlation
structures can be related to qualitatively different voltage traces after spiking, which can
be explained by the phase plane geometry. At high firing rates, the long-term variability
of the spike train associated with the cumulative interval correlations becomes small,
independent of model details. Our results are verified by comparison with stochastic
simulations of the exponential, leaky, and generalized integrate-and-fire models with
adaptation.

Keywords: spike-frequency adaptation, non-renewal process, serial correlation coefficient, phase-response curve,

integrate-and-fire model, long-term variability

1. INTRODUCTION
The nerve cells of the brain are complex physical systems. They
generate action potentials (spikes) by a nonlinear, adaptive, and
noisy mechanism. In order to understand signal processing in
single neurons, it is vital to analyze the sequence of the inter-
spike intervals (ISIs) between adjacent action potentials. There
is experimental evidence accumulating that the spiking in many
cases is not a renewal process, i.e., a spike train with mutu-
ally independent ISIs, but that intervals are typically correlated
over a few lags (Lowen and Teich, 1992; Ratnam and Nelson,
2000; Neiman and Russell, 2001; Nawrot et al., 2007; Engel et al.,
2008) [further reports are reviewed in (Farkhooi et al., 2009;
Avila-Akerberg and Chacron, 2011)]. These correlations are a
basic statistics of any spike train with important implications for
information transmission and signal detection in neural systems
(Ratnam and Nelson, 2000; Chacron et al., 2001, 2004; Avila-
Akerberg and Chacron, 2011) and man-made signal detectors
(Nikitin et al., 2012). They are often characterized by the serial
correlation coefficient (SCC)

ρk = 〈(Ti − 〈Ti〉) (Ti+ k − 〈Ti+ k〉)〉
〈(Ti − 〈Ti〉)2〉 , (1)

where Ti and Ti+k are two ISIs lagged by an integer k and 〈·〉
denotes ensemble averaging. ISI correlations can be induced via
correlated input to the neural dynamics, e.g. in the form of exter-
nal colored noise (Middleton et al., 2003; Lindner, 2004), intrinsic
noise from ion channels with slow kinetics (Fisch et al., 2012), or
stochastic narrow-band input (Neiman and Russell, 2001, 2005;
Bauermeister et al., 2013).

Another ubiquitous mechanism for ISI correlations are
slow feedback processes mediating spike-frequency adaptation
(Chacron et al., 2000; Liu and Wang, 2001; Benda et al., 2005)—
a phenomenon describing the reduced neuronal response to
slowly changing stimuli (Benda and Herz, 2003; Gabbiani and
Krapp, 2006). In the stationary state, these adaptation mech-
anisms are typically associated with short-range correlations
with a negative SCC at lag k = 1 and a reduced Fano factor
as demonstrated by several numerical (Geisler and Goldberg,
1966; Wang, 1998; Liu and Wang, 2001; Benda et al., 2010)
and analytical studies (Schwalger et al., 2010; Schwalger and
Lindner, 2010; Farkhooi et al., 2011; Urdapilleta, 2011). The cor-
relation structure of adapting neurons can show qualitatively
different patterns, ranging from monotonically decaying corre-
lations to damped oscillations when plotted as a function of the
lag (Ratnam and Nelson, 2000). Because ISI correlations shape
spectral measures (Chacron et al., 2004), they bear implications
for neural computation in general. However, a simple theory
that predicts and explains possible correlation patterns is still
lacking.

In this article, we present a relation between the ISI correla-
tion coefficient ρk and a basic characteristics of nonlinear neural
dynamics, the phase-response curve (PRC). The PRC quantifies the
advance (or delay) of the next spike caused by a small depolarizing
current applied at a certain time after the last spike (Ermentrout,
1996). For neurons which integrate up their input (integrator
neurons), the PRC is positive at all times (type I PRC) whereas
neurons, which show subthreshold resonances (resonator neu-
rons), possess a PRC that is partly negative (type II PRC)
(Ermentrout, 1996; Izhikevich, 2005; Ermentrout and Terman,
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2010). Below we show that resonator neurons possess a richer
repertoire of correlation patterns than integrator neurons do.

2. RESULTS
2.1. MODEL
Spike frequency adaptation can be modeled by Hodgkin–Huxley
type neurons with a depolarization-activated adaptation current
(Wang, 1998; Ermentrout et al., 2001; Benda and Herz, 2003).
However, the spiking of such conductance-based models can in
many instances be approximated by simpler multi-dimensional
integrate-fire (IF) models that are equipped with a spike-triggered
adaptation current (Treves, 1993; Izhikevich, 2003; Brette and
Gerstner, 2005); adapting IF models perform excellently in
predicting spike times of real cells under noisy stimulation
(Gerstner and Naud, 2009). Here, we consider a stochastic non-
linear multi-dimensional IF model for the membrane potential
v, N auxiliary variables wj (j = 1, . . . ,N) and a spike-triggered
adaption current a(t):

v̇ = f0(v,w)+ μ− a+ ξ(t), (2a)

ẇj = fj(v,w), (2b)

τaȧ = −a+ τa�
∑

i

δ (t − ti) . (2c)

The membrane potential v(t) is subject to weak Gaussian noise
ξ(t) with 〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′) and noise intensity D. The
dynamics is complemented by a spike-and-reset mechanism:
whenever v(T) reaches a threshold υ(t), a spike is registered at
time ti = t and v(t) and w(t) = [w1(t), . . . ,wN(t)]T are reset
to v(t+i ) = 0 and w(t+i ) = wr (where t+i denotes the right-sided
limit t → ti + 0). At the same time, a(t) suffers a jump by � ≥
0 as seen from Equation (2c), which resembles high-threshold
adaptation currents (Wang, 1998; Liu and Wang, 2001). The
constant input current μ is assumed to be sufficiently large to
ensure ongoing spiking even in the absence of noise. Note that
the model is non-dimensionalized by measuring time in units of
the membrane time constant τm ∼ 10 ms and voltage in units of
the distance between reset and spike-initiating potential (a typ-
ical value is 15 mV). In particular, the adaptation time constant
τa is measured relative to τm and the unit of the firing rate is
τ−1

m ∼ 100 Hz.
An important special case, the adaptive exponential integrate-

and-fire model (Brette and Gerstner, 2005) with purely spike-
triggered adaptation and a white noise current with constant
mean is illustrated in Figure 1. It assumes an exponential nonlin-
earity f0(v) = −γv + γ�T exp[(v − 1)/�T] (Fourcaud-Trocmé
et al., 2003; Badel et al., 2008) and corresponds to N = 0. Time
courses of v(t) and a(t) are shown in Figures 1A1,B1 for two dis-
tinct correlation patterns possible in this model. The ISIs Ti =
ti − ti−1 are obtained as differences between subsequent spiking
times ti. The sequence Ti,Ti+1,Ti+2 displays patterns of short-
long-long (Figure 1A1) and short-long-short (Figure 1B1), corre-
sponding to a negative SCC, which decays monotonically with the
lag k (Figure 1A3) or to an SCC oscillating with k (Figure 1B3).
In the following, we develop a theory to analyze these and other

A1

A2

A3

B1

B2

B3

FIGURE 1 | Correlation patterns in the adaptive exponential IF model

with τa = 10, γ = 1, �T = 0.1, υT = 2 , D = 0.1. Adaptation is weak
(� = 1,μ = 15) in (A) and strong (� = 10,μ = 80) in (B). Membrane
voltage v(t) and adaptation variable a(t) with ISI sequences {Ti } and peak
adaptation values {ai } are shown in (A1,B1); time is in units of the
membrane time constant τm. Colored pieces of trajectories in the phase
plane (v, a) in (A2,B2) correspond to the respective colors in (A1,B1). The
deterministic limit cycle (LC), determined by the initial (post-spike) values
v = 0, a = a∗, is indicated by a thick black line. For weak adaptation (A2) a
short ISI Ti causes positive deviations δai = ai − a∗ and δai+1 = ai+1 − a∗ of
peak values leading to long ISIs Ti+1 and Ti+2 and, hence, to a negative ISI
correlation at all lags (A3). Because of the qualitatively different limit cycle
for strong adaptation (B2), deviations δai and δai+1 differ in sign, yielding an
oscillatory correlation pattern (B3).

correlation patterns possible in multi-dimensional adapting IF
models.

2.2. GENERAL THEORY
In our model Equation (2), a(t) is the only variable that keeps a
memory of the previous spike times thereby inducing correlations
between ISIs. Over one ISI the time course of adaptation is an
exponential decay, relating two adjacent peak values ai = a(t+i )
and ai+1 = a(t+i+1) by

ai+ 1 = aie
−Ti+ 1/τa +� (3)

(Figures A1,B1). We assume that in the deterministic case
(D = 0) our model has a finite period T∗ (i.e., the model oper-
ates in the tonically firing regime) and, hence, for D = 0 the map
(3) has a stable fixed point

a∗ = �/ [1− exp
(−T∗/τa

)]
. (4)

The asymptotic deterministic dynamics can be interpreted as
a limit-cycle like motion in the phase space from the reset
point to the threshold and back by the instantaneous reset [cf.
Figures 1A2,B2].

Weak noise will cause small deviations in the period δTi =
Ti − T∗ ≈ Ti − 〈Ti〉 that are mutually correlated with coefficient
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ρk = 〈δTiδTi+ k〉/〈δT2
i 〉. The peak adaptation values, however,

also fluctuate, δai = ai − a∗, and both deviations are related by
linearizing Equation (3):

δTi+ 1 = τa

a∗
(
δai − eT∗/τaδai+ 1

)
. (5)

A second relation between the small deviations can be gained
by considering how a small perturbation in the voltage dynam-
ics affects the length of the period. This effect is captured by
the infinitesimal phase response curve (PRC), Z(t), t ∈ (0,T∗)
(Izhikevich, 2005; Ermentrout and Terman, 2010) (see Section
4 for the precise definition). During the interval Ti+ 1, the volt-
age dynamics in Equation (2a) can be written as v̇ = f0(v,w)+
μ− (a∗ + δai)e−(t− ti)/τa + ξ(t). Compared to the deterministic
limit cycle, the dynamics is perturbed by the weak noise and the
small deviation in the adaptation δaie−(t− ti)/τa yielding in linear
response

δTi+ 1 =
∫ T∗

0
dt Z(t)

(
δaie
− t

τa − ξ(ti + t)
)
. (6)

Combining Equations (5), (6) we obtain the stochastic map

δai+ 1 = αϑδai +�i, (7)

where �i = αa∗
τa

∫∞
0 dt Z(t)ξ(ti + t) are uncorrelated Gaussian

random numbers and

α = e−T∗/τa , ϑ = 1− a∗

τa

∫ T∗

0
dt Z(t)e−

t
τa . (8)

Note that local stability of the fixed point a∗ requires that |αϑ| <
1. The covariance ck = 〈δaiδai+ k〉 of the auto-regressive process
Equation (7) can be calculated by elementary means and using
Equation (5) we obtain for k ≥ 1:

ρk = −A(1− ϑ) (αϑ)k− 1 , A = α(1− α2ϑ)

1+ α2 − 2α2ϑ
. (9)

In order to compute α and ϑ via Equation (8), we have to calculate
T∗ and Z(t) (a∗ then follows from Equation (4)), which can be
done for simple systems analytically.

Our main result, Equations (8), (9), allows to draw a num-
ber of general conclusions. It shows that the SCC is always a
geometric sequence with respect to the lag k that can generate
qualitatively different correlation patterns depending on the value
of ϑ and thus on PRC and adaptation current. Because |αϑ| < 1
and 0 < α < 1, the prefactor A in Equation (9) is always positive.
Consequently, ρ1 is negative for ϑ < 1 and positive for ϑ > 1.
Looking at Equation (8), we find that a positive PRC inevitably
yields ϑ < 1. This implies that adapting neurons with type I PRC
possess negative correlations between adjacent ISIs. Intuitively, a
short ISI causes in the following on average a higher inhibitory
adaptation during the subsequent ISI. Such an inhibitory current
always enlarges the ISI in type I neurons—hence, a short ISI is
followed by a long ISI.

The sign of higher lags is determined by the base of the power:
for ϑ > 0 correlations decay monotonically, whereas for ϑ < 0
the SCC oscillates. Two special cases are ϑ = 0 with a negative
correlation at lag 1 and vanishing correlations at all higher lags
and ϑ = 1 where all correlations vanish. Overall, we find five
basic patterns corresponding to the cases −α−1 < ϑ < 0, ϑ = 0,
0 < ϑ < 1, ϑ = 1 and 1 < ϑ < α−1. These basic patterns cover
all interval correlations discussed in previous theoretical studies
(Schwalger and Lindner, 2010; Urdapilleta, 2011). Our geomet-
ric formula generalizes the theory for the perfect IF model with
adaptation (Schwalger et al., 2010) to more realistic, nonlinear
multi-dimensional IF models with adaptation.

The cumulative effect of the correlations can be described by
the sum over all ρk, which determines the long-time limit of the
Fano factor and the low-frequency limit of the spike train power
spectrum (for a definition of these quantities, see Section 4.2).
Evaluating the geometric series yields

∞∑
k= 1

ρk = −A (1− ϑ)

1− αϑ
. (10)

This shows that adaptation in neurons with type I resetting
(ϑ < 1) leads to a negative summed correlation and hence a
reduced long-term variability. Furthermore, at high firing rates
achieved by a strong input current μ, the sum in Equation (10)
can be approximated by

∞∑
k= 1

ρk � −1

2
+ 1/2

(1+�τa/vT)
2
, T∗  τa. (11)

In particular, for strong adaptation (�τa � vT) the sum is only
slightly larger than −1/2. Note that by virtue of the funda-
mental relation limt→∞ F(t) = C2

V

(
1+ 2

∑∞
k= 1 ρk

)
(Cox and

Lewis, 1966) (see Section 4.2), the smallest possible value for the
sum is −1/2 in order to ensure the non-negativity of the Fano
factor F(t). At this minimal value the long-term variability as
expressed by the Fano factor vanishes even for a non-vanishing
ISI variability as quantified by the coefficient of variation CV. The
latter quantity can also be estimated using the weak-noise the-
ory: From Equation (7) one can calculate the variance of ai and
using Equation (5) an approximation for C2

V ≈ 〈δT2
i 〉/T∗2 can be

obtained as follows:

C2
V = 2D

1+ α2 − 2α2ϑ

[1− (αϑ)2]T∗2

∫ T∗

0
dt [Z(t)]2. (12)

2.3. ONE-DIMENSIONAL IF MODELS WITH ADAPTATION
In the simplest case (N = 0, f0(v,w) = f (v)) the PRC reads

Z(t) = Z(T∗) exp
[∫ T∗

t
dt′ f ′(v0(t

′))
]
, (13)

where v0(t) is the limit cycle solution and Z(T∗) = [f (vT)+ μ−
a∗ +�]−1 is the inverse of the velocity v̇0(T∗) at the thresh-
old, which is always positive. Thus, the PRC is positive for all
t ∈ (0,T∗), i.e., one-dimensional IF models show type I behav-
ior. From our general considerations, this implies a negative SCC
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at lag k = 1. The sign of the correlations at higher lags can be
inferred from the sign of ϑ, for which one can show (Section 4)
that

ϑ = (f (0)+ μ− a∗
)
Z(0). (14)

Because Z(0) > 0, the sign of ϑ is determined by the sign of
f (0)+ μ− a∗. For weak adaptation such that a∗ < f (0)+ μ

(achieved by a sufficiently small value of � or τa, Figure 1A), we
will have ϑ > 0 and a negative correlation at all lags (Figure 1A3).
In this case, a short ISI occurring by fluctuation will cause a pos-
itive deviation δai (Figure 1A2, green arrow). Geometrically, it is
plausible that such a positive deviation causes a likewise positive
deviation δai+1 in the subsequent cycle (Figure 1A2, red arrow).
Because a positive deviation is associated with a long ISI, the
initial short ISI is on average followed by longer ISIs.

In marked contrast, for strong adaptation such that a∗ >
f (0)+ μ (achieved by a sufficiently large value of � or τa), ϑ

becomes negative and hence the SCC’s sign alternates with the lag.
This alternation of the sign can be understood by means of the
phase plane. Let us again consider a positive deviation δai due to
a short preceding ISI (Figure 1B2, green arrow). Because v̇0(0) =
f (0)+ μ− a∗ < 0, the neuron is reset above the v-nullcline and
hence hyperpolarizes at the beginning of the interval, i.e., the
trajectory makes a detour into the region of negative voltage (cor-
responding to a “broad reset” in Naud et al. (2008)). A positive
deviation δai leads to a larger detour (green trajectory) causing a
sign inversion and hence a negative deviation δai+1 (Figure 1B2,
red arrow). Because a positive (negative) deviation corresponds
on average to a long (short) ISI, the alternation of δai also
entails an alternation of the ISI correlations. Thus, the distinction
between monotonic and alternating patterns relates to a qualita-
tive distinction of the voltage trace after resetting [cf. “sharp” vs.
“broad” resets in Naud et al. (2008)].

As demonstrated in Figures 1A3,B3, our theory works well
for the adapting exponential integrate-and-fire model. We next
demonstrate the validity of our approach over a broad range
of firing rates (Figure 2) for another important 1D model, the
adapting leaky integrate-and-fire model (Treves, 1993) for which
f (v) = −γv and

Z(t) = exp
[
γ(t − T∗)

]
/
(
μ− γvT − a∗ +�) (15)

(here T∗ has still to be determined from a transcendental
equation). Changing the firing rate by varying the input cur-
rent μ, we find a good agreement for the first two correlation
coefficients and the sum of all ρk; the approximation of the CV
shows deviations from simulation results when the input current
μ becomes small (approaching the fluctuation-driven regime). In
accordance with previous findings (Wang, 1998; Liu and Wang,
2001; Benda et al., 2010; Nesse et al., 2010; Schwalger et al.,
2010; Schwalger and Lindner, 2010; Urdapilleta, 2011), the first
correlation coefficient ρ1 displays a minimum corresponding to
strong anti-correlations between adjacent intervals. The correla-
tions at lag 2 can be positive for a finite range of firing rates if
the adaptation strength is sufficiently large (Figure 2B), whereas
for moderate adaptation we find a negative ρ2 at all firing rates

A B

FIGURE 2 | ISI correlations and coefficient of variation (CV) of the

adapting LIF model vs. firing rate 1/〈Ti 〉 ≈ 1/T ∗, where the rate is

varied by increasing μ. The gray-shaded area corresponds to the
fluctuation-driven regime (μ < γvT), where the assumptions of the theory
do not hold. The panels display (from top to bottom) ρ1, ρ2, the sum∑m

k = 1 ρk and the CV for simulation (circles, m = 100) and theory (solid
lines, m→∞). (A) Moderate adaptation: � = 1, (B) strong adaptation:
� = 10. Both: γ = 1, τa = 10, D = 0.1, vT = 1. Note that the firing rate is
given in units of the inverse membrane time constant τ−1

m .

(Figure 2A). In both cases, however, the sum of SCCs approaches
a value close to−1/2 for high firing rates as predicted by Equation
(11) (Figure 2, bottom). This is strikingly similar to experimen-
tal data from weakly electric fish, in which some electro-receptors
display a monotonically decaying SCC and some show an oscil-
latory SCC (Ratnam and Nelson, 2000) but all cells exhibit a
sum close to −1/2 (Ratnam and Goense, 2004). Finally, Figure 2
reveals a local maximum of the CV for some suprathreshold
current μ—an effect that has been described by Nesse et al.
(2008).

2.4. GENERALIZED INTEGRATE-AND-FIRE MODEL WITH ADAPTATION
Different correlation patterns become possible if we consider a
type II PRC, which is by definition partly negative and can lead
to a negative value of the integral in Equation (8), and hence to
ϑ ≥ 1. This corresponds to a non-negative SCC at lag 1, which
is infeasible in the one-dimensional case. To test the prediction
ρ1 ≥ 0, we study the generalized integrate-and-fire (GIF) model
(Brunel et al., 2003) with spike-triggered adaptation. This model
is defined by f0(v,w) = −γv − βw and f1(v,w) = (v − w)/τw.
Using the method described in Section 4, the PRC is obtained as

Z(t) =
e

ν
2 (t−T∗)

[
cos(�(t − T∗))− 1−τwγ

2τw�
sin (�(t − T∗))

]
μ− γvT − βw0(T∗)− a∗ +� (16)

where ν = γ+ 1/τw, � =
√

β+γ
τw
− ν2

4 and w0(t) is one compo-

nent of the deterministic limit-cycle solution [v0(t),w0(t), a0(t)]
that we calculated numerically.

In Figure 3B we demonstrate that all possible correlation pat-
terns can be realized in the GIF model and that the predicted
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FIGURE 3 | Possible correlation patterns and corresponding PRCs (solid

lines: theory, symbols: simulations of Equation (2)). For the adapting LIF
model (A), ϑ < 1 and only three qualitative different cases are possible. The
adapting GIF model (B) exhibits the full repertoire of correlation patterns
because the PRC can be partly negative and ϑ can attain values from its
entire physically meaningful interval [−1/α, 1/α]. The value of ϑ and hence
the type of correlation pattern is set by the integral over the weighted PRC
Z̃ (t) = Z (t)e−

t
τa a∗T ∗

τa
, shown in left panels. LIF parameters: D = 0.1,

τa = 2, (i) μ = 20, � = 10, (ii) μ = 20, � = 4.47, (iii) μ = 5, � = 1. GIF
parameters: (i) μ = 10, β = 3, τa = 10. (ii) μ = 11.75, β = 3, τa = 10. (iii)

μ = 20, β = 1.5, τa = 10. (iv) μ = 2.12, β = 1.5, τa = 1, � = 10. (v)

μ = 1.5, β = 1.5, τa = 1, � = 9 D = 10−5. Unless stated otherwise, γ = 1,
� = 1, τw = 1.5, D = 10−4, wr = 0.

SCCs agree quantitatively well in theory and model simulations
(for comparison, see the SCC for the LIF in Figure 3A). To each
distinct pattern belongs a range of ϑ (Figure 3, left), determined

by the area under the weighted PRC Z̃(t) = a∗
τa

e−
t

τa Z(t). The

function Z̃(t) (left column in Figures 3A,B) illustrates, why an
adapting GIF neuron can show vanishing (Figure 3Biv) or even
purely positive ISI correlations (Figure 3Bv). In case of type II
resetting, inhibitory input can shorten the ISI because of the neg-
ative part in the PRC; here inhibition acts like an excitatory input.
Consequently, a short ISI will induce a stronger inhibition (adap-
tation) that now causes a likewise short interval and results thus
in a positive correlation between adjacent ISIs. Also, the shorten-
ing effect of the adaption current in the early negative phase of
the PRC can be exactly balanced by the delaying effect of the late
positive phase of the PRC (pseudo-renewal case, in which the area
under Z̃ is zero).

3. DISCUSSION
We have found a general relation between two experimentally
accessible characteristics: the serial interval correlations and the
phase response curve of a noisy neuron with spike-triggered
adaptation. The theory predicts distinct correlation patterns like
short-range negative and oscillatory correlations that have been

observed in experiments (Ratnam and Nelson, 2000; Nawrot
et al., 2007) and in simulation studies of adapting neurons
(Chacron et al., 2000; Liu and Wang, 2001).

Beyond negative and oscillatory correlations, we have found,
however, that resonator neurons with spike-frequency adaptation
can exhibit purely positive ISI correlations or a pseudo-renewal
process with uncorrelated intervals. Adaptation currents that are
commonly associated with negative ISI correlations (Wang, 1998;
Chacron et al., 2001; Liu and Wang, 2001; Chacron et al., 2003;
Benda et al., 2010; Nesse et al., 2010) can thus induce a rich
repertoire of correlation patterns. Despite the multitude of pat-
terns, there is a universal limit for the cumulative correlations at
high firing rates [cf. Equation (11)], which shows that the long-
term variability of the spike train is in this limit always reduced
in agreement with experimental studies (Ratnam and Goense,
2004).

Our analytical results apply to arbitrary adaptation strength
and time scale but require that (1) the noise is weak and white,
(2) the deterministic dynamics shows periodic firing with equal
ISIs (i.e., a limit-cycle exists) and (3) the adaptation current is
purely spike-triggered with (4) a single exponential decay time.
Regarding the weak-noise assumption, we found from numerical
simulations quantitative agreement with our theory for values of
the coefficient of variation (CV) up to 0.4, which is, for instance,
typical for neurons in the sensory periphery (Ratnam and Nelson,
2000; Neiman and Russell, 2004; Vogel et al., 2005). This holds
even in the subthreshold regime at low CVs, where the determin-
istic system does not follow a limit cycle. In this case, T∗ has to be
replaced by the mean ISI. Moreover, we found qualitative agree-
ment even for moderately strong noise with values of the CV up
to 0.8, which is typical for cortical non-bursting neurons in vivo
(e.g. Figure 3 in Softky and Koch (1993)).

In the absence of a deterministic limit-cycle, i.e., in the
fluctuation-driven regime at high CVs, different mathemati-
cal approaches have to be employed, such as those based on
a hazard-function formalism (Muller et al., 2007; Nesse et al.,
2010; Schwalger and Lindner, 2010; Farkhooi et al., 2011).
Furthermore, for some parameter sets, we also observed repeat
periods of the deterministic system that involved multiple ISIs
corresponding to a periodic ISI sequence with Ti = Ti+ n, where
the smallest period is n ≥ 2. Such cases can realize bursting (Naud
et al., 2008), which we did not consider in the present study.
However, we expect that these parameter regimes yield interest-
ing correlation patterns because already in the noiseless case a
periodic ISI sequence exhibits correlations between ISIs.

Regarding the last two assumptions, it seems that the analytical
derivation cannot be easily extended to the cases of adapta-
tion currents activated by the subthreshold membrane potential
(“subthreshold adaptation” Ermentrout et al., 2001; Brette and
Gerstner, 2005; Prescott and Sejnowski, 2008; Deemyad et al.,
2012) and multiple-time-scale adaptation (Pozzorini et al., 2013).
Ermentrout et al. (2001) have shown that the inclusion of sub-
threshold adaptation can lead to type II PRCs, which according
to our theory could qualitatively change the correlation patterns.
An adaptation dynamics depending on the subthreshold mem-
brane potential also involves a fluctuating component because v
is noisy. According to Schwalger et al. (2010), this stochasticity
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could contribute positive correlations. The combined effect of
spike-triggered, subthreshold and stochastic adaptation currents
on the sign of the SCC is not clear.

The important cases of the fluctuation-driven regime and
multiple-time-scale adaptation have been recently analyzed with
respect to the first-order spiking statistics including the stationary
firing rate as well as the mean response to time-dependent stim-
uli (Richardson, 2009; Naud and Gerstner, 2012). The second-
order statistics, which describes the fluctuations of the spike
train (“neural variability,” cf. Section 4.2) and which limits the
information transmission capabilities of neurons, is however still
poorly understood theoretically in these cases. How adaptation
shapes second-order statistics in the cases of multiple adapta-
tion time scales, fluctuation-driven spiking and sub-threshold
adaptation is an interesting topic for future investigations.

As an outlook we sketch, how our theory could be used to con-
strain unknown physiological parameters by measured SCCs and
PRCs. For instance, from the mean ISI we can estimate T∗ = 〈T〉.
Furthermore, knowing ρ1 = −A(α,ϑ)(1− ϑ) as well as the ratio
ρ2/ρ1 = αϑ one can eliminate ϑ and solve for α. This allows to
estimate the unknown adaptation time constant τa = −T∗/ ln α

and the amplitude of the adaptation current

a∗ = τa

α

(
α− ρ2

ρ1

)/∫ T∗

0
dt Z(t)e−

t
τa . (17)

Although experimental PRCs are notoriously noisy (Izhikevich,
2005), the integral over Z(t) determining our estimate of a∗ is less
error-prone. Combining our approach with advanced estimation
methods for the PRC (Galán et al., 2005), may thus provide an
alternative access to hidden physiological parameters using only
spike time statistics.

4. MATERIALS AND METHODS
4.1. PHASE-RESPONSE CURVES OF ADAPTING IF MODELS
We use the phase-response curve Z(t′) to characterize the shift of
the next spike following a small current pulse applied at a given
“phase” t′ ∈ [0,T∗] of an ISI. More precisely, let us assume that
the last spike occurred at time t0 = 0. Then, the next spike time
t1 of the perturbed limit cycle dynamics v̇ = f0(v,w)+ μ− a+
εδ(t − t′), v(0) = 0, w(0) = wr , a(0) = a∗, 0 < t′ ≤ T∗ will be
shifted by some amount δT(t′, ε) = t1 − T∗. The infinitesimal
PRC can be defined as the limit

Z(t′) = − lim
ε→0

δT(t′, ε)
ε

, (18)

where the sign has been chosen such that a spike advance (δT <

0) due to a positive stimulation (ε > 0) leads to a positive PRC.
The definition of Z(t) by the shift of the next spike differs from
the PRC that describes the asymptotic spike shift but is equiva-
lent to the so-called “first-order PRC,” which is often measured in
experiments (Netoff et al., 2012).

4.1.1. Adjoint equation and boundary conditions
The PRC can be computed using the adjoint method (see e.g.
Ermentrout and Terman (2010)). To this end, the dynamics is

linearized about the T∗-periodic limit cycle solution y0(t) =
[v0(t),w0(t), a0(t)]. The linearized limit-cycle dynamics y(t) =
y0(t)+ δy(t) corresponding to Equation (2) is given by

δ̇y = A(t)δy (19)

with the Jacobian matrix

A(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂f0
∂v

∂f0
∂w1

. . .
∂f0
∂wN

−1

τ−1
1

∂f1
∂v τ−1

1
∂f1
∂w1

. . . τ−1
1

∂f1
∂wN

0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τ−1
N

∂fN
∂v τ−1

N
∂fN
∂w1

. . . τ−1
N

∂fN
∂wN

0

0 . . . 0 −τ−1
a

⎞
⎟⎟⎟⎟⎟⎟⎠

(20)

evaluated at v = v0(t),w = w0(t). The linear response
of the ISI to perturbations of the limit-cycle dynam-
ics in an arbitrary direction is given by the vector
Z(t) = [Z(t),Zw1(t), . . . ,ZwN (t),Za(t)]T, where the first
component is equal to the PRC defined above. This vec-
tor satisfies the adjoint equation Ż = −ATZ (AT denotes
the transpose of A) with the normalization condition
v̇0(t)Z(t)+ ẇ0(t)Zw(t)+ ȧ0(t)Za(t) = 1. The remaining
N + 1 boundary conditions are obtained by the following con-
sideration: On the limit cycle 	, a phase φ : 	→ [0,T∗] can be
introduced in the usual way by inverting the map t �→ y0(t) and
setting φ = t. Because we are interested in the shift of the next
spike, it is useful to define the isochrons (sets of equal phase) as
the sets of all points in phase space that will lead to the same first
spike time. Put differently, phase points belonging to the same
isochron will have their first threshold crossing in synchrony. As a
consequence, the threshold hyperplane defined by the condition
v = vT is a special isochron corresponding to the phase φ = T∗.
Note that this definition of the phase implies that the reset
line defined by the condition v = 0,w = wr does generally not
correspond to φ = 0 but to positive phases if a < a∗ and negative
phases if a > a∗. Thus, off-limit-cycle trajectories suffer a phase
jump upon reset. Close to the threshold, the isochrons are parallel
to the threshold, and thus, a perturbation perpendicular to the v-
direction does not change the phase. This insensitivity implies the
boundary conditions Zw1(T

∗) = . . . = ZwN (T
∗) = Za(T∗) = 0.

Note that a definition of the PRC based on the asymptotic spike
shift would require periodic boundary conditions (Ladenbauer
et al., 2012).

From the above considerations, it becomes clear that the PRC
Z(t) can be computed for t ∈ [0,T∗] by solving the system

⎛
⎜⎜⎜⎜⎝

Ż
Żw1

...

ŻwN

⎞
⎟⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎜⎝

∂f0
∂v τ−1

1
∂f1
∂v . . . τ−1

N
∂fN
∂v

∂f0
∂w1

τ−1
1

∂f1
∂w1

. . . τ−1
N

∂fN
∂w1

...
...

. . .
...

∂f0
∂wN

τ−1
1

∂f1
∂w1

. . . τ−1
N

∂fN
∂wN

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Z
Zw1

...

ZwN

⎞
⎟⎟⎟⎟⎠ (21)
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subject to the boundary conditions

Z(T∗) = 1

v̇0(T∗)
= 1

f0(vT,w0(T∗))+ μ− a∗ +�, (22)

Zwk(T
∗) = 0, k = 1, . . . ,N. (23)

The PRC with respect to a is determined by

Ża = 1

τa
Za + Z(t), Za(T

∗) = 0. (24)

The matrix in Equation (21) is again evaluated on the limit cycle
at v = v0(t),w = w0(t) and is therefore time-dependent. An ana-
lytic solution of Equation (21) is possible for one-dimensional
models with adaptation (N = 0) or general linear IF models
although in most cases the deterministic period T∗ still has to be
computed numerically.

4.1.2. One-dimensional case
In the case N = 0, the PRC satisfies the equation Ż = −f ′(v0)Z
with boundary condition (22). The solution is given by Equation
(13). In order to prove Equation (14), we compute Za(t) from
Equation (24) yielding

Za(t) = e
t

τa

(
Za(0)+

∫ t

0
Z(t′)e−

t′
τa dt′

)
.

Evaluation of this expression for t = T∗ leads to ϑ = 1+
a∗
τa

Za(0). Finally, using the normalization condition (f (0)+ μ−
a∗)Z(0)− a∗

τa
Za(0) = 1 yields Equation (14).

4.2. RELATION BETWEEN SECOND-ORDER STATISTICS OF SPIKE
COUNT, SPIKE TRAIN AND INTERSPIKE INTERVALS

A stationary sequence of spike times {. . . , ti−1, ti, ti+1, . . . } is
often characterized by the statistics of the spike train x(t) =∑

i δ(t − ti), the spike count N(t) = ∫ t
0 dt′ x(t′) or the sequence

of ISIs {Ti = ti − ti−1}. In particular, neural variability can be
quantified by the second-order statistics of these different descrip-
tions as, for instance, the spike train power spectrum

S(f ) =
∫

dτ e2π if τ〈x(t)x(t + τ)〉, (25)

the Fano factor

F(t) = 〈N(t)
2〉 − 〈N(t)〉2
〈N(t)〉 , (26)

and the coefficient of variation CV =
√〈(Ti − 〈Ti〉)2〉/〈Ti〉 and

SCC ρk as defined in Equation (1). These statistics are connected
by the fundamental relationship (Cox and Lewis, 1966) (see also
(van Vreeswijk, 2010))

lim
t→∞ F(t) = 〈Ti〉 lim

f→0
S(f ) = C2

V

(
1+ 2

∞∑
k= 1

ρk

)
. (27)

It shows that the summed SCC has a strong impact on
the long-term variability of the spike train. In partic-
ular, a negative sum yields a more regular spike train
on long time scales than a renewal process with the
same CV.
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Coordinated patterns of precisely timed action potentials (spikes) emerge in a variety
of neural circuits but their dynamical origin is still not well understood. One hypothesis
states that synchronous activity propagating through feed-forward chains of groups of
neurons (synfire chains) may dynamically generate such spike patterns. Additionally,
synfire chains offer the possibility to enable reliable signal transmission. So far,
mostly densely connected chains, often with all-to-all connectivity between groups,
have been theoretically and computationally studied. Yet, such prominent feed-forward
structures have not been observed experimentally. Here we analytically and numerically
investigate under which conditions diluted feed-forward chains may exhibit synchrony
propagation. In addition to conventional linear input summation, we study the impact
of non-linear, non-additive summation accounting for the effect of fast dendritic spikes.
The non-linearities promote synchronous inputs to generate precisely timed spikes. We
identify how non-additive coupling relaxes the conditions on connectivity such that it
enables synchrony propagation at connectivities substantially lower than required for
linearly coupled chains. Although the analytical treatment is based on a simple leaky
integrate-and-fire neuron model, we show how to generalize our methods to biologically
more detailed neuron models and verify our results by numerical simulations with, e.g.,
Hodgkin Huxley type neurons.

Keywords: synchrony, networks, synfire chains, spike pattern, mathematical neuroscience, non-additive coupling,

non-linear dendrites

1. SPIKE PATTERNS AND SIGNAL TRANSMISSION IN
NEURONAL CIRCUITS

Reliable signal transmission is a core part of neuronal process-
ing. A common hypothesis states that activity propagating along
neuronal sub-populations that are connected in a feed-forward
manner may support such signal transmission. Indeed, there is
strong indication that activity propagation along feed-forward
structures drives the generation of bird songs (Long et al., 2010)
and experiments have shown propagation of synchronous and
rate activity in feed-forward networks (FFNs) in vitro (Reyes,
2003; Feinerman et al., 2005; Feinerman and Moses, 2006).
Sequential replay in the hippocampus and in neocortical net-
works also suggest underlying feed-forward mechanisms (August
and Levy, 1999; Nadasdy et al., 1999; Lee and Wilson, 2002;
Leibold and Kempter, 2006; Xu et al., 2011; Eagleman and Dragoi,
2012; Jahnke et al., 2012) and propagation of synchronous activity
along feed-forward chains is a possible explanation for exper-
imentally observed precise spike timing in the cortex (Riehle
et al., 1997; Kilavik et al., 2009; Putrino et al., 2010). Further,
the modular, hierarchical structure of many sensory and motor
systems suggests propagation over sequences of areas in feed-
forward manner, e.g., in bottom-up signal transfer (Felleman and
Van Essen, 1991; Scannell et al., 1999; Bullmore and Sporns, 2009;
Kumar et al., 2010).

Feed-forward structures which support the propagation of
synchronous activity are termed synfire chains. The concept

was introduced by Abeles (1982) as groups of neurons (layers)
with dense anatomical connections between subsequent groups
that are embedded in otherwise roughly randomly connected
local neural circuits. Two major questions regarding the dynam-
ical options for synfire activity include a) how synchrony may
actively propagate and b) how such spatio-temporally coordi-
nated spike timing may be robust against irregular background
activity, because the synfire chains are part of a cortical network
with dynamics defined by the so-called irregular balanced state
(van Vreeswijk and Sompolinsky, 1996, 1998).

Addressing these points, theoretical studies have established
conditions for stable propagation of synchrony in synfire chains
(Diesmann et al., 1999; Gewaltig et al., 2001). Most synfire chain
models assume functionally relevant FFNs that exhibit a very
dense, often all-to-all connectivity between subsequent layers
(Aviel et al., 2003; Mehring et al., 2003; Kumar et al., 2008)
(see also a recent review on this topic Kumar et al., 2010).
Such highly prominent feed-forward-structures, however, have
not been found experimentally. Since cortical neural networks
are overall sparse (e.g., Braitenberg and Schüz, 1998; Holmgren
et al., 2003), we may also expect some level of dilution for embed-
ded feed-forward chains. So far, computational model studies
assumed that such chains created from existing connections in
sparse recurrent networks exhibit strong synaptic efficiencies
and specifically modified neuron properties to enable synchrony
propagation (Vogels and Abbott, 2005).
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Recently, we have shown that non-additive dendritic interac-
tions promote propagation of synchrony (Jahnke et al., 2012).
The non-additive dendritic interactions considered are medi-
ated by fast dendritic spikes (Ariav et al., 2003; Gasparini et al.,
2004; Polsky et al., 2004; Gasparini and Magee, 2006): upon
stimulation within a time interval less than a few milliseconds,
dendrites are capable of generating sodium spikes. These induce
a strong, short and stereotypical depolarization in the soma. If
this depolarization elicits a somatic spike, the spike occurs a
fixed time interval after stimulation with sub-millisecond preci-
sion. This dendritic non-linearities relax the requirement of dense
feed-forward anatomy and thereby allow for robust propagation
of synchrony even in diluted FFNs with synapses of moderate
strength within the biologically observed range.

In the present article, we analytically and numerically inves-
tigate in detail under which conditions synchronous activ-
ity may reliably propagate along the layers of an FFN where
the inter-group connectivity is diluted, as may be expected
when they are part of a sparse cortical network. An embed-
ding network is mimicked by external, noisy input. We study
the influence of the network setup, including the influence
of the emulated embedding network, and of different types
of standard linearly additive as well as non-additive dendritic
interactions.

We derive analytical estimates for the critical connectivity—
the minimal connectivity that allows robust propagation of syn-
chrony. Some fundamental analytical results, in particular the
ansatz for deriving a critical connectivity in the first place, have
been briefly reported before (Jahnke et al., 2012). Here, we extend
the approach and show how the bifurcation point, i.e., the transi-
tion point from the non-propagating to the propagating regime,
can be estimated quantitatively from the neurons’ ground state
properties. We investigate the validity range of the analytical
predictions and check them via direct numerical simulations.
Furthermore, we discuss the applicability of our results to bio-
logically more detailed neuron models and network setups. In
particular, we argue that the assumptions underlying the ana-
lytical approach are met by a wide class of neuron models,
including, e.g., conductance based leaky integrate-and-fire and
Hodgkin–Huxley-type neurons.

The article is structured as follows: After introducing the neu-
ron model and network setup in section 2, we study in the main
part the propagation of synchrony in linearly coupled FFNs (sec-
tion 3.1) and in FFNs incorporating dendritic non-linearities
(section 3.2). In particular, we derive tools to study the system
analytically, compare the results to computer simulations and
elaborate differences of the dynamics of FFNs with and without
non-additive dendritic interactions. In the final part (section 3.3),
we discuss the application of our analytical results to biologically
more detailed neuron models.

2. METHODS AND MODELS
2.1. NEURON MODEL
2.1.1. Linear model
Consider networks of leaky integrate-and-fire neurons that inter-
act by sending and receiving spikes via directed connections. The
state of neuron k at time t is described by its membrane potential

Vk(t) and its dynamics satisfy

dVk(t)

dt
= −Vk(t)

τm
k

+ Iconst
k + Inet

k (t)+ Iext
k (t), (1)

where τm
k is the membrane time constant of neuron k, Iconst

k :=
I0
k/τ

m
k a constant input current, Inet

k (t) the input current caused
by spikes within the network and Iext

k (t) the input current arising
from spikes from external sources. When the neuron’s mem-
brane potential reaches or exceeds the threshold�k its membrane
potential is reset to V reset

k and a spike is sent to the postsy-
naptic neurons n, where it changes the postsynaptic potential
after a delay τnk. After emitting a spike at t = t0 the neuron
becomes refractory for a time period tref, i.e., Vk(t) = V reset

k for

t ∈ [t0, t0 + tref
]
.

To keep the model analytically tractable, we model the fast rise
of the membrane potential upon the arrival of presynaptic spikes
by instantaneous jumps of the membrane potential, such that the
resulting input current reads

Inet
k (t) =

∑
l

∑
m

εklδ
(

t − t
f
lm − τkl

)
. (2)

Here εkl denotes the coupling strength from neuron l to neuron k,

t
f
lm is the mth spike time of neuron l and τkl specifies the synap-

tic delay. In addition to spikes from the network each neuron
receives excitatory and inhibitory random inputs that emulate an
embedding network. These external inputs are modeled as ran-
dom Poisson spike trains with rate νexc and νinh, respectively. The
resulting input current is given by

Iext
k (t) =

∑
m

εexcδ
(
t − text, exc

km

)+∑
m

εinhδ
(

t − text, inh
km

)
, (3)

where text, exc
km (text, inh

km ) is the arrival time of the mth excitatory

(inhibitory) spike to neuron k and εexc > 0 (εinh < 0) denote the
corresponding coupling strength.

2.1.2. Non-linear model
In the above model all input currents are summed up linearly.
To also investigate the effect of dendritic spikes we modulate the
sum of synchronously arriving excitatory inputs by a non-linear
dendritic modulation function σNL (·). This can be directly read
off from experimental data (Ariav et al., 2003; Gasparini et al.,
2004; Polsky et al., 2004; Gasparini and Magee, 2006): If the sum
of excitatory inputs is below the dendritic threshold�b, the single
inputs are processed linearly (σNL (·) equals the identity). If the
sum of inputs exceeds the dendritic threshold�b, the depolariza-
tion is strongly non-linearly enhanced compared to that expected
from linear summation. This is, in biological terms, due to a
dendritic spike elicited. Larger inputs have been experimentally
found to not further increase the somatic peak depolarization.
The dendritic modulation function may then be modeled as

σNL (ε) =
{

ε for ε < �b

κ otherwise
. (4)
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The dendrites process synchronous inputs non-additively: inputs
below the dendritic threshold are summed linear, inputs above
this threshold are summed supra-linear and, due to the satura-
tion, very large inputs are summed sub-linear.

If not stated otherwise, we consider only exactly simultaneous
arriving spikes as sufficiently synchronous; to allow for exactly
simultaneous arrivals, the synaptic delays are chosen as homo-
geneous τkl ≡ τ. The input currents caused by spikes that are
received from the network are then given by

Inet
k (t) =

∑
tf

⎡
⎣σNL

⎛
⎝ ∑

l∈Mexc(tf )

εkl

⎞
⎠+ ∑

l∈Minh(tf )

εkl

⎤
⎦ δ
(

t − tf − τ
)
. (5)

Here, the sum over tf denotes the sum over all times at which
spike(s) are sent in the network, irrespective of which neuron(s)
is (are) spiking. The sets Mexc

(
tf
)

and Minh
(
tf
)

specify the set

of neurons that send an excitatory or inhibitory spike at time tf ,
respectively. (To describe a network with linear dendrites σNL(ε)

is replaced by ε).
In section 3.3.1 we consider inhomogeneous delay distribu-

tions and finite dendritic integration window�t (i.e., non-linear
amplification of inputs received within finite time interval �t)
and discuss how the results achieved for homogeneous systems
can be generalized.

2.2. NETWORK TOPOLOGY
We consider the propagation of synchrony in diluted Feed-
Forward-Networks (FFNs, synfire-chains). They consist of a
sequence of m layers, each composed of ω neurons. Neurons
of one layer form excitatory projections to the neurons of the
subsequent layer with probability p; the strength of an existing
connection from neuron l to neuron k is denoted by εkl.

For simplicity of presentation, we consider homogeneous
neuronal populations, i.e., all neurons have identical properties
(τm

k = τm, �k = � and V reset
k = V reset for all i), as well as homo-

geneous coupling strengths, i.e., εkl = ε if a connection is realized,
throughout this article. If not stated otherwise, we use τm =
14 ms and� = 15 mV as standard values for the membrane time
constant and the neuron threshold.

2.3. GROUND STATE DYNAMICS
We consider networks, where the single neurons are placed in a
“fluctuation driven regime,” i.e., in the ground state the average
input to each neuron is sub-threshold and spiking of neurons is
caused by fluctuations of the inputs. This setup allows to emulate
the dynamics of neurons which are part of a balanced network
(van Vreeswijk and Sompolinsky, 1996, 1998). The neurons fire
asynchronously and irregularly with low firing rate ν; the spike
trains resemble Poissonian spike trains (Tuckwell, 1988; Brunel
and Hakim, 1999; Brunel, 2000; Burkitt, 2006). Thus, the inputs
to the neurons may be described by three Poissonian spike trains
with rates νexc (external, excitatory), νinh (external, inhibitory)
and νint = νpω (inputs from the preceding layer). Since the num-
ber of inputs NX

T , X ∈ {exc, inh, int}, in a time interval T is
Poisson distributed, the expected number of inputs

〈
NX

T

〉
and the

variance
〈(

NX
T −
〈
NX

T

〉)2〉
, equal νXT = 〈NX

T

〉 = 〈(NX
T −
〈
NX

T

〉)2〉
.

Then

μ = I0 + τmνexcεexc + τmνinhεinh + τmpωνε (6)

is the mean of the total input to the neurons in an interval of the
size of the membrane time constant, T = τm, and

σ2 = τmνexc (εexc)2 + τmνinh
(
εinh
)2 + τmpωνε2 (7)

is its variance. In diffusion approximation, the distribution of
membrane potentials PV (V) and the mean firing rate ν can
be derived analytically (Brunel and Hakim, 1999; Brunel, 2000;
Helias et al., 2010). In particular, for networks with low firing
rates the probability density of membrane potentials (see, e.g.,
Tuckwell, 1988)

PV (V) = 1√
πσ2

exp

[
−
(

V − μ

σ

)2
]

(8)

is Gaussian and can be expressed in terms of the input current. In
this approximation the average firing rate is

ν = 1√
πτm

�− μ

σ
exp

[
−
(
�− μ

σ

)2
]

(9)

and depends on μ and σ only via the quotient

α := �− μ

σ
, (10)

which is the distance of the average input μ from the neurons’
threshold� normalized by the standard deviation σ of the input.
For the analytical derivations throughout this article we focus on
the regime of low spiking rates

(
α � 2; ν � 1.5Hz

)
.

In the absence of synchronous activity each neuron receives a
large number of inputs from the external network and only a few
inputs from the previous layer of the FFN, such that the ground
state dynamics of the network is mainly established by the exter-
nal inputs. To keep the input balanced we choose νexc = νinh =:
νext and εexc = −εinh =: εext throughout the article.

2.4. PROPAGATION OF SYNCHRONY
To initiate propagating synchronous activity along the considered
diluted FFN, we excite in the first layer a subgroup of g0 ≤ ω neu-
rons to spike synchronously. This causes a synchronous input to
the following layer after the synaptic delay τ and may therefore
initiate synchronous spiking of a subgroup of neurons in that
layer. These may again excite synchronous spiking in the next
layer and so on. Depending on the ground state, i.e., the layout
of the external network, on the layer size ω, and on the coupling
strength ε, a synchronous pulse may or may not propagate along
the FFN (cf. Figures 1A,B,D,E).

In addition to the triggered propagation, one might generally
also expect the occurrence of spontaneous propagation of syn-
chronous activity: Neurons of a particular layer share inputs from
the previous layer and this causes correlations in their spiking
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FIGURE 1 | Propagation of synchrony in diluted FFNs. (A,B,D,E) Raster
plots of diluted feed-forward networks (m = 10, ω = 200, ε = 0.25 mV).
With increasing connection probability p propagation of synchrony can be
enabled (A,B) in networks with additive (linear) and (D,E) in networks with
non-additive (non-linear) dendritic interactions (�b = 4 mV, κ = 11 mV). (C,F)

Average number of synchronously active neurons in the second layer,

g2, vs. the number of synchronously active neurons in the initial layer, g1;
panel (C) linear, panel (F) non-additive dendritic interactions (average over
n = 10, 000 trials: solid line, transition probability: shading). Note that
non-linear dendrites allow for sparser connectivity, (E) vs. (B) and for a
sparser code, i.e., for smaller numbers of spiking neurons in an activated
group, (F) vs. (C).

activity. Over the layers these correlations can accumulate and
lead to synchronous spiking (Aviel et al., 2003; Rosenbaum et al.,
2010, 2011; Litvak et al., 2013). However, in the setups consid-
ered in this article, the effect is negligible due to two reasons: (1)
each neuron receives a large number of external (uncorrelated)
inputs and this background noise has a decorrelating effect, (2)
we study the system near the critical point, i.e., for parameters
where even synchronized spiking of all neurons of a particu-
lar layer is just sufficient to initiate a propagation of synchrony.
Thus, spontaneous propagation of synchrony effectively does not
occur.

We study the transition from the non-propagating to the
propagating regime by means of a iterated map that yields the
expectation value of the number of synchronously spiking neu-
rons gi+ 1 in layer i+ 1 if gi neurons are synchronously active
in layer i. There is always one trivial fixed point, G0, of this iter-
ated map with 0 = G0 = gi+ 1 = gi, which corresponds to absent
activity. If gi+ 1 < gi for all gi > G0, synchronous activity will die
out after a small number of layers. If gi+ 1 ≥ gi for some substan-
tial group size, gi > G0, a stable propagation of synchrony may
be enabled (cf. Figures 1C,F). More precisely, we will show in
this article that with increasing connectivity p the system under-
goes a tangent bifurcation and two fixed points G1 and G2 ≥ G1

appear. If existing, G1 is always unstable (the diagonal is crossed
from below; the slope of the iterated map needs to be larger than
one) and G2 is always stable [all connections within the FFN are
excitatory such that the iterated map is monotonically increasing
(slope larger than zero, in particular larger than −1)]; further at
G2 there is an intersection with the diagonal from above thus the
slope is smaller than one and stationary propagation with group
sizes around G2 is enabled.

In computer simulations, we determine for each given net-
work setup by the following procedure whether a propagation
is possible: after some initial time tinit we excite all neurons of
the first layer to spike synchronously and measure the num-
ber of active neurons gi in the ith layer at the expected spiking
time t

exp
i = tinit + iτ. If gi is substantially larger than the num-

ber of active neurons arising from spontaneous activity in more
than 50% of n trials (i.e., n repetition of the same simulation
with different initial conditions), we denote the propagation of
synchrony as successful. The critical connectivity p∗, that marks
the transition from a regime where propagation of synchrony
is not possible to a regime where propagation of synchrony is
enabled, is found by determining the lowest connection prob-
ability p for which an initial synchronous pulse propagates
successfully.

As the connections within the FFN are all excitatory, it is suffi-
cient to check whether propagation of synchrony can be initiated
by inducing synchronized spiking of all ω neurons of the first
layer: Stationary propagation of synchrony can be enabled if there
is a non-trivial stable fixed point (G2) of the iterated map for the
average group size. For purely excitatory connections the basin of
attraction of this fixed point is bounded from the left by an unsta-
ble fixed point (G1) and from the right by the maximum group
size given by the layer size ω.

3. RESULTS AND DISCUSSION
Under which conditions can synchronous signals propagate
robustly along diluted FFNs? To answer this question in detail,
we first focus on networks with linear dendrites. Afterwards we
study the propagation of synchrony in networks incorporating
non-additive dendritic interactions and compare with the linear
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case. Finally, we show that the derived results are directly appli-
cable in biologically more detailed neuron models and network
configurations.

3.1. FFNs WITH LINEAR DENDRITES
In this section, we consider linearly coupled FFNs. In the first
part, we derive analytical estimates for the critical connectivity
p∗L that marks the transition from the non-propagating to the
propagating regime; the initial steps follow the lines of Jahnke
et al. (2012); Memmesheimer and Timme (2012). In the second
part we investigate the influence of the external network on the
propagation of synchrony and determine the parameter-region
for which the analytical estimates are applicable. In particu-
lar, we show that the derived estimates are applicable in the
biologically relevant parameter-region, where the spontaneous
firing rate is low and the distribution of membrane poten-
tials is sufficiently broad. Finally, we study how the properties
of propagating synchronous pulses depend on different system
parameters.

3.1.1. Analytical derivation of critical connectivity
To access the properties of propagation of synchrony we consider
average numbers of active neurons in the different layers of an
FFN: for this, we derive a iterated map which yields the expected
number of neurons that will spike synchronously in one layer
given that in the preceding layer a certain number of neurons was
synchronously active.

If in the ith layer, gi neurons spike synchronously, the num-
ber of synchronous inputs h a single neuron in layer i+ 1 receives
follows a binomial distribution h ∼ B

(
gi, p
)
. We denote the spik-

ing probability of a single neuron due to an input of strength x
by pf (x). The average or expected spiking probability psp

(
gi
)

of a
single neuron in layer i+ 1 is then given by

psp (gi
) = E

[
pf (hε)

∣∣ gi
] = gi∑

h= 0

(
gi

h

)
ph (1− p

)gi − h
pf (hε) .(11)

Here and in the following we denote the expectation value
of a function f (X) of a random variable X by E[f (X)];
conditional expectations are denoted by E[f (X)|Y]. The
expected number of spiking neurons in layer i+ 1 is then
simply

E
[

gi+ 1

∣∣ gi
] = ωpsp (gi

)
(12)

= ω

gi∑
h= 0

(
gi

h

)
ph (1− p

)gi − h
pf (hε) . (13)

If the connection probability p is low and/or the connection
strengths ε are small, the spontaneous spiking activity in the
absence of synchrony is only weakly influenced by the spiking
activity within the FFN. Thus as a starting point, we assume
that the ground state is exclusively governed by external inputs
(effectively setting εij ≡ 0). Then, the mean input to the neurons
in an interval of length τm is μ = I0 with standard deviation
σ = εext

√
2τmνext (cf. section 2.3). Using the probability den-

sity (Equation 8), we calculate the spiking probability of a single

neuron, pf (x), due to an input of strength x;

pf (x) =
∫ �

�− x
PV (V) dV (14)

= 1

2

(
Erf

[
�− μ

σ

]
− Erf

[
�− μ+ x

σ

])
(15)

equals the probability of finding a neuron’s membrane potential
in the interval [�− x,�]. To derive a iterated map for the aver-
age number of active neurons (which maps E[gi] → E[gi+ 1]),
we interpolate E

[
gi+ 1

∣∣ gi
]

for continuous gi and in the second
step replace gi by its expectation value E

[
gi
]
. The fixed points,

E
[

gi+ 1

∣∣E [gi
]] = E

[
gi
]
, qualitatively determine the propagation

properties of synchronous activity. In the rest of the manuscript
we are dealing with the average number of active neurons in a
given layer. Therefore, for simplicity we denote the expectation
value of the average number of active neurons in a given layer i by
gi instead of E

[
gi
]
.

For sufficiently small connection probabilities p the map
(Equation 12) has only one (trivial) fixed point G0 = gi+ 1 =
gi = 0. Any initial synchronous pulse will die out after a small
number of layers (see also Figure 1). With increasing connectiv-
ity two additional fixed points G1 (unstable) and G2 ≥ G1 (stable)
appear via a tangent bifurcation.

For FFNs with purely excitatory couplings between the layers,
the second fixed point G2 (if it exists) is always stable: The spik-
ing probability pf (x) is monotonically increasing with input x and
thus also the iterated map (Equation 13) is monotonically increas-
ing (i.e., the slope is larger than 0). Moreover, if G2 exists the slope
of the iterated map at this intersection point with the diagonal
is smaller than 1. This implies that G2 is stable and synchronous
pulses of size gi ≥ G1 typically initiate a propagation of synchrony
with an average number of active neurons around G2. The criti-
cal connectivity p∗L at the bifurcation point marks the minimal
connectivity that allows for stable propagation of synchrony.

Although the distribution of inputs from one layer to the
subsequent one and the spiking probability of a single neuron
pf (·) are known, there is no analytic closed form solution to
the fixed point equation gi+ 1 = gi = g∗i . In other words, we can
compute the firing probability pf (x0) for any x0, and therefore
also E

[
gi+ 1

∣∣ gi
]

for any gi, but g∗i = E
[

gi+ 1

∣∣ g∗i ] is transcenden-
tal. We thus derive an approximate solution. We choose some
expansion point gi (see section 3.1.2 for details), and approxi-
mate the function E

[
gi+ 1

∣∣ g∗i ] by a polynomial gi + S(g∗i − gi)

in second order in (g∗i − gi) near gi. The arising quadratic fixed
point equation g∗i = gi + S(g∗i − gi) is then analytically solvable
in g∗i . This also allows to analytically compute the critical con-
nectivity p∗L: it is the parameter value at which the iterated map
undergoes a tangent bifurcation, i.e., at which the two solutions
of the fixed point equation become equal upon changing from
complex-conjugate to real. Since the right hand side of Equation
(13) does not offer itself for a direct series expansion in g∗i , we
derive gi + S(g∗i − gi) from an appropriate expansion of pf (hε)

and a subsequent computation the arising expectation values.
In biologically relevant scenarios, the neurons usually receive

a large number of synaptic inputs and thus the distribution of
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membrane potentials PV (V) is broad, PV (V) changes slowly with
V . Then, PV (V) around some V = V0 can be approximated by
considering a series expansion with a small order and it is pos-
sible to derive an approximation for the critical connectivity p∗L
based on an expansion of pf (·). Expanding pf (x) into a Taylor
series around some x0 and using Equation (12) yields

gi+ 1 = ωE

⎡
⎣ ∞∑

n= 0

p(n)f (x0)

n! (hε− x0)
n

∣∣∣∣∣∣ gi

⎤
⎦ (16)

= ω

∞∑
n= 0

p(n)f (x0)

n! E
[
(hε− x0)

n
∣∣ gi
]
. (17)

Here and in the following we denote the nth derivative of a
function f (x) at x = x0 by

f (n) (x0) = d

dnx
f (x)

∣∣∣∣
x= x0

. (18)

Replacing the derivatives of pf (·) by the (one order lower)
derivatives of probability density of membrane potentials PV (V)
according to Equation (14) yields

gi+ 1 = ωpf (x0)+ ω

∞∑
n= 1

P(n− 1)
V (V0)

(−1)n− 1 n! E
[
(hε− x0)

n
∣∣ gi
]
,(19)

where we defined

V0 := �− x0 (20)

for better readability.
We have recently shown (Jahnke et al., 2012) that it is possible

to derive a scaling law for the critical connectivity using

x0 = gipε, (21)

the (unknown) average input from one layer to the next during
stationary synchrony propagation, as expansion point. For this
choice the expectation value E

[
(hε− x0)

n
∣∣ gi
]

in Equation (19)
simplifies to

E
[
(hε− x0)

n
∣∣ gi
] = εnE

[
(h− E [h])n

∣∣ gi
] = εnmn, (22)

where we denote by mn the nth central moment of the Binomial
distribution B

(
gi, p
)
, specifying the distribution of inputs to the

(i+ 1)th layer. In the limit of large layer sizes ω and small cou-
pling strengths ε keeping the maximal input εω to each layer
constant (to preserve the network state), all summands for n ≥ 2
vanish, and Equation (19) simplifies to

gi+ 1 = ωpf
(
gipε
)
. (23)

Using the implicit function theorem one can show that this
implies the scaling law

p∗L =
1

λεω
(24)

where λ is a constant independent of ε and ω (Jahnke et al., 2012).
We note that for the derivation of the scaling law (Equation 24) we
did not use the actual functional form of the distribution of mem-
brane potentials PV (V). Therefore this estimate holds if PV (V) is
sufficiently slow changing with V such that the Taylor expansion
(cf. Equation 16) is applicable, but its validity is not restricted to
the low-rate approximation.

However, the dependence of the prefactor 1/λ on the layout
of the external network remained unknown. Here, we present an
approach that enables us to derive an approximate value for λ.
We consider the expansion (Equation 19) around x0 up to second
order,

gi+ 1 ≈ ωpf (x0)+ ωPV (V0) ·
(
εgip− x0

)
− ωP(1)V (V0)

2

[(
εgip− x0

)2 + ε2gip
(
1− p

)]
(25)

The truncated series (Equation 25) is quadratic in gi such that the
fixed points g∗1/2 = gi+ 1 = gi can be obtained analytically,

g∗1, 2 = γL ±

√√√√√γ2
L −

x0

(
2PV (V0)+ x0P(1)V (V0)

)
− 2pf (x0)

p2P(1)V (V0)ε2
, (26)

where we defined

γL :=
pεω
(

2
(

PV (V0)+ x0P(1)V (V0)
)
+ (p− 1

)
P(1)V (V0)ε

)
− 2

2p2P(1)V (V0)ε2ω
. (27)

At the bifurcation point, the root in Equation (26) vanishes
such that both fixed points agree (g∗1 = g∗2 ) and γL = g∗1 = g∗2
specifies the average size of a propagating synchronous pulse.
Consequently, the critical connectivity is obtained by choosing p
such that

γ2
L =

x0

(
2PV (V0)+ x0P(1)V (V0)

)
− 2pf (x0)

p2P(1)V (V0)ε2
(28)

which yields

p∗L =
1

2
− 1

ε

⎡
⎢⎢⎣ λ∗

P(1)V (V0)
−

√√√√√√ 2

P(1)V (V0)ω
+
(
εP(1)V (V0)− 2λ∗

)2

4
(

P(1)V (V0)
)2

⎤
⎥⎥⎦ (29)

where we defined

λ∗ := PV (V0)+ x0P(1)V (V0) (30)

−
√

P(1)V (V0)
(

x0

(
2PV (V0)+ x0P(1)V (V0)

)
− 2pf (x0)

)

which is independent of the setup of the FFN and completely
determined by the layout of the external network and the choice
of the expansion point x0.
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As before we consider the limit of large layer sizes ω and
small coupling strengths ε, i.e., we replace ω→ const

ε
and con-

sider the leading terms of a series expansion of Equation (29).
The expansion of the square bracket in Equation (29) yields

λ∗

P(1)V (V0)
−

√√√√√√ 2

P(1)V (V0)

ε

const
+
(
εP(1)V (V0)− 2λ∗

)2

4
(

P(1)V (V0)
)2

=
[

λ∗

P(1)V (V0)
− λ∗

P(1)V (V0)

]
− ε

(
1

λ∗ · const
− 1

2

)
+ O
(
ε2), (31)

such that the critical connectivity assumes the functional form
given by Equation (24),

p∗L ≈
1

λ∗εω
. (32)

Thus λ = λ∗ defined by Equation (30) provides an approxima-
tion of the constant λ fully specifying the critical connectivity p∗L.

3.1.2. Optimal expansion point
To derive Equation (30) we assumed that it is sufficient to con-
sider the second order expansion of pf (x). It is thus necessary
to choose an appropriate expansion point that results in fast
convergence. In particular for the choice x0 = x∗0 , that we will
now derive, Equation (37) below, the bifurcation diagram near
the bifurcation point is well approximated already for k = 2 (cf.
Figure 2).

The size of a propagating group at the critical connectivity is
γL (cf. Equation 27) and thus the resulting average input is p∗LγLε.
Our expansion point x0 should lie near to this value, which is, of
course, unknown prior to solving the fixed point equation. We
will thus compute a range in which p∗LγLε has to lie and choose
the expansion point appropriately within. We assume that ω is
large and employ Equation (23) which allows an direct estimate
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FIGURE 2 | Iterated map and bifurcation diagram for the average group

size of a propagating synchronous pulse. (A) Iterated map (Equation 19)
truncated after expansion order k (color code) with x0 = x∗0 (cf. Equation
37). (B) Fixed points of the iterated maps shown in (A); with increasing
connectivity two fixed points appear by a saddle node bifurcation. We note
that already a second order expansion (red), i.e., the lowest order at which a
saddle node bifurcation can occur, approximates the bifurcation diagram
(blue) near the bifurcation point well.

of this range as we know the functional form explicitly. Equation
(23) with gi+ 1 = gi is just another transcendental equation for
the fixed points and it has zero, one, or two non-trivial fixed
point solutions points g∗1 and g∗2 , which are then also solutions
of Equation (19) with gi+ 1 = gi. At the bifurcation point (g∗ =
g∗1 = g∗2 ) where the diagonal is touched, the function pf (gpε) has
to be concave and monotonic increasing with respect to g. The
definition (Equation 14) of pf (x) implies that it is monotonic
increasing for all x ≥ 0. Moreover, it is concave for all x ≥ �− μ,

p(1)f (x) = PV (�− x) ≥ 0 for x ≥ 0 (33)

p(2)f (x) = −P(1)V (�− x) ≤ 0 for x ≥ �− μ, (34)

such that the bifurcation point satisfies

x0 ≥ �− μ. (35)

The condition Equation (33) holds because PV (V) ≥ 0 is a prob-
ability density and Equation (34) is derived directly from differen-
tiating Equation (8). To maximize the quality of the second order
approximation Equation (25), we choose x0 = x∗0 such that the
contribution to the expansion (Equation 19) of the k = 3rd order
term equals zero. According to Equation (19), all 3rd order terms

are proportional to P(2)V (�− x0); so we determine the expansion
point x∗0 as a deflection point of PV (·), requiring that the second
derivative of PV (V) vanishes for V = �− x∗0 ,

p(3)f (x∗0) =
d2PV (V)

dV2

∣∣∣∣
V =�− x∗0

!= 0. (36)

In the considered regime of low spiking rates, we find x∗0 = �−
μ± σ√

2
, cf. Equation (8). Due to Equation (35)

x∗0 = �− μ+ σ√
2
. (37)

For x0 = x∗0 the bifurcation diagram near the bifurcation point is
well approximated already for k = 2 (cf. Figure 2) and Equation
(30) provides a good estimate of the critical connectivity p∗L (cf.
Figure 3).

3.1.3. Influence of external network
In the previous section we derived an iterated map for the average
group size (cf. Equation 13) and an approximation for the critical
connectivity p∗L (cf. Equations 30 and 32) that marks the transi-
tion from FFNs which do not support propagation of synchrony
to FFNs that do. In this section we focus on the robustness of our
results. How does the critical connectivity change with the layout
of the external network? For which parameter range does the esti-
mate of the critical connectivity (given by Equations 30 and 32)
yield reasonable results?

The derivation was based on the assumption that the ground
state dynamics of the neurons of the FFN is completely deter-
mined by the external inputs. This assumption holds if the spon-
taneous firing rate ν of the neurons and/or the coupling strengths
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FIGURE 3 | Critical connectivity p∗
L in FFNs with linear dendrites decays

algebraically with coupling strength ε and layer size ω. The parameters
of the external inputs (emulated embedding network) are fixed (I0 = 5 mV,
νext = 3 kHz, εext = 0.5 mV). Panel (A) shows the critical connectivity p∗L vs.
the layer size ω for different coupling strengths (ε = {0.05 mV (red), 0.1 mV
(cyan), 0.125 mV (green), 0.2 mV (blue), and 0.4 mV (black)}) and panel (B)

shows p∗L vs. the coupling strength ε for different layer sizes (ω = {50 (red),
100 (cyan), 150 (green), 200 (blue), and 400 (black)}). In the main panels we
use a logarithmic scale, the insets have a linear scale. The squares indicate
the connectivity above which a synchronous pulse propagates from the 1st
to the 20th layer of a FFN in at least 50% of n = 30 trials. The critical
connectivity given by Equation (32) (solid lines) with x0 = x∗0 (cf. Equation
37) is in good agreement with computer simulations. As predicted
p∗L ∝ (εω)−1 and the proportionality factor 1/λ is well approximated by the
estimate 1/λ∗ derived in Equation (30).

ε and/or the connectivity p are sufficiently small. We will gener-
alize our approach and show how the impact of preceding layers
on a layer’s ground state can be taken into account. Thereafter we
will compare the results with computer simulations, identify the
regions in parameter space for which the derived approximations
hold and discuss deviations between direct numerical simulations
and analytics.

The first layer of an FFN receives inputs only from the exter-
nal network and according to Equations (6, 7) the mean μ1 and
standard deviation σ1 of its input is

μ1 = I0 (38)

σ1 = εext
√

2τmνext, (39)

as assumed in the previous section. All following layers receive
external inputs and spikes from their preceding layer(s). The
mean μn and standard deviation σn of the input to neurons of
the nth layer (with n ≥ 2) reads (cf. Equations 6 and 7)

μn = I0 + τmpωνn− 1ε (40)

σn =
√

2νextτm (εext)2 + pωνn− 1τmε2. (41)

Here we denote the spontaneous firing rate (in the absence of syn-
chrony) of neurons of the (n− 1)th layer by νn− 1. It is given by
Equation (9) as

νn− 1 = 1√
πτm

�− μn− 1

σn− 1
exp

[
−
(
�− μn− 1

σn− 1

)2
]
. (42)

From layer to layer, the mean input, the standard deviation as
well as the firing rate increase. For setups, where the ground state
of the FFN is non-pathological, i.e., the firing rates of all lay-
ers are bounded, the additional corrections �Xn := Xn − Xn− 1

for X ∈ {μ, σ, ν} decrease with n, and μn, σn and νn saturate for
sufficiently large n. Thus, μ∞ and σ∞ describe the input to the
neurons of an infinitely long FFN and the single neurons of such
an FFN spike with an average rate ν∞. Accordingly, replacing μ

and σ by μ∞ and σ∞ in Equation (13) [where they appear as
parameters of pf (·)] yields an iterated map for the average group
size.

In Figure 4, we compare the critical connectivity found by
numerically determining the bifurcation point of the iterated
map (Equation 13) (i.e., we determined the connectivity p for
which the iterated map touches the diagonal; solid lines) with
computer simulations of propagating synchrony (markers). To
also cover scenarios, where the input from the preceding layer
is not negligible, we consider infinitely long FFNs (then, the
distribution of membrane potentials is equal in all layers). In
computer simulations this can be approximated by a sufficiently
long FFN with periodic boundary conditions, i.e., an FFN where
the last layer connects to the first layer. For moderate external
inputs, i.e., moderate I0 and εext, already the analytical results
neglecting the influence of the preceding layers (using μ1 and
σ1) agree well with computer simulations (cf. Figure 4A, solid
lines). However, for large external inputs, i.e., large I0 and εext,
the critical connectivity is overestimated. Here, the assumption
that the distribution of membrane potentials is not influenced
by the connectivity of the FFN does not hold. The additional
input shifts the membrane potentials to higher values and con-
sequently a lower connectivity is required for a propagation of a
synchronous pulse. The corrections given by Equations (38–42)
account for these deviations to some extent (cf. Figures 4B,C;
solid lines), in particular for setups where the spontaneous firing
rate is low. However, for very large I0 and εext, the critical con-
nectivity is under-estimated. Here, the spontaneous firing rate is
too high and the low-rate approximation, Equations (8–9), is not
adequate to describe the system; the firing rate and thus the mean
input from the previous layer are over-estimated. This becomes
particularly clear in Figure 4C, where we show the critical con-
nectivity as a function of the strength of the external inputs εext.
For any given I0 (different colors), the critical connectivity for
small εext is well approximated; with increasing εext the firing
rate increases [α decreases and thus ν increases; cf. Equations
(9 and 10)] and when the coupling strengths εext exceed a
I0-dependent threshold, the low-rate approximation becomes
inapplicable.

Applying the methods in Brunel and Hakim (1999); Brunel
(2000), the firing rate and the distribution of membrane poten-
tials can be derived in diffusion approximation for states with
higher spontaneous firing rates. Although most of the analyti-
cal considerations above are also applicable within this approx-
imation, the determination of an optimal expansion point
(cf. Equations 36 and 37) becomes more difficult and a closed
form expression does not exist. However, the critical connectiv-
ity can be obtained by numerically determining the fixed points
of the iterated map (Equation 13) and we find that it agrees with
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FIGURE 4 | Robustness of analytical estimates of the critical

connectivity. (A–C) We consider the critical connectivity p∗L of infinitely long
FFNs, that are approximated by an FFN (m = 20, ω = 150, ε = 0.2 mV) with
periodic boundary conditions in direct numerical simulations (markers), for
different layouts of the external network. Panels (A,B) show p∗L vs. I0 for fixed
εext and panel (C) shows p∗L vs. εext for fixed I0. The solid (colored) lines
indicate the critical connectivity found by numerically determining the
bifurcation point of the iterated map (Equation 13). In panel (A) we neglect
the influence of previous layers on the ground state of a considered layer in
the analytical computations [i.e., we use μ1 and σ1, cf. Equations (38) and
(39)]. In (B,C) we employ corrections to account for their influence, cf.
Equations (38–42). We show the third order correction, higher orders add

only small modifications to the curves, but the numerical computations get
more costly. The thick gray lines in (B,C) indicate the bifurcation point of the
iterated map (Equation 13) with PV (V ) derived from the diffusion
approximation of leaky integrate-and-fire neuron dynamics with Poissonian
input (Brunel and Hakim, 1999; Brunel, 2000). The dashed lines are the
estimates of the critical connectivity given by Equations (30 and 32). Again, in
panel (A) we neglect the influence of previous groups on the ground state, in
panels (B,C) we use the third order correction. The estimates agree with the
data from numerical simulations within the biologically relevant parameter
range, where (1) the spontaneous spiking activity is low and (2) the
distribution of membrane potentials is sufficiently broad. For further
explanations see text (section 3.1.3).

computer simulations for the entire considered range of I0 and
εext, (cf. Figures 4B,C; gray lines).

Analogous to the approach presented above, corrections for
the influence of preceding layers can be taken into account for
the analytical estimate of the critical connectivity derived in the
previous section (Equations 30 and 32). Replacing the connectiv-
ity p by the approximation p∗L = (λ∗εω)−1 in Equations (40, 41)
yields

μn = I0 + τm/λ∗n− 1νn− 1 (43)

σn =
√

2νextτm (εext)2 + ενn− 1τm/λ∗n− 1 (44)

where λ∗n− 1 := λ∗ (μn− 1, σn− 1) is given by Equation (30) and
νn− 1 = ν (μn− 1, σn− 1) is given by Equation (42). In Figure 4

we show the estimate of the critical connectivity p∗L =
(
λ∗nεω

)−1

(cf. Equation 32) using λ∗1 (panel a; dashed line), i.e., neglect-
ing the influence of the preceding layers, and using a higher
correction order (panel b,c; dashed line: third order). For suffi-
ciently large εext the critical connectivity found by numerically
determining the bifurcation point agrees with the analytical esti-
mate given by Equation (32). As discussed above, the correc-
tions Equations (43, 44) account for the deviations from the
simulated data as long as the total spontaneous firing rate is
sufficiently low. However, for small εext the critical connectivity
is under-estimated. Here, the standard deviation of the inputs
(cf. Equation 7) is low, such that the distribution of membrane
potentials PV (V) is narrow [for εext → 0: PV (V)→ δ (V − μ);
cf. Equation (8)], the spiking probability of one neuron, pf (·),
increases steeply in a small interval [for εext → 0: pf (x)→
�(x − μ); cf. Equation (8)] and thus the approximation of pf (·)

by the leading terms of a Taylor expansion is not sufficiently
accurate.

However, in the biologically plausible parameter regime, where
the firing rates are small and the distribution of membrane
potentials is broad, the critical connectivity is approximated
well by Equation (32) together with Equation (30) (defin-
ing λ∗), Equation (37) (defining x∗0) and the corrections that
account for the influence of the preceding layers, Equations
(43, 44).

3.1.4. Characteristics of propagating synchronous pulses
In the previous sections, we have shown that a synchronous pulse
may propagate along a diluted FFN. In this section we study the
characteristics and properties of a propagating synchronous sig-
nal. We consider them at the transition to stable propagation,
p∗L, because there they depend only weakly on the network setup.
How large is the fraction of neurons that participate in propa-
gating synchrony? How does this fraction depend on the network
setup?

To answer such questions, we consider the effect of a prop-
agation synchronous pulse on the single layers in the network,
as a measure for the effective pulse size. In other words, we con-
sider the mean input μL a neuron receives from the preceding
layer if a synchronous pulse propagates along the FFN at the crit-
ical connectivity p∗L. It is given by the product of the connection
probability p∗L, the connection strength ε and the average size of
a propagating synchronous signal γL; using Equations (27) and
(29) yields

μL = γLp∗Lε =
PV (�− x∗0)+ P(1)V (�− x∗0)x∗0 − λ∗

P(1)V (�− x∗0)
(45)
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and after inserting λ∗ as given by Equation (30),

μL =

√√√√√x∗0
(

2PV (�− x∗0)+ x∗0P(1)V

(
�− x∗0

))− 2pf
(
x∗0
)

P(1)V

(
�− x∗0

) . (46)

According to Equation (46) the average input μL to the neurons
due to a propagation of a synchronous pulse is independent of
the layer size ω and coupling strength ε. For setups with mod-
erate external inputs (i.e., inputs of the preceding layer influence
the neurons’ ground state only weakly; see also section 3.1.3) the
distribution of membrane potentials PV (·) (cf. Equation 8), the
firing probability of single neurons pf (·) (cf. Equation 14) as well
as the expansion point (deflection point of PV (·); cf. Equation 37)

x∗0 = �− I0 + εext
√

τmνext (47)

are fully determined by the external inputs (I0, νext and εext).
Figures 5A,B illustrates the dependence of μL on the layout of
the external network and the FFN: as expected from our analyti-
cal considerations, the dependence on the layer size and coupling
strength is weak when I0 and εext are kept fixed. With increas-
ing mean of the external input (I0) the distribution of membrane
potentials PV (V) is shifted toward the threshold �, such that
it is more likely to find the membrane potential of the neurons
near the threshold and the critical connectivity decreases (cf. also
Figures 4A,B). Naturally this implies a decreasing average input
μL at p∗L, which is shown in Figure 5A for different external cou-
plings εext and parameters of the FFN. Increasing the external

coupling strength εext (and with it the variance of the exter-
nal input) causes a broadening of the distribution of membrane
potentials; the membrane potentials of some neurons are shifted
toward the threshold and the membrane potentials of other neu-
rons are shifted away from it. If the fraction of neurons that
participate in the propagation of the synchronous pulse is large,
this implies an increasing critical connectivity (Figure 5B; cf. also
Figure 4C).

The spiking probability of a single neuron due to the mean
input μL equals the average fraction pfrac of neurons of one layer
that participate in a propagating synchronous pulse,

pfrac = γL

ω
= pf (μL) . (48)

Interestingly, in the considered regime of low spiking rates and
sufficiently broad distribution of membrane potentials, where
the approximations given in section 3.1.1 are applicable, pfrac

depends on the setup of the external inputs only via the quotient
α = �−μ

σ
(cf. Equation 10), or, equivalently, on the spontaneous

firing rate ν of the neurons (cf. Equation 9). This can be shown by
combining Equations (8, 37) and (Equation 46),

μL = σ
( eπ

2

)1/4

⎡
⎣
(√

2+ 2α
) (

3+√2α
)

2
√

eπ

−Erf

(
1√
2

)
− Erf (α)

]1/2

(49)

=: σfμ(α) (50)
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FIGURE 5 | Properties of propagating synchronous pulses at the

transition from the no-propagation to the propagation regime. Panels
(A,B) show the mean input μL that a layer receives due to a propagating
synchronous pulse in the preceding layer. μL measures the effective pulse
size (the impact of a propagating synchronous pulse) and is mainly determined
by the external inputs rather than by the setup of the FFN. In (A) the variance
of the external input (measured by εext) is fixed and μL is plotted vs. I0; in (B)

the mean external input I0 is fixed and μL is plotted vs. εext. The markers
indicate μL for FFNs of different sizes [ω and ε are given by the legend in (A)]
obtained by numerical simulations of propagating synchrony. The dashed lines
shows the approximation of μL given by Equation (46) (which is independent
of ω and ε); the solid lines indicate μL = p∗LG2ε; values of p∗L and G2 are found
semi-analytically, by numerically identifying the bifurcation point of the
analytically derived iterated map (Equation 13) for the different network setups

(both analytical estimates are corrected for the influence of inputs from the
preceding layer up to the first order). Panel (C) shows the fraction pfrac of
neurons in a layer that participate in the propagation of a synchronous signal
vs. α [(Equation 10); main panel] and vs. the spontaneous firing rate ν (inset).
Data from different network setups are plotted without distinction as black
dots in the main panel and with distinction by different colors and symbols in
the inset (see legend); Simulations are repeated for different layouts of the
external network (I0 ∈ {1, 3, . . . ,11}mV; εext ∈ {0.1, 0.125, . . . ,1.0}mV). The
solid lines indicate pf (μL) = fp (α) as given by Equation (53). The layer size ω

as well as the coupling strength ε influence pfrac only weakly. pfrac depends on
the network setup mainly through α or, equivalently, through ν (cf. Equation 9):
Measurement values from different network setups largely collapse to the
graph of the function pf (μL) = fp (α). For further explanations see text
(section 3.1.4).
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such that

pf (μL) = 1

2

[
Erf

(
�− μ

σ

)
+ Erf

(
μL −�+ μ

σ

)]
(51)

= 1

2

[
Erf (α)+ Erf

(μL

σ
− α
)]

(52)

= 1

2

[
Erf (α)+ Erf

(
fμ(α)− α

)] =: fp(α). (53)

In Figure 5C we compare the above predictions with direct
numerical simulations: For different layer sizes ω, coupling
strengths ε and layouts of the external networks (i.e., different
values of I0 and εext), we detect whether propagation of a syn-
chronous pulse is possible and if so, we numerically determine
the average fraction of participating neurons as well as the spon-
taneous firing frequency. We find that indeed the size of the
synchronous pulse is determined essentially by the quotient α =
�−μ

σ
and Equation (53) is a reasonable estimate of the average

fraction of neurons spiking in each layer. With increasing α the
fraction of participating neurons increases, it thus decreases with
spontaneous firing rate ν see Figure 5C. For FFNs with low spon-
taneous spiking frequency almost all neurons of a layer participate
in the propagation of a synchronous pulse.

3.2. FFNs WITH NON-LINEAR DENDRITES
In this section, we investigate propagation of synchrony mediated
by dendritic non-linearities. Although the mechanism underly-
ing the propagation is generally related to that in linear networks,
the discontinuities introduced by non-additive dendritic interac-
tions prevent a similar analytical approach. In the first part of
this section, we thus derive analytical estimates for the critical
connectivity p∗NL in non-linearly coupled networks based on a
self-consistency approach (see also Jahnke et al., 2012). In the sec-
ond part, we study the transition from propagation of synchrony
mediated by linear dendrites to propagation of synchrony medi-
ated by non-additive dendritic interactions upon increasing the
degree of non-linearity in the networks. In the last part, we eval-
uate the robustness of the analytical estimates with respect to the
layout of the external network.

3.2.1. Analytical derivation of critical connectivity
Neurons with non-additive dendritic interaction process exci-
tatory input by a non-linear dendritic modulation function
σNL (see section 2.1), i.e., synchronous inputs that exceed the
dendritic threshold �b are amplified to an effective input of
size κ (cf. Equation 4). Therefore the spiking probability of
a single neuron due to a synchronous input of strength x,
pf (σNL(x)), is discontinuous and an approach based on expan-
sion of pf (·) is inappropriate. To derive an analytical expres-
sion for the critical connectivity p∗NL in FFNs incorporating
dendritic non-linearities, we consider the (average) fraction of
neurons of one layer, pγ, that receive an input x larger than
the dendritic threshold, x ≥ �b, due to the propagating syn-
chronous pulse. If there is a stable (stationary) propagation of
synchrony established, pγ is constant throughout the layers, which
allows us to formulate a self-consistency equation. The basic
derivations have been published recently (Jahnke et al., 2012)

and will be briefly reviewed in the following for the readers
convenience.

For sufficiently small dendritic thresholds �b and sufficiently
large κ, the spiking probability of a neuron due to a sub-threshold
input is small compared to the spiking probability of a supra-
threshold input. Therefore, we approximate the spiking proba-
bility of a single neuron in response to a synchronous input of
strength x by

pf (σNL(x)) =
{

pf (κ) if x ≥ �b

0 otherwise
, (54)

i.e., we assume that somatic spikes due to the synchronous pulse
are exclusively generated by dendritically enhanced inputs. We
denote the fraction of neurons that receive a dendritic spike by
pγ. This may be considered as constant throughout the differ-
ent layers if stable propagation of synchrony is enabled. Then the
probability that a neuron receives exactly k inputs from the pre-
ceding layer follows a binomial distribution k ∼ B

(
ω, pγpf (κ) p

)
,

where pγpf (κ) p is the probability that (1) a neuron of the pre-
ceding layer receives a supra-threshold input (pγ), (2) a somatic
spike is elicited by that input

(
pf (κ)

)
and there is a connection

from this spiking neuron to the considered neuron of the follow-
ing layer (p). So we can formulate the self-consistency equation
for pγ,

pγ =
ω∑

k=�b/ε�

(
ω

k

) (
pγpf (κ) p

)k (
1− pγpf (κ) p

)ω− k
. (55)

To solve Equation (55) we approximate the binomial distribu-
tion by a Gaussian distribution with mean δ := ωpγppf (κ) and
standard deviation σδ :=

√
δ(1− pγppf (κ)), which yields

pγ = 1

2

[
1+ Erf

(
n√
2

)]
, (56)

where we defined

n := δ−�b/ε

σδ

(57)

= ωpγppf (κ)−�b/ε√
ωpγppf (κ) (1− pγppf (κ))

(58)

as the difference between the average number of inputs (δ) and the
number of inputs needed to reach the dendritic threshold (�b/ε)
normalized by the standard deviation of the number of inputs
(σδ). Solving definition (Equation 58) for p and replacing pγ by
Equation (56) yields

pNL =
n2ε+ 2�b + n

√
n2ε2 + 4�b

(
ε− �b

ω

)
pf (κ)ε(n2 + ω)

(
1+ Erf

(
n√
2

)) , (59)

which is the connectivity pNL where stable propagation of syn-
chrony with some given n (or, equivalently, some given pγ;
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cf. Equation 56) is established. We note that a propagation of
synchrony mediated by dendritic spikes requires

εω > �b (60)

(otherwise even the input caused by a synchronized spiking of
all neurons of a layer in a fully connected FFN (p = 1) is not
sufficient to reach the dendritic threshold�b).

For parameters fulfilling the inequality (Equation 60), pNL(n)
has a global minimum (see Appendix) and the critical connec-
tivity p∗NL, again defined as the smallest connectivity that allows
for a stable propagation of synchrony, matches that global mini-
mum: any connectivity pNL above the minimal connectivity p∗NL
has two preimages n1 and n2 corresponding to the both non-
trivial fixed points G1 and G2 of the iterated map for the average
group size (cf. Figure 1 and section 2.4). However, there exists
smaller connectivities for which a stationary propagation can be
established. At the global minima p∗NL both preimages n1 and
n2 collapse to n∗ = n1 = n2 and correspond to the fixed point
G = G1 = G2 of the iterated map at the bifurcation point of the
tangent bifurcation. Here the transition from the regime where
no propagation of synchrony is possible to the regime where a
propagation of synchrony is enabled takes place. For pNL smaller
than p∗NL there are no preimages (i.e., a stationary propagation of
synchrony mediated by non-additive dendritic interactions can-
not be established); this scenario correspond to the absence of
the non-trivial fixed points of the iterated map for connectivities
below the tangent bifurcation.

In the following we will obtain the minima of pNL (i.e., the
critical connectivity p∗NL) in the limit of large layer sizes ω and
small coupling strength ε. We first derive an approximation of
Equation (59) (cf. Equation 62), determine the validity range of
this approximation (cf. Equation 69) and finally obtain an esti-
mate for the critical connectivity (cf. Equation 71). As before, we

fix the maximal input εω to each neuron to preserve the network
state and expand Equation (59) in a power series around ε→ 0
and ω→∞. Considering the leading terms yields

pNL ≈ pNL, a := 2�b

pf (κ) εω

1+ n
√

ε
�b
− 1

ω

1+ Erf
(

n√
2

) . (61)

Further a propagation mediated by dendritic spikes (as intro-
duced above) requires that the layer size ω and the coupling
strength ε are sufficiently large such that a sufficiently large frac-
tion of neurons of each layer receive a total input larger than
the dendritic threshold �b. In particular for diluted FFNs, this
requirement translates to εω� �b and Equation (61) simplifies
further to

pNL, b := 2�b

pf (κ) εω

1+ n
√

ε
�b

1+ Erf
(

n√
2

) . (62)

Whereas pNL has always a global minimum for εω > �b, this does
not hold for the approximation pNL, b, e.g., (cf. also Figure 6C)

lim
n→−∞

(
pNL, b

) = −∞. (63)

However, we will now show that pNL, b has a (local) minimum if

(and only if) ε ∈
(

0, 2�b
π

]
which approximates the global min-

imum of pNL and therefore serve as an estimate for the critical

connectivity. Starting with
dpNL, b(n)

dn

∣∣∣
n= n∗

= 0 yields

√
�b

ε
=
√

π

2
exp

(
n∗2

2

)(
1+ Erf

(
n∗√

2

))
− n∗ =: f (n∗) , (64)
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FIGURE 6 | Determining the critical connectivity in FFNs with

non-additive dendritic interactions. (A) For a given setup, i.e., for a given
dendritic threshold �b and coupling strength ε <

2�b
π

, the corresponding
n∗ (or equivalently pγ; cf. Equation 56) is found by Equation (64). The solid
line indicates n∗ vs. ε (left vertical scale), the dashed line pγ vs. ε (right
vertical scale) and the markers n∗(ε) for ε = {0.075,0.3, 2.0}mV (see
legend). [Here, the dendritic threshold is �b = 4 mV, such that the estimate
(Equation 64) is valid within the range ε ∈ (0, 2.55] mV; Equation (69)] (B)

Knowing n∗ allows to evaluate β
(
�b
ε

)
∈
[

1
2 , 1
]

according to Equation (70).

Panel (B) shows β (cf. Equation 70) vs. ε (solid line, lower horizontal axis)
and β vs. n∗ (dashed line, upper horizontal axis), respectively. (C) Finally,
the critical connectivity p∗NL is obtained by Equation (71) which depends on

β
(
�b
ε

)
. Panel (C) shows the connectivity pNL[dashed; Equation (59)] and

its approximation pNL,b [solid; Equation (62)] vs. n; for ε ∈ (0, εmax ], pNL,b

has a local minimum which agrees with the global minimum of pNL. The
markers indicate the critical connectivity p∗NL obtained by the procedure
described in (A) and (B). For further explanations see text
(section 3.2.1).
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and n∗ specifies the extremum of pNL, b(n). The second derivative
of pNL, b(n) at the extremum n∗ given by Equation (64) satisfies

dp2
NL, b

dn2

∣∣∣∣∣
n= n∗

=
2n∗
√
�b
ε

pf (κ)ω
(

1+ Erf
[

n∗√
2

]) > 0 (65)

if n∗ > 0 such that the extremum actually is a minimum. Taken
together, for a given setup, i.e., for given dendritic threshold �b

and coupling strength ε, the transcendent Equation (64) defines
n∗ which maximizes or minimize pNL, b(n) and if additionally
n∗ > 0 the extremum pNL, b (n∗) is a minimum.

Differentiating the right hand side of Equation (64),

df (n∗)
dn∗

= n∗ · e n∗2
2

√
π

2

(
1+ Erf

[
n∗√

2

])
(66)

d2f (n∗)
dn∗2

= n∗ + (1+ n∗2
)

e
n∗2

2

√
π

2

(
1+ Erf

[
n∗√

2

])
, (67)

shows that f (n∗) (as defined in Equation 64) is (1) minimal for
n∗ = 0 and (2) monotonically increasing for n∗ > 0; according to
Equation (64) the minimum n∗ = 0 corresponds to

εmax := �b[
f (0)
]2 = 2�b

π
≈ 0.64�b. (68)

The left hand side of Equation (64), i.e.,
√
�b/ε, is monotonically

decreasing with ε from infinity to zero. Thus Equation (64) has a
solution for any

ε ∈ (0, εmax] = (0,
2�b

π

]
(69)

and p∗NL := p∗NL, b (n
∗) is the (local) minimum of Equation (62)

and provides an estimate for the critical connectivity, the (global)
minimum of Equation (59).

For better readability we define the function β(·),

β

(
�b

ε

)
:= 1

2

(
1+ Erf

[
n∗√

2

])
− n∗ e− n∗2

2√
2π

, (70)

where n∗ = n∗
(
�b
ε

)
as given by Equation (64). We note that

β
(
�b
ε

)
can also be considered as a function of n∗. By combining

Equations (62), (64), and (70) we obtain the critical connectivity

p∗NL =
�b

pf (κ) εω
· 1

β
(
�b
ε

) . (71)

The function β(·) itself is monotonically decreasing with ε in the
validity range ε ∈ (0, εmax] of the above approximation: within

this interval n∗ > 0 and d
dn∗ f (n∗) > 0 and thus the derivative

dβ

dε
= dβ

dn∗
· dn∗

d
√
�b/ε

· d
√
�b/ε

dε
(72)

= − e− n∗2
2 n∗2√
2π

·
(

df (n∗)
dn∗

)−1

·
√
�b

4ε3
(73)

< 0. (74)

Consequently β assumes its minimum

βmin = β
(
n∗ = 0

) = 1

2
(75)

for ε = εmax = 2�b
π

and increases monotonically with decreasing
ε against its asymptotic value

βmax = lim
n∗→∞

⎡
⎣1

2

(
1+ Erf

[
n∗√

2

])
− n∗ e− n∗2

2√
2π

⎤
⎦ = 1. (76)

Thus the critical connectivity is bounded by

p0 := �b

pf (κ) εω
≤ p∗NL ≤ 2 · �b

pf (κ) εω
= 2 · p0 (77)

and converges to the lower bound p0 for small ε and to its upper
bound 2p0 for large ε.

In Figure 6 we visualize the determination of the critical con-
nectivity (Equations 64, 70) and Equation (71). The critical
connectivity obtained with the approach presented above agrees
well with simulation data (cf. Figure 7).

3.2.2. Transition from linear to non-linear propagation
In the previous section we derived analytical estimates for the
critical connectivity p∗NL in FFNs with non-additive dendritic
interactions; p∗NL is determined by (1) the setup of the FFN (i.e.,
the layer size ω and coupling strength ε; cf. Figure 7), (2) the
parameters of the non-linear modulation function (i.e., the den-
dritic threshold �b and enhancement level κ) and (3) the layout
of the external network (i.e., the mean external input I0 and its
variance, which is proportional to εext). In this section, we dis-
cuss the influence of the parameters of the non-linear modulation
function and study the transition from a regime where propaga-
tion of synchrony is mediated by dendritically enhanced inputs to
a regime where the majority of inputs is processed linearly.

In general, with increasing threshold�b more and more inputs
are needed to reach this threshold and consequently the critical
connectivity p∗NL increases. If�b exceeds μL, which is the average
input to the neurons if a synchronous pulse propagates in lin-
early coupled FFNs (cf. Equation 45 and Figure 5), propagation
mediated by linearly processed spikes is enabled for lower connec-
tivities than propagation mediated by dendritic non-linearities. In
this regime the linearly summed inputs (for p = p∗L) are sufficient
to maintain propagation of synchrony, but are not sufficient to
cross the dendritic threshold. Increasing �b even further has no
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FIGURE 7 | Critical connectivity in FFNs with non-linear dendrites. The
panels show (A) the critical connectivity p∗NL vs. the layer size ω for
different coupling strengths (ε = {0.05 mV (red), 0.1 mV (cyan), 0.125 mV
(green), 0.2 mV (blue), and 0.4 mV (black)}) and (B) p∗NL vs. the coupling
strength ε for different layer sizes (ω = {50 (red), 100 (cyan), 150 (green),
200 (blue), and 400 (black)}). The points indicate the minimal connectivity
for which a synchronous pulse propagates from the first to the last layer in
an FFN with m = 20 layers in at least 50% of n = 30 trials. The critical
connectivity given by Equation (71) (solid lines) is in good agreement with
the computer simulations. (C) The critical connectivity is confined to the
interval p∗NL ∈

[
p0, 2p0] [indicated by the gray area for ω = 150 (green), cf.

Equation (77)] and approaches its lower bound for small ε and its upper
bound for large ε. Like in linearly coupled networks the critical connectivity
decays inversely proportional to layer size, p∗NL ∝ ω−1, (cf. also Figure 3),
but the scaling with coupling strength is more complicated,
p∗NL ∝ ε−1 · 1/β

(
�b
ε

)
; the factor β

(
�b
ε

)
∈ [0.5, 1] [cf. Equation (70) and

Figure 6] measures the deviation from the algebraic decay (as found in
linearly coupled networks). In this figure the parameters of the external
network are fixed to I0 = 5 mV, νext = 3 kHz, εext = 0.5 mV.

influence on the critical connectivity p∗NL, here a propagation of
synchrony is possible for p ≥ p∗L as discussed in section 3.1.

We illustrate this transition from non-linear to linear prop-
agation in Figure 8A: We start with large �b = μL such that
propagation is enabled for p ≈ p∗L and also set κ = μL. In fact,
the linear critical connectivity p∗L slightly under-estimates the
observed critical connectivity p∗NL as it does not account for
the saturation of the non-linear modulation function, i.e., for
the cutoff σNL(x) = κ of inputs x ≥ κ. With decreasing �b the
critical connectivity is substantially reduced and well approx-
imated by Equation (71). Propagation of synchrony is now
mainly mediated by dendritically enhanced inputs as described
in section 3.2.1. The inset illustrates the impact of decreas-
ing the dendritic threshold �b on the iterated map. Initially,
for �b = μL = κ, the iterated map for linearly coupled and
non-linearly coupled FFNs is similar; with decreasing �b the
jump like rise in the iterated map is shifted to lower group
sizes and consequently the bifurcation point is shifted to lower
connectivities.

The non-linear modulation function σNL(·) (cf. Equation 4)
saturates for strong inputs, thus the enhancement level κ defines
the maximal (effective) input to a neuron and pf (κ) is an upper
bound for the spiking probability of any neuron in response to
incoming inputs. This implies that in contrast to linearly cou-
pled FFNs, the average size of a propagating synchronous pulse,
γNL, given by the product of the probability of a neuron receiv-
ing sufficiently strong input to reach the dendritic threshold (pγ;

cf. Equation 56), the spiking probability due to that input [pf (κ)]
and the layer size ω, is bounded from above by

γNL = pγpf (κ)ω ≤ ωpf (κ) =: γmax. (78)

This bound decrease with decreasing κ as illustrated by Figure 8B
(inset), where we compare the iterated maps for different values of
κ. pf (κ) also influences the critical connectivity p∗NL (cf. Equation
71): For small κ the spiking probability pf (κ) is low and thus
p∗NL is large (it may even exceed p∗L). With increasing κ also pf (κ)

increases and consequently the critical connectivity p∗NL decreases;
for very large κ the spiking probability pf (κ) approaches 1 (cf.
Equation 14) and p∗NL saturates (cf. Figure 8B).

In Figure 8C we show the critical connectivity for an additive
enhancement by a constant�, i.e., inputs exceeding the dendritic
threshold �b are increased by the constant value � = κ−�b.
For small κ the critical connectivity p∗NL is relatively large and
may exceed p∗L due to the low saturation level of the non-linear
modulation function σNL(·) (cf. also Figure 8B). As mentioned
above, with increasing κ, also pf (κ) increases and the critical
connectivity p∗NL decreases. However, for large κ and thus large
dendritic threshold �b propagation of synchrony mediated by
linearly processed spikes is possible for lower connectivities than
propagation mediated by dendritic non-linearities. Consequently,
p∗NL converges toward p∗L (cf. also Figure 8A).

3.2.3. Influence of external network
In section 3.2.1 we derived an estimate of the critical connectivity
p∗NL for FFNs with non-additive dendritic interactions. So far we
discussed the influence of the setup of the FFN (layer size ω and
coupling strength ε) as well as the parameters of the non-linear
modulation function σNL (dendritic threshold �b and enhance-
ment level κ). In the current section, we focus on the remaining
determining factor, the layout of the external network. How does
the critical connectivity change with the mean external input I0

and external coupling strength εext and how well are these changes
covered by our analytics?

For the derivation of p∗NL we assumed that somatic spikes are
elicited exclusively by dendritically enhanced inputs (cf. Equation
54) and thus the critical connectivity depends on the layout of
the external network only via pf (κ) (cf. also Equation 71), i.e.,
on the average spiking probability of a neuron receiving an input
larger than the dendritic threshold x ≥ �b. For sufficiently small
pf (κ), p∗NL > 1 and propagation of synchrony is not possible.
With increasing pf (κ) the critical connectivity decreases and for

pf (κ)→ 1 it converges to �b (εωβ [�b/ε])−1, independent of
the external network.

In the regime of low spiking rates, changing the mean exter-
nal input I0 simply shifts the distribution of membrane poten-
tials PV (V) (which is a Gaussian distribution centered at I0;
cf. Equation 8). Thus, with increasing I0, pf (κ) increases and the
critical connectivity p∗NL decreases.

In Figure 9A we show the critical connectivity for different
εext [which determines the width of PV (V)] vs. the mean exter-
nal input I0. For I0 = �− κ (such that the sum of a dendritically
enhanced input and the center of the distribution of membrane
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FIGURE 8 | Transition from linear to non-linear propagation. The figure
shows the critical connectivity p∗NL vs. the parameters of the non-linear
modulation function σNL (cf. Equation 4) for different network setups (color
code, see (C)). The lines are the theoretical predictions for p∗NL [solid,
Equation (71)] and p∗L [dashed, Equation (32)]. The markers indicate the
minimal connectivity for which a synchronous pulse propagates from the first
to the last layer in an FFN (I0 = 5 mV, νext = 3 kHz, εext = 0.5 mV) with
m = 20 layers in at least 50% of n = 30 trials. The insets illustrate the effect
of changing �b and κ on the iterated map, cf. Equation (13), where
connectivity is kept constant. (A) Critical connectivity vs. dendritic threshold
�b for constant enhancement level κ = μL ≈ 13.7 mV (cf. Equation 50). If the
dendritic threshold �b is sufficiently small such that pf (�b)� pf (κ)

(cf. Equation 54), the propagation of synchrony is mainly mediated by
non-linear enhanced inputs and the critical connectivity can be estimated by

Equation (71). For large �b the probability that an input from the preceding
layer exceeds the dendritic threshold is very low, propagation of synchrony is
mainly mediated by linearly processed inputs and the critical connectivity is
given by Equation (32). Between these scenarios (for moderate �b) there is a
“transition regime,” where linear and non-linear propagation mix [similarly in
(C)]. (B) Critical connectivity vs. enhancement level κ for constant threshold
�b = 4 mV. For small enhancement levels κ the (maximal) spiking probability
of a single neuron, pf (κ), is small and thus the critical connectivity p∗NL is
large. With increasing κ, pf (κ) increases and thus p∗NL decreases; for large κ,
pf (κ)→ 1 (a neuron will almost surely spike upon the receipt of a
non-linearly enhanced pre-synaptic input) and the critical connectivity
saturates. (C) Critical connectivity vs. enhancement level κ for an additive
enhancement by a constant � = κ−�b = 4 mV. For further explanations see
text (section 3.2.2).
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the external network. (A,B) The lines indicate the theoretical prediction for
p∗NL given by Equation (71) and agree well with the data from direct
numerical simulations (markers; FFN with ω = 150, ε = 0.2 mV, �b = 4 mV,
κ = 11 mV, m = 20). Panel (A) shows the critical connectivity vs. the mean
external input I0 for fixed εext and panel (B) shows the critical connectivity
vs. εext for fixed mean external input I0. The gray line indicates the minimal
critical connectivity obtained for pf (κ) = 1. With increasing mean (external)
input I0 the distribution of membrane potentials PV (V ) is shifted toward the
somatic threshold �, thus the spiking probability pf (κ) upon the reception
of a non-linear enhanced input increases and the critical connectivity p∗NL
decreases. For I0 = �− κ, pf (κ) ≈ 0.5 (cf. Equation 80) and p∗NL is largely
independent of the layout of the external network [blue solid line in (B); cf.
also (A) where all curves coincide]. Further explanations see text
(section 3.2.3).

potentials equals the somatic threshold�), pf (κ) simplifies to

pf (κ) = 1

2

(
Erf

[
�− I0

σ

]
+ Erf

[
κ−�+ I0

σ

])
(79)

= 1

2
Erf

(
�− I0

σ

)
(80)

and thus in the regime of low spiking rates, i.e., (�− I0) /σ�
1, pf (κ) ≈ 0.5 independent of the width of the distribution of
membrane potentials. Consequently, all curves for different εext

coincide at this point. For I0 > �− κ the majority of neurons
(>50%) would spike upon receipt of a dendritically enhanced
input. Thus pf (κ) increases and therewith the critical connectiv-
ity decreases upon decreasing εext . In the limit of ε→ 0, PV (V)
converges toward a δ-distribution centered at I0 and pf becomes
a step-function

pf (κ) =
{

0 κ < �− I0

1 κ ≥ �− I0
(81)

such that the critical connectivity is either constant and minimal
for I0 ≥ �− κ or it diverges (no propagation possible) for I0 <

�− κ (cf. Figure 9A; magenta curve).
In Figure 9B we illustrate the effect of changing εext on the

critical connectivity for constant I0. As discussed above for I0 =
�− κ, pf (κ) and thus p∗NL are rather independent of εext and
for I0 > �− κ the critical connectivity increases with εext. For
I0 < �− κ an increase of the width of the distribution of mem-
brane potentials shifts the membrane potential of more and more
neurons toward the relevant interval [�− κ,�] and thus pf (κ)

increases and the critical connectivity p∗NL decreases.
For the derivation of p∗NL we have assumed that the ground

state dynamics is essentially not influenced by the spontaneous
activity of the FFN itself (i.e., μ = I0 and σ = εext

√
2τmνext ). As
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discussed in section 3.1.3, we can correct the results for such influ-
ences. However, since in non-linearly coupled FFNs the impact of
(non-linearly enhanced) synchronous activity is much stronger
than the impact of spontaneous activity (which is irregular and
not amplified by non-additive dendritic interactions), we find
that the deviations between the corrected and uncorrected version
of p∗NL is negligible.

Finally, we compare the critical connectivity for networks with
and without non-additive dendritic interactions: The factor

crat := p∗L
p∗NL

= pf (κ)

λ�b
β

(
�b

ε

)
(82)

measures how much the connectivity within the FFN can be
reduced by introducing non-additive dendritic interactions. It is
independent of the layer size ω and becomes maximal in the limit
of small coupling strengths ε as β (�b/ε)→ βmax = 1 for ε→ 0
(cf. Equation 76). It increases with decreasing �b and increas-
ing κ (see discussion in section 3.2.2). In Figure 10 we show
the influence of the external network. As discussed above, for
small I0, propagation of synchrony is not possible (the non-linear
enhanced input is insufficient to elicit sufficiently many spikes in
the layers of the FFN; white areas in Figure 10). With increasing
I0, p∗NL decreases and crat increases.

3.3. GENERALIZATIONS
In the final section we discuss generalizations of the methods and
results we derived. Compared to biological neurons, our models
have simplifications which enable the analytical treatment, but
might be suspected to be influential on the final result. These
simplifications are the homogeneous delay distribution, the sim-
plified initiation and impact of dendritic spikes, the limit of short
synaptic currents and the sub-threshold leaky integrate-and-fire
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FIGURE 10 | Critical connectivity and reduction factor. Panel (A) shows
the critical connectivity obtained from simulations of an FFN (ω = 150,
ε = 0.2 mV, m = 20) incorporating non-additive dendritic interactions
(�b = 4 mV, κ = 11 mV; see also Figure 9). Within the white area,
propagation of synchrony is impossible because even for a fully coupled
chain the input to the next layer (limited by the saturation of the non-linear
modulation function and the layer size) is insufficient. Panel (B) shows the
reduction factor crat (cf. Equation 82), the quotient between the critical
connectivity in FFNs without and with non-additive dendritic interactions.
The lines enclose the area for which the spontaneous firing is between
ν ∈ [0.5, 1.5] Hz obtained from simulations (solid) and low-rate
approximation (cf. Equation 9; dashed).

dynamics. Here, we verify that our results generalize to biolog-
ically more detailed neurons without these simplifications. In
particular, we show that the estimates for the critical connectivity
hold. Further, we consider a qualitatively different dendritic inter-
action function which assumes that the saturation is incomplete,
i.e., beyond a region of saturation the impact of larger inputs
increases. We show that the tools developed in the article are
still applicable and reveal a new phenomenon, the coexistence of
linear and non-linear propagation of synchrony.

In the first part (section 3.3.1), we discuss the influence of
inhomogeneous delay distribution and finite dendritic integra-
tion windows. In the second part (section 3.3.2), we consider
the non-linear modulation function with incomplete saturation.
Finally, we consider biologically more detailed neuron models
(section 3.3.3).

3.3.1. Heterogeneous delays
So far we considered FFNs with homogeneous delay distribution
and dendritic modulation functions with integration window of
zero length, i.e., only exactly synchronized inputs were possi-
bly non-linearly amplified. Are these assumptions crucial for the
obtained results? How does the critical connectivity change in the
presence of heterogeneous delay distributions?

To answer this question, we consider synaptic delays τkl (speci-
fying the synaptic delay between neuron l and k) uniformly drawn
from

τkl ∈
[
τ− �T

2
, τ+ �T

2

]
, (83)

where τ is the mean delay. A direct consequence of heteroge-
neous delay distribution is that the spikes of the propagating
synchronous signal are not simultaneous (i.e., exactly synchro-
nized) anymore. To describe the system accurately one has to
consider additionally to the size (gi) also the temporal jitter (si)
of the synchronous pulse in the ith layer and investigate the two-
dimensional iterated map for (gi, si) (e.g., Diesmann et al., 1999;
Gewaltig et al., 2001; Goedeke and Diesmann, 2008). However,
even if the synchronous pulse is blurred out to a pulse packet with
finite width, for sufficiently large connectivity stable propagation
still can be obtained (see e.g., Gewaltig et al., 2001).

For linearly coupled FFNs, with increasing width of the delay
distribution, �T, the propagating pulse becomes broader and
thus the critical connectivity p∗L increases (cf. Figures 11A,B;
squares). However, the scaling with layer size (cf. Figure 11A) and
coupling strength (data not shown) is the same.

Under the assumption that the width of the pulse packet stays
bounded, one can derive a lower bound for the critical connectiv-
ity. We assume that a pulse in layer i is perfectly synchronized and
calculate the effective peak of the depolarization in the (i+ 1)th
layer. Replacing the coupling strength ε by the effective depolar-
ization ε′ (derived below, cf. Equation 89) in the estimate of the
critical connectivity (cf. Equation 32) one gains an estimate of
the critical connectivity for systems with heterogeneous delays
[Equation (90); shown in Figure 11]. Consider a perfectly syn-
chronized pulse in layer i. Due to inhomogeneities in the delay,
the inputs arriving at the (i+ 1)th layer are distributed uniformly
in an interval of size�T (Equation 83). We assume that all inputs
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FIGURE 11 | Robustness against heterogeneities in the response

delays. (A) Critical connectivity vs. layer size for FFNs (m = 20,
ε = 0.25 mV, I0 = 5 mV, εext = 0.5 mV) with additive (squares) and
non-additive (�b = 4 mV, κ = 11 mV, �t = 2.5 ms; circles) dendritic
interactions. Different colors indicate different widths of the delay
distribution (cf. Equation 84). The solid lines indicate the critical connectivity
p∗L corrected for inhomogeneous delay distribution (cf. Equation 90), the
dashed line p∗NL for �T = 0 ms. (B) Critical connectivity vs. width of delay
distribution �T . Different colors indicate different setups of the FFN (red:
ω = 275, ε = 0.4 mV; green: ω = 125, ε = 0.25 mV; blue: ω = 200,
ε = 0.1 mV). Solid and dashed lines are p∗L and p∗NL as before.

arriving at a neuron of layer i+ 1 are equidistantly distributed
over [−�T/2,�T/2], i.e., the arrival time of the lth of a total
number of k inputs is

tarr
l = τ− �T

2
+ �T

k − 1
· (l− 1) . (84)

We consider the subthreshold dynamics only. Each single input
depolarizes the neuron by an amount ε and afterwards the mem-
brane potential V(t) decays exponentially toward its asymptotic
value (I0) with the membrane time constant τm (cf. Equations
1, 2) until the next input arrives after a time interval �T

k− 1
(cf. Equation 84). Thus the total (effective) depolarization caused
by the sum of these k inputs at the end of the considered time

interval
(
τ+ �T

2

)
is

�εk =
k∑

l= 1

ε exp

(
− 1

τm

�T

k − 1
(l − 1)

)
(85)

= ε
exp
(
−�T

τm
k

k− 1

)
− 1

exp
(
−�T

τm
1

k− 1

)
− 1

. (86)

We consider the effective depolarization per input, ε′, in the limit
of a large number of inputs k (k→∞),

ε′ = lim
k→∞

(
�εk

k

)
(87)

= τm

�T

(
1− exp

[
−�T

τm

])
ε (88)

=: C (�T) ε. (89)

Thus the correction factor C (�T) ≤ 1 defined in Equation (89)
relates the coupling strength ε to the effective coupling strength ε′
in the presence of inhomogeneous delays. The critical connectiv-
ity is then given by (cf. Equation 32)

p∗L =
1

C (�T)
· 1

λ∗εω
(90)

and this estimate agrees well with direct numerical simulations
(cf. Figure 11).

For FFNs with dendritic non-linearities and inhomogeneous
delays τkl, one has to consider a finite dendritic integration win-
dow �td. Instead of amplifying only simultaneously received
spikes (cf. Equation 5), the sum of spikes within the time inter-
val �t is considered. We denote the sum of inputs to a neuron
within the time interval [t −�t, t] by

S�t
k (t) =

∑
l

∑
m

εχ[t−�t, t]

(
t

f
lm + τkl

)
, (91)

where

χA(x) =
{

1 if x ∈ A

0 if x /∈ A
(92)

is the indicator function and t
f
lm is the mth firing time of neuron

l as before. If S�t
k (t) exceeds the dendritic threshold �b for some

t = t0, neuron k is depolarized additionally (to the depolarization
arising from linear spike summation) by

εadd
κ (t0) = κ− S�t

k (t0) (93)

such that the total (effective) depolarization caused by an input
x ≥ �b equals κ, modeling the effect of a dendritic spike; cf. also
section 3.3.3. After such an additional depolarization the den-
drite becomes refractory for a time tref,ds and does not transfer
additional spikes within the interval

[
t0, t0 + tref,ds

]
. For �t = 0

we recover the non-linear modulation function σNL(·) given by
Equation (4). Due to the finite dendritic interaction window, a
delay distribution with �T ≤ �t affects the critical connectivity
only weakly (cf. Figure 11B). For �T > �t, some of the inputs
received from the preceding layer upon a propagation of syn-
chrony fall out of the dendritic interaction window �T and thus
the critical connectivity increases. However, the scaling with layer
size ω (cf. Figure 11B) and coupling strength ε (data not shown)
is practically identical with the scenario �T = 0.

Before we discuss propagation of synchrony in biologically
more plausible neuron models in section 3.3.3, we consider gener-
alization of the non-linear modulation function in the following
section.

3.3.2. Coexistence of linear and non-linear propagation
In this article, we employed a non-linear modulation func-
tion σNL(ε) that is linear for dendritic stimulation smaller
than the dendritic threshold, ε < �b, and constant (i.e., satu-
rates) for supra-threshold stimulation, ε ≥ �b (cf. Equation 4).
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Biologically, if the linear inputs are transmitted despite the den-
dritic sodium spike and are not shadowed by, e.g., an NMDA
spike, they may lead to a second, later peak depolarization after
the one generated by the sodium spike. Since our models replace
depolarizations by jumps to the peak depolarization, we have to
account for the later peak as soon as it exceeds the earlier one.
In this part, we thus assume that if the synchronous input is so
large that the depolarization it generates upon linear summation
exceeds the depolarization κ generated by the dendritic spike, this
former is considered as the effect of the input. In other words, we
assume that the dendritic modulation function continues linearly
beyond κ, i.e., we define

σ′NL(ε) =

⎧⎪⎨
⎪⎩

ε for ε ≤ �b

κ for �b ≤ ε ≤ κ

ε for ε ≥ κ

(94)

(cf. inset of Figure 12A).
The iterated map, mapping the number of active neurons in

layer i to the average number of active neurons in layer i+ 1
may now have (depending on the system parameters) between
one and five fixed points (cf. Figure 12). As before, G0 = 0 is a
trivial fixed point corresponding to the level of absent activity
and the only fixed point of the iterated map for small connec-
tivity p. With increasing connectivity p, two additional pairs of
fixed points G1 ≤ G2 and G3 ≤ G4 appear via tangent bifurca-
tions. The first pair of fixed points, G1 and G2, correspond to
the propagation of synchrony mediated by non-additive den-
dritic interactions (as discussed in section 3.1), the second pair,
G3 and G4, correspond to propagation of synchrony mediated
by linearly processed inputs (as discussed in section 3.2). By
further increasing the connectivity p, the fixed points G2 and
G3 disappear via a tangent bifurcation (cf. Figure 12A). Within

the region, where five fixed points exists, both types of prop-
agation of synchrony coexists (illustrated in Figures 12B–D):
Synchronized pulses of size g0 < G1 typically decay to zero after
a small number of layers. Pulse sizes with G1 < g0 < G3 typ-
ically initiate propagation of synchrony with an average pulse
size around G2 (where the propagation is mediated by non-
additive dendritic interactions) and synchronous pulses of size
g0 > G3 typically initiate propagation of synchrony with aver-
age pulse sizes around G4 (linear propagation). For sufficiently
large p, i.e., the fixed points G2 and G3 disappeared, a synchro-
nized pulse of size g0 ≥ G1 will initiate propagation of synchrony
with pulse sizes around G4; in this parameter region the non-
additive dendritic interactions essentially increase the basin of
attraction of G4.

Within the framework of our analytical tractable model, we
neglect, e.g., the initiation time of a dendritic spike (in our
model non-linear amplifications are instantaneous) or the differ-
ent shapes of potential deflections caused by linearly and non-
linearly processed inputs. Therefore, propagating synchronous
signals mediated either by linear or non-linear dendrites differ
only in their size. In biological more detailed models (briefly dis-
cussed in section 3.3.3 below) both propagation types will be
more distinct, e.g., the propagation frequency (speed) and the
quality of synchrony of the propagating pulses are different (see
also Jahnke et al., 2012).

3.3.3. Biological more detailed models
The model we mainly consider in this article has the advantage of
being analytically tractable. Here we ask whether it over-simplifies
the considered systems. More precisely, we study whether the
results derived above, in particular the analytical estimates for
the critical connectivity, generalize to biologically more detailed
models.
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FIGURE 12 | Coexistence of linear and non-linear propagation.

(A) Bifurcation diagram obtained from Equation (13) for an FFN (ω = 150,
ε = 0.225 mV) with a non-linear modulation function σ′NL with incomplete
saturation [cf. Equation (94) and inset]. Panel (B) shows the iterated maps
(Equation 13) for p = 0.5 with the different non-linear modulation functions
considered in this article (linear coupling: green,dashed; non-linear coupling
σNL: red, dashed; modified non-linear coupling σ′NL: blue). Panel (C) depicts

the development of the size of the synchronous pulse along the layers of the
FFN (single trials). The blue and yellow regions are the basins of attraction of
G2 and G4, respectively, derived from the data in panel (B). Panel (D) shows
the probability pconv of converging to the linear propagation regime (yellow
area, blue line) and the non-linear propagation regime (blue area, red line)
after m = 20 layers (pconv is obtained from n = 150 runs with different
networks and initial conditions).
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The main assumption underlying our analysis of linearly cou-
pled networks is a very general one, namely that synchronous
single inputs sum up linearly: we assumed that the spiking prob-
ability pf (·) of a neuron due to the reception of x synchronous
inputs of size ε equals the spiking probability due to the recep-
tion of one single input of size y = xε. Therefore, the results will
hold also for more complex neuron models, as long as the effect
of a synchronous input pulse is approximately the sum of the
effects of single inputs. In particular, if the spiking probability
due to an input of strength x, pf (x), is sufficiently slowly chang-
ing with x, according to Equation (24) the critical connectivity
scales like p∗L ∝ (εω)−1 for sufficiently large layer sizes and small
coupling strengths. To fully compute the critical connectivity, the
actual form of pf (·) has to be known. Our leaky integrate-and-fire
neuron with infinitesimally short current pulses approximates the
behavior of a wide class of neuron models for which an analyti-
cal derivation of pf (·) is impossible. Still even for more detailed
models, pf (·) is accessible for measurements in single neuron
(computer) experiments.

In Figure 13 we verify our predictions exemplary for two types
of neuron models: We employ a model of conductance based
leaky integrate-and-fire-type neurons with exponential input
conductances (CB-type; see Appendix) and a Hodgkin-Huxley-
type neuron model with alpha-function shaped input currents
(HH-type; see Appendix). The post-synaptic potential induced

by single excitatory inputs is shown in panels (a) and (b) and the
scaling of the critical connectivity p∗L with εω in panel (c): the
scaling of p∗L is well described by p∗L ∝ (εω)−1.

The main assumptions underlying our analysis of non-linearly
coupled networks are (1) that the maximal spiking probability
due to inputs which are subthreshold relative to the dendritic
threshold, pf (�b), is significantly smaller than the spiking prob-
ability due to a suprathreshold input, pf (κ), and (2) that the
temporal jitter of somatic spikes evoked by suprathreshold inputs
is small such that synchronized inputs stay synchronized. Both
conditions have been found to be satisfied in biological neu-
rons (e.g., Ariav et al., 2003). Therefore, Equation (71) specifying
the critical connectivity p∗NL also holds for more detailed neuron
models if these models incorporate biologically plausible features
of fast dendritic spikes. To obtain a quantitative prediction of p∗NL,
it is sufficient to estimate (a) the number of inputs needed to elicit
a dendritic spike, �b/ε, (b) the layer size ω, and (c) the spiking
probability due to the reception of a total input that is sufficiently
strong to elicit a dendritic spike.

To investigate the scaling of the critical connectivity p∗NL in
direct numerical simulations, we account for the effects of den-
dritic spikes in the CB-type and HH-type: When the total exci-
tatory input within the dendritic integration window exceeds
the dendritic threshold level, a current pulse modeling the
effect of a dendritic spike is initiated and causes an additional
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FIGURE 13 | Same scaling of propagating regime for networks of

biologically more detailed neuron models. (A,B) Time course of the
membrane potential of single neurons receiving inputs that are sufficiently
strong to elicit a dendritic spike, with (non-linear model) and without (linear
model) dendritic spike generation mechanism, for (A) a conductance based
LIF-type neuron (henceforth: CB-type), and (B) a Hodgkin–Huxley-type neuron
(HH-type). The insets show the observed peak of the induced postsynaptic
potential (pEPSP) vs. the pEPSP expected from linear input summation
(equivalent to the dendritic modulation function in the analytically tractable
model). (C) Critical connectivity p∗L vs. εω in linearly coupled networks. For
each value εω, we evaluated the critical connectivity for four different group
sizes ω = 100, 300,500,700 and four different coupling strengths ε = 0.3,
0.6, 0.9, 1.2 nS (CB-type; squares; lower horizontal axis) and ε = 9, 18, 27,
36 pA (HH-type; crosses; upper horizontal axis), respectively. The lines are
fitted functions of the form (λεω)−1. The analytical estimate given by
Equation (24) holds in the limit of large layer sizes ω and small couplings ε,

therefore we exclude data points from the fitting where a single input yields
an EPSP larger than 0.6 mV (CB-type: ε ≥ 1.4 nS; HH-type: ε ≥ 46 pA; these
points are marked in gray). (D,E) Probability distribution of somatic spike
times after stimulation of the neuron by an input which is sufficiently strong
to generate a dendritic spike (D: CB-type, E: HH-type). We show exemplary
two different configurations for the external inputs, which result in a total
somatic spiking probability after dendritic spike generation of pf ≈ 0.97 (solid
lines; set 1) and pf ≈ 0.67 (dashed lines; set 2). pf equals the saturation level
of the corresponding cumulative distribution function (shown in the insets).
(F) Critical connectivity p∗NL vs. group size ω (lower horizontal scale) and
coupling strength ε normalized by threshold �b (upper horizontal scale),
respectively. The theoretical estimate of p∗NL (cf. Equation 71) is a function of
ω, �b/ε and pf , therefore the predictions agree for both models and the data
from direct numerical simulations are consistent with the theoretical
predictions. [All simulations of FFNs in this figure are obtained for
inhomogeneous delay distribution with �T = 1 ms (cf. Equation 83)].
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depolarization of the soma of the post-synaptic neuron (see
Appendix for details; cf. also section 3.3.1). In Figure 13 we com-
pare the results of direct numerical simulations with the estimate
given by Equation (71). The post-synaptic potential induced by
single excitatory inputs is shown in panels (A) and (B). Panel (D)
and (E) shows the spiking probability of a single neuron (in the
ground state of the FFN), pf , due to an input exceeding the den-
dritic threshold level; as examples we present two different setups
with pf = {0.67, 0.97}. Panel (F) shows the scaling of p∗NL with
layer size and coupling strength and the good agreement of the
analytical estimate with direct numerical simulations.

4. SUMMARY AND CONCLUSIONS
Propagation of synchrony in feed-forward sub-structures that are
embedded in randomly connected recurrent networks has been a
research topic for more than two decades now [see, e.g., review on
this topic (Kumar et al., 2010)] and it is hypothesized that such
propagation possibly explain the emergence of spatio-temporal
spike patterns and information transmission.

In this article, we have analyzed diluted FFNs and investi-
gated their capability to propagate synchrony. In addition to
conventional additive (linear) input processing at single neurons,
we considered non-additive dendritic interactions modeling the
impact of fast dendritic spikes (Ariav et al., 2003; Gasparini et al.,
2004; Polsky et al., 2004; Gasparini and Magee, 2006). We emu-
lated the influence of the embedding recurrent network which
establishes the irregular ground state in the FFN, by random
Poissonian inputs (van Vreeswijk and Sompolinsky, 1996, 1998;
Brunel, 2000). This approach does not account for back-reactions
of activity within the FFN on the embedding network. It is justi-
fied as long as the connectivity and connection strength between
the neurons of the FFN and the embedding network is low and
weak compared to the feed-forward connectivity and connec-
tion strength. The back-reaction then influences the activity of
the embedding network only weakly and a robust propagation
of synchrony can be achieved (Vogels and Abbott, 2005; Kumar
et al., 2008; Jahnke et al., 2012). Yet, if the condition is not
met, synchronous activity within the FFN may spread out over
the embedding network and potentially cause pathological activ-
ity (“synfire-explosions”) (Mehring et al., 2003). For specifically
structured networks also more complex interactions are possible,
such as an enhancement of propagating synchrony (manuscript
in preparation).

In the main part of the article, we studied the propaga-
tion of synchrony employing leaky integrate-and-fire neurons
in the limit of temporally short synaptic inputs and homo-
geneous synaptic delays. Synchronous pulses consist of exactly
synchronized (simultaneous) spikes. This allows to investigate
propagation of synchrony by considering the size of a syn-
chronized pulse only, so that the analysis becomes analytically
tractable. Nevertheless, in the second part of our article we also
consider systems with heterogeneous coupling delays and tem-
porally extended interactions. In agreement with the literature
(e.g., Diesmann et al., 1999; Gewaltig et al., 2001; Goedeke and
Diesmann, 2008), we observe that pulse packets tend to syn-
chronize along the layers of the FFN so that the results of our
simplified description are directly applicable.

We derived scaling laws as well as quantitative estimates for
the critical connectivity marking the bifurcation point between
the regime where robust propagation of synchrony is possible
and where it is not. In particular, based on a suitable series
expansion we have shown that for linearly coupled FFNs the crit-
ical connectivity decays inversely proportional to layer size and
coupling strength. Moreover, the proportionality factor can be
estimated from the ground state properties of the single neurons.
The estimate agrees with direct numerical simulations within the
biologically relevant parameter regime where (a) the spontaneous
firing rate of the neurons is low and (b) the distribution of mem-
brane potentials is broad (each neuron receives a huge number
of almost random presynaptic inputs). If a synchronous pulse
propagates along the layers of a linearly coupled FFN, most of the
neurons of each layer participate in the propagation of synchrony,
independent of the actual layer size, coupling strength or layout of
the external network.

For neurons incorporating non-additive dendritic interac-
tions, the spiking probability as a function of the dendritic
stimulation becomes discontinuous. Therefore, the analytical
estimation of the critical connectivity in non-linearly coupled
FFNs required a different approach than the treatment of lin-
early coupled FFNs. We have shown that the critical connectivity
decays inversely proportional to the layer size (as in linearly cou-
pled FFNs), and we have derived the dependence on the coupling
strength which is more complicated. The critical connectivity is
completely determined by layer size, spiking probability of the
single neuron upon the reception of a non-linearly enhanced
presynaptic input and the number of inputs required to reach
the dendritic threshold. Our results indicate that in presence of
non-linear dendrites, neurons process synchronous inputs sim-
ilar to threshold units. Such units have been previously used as
simplified rate neuron models to study activity propagation in
discrete time, e.g., in Nowotny and Huerta (2003); Leibold and
Kempter (2006); Cayco-Gajic and Shea-Brown (2013). Because
the non-linear modulation function saturates, FFNs with non-
additive dendritic interactions allow for a sparser coding, i.e.,
only a sub-fraction of each layer (the actual size depends on
the non-linear enhancement level) participates in the propaga-
tion of synchrony. Whereas stable propagation of synchrony is
possible in systems with and without dendritic non-linearities, it
occurs in non-linearly coupled FFNs with substantially reduced
feed-forward anatomy (reduced connectivity or reduced coupling
strength) compared to linearly coupled FFNs.

The analytic derivation of the critical connectivity is based
on rather general assumptions: (a) the effect of a synchronous
input pulse is approximately the sum of the effects of single inputs
and (b) for networks with non-additive dendritic interactions the
spiking probability due to non-linearly enhanced input is sub-
stantially larger than due to a non-enhanced input. Therefore the
predictions and estimates are directly applicable to networks of
biologically more detailed neuron models.

In our article we have shown that even highly diluted feed-
forward structures are suitable to reliably support the directed
and constrained propagation of synchronous activity. Such struc-
tures occur naturally in sparse, random recurrent networks which
are typical for the cortex. These structures might be enhanced
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by simple synaptic plasticity to enable synchrony propagation.
Fast dendritic spikes promote this propagation, as they selectively
amplify synchronous inputs and are only weakly influenced by
irregular background activity.

Indeed, important candidate regions for the generation of
propagating synchrony such as the hippocampus and other, neo-
cortical regions exhibiting replay of activity (Nadasdy et al.,
1999; Lee and Wilson, 2002; Ji and Wilson, 2007; Xu et al.,
2011; Eagleman and Dragoi, 2012) are sparse and show synap-
tic plasticity (Debanne et al., 1998; Kobayashi and Poo, 2004).
Dendritic spikes as prominently found in, e.g., the hippocam-
pus (Ariav et al., 2003; Gasparini et al., 2004; Polsky et al., 2004;
Gasparini and Magee, 2006) trigger depolarizations and calcium
influx sufficient to change synaptic strengths (Golding et al., 2002;
Remy and Spruston, 2007) and the dendrites itself exhibit branch
“strength potentiation,” i.e., the strength of a dendritic spike on
a dendritic branch exhibits experience- and activity-dependent
plasticity (Losonczy et al., 2008; Makara et al., 2009; Müller et al.,
2012).

Our work indicates that fast dendritic spikes reduce the
required synaptic strength and connection density for replay of
spike patterns. Moreover, their saturation and the resulting sparse
coding might explain the observed variability during replay. Thus,
in particular, our understanding of propagation along diluted
feed-forward chains may now be combined with knowledge
on synaptic plasticity and generation of activity accompanying
replay (e.g., sharp wave/ripples) to gain an integrated mechanistic
understanding for encoding, replay and memory transfer.
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A. APPENDIX
A.1 PROOF OF EXISTENCE OF A GLOBAL MINIMUM OF PNL(n)

We will show that pNL(n) as derived in Equation (59),

pNL(n) =
n2ε+ 2�b + n

√
n2ε2 + 4�b

(
ε− �b

ω

)
pf (κ)ε(n2 + ω)

(
1+ Erf

(
n√
2

)) (A.1)

= 1
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2�b + n2ε
(
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n2
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2
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) , (A.2)

has a global minimum for εω > �b. In Equation (A.2) we defined

α := 4�b

ε

(
1− �b

εω

)
. (A.3)

For εω > �b, pNL is positive and continuous, and approaches

lim
n→−∞

(
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) = ∞, (A.4)

lim
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) = 1

pf (κ)
, (A.5)

in the limit of large/small n. Further, the derivative of pNL can be
written as

d

dn
pNL(n) = (2− h1(n)) h2(n), (A.6)

where we defined the functions
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For n > 0 and εω > �b,

α > 0, (A.9)

h1(n) > 0, (A.10)

h2(n) > 0, (A.11)

and in the limit of large n,

lim
n→∞ h1(n) = 1

εω

(
0+ 2�b + αε

2

)
(A.12)

= 2
2�bωε−�2

b

ω2ε2
(A.13)

lim
n→∞ h2(n) = 0. (A.14)

For εω > �b, h1(n) is smaller than two for sufficiently large n
(cf. Equation A.13) and thus the derivative of pNL(n) becomes
positive (cf. Equation A.6). Consequently pNL approaches
1/pf (κ) from below for large n (cf. also Equation A.5). This
proves the existence of a global minimum of pNL(n), because
pNL > 1/pf (κ) for sufficiently small n (cf. Equation A.4).

A.2 BIOLOGICAL MORE DETAILED NEURON MODELS
In section 3.3.3 we consider biologically more detailed neu-
ron models. In this appendix we present descriptions of these
models including the parameters used for the numerical simu-
lations in Figure 13. These simulations were done using NEST
(Gewaltig and Diesmann, 2007), a simulator for spiking neu-
ral network models (available at http://www.nest-initiative.org).
We implemented new model classes within the NEST framework
to handle conductance-based leaky integrate-and-fire neurons
with double exponential input conductances as well as non-
linear dendritic interactions (source code available from Sven
Jahnke).

A.2.1 CB-type model
The CB-type model is a leaky integrate-and-fire neuron with con-
ductance based synapses, augmented with a mechanism for the
generation of current pulses mimicking the effect of a dendritic
spike (see also Memmesheimer, 2010; Jahnke et al., 2012). The
subthreshold dynamics of the membrane potential Vl of neuron l
obeys the differential equation

Cm
l

dVl(t)

dt
= gL

l

(
V rest

l − Vl(t)
)+ gA

l (t)
(
EEx − Vl(t)

)
+ gG

l (t)
(
EIn − Vl(t)

)+ IDS
l (t)+ I0

l . (A.15)

Here, Cm
l is the membrane capacity, gL

l is the resting conduc-
tance, V rest

l is the resting membrane potential, EEx and EIn are

the reversal potentials, and gA
l (t) and gG

l (t) are the conductances
of excitatory and inhibitory synaptic populations, respectively.
IDS
l (t) models the current pulses caused by dendritic spikes and

I0
l is a constant current gathering slow external and internal

currents. The time course of single synaptic conductances con-
tributing to gA

l (t) and gG
l (t) is given by the difference between

two exponential functions (e.g., Dayan and Abbott, 2001) with
time constants τA, 1 and τA, 2 for the excitatory and τG, 1 and τG, 2

for the inhibitory conductances. Whenever the membrane poten-
tial reaches the spike threshold�l, the neuron sends a spike to its
postsynaptic neurons, is reset to V reset

l and becomes refractory for

a period tref
l . Additionally to inputs from the preceding layer each

neuron receives excitatory and inhibitory Poissonian input spike
trains with rates νex and νin; single inputs have coupling strength
εex and εin, respectively.

To account for dendritic spike generation, we consider the
sum gl,�t of excitatory input strengths (characterized by the cou-
pling strengths), arriving at an excitatory neuron l within the time
window�t for non-linear dendritic interactions,

gl,�t(t) =
∑

j

∑
k

εljχ[t−�t, t](t
f
jk + τ), (A.16)
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where χ[t−�t, t] is the characteristic function of the interval

[t −�t, t], t
f
jk is the kth firing time of neuron j and τ denotes

the synaptic delay. We denote the peak conductance (coupling
strength) for a connection from neuron j to neuron l by gmax

lj . If
gl,�t exceeds a threshold g�, a dendritic spike is initiated and the
dendrite becomes refractory for a time window tDS,ref. The effect
of the dendritic spike is incorporated into the model by the cur-
rent pulse that reaches the soma a time τDS thereafter. This cur-
rent pulse is modeled as the sum of three exponential functions,

IDS
l (t) = c(g�t)

[
−Ae

− t
τDS,1 + Be

− t
τDS,2 − Ce

− t
τDS,3

]
,(A.17)

with prefactors A > 0, B > 0, C > 0, decay time constants τDS,1,
τDS,2, τDS,3 and a dimensionless correction factor c

(
g�t
)
, where

g�t is the summed excitatory input at the initiation time of the
dendritic spike as given by Equation (A.16). The factor c

(
g�t
)

modulates the pulse strength, ensuring that the peak of the exci-
tatory postsynaptic potential (pEPSP) reaches the experimentally
observed region of saturation. At very high excitatory inputs,
the conventionally generated depolarization exceeds the level of
saturation, c

(
g�t
)

is zero and the pEPSP increases (cf. inset of
Figure 13A).

Parameters for Figure 13
The single neuron parameters for the numerical sim-
ulations are Cm

l = Cm = 400 pF, gL
l = gL = 25 nS,

V rest
l = V rest = −65 mV, �l = � = −50 mV, tref

l = tref = 3 ms
and V reset

l = V reset = −65 mV. The reversal potentials are
EEx = 0 mV and EIn = −75 mV and the time constants for the
excitatory and inhibitory conductances are τA,1 = τG,1 = 2.5 ms
and τA,2 = τG,2 = 0.5 ms. The parameters of the dendritic spike
current are �t = 2 ms, g� = 8.65 nS, τDS = 2.7 ms, A = 55 nA,
B = 64 nA, C = 9 nA, τDS,1 = 0.2 ms, τDS,2 = 0.3 ms,
τDS,3 = 0.7 ms and tref, DS = 5.2 ms and the dimensionless cor-
rection factor is given by c(g) = max

{
1.5− g · 0.053nS−1, 0

}
.

For the first setup (pf ≈ 0.97) we set I0
l = I0 = 250 pA,

νex = 2.4 kHz, νin = 0.6 kHz, εex = 0.6 nS and εin = 6.6 nS;
for the second setup (pf ≈ 0.67) we set I0

l = I0 = 0 pA,

νex = 20 kHz, νin = 5 kHz, εex = 0.6 nS and εin = −6.6 nS.

A.2.2 HH-type model
We employ a standard model provided by NEST
(“hh_psc_alpha”; Hodgkin–Huxley type neuron with alpha-
function shaped postsynaptic currents) and incorporated a
dendritic spike current as in the CB-Model. The membrane
potential Vl of neuron l obeys the differential equation

Cm
l

dVl(t)

dt
= INa

l (t)+ IK
l (t)+ IL

l (t)+ I0
l

+ Iex
l (t)+ Iin

l (t)+ IDS
l (t). (A.18)

For clarity we drop the index l in the following; all quantities refer
to some neuron l. In Equation (A.18),

INa(t) = gNam(t)3h(t)
[
ENa − V(t)

]
(A.19)

IK(t) = gKn(t)4
[
EK − V(t)

]
(A.20)

IL(t) = gL [EL − V(t)
]

(A.21)

specify the Na+current, the K+ current and leak current. The
dynamics of the gating variables m, n and h are governed by

dm(t)

dt
= αm(t) [1−m(t)]− βm(t)m(t) (A.22)

dh(t)

dt
= αh(t) [1− h(t)]− βh(t)h(t) (A.23)

dn(t)

dt
= αn(t) [1− n(t)]− βn(t)n(t), (A.24)

where the voltage dependencies are given by

αn(t) = 0.01
[
Ṽ(t)+ 55

]
1− exp

[
− Ṽ(t)+55

10

] (A.25)

βn(t) = 0.125 · exp

[
− Ṽ(t) + 65

80

]
(A.26)

αm(t) = 0.1
[
Ṽ(t)+ 40

]
1− exp

[
−V(t)+40

10

] (A.27)

βm(t) = 4 · exp

[
− Ṽ(t)+ 65

18

]
(A.28)

αh(t) = 0.07 · exp

[
− Ṽ(t)+ 65

20

]
(A.29)

βh(t) =
(

1+ exp

[
− Ṽ(t)+ 35

10

])−1

. (A.30)

In Equations (A.25–A.30) Ṽ(t) := V(t)
1mV is the value of membrane

potential normalized by 1 mV. Spikes are detected by a com-
bined threshold-and-local-maximum search, if there is a local
maximum above a certain threshold of the membrane poten-
tial, U� = 0 mV, it is considered a spike (for more details see
the NEST manual and the model implementation available at
http://www.nest-initiative.org). After a synaptic delay time τ a
spike initiates an alpha-function shaped current pulse at the post-
synaptic neurons. The total excitatory and inhibitory input to
neuron l is given by

Iex(t) =
∑

k

εex
k

e

τex
exp
[
− t

τex

]
�
[
t − tex

k

]
(A.31)

Iin(t) =
∑

k

εin
k

e

τin
exp
[
− t

τin

]
�
[

t − tin
k

]
, (A.32)

where εex
k > 0

(
εin

k < 0
)

is the strength of the kth arriving excita-

tory (inhibitory) spike at neuron l, tex
k

(
tin
k

)
denotes the reception

time of that spike and e is the Euler constant [the currents Iex(t)
and Iin(t) are normalized such that an input of strength ε = 1 pA
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causes a peak current of 1 pA]. The time constants τex and τin

are the synaptic time constants. As before, we account for den-
dritic spike generation by considering the sum of excitatory input
strengths received by neuron l within the time window�t,

ε�t(t) =
∑

k

εex
k χ[t−�t,t](t

f
k + τ). (A.33)

If this sum exceeds the dendritic threshold I�, a dendritic spike is
initiated and we model its effect is by the current pulse

IDS(t) = c(ε�t)
[
−Ae

− t
τDS,1 + Be

− t
τDS,2 − Ce

− t
τDS,3

]
,(A.34)

starting after a delay time τDS after the initiation time of the den-
dritic spike. The correction factor c (ε�t) modulates the pulse
strength such that the depolarization saturates for suprathresh-

old inputs until the effects of linearly summed input exceed the
effects of the dendritic spike (cf. inset of Figure 13B).

A.2.3 Parameters for Figure 13
As before, we consider homogeneous neuronal properties.
The single neuron parameters for the numerical simulations
are Cm = 200 pF, EK = −77 mV, EL = −70 mV, ENa = 50 mV,
gK = 3600 nS, gL = 30 nS, gNa = 12000 nS, τex = 2 ms and
τin = 2 ms. The parameters of the dendritic spike current
are �t = 3.5 ms, I� = 270 pA, τDS = 2.7 ms, A = 27.5 nA,
B = 32 nA, C = 4.5 nA, τDS,1 = 0.2 ms, τDS,2 = 0.3 ms,
τDS,3 = 0.7 ms and tref,DS = 5.2 ms and the dimensionless cor-
rection factor is given by c(ε) = max

{
1.54− ε · 0.002 pA−1, 0

}
.

For the first setup (pf ≈ 0.97) we set I0 = 500 pA, νex = 3 kHz,
νin = 3 kHz, εex = 20 pA and εin = −20 pA; and for the sec-
ond setup (pf ≈ 0.67) we set I0 = 250 pA, νex = 10 kHz,
νin = 10 kHz, εex = 20 pA and εin = −20 pA.
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Neuronal networks in rodent barrel cortex are characterized by stable low baseline
firing rates. However, they are sensitive to the action potentials of single neurons
as suggested by recent single-cell stimulation experiments that reported quantifiable
behavioral responses in response to short spike trains elicited in single neurons. Hence,
these networks are stable against internally generated fluctuations in firing rate but at
the same time remain sensitive to similarly-sized externally induced perturbations. We
investigated stability and sensitivity in a simple recurrent network of stochastic binary
neurons and determined numerically the effects of correlation between the number
of afferent (“in-degree”) and efferent (“out-degree”) connections in neurons. The key
advance reported in this work is that anti-correlation between in-/out-degree distributions
increased the stability of the network in comparison to networks with no correlation
or positive correlations, while being able to achieve the same level of sensitivity. The
experimental characterization of degree distributions is difficult because all pre-synaptic
and post-synaptic neurons have to be identified and counted. We explored whether the
statistics of network motifs, which requires the characterization of connections between
small subsets of neurons, could be used to detect evidence for degree anti-correlations.
We find that the sample frequency of the 3-neuron “ring” motif (1→2→3→1), can
be used to detect degree anti-correlation for sub-networks of size 30 using about 50
samples, which is of significance because the necessary measurements are achievable
experimentally in the near future. Taken together, we hypothesize that barrel cortex
networks exhibit degree anti-correlations and specific network motif statistics.

Keywords: barrel cortex, detection threshold, nanostimulation, degree distribution, computational model, network

motifs

INTRODUCTION
Rodents can be trained to use their whiskers to detect an
object that predicts a reward and respond with licking to
obtain this reward (Huber et al., 2012). The neural responses
in barrel cortex to whisker stimulation are hypothesized to
play an important role in performing this task (Petersen and
Crochet, 2013). Animals can also be trained to detect electri-
cal microstimulation (Butovas and Schwarz, 2007; Houweling
and Brecht, 2008) or optogenetic stimulation (Huber et al.,
2008) of barrel cortex. Microstimulation activates a large num-
ber of neurons that are spatially distributed within a few hun-
dred microns around the stimulating electrode (Histed et al.,
2009). An important question is how many neurons need to
be activated for the subject to reliably detect the stimulation
and whether some cell types are more sensitive than others.
Answers to these questions may come from nanostimulation
experiments in which a single neuron is activated through juxta-
cellular stimulation (Houweling and Brecht, 2008). These exper-
iments show that adding trains of 10-15 action potentials in a
single cortical neuron can indeed be detected, but the reliability

of detection is low and reaction times are long compared to
microstimulation.

The spontaneous firing rates in the barrel cortex are low, rang-
ing from less than 1 Hz in the superficial layers to a few Hz in
the deep layers (de Kock and Sakmann, 2009; Barth and Poulet,
2012), and whisker stimuli typically evoke a single spike (or none)
in responsive neurons. The activity in the low firing rate state
(LFS) is also stochastic, both in time as well as across cells, but
the precise nature of sparse firing is still being quantified (Barth
and Poulet, 2012). For a LFS a single spike could represent a sig-
nificant perturbation, potentially yielding 28 additional spikes in
postsynaptic neurons (London et al., 2010). The network state
therefore needs to be stable against small fluctuations that may be
amplified through recurrent connectivity. At the same time the
aforementioned experiments show that the network is sensitive
to small perturbations that are externally generated. Sensitivity
and stability are connected and can in general not be optimized
at the same time, as the increase in one causes a decrease in the
other. Furthermore, stable LFS, in the sense of asynchronous and
irregular activity, is difficult to achieve (Kumar et al., 2008).
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We use two insights to find the optimal trade-off between sta-
bility and sensitivity. First, the external and internal generated
firing rate fluctuations may have different statistics. The exter-
nal perturbation is a train of action potentials [e.g., of 200 ms
duration (Houweling and Brecht, 2008)] in a single neuron,
thus correlated in time, whereas the internal fluctuations are
likely to be of shorter duration and involve a more diverse set
of neurons. Second, network structure may be such that these
fluctuations have different stability properties (possibly through
learning). Our guiding hypothesis is that simultaneous stability
and sensitivity are achieved through an anti-correlation between
the in- and out-degree of synaptic connectivity between neurons
in barrel cortex. Thus, neurons with a low number of synaptic
inputs have a high number of synaptic outputs and neurons with a
high number of inputs have a low number of outputs. We further
hypothesize that such an anti-correlation leads to a distribution
of synaptic connectivity motifs that is different than for a random
network (Milo et al., 2002). Experiments show that barrel cortical
circuits have a motif distribution that is different from random
(Song et al., 2005; Perin et al., 2011), whereas theoretical stud-
ies show that networks with non-random motif distribution have
different synchronization properties (Roxin, 2011; Zhao et al.,
2011; Litwin-Kumar and Doiron, 2012) (LaMar and Smith, 2010)
and can emerge through synaptic plasticity during reward-based
learning (Bourjaily and Miller, 2011a,b). Our work is the first
that focuses on the effect on network dynamics of correlations
between the in- and out-degree of the same neuron, rather than
between in- and/or out-degrees of different neurons, which is
referred to as assortativity (Newman, 2010).

Here we test these hypotheses in simplified networks of neu-
rons. In order to focus on the effect of network structure, rather
than the full dynamics of spiking neurons, we model neurons
as binary units. The inputs to the binary units are determined
through a connection matrix with a pre-specified degree distri-
bution generated by a configuration model (Newman, 2010). We
first describe how the networks are constructed and then deter-
mine (1) their stability in terms of the maximal coupling constant
for which the LFS is still stable and (2) their sensitivity to single-
cell perturbations using a receiver operating characteristic (ROC)
analysis. Finally, we address the issue of how to detect evidence
for anti-correlations in the degree distribution experimentally on
the basis of sampling sub-networks.

Taken together, we find that anti-correlated networks are more
stable than equivalent correlated and uncorrelated networks, but
can still reach the same level of sensitivity, which represents a key
theoretical advance in terms of a hypothesis for the experimen-
tally observed sensitivity and stability of neuronal networks in
the rodent barrel cortex. Furthermore, the hypothesis is of exper-
imental significance, because our analysis shows that correlations
in the degree distribution can be detected using sub-networks of
sizes that are experimentally accessible in the near future.

METHODS
NETWORK DYNAMICS
The model network was composed of N binary excitatory neu-
rons, whose state at time t is given by xi(t), a N-dimensional
vector with ones for neurons that are active and zeros for ones

that are not, here i is the index of the neuron. The new state
xi(t + 1) is obtained in two steps. First, the probability νi,t+ 1 of
a neuron being active is calculated using Equation (1). Second,
for each neuron the firing probability is compared to a random
number that is uniformly distributed between 0 and 1. The neu-
ron is set to 1 when the random number is less than or equal to
the probability value

vi, t+ 1 = 1

1+ exp

(
h0 − J

Npc

∑
j

wij xj,t

) (1)

The probability has a sigmoidal form, with the exponent con-
sisting of a constant term h0, which sets the probability of firing
in the absence of inputs from other neurons, and a coupling term
representing the network input. The coupling term contains the
adjacency matrix wij, whose construction is described below, and
in which wij = 1 if there is an input from neuron j to neuron i
and wij = 0 otherwise. The overall probability of a connection is
pc. Hence the sum across rows of the adjacency matrix is on aver-
age Npc and we normalize the coupling term by J/Npc so that J
then represents the overall coupling strength. The network activ-
ity is calculated in time bins that we consider to be 10 ms. The
network has a high firing rate state (HFS), in which each neuron
is active on each time step, to which the network will converge
when enough neurons are active on a previous time step. We are
primarily interested in the LFS, in which each neuron fires only
in a fraction of the time bins, corresponding to a firing rate of
approximately 1 Hz (Barth and Poulet, 2012). Alternatively, in a
given time bin, only a fraction of neurons are active.

The network activity is represented by the mean probability
of firing of a neuron during a time bin and is calculated as the
total number of spikes divided by the number of neurons. When
normalized by the bin width, it represents the mean firing rate of
a network neuron in spikes per second (Hz).

NETWORK CONNECTIVITY
Our goal is to determine whether correlations in the in- and out-
degree distribution are beneficial in that they increase sensitivity
and/or stability relative to uncorrelated networks. Hence, we need
a control network without degree correlations. Although the stan-
dard random network, Erdos-Renyi (ER) (Newman, 2010), does
not have correlations in the degree distribution and is easy to gen-
erate samples of, it is not appropriate as a control because it has
a sharp degree distribution (see below) and we instead need large
variance degree distributions.

For ER networks with a connection probability p, the degree
distribution (for both out- as well as in-degree) is given by a
binomial distribution

p(k) =
(

N − 1
k

)
pk(1− p)N−1−k (2)

which has a mean of (N − 1)p and a variance of (N − 1)p(1− p),
which in the limit of large N converges to Gaussian distribution
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FIGURE 1 | Construction of networks with a correlation between out-

and in-degree. In panels (A) to (D), we show scatterplots of the
out-degree vs. in-degree, whereas the corresponding marginal distributions
are shown for (E) the in-degree and (F) the out-degree. We considered four
types of networks, each with N = 2000 neurons and a connection
probability of pc = 0.05. (A) The Erdos-Renyi (ER) network in which each
connection is chosen at random with a probability pc = 0.05, for which
there is no correlation [ρ = 0.0034 (standard deviation: 0.018)] and the
relative variance of in- and out-degree across neurons is small for large
networks. In order to examine networks with a higher variance of degree
values, we first generated a degree distribution in the form of a truncated,
bivariate Gaussian. In (B) the covariance matrix was diagonal, with equal
variance for the out- and in-degrees, which yielded uncorrelated in- and
out-degrees [ρ = 0.0010 (0.019)]. To generate correlations we started from a
covariance matrix with unequal variances and rotated it by 45 degrees
anticlockwise to obtain (C) anti-correlated [ρ = 0.821 (0.0085)] and by 45
degrees clockwise to obtain (D) correlated degree distributions [ρ = 0.821
(0.0085)]. In the anti-correlated case, nodes with a high out-degree had a
low in-degree and vice versa, whereas in the correlated case, nodes with a
high out-degree also had a high in-degree, as illustrated by the insets in (C)

and (D), respectively. (E,F) The networks were constructed so that the
marginal distributions for the correlated (red), anti-correlated (blue) and
uncorrelated (green) case were the same. The ER network (purple) had
much tighter marginal distributions.

with a ratio of the standard deviation over the mean of

√
1− p

N
(3)

This means that the distribution becomes very tight for large
network sizes (Figures 1A,E,F).

Hence we generated networks from a truncated bivari-
ate Gaussian for the joint in- and out-degree distribution
as explained below (Figures 1B–F). We start from a bivariate
Gaussian with a diagonal covariance matrix given by

p(x, y) = 1√
4π2σxσy

exp

(
− (x − μ)2

2σ2
x
− (y − μ)2

2σ2
y

)
(4)

which is rotated across 45 degrees clockwise or anticlockwise
to obtain a distribution with positive and negative correlations,
respectively. The resulting distribution is truncated below at
1 because the degree cannot be negative and we exclude the
case of zero (since a zero degree neuron would not be con-
sidered part of the network) and above at twice the mean
degree to make the distribution symmetric. The resulting dis-
tribution is normalized to make the integral over the positive
quadrant equal to one. The short axis is represented by σx

and the long axis is represented by σy. The mean degree μ

was equal to Npc, with a network size N = 2000 and connec-
tion probability pc = 0.05 (Holmgren et al., 2003) this yields
μ = 100. The long axis was σy = μ/3. The term dispersion
refers to the ratio σx/σy, which was set to 0.3 for the standard
parameter set.

Correlated degree distributions were obtained by sampling for
each neuron i, the in- and out-degree from the above bivari-
ate Gaussian, din

i and dout
i . The simplest method for generating

a realization of the corresponding network is the configuration
method (Newman, 2010). A list with dout

i stubs with value i,
is made and concatenated into a list sout

k . Likewise, a list with

din
i stubs with value i, is made and concatenated into a list sin

k
and randomly permuted. From these two lists, pairs are picked
from the same position, i.e., the kth stub on the out-list is
matched to the kth stub on the in-list to make the connection
sout
k to sin

k . This algorithm produces networks with two artifacts,

there could be self-connections sout
k = sin

k , and a given connec-

tion could be sampled twice (or more), sout
k = sout

l and sin
k = sin

l .
For sparse networks the likelihood of self-edges is small (0.05%),
but the probability for multi-edges was larger, around 2.7%. For
the cases in which there were multi- or self-edges, we removed
the corresponding links.

NETWORK STABILITY
Cortical networks with a low firing rate need to be stable in
the sense that stochastic fluctuations should not lead to large
increases in the firing rate that could be detected as a stimulation,
resulting in a false positive. We characterized the network stability
in three ways.

First, we simulated the network and determined the mean
firing rate, averaged across neurons and across time bins, as a
function of the coupling strength J for various levels of back-
ground activity h0. To determine both the maximal stability
and tease apart the contribution of neuronal heterogeneity and
stochasticity to instability, we performed the simulations accord-
ing to a number of different schemes. We considered the mean
field limit, in which the network is taken to be so large that each
neuron received the same number of inputs and that the resulting
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mean firing rate of each neuron was the same. Equation 1 reduces
in that case to

vt+1 = 1

1+ exp(h0 − Jvt)
(5)

yielding the following equation for the fixed points

v = 1

1+ exp(h0 − Jv)
(6)

which correspond to the roots of the function

f (x) = x − 1

1+ exp(h0 − Jx)
(7)

and can be obtained by iterating the fixed point equation
Equation 6 or using Matlab’s root finder fzero. The background
field h0 determines the baseline firing rate r0, which is the rate
obtained in the absence of coupling, J = 0:

r0 = 1

�t

1

1+ exp(h0)
(8)

where we have divided by the bin size �t to obtain a firing rate
in Hz.

There is always a high firing rate solution for sufficiently high
coupling strength J, because when all neurons are active on a
given time step, they will also all be active on the next time step.
There can also be a low firing rate solution which depends on
the coupling strength and the baseline firing rate. The coupling
strength Jc at a given baseline firing rate below which the LFS
exist is the upper limit of stability. The stochastic dynamics gen-
erates fluctuations, which could push the network away from the
LFS, whereas a degree distribution with a large variance would
cause a dispersion in the mean firing rate across neurons. These
effects are characterized by performing the full simulations with-
out stochasticity to determine the effect of firing rate dispersion,

vi,t+1 = 1

1+ exp
(

h0 − J
Npc

∑
j wijvj,t

) (9)

and the stochastic version in Equation (1) to determine the effect
of fluctuations.

Second, in the latter case, the state (LFS vs. HFS) reached is
not deterministic, because a network can have a firing rate that
fluctuates around the LFS or veers off to the HFS due to a some-
what larger fluctuation. We therefore performed the simulation
multiple times and recorded how often (on what fraction of the
trials) the network ended up at the HFS state as a function of the
coupling constant. In this case we defined Jc to be the value of
the coupling constant at which 50% of the states converged to
the HFS within 400 time steps. The initial condition of the net-
work was obtained by making a random set of neurons active
in such a way that on average it had the same number of active
neurons as expected based on the firing rate in the mean-field
limit.

Third, when fluctuations stay in the basin of attraction (BOA)
of the LFS, the network will not diverge, which means that

the above fraction is an indirect measure of the BOA. We also
determined a more direct measure by starting networks from dif-
ferent initial conditions, each with a different number of active
neurons, and determining which fraction of trials goes to the HFS
within 400 time steps. These initial states are characterized by
the effective number Neff of active neurons as is explained in the
Results section and represented in Equation 11.

NETWORK SENSITIVITY
The sensitivity to a perturbation in experiment is tested in the
model by activating a few selected neurons for a fixed duration.
The stimulation was characterized by the number np of neurons
stimulated (typically np = 8), the number of time bins, Tstim,
the stimulation lasted (typically Tstim = 6) and the mean out-
degree of the stimulated neurons represented by Neff. For a fair
comparison between different networks we randomly picked the
stimulated neurons from the network and repeated the stimu-
lation for 50 different realizations of the network. In order to
estimate the effect of out-degree on the detection of the stim-
ulation, we also ordered neurons based on their out-degree,
with the highest out-degree first. This ordered set was divided
into ten groups of equal size. We then randomly selected the
stimulated neurons from a specific group and compared how
the network response depended on which group was being
stimulated.

ROC ANALYSIS
The ROC is obtained by picking a threshold and determining
how often a firing rate response from the unstimulated network
exceeds this threshold: the fraction of false positives. In addition,
it is determined how often the firing rate of the stimulated net-
work exceeds this threshold, this is the fraction of true positives.
The ROC curve is traced out by plotting the true positives vs.
the false positives for each possible threshold. When the distri-
butions are exactly the same, the number of true positives equals
the number of false positives, hence the ROC is the diagonal with
an area under the curve (AUC) of 0.5. The deviation of the ROC
curves from the diagonal, or equivalently deviation of the AUC
from 0.5, is a measure for how different the distributions are and
maps for Gaussian distributions on to d′, which is the difference
in means of the distributions divided by the standard deviation
(Kingdom and Prins, 2010). This also means that one can deter-
mine how many trials are needed to detect, given a particular
ROC value, a difference between stimulation trials and unstim-
ulated responses. The errors in the ROC curve and AUC value
were determined by resampling of the simulated trials. Typically
Nr = 2000 resamplings were used.

FUZZY CLUSTERING AND PERCEPTRON ANALYSIS
Fuzzy c-means (FCM) was used to cluster data points, such as
a vector of network firing rates in consecutive time bins, or
the motif distribution for a particular realization of a network,
into groups with similar properties. FCM can be understood by
first considering K-means clustering. In a K-means clustering,
a number of clusters is chosen and the objects to be clustered
are assigned on a random basis to each of the potential clus-
ters (Duda et al., 2001). The name of the algorithm derives from
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the convention that the number of clusters is denoted by K.
Using these assignments, the mean of each cluster is found. Then,
using these means, objects are re-assigned to each cluster based
on which cluster center they are closest to. This process repeats
until the cluster centers have converged onto stable values or a
maximum iteration count is reached. This type of clustering min-
imizes the sum of the squared distances of the clustered objects
from their cluster means. FCM functions in the same way, but
rather than belonging to any particular cluster, each object i is
assigned a set of normalized probabilities uij of belonging to clus-
ter j (Bezdek, 1981). This is equivalent to minimizing a non-linear
objective function of the distances of the objects from the cluster
centers, characterized by the “fuzzifier” parameter, which is set to
two. After the algorithm converges each data point is assigned to
the cluster to which it is most likely to belong (maximizing the uij

with respect to the cluster index j). A more complete description
is given in (Fellous et al., 2004).

The perceptron algorithm is a method to classify responses x
of the network (Duda et al., 2001). Here the vector x = (rt, rt+1)
represents either a point in the firing rate return map or it
represents the binary activity for each neuron during a partic-
ular time bin. The algorithm tries to find a weight vector w
such that the sign wTx is positive when x belongs to group 1
(stimulated network) and negative when it belongs to group 2
(unstimulated).

ANALYSING MOTIF COUNT DISTRIBUTIONS
To investigate whether we could use motif statistics (restrict-
ing ourselves to 3-node motifs) of smaller parts of the complete
network to distinguish between networks with different degree
correlations, we generated Nr = 1000 realizations of each net-
work type: correlated, anti-correlated and uncorrelated. We used
smaller networks, N = 200, because these networks are adequate
to represent sub-network statistics of size Nsub up to 200. We
used standard parameters, pc = 0.05, now yielding μ = 10 and
σy = μ/3 = 3.33 and σx = 0.3σy = 1.0 for the smaller network.
From each realization we sample sub-networks of Nsub from 4 to
24 in steps of 4 and from 30 to 200 in steps of 10. For each (sub)
network we count the number of 3-node motifs using the explicit
formulas given in Table III of Itzkovitz et al. (2003). Each motif
is labeled by a number according to the convention also found
in Itzkovitz et al. (2003). The counts in an ER network vary with
powers of the expected number of edges per node k and network
size N, λN3(k/N)e, where λ is a factor representing the symmetry
of the pattern [see Table III in Itzkovitz et al. (2003)] and e is the
number of edges in the pattern, which defines the complexity of
the motif.

As a first step in the analysis we determined the mean and
standard deviation of the motif count across the Nr realiza-
tions. To reduce the size of statistical fluctuations we also pooled
motif counts by averaging them across Nav realizations. We either
split the original Nr realizations into Nr/Nav groups, yielding a
reduced number of data points or we randomly sampled with
replacement NrNav samples from the original Nr samples to keep
the same number of pooled motif counts. The count distribu-
tion was often not Gaussian, which meant we could not use
the t-test for the difference in mean count over the standard

deviation. Hence, we utilized a ROC analysis. In order to obtain
error estimates we created Nb = 20 different sets of Nr = 500
realizations, each of which were obtained by randomly sam-
pling with replacement from amongst the Nr = 1000 original
realizations.

We also wanted to determine whether incorporating counts
of pairs of motifs would improve the ability to distinguish
between networks with different degree correlations. We con-
sidered each realization, drawn from one or the other group
of networks, as a two-dimensional data point and used FCM
to find two clusters. FCM outputs the confidence (or proba-
bility) that the data point belongs to cluster 1. This value can
be used as part of an ROC procedure. For a given threshold,
the true positive corresponds the fraction of data points belong-
ing to group 1 for which the confidence exceeds the threshold,
whereas the false positive corresponds to the fraction exceed-
ing threshold that belongs to the second group. We applied
this procedure for each possible pair of motifs and for each
sub-network size.

RESULTS
ANTI-CORRELATED NETWORKS ARE MOST STABLE IN THE
ZERO-NOISE CASE
The mean-field limit, corresponding to an infinite network, is
studied by considering the dynamics of a network where each
neuron has the same firing rate, each neuron has the same num-
ber of synaptic inputs, i.e., in-degree, and there is no stochasticity.
In this case the dynamical equations reduce to a self-consistent
equation for the average firing rate v (Equation 6 in Methods),
which is solved according to the fixed point method. There are
typically two stable solutions, one corresponding the HFS, in
which the neuron is constantly firing (firing probability v = 1
or close to one) and one corresponding to the LFS at much
lower rates, together with one unstable solution in between
(Figure 2A). For high enough coupling constants only the HFS
solution remains. We studied this by starting from an initial value
of vt near zero and then iterating Equation 5 until convergence,
if there is a LFS, it will converge to the LFS and if there is no
LFS it will converge to the HFS, resulting in a sudden jump in
firing rate as a function of J (Figure 2B). The coupling strength
for which this jump occurs is denoted by Jc and depends on the
baseline firing rate r0 (defined in Equation 8, Figures 2B,C). The
higher r0 the less stable the network is. The firing rate of the LFS
for J values just before it becomes unstable, referred to as rc, is the
maximum firing rate that the network can sustain, which varies
approximately linear with the baseline firing rate (Figure 2D).

The effect of network size is studied by iterating Equation 9
for a vector of firing rate values, which ignores the effects of noise
that are present in the full equations, Equation 1. In these finite
size systems, the LFS is less stable, as reflected in the Jc values that
are much below the mean-field limit (Figure 2E). There also is
a difference between networks depending on their degree correla-
tions, with the anti-correlated network being more stable than the
ER network, correlated and uncorrelated networks. These differ-
ences become more pronounced for larger networks (Figure 2E).
The difference also depends on the baseline firing rate, with the
anti-correlated network again being the most stable (Figure 2F).
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FIGURE 2 | Anti-correlations in the degree distribution improve the

stability of the low firing rate state (LFS). We compared the stability of
finite-size networks with different degree correlation structure by iterating
Equation 9 (which is Equation 1 without taking into account stochastic
spiking). (A) The mean-field solution, corresponding to an infinite-size
network, is simulated by assuming that the firing rate of each neuron is
equal, yielding Equation 6, of which all roots are shown in the graph. (B)

Mean firing rate r vs. coupling constant J in the mean-field limit for different
values for the baseline firing rate r0. When the LFS loses stability, the only
remaining solution is the HFS. As a result the plotted firing rate suddenly
jumps to the maximum possible rate of 100 Hz (corresponding to 1 spike
per bin). (C) The range of stable coupling constants, which are between 0
and Jc , decreases with increasing baseline firing rate. (D) The firing rate rc
of the LFS just before it turns unstable increases linearly with r0. (E) The
stability of the LFS depends on system size and approaches the mean-field
limit (cyan) gradually as network size N increases (baseline rate r0 = 1 Hz).
The anti-correlated network (blue) is always more stable than the ER
(purple), correlated (red), and uncorrelated (green) networks. (F) The
difference between the mean field Jc and that of the finite-size networks
decreases with baseline firing rate (network size N = 2000).

ANTI-CORRELATED NETWORKS ARE MORE STABLE AGAINST
FLUCTUATIONS
The dynamics of binary networks is stochastic because on each
time step the expected firing rate is translated into a binary
value. Hence, the firing rate, either averaged across network neu-
rons during one time bin, or of one neuron averaged over a few
time bins, will fluctuate. These fluctuations will alter the stabil-
ity because these fluctuations could drive the network out of the
BOA of the LFS toward that of the HFS state. The firing rate
in the LFS state vs. coupling constant curve for the stochastic

FIGURE 3 | The anti-correlated network is more stable against

fluctuations. (A) The firing rate vs. coupling strength for the mean-field
solution (cyan) and networks with uncorrelated (green), correlated (red) or
anti-correlated (blue) degree distributions (r0 = 1 Hz, N = 2000). The
anti-correlated degree distribution leads to the most stable network. The
dashed box approximately indicates the interval of coupling strengths
highlighted in panels (B) and (C). (B) Despite the existence of a stable LFS
for a particular coupling strength, fluctuations in network activity may
perturb the network away from it and the network ends up in the
co-existing stable HFS state. The fraction of states that end up in the HFS
state is close to zero far below Jc and increases to unity above Jc . The LFS
state is more stable for the anti-correlated (blue) network than for the
uncorrelated network (green), which in turn is more stable than the
correlated network (red). The dashed lines are fits to the sigmoidal function
in Equation 10. (C) The stability depends on the strength of the correlation.
When the width (dispersion) corresponding to the small axis in the bivariate
Gaussian degree distribution is increased, which means lower correlation,
the stability is reduced. Data are for an anti-correlated network. (D) A
neuron’s firing rate is correlated with its in-degree, but the degree of
correlation is reduced to 0.519 (0.014) due to jitter in this relation for
Equation 1 (blue dots) from 0.997 (0.002) for Equation 9 (green dots). Data
for anti-correlated network, J = 30.96. (E,F) The degree of stability can be
qualified by Jgap, the distance of the Jc for the finite-size network from that
for the mean-field network, shorter distances meaning more stable
networks. Jgap decreases with the (E) baseline firing rate r0 and with (F)

network size. In both panels the anti-correlated network (blue line)
corresponds to the lowest curve indicating higher stability compared to ER
(purple), uncorrelated (green) and correlated (red), an advantage that
increases with network size. The network had N = 2000 neurons, for each
coupling strength Nt = 100 simulations were performed, with a length of
500 time steps, of which the first 100 were discarded as a transient.

network (Figure 3A) looks similar to that for the zero noise case
(not shown), but the fraction of trials on which the HFS state
is reached displays a sigmoidal behavior (Figure 3B): with some
networks switching to the HFS state close to, but below the critical
coupling constant Jc, whereas most of the networks go to HFS for
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coupling constants above Jc. In between there is a transition point
where an equal number of networks go to the LFS and HFS state.
The anti-correlated state is more stable, because this transition
point lies to the right of the transition point for the other net-
works (Figure 3B). We have fitted the probability to the following
expression,

p(J) = 1/(1+ exp(− (J− Jh) /σJ) (10)

where Jh is the transition point and σJ represents the sharpness of
the transition. The transition for correlated and anti-correlated
networks is sharper than for uncorrelated networks, as indicated
by the σJ = 0.424 and 0.420, compared to 0.391, respectively, with
R2 values (fraction of explained variance) all approximately 0.999.

The in- and out-degrees are drawn from a bivariate Gaussian,
which has a long axis, in the direction of the correlation, and a
short axis perpendicular to that direction (Equation 4, Methods).
Increasing the standard deviation along the short axis, termed dis-
persion, reduces the degree of correlation. In addition, it makes
the anti-correlated network less stable (Figure 3C).

The stability properties of the finite-size networks are different
from that in the mean-field limit (Figure 2), because the firing
rate of a neuron depends on the number of inputs (in-degree),
which varies across neurons in the network (Figure 3D, green
dots). The correlation between the neuron’s firing rate and its
in-degree is almost perfect for the non-stochastic network, with
squared Pearson correlation R2 = 0.997 (0.002), but becomes jit-
tered due to the stochastic spiking resulting in a squared Pearson
correlation of 0.519 (0.014) (Figure 3D, blue dots).

The mean-field limit represents the highest level of stability,
because both finite-size and noise effects reduce it. The reduc-
tion in stability can be captured into Jgap, which is the mean-field
critical coupling minus the critical coupling value for the noisy,
finite-size network. The smaller Jgap is, the more stable the system
is. The gap decreases both with baseline firing rate (Figure 3E)
and network size (Figure 3F). As the network size increases,
the comparative stability advantage of anti-correlated networks
increases.

The stability against fluctuations can be analyzed differently.
Non-linear dynamical systems are characterized in terms of the
basin of attraction (BOA). Consider a simple one-dimensional
system with two stable fixed points (and an unstable one in
between) (Strogatz, 1994). Depending on the initial condition
of the one state variable, the system will converge to one or the
other fixed point. The catchment area of the first fixed point, the
range of initial conditions that converge toward it, is the BOA.
There is a well-defined boundary between the two BOAs. Our
goal is to characterize this boundary between LFS and HFS for
the binary networks studied here, which is complicated because
of the high dimensionality of the state space and the stochastic-
ity, which means that a given initial condition near the boundary
could converge to a LFS or HFS depending on the role of the
dice. The first issue means we have to find a more effective and
compact description of the initial state. Our initial choice was
to use the number Na of active neurons in the initial condition.
However, when the Na highest out-degree neurons are active, the
network is more likely to converge to the HFS than when the Na

lowest out-degree neurons are active, even though the initial state
has an equal number of active neurons. Hence, we used the so
called effective number of active neurons, where each neuron’s
contribution is weighted by their out-degree:

Neff = N

∑
i∈ active dout

i∑
i dout

i

(11)

We started the simulations from a random initial state,
characterized by a specific number of active neurons (range:
between 0 and 200), and repeated this procedure enough times
(Nr = 4000) to ensure sufficient coverage across the relevant Neff

values. For each Neff value so sampled, a fraction converged to
the LFS and the remainder went to the HFS state (Figure 4A). For
small Neff most states converge to LFS and for Neff larger than
a transition value Neff,90 most converge to the HFS (Figure 4B).
We choose as transition value the lowest Neff value for which
90% or more states went to the HFS. The transition value Neff,90

decreases with coupling strength J (Figures 4C,D) until its value
comes close to the number of active neurons represented by the
average firing rate of the mean-field network, at which point
stability is lost. This is because the BOA of the LFS shrinks
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FIGURE 4 | The basin of attraction of the LFS is larger for

anti-correlated networks indicating enhanced stability against

fluctuations. (A) Simulations were started from initial states with a
different number Na of active neurons, which is translated into an Neff value
(see text) to allow for a fair comparison of initial conditions. We show the
firing rate as a function of time (in units of iterations). For low Na the
anti-correlated network converged to the LFS, whereas for high Na runs it
converged to the HFS. (B) This was reflected in the histogram where green
filled bars indicate the number of states with a particular Neff that
converged to the LFS and the open bars indicate the number of states that
converged to the HFS. Data for anti-correlated network with J = 25. (C)

Neff,90 as a function of coupling constant J for uncorrelated (green),
correlated (red) and anti-correlated (blue) networks together with the
number Na,av of active neurons corresponding to the firing rate of the
mean-field solution (cyan dashed line) as a reference. (D) Close-up of panel
(C). The data were obtained from a network of N = 2000 neurons, with a
baseline rate of 1 Hz. For each coupling strength, and, each network type
we used Nr = 1000 initial conditions and averaged across 4 realizations of
the network.
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to zero and most initial conditions go to the HFS. The anti-
correlated network is more stable because it can sustain initial
states with a higher number of active neurons and still return
to the LFS as compared to other networks. Furthermore, for
the anti-correlated networks the BOA is finite for larger values
of the coupling constant compared to other networks. Overall,
when a sufficient number of neurons are active in the ini-
tial condition, both the effective and unnormalized number of
active neurons yield similar results for the size of the BOA (not
shown).

THE SENSITIVITY OF THE NETWORK CAN BE CHARACTERIZED USING
ROC ANALYSIS
During spontaneous (unstimulated) activity in the network, the
firing rate will fluctuate from time bin to time bin, which can
be considered random draws from a distribution. When the net-
work is stimulated, the average firing rate will be altered, trivially
because of the activated neurons, but non-trivially through the
downstream effect of this stimulation on the other neurons. The
stimulation is characterized by the number of cells np stimulated
(and their out-degree, see below) and the duration of the stim-
ulation Tstim. We used np = 8 and Tstim = 6. Its effect on the
network can be detected when there is a systematic difference
between the network states, quantified, for instance, in terms of
the mean firing rate of the overall activity. An ROC analysis quan-
tifies how different the distribution of firing rate is between the
stimulated and unstimulated networks and how easy it is to detect
this difference and can thus be compared to measured behavioral
responses. In all of the following analyses we exclude the stim-
ulated cells themselves. One reason is that the decision process
would be based on downstream neurons, hence we should detect
the difference in the downstream population.

The histogram of the simulated firing rates was shifted relative
to that of the unstimulated network (Figure 5A). In Figure 5B,
the ROC curve corresponding to the empirical distributions in
panel a is shown. The evaluation of the corresponding AUC, as
a function of time is shown in panel c. Before the stimulation
at t = 10, the statistics of both networks are the same, yield-
ing an AUC of close to 0.5, whereas after stimulation the AUC
rises to the 0.75. The ability to detect a stimulation increases
with the strength of the coupling constant (Figure 5D). This can
be simply understood because a higher J increases the impact
of presynaptic activity on the neuron’s firing rate, hence it also
increases the effect of stimulation. There is no difference in sen-
sitivity due to the correlation structure of the network as long as
neurons with similar out-degrees are stimulated, because the sen-
sitivity only depends on the out-degree. The AUC also increases
with baseline firing rate of the network (Figure 5E), which indi-
cates that network state changes, such as those occurring during
arousal or with attention in which the overall firing rate increases,
could improve task performance. Also for this behavior there
was no difference between networks with the different type of
degree correlations. The derivative of the mean firing rate r with
respect to J increases with baseline firing rate r0, suggesting that
the effect of a stimulation on the network firing rate increases
with r0, which is indeed borne out by the simulation results in
Figure 5E.

FIGURE 5 | Network sensitivity, when evaluated using an ROC

analysis, depends only on the mean out-degree of the stimulated

neurons and not on the degree correlations. (A) Distribution of firing rate
across cells in a 10 ms time bin for spontaneous activity (red) and for the
stimulated network (blue), in which 8 random cells were stimulated. Note
that the stimulated cells were not included in this ROC analysis and we
used the binary responses xi (t) to determine the firing rate. (B) The
corresponding ROC curve (blue) quantifies the difference between the
distributions, relative to the diagonal (gray), which represents distributions
that cannot be distinguished. (C) The area under the curve (AUC) for the
ROC curves calculated for different time bins. The AUC before stimulation
was close to 0.5 because the distributions were the same apart from
fluctuations due to sampling. After the stimulation, which started at t = 10
and ended at t = 15, the AUC rose to around 0.75. (D) The AUC increases
with increasing coupling constant and (E) with increasing baseline firing
rate. (F) The AUC depended on the mean out-degree of the stimulated
neurons. Neurons were divided into ten groups according to their
out-degree, with the first group having the highest out-degree. The group
index is indicated on the x-axis. The results in (D–F) were not significantly
different for correlated (red), anti-correlated (blue) or uncorrelated (green)
networks, t-test, p = 0.4479, 0.6279, 0.7421, respectively. The network
was comprised of N = 2000 neurons, of which np = 8 neurons were
stimulated for the duration of Tstim = 6 time units starting on the 10th bin.
In panel (A–C) results for an uncorrelated network are shown. Parameters:
(A–C,F) J = 18, r0 = 1; for (D) r0 = 1 and (E) J = 20.

Stimulus detection depended on which cells were stimulated,
with their average out-degree being the most important fac-
tor. We chose np neurons to be stimulated randomly from 10
different groups with different mean out-degree, which were
generated as follows. First all neurons were ordered according
to their out-degree, with the highest out-degree neurons com-
ing first, and then divided into ten equally-sized groups, labeled
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1 to 10. Multiple stimulation trials were done with np neurons
picked from one of the groups from which the group AUC was
determined. The AUC for each group was then plotted as a func-
tion of the group label (Figure 5F). The AUC values for the first
group were much higher than for the next groups demonstrating
clearly that the group with the highest mean out-degree also had
the highest AUC.

Taken together, these simulations show that the correlations in
the degree distribution do not directly affect network sensitivity
to stimulation. Rather, this sensitivity is determined by the out-
degree of the stimulated neurons. Networks can display a higher
sensitivity if they have a larger variability in the out-degree dis-
tribution and those cells with the highest out-degree are being
stimulated. ER networks have a low variance in the out-degree,
and will therefore have a reduced sensitivity compared to the net-
works here, compare the AUC of the first group to that of the fifth
group which represents neurons with an out-degree closest to the
mean.

The fluctuations in firing rate during spontaneous activity are
expected to have different temporal correlations compared to
those in the stimulated network, as an increase due to an exter-
nal stimulation is going to persist across the time bins during
which the stimulation takes place. Hence, the detection rate could
improve by taking into account (spatio) temporal correlations.
The first step is to consider the correlation in network firing rate
r between two consecutive time bins. When rt+1 is plotted vs. rt a
return map would be obtained. However, because the firing rate
values are restricted to x/(N�t), where x is an integer between
0 and N, and N the network size, the return map would have a
non-informative appearance. Hence, we made a density represen-
tation, by replacing each sample by a two-dimensional Gaussian
(kernel density estimate) with a standard deviation (bandwidth)
optimally estimated from data following the Silverman’s rule of
thumb (Silverman, 1986). The hot spot in the return map den-
sity obtained for stimulated networks (Figure 6B, plus sign) is
shifted along the diagonal in the positive direction (i.e., higher
rates) in comparison to the return map for spontaneous activity
(Figure 6A).

We determined whether such a two-dimensional represen-
tation would improve the detection rate. An equal number of
samples from spontaneous activity and from stimulated activ-
ity were provided to a fuzzy clustering method (FCM) routine
in Matlab in order to find two clusters (Fellous et al., 2004).
The FCM returns for each data point i the probability uij that
it belongs to cluster j. As the sum of probabilities needs to be
unity, for two possible clusters we only need to consider ui1. We
thus obtain a distribution of ui1 values for data points from the
spontaneous activity and a distribution for data points from the
stimulated network. The difference between these distributions is
a measure for how well stimulation can be detected and can thus
be subjected to a ROC analysis. In this ROC analysis the ui1 val-
ues are treated in exactly the same way as the firing rates used to
obtain the results in Figure 5. The resulting AUC values were 5%
higher than based on the distribution of firing rates in one bin
(t-test, p = 0).

In the firing-rate based detection procedure, each neuron
(except the directly stimulated ones) carries equal weight. The

FIGURE 6 | Detection can be improved by including past activity and

weighting neurons depending on how many inputs they receive from

directly stimulated neurons. (A,B) Density representation of the firing rate
return map, wherein the probability of obtaining consecutive rate values (rt ,
rt+1) is represented by a color scale, with red indicating the highest
probability and blue indicating a near zero probability. The results are shown
for (A) spontaneous activity and (B) stimulated activity. The plusses indicate
the location of the peak in panel (B). (C) Analysis of factors that contribute to
a neuron’s weight in detection decision that is outputted by the perceptron
procedure. There was significant but small correlation between weight and
(top left) in-degree or (top right) out-degree. There was a correlation
between the weight and the number of direct inputs from stimulated
neurons (bottom left), but only a weak correlation with the number of inputs
from cells that received direct input from the stimulated cells (bottom right).
The network was comprised of N = 2000 neurons, coupling constant
J = 18, baseline firing rate r0 = 1 Hz. In the stimulated network, np = 8
neurons were stimulated for a duration of Tstim = 6 time bins.

cells that are not directly connected to the stimulated neurons
would display firing rate fluctuations that are unrelated to the
stimulation, hence act as noise that reduces probability of detec-
tion. The signal to noise of the firing rate fluctuations could be
improved by weighing those neurons less. To explore this hypoth-
esis we applied a perceptron procedure (see Methods) to learn the
optimal weights for classifying the network state vectors (Duda
et al., 2001). An equal number of network states for spontaneous
activity and for stimulated networks were supplied to the per-
ceptron routine together with the corresponding class labels. The
output was a weight for each neuron. As before the activity of
the directly stimulated neurons was not included in this anal-
ysis. To determine what features contributed to the weight we
plotted the weight vs. feature value in a scatter plot and calcu-
lated the corresponding Pearson correlation. There was a small,
but significant correlation between the weight and the in-degree
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(Figure 6C, top left, correlation 0.073 ± 0.03, p = 0.0011) and
with the out-degree (Figure 6C, top right, correlation−0.052±
0.027, p = 0.018). There was a strong correlation between the
weight and the number of direct inputs the neuron received from
stimulated neurons (Figure 6C, bottom left, correlation 0.410 ±
0.15, p = 0.0). The number of indirect inputs from stimulated
neurons was less relevant (Figure 6C, bottom right, correlation
0.072 ± 0.032, p = 0.012). We calculated this by determining the
number of inputs from cells that received direct inputs.

Taken together, these analyses show that our estimates for the
detection of stimulation based on overall firing rate are under-
estimates and can be improved by taking into account network
history and by selecting which neurons to listen to. The latter
of which may be achieved through synaptic plasticity and the
appropriate learning rules.

DETECTING ANTI-CORRELATION IN THE DEGREE DISTRIBUTION WITH
LIMITED DATA
The results here establish that anti-correlation between in- and
out-degrees results in more stable, but equally sensitive networks,
compared to networks without correlations between in- and out-
degree, or positive correlations between them. Hence, learning
to detect a stimulation could proceed by altering the correla-
tion between in- and out-degree. To demonstrate such a learning
effect, the in- and out-degree of a number of neurons needs to be
sampled. Classical tracing techniques are not appropriate because
they involve the connections to or from multiple nearby neurons
(Lanciego and Wouterlood, 2011). For instance, when the ret-
rograde tracer horseradish peroxidase is injected, it is absorbed
by multiple axon terminals and transported to their respective
cell bodies. These axon terminals do not necessarily synapse on
one and the same neuron near the injection site. Hence, the data
cannot be used to determine the in-degree of a neuron near the
injection site.

New viral-based techniques could help, because they work
by infecting a few cells in the neighborhood where the virus is
injected (Wickersham et al., 2007; Osakada et al., 2011). The
virus will then retrogradely label the cells presynaptic to these
cells by crossing one synapse and one synapse only. In the presy-
naptic cells the infection stops because the virus misses the
proteins necessary to cross another synapse. The challenge with
this method is to infect only one cell, with both an anterogradely
and retrogradely crossing virus.

Currently, the gold standard is to simultaneously record mul-
tiple cells in vitro and assess connections by inducing action
potentials in one neuron at a time and recording the post-synaptic
responses in the other cells. The current record is 12 cells recorded
simultaneously (Song et al., 2005; Perin et al., 2011). This means
that the anti-correlation in the degree distribution will have to be
assessed indirectly, by sampling from sub-networks.

Motifs represent patterns in the connectivity that occur more
often than expected if the connections were made random (Milo
et al., 2002). For instance, consider a network for which the
average probability of a connection is p. For two neurons, if
these connections are made randomly, the probability of having
no connection is (1− p)2, for having one connection 2p(1− p)
and for having a bidirectional connection p2. When it is found

that bidirectional connections occur significantly more than the
expected p2 then there is additional, non-random, structure in the
network (Song et al., 2005). Motifs most often refer to triplets of
neurons and the patterns of connectivity between them that occur
more often than expected in a random network (Milo et al., 2002).
A motif distribution is the number of times each motif occurs in
a network and a motif is considered present when it occurs more
often than in a control network. Motif distributions are affected
by many network properties such as, for instance, the degree
distribution. The networks studied here, even when uncorrelated,
have a different degree distribution than the ER network, which
means that ER random networks are not a good control. Hence,
we have to numerically generate the control distributions rather
than having access to the analytical expression for the expected
rate of each motif. In addition, in experimental settings we do not
have access to the whole network from which to determine the
motif distribution, we have to do with sub-networks. These sub-
networks do not come from the same network, rather they come
from networks sampled from an ensemble of networks with simi-
lar properties. To obtain estimates for how to observe evidence for
anti-correlation in the degree distribution we need to deal with
each of these issues.

The overall goal is to distinguish between pairs of networks
with anti-correlated, uncorrelated and correlated degree distribu-
tion with the same marginal distribution for in- and out-degree.

We considered 13 different motifs that consisted of three con-
nected neurons and gave each motif a numerical label as shown in
Figure 7A. We determined the number of motifs in each realiza-
tion of a network with correlated, anti-correlated or uncorrelated
degree distribution and took the average. This was done for
the full network (here reduced to N = 200) as well as for sub-
networks (size Nsub). The complexity of a motif corresponds to
the number of edges in the pattern, ranging from 2 to 6, which
determines how often it is counted in a network. We normal-
ized the counts such that they took values on the order of unity
in order to better compare them across motifs. The mean count
as a function of Nsub converged to a constant for network sizes
between 50–100 neurons (Figure 7B), with more complex motifs
requiring larger Nsub. The width of the count distribution, quan-
tified as the standard deviation, decreased with Nsub as the-3/2
power (Figure 7C). Hence, for large enough networks the differ-
ences in mean counts across network type can be detected with
certainty. This power law behavior is consistent with the results
for a Binomial process with probability p and on the order of
n ∼ N3

sub trials, for which the mean is np and the variance is
np(1− p). In that case the normalized mean is p, and its variance
(1-p)/n (see also Equations 2, 3), leading to a standard deviation

varying as n−1/2 = N−3/2
sub .

We are looking for motifs whose counts are different between
the analyzed network types. In Figure 7D we show the count as a
function of motif for the three network types, with the highest dif-
ference occurring for the complex motifs 110 and 238. However,
the counts for these motifs, which have the largest number of
edges, are characterized by a large standard deviation. When we
plot the motifs in an order based on the ratio of count difference
over standard deviation, motif 98 comes up as winner instead
(Figure 7E). Figure 7D shows that there are fewer motif 98 in
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FIGURE 7 | Motif 98 is the most sensitive to degree correlations. (A)

There are 13 motifs that involve 3 connected nodes. Below the graphical
representation we plot the numbering used here, which follows Itzkovitz
et al. (2003). The expected number of motifs depends on network size,
hence we normalize the count by N3(k/N)e, with N the number of nodes, k
the expected number of edges per node and e the number of edges in the
motif. In addition, we include a numerical factor representing the equivalent
permutations [listed in Table 3 in Itzkovitz et al. (2003)]. (B) The normalized
counts, averaged across a thousand realizations, converge to constant
values for sub-networks larger than 50–100 nodes, with the precise value
depending on the complexity of the motif involved. (C) The standard
deviation of the normalized counts fall off as N−3/2. We illustrate the results
for the anti-correlated network, which are typical for the correlated and
uncorrelated network also. In addition, we omitted motif 238 because it
occurs at such a low probability that it makes the statistics noisy. (D) The
normalized counts for each motif for the (red) correlated, (blue)
anti-correlated and (green) uncorrelated networks. We used the counts for
the full network, rather than sub-networks. Network size in panel (D) and
(E) was N = 200. We used a bivariate Gaussian degree distribution with a
mean number of nodes equal to 10, a standard deviation along the long axis
of σy = 3.33 and along the short axis of σx = 1.0. (E) The maximum
difference in mean count between all three possible comparisons (black
bars), relative to the mean standard deviation of these counts across the
three network types. The motifs are ordered on the count over standard
deviation ratio, starting with the largest. According to this analysis motif 98
should be used to best distinguish between different network correlation
structures.

anti-correlated networks compared to correlated networks. This
can be understood intuitively by noting that in “ring” motif 98
each neuron has the same number of inputs as outputs, namely 1,
which is more representative for correlated networks (Figure 1D,
inset) than for anti-correlated networks (Figure 1C, inset).
Furthermore, this means there is a lower probability of closing the
ring, because in an anti-correlated network a neuron with many
inputs has fewer outputs to get to the next neuron in the ring.

The count distributions are not Gaussian for small sub-
networks. Figure 8A shows the count distribution for motif 98 for
networks with N = 200. Each network gives rise to a symmetric

appearing distribution, with the peak at a different location
depending on the network type. The distribution for the anti-
correlated and correlated network were farthest apart, with that of
the uncorrelated distribution situated in the middle. For Nsub =
30 (Figure 8B), the corresponding distributions fell on top of
each other and are asymmetric because the counts are always
positive. To compare the distributions we therefore performed
an ROC analysis. As expected based on the reduced overlap
between distributions, the AUC increases with sub-network size,
and motif 98 comes out on top with the highest AUC (Figure 8C).
Furthermore, given the lower overlap between the anti-correlated
and correlated distribution (Figure 8A), the AUC values for
the comparison between anti-correlated and correlated network
is higher (Figure 8C) than for either the comparison between
anti-correlated and uncorrelated (Figure 8D) or correlated with
uncorrelated (not shown).

In experiments only relatively small networks can be mapped,
up to 12 cells using paired recordings and a few tens to hun-
dreds using population calcium imaging. For these numbers the
degree correlations cannot be reliably distinguished based on
a single measurement. We therefore pooled measurements to
see if this improved discriminability for more experimentally
accessible smaller sub-networks. This procedure (pooling motif
counts across Nav = 50 network realizations) indeed reduced
overlap between distributions (Figure 8E, compare to Figure 8B).
The more motif counts were pooled, the higher the AUC was
(Figure 8F). Furthermore, the value of unity, corresponding to
perfect discriminability is reached for smaller sub-network sizes.
For Nav = 50, Nsub = 30 networks are perfectly discriminable
and the AUC transitions from values just above 0.7 to unity
between Nav = 30 and 50 (Figure 8F). Taken together, sub-
networks of a few tens of neurons could be used to test our
hypothesis experimentally.

The question is whether this result can be improved by includ-
ing counts for multiple different motifs (Figure 9A). Without
pooling, motif 98 by itself outperforms any pair of motif counts,
according to the AUC value (Figure 9B). To determine the AUC
value for pairs of motif counts we used the FCM procedure
as outlined in the methods section. When counts are pooled
(Figure 9C), some motif pairs outperform motif 98 by a small
margin. The pairs are highlighted in Figure 9D, and involve motif
98 itself. The more separated the cloud of points corresponding to
different network types is, the better the FCM procedure classifies
the networks, compare the plusses (correct discrimination) and
dots (incorrect) in Figure 9A.

DISCUSSION
The overall firing rates in barrel cortex (de Kock et al., 2007;
Greenberg et al., 2008; Barth and Poulet, 2012) are much lower
than might be expected based on the classic experiments in
macaque visual cortex (Hubel and Wiesel, 1968). Neural activity
is also variable, which can be characterized as across trial reliabil-
ity, or in terms of the coefficient of variation and Fano factor of
spontaneous activity (Shadlen and Newsome, 1998). These mea-
sures reveal that the activity is similar to that of a Poisson process,
in which the occurrence of a spike in a time bin is uncorrelated
with whether or not a spike occurred in previous bins. The mean
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FIGURE 8 | Degree correlations can be distinguished by pooling fifty

measurements of networks at least thirty neurons in size. (A) Motif
count varies across network realizations, but degree correlations can be
distinguished when the corresponding distribution show little overlap. We
show the distribution of the normalized counts of motif 98 for (red)
correlated, (blue) anti-correlated, and (green) uncorrelated networks with
200 neurons. (B) For smaller sub-networks (Nsub = 30), the distributions
overlap. Furthermore, these distributions are not Gaussian as they are
skewed because counts are always positive. Hence, a more general
procedure, such as the ROC analysis needs to be used instead of looking at
the differences in mean count relative to the standard deviation. (C,D) The
area under the ROC curve (AUC) as a function of sub-network size Nsub for
the comparison (C) between correlated and anti-correlated networks and
(D) between anti-correlated and uncorrelated networks. Each motif is
labeled with a line style and color as indicated in the legend. Motif 98 is
most sensitive in both cases (as well as for the correlated vs. uncorrelated
comparison that is not shown). It is more difficult to distinguish an
anti-correlated network from an uncorrelated one than to distinguish it from
a correlated network. The average AUC values were determined based on
the AUC value for each of twenty different motif distributions of 500
network realizations, which were sampled randomly with replacement out
of 1000 realizations. (E) The motif distribution for Nsub = 30 can be pooled
across Nav = 50 network realizations in order to shrink the width of the
distribution, so that the differences in mean counts become clearer
[(compare to panel (B)]. (F) The AUC for larger Nav values reaches unity
(distributions are perfectly distinguishable) for smaller sub-network sizes.
We show (green) no pooling, (blue) pooling across Nav = 5 realizations and
(red) pooling across Nav = 50 realizations. The AUC goes from 0.7 to 1.0
between Nsub = 30 and 50 when pooled across Nav = 50 realizations,
indicating that networks of size 30 can be used to determine degree
correlation structure.

firing rate is maintained by the intrinsic excitability of neurons
and their synaptic inputs, including recurrent excitation. High
variability together with a low firing rate implies that the net-
work dynamics should be stable against fluctuations in the mean
activity in the sense that these fluctuations do not generate states

FIGURE 9 | The gain in discriminability by using the joint distribution

of motif counts rather than the marginal distribution is limited. (A) The
outcome of the FCM procedure to find two clusters. Red points indicate
counts obtained from a correlated network and blue points are those for
the anti-correlated network. The plusses indicate points correctly classified
by FCM and the dots represent incorrectly classified network realizations.
Each motif-pair ROC curve is obtained by applying the ROC analysis to the
FCM generated probability of each network to belong to cluster one (see
methods). (B) The resulting AUC as a function of sub-network size for motif
98 (red) is higher than for all possible pairs of motifs (black curves). The AUC
shown is for comparing anti-correlated and correlated networks. (C) When
the motif count is pooled across Nav = 20 realizations some two-motif
curves exceed the single motif curve, which are shown separately in panel
(D). This suggests that for a specific size of the sub-network
distinguishability can be improved by considering pairs of motif counts.

with networks bursts in which all neurons in the network are
active at the same time.

Experiments show that rodents can detect single-cell stimu-
lation in barrel cortex, in which a single neuron is electrically
stimulated to produce a high-frequency train of action potentials
(Houweling and Brecht, 2008). This may mean that single-cell
stimulation can cause an increase (or decrease) in the firing rate
of the local network that is significantly different from that occur-
ring during spontaneous activity. Taken together, this means that
cortical networks with a low firing rate should at the same time
be stable against fluctuations in firing rate and sensitive to weak
stimulation. The overall goal of this paper was to a find a potential
explanation for how the contrasting demands of sensitivity and
stability can be realized. To achieve this we examined the dynam-
ics of binary neural networks with correlation between the in-
and out-degrees of neurons. In the following we summarize the
main results with the aim of linking the detection performance
of the network to experimentally obtained behavioral results, the
mechanism by which sensitivity and stability can be achieved,
and predicting the anatomical signatures of the hypothesized net-
work. We also discuss the role of other biophysical factors, such as
inhibition, not taken into account in the present study.

GENERATING THE NETWORK CONNECTIVITY UNDERLYING ENHANCED
STABILITY
Our guiding hypothesis is that networks with an anti-correlation
between the in- and out-degree of neurons are more stable and
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equally sensitive as other networks with comparable marginal
degree distributions. Network sensitivity is generated by neurons
with a high out-degree, because these would amplify the effect of
nanostimulation the most. This amplification would also desta-
bilize the network, so these cells should not be activated during
spontaneous activity. As the input to neurons is proportional to
the mean firing rate and their in-degree, this can be achieved by
making sure that high out-degree neurons have low in-degrees.
To maintain the average degree, both in and out, there then also
need to be neurons with a low out-degree and a high in-degree.
We implemented this hypothesis as an anti-correlation in the in-
and out-degree.

In the standard Erdos-Renyi networks, the relative variance
in the degree distribution for large networks becomes too small
to have out-degrees that are much larger than the mean degree,
which is needed to reach the desired sensitivity. Hence, we needed
to broaden the degree distribution artificially by using a trun-
cated bivariate Gaussian distribution. Networks with this sampled
degree distribution were generated via the configuration model
(Newman, 2010). This configuration model generates networks
with self-edges and multi-edges. Analytical calculations show that
the probability for obtaining a network with one or more of
these edges is close to one for the large mean degrees we consider
(Blitzstein and Diaconis, 2006). Nevertheless, the number of these
edges is low and their impact on the dynamics was limited.

There are a number of ways to address the multi and self-edge
problem in a more principled approach that differ in computa-
tional efficiency and ease of implementation. First, one can use
the configuration model procedure, but reject an invalid edge
and find a valid replacement. This carries the risk that the algo-
rithm stops when there are no valid edges available, which means
that the whole procedure has to be restarted. Alternatively, as
mentioned before, one can identify the invalid edges when the
network construction has been completed and remove them or
replace them by valid ones. See Blitzstein and Diaconis (2006)
for a review. Second, one can find one graph that satisfied the
degree distribution using the Havel-Hakim procedure (Viger and
Latapy, 2005; Erdos et al., 2010; Chatterjee et al., 2011) and
generate samples from the overall graph distribution by swap-
ping links (Blitzstein and Diaconis, 2006). Swapping links refers
to the procedure where randomly chosen existing links i→ j
and k→ l are swapped into i→ k and j→ l when this yields a
simple graph without self-edges and multi-edges. This requires
careful calibration of the number of swaps and also introduces
bias because these swaps do not change the number of triangles
in the network (Roberts and Coolen, 2012). Third, a sequen-
tial method can be defined that produces all possible graphs, by
randomly selecting amongst the allowed edges that keep the resid-
ual degree distribution graphical (Del Genio et al., 2010; Kim
et al., 2012). A degree distribution is graphical when there exists
a simple graph with that distribution, after each step the degree
distribution is lowered to account for the connections realized,
and this is referred to as the residual degree distribution. This
method does not produce the graphs with the correct probabil-
ity. Hence, averages based on these graphs have to be reweighted
to take this into account. Furthermore, in our hands, an imple-
mentation of this method produces graphs with a correlation

between the in- and/or out-degrees between different nodes,
which is referred to as assortativity. This necessitates a num-
ber of link swaps to remove these correlations. Fourth, edges
can be sampled according to a Boltzman function (Park and
Newman, 2004), where the expectation value of the degree of
a node is fixed through a Lagrange multiplier, for which the
appropriate value has to be picked, which can be achieved, for
instance, through a maximum likelihood approach or iterative
rescaling (Chatterjee et al., 2011). Taken together, we opted to
use the simplest method here, because these alternative methods
for network generation were computationally more intensive and
also suffered from aforementioned additional drawbacks, such as
graphs that were not sampled according to a uniform probability
(Del Genio et al., 2010) or other biases in the network statis-
tics (Roberts and Coolen, 2012). Recently developed methods for
generating networks with degree correlations, both in a single
neuron as well as between pairs of neurons look very promising
(Roberts and Coolen, 2012).

STABILITY IS ENHANCED WHEN THE IN- AND OUT-DEGREE ARE
ANTI-CORRELATED
Our aim was to find stable networks, by which we mean that fluc-
tuations do not cause a cascade of recurrent excitation resulting
in all cells being active at the same time. One solution would be
to have inhibitory neurons, but this does not affect the stability
of the LFS, it just changes the ultimate level of activity reached
(Avermann et al., 2012). Stability can be assessed in a number of
different ways. First, stability in the nonlinear system sense: is the
LFS a fixed point of a noise-less, infinite size system? We deter-
mined that there was a range of coupling strengths J, below Jc, for
which such a LFS exists. The higher the baseline firing rate, the
smaller that range is. Finite-size systems have a smaller range of
stable coupling strength, because there is heterogeneity, not every
neuron has the same in-degree. For instance, the uncorrelated
network had a higher variance in the degree distribution than
the ER network, and also had a smaller Jc. Interestingly, networks
with a positive correlation between in- and out-degrees reduced
stability even more, leading to a lower Jc, whereas for networks
with a degree anti-correlation, Jc was higher, even exceeding the
value for the ER network of the same size.

These calculations ignore the effects of fluctuations, which we
subsequently introduced by making the dynamics stochastic. This
did not alter the stability as determined before in terms of the
existence of the LFS, but introduced other features. The LFS has a
BOA with a fuzzy boundary due to the stochastic dynamics. A net-
work can then be unstable when the fluctuations are large enough
to leave the BOA when you wait long enough. This is primarily a
concern for J values close to (and below) Jc. We determined the
fraction of trials during which the network left the LFS BOA dur-
ing the simulated time interval. As expected the anti-correlated
network is more stable, because Jc is larger. For coupling con-
stants away from Jc, this way of characterizing the BOA does not
work. Hence, we started the network in states with many more
neurons active than would be expected as a result of any normal
fluctuation, and determined whether it converged to the LFS or
HFS. This revealed that the BOA was larger for the anti-correlated
network even away from Jc.
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Taken together, these results clearly show that anti-correlated
networks are more stable than uncorrelated ones, which means
they can operate stably at higher coupling strengths and base-
line firing rates, which confers advantages when the sensitiv-
ity is higher for higher coupling strengths and baselines rates.
Furthermore, their sensitivity is enhanced compared to ER net-
works with the same connection probability, because of a subset
of neurons with a high out-degree.

Recent experiments summarized in Barth and Poulet (2012)
show that the average firing rate in sensory cortex is low, espe-
cially in superficial layers. This holds for spontaneous as well as
evoked activity, and for both anesthetized animals and awake ani-
mals and is the basis for the parameter settings in the model.
Nevertheless, there is a small subset of cells that display high firing
rates. Cells that have recently been active express the immediate-
early gene c-fos. When the c-fos promoter is used to express the
fluorescent marker GFP, the recently active cells can be targeted
for recording in vivo and in vitro. The so called fosGFP+ cells had
a higher firing rate both in vivo and in vitro and received more
excitatory inputs and less inhibitory inputs (Yassin et al., 2010).
Furthermore, these cells are more likely to be connected amongst
themselves. In the anti-correlated networks, there are neurons
with a high in-degree but a low out-degree which make the net-
work more stable, and neurons with high out-degree but low
in-degree that make the network more sensitive. The fosGFP+
neurons could correspond to the former group, which form the
backbone for the spontaneous activity. We did not explicitly build
in assortativity in the network to preferentially connect high in-
degree neurons to each other as suggested by Yassin et al. (2010).
We take from this result that the prevailing homeostatic processes
create networks with more strongly connected sub-networks
and produce cell-to-cell heterogeneity in the balance between
excitation and inhibition. Training to detect electrical stimula-
tion should thus be able to induce similar changes in network
structure.

THE SENSITIVITY ESTIMATED USING DIFFERENT MEASURES OF
NETWORK ACTIVITY
Rodents were able to distinguish between patterns of neural activ-
ity during spontaneous activity and those caused by single-cell
nanostimulation. Nevertheless, this distinction was small, given
the effect size measured experimentally (Houweling and Brecht,
2008). One hypothesis is that the total amount of activity (firing
rate) due to nanostimulation significantly exceeds that expected
of a typical fluctuation. For a stationary network dynamics, this
implies a fixed threshold above which a fluctuation is more
likely caused by nanostimulation, whereas fluctuations below the
threshold are more likely due to spontaneous activity. This can be
quantified using a ROC curve, and the area under it, the AUC.
The ROC is the curve traced out by varying this threshold and
plotting the true positive rate (nanostimulation above thresh-
old) vs. false positive (spontaneous fluctuations above threshold).
When both distributions for the fluctuations are Gaussians, the
AUC corresponds to the difference in means divided by the (com-
mon) standard deviation (Kingdom and Prins, 2010). Hence it is
a measure of the difference in response relative to the size fluc-
tuations around it. We found that the main determinant of the

AUC is the out-degree of the stimulated neurons, independent of
the correlation between in- and out-degree in the network. The
AUC increases with coupling strength and baseline firing rate. The
anti-correlated network has an advantage because it allows for a
broader range of J and r0 values. It thus has an increased stability
at equal sensitivity.

The above represents an underestimate of the sensitivity,
because it assumes that the activity of each neuron contributes
equally to the detection (decision) and that the temporal signa-
ture of the firing rate fluctuation is not informative. Our further
analysis shows that each of these factors would improve detection
performance and makes it therefore likely that state-of-the-art
classification approaches such as support vector machines would
even further improve performance. Taken together this means
that as a system the rodent brain could reach a much higher sensi-
tivity than predicted here, when it could utilize all the information
available in the network activity. Model simulations of spike pat-
tern detection by cortical networks (Haeusler and Maass, 2007)
suggests that laminar models with plastic synapses allow for more
accurate estimates of the detection capability compared to neural
networks that do not take into account the layered structure of
cortex.

DETECTING SIGNATURES OF ANTI-CORRELATED DEGREE
DISTRIBUTIONS
The model makes the prediction that anti-correlated networks
would be more appropriate for the detection of nanostimulation
in stable networks. To test this prediction we need to be able to
distinguish correlations in the degree structure of the network
without having access to all the inputs and all the outputs of
a subset of neurons. We find that anti-correlations change the
frequency of specific network motifs in a way that is indepen-
dent of the network size, which means that it can be determined
by averaging across many smaller sub-networks. A “ring” motif,
number 98, which was a projection from neuron 1 to 2, from 2 to
3 and from 3 to 1, discriminated best between correlated and anti-
correlated networks (Figure 7). Pairs of motif counts increased
discriminability to a small extent, and only when the counts
were pooled. This shows that these networks can be detected
experimentally based on sampling sub-networks comprised of 30
neurons, when enough samples are available.

FUTURE STUDIES SHOULD INCORPORATE MULTIPLE TYPES OF
INTERNEURONS
The model was highly simplified so that we could focus on the
connectivity structure. Having established the advantages of anti-
correlation, our goal is to study the effects in more realistic
networks. There are many other biophysical features that could
be included in the model that would change the results quanti-
tatively or, in some cases, even qualitatively. Here we highlight a
small selection of the most relevant ones.

The first issue is inhibition. Experimental evidence shows
that two types of inhibitory neurons, those expressing parvalbu-
min (PV) and somatostatin (SOM), are relevant in determining
the gain of the response of pyramidal cells to whisker stimula-
tion, visual stimulation or current injection (Gentet et al., 2010;
Kwan and Dan, 2012; Lee et al., 2012). Avermann and coworkers
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(Avermann et al., 2012) constructed a model of L2/3 in bar-
rel cortex constrained by in vitro measurements and studied the
effect of stimulating varying amounts of pyramidal cells express-
ing channelrhodopsin by light pulses. In this model the strongest
projection, in terms of the connection probability and synaptic
strength, was from pyramidal cells to fast spiking (FS) interneu-
rons (corresponding to PV neurons). Even when a relatively small
fraction of the pyramidal cells were stimulated, almost all FS cells
were recruited. For higher fractions of stimulated pyramidal cells,
the non-fast spiking (NFS) interneurons (such as SOM interneu-
rons) would become gradually activated. As a result the pyramidal
cell activity remained low despite strong stimulation. The authors
hypothesize that the strong inhibition is a mechanism to maintain
sparse spiking in the pyramidal cells, with the NFS cells providing
a back-up inhibitory mechanism. It is not clear how this com-
putational model would be applicable to in vivo dynamics where
FS cells are already spontaneously active. Furthermore, the level
of activity in the different interneurons depends on brain state
(Gentet et al., 2010). We have simulated binary networks with
inhibitory neurons and find that anti-correlated degree distribu-
tions in the E–E sub-network improve stability (and yield the
same sensitivity).

Detection could also take place by a state change in the net-
work. The network has a LFS and a not too biologically plausible
HFS, which in the context of a network with inhibition would
perhaps correspond to something like an upstate. The true pos-
itive rate would correspond to how often single-cell stimulation
would drive the network out of the BOA for the LFS, whereas the
false positive rate would correspond to how often this would hap-
pen in the spontaneous state. The latter is given by the fraction of
trials the system goes to the HFS state (Figure 3). The former can
be tuned by changing the number of neurons and the duration
of stimulation. A proper examination of this issue would require
a network with a population of inhibitory neurons (Avermann
et al., 2012).

A second issue is the effect of including spike timing. Synapses
are sensitive through short-term depression and facilitation to
the temporal patterns of stimulation (Abbott and Regehr, 2004),
which could thereby affect the postsynaptic response in a non-
linear fashion, thereby preferentially activating specific popula-
tions of neurons. Dendritic nonlinearities also affect the impact
of synaptic inputs based on their temporal coincidence and
whether they arrive on the same part of the dendrite (Gasparini
et al., 2004; Major et al., 2008; Polsky et al., 2009; Lavzin et al.,
2012). Either of these effects could increase the sensitivity to
external stimulation, while not appreciably changing the sta-
bility, thereby strengthening the results reported in this paper.
However, to fully quantify these effects would require new and
more extensive simulations that fall outside the scope of this
paper.

PERCEPTUAL RELEVANCE OF ELECTRICAL OR OPTICAL STIMULATION
IN EXPERIMENT
Our study explores a hypothesis for how to achieve detection of
an electrical stimulation by quick recurrent excitation that escapes
before being shut down by inhibition, without destabilizing the
spontaneous state. We now review the relevant literature focusing

on the difference between electrical and sensory stimulation and
the role of inhibition.

The barrel cortex normally processes thalamic activity gener-
ated in response to whisker stimulation. According to the canoni-
cal cortical circuit (Douglas and Martin, 2004; Lefort et al., 2009;
Petersen and Crochet, 2013) this activity arrives first in layer 4
(L4) of the barrel column representing the stimulated whisker and
then goes to L2/3 and subsequently to L5. It stands to reason that
when during a task an animal needs to make a decision based on
whisker stimulation, this is based on activity in L2/3 or L5 that
came there by way of L4. The path taken by activity induced by
optical, micro- or nanostimulation does not necessarily directly
involve L4 and improving detection could thus require altering
the underlying cortical circuit.

When monkeys were trained to detect microstimulation at
a location in the visual cortex corresponding to a specific
retinotopic location, the stimulation threshold for detection was
reduced from about 50 μA to 5 μA over a few thousands of trials
(Ni and Maunsell, 2010). At the same time the contrast thresh-
old needed to detect real visual stimuli at the same retinotopic
location increased from 4–8% to 8–60%. When the monkeys were
subsequently retrained on detecting visual stimuli, the sensitivity
was recovered in another few thousand trials, but the sensitivity to
electrical stimulation was reduced. One possible interpretation is
that learning to detect electrical stimulation reorganizes the recur-
rent circuits in L2/3 to become more sensitive at the expense of the
L4 to L2/3 feedforward connection.

The animal improves its performance when learning to detect
microstimulation, which could also be the case for single-cell
nanostimulation modeled here. This improvement could occur
because of one or more of the following reasons. First, the
network could become more anti-correlated by changing the
in-degrees. This means that the stability of the network would
improve over time and perhaps that the number of false positives
would reduce. Second, the out-degree of the stimulated neu-
rons could increase, so that the nanostimulation signal becomes
louder, hence the true positives should increase. Third, the neu-
rons involved in the detection process become more sensitive to
neurons directly downstream of the stimulated cells.

The threshold for detecting microstimulation in monkey
visual cortex matches the strength necessary to elicit action poten-
tials in mouse and cat cortex in the neighborhood of the electrode,
5–10 μA (Histed et al., 2009) and in rat barrel cortex 2–5 μA
(Houweling and Brecht, 2008). These numbers did not depend on
whether metal or glass pipette electrodes were used. Stimulation
close above this threshold activated a set of widely dispersed neu-
rons within a few hundred microns from the electrode, through
antidromic action potentials in axons that are close to the elec-
trode. As a result, the spatial pattern of activation was very
sensitive to small changes in the location of the electrode.

Similar stimulus strength, 10 μA for 0.1 to 0.5 ms, yielding
charge transfers on the order of 1 nC, applied in the infragran-
ular layers could be detected in rats (Butovas and Schwarz, 2007).
The authors (Butovas and Schwarz, 2003) estimate that this corre-
sponds to activating 80% of the pyramidal cells within 450 micron
of the electrode, yielding an increase in their firing rate of 25%
corresponding to about 0.5 excess spike per neuron. Interestingly,
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trains of electrical stimulation were more effective, indicating that
temporal correlation may be necessary to distinguish stimulation
from spontaneous activity. Physiological measurements indicated
that synapses of pyramidal cells on fast spiking interneurons
depress more than the pyramidal to pyramidal synapses, which
means that pulse trains could lead to more a prominent increase
in activity than single stimuli (Holmgren et al., 2003).

Optogenetics was used to determine how many neurons in
L2/3 would be required to generate a change in activity that would
be detectable by a mouse (Huber et al., 2008). The authors’ esti-
mate of 300 neurons producing one action potential was based
on a measured distribution of light intensity thresholds necessary
to elicit an action potential, the number of neurons expressing
the light-sensitive channelrhodopsin (ChR2) channels and the
spatial fall off of the light intensity, and represents according to
these authors an overestimate. The number of 300 neurons cor-
responds to about 5% of the approximately 6500 neurons present
in a mouse barrel column (Lefort et al., 2009).

Nanostimulation refers to electrical activation of an individ-
ual neuron with a glass pipette in the juxtacellular configuration.
Nanostimulation in rat barrel cortex must have led to behav-
iorally relevant changes in network activity, as the animal was able
to detect nanostimulation, but the average effect size was rather
small (Houweling and Brecht, 2008). The nature of this activity
could not be assessed, but experiments in mouse visual cortex
may shed some light on this. Single-cell stimulation led to spikes
in the stimulated neuron and calcium transients in some of the
surrounding neurons that could be detected using two-photon
microscopy (Kwan and Dan, 2012). Such stimulation induced
postsynaptic activity in very few other pyramidal cells, 20 out
of 1152 measured. SOM interneurons [corresponding to the NFS
of Avermann et al. (2012)] were most strongly activated, 5 out of
17 measured. PV expressing cells did not respond to this stimu-
lation, but their calcium transients were most strongly correlated
to the network activity produced by the rest of the measured cells.
This indicates that in this state the SOM cells would be required
to damp the increase in activity generated by the recurrently
connected pyramidal cell network.

SUMMARY
Taken together, experimental results suggest that detection of
single-cell stimulation requires a quick propagation of excitatory
cell activity, before the various types of inhibition kick in. Our
studies indicate that anti-correlated degree distributions could be
an important strategy for increasing sensitivity while maintaining
stability.
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We recently proposed frequent itemset mining (FIM) as a method to perform an optimized
search for patterns of synchronous spikes (item sets) in massively parallel spike trains.
This search outputs the occurrence count (support) of individual patterns that are not
trivially explained by the counts of any superset (closed frequent item sets). The number
of patterns found by FIM makes direct statistical tests infeasible due to severe multiple
testing. To overcome this issue, we proposed to test the significance not of individual
patterns, but instead of their signatures, defined as the pairs of pattern size z and
support c. Here, we derive in detail a statistical test for the significance of the signatures
under the null hypothesis of full independence (pattern spectrum filtering, PSF) by means
of surrogate data. As a result, injected spike patterns that mimic assembly activity are
well detected, yielding a low false negative rate. However, this approach is prone to
additionally classify patterns resulting from chance overlap of real assembly activity and
background spiking as significant. These patterns represent false positives with respect
to the null hypothesis of having one assembly of given signature embedded in otherwise
independent spiking activity. We propose the additional method of pattern set reduction
(PSR) to remove these false positives by conditional filtering. By employing stochastic
simulations of parallel spike trains with correlated activity in form of injected spike
synchrony in subsets of the neurons, we demonstrate for a range of parameter settings
that the analysis scheme composed of FIM, PSF and PSR allows to reliably detect active
assemblies in massively parallel spike trains.

Keywords: higher-order correlations, neuronal cell assemblies, spike patterns, spike synchrony, multiple testing,

data mining

1. INTRODUCTION
The cortex is comprised of a highly interconnected network of
neurons and thus one may speculate that information processing
in the brain may only be understood on the basis of the con-
certed activity of the neuronal population. Hebb (1949) suggested
that neurons coordinate their activities by organizing in func-
tional groups, termed cell assemblies. Synchronous spike input
to receiving neurons is known to be more effective in generating
output spikes (Abeles, 1982; König et al., 1996), which leads to
the hypothesis that temporal coordination of spiking activity or
correlational processing is the defining expression of an active cell
assembly (Singer et al., 1997; Harris, 2005). As excitatory post-
synaptic potentials are small in amplitude compared to the gap
between the resting potential and the neuronal firing threshold,
it is expected that a cell assembly is composed of many neurons
firing in a correlated fashion. This observation is the basis for the
assumption that higher-order synchronous spiking activity serves
as a signature expression of an active assembly (Riehle et al., 1997;
Berger et al., 2010; Staude et al., 2010b; Shimazaki et al., 2012).

In order to observe and detect such signatures in the brain, the
spiking activities of many neurons must be recorded simultane-
ously. Fortunately, in recent years considerable progress has been

made in the development of multi-electrode recording techniques
[e.g., Nicolelis, 1998; Buzsaki, 2004; Hatsopoulos et al., 2007;
Riehle et al., 2013], which enable to record the activity of hun-
dred(s) of neurons. Such massively parallel spike train data
pose statistical challenges due to the inherent complexity of the
required multivariate approaches. Most notably, increasing the
number of observed neurons leads to a combinatorial explo-
sion of the number of potential spike patterns that need to be
detected and tested. Based on pairwise correlation analyses only,
the existence and functional relevance of neuronal correlations
could be demonstrated in various cortical systems and behavioral
paradigms [e.g., Gerstein and Aertsen, 1985; Riehle et al., 1997;
Kohn and Smith, 2005; Berger et al., 2007; Fujisawa et al., 2008;
Feldt et al., 2009; Humphries, 2011; Masud and Borisyuk, 2011].
Nevertheless, a correlation analysis considering the complete set
of simultaneously recorded spike trains is required to uncover
also higher-order correlations among neurons. In recent years
several such approaches were developed, each of which focuses
on different aspects: (i) methods to determine the presence of
higher-order spike correlations with a minimum order without
explicitly identifying the participating neurons [e.g., Louis et al.,
2010a; Staude et al., 2010a,b]; (ii) methods that test whether
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individual neurons participate in synchronous spiking activity
without identifying the groups of correlated neurons [e.g., Berger
et al., 2010]; (iii) methods that test for the presence of corre-
lation as predicted by a specific correlation model such as a
synfire chain (Abeles, 1991), that is, spatio-temporal spike pat-
terns or propagation of synchronous spiking activity [e.g., Abeles
and Gerstein, 1988; Schrader et al., 2008; Gerstein et al., 2012;
Gansel and Singer, 2012]; (iv) methods that directly identify the
members of cell assemblies on the basis of the patterns of syn-
chronous spiking activity [e.g., Gerstein et al., 1978; Pipa et al.,
2008; Feldt et al., 2009; Gansel and Singer, 2012; Shimazaki et al.,
2012; Picado-Muiño et al., 2013].

In Picado-Muiño et al. (2013) we presented the basic approach
and relevant statistics to employ frequent item set mining (FIM)
to identify significant patterns of spike synchrony in massively
parallel spike trains. FIM enables fast and efficient counting of
synchronous spike patterns by pruning the tree of all possible pat-
terns. To address the problem of multiple testing, statistics are not
computed for individual patterns, but on the pattern spectrum
that collects the number of observed patterns based on their sig-
nature. A signature is defined as the pair (z, c) of pattern size z
(i.e., number of participating neurons) and support c (i.e., num-
ber of pattern occurrences). In pattern spectrum filtering (PSF)
those identified sets of neurons for which patterns with the same
signature (z, c) occur also in appropriate surrogate data are then
marked as chance patterns and discarded.

Here, we extend the approach of Picado-Muiño et al. (2013)
in three ways that will enable the application of the method to
biological data. First, we refine the statistical test employed in
pattern spectrum filtering for reporting significant patterns of
a given signature (Section 2). Then, we introduce a subsequent
analysis step, termed pattern set reduction (PSR), to addition-
ally filter out those patterns that are detected as significant, but

are compositions of chance spikes or patterns and the actual cell
assembly pattern (Section 3). Finally, we report on the perfor-
mance of our method related to features describing the data (e.g.,
coincidence rate, assembly pattern size, firing rate heterogeneity
or non-stationarity) and analysis parameters (Section 4). The dis-
cussion (Section 5) includes a step-by-step instruction on how to
utilize the proposed method in the context of massively parallel
spike trains obtained from electrophysiological recordings.

2. SPIKE PATTERN DETECTION AND STATISTICAL TESTING
In this section we introduce our approach to detect frequent syn-
chronous spike patterns in massively parallel spike trains (MPST).
We first briefly review frequent item set mining (FIM) and related
terminology and definitions as proposed in Picado-Muiño et al.
(2013) as a tool to efficiently detect and count synchronous spike
patterns in MPST. Then we derive a modified version of the
FIM-based statistics proposed in Picado-Muiño et al. (2013) for
assessing pattern significance.

2.1. FREQUENT ITEMSET MINING
Given N parallel spike trains with neuron ids 1, 2, . . . ,N,
observed in the time window [0,T), we partition [0,T) into b
exclusive bins {bi}bi= 1 of identical width w = T/b (typically cho-
sen as a few ms): bi = [(i − 1) · w, i · w). If one or more spikes
of one neuron fall into a bin, we consider the bin occupied and
reduce the entry to 1 (clipping), so that each time bin contains at
most one spike per neuron. Spikes from different neurons falling
into the same time bin are defined as synchronous (see Figure 1A).
Borrowing terminology from FIM, we define each neuron id as an
item, the set Ti of all items spiking in bi as the i-th transaction in
the binned data, and {Ti}bi= 1 as the transaction list. Given a min-
imum pattern size z0, each set of z ≥ z0 items in Ti constitutes a
pattern of synchronous spikes, or item set (see Figure 1B). Here we

A C

B D

FIGURE 1 | From spike data to closed frequent itemsets. (A) Sketch of a
raster plot of 4 neurons firing in parallel. Shaded colors separate adjacent
bins. Red spikes mark the occurrences of the synchronous pattern composed
of neurons 1, 3, 4. (B) Transaction list derived from the spike data in (A) after
binning. (C) List of item sets obtained from (B), together with their
occurrence counts. Black boxes mark non-frequent item sets (support set
to 2), blue boxes mark non-closed frequent item sets, red boxes mark CFISs.

(D) Average number of item sets (dashed black line), frequent item sets
(dashed blue line) and CFISs (dashed red line) obtained from 100 simulations
of 100 parallel independent spike trains with a firing rate of 20 Hz, as a
function of the simulation time. Other parameters are bin width w = 3 ms
and minimum pattern size z0 = 2. Bars mark ±1 std. dev. The solid line
indicates the number of time bins (and thus transactions) as a function of the
simulation time.
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set z0 to 2. Due to clipping, each item set occurs at most once
per transaction. The number of occurrences of an item set in the
transaction list is the support of that item set.

A transaction that contains K items yields 2K − K − 1 differ-
ent (but possibly overlapping) item sets of size z ≥ 2, that is, all 2K

possible subsets without the empty set and the K singletons. The
total number of different item sets in a transaction list can thus
largely exceed the number of transactions (i.e., time bins). This
number grows with the duration of the data set (see Figure 1D)
and with the number of parallel spike trains (not shown).

In order to limit the data to potentially interesting and non-
trivial item sets, we select only item sets whose support c is larger
than or equal to a minimum support c0 (c0 ≥ 1) as introduced
by Picado-Muiño et al. (2013). Here we set c0 to 2. An item set
whose support equals or exceeds the minimum support is called
frequent item set. For c0 > 1, frequent item sets are usually a small
fraction of all item sets (Figure 1D, compare black dashed line to
blue dashed line). Furthermore, we discard any frequent item set
occurring as many times as any of its supersets. These patterns are
trivially explained by the occurrences of their supersets, which are
more significant due to the larger number of neurons involved.
Non-trivial frequent item sets are called closed frequent item sets
(CFISs; see Figure 1C). Discarding non-closed frequent item sets
does not yield any loss of information. Indeed, the set F of all
frequent item sets can be reconstructed from the set C of CFISs by

F =
⋃
I∈C

⋃
J⊂I, |J|≥z0

J.

The support s(I) of a non-closed frequent item set I ∈ F can be
computed as s(I) = maxJ∈C, J⊃I s(J).

If A and B are two CFISs such that B � A, and cA, cB their
respective supports, it follows from the definition of CFISs that
cB > cA (a priori property). We refer to the (non-empty) set A\B
as the excess items of A with respect to B, and to the difference
cB − cA as the excess occurrences of B with respect to A.

Following Picado-Muiño et al. (2013), we make use of fre-
quent itemset mining [FIM; for a review, see Goethals (2010),
Borgelt (2012)] to extract CFISs and their support from an MPST
transaction list. FIM performs a non-redundant search for spike
patterns, starting from those of size z0 and then moving on to
supersets of increasing size. Starting at lowest-size patterns, the
search is organized in a search tree in layers of increasing pattern
size. A branch connects two patterns if one is a subset of the other.
Each pattern is visited at most once. FIM exploits the apriori prop-
erty to stop the search at infrequent patterns, as no supersets of an
infrequent item set can be frequent. The output of FIM is a list of
all CFISs with their support (Figure 1C).

2.2. PATTERN SPECTRUM FILTERING
Direct statistical tests of all individual patterns occurring in
MPST are not suitable, as they cause a severe multiple testing
problem yielding large occurrences of false positives (FPs), or
enhanced levels of false negatives (FNs) after statistical correc-
tions. Therefore Picado-Muiño et al. (2013) proposed to pool
CFISs according to their size z (number of neurons involved) and
their support c (number of occurrences) in a two-dimensional

histogram (pattern spectrum) and to evaluate patterns of the same
signature (z, c) for significance by a Monte-Carlo approach using
surrogate data. Here we present a refinement of this original
approach, named pattern spectrum filtering (PSF), that bases the
test for a specific signature (z, c) also on patterns of higher size
and support than specified by the signature.

In order to implement the null hypothesis H0 of independent
spiking, and to approximate the p-values of the signatures (z, c),
from the original data (Figure 2A) we repeatedly generate surro-
gate data (Figure 2B), collect from each one its CFISs through
FIM as done for the original data, and compute the correspond-
ing surrogate pattern spectrum (Figure 2C). The surrogates are
generated from the original data by intentionally destroying cor-
relations while keeping other features, such as firing rates, intact
[e.g., by spike randomization or spike dithering, Louis et al.
(2010b)].

Let � be the partial ordering on the real plane, that is,
(x∗, y∗) � (x, y) if x∗ ≥ x and y∗ ≥ y, where � holds if at least
one inequality is strict. From each surrogate pattern spectrum
we compute a binary spectrum which takes value 1 at each sig-
nature (z, c) such that at least one signature (z∗, c∗) � (z, c) is
occupied, and value 0 otherwise [in contrast to Picado-Muiño
et al. (2013) where only the occupation of signature (z, c) is
checked]. Formally, we define the signature operator sgt(·) such
that, given a CFIS A with size zA = |A| and occurrence count cA,
sgt(A) := (zA, cA). For each list Si of CFISs from one surrogate
data set, let P̂i be the binary pattern spectrum, defined for each
z, c ≥ 2 by:

P̂i(z, c) :=
{

1 if ∃A ∈ Si : sgt(A) � (z, c)

0 otherwise
.

Averaging the binary spectra at each signature, we get the p-value
spectrum P̂:

P̂(z, c) := 1

K
#
(Si : ∃A ∈ Si : sgt(A) � (z, c)

)
.

P̂(z, c) yields an estimate of the probability to observe (one or
more) patterns with signature (z∗, c∗) � (z, c) under H0 (see
Figure 2D).

We then classify any signature (z, c) whose p-value is lower
than the significance level α∗ as significant. Given the desired
overall significance level α for PSF, we derive α∗ from α by
Bonferroni correction for the number m of tests, i.e., the num-
ber of signatures in the data to test for: α∗ = α/m. Any sig-
nature (z, c) for which P̂(z, c) < α∗ is classified as significant.
Formally, we introduce the significance spectrum Ŝ defined at each
(z, c) by

Ŝ(z, c) :=
{

1 if (z, c) is significant

0 otherwise
.

In Figure 2E Ŝ(z, c) = 1 is marked in white, Ŝ(z, c) = 0 in gray.
The border between the two is the detection border, on the
left of which signatures in the original data are classified as
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not significant and rejected. Signatures to its right (Ŝ(z, c) = 1)
are considered as significant (marked in red in Figure 2E).
The corresponding patterns and their supports are listed in
Figure 2F.

A

B

C

F

D E

FIGURE 2 | PSF on artificial data. (A) Raster plot of 100 parallel simulated
spike trains consisting of independent Poisson activity plus 6 injections of
one pattern of synchronous spikes (highlighted in red) from neurons 1 to 10,
occurring at random times (see Section 4 for details). The total firing rate of
each neuron is 20 Hz, the simulation time is 3 s. (B) Same as in (A), but
without injection of synchronous patterns. The spike trains are therefore
completely independent. (C) Pattern spectrum of CFISs extracted from the
data in (A) by FIM (z0 = 2, c0 = 2, w = 5 ms). Counts are color-coded
(logarithmic scale). (D) P-value spectrum drawn from 5000 surrogate,
independent data sets of the type shown in (B). P-values are color-coded
(logarithmic scale). (E) Significance spectrum (overall significance α = 0.01,
Bonferroni-corrected for m = 50 tests yielding α∗ = 2 · 10−4). Gray squares
indicate signatures that are not significant, white squares mark potentially
significant signatures. Red squares mark significant signatures of the
pattern spectrum shown in (C), i.e., which fall into white squares of the
significance spectrum. (F) List of patterns detected by PSF. Besides the
injected pattern A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, PSF also classifies
additional patterns as significant, all being subsets or supersets of A.

3. PATTERN SET REDUCTION
PSF tests the significance of patterns under the null hypothesis
H0 of fully uncorrelated spike trains. However, PSF might fail
in rejecting patterns that result from combinations of chance
spikes or chance patterns with the assembly pattern (see list of
detected patterns in Figure 2F besides the injected one). These
patterns are a specific kind of false positive, not resulting from
merely independent data. They may be subsets or supersets of
the assembly pattern, or patterns that partially overlap with it
(Figures 3A–C). In this section we define the type of FPs that
may occur, investigate why PSF is prone to return such FPs,
and propose an additional statistical analysis, termed pattern set
reduction (PSR), to remove them.

3.1. TYPES OF FPs
3.1.1. Chance subsets
If a CFIS A repeats cA times and a subset B of A (with |B| ≥ z0)
has c additional chance occurrences, B represents a CFIS repeat-
ing cB = cA + c total times. We call B a chance subset of A, having c
excess occurrences (Figure 3A). PSF is designed to test the signif-
icance of signature (|B|, cB) under H0 (complete independence),
thus disregarding the fact that cA occurrences are due to pattern A.
As a result it classifies B as a significant pattern, thus yielding an
FP outcome. This is illustrated in Figure 2F, where e.g., pattern
{4, 6, 10} occurs twice by chance plus 6 times as a subset of pattern
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The corresponding signature (3, 8) is
significant compared to the surrogates (Figure 2E), so that PSF
does not reject it.

3.1.2. Chance supersets
If a CFIS B occurs cB times and another set C of neurons
fires by chance synchronously with B in c of those cB trans-
actions (with c ≥ c0), then the pattern A = B ∪ C represents a
CFIS repeating cA = c times. We call A a chance superset of B,
with |C| excess neurons (Figure 3B). PSF tests the significance
of signature (|A|, cA) under H0, disregarding the fact that |B|
of the |A| neurons of A are due to the presence of pattern B.
The test is therefore prone to classify A as significant. This is
the case for patterns {1, 2, . . . , 10, 80}, {1, 2, . . . , 10, 28} and
{1, 2, . . . , 10, 24} in Figure 2F, each of which occurs twice as a
superset of {1, 2, . . . , 10}. The corresponding signature (11, 2) is
significant compared to the surrogates (Figure 2E), so that PSF
classifies these patterns as significant.

A B C D

FIGURE 3 | Excess occurrences and excess items. Sketch of the possible
relationship between a reference pattern and patterns sharing neuron
identities and/or time occurrences with it. In each panel, ticks represent
individual spikes. Rows correspond to neurons and columns to transactions,
i.e., time bins. Spikes forming a pattern are grouped by an ellipse. The
reference pattern of each panel is shown by black ticks and is indicated by a

solid ellipse. (A) B is a subset of A with excess occurrences (red). (B) A is a
superset of B with excess items (blue). (C) B is a subset of A with excess
occurrences (red). Neurons in C (blue) additionally fire synchronously to A and
to excess occurrences of B. Thus pattern D = B ∪ C forms a CFIS, which
partially overlaps with A. (D) Patterns A and B are disjoint: they are composed
of different neuron identities and occur at different time bins.
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3.1.3. Chance overlapping sets
The simultaneous presence of excess items and excess occurrences
can yield yet another type of FP outcome, namely patterns that
overlap with the actual assembly. Given an assembly A, assume
that a subset B of A has additional chance occurrences. If an addi-
tional set C of neurons disjoint from A fires synchronously to A
and to an excess occurrence of B for a total of c ≥ c0 chance times,
then the set D = B ∪ C represents a CFIS which partially overlaps
with A (Figure 3C). PSF is prone to classify D as significant.

3.1.4. Disjoint patterns
Two patterns which do not have items in common are disjoint
(Figure 3D). In contrast to the previous classes of chance pat-
terns, the presence of an active assembly does not enhance chance
patterns disjoint from it. PSF therefore correctly estimates their
significance and manages to filter out almost all of them, as shown
in 4.

3.2. PSR STATISTICS
Let P be the class of CFISs reported as significant by PSF. Given a
pair (A,B) ∈ P × P such that B ⊂ A (therefore cB > cA by defi-
nition of CFIS, and |B| < |A|), we propose statistical tests to assess
the conditional significance of either A given B (A|B) or B given A
(B|A), i.e., of one pattern given that the other represents an assem-
bly pattern. These tests can be applied, using different strategies,
to the class of all such (A,B) pairs, reducing P to a subclass Q of
patterns which are mutually significant given each other.

3.2.1. Subset filtering
This procedure aims at rejecting FPs that are chance subsets of
other CFISs. For each pair (A,B) ∈ P × P such that B ⊂ A (so
that cB > cA), B has cB − cA excess occurrences with respect to

A. Subset filtering tests B|A, i.e., the null hypothesis HB|A
0 that

B is a chance subset of the actual assembly A, by assessing the

significance of the excess occurrences of B. Equivalently, HB|A
0

states that the pattern B′ defined by the same items as B but its
excess occurrences only (red spikes in Figure 3A) is a chance pat-

tern. If HB|A
0 is rejected, B is kept and A discarded, otherwise A

is kept and B discarded. Thus, the procedure keeps either A or B
and discards the other (exclusive). We present two alternatives to

test HB|A
0 .

3.2.1.1. Exact test. This test computes the p-value of the signature
(|B|, cB − cA) of B′. If cB − cA < c0, B is classified as a chance sub-
set of A. Otherwise, let T′A be the transaction list obtained from
T by discarding the transactions where A occurred, and keeping
in the remaining transactions only the items composing A. All
the excess occurrences of subsets of A must be contained in T′A.
B′ itself is a CFIS in this transaction list: it is an item set because
|B′| = |B| ≥ z0, it is frequent because cB − cA ≥ c0, it is closed
because otherwise B itself would be non-closed. To test the sig-
nificance of B′, one can therefore run FIM and PSF on surrogates
of T′A to estimate the significance of its signature (|B|, cB − cA). If
(|B|, cB − cA) is significant, B′ is significant in T′A and B is clas-
sified as significant in T (given A). Otherwise, B is classified as
non-significant.

3.2.1.2. Approximate test. This test approximates the p-value of
the signature (|B|, cB − cA) in T′A by the p-value of the signature
(|B|, cB − cA + h), h ≥ 1, in T, already obtained when perform-
ing PSF. In contrast to T′A, T is composed of more neurons
than those which can actually form chance subsets of A (because
it does not contain the items of A only), and more transac-
tions than those where such subsets could actually display excess
occurrences (because it also contains the transaction where A is
already present). Therefore, the p-value of (|B|, cB − cA) would
be underestimated if computed over T instead of T′A. Parameter
h heuristically corrects for this by substituting it with the p-
value of a signature with the same size but higher support. The
lower h, the higher the probability to reject B. If h ≥ cA, then
(|B|, cB − cA + h) � (|B|, cB) and B is necessarily reported as sig-
nificant. This test avoids to run FIM and PSF on T ′A and is
therefore computationally more efficient.

3.2.2. Superset filtering
This procedure aims at rejecting FPs that are chance supersets of
other CFISs. For each pair (A,B) ∈ P × P such that B ⊂ A (so
that |B| < |A|), A has |A| − |B| excess items with respect to B.

Subset filtering tests A|B, i.e., the null hypothesis HA|B
0 that A is

a chance superset of the actual assembly B, by assessing the sig-

nificance of the excess items of A. Equivalently, HA|B
0 states that

the pattern A′ defined by the same transactions as A but contain-
ing its excess items only (blue spikes in Figure 3B), is a chance

pattern. If HA|B
0 is rejected, A is kept and B discarded from P ,

otherwise B is kept and A discarded from P . Thus, the procedure
keeps either A or B and discards the other (exclusive). We present

two alternatives to test HA|B
0 .

3.2.2.1. Exact test. This test computes the significance of the
signature (|A| − |B|, cA) of A′. If |A| − |B| < z0, A is classified
as a chance superset of B. Otherwise, let T ′̄

B
be the transaction

list obtained from T by keeping only the transaction where B
occurred, and discarding from them the items constituting B. All
groups of excess items of B (i.e., neurons that fire synchronously
to B) must be contained in T ′̄

B
. A′ itself is a CFIS of this trans-

action list: it is an item set because |A′| = |A| − |B| ≥ z0, it is
frequent because cA ≥ c0, it is closed because otherwise A itself
would be non-closed. To test the significance of A′, one can there-
fore run FIM and PSF on surrogates of T ′̄

B
to estimate the p-value

of its signature (|A| − |B|, cA). If (|A| − |B|, cA) is significant, A′
is significant in T ′̄

B
and A is classified as significant in T (given B).

Otherwise, A is classified as non-significant.

3.2.2.2. Approximate test. This test approximates the p-value
of the signature of A′ in T ′̄

B
by the p-value of signature

(|A| − |B| + k, cA), k ≥ 1, in T, already obtained when perform-
ing PSF. In contrast to T ′̄

B
, T is composed of more neurons than

those that can actually form excess items of B (because it con-
tains the items of B, too), and more transactions than those
where supersets of B could actually occur (because it contains
also transactions where B does not occur). Therefore, the p-value
of (|A| − |B|, cA) would be underestimated if computed over T
instead of T ′̄

B
. Parameter k heuristically corrects for this by sub-

stituting it with the p-value of a signature with the same support
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but higher size. The lower k, the higher the probability to reject A.
Note that if k ≥ |B| then (|A| − |B| + k, cA) � (|A|, cA) and A
is necessarily reported as significant. This test allows to avoid
running FIM and PSF on T ′̄

B
for each B.

3.2.3. Covered-spikes criterion
This simple selection strategy consists of taking all pairs (A,B) ∈
P × P for which B ⊂ A, and keeping for each pair the pattern
covering the largest number of spikes, while rejecting the other.
Specifically, the criterion prefers A to B if zA · cA ≥ zB · cB, B to A
otherwise. It does not involve significance tests, but is based on the
observation that, given the probability p for a neuron to spike in
a time bin, the probability for z neurons to fire synchronously in
a bin is approximately pz, so that the probability that this pattern
occurrs c times is binomially distributed and approximately pro-
portional to pz·c. The larger the z · c score, the less likely a pattern
of such size and support. This matches the finding that the detec-
tion border separating non-significant signatures (marked gray
in Figure 2E) from significant ones (marked white in Figure 2E)
in the significance spectrum exhibits a hyperbolic shape. The
criterion thus keeps the less likely of the two patterns.

A variant consists in keeping the pattern with the largest
(z − 1) · c score. This choice is motivated by the observation that
a pattern of size z and support c can be seen as z − 1 spike trains
which synchronize their spikes to another train c times. Thus,
(z − 1) · c spikes are coincident to spikes in another spike train.
Keeping the pattern with the largest (z − 1) · c score amounts
to keeping the pattern which covers more coincident spikes.
Geometrically, penalizing the pattern size corrects for the fact
that the hyperbolic shape of the detection border in Figure 2E is
elongated toward the pattern support (y-axis) rather than being
equilateral.

3.2.4. Combined filtering
Subset filtering, superset filtering and covered-spikes criterion can
be combined into a filtering procedure which tests for both excess
coincidences and excess items. Combined filtering tests for each

pair (A,B) ∈ P × P both the null hypotheses HB|A
0 (i.e., that B

is a chance subset of A) and HA|B
0 (i.e., that A is a chance superset

of B). If one of the null hypotheses is rejected, the correspond-
ing pattern is retained as significant. Thus, if both hypotheses
are rejected, both patterns are retained (inclusive). Accepting one
null hypothesis does not necessarily lead to the rejection of the
corresponding pattern (in contrast to subset or superset filter-
ing): the pattern is rejected only if the other pattern is accepted,

i.e., if the other null hypothesis is rejected. If both HB|A
0 and

HA|B
0 are accepted, one of the two patterns is kept based on the

covered-spikes criterion.

4. CALIBRATION ON ARTIFICIAL DATA
In this section we compare the performance (in terms of FPs and
FNs) of PSF to PSF followed by PSR to illustrate the advantages
yielded by the latter. For the sake of computational efficiency we
employ the approximate versions of the tests for the subset and
superset filtering with parameters h = 1 and k = 2, respectively.
We test different types of artificial data that involve typical fea-
tures of experimental data. After studying the general behavior of

the analysis method for stationary, homogeneous data, we study
data sets with heterogeneous firing rates across neurons, and with
non-stationary firing rates in time.

4.1. CORRELATED DATA
As a model for data containing assembly activity, we gener-
ate correlated spike trains by a modified version of the single-
interaction-process [SIP; Kuhn et al. (2003); Berger et al. (2010)],
which we keep calling SIP for convenience. First, we simulate
N = 100 parallel independent Poisson spike trains as background
activity. Then we model assembly activity by inserting syn-
chronous spike events in a subset of z of the N neurons (the SIP
neurons, with ids 1 to z). This is done by generating a hidden
Poisson process with the desired number c of pattern occurrences,
from which spikes are copied into each of the z spike trains of the
SIP neurons. Thus, as compared to the model proposed by Kuhn
et al. (2003) we insert correlated firing only in a specific subset
of the parallel processes. Before insertion of the synchronous pat-
terns, the background firing rate of the SIP neurons is reduced by
the rate of the hidden process to ensure the same firing rate for
all neurons. In the simplest scenario, the firing rates and the pat-
tern occurrence rate are stationary over time and homogeneous
across neurons. More complicated cases will include either non-
stationarity or heterogeneity of rates. The purpose of the analysis
of such data is to test under controlled conditions if the simu-
lated assembly is indeed detected and can be distinguished from
background activity.

4.2. INDEPENDENT DATA
To implement the null-hypothesis H0 of complete independence
needed to derive the significance of signatures of the correlated
data, we generate independent Poisson processes of the same rates
as the data to be tested, thus keeping the same marginal statistics.
This is one way of implementing the null-hypothesis. However, in
the context of analyzing real experimental data, one may want to
keep more statistical features of the experimental data (e.g., non-
stationary and heterogenous firing rates, deviation from Poisson,
and so on). This can be realized by the use of more complex sur-
rogates derived by manipulation of the original data, e.g., spike
dithering (Grün, 2009; Louis et al., 2010b).

4.3. ASSESSING SIGNIFICANCE
We evaluate the performance of our analysis in terms of the
average number of FPs and FNs obtained with PSF and PSR in
R = 1000 iterations on the same model of correlated data (SIP
of size z in N = 100 parallel spike trains). To study the per-
formance of our analysis, we investigate 243 models differing
in the size of the injected assembly z = 2, . . . , 10, its injection
count c = 2, . . . , 10, and the firing rates r = 5, 10 or 20 Hz (here:
homogeneous for all neurons). We analyse each model with a bin
width w = 3 ms and w = 5 ms for the detection of synchronous
spike patterns. See Table 1 for an overview of the parameter com-
binations. For the significance estimation we generate surrogate
data, i.e., independent Poisson processes with the same firing
rates as the correlated data, and analyse them with FIM as done
for the correlated data. This procedure is repeated for K = 5000
times to derive the p-value spectrum and then the significance
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spectrum by employing an overall significance level of α = 0.01,
Bonferroni-corrected for the number of signatures tested. The lat-
ter is given by the number of signatures existent in the correlated
data, which never exceeded m = 50. In order to have the same
corrected significance level for each of the 1000 iterations of each
SIP model, we always correct for m = 50 tests, instead of correct-
ing for the individual number m′ < m of signatures found in each
data set. This yields the corrected significance level α∗ = 2 · 10−4,
which is typically more conservative than correcting individually
for m′ tests. This procedure allows us to use a single significance
spectrum for all 81 SIP models with the same firing rates, differ-
ing by parameters z and c only, and for all 1000 realizations of
each model. To obtain the p-values with precision α∗ we generate
K = 1/α∗ = 5.000 surrogates, compute their binary spectra and
average them to draw the p-value spectrum (see Section 2.2).

Figure 4 shows significance spectra obtained from surrogate
data for models differing by the firing rate r (5, 10 or 20 Hz) anal-
ysed with different bin widths w (dark gray for w = 3 ms, light
gray for w = 5 ms; α∗ = 2 · 10−4). The set of non-significant sig-
natures shows a hyperbolic shape, which grows with both r and
w to higher z and higher c. Both factors, higher firing rates and

Table 1 | Parameters for calibration of the method.

Simulation parameters Analysis parameters

Background activity SIP FIM Statistical tests

N = 100 z = 2, . . . ,10 w = 3, 5 ms α* = 2 · 10−4

r = 5, 10, 20 Hz c = 2, . . . ,10 c0 = 2 K = 5000

T = 3 sec z0 = 2 R = 1000

Parameters for the background activity: N: number of neurons, r: firing rate, T :

simulation time. Parameters for correlated data: z: number of neurons in corre-

lated activity (size of SIP), c: SIP occurrences. Analysis parameters: w: bin width,

c0: minimum item set support, z0: minimum item set size. Statistical parame-

ters: α*: Bonferroni-corrected significance level (for m = 50 tests), K : number of

surrogates, R: number of simulation runs per SIP model.

FIGURE 4 | Significance spectra for different parameter sets.

Independent Poisson spike trains (N = 100; T = 3 s) of different firing rates
(r = 5, 10 or 20 Hz) serve as surrogates for the computation of three
significance spectra (from left to right). Each square represents a (z, c)
signature. Dark-shaded gray squares mark non-significant signatures
obtained with w = 3 ms. Light-shaded squares represent further
non-significant signatures for w = 5 ms. White squares indicate significant
signatures for both choices of the bin width. Other parameters: z0 = 2,
c0 = 2, α∗ = 2 · 10−4, K = 5000.

larger bin width, cause more spikes per bin, and therefore larger
and more frequent chance patterns.

4.4. PERFORMANCE, HOMOGENEOUS FIRING RATES
For each SIP parameter set we simulate the corresponding model
R = 1000 times, and evaluate FPs and FNs of each realization.
Their averages measure the performance of the analysis for each
parameter constellation.

As previously discussed (Section 3), in the presence of cor-
relations PSF tends to classify chance subsets, supersets or over-
lapping sets as significant, thus yielding FPs. Figure 5, top row,
shows this effect on simulations of SIP models differing by SIP
size (x-axis of each panel) and injection count (y-axis). For each
model, the FP level is computed as an average over 1000 stochas-
tic simulations. The total amount of FPs increases as the SIP size
and/or the number of injections get larger. The contribution of FP
supersets (green) and FP subsets (blue) is about the same, while
in comparison FP overlapping sets (yellow) occur only at higher
values for z and c, and FP disjoint patterns (purple) are almost
never observed. As shown in Figure 5, bottom row, PSR (here,
combined filtering) largely reduces the amount of FPs. Although
the PSR statistical tests apply to chance subsets (blue) and super-
sets (green) only (Section 3.2), they successfully remove most of
the overlapping patterns (yellow) as well. The reason is that, if
there is a CFIS D overlapping with the actual assembly A by z0 or
more items, their intersection B is a CFIS as well (Figure 3C). In
most cases PSF classifies B as significant together with A and D.

If so, PSR likely rejects D when testing HD|B
0 , and rejects B when

testing HB|A
0 .

A reduction of the amount of FPs typically comes at the
expense of enhanced FNs. In particular, FNs may occur if the
real pattern is rejected in favor of one of its subsets or supersets.
Figure 6 shows, for a range of combinations of SIP size and
injection count, the resulting level of FPs, FNs, and the max-
imum of the two (as a measure of overall performance) after
performing each of the proposed PSR strategies. The significance
spectrum used to determine significance for all realizations of
the SIP models is the one for w = 3 ms shown in Figure 4 (top
right, dark-shaded entries). For the FPs shown in Figure 6, top
row, the color-coded level refers to the fraction of simulations
(out of 1000) containing one or more FPs. This measure takes
values between 0 and 1, unlike the average FP counts shown in
Figure 5. This representation simplifies the comparison with the
average FN level, which ranges between 0 to 1 since here only
a single spike pattern is injected in every simulation. To aid the
comparison between the performances of PSF and PSR, gray dots
mark those squares that correspond to models where the error
rates exceed 5%. PSF on its own never performs well in terms
of FNs and FPs simultaneously, while all PSR strategies yield a
range of models for which both quantities are low. In summary,
the relative improvement of PSR versus PSF shows that any PSR
strategy reduces the FP rate considerably, while causing only a
minor increase in the FN rate.

4.5. PERFORMANCE, HETEROGENEOUS FIRING RATES
If neurons have the same spiking statistics, the spike pattern
statistics depends on the pattern size only. Thus, the p-value of
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FIGURE 5 | Average number of FPs, distinguished by type, after PSF and

PSR. Average number of FPs obtained for different SIP models on R = 1000
model simulations. FPs are shown after performing PSF (top) and then PSR
with combined filtering (bottom), and are distinguished by type (columns
from left to right: FP supersets, FP subsets, FP overlapping, FP disjoint

patterns). Each panel shows the average number of FPs obtained for different
SIP models, each corresponding to a square in the grid: the models differ by
the SIP size (from 2 to 10; x-axis) and its injection count (from 2 to 10; y -axis).
Other parameters (same for all simulations): N = 100, T = 3 s, r = 20 Hz,
w = 3 ms, K = 5000, α∗ = 2 · 10−4.

FIGURE 6 | Performance of PSR with homogeneous, stationary firing

rates. Performance of PSR with different filtering methods, measured as the
fraction of R = 1000 simulations where FPs (top row) and FNs (second row)
are detected (thus the fraction represents a rate). The maximum of the two
(third row) indicates the combined error rate. Each matrix shows the
performance for 81 different SIP models varying by SIP size (from 2 to 10,
x-axis) and number of SIP injections (from 2 to 10, y -axis), of stationary and

homogeneous neuronal firing rates (r = 20 Hz). The performance value is
color-coded (see color bar, logarithmic scale). White squares mark SIP models
where no simulations led to false outcomes. Gray dots mark entries where the
error rate is above 5%. Each column corresponds to a different PSR strategy
applied after PSF, from left to right: no filtering, subset filtering, superset
filtering, covered-spikes criterion, combined filtering. Other parameters
(same for all panels): N = 100, T = 3 s, w = 3 ms, K = 5.000, α∗ = 2 · 10−4.

each pattern is fully determined by the pattern signature. This
does not hold when neurons have different spiking statistics,
and in particular different firing rates. Here we discuss the case
of heterogeneous firing rates across neurons, which are often
present in electrophysiological data. Higher firing rates lead to
a higher spiking probability per time bin. Patterns composed
of neurons with higher firing rate are more likely to occur by

chance, and are therefore less significant than patterns com-
posed of neurons with lower rates. Thus, the p-values of patterns
with the same signature (z, c) differ for different compositions
of the firing rates. Pooling patterns by size and support in the
pattern spectrum does not take into account the heterogene-
ity of firing rates across neurons and thus may lead to a biased
statistics.
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To investigate the robustness of our method against firing rate
heterogeneity, we first simulate independent data consisting of
100 neurons, with a small population of neurons (2 to 10) firing at
a higher rate (20 Hz) than the rest of the neurons (5 Hz). We sim-
ulate 1000 data sets of this type, and evaluate FPs in each of them
by means of FIM and PSF (K = 5000 surrogates). In none of the
simulations we detect significant signatures, i.e., FPs. The oppo-
site scenario, where 2 to 10 neurons fire at 5 Hz and the others at
20 Hz, does not yield FPs as well. Thus, employing rate-preserving
surrogates allows PSF to correctly estimate the significance of
signatures under H0, also when rates are heterogeneous across
neurons.

Next we study correlated data characterized by heterogeneous
background firing rates. We investigate two cases based on a SIP
model. In scenario S1, a pattern is injected in a set of neurons
firing with lower firing rate (rS = 5 Hz) than the independent
neurons firing at rate rI = 20 Hz (Figure 7, left column). In con-
trast, in scenario S2 the pattern is injected in neurons with higher
firing rates (rS = 20 Hz, rI = 5 Hz; Figure 7, right column). In
comparison to the homogeneous case where all neurons fire at
5 Hz (data not shown), the overall performance drops signifi-
cantly, but does not so compared to the 20 Hz homogeneous case

FIGURE 7 | Performance of PSR with heterogeneous firing rates.

Performance of PSR (combined filtering with parameters h = 1, k = 2) in
terms of FP rates (top row), FN rates (middle row) and the combined error
rates (maximum of FP and FN rates) (bottom row) of data with
heterogeneous rates. Left column: SIP neurons fire at rS = 5 Hz,
independent neurons fire at rI = 20 Hz. Gray dots mark entries where the
error rate is above 5%. Right column: SIP neurons fire at rS = 20 Hz and
independent neurons at rI = 5 Hz. Other parameters (same for all panels):
N = 100, T = 3 s, w = 3 ms, K = 5.000, α∗ = 2 · 10−4.

(see Figure 6, right column). This is consistent with the previ-
ous finding that higher rates worsen the performance by shifting
the detection border in the significance spectrum to the right
(Figure 4, left vs. right). This also explains why FP and FN rates
in scenario S1 are higher than in scenario S2: the average fir-
ing rate in the former ranges (depending on the SIP model)
from 18.5 to 19.7 Hz, in the latter from 5.3 to 7 Hz. Our choice
of using PSR with combined filtering leads to a better perfor-
mance in this scenario than the covered spikes criterion (not
shown). Taken together, these results indicate that the method
can deal well with heterogeneity of firing rates without severe
performance loss.

4.6. PERFORMANCE, NON-STATIONARY FIRING RATES
Now we want to consider the case when the firing rates of the neu-
rons are not stationary in time. To explore the sensitivity of our
method to non-stationarities we employ simulated data, again
consisting of 100 parallel spike trains, which fire in two con-
secutive epochs of length T1 and T2 (the total simulation time
T = T1 + T2 is 3 s, as in the data previously analysed) at different
rates (r1 = 5 Hz and r2 = 20 Hz; or vice versa), homogeneously
across the neurons in both epochs. In the first epoch, correlated
activity is inserted by the SIP model. SIP of size 2 to 10, injected
2 to 7 times, amount to a coincidence rate of 1.33 to 4.66 Hz in
the first epoch. The background rate is reduced correspondingly.
For comparison, we also study the stationary case, where all neu-
rons fire at r = 10 Hz. The performance for the three scenarios
is shown in Figure 8 (first column: r1 = 5 Hz, r2 = 20 Hz; sec-
ond column: r1 = 20 Hz, r2 = 5 Hz; third column: r1,2 = 10 Hz).
Although our analysis performs better (detection border more
to the left) in the stationary case (r = 10 Hz; third column), it
can still recover SIP activity with no FPs in a large portion of
the parameter space, provided that rate-preserving surrogates are
employed. As in the heterogeneous case, FPs increase when the
SIP neurons have higher firing rates and thus more FP subsets
occur. As apparent from Figure 8, bottom row, the method can
correctly detect significant patterns in a wide range of models also
in the presence of non-stationary rates. To study whether short
transients in the firing rates tend to generate FPs, we repeated
the analysis for T1 = 0.5 s, T2 = 2.5 s, setting first r1 = 5 Hz, r2 =
20 Hz and then r1 = 20 Hz, r2 = 5 Hz. In all cases we do not find
enhanced FPs (data not shown), indicating that employing rate-
preserving surrogates suffices to correct for rate non-stationarity
in independent data.

5. DISCUSSION
In this study we have presented a method to detect significant pat-
terns of synchronous spiking in a subset of massively parallel spike
trains in the presence of background activity. Our work is rooted
in Picado-Muiño et al. (2013), where we demonstrated how to
efficiently detect spike patterns in such data, and assess their sig-
nificance under the null hypothesis of independent firing. Here
we refined this significance test, which evaluates the significance
of patterns using PSF on the basis of the pattern signature (size
and support). PSF is prone to report FP patterns that arise due to
the activation of an actual assembly mixed with chance synchrony
because of background activity. To identify and remove these FP
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FIGURE 8 | Performance of PSR with non-stationary firing rates.

Performance of PSR (combined filtering) in terms of FP rate (top row), FN
rate (middle row), and maximum of the two (bottom row), computed over
R = 1000 simulations per SIP model. Each panel shows the performance
for 54 different models varying by SIP size (from 2 to 10, x-axis) and SIP
injections (from 2 to 7, y -axis). In the first two columns, the simulations
consist of two epochs. The first epoch of duration T1 = 1.5 s is composed
of a stationary, homogeneous SIP model (with firing rate r = r1), followed
by a second epoch of T2 = 1.5 s with independent spiking at a rate of
r2 �= r1. In the first column, the rate compositions are r1 = 5 Hz and
r2 = 20 Hz, and in the second column r1 = 20 Hz and r2 = 5 Hz. For
comparison, the third column shows the performance for the stationary
case with all neurons firing at rate r = 10 Hz, and a duration of T = 3 s.
Other parameters (same for all panels): N = 100, w = 3 ms, K = 5.000,
α∗ = 2 · 10−4. Gray dots mark entries where the error rate is above 5%.

detections, we introduced here PSR as an additional statistical
testing step. As shown in Figure 6 (second to last columns), PSR
succeeds in eliminating FPs for a wide range of parameters, at
the expense of a minor increase in FNs. A series of calibrations
demonstrates the effectiveness of our approach under conditions
of heterogeneous and non-stationary firing rates.

The relevance of higher-order correlations for information
processing in the nervous system is hotly debated. Approaches
based on maximum entropy models, such as Schneidman et al.
(2006), suggest that higher-oder correlations contribute by a neg-
ligible fraction to the total network correlation, which appears
to be dominated by pairwise correlations. However, it is impor-
tant to stress that for correlations of a specific order, maximum
entropy models estimate the overall magnitude of that correlation
order, and are not sensitive to individual correlation structures
of that order. Thus, the presence of a single group of correlated
neurons with a certain size in the data is not enough for max-
imum entropy models to report significant correlation of the
corresponding order. The study by Shlens et al. (2006) addresses
this point, discussing that maximum entropy models may miss
higher-order correlations because they overall contribute only by
a negligible fraction to the total correlation. Besides, Roudi et al.
(2009) showed that the statistical power of maximum entropy
models describing spike correlations in heavily undersampled
biological systems (such as parallel recordings with electrode
arrays) is low. Despite these challenges, Ohiorhenuan et al. (2010)
have shown using a maximum entropy model approach that in

visual cortex local microcircuits exhibit evidence of higher-order
interactions, whereas correlation statistics across long-range con-
nections are explained on the basis of pair-wise interactions.
However, methods designed to investigate individual spike pat-
terns are needed to investigate the detailed structure of correlation
in groups of spiking neurons.

A majority of current methods for spike correlation analy-
sis limit themselves to fully synchronous patterns or to patterns
with a specific size of typically low order [e.g., Grün et al.,
2002a,b; Berger et al., 2007, 2010; Shimazaki et al., 2012]. Other
approaches, such as CuBIC (Staude et al., 2010b), conclude on the
presence of higher order correlations based on the statistics of the
population activity without identifying the specific units engaged
in such correlations. While Gansel and Singer (2012) presented
a method for the detection of higher-order patterns, they iden-
tify pattern subsets by a purely heuristic procedure that is not
accessible by analytic treatment, and that tests patterns directly,
which requires a number of statistical corrections to avoid FPs (at
the expense of FNs). Our proposed method instead first tests the
significance of pattern signatures. PSF eliminates non-significant
signatures based on surrogate data through the significance spec-
trum (see Figure 4), and determines the class P of associated
significant patterns. Testing patterns on the basis of their signa-
ture rather than testing individual patterns reduces the number
of required statistical tests to the number of signatures found in
the data. We have shown that the composition of assembly and
background spikes typically leads to the identification of addi-
tional significant patterns (i.e., FPs). In order to remove this type
of FPs, we introduced here the PSR procedure that is based on
conditional pairwise tests.

We have tested the performance of our analysis on artifi-
cial data where we embedded groups of synchronously spiking
neurons in background activity of independent Poisson spike
trains [SIP, cf. Kuhn et al. (2003)]. We studied the rate of FP
and FN detections for occurrence rates of the synchronous pat-
tern varying from 0.66 to 3.33 Hz, which reflect plausible values
for the activation frequency of the assumed assemblies (Grün
et al., 1999; Denker et al., 2010). The analysis shows in particu-
lar that by introducing PSR, assembly detection becomes possible
with near perfect reliability and precision for a large range of
SIP parameters. The transition shifts toward higher support and
assembly size as the bin width or the firing rates increase (cf.,
Figure 4). Nevertheless, for physiologically realistic parameters
only for very small or very infrequent SIP injections these pat-
terns cannot be distinguished from chance synchrony. Moreover,
evaluating patterns obtained from a larger set of simultaneously
recorded neurons will have only minor impact on our find-
ings due to a slight increase in the average size of observed
patterns.

Non-stationarities of the firing rate in time or across neurons
are a common concern faced by correlation analysis methods. The
effect of non-stationary firing rates on PSF is two-fold. First, the
surrogates used to calculate the significance estimates on pattern
signatures should adequately reproduce the experimental rate
profiles. Even if the underlying rate profile is not known, a variety
of suitable approaches for surrogate generation is available for this
task (Grün, 2009; Louis et al., 2010b). However, the sensitivity of
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detecting assembly activations is further affected by where these
occur with respect to the rate non-stationarity. In this respect we
tested the performance of PSF and PSR in a scenario of step-wise
non-stationary firing rates where spike patterns were injected at
selected rate levels only. Compared to the stationary case, the
method retains a high performance for large parameter regimes
(Figure 8), and shows only a slight increase in the number of
FNs. For very large rate non-stationarities, a time-resolved anal-
ysis may be used to additionally aid the detection, as done, e.g.,
in the Unitary Events analysis (Grün et al., 2002b). In a similar
framework, we found that also heterogeneous firing rates across
neurons (Figure 7) exhibit a performance similar to the station-
ary case. While we see minor increases in the number of FPs, we
remark that to a large extent these are indeed supersets of the
injected pattern due to the high probability of gaining an addi-
tional coincident spike by chance from the set of neurons spiking
at high rates.

In this study we assumed that assemblies occur at the time res-
olution of the data, i.e., that spike times of the assemblies are
not jittered in time. In electrophysiological data this is a rare
scenario, and instead spike synchrony typically occurs with a
temporal jitter of up to several milliseconds [Grün et al., 1999;
Pazienti et al., 2008]. In order to capture such slightly imprecise
synchrony, exclusive binning is typically applied (Grün et al.,
1999), where the bin width is chosen large enough to capture
the jittered spike pattern. However, the spikes of the pattern
may be split into adjacent bins with a probability that depends
on the jitter, bin size, and pattern size. Therefore, the original
synchronous events are destroyed, leading to increased FN rates
(Grün et al., 1999). In Figure 9 we show how this effect can
have a substantial impact on the performance of the method.
We applied PSF followed by PSR (combined filtering) on data
where synchronous patterns are injected with a jitter of ±1 ms,
and analysed with a bin width of w = 3 ms (left column) and
w = 5 ms (right column). The performance drops considerably
due to an increase of the FP rate for higher z and c, and an over-
all increase of the FN rate. The performance is slightly better for
a bin width of 5 ms. Consistent with these findings, Grün et al.
(1999) showed that for two parallel spike trains about 60% of
the synchronous events are lost if the bin width corresponds to
the jitter width. An earlier modification of exclusive time binning
[multiple shift method, Grün et al., 1999] that avoids the splitting
of jittered synchrony was not trivially applicable to large num-
bers of parallel spike trains. In Picado-Muiño et al. (submitted)
we demonstrate how to implement a method for pattern detec-
tion based on the inter-spike distances rather than discrete time
binning. This approach successfully detects jittered spike patterns
and therefore trivially exhibits a performance in the context of
PSF that is similar to that achieved in the absence of jitter (see
Picado-Muiño et al., submitted, for details). Thus, it also com-
plements the PSR framework presented in this study. Therefore,
we suggest to detect jittered synchrony by the continuous detec-
tion method and perform the analysis by the proposed sequence
of FIM, PSF, and PSR.

A further scenario that remains to be addressed in the future
is unreliability in spiking activity that causes neurons to selec-
tively skip participation in assembly activations. This scenario

FIGURE 9 | Performance of PSR under jittered synchrony. Performance
of PSR (combined filtering with h = 1, k = 2) on data from SIP models with
jittered synchrony. The spikes of SIP events are randomly jittered up to
±1 ms around the original occurrence time. The performance is shown in
terms of FP rates (first row), FN rates (middle row) and maximum of the
two (bottom row) for different bin widths: w = 3 ms (left column) and
w = 5 ms (right column).

was discussed in the context of the synfire chain model, where it
was shown that stable propagation of synchronous spike packages
through the network happens reliably although the probabil-
ity that individual neurons participate in each activation of the
synfire chain is lower than 1 (Diesmann et al., 1999). Selective
participation may arise as a consequence of synaptic failure. The
multiple interaction process [MIP; Kuhn et al., 2003] was pro-
posed as a stochastic model implementing such a behavior. Our
method would interpret the variable composition of spikes in a
single MIP event as occurrences of multiple SIP events of lower
support.

We conclude with a discussion of the practical implementa-
tion of the proposed analysis on data from electrophysiological
recordings. Given a set of parallel spike recordings obtained at
a resolution (i.e., binning) w, we choose the minimum pattern
size z0 and the minimum pattern support c0 of the analysis. First,
the spike data is binned and, using FIM, the CFISs and the cor-
responding pattern signatures are obtained from the transaction
list. While this approach is feasible for the experimental data
available today, with several hundreds of parallel recordings the
computational effort may become too large. In this scenario, we
suggest to pre-filter the data entering the analysis as suggested by
Berger et al. (2010) before applying FIM on the reduced set of
neurons. To monitor dynamic changes in the correlation structure
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of the activity, e.g., if assemblies are time locked to a particu-
lar behavioral event, one may choose to additionally perform the
analysis in sliding windows.

Next, the significance of the observed patterns is evaluated
by PSF under the null-hypothesis of full independence imple-
mented by uncorrelated surrogate data. For experimental data,
several techniques for surrogate generation based on stochas-
tic sampling have been proposed in the past [for a review, see
Grün, 2009]. Surrogates that preserve the firing rate profiles, such
as spike dithering, seem most appropriate since PSF determines
pattern significance based on the firing rates. Given the signifi-
cance level α and m detected pattern signatures, a minimum of
K = m/α� surrogates are required to achieve the Bonferroni-
corrected significance level α∗ = α/m . Once the surrogates have
been generated, we follow the procedure described for the sim-
ulated data. CFISs, pattern signatures and the resulting binary
pattern spectrum are obtained for each surrogate run. Next, the
p-value spectrum is obtained as an average of the binary spectra
(see Section 2.2). The signatures whose p-values do not exceed the
Bonferroni-corrected significance level α∗ are marked as signifi-
cant, and the CFISs of significant signatures are collected into the
class P of potential assemblies. Finally, PSR with combined filter-
ing is performed to reduce P to a subclass Q of patterns which
are mutually significant with respect to each other.

In summary, the use of FIM combined with the statistical tests
described in this study and in Picado-Muiño et al. (submitted)

represents a powerful tool to extract candidate assemblies from
experimental data. The method is statistically rigid, computa-
tionally feasible, robust against heterogeneity in the data, and
powerful enough to deal with the limited amount of data typically
available from electrophysiological experiments. We expect that
our approach will help to reveal how precise spike synchroniza-
tion observed by pairwise analysis in relation to behavior (Riehle
et al., 1997) is manifested at the level of neuronal populations.
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SOFTWARE AND SUPPLEMENTAL MATERIAL
The FIM library underlying the Python scripts with which we
carried out our experiments is available at http://www.borgelt.
net/pyfim.html. Python and shell scripts for related experi-
ments as well as more extensive result diagrams are available at
http://www.borgelt.net/accfim.html and http://www.borgelt.net/
cocofim.html. Please also consult http://www.spiketrain-analysis.
org for these codes and further information on the analysis of
parallel spike trains.
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PLos Comput. Biol. 5:e1000380. doi:
10.1371/journal.pcbi.1000380

Schneidman, E., Berry, M. J., Segev,
R., and Bialek, W. (2006). Weak
pairwise correlations imply strongly
correlated network states in
a neural population. Nature
440, 1007–1012. doi: 10.1038/
nature04701

Schrader, S., Grün, S., Diesmann, M.,
and Gerstein, G. (2008). Detecting
synfire chain activity using mas-
sively parallel spike train recording.
J. Neurophysiol. 100, 2165–2176.
doi: 10.1152/jn.01245.2007

Shimazaki, H., Amari, S.-i., Brown,
E. N. B., and Grün, S. (2012).
State-space analysis of time-varying
higher-order spike correlation for
multiple neural spike train data.
PLoS Comput. Biol. 8:e1002385. doi:
10.1371/journal.pcbi.1002385

Shlens, J., Field, G. D., Gauthier, J. L.,
Grivich, M. I., Petrusca, D., Sher, A.,
et al. (2006). The structure of multi-
neuron firing patterns in primate
retina. J. Neurosci. 26, 8254–8266.
doi: 10.1523/JNEUROSCI.1282-06.
2006

Singer, W., Engel, A. K., Kreiter, A. K.,
Munk, M. H. J., Neuenschwander,
S., and Roelfsema, P. R. (1997).
Neuronal assemblies: necessity,
signature and detectability. Trends
Cogn. Sci. 1, 252–261. doi: 10.1016/
S1364-6613(97)01079-6

Staude, B., Grün, S., and Rotter, S.
(2010a). Higher-order correlations
in non-stationary parallel spike
trains: statistical modeling and
inference. Front. Comput. Neurosci.
4:16. doi: 10.3389/fncom.2010.
00016

Staude, B., Rotter, S., and Grün, S.
(2010b). Cubic: cumulant based
inference of higher-order corre-
lations in massively parallel spike
trains. J. Comput. Neurosci. 29,
327–350. doi: 10.1007/s10827-009-
0195-x

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 31 May 2013; accepted: 11
September 2013; published online: 23
October 2013.
Citation: Torre E, Picado-Muiño D,
Denker M, Borgelt C and Grün S (2013)
Statistical evaluation of synchronous
spike patterns extracted by frequent item
set mining. Front. Comput. Neurosci.
7:132. doi: 10.3389/fncom.2013.00132
This article was submitted to the
journal Frontiers in Computational
Neuroscience.
Copyright © 2013 Torre, Picado-
Muiño, Denker, Borgelt and Grün.
This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction
in other forums is permitted, provided
the original author(s) or licensor are
credited and that the original publication
in this journal is cited, in accordance
with accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 132 | 127

http://dx.doi.org/10.3389/fncom.2013.00132
http://dx.doi.org/10.3389/fncom.2013.00132
http://dx.doi.org/10.3389/fncom.2013.00132
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


ORIGINAL RESEARCH ARTICLE
published: 21 October 2013

doi: 10.3389/fncom.2013.00139

Correlations in background activity control persistent state
stability and allow execution of working memory tasks
Mario Dipoppa1,2*† and Boris S. Gutkin1,3*
1 Departement d’Etudes Cognitives, Ecole Normale Superieure, Group for Neural Theory, Laboratoire des Neurosciences Cognitives INSERM U960, Paris, France
2 Ecole Doctorale Cerveau Cognition Comportement, Université Pierre et Marie Curie, Paris, France
3 Centre national de la recherche scientifique, Paris, France

Edited by:
Robert Rosenbaum, University of
Pittsburgh, USA

Reviewed by:
Carson C. Chow, National Institutes
of Health, USA
Zachary P. Kilpatrick, University of
Houston, USA

*Correspondence:
Mario Dipoppa and Boris S. Gutkin,
Departement d’Etudes Cognitives,
Ecole Normale Superieure, Group
for Neural Theory, Laboratoire des
Neurosciences Cognitives INSERM
U960, 29 rue d’Ulm, 75005 Paris,
France
e-mail: m.dipoppa@ucl.ac.uk;
boris.gutkin@ens.fr
†Present address:
Mario Dipoppa, University College
London, 21 University Street,
London WC1E 6DE, UK

Working memory (WM) requires selective information gating, active information
maintenance, and rapid active updating. Hence performing a WM task needs rapid
and controlled transitions between neural persistent activity and the resting state. We
propose that changes in correlations in neural activity provides a mechanism for the
required WM operations. As a proof of principle, we implement sustained activity and
WM in recurrently coupled spiking networks with neurons receiving excitatory random
background activity where background correlations are induced by a common noise
source. We first characterize how the level of background correlations controls the stability
of the persistent state. With sufficiently high correlations, the sustained state becomes
practically unstable, so it cannot be initiated by a transient stimulus. We exploit this in
WM models implementing the delay match to sample task by modulating flexibly in time
the correlation level at different phases of the task. The modulation sets the network
in different working regimes: more prompt to gate in a signal or clear the memory. We
examine how the correlations affect the ability of the network to perform the task when
distractors are present. We show that in a winner-take-all version of the model, where two
populations cross-inhibit, correlations make the distractor blocking robust. In a version of
the mode where no cross inhibition is present, we show that appropriate modulation of
correlation levels is sufficient to also block the distractor access while leaving the relevant
memory trace in tact. The findings presented in this manuscript can form the basis for
a new paradigm about how correlations are flexibly controlled by the cortical circuits to
execute WM operations.

Keywords: correlations, background activity, working memory, spiking neural network, persistent activity

INTRODUCTION
Working memory (WM), defined as short term storage of infor-
mation that is actively used on-line to carry out actions and
decisions and drive learning, is one of the key processes that
underpins our cognitive abilities. WM is characterized by an
information bottleneck with resources restricting its “on-line”
capacity to a relatively limited number of items at high levels of
performance (Miller, 1956; Luck and Vogel, 1997; Cowan, 2001;
Vogel et al., 2001) and a rapid decrease in performance with item
number due to limited resource allocation (Wilken and Ma, 2004;
Bays and Husain, 2008; van den Berg et al., 2012) as suggested
by the recent experiments. Furthermore by its very nature, WM
is characterized by the need to operate on the stored informa-
tion rapidly. Such limitations and rapid operations of WM create
the need for selective gating and rapid updating as well as active
information maintenance to enable its immediate use (Frank
et al., 2001). One of the central unresolved issues is how the
multiple requirements for WM are carried out by the brain cir-
cuits: whether the maintenance, read-in, gating, and read-out are
implemented by separated systems (e.g., as suggested by Baddeley,
2003) or by operations within the same neural circuit (e.g., as
recently put forward by Machens et al., 2005).

Electrophysiological data from primate performing delayed-
response tasks show that persistent neuronal activity in prefrontal
cortex (PFC) underlies the maintenance of WM: during the delay
period between the stimulus presentation and the read-out, neu-
rons selective to the memorized stimulus fire spikes at an elevated
rate with respect to the resting state (Fuster and Alexander, 1971;
Fuster and Jervey, 1981; Funahashi et al., 1989; Miller et al., 1996;
Romo et al., 1999).

In order to highlight the unique requirements of the WM as a
neural process let us focus on the DMS task with distractors as a
prototypical example (Miller et al., 1996). In this task the subject
must remember the identity of an item briefly shown (the sample)
and respond correctly only when the item is shown again (match)
all the while ignoring other items flashed (distractors). To execute
correctly this task, the neural circuitry needs to perform three
operations (Figure 1A): first, encode and maintain in memory
the sensory stimulus during the delay period; second, robustly
maintain the memory face to distractors presentation; third, erase
the memory trace at task completion to make the store available
again, given the limited WM capacity. These operations are trans-
lated in terms of neural activity as follows: item-related activity
is turned on rapidly and selectively by the sample-stimulus, is
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FIGURE 1 | Outline of the models. (A) Time sequence of the delay
match-to-sample task for the working memory network. Active neurons
are represented in full colors. Successively: (I) both populations are in
a quiescent state, (II) sample stimulus (blue arrow) activates blue
population, (III) the network prevent a distracting stimulus (red arrow)
to activate the red population, (IV) match stimulus allows the read-out
of the encoded memory in the blue population, and (V) persistent
activity is erased in the blue population. (B) Correlations in external

background activity generated by a common source of noise, in
addition to independent sources of noise. (C) Single unit network
receiving shared and independent sources of noise. (D) Winner-take-all
network with two competing excitatory populations coupled through
one inhibitory population. In addition to independent sources the
excitatory populations receive background activity by two different
common noise sources. (E) Two-unit network with two excitatory
populations receiving shared noise.

protected from distractors during the delay period, and is rapidly
turned off on response by the match.

A number of spiking network models have been conceived to
describe the neural substrate for WM where persistent activity is
maintained by recurrent connections that allow for co-existing
attractor memory states and a ground non-memory state (Amit
and Brunel, 1997; Compte et al., 2000; Brunel and Wang, 2001;
Gutkin et al., 2001; Laing and Chow, 2001; Machens et al.,
2005; Miller and Wang, 2006; Ardid et al., 2010). In some of
these models, protection from distractors and memory clearance
are performed through the recruitment of inhibition (Compte
et al., 2000; Brunel and Wang, 2001; Machens et al., 2005).
As an alternative to the erasing-by-inhibition paradigm, it has
been shown, in a spatial WM model, that a transient excitatory
stimulus matching the memory trace “location” on the network
extinguishes the persistent state by transiently synchronizing the
spike-times of the neurons (Gutkin et al., 2001; Laing and Chow,
2001). This work, along with Machens et al. (2005) showed how
the read-out and clear-out can be merged into a single operation.
However, in these alternative frameworks, protection from dis-
tractors, or selective gating, was not addressed. Here we propose
that the gating is obtained by flexibly controlling the spike-time
structure of the WM network activity. In support of this idea, it
has been shown that spike-time synchronization is modulated in
association with cognitive processing (Abeles et al., 1993; Riehle
et al., 1997; Funahashi and Inoue, 2000) and in particular in WM
(Sakurai and Takahashi, 2006; Pipa and Munk, 2011).

Critically, WM trace appears in the context of on-going back-
ground activity. While background activity is not related to
task parameters, this is not without structure. Correlations have
been found broadly in spontaneous neural activity in the cortex
(Tsodyks et al., 1999). In particular, it has been shown that nearby

neurons receive common inputs from afferent neurons making
their voltages correlated (Lampl et al., 1999). Effects of correla-
tions have been widely studied for their effect on population code
(Salinas and Sejnowski, 2001), to measure network connectivity
(Aertsen et al., 1989; Cocco et al., 2009), on neural dynamics
for coupled neurons (Ly and Ermentrout, 2009), and for multi-
ple independent neurons (Galán et al., 2006; Moreno-Bote et al.,
2008).

In computational models of WM the background activity has
been largely seen as problematic for memory maintenance. For
example one of the more sensitive technical issues addressed
by several computational proposals is how to stabilize the WM
trace in face of random background activity (Compte et al.,
2000). The benefits of external input correlations on persis-
tent activity in recurrent networks have only recently started
to be addressed theoretically (Buice et al., 2010; Polk et al.,
2012). For the specific case of line-attractor networks (model-
ing parametric WM) Polk et al. (2012) showed in a detailed
analysis how properly tuned input noise correlations can pro-
mote stability of the persistent firing rate. This was further
noted in Lim and Goldman (2012) who also showed that the
correlation structure of background noise can suggest the opti-
mal architecture of neural networks for short term memory
performance.

Finally, in this article we examined the influence of input
correlations on recurrent spiking networks, finding that the cor-
relation level in fact may destabilize the persistent activity state,
rendering it a slow transient state. Buice et al. (2010) used a
path integral approach to integrate the effects of correlations
and synchronization into a rate model of recurrent networks
and examined the stability of the persistent state. For a bistable
firing-rate network they noted that transient increases in input
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correlations (synchronizing noise input) can lead to a turn-
off of the persistent activity. This approach may in fact pro-
vide an analytical framework of the observations we make in
the present manuscript for recurrent spiking networks and the
correlation-based control of the persistent state lifetime. In this
manuscript we also go beyond noting that input correlations
defined the lifetime of persistent activity; we show that input
correlations can effectively control the access to WM by disal-
lowing transient stimuli to initiate persistent activity. The func-
tional consequences of these two effects are the central topic of
this work.

To demonstrate that, by controlling the correlation-driven
synchronization of the background activity it is possible to con-
trol the lifetime of the persistent state and to manipulate selec-
tively the transitions in sustained activity and consequently to
perform the required operations of the WM task, we first con-
sider a minimal recurrent network. In this recurrent network
the neurons receive an excitatory random background noise, and
background correlations are induced by a common noise source.
Then we implement a discrete item WM model where the modu-
lation of the background correlation level sets the network into
different regimes allowing for loading of memory, protection
from distractors and memory persistence. In addition we show
the possibility to merge the read-out and the clearance in a sin-
gle operation since the presentation of the match stimulus can
directly quench the persistent activity.

MATERIALS AND METHODS
NEURAL MODELS
In this work we study recurrent spiking networks that show bista-
bility between a ground state and an active persistent spiking
state. Our goal is to construct and analyze a minimal network
capable of showing the required bistability. Hence we consider
networks of recurrently connected excitatory pyramidal neu-
rons. The elements of the network are represented by non-linear
“point” neurons that are sparsely connected by instantaneous
excitatory recurrent synapses. The dynamics of a neuron’s mem-
brane potential v is described by the Quadratic Integrate and Fire
(QIF) equation, which represents the normal form of type 1 spike
generating dynamics (Ermentrout, 1996):

τ
dv

dt
= v2 − b2 + Isyn(t) (1)

v(t) = Vt → Vr (2)

where τ represents the membrane time constant, −b is the rest-
ing potential, I(t) the input current, Vt a spike threshold, and
Vr the reset membrane potential. The voltage of the neuron is
scaled such that v is a non-dimensional variable. When the mem-
brane potential neuron attains the threshold value v = Vt , a spike
is emitted and a post-synaptic current (PSC) is transmitted to
an output neuron. We set the parameters as follows: Vr = −20,
Vt = 20, b = 1 and τ = 20 ms.

The input current to a given cell in the network is decomposed
into three different components:

Isyn(t) = Ir(t)+ Is(t)+ Iba(t) (3)

where Ir(t) represents the recurrent input due to other neurons
in the network, Is(t) represents the input from external stimuli
directed to the network, and Iba(t) represents a non-specific
background activity. Each of the three currents corresponds to
a sum of PSCs originating from synaptic inputs generated by
the presynaptic neurons at times tn. The PSCs are modeled
with delta pulses:

I(t) =
∑

a

∑
{tn}

Jaτδ(t − tn) (4)

where Ja represents the synaptic strength for a given connection
and could be positive (corresponding to an AMPA synapse) or
negative (corresponding to a GABA synapse).

BACKGROUND ACTIVITY AND CORRELATIONS MEASURES
Ample data shows that cortical neurons receive a large amount
of non-specific cortical and subcortical inputs whose structure
is not directly related to the specific task and stimulus [e.g., see
Shadlen and Newsome (1994) and summary of data in Amit
and Brunel (1997)]. We refer to this type of input as an exter-
nal background activity. It is taken to be composed of sequences
of excitatory PSCs of synaptic strength J0 and with the synap-
tic times generated by a Poisson process. The synaptic currents
are depolarizing in accordance with the notion that cortical
neurons receive inputs from long-range excitatory glutamatergic
projections.

In our model, this background activity can be either unstruc-
tured (uncorrelated) or structured (correlated). The correlation
level, between two spike trains Si(t) and Sj(t) is given by:

λij = 1

〈Si(t)〉
∫

CCVFij(s)ds (5)

where CCVF corresponds to the cross-covariance function
(Brette, 2009). This function is normalized to zero if Si(t) and
Sj(t) are generated by independent Poisson processes.

We consider two ways for constructing the background
activity:

Uncorrelated background activity
All N neurons receive spike trains generated by N independent
channels with rate ν0. This leads to CCVF(s) = 0 and thus the
correlation level is λij = 0.

Correlations induced by a common source of noise (Figure 1B)
All the N neurons receive inputs both from independent chan-
nels, with frequency (1− λ)ν0, and from a common channel,
with frequency λν0 and 0 ≤ λ ≤ 1. Each channel generates a
spike train with Poisson statistics. The average background input
rate is ν0 for each neuron. The cross-covariance function is then
CCVF(s) = λ〈Si(t)〉δ(s) and the correlation level is λij = λ. This
gives purely spatial correlations.

We measure the correlation level of the synaptic input among
cells in the network with the mean Pearson correlation coeffi-
cient. We first compute a running mean (averaged over a time
window of 5 ms) of the synaptic input Ii

a(t) for each cell during a
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certain interval of time. Then we compute the Pearson correlation
between the synaptic input of two cells:

ρij = cov(Ii
a, I

j
a)

σ(Ii
a)σ(I

j
a)

(6)

Finally we compute the average over all the cell pairs of the net-
work ρ = [2/N(N − 1)]∑ Ni= 1

∑N
j= i+ 1 ρij. In particular, in

Figure 4, we performed this measure for the recurrent input a = r
and background input a = ba .

FUNCTIONAL NETWORK STRUCTURES IMPLEMENTING WM TASKS
In this work we study three different networks. We start out
by studying a homogeneous network of recurrently coupled
excitatory neurons. This network can be also thought of as a
encoding a single item of WM: a “single-unit network”. The sec-
ond model consists of two homogeneous excitatory networks
coupled together through a population of inhibitory neurons: a
“winner-take-all network” of two discrete competing short-term
memory items. The third model is made up of two recurrent
excitatory populations without mutual connections: a “two-unit
network”.

Single-unit network
A homogeneous network with N = 100 identical sparsely cou-
pled neurons is represented in Figure 1C. Each neuron in the
network receives synaptic inputs from cN other excitatory neu-
rons, where c = 0.2 is the probability of connection, and J =
0.26 is the recurrent synaptic strength [described in Equation
(4)]. Neurons receive excitatory inputs also from external back-
ground activity, with synaptic strength J0 = 0.151 and firing
rate ν0 = 106 Hz. Neurons also receive an excitatory input
from external sensory stimuli with synaptic strength J1 = 1.5
and firing rate ν1 = 56 Hz for a duration of 50 ms, as will
be described hereafter. Parameters of the network are chosen
such that the network sustains a quiescent state, with low fir-
ing rate (f < 5 Hz), and a persistent state, with high firing
rate (≈20 Hz).

Winner-take-all network
The second model is a reduced version of the network pro-
posed by Amit and Brunel (1997) (Figure 1D). The network
is composed of two excitatory populations and one inhibitory
neural population. Each of the two excitatory populations has
NE = 40 neurons, and the third population is made up of NI =
20 inhibitory neurons. An excitatory neuron receives synaptic
inputs from cEENE (cEE = 0.45) neurons of the same popula-
tion, with synaptic strength JEE = 0.3, and from cEINI (cEI =
0.35) inhibitory neurons with synaptic strength JEI = −0.25. An
inhibitory neuron receives synaptic inputs from cIENE (cIE =
0.34) excitatory neurons with synaptic strength JIE = 0.05 from
each excitatory population. Other parameters of the network
are: J0 = 0.4, J1 = 1.5, ν0 = 60 Hz, and ν1 = 17 Hz. In addi-
tion we augment the mutual inhibition network with the added
feature to control the amount of correlated noise in each
excitatory population. More precisely each excitatory popula-
tion receives background activity by common noise sources

in addition to independent sources. In such a way the cor-
relation level λ is regulated independently in each excitatory
population.

Two-unit network
We devised a third version of our network models that is made of
two excitatory independent populations, each one making recur-
rent connections with itself. Both networks share a common
excitatory noise source projecting simultaneously to all excitatory
neurons in addition to the independent uncorrelated background
noise (Figure 1E). Since the common noise source is shared
between the two populations the correlation level λ varies equally
in the two excitatory populations. The parameters of each exci-
tatory population are those given for the single-unit network,
with the only difference that we used here a larger network (N =
1000) and we scaled accordingly the recurrent synaptic strength
(J = 0.026).

DELAYED MATCH-TO-SAMPLE TASK
We study the spike-timing based mechanisms able to implement
the DMS task (Figure 1A). The sequence of operations and the
neural dynamics aim to reproduce the experimental results of
Miller et al. (1996). For illustrative purposes, the discrete items
can be viewed as corresponding to colors. The activation of one
excitatory population encodes color blue, that we define pop-
ulation B, while the other encodes color red, that we define
population R. If the populations are both in a quiescent state, the
state of the network represents the absence of color information.
For simplicity we represent the spontaneous state as the quiescent
state (average firing rate≈0 Hz).

During the task, the animal has to maintain a memory of an
item (a color) during the delay period. In terms of neural activity,
the corresponding excitatory population should be activated and
maintained in a persistent sate. Additionally the model should
protect the memory from the presentation of a distractor stim-
ulus. At task completion after the decision, the system should
erase rapidly the memory, i.e., the persistent activity should be
deactivated to its quiescent state.

To establish that a network performs a WM task correctly we
require it to perform all the operations of the task. The first oper-
ation, load, corresponds to loading the memory by the sample
signal, and corresponds to B that is activated in a persistent state
while R is in a quiescent state. The second operation, protect, cor-
responds to the maintenance of the blue item memory in the
face of the distractor presentation. In terms of activity it corre-
sponds to B maintained in the persistent state and R that is not
activated to the persistent state even when the red stimulus is pre-
sented during the delay period. In networks (Figure 1E) where
population B and population R are not connected, the opera-
tion protect can be separated in two independent sub-operations:
maintain (maintain item memory in population B) and block
(prevent activation of population R). The third operation, clear
corresponds to the clearance of the memory encoded in the net-
work. This is equivalent to the erasing of the persistent activity in
the network. Note that in this work we do not focus explicitly on
the read-out mechanism following the presentation of the match
stimulus.
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In particular in the winner-take-all network (resp. the two-
unit network), operation load is executed with success if the
sample stimulus activates population B. This is measured before
distractor presentation during 350–450 ms (resp. 350–450 ms):
νB > 5 Hz and νR < 5 Hz, where νB < 5 and νR denote the aver-
age population firing rates of populations blue and red, respec-
tively. Operation protect is executed with success if population B
maintains the persistent state and population R is not activated.
This is measured before match presentation during 750–850 ms
(resp. 700–800): νB > 5 Hz and νR < 5 Hz. Operation clear is
executed with success if population B is deactivated at task com-
pletion. This is measured during an interval after match presenta-
tion, during 1150–1250 ms (resp. 1050–1150 ms): νB < 5 Hz and
νR < 5 Hz.

NUMERICAL ANALYSIS
All the numerical results are obtained by algorithms run in
Python. The differential equations are integrated with Euler steps
of dt = 0.1 ms. The mean population firing rate f is computed
over population average in 10 ms.

Data points for networks and associated error bars are com-
puted by averaging over simulated individual network realiza-
tions. We generated random connectivity matrices such that every
neuron receives the same number of input connections. For a
fixed network connectivity matrix, we computed the average over
100 realizations of background activity and stimuli for each of 30
random realizations of the network connectivity matrix when not
otherwise stated.

RESULTS
EFFECTS OF CORRELATIONS ON PERSISTENT ACTIVITY STATE IN THE
SINGLE-UNIT NETWORK: ERASING AND BLOCKING THE MEMORY
TRACE
We examine how correlations in the background activity control
selective persistent activity in WM networks. Hence we start out
by analyzing how background correlations affect the transitions
between the quiescent and self-sustained states in our network
model.

Correlations in background activity are generated by the addi-
tion of a common noise source to independent stochastic chan-
nels (see Figure 1B). By changing the relative firing rate of the
common source with respect to the independent channels we
control the correlation level λ. We set two different protocols rep-
resented in Figure 2A. In the first protocol, the correlation level
is increased instantaneously from λ = 0 to some value λ > 0 at
500 ms. Therefore given that the stimulus activates the persistent
state, this protocol allows us to test the effects of the correlations
on the probability that the active state is erased and we refer to it as
the erasing protocol. In the second protocol the correlation level is
set λ > 0 for all the time, before the transient stimulus appears. In
this way it is possible to see the effect of correlations on blocking
the ability of the stimulus, presented during 50–100 ms, to initiate
the persistent state and we refer to it as the blocking protocol.

We first demonstrate the prevalent effect of correlations: con-
trol of active memory state and control of access to the memory.
In an example of the erasing protocol the excitatory stimulus acti-
vates the network into a persistent state; at 500 ms correlations are

increased and the persistent state is disrupted (Figure 2A). In an
example of the blocking protocol the excitatory stimulus is not
able to activate the persistent state (see Figure 2B). In order to
understand how these effects depend on the activity parameters
we ran a large number of simulations where we injected back-
ground activity with different correlation levels for 0 ≤ λ ≤ 1 to
networks with different connection probability c to measure how
this effect spread thanks to the network architecture (Figure 2C).
We compared networks with the same scaled synaptic strength
J such that cJN = const. = 5.2. In the erasing protocol we esti-
mated the erasing probability Pe(c, λ) defined as the probability
for the network to have the firing rate ν < 5 Hz in the inter-
val 800–900 ms. We discarded trials where the network is not in
a persistent state (ν > 5 Hz during 400–500 ms). In the block-
ing protocol we estimated the probability that the correlations
block the stimulus; the blocking probability Pb(c, λ) defined as
the probability for the network to have the firing rate ν < 5 Hz
in the interval 400–500 ms. This could also be seen as a gating
of the persistent activity. We observe that for both protocols, the
increase of both c and λ disrupts the persistent state: in the first
case by erasing it and in the second case by blocking its activation.

We hence wanted to assess how the network size influences
the stability of the persistent state under the various back-
ground activity regimes (Figure 2D). We compared networks
with different size N with an equal average synaptic input cJN =
const. = 5.2. We measured both erasing probability Pe(N, λ) and
blocking probability Pb(N, λ) as a function of λ. We observe that
both the erasing probability and the blocking probability (Pe and
Pb) increase with the network size N. We observe that both for
fixed c and for fixed N Pb > Pe. Finally we studied the proba-
bilities Pe and Pb as function of N, fixing both J = 0.26 and the
number of inputs that each neuron receives, i.e., cN = cost = 20.
We computed these probabilities averaging over 500 trials. We
found that with such a scaling both Pe and Pb are approximately
constant (Figure 2E).

In order to determine whether the optimal stimulus param-
eters to load of a memory (or activation of a persistent state)
depend on the correlation strength we measured the loading
probability (1− Pb) as function of the stimulus strength (ν1) and
for different values of λ (Figure 3A), we computed the probabil-
ities of Figure 3 averaging over 300 trials. Different values of λ
change the amplitude of (1− Pb) but do not shift the tuning with
respect to ν1. We also found that there are two peaks of (1− Pb):
one at about ν1 ≈ 20 Hz and another at about ν1 ≈ 50 Hz. To
test whether the positions of the two peaks depend on the recur-
rent network properties we measured the loading probability as
function of ν1 and for different values of the recurrent synaptic
strength J (Figure 3B). Similarly to the previous results, different
values of J change the amplitude of (1− Pb) but do not shift the
peaks of the curves with respect to ν1. In summary this indicates
that indeed the strength of the stimulus required to active the per-
sistent state with a set probability is dependent on the background
correlations, and yet the tuning is rather broad.

To further investigate the effect of correlation on the stability
of the persistent state we determined the lifetime of the sustained
activity and the level of correlations prior to the erasing time. We
defined the end of the persistent state tstop (magenta vertical line,
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FIGURE 2 | External background correlations destabilize the

persistent state in a single-unit network. (A) Erasing persistent state
with correlations. Examples of firing rate (top), and average synaptic
input for one trial. λ = 0 until 500 ms and λ = 0.8 after 500 ms (yellow
shaded areas). The population is activated by a stimulus during
50–100 ms. Correlations in background activity erase the persistent
state. (B) Correlations gate the activation of the persistent state.
λ = 0.8 all the time (yellow shaded areas). The network receives an
excitatory stimulus during 50–100 ms. The stimulus fails to activate the

persistent state in presence of background correlations.
(C) Erasing probability Pe (continuous lines) and blocking probability Pb

(dashed lines) as function of c and λ. Synaptic strength is scaled such
that cJN = 0.52. Both Pe and Pb increase with increasing λ and c.
(D) Pe (continuous lines) and Pb (dashed lines) as function of N and λ.
Synaptic strength is scaled such that cJN = 0.52. Both Pe and Pb

increase with increasing λ and N. (E) Pe and Pb as function of N with
fixed λ = 0.6 and J = 0.26 and with c scaled such that
cN = const = 20. Pe and Pb remain approximately constant.

Figure 4A) as the first period of 10 ms (after the correlation onset)
during which the firing rate of the network falls below 5 Hz.
Noticing that in most of the trails a peak of activity was preced-
ing the persistent state erasing, we defined the time of such a peak
tpeak (black vertical line, Figure 4A) as the last period of 10 ms
before tstop that the firing rate attains a local maximum (in time)
and that is beyond 20 Hz. We determined for each trial where the
persistent state was not erased before the onset of correlations
tcorr = 800 ms (red vertical line, Figure 4A), the interval �tc.p. =
tpeak − tcorr. We determined the interval�tp.s. = tstop − tpeak. We
performed this protocol for three different values of the corre-
lation level: λ = {0.3, 0.6, 0.9} (Figure 4B). We found that the
distribution of �tc.p. decreases with time for all the values of

correlations. When the level of correlations is larger (Figure 4B,
top) the probability of reaching the peak earlier in time slightly
increases with λ. Furthermore we found that the interval between
the peak of activity and the erasing of the activity in the network is
narrowly distributed in time. Finally this interval is independent
of the correlation level, meaning that the correlations do not have
a strong effect on this timing (Figure 4B, bottom). We computed
these distributions averaging over 500 trials.

The mean Pearson correlation coefficient ρ (see Materials
and Methods) of the synaptic input in the network during the
interval with uncorrelated background activity was compared
with that during the interval with correlated background activ-
ity just preceding the peak. Only trials where tpeak − tcorr >
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100 ms were considered. The interval with uncorrelated back-
ground activity is defined as the 100 ms preceding tcorr (gray
shaded area, Figure 4A). The interval with correlated background
activity is defined as the 100 ms preceding tpeak (red shaded area,
Figure 4A). We computed ρ for the background input (red lines,
Figure 4C) and for the recurrent input (black lines, Figure 4C)
both for the uncorrelated interval (dashed lines) and for the

FIGURE 3 | Stimulus strength tuning is independent of the correlation

level. (A) Probability of activation (1− Pb) as function of the stimulus
strength (ν1) for different values of the correlation level (λ). (B) Probability of
activation as function of the stimulus strength (ν1) for different values of the
recurrent synaptic strength (J).

correlated input (continuous lines) when λ = 0.6. We found
that ρ during the correlated input is smaller in the recurrent
input with respect than in the background input. However, ρ
of the recurrent input is larger during the correlated interval
than during the uncorrelated interval. Interestingly we found that
during the correlated interval, while the correlation coefficient
of the background input increases with λ (Figure 4D, bottom),
the correlation coefficient of the recurrent input instead remains
approximately equally distributed when λ is changed (Figure 4D,
top). This suggests that the network has reached the maximal
amount of sustainable correlations before turning off.

To understand whether the persistent activity deactivation is
caused by an increase of spike synchrony we tracked the syn-
chrony of the spike times using the multivariate SPIKE-distance
measure S (Kreuz et al., 2013) (Figure 5A). The spike synchrony is
given by 1− S spanning the values between 0 (no synchrony) and
1 (perfect synchrony). We compared the average spike synchrony
during two intervals, similarly to Figure 4: the first interval corre-
sponds to the 100 ms preceding the start of correlated background
activity and the second interval corresponds to the 100 ms pre-
ceding the last peak of activity before the deactivation of the
persistent activity (provided that the onset of this last interval
does not precede the start of the correlated background activ-
ity). The distribution of the average value of 1− S (computed

FIGURE 4 | Persistent state suppression is preceded by an increase

of recurrent correlation. (A) Timing outline of erasing persistent
activity. Mean recurrent input (blue trace), mean background input (red
trace), and external input (black trace) are represented together with the
time at which activity is erased (tstop, magenta vertical line), time of the
last peak of activity before erasing (tpeak, black vertical line), and time
of the onset of the correlations in background activity (tcorr, red vertical
line). The interval of uncorrelated activity and the interval of correlated
background activity during which the correlation coefficient is measured

in panels (C) and (D) are represented with gray and red shaded areas,
respectively. (B) Distribution of the interval �tc.p. = tpeak − tcorr (top) and
distribution of the interval �tp.s. = tstop − tpeak (bottom) for different
values of λ. (C) Mean Pearson correlation coefficient (ρ) of the
recurrent input (black traces) and of the background input (red traces),
computed during the uncorrelated interval (dashed traces) and the
correlated interval (continuous traces). (D) Coefficient ρ of the recurrent
input computed during the correlated interval for different values of λ
(top). Same analysis for the background input (bottom).
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FIGURE 5 | Persistent state suppression is preceded by a weak increase

of spike synchronization. (A) Raster plot of 30 representative neurons of
the network (top) and spike synchrony 1− S (bottom). Same protocol of that
described in Figure 4. Gray shaded area corresponds to the 100 ms interval
preceding the background correlation onset (λ = 0.6); red shaded area

corresponds to the 100 ms preceding the last peak of activity before
sustained activity suppression. (B) Distribution of the average spike
synchrony (1− S) during the two interval described previously. Inset
corresponds to a magnification of the relevant interval of spike synchrony
values.

over 2000 trials) during these two intervals shows that there is a
weak increase of spike synchrony preceding the persistent activity
deactivation with respect to the case of uncorrelated background
activity (Figure 5B). This weak increase could indicate that few
spike coincidences might be the cause of the persistent activity
turning off.

EFFECTS OF BACKGROUND ACTIVITY CORRELATIONS IN A
WINNER-TAKE-ALL NETWORK
We show here that modulating appropriately in space and time
the correlation level of the background activity in a network per-
forming a WM task significantly improves correct execution of all
the required operations: load, protect, and clear.

We compared two different versions of the winner-take-all
network; each made of two excitatory populations B and R,
representing respectively colors blue and red. The two popu-
lations interact via a third population of inhibitory neurons
that creates a winner-take-all mechanism. The two versions dif-
fer in that the first one receives only uncorrelated background
activity while in the second each excitatory population receives
also background activity from a different common noise source
(Figure 1D).

We fixed the stimuli sequence as follows: during 50–150 ms
a sample blue stimulus excites population B; during 450–550 ms
a distractor red stimulus excites population R; during 850–950 a
match blue stimulus excites again population B. The operations
that the network has to do are to load the blue item in memory,
to protect the memory at red item presentation, and to clear the
memory after the match presentation.

Brunel and Wang (2001) pointed out that in order to per-
form the DMS task correctly, the distractor stimulus strength
needs to be controlled with care: above a certain strength per-
sistent memory-trace is perturbed by the distractor. For our
case we suppose that it is reasonable to assume that all sen-
sory stimuli in the task are of the same strength. As a prelim-
inary test we want to confirm that in absence of background
correlations the network without common noise source does
not perform efficiently when the stimuli are too strong, as was
already stated in the reference network described by Brunel and

Wang (2001). In the example shown in Figure 6A the distrac-
tor activates R and via the inhibitory population the persistent
state in B is deactivated leading to a failure of the operation
protect.

We then consider the network represented in Figure 1D that
allows the modulation of the correlation level λ in each exci-
tatory population independently. The network initially receives
uncorrelated background activity to λ = 0.9. After the first
item has been loaded, the system increases the correlation
level in the background activity of the other non-activated
population R. After the match stimulus has been presented,
the correlation level is increased also in population B to
λ = 0.9.

We show an example of the network executing the WM task
where the correlation level is modulated independently in the
excitatory populations (Figure 6B). In this particular example
we illustrate a trial where the network performs the required
operations of the WM task (compare with Figure 1D and see
below for statistics across trials). The distractor excites R only
transiently such that excitation does not last enough to dis-
rupt the activity in B, in addition as shown below this happens
also for strong distractor stimuli. Therefore the operation protect
has been executed with success and the memory is maintained.
At the end of the match stimulus the persistent activity is dis-
rupted also in population B caused by the increase of λ in that
population too. Therefore the operation clear is executed with
success and the memory is erased in the network. This exam-
ple illustrates that the success of the operations protect and
clear in the network with correlations are not due to the pres-
ence of inhibition as was set in the model of Brunel and Wang
(2001).

To get quantitative measures of performance for these two
networks (with and without correlations in background activ-
ity), we analyzed the statistics of load and protect performance,
as a function of the stimulus intensity ν1 (and thus its strength)
(Figure 7A). We consistently find higher protect performance
for correlated background activity than for uncorrelated back-
ground activity throughout the whole range for ν1. In fact
the success of the protect operation depends only gradually on
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FIGURE 6 | Selective correlations implemented in a working memory

task. Two competing populations network, with two item-selective excitatory
populations (blue and red) and one inhibitory non-selective population (black).
(A) Without background correlations, the distracting stimulus activates
population R and population B is deactivated. (B) After the activation of B at
150 ms, a common source of noise increases the correlations in background

activity (λ = 0.9) in R. The correlations block the activation of R and maintain
the persistent state B. After the completion of the task at 950 ms the
correlations erase persistent activity in B. (Top) Raster plot of the neural
activity in the task. (Bottom) Successively: sample stimulus to B (50–150 ms),
distracting stimulus to R (450–550 ms), and match stimulus to B
(850–950 ms).

FIGURE 7 | Background correlations increase working memory

performance. Protocol reported in Figure 6. (A) Comparison between a two
competing populations network with and without correlations. Dashed line:
optimal value for the network with correlations. (B) The performance of the
network is measured on four different operations for the optimal value of

ν1 = 4.8 Hz: probability of activating B by the sample stimulus (load),
probability of preventing memory disruption by a distracting stimulus in the
protocol with correlations (protect), probability of erasing of the memory at
the end of the task (clear). All probabilities have a high value showing that the
network has good task performance, above chance.

the distractor strength. On the other hand in order to per-
form operation protect above chance level in the network with
uncorrelated background activity distractors should be care-
fully adjusted to have intensity ν1 < 5 Hz. However, in this
range the operation load is suboptimal. Hence the uncorre-
lated model fails in the task. This fact illustrates a recurrent
problem in the protect-by-inhibition paradigm: it needs fine-
tuning and achieves only low performance if the stimuli are
too strong. Instead, using correlations as a mechanism to pro-
tect the activity does not need precise fine-tuning as can been
seen in the large range in which both load and protect are
well above chance level. We found the value ν1 = 4.8 Hz max-
imizes the joint probability of executing with success load and

protect (Figure 7A, vertical dashed line). We show in Figure 7B
probability of success of the three operations load, protect, and
clear finding that all of them score a value higher than chance
level.

IMPLEMENTING WORKING MEMORY TASK BY FLEXIBLE
CORRELATIONS MODULATION
We now go on to show that mutual inhibition is not a required
mechanism for implementing the WM task. We show here that
modulating appropriately the background activity correlations
in time in a network without inhibitory population allows cor-
rect execution of all the required WM operations: load, maintain,
block, and clear ( Please note that since the network studied
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here is made of two separated excitatory populations the com-
ponent maintain and block of the operation protect can be treated
separately).

Network operating regimes
In order to characterize the network performance statistics during
the task we need to track three probabilities. The first probability
Pg.o. = PePb corresponds to the joint probability of deactivat-
ing by correlations the network that is in the persistent state
(erase) and to block activation of the network that is in the
quiescent state and is excited by a stimulus. When Pg.o. dom-
inates over the other probabilities the system is in a gate-out
regime, i.e., memory cannot neither be loaded nor maintained
in the network. The second probability Pg.i. = (1− Pe)(1− Pb)

corresponds to the joint probability that, despite the correlations,
the network maintains the persistent state, if previously acti-
vated, and that the stimulus activates the persistent state when
the network is in the quiescent state. When Pg.i. dominates, the
system is in a gate-in regime, i.e., the memory can be loaded
and maintained in the network. Finally the third probability
Ps.g. = (1− Pe)Pb corresponds to the probability of maintain-
ing the persistent activity in the presence of correlations while
blocking the activation of a persistent state with correlated back-
ground activity when the system is in a quiescent state and is
excited by a stimulus. When Ps.g. dominates the system is in a
selective-gate regime, i.e., the memory is maintained but cannot
be loaded. In a sense we want to show that correlations in the
background activity can selectively switch the network from the
gate-in regime at the outset of the task, to the selective-gate regime
during the memory period. We do not consider the probability
Pe(1− Pb).

To obtain the network performance on the DMS task we con-
sidered the statistical results presented in Figure 2 for the single
excitatory population (N = 1000 and c = 0.2). We note that there
is a difference between the erasing probability Pe(λ) and the

FIGURE 8 | Correlations set the network working regime. Probability
that the network operates in different regimes with network size N = 1000.
Joint probability of (not-)erase and (not-)block: Pg.o.(λ) (black curve), Pg.i.(λ)

(blue curve), and Ps.g.(λ) (red curve). Gate-out regime corresponds to
domination of Pg.o.(λ) and falls in the range λ > 0.11. Gate-in regime
corresponds to dominance of Pg.i.(λ) and falls in the range λ < 0.04.
Selective-gate corresponds to dominance of Ps.g.(λ) and falls in the range
0.04 < λ < 0.11, with maximal value at λ = 0.07 (red star).

blocking probability Pb(λ) in function of the correlation level. In
Figure 8 we present the results for network we consider in this
manuscript. We see that when Pg.i.(λ) dominates (λ < 0.04), the
system is in a gate-in regime, i.e., the memory can be loaded and
maintained in the network (Figure 8). When Ps.g.(λ) dominates
(0.04 < λ < 0.11) the system is in a selective-gate regime. We do
not consider here the gate-out regime that corresponds to Pg.o.(λ)

dominating over the other probabilities (λ > 0.11 ). We set the
gate-in regime at λ = 0 and the selective-gate regime at λ = 0.07.

Modulation of correlation level in time
We now show that correlations induced by a global common noise
source to the whole network executes the DMS task efficiently by
modulating the correlation level λ during the different phases of
the task. We note that in the mutual inhibition model, at task
completion, increase in the correlation level induces the gate-
out regime and erases the memory. We show here, in a two-unit
model (Figure 1E), how the presentation of the match stimu-
lus directly can erase the memory thereby implementing a direct
match-based suppression without requiring inhibition. In this
model each of the two excitatory populations receives background
activity from sources independent to each neuron and from a
noise source common to all neurons.

An example of the network performing the DMS task is rep-
resented in Figure 9A. The stimuli are presented in the following
sequence: sample stimulus to population B at time during 100–
150 ms, distractor stimulus to population R during 450–500 ms,
and match stimulus to population B at time 800–850. In the
beginning the system is in the gate-in regime (λ = 0): the sam-
ple stimulus activates B. From 300 ms the network is set in a
selective-gate regime (λ = 0.07): the distractor stimulus activates
transiently population R while persistent activity is maintained
in population B. At the end of the task the match stimulus, first,
increases the activity in B and, then, destroys it.

We can then compute the task performance of the network,
corresponding to the success rate that the operations load, main-
tain, block, and clear are executed successfully (Figure 9B). These
measure are all above chance level. Notice the high level of
performance of the clear operation.

DISCUSSION
RESULTS AND DATA DISCUSSION
In this work we present a novel paradigm explaining how the
persistent activity can be modulated on-line by the mean of
both information-related signal and background activity. This
paradigm is based on our result showing that background cor-
relations influence the transition between the persistent state and
the quiescent state in a bistable recurrent neural network. We call
this phenomenon correlation-induced gating.

In order to implement a multi-unit network performing a WM
task, we began by establishing the basis of the correlation-induced
gating on a single-unit network. We show that background cor-
relations block and erase a persistent state in a homogeneous
recurrent neural network representing a single unit. We found
that the transition rate from the persistent state to the quies-
cent state increases, with the network size and with the con-
nection probability. For all situations the probabilities increase
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FIGURE 9 | Spatially uniform correlations in a two unit network

performing a working memory task. (A) The network has size N = 1000.
Memory is loaded in population B by the sample stimulus. Background
correlations block the activation of persistent population R by a distractor
while maintaining the memory in the population B. The match stimulus
erases the memory in population B, playing both the role of read-out and

clear. (Top) Raster plot of the neural activity for populations B and R. (Bottom)
Input current of the: sample stimulus, distracting stimulus, and match
stimulus. The network has size N = 1000. (B) With intermediate correlation
level (λ = 0.07) in background activity the network can execute successfully
the working memory task. Task performance of the network for the four
operations: load, block, maintain, clear.

with the correlation level. Increasing the network size, while fix-
ing the connections probability and renormalizing the synaptic
inputs to keep the average input strength constant scales up
the probabilities. In other words, in larger size network with
weaker but more numerous synapses, correlations appear to have
a stronger effect. On the other hand, when we fix the total
number of synapses each neurons receives, growing network
size does not appear to have much effect on the correlation
driven probabilities. These effects could be related to the fact
that the amount of correlation between neurons sharing common
input is mainly determined by pooling (Rosenbaum et al., 2010,
2011).

We implemented a winner-take-all network composed of two
excitatory populations and one inhibitory population. Each of the
excitatory populations receives background input from indepen-
dent noise sources and a noise source common to the neurons
of such population. The amount of correlation could be changed
independently in the two excitatory populations. By increasing
the level of correlations in the populations encoding an irrelevant
information we prevented a distractor from loading a mem-
ory item in such population. In particular we showed that this
model allows to prevent stronger distractors with respect to a
model inspired by Brunel and Wang (2001) where the distrac-
tor is blocked only by the mutual inhibition. Our model could
therefore explain how the response to the distractor stimulus
in a WM task could be as strong as for the sample stimulus
(Miller et al., 1996). This effect would be in fact not compat-
ible with a model where a distractor is prevented by mutual
inhibition.

We implemented a WM network differing by the same pre-
vious one in the construction of background correlations that
are induced by a shared source. We show that modulating the
correlation level in background activity we can set the system
in the different regimes. This time instead of modulating the
correlations level “in space” we modulate it in time. Depending
on the strength of the correlations the system is set in dif-
ferent operating points, namely the gate-in, selective-gate, and

gate-out regimes. The gate-in regime allows to load a mem-
ory in the WM store and to maintain it subsequently. The
selective-gate regime maintains a previously loaded memory
but blocks the load of any new memory. The gate-out regime
blocks the network both to load and to maintain a memory.
We can switch instantaneously from one dynamic regime to the
other by tuning the strength of the background activity corre-
lations. We further show that the projection of a strong match
stimulus can be sufficient to clear the memory at task com-
pletion, thereby suggesting that correlations also play a role in
match-suppression.

We must also note that in this work we considered spa-
tial correlations and their effect on the persistent activity and
WM task executions. In a companion paper we have shown
that temporal structure also has an important effect: the gat-
ing modes are modulated by the oscillatory frequency content
of the background activity (Dipoppa and Gutkin, 2013). While
in the companion paper the block and erase probabilities, and
thus the gating modes of the network, are modulated by the
oscillation frequency, in this work they are modulated by the
correlation level. As opposed to the non-monotone relationship
between the oscillation frequency and the block and erase prob-
abilities [Figure 3A of Dipoppa and Gutkin (2013)], there is a
monotone relationship between the correlation level and the same
measures (Figures 2C,D). Hence control of the WM through spa-
tial correlations could be implemented by a simple increase or
decrease of activity within a neural population furnishing con-
nections common to the WM store, while the oscillatory control
would require more complex task-dependent shifting between
the frequency bands. We would like to speculate that the two
mechanisms could represent two independent modes of control
over the WM networks. Furthermore, in this work we uniquely
examine the role of mutual inhibition and show that the spatial
correlation structure alleviates the network sensitivity to stimulus
strength.

Although we do not propose a mechanism for the read-
out of the memory information we note that the mechanism
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proposed by Brunel and Wang (2001) for their network would
be compatible with our model. This mechanism corresponds to
the fact that a match stimulus will elicit a stronger response
with respect to a distractor stimulus in the first few tenths
of milliseconds since the first will excite a network that is
already in the persistent state. Hence we might speculate that
a complementary population of neurons sensitive to rapid
transients in the activity might be a way to signal read-out
differentially.

MODEL PREDICTIONS AND OPEN QUESTIONS
The novel paradigm that we present here allows to manip-
ulate persistent activity through background correlations. An
advantage of the correlation-induced gating with respect to the
inhibition-induced gating is that the gate can be rapidly and flex-
ibly opened or closed depending on the correlation level, instead
of being fixed by the network connectivity structure.

The effects that we find for the flexible changes in the cor-
relation levels is the major prediction of the model. We predict
that an examination of multi-unit electrophysiological record-
ings of animals performing a WM task will show the following
modulation of correlation level: low level during loading and
intermediate level during maintenance (as in the two-unit model
of Figure 1E) or alternatively high level of correlations in the pop-
ulation of neuron selective for a non-memorized item during the
delay period (as in the winner-take-all model of Figure 1D). To
our knowledge experiments specifically analyzing how correla-
tions change in the PFC as the delay-response task unfolds are
still lacking.

At the same time, there are several lines of indirect evidence
that lead us to believe that task dependent correlation modu-
lation is indeed possible. First, it has been found that there is
a modulation of spike coincidences during different phases of
a motor task (Riehle et al., 1997). Riehle et al. (1997) found
that at times during the delay when the animal was expect-
ing to generate a response there were transients of synchronized
spikes. Furthermore for successful trials there were more syn-
chronized spikes during the delay period than for failure trails.
This indeed suggests that spike coincidence is modulated in a
functional way. The increase of excess synchrony at response (or
expected response) times is compatible with the correlation based
memory clearance discussed in this manuscript. Furthermore, it
has been found that a change in representation during the delay-
response task leads to an increase of synchronization (Sakamoto
et al., 2008). Pipa and Munk (2011) analyzed multi-unit activ-
ity during the delay period of a match-to-sample task and found
that on correct vs. incorrect trials there is a modulation of
spike synchronization and further, synchronous spike events are
more prevalent at match presentation. This last point again sug-
gests that increased correlations may be involved in erasing the
memory trace.

In fact there is ample literature relating changes in oscillatory
synchrony, coherence and frequency during WM tasks (Tallon-
Baudry et al., 1998; Pesaran et al., 2002; Lee et al., 2005; Pipa et al.,
2009). For example Pesaran et al. (2002) found that gamma-band

spiking coherence is increased during the delay period in the
lateral intraparietal cortex (LIP) in primates performing a delayed
response task. Given that LIP is coupled to the PFC and is also
involved in WM trace (Chafee and Goldman-Rakic, 1998), this is
suggesting of increased input correlations to the PFC during the
WM task. In the context of irregular poisson firing, oscillatory
coherence is nothing other than correlations organized both in
time (the frequency) and space. Oscillatory effects are beyond the
scope of this paper and are a subject of the companion manuscript
(Dipoppa and Gutkin, 2013).

The data reviewed above does show that there is a modu-
lation of activity correlations during the WM task, yet it does
not provide the mechanism. Here we propose that the mech-
anism is in the background input correlations generated by a
common source. One hence might ask where such inputs may
be coming from. As hinted above, one source could be coher-
ent firing activity in the cortical regions coupled to the PFC
and involved in WM processing (e.g., LIP). In addition, we
propose that the source of shared background input generat-
ing spatial correlations can reside in the striatum, a subcortical
area thought to be involved in WM. In fact the structure of
the cortico-striatal loops as been longly seen as a disadvantage
for the WM capacity if the memory store is located also in the
striatum. Since the number of striatal neurons is much lower
than the number of pyramidal neurons (Lange et al., 1976)
and the loop is based on divergence (resp. convergence) in the
striato-cortical (resp. cortico-striatal) direction, then the stria-
tum could not have the same memory capacity of the cortex. It
has been suggested that instead that divergent/convergent struc-
ture could be useful since the basal ganglia do not encode the
individual information of WM but they control the gate of other
region and decide when they can be updated (Frank et al., 2001).
We also suggest that striatum plays a gating role since it could
be the source of the common noise that creates the different
regimes.

The correlation-induced gating is a robust effect to param-
eters variation. We propose the following explanation for this
phenomenon: background correlations induce spike-times syn-
chronization in the recurrent network, as was found similarly for
independent neurons by Galán et al. (2006), and this leads to per-
sistent activity erasing and block because of the refractory period
of the neurons, as was found by Laing and Chow (2001) and
Gutkin et al. (2001). Providing a proof of this assumption and a
mathematical explanation of the correlation-induced gating will
be the subject of future research.
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Between seizures the brain of patients with epilepsy generates pathological patterns
of synchronous activity, designated as interictal epileptiform discharges (ID). Using
microelectrodes in the hippocampal formations of 8 patients with drug-resistant temporal
lobe epilepsy, we studied ID by simultaneously analyzing action potentials from individual
neurons and the local field potentials (LFPs) generated by the surrounding neuronal
network. We found that ∼30% of the units increased their firing rate during ID and 40%
showed a decrease during the post-ID period. Surprisingly, 30% of units showed either
an increase or decrease in firing rates several hundred of milliseconds before the ID. In 4
patients, this pre-ID neuronal firing was correlated with field high-frequency oscillations at
40–120 Hz. Finally, we observed that only a very small subset of cells showed significant
coincident firing before or during ID. Taken together, we suggested that, in contrast
to traditional views, ID are generated by a sparse neuronal network and followed a
heterogeneous synchronization process initiated over several hundreds of milliseconds
before the paroxysmal discharges.

Keywords: interictal epileptiform discharges, microelectrode recordings, multiunit activity, temporal lobe epilepsy,

spike synchronization

INTRODUCTION
Synchronization of local and distributed neuronal assemblies is
thought to underlie fundamental brain processes such as percep-
tion, learning, and cognition (Varela et al., 2001). In neurological
diseases, neuronal synchrony can be altered and in epilepsy may
play an important role in enhanced cellular excitability (Jasper
and Penfield, 1954). Besides ictal events or seizures, interic-
tal discharges (ID) are a typical signature of abnormal neu-
ronal synchronization, seen spontaneously between seizures in
scalp and intracranial EEG. They are used as a clinical indica-
tor for the location of the epileptogenic zone, the region that
generates seizures. Furthermore, it is believed that this region
contains both, the seizure onset zone and the surrounding “irri-
tative zone,” which generates ID and limits with normal tissue
(Talairach and Bancaud, 1966). These transient epileptic syn-
chronization events are characterized by a large-amplitude, rapid
component lasting 50–100 ms that is usually followed by a slow
wave of 200–500 ms duration (de Curtis and Avanzini, 2001).
In some cases, they are associated with an oscillation in the
high frequency range greater than 40 Hz (Bragin et al., 1999;
Jacobs et al., 2011; Le Van Quyen, 2012). Despite their fun-
damental importance in diagnosing and treating epilepsy, little
is known about the neurophysiological mechanisms generating
these events in the human brain. Experimental work on animals
and human tissue propose the paroxysmal depolarization shift
(PDS) as the cellular correlate of ID (Prince and Wong, 1981;

Avoli and Williamson, 1996). This event is defined as a burst of
action potentials on a large depolarization, followed by a longer
hyperpolarization. However, in vivo human evidence is scarce,
because of the limited opportunities to study the behavior of
single neurons in human subjects. To overcome this difficulty,
epilepsy patients suitable for surgical treatment are sometimes
studied with intracranial depth electrodes in order to record
EEG activity from deep cortical structures and accurately identify
the regions originating seizures. Using depth electrodes specially
adapted with microelectrodes (Fried et al., 1997; Figure 1A),
ID can be studied by simultaneously recording action poten-
tials from individual neurons and the local field potentials (LFP).
Studies using microelectrode technology, have reported a variable
and complex relation between ID and the activity of individ-
ual neurons, more heterogeneous than simple PDS (Babb et al.,
1973; Wyler et al., 1982; Ulbert et al., 2004; Keller et al., 2010;
Alarcon et al., 2012). In particular, a large diversity of neuronal
response were found including an increase or decrease in their
firing rates or even changes in firing that precede the defining
interictal discharge itself. Most of these studies were performed
on patients with neocortical epilepsy that exhibit a wide range
of heterogeneity. In the present work, we recorded ID in the
hippocampal formation of 8 patients with drug-resistant mesial
temporal lobe epilepsy. Our objective is to describe firing patterns
and neuronal synchronization of single-unit activities during
spontaneous IDs.
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FIGURE 1 | (A) Macro- and micro-electrodes superimposed on a
magnetic resonance imaging scan. Nine microwires (40 μm diameter)
extend beyond the tip of each macro-electrode and record the
hippocampal formation. (B) Interictal discharges (ID) recorded with
microelectrode local field potentials from adjacent electrodes in the

hippocampus of a patient. (C) Example of wide-band recording of an ID
event with the corresponding extracted single unit activities. (D) Raster
plot and peri-event histogram (bin size, 10 ms) of the single unit activity
shown above. Note the strong changes in the firing rate and
instantaneous frequency (red) during the ID.

MATERIALS AND METHODS
DATABASE
Subjects were 8 patients [two female, mean age ± stan-
dard deviation (SD) 36.3± 10.5 years] with pharmacologically
intractable temporal lobe epilepsy who were implanted with 8–14
intracranial depth electrodes in order to localize epileptogenic
regions for possible resection. The placement of the electrodes
was determined exclusively by clinical criteria (Fried et al., 1999).
Extending beyond the tip of each electrode were nine Pt-Ir
microwires (40 μm diameter) with inter-tip spacing of 500 μm,
eight active recording channels and one reference. Each microwire
was sampled at 28 kHz (Cheetah recording system, Neuralynx
Inc., Tucson, AZ). Spatial localizations were determined on the
basis of postimplant computed tomography scans coregistered
with preimplant 1.5T MRI scans. Our results are based on micro-
electrode recordings located in the anterior hippocampus (n =
40 channels in 5 patients) and entorhinal cortex (n = 24 chan-
nels in 3 patients). The recording states were quiet wakefulness
and slow waves sleep (stages 1–4). All studies conformed to the
guidelines of the Medical Institutional Review Board at University
of California, Los Angeles.

SPIKE SORTING
In order to detect single-units, all channels were high-pass fil-
tered at 300 Hz and were visually examined for the presence of
unit activities. In those microwires with clear unit activities, we
performed spike detection (>4:1 signal to noise ratio) to obtain
multi-unit activities (MUA). Single-unit activities were extracted
with spike sorting using KlustaKwik 1.7 program (Software:
http://klustakwik.sourceforge.net/; Harris et al., 2000) which
employs the 10 principal components of the spike shape and
an unsupervised Conditional Expectation Maximization (CEM)
clustering algorithm (Hazan et al., 2006). After automatic clus-
tering, the clusters containing non-spike waveforms were visually
deleted and then the units were further isolated using a man-
ual cluster cutting method. Only units with clear boundaries and
less than 0.5% of spike intervals within a 1 ms refractory period
are included in the present analysis. Typically we isolated 1 or 2
distinct neurons from each microwire, but in several cases we
observed up to 4 distinct neurons from a single microwire. The
instantaneous spike frequency was measured by convolving the
timing of each unit with a Gaussian function of standard devi-
ation of 20 ms (Ts = 1 ms), set close to the modal interspike
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interval (Le Van Quyen et al., 2008, 2010). This operation leads
to an analog trace of the instantaneous firing rate (Paulin, 1996).

OSCILLATION ANALYSIS
LFP are complementary to action potential information and have
shown prominent oscillatory activity within the high-frequency
frequency range from 40 to 300 Hz (Worrell et al., 2012). A
wavelet time-frequency analysis was used to determine precisely
the mean frequency, maximum amplitude and onset and offset of
these LFP oscillations. The advantage of the wavelet analysis lies in
the fact that the time resolution is variable with frequency, so that
high frequencies have a sharper time resolution (Le Van Quyen
and Bragin, 2007). The Complex Morlet wavelet was here applied
that uses a wave-like scalable function that is well-localized in
both time and frequency:

�τ,f (u) =
√

f exp(j2πf (u− τ)) exp

(
− (u− τ)2

2σ2

)
.

This wavelet represents the product of a sinusoidal wave at fre-
quency f, with a Gaussian function centered at time τ, with a stan-
dard deviation σ proportional to the inverse of f. The wavelet coef-
ficients of a signal x(t) as a function of time (τ) and frequency (f )
are defined as: W(τ, f ) = ∫ +∞−∞ x(u)�τ,f (u)du. It depends solely
on σ, which sets the number of cycles of the wavelet: nco = 6f σ.
The value nco determines the frequency resolution of the analysis
by setting the width of the frequency interval for which phase are
measured. Here, we chose nco = 5. For baseline correction, the
average and SD of power were first computed at each frequency
of the baseline period. Then, the average baseline power was sub-
tracted from all time windows at each frequency, and the result
scaled by 1/SD, yielding baseline-adjusted Z scores. Significant
increases with respect to baseline activity showed up as positive
Z-values and tabulated probability values indicate that, for abso-
lute values of Z > 3.09, we have P < 0.001. The Kolmogorov–
Smirnov test was applied to assess the distribution normality of
the wavelet coefficients, using a 0.05 probability level.

SPIKE SYNCHRONIZATION
Different measures exist to detect and quantify synchronization
between spike trains (Brown et al., 2004; Kreuz et al., 2007). In
this study, we used two complementary techniques: (1) Cross-
correlation analysis was performed for cell pairs (Perkel et al.,
1967; Amarasingham et al., 2012). To evaluate the significance of
the correlation, we used a boot-strap method that accounts for
the firing rate changes of the neurons (Hatsopoulos et al., 2003;
Grün, 2009). Since the widths of the peaks in the original cross-
correlograms were typically in the range of 5–30 ms (Krüger and
Mayer, 1990), the spikes were jittered by adding a random value
from a normal distribution with a 50-ms SD and 0 mean to the
spike times. For each cell pair, 1000 jittered spike trains were cre-
ated, and the expected cross-correlogram (and 99% confidence
interval) was estimated on 1 ms time bins. For any given cell pair
where at least one bin in the [1.5 ms, 30 ms] interval exceeded
the 99% confidence interval, the interaction was considered sig-
nificant. (2) A method for identifying statistically conspicuous
spike coincidences was implemented to detect the number of

quasi-simultaneous appearances of spikes over small coincidence
windows, here of 5 ms (Gütig et al., 2002; Quian Quiroga et al.,
2002). Their occurrence was then studied in relation to surrogate
data generated by dithering the individual, original spike times
within a given time interval. Here, each spike in the original data
set was randomly and independently jittered on a uniform inter-
val of [−5, +5] ms to form a surrogate dataset. By repeating the
procedure 1000 times, the 99.9% confidence interval for each bin
(p = 0.001) was calculated.

RESULTS
Microelectrode recordings were selected by an expert electroen-
cephalographer to have very abundant and persistent ID in the
hippocampus (5 patients) or entorhinal cortex (3 patients) during
quiet wakefulness or slow-wave sleep (recording durations from
10 to 118 min; total recording time: 6 h). All ID were recorded
in the epileptic zone and appeared as spatially synchronous pat-
terns emerging at about the same time on the same bundle
of microelectrodes (Figure 1B). A standard, threshold-based ID
detector was performed to automatically detect, from the LFP,
events showing a pointed peak with a large amplitude, large slope
and duration of 20–100 ms, appearing at a frequency of 0.07±
0.30 Hz (range: 0.01–0.21 Hz). After expert visual confirmation,
862 ID were identified showing a large pattern of morphological
characteristics typical for sharp waves, spikes and spike-wave dis-
charges (Niedermeyer, 2005). Events were aligned by the sharpest
peak of the discharge (Figure 1C). In order to analyze the patterns
of neuronal activity around the discharge, we defined a base-
line period (–600 to –300 ms), pre-ID period (–300 to –50 ms),
the interictal discharge (–50 to 50 ms), the post-ID period (50–
400 ms). The activities of different neurons per microelectrode
were identified with a spike sorting algorithm and a total of 75
single units were selected for analysis. To visualize the discharge-
related activity of single neurons, peri-stimulus raster plots and
timing histograms were constructed for the period of 1 s before
and after each event (Figure 1D).

During the ID period (–50 to 50 ms), we found that around
40% of the recorded units showed some change in firing,
whereas 60% remain unchanged. About 32% increased their fir-
ing rate more than 2 times during ID relative to baseline epochs
[Figure 2B; right-tail t-test: T(23) = 1.78; p = 0.04; an example
of a cell can be seen in Figure 1D]. The firing rate of these cells
showed a considerable degree of variability (range from 1.4 to
99 Hz) with a mean of 9.4± 19.7 Hz during ID (baseline: 2.7±
3.1 Hz). During the post-ictal period, 40% of units decreased
firing by half [50–400 ms, mean firing rate: 1.8± 2.7 Hz and base-
line: 7.0± 2.7 Hz, left-tail t-test: T(29) = −3.73; p = 4.1 · 10−4,
Figure 2C]. In addition to this modulated single unit activity dur-
ing ID, many units showed a significant change in firing preceding
the interictal discharge. From 30% of single units that signifi-
cantly changed during the pre-ID period, 12% increased [mean
firing rate: 10.0± 13.5 Hz and baseline: 4.2± 5.8 Hz; T(8) =
−3.45; p = 0.004] and 18% decreased [mean firing rate: 2.3±
7.0 Hz and baseline: 5.2± 11.6 Hz; T(13) = −1.64; p = 0.06]
their firing rate (–300 to –50 ms, Figure 2A; examples are given
in Figure 2D). On the corresponding channels, we were inter-
ested in the relationship between these pre-ID firing changes and
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FIGURE 2 | (A–C) Peri-ID firing changes of single units defined as the
ratio of changes in discharge probability between the baseline and
pre-ID, ID or post-ID. (D) Examples of two units (Top: raw data;

Bottom: Raster plots and peri-event histograms) recorded in different
patients and showing significant decrease (a) or increase (b) during the
pre-ID period (see arrows).

LFP (<300 Hz). Spectral power was performed by using Morlet
wavelet analysis (20–300 Hz) and pre-ID changes in LFP were
tested for significant increases/decreases from baseline of spe-
cific frequency bands (p < 0.001). In 4 subjects we observed that
pre-ID neuronal firing pattern was correlated with an increase in
high-frequency oscillations between 40 and 120 Hz (mean peak
from baseline SD: Z = 6.1, range from 4.3 to 9.1). Figure 3 shows
average time-frequency representations around the ID for the two
patients of Figure 2D. Main changes in spectral power can be seen
in the LFP preceding the interictal discharge and correlate closely
with the increase or decrease in neuronal firing.

Finally, we analyzed unit synchronization during ID between
pairs of units simultaneously recorded in two different micro-
electrodes. Because of the inter-tip spacing of 500 μm, the
units are assumed to reflect adjacent but different neuronal
populations. Two complementary methods have been used to
address the synchrony between spike trains. First, analysis of
cross-correlograms between pairs of units was performed for
each cell pairs that showed a sufficient number of spikes (>100)
during ID. The significance of the correlation was obtained by
jittering each pair of spike trains and by computing the 99%
confidence interval. Of the 120 cross-correlograms constructed,
only 5 cross-correlograms (about 4%) had a significant peak
that occurred within ±25 ms around the origin, indicating

that these neuronal pairs were discharging in a correlated way.
Figure 4 (top) illustrates examples of significant peaks in cross-
correlograms of two units. In addition to cross-correlation anal-
ysis, we also analyzed the overall level of synchronicity from
the number of quasi simultaneous appearances of spikes. In
order to not overestimate the number of random synchronous
spikes due to the elevated firing rate, we used jitter techniques
to infer millisecond-precise temporal synchrony (Hatsopoulos
et al., 2003). Here, spikes of one of the pairs of neurons were
time jittered by ±5 ms to generate jittered peri-stimulus raster
plots of unit coincidence that could be used to assess the sta-
tistical significance of bin fluctuations in the non-jittered spike
series. Because the jittered data sets preserve firing rates on
timescales much broader than that of the jitter interval (in this
case, 5 ms), the overall effect of the analysis is to identify those
pairs that showed excessive co-firing at short latencies that can-
not be accounted for by firing rates varying at timescales of
tens of milliseconds. Despite the strong increase in about 30%
of the recorded units during ID, only a very small subset of
cells (18 of 120 analyzed pairs, about 15%) showed signifi-
cant coincident firing before or during ID. For two patients,
Figure 4 (bottom) illustrates pairs of units that showed signifi-
cant coincident firing (p = 0.001) during ID (A) and the pre-ID
period (B).
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FIGURE 3 | (A,B) Time-frequency representations of the LFP around the ID for two patients showing pre-ID changes in neuronal firing. Note the increase in LFP
high-frequency oscillations between 40 and 120 Hz preceding the ID and closely correlated with the decrease (A) or increase (B) in neuronal firing (see arrows).

DISCUSSION
We found that a large subset of the recorded units showed sig-
nificant changes in firing in or around ID in the hippocampal
formation of patients with mesial temporal epilepsy. Around
30% of the unit increased their firing rate during ID while 40%
showed a decrease during the post-ID period. This percentage
of modulated neurons agrees with that described by Wyler et al.
(1982), who found that 44% of recorded neurons showed primar-
ily an increase in firing rate near the interictal discharge peak.
Surprisingly, a subset of 30% of units showed significant firing
rate variations several hundred of milliseconds before the ID. In
a few patients, we observed that this neuronal firing pattern was
related with elevated LFP oscillations at 40–120 Hz. Finally, based
on two statistical methods that identify spike synchronization, we
found that only a very small subset of cells showed significant
coincident firing before or during ID.

Our observations of neuronal firing during the interictal dis-
charge are consistent with the paroxysmal depolarizing shift
(PDS) mechanism—a large depolarization phase followed by a
long hyperpolarization—that have been studied in animal mod-
els of epilepsy (Matsumoto and Marsan, 1964; Prince, 1968). The
first part of the depolarization phase is believed to be generated
by intrinsic membrane conductance (de Curtis et al., 1999), and
the later from feedback recurrent synaptic excitation mediated by
AMPA and NMDA receptor subtypes, and glutamate receptor-
coupled calcium conductances (Traub et al., 1993). Thus, PDS
has been shown to be the result of giant excitatory postsynaptic
potentials. The PDS is usually followed by a hyperpolarization,
which represents GABA-mediated recurrent inhibition, as well

as Ca2+-dependent K+ currents. Interestingly, consistent with
in vitro studies on hippocampal slices from human patients
with temporal lobe epilepsy (Cohen et al., 2002; Wittner et al.,
2009), the presence of a similar suppression of unit activities in
our in vivo data suggests that IDs can occur in cortical regions
maintaining substantial inhibitory function.

However, in contrast to simple models of PDS and in line with
other observations in human epileptic neocortex (Keller et al.,
2010), we found that ID, rather than requiring a large synchro-
nization of neurons, can occur with relatively sparse single neuron
participation (estimated at about 30% of the cells). Furthermore,
a small subset of the units significantly increased or decreased
their firing well before ID. Concomitant with changes in firing
rate for certain neurons, at least in some patients, high-frequency
oscillations at 40–120 Hz can be seen in the LFP preceding the
ID and correlate closely with the changes in neuronal firing.
Because interneurons are involved in the generation of high
frequency oscillations through mechanisms of post-inhibition
resetting of neuronal firing (Cobb et al., 1995; Ylinen et al.,
1995; Le Van Quyen et al., 2008; Le Van Quyen, 2012), it is
here tempting to speculate that GABA-mediated events may con-
tribute to enhance synchronization of local epileptic networks
before ID. Interestingly, emerging evidence indicates that GABA
promotes epileptiform synchronization (Pavlov et al., 2013). For
instance, GABA receptor-mediated inhibition can facilitate tha-
lamocortical processes leading to the occurrence of generalized
spike and wave discharges that occur during absence seizures
(Danober et al., 1998). Following a similar mechanism, ID may be
caused by a rebound synchronization of cells that may start firing
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FIGURE 4 | Top: Cross-correlograms between pairs of units during

ID in two patients (A,B). The blue lines are the significance levels
computed from 1000 jittered spike trains. In both cases, the center
peak exceeds the significance level (arrows) and the pairs of units
are considered to be significantly correlated. Bottom: Unit

synchronizations (red circles) were defined as coincidences between
the two units (green and blue points) occurring over a 5-ms interval.
Note the significant increase in coincidences during ID (A) and the
pre-ID period (B), over the statistical threshold defined by a random
jitter of the original data.

synchronously shortly after inhibition ceases and permit the fast
component of the ID. Moreover, intense synaptic activation of
GABAA receptors in the hippocampus can lead to a shift in
GABAergic neurotransmission from inhibitory to excitatory, con-
tributing to epileptic discharges (Kohling et al., 2000; Cohen
et al., 2002). Interestingly, pre-event changes have also been seen
in advance of seizures in an animal model of temporal lobe
epilepsy (Bower and Buckmaster, 2008) and around seizure onset
in human epilepsy (Babb and Crandall, 1976; Truccolo et al.,
2011), suggesting a possible similar mechanism before seizures.

Taken together, our data suggest that ID in patients with tem-
poral lobe epilepsy is not a simple paroxysm of hypersynchronous

excitatory activity, but rather represents a heterogeneous synchro-
nization process possibly initiated by GABAergic responses in
small subsets of cells and emerging over hundreds of milliseconds
before the paroxysmal discharges.
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The diversity of neuron models used in contemporary theoretical neuroscience to
investigate specific properties of covariances in the spiking activity raises the question
how these models relate to each other. In particular it is hard to distinguish between
generic properties of covariances and peculiarities due to the abstracted model. Here
we present a unified view on pairwise covariances in recurrent networks in the irregular
regime. We consider the binary neuron model, the leaky integrate-and-fire (LIF) model,
and the Hawkes process. We show that linear approximation maps each of these models
to either of two classes of linear rate models (LRM), including the Ornstein–Uhlenbeck
process (OUP) as a special case. The distinction between both classes is the location of
additive noise in the rate dynamics, which is located on the output side for spiking models
and on the input side for the binary model. Both classes allow closed form solutions
for the covariance. For output noise it separates into an echo term and a term due to
correlated input. The unified framework enables us to transfer results between models.
For example, we generalize the binary model and the Hawkes process to the situation with
synaptic conduction delays and simplify derivations for established results. Our approach
is applicable to general network structures and suitable for the calculation of population
averages. The derived averages are exact for fixed out-degree network architectures and
approximate for fixed in-degree. We demonstrate how taking into account fluctuations in
the linearization procedure increases the accuracy of the effective theory and we explain
the class dependent differences between covariances in the time and the frequency
domain. Finally we show that the oscillatory instability emerging in networks of LIF models
with delayed inhibitory feedback is a model-invariant feature: the same structure of poles
in the complex frequency plane determines the population power spectra.

Keywords: correlations, linear response, Hawkes process, leaky integrate-and-fire model, binary neuron, linear rate

model, Ornstein–Uhlenbeck process

1. INTRODUCTION
The meaning of correlated neural activity for the processing
and representation of information in cortical networks is still
not understood, but evidence for a pivotal role of correlations
increases (recently reviewed in Cohen and Kohn, 2011). Different
studies have shown that correlations can either decrease (Zohary
et al., 1994) or increase (Sompolinsky et al., 2001) the signal
to noise ratio of population signals, depending on the readout
mechanism. The architecture of cortical networks is dominated
by convergent and divergent connections among the neurons
(Braitenberg and Schüz, 1991) causing correlated neuronal activ-
ity by common input from shared afferent neurons in addition to
direct connections between pairs of neurons and common exter-
nal signals. It has been shown that correlated activity can faithfully
propagate through convergent-divergent feed forward structures,
such as synfire chains (Abeles, 1991; Diesmann et al., 1999), a
potential mechanism to convey signals in the brain. Correlated
firing was also proposed as a key to the solution of the bind-
ing problem (von der Malsburg, 1981; Bienenstock, 1995; Singer,
1999), an idea that has been discussed controversially (Shadlen
and Movshon, 1999). Independent of a direct functional role
of correlations in cortical processing, the covariance function

between the spiking activity of a pair of neurons contains the
information about time intervals between spikes. Changes of
synaptic coupling, mediated by spike-timing dependent synap-
tic plasticity (STDP, Markram et al., 1997; Bi and Poo, 1999),
are hence sensitive to correlations. Understanding covariances in
spiking networks is thus a prerequisite to investigate the evolution
of synapses in plastic networks (Burkitt et al., 2007; Gilson et al.,
2009, 2010).

On the other side, there is ubiquitous experimental evidence of
correlated spike events in biological neural networks, going back
to early reports on multi-unit recordings in cat auditory cortex
(Perkel et al., 1967; Gerstein and Perkel, 1969), the observation
of closely time-locked spikes appearing at behaviorally relevant
points in time (Kilavik et al., 2009; Ito et al., 2011) and collec-
tive oscillations in cortex [recently reviewed in Buzsáki and Wang
(2012)].

The existing theories explaining correlated activity use a mul-
titude of different neuron models. Hawkes (1971) developed
the theory of covariances for linear spiking Poisson neurons
(Hawkes processes). Ginzburg and Sompolinsky (1994) presented
the approach of linearization to treat fluctuations around the
point of stationary activity and to obtain the covariances for
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networks of non-linear binary neurons. The formal concept
of linearization allowed Brunel and Hakim (1999) and Brunel
(2000) to explain fast collective gamma oscillations in networks
of spiking leaky integrate-and-fire (LIF) neurons. Correlations
in feed-forward networks of LIF models are studied in Moreno-
Bote and Parga (2006), exact analytical solutions for such net-
work architectures are given in Rosenbaum and Josic (2011)
for the case of stochastic random walk models, and thresh-
old crossing neuron models are considered in Tchumatchenko
et al. (2010) and Burak et al. (2009). Covariances in struc-
tured networks are investigated for Hawkes processes (Pernice
et al., 2011), and in linear approximation for LIF (Pernice et al.,
2012) and exponential integrate-and-fire neurons (Trousdale
et al., 2012). The latter three works employ an expansion of the
propagator (time evolution operator) in terms of the order of
interaction. Finally Buice et al. (2009) investigate higher order
cumulants of the joint activity in networks of binary model
neurons.

Analytical insight into a neuroscientific phenomenon based on
correlated neuronal activity often requires a careful choice of the
neuron model to arrive at a solvable problem. Hence a diversity of
models has been proposed and is in use. This raises the question
which features of covariances are generic properties of recurrent
networks and which are specific to a certain model. Only if this
question can be answered one can be sure that a particular result
is not an artifact of oversimplified neuronal dynamics. Currently
it is unclear how different neuron models relate to each other and
whether and how results obtained with one model carry over to
another. In this work we present a unified theoretical view on
pairwise correlations in recurrent networks in the asynchronous
and collective-oscillatory regime, approximating the response of
different models to linear order. The joint treatment allows us to
answer the question of genericness and moreover naturally leads
to a classification of the considered models into only two cat-
egories, as illustrated in Figure 1. The classification in addition
enables us to extend existing theoretical results to biologically
relevant parameters, such as synaptic delays and the presence
of inhibition, and to derive explicit expressions for the time-
dependent covariance functions, in quantitative agreement with
direct simulations, which can serve as a starting point for further
work.

The remainder of this article is organized as follows. In the first
part of our results in “Covariance structure of noisy rate models”
we investigate the activity and the structure of covariance func-
tions for two versions of linear rate models (LRM); one with input
the other with output noise. If the activity relaxes exponentially
after application of a short perturbation, both models coincide
with the OUP. We mainly consider the latter case, although most
results hold for arbitrary kernel functions. We extend the analyt-
ical solutions for the covariances in networks of OUP (Risken,
1996) to the neuroscientifically important case of synaptic con-
duction delays. Solutions are derived first for general forms of
connectivity in “Solution of the convolution equation with input
noise” for input noise and in “Solution of convolution equa-
tion with output noise” for output noise. After analyzing the
spectral properties of the dynamics in the frequency domain in
“Spectrum of the dynamics,” identifying poles of the propagators

FIGURE 1 | Mapping different descriptions of neuronal dynamics to

linear rate models (LRM). The arrows indicate analytical methods which
enable a mapping from the original spiking (LIF model, Hawkes model) or
binary neuron dynamics to the analytically more tractable linear rate
models. Depending on the original dynamics (spiking or binary) the
resulting LRM contains an additive noise component x either on the output
side (left) or on the input side (right).

and their relation to collective oscillations in neuronal networks,
we show in “Population-averaged covariances”’ how to obtain
pairwise averaged covariances in homogeneous Erdös-Rényi ran-
dom networks. We explain in detail the use of the residue theorem
to perform the Fourier back-transformation of covariance func-
tions to the time domain in “Fourier back transformation” for
general connectivity and in “Explicit expression for the popula-
tion averaged cross covariance in the time domain” for averaged
covariance functions in random networks, which allows us to
obtain explicit results and to discuss class dependent features of
covariance functions.

In the second part of our results in “Binary neurons,” “Hawkes
processes,” and “Leaky integrate-and-fire neurons” we consider
the mapping of different neuronal dynamics on either of the
two flavors of the linear rate models discussed in the first
part. The mapping procedure is qualitatively the same for all
dynamics as illustrated in Figure 1: Starting from the dynamic
equations of the respective model, we first determine the work-
ing point described in terms of the mean activity in the net-
work. For unstructured homogeneous random networks this
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amounts to a mean-field description in terms of the popula-
tion averaged activity (i.e., firing rate in spiking models). In
the next step, a linearization of the dynamical equations is
performed around this working point. We explain how fluc-
tuations can be considered in the linearization procedure to
improve its accuracy and we show how the effective linear
dynamics maps to the LRM. We illustrate the results through-
out by a quantitative comparison of the analytical results to
direct numerical simulations of the original non-linear dynam-
ics. The appendices “Implementation of noisy rate models,”
“Implementation of binary neurons in a spiking simulator
code,” and “Implementation of Hawkes neurons in a spik-
ing simulator code.” describe the model implementations and
are modules of our long-term collaborative project to provide
the technology for neural systems simulations (Gewaltig and
Diesmann, 2007).

2. COVARIANCE STRUCTURE OF NOISY RATE MODELS
2.1. DEFINITION OF MODELS
Let us consider a network of linear model neurons, each charac-
terized by a continuous fluctuating rate r and connections from
neuron j to neuron i given by the element wij of the connectivity
matrix w. We assume that the response of neuron i to input can
be described by a linear kernel h so that the activity in the network
fulfills

r(t) = h(◦) ∗ [wr(◦ − d)+ bx(◦)](t), (1)

where f (◦ − d) denotes the function f shifted by the delay d, x is
an uncorrelated noise with

〈xi(t)〉 = 0, 〈xi(s)xj(t)〉 = δijδ(s− t)ρ2 , (2)

e.g., a Gaussian white noise and (f ∗ g)(t) = ∫ t
−∞ f (t − t′)

g(t′) dt′ is the convolution. With the particular choice
b = wδ(◦ − d)∗ we obtain

r(t) = [h(◦) ∗ w(r(◦ − d)+ x(◦ − d))](t). (3)

We call the dynamics (3) the linear noisy rate model (LRM) with
noise applied to output, as the sum r + x appears on the right
hand side. Alternatively, choosing b = 1 we define the model with
input noise as

r(t) = h(◦) ∗ [wr(◦ − d)+ x(◦)](t). (4)

Hence, Equations (3) and (4) are special cases of (1). In the
following we consider the particular case of an exponential kernel

h(s) = 1

τ
θ(s) e−s/τ, (5)

where θ denotes the Heaviside function, θ(t) = 1 for t > 0, 0 else.
Applying to (1) the operator O = τ d

ds + 1 which has h as a Green’s
function (i.e., Oh = δ) we get

τ
d

dt
r(t)+ r(t) = wr(t − d)+ bx(t), (6)

which is the equation describing a set of delay coupled Ornstein-
Uhlenbeck-processes (OUP) with input or output noise for b = 1
or b = wδ(◦ − d)∗, respectively. We use this representation in
“Binary neurons” to show the correspondence to networks of
binary neurons.

2.2. SOLUTION OF THE CONVOLUTION EQUATION WITH INPUT NOISE
The solution for the system with input noise obtained from the
definition (4) after Fourier transformation is

R = HdwR+HX, (7)

where the delay is consumed by the kernel function hd(s) =
1
τ
θ(s− d)e−(s−d)/τ. We use capital letters throughout the text to

denote objects in the Fourier domain and lower case letters for
objects in the time domain. Solved for R = (1−Hdw)−1HX the
covariance function of r in the Fourier domain is found with the
Wiener–Khinchin theorem (Gardiner, 2004) as 〈R(ω)RT(−ω)〉,
also called the cross spectrum

C(ω) = 〈R(ω)RT(−ω)〉 (8)

= (1−Hd(ω)w)
−1H(ω)〈X(ω)XT(−ω)〉

H(−ω)(1−Hd(−ω)wT)−1

= (Hd(ω)
−1 − w)−1D(Hd(−ω)−1 − wT)−1,

where we introduced the matrix D = 〈X(ω)XT(−ω)〉. From the
second to the third line we used the fact that the non-delayed
kernels H(ω) can be replaced by delayed kernels Hd(ω) and that
the corresponding phase factors eiωd and e−iωd cancel each other.
If x is a vector of pairwise uncorrelated noise, D is a diagonal
matrix and needs to be chosen accordingly in order for the cross
spectrum (8) to coincide (neglecting non-linear effects) with the
cross spectrum of a network of binary neurons, as described in
“Equivalence of binary neurons and Ornstein–Uhlenbeck pro-
cesses”.

2.3. SOLUTION OF CONVOLUTION EQUATION WITH OUTPUT NOISE
For the system with output noise we consider the quantity yi =
ri + xi as the dynamic variable representing the activity of neuron
i and aim to determine pairwise correlations. It is easy to get from
(3) after Fourier transformation

R = Hdw(R+ X), (9)

which can be solved for R = (1−Hdw)−1HdwX in order to
determine the Fourier transform of Y as

Y = R+ X = (1−Hdw)−1X. (10)

The cross spectrum hence follows as

C(ω) = 〈Y(ω)YT(−ω)〉 (11)

= (1−Hd(ω)w)
−1〈X(ω)XT(−ω)〉(1−Hd(−ω)wT)−1

= (1−Hd(ω)w)
−1D(1−Hd(−ω)wT)−1,
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with D = 〈X(ω)XT(−ω)〉. D is a diagonal matrix with the i-th
diagonal entry ρ2

i . For the correspondence to spiking models D
must be chosen appropriately, as discussed in “Hawkes processes”
and “Leaky integrate-and-fire neurons” for Hawkes processes and
LIF neurons, respectively.

2.4. SPECTRUM OF THE DYNAMICS
For both linear rate dynamics, with output and with input noise,
the cross spectrum C(ω) has poles at certain frequencies ω

in the complex plane. These poles are defined by the zeros of
det(Hd(ω)

−1 − w) and the corresponding term with the oppo-
site sign of ω. The zeros of det(Hd(ω)

−1 − w) are solutions of the
equation

Hd(ω)
−1 = (1+ iωτ)eiωd = Lj

where Lj is the j-th eigenvalue of w. The same set of poles arises
from (1) when solving for R. For d > 0 and the exponential kernel
(5), the poles can be expressed as

zk(Lj) = i

τ
− i

d
Wk

(
Lj

d

τ
e

d
τ

)
, (12)

where Wk is the k-th of the infinitely many branches of the
Lambert-W function (Corless et al., 1996). For vanishing synaptic
delay d = 0 there is obviously only one solution for every Lj given

by z = −i
τ
(Lj − 1).

Given the same parameters d, w, τ, the pole structures of
the cross spectra of both systems (8) and (11) are identical,
since the former can be obtained from the latter by multiplica-
tion with (Hd(ω)Hd(−ω))−1 = (H(ω)H(−ω))−1, which has no
poles. The only exception causing a different pole structure for the
two models is the existence of an eigenvalue Lj = 0 of the connec-

tivity matrix w, corresponding to a pole z(0) = i
τ

. However, this
pole corresponds to an exponential decay of the covariance for
input noise in the time domain and hence does not contribute to
oscillations. For output noise, the multiplication with the term
(H(ω)H(−ω))−1, vanishing at ω = i

τ
, cancels this pole in the

covariance. Consequently both dynamics exhibit similar oscilla-
tions. A typical spectrum of poles for a negative eigenvalue Lj < 0
is shown in Figures 2B,D.

2.5. POPULATION-AVERAGED COVARIANCES
Often it is desirable to consider not the whole covariance matrix
but averages over subpopulations of pairs of neurons. For instance
the average over the whole network would result in a single scalar
value. Separately averaging pairs, distinguishing excitatory and
inhibitory neuron populations, yields a 2 by 2 matrix of covari-
ances. For these simpler objects closed form solutions can be
obtained, which already preserve some useful information and
show important features of the network. Averaged covariances
are also useful for comparison with simulations and experimental
results.

In the following we consider a recurrent random network of
Ne = N excitatory and Ni = γN inhibitory neurons with synap-
tic weight w for excitatory and −gw for inhibitory synapses. The
probability p determines the existence of a connection between
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FIGURE 2 | Pole structure determines dynamics. Autocovariance of the
population activity (A,C) measured in ρ2/τ and its Fourier transform called
power spectrum (B,D) of the rate models with output noise (dots) (3) and
input noise (diagonal crosses) (4) for delays d = 3 ms (A,B), and d = 1 ms
(C,D). Black symbols show averages over the excitatory population activity
and gray symbols over the inhibitory activity obtained by direct simulation.
Light gray curves show theoretical predictions for the spectrum (20) and
the covariance (21) for output noise and the spectrum (17) and the
covariance (18) for input noise. Black crosses (12) in (B,D) denote the
locations of the poles of the cross spectra - with the real parts
corresponding to the damping (vertical axis), and the imaginary parts to
oscillation frequencies (horizontal axis). The detailed parameters for this
and following figures are given in “Parameters of simulations”.

two randomly chosen neurons. We study the dynamics aver-
aged over the two subpopulations by introducing the quantities
ra = 1

Na

∑
j∈ a rj and noise terms xa = 1

Na

∑
j∈ a xj for a ∈ {E,I};

indices I and E stand for inhibitory and excitatory neurons
and corresponding quantities. Calculating the average local input
N−1

a

∑
j∈ a wjkrk to a neuron of type a, we obtain

N−1
a

∑
j∈ a

∑
k

wjkrk = N−1
a

⎛
⎝∑

j∈ a

∑
k∈E

wjkrk +
∑
j∈ a

∑
k∈I

wjkrk

⎞
⎠(13)

= N−1
a

(
pNaw

∑
k∈E

rk − pNagw
∑
k∈I

rk

)

= pwN(rE − γgrI),

where, from the second to the third line we used the fact that
in expectation a given neuron k has pNa targets in the popula-
tion a. The reduction to the averaged system in (13) is exact if
in every column k in wjk there are exactly K non-zero elements
for j ∈ E and γK for j ∈ I , which is the case for networks with
fixed out-degree (number of outgoing connections of a neuron to
the neurons of a particular type is kept constant), as noted earlier
(Tetzlaff et al., 2012). For fixed in-degree (number of connec-
tions to a neuron coming in from the neurons of a particular type
is kept constant) the substitution of rj∈ a by ra is an additional
approximation, which could be considered as an average over pos-
sible realizations of the random connectivity. In both cases the

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 131 | 152

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Grytskyy et al. Unified correlations

effective population-averaged connectivity matrix M turns out
to be

M = Kw

(
1 −γg
1 −γg

)
, (14)

with K = pN. So the averaged activities fulfill the same Equations
(3) and (4) with the non-averaged quantities r, x, and w replaced
by their averaged counterparts r̄ = (rE , rI)T , x̄ = (xE , xI)T , and
M. The population averaged activities ra are directly related to

the block-wise averaged covariance matrix c̄ =
(

cEE cEI
cIE cII

)
, with

cab = N−1
a N−1

b

∑
i∈ a

∑
j∈ b cij. With

D̄ab = N−1
a N−1

b

〈∑
i∈ a

xi

∑
j∈ b

xj

〉
(15)

= N−1
a N−1

b

∑
i∈ a

∑
j∈ b

Dij

= δabNa/N2
a ρ2 = δabN−1

a ρ2

we replace D by D̄ = ρ2

(
N−1 0

0 (γN)−1

)
and c by c̄ so that the

same Equations (11) and (8) and their general solutions also hold
for the block-wise averaged covariance matrices.

The covariance matrices separately averaged over pairs of
excitatory, inhibitory or mixed pairs are shown in Figure 2 for
both linear rate dynamics (3) and (4). (Parameters for all sim-
ulations presented in this article are collected in “Parameters
of simulations,” the implementation of LRM is described in
“Implementation of noisy rate models”). The poles of both mod-
els shown in Figure 2B are given by (12) and coincide with the
peaks in the cross spectra (8) and (11) for output and input noise,
respectively. The results of direct simulation and the theoretical
prediction are shown for two different delays, with the longer
delay leading to stronger oscillations.

Figure 3C shows the distribution of eigenvalues in the com-
plex plane for two random connectivity matrices with different
synaptic amplitudes w. The model exhibits a bifurcation, if at least
one eigenvalue assumes a zero real part. For fixed out-degree the
averaging procedure (13) is exact, reflected by the precise agree-
ment of theory and simulation in Figure 3D. For fixed in-degree,
the averaging procedure (13) is an approximation, which is good
only for parameters far from the bifurcation. Even in this regime
still small deviations of the theory from the simulation results are
visible in Figure 3B. On the stable side close to a bifurcation, the
appearance of long living modes causes large fluctuations. These
weakly damped modes appearing in one particular realization of
the connectivity matrix are not represented after the replacement
of the full matrix w by the average M over matrix realizations. The
eigenvalue spectrum of the connectivity matrix provides an alter-
native way to understand the deviations. By the averaging the set
of N eigenvalues of the connectivity matrix is replaced withby the
two eigenvalues of the reduced matrix M, one of which is zero due
to identical rows of M. The eigenvalue spectrum of the full matrix
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FIGURE 3 | Limits of the theory for fixed in-degree and fixed

out-degree. Autocovariance (A) and covariance (B) in random networks
with fixed in-degree (dots) and fixed out-degree (crosses). Simulation
results for cEE , cEI , and cII are shown in dark gray, black and light gray,
respectively for synaptic weight w = 0.011 far from bifurcation. For larger
synaptic weight w = 0.018 close to bifurcation (see text at the end of
“Population-averaged covariances”), cEE is also shown in (D) for fixed
in-degree (dark gray dots) and for fixed out-degree (black dots).
Corresponding theoretical predictions for the autocovariance (34) (A) and
the covariance (18) (B,D) are plotted as light gray curves throughout. The
set of eigenvalues is shown as black dots in panel (C) for the smaller
weight. The gray circle denotes the spectral radius w

√
Np(1− p)(1+ γg2)

(Rajan and Abbott, 2006; Kriener et al., 2008) confining the set of
eigenvalues for the larger weight. The small filled gray circle and the
triangle show the effective eigenvalues L of the averaged systems for small
and large weight, respectively.

is illustrated in Figure 3C. Even if the eigenvalue(s) LM of M are
far in the stable region (corresponding to 	(z(LM)) > 0) some
eigenvalues Lw of the full connectivity matrix in the vicinity of
the bifurcation region may still have an imaginary part becom-
ing negative and the system can feel their influence, shown in
Figure 3D.

2.6. FOURIER BACK TRANSFORMATION
Although the cross spectral matrices (8) and (11) for both dynam-
ics look similar in the Fourier domain, the procedures for back
transformation differ in detail. In both cases, the Fourier inte-
gral along the real ω-axis can be extended to a closed integra-
tion contour by a semi-circle with infinite radius centered at
0 in the appropriately chosen half-plane. The half-plane needs
to be selected such that the contribution of the integration
along the semi-circle vanishes. By employing the residue theorem
(Bronstein et al., 1999) the integral can be replaced by a sum over
residua of the poles encircled by the contour. For a general covari-
ance matrix we only need to calculate c(t) for t ≥ 0, as for t < 0
the solution can be found by symmetry c(t) = cT(−t).

For input noise it is possible to close the contour in the upper
half-plane where the integrand C(ω) eiωt vanishes for |ω| → ∞
for all t > 0, as |Cij(ω)| decays as |ω|−2. This can be seen from (8),

because the highest order of H−1
d ∝ ω appearing in det(H−1

d −
w) is equal to the dimensionality N of w (N = 2 for M), and in
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det(adjugate matrix ij of H−1
d − w) it is N − 1 (i = j) or N − 2

(i = j). So |(H−1
d − w)−1| is proportional to |ω|−1|e−iωd| and

|C(ω)| ∝ |ω|−2 for large |ω|.
For the case of output noise (11) C(ω) can be obtained

from the C(ω) for input noise (8) multiplied with
(Hd(ω)Hd(−ω))−1 ∼ |ω|2 for large |ω|. The multiplication
with this factor changes the asymptotic behavior of the inte-
grand, which therefore contains terms converging to a constant
value and terms decaying like |ω|−1 for |ω| → ∞. These terms
result in non-vanishing integrals over the semicircle in the upper
half-plane and have to be considered separately. To this end we
rewrite (11) as

C(ω) = ((1−Hd(ω)w)
−1Hd(ω)w+ 1)

D(wTHd(−ω)(1−Hd(−ω)wT)−1 + 1) (16)

= (1−Hd(ω)w)
−1Hd(ω)wDwTHd(−ω)(1−Hd(−ω)wT)−1

+ (1−Hd(ω)w)
−1Hd(ω)wD

+DwTHd(−ω)(1−Hd(−ω)wT)−1

+D,

and find the constant term D which turns into a δ-function in the
time domain. The first term in the second line of (16) decays like
|ω|−2 and can be transformed just as C(ω) for input noise closing
the contour in the upper half-plane. The second and third term
are the transposed complex conjugates of each other, because of
the dependence of H on −ω instead of ω, and require a special
consideration. Multiplied by eiωt under the Fourier integral, the
first term is proportional to Hdeiωt ∼ ω−1eiω(t−d) and vanishes
faster than |ω|−1 for large |ω| in the upper half-plane for t > d
and in the lower half plane for t < d. For the second term the half
planes are interchanged. The application of the residue theorem
requires closing the integration contour in the half-plane where
the integral over the semi-circle vanishes faster than |ω|−1. For
w = M and in the general case of a stable dynamics all poles of
the first term are in the upper half-plane 	(zk(Lj)) > 0, and have
no contribution to c(t) for t < d. For the second term the same is
true for t > −d; these terms correspond to the jumps of c(t) after
one delay, caused by the effect of the sending neuron arriving at
the other neurons in the system after one synaptic delay. These
terms correspond to the response of the system to the impulse
of the sending neuron – hence we call them “echo terms” in the
following (Helias et al., 2013). The presence of such discontinu-
ous jumps at time points d and −d in the case of output noise is
reflected in the convolution of hw with D in the time domain in
(37). For input noise the absence of discontinuities can be inferred
from the absence of such terms in (33), where the derivative of
the correlation function is equal to the sum of finite terms. The
first summand in (16) corresponds to the covariance evoked by
fluctuations propagating through the system originating from the
same neuron and we call it “correlated input term”. In the system
with input noise a similar separation into effective echo and cor-
related input terms can be performed. We obtain the correlated
input term as the covariance in an auxiliary population without
outgoing connections and echo terms as the difference between

the full covariance between neurons within the network and the
correlated input term.

2.7. EXPLICIT EXPRESSION FOR THE POPULATION AVERAGED CROSS
COVARIANCE IN THE TIME DOMAIN

We obtain the population averaged cross spectrum in a recurrent
random network of Ornstein–Uhlenbeck processes (OUP) with
input noise by inserting the averaged connectivity matrix w = M
(14) into (8). The explicit expression for the covariance func-
tion follows by taking into account all (both) eigenvalues of M
with values 0 and L = Kw(1− γg). The detailed derivation of the
results presented in this section are documented in “Calculation
of the Population Averaged Cross Covariance in Time Domain”.
The expression for the cross spectrum (8) takes the form

C(ω) = f (ω)f (−ω)

(
1+ Kw

(
γg −γg
1 −1

)
Hd(ω)

)

D

(
1+ Kw

(
γg 1
−γg −1

)
Hd(−ω)

)
, (17)

where we introduced f (ω) = (Hd(ω)
−1 − L)−1 as a short

hand. Sorting the terms by their dependence on ω, intro-
ducing the functions �1(ω), . . . , �4(ω) for this dependence,
and ϕ1(t), . . . ,ϕ4(t) for the corresponding functions in the
time domain, the covariance in the time domain c(t) =

1
2π

∫ +∞
−∞ C(ω)eiωtdω takes the form

c(t) = Dϕ1(t)

+Kw

((
γg −γg
1 −1

)
Dϕ2(t)+D

(
γg 1
−γg −1

)
ϕ3(t)

)

+K2w2
(

γg −γg
1 −1

)
D

(
γg 1
−γg −1

)
ϕ4(t).

The previous expression is valid for arbitrary D. In simulations
presented in this article we consider identical marginal input
statistics for all neurons. In this case the averaged activities for
excitatory and inhibitory neurons are the same, so we can insert
the special form of D given in (15), which results in

c(t) = ρ2

N

(
1 0
0 γ−1

)
ϕ1(t) (18)

+ ρ2

N
Kw

(
γg −g
1 −γ−1

)
ϕ2(t)+ ρ2

N
Kw

(
γg 1
−g −γ−1

)
ϕ3(t)

+ ρ2

N
(γ+ 1)K2w2

(
γg2 g

g γ−1

)
ϕ4(t).

The time-dependent functions ϕ1, . . . ,ϕ4 are the same
in both cases. Using the residue theorem ϕi(t) =

1
2π

∫ +∞
−∞ �i(ω)eiωtdω = i

∑
z∈poles of�i

Res(�i, z) eizt for t � 0
they can be expressed as a sum over the poles zk(L) given by (12)
and the pole z = i

τ
of Hd(ω). At ω = zk(L) the residue of f (ω) is

Res(f ,ω = zk(L)) =
(
idL+ iτeiωd

)−1
, the residue of Hd(ω) at
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z = i
τ

is− i
τ

ed/τ, so that the explicit forms of ϕ1, . . . ,ϕ4 follow as

ϕ1(t) =
∑

ω=zk(L)

iRes(f ,ω)f (−ω)eiωt

ϕ2(t) =
∑

ω=zk(L)

iRes(f ,ω)f (−ω)Hd(ω)e
iωt

+ e(d−t)/τ

τ
f

(
i

τ

)
f

(
− i

τ

)

ϕ3(t) =
∑

ω=zk(L)

iRes(f ,ω)f (−ω)Hd(−ω)eiωt (19)

ϕ4(t) =
∑

ω=zk(L)

iRes(f ,ω)f (−ω)Hd(ω)Hd(−ω)eiωt

+ e−t/τ

2τ
f

(
i

τ

)
f

(
− i

τ

)
.

The corresponding expression for C(ω) for output noise is
obtained by multiplying (17) with H−1

d (ω)H−1
d (−ω) = (1+

ω2τ2)

C(ω) = H−1
d (ω)H−1

d (−ω)f (ω)f (−ω) (20)

× (1+ Kw

(
γg −γg
1 −1

)
Hd(ω))D(1+ Kw

(
γg 1
−γg −1

)
Hd(−ω)),

which, after Fourier transform, provides the expression for c(t) in
the time domain for t � 0

c(t) = MDMTϕ1(t)+MDϕ0(t)+Dδ(t)

= K2w2 ρ2

N
(1+ γg2)

(
1 1
1 1

)
ϕ1(t)+ Kw

ρ2

N

(
1 −g
1 −g

)
ϕ0(t)

+ ρ2

N

(
1 0
0 γ−1

)
δ(t). (21)

As in (18), the first line holds for arbitrary D, and the second for
D given by (15), valid if the firing rates are homogeneous. ϕ1 is
defined as before, and

ϕ0(t) = θ(t − d)
∑

ω= zk(L)

(
dL+ τeiωd

)−1
eiωt (22)

vanishes for t < d. All matrix elements of the first term in (21) are
identical. Therefore all elements of c(t) are equal for 0 < |t| < d.
Both rows of the matrix in front of ϕ0 are identical, so for t > 0
the off diagonal term cIE coincides with cEE and cEI with cII
and vice versa for t < 0.

As an illustration we show the functions ϕ0, . . . ,ϕ4 for one
set of parameters in Figure 4. The left panels (A,C) correspond
to contributions to the covariance caused by common input to a
pair of neurons, the right panels (B,D) to terms due to the effect
of one of the neurons’ activities on the remaining network (echo
terms). The upper panels (A,B) belong to the model with input
noise, the lower panel (C,D) to the one with output noise.

A B

C D

0

2

0 0

0

5

5

5

t(ms) t(ms)

t(ms) t(ms)

FIGURE 4 | Functions ϕ0 (D), ϕ1 (C), ϕ2, ϕ3 (B), ϕ4 (A) introduced in

(19) and (22) for decomposition of covariance c(t). In (B) ϕ3(−t) is
shown in gray and ϕ2(t) in black. The two functions are continuations of
each other, joint at t = 0. Both functions appear in the echo term for
input noise. The function ϕ0 in (D) describing the corresponding echo
term in the case of output noise is shifted to be aligned with the
function in (B) to facilitate the comparison of (B,D). Parameters in all
panels are d = 3 ms, τ = 10 ms, L = −1.72.

For the rate dynamics with output noise, the term with ϕ1 in
(21) (shown in Figure 4C) is symmetric and describes the com-
mon input covariance and the term with ϕ0 (shown in Figure 4D)
is the echo part of the covariance. For the rate dynamics with
input noise (18) the term containing ϕ4 (shown in Figure 4A) is
caused by common input and is hence also symmetric, the terms
with ϕ2 and ϕ3 (shown in Figure 4B) correspond to the echo
part and have hence their peak outside the origin. The sec-
ond echo term in (18) is equal to the first one transposed and
with opposite sign of the time argument, so we show ϕ2(t)
and ϕ3(−t) together in one panel in Figure 4B. Note that for
input noise, the term with ϕ1 describes the autocovariance, which
corresponds to the term with the δ-function in case of output
noise.

The solution (18) is visualized in Figure 6, the solution (21)
in Figure 7, and the decomposition into common input and
echo parts is also shown and compared to direct simulations in
Figure 8.

3. BINARY NEURONS
In the following sections we study, in turn, the binary neuron
model, the Hawkes model and the LIF model and show how they
can be mapped to one of the two OUPs; either the one with input
or the one with output noise, so that the explicit solutions (18)
and (21) for the covariances derived in the previous section can
be applied. In the present section, we start with the binary neuron
model (Ginzburg and Sompolinsky, 1994; Buice et al., 2009).

Following Ginzburg and Sompolinsky (1994) the state of the
network of N binary model neurons is described by a binary
vector n ∈ {0, 1}N and each neuron is updated at independently
drawn time points with exponentially distributed intervals of
mean duration τ. This stochastic update constitutes a source
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of noise in the system. Given the i-th neuron is updated, the
probability to end in the up-state (ni = 1) is determined by
the gain function Fi(n) which depends on the activity n of
all other neurons. The probability to end in the down state
(ni = 0) is 1− Fi(n). Here we implemented the binary model
in the NEST simulator (Gewaltig and Diesmann, 2007) as
described in “Implementation of Binary Neurons in a Spiking
Simulator Code”. Such systems have been considered earlier
(Ginzburg and Sompolinsky, 1994; Buice et al., 2009), and here
we follow the notation employed in the latter work. In the fol-
lowing we collect results that have been derived in these works
and refer the reader to these publications for the details of the
derivations. The zero-time lag covariance function is defined
as cij(t) = 〈ni(t)nj(t)〉 − ai(t)aj(t), with the expectation value 〈〉
taken over different realizations of the stochastic dynamics. Here
a(t) = (a1(t), . . . , aN(t))T is the vector of mean activities ai(t) =
〈ni(t)〉. cij(t) fulfills the differential equation

τ
d

dt
cij(t) = −2cij(t)+ 〈(nj(t)− aj(t))Fi(n)〉

+ 〈(ni(t)− ai(t))Fj(n)〉.

In the stationary state, the covariance therefore fulfills

cij = 1

2
〈(nj − aj)Fi(n)〉 + 1

2
〈(ni − ai)Fj(n)〉. (23)

The time lagged covariance cij(t, s) = 〈ni(t)nj(s)〉 − ai(t)aj(s) ful-
fills for t > s the differential equation

τ
d

dt
cij(t, s) = −cij(t, s)+ 〈Fi(n, t)(nj(s)− aj(s))〉. (24)

This equation is also true for i = j, the autocovariance. The term
〈Fi(n, t)(nj(s)− aj(s))〉 has a simple interpretation: it measures
the influence of a fluctuation of neuron j at time s around its
mean value on the gain of neuron i at time t (Ginzburg and
Sompolinsky, 1994). We now assume a particular form for the
coupling between neurons

Fi(n, t) = φ(Jin(t − d)) = φ

(
N∑

k= 1

Jiknk(t − d)

)
, (25)

where Ji is the vector of incoming synaptic weights into neuron
i and φ is a non-linear gain function. Assuming that the fluctu-
ations of the total input Jin into the i-th neuron are sufficiently
small to allow a linearization of the gain function φ, we obtain
the Taylor expansion

Fi(n, t) = Fi(a)+ φ′(Jia) Ji(n(t − d)− a(t − d)),

where

φ′(Jia) (26)

is the slope of the gain function at the point of mean input.

Up to this point the treatment of the system is identical to
the work of Ginzburg and Sompolinsky (1994). Now we present
an alternative approach for the linearization which takes into
account the effect of fluctuations in the input. For sufficiently
asynchronous network states, the fluctuations in the input Jin(t −
d) to neuron i can be approximated by a Gaussian distribution
N (μ, σ). In the following we consider a homogeneous ran-
dom network with fixed in-degree as described in “Population-
averaged covariances”. As each neuron receives the same number
K of excitatory and γK inhibitory synapses, the marginal statis-
tics of the summed input to each neuron is identical. The mean
input to a neuron then is μ = KJ(1− γg)a, where a is the mean
activity of a neuron in the network. If correlations are small, the
variance of this input signal distribution can be approximated as
the sum of the variances of the individual contributions from the
incoming signals, resulting in σ2 = KJ2(1+ γg2) a(1− a), where
we used the fact that the variance of a binary variable with mean
a is a(1− a). This results from a direct calculation: since n ∈
{0, 1}, n2 = n, so that the variance is 〈n2〉 − 〈n〉2 = 〈n〉 − 〈n〉2 =
a(1− a). Averaging the slope φ′ of the gain function over the
distribution of the input variable results in the averaged slope

〈φ′〉 �
∫ ∞
−∞

N (μ, σ, x)φ′(x) dx (27)

with N (μ, σ, x) = 1√
2πσ

exp

(
− (x − μ)2

2σ2

)
.

The two alternative methods of linearization of φ are illustrated in
Figure 5. In the given example, the linearization procedure tak-
ing into account the fluctuations of the input signal results in a
smaller effective slope 〈φ′〉 than taking the slope φ′(a) at the mean
activity a near its maximum. Averaging the slope 〈φ′〉 over this
distribution fits simulation results better than φ′(a) calculated at
the mean of a, as shown in Figure 6.

The finite slope of the non-linear gain function can be under-
stood as resulting from the combination of a hard threshold with
an intrinsic local source of noise. The inverse strength of this noise

μ

σ

FIGURE 5 | Alternative linearizations of the binary neuron model. The
black curve represents the non-linear gain function φ(x) = 1

2 + 1
2 tanh(βx).

The dashed gray line is its tangent at the mean input value (denoted by the
diagonal cross). The solid curve is the slope 〈φ′〉 averaged over the
distribution of the fluctuating input (27). This distribution estimated from
direct simulation is presented by black dots, the corresponding theoretical
prediction of a normal distribution N (μ, σ) (27) is shown as the light gray
curve.
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FIGURE 6 | Binary model neuron corresponds to OUP model with

input noise. Autocovariance (A), crosscovarince (B), and autocovariance of
population averaged activity (C,D), for binary neurons (dots) and rate model
with input noise (crosses). cEE , cEI and cII are shown in black, gray, and
light gray. Corresponding theoretical predictions (18) in (C,D), (34) in (A),
their difference in (C) are plotted as light gray curves throughout. Dashed
curve in (C) represents the theoretical prediction using the linearization
with the slope at the mean activity (26), the solid curve shows the results
for the slope averaged over Gaussian distributed input fluctuations (27). The
spread of the simulation results for binary neurons in (C) is due to different
realizations of the random connectivity. (E,F) are the same as (A,B) but for
the presence of a synaptic delay d = 10 ms instead of d = 0.1 ms.

determines the slope parameter β (Ginzburg and Sompolinsky,
1994). In this sense, the network model contains two sources of
noise, the explicit local noise, quantified by β and the fluctuating
synaptic input interpreted as self-generated noise on the network
level, quantified by σ. Even in the absence of local noise (β→∞),
the above mentioned linearization is applicable and yields a finite
effective slope 〈φ′〉 (27). In the latter case the resulting effective
synaptic weight is independent of the original synapse strength
(Grytskyy et al., 2013).

We now extend the classical treatment of covariances in binary
networks (Ginzburg and Sompolinsky, 1994) by synaptic con-
duction delays. In (25) Fi(n, t) must therefore be understood as
a functional acting on the function n(t′) for t′ ∈ [−∞, t], so
that also synaptic connections with time delay d can be realized.
We define an effective weight vector to absorb the gain factor as
wi = βiJi, with either βi = φ′(μ) or βi = 〈φ′〉 depending on the
linearization procedure, and expand the right hand side of (24) to
obtain

〈Fi(n, t)(nj(s)− aj(s))〉 =
N∑

k= 1

wikckj(t − d, s).

Thus the cross-covariance fulfills the matrix delay differential
equation

τ
d

dt
c(t, s)+ c(t, s) = wc(t − d, s). (28)

This differential equation is valid for t > s. For the stationary
solution, the differential equation only depends on the relative
timing u = t − s

τ
d

du
c(u)+ c(u) = wc(u− d). (29)

The same linearization applied to (23) results in the boundary
condition for the solution of the previous equation

2c(0) = wc(−d)+ (wc(−d))T (30)

or, if we split c into its diagonal and its off-diagonal parts ca

and c =

2c =(0) = wc =(−d)+ (wc =(−d))T +O (31)

with O = wca(−d)+ (wca(−d))T .

In the following section we use this representation to demonstrate
the equivalence of the covariance structure of binary networks to
the solution for OUP with input noise.

3.1. EQUIVALENCE OF BINARY NEURONS AND
ORNSTEIN–UHLENBECK PROCESSES

In the following subsection we show that the same Equations
(29) and (31) for binary neurons also hold for the Ornstein-
Uhlenbeck process (OUP) with input noise. In doing so here
we also extend the existing framework of OUP (Risken, 1996)
to synaptic conduction delays d. A network of such processes is
described by

τ
d

dt
r(t)+ r(t) = wr(t − d)+ x(t), (32)

where x is a vector of pairwise uncorrelated white noise with
〈x(t)〉x = 0 and 〈xi(t)xj(t + t′)〉x = δijδ(t′)ρ2. With the help of

the Green’s function G satisfying (τ d
dt + 1)G(t) = δ(t), namely

G(t) = 1
τ
θ(t) e−t/τ, we obtain the solution of Equation (32) as

r(t) = τG(t)r(0)+
∫ t

0
G(t − t′)(wr(t′ − d)+ x(t′)) dt′.

The equation for the fluctuations δr(t) = r(t)− 〈r(t)〉x around
the expectation value

δr(t) =
∫ t

0
G(t − t′)(wδr(t′ − d)+ x(t′)) dt′

coincides with the noisy rate model with input noise (4) with
delay d and convolution kernel h = G. In the next step we inves-
tigate the covariance matrix cij(t, s) = 〈δri(t + s)δrj(t)〉x to show
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for which choice of parameters the covariance matrices for the
binary model and the OUP with input noise coincide. To this end
we derive the differential equation with respect to the time lag s
for positive lags s > 0

τ
d

ds
c(t, s) =

〈
τ

d

ds
δr(t + s)δrT(t)

〉
x (33)

= 〈(wδr(t + s− d)− δr(t + s)+ x(t + s))δrT(t)〉x
= wc(t, s− d)− c(t, s),

where we used 〈x(t + s))δr(t)〉x = 0, because the noise is real-
ized independently for each time step and the system is causal.
Equation (33) is identical to the differential equation satisfied
by the covariance matrix (28) for binary neurons (Ginzburg and
Sompolinsky, 1994). To determine the initial condition of (33) we
need to take the limit c(t, 0) = lims→+0 c(t, s). This initial condi-
tion can be obtained as the stationary solution of the following
differential equation

τ
d

dt
c(t, 0) = lim

s→+0

(〈
τ

d

dt
δr(t + s)δrT(t)

〉
x
+
〈
δr(t + s)τ

d

dt
δrT(t)

〉
x

)

= lim
s→+0

(
〈(wδr(t + s− d)− δr(t + s)+ x(t + s))δrT(t)〉x

+〈δr(t + s)(δrT(t − d)wT − δrT(t)+ xT(t))〉x
)

= −2c(t, 0)+ wc(t,−d)+ c(t − d, d)wT +D.

Here we used that 〈x(t + s)δrT(t)〉 vanishes due to independent
noise realizations and causality and

D = lim
s→+0
〈δr(t + s)xT(t)〉x

= lim
s→+0, s<d

∫ t+s

0
G(t + s− t′)(w 〈δr(t′ − d)xT(t)〉x︸ ︷︷ ︸

=0 causality

+〈x(t′)xT(t)〉x︸ ︷︷ ︸
=1δ(t−t′)ρ2

)dt′

= lim
s→+0, s<d

∫ t+s

0
G(t + s− t′)1δ(t − t′)ρ2dt′

= lim
s→+0, s<d

G(s)1ρ2 = 1

τ
1ρ2.

In the stationary state, c only depends on the time lag s and is
independent of the first time argument t, which, with the symme-
try c(−d)T = c(d) yields the additional condition for the solution
of (33)

2c(0) = wc(−d)+ (wc(−d))T +D

or, if c is split in diagonal and off-diagonal parts ca and c =,
respectively,

2c =(0) = wc =(−d)+ (wc =(−d))T +O

2ca(0) = wc =(−d)+ (wc =(−d))T +D

with O = wca(−d)+ (wca(−d))T . In the equation for the auto-
covariance ca the first two terms are contributions due to the cross
covariance. In the state of asynchronous network activity with

cij ∼ N−1 for i = j these terms are typically negligible in compar-
ison to the third term because

∑
k wikcki ∼ wKN−1 = pw, which

is typically smaller than 1 for small effective weights w < 1 and
small connection probabilities p� 1. In this approximation with
(33) the temporal shape of the autocovariance function is expo-
nentially decaying with time constant τ. With ca(0) ≈ D/2 the
approximate solution for the autocovariance is

ca(t) = D

2
exp

(
−|t|

τ

)
. (34)

The cross covariance then satisfies the initial condition

2c =(0) = wc =(−d)+ (wc =(−d))T +O

O = wD/2+ (wD/2)T,

which coincides with (31) for binary neurons if the diagonal
matrix containing the zero time autocorrelations ca(0) for binary
neurons is equal to D/2, i.e., if the amplitude of the input
noise ρ2 = 2τa(1− a) and the effective linear coupling satisfies
wi = βiJi. Figure 6 shows simulation results for population aver-
aged covariance functions in binary networks and in networks of
OUPs with input noise where the parameters of the OUP net-
work are chosen according to the requirements derived above.
The theoretical results (18) agree well with the direct simulations
of both systems. For comparison, both methods of linearization,
as explained above, are shown. The linearization procedure which
takes into account the noise on the input side of the non-linear
gain function results in a more accurate prediction. Moreover,
the results derived here extend the classical theory (Ginzburg and
Sompolinsky, 1994) by considering synaptic conduction delays.
Figure 8 shows the decomposition of the covariance structure for
a non-zero delay d = 3 ms. For details of the implementation see
“Implementation of binary neurons in a spiking simulator code”.
The explicit effect of introducing delays into the system, such as
the appearance of oscillations in the time dependent covariance, is
presented in (E,F) of Figure 6, differing from (A,B) of this figure,
respectively, only in the delay (d = 10 ms for (E,F), d = 0.1 ms
for (A,B)).

4. HAWKES PROCESSES
In the following section we show that to linear order the covari-
ance functions in networks of Hawkes processes (Hawkes, 1971)
are equivalent to those in the linear rate network with output
noise. Hawkes processes generate spikes randomly with a time
density given by r(t), where neuron i generates spikes at a rate
ri(t), realized independently within each infinitesimal time step.
Arriving spike trains s influence r according to

r(t) = ν+ (hd ∗ Js)(t), (35)

with the connectivity matrix J and the kernel function hd includ-
ing the delay. Here ν is a constant base rate of spike emis-
sion assumed to be equal for each neuron. Here we employ
the implementation of the Hawkes model in the NEST simu-
lator (Gewaltig and Diesmann, 2007). The implementation is
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described in “Implementation of Hawkes neurons in a spiking
simulator code”.

Given neuron j spiked at time u ≤ t, the probability of a spike
in the interval [t, t + δt) for neuron i is 1 if i = j, u = t (the
neuron spikes synchronously with itself) and ri(t)δt + o(δt2) oth-
erwise. Considering the system in the stationary state with the
time averaged activity r̄ = 〈s(t)〉 we obtain a convolution equa-
tion for time lags τ ≥ 0 for the covariance matrix with the entry
cij(τ) for the covariance between spike trains of neurons i and j

c(τ) = 〈s(t + τ)sT(t)〉 − 〈s(t + τ)〉〈sT(t)〉 (36)

= 〈(δ(τ)1+ r(t + τ))sT(t)〉 − r̄r̄T

= 〈r(t + τ)(sT(t)− r̄T)〉 +Dr

= 〈(ν+ (hd ∗ Js)(t + τ))(sT(t)− r̄T)〉 +Dr

= hd ∗ J〈s(t + τ)(sT(t)− r̄T)〉 +Dr

= (hd ∗ Jc)(τ)+Dr,

with the diagonal matrix Dr = δ(τ)diag(r̄), which has been
derived earlier (Hawkes, 1971). If the rates of all neurons are
equal, r̄i = r̄, all entries in the diagonal matrix are the same,
Dr = δ(τ)1r̄. In the subsequent section we demonstrate that the
same convolution Equation (36) holds for the linear rate with
output noise.

4.1. CONVOLUTION EQUATION FOR LINEAR NOISY RATE NEURONS
For the linear rate model with output noise we use Equation
(3) for time lags τ > 0 to obtain a convolution equation for the
covariance matrix of the output signal vector y = r+ x as

c(τ) = 〈y(t + τ)(yT(t)− r̄T)〉 (37)

= 〈(hd ∗ wy+ x)(t + τ)(yT(t)− r̄T)〉
= (hd ∗ wc)(τ)+ 〈x(t + τ)(rT(t)− r̄T)〉 + 〈x(t + τ)xT(t)〉
= (hd ∗ wc)(τ)+D,

where we utilized that due to causality the random noise sig-
nal generated at t + τ has no influence on r(t), so the respective
correlation vanishes. D is the covariance of the noise as in (11),
Dij(τ) = 〈xi(t)xj(t + τ)〉 = δijδ(τ)ρ

2. If ρ is chosen such that ρ2

coincides with the averaged activity r̄ in a network of Hawkes neu-
rons and the connection matrix w is identical to J of the Hawkes
network, the Equations (36) and (37) are identical. Therefore the
cross spectrum of both systems is given by (11).

4.2. NON-LINEAR SELF-CONSISTENT RATE IN RECTIFYING HAWKES
NETWORKS

The convolution Equation (36) for the covariance matrix of
Hawkes neurons is exact if no element of r is negative, which
is particularly the case for a network of only excitatory neu-
rons. Especially in networks including inhibitory couplings, the
intensity ri of neuron i may assume negative values. A neu-
ron with ri < 0 does not emit spikes, so the instantaneous
rate is given by λi = [ri(t)]+ = θ(ri(t)) ri(t), with the Heaviside
function θ. We now take into account this effective nonlinearity

–the rectification of the Hawkes model neuron– in a similar man-
ner as we already used to linearize binary neurons. If the network
is in the regime of low spike rates, the fluctuations in the input
of each neuron due to the Poissonian arrival of spikes are large
compared to the fluctuations due to the time varying intensities
r(t). Considering the same homogeneous network structure as
described in “Population-averaged covariances,” the input statis-
tics is identical for each cell i, so the mean activity λ0 = 〈λi〉
is the same for all neurons i. The superposition of the synap-
tic inputs to neuron i cause an instantaneous intensity ri that
follows approximately a Gaussian distribution N (μ, σ, ri) with
mean μ = 〈r〉 = ν+ λ0KJ(1− gγ) and standard deviation σ =√〈r2〉 − 〈r〉2 = J

√
λ0
2τ

K(1+ g2γ). These expressions hold for the

exponential kernel (5) due to Campbell’s theorem (Papoulis and
Pillai, 2002), because of the stochastic Poisson-like arrival of
incoming spikes, where the standard deviation of the spike count
is proportional to the square root of the intensity λ0. The rate λ0

is accessible by explicit integration over the Gaussian probability
density as

λ0 =
∫ ∞
−∞

N (μ, σ, r) r θ(r) dr

= 1√
2πσ

∫ ∞
0

exp

(
− (r − μ)2

2σ2

)
r dr

= −σ√
2π

∫ ∞
0

exp

(
− (r − μ)2

2σ2

) −(r − μ)

σ2
dr

+ μ√
2πσ

∫ ∞
0

exp

(
− (r − μ)2

2σ2

)
dr

= σ√
2π

exp

(
− μ2

2σ2

)
+ μ

2

(
1− erf

(
− μ√

2σ

))
.

This equation needs to be solved self-consistently (numerically
or graphically) to determine the rate in the network, as the
right hand side depends on the rate λ0 itself through μ and σ.
Rewritten as

λ0 = σ√
2π

exp

(
− μ2

2σ2

)
+ μPμ,σ(r > 0)

Pμ,σ(r > 0) = 1

2
− 1

2
erf

(
− μ√

2σ

)
, (38)

Pμ,σ(r > 0) is the probability that the intensity of a neuron is
above threshold and therefore contributes to the transmission of
a small fluctuation in the input. A neuron for which r < 0 acts as
if it was absent. Hence we can treat the network with rectifying
neurons completely analogous to the case of linear Hawkes pro-
cesses, but multiply the synaptic weight J or −gJ of each neuron
with Pμ,σ(r > 0), i.e., the linearized connectivity matrix is

w = Pμ,σ(r > 0)J. (39)

Figure 7 shows the agreement of the covariance functions
obtained from direct simulation of the network of Hawkes pro-
cesses and the analytical solution (21) with average firing rate
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FIGURE 7 | Covariance structure in spiking networks corresponds to

OUP with output noise. (A) Autocovariance obtained by direct simulation
of the LIF (black), Hawkes (gray), and OUP (light gray) models for excitatory
(dots) and inhibitory neurons (crosses). (B) Covariance cEI averaged over
disjoint pairs of neurons for LIF (black dots), Hawkes (gray dots), and OUP
with output noise (empty circles). (C) Covariance averaged over disjoint pairs
of neurons of the same type. (D) Autocovariance of the population averaged
activity. Averages in (C,D) over excitatory neurons as black dots, over
inhibitory neurons as gray dots. Corresponding theoretical predictions (21)

are plotted as light gray curves in all panels except (A). Light gray diagonal
crosses in (A,D) denote theoretical peak positions determined by the firing
rate r̄ as r̄�t (where �t = 0.1 ms is the time resolution of the histogram).

λ0 determined by (38), setting the effective strength of the noise
ρ2 = λ0, and the linearized coupling as described above. The
detailed procedure for choosing the parameters in the direct
simulation is described together with the implementation of
the Hawkes model in “Implementation of Hawkes neurons in a
spiking simulator code”.

5. LEAKY INTEGRATE-AND-FIRE NEURONS
In this section we consider a network of LIF model neurons with
exponentially decaying postsynaptic currents and show its equiv-
alence to the network of OUP with output noise, valid in the
asynchronous irregular regime. A spike sent by neuron j at time
t arrives at the target neuron i after the synaptic delay d, elicits a
synaptic current Ii that decays with time constant τs and causes
a response in the membrane potential Vi proportional to the
synaptic efficacy Jij. With the time constant τm of the membrane
potential, the coupled set of differential equations governing the
subthreshold dynamics of a single neuron i is (Fourcaud and
Brunel, 2002)

τm
dVi

dt
= −Vi + Ii(t)

τs
dIi

dt
= −Ii + τm

N∑
j= 1,j

Jijsj(t − d), (40)

where the membrane resistance was absorbed into the defini-
tions of Jij and Ii. If Vi reaches the threshold Vθ at time point

ti
k the neuron emits an action potential and the membrane poten-

tial is reset to Vr , where it is clamped for the refractory time τr .
The spiking activity of neuron i is described by this sequence
of action potentials, the spike train si(t) =∑k δ(t − ti

k). The
dynamics of a single neuron is deterministic, but in network states
of asynchronous, irregular activity and in the presence of exter-
nal Poisson inputs to the network, the summed input to each cell
can well be approximated as white noise (Brunel, 2000) with first
moment μi = τm

∑
j Jijrj and second moment σ2

i = τm
∑

j J2
ijrj,

where rj is the stationary firing rate of neuron j. The station-
ary firing rate of neuron i is then given by Fourcaud and Brunel
(2002)

r−1
i = τr + τm

√
π
(
F(yθ)− F(yr)

)
(41)

f (y) = ey2
(1+ erf(y)) F(y) =

∫ y

f (y) dy

with yθ,r = Vθ,r − μi

σi
+ α

2

√
τs

τm
α = √2

∣∣∣∣ζ
(

1

2

)∣∣∣∣ ,
with Riemann’s zeta function ζ. The response of the LIF neuron
to the injection of an additional spike into afferent j determines
the impulse response wijh(t) of the system. The time integral
wij = wij

∫∞
0 h(t) dt is the DC-susceptibility, which can formally

be written as the derivative of the stationary firing rate by the rate
of the afferent rj, which, evaluated by help of (41), yields (Helias
et al., 2013, Results and App. A)

wij = ∂ri

∂rj
= αJij + βJ2

ij (42)

with α = √π(τmri)
2 1

σi

(
f (yθ)− f (yr)

)

and β = √π(τmri)
2 1

2σ2
i

(
f (yθ)

Vθ − μi

σi
− f (yr)

Vr − μi

σi

)
.

In the strongly fluctuation-driven regime, the temporal behavior
of the kernel h is dominated by a single exponential decay, whose
time constant can be determined empirically. In a homogeneous
random network the firing rates of all neurons are identical ri = r̄
and follow from the numerical solution of the self-consistency
Equation (41). Approximating the autocovariance function of a
single spike train by a δ-peak scaled by the rate r̄δ(t), one obtains
for the covariance function c between pairs of spike trains the
same convolution Equation (36) as for Hawkes neurons (Helias
et al., 2013, cf. equation 5). As shown in “Convolution equation
for linear noisy rate neurons” this convolution equation coincides
with that of a linear rate model with output noise (37), where the
diagonal elements of D are chosen to agree to the average spike
rate ρ2 = r̄. The good agreement of the analytical cross covari-
ance functions (21) for the OUP with output noise and direct
simulation results for LIF are shown in Figure 7.

6. DISCUSSION
In this work we describe the path to a unified theoretical view on
pairwise correlations in recurrent networks. We consider binary
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neuron models, LIF models, and linear point process models.
These models containing a non-linearity (spiking threshold in
spiking models, non-linear sigmoidal gain function in binary
neurons, strictly positive rates in Hawkes processes) are lin-
earized, taking into account the distribution of the fluctuating
input.

The work presents results for several neuron models: We derive
analytical expressions for delay-coupled OUP with input and with
output noise, we extend the analytical treatment for stochas-
tic binary neurons to the presence of synaptic delays, present a
method that takes into account network-generated noise to deter-
mine the effective gain function, extend the theory of Hawkes
processes to the existence of delays and inhibition, and present
in Equation (12) a condition for the onset of global oscillations
caused by delayed feedback, generalized to feedback pathways
through different eigenvalues of the connectivity.

Some results qualitatively extend the existing theory (delays,
inhibition), others improve the accuracy of existing theories
(linearization including fluctuations). More importantly, our
approach enables us to demonstrate the equivalence of each of
these models after linear approximation to a linear model with
fluctuating continuous variables. The fact that linear perturba-
tion theory leads to effective linear equations is of course not
surprising, but the analytical procedure firstly enables a map-
ping between models that conserves quantitative results and
secondly allows us to uncover common structures underlying
the emergence of correlated activity in recurrent networks. For
the commonly appearing exponentially decaying response ker-
nel function, these rate models coincide with the OUP (OUP,
Uhlenbeck and Ornstein, 1930; Risken, 1996). We find that the
considered models form two groups, which, in linear approxima-
tion merely differ by a matrix valued factor scaling the noise and
in the choice of variables interpreted as neural activity. The differ-
ence between these two groups corresponds to the location of the
noise: spiking models—LIF models and Hawkes models—belong
to the class with noise on the output side, added to the activity of
each neuron. The non-spiking binary neuron model corresponds
to an OUP where the noise is added on the input side of each
neuron. The closed solution for the correlation structure of OUP
holds for both classes.

We identify different contributions to correlations in recurrent
networks: the solution for output noise is split into three terms
corresponding to the δ-peak in the autocovariance, the covari-
ance caused by shared input, and the direct synaptic influence of
stochastic fluctuations of one neuron on another–the latter echo
terms are equal to propagators acting with delays (Helias et al.,
2013). A similar splitting into echo and correlated input terms for
the case of input noise is shown in Figure 8. For increasing net-
work size N →∞, keeping the connection probability p fixed, so
that K = pN, and with rescaled synaptic amplitudes J ∼ 1/

√
N

(van Vreeswijk and Sompolinsky, 1996; Renart et al., 2010) the
echo terms vanish fastest. Formally this can be seen from (18): the
multiplicative factor of the common covariance term ϕ4 does not
change with N while the other coefficients decrease. So ultimately
all four entries of the matrix c have the same time dependence
determined by the common covariance term ϕ4. In particular
the covariance between excitation and inhibition cEI becomes
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FIGURE 8 | Different echo terms for spiking and non-spiking neurons.

Binary non-spiking neurons shown in (A,C) and LIF in (B,D). (A),(B) Echo
terms by direct influence of the neuron’s output on the network in
dependence of neuron types (in A,B cEE ,cEI , and cII are plotted as
black, gray dots and circles). (C,D), Contributions to the covariance evoked
by correlated and common input (black dots) measured with help of
auxiliary model neurons which do not provide feedback to the network.
Corresponding theoretical predictions (16) are plotted as light gray curves
throughout.

symmetric in this limit. This finally provides a quantitative expla-
nation of the observation made in (Renart et al., 2010) that the
time-lag between excitation and inhibition vanishes in the limit
of infinitely large networks. For a different synaptic rescaling J ∼
N−1 while keeping ρ2 constant by appropriate additional input to
each neuron (see Helias et al., 2013 applied to the LIF model), all
multiplicative factors decrease ∼ N−1 and so does the amplitude
of all covariances. Hence the asymmetry of cEI does not vanish in
this limit. The same results hold for the case of output noise where
the term with ϕ1 describes the common input part of the covari-
ance. In this case and for finite network size, cIE coincides with
cEE and cEI with cII for t > 0, having a discontinuous jump at
the time of the synaptic delay t = d. For time lags smaller than
the delay all four covariances coincide. This is due to causality, as
the second neuron cannot feel the influence of a fluctuation that
happened in the first neuron less than one synaptic delay before.
The covariance functions for systems corresponding to an OUP
with input noise contain neither discontinuities nor sharp peaks
at t = d, but cEI and cIE have maxima and minima near this
location. This observation can be interpreted as a result of the
stochastic nature of the binary model where changes in the input
influence the state of the neuron only with a certain probability.
So, the entries of c in this case take different values for |t| < d
but show the tendency to approach each other with increasing
|t| � d. This tendency increases with network size. Our analyti-
cal solutions (18) for input noise and (21) for output noise hence
explain the model-class dependent differences in the shape of
covariance functions.

The two above mentioned synaptic scaling procedures are
commonly termed “strong coupling” (J ∼ 1/

√
N) and “weak
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coupling” (J ∼ 1/N), respectively. The results shown in Figure 6
were obtained for J = 2/

√
N and β = 0.5, so the number of

synapses required to cause a notable effect on the gain func-
tion is 1/(βJ) = √N, which is small compared to the number
of incoming synapses pN. Hence the network is in the strong
coupling regime. Also note that for infinite slope of the gain
function, β→∞, the magnitude of the covariance becomes
independent of the synaptic amplitude J, in agreement with the
linear theory presented here. This finding can readily be under-
stood by the linearization procedure, presented in the current
work, that takes into account the network- generated fluctua-
tions of the total input. The amplitude σ of these fluctuations
scales linearly in J and the effective susceptibility depends on J/σ
in the case β→∞, explaining the invariance (Grytskyy et al.,
2013). In the current manuscript we generalized this procedure
to finite slopes β and to other models than the binary neuron
model.

Our approach enables us to map results obtained for one neu-
ron model to another, in particular we extend the theory of all
considered models to capture synaptic conduction delays, and
devise a simpler way to obtain solutions for systems considered
earlier (Ginzburg and Sompolinsky, 1994). Our derivation of
covariances in spiking networks does not rely on the advanced
Wiener-Hopf method (Hazewinkel, 2002), as earlier derivations
(Hawkes, 1971; Helias et al., 2013) do, but only employs elemen-
tary methods. Our results are applicable for general connectivity
matrices, and for the purpose of comparison with simulations we
explicitly derive population averaged results. The averages of the
dynamics of the linear rate model equations are exact for random
network architectures with fixed out-degree, and approximate for
fixed in-degree. Still, for non-linear models the linearization for

fixed in-degree networks are simpler, because the homogeneous
input statistics results in an identical linear response kernel for
all cells. Finally we show that the oscillatory properties of net-
works of integrate-and-fire models (Brunel, 2000; Helias et al.,
2013) are model-invariant features of all of the studied dynamics,
given inhibition acts with a synaptic delay. We relate the collective
oscillations to the pole structure of the cross spectrum, which also
determines the power spectra of population signals such as EEG,
ECoG, and the LFP.

The presented results provide a further step to understand
the shape and to unify the description of correlations in recur-
rent networks. We hope that our analytical results will be useful
to constrain the inverse problem of determining the synaptic
connectivity given the correlation structure of neurophysiologi-
cal activity measurements. Moreover the explicit expressions for
covariance functions in the time domain are a necessary pre-
requisite to understand the evolution of synaptic amplitudes in
systems with spike-timing dependent plasticity and extend the
existing methods (Burkitt et al., 2007; Gilson et al., 2009, 2010) to
networks including inhibitory neurons and synaptic conduction
delays.
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APPENDIX
CALCULATION OF THE POPULATION AVERAGED CROSS COVARIANCE
IN TIME DOMAIN
We obtain the population averaged cross spectrum for the
Ornstein-Uhlenbeck process with input noise by inserting the
averaged connectivity matrix w = M (14) into (8). The two eigen-
values of M are 0 and L = Kw(1− γg). Taking these into account,
we first rewrite the term

(Hd(ω)
−1 −M)−1

= det(Hd(ω)
−1 −M)−1

(
Hd(ω)

−1 + Kwγg −Kwγg

Kw Hd(ω)
−1 − Kw

)

= ((Hd(ω)
−1 − 0)(Hd(ω)

−1 − L))−1

(
Hd(ω)

−11+ Kw

(
γg −γg

1 −1

))

= f (ω)

(
1+ Kw

(
γg −γg

1 −1

)
Hd(ω)

)
,

where we introduced f (ω) = (Hd(ω)
−1 − L)−1. The correspond-

ing transposed and conjugate complex term follows analogously.
Hence we obtain the expression for the cross spectrum (17). The
residue of f (ω) at ω = zk(L) is

Res(f ,ω = zk(L)) = lim
ω1→ω

ω1 − ω

f−1(ω1)

l’Hopital= lim
ω1→ω

1

(f−1)′(ω1)
=
(

d(eiωd(1+ iωτ))

dω

)−1

=
(

ideiωd(1+ iωτ)+ iτeiωd
)−1

=
(

idL+ iτeiωd
)−1

,

where in the last step we used the condition for a pole
Hd(zk)

−1 = eizkd(1+ izkτ) = L (see “Spectrum of the dynam-
ics”). The residue of Hd(ω) at z(0) = i

τ
is − i

τ
ed/τ. Using the

residue theorem, we need to sum over all poles within the inte-
gration contour {zk(L)|k ∈ N} ∪ i

τ
to get the expression for c(t) =

1
2π

∫ +∞
−∞ C(ω)eiωtdω = i

∑
z∈{zk(L)|k∈N}∪ i

τ
Res(C(z), z)eizt for t �

0. Sorting (17) to obtain four matrix prefactors and remain-
ders with different frequency dependence, �1(ω) = f (ω)f (−ω),
�2(ω) = f (ω)f (−ω)Hd(ω), �3(ω) = �2(−ω), and �4(ω) =
f (ω)f (−ω)Hd(ω)Hd(−ω), we get (18). C(ω) for output noise
(20) is obtained by multiplying the expression for C(ω) for input
noise with H−1

d (ω)H−1
d (−ω) = (1+ ω2τ2). In order to perform

the back Fourier transformation one first needs to rewrite the
cross spectrum in order to isolate the frequency independent
term and the two terms that vanish for either t < d or t > d, as
described in “Fourier back transformation,”

C(ω) = f (ω)(1+ Kw

(
γg −γg
1 −1

)
Hd(ω))MDMTf (−ω)

(1+ Kw

(
γg 1
−γg −1

)
Hd(−ω))

+ f (ω)(1+ Kw

(
γg −γg
1 −1

)
Hd(ω))MD

+DMTf (−ω)(1+ Kw

(
γg 1
−γg −1

)
Hd(−ω))+D

= f (ω)MDMTf (−ω)+ f (ω)MD+DMTf (−ω)+D,

where in the last step we used

(
γg −γg
1 −1

)
M = 0, because M is

symmetric, obtaining (21). For each of the first three terms in the
last expression the right integration contour needs to be chosen
as described in “Fourier back transformation” on the example of
the general expression (16).

IMPLEMENTATION OF NOISY RATE MODELS
The dynamics is propagated in time steps of duration �t (note
that in other works we use h as a symbol for the computation
step size, which here is used as the symbol for the kernel). The
product of the connectivity matrix with the vector of output vari-
ables at the end of the previous step i− 1 is the vector I(ti) of
inputs at the current step i. The intrinsic time scale of the system
is determined by the time constant τ. For sufficiently small time
steps�t � τ these inputs can be assumed to be time independent
within one step. So we can use (3) or (4) and analytically convolve
the kernel function h assuming the input to be constant over the
time interval �t. This corresponds to the method of exponential
integration (Rotter and Diesmann, 1999, see App. C.6) requir-
ing only local knowledge of the connectivity matrix w. Note that
this procedure becomes exact for �t → 0 and for finite �t is an
approximation. The propagation of the initial value rj(ti−1) until
the end of the time interval takes the form rj(ti−1) e−�t/τ because
h(ti) = h(ti−1) e−�t/τ, so we obtain the expression rj(ti) at the end
of the step as

rj(ti) = e−�t/τ rj(ti−1)+ (1− e−�t/τ) Ij(ti), (43)

where Ij denotes the input to the neuron j. For output noise the
output variable of neuron j is yj = rj + xj, with the locally gener-
ated additive noise xj and hence the input is Ij(ti) = (w y(ti))j. In
the case of input noise the output variable is rj and the additional
noise is added to the input variable, Ij(ti) = (w r(ti))j + xj(ti). In
both cases xj is implemented as a binary noise: in each time step, xj

is independently and randomly chosen to be 1 or −1 with prob-
ability 0.5 multiplied with ρ/

√
�t to satisfy (2) for discretized

time. Here the δ-function is replaced by a “rectangle” function
that is constant on the interval of length �t, vanishes elsewhere,
and has unit integral. The factor �t−1 in the expression for
x2 ensures the integral to be unity. So far, the implementation
assumes the synaptic delay to be zero. To implement a non-zero
synaptic delay d, each object representing a neuron contains an
array b of length ld = d/�t acting as a ring buffer. The input Ij(ti)

used to calculate the output rate at step i according to (43) is then
taken from position i mod ld of this array and after that replaced
by the input presently received from the network, so that the new
input will be used only after one delay has passed. This sequence
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of buffer handling can be represented as

Ij(ti)← b[i mod ld]

b[i mod ld] ←
{
(w r)j + xj for input noise

(w y)j for output noise
.

The model is implemented in Python version 2.7 (Python
Software Foundation, 2008) using numpy 1.6.1 (Ascher et al.,
2001) and scipy 0.9.0 (Jones et al., 2001).

IMPLEMENTATION OF BINARY NEURONS IN A SPIKING
SIMULATOR CODE
The binary neuron model is implemented in the NEST sim-
ulator, version 2.2.1 (Gewaltig and Diesmann, 2007), which
allows distributed simulation on parallel machines and han-
dles synaptic delays in the established framework for spiking
neurons (Morrison et al., 2005). The name of the model is
“ginzburg_neuron”. In NEST information is transmitted in
form of point events, which in case of binary neurons are sent
if the state of the neuron changes: one spike is sent for a down-
transition and two spikes at the same time for an up-transition,
so the multiplicity reflects the type of event. The logic to decode
the original transitions is implemented in the function handle
shown in Alg. 2. If a single spike is received, the synaptic weight
w is subtracted from the input buffer at the position determined
by the time point of the transition and the synaptic delay. In
distributed simulations a single spike with multiplicity 2 sent to
another machine is handled on the receiving side as two sepa-
rate events with multiplicity 1 each. In order to decode this case
on the receiving machine we memorize the time (tlast) and ori-
gin (global id gidlast of the sending neuron) of the last arrived
spike. If both coincide to the spike under consideration, the send-
ing neuron has performed an up transition 0→ 1. We hence
add twice the synaptic weight 2w to the input buffer of the tar-
get neuron, one that reflects the real change of the system state
and another that compensates the subtraction of w after recep-
tion of the first spike of a pair. The algorithm relies on the fact
that within NEST two spikes that are generated by one neuron at
the same time point are delivered sequentially to the target neu-
rons. This is assured, because neurons are updated one by one:
The update propagates each neuron by a time step equal to the
minimal delay dmin in the network. All spikes generated within
one update step are written sequentially into the communication
buffers, and finally the buffers are shipped to the other processors
(Morrison et al., 2005). Hence a pair of spikes generated by one
neuron within a single update step will be delivered consecutively
and will not be interspersed by spikes from other neurons with
the same time stamp.

The model exhibits stochastic transitions (at random points
in time) between two states. The transitions are governed by
probabilities φ(h). Using asynchronous update (Rumelhart et al.,
1986), in each infinitesimal interval [t, t + δt) each neuron in
the network has the probability 1

τ
δt to be chosen for update

(Hopfield, 1982). A mathematically equivalent formulation draws
the time points of update independently for all neurons. For a

particular neuron, the sequence of update points has exponen-
tially distributed intervals with mean duration τ, i.e., it forms a
Poisson process with rate τ−1. We employ the latter formulation
to incorporate binary neuron models in the globally time-driven
spiking simulator NEST (Gewaltig and Diesmann, 2007) and con-
strain the points of transition to a discrete time grid�t = 0.1 ms
covering the interval dmin ≥ �t. This neuron state update is
implemented by the algorithm shown in Alg. 1. Note that the
field h is updated in steps of�t while the activity state is updated
only when the current time exceeds the next potential transition
point. As the last step of the activity update we draw an expo-
nentially distributed time interval to determine the new potential
transition time. The potential transition time is represented with
a higher resolution (on the order of microseconds) than �t to
avoid a systematic bias of the mean inter-update-interval. This
update scheme is identical to the one used in (Hopfield, 1982).
Note that the implementation is different from the classical asyn-
chronous update scheme (van Vreeswijk and Sompolinsky, 1998),
where in each discrete time step �t exactly one neuron is picked
at random. The mean inter-update-interval (time constant τ in
Alg. 1) in the latter scheme is determined by τ = �tN, with N
the number of neurons in the network. For small time steps both
schemes converge so that update times follow a Poisson process.

At each update time point the neuron state becomes 1 with
the probability given by the function φ applied to the input at
that time according to (25) and 0 with probability 1− φ. The
input is a function of the whole system state and is constant
between spikes which indicate state changes. Each neuron there-
fore maintains a state variable h at each point in time holding
the summed input and being updated by adding and subtract-
ing the input read from the ring buffer b at the point readpos(t)
corresponding to the current time (see Morrison et al., 2005,
for the implementation of the ring buffer, i.p. Fig 6). The ring
buffer enables us to implement synaptic delays. For technical

Algorithm 1 | Update function of a binary neuron embedded in the

spiking network simulator NEST.

The function readpos(t) returns a position in the ring buffer b corresponding to

the current time point.
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Algorithm 2 | Input spike handler of a binary neuron embedded in the

spiking network simulator NEST.

The simulation kernel calls the handle function for each spike event to be deliv-

ered to the neuron. A spike event is characterized by the time point of occurrence

tspike, the synaptic delay d after which the event should reach the target, the

global id gid identifying the sending neuron, and the multiplicity m ≥ 1, indicat-

ing the reception of multiple spike events. The function pos(tspike, d, t) returns

the position in the ring buffer b to which the spike is added so that it will be read

at time t + d by the update function of the neuron, see Alg. 1.

reasons this implementation requires a minimal delay of a single
simulation time step (Morrison and Diesmann, 2008). The gain
function φ applied to the input h has the form

φ(h) = c1h+ c2
1

2
(1+ tanh(c3(h− θ))), (44)

where throughout this manuscript we used c1 = 0, c2 = 1, and
c3 = β, as defined in “Parameters of simulations”.

IMPLEMENTATION OF HAWKES NEURONS IN A SPIKING
SIMULATOR CODE
Hawkes neurons (Hawkes, 1971) were introduced in the NEST
simulator in version 2.2.0 (Gewaltig and Diesmann, 2007). The
name of the model is “pp_psc_delta”. In the following we
describe the implemented neuron model in general and men-
tion the particular choices of parameter and correspondences to
the theory presented in “Hawkes processes”. The dynamics of the
quasi-membrane potential u is integrated exactly within a time
step �t of the simulation (Rotter and Diesmann, 1999), express-
ing the voltage u(ti) at the end of time step i by the membrane
potential at the end of the previous time step u(ti−1) as

u(ti) = e−�t/τ u(ti−1)+ (1− e−�t/τ)RmIe + b(ti), (45)

where Ie is a time-step wise constant input current (equal to 0
in all simulations presented in this article) and Rm = τm/Cm is
the membrane resistance. The buffer b(ti) contains the summed

contributions of incoming spikes, multiplied by their respective
synaptic weight, which have arrived at the neuron within the
interval (ti−1, ti]. b is implemented as a ring-buffer in order to
handle the synaptic delay, logically similar as in “Implementation
of noisy rate models,” described in detail in Morrison et al. (2005).
The instantaneous spike emission rate is λ = [c1u+ c2ec3u]+,
where we use c3 = 0 in all simulations presented here. The quan-
tities in the theory “Hawkes processes,” in particular in (35), are
related to the parameters of the simulated model in the following
way. The quantity r relates to the membrane potential u as r =
c1u+ c2 and the background rate ν agrees to c2 = ν. Hence the
synaptic weight Jij corresponds to the synaptic weight in the sim-
ulation multiplied by c1. For the correspondence of the Hawkes
model to the OUP with output noise of variance ρ2 we use (38)
to adjust the background rate ν in order to obtain the desired rate
λ0 = ρ2 and we choose the synaptic weight J of the Hawkes model
so that the linear coupling strength w of the OUP agrees to the
effective linear weight given by (39). These two constraints can
be fulfilled simultaneously by solving (38) and (39) by numeri-
cal iteration. The spike emission of the model is realized either
with or without dead time. In this article we only used the latter.
In the presence of a dead time, which is constrained to be larger
than the simulation time step, at most one spike can be generated
within a time step. A spike is hence emitted with the probability
p≥1 = 1− eλ�t , where eλ�t is the probability of the comple-
mentary event (emitting 0 spikes), implemented by comparing
a uniformly distributed random number to p≥1. The refractory
period is handled as described in Morrison et al. (2005). Without
refractoriness, the number of emitted spikes is drawn from a
Poisson distribution with parameter λ�t, implemented in the
GNU Scientific Library (Galassi et al., 2006). Reproducibility of
the random sequences for different numbers of processes and
threads is ensured by the concept of random number generators
assigned to virtual processes, as described in (Plesser et al., 2007).

PARAMETERS OF SIMULATIONS
For all simulations we used γ = 0.25 corresponding to the bio-
logically realistic fraction of inhibitory neurons, a connectivity
probability p = 0.1, and a simulation time step of �t = 0.1 ms.
For binary neurons we measured the covariance functions with a
resolution of 1 ms, for all other models the resolution is 0.1 ms.
Simulation time is 10, 000 ms for linear rate and for LIF neurons,
50, 000 ms for Hawkes, and 100, 000 ms for binary neurons. The
covariance is obtained for a time window of ±100 ms.

The parameters for simulations of the LIF model presented
in Figure 7 and Figure 8 are J = 0.1 mV, τ = 20 ms, τs = 2 ms,
τr = 2 ms, Vθ = 15 mV, Vr = 0, g = 6, d = 3 ms, N = 8000.
The number of neurons in the corresponding networks of other
models is the same. Cross covariances are measured between the
summed spike trains of two disjoint populations of Nrec = 1000
neurons each. The single neuron autocovariances aα are aver-
aged over a subpopulation of 100 neurons. The autocovariances
of the population averaged activity 1

Nα
aα + Cαα for population

α ∈ {E,I} (shown in Figure 7) are constructed from the esti-
mated single neuron population averaged autocovariances aα and
cross covariances Cαα. This enables us to estimate aα and Cαα

from the activity of a small subpopulation and still assigns the
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correct relative weights to both contributions. The correspond-
ing effective parameters describing the system dynamics are μ =
15 mV, σ = 10 mV, r = 23.6 Hz (see (40) and the following text
for details).

The parameters of the Hawkes model and of the noisy rate
model with output noise yielding quantitatively agreeing covari-
ance functions are:

• For simulations of the noisy rate model with output noise
presented in Figure 7 and Figure 2 the parameters are w =
0.0043, g ≈ 5.93, τ = 4.07 ms, ρ2 = 23.6 Hz, d = 3 ms (see
(3), (4)). In Figure 2 also results for d = 1 ms and for input
noise are shown. Signals are measured from Nrec = 500 neu-
rons in each population to obtain cEI , cIE and from the whole
population to determine cEE and cII . The cross covariances
CEE and CII are estimated from two disjoint subpopula-
tions each comprising half of the neurons of the respective
population.
• For the network of Hawkes neurons presented in Figure 7 we

used λ0 ≈ 22.54 Hz (see (38)), J = 0.0055 mV, d = 3 ms, and
the same g and τ as for the noisy rate model. We measured
the cross covariances in the same way as for the LIF model,
but using the spike trains from sub-populations of Nrec =
2000 neurons. The autocovariances of the population averaged
activity were estimated from the whole populations.

The network of binary neurons shown in Figure 8 uses
θ = −3.89 mV, β = 0.5 mV−1, J = 0.02 mV, d = 3 ms (see
(25), (44)), and the same g and τ as the noisy rate
model. Covariances are measured using the signals from all
neurons.

The simulation results for the network of binary neu-
rons presented in Figure 6 uses θ = −2.5 mV, τ = 10 ms, β =
0.5 mV−1, g = 6, J ≈ 0.0447 mV, N = 2000 and the smallest
possible value of synaptic delay is d = 0.1 ms equal to time resolu-
tion (the same set of parameters only with modified β = 1 mV−1

was used to create Figure 5). The cross covariances CEE and CII
are estimated from two disjoint subpopulations each comprising
half of the neurons of the respective population, cEI is measured
between two such subpopulations. For cEE and cII we used the
full populations.

The parameters required for a quantitative agreement with
the rate model with input noise are w ≈ 0.011, ρ ≈ 2.23

√
ms.

We used the same parameters in Figure 3, where additionally
results for w = 0.018 are shown. The population sizes are the
same as for the binary network. The covariances are estimated
in the same way as for the rate model with output noise. Note
that the definition of noisy rate models has no limitation for
units of ρ2. These can be arbitrary and are chosen differently
as required by the correspondence with either spiking or binary
neurons.
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Experimental and computational evidence
shows that cognitive function requires
an optimal balance between global inte-
grative and local functionally specialized
processes (Tononi et al., 1998). This bal-
ance can be described in terms of tran-
sient short-lived episodes of synchronized
activity between different parts of the
brain (Friston, 2000; Breakspear, 2002).
Synchronization over multiple frequency
bands is thought to subserve fundamen-
tal operations of cortical computation
(Varela et al., 2001; Fries, 2009), and
to be one of the mechanisms mediating
the large-scale coordination of scattered
functionally specialized brain regions.
For instance, transient synchronization
of neuronal oscillatory activity in the
30–80 Hz range has been proposed to
act as an integrative mechanism, bind-
ing together spatially distributed neural
populations in parallel networks during
sensory perception and information pro-
cessing (Singer, 1995; Miltner et al., 1999;
Rodriguez et al., 1999). More generally,
synchrony may subserve an integrative
function in cognitive functions as diverse
as motor planning, working or associa-
tive memory, or emotional regulation
(Varela, 1995).

Over the past 15 years, cognitive neu-
roscientists have tried to capture and
quantify neural synchronies across dis-
tant brain regions both during sponta-
neous brain activity and in association
with the execution of a wide range of
cognitive tasks, using neuroimaging tech-
niques such as functional resonance imag-
ing, electro- or magneto-encephalography.
Theoretical advances in various fields
including non-linear dynamical systems
theory have allowed the study of various
types of synchronization from time series

(Pereda et al., 2005), and to address impor-
tant issues such as determining whether
observed couplings do not reflect a mere
correlation between activities recorded at
two different brain regions but rather
a causal relationship (Granger, 1969)
whereby a brain region would cause the
activity of the other one.

However, not all measured synchrony
may in fact represent neurophysiologically
and cognitively relevant computations:
various confounding effects may mis-
lead into identifying functional connectiv-
ity, defined as the temporal correlations
between spatially remote neurophysiolog-
ical events, with effective connectivity,
i.e., the influence one neuronal system
exerts over another (Friston, 1994). For
instance, measured synchrony may stem
from common thalamo-cortical afferents
or neuromodulatory input from ascend-
ing neurotransmitter systems, or may be
the visible part of indirect effective con-
nectivity. Other technique-specific artifac-
tual sources of synchrony, for instance
induced by volume conduction, are also
well-known to cognitive neuroscientists
(Stam et al., 2007).

Here, we address a further (extra-
cranial) confounding source: the appear-
ance of simultaneous, yet uncorrelated
stimuli. We show how the activity of two
groups of binary neurons, whose output
code is optimized to represent rare events
with short codes, can exhibit a synchro-
nization when such rare events appear,
even in the absence of shared information
or common computational activities.

1. THE MODEL
We suppose that a neuron codifies an
external stimulus with a set of spikes, to
transmit information about the event to

other regions of the neural system. For the
sake of simplicity, let’s also suppose that
all stimuli are drawn from a finite set of
events E = {e1, . . . , eN}, N being the total
number of events. Each event i is charac-
terized by two strongly related features: the
frequency of appearance fi and the impor-
tance factor mi. Clearly, rare events are also
the most important ones. For instance,
the image of a group of trees is quite
common for an animal, and should not
attract his attention. On the other hand,
a predator appearing behind such trees is
far less frequent, and the importance of a
fast response to the event, high. Therefore,
for each event i, the relation mi = 1/fi is
defined.

Each neuron optimizes its code to rep-
resent such an environment, i.e., it assigns
a symbol si drawn from an alphabet S to
each input event i. As the neuron natural
language is composed of spikes, each sym-
bol si is defined as a sequence of spikes and
silences; this is represented by a sequence
of 0’s and 1’s, of arbitrary length, form-
ing a Boolean code. In other words, and
from an information science perspective,
each symbol si is a number in its Boolean
representation.

In the creation of the code, the neu-
rons use all their available knowledge con-
cerning their environment, given by fi
and mi, trying to fulfilling two condi-
tions. First, the cost associated with the
transmission of information should be
minimized, thus as few spikes as possi-
ble should be generated; this favors large
symbols with few 1’s and a large propor-
tion of 0’s. This condition is energy saving,
but increases the neuron’s response time.
Therefore, a second condition ensures
that the neuron minimizes symbol length,
particularly those associated with events or
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items of great importance, i.e., with low fi
and high mi.

A cost given by:

C =
∑

i

[
α

bifi
li
+ (1− α) limi

]
(1)

accounts for the trade-off between these
conditions is associated to each code, and
minimized by the neuron in a training
phase representing a natural selection pro-
cess. The contribution of each symbol
i to the total is given by two terms—
see Equation 1. The first, involving the
number of spikes in the symbol (bi), its
expected frequency of appearance (fi) and
its length (li), expresses the probability of
having the neuron spiking , at a given
time, and thus the expected energetic cost
of the code. The second term penalizes
the appearance of long symbols codifying
important messages. Finally, the param-
eter α defines the balance between both
contributions to the total cost: for α ≈
0 (α ≈ 1) the total cost is dominated by
the length of important symbols (by the
energetic cost).

Two additional requirements are added.
First, for different events no to be con-
fused, all symbols should be different, i.e.,
si �= sj. Second, all symbols should start
with a spike (a 1) and have at least one
zero, in order to be recognizable and to
avoid codes composed only of silences or
spikes.

Due to the computational cost of opti-
mizing such codes when multiple events
are considered, the process is performed by
means of a greedy algorithm Cormen et al.
(2001), that is, by starting with an empty

set, and adding one symbol at the time,
making the locally optimal choice at each
iteration.

2. RESULTS
We now explore how a spurious synchro-
nization between different neurons (or
groups of them) can be achieved even in
the absence of any information transfer.

Neurons are supposed to work inde-
pendently, that is, they receive indepen-
dent inputs from the environment and
create their optimal code to process and
transmit such information. For instance,
two groups of neurons may receive two
different and uncorrelated stimuli, corre-
sponding to the image of a predator and
the sound of a thunder.

Following this idea, a large number of
neurons are modeled and their codes cre-
ated. Each neuron has its independent set
of stimuli, half of them highly probable
(and therefore, less important), and half of
them with low probability of appearance.

Using this information, all codes are
generated, and a time series for each neu-
ron is created, by presenting sequences of
stimuli at random, and recording the neu-
ron’s corresponding activity. Time series
are divided into two parts of equal length.
During the first half, neurons are stim-
ulated by high-probability events; the
opposite occurs during the second half.
Following the previous example, we sup-
pose that the organism is resting quietly
at the beginning, and then spots a preda-
tor and hears a thunder. Furthermore, we
suppose that neurons do not respond with
the same velocity to the external stim-
uli: each neuron receives its inputs with a

delay drawn from a uniform distribution
defined between 0 and 400 time steps.

Figure 1 Left depicts the evolution of
the time series generated by two groups of
neurons, each one composed of 500 neu-
rons, for α = 0.1, 40 stimuli, and a transi-
tion interval of 400. Each series is clearly
divided in two epochs, the first one cor-
responding to the time window [0, 5000],
in which no relevant event appears, and
a second window [5000, 10000] in which
neurons respond to rare external stimuli.
As previously described, an efficient code
requires important stimuli to be codified
with short symbols, which, in turns, are
associated with high spike densities. This
effect is clearly shown in Figure 1 Left,
where the proportion of spiking neurons
after time 5000 is roughly increased by
0.05.

As neural codes are independently gen-
erated for the 1000 neurons considered,
with different probability distributions,
and external stimuli are also triggered in
an independent way, no synchronization is
expected between both time series. Indeed,
if one computes the Pearson’s correlation
coefficient between both series within the
time window [0, 5000], the result is in the
order of 10−4. Nonetheless, an interest-
ing result is obtained when the correlation
is calculated by means of a sliding win-
dow; in other words, a time-varying cor-
relation is obtained, whose value at time
t represents the dynamics of both neu-
ral groups in the interval [t − 200, t +
200]. Intuitively, when analyzing the series
near time 5000, both series share the same
trend, i.e., an upward dynamics, thus lead-
ing to a positive synchronization. Such

FIGURE 1 | (A,B) Time series of the proportion of spiking neurons generated
by two groups of 500 neurons (gray and red lines). In panel A (panel B), the
probability of finding rare events is changed at time 5000 (is continuously
changed). Time series of group 2 is represented with an offset of 0.25.

The black solid line represents the evolution of the Pearson’s correlation
coefficient between both groups, calculated with a sliding window of size
400. (C) Average values for the four synchronization metrics, using the same
event sets of panel (A). All neural codes are optimized for α = 0.1.
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effect is shown in Figure 1 Left, black
line and right scale: around time 5000
the Pearson’s correlation coefficient jumps
to 0.6.

To confirm this result, Figure 1 Right
reports the average synchronization level
obtained in 100 realizations of the previ-
ously described process, as obtained by 4
commonly used metrics for the assessment
of synchronization in brain activity:

• Correlation: Pearson’s linear correla-
tion between the two time series.
• Granger causality: following the origi-

nal definition in Wiener (1956), a time
series is said to cause a second one if one
can improve the prediction of the evolu-
tion of the latter by incorporating infor-
mation about the past dynamics of the
former. Such relationship is tested by
means of bivariate autoregressive mod-
els (AR). The value here reported is the
value of 1− α∗, α∗ being the critical
level of significance for which the first
time series can be considered causal to
the second one.
• Mutual information: assesses the quan-

tity of information, measured in bits,
that two time series share. In other
words, it measures how much knowing
one of these time series reduces uncer-
tainty about the other.
• Synchronization Likelihood: arguably

one of the most popular index for
assessing the presence of generalized
synchronization, returns a normalized
estimate of the dynamical interdepen-
dencies between two or more time series
(Stam and Van Dijk, 2002). It relies on
the detection of simultaneously occur-
ring patterns, even when they are differ-
ent in the two signals.

As can be seen in Figure 1 Right, all four
metrics present a peak around time 5000,
indicating that they all detect this spurious
synchronization between the two groups
of neurons.

This spurious synchronization is
caused by the optimization of the neu-
ral code, in which the length of important
events is minimized, thus increasing the
proportion of spiking neurons when rare
events are presented to the system.

The example proposed in Figure 1 Left
is not very ecological as the set of events

presented in the two halfs of the con-
sidered period only included frequent
([0, 5000]) and infrequent ([5000, 10000])
events. Figure 1 Center presents a more
realistic example, in which the probabil-
ity of finding rare events is continuously
varied between two intermediate values.
The resulting time series (gray and light
red lines) are highly noisy, while it is still
possible to detect some trends. The black
solid line represents the evolution of the
Pearson’s correlation coefficient calculated
over a sliding window of size 400. Even
in this noisy configuration, it is possi-
ble to detect regions in which the cor-
relation between the two time series is
strongly increased - similar results were
obtained with the three other considered
metrics.

3. DISCUSSION
In conclusion, we showed that synchro-
nization can appear when the response of
two groups of binary neurons is modu-
lated by the simultaneous appearance of
uncommon stimuli, even if both groups
do not share information and are not per-
forming a common computation. This is
due to the way neural codes are con-
structed, i.e., to the preference of short
symbols, with high spiking rates, repre-
senting uncommon events. The present
toy model is not intended to mirror actual
neural functioning, but rather to draw
attention to a possible source of spurious
synchronization occurring at the system
level of description of neural activity typi-
cal of standard neuroimaging techniques.
In particular, our results show that even
a measure such as the Granger causality
can be fooled into signaling causal rela-
tionships in the presence of mere coin-
cidences corresponding to no underlying
computation. This confirms that claims
of causality from (multiple) bivariate time
series should always be taken with cau-
tion (Pereda et al., 2005), as true causality
can only be assessed if the set of two time
series contains all possible relevant infor-
mation and sources of activities for the
problem (Granger, 1980), a condition that
a neurophysiological experiment can only
rarely comply with. Finally, it is impor-

holds true even for resting brain activ-
ity, which is operationally defined by
the absence of exogenous stimulation.
This is explained by the fact that resting
brain activity is characterized by unob-
servable, endogenous activity stemming
from numerous simultaneous sources ren-
dering spurious coincidences a plausible
occurrence.
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Synchronization plays an important role in neural signal processing and transmission.
Many hypotheses have been proposed to explain the origin of neural synchronization.
In recent years, correlated noise-induced synchronization has received support from
many theoretical and experimental studies. However, many of these prior studies have
assumed that neurons have identical biophysical properties and that their inputs are well
modeled by white noise. In this context, we use colored noise to induce synchronization
between oscillators with heterogeneity in both phase-response curves and frequencies.
In the low noise limit, we derive novel analytical theory showing that the time constant
of colored noise influences correlated noise-induced synchronization and that oscillator
heterogeneity can limit synchronization. Surprisingly, however, heterogeneous oscillators
may synchronize better than homogeneous oscillators given low input correlations. We
also find resonance of oscillator synchronization to colored noise inputs when firing
frequencies diverge. Collectively, these results prove robust for both relatively high noise
regimes and when applied to biophysically realistic spiking neuron models, and further
match experimental recordings from acute brain slices.

Keywords: synchrony, correlation, colored noise, heterogeneity, neural oscillators, phase-response curve

1. INTRODUCTION
Synchronization of neural oscillators is thought to play a criti-
cal role in sensory, motor, and cognitive processes (Sanes and
Donoghue, 1993; Fries et al., 2001; Wang, 2010). In many net-
works, synchronization is achieved via direct coupling such as
through gap junctions and chemical synapses. However, there
are several systems (notably, the mammalian olfactory bulb)
where the mode of coupling is less clear and neural synchrony is
hypothesized to arise from partially correlated presynaptic inputs
(Galán et al., 2006; Marella and Ermentrout, 2010). Indeed, in
non-oscillatory networks of neurons, such correlated input is
largely responsible for the output correlations of the neurons
(de la Rocha et al., 2007). Thus, a natural question is: how do the
properties of neurons and networks alter output correlations for
a given degree of input correlation? At small input correlations,
output and input correlations can be regarded as linearly pro-
portional; this ratio is called the susceptibility (Shea-Brown et al.,
2008). For example, (de la Rocha et al., 2007) showed that the
susceptibility depends on the background firing rate of the neu-
ron. For some model systems, this susceptibility can be computed
using linear response theory (which assumes small perturbations
around the stationary state).

When neurons fire regularly, they can be regarded as noisy
nonlinear oscillators and, as such, there are many mathemat-
ical techniques available for their analysis. In particular, the
phase-response curve (PRC) provides a compact and useful char-
acterization of the responses of a nonlinear oscillator to external

perturbations. The PRC describes the shift in timing of, say, an
action potential as a function of the timing of the input rel-
ative to the last action potential. In several studies, we have
described the theoretical relationship between the shape of the
PRC and the ability of identical neurons to transfer partially syn-
chronized activity (Marella and Ermentrout, 2008; Abouzeid and
Ermentrout, 2009). In these studies, the only source of hetero-
geneity considered between neural oscillators was their unshared
(uncorrelated) inputs, which consisted of white noise. Recently,
we extended these methods to cases in the low noise limit in
which the oscillators were not identical and showed how het-
erogeneity in intrinsic properties could significantly degrade the
output correlation in pairs receiving common inputs (Burton
et al., 2012).

In this study, we extend this theory to include colored noise
inputs and, further, report some surprising effects of heterogene-
ity. First, we derive a set of equations for the distribution of
phase differences for pairs of heterogeneous oscillators driven by a
partially correlated Ornstein-Uhlenbeck (OU) process (low-pass
filtered noise). We next show that the theory developed for phase
reduced models works well with a conductance-based biophys-
ical model. We then show that, quite surprisingly, at low input
correlations, heterogeneity can sometimes produce higher out-
put correlations than the homogeneous case. That is, consider
two distinct oscillators, A and B, such that the AA pair has a
small susceptibility and the BB pair a larger susceptibility. Then, at
low correlations, the susceptibility of the AB pair can sometimes
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exceed that of the AA pair. We confirm this somewhat counter-
intuitive prediction with recordings from regularly firing mitral
cells of the main olfactory bulb. In addition to heterogeneity in
response properties, neurons can fire at different frequencies, and
such frequency differences can significantly impact correlated-
noise induced synchronization (Markowitz et al., 2008; Burton
et al., 2012). Here, we find that for some frequency differences
between oscillators, there is an optimal time scale of correlated
noise that will maximally synchronize the oscillators. We do not
see this effect when the oscillators have the same frequency.

2. MATERIALS AND METHODS
2.1. PHASE REDUCTION MODEL
In Appendix, we provide a brief overview of how to reduce a gen-
eral weakly perturbed limit cycle to a single differential equation
for the phase of the cycle. If we assume that the original limit cycle
represents repetitive firing of a single compartment neuron model
that is driven by a noisy current, I(t), then we obtain:

dθ

dt
= 1+ ε�(θ)I(t)/Cm (1)

where Cm is the membrane capacitance, θ is the phase (or, typ-
ically, the time since the last spike), and �(θ) is the PRC of the
neuron. The PRC describes the phase-dependent shift in the spike
times of an oscillator receiving small perturbations. It is readily
measured in neurons and other biological oscillators (Torben-
Nielsen et al., 2010) and provides a compact representation of
the effects of stimuli on the timing of action potentials. �(θ)
has dimensions of milliseconds per millivolt; that is, the shift in
timing of the next action potential per millivolt perturbation of
the potential. Mathematically, for a given model, �(θ) is found
by solving a certain differential equation (see Appendix). It is a
periodic function of phase and, with no loss in generality, we can
normalize the period to be 2π for simplicity.

2.2. STATIONARY DENSITY
Given the reduced model (Equation 1), we can now turn to the
main question at hand, which is: how do oscillating heteroge-
neous neurons transfer correlations? We will consider two types
of heterogeneity: differences in the PRC shapes and differences
in natural frequencies. We drive the oscillators with correlated
filtered noise. After reduction to phase variables, we obtain:

θ′1 = 1+ ε�1(θ1)x (2)

θ′2 = 1+ ε�2(θ2)y + ε2ω (3)

x′ = −x/τ+ ξx/
√

τ (4)

y′ = −y/τ+ ξy/
√

τ (5)

θ1 and θ2 are the phases of two oscillators, and �1(θ) and �2(θ)

are PRCs of the two oscillators. Without loss of generality, we set
the natural frequency of one oscillator to 1. The parameter ω then
determines the magnitude of the difference in natural frequencies
between the two oscillators. ε� 1, thus the noise is weak and the
frequency difference is small. The processes x and y are generated

by an OU process with the same time constant τ. ξx and ξy are two
correlated white noise processes, i.e., 〈ξx(t)ξx(t′)〉 = δ(t − t′),
〈ξy(t)ξy(t′)〉 = δ(t − t′), 〈ξx(t)ξy(t′)〉 = cδ(t − t′), where c is the
degree of correlation.

We remark that the allowable frequency difference is O(ε2),
which seems considerably smaller than the magnitude of the
noise, which is ε.However, as the noise has zero mean, what mat-
ters is the variance of the noise, which has magnitude ε2. Thus,
the scales of both the frequency difference and the synchroniz-
ing inputs (correlations in the noise) are similar. If the frequency
differences are larger, then no synchronization is possible.

Our goal is to compute the stationary distribution of the
phase difference between two neurons since this will enable us to
compute various measures of correlation and synchrony. Thus,
some variable substitution will be helpful: θ = θ1,φ = θ2 − θ1.
Therefore, φ is the phase difference between the two oscillators.
With this change of variables, the equations are:

θ′ = 1+ ε�1(θ)x (6)

φ′ = ε[�2(θ+ φ)y −�1(θ)x] + ε2ω (7)

and x, y are as above. Let ρ(x, y, θ,φ, t) represent the probability
density function at time t:

Pr(X(t) ∈ (x, x + dx), Y(t) ∈ (y, y + dy), �(t) ∈ (θ, θ+ dθ),

�(t) ∈ (φ,φ+ dφ)) = ρ(x, y, θ,φ)dxdydθdφ (8)

We denote the stationary density (long-time behavior as t→∞)
as ρss(x, y, θ,φ).

Our goal is to compute the probability density of the phase
difference between the two oscillators, R(φ), which is:

R(φ) :=
∫ ∞
−∞

∫ ∞
−∞

∫ 2π

0
ρss(x, y, θ,φ) dxdydθ (9)

If the oscillators are perfectly synchronized, then R(φ) will be a
delta function centered at φ = 0. If the oscillators are completely
independent, then R(φ) = 1/(2π). In Appendix, we show that
R(φ) satisfies a simple first order boundary value problem (BVP).
We present the exact equation for this in Results.

2.3. ORDER PARAMETER
Once we get the distribution of phase differences, R(φ), we need
a number to estimate the synchronization, which means the
sharpness of this distribution. In this study, we use an order
parameter (OP) to do this. We define:

OP =
√

C2 + S2 (10)

C =
∫ 2π

0
R(φ) cos(φ)dφ

S =
∫ 2π

0
R(φ) sin(φ)dφ

θ = atan2(C, S)
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OP is a representation of sharpness and θ is the estima-
tion of the peak position. For certain types of heterogeneity,
R(φ) is peaked at φ = 0; in this case, we can show that the
cross correlation of the spike times is (R(0)− 1/(2π))/(2π)

(Burton et al., 2012). However, OP provides a better global
measure of the synchrony and is not dependent on the peak
being centered at 0; we will therefore use OP in our current
results.

2.4. MORRIS-LECAR MODEL
The Morris-Lecar (ML) model (Rinzel and Ermentrout, 1989)
is a simplified two-dimensional system membrane model that
we use to compare the phase models with a full biophysical model:

C
dV1

dt
= I1 − gL(V1 − VL)− gK w1(V1 − VK)

− gCam∞(V1)(V1 − VCa)+ σx (11)

dw1

dt
= φ

w∞(V1)− w1

τw(V1)
(12)

C
dV2

dt
= I2 − gL(V2 − VL)− gK w2(V2 − VK)

− gCam∞(V2)(V2 − VCa)+ σx (13)

dw2

dt
= φ

w∞(V2)− w2

τw(V2)
(14)

x′ = − x/τ+ ξx/
√

τ (15)

y′ = − y/τ + ξy/
√

τ (16)

with 〈ξ1(t), ξ1(t′)〉 = δ(t − t′), 〈ξ2(t), ξ2(t′)〉 = δ(t − t′), and
〈ξ1(t), ξ2(t′)〉 = cδ(t − t′), c ∈ [0, 1]. The auxiliary functions are:

m∞(V) = 0.5 · (1+ tanh((V − Va)/Vb)) (17)

w∞(V) = 0.5 · (1+ tanh((V − Vc)/Vd)) (18)

τw(V) = 1

cosh((V − Vc)/(2Vd))
(19)

The parameters used in this paper are: VK = −84 mV , VL =
−60 mV , VCa = 120 mV , gK = 8 mS

cm2 , gL = 2 mS
cm2 , gCa = 4 mS

cm2 ,

C = 20 μF
cm2 , Va = −1.2 mV , Vb = 18 mV , Vc = 2 mV , and Vd =

30 mV . I1, I2 and φ1, φ2 vary for each figure.
To get the phase from the noisy voltage signal generated by

the ML model, we first apply the Hilbert transform (HT) to V(t)
which allows us to get a phase. However, the phase is not uni-
form as it is not a temporal phase. We then map the HT phase to
a temporal phase on the noise-free limit cycle which gives a uni-
form phase-distribution as required by the theory. This allows us
to estimate R(φ) for the biophysical model, where φ here is the
phase difference between two ML model neurons that are driven
with partially correlated noise.

In some of the figures, we simulate the phase-reduced dynam-
ics for the ML model. To do this, we must compute the
infinitesimal PRC, �ML(θ). As described in Appendix, the PRC

for the model is the voltage component of the solution to
the adjoint equation (Equation 32). The software package XPP
(Ermentrout, 2002) includes an algorithm for computing the
adjoint solution for an exponentially stable limit cycle, so we
simply compute various limit cycles (say with very different
parameters but similar periods) and then compute �ML(θ) for
those specific parameters. We save the result as a lookup table and
then numerically solve the phase equation.

2.5. NUMERICS
To get solutions to the stochastic phase and membrane equations,
we use the Euler-Murayama method. We solve the BVP for the
stationary phase difference density using a custom BVP solver
written in MATLAB. All codes are available by request.

3. RESULTS
3.1. APPROXIMATION OF THE PHASE DIFFERENCE DENSITY
Oscillators driven with a correlated fluctuating signal will exhibit
a degree of synchronization that depends on the size of the sig-
nal, the strength of correlation, and the similarity of the two
oscillators. Thus, for example, identical oscillators driven by
small enough identical white noise will synchronize perfectly
(Pikovsky et al., 1997; Teramae and Tanaka, 2004). The rate
at which these identical oscillators synchronize depends on the
properties of the noise - in particular, its autocorrelation (Nakao
et al., 2007; Goldobin et al., 2010). In general, and especially
in biological systems, there will be a great deal of heterogene-
ity in any pair of oscillators. For example, for neurons, there
is always some source of independent noise so that the input
correlation is always less than 1. The neurons may also be fir-
ing at slightly different frequencies. Finally, even if the neurons
are adjusted to fire at the same frequency, their distribution of
ion channels can be very different and, thus, their response to
correlated signals can be quite different (Burton et al., 2012).
If the fluctuating inputs are sufficiently small, then any sta-
ble limit cycle oscillator can be reduced to a so-called phase
model where the dynamics are characterized by a single vari-
able, the phase, such that the firing is considered to occur at
a phase of 0 and the time between spikes is mapped onto an
angle between zero and 2π. Here, we consider driven pairs of
heterogeneous oscillators that receive partially correlated filtered
noise. As our main examples come from neuroscience, we assume
that the external inputs are implemented as currents, in which
case the phase model for the pair of neural oscillators has the
form:

θ′1 = 1+ ε�1(θ1)x(t)

θ′2 = 1+ ε2ω+ ε�2(θ2)y(t)

where x(t) and y(t) are OU processes with the same time
constant, τ, and with correlation c; �1,2(θ) are the PRCs for
the two oscillators; ε is a small positive parameter (charac-
terizing the magnitude of the fluctuations); and ω accounts
for the frequency difference in the unperturbed oscillators (see
Materials and Methods, Equations 2–5). We are primarily inter-
ested in the distribution of the phase difference, φ := θ2 −
θ1. In the Appendix (Equation 62), we show that R(φ), the
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probability density function for the phase difference, satisfies a
simple BVP:

d

dφ
{[c · g(φ)− C1]R(φ)} + (4πω− C2)R(φ) = K

R(φ) = R(φ+ 2π)

g(φ) = g(φ+ 2π)∫ π

−π

R(φ)dφ = 1

K = 2ω− C2

2π

The 2π−periodic function g(φ) and the constants, C1,2, depend
in a complicated way on the forms of the PRCs and the time con-
stant of the noise, τ (see Appendix). However, all quantities can
be found by integrating elementary functions. If the oscillators
have the same PRC, then C2 = 0 and g(φ) is even symmetric.
If the oscillators have the same frequency, then ω = 0. When
both C2 and ω vanish, we can immediately solve the BVP, yield-
ing R(φ) = N/(C1 − cg(φ)), where N is a normalization constant
so that the integral is 1. This is the result found in Marella and
Ermentrout (2008) for white noise, but is clearly also true for
colored noise. When the oscillators are identical and there is no
difference in frequencies, the phase difference density is symmet-
ric and always peaks at 0. However, when ω− C2 is nonzero,
the peak of the phase difference density will generally be off-
set. We note that ε does not appear in the expression for R(φ),
which says that the phase difference density is, to a first approx-
imation, independent of the amplitude of the noise. Figure 1
shows typical results comparing the perturbation calculation and
the simulation of the Langevin equation. In Figure 1A, at fairly
high noise ε = 1, there is some distortion at the peak of the
distribution, but as predicted from the theory, the distribution
magnitude is largely independent of the magnitude of the fluctua-
tions. Figure 1B shows a similar simulation, but the correlation of
noise is lower (c = 0.5 vs. c = 0.8), the noise is faster (τ = 0.25 vs.

FIGURE 1 | Novel analytical theory of correlated colored noise-induced

synchronization of heterogeneous oscillators matches Monte Carlo

simulations for low to moderate levels of noise. Stationary phase
difference density is shown as computed from the solution of the BVP and
through Monte Carlo simulation from t = 1000 to t = 201000 in steps of
0.05. Monte Carlo data binned into 100 bins between −π and π. There is a
frequency difference of ε2/2 where ε is the magnitude of the noise. Here
�j (θj ) = sin(aj )− sin(θj + aj )+ bj sin(2θj ), where j = 1,2 for two
oscillators. (A) τ = 1, a1 = 0.1, a2 = 0.6, b1 = 0.32, b2 = 0.3, and c = 0.8.
(B) τ = 0.25, a1 = a2 = 0.5, b1 = b2 = 0.3, and c = 0.5.

τ = 1), and the PRCs are identical. In this case, even the higher
noise simulations match the theory. We once again emphasize
that the perturbation expansion requires a small value of ε, but
clearly, the simulations show that ε can be nearly 1 and still yield
good agreement.

We note that the density of the phase differences can be related
to more conventional measures of correlation. In Burton et al.
(2012), we showed that the spike time cross-correlation (CC)
between a pair of weakly noisy oscillators is:

CC(τ) = 1

2π

[
R(−τ)− 1

2π

]
(20)

For example, if the oscillators are asynchronous, then they have
a uniform phase difference density and the cross-correlation
will be 0. This calculation confirms ones intuition that differ-
ent neurons that receive correlated noise will have spike time
cross-correlations that peak off-center.

Figure 2 shows that we can apply the theory through two
levels of simplification. The ML system is a simple, biophysi-
cally realistic model for a spiking neuron (Rinzel and Ermentrout,
1989). With different choices of parameters, the onset to oscilla-
tory behavior can be either through a Hopf bifurcation (HB) or a
saddle-node on an invariant circle (SNIC) bifurcation. The PRCs
that result from these distinct bifurcations are often quite differ-
ent (Brown et al., 2004; Izhikevich, 2007) and thus have quite
different synchronization properties. In Figure 2, we tune the ML
model so that each cell has the same frequency but the parameters
are quite different and so the PRCs are different (see Figure 2B).

FIGURE 2 | Analytical theory accurately predicts synchronization of

biophysically realistic spiking neuron models. (A) Invariant phase
difference density computed from the reconstructed phase of two ML
model neurons receiving partially correlated colored noise (period is
91.25 ms, τ = 5 ms, c = 0.8). Three cases are illustrated with either
identical (homogeneous) or mixed (heterogeneous) PRCs. The “Hopf” case
corresponds to a set of parameters where the oscillatory activity arises via
a HB and the “SNIC” case through a SNIC bifurcation (Rinzel and
Ermentrout, 1989); see Appendix for parameters. (B) PRCs for the two
cases. (C) Same as (A), but using simulations of the phase reduced
equations. (D) Solutions to the BVP using the PRCs from (B).
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In Figure 2C, we show the results of a Monte Carlo simulation in
which the biophysical model is driven by correlated noise. Phase
is reconstructed from the voltage traces using a Hilbert transform
and from these, we obtain phase difference histograms. In this
figure, the correlation c is 0.8, τ = 5 ms, and the natural period
of the oscillation is 91.25 ms. For the same degree of correla-
tion, two HB oscillators are much better at synchronizing than
are two SNIC oscillators. This result is consistent with the the-
ory developed in Marella and Ermentrout (2008) for white noise
and also for spike time correlations over fast timescales (i.e., spike
synchrony) (Barreiro et al., 2010). At this high correlation, the
heterogeneous HB-SNIC pair shows greatly reduced synchrony
from either of the homogeneous cases and a shift in the peak
even though there is no frequency difference. Figure 2B shows the
two PRCs that were determined using the adjoint method. We
then used these PRCs to compute the invariant densities for the
corresponding phase reduced models. The invariant density is
a function that describes the distribution of phase differences
of the two neurons over some time interval consisting of many
cycles. Thus, the peak of the invariant density indicates the most
likely phase difference, and a large peak at zero phase differ-
ence would indicate that the two neurons are well synchronized.
Comparison between Figures 2A,C shows excellent agreement.
Finally, we substituted the numerically computed PRCs into our
BVP and computed the invariant density. The result of this cal-
culation is shown in Figure 2D. There are small differences in the
amplitude, but the shapes and the shift of the densities in the het-
erogeneous case are almost identical. Thus, through two levels of
reduction (first, from the full model to the phase model, and sec-
ond, from the Langevin phase model to the approximate invariant
density), we see that our analytical method works very well at esti-
mating the invariant density of phase differences between neural
oscillators.

3.2. PRC HETEROGENEITY
Our approximation of the invariant density, while requiring that
we solve a BVP, allows us to explore the effects of heterogeneity
much faster than simulating the appropriate Monte Carlo system.
Thus, we will use this method to explore the effects of PRC het-
erogeneity, frequency differences, and the color of the noise on the
ability of oscillators to synchronize. One simple global measure
of synchrony/correlation for systems whose natural dynamics
are periodic is the circular variance, σcircle = 1−OP, where we
define an order parameter (OP) (see Materials and Methods,
Equation 10):

OP =
[(∫ π

−π

R(φ) cos φ dφ

)2

+
(∫ π

−π

R(φ) sin φ dφ

)2
] 1

2

For a flat distribution, OP = 0 (σcircle = 1) and for a delta func-
tion distribution, OP = 1 (σcircle = 0). The OP is a commonly
used measure for the degree of synchronization between two
oscillators (Kuramoto, 2003).

In general, one expects that the synchrony between two oscil-
lators forced with correlated noise would be greatest if the oscil-
lators are homogeneous. Certainly, if the inputs are identical

(i.e., no independent or unshared noise), then identical oscillators
will synchronize perfectly, while heterogeneous oscillators will not
synchronize perfectly. That is, the phase density will not be a
delta function. [See Burton et al. (2012) for a proof]. However,
surprisingly, at low input correlations, it is possible for a hetero-
geneous pair of oscillators to produce greater synchrony than one
(but not both) of the respective homogeneous pairs of oscillators.
Figure 3 illustrates the behavior of two separate homogeneous
pairs of oscillators (blue and green lines, respectively) as the input
correlation varies from 0 to 1. A third, heterogeneous pair com-
prised of an oscillator from each homogeneous pair is shown in
red. Figure 3A shows the two different PRCs; pairs of oscillators
with the green PRC (“PRC 1-PRC 1”) produce weaker synchrony
than pairs of oscillators with the blue PRC (“PRC 2-PRC 2”).
This is demonstrated in Figure 3B, where the correlation is set
to 0.8. Note that the phase difference density for PRC 2-PRC
2 pair is more peaked than that for PRC 1-PRC 1 pair, while
both densities are more peaked than the heterogeneous “PRC
1-PRC 2” pair. As noted above, the peak of the heterogeneous
pair is not at the origin but rather, is shifted to the left. In order
to get a global measure of synchrony, we plot OP as a function
of the input correlation (Figure 3C). As c→ 1, both homoge-
neous pairs approach OP = 1 (i.e., perfect synchrony) while the
heterogeneous pair never exceeds OP= 0.4. However, at low cor-
relations, the heterogeneous pair can actually synchronize better
than the PRC 1-PRC 1 pair (compare red to green lines in inset).
That is, in the presence of low correlations, a “good synchro-
nizer” paired with a “bad synchronizer” performs better than the
homogeneous pair of bad synchronizers. This effect is not just due

FIGURE 3 | Oscillator heterogeneity can enhance correlated

noise-induced synchronization at low input correlations. (A) Two PRCs
with the form �j (θj ) = sin(aj )− sin(aj + θj )+ bj sin(2θj ), a1 = 0.1,
b1 = 0.32, a2 = 0.6, and b6 = 0.3. (B) R(φ) with different combinations of
PRCs. Blue: PRC 2-PRC 2; red: PRC 1-PRC 2; green: PRC 1-PRC 1. Solid
lines are theoretical predictions from the solution to the BVP and open
symbols are Monte Carlo simulation results (same notation applies in
following figures). Parameters used: τ = 1 and c = 0.8. (C) Synchronization
as input correlation varies from 0 to 1; inset shows magnification when
c < 0.5. (D) Same as (C), but using the ML model. Parameters used:
I1 = 110, φ1 = 0.04616, I2 = 120, and φ2 = 0.04.

Frontiers in Computational Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 113 | 176

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Zhou et al. Correlated colored noise-induced synchrony

to our approximate expansion as the Monte Carlo simulations
show the same phenomenon. Figure 3D further hints that we can
also see the effect in the full ML model, although the results are
not as clear.

3.2.1. Experimental evidence
Could this subtle difference in the ability of neural oscillators to
transfer correlation be seen in experiments? To answer this, we
re-examined data from a previous study (Burton et al., 2012).
Mitral cells from the mouse main olfactory bulb were injected
with constant current overlaid with frozen noise to evoke noisy
periodic firing. PRCs were then experimentally estimated using
our previously described method using the spike-triggered aver-
age (Ermentrout et al., 2007). [Complete methods are provided

in Burton et al. (2012)]. In this dataset, we found several exam-
ples where injecting partially correlated noise produced greater
synchrony between two different mitral cells firing at the same
rate than for one of the mitral cells across different trials (experi-
mentally simulating a homogeneous pair of mitral cells). Figure 4
illustrates an example. In Figure 4A, we show the voltage traces
(top) of two mitral cells receiving correlated inputs, and the spike
times (middle) and phase (bottom) as determined by a simple lin-
ear interpolation between spikes. Figure 4B shows the PRCs from
each of these two cells along with their fit to the exponential-sine
PRC model (see Appendix, Equation 64). In Figure 4C, we show
the phase difference density as constructed from the linear phase
interpolation of the two cells. In this example, the currents deliv-
ered through the electrodes are perfectly correlated. However,

FIGURE 4 | Physiological neuronal heterogeneity can enhance correlated

noise-induced synchronization at low input correlations. (A) Example
linear interpolation of phase between recorded spike times of two mitral cells
injected with perfectly correlated colored noise. Top: experimentally recorded
membrane potentials. Middle: raster plot of spike times. Bottom: phase. (B)

Experimentally estimated PRCs for the two cells shown in (A). Dashed lines
are fits of the exponential-sine PRC model to the estimated PRCs. (C) Phase
difference densities of the two cells during injection of perfectly correlated
currents. Densities were calculated from pairs of 5 sec recordings. Blue and
green curves show densities for homogeneous pairs of cell 1 and cell 2,
respectively. The red curve shows the density for the heterogeneous pair of
cell 1 with cell 2. (Di) Experimental and (Dii) theoretical OP vs. input
correlation for homogeneous and heterogeneous pairs of the two mitral cells.
Theoretical curves calculated by solving the BVP with the model PRC fits and
τ = 5. [Note that the same results were obtained in separate calculations for
τ = 3, the time scale of the noise used in Burton et al. (2012)]. (Ei–Eii) Mean
OP (±SEM) vs. input correlation across 85 pairs of mitral cells (formed from
27 separate mitral cell recordings described in Burton et al. (2012)). For each

pair, the cell with the greatest area under its homogeneous OP vs. correlation
curve was classified as the “good synchronizer” of the pair. (Fi) Theoretical
OP vs. input correlation (with τ = 3) for each of the 85 heterogeneous pairs
from (E) (light red lines), plotted against the theoretical OP vs. input
correlation of a homogeneous pair formed from the average mitral cell PRC.
Note that many (but not all) of the heterogeneous pairs exceed the
homogeneous pair in the low correlation range shown. On average (dark red
line), physiological heterogeneity enhances synchrony for input correlations
up to ∼0.27. (Fii) Magnification of the homogeneous and average
heterogeneous lines from Fi for low input correlations. (Gi) Percent and (Gii)

absolute change in theoretical OP for heterogeneous vs. homogeneous bad
pairs of mitral cells. Black lines plot OP changes for pairs in which
heterogeneity increased synchrony at low input correlations; magenta line
plots mean OP enhancement (±SEM) for these pairs. Grey lines plot OP
changes for pairs in which heterogeneity did not increase synchrony. Note
that heterogeneity mediates the greatest percent increase in OP at low
(<0.1) input correlations, similar to experimental results shown in (E). Inset
shows magnification when |�OP| < 0.03.
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unlike the simulations, the neurons themselves are intrinsically
noisy, so there is a substantial component of “private” noise.
Nevertheless, one can see that cell 1 (blue) synchronizes better
across trials than does cell 2 (green) across trials. Figures 4Di,Dii
show the OP as reconstructed from the experimental data and as
obtained by using the computed PRCs, respectively. This shows
that at low correlations, the heterogeneous pair (“1–2”) can syn-
chronize better than the “2–2” homogeneous pair (but not the
“1–1” homogeneous pair). The inset in 4Dii magnifies the low c
region.

Are the results presented in Figures 4A–D for a single pair of
mitral cells consistent across a larger population of mitral cells?
To answer this, we examined recordings from 27 regularly fir-
ing mitral cells, from which we were able to form 85 different
pairs of mitral cells with highly similar (≤5 Hz difference) fir-
ing rates. For each pair of mitral cells, we computed the OP
across varying input correlations for both homogeneous com-
binations and the heterogeneous combination. We automatically
classified the mitral cell with the greatest homogeneous OP across
all levels of input correlation as the “good synchronizer” of the
mitral cell pair. Figure 4E shows the mean OP vs. correlation
across the 85 good, bad, and heterogeneous mitral cell pairs.
Note that, even with this relatively insensitive classification of
good vs. bad synchronizers, there is a region at low input corre-
lations where, on average, heterogeneous pairs synchronize better
than the bad homogeneous pairs. This phenomenon is seen more
clearly when we use the experimentally estimated PRCs and the
BVP to compute the OP vs. input correlation. Figure 4Fi plots
OP vs. c for all heterogeneous pairs (light red lines), the mean of
the heterogeneous pairs (dark red line), and the OP for a single
homogeneous pair whose PRC is the mean of all the PRCs (black
line). For many cases (but not all), heterogeneity increases the OP
above that achieved by a uniform population of neural oscilla-
tors with the mean PRC. Figure 4Fii magnifies the mean OP vs. c
curves at low correlation; the red curve is clearly higher than the
black curve.

We then quantified the degree to which physiological levels of
heterogeneity [as experimentally measured in mitral cells (Burton
et al., 2012)] can enhance synchrony between neural oscillators.
Using the BVP and our experimentally estimated mitral cell PRCs,
we calculated the percent and absolute change in OP for all 85 het-
erogenous vs. homogeneous bad mitral cell pairs. That is, for the
example pair in Figure 4Dii, we subtracted the green from the red
line to calculate the absolute change in OP, and divided this dif-
ference by the green line to calculate the percent change in OP.
Figures 4Gi,Gii plot the results of this analysis for all 85 pairs.
In 26 of these pairs (plotted in black), heterogeneity enhanced
synchrony at low input correlations, with a mean increase in
OP (plotted in magenta; ±SEM) of up to 36%. Thus, in rela-
tive terms, physiological levels of heterogeneity can significantly
enhance correlated noise-induced synchrony at low input correla-
tions. While this relative enhancement in synchrony corresponds
to an admittedly low absolute increase in OP of up to 0.01 on
average (Figure 4Gii), we nevertheless expect this phenomenon
to significantly contribute to patterns of oscillatory synchrony
in the olfactory bulb and potentially other brain regions (see
Discussion).

3.2.2. Good vs. bad synchronizers
When is a neuron a good vs. bad synchronizer? Here, the BVP is
much simpler since we just have to compare homogeneous pairs.
In this case, the probability density function can be written as:

R(φ) = N

1− c g(φ)
g(0)

(21)

where N is a normalization and g(φ) is defined above by setting
n = m. For low values of c, we get:

R(φ) ≈ N

[
1+ c

g(φ)

g(0)

]
(22)

and integrating, we can find N:

1

N
≈ 2π

[
1+ c

1

2π

∫ 2π

0
g(φ)/g(0) dφ

]
(23)

Since the two neurons are identical, the peak of R(φ) occurs at
φ = 0 and, so, we can estimate the zero lag cross-correlation as
[R(0)− 1/(2π)]/(2π). Using the approximations above, we see
that:

CC ≈ c

2π

(
1− 1

2π

∫ 2π

0

g(φ)

g(0)
dφ

)
:= cS (24)

That is, the cross-correlation is linearly proportional to the input
correlation (for small c) and this factor [called the susceptibil-
ity (de la Rocha et al., 2007)], is a simple function of g(φ). We
can maximize S if we can make the integral as small as possi-
ble. Note that g(φ) is periodic, and the integral over a period
is proportional to the constant Fourier coefficient. Recall that
g(φ) is a low-pass filtered version of h(φ), which is the auto-
correlation function of the PRC. Thus, h(0) is positive and so
is g(0). The integral of g(φ) is proportional to the integral of
h(φ), which is just 2πa2

0 where a0 is the DC component of
the PRC. Hence, we can minimize the integral and maximize
the correlation transfer (susceptibility) if we mimimize the DC
component of the PRC. This fact generalizes the conclusions in
Marella and Ermentrout (2008) and Abouzeid and Ermentrout
(2009) that state that more sinusoidal PRCs are the best syn-
chronizers. For example, with a PRC of the form (sin(a)−
sin(x + a)) exp(C(x− 2π)), we obtain the best synchrony when
a = − arctan C.

Can we determine when a pair of oscillators will have the prop-
erty that a good-bad heterogeneous pair is better than a bad-bad
homogeneous pair? Since the effect is only seen at low corre-
lations, this suggests a perturbation expansion for small c. We
write R(φ) =∑ cnRn(φ) and find that R0 is constant and so to
order 1, R(φ) = R0 + cR1(φ). From this, we can compute OP,

OP = c
∫ 2π

0 cos φR1(φ) dφ. The formulas for this are not terribly
useful, but we can illustrate the results with a simple example. Let
�j(φ) = sin(aj) − sin(φ+ aj), where j = 1, 2 for two oscillators.
Then:

OPjk = c
K

1+ (τ2 + 1
) [

sin2 aj + sin2 ak
] (25)
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Thus, for 0 ≤ a1 < a2 ≤ π/2, we always have OP11 > OP12 >

OP22 for all τ and sufficiently small values of c. This provides a
simple and surprising illustration that heterogeneity will improve
synchrony at low correlations for very simple PRCs. We remark,
however, that this phenomenon does not always hold. Pairs of
PRCs can be found such that OP is always bigger for both of
the homogeneous oscillator pairs than for the heterogeneous
oscillator pair, as can be seen from Figures 4F,G.

3.2.3. PRC heterogeneity tunes the sharpness and peak position of
the phase difference density

If two neurons are identical but driven with partially correlated
noise, then the peak of the phase difference density will be cen-
tered at φ = 0, which means that the two oscillators will tend
to have the same phase. However, with heterogeneity, the peak
will shift depending on the degree of heterogeneity, just as two
coupled oscillators will shift if they have different intrinsic fre-
quencies. Figure 5 shows how the peak of the phase difference
density is shifted by oscillator heterogeneity. Using the two term
double sinusoidal form PRC (Equation 63), we keep PRC 1 con-
stant (a1 = 0.1, b1 = 0.32) as we vary PRC 2 (b2 = 0.3 is constant
and a2 varies from−π to π). From the results shown in Figure 5,
we can conclude that heterogeneity can tune oscillator synchro-
nization in both the sharpness and peak position of the phase
difference density, which might be useful in neural signal coding.
We also note that OP is minimized when the peak is at±π/2 and
that “changing the sign” of the PRC (e.g., setting a2 = π) shifts
the peak but has very little effect on the OP.

3.3. FREQUENCY DIFFERENCES HIGHLY LIMIT SYNCHRONIZATION
In the above results, we assume that all oscillators have the
same natural frequency, which means ω = 0. This is a somewhat
unreasonable assumption for real neurons. Thus, we now study
how synchronization is dependent on the frequency differences
between oscillators. Figure 6 shows the effects of frequency dif-
ferences on a pair of oscillators that have different PRCs (of the
two term double sinusoidal form, Equation 63) and are driven by
partially correlated noise. With no frequency difference, the het-
erogeneity in oscillator PRCs yields a shift in the peak position
(Figure 5), consistent with previous measurements of synchrony
between irregularly firing neurons (Tchumatchenko et al., 2010).
This means that, if frequency differences can shift the peak in the

FIGURE 5 | PRC heterogeneity tunes the sharpness and peak position

of the phase difference density. OP vs. a2 (black axis) and the peak
position of the phase difference density vs. a2 (grey axis). Parameters used:
a1 = 0.1, b1 = 0.32, b2 = 0.3, τ = 1, and c = 0.8.

opposite direction [e.g., see Figure 1C of Burton et al. (2012)],
then changes in frequency could “cancel” the effects of PRC het-
erogeneity so that the peak of the phase difference density is at 0.
This cancellation can be seen in Figure 6 near ω = 0.2. However,
this cancellation comes at a loss to precision, as seen by the
decrease in OP. While not shown, we remark that the drop in
OP is symmetric about ω = 0; thus, a negative frequency differ-
ence will not result in a larger OP. While it remains to be proven,
we conjecture that the OP is always maximal when there is no
frequency difference. This differs from the case that we looked
at in the previous section where heterogeneity (in PRCs) can
sometimes lead to a larger OP than homogeneity.

3.4. CORRELATED NOISE-INDUCED SYNCHRONIZATION IS
DEPENDENT ON THE TIME CONSTANT OF THE NOISE

Because of the natural decay times of synapses, broadband inputs
into neurons have some temporal correlations. Thus, we now
explore how the temporal properties of noise interact with het-
erogeneities in the PRCs. Figure 7 shows that synchronization
decreases monotonically as τ increases for ω = 0, while there
exists an optimal value of τ that achieves the greatest synchroniza-
tion for ω = 0.5. This means synchronization of two oscillators
with different frequencies (i.e., ω = 0) can have a resonance
with τ. Furthermore, as seen in Figures 7B,D the peak of the
phase difference density depends on τ only when there is a fre-
quency difference between the two oscillators. In Figure 8, we
explore this resonance in more detail where R(φ) is plotted as τ

varies. The left panels (showing the solution to the BVP and the
results of Monte Carlo simulation) show that when ω = 0, the
peak position of R(φ) is largely unchanged and the magnitude
decreases monotonically with τ. There is a sharp drop off in R(φ)
at τ ≈ 2. A different result emerges in the right panels, where a
frequency difference exists (ω = 0.5). At low and high values of
τ, R(φ) is almost flat with a distinct resonance when τ ≈ 1. We
see the same resonance in the biophysical ML model when the
neurons have different frequencies and different PRCs (Figure 9).

We can see why the frequency differences are needed for res-
onance by considering the simplest example of identical PRCs
of the form �(φ) = sin a− sin(φ+ a). In this case, we solve the
BVP:

G(φ, τ)R(φ)

dφ
= α

1+ τ2

τ
(R(φ)− 1) (26)

FIGURE 6 | Frequency differences limit noise-induced synchronization.

OP decreases quickly as frequency differences increase (black axis). The
peak position of the phase difference density is shifted by changing
frequency differences between two oscillators (grey axis). Parameters used
here: a1 = 0.1, b1 = 0.32, a2 = 0.6, b2 = 0.3, τ = 1, and c = 0.8.
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FIGURE 7 | Frequency differences between oscillators change the

dependence of synchrony on the time constant of the correlated noise.

(A) OP and (B) the peak position of the phase difference density for
oscillators with no frequency difference (ω = 0). (C) OP and (D) the peak
position of the phase difference density for oscillators with a frequency
difference (ω = 0.5). Parameters used: a1 = 0.1, b1 = 0.32, a2 = 0.6,
b2 = 0.3, and c = 0.8.

FIGURE 8 | Synchronization of oscillators with different frequencies

resonates with the time constant of the correlated noise. (A) BVP
solution and (C) results of Monte Carlo simulation for R(φ) between two
oscillators with no frequency difference (ω = 0) as τ varies. X-axis shows
the phase difference, φ, and higher R(φ) is plotted as hotter colors in the
heat map. (B) and (D), same as (A) and (C) for two oscillators with a
frequency difference (ω = 0.5). Parameters used: a1 = 0.1, b1 = 0.32,
a2 = 0.6, b2 = 0.3, and c = 0.8.

where G(φ, τ) = (1+ τ2) sin(a)2 + 1− c cos φ. Here, α is pro-
portional to the frequency difference. In particular, note that
when ω = 0, G is independent of τ and otherwise, τ acts
to weaken the correlated noise-induced synchronization as it
increases the part of G that is not phase dependent. However,

FIGURE 9 | Frequency differences between biophysically realistic

spiking neuron models change the dependence of synchrony on the

time constant of the correlated noise. (A) OP and (B) peak position for
model neurons with different PRCs but the same frequency
(I1 = 120,φ1 = 0.04, I2 = 110, and φ2 = 0.04616). (C) OP and (D) peak
position for model neurons with different PRCs (same as above) and slightly
different frequencies (I1 = 120,φ1 = 0.041, I2 = 110, and φ2 = 0.04616).

the right side of this equation shows that the effect of the fre-
quency difference is minimized when τ = 1, and thus we expect
resonance in the OP. This effect disappears when α = 0.

4. DISCUSSION
In our current study, we have extended a number of previous
results describing the ability of neural oscillators to synchronize
in the presence of correlated noise. Our methods are similar to
those in Burton et al. (2012), with the additional aspect that we
now use colored noise (OU process). The properties of the noise
show up only through a convolution of the autocorrelation func-
tion of the noise with the phase functions hnm(φ) that, in turn,
depend only on the PRCs (see Appendix, Equation 56). Thus, we
could easily generalize this work to noise with an arbitrary auto-
correlation function. In addition, we have now included many
more examples of the theory and shown that the conclusions
from the perturbation theory continue to be valid for full bio-
physical models (cf. Figure 2). Further, we have shown that for
low input correlations, heterogeneity can actually improve syn-
chrony both pairwise and in large populations. We demonstrated
that this theoretical effect can be seen in experimental recordings
of regularly firing olfactory bulb mitral cells. Thus, we have sig-
nificantly extended the findings presented in Burton et al. (2012),
and our results on colored noise further suggest some experimen-
tally testable phenomena, such as the resonance seen in slightly
detuned oscillators (Figures 7–9). These novel findings and their
biological implications are discussed in more detail below.

4.1. HETEROGENEITY CAN IMPROVE SYNCHRONY
We found that correlated noise can synchronize a heterogeneous
pair of oscillators (comprised of a “bad synchronizer” and a
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“good synchronizer”) better than a homogeneous pair of bad
synchronizers at low levels of input correlation and verified this
experimentally. We showed that good (bad) synchronizers are
characterized by having a relatively low (high) DC component in
their PRC. Consistent with this, oscillators with the generic “type
II” PRC (i.e., sin φ) are better synchronizers than oscillators with
the generic “type I” PRC (i.e., 1− cos φ).

Several authors have previously studied the effects of het-
erogeneity on the transfer of correlation. As we noted in
Introduction, at low correlations, the output correlation is lin-
early proportional to the input correlation through a factor, S,
called the susceptibility (de la Rocha et al., 2007; Shea-Brown
et al., 2008). If we let S(A,B) denote the susceptibility for two
neurons, A,B, then what we have found in our current study
is that in some cases, S(A,A) > S(A,B) > S(B,B). Note that
in our study, we are looking at output correlation related to
spike-to-spike synchronization, whereas in many other studies
of output correlation, the interest is in spike count correlation.
We can regard our measure of synchrony as the same as spike
count correlation, but over a time window that is of the order
of the mean interspike interval. In a recent paper, (Shea-Brown
et al., 2008) showed that for spike count correlation, S(A,B) =√

S(A,A)S(B,B) and thus, trivially, we can obtain S(A,A) >
S(A,B) > S(B,B) when A is “better” than B at transferring cor-
relation. We want to emphasize that their result is for long time
windows (that is, the window length tends to infinity). Which
neurons are better than others at the transfer of correlation
depends very strongly on the window of time through which
you measure the correlation. Indeed, Barreiro et al. (2010) and
Abouzeid and Ermentrout (2011) showed that type II PRCs have
larger susceptibilities than type I for short time windows (i.e.,
spike synchrony) but the trend is reversed for large time windows
(i.e., rate correlation).

Interestingly, the efficiency of correlated-noise induced syn-
chronization is also modulated by firing rate in the low input
correlation regime (de la Rocha et al., 2007; Tchumatchenko
et al., 2010). Given that changes in firing rate can modulate PRC
shape in biophysically realistic neuron models and in real neurons
(Gutkin et al., 2005; Marella and Ermentrout, 2008; Stiefel et al.,
2008, 2009; Schultheiss et al., 2010; Fink et al., 2011; Burton et al.,
2012), whether or not (and the degree to which) PRC hetero-
geneity will enhance synchrony may depend in part on the firing
rate. However, in the simplest cases (such as models like the leaky-
integrate and fire model and the theta model), the only effect of
the firing rate on the shape of the PRC is to change its amplitude.
Since amplitude (but not shape) changes can be absorbed into the
size of the noise, and our theory shows that the phase difference
density is independent of the size of the noise (at least, if it is small
enough), changes in firing rate will have no effect on the synchro-
nization of pairs of neurons firing at the same or nearly the same
rates.

The ability of cellular heterogeneity to regulate which oscilla-
tors synchronize best as a function of input correlation likely con-
tributes to coding in many neural systems. In the olfactory bulb,
where oscillatory synchrony appears to be critical to olfactory
coding [for review, see Bathellier et al. (2010)], tens of “sister”
mitral cells are linked to each glomerulus where they receive

highly correlated afferent input (Carlson et al., 2000; Schoppa
and Westbrook, 2001). Each sister mitral cell of a glomerulus may
also participate in independent (i.e., unshared) lateral inhibitory
circuits with non-sister mitral cells of surrounding glomeruli,
mediated by local inhibitory granule cells (Dhawale et al., 2010;
Tan et al., 2010). On average, sister mitral cells are thus subject to
high input correlations while non-sister mitral cells are subject to
low (though non-zero) input correlations (Dhawale et al., 2010).
Further, we and others have demonstrated that mitral cells exhibit
substantial cell-to-cell heterogeneity (Padmanabhan and Urban,
2010; Angelo and Margrie, 2011; Angelo et al., 2012; Burton et al.,
2012). Based on our current results, this heterogeneity will thus
act to reduce output synchrony of sister mitral cells but enhance
output synchrony of non-sister mitral cells. Thus, in the context
of the olfactory system, heterogeneity will promote encoding of
combinatorial sensory information (i.e., activation of non-sister
mitral cells by odor combinations).

Our results suggest that heterogeneity can only enhance
correlation-induced synchronization by a moderate amount
between two neural oscillators (up to 36% in BVP solutions
using mitral cell PRCs). Two properties of the olfactory bulb
nevertheless suggest that even this moderate effect can signifi-
cantly influence patterns of oscillatory synchrony in the olfac-
tory system. First, the reciprocal dendrodendritic connectivity
between mitral cells and granule cells enables activity-dependent
regulation of granule cell recruitment (Arevian et al., 2008),
which can lead to amplification of granule cell-mediated corre-
lated noise-induced synchronization (Marella and Ermentrout,
2010). Second, mitral cells separated by up to ∼2 mm can
engage in lateral inhibitory interactions (Egger and Urban,
2006), thus multiplying the synchrony-enhancing effect of cel-
lular heterogeneity across a potentially large fraction of the
∼40,000 total mitral cells per mouse olfactory bulb (Benson
et al., 1984). Whether neural oscillator heterogeneity exists in,
and significantly enhances, correlated-noise induced synchrony
in other brain regions remains a promising topic of future
research.

4.2. RESONANCE
In addition to the above findings, we found that there exists
some resonance of correlated noise-induced synchronization with
respect to the time scale of the noise. That is, we found a local
maximum in OP as the time scale of the correlated noise var-
ied. Surprisingly, this only occurs when there is a difference in
the frequencies between the two oscillators. The requirement for
the frequency difference would seem to contradict earlier work
(Galán et al., 2008), where it was found that the Liapunov expo-
nent was most negative when the noise has a particular time scale.
However, when the noise is only partially correlated, the uncor-
related part of the noise causes a drift in the phase difference.
The degree of this drift is also dependent on the time scale of
the noise, and thus the two effects cancel. A frequency difference
breaks this symmetry by adding an additional drift term, which
prevents one from factoring out the resonance. A frequency dif-
ference thus leads to a dependence of OP on the time scale of
the noise. We have not yet tested this idea experimentally, but it
seems to be quite robust, having been found in both the simple
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phase models (Figures 7, 8) and in the biophysical ML model
(Figure 9).

4.3. LIMITATIONS OF THE THEORY
The analysis that we have done in this paper and in our earlier
papers requires that the neurons fire almost periodically. This
means that the activity of the neurons is mean driven rather than
fluctuation driven so that the coefficient of variation of the inter-
spike intervals should be small. While this may not be the case in
all areas of the brain, there are many regions, such as the olfactory
bulb, where the firing rate can be quite regular and synchronous
as indicated by the large rhythmic local field potentials. Assuming
that the neurons are firing at a fairly regular rate, it is also reason-
able to ask how well the PRC describes such noisy neurons. An
extensive review of the caveats of PRC theory for real neurons can
be found in Smeal et al. (2010). Another issue is the actual esti-
mation of the PRCs in the presence of noise. Several studies have
shown that background synaptic activity and other forms of noise
do not significantly affect the shape of the PRC (Ermentrout et al.,
2011; Netoff et al., 2012).

In conclusion, we have extended our previous work
to demonstrate that oscillator heterogeneity and frequency
differences interact with the time scale of input noise
to regulate how correlated noise synchronizes uncoupled
oscillators.

4.4. DATA SHARING
All codes are available by request from the authors. They include
Matlab and XPPaut files.
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APPENDIX
REDUCTION TO A PHASE MODEL
Consider a general oscillator receiving a possibly noisy time-dependent signal:

dX

dt
= F(X)+ εN(X, t) (27)

Here N(X, t) is the external or imposed inputs into the system. For single compartment neural models, N will typically only affect the
membrane potential, e.g., as an injected or synaptic current. We assume that X′ = F(X) has as a solution an exponentially stable limit
cycle, U(t + T) = U(t) and that ε is a small positive parameter characterizing the magnitude of the input. We are interested in how
the phase of the limit cycle evolves in time in the presence of small inputs. The phase of a limit cycle is easy to define when a point
lies on the limit cycle. For example, for neurons, the phase is just the time since the last spike of the cell. However, if the limit cycle is
attracting, then it is also possible to define the phase of a point that is near, but not directly on the limit cycle. Specifically, there is a
function �(X) that maps a point near the limit cycle, X, to the phase that it will eventually reach as it is attracted to the limit cycle
(asymptotic phase). Clearly�(U(t)) = t. Define the phase to be θ(t) = �(X(t)), so that by the chain rule:

dθ

dt
= ∇X�(X) · dX

dt
(28)

= ∇X�(X) · F(X)+ ε∇X�(X) · N(X(t), t) (29)

= 1+ ε∇X�(X) ·N(X(t), t) (30)

Thus, in the absence of inputs, the phase moves around the circle at constant velocity. This expression is exact, but not very helpful since
it requires knowledge of the solution X(t). Kuramoto’s approximation (which is valid for small ε) is to replace X(t) in the right-hand
side by U(θ(t)), where U is the unperturbed limit cycle (Kuramoto, 2003). This closes the system yielding:

dθ

dt
= 1+ εZ(θ) ·N(U(θ), t) (31)

where we have defined Z(θ) := ∇X�(U(θ)). The function, Z(θ) is the so-called adjoint function satisfying the linear equation:

Z′ = − (DXF(U(t)))T Z(t) (32)

with Z(t) · U ′(t) = 1.Here DXF(U(t))means the linearization of F(X) evaluated along the limit cycle.
In single compartment neuron models, inputs appear only in the voltage component of the neural oscillator in the form of external

currents so that the dot product in Equation 31 becomes scalar multiplication:

dθ

dt
= 1+ ε�(θ)I(U(θ), t)/C (33)

where I is the input current, C is the capacitance, and�(θ) is the voltage component of the vector Z. The quantity,�(θ), is sometimes
called the infinitesimal PRC and, for small perturbations, is proportional to the PRC.

DERIVATION OF THE STATIONARY DENSITY OF PHASE DIFFERENCES
The Langevin equations that drive the phase models (Equations 4–6) correspond to a forward Fokker-Planck (FP) equation that can
be written as (Risken, 1984):

∂ρ

∂t
= 1

τ

{
∂

∂x

(
1

2

∂

∂x
+ x

)
+ ∂

∂y

(
1

2

∂

∂y
+ y

)
+ c

∂2

∂x∂y

}
ρ− ∂

∂θ
ρ (34)

−ε

{
∂

∂θ
[�1(θ)xρ] + ∂

∂φ
[(�2(θ+ φ)y −�1(θ)x)ρ]

}

−ε2ω
∂

∂φ
ρ

When the distribution of phase differences is stationary,
∂ρ

∂t
= 0. Our goal is to exploit the smallness of ε to compute this stationary

density with which we can compute the marginal distribution of the phase difference.
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ANALYTICAL SOLUTION
We expand the steady state ρ in ε:

ρ(x, y, θ,φ) = ρ0(x, y, θ,φ)+ ερ1(x, y, θ,φ)+ ε2ρ2(x, y, θ,φ) (35)∫∫∫∫
ρ0(x, y, θ,φ)dxdydθdφ = 1

∫∫∫∫
ρn(x, y, θ,φ)dxdydθdφ = 0, n = 1, 2

We define the operator:

L0 = 1

τ

{
∂

∂x

(
1

2

∂

∂x
+ x

)
+ ∂

∂y

(
1

2

∂

∂y
+ y

)
+ c

∂2

∂x∂y

}
+ ∂

∂θ
(36)

At steady state condition (
∂ρ

∂t
= 0), we substitute the above expansion into the FP equation and collect the powers of ε.We need to go

to ε2:

0 = L0ρ0 (37)

0 = L0ρ1 −
{
∂

∂θ
[�1(θ)xρ0] + ∂

∂φ
[(�2(θ+ φ)y −�1(θ)x)ρ0]

}
(38)

0 = L0ρ2 −
{
∂

∂θ
[�1(θ)xρ1] + ∂

∂φ
[(�2(θ+ φ)y −�1(θ)x)ρ1]

}
− a

∂

∂φ
ρ0 (39)

Solving Equation 37
Equation 37 is just a linear separable equation, independent of φ, so, by inspection:

ρ0(x, y, θ,φ) = 1

2π
G(x, y)R(φ) (40)

where:

G(x, y) = 1√
1 − c2π

e
− 1

1− c2 (x
2+ y2 − 2cxy)

(41)

and R(φ) remains to be determined. Note that G(x, y) is just the standard stationary solution to the multivariate OU equation. At
this juncture, we remark that our main goal is to find R(φ), which is the marginal density of the phase differences between the two
oscillators.

Solving Equation 38
Both Equations 38 and 39 have the form L0ρ = b(x, y, θ). L0 operates on the space of functions defined on R2 × S1 that are twice
continuously differentiable in x, y and continuously differentiable in θ. In this space, L0 has a one-dimensional nullspace spanned by
G(x, y) (constant in θ) and so L0 is not invertible. However, L0ρ(x, y, θ) = b(x, y, θ) does have a solution provided that b(x, y, θ) is
orthogonal to the null space of L∗0, which is the adjoint linear operator of L0. Since L0 is a standard probability operator, its adjoint is
always 1 (i.e., the function that is 1 everywhere).

Since:

b1(x, y, θ) = xG(x, y)

2π
[�′1(θ)R(φ)−�1(θ)R

′(φ)] + yG(x, y)[�′2(θ+ φ)R(φ)+�2(θ+ φ)R′(φ)] (42)

we see that
�

b1(x, y, θ)dxdydθ = 0. Thus, L0ρ1 = b1 has a solution. Since:

L0[xG(x, y)] = −xG(x, y)/τ (43)

L0[yG(x, y)] = −yG(x, y)/τ (44)

we look for a solution of the form:

ρ1(x, y, θ,φ) = w1(θ,φ)xG(x, y) + w2(θ,φ)yG(x, y)

2π
(45)
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Inserting this into Equation 38, we find that wj(θ,φ) must satisfy:

∂

∂θ
w1(θ,φ)+ w1(θ,φ)

τ
= −�′1(θ)R(φ)+�1(θ)R

′(φ) (46)

∂

∂θ
w2(θ,φ)+ w2(θ,φ)

τ
= −�′2(θ+ φ)R(φ)−�2(θ+ φ)R′(φ) (47)

wj must be periodic functions of θ; we defer their exact solution to later, but note that there is always a unique periodic solution to
each of these equations.

Solving Equation 39
We now have:

b2(x, y, θ) = ∂

∂θ
[�1(θ)xρ1] + ∂

∂φ
[(�2(θ+ φ)y −�1(θ)x)ρ1] + a

∂

∂φ
ρ0 (48)

In order to solve Equation 39, for ρ2(x, y, θ,φ), we must have:

0 =
∫∫ ∞
−∞

∫ 2π

0
b2(x, y, θ)dxdydθ

= 0+ ∂

∂φ

{∫∫ ∞
−∞

∫ 2π

0

{
�2(θ+ φ)

2π
[w2(θ,φ)y

2 + w1(θ,φ)xy]G(x, y)

−�1(θ)

2π
[w1(θ,φ)x

2 + w2(θ,φ)xy]G(x, y) + a

2π
R(φ)G(x, y)

}
dxdydθ

}

= 1

4π

∂

∂φ

{∫ 2π

0
{�2(θ+ φ)[w2(θ,φ)+ c · w1(θ,φ)] −�1(θ)[w1(θ,φ)+ c · w2(θ,φ)]}dθ+ 4πωR(φ)

}

= 1

4π

∂

∂φ
[f (φ)+ 4πaR(φ)] (49)

where:

f (φ) =
∫ 2π

0
[�2(θ+ φ)v2(θ,φ) −�1(θ)v1(θ,φ)]dθ (50)

v1(θ,φ) = w1(θ,φ)+ cw2(θ,φ)

v2(θ,φ) = w2(θ,φ)+ cw1(θ,φ)

Given Equations 46 and 47, we see that v1(θ) and v2(θ) satisfy:

v′1(θ)+
v1(θ)

τ
= −[�′1(θ)+ c ·�′2(θ+ φ)]R(φ) + [�1(θ)− c ·�2(θ+ φ)]R′(φ)
:= q1(θ) (51)

v′2(θ)+
v2(θ)

τ
= −[c ·�′1(θ)+�′2(θ+ φ)]R(φ) + [c ·�1(θ)−�2(θ+ φ)]R′(φ)
:= q2(θ) (52)

For Equations 51 and 52, we can write down the solution of v1(θ) and v2(θ) in terms of q1(θ) and q2(θ) (see Appendix):

vn(θ) =
∫ ∞

0
e−

s
τ qn(θ− s)ds, n = 1, 2 (53)
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We substitute vn(φ) into f (φ),

f (φ) =
∫ 2π

0
[�2(θ+ φ)v2(θ)−�1(θ)v1(θ)]dθ

=
∫ ∞

0
e−

s
τ ds

∫ 2π

0
[�2(θ+ φ)q2(θ− s) −�1(θ)q1(θ− s)]dθ

=
∫ ∞

0
e−

s
τ ds

∫ 2π

0
h(θ,φ, s)dθ (54)

where:

h(θ,φ, s) = �2(θ+ φ)q2(θ− s) −�1(θ)q1(θ− s)

= �1(θ− s)[c ·�2(θ+ φ) −�1(θ)]R′(φ)
+�2(θ+ φ− s)[−�2(θ+ φ)+ c ·�1(θ)]R′(φ)
+�′1(θ− s)[−c ·�2(θ+ φ) +�1(θ)]R(φ)
+�′2(θ+ φ− s)[−�2(θ+ φ)+ c ·�1(θ)]R(φ) (55)

Define:

gmn(φ) =
∫ ∞

0
hmn(s+ φ)e−

s
τ ds (56)

hmn(s) =
∫ 2π

0
�m(θ)�n(θ+ s)dθ

Since�1(θ) and�2(θ) are periodic functions,

∫ 2π

0
h(θ,φ, s)dθ =

∫ 2π

0
{�1(θ− s){[c�2(θ+ φ)−�1(θ)]R′(φ)+ [c�′2(θ+ φ) −�′1(θ)]R(φ)}

+�2(θ+ φ− s){[c�1(θ)−�2(θ+ φ)]R′(φ)− [c�′1(θ)−�′2(θ+ φ)]R(φ)}}dθ

= {c[h12(s+ φ)+ h21(s− φ)] − [h11(s)+ h22(s)]}R′(φ)

+
{

c
d

dφ
[h12(s+ φ)+ h21(s− φ)] − d

dφ
[h11(s+ φ)− h22(s+ φ)]∣∣

φ= 0

}
R(φ) (57)

f (φ) =
∫ ∞

0
e−

s
τ ds

∫ 2π

0
h(θ,φ, s)dθ

= {c[g12(φ)+ g21(−φ)] − [g11(0)+ g22(0)]}R′(φ)

+
{

c · d

dφ
[g12(φ)+ g21(−φ)] − [g ′11(0)− g ′22(0)]

}
R(φ)

= d

dφ
{[c · g(φ)− C1]R(φ)} − C2R(φ) (58)

where:

g(φ) = g12(φ)+ g21(−φ) (59)

C1 = g11(0)+ g22(0) (60)

C2 = g ′11(0)− g ′22(0) (61)
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Combined with Equations 49–58, we have a boundary value problem (BVP):

d

dφ
{[c · g(φ)− C1]R(φ)} + (4πω− C2)R(φ) = K (62)

R(φ) = R(φ+ 2π)

g(φ) = g(φ+ 2π)∫ π

−π

R(φ)dφ = 1

K = 2ω− C2

2π

To solve this BVP, we need to compute g(φ) for a given PRC. We use two forms of the PRC in this paper:

�(θ) = sin(a)− sin(θ+ a)+ b sin(2θ) (63)

and
�(θ) = A[sin(B)− sin(θ+ B)]eC(θ− 2π) (θ ∈ (0, 2π),�(θ) = �(θ+ 2π)) (64)

The required integrals can be computed for both PRC forms. More generally, all PRCs can be written in Fourier form and, again, the
integrals are readily computed to obtain g(φ) (see below).

Small correlation approximation for R(φ)

We use a BVP solver to get the numerical solution for R(φ), but we would like to better understand the form of R(φ) at low values
of correlation, c, so we expand R as a series in c. As K is dependent on c, we must also expand K in c. Finally, we need to keep the
normalization condition for R(φ), hence:

R(φ) = R0(φ)+ cR1(φ)+ . . . K = K0 + cK1 + . . . (65)

R0(φ) = R(φ)
∣∣
c= 0,

∫ π

−π

R0(φ)dφ = 1

∫ π

−π

Rn(φ) = 0, n ≥ 1

We substitute these expressions into the BVP, Equation 62 and find after equating powers of c:

− C1R′0(φ)+ (4πω− C2)R0(φ) = K0 (66)

−C1R′1(φ)+ (4πa− C2)R1(φ)+ [g(φ)R0(φ)]′ = K1 (67)

We can integrate both left and right side over [−π,π], then use the assumptions and periodicity requirements above to get:

K0 = 4πω− C2

2π
, K1 = 0 (68)

Rewriting these equations,

R′0(φ)+ DR0(φ) = Q0 (69)

D = C2 − 4πω

C1
, Q0 = −K0

C1

R′1(φ)+ DR1(φ) = Q1(φ) (70)

Q1(φ) = [g(φ)R0(φ)]′
C1

we see:

R0(φ) = 1

2π

[R1(φ)e
Dφ]′ = Q1(φ)e

Dφ
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We can use numerical methods to get the solution of R1(φ) given R0(φ) and for some choices of PRCs we can get exact expressions.
For example, for the two term double sinusoidal form PRC (Equation 63) we get:

R1(φ) = 1

C1

{
τ

τ2 + 1

cos(φ+ a2 − a1)− D sin(φ+ a2 − a1)

1+ D2
+ 2b1b2τ

4τ2 + 1

2 cos(2φ)− D sin(2φ)

4+ D2

}
(71)

DIFFERENT PRCS
Double sines form PRC
For the PRC:

�m(θ) = sin(am)− sin(θ+ am)+ bm sin(2θ)

We have:

hmn(s) =
∫ 2π

0
�m(θ)�n(θ+ s)dθ

= 2π sin(am) sin(an)+ π cos(s− am + an)+ bmbnπ cos(2s) (72)

gmn(φ) =
∫ ∞

0
hmn(s+ φ)e−

s
τ ds

= 2πτ sin(am) sin(an)+ πτ
cos(φ+ an − am)− τ sin(φ+ an − am)

τ2 + 1

+ bmbnπτ
cos(2φ)− 2τ sin(2φ)

4τ2 + 1
(73)

g ′mn(φ) = −πτ
τ cos(φ+ an − am)+ sin(φ+ an − am)

τ2 + 1
− 2bmbnπτ

2τ cos(2φ)+ sin(2φ)

4τ2 + 1
(74)

g(φ) = g12(φ)+ g21(−φ)

= 4πτ sin(a1) sin(a2)+ 2πτ
cos(φ+ a2 − a1)

τ2 + 1
+ 2b1b2πτ

cos(2φ)

4τ2 + 1
(75)

g ′(φ) = g ′12(φ)− g ′21(−φ)

= −2πτ
sin(φ+ a2 − a1)

τ2 + 1
− 4b1b2πτ

sin(2φ)

4τ2 + 1
(76)

C1 = g11(0)+ g22(0) = 2πτ(sin2(a1)+ sin2(a2))+ 2πτ

τ2 + 1
+ (b

2
1 + b2

2)πτ

4τ2 + 1
(77)

C2 = g ′11(0)− g ′22(0) =
4πτ2(b2

2 − b2
1)

4τ2 + 1
(78)

Exponential-sine form PRC
For empirical PRCs:

�1(θ) = a1[sin(b1) − sin(b1 + θ)]ec1(θ− 2π)

�2(θ) = a2[sin(b2) − sin(b2 + θ)]ec2(θ− 2π)

θ ∈ (0, 2π)

We have:

hmn(s) = B1 · e−cms(hc1, hv1(s))+ B0 · ecns(hc0, hv0(s)) (79)

gmn(φ) = C0 · e φ
τ − e−cmφ(gc1, gv1(φ))− ecnφ(gc0, gv0(φ)) (80)
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Where s ∈ [0, 2π) and φ ∈ [0, 2π), both have the period of 2π. Note also that (,) means the inner product of two vectors. The above
quantities are defined as:

B1 = am · an · e−2πcn · [1− e−2πcm ]
B0 = am · an · [1− e−2πcn ]
D1 = cm + 1

τ

D0 = cn − 1

τ

k0 = sin(bm) · sin(bn)

cm + cn
− sin(bm)

1+ (cm + cn)2
[(cm + cn) · sin(bn)− cos(bn)]

k1 = 1

2(cm + cn)
, k2 = 1

4+ (cm + cn)2
, k3 = − cm + cn

2[4+ (cm + cn)2]
k4 = (cm + cn) · sin(bn)

1+ (cm + cn)2
, k5 = sin(bn)

1+ (cm + cn)2

j0 = sin(bm) · sin(bn)

cm + cn
− sin(bn)

1+ (cm + cn)2
[(cm + cn) · sin(bm)− cos(bm)]

j1 = 1

2(cm + cn)
, j2 = − 1

4+ (cm + cn)2
, j3 = − cm + cn

2[4+ (cm + cn)2]
j4 = − (cm + cn) · sin(bm)

1+ (cm + cn)2
, j5 = sin(bm)

1+ (cm + cn)2

hc1 = [k0, k1, k2, k3, k4, k5]
hc0 = [j0, j1, j2, j3, j4, j5]
hv1 = [1, cos(s+ bn − bm), sin(s− bm − bn), cos(s− bm − bn), sin(s− bm), cos(s− bm)]
hv0 = [1, cos(s+ bn − bm), sin(s+ bm + bn), cos(s+ bm + bn), sin(s+ bn), cos(s+ bn)]

gc1 = B1

1+ D2
1

[−1+ D2
1

D1
k0,−D1k1, k1, k3− D1k2,−k2 − D1k3, k5− D1k4,−k4− D1k5]

gc0 = B0

1+ D2
0

[1+ D2
0

D0
j0,D0j1, j1, j3+ D0j2,−j2 + D0j3, j5+ D0j4,−j4+ D0j5]

gv1(φ) = [1, cos(φ+ bn − bm), sin(φ+ bn − bm), sin(φ− bm − bn),

cos(φ− bm − bn), sin(φ− bm), cos(s− bm)]
gv0(φ) = [1, cos(φ+ bn − bm), sin(φ+ bn − bm), sin(φ+ bm + bn),

cos(φ+ bm + bn), sin(φ+ bn), cos(s+ bn)]

C0 = e−2πτ

1− e− 2π
τ

[(e−2πcm − 1) · (gc1, gv1(0))+ (e2πcn − 1) · (gc0, gv0(0))]

Fourier form PRC
For the Fourier form of the PRC:

�m(θ) =
∞∑

k=−∞
am,keikθ

hmn(s) =
∫ 2π

0
�m(θ)�n(θ)ds

=
∑
k1, k2

am, k1 an, k2

∫ 2π

0
eik1θeik2(θ+ s)dθ
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= 2π

∞∑
k=−∞

am, kan,−ke−iks (81)

gmn(φ) =
∫ ∞

0
hmn(s+ φ)e−

s
τ ds

= 2π

∞∑
k=−∞

am, kan,−k

∫ ∞
0

e−ik(s+φ)e−
s
τ ds

= 2π

∞∑
k=−∞

am, kan,−k

k2 + 1
τ2

(
1

τ
− ik)e−ikφ (82)
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We address a question on the effect of common stochastic inputs on the correlation of
the spike trains of two neurons when they are coupled through direct connections. We
show that the change in the correlation of small amplitude stochastic inputs can be better
detected when the neurons are connected by direct excitatory couplings. Depending on
whether intrinsic firing rate of the neurons is identical or slightly different, symmetric or
asymmetric connections can increase the sensitivity of the system to the input correlation
by changing the mean slope of the correlation transfer function over a given range of input
correlation. In either case, there is also an optimum value for synaptic strength which
maximizes the sensitivity of the system to the changes in input correlation.

Keywords: correlation, correlation transfer, coupling, inhomogeneity, synchrony

1. INTRODUCTION
The recent advent of novel recording techniques has made it easier
to simultaneously record from a large number of neurons and has
provided new possibilities to relate population activity to coding
and information processing in the brain (Greenberg et al., 2008;
Cohen and Kohn, 2011). Many researchers suggest that studying
the correlated activity of neurons in a population is essential for
understanding how information is coded in the brain (Zohary
et al., 1994; Abbott and Dayan, 1999; Nirenberg and Latham,
2003; Averbeck et al., 2006; Biederlack et al., 2006; Schneidman
et al., 2006; Pillow et al., 2008). Correlated spiking of neu-
rons contributes in several cognitive functions such as attention
(Steinmetz et al., 2000), sensory coding (Christopher deCharms
and Merzenich, 1996; Bair et al., 2001; Doiron et al., 2004; Galán
et al., 2006; Schoppa, 2006) and discrimination (Stopfer et al.,
1997; Kenyon et al., 2004), motor behavior (Maynard et al.,
1999) and population coding (Sompolinsky et al., 2001; Averbeck
et al., 2006; Josic et al., 2009). In addition to the functional
effects of such correlations between populations of neurons on
neural coding, understanding how different parameters such as
biological, network or stimulus parameters tune them is even-
tually being revealed (Shadlen and Newsome, 1998; Binder and
Powers, 2001; Moreno et al., 2002; Moreno-Bote and Parga, 2006;
Tchumatchenko et al., 2010b; Rosenbaum and Josić, 2011b).
Correlation between neuronal activities is measured frequently
by pairwise correlation coefficients and spike count correlations,
and the ability of a neuronal system to transfer correlation can
be quantified by the correlation transfer function (CTF), which
determines the relation between the output correlation of a sys-
tem under stimulus and a specific input correlation (Doiron et al.,
2006; Shea-Brown et al., 2008; Rosenbaum and Josić, 2011b).

A periodic common input on two (or more) uncoupled oscil-
lators can cause coherent behavior when both oscillators lock
to the external force (Pikovsky et al., 2003). A very common
example is the control of circadian rhythms of humans/animals

by the light-dark stimulation (Roberts, 2005). In case of noisy
inputs the counterpart of the phenomena appears as stochas-
tic synchronization (SS) which is a general topic that addresses
the phenomenon of irregular phase locking between two noisy
non-linear oscillators (Neiman et al., 1999). In nervous systems,
cross-correlations can arise either from the presence of direct
synaptic connections (Csicsvari et al., 1998; Barthó et al., 2004)
or from shared inputs from the surrounding network or sen-
sory layers (Binder and Powers, 2001; Türker and Powers, 2001,
2004). Effect of direct synaptic connections and common inputs
have been widely studied, but these two sources of correlation can
be present concurrently in many physical and biological systems
and their interplay can result in quite interesting phenomena.
Couplings can regulate the activity of noisy oscillators and less
variability in neuronal dynamics emerges through synchroniza-
tion in networks of coupled noisy oscillators (Ly and Ermentrout,
2010; Tabareau et al., 2010; Zilli and Hasselmo, 2010). Studies on
the correlation of spike trains have reported increase and decrease
of correlation due to the presence of excitatory and inhibitory
synapses, respectively (Rosenbaum and Josić, 2011a; Ly et al.,
2012). When delay in communication and type of excitabilty of
neurons are taken into account, the generality of these results
can be debated since both excitatory and inhibitory synapses can
be sources of synchrony and may increase correlation in differ-
ent parameter ranges (Vreeswijk et al., 1994; Wang et al., 2012;
Sadeghi and Valizadeh, 2013). Regarding the type of excitability
and categorizing couplings as synchronizing and desynchroniz-
ing, it has been shown that shared inputs and direct couplings
can show cooperative or disruptive effects on the correlation of
noisy coupled oscillators (Ly and Ermentrout, 2009).

Possible differences between intrinsic parameters of neurons
causes the message from the environment to the system to be
decoded differently by the system components. Another aim of
the current study is to investigate how the correlation is trans-
ferred by two neurons when the neurons are not identical. In such
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a heterogeneous system, the temporal symmetry of spike correla-
tion is lost (Tchumatchenko et al., 2010b). We will show that with
small amplitude stochastic inputs, even a slight inhomogeneity in
the intrinsic parameters can lead to a large reduction of the pair-
wise correlation coefficient in the case of uncoupled neurons. As
expected, the results depend on the time bins over which the cor-
relation is calculated: spike count correlations over long time bins
are less affected by the heterogeneity but synchrony—alignment
of the action potential in small time bins—is tightly dependent
on the homogeneity of the system.

We have shown that correlated inputs and direct connec-
tions can either show cooperative or disruptive effects in different
ranges of parameters. For uncoupled neurons, correlation suscep-
tibility increases by increasing the amplitude of noise for mildly
correlated inputs (De La Rocha et al., 2007; Shea-Brown et al.,
2008; Tchumatchenko et al., 2010b). We show that when direct
connections are present between non-identical neurons, the mean
susceptibility is not a monotonic function of the amplitude of
the correlated noisy input anymore. Reminiscence of stochastic
resonance phenomena, an intermediate noise amplitude in this
case, leads to larger a sensitivity of the system to the changes in
input correlation. We have also shown that with monosynaptic
connections between two neurons, presence of inhomogeneity in
the intrinsic firing rate of the neurons can enhance correlation
of spike trains while for symmetric couplings, maximum corre-
lation is seen for homogeneous system. Changing mismatch and
synaptic strengths between two neurons, it is possible to change
the functional form of the correlation transfer function to opti-
mize the mean correlation susceptibility which is an indicator of
the sensitivity of the system to the change of input correlation
in different ranges. In this way, as the most important result of
current study, we will show that with direct couplings it is possi-
ble to detect correlation in small amplitude noises by increasing
the sensitivity of the system to the change of correlation in small
amplitude noisy inputs.

2. MATERIALS AND METHODS
The system under investigation consists of two coupled leaky
integrate and fire (LIF) neurons (Knight, 1972), subjected to cor-
related stochastic inputs (see Figure 1). Subthreshold dynamics of
the LIF neuron obeys the following first order equation:

τm
dvi

dt
= Vrest − vi + Ii + Iij, (1)

in which vi is a voltage-like variable for each neuron labeled by
i = 1, 2 with τm = 20 ms and Vrest = −70 mV. A severe non-
linearity is imposed on the model by considering a threshold
value vth = −54 mV. Whenever this value is reached, the neu-
ron spikes and the voltage resets to vreset = −60 mV. [Parameters
taken from Troyer and Miller (1997)]. The spikes of the neurons
are recorded as xi(t) =∑m δ(t − tm

i )where tm
i is the time of m th

spike of the neuron i, and δ(x) is the Dirac delta function.
Each model neuron receives a synaptic current through the

direct connection from the other neuron Iij, and an external
current Ii representing the sensory input or the effect of the sur-
rounding networks. In the model equations, external current to

FIGURE 1 | Schematic representation of the model. Two neurons
stimulated by common and independent components, are possibly
connected together by direct excitatory synaptic connections. Correlation
of spike trains is then calculated over time bins much smaller than the
mean inter-spike intervals.

the neuron i comprises a constant (dc) and a stochastic com-
ponent with amplitude σ. The stochastic inputs are sum of a
common component ξc(t) and an individual component ξi(t):

Ii(t) = (1± δ)I + σ
[√

1− cξi(t)+
√

cξc(t)
]
, (2)

where ξc(t) and ξi(t) are mutually independent Gaussian stochas-
tic processes with zero mean and unit variance 〈ξi(t)ξj(t′)〉 =
δijδ(t − t′). The parameter c ∈ [0, 1] determines correlation of
external currents which will be referred to as the input correla-
tion. With the minimal model we used, inhomogeneity in the
intrinsic activity rates is imposed by different constant currents
which are chosen as I1 = (1+ δ)I and I2 = (1− δ)I, where δ is
referred to as the parameter of inhomogeneity. With non-zero
δ the neurons 1 and 2 will be the high frequency (fast) and low
frequency (slow) neurons, respectively. The currents are chosen
suprathreshold (>14 mV) such that the neurons fire periodically
at vanishing noise. Note that in this mean driven regime presence
of small amplitude noise results in small jitters in firing times and
a narrow distribution of interspike intervals.

Neurons are pulse coupled. The neuron i receives a pulse by the
strength �ij every time the neuron j fires, so the synaptic current
in Equation 1 can be written as Iij = �ijxj(t) where the synaptic
strength �ij can be positive (excitatory) or negative (inhibitory).
For convenience, we call the connections 21 and 12, the forward
and backward connections, respectively. Although the external
and synaptic inputs appear as currents, they are actually mea-
sured in units of the membrane potential (mV) since a factor of
the membrane resistance has been absorbed into their definition.

Co-fluctuations in the activity of neurons are measured over
a range of timescales (for a review see Cohen and Kohn, 2011).
Spike count correlation is usually measured over the time scales
from tens of milliseconds to seconds, while synchrony, that is
almost precise alignment of the spikes, is measured over the time
scale of the typical width of an action potential. It has been
shown that spike count correlation over the small bins, bins
of the order of one millisecond, can be largely determined by
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zero-lag conditional firing rate which quantifies exact synchrony
(Tchumatchenko et al., 2010a). In this study we focus on syn-
chrony, by describing spike counts and correlation coefficients
in discrete bins of duration T = 0.5 ms. Correlation coefficient
of spike counts ni(t) =

∫ t+T
t xi(s)ds, is defined as the zero lag

cross-correlation between n1 and n2:

ρT = 〈n1(t)n2(t)〉 − 〈n1(t)〉〈n2(t)〉√〈n1(t)2〉 − 〈n1(t)〉2
√〈n2(t)2〉 − 〈n2(t)〉2

. (3)

Dependence of the output correlation to the input correlation
shows how correlation is transferred along neuronal layers in
the nervous system (Rosenbaum and Josić, 2011a). With varying
input correlation while other parameters are fixed, we compute
ρT(c), correlation of spike trains as a function of input corre-
lation. To study sensitivity of correlation of output spike trains
to the change of input correlation, we use mean correlation sus-
ceptibility (MCS), the mean slope of ρT(c) in a given range of
c ∈ [c1, c2]:

ST(c1, c2) = �ρT

�c
. (4)

which shows ratio of the change of correlation of spike trains
�ρT = ρT(c2)− ρT(c1) to the change of input correlation �c =
c2 − c1. For two identical neurons with no direct connection, this
value is equal to one when it is evaluated over the full range of
input correlation [0, 1].

3. RESULTS
We first present the results for two uncoupled neurons. In
Figure 2A we have shown the cross-correlation coefficient as a
function of the mismatch between intrinsic firing rates of neu-
rons for low noise amplitude and different values of the input
correlation. When there is no direct connection between the neu-
rons, highly correlated inputs lead to a large output correlation
in case of identical neurons. Even a small mismatch decreases the
output correlation considerably if the noise is small amplitude.
In this case, even common noises lead to a relatively low out-
put correlation in the presence of a slight inhomogeneity (e.g.,
δ = 0.01 in Figure 2A). For larger noise amplitudes, the output
correlation is less sensitive to inhomogeneity (Figure 2B). The
system is also less sensitive to inhomogeneity when the inputs are
weakly correlated where both homogeneous and inhomogeneous
systems show a small output correlation. In Figures 2C,D we have
shown the correlation transfer function. It can be seen that while
the slope of the correlation transfer function decreases with mis-
match for all the values of input correlation, this dependence is
only noticeable when inputs are highly (completely) correlated.
Increasing the noise amplitude (while decreasing the constant
input to avoid a change in the mean firing rate as explained
below) makes the output correlation less sensitive to inhomo-
geneity, yet the maximum sensitivity to mismatch is observed for
highly correlated inputs (Figure 2D).

To show how sensitive are the correlation of spike trains to the
input correlation, in Figure 2E we have plotted MCS (mean slope

FIGURE 2 | Correlation of spike trains for two uncoupled neurons. (A)

Correlation coefficient is plotted against inhomogeneity, the mismatch
between input current of neurons, for different values of input correlation
and low noise amplitude σ = 1 mV. In (B) the same results are shown for
larger value of noise amplitude σ = 5 mV with the same mean firing rate
as (A) (see materials and methods). (C,D) Correlation transfer function,
which shows the dependence of correlation of spike trains to the input

correlation, is plotted for different values of inhomogeneity for the same
noise amplitudes as (A) and (B). (E) Mean correlation susceptibility (MCS)
is plotted for homogeneous and slightly inhomogeneous systems, as a
function of noise amplitude, which shows the mean sensitivity of the
output correlation to the change of input correlation over the range [0, 0.5].
In (F) the geometric mean of the firing rate of the two neurons is shown
when σ is varied.
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of ρT(c) as described in materials and methods) as a function
of the amplitude of the stochastic input for two uncoupled neu-
rons over the range c ∈ [0− 0.5] for homogeneous (δ = 0) and
slightly inhomogeneous (δ = 0.02) systems. The system shows
low sensitivity to the change in input correlation for small ampli-
tude noises and the sensitivity smoothly increases with noise
amplitude. Also, the presence of inhomogeneity has negligible
effect on the mean correlation suceptibility: as noted above, for
uncoupled neurons effect of inhomogeneity is only significant
when inputs are highly correlated and while MCS is calculated
over a range of weakly correlated inputs, it is almost insensitive to
small inhomogeneity. While increasing the amplitude of the fluc-
tuations, we have decreased mean value of the input currents to
keep the mean firing rate almost constant (∼64 Hz) as is shown
in Figure 2F. In such a way the results observed in Figure 2E can
not be attributed to the increase in firing rate which is known
to increase the spike train correlation (De La Rocha et al., 2007;
Shea-Brown et al., 2008). These results show that the correlation
in small amplitude noises can not be suitably detected by a sys-
tem of uncoupled neurons, whether the neurons have equal firing
rates or their firing rates are different. To investigate the effect
of direct couplings we have first considered a two neurons motif
with just one unidirectional excitatory synapse. In many cases this
configuration is favored when the synapses change through spike
timing-dependent plasticity (Song et al., 2000). We considered an
excitatory forward coupling from the high frequency neuron (as
the presynaptic) to low frequency neuron (as the postsynaptic).

In the absence of noise, any finite value of the forward coupling
strength can lead to a zone of 1:1 synchrony, in which the dis-
similar neurons fire in a causal master-slave fashion (Takahashi
et al., 2009; Bayati and Valizadeh, 2012). In such causal limit the
postsynaptic neuron fires immediately after receiving presynaptic
stimulation (Woodman and Canavier, 2011; Wang et al., 2012).
In our model delays in communication have been ignored, so in
the causal 1:1 synchrony zones the postsynaptic neuron fires just
one simulation time step after the firing of presynaptic neuron.
Since the time bin on which the correlation is calculated con-
tains several time steps (see materials and methods), such a causal
master-slave firing leads to ρ = 1 (gray curves in Figure 3).

Stochastic inputs have non-trivial effects on the correlation of
the spike trains of these two neurons. The output correlation is
not a monotonically decreasing function of mismatch anymore,
and in the presence of noise a small mismatch can increase the
output correlation (Figure 3A). With zero mismatch, in the pres-
ence of one excitatory connection from neuron 1 to neuron 2 and
in the absence of noise, the only stable state is the phase locked
state in which neuron 2 fires one time step after neruon 1 (Bayati
and Valizadeh, 2012). In the presence of noise this state looses
stability as follows: because of the initial phase difference between
the two neurons after master-slave firing (even though the phase
difference is very small, just one time step), they respond slightly
differently even to common noises. The different responses of
the two neurons lead to a cumulative phase difference and if this
phase difference results in the firing of neuron 2 before neuron 1

FIGURE 3 | Correlation of spike trains for coupled neurons. (A)

Correlation coefficient is plotted against inhomogeneity for different
values of input correlation, when the neurons are connected by a
forward excitatory connection (from the high-frequency to the
low-frequency neuron) of the strength �21 = 1. (B) The same results

are shown when the neurons are bidirectionally coupled by symmetric
connections. In (C) and (D) the results are presented for larger noise
amplitude σ = 5 mV. Noise amplitude in (A) and (B) is σ = 1 mV. The
gray curves correspond to autonomous case when no stochastic input
is present.
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reaches threshold, the excitatory pulse from neuron 1 would be
desynchronizing and makes the next firing of the two neurons
further apart. The probability of the advancement of the phase
of neuron 2 decreases in the presence of inhomogeneity (with
I1 > I2), and with larger inhomogeneity it is less likely that the
firing of neuron 2 (low frequency neuron) exceeds the firing of
neuron 1 (high frequency neuron). When neuron 2 fires, before
neuron 1 has reached the threshold, the excitatory pulse to the
low frequency neuron will be synchronizing and if the voltage
of neuron 2 is in the range [vth −�21, vth] at the time of the
firing of neuron 1, the neurons maintain causal master-slave fir-
ing. Further increasing the inhomogeneity lowers the probability
of the voltage of the low frequency neuron reaching the range
[vth −�21, vth] at the time of the firing of the high frequency neu-
ron, which results in the reduction of the spike trains correlation.
A similar argument can explain the other notable rise and fall of
the correlation which is seen in 1:2 locking zone of the noiseless
system.

With symmetric bidirectional couplings, maximum correla-
tion is obtained when the neurons are of the same firing rate
(Figure 3B). When the neurons have equal firing rates (with I1 =
I2) and in the absence of noise, each of the neurons can play
the role of the master in a causal master-slave firing: in this case
the connection from the master is synchronizing and the other
connection has a desynchronizing effect (Bayati and Valizadeh,
2012). In the presence of small amplitude noise, the system can
maintain causal locking by interchanging the role of two connec-
tions as synchronizing and desynchronizing. Suppose the firing
of neuron 1 (master) is followed by the firing of neuron 2 (slave).
Firing of neuron 2 exerts an excitatory pulse on neuron 1 but the
phase advance of neuron 1 is relatively small because of the weak
response of the LIF neuron at the beginning of its cycle (Mirollo
and Strogatz, 1990). So it is probable that neuron 2 fires before
neuron 1 reaches the threshold, then the excitatory pulse to neu-
ron 1 would be synchronizing and neuron 1 fires immediately
at the time it receives the pulse if its voltage is within the range
[vth −�12, vth] (note that the argument holds also in the presence
of an absolute refractory period where the desynchonizing pulse
from the slave neuron is ineffective). In the presence of inhomo-
geneity, it is the high frequency neuron that more probably plays
the role of the master in a locked causal firing in the absence of
the noise. In this case, in the presence of noise, inhomogeneity
increases the probability that the voltage of low frequency neuron
takes a value outside the range [vth −�21, vth] at the time of the
firing of the high frequency neuron, which reduces the correla-
tion of spike trains as can be seen in Figure 3B for small values of
inhomogeneity. For larger values of inhomogeneity, a bump can
be seen again which belongs to the other main locking zone of the
system in the absence of noise.

Intuitively, the relative amplitudes of noise and recurrent stim-
ulations determine the behavior of the system and the most
notable results can be expected when these two sources are of
the same order, i.e., when neither the external noises nor recur-
rent stimulations are dominant. The results of Figures 3A,B are
produced in this regime. For larger values of the noise ampli-
tude, qualitative behavior of the system becomes more similar to
the uncoupled system as shown in Figures 3C,D. For all partially

correlated inputs, correlation of the spike trains is independent
of the inhomogeneity and no signature of the locking zones is
observed in the presence of large amplitude noises. It is only for
common noise (γ = 1) that the effect of the unidirectional direct
connection can be seen in the presence of strong noise in the
region of the main locking zone.

In Figure 4 we have plotted correlation of spike trains as a
function of input correlation to inspect the effect of changing the
correlation of the stochastic inputs on the correlation of the spike
trains for a fixed value of the synaptic strength. When the noise
amplitude is not large, depending on the mismatch, different
dependencies of the output correlation to the input correlation
can be observed (Figures 4A,B. Notably with changing mismatch
it is possible to generate, for example, a system with higher
sensitivity to the input correlation in different ranges of input
correlation, or a negative slope ρT(c). Comparing with the results
of Figure 3 it can be deduced that high sensitivities on the input
correlation is seen on the main locking zone (where the neurons
are causally locked in 1:1 zone in the absence of the noise), and
a negative slope is seen between two main locking zones. Again,
as can be seen in Figures 4C,D, strong noises wash the signature
of the direct couplings, and ρT(c) for large amplitude noises is
qualitatively similar to the uncoupled neurons.

Impact of direct connections on the detection of the input
correlation of low amplitude noisy inputs is more apparent in a
plot of MCS. In Figure 5A we have plotted ST(0, 0.5) as a func-
tion of noise amplitude for several values of synaptic strength, for
unidirectionally coupled neurons and in the presence of a small
mismatch in the intrinsic firing rates. As shown in Figure 5A, a
forward monosynaptic connection (from high frequency to low
frequency neuron) can considerably change the performance of
the heterogeneous system in detecting variable input correlation.

FIGURE 4 | Correlation transfer for coupled neurons. (A,B) Correlation of
spike trains ρT is plotted versus input correlation c for different values of
inhomogeneity, when the neurons are connected by a forward excitatory
connection (A) and by symmetric bidirectional couplings (B) . In (C) and (D)

the results are presented for larger noise amplitudes. All the parameters
are the same as those in Figure 3.
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FIGURE 5 | Mean correlation susceptibility for coupled neurons. (A)

MCS is plotted versus noise amplitude for two unidirectionally coupled
non-identical neurons (δ = 0.02). The results are shown for different
values of synaptic strength. Maximum value of sensitivity to low
amplitude noises can be obtained by �21 = 1. In (B) and (C) the firing
rate of the neurons and ρT (c) are shown for the corresponding curves
in (A), respectively. Shadings in (C) are guide to eye for a comparison

of the mean slope of the ρT (c) for two different values of synaptic
strength. (D) MCS is shown as a function of synaptic strength for
different value of mismatch. The optimum value for synaptic strength
grows for larger mismatch. Correlation of the spike trains for c = 0.5 is
shown in (E). It can be seen that the correlation saturates when
coupling constant is increased. Vertical dotted lines are plotted to show
where the mean sensitivity is maximized.

In an intermediate synaptic strength (�21 = 1) MCS shows a
faster growth and a higher maximum in relatively small ampli-
tude noise. Further increasing of the synaptic strength or the noise
amplitude reduces the performance of the system in the detection
of the input correlation. With very large noise amplitudes, the
effect of the direct connections is washed out and all the curves,
including that of the uncoupled neurons, merge together and the
MCS smoothly increases with noise amplitude.

Overall increase of the correlation of the spike trains is an
intuitive expectation when direct excitatory couplings are present
in the systems (although this can be dependent on the type
of excitability of the neurons). But how can direct connections
increase the sensitivity to the changes in input correlation? In
Figure 5B we have shown the geometric mean of the firing rate
of the two neurons

√
ν1ν2 for the curves plotted in Figure 5A.

Note that ν2 may be different from the intrinsic firing rate of neu-
ron 2 because of the presence of an excitatory afferent synapse.
The results show that the increase in the mean correlation sus-
ceptibility cannot be attributed to the increase of the mean firing
rate of neurons, since then, larger coupling constants would lead
to more sensitivity as they increase the mean firing rate of the
system. A simple explanation can be found in Figure 5C: the
degree of amplification of the output correlation depends on the

input correlation. A suitable choice of the synaptic strength would
result in more amplification for higher input correlations and
would increase the slope of ρT(c). Increasing the synaptic strength
further, decreases the sensitivity due to the saturation of the cor-
relation of the spike trains for the upper bound of the input
correlation. In calculating MCS we have considered the range
[0, 0.5] for the input correlation. Reducing the upper bound of
this range increases the synaptic strength which saturates the cor-
relation of the spike trains, so the synaptic strength which gives
the maximum sensitivity increases with decreasing the range over
which the mean sensitivity is calculated.

The best synaptic strength, which maximizes sensitivity,
depends also on the mismatch between the intrinsic firing rate of
the neurons as can be implicitly deduced from the results shown
in Figures 3A,B. In Figure 5D we have shown MCS as a func-
tion of the strength of the forward unidirectional coupling for
three values of mismatch. Optimum value of synaptic strength is
larger when the intrinsic firing rate of the neurons are more differ-
ent. Plots of the spike train correlation ρ for upper limiting value
of the input correlation c = 0.5 again shows that the maximum
mean sensitivity in this range is obtained when the spike train
correlation is not saturated for the upper bound of the range of c
(Figure 5E).
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All the results presented in this study have focused on the
degree of zero-lag synchrony which is measured by the zero-lag
cross correlation of the binned spike trains with small bin size.
In the presence of an inhomogeneity and with asymmetric direct
connections, it is possible that the maximum correlation of the
spike trains appears in non-zero lag. In Figure 6 we have shown
the cross-correlation coefficient of spike trains as a function of
the time lag for three values of noise strength and two values
of the input correlation (c = 0 and c = 0.5). It can be seen that
the maximum cross correlation for all the values appears in zero
time lag (more precisely at a time lag equal to one simulation
time step). Presence of other maximums is an indicator of almost
periodic firing of the neurons which arises from the suprathresh-
old mean and the small amplitude stochastic fluctuations of the
input current. Results in Figure 6 are presented for one forward
unidirectional coupling and sample values of inhomogeneity and
synaptic strength. The results for other parameters are similar
while the system is in the main locking zone in the absence of
noise. This result shows a drawback of the simplified models we
have used: LIF neurons with pulsatile instantaneous couplings
can be synchronized with zero phase lag even in the presence of
frequency mismatch, which is revealed as a maximum in correla-
tion at zero lag (one simulation time step) when a small amplitude
noise is added. Both mismatch and delay (synaptic and axonal)
can be source of phase lag, when the neurons are modeled by limit
cycle oscillators and more realistic models are used for synaptic
currents. Our results are still valid when such phase lags are small,
of the order of the time bins in the calculation of the correlation.

Above results were obtained for bidirectional symmetric cou-
plings or for one unidirectional coupling. To find the best

configuration through which direct couplings can improve the
performance of the system in the detection of a variable input
correlation, we have tested mutual couplings with different ratios
of forward�21 and backward�12 connections. While the synap-
tic cost (sum of two synaptic strengths) is kept constant, different
configurations can be designed by changing the ratio of the cou-
pling constants r = �21/�12 (Figures 7A,B). In the absence of
mismatch, the best configuration is that which preserves sym-
metry, i.e., the best performance results with equal forward and
backward couplings. On the other hand, in the presence of mis-
match, an asymmetric arrangement of couplings in which the
forward coupling (from the high frequency neuron) is larger,
improves the performance of the system. Interestingly, asymmet-
ric excitatory couplings in favor of backward coupling (from the
low frequency neuron), significantly decreases the sensitivity of
the system since it plays the role of desynchronizing coupling as
discussed above.

4. DISCUSSION
Both direct connections and common inputs can be sources
of the correlated activity of neurons in the nervous system.
Effect of direct connections is widely studied as a general prob-
lem in dynamical systems and in particalur in nervous systems
(Kuramoto, 1991; Strogatz and Mirollo, 1991; Abbott and van
Vreeswijk, 1993). Stochastic inputs are usually a source of tem-
poral disorder but spatial order can be induced in a neuronal
pool when the neurons share stochastic inputs from common
sources (Binder and Powers, 2001; Türker and Powers, 2001,
2004). Because of the possible cooperative/competitive effects of
common inputs and direct connections, interesting results can be

FIGURE 6 | Correlation coefficient for non-zero time lags. In each panel,
correlation coefficient is plotted against time lag for two values of input
correlation c = 0 and c = 0.5. The results are shown for three different noise
amplitudes (shown above each panel) and two different values of

inhomogeneity parameter, δ = 0.02 in upper panels and δ = 0.15 in lower
panels. One unidirectional connection of strength �21 = 1 is present from
the high-frequency to the low-frequency neuron. The difference between two
curves at zero lag gives MCS which has been shown in the plots by arrows.
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FIGURE 7 | How the configuration of connections affects sensitivity.

(A,B) MCS is plotted against sum of synaptic weights for (A) homogeneous
system δ = 0, and (B) inhomogenous system δ = 0.1. Different curves are
plotted for different ratios r of forward and backward couplings indicated in
the legends. When the neurons have equal intrinsic firing rates, symmetric
configuration r = 1 shows the best performance with a suitable choice of
synaptic strengths. For inhomogeneous case when the imbalance of
couplings is in favor of forward coupling (from the high frequency to low
frequency neuron) the sensitivity is considerably improved. When the
backward coupling is larger r < 1, the system performance is quite poor. As
is shown in axes labels, MCS is calculated over the range [0, 0.5] of input
correlation.

expected when they are concurrently present in a system (Ostojic
et al., 2009; Ly and Ermentrout, 2010; Tabareau et al., 2010;
Zilli and Hasselmo, 2010; Rosenbaum and Josić, 2011a; Ly et al.,
2012). In this study we have numerically inspected the effect of
correlated stochastic inputs on the correlation of spike trains of
two coupled LIF neurons. We have mainly focused on the cor-
relation of spike trains when correlated small amplitude noises
were imposed on a system of two coupled neurons, and the neu-
rons were regularly and synchronously firing in the absence of
noise. We have shown that such a system shows high sensitivity to
the changes of input correlation, and therefore can be a suitable
detector of the correlation in small amplitude noises. To study
the system in a more general framework, we have considered
neurons with different intrinsic firing rates. We have assumed
neurons have equal membrane time constants, and inhomo-
geneity is imposed on the system by feeding the neurons with
unequal suprathreshold constant currents. The inhomogeneity,
determined by the difference in the mean input currents, along

with synaptic strengths are the key-parameters that specify the
response of the system to stochastic inputs.

While for uncoupled neurons the output correlation is a
monotonically decreasing function of inhomogeneity, for cou-
pled neurons with low noise amplitudes, spike trains correlation
can be increased by increasing inhomogeneity in some ranges.
This result holds for sufficiently small noise amplitudes and the
system inherits this property from n:m locking zones for the
autonomous system when there is no stochastic input present.
This introduces inhomogeneity as an important parameter with
non-trivial impact on the correlation of spike trains in coupled
systems.

Another feature of the system is that the two sources of cor-
relation, correlated inputs and direct excitatory connections, do
not necessarily cooperate in the formation of correlated spike
trains. For uncoupled neurons output correlation is a mono-
tonically increasing function of input correlation and for weakly
correlated inputs, the slope decreases with lowering noise ampli-
tude (De La Rocha et al., 2007; Shea-Brown et al., 2008) and
with increasing mismatch. With different choices of the synap-
tic strengths and the inhomogeneity, it is possible to change
functional form of correlation transfer (dependence of output
correlation to the input correlation) and design a system with
different sensitivity to the input correlation. In particular, it is
possible to design a system with negative mean slope of corre-
lation transfer, showing a case with destructive effect of common
noises on the correlation of spike trains, or a system with max-
imum sensitivity to the changes in input correlation in a given
range by maximizing the slope of correlation transfer. The lat-
ter proposes that direct connections can increase the sensitivity
of the system to the correlation of the neuron’s stochastic inputs,
especially when the noises are small amplitude. We have further
shown that for a homogeneous system (where the neurons have
equal intrinsic firing rates), the best configuration of the cou-
plings which maximizes the mean sensitivity of the system in a
given range, is a symmetric configuration with equal coupling
constants. On the other hand, in the presence of inhomogeneity,
an asymmetric configuration in which the synaptic constant from
the high frequency neuron to the low frequency neuron is larger,
improves the sensitivity. In either case, there is an optimum value
of the synaptic constant which maximizes the sensitivity.

Competitive learning through conventional spike timing-
dependent plasticity (STDP) in feed-forward networks leads to
the potentiation of the synapses which convey correlated data
and depression of those with uncorrelated activity (Babadi and
Abbott, 2010). How does STDP change the lateral connections
transverse to the path of data flow? It has been shown that in
the recurrent networks, asymmetric connections arise through
STDP and in the presence of inhomogeneity, such an asymmet-
ric change is in favor of the connection from the high frequency
to the low frequency neuron (Takahashi et al., 2009; Bayati and
Valizadeh, 2012). Our results show that asymmetric connections
can enhance the performance of inhomogeneous systems in the
detection of input correlation, and interestingly such an optimum
configuration of connections emerges through STDP (with asym-
metric profile) in inhomogeneous neuronal pools (Bayati and
Valizadeh, 2012).
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Type of neuronal excitability can also affect the correla-
tion transfer in neuronal pools (Galán et al., 2008; Abouzeid
and Ermentrout, 2009; Barreiro et al., 2010). Phase reset-
ting curve characterizes how small perturbations influence the
oscillator’s subsequent timing or phase. It has been recently
shown that uncoupled type-II neurons with both negative
and positive regions in their PRC transfer correlations more
faithfully when the correlation is calculated over short time
bins (Abouzeid and Ermentrout, 2011). Since the phase of
a LIF neuron always advances in response to the external
pulses, the results for LIF neurons are likely to apply for
type-I neurons.

Correlation of spike trains over such small time bins that we
have used T = 0.5 ms, is a measure of (almost) precise align-
ment of the action potentials. Similar results were obtained

when we repeated the experiments with T = 1 ms but we expect
qualitatively different results when the correlation of the spike
counts is measured over the time scales comparable, or larger than
the mean inter-spike interval. Less sensitivity to the inhomogene-
ity is expected when the correlation is evaluated over large time
bins, but the effect of direct couplings warrants further studies to
find out if correlation in small amplitude stochastic inputs can be
revealed in co-variation of spike trains of coupled neurons over
large time scales.
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sâĂă. Photochem. Photobiol. 81,
490–492. doi: 10.1562/2004-12-02-
IR-391.1

Rosenbaum, R., and Josić, K. (2011a).
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Emerging technologies are revealing the spiking activity in ever larger neural ensembles.
Frequently, this spiking is far from independent, with correlations in the spike times of
different cells. Understanding how such correlations impact the dynamics and function
of neural ensembles remains an important open problem. Here we describe a new,
generative model for correlated spike trains that can exhibit many of the features observed
in data. Extending prior work in mathematical finance, this generalized thinning and shift
(GTaS) model creates marginally Poisson spike trains with diverse temporal correlation
structures. We give several examples which highlight the model’s flexibility and utility.
For instance, we use it to examine how a neural network responds to highly structured
patterns of inputs. We then show that the GTaS model is analytically tractable, and derive
cumulant densities of all orders in terms of model parameters. The GTaS framework can
therefore be an important tool in the experimental and theoretical exploration of neural
dynamics.

Keywords: correlations, spiking neurons, neuronal networks, cumulant, neuronal modeling, neuronal network

model, point processes

1. INTRODUCTION
Recordings across the brain suggest that neural populations spike
collectively—the statistics of their activity as a group are distinct
from that expected in assembling the spikes from one cell at a
time (Bair et al., 2001; Salinas and Sejnowski, 2001; Harris, 2005;
Averbeck et al., 2006; Schneidman et al., 2006; Shlens et al., 2006;
Pillow et al., 2008; Ganmor et al., 2011; Bathellier et al., 2012;
Hansen et al., 2012; Luczak et al., 2013). Advances in electrode
and imaging technology allow us to explore the dynamics of neu-
ral populations by simultaneously recording the activity of hun-
dreds of cells. This is revealing patterns of collective spiking that
extend across multiple cells. The underlying structure is intrigu-
ing: For example, higher-order interactions among cell groups
have been observed widely (Amari et al., 2003; Schneidman et al.,
2006; Shlens et al., 2006, 2009; Ohiorhenuan et al., 2010; Ganmor
et al., 2011; Vasquez et al., 2012; Luczak et al., 2013). A num-
ber of recent studies point to mechanisms that generate such
higher-order correlations from common input processes, includ-
ing unobserved neurons. This suggests that, in a given recording
or given set of neurons projecting downstream, higher-order cor-
relations may be quite ubiquitous (Barreiro et al., 2010; Macke
et al., 2011; Yu et al., 2011; Köster et al., 2013). Moreover, these
higher-order correlations may impact the firing statistics of down-
stream neurons (Kuhn et al., 2003), the information capacity of
their output (Ganmor et al., 2011; Cain and Shea-Brown, 2013;
Montani et al., 2013), and could be essential in learning through
spike-time dependent synaptic plasticity (Pfister and Gerstner,
2006; Gjorgjieva et al., 2011).

What exactly is the impact of such collective spiking on
the encoding and transmission of information in the brain?
This question has been studied extensively, but much remains
unknown. Results to date show that the answers will be varied
and rich. Patterned spiking can impact responses at the level of
single cells (Salinas and Sejnowski, 2001; Kuhn et al., 2003; Xu
et al., 2012) and neural populations (Amjad et al., 1997; Tetzlaff
et al., 2003; Rosenbaum et al., 2010, 2011). Neurons with even
the simplest of non-linearities can be highly sensitive to correla-
tions in their inputs. Moreover, such non-linearities are sufficient
to accurately decode signals from the input to correlated neural
populations (Shamir and Sompolinsky, 2004).

An essential tool in understanding the impact of collective
spiking is the ability to generate artificial spike trains with a pre-
determined structure across cells and across time (Brette, 2009;
Gutnisky and Josić, 2009; Krumin and Shoham, 2009; Macke
et al., 2009). Such synthetic spike trains are the grist for testing
hypotheses about spatiotemporal patterns in coding and dynam-
ics. In experimental studies, such spike trains can be used to
provide structured stimulation of single cells across their den-
dritic trees via glutamate uncaging (Gasparini and Magee, 2006;
Reddy et al., 2008; Branco et al., 2010; Branco and Häusser,
2011). In addition, entire populations of neurons can be acti-
vated via optical stimulation of microbial opsins (Han and
Boyden, 2007; Chow et al., 2010). Computationally, they are used
to examine the response of non-linear models of downstream
cells (Carr et al., 1998; Salinas and Sejnowski, 2001; Kuhn et al.,
2003).
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Therefore, much effort has been devoted to developing sta-
tistical models of population activity. A number of flexible, yet
tractable probabilistic models of joint neuronal activity have
been proposed. Pairwise correlations are the most common type
of interactions obtained from multi-unit recordings. Therefore,
many earlier models were designed to generate samples of neu-
ral activity patterns with predetermined first and second order
statistics (Brette, 2009; Gutnisky and Josić, 2009; Krumin and
Shoham, 2009; Macke et al., 2009). In these models, higher-order
correlations are not explicitly and separately controlled.

A number of different models have been used to analyze
higher-order interactions. However, most of these models assume
that interactions between different cells are instantaneous (or
near-instantaneous) (Kuhn et al., 2003; Johnson and Goodman,
2009; Staude et al., 2010; Shimazaki et al., 2012). A notable
exception is the work of Bäuerle and Grübel (2005), which devel-
oped such methods for use in financial applications. In these
previous efforts, correlations at all orders were characterized by
the increase, or decrease, in the probability that groups of cells
spike together at the same time, or have a common temporal
correlation structure regardless of the group.

The aim of the present work is to provide a statistical method
for generating spike trains with more general correlation struc-
tures across cells and time. Specifically, we allow distinct tempo-
ral structure for correlations at pairwise, triplet, and all higher
orders, and do so separately for different groups of cells in the
neural population. Our aim to describe a model that can be
applied in neuroscience, and can potentially be fit to emerging
datasets.

A sample realization of a multivariate generalized thinning
and shift (GTaS) process is shown in Figure 1. The multivari-
ate spike train consists of six marginally Poisson processes. Each
event was either uncorrelated with all other events across the pop-
ulation, or correlated in time with an event in all other spike
trains. This model was configured to exhibit activity that cascades
through a sequence of neurons. Specifically, neurons with larger
index tend to fire later in a population wide event (this is simi-
lar to a synfire chain (Abeles, 1991), but with variable timing of
spikes within the cascade). In Figure 1B, we plot the “population
cross-cumulant density” for three chosen neurons—the summed
activity of the population triggered by a spike in a chosen cell.
The center of mass of this function measures the average latency
by which spikes of the neuron in question precede those of the rest
of the population (Luczak et al., 2013). Finally, Figure 1C shows
the third-order cross-cumulant density for the three neurons. The
triangular support of this function is a reflection of a synfire-
like cascade structure of the spiking shown in the raster plot of
panel (A): when firing events are correlated between trains, they
tend to proceed in order of increasing index. We demonstrate the
impact of such structured activity on a downstream network in
section 2.2.3.

2. RESULTS
Our aim is to describe a flexible multivariate point process capa-
ble of generating a range of high order correlation structures.
To do so, we extend the TaS (thinning and shift) model of
temporally- and spatially-correlated, marginally Poisson counting

processes (Bäuerle and Grübel, 2005). The TaS model itself gen-
eralizes the SIP and MIP models (Kuhn et al., 2003) which
have been used in theoretical neuroscience (Tetzlaff et al., 2008;
Rosenbaum et al., 2010; Cain and Shea-Brown, 2013). However,
the TaS model has not been used as widely. The original TaS
model is too rigid to generate a number of interesting activ-
ity patterns observed in multi-unit recordings (Ikegaya et al.,
2004; Luczak et al., 2007, 2013). We therefore developed the
GTaS which allows for a more diverse temporal correlation
structure.

We begin by describing the algorithm for sampling from
the GTaS model. This constructive approach provides an intu-
itive understanding of the model’s properties. We then present a
pair of examples, the first of which highlights the utility of the

FIGURE 1 | (A) Raster plot of event times for an example multivariate
Poisson process X = (X1, . . . ,X6) generated using the methods presented
below. This model exhibits independent marginal events (blue) and
population-level, chain-like events (red). (B) Some second order population
cumulant densities (i.e., second order correlation between individual unit
activities and population activity) for this model (Luczak et al., 2013).
Greater mass to the right (resp. left) of τ = 0 indicates that the cell tends to
lead (resp. follow) in pairwise-correlated events. (C) Third-order
cross-cumulant density for processes X1,X2,X3. The quantity κX

123(τ1, τ2)

yields the probability of observing spikes in cells 2 and 3 at an offset τ1, τ2

from a spike in cell 1, respectively, in excess of what would be predicted
from the first and second order cumulant structure. All quantities are
precisely defined in the Methods. Note: system parameters necessary to
reproduce results are given in the Appendix for all figures.
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GTaS framework. The second example demonstrates how sam-
ple point processes from the GTaS model can be used to study
population dynamics. Next, we present the analysis which yields
the explicit forms for the cross-cumulant densities derived in
the context of the examples. We do so by first establishing a
useful distributional representation for the GTaS process, par-
alleling Bäuerle and Grübel (2005). Using this representation,
we derive cross-cumulants of a GTaS counting process, as well
as explicit expressions for the cross-cumulant densities. After
explaining the derivation at lower orders, we present a theorem
which describes cross-cumulant densities at all orders.

2.1. GTaS MODEL SIMULATION
The GTaS model is parameterized first by a rate λ which deter-
mines the intensity of a “mother process”—a Poisson process on
R. The events of the mother process are marked, and the mark-
ings determine how each event is distributed among a collection
of N daughter processes. The daughter processes are indexed by
the set D = {1, . . . ,N}, and the set of possible markings is the
power set 2D, the set of all subsets of D. We define a probability
distribution p = (pD)D⊂D, assigning a probability to each possi-
ble marking, D. As we will see, pD determines the probability of
a joint event in all daughter processes with indices in the set D.
Finally, to each marking, D, we assign a probability distribution
QD, giving a family of shift (jitter) distributions (QD)D⊂D. Each
(QD) is a distribution over R

N .
The rate λ, the distribution p over the markings, and

the family of jitter distributions (QD)D⊂D, define a vector
X = (X1, . . . ,XN) of dependent daughter Poisson processes
described by the following algorithm, which yields a single real-
ization (see Figure 2):

1. Simulate the mother Poisson process of rate λ on R, generating
a sequence of event times {tj}. (Figure 2A).

FIGURE 2 | An illustration of a GTaS simulation. (A) Step 1: Simulate the
mother process—a time-homogeneous Poisson process with event times
{tj }. (B) Step 2: For each tj in step 1, select a set Dj ⊂ D according to the
distribution pD , and project the event at time tj to the subsets with indices
in Dj . The legend indicates the colors assigned to three possible markings
in this example. (C) Step 3: For each pair (tj ,Dj ) generated in the previous
two steps, draw Yj from QDj , and shift the event times in the daughter
processes by the corresponding values Y j

i .

2. With probability pDj assign the subset Dj ⊂ D to the event of
the mother process at time tj. This event will be assigned only
to processes with indices in Dj. (Figure 2B).

3. Sample a vector (Y
j
1, . . . , Y

j
N) = Yj from the distribution QDj .

For each i ∈ D, the time tj + Y
j
i is set as an event time for the

marginal counting process Xi. (Figure 2C).

Hence copies of each point of the mother process are placed into
daughter processes after a shift in time. A primary difference
between the GTaS model and the TaS model presented in Bäuerle
and Grübel (2005) is the dependence of the shift distributions QD

on the chosen marking. This allows for greater flexibility in setting
the temporal cumulant structure.

2.2. EXAMPLES
2.2.1. Relation to SIP/MIP processes
Two simple models of correlated, jointly Poisson processes were
defined in Kuhn et al. (2003). The resulting spike trains exhibit
spatial correlations, but only instantaneous temporal dependen-
cies. Each model was constructed by starting with independent
Poisson processes, and applying one of two elementary point
process operations: superposition and thinning (Cox and Isham,
1980). We show that both models are special cases of the GTaS
model.

In the single interaction process (SIP), each marginal process Xi

is obtained by merging an independent Poisson process with a
common, global Poisson process. That is,

Xi(·) = Zi(·)+ Zc(·), i = 1, . . . ,N,

where Zc and each Zi are independent Poisson counting processes
on R with rates λc, λi, respectively. An SIP model is equivalent to
a GTaS model with mother process rate λ = λc +∑N

i= 1 λi, and
marking probabilities

pD =

⎧⎪⎨
⎪⎩
λi
λ

D = {i}
λc
λ

D = D

0 otherwise

.

Note that if λc = 0, each spike will be assigned to a different pro-
cess Xi, resulting in N independent Poisson processes. Lastly, each
shift distribution is equal to a delta distribution at zero in every
coordinate (i.e., qD(y1, . . . , yN) ≡∏N

i= 1 δ(yi) for every D ⊂ D).
Thus, all joint cumulants (among distinct marginal processes) of
orders 2 through N are delta functions of equal magnitude, λpD.

The multiple interaction process (MIP) consists of N Poisson
processes obtained from a common mother process with rate λm

by thinning (Cox and Isham, 1980). The ith daughter process is
formed by independent (across coordinates and events) deletion
of events from the mother process with probability p = (1− ε).
Hence, an event is common to k daughter processes with proba-
bility εk. Therefore, if we take the perspective of retaining, rather
than deleting events, the MIP model is equivalent to a GTaS pro-
cess with λ = λm, and pD = ε|D|(1− ε)d−|D|. As in the SIP case,
the shift distributions are singular in every coordinate. Below, we
present a general result (Theorem 1.1) which immediately yields
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as a corollary that the MIP model has cross-cumulant functions
which are δ functions in all dimensions, scaled by εk, where k is
the order of the cross-cumulant.

2.2.2. Generation of synfire-like cascade activity
The GTaS framework provides a simple, tractable way of generat-
ing cascading activity where cells fire in a preferred order across
the population—as in a synfire chain, but (in general) with vari-
able timing of spikes (Abeles, 1991; Abeles and Prut, 1996; Aertsen
et al., 1996; Aviel et al., 2002; Ikegaya et al., 2004). More generally,
it can be used to simulate the activity of cell assemblies (Hebb,
1949; Harris, 2005; Buzsáki, 2010; Bathellier et al., 2012), in which
the firing of groups of neurons is likely to follow a particular
order.

In the Introduction, we briefly presented one example in which
the GTaS framework was used to generate synfire-like cascade
activity (see Figure 1), and we present another in Figure 3. In
what follows, we will present the explicit definition of this sec-
ond model, and then derive explicit expressions for its cumulant
structure. Our aim is to illustrate the diverse range of possi-
ble correlation structures that can be generated using the GTaS
model.

Consider an N-dimensional counting process X =
(X1, . . . ,XN) of GTaS type, where N ≥ 4. We restrict the
marking distribution so that pD ≡ 0 unless |D| ≤ 2 or D = D.
That is, events are either assigned to a single, a pair, or all daugh-
ter processes. For sets D with |D| = 2, we set QD ∼ N (0,�)—a
Gaussian distributions of zero mean and some specified
covariance. The choice of the precise pairwise shift distribu-
tions is not important. Shifts of events attributed to a single

process have no effect on the statistics of the multivariate
process—this will become clear in section 2.3, when we exhibit
that a GTaS process is equivalent in distribution to a sum
of independent Poisson processes. In that context, the shifts
of marginal events are applied to the event times of only
one of these Poisson processes, which does not impact its
statistics.

It remains to define the jitter distribution for events common
to the entire population of daughter processes, i.e., events marked
by D. We will show that we can generate cascading activity, and
analytically describe the resulting correlation structure. We will
say that a random variable T follows the exponential distribution
Exp(α) if it has probability density

f (t|α) = αe−αt�(t),

where �(t) is the Heaviside step function. We generate ran-
dom vectors Y ∼ QD according to the following rule, for each
i = 1, . . . ,N:

1. Generate independent random variables Ti ∼ Exp(αi) where
αi > 0.

2. Set Yi =∑i
j= 1 Tj.

In particular, note that these shift times satisfy YN ≥ . . . ≥ Y2 ≥
Y1 ≥ 0, indicating the chain-like structure of these joint events.

From the definition of the model and our general result
(Theorem 1.1) below, we immediately have that κX

ij (τ), the second

FIGURE 3 | An example of a six dimensional GTaS model exhibiting

synfire-like cascading firing patterns. (A) A raster-plot of spiking activity
over a 100 ms window. Blue spikes indicate either marginal or pairwise
events (i.e., events corresponding to markings for sets D ⊂ D with |D| ≤ 2).
Red spikes indicate population-wide events which have shift-times given by
cumulative sums of independent exponentials, as described in the text.
Arrows indicate the location of the first spike in the cascade. (B) A

second-order cross-cumulant κX
13 (black line) of this model is composed of

contributions from two sources: correlations due to second-order markings,
which have Gaussian shifts (c2

13—dashed red line), and correlations due to the
occurrence of population wide events (cN

13—dashed blue line). (C) Density
plots of the third-order cross-cumulant density for triplets (i) (1,2,3) and (ii)

(1,2,4)—the latter is given explicitly in Equation (6). System parameters are
given in the Appendix.
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order cross-cumulant density for the process (i, j), is given by

κX
ij (τ) = c2

ij(τ)+ cN
ij (τ), (1)

where

c2
ij(τ) = λp{i, j}

∫
q
{i, j}
{i, j}(t, t + τ)dt,

cN
ij (τ) = λpD

∫
q
{i, j}
D
(t, t + τ)dt (2)

define the contributions to the second order cross-cumulant
density by the second-order, Gaussian-jittered events and the
population-level events, respectively. Therefore, correlations
between spike trains in this case reflect distinct contributions
from second order and higher order events. The functions qD′

D
indicate the densities associated with the distribution QD, pro-
jected to the dimensions of D′. All statistical quantities are
precisely defined in the methods.

By exploiting the hierarchical construction of the shift times,
we can find an expression for the joint density qD, necessary
to explicitly evaluate Equation (1). For a general N-dimensional
distribution,

f (y1, . . . , yN) = f (yN |y1, . . . , yN − 1)f (yN − 1|y1, . . . , yN − 2) · · ·
· f (y2|y1)f (y1). (3)

Since Y1 ∼ Exp(α1), we have f (y1) = exp
[−α1y1

]
�(y1),

where �(y) is the Heaviside step function. Further, as
(Yi − Yi− 1)|(Y1, . . . , Yi− 1) ∼ Exp(αi) for i ≥ 2, the conditional
densities of the yi’s take the form

f (yi|y1, . . . , yi− 1) = f (yi|yi− 1) = αi exp
[−αi(yi − yi− 1)

]
·� (yi − yi− 1), i ≥ 2.

Substituting this in to the identity Equation (3), we have

qD(y1, . . . , yN ) =

⎧⎪⎨
⎪⎩

α1 exp
[−α1y1

]∏N
i= 2 αi yN ≥ . . . ≥

· exp
[−αi(yi − yi− 1)

]
y2 ≥ y1 ≥ 0

0 otherwise

. (4)

Using Theorem 1.1 (Equation A8) we obtain the Nth order cross-
cumulant density (see the Methods),

κX
1 ···N(τ1, . . . , τN − 1)

= λpD

∫
qD(t, t + τ1, . . . , t + τN − 1)dt (5)

= λpD ·

⎧⎪⎨
⎪⎩
∏N − 1

i= 1 αi+ 1 τi ≥ τi− 1

· exp [−αi+ 1(τi − τi− 1)] i = 1, . . . ,N − 1,

0 otherwise

where, for notational convenience, we define τ0 = 0. A raster plot
of a realization of this model is shown in Figure 3A. We note
that the cross-cumulant densities of arbitrary subcollections of

the counting processes X can be obtained by finding the appropri-
ate marginalization of qD via integration of Equation (4). In the
case that common distributions are used to define the shifts, sym-
bolic calculation environments (i.e., Mathematica) can quickly
yield explicit formulas for cross-cumulant densities. Mathematica
notebooks for Figure 1 available upon request.

As a particular example, we consider the cross-cumulant den-
sity of the marginal processes X1,X3. Using Equations (2, 4), we
find

cN
13(τ) = λpD�(τ) ·

{
α2α3

α3−α2

{
exp [−α2τ]− exp [−α3τ]

}
α2 	= α3

α2α3τ exp [−α2τ] α2 = α3

.

An expression for c2
13(τ) may be obtained similarly using

Equation (2) and recalling that Q{i, j} ≡ N (0,�) for all i, j. In
Figure 3B, we plot these contributions, as well as the full covari-
ance density.

Similar calculations at third order yield, as an example,

κX
124(τ1, τ2) = λpD

·

⎧⎪⎪⎨
⎪⎪⎩

α2α3α4
α4−α3

exp [−α2τ1]
{

exp [−α3(τ2 − τ1)]

− exp [−α4(τ2 − τ1)]
}

α3 	= α4

α2α3α4(τ2 − τ1) exp [−α2τ1 − α3(τ2 − τ1)] α3 = α4

, (6)

where the cross-cumulant density κX
124(τ1, τ2) is supported

only on τ2 ≥ τ1 ≥ 0. Plots of the third-order cross-cumulants
for triplets (1, 2, 3) and (1, 2, 4) in this model are shown in
Figure 3C. Note that, for the specified parameters, the condi-
tional distribution of Y4—the shift applied to the events of X4

in a joint population event—given Y2 follows a gamma distribu-
tion, whereas Y3|Y2 follows an exponential distribution, explain-
ing the differences in the shapes of these two cross-cumulant
densities.

General cross-cumulant densities of at least third order for
the cascading model will have a form similar to that given
in Equation (6), and will contain no signature of the corre-
lation of strictly second order events. This highlights a key
benefit of cumulants as a measure of dependence: although
they agree with central moments up to third order, we know
from Equation (23) below [or Equation (22) in the general
case] that central moments necessarily exhibit a dependence on
lower order statistics. On the other hand, cumulants are “pure”
and quantify only dependencies at the given order which can-
not be inferred from lower order statistics (Grün and Rotter,
2010).

One useful statistic for analyzing population activity through
correlations is the population cumulant density (Luczak et al.,
2013). The second order population cumulant density for cell i
is defined by (see the Methods)

κX
i, pop(τ) =

∑
j 	= i

κX
ij (τ).

This function is linearly related to the spike-triggered average of
the population activity conditioned on that of cell i. In Figure 4
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we show three different second-order population-cumulant func-
tions for the cascading GTaS model of Figure 3A. When the
second order population cumulant for a neuron is skewed to
the right of τ = 0 (as is κX

1, pop—blue line), a neuron tends to
precede other cells in the population in pairwise spiking events.
Similarly, skewness to the left of τ = 0 (κX

6, pop—orange line) indi-
cates a neuron which tends to trail other cells in the population in
such events. A symmetric population cumulant density indicates
a neuron is a follower and a leader. Taken together, these three
second order population cumulants hint at the chain structure of
the process.

Greater understanding of the joint temporal statistics in a mul-
tivariate counting process can be obtained by considering higher-
order population cumulant densities. We define the third-order
population cumulant density for the pair (i, j) to be

κX
ij, pop(τ1, τ2) =

∑
k 	= i, j

κX
ijk(τ1, τ2).

The third-order population cumulant density is linearly related
to the spike-triggered population activity, conditioned on spikes
in cells i and j separated by a delay τ1. In Figures 4B–D, we
present three distinct third-order population cumulant densities.
Examining κX

12, pop(τ1, τ2) (panel B), we see only contributions
in the region τ2 > τ1 > 0, indicating that the pairwise event
1→ 2 often precedes a third spike elsewhere in the population
(i.e., with a probability above chance). The population cumu-
lant κX

34, pop(τ1, τ2) has contributions in two sections of the plane
(panel C). Contributions in the region τ2 > τ1 > 0 can be under-
stood following the preceding example, while contributions in
the region τ2 < 0 < τ1 imply that the firing of other neurons
tends to precede the joint firing event 3→ 4. Lastly, contribu-
tions to κX

16, pop(τ1, τ2) (panel D) are limited to 0 < τ2 < τ1,
indicating an above chance probability of joint firing events of
the form 1→ i→ 6, where i indicates a distinct neuron within
the population.

A distinct advantage of the study of population cumulant
densities as opposed to individual cross-cumulant functions in

FIGURE 4 | Population cumulants for the synfire-like cascading GTaS

process of Figure 3. See Equation (25) for the definition of population
cumulants. (A) Second order population cumulant densities for processes 1, 3,
and 6. Greater mass to the right (resp. left) of τ = 0 indicates that a cell tends
to lead (resp. follow) in pairwise-correlated events. (B) Third order population

cumulant for processes X1,X2 in the cascading GTaS process. Concentration
of the mass in different regions of the plane indicates temporal structure of
events correlated between X1,X2 relative to the remainder of the population
(see the text). (C) Same as (B), but for processes X3,X4. (D) Same as (B), but
for processes X1,X6. System parameters are given in the Appendix.
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practical applications is related to data (i.e., sample size) lim-
itations. In many practical applications, where the temporal
structure of a collection of observed point processes is of inter-
est, we often deal with a small, noisy samples. It may there-
fore be difficult to estimate third- or higher-order cumulants.
Population cumulants partially circumvent this issue by pool-
ing (Tetzlaff et al., 2003; Rosenbaum et al., 2010, 2011) (or
summing) responses, to amplify existing correlations and average
out the noise in measurements.

We conclude this section by noting that even cascading GTaS
examples can be much more general. For instance, we can include
more complex shift patterns, overlapping subassemblies within
the population, different temporal processions of the cascade, and
more.

2.2.3. Timing-selective network
The responses of single neurons and neuronal networks in exper-
imental (Meister and Berry II, 1999; Singer, 1999; Bathellier
et al., 2012) and theoretical studies (Jeffress, 1948; Hopfield,
1995; Joris et al., 1998; Thorpe et al., 2001; Gütig and
Sompolinsky, 2006) can reflect the temporal structure of their
inputs. Here, we present a simple example that shows how
a network can be selective to fine temporal features of its
input, and how the GTaS model can be used to explore such
examples.

As a general network model, we consider N leaky integrate-
and-fire (LIF) neurons with membrane potentials Vi obeying

dVi

dt
= −Vi +

N∑
j= 1

wij(F ∗ zj)(t)+ winxi(t), i = 1, . . . ,N.(7)

When the membrane potential of cell i reaches a threshold
Vth, an output spike is recorded and the membrane poten-
tial is reset to zero, after which evolution of Vi resumes the
dynamics in Equation (7). Here wij is the synaptic weight

of the connection from cell j to i, win is the input weight,
and we assume time to be measured in units of mem-
brane time constants. The function F = τsyn

−1e−(t − τd)/τsyn�(t −
τd) is a delayed, unit-area exponential synaptic kernel with
time-constant τsyn and delay τd. The output of the ith
neuron is

zi(t) =
∑

j

δ(t − t
j
i),

where t
j
i is the time of the jth spike of neuron i. In addition, the

input {xi}Ni= 1 is

xi(t) =
∑

j

δ(t − s
j
i),

where the event times {sj
i} correspond to those of a GTaS count-

ing process X. Thus, each input spike results in a jump in the
membrane potential of the corresponding LIF neuron of ampli-
tude win. The particular network we consider will have a ring

topology (nearest neighbor-only connectivity)—specifically, for
i, j = 1, . . . ,N, we let

wij =
{

wsyn i− j mod N ≡ 1 or N − 1

0 otherwise
.

We further assume that all neurons are excitatory, so that
wsyn > 0.

A network of LIF neurons with synaptic delay is a minimal
model which can exhibit fine-scale discrimination of temporal
patterns of inputs without precise tuning (Izhikevich, 2006) (that
is, without being carefully designed to do so, with great sensitivity
to modification of network parameters). To exhibit this depen-
dence we generate inputs from two GTaS processes. The first
(the cascading model) was described in the preceding example. To
independently control the mean and variance of relative shifts we
replace the sum of exponential shifts with sums of gamma vari-
ates. We also consider a model featuring population-level events
without shifts (the synchronous model), where the distribution QD

is a δ distribution at zero in all coordinates.
The only difference between the two input models is in the

temporal structure of joint events. In particular, the rates, and
all long timescale spike count cross-cumulants (equivalent to the
total “area” under the cross-cumulant density, see the Methods)
of order two and higher are identical for the two processes. We
focus on the sensitivity of the network to the temporal cumulant
structure of its inputs.

In Figures 5A,B, we present two example rasters of the nearest-
neighbor LIF network receiving synchronous (left) and cascading
(right) input. In the second case, there is an obvious pattern in
the outputs, but the firing rate is also increased. This is quan-
tified in Figure 5C, where we compare the number of output
spikes fired by a network receiving synchronous input (horizon-
tal axis) with the same for a network receiving cascading input
(vertical axis), over a large number of trials. On average, the cas-
cading input increases the output rate by a factor of 1.5 over
the synchronous inputs—we refer to this quantity as the cascade
amplification factor (CAF).

Finally, in Figure 5D, we illustrate how the cascade amplifica-
tion factor depends on the parameters that define the timing of
spikes for the cascading inputs. First, we study the dependence on
the standard deviation σshift of the gamma variates determining
the shift distribution. We note that amplification factors above 1.5
hold robustly (i.e., for a range of shift σshift values). The amplifica-
tion factors decrease with shift variance. In the inset to panel (D),
we show how the gain depends on the mean of the shift distri-
bution μshift. On an individual trial, the response intensity will
depend strongly on the total number of input spikes. Thus, in
order to enforce a fair comparison, the mother process and mark-
ings used were identical in each trial of every panel of Figure 5.
We note that network properties, such as the membrane proper-
ties of individual cells or synaptic timescales, may have an equally
large impact on the cascade amplification factor—indeed, as we
explain below, the observed behavior of the CAF is a result of syn-
ergy between the timescales of input and interactions within the
network.
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FIGURE 5 | (A) Example input (left) and output (right) for the nearest
neighbor LIF network receiving input with synchronous input. (B) Same as
(A), but for cascading input. (C) Scatter plot of the output spike count of the
network receiving synchronous (horizontal axis) and cascading input (vertical
axis) with μshift = 2, σshift = 0.3. The red line is the diagonal. (D) Average gain
(rate in response to cascading input divided by rate in response to

synchronous input) as a function of the standard deviation of the gamma
variates which compose the shift vectors for population-level events (μshift

was fixed at 2). The red dot indicates the value of σshift used in panel (C).
Inset shows the same gain as panel (D), but for varying the mean of the shift
distribution (σshift = 0.3). Spike counts in panels (C,D) were obtained for trials
of length T = 100. Other system parameters are given in the Appendix.

These observations have simple explanations in terms of the
network dynamics and input statistics. Neglecting, for a moment,
population-level events, the network is configured so that correla-
tions in activity decrease with topographic distance. Accordingly,
the probability of finding neurons that are simultaneously close
to threshold also decreases with distance. Under the synchronous
input model, a population-level event results in a simultane-
ous increase of the membrane potentials of all neurons by an
amount win, but unless the input is very strong (in which
case every, or almost every, neuron will fire regardless of fine-
scale input structure), the set of neurons sufficiently close to
threshold to “capitalize” on the input and fire will typically be
restricted to a topographically adjacent subset. Neurons which do
not fire almost immediately will soon have forgotten about this
population-level input. As a result, the output does not signif-
icantly reflect the chain-like structure of the inputs (Figure 5A,
right).

On the other hand, in the case of the cascading input, the tem-
poral structure of the input and the timescale of synapses can
operate synergistically. Consider a pair of adjacent neurons in
the ring network, called cells 1 and 2, arranged so that cell 2 is
downstream from cell 1 in the direction of the population-level
chain events. When cell 1 spikes, it is likely that cell 2 will also
have an elevated membrane potential. The potential is further ele-
vated by the delayed synaptic input from cell 1. If cell 1 spikes
in response to a population-level chain event, then cell 2 immi-
nently receives an input spike as well. If the synaptic filter and
time-shift of the input spikes to each cell align, then the firing
probability of cell 2 will be large relative to chance. This reasoning
can be carried on across the network. Hence synergy between the

temporal structure of inputs and network architecture allows the
network to selectively respond to the temporal structure of the
inputs (Figure 5B, right).

In Kuhn et al. (2003), the effect of higher order correlations
on the firing rate gain of an integrate-and-fire neuron was stud-
ied by driving single cells using sums of SIP or MIP processes
with equivalent firing rates (first order cumulants) and pairwise
correlations (second order cumulants). In contrast, in the pre-
ceding example, the two inputs have equal long time spike count
cumulants, and differ only in temporal correlation structure. An
increase in firing rate was due to network interactions, and is
therefore a population level effect. We return to this comparison
in the Discussion.

These examples demonstrate how the GTaS model can be
used to explore the impact of spatio-temporal structure in pop-
ulation activity on network dynamics. We next proceed with a
formal derivation of the cumulant structure for a general GTaS
process.

2.3. CUMULANT STRUCTURE OF A GTaS PROCESS
The GTaS model defines an N-dimensional count-
ing process. Following the standard description for a
counting process, X = (X1, . . . ,XN) on R

N , given a col-
lection of Borel subsets Ai ∈ B(R), i = 1, . . . ,N, then
X(A1 × · · · × AN) = (X1(A1), . . . ,XN (AN)) ∈ N

N is a ran-
dom vector where the value of each coordinate i indicates the
(random) number of points which fall inside the set Ai. Note that
the GTaS model defines processes that are marginally Poisson.
All GTaS model parameters and related quantities are defined in
Table 1.
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Table 1 | Common notation used in the text.

D D = {1,2, . . . ,N} where N is the system size of the GTaS process under consideration

(pD)D⊂D Marking probabilities of a GTaS process

(QD)D⊂D Family of shift distributions on R
N for a GTaS process

B(R) Borel subsets of the real line R

ξ(D;A1, . . . ,AN) Independent Poisson variables which count points which, after shifting, lie in the sets Ai only along the dimensions
corresponding to the indices of D. These counts consist of contributions from subsets marked for D′ ⊃ D, but indices in
D′\D end up outside the corresponding Ai . Defined in the statement of Theorem 0

ζD(A1, . . . ,AN) Independent Poisson variables which are context-dependent resummations of the variables ξ(D;A1, . . . ,AN). Defined
below Equation (10)

κ(X1, . . . ,XN ) Cross-cumulant of the random variables X1, . . . ,XN defined in the Methods

κX
i1 ···ik (τ1, . . . , τk − 1) Cross-cumulant density defined in Equation (24)

κX
i1 ···ik−1 ,pop(τ1, . . . , τk − 1) Population cumulant density defined in Equation (25)

For each D ⊂ D = {1, . . . ,N}, define the tail probability p̄D by

p̄D =
∑

D⊂D′ ⊂D

pD′ . (8)

Since pD is the probability that exactly the processes in D are
marked, p̄D is the probability that all processes in D, as well as
possibly other processes, are marked. An event from the mother
process is assigned to daughter process Xi with probability p̄{i}. As
noted above, an event attributed to process i following a marking
D  i will be marginally shifted by a random amount determined

by the distribution Q{i}D which represents the projection of QD

onto dimension i. Thus, the events in the marginal process Xi

are shifted in an independent and identically distributed (IID)
manner according to the mixture distribution Qi given by

Qi =
∑

D i pDQ{i}D∑
D i pD

.

Note that IID shifting of the event times of a Poisson process gen-
erates another Poisson process of identical rate. Thus, the process
Xi is marginally Poisson with rate λp̄{i} (Ross, 1995).

In deriving the statistics of the GTaS counting process X, it will
be useful to express the distribution of X as

⎛
⎜⎝

X1(A1)

...

XN(AN)

⎞
⎟⎠ =distr

⎛
⎜⎝
∑

D 1 ξ(D;A1, . . . ,AN)

...∑
DN ξ(D;A1, . . . ,AN)

⎞
⎟⎠ . (9)

Here, each ξ(D;A1, . . . ,AN ) is an independent Poisson process,
and the notation =distr indicates that the two random vectors are
equal in distribution. This process counts the number of points
which are marked by a set D′ ⊃ D, but (after shifting) only the
points with indices i ∈ D lie in the corresponding set Ai. Precise
definitions of the processes ξ and a proof of Equation (9) may
be found in the Appendix. We emphasize that the Poisson pro-
cesses ξ(D) do not directly count points marked for the set D, but

instead points which are marked for a set containing D that, after
shifting, only have their D-components lying in the “relevant”
sets Ai.

Suppose we are interested in calculating dependencies among
a subset of daughter processes, {Xij }ij∈D̄ for some set D̄ ⊂ D, con-

sisting of |D̄| = k distinct members of the collection of counting
processes X. Then the following alternative representation will be
useful:⎛

⎜⎝
Xi1 (Ai1)

...

Xik(Aik)

⎞
⎟⎠ =distr

⎛
⎜⎝
∑

i1 ∈D⊂ D̄ ζD(A1, . . . ,AN)

...∑
ik ∈D⊂ D̄ ζD(A1, . . . ,AN)

⎞
⎟⎠ (10)

where

ζD(A1, . . . ,AN) =
∑

D′ ⊃D
(D̄\D)∩D′ = ∅

ξ(D′;A1, . . . ,AN).

We illustrate this decomposition in the cases k = 2, 3 in Figure 6.
The sums in Equation (10) run over all sets D ⊂ D containing the
indicated indices ij and contained within D̄. The processes ζD are
comprised of a sum of all of the processes ξ(D′) (defined below
Equation 9) such that D′ contains all of the indices D, but no
other indices which are part of the subset D̄ under consideration.
These sums are non-overlapping, implying that the ζD are also
independent and Poisson.

The following examples elucidate the meaning and signifi-
cance of Equation (10). We emphasize that the GTaS process
is a completely characterized, joint Poisson process, and we use
Equation (10) to calculate cumulants of a GTaS process. In
principle, any other statistics can be obtained similarly.

2.3.1. Second order cumulants (covariance)
We first generalize a well-known result about the dependence
structure of temporally jittered pairs of Poisson processes, X1,X2.
Assume that events from a mother process with rate λ, are
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FIGURE 6 | (A) Illustrating the representation given by Equation (10) in the
case of two distinct processes (see Equation 11) with N = 4 and D̄ = {1,2}.
(B) Same as (A), for three processes with D̄ = {1,2,3} (see Equation 16).

assigned to two daughter processes with probability p. Each
event time is subsequently shifted independently according to a
univariate distribution f . The cross-cumulant density (or cross-
covariance function; see the Methods for cumulant definitions)
then has the form (Brette, 2009)

κX
12(τ) = λp

∫
f (t)f (t + τ)dt = λp(f × f )(τ).

We generalize this result within the GTaS framework. At
second order, Equation (10) has a particularly nice form.
Following Bäuerle and Grübel (2005) we write for i 	= j (see
Figure 6A)

(
Xi(Ai)

Xj(Aj)

)
=distr

(
ζ{i, j}(Ai,Aj)+ ζ{i}(Ai)

ζ{i, j}(Ai,Aj)+ ζ{j}(Aj)

)
. (11)

The process ζ{i, j} sums all ξ(D′) for which {1, 2} ⊂ D′, while the
process ζ{i} sums all ξ(D′) such that i ∈ D′, j /∈ D′, and ζ{j} is
defined likewise.

Using the representation in Equation (11), we can derive the
second order cumulant (covariance) structure of a GTaS process.

First, we have

cov
[
Xi(Ai),Xj(Aj)

] = κ[Xi(Ai),Xj(Aj)]
= κ[ζ{i, j}(Ai,Aj), ζ{i, j}(Ai,Aj)]
+ κ[ζ{i}(Ai), ζ{i, j}(Ai,Aj)]
+ κ[ζ{i, j}(Ai,Aj), ζ{j}(Aj)]
+ κ[ζ{i}(Ai), ζ{j}(Aj)]
= κ2[ζ{i, j}(Ai,Aj)] + 0

= E
[
ζ{i, j}(Ai,Aj)

]
.

The third equality follows from the construction of the processes
ζD: if D 	= D′, then the processes ζD, ζD′ are independent. The
final equality follows from the observation that every cumulant
of a Poisson random variable equals its mean.

The covariance may be further expressed in terms of model
parameters (see Theorem 1.1 for a generalization of this result to
arbitrary cumulant orders):

cov
[
Xi(Ai),Xj(Aj)

]
= λ

∑
D′ ⊃ {i, j}

pD′
∫

P
(
t + Yi ∈ Ai, t + Yj ∈ Aj | Y ∼ QD′

)
dt.

(12)

In other words, the covariance of the counting processes is given
by the weighted sum of the probabilities that the (i, j) marginal
of the shift distributions yield values in the appropriate sets. The
weights are the intensities of each corresponding component pro-
cesses ξ(D) which contribute events to both of the processes i
and j.

In the case that QD ≡ Q, Equation (12) reduces to the solution
given in Bäuerle and Grübel (2005). Using the tail probabili-
ties defined in Equation (8), if QD ≡ Q for all D, the integral
in Equation (12) no longer depends on the subset D′, and the
equation may be written as

cov
[
Xi(Ai),Xj(Aj)

]
= λp̄{i,j}

∫
P
(
t + Yi ∈ Ai, t + Yj ∈ Aj | Y ∼ Q

)
dt.

Using Equation (12), we may also compute the second cross-
cumulant density (also called the covariance density) of the
processes. From the definition of the cross-cumulant density
[Equation (24) in the Methods], this is given by

κX
ij (τ) = lim

�t→ 0

cov
[
Xi([0,�t)),Xj([τ, τ+�t))

]
�t2

= λ
∑

D′ ⊃ {i,j}
pD′ (13)

∫
lim
�t→0

P
(
t + Yi ∈ [0, �t), t + Yj ∈ [τ, τ +�t) | Y ∼ QD′

)
�t2

dt.
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Before continuing, we note that given a random vector Y =
(Y1, . . . , YN) ∼ Q, where Q has density q(y1, . . . , yN), the vector
Z = (Y2 − Y1, . . . ,YN − Y1) has density qZ given by

qZ(τ1, . . . , τN − 1) =
∫

q(t, t + τ1, . . . , t + τN − 1)dt. (14)

Assuming that the distributions QD′ have densities qD′ , and

denoting by q
{i, j}
D′ the bivariate marginal density of the variables

Yi,Yj under QD′ , we have that

κX
ij (τ) = λ

∑
D′ ⊃ {i, j}

pD′
∫

q
{i, j}
D′ (t, t + τ)dt. (15)

According to Equation (14), the integrals present in Equation (15)
are simply the densities of the variables Yj − Yi, where Y ∼ QD′ .

Thus κX
ij (τ), which captures the additional probability for

events in the marginal processes Xi and Xj separated by τ units of
time beyond what can be predicted from lower order statistics is
given by a weighted sum (in this case, the lower order statistics are
marginal intensities—see the discussion around Equation (24)
of the Methods). The weights are the “marking rates” λpD′ for
markings contributing events to both component processes, while
the summands are the probabilities that the corresponding shift
distributions yield a pair of shifts in the proper arrangement—
specifically, the shift applied to the event as attributed to Xi

precedes that applied to the event mapped to Xj by τ units of time.
This interpretation of the cross-cumulant density is quite natural,
and will carry over to higher order cross-cumulants of a GTaS
process. However, as we show next, this extension is not trivial at
higher cumulant orders.

2.3.2. Third order cumulants
To determine the higher order cumulants for a GTaS process, one
can again use the representation given in Equation (10). The dis-
tribution of a subset of three processes may be expressed in the
form (see Figure 6B)

⎛
⎝Xi(Ai)

Xj(Aj)

Xk(Ak)

⎞
⎠ =distr

⎛
⎝ ζ{i, j, k} + ζ{i, j} + ζ{i, k} + ζ{i}

ζ{i, j, k} + ζ{i, j} + ζ{j, k} + ζ{j}
ζ{i, j, k} + ζ{i, k} + ζ{j, k} + ζ{k},

⎞
⎠ , (16)

where, for simplicity, we suppressed the arguments of the differ-
ent ζD on the right hand side. Again, the processes in the repre-
sentation are independent and Poisson distributed. The variable
ζ{i, j, k} is the sum of all random variables ξ(D) (see Equation 9)
with D ⊃ {i, j, k}, while the variable ζ{i, j} is now the sum of all
ξ(D) with D ⊃ {i, j}, but k /∈ D. The rest of the variables are
defined likewise. Using properties (C1) and (C2) of cumulants
given in the Methods, and assuming that i, j, k are distinct indices,
we have

κ(Xi(Ai),Xj(Aj),Xk(Ak)) = κ3(ζ{i, j, k}) = E
[
ζ{i, j, k}

]
.

The second equality follows from the fact that all cumulants of
a Poisson distributed random variable equal its mean. Similar to

Equation (12), we may write

κ(Xi(Ai),Xj(Aj),Xk(Ak))= λ
∑

D′ ⊃ {i, j, k}
pD′

∫
P (t + Yi ∈ Ai,

t + Yj ∈ Aj, t + Yk ∈ Ak |Y ∼ QD′
)
dt.

The third cross-cumulant density is then given similarly to the
second order function by

κX
ijk(τ1, τ2) = λ

∑
D′ ⊃ {i, j, k}

pD′
∫

q
{i, j, k}
D′ (t, t + τ1, t + τ2)dt.

Here, we have again assumed the existence of densities qD′ , and

denoted by q
{i, j, k}
D′ the joint marginal density of the variables

Yi,Yj,Yk under qD′ . The integrals appearing in the expression
for the third order cross-cumulant density are the probability
densities of the vectors (Yj − Yi,Yk − Yi), where Y ∼ QD′ .

2.3.3. General cumulants
Finally, consider a general subset of k distinct members of the
vector counting process X as in Equation (10). The following
theorem provides expressions for the cross-cumulants of the
counting processes, as well as the cross-cumulant densities, in
terms of model parameters in this general case. The proof of
Theorem 1.1 is given in the Appendix.

Theorem 1.1. Let X be a joint counting process of GTaS type with
total intensity λ, marking distribution (pD)D⊂D, and family of shift
distributions (QD)D⊂D. Let A1, . . . ,Ak be arbitrary sets in B(R),
and D̄ = {i1, . . . , ik} ⊂ D with |D̄| = k. The cross-cumulant of the
counting processes may be written

κ(Xi1(A1), . . . ,Xik(Ak))

= λ
∑

D′ ⊃ D̄

pD′
∫

P(t1+ YD̄ ∈ A1 × · · · × Ak|Y ∼ QD′)dt

(17)

where YD̄ represents the projection of the random vector Y onto the
dimensions indicated by the members of the set D̄. Furthermore,
assuming that the shift distributions possess densities (qD)D⊂D, the
cross-cumulant density is given by

κX
i1···ik (τ1, . . . , τk− 1)

= λ
∑

D′ ⊃ D̄

pD′
∫

qD̄
D′(t, t + τ1, · · · , t + τk− 1)dt, (18)

where qD̄
D′ indicates the kth order joint marginal density of qD′ in the

dimensions of D̄.

An immediate corollary of Theorem 1.1 is a simple expression
for the infinite-time-window cumulants, obtained by integrating
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the cumulant density across all time lags τi. From Equation (A8),
we have

γX
i1···ik(∞) =

∫
· · ·

∫
κX

i1···ik(τ1, . . . , τk− 1)dτk− 1 · · · dτ1

= λ
∑

D′ ⊃ D̄

pD′ · 1 = λp̄D̄. (19)

This shows that the infinite time window cumulants for a
GTaS process are non-increasing with respect to the ordering of
sets, i.e.,

γX
i1···ik(∞) ≥ γX

i1···ikik+ 1
(∞).

We conclude this section with a short technical remark: Until this
point, we have considered only the cumulant structure of sets of
unique processes. However occasionally, one may wish to calcu-
late a cumulant for a set of processes including repeats. Take, for
example, a cumulant κ(X1(A1),X1(A2),X3(A3)). Owing to the
marginally Poisson nature of the GTaS process, we would have
(referring to the Methods for cumulant definitions)

κ(X1(A1),X1(A2),X3(A3))

= κ(2,1)(X1(A1 ∩ A2),X3(A3)) if X ∼ GTaS. (20)

For a general counting process X, it may be shown that

κX
113(τ1, τ2) = δ(τ1)κ

X
13(τ2)+ “non-singular contributions”.

(21)
In addition, the second order auto-cumulant density may be
written (Cox and Isham, 1980)

κX
ii (τ) = riδ(τ)+ “non-singular contributions”,

where ri is the stationary rate. The singular contribution shown in
Equation (21) at third order is in analogy to the delta contribution
proportional to the firing rate which appears in the second-order
auto-cumulant density. For a GTaS process, the non-singular con-
tributions in Equation (21) are identically zero, following directly
from Equation (20). Expressions similar to Equations (20, 21)
hold for general cases.

3. DISCUSSION
We have introduced a general method of generating spike trains
with flexible spatiotemporal structure. The GTaS model is com-
pletely analytically tractable: all statistics of interest can be
obtained directly from the distributions used to define it. It is
based on an intuitive method of selecting and shifting point pro-
cesses from a “mother” train. Moreover, the GTaS model can be
used to easily generate partially synchronous states, cluster fir-
ing, cascading chains, and other spatiotemporal patterns of neural
activity.

Processes generated by the GTaS model are naturally described
by cumulant densities of pairwise and higher orders. This raises
the question of whether such statistics are readily computable
from data, so that realistic classes of GTaS models can be

defined in the first place. One approach is to fit mechanis-
tic models to data, and to use the higher order structure that
is generated by the underlying mechanisms (Yu et al., 2011).
A synergistic blend of other methods with the GTaS frame-
work may also be fruitful—for example, the CuBIC framework
of Staude et al. (2010) could be used to determine relevant
marking orders, and the parametrically-described GTaS process
could then be fit to allow generation of surrogate data after
selection of appropriate classes of shift distributions. When it
is necessary to infer higher order structure in the face of data
limitations, population cumulants are an option to increase
statistical power (albeit at the cost of spatial resolution; see
Figure 4).

While the GTaS model has flexible higher order structure,
it is always marginally Poisson. While throughout the cortex
spiking is significantly irregular (Holt et al., 1996; Shadlen and
Newsome, 1998), the level of variability differs across cells, with
Fano factors ranging from below 0.5 to above 1.5—in com-
parison with the Poisson value of 1 (Churchland et al., 2010).
Changes in variability may reflect cortical states and computa-
tion (Litwin-Kumar and Doiron, 2012; White et al., 2012). A
model that would allow flexible marginal variability would there-
fore be very useful. Unfortunately, the tractability of the GTaS
model is closely related to the fact that the marginal processes are
Poisson. Therefore, an immediate generalization does not seem
possible.

A number of other models have been used to describe pop-
ulation activity. Maximum entropy (ME) approaches also result
in models with varied spatial activity; these are defined based
on moments or other averaged features of multivariate spik-
ing activity (Schneidman et al., 2006; Roudi et al., 2009). Such
models are often used to fit purely spatial patterns of activity,
though (Tang et al, 2008; Marre et al., 2009) have extended the
techniques to treat temporal correlations as well. Generalized
linear models (GLMs) have been used successfully to describe
spatiotemporal patterns at second (Pillow et al., 2008), and
third order (Ohiorhenuan et al., 2010). In comparison to the
present GTaS method, both GLMs and ME models are more
flexible. They feature well-defined approaches for fitting to data,
including likelihood-based methods with well-behaved convex-
ity properties. What the GTaS method contributes is an explicit
way to generate population activity with explicitly specified
high order spatio-temporal structure. Moreover, the lower order
cumulant structure of a GTaS process can be modified indepen-
dently of the higher order structure, though the reverse is not
true.

There are a number of possible implications of such spatio-
temporal structure for communication within neural networks.
In section 2.2.3, we showed that these temporal correlations
can play a role similar to that of spatial correlations established
in Kuhn et al. (2003) for determining network input-output
transfer. Our model allowed us to examine that impact of such
temporal correlations on the network-level gain of a downstream
population (cascade amplification factor). Even in a very sim-
ple network it was clear that the strength of the response is
determined jointly by the temporal structure of the input to the
network, and the connectivity within the network. Kuhn et al.
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examined the effect of higher order structure on the firing rate
gain of an integrate-and-fire neuron by driving it with a mix-
ture of SIP or MIP processes (Kuhn et al., 2003). However, in
these studies, only the spatial structure of higher order activity
was varied. The GTaS model allows us to concurrently change the
temporal structure of correlations. In addition, the precise control
of the cumulants allows us to derive models which are equivalent
up to a certain cross-cumulant order, when the configuration of
marking probabilities and shift distributions allow it (as for the
SIP and MIP processes of Kuhn et al. (2003), which are equivalent
at second order).

Such patterns of activity may be useful when experimentally
probing dendritic information processing (Gasparini and Magee,
2006), synaptic plasticity (Pfister and Gerstner, 2006; Gjorgjieva
et al., 2011), or investigating the response of neuronal networks
to complex patterns of input (Kahn et al., 2013). Spatiotemporal
patterns may also be generated by cell assemblies (Bathellier
et al., 2012). The firing in such assemblies can be spatially struc-
tured, and this structure may not be reflected in the activity
of participating cells. Assemblies can exhibit persistent patterns
of firing, sometimes with millisecond precision (Harris et al.,
2002). The GTaS framework is well suited to describe exactly
such activity patterns. The examples we presented can be eas-
ily extended to generate more complex patterns of activity with
overlapping cell assemblies, different cells leading the activity, and
other variations.

Understanding impact of spatiotemporal patterns on neural
computations remains an open and exciting problem. Progress
will require coordination of computational, theoretical, and
experimental work—the latter taking advantage of novel stimu-
lation techniques. We hope that the GTaS model, as a practical
and flexible method for generating high-dimensional, correlated
spike trains, will play a significant role along the way.

4. METHODS
4.1. CUMULANTS AS A MEASURE OF DEPENDENCE
We first define cross-cumulants (also called joint cumu-
lants) (Stratonovich and Silverman, 1967; Kendall et al.,
1969; Gardiner, 2009) and review some important properties of
these quantities. Define the cumulant generating function g of a
random vector X = (X1, . . . ,XN) by

g(t1, . . . , tN) = log

⎛
⎝E

⎡
⎣exp

⎛
⎝ N∑

j= 1

tjXj

⎞
⎠
⎤
⎦
⎞
⎠ .

The r-cross-cumulant of the vector X is given by

κr(X) = ∂ |r|

∂tr1
1 · · · ∂trN

N

g(t1, . . . , tN)

∣∣∣∣
t1 = ···= tN = 0

.

where r = (r1, . . . , rN) is a N-vector of positive integers, and
|r| =∑N

i= 1 ri. We will generally deal with cumulants where all
variables are considered at first order, without excluding the pos-
sibility that some variables are duplicated. In this case, we define
the cross-cumulant κ(X), of the variables in the random vector

X = (X1, . . . ,XN) as

κ(X) := κ1(X) = ∂N

∂t1 · · · ∂tN
g(t1, . . . , tN)

∣∣∣∣
t1 = ···= tN = 0

where 1 = (1, . . . , 1).

This relationship may be expressed in combinatorial form:

κ(X1, . . . ,XN) =
∑
π

(|π| − 1)!(−1)|π | − 1
∏

B∈π

E

[∏
i∈B

Xi

]

(22)
where π runs through all partitions of D = {1, . . . ,N}, and B
runs over all blocks in a partition π. More generally, the r-cross-
cumulant may be expressed in terms of moments by expanding
the cumulant generating function as a Taylor series, noting that

g(t1, . . . , tN) =
∑

r

κr(X1, . . . ,XN )

r! xr1
1 · · · xrN

d with

r! =
N∏

i= 1

ri!,

similarly expanding the moment generating function M(t) =
eg(t), and matching the polynomial coefficients. Note that the nth
cumulant κn of a random variable X may be expressed as a joint
cumulant via

κn(X) = κ(X, . . . ,X)︸ ︷︷ ︸
n copies of X

.

We will utilize the following two principal properties of
cumulants (Brillinger, 1965; Stratonovich and Silverman, 1967;
Mendel, 1991; Staude et al., 2010):

(C1) Multilinearity - for any random variables X,Y, {Zi}Ni= 2, we
have

κ(aX + bY, Z2, . . . ,ZN) = aκ(X,Z2, . . . ,ZN)

+ bκ(Y,Z2, . . . ,ZN).

This holds regardless of dependencies amongst the random
variables.

(C2) If any subset of the random variables in the cumulant
argument is independent from the remaining, the cross-
cumulant is zero—i.e., if {X1, . . . ,XN1} and {Y1, . . . , YN2}
are sets of random variables such that each Xi is indepen-
dent from each Yj, then

κ(rX ,rY )(X1, . . . ,XN1 , Y1, . . . , YN2) = 0

for all rX ∈ N
N1+ , rY ∈ N

N2+ .

To exhibit another key property of cumulants, consider a 4-
vector X = (X1,X2,X3,X4) with non-zero fourth cumulant and
a random variable Z independent of each Xi. Define Y = (X1 +
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Z,X2 + Z,X3 + Z,X4). Using properties (C1), (C2) above, it
follows that

κ(Y1,Y2,Y3) = κ(X1,X2,X3)+ κ3(Z).

On the other hand, it is also true that

κ(Y) = κ(X),

that is, adding the variable Z to only a subset of the variables
in X results in changes to cumulants involving only that sub-
set, but not to the joint cumulant of the entire vector. In this
sense, an rth order cross-cumulant of a collection of random vari-
ables captures exclusively dependencies amongst the collection
which cannot be described by cumulants of lower order. In the
example above, only the joint statistical properties of a subset of
X were changed. As a result, the total cumulant κ(X) remained
fixed.

From Equation (22), it is apparent that κ(Xi) = E[Xi], and
κ(Xi,Xj) = cov

[
Xi,Xj

]
. In addition, the third cumulant, like

the second, is equal to the corresponding central moment:

κ(Xi,Xj,Xk) = E
[
(Xi − E[Xi])(Xj − E

[
Xj
]
)(Xk − E[Xk])

]
.

As cumulants and central moments agree up to third order,
central moments up to third order inherit the properties
discussed above at these orders. On the other hand, the
fourth cumulant is not equal to the fourth central moment.
Rather:

κ(Xi,Xj,Xk,Xl)

= E[(Xi − E[Xi])(Xj − E
[
Xj
]
)(Xk − E[Xk])(Xl − E[Xl])]

(23)−cov
[
Xi,Xj

]
cov[Xk,Xl]− cov[Xi,Xk] cov

[
Xj,Xl

]
−cov[Xi,Xl] cov

[
Xj,Xk

]
.

Higher cumulants have similar (but more complicated) expan-
sions in terms of central moments. Accordingly, central
moments of fourth and higher order do not inherit properties
(C1), (C2).

4.2. TEMPORAL STATISTICS OF POINT PROCESSES
In the Results, we present an extension of previous work (Bäuerle
and Grübel, 2005) in which we construct and analyze multivariate
counting processes X = (X1, . . . ,XN)where each Xi is marginally
Poisson.

Formally, a counting process X is an integer-valued ran-
dom measure on B(RN). Evaluated on subset A1 × · · · × AN of
B(RN), the random vector (X1(A1), . . . ,XN(AN)) counts events
in d distinct categories whose times of occurrence fall in to the sets
Ai. A good general reference on the properties of counting pro-
cesses (marginally Poisson and otherwise) is Daley and Vere-Jones
(2002).

The assumption of Poisson marginals implies that for a set
Ai ∈ B(R), the random variable Xi(Ai) follows a Poisson distri-
bution with mean λi	(Ai), where 	 is the Lebesgue measure on

R, and λi is the (constant) rate for the ith process. The pro-
cesses under consideration will further satisfy a joint stationarity
condition, namely that the distribution of the vector (X1(A1 +
t), . . . ,XN (AN + t)) does not depend on t, where Ai + t denotes
the translated set {a+ t : a ∈ Ai}.

We now consider some common measures of temporal depen-
dence for jointly stationary vector counting processes. We will
refer to the quantity Xi[0,T] as the spike count of process i over
[0,T]. The quantity γX

i1···ik(T) (which we will refer to as a spike
count cumulant) is given by

γX
i1···ik(T) =

1

T
κ[Xi1 [0,T], . . . ,Xik [0,T]]

measures kth order correlations amongst spike counts for the
listed processes which occur over windows of length T. At sec-
ond order, γX

ij (T) measures the covariance of the spike counts
of processes i, j over a common window of length T. The infi-
nite window spike count cumulant quantifies dependencies in the
spike counts of point processes over arbitrarily long windows, and
is given by

γX
i1···ik(∞) = lim

T→∞
γX

i1···ik(T).

A related measure is the kth order cross-cumulant density
κX

i1,...,ik
(τ1, . . . , τk− 1), defined by

κX
i1···ik(τ1, . . . , τk− 1) = lim

�t→ 0

1

�tk
κ[Xi1 [0, �t],

Xi2 [τ1, τ1 + �t], . . . ,Xik [τk− 1, τk− 1 +�t]]. (24)

The cross-cumulant density should be interpreted as a measure
of the likelihood—above what may be expected from knowledge
of the lower order cumulant structure—of seeing events in pro-
cesses i2, . . . , ik at times τ1 + t, . . . , τk− 1 + t, conditioned on
event in process i1 at time t. The infinite window spike count
cumulant is equal to the total integral under the cross-cumulant
density,

γX
i1···ik(∞) =

∫
· · ·

∫
κX

i1···ik(τ1, . . . , τk− 1)dτk− 1 · · · dτ1.

As an example, we again consider the familiar second-order
cross-cumulant density κX

ij (τ)—often referred to as the cross-
covariance density or cross-correlation function. Defining the con-
ditional intensity hij(τ) of process j, conditioned on process i
to be

hX
ij (τ) = lim

�t→ 0

1

�t
P(Xj[τ, τ+�t] > 0|Xi[0,�t] > 0),

that is, the intensity of j conditioned on an event in process i
which occurred τ units of time in the past, then it is not difficult
to show that

κX
ij (τ) = λihij(τ)− λiλj.
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That is, the second order cross-cumulant density supplies the
probability of chance of observing an event attributed to process i,
followed by one attributed to process j, τ units of time later, above
what would be expected from knowledge of first order statistics
(given by the product of the marginal intensities, λiλj). More
generally, at higher orders, the cross-cumulant density should be
interpreted as a measure of the likelihood (above what may be
expected from knowledge of the lower order correlation struc-
ture) of seeing events attribute to processes i2, . . . , ik at times
τ1 + t, . . . , τk− 1 + t, conditioned on an event in process i1 at
time t.

Another statistic useful in the study of a correlated vec-
tor counting process X is the population cumulant density. At
second-order, the population cumulant density for Xi takes the
form (Luczak et al., 2013)

κX
i,pop(τ) =

∑
j 	= i

κX
ij (τ).

More generally, the kth order population cumulant density corre-
sponding to the processes Xi1 , . . . ,Xik− 1 is given by

κX
i1···ik− 1,pop(τ1, . . . , τk− 1) =

∑
j 	= i1,...,ik

κX
i1···ik− 1j(τ1, . . . , τk− 1). (25)
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APPENDIX
PROOF OF THE DISTRIBUTIONAL REPRESENTATION OF THE GTaS
MODEL IN EQUATION (9)
The construction of the GTaS model allows us to provide a useful
distributional representation of the process. We describe this rep-
resentation in a theorem that generalizes Theorem 1 in Bäuerle
and Grübel (2005). This theorem also immediately implies that
the GTaS process is marginally Poisson.

Some definitions are required: first, for subsets A1, . . . ,AN ∈
B(R) and D,D′ ⊂ D with D ⊂ D′, let

M(D,D′;A1, . . . ,AN) := B1 × · · · × BN with Bi

:=

⎧⎪⎨
⎪⎩

Ai, for i ∈ D,

Ac
i , for i ∈ D′\D,

R, otherwise

In addition, setting 1 = (1, . . . , 1) to be the N-dimensional vec-
tor with all components equal to unity, and if QD is a measure on
R

N , then we define the measure ν(QD) by

ν(QD)(A) :=
∫

QD(A− t1)dt for A ∈ B(RN)

=
∫

P(Y+ t1 ∈ A|Y ∼ QD)dt.

(A1)

The measure ν(QD) can be interpreted as giving the expected
Lebesgue measure of the subset L of R for which uniform shifts
by the elements of L translate a random vector Y ∼ QD in to A.
Heuristically, one may imagine sliding the vector Y over the whole
real line, and counting the number of times every coordinate ends
up in the “right” set—the projection of A onto that dimension. In
equation form, this means

ν(QD)(A) = EY[	({t ∈ R : Y+ t1 ∈ A})|Y ∼ QD] . (A2)

where the subscript Y indicates that we take the average over
the distribution of Y ∼ QD. A short proof of this representation
is presented below. We now present the theorem, with a proof
indicating adjustments necessary to that of Bäuerle and Grübel
(2005).

Theorem 0 Let X be an N-dimensional counting process of
GTaS type with base rate λ, thinning mechanism p = (pD)D⊂D,
and family of shift distributions (QD)D⊂D. Then, for any Borel sub-
sets A1, . . . ,AN of the real line, we have the following distributional
representation:

⎛
⎜⎝

X1(A1)

...

XN(AN)

⎞
⎟⎠ =distr

⎛
⎜⎝
∑

D 1 ξ(D;A1, . . . ,AN)

...∑
D d ξ(D;A1, . . . ,AN)

⎞
⎟⎠ , (A3)

where the random variables ξ(D;A1, . . . ,AN),∅ 	= D ⊂ D, are
independent and Poisson distributed with

E[ξ(D;A1, . . . ,AN)] = λ
∑

D′ ⊃D

pD′ν(QD′ )(M(D,D′;A1, . . . ,AN)).

Proof. For each marking D′ ⊂ D, define XD′ to be an independent
TaS (Bäuerle and Grübel, 2005) counting process with mother
process rate λpD′ , shift distribution QD′ , and markings (pD′

D )D⊂D

where pD′
D = 1 if D = D′ and is zero otherwise (i.e., the only

possible marking for XD′ is D′). We first claim that

X =distr

∑
D′

XD′ . (A4)

To see this, note that spikes in the mother process of the GTaS
process of X marked for a set D′ occur at a rate λpD′ , which is
the rate of the process XD′ . In addition, these event times are then
shifted by QD′ , exactly as they are for XD′ . Thus, the distribution
of event times (and hence the counting process distributions) are
equivalent.

Let A1, . . . ,AN be any Borel subsets of the real line. Applying
Theorem 1 of Bäuerle and Grübel (2005) to each XD′ gives the
following distributional representation:⎛

⎜⎜⎝
XD′

1 (A1)

...

XD′
N (AN)

⎞
⎟⎟⎠ =distr

⎛
⎜⎜⎝
∑

D 1 ξD′(D;A1, . . . ,AN )

...∑
DN ξD′(D;A1, . . . ,AN)

⎞
⎟⎟⎠ , (A5)

where the random variables ξD′(D; ,A1, . . . ,AN) are taken to
be identically zero unless D ⊂ D′. In the latter case, they are
independent and Poisson distributed with

E
[
ξD′(D;A1, . . . ,AN)

]
= λpD′

∑
D′′ ⊃D

pD′
D′′ν(QD′)(M(D,D′′;A1, . . . ,AN ))

= λpD′ν(QD′)(M(D,D′;A1, . . . ,AN)).

The second equality above follows from the fact that pD′
D′′ = 1 if

D′′ = D′ and is zero otherwise.
Next, define

ξ(D;A1, . . . ,AN ) =
∑
D′

ξD′(D;A1, . . . ,AN)

=
∑

D′ ⊃D

ξD′(D;A1, . . . ,AN).

As the sum of independent Poisson variables is again Poisson with
rate equal to the sum of the rates, we have that ξ(D;A1, . . . ,AN)

is Poisson with mean

E[ξ(D;A1, . . . ,AN)] = λ
∑

D′ ⊃D

pD′ν(QD′ )(M(D,D′;A1, . . . ,AN)).

(A6)
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Finally, combining Equations (A4, A5), we may write

⎛
⎜⎝

X1(A1)

...

XN(AN)

⎞
⎟⎠ =distr

⎛
⎜⎜⎝
∑

D′
∑

D 1 ξD′(D;A1, . . . ,AN )

...∑
D′
∑

DN ξD′(D;A1, . . . ,AN)

⎞
⎟⎟⎠ ,

=

⎛
⎜⎜⎝
∑

D 1

∑
D′ ξ

D′(D;A1, . . . ,AN)

...∑
DN

∑
D′ ξ

D′(D;A1, . . . ,AN)

⎞
⎟⎟⎠ ,

=
⎛
⎜⎝
∑

D 1 ξ(D;A1, . . . ,AN)

...∑
DN ξ(D;A1, . . . ,AN)

⎞
⎟⎠ ,

which, along with Equation (A6), establishes the theorem.

A short note: The variable ξ(D;A1, . . . ,AN) counts the num-
ber of points which are marked by a set D′ ⊃ D, but after shifting,
only the points attributed to the processes with indices i ∈ D
remain in the corresponding subsets Ai. Thus, to determine the
number of points attributed to the ith process which lie in Ai

(Xi(Ai)), one simply sums the variables ξ for all D containing i,
as in Equation (A3). Thus, the intensity of ξ(D;A1, . . . ,AN),

λpD′ν(QD′)(M(D,D′;A1, . . . ,AN)),

is simply the expected number of such points. Keeping in mind
these natural interpretations of terms, Theorem 1 is easier to
digest, and the result is not surprising.

PROOF OF EQUATION (27)
In Equation (A2), we gave a more intuitive representation of the
measure ν(QD) than the one first defined in Bäuerle and Grübel
(2005), which we prove here. Suppose that Q is a measure on
B(Rd), and A ∈ B(Rd). Then we have

ν(Q)(A) =
∫

Q(A− t1)dt

=
�

1A− t1(y)Q(dy)dt

=
�

1{t ∈R:y+t1∈A}(t)dtQ(dy)

=
∫
	({t ∈ R : y+ t1 ∈ A})Q(dy)

= EY[	({t ∈ R : Y+ t ∈ A})|Y ∼ Q] ,

thus proving Equation (A2)

PROOF OF THEOREM 1.1
Theorem 1.1 Let X be a joint counting process of GTaS type with
total intensity λ, marking distribution (pD)D⊂D, and family of shift
distributions (QD)D⊂D. Let A1, . . . ,Ak be arbitrary sets in B(R),

and D̄ = {i1, . . . , ik} ⊂ D with |D̄| = k. The cross-cumulant of the
counting processes may be written

κ(Xi1(A1), . . . ,Xik(Ak)) = λ
∑

D′ ⊃ D̄

pD′
∫

P(t1+ YD̄ ∈ A1 × · · ·

× Ak|Y ∼ QD′ )dt
(A7)

where YD̄ represents the projection of the random vector Y onto the
dimensions indicated by the members of the set D̄. Furthermore,
assuming that the shift distributions possess densities (qD)D⊂ 2D , the
cross-cumulant density is given by

κX
i1···ik (τ1, . . . , τk− 1)

= λ
∑

D′ ⊃ D̄

pD′
∫

qD̄
D′(t, t + τ1, · · · , t + τk− 1)dt, (A8)

where qD̄
D′ indicates the kth order joint marginal density of qD′ in the

dimensions of D̄.

Proof. First, as noted in the text, we may rewrite the distributional
representation of Theorem 0 (Equation A3) as

⎛
⎜⎝

Xi1(Ai1)

...

Xik(Aik)

⎞
⎟⎠ =distr

⎛
⎜⎝
∑

i1 ∈D⊂ D̄ ζD(A1, . . . ,AN)

...∑
ik ∈D⊂ D̄ ζD(A1, . . . ,AN)

⎞
⎟⎠ (A9)

where

ζD(A1, . . . ,AN) =
∑

D′ ⊃D
(D̄\D)∩D′ = ∅

ξ(D′;A1, . . . ,AN). (A10)

Repeating the description from the main text, the processes ζD are
comprised of a sum of all of the processes ξ(D′) (defined above,
in Theorem 0) such that D′ contains all of the indices D, but no
other indices which are part of the subset D̄ under consideration.
These sums are non-overlapping, implying that the ζD are also
independent and Poisson.

Using the representation of Equation (A9), we first find that

κ(Xi1(A1), . . . ,Xik(Ak)) = κ

⎡
⎣ ∑

i1 ∈D1⊂D̄

ζD1 , . . . ,
∑

ik ∈Dk⊂D̄

ζDk

⎤
⎦

=
∑

i1 ∈D1⊂D̄

· · ·
∑

ik ∈Dk⊂D̄

κ[ζD1, . . . , ζDk].

where we suppressed the dependence of the variables ζD on the
subsets Ai. The first equality in the previous equation is simply
the representation defined in Equation (A10), and the second is
from the multilinear property of cumulants (property (C1) in
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the Methods). Note that the sums are over the sets D1, . . . ,Dk

satisfying the given conditions. Recall that, by construction, the
Poisson processes ζD (see Equation A10) are independent for dis-
tinct marking sets. Accordingly, the cumulant κ[ζD1 , . . . , ζDk ] is
zero unless D1 = . . . = Dk, by property (C2) of cumulants—that
is,

κ[ζD1(A1, . . . ,AN ), . . . , ζDk(A1, . . . ,AN)]

=
{

κk(ζD̄(A1, . . . ,AN)) Dj = D̄ for each j

0 otherwise
.

Hence,

κ(Xi1(A1), . . . ,Xik(Ak)) = κk(ζD̄(A1, . . . ,AN))

= E
[
ζD̄(A1, . . . ,AN)

]
, (A11)

where we have again used that all cumulants of a Poisson-
distributed random variable are equal to its mean.

For what follows, taking D0,D′ ⊂ D fixed with D0 ⊂ D′, the
sets M(D,D′;A1, . . . ,AN) with D0 ⊂ D ⊂ D′ are disjoint, and

∪D0⊂D⊂D′ M(D,D′;A1, . . . ,AN ) = B1 × · · · × BN

with Bi =
{

Ai, i ∈ D0

R, i /∈ D0

. (A12)

In particular, note the independence of the above union from D′.
Substituting Equation (A10) in to (A11), we have

κ(Xi1(A1), . . . ,Xik(Ak))

=
∑

D⊃ D̄

E[ξ(D;A1, . . . ,Ak]

= λ
∑

D⊃ D̄

∑
D′ ⊃D

pD′ν(QD′)(M(D,D′;A1, . . . ,AN))

= λ
∑

D′ ⊃ D̄

pD′
∑

D̄⊂D⊂D′
ν(QD′)(M(D,D′;A1, . . . ,AN))

= λ
∑

D′ ⊃ D̄

pD′ν(QD′)(∪D̄⊂D⊂D′M(D,D′;A1, . . . ,AN))

= λ
∑

D′ ⊃ D̄

pD′
∫

P(t + YD̄ ∈ A1 × · · · × Ak|Y ∼ QD′ )dt,

where the third equality above is a simple exchange of the order of
summation, and the fourth equality follows from the additivity of
the measure ν(QD′ ) over the disjoint sets M(D,D′;A1, . . . ,AN).
Finally, the fifth equality makes use of the independence of
the set union on the fourth line from the set D′ as indi-
cated by Equation (A12), the definition of the measure ν(QD′)
in Equation (A1) and the value of the set union given in
Equation (A12).

This completes the proof of Equation (A7), and (A8) fol-
lows from the definition of the cross-cumulant density in
Equation (24) of the Methods.

OTHER DETAILS
Parameters for figures in the text
Figure 1. For Figure 1, the GTaS process of size N = 6 con-
sisted of only first order and population-level events which were
assigned marking probabilities

pD =

⎧⎪⎨
⎪⎩

0.05 D = D

0.95
6 D = {i} for some i ∈ D

0 otherwise

.

The rate of the mother process was λ = 0.5 kHz, and the shift
times for population level events were generated as in section 2.2.2
with

Ti ∼ 
(2, 1)− 1, i = 1, . . . , 6,

where the Gamma distribution has density

f (t|k, θ) = 1


(k)θk
xk− 1e−

x
θ�(t).

Figures 3, 4. For Figures 3, 4, the GTaS process of size N = 6 con-
sisted of first and second order as well as population-level events.
These events had marking probabilities

pD =

⎧⎪⎨
⎪⎩

0.05 D = D

0.95
21 D = {i}, {i, j} for some i, j ∈ D

0 otherwise

.

The rate of the mother process was λ = 0.5 kHz, and the shift
times for population level events were generated as in section 2.2.2
with

Ti ∼ Exp(0.5), i = 1, . . . , 6.

The shift times of the second order events were drawn from an
independent Gaussian distribution with each coordinate having
standard deviation 5 ms.

Figure 5. For Figure 5, the network parameters were win =
0.4,wsyn = 6, τsyn = 0.1, τd = 1.75. The GTaS input had the
same size as the network (N = 10). As in the example of
Figures 3, 4, the GTaS input included first and second order as
well as population level events. Here, we set

pD =

⎧⎪⎨
⎪⎩

0.2 D = D

0.95
5 D = {i}, {i, j} for some i, j ∈ D

0 otherwise

.

The rate of the mother process was λ = 1.5 kHz, and the shift
times for population level events were generated as in section 2.2.2
with
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Ti ∼ 
(k, θ), i = 1, . . . , 6.

The shift parameters k, θ (representing shape and scale) were
determined by the given shift mean μshift and standard deviation
σshift as

μshift = kθ, σshift =
√

kθ2.

The shift times of the second order events were drawn from an
independent Gaussian distribution with each coordinate having
standard deviation 0.3 ms.
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Persistent activity observed during delayed-response tasks for spatial working memory
(Funahashi et al., 1989) has commonly been modeled by recurrent networks whose
dynamics is described as a bump attractor (Compte et al., 2000). We examine the effects
of interareal architecture on the dynamics of bump attractors in stochastic neural fields.
Lateral inhibitory synaptic structure in each area sustains stationary bumps in the absence
of noise. Introducing noise causes bumps in individual areas to wander as a Brownian
walk. However, coupling multiple areas together can help reduce the variability of the
bump’s position in each area. To examine this quantitatively, we approximate the position
of the bump in each area using a small noise expansion that also assumes weak amplitude
interareal projections. Our asymptotic results show the motion of the bumps in each
area can be approximated as a multivariate Ornstein–Uhlenbeck process. This shows
reciprocal coupling between areas can always reduce variability, if sufficiently strong, even
if one area contains much more noise than the other. However, when noise is correlated
between areas, the variability-reducing effect of interareal coupling is diminished. Our
results suggest that distributing spatial working memory representations across multiple,
reciprocally-coupled brain areas can lead to noise cancelation that ultimately improves
encoding.

Keywords: neural field, bump attractor, spatial working memory, correlations, noise cancelation

INTRODUCTION
Persistent spiking activity has been experimentally observed in
prefrontal cortex (Funahashi et al., 1989; Miller et al., 1996), pari-
etal cortex (Colby et al., 1996; Pesaran et al., 2002), superior
colliculus (Basso and Wurtz, 1997), caudate nucleus (Hikosaka
et al., 1989; Levy et al., 1997), and globus pallidus (Mushiake and
Strick, 1995; McNab and Klingberg, 2008) during the retention
interval of visuospatial working memory tasks. Often, the subject
must remember a cue’s location for several seconds (Funahashi
et al., 1989). Delay period neurons persistently fire in response
to a preferred cue orientation as described by a bell-shaped tun-
ing curve. Networks of these neurons, with recurrent excitation
between similarly tuned neurons and broadly tuned feedback
inhibition, can generate spatially localized “bumps.” The posi-
tion of these bumps encodes the remembered location of the cue
(Compte et al., 2000).

Dynamic variability can degrade the accuracy of working
memory over time though. Fluctuations in membrane voltage
and synaptic conductance can lead to spontaneous spike or failure
events at the edge of the bump, causing the bump to wan-
der diffusively (Compte et al., 2000; Laing and Chow, 2001).
Bump attractor networks are particularly prone to such diffu-
sive error because bump positions lie on a line attractor where
each location is neutrally stable (Amari, 1977). Interestingly, psy-
chophysical data demonstrates spatial working memory error
does scale linearly with delay time, suggesting the underlying
process that degrades memory is diffusive (White et al., 1994;

Ploner et al., 1998). Much theoretical work has examined net-
work properties that might limit memory degradation. Several
computational studies have explored networks built from bistable
neuronal units, which sustain persistent states that are less suscep-
tible to noise (Camperi and Wang, 1998; Koulakov et al., 2002;
Goldman et al., 2003). In addition, synaptic facilitation has been
shown to slow the drift of bump position due to internal variabil-
ity (Itskov et al., 2011). Synaptic plasticity has also be shown to
reduce diffusion of bumps in (Hansel and Mato, 2013). Finally,
spatially heterogeneous recurrent excitation can reduce wander-
ing of bumps quantizing the line attractor by stabilizing a finite set
of bump locations (Kilpatrick and Ermentrout, 2013; Kilpatrick
et al., 2013).

Complementary to these possibilities, we propose that inter-
areal coupling across multiple areas of cortex may reduce error
in working memory recall generated by dynamic fluctuations.
Multiple representations of spatial working memory have been
identified in different cortical areas (Colby et al., 1996). This
distributed representation makes working memory information
readily available for motor (Owen et al., 1996) and decision-
making (Curtis and Lee, 2010) tasks. In addition, this redundancy
may serve to reduce degrading effects of noise. It is known
that several areas involved in oculomotor delayed response tasks
are reciprocally coupled to one another (Constantinidis and
Wang, 2004; Curtis, 2006). We presume the representation of
a spatial working memory in a single area takes the form of a
bump in a recurrently coupled neural field. Projections between
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areas share information about bump position across the multi-
area network. Recently, (Folias and Ermentrout, 2011) showed
several novel activity patterns emerge when considering neural
fields with multiple areas. In addition, recent analyses of spa-
tiotemporal dynamics of perceptual rivalry have exploited dual
population neural field models, where activity in each area rep-
resents a single percept (Kilpatrick and Bressloff, 2010; Bressloff
and Webber, 2012b). In this study, we focus on activity pat-
terns where bumps in each area have positions that remain
close.

Our study mostly focuses on a dual area model of spatial
working memory, where each area provides a replicate repre-
sentation of the presented cue. We begin by demonstrating the
neutral stability of the bump position in each area, in the absence
of noise and interareal projections. Upon including noise and
interareal projections, we use a small-noise expansion to derive
an effective stochastic differential equation for the position of
the bump in each area. The effective system is a multivariate
Ornstein–Uhlenbeck process, which we can analyze using diago-
nalization. The variance of this stochastic process decreases as the
strength of connections between areas increases. Variance reduc-
tion relies on cancelations arising due to averaging noise between
both areas. Thus, when noise is strongly correlated between areas,
the effect of interareal coupling is negligible. Lastly, we show this
analysis extends to the case of N (more than two) areas and
that for sufficiently strong interareal connections, variance scales
as 1/N.

MATERIALS AND METHODS
DUAL AREA MODEL OF SPATIAL WORKING MEMORY
We consider a recurrently coupled model commonly used for spa-
tial working memory (Camperi and Wang, 1998; Ermentrout,
1998) and visual processing (Ben-Yishai et al., 1995). GABAergic
inhibition (Gupta et al., 2000) typically acts faster than excita-
tory NMDAR kinetics (Clements et al., 1992), and we assume
excitatory synapses contain a mixture of AMPA and NMDA com-
ponents. Thus, we make the assumption that inhibition is slaved
to excitation as in (Amari, 1977). We can then describe aver-
age activity u1(x, t) and u2(x, t) of neurons in either area by
the system (Ben-Yishai et al., 1995; Folias and Ermentrout, 2011;
Kilpatrick and Ermentrout, 2013)

τdu1(x, t) = [−u1 + w11 ∗ f (u1)+ ε1/2w12 ∗ f (u2)
]

dt

+ ε1/2dW1(x, t), (1a)

τdu2(x, t) = [−u2 + w22 ∗ f (u2)+ ε1/2w21 ∗ f (u1)
]

dt

+ ε1/2dW2(x, t), (1b)

where the effects of synaptic architecture are described by the
convolution

wjk ∗ f (uk) =
∫ π

−π

wjk(x − y)f (uk(y, t))dy, (2)

for j, k = 1, 2, so the case j = k describes recurrent synaptic con-
nections within a area and j �= k describes synaptic connections

between areas (interareal). Several fMRI and electrode recordings
have revealed correlations between activity in multiple cortical
areas during spatial working memory tasks (Constantinidis and
Wang, 2004; Curtis, 2006), such as parietal and prefrontal cor-
tex (Chafee and Goldman-Rakic, 1998). However, it seems the
strength of these correlations is often not on the order of the activ-
ity itself (di Pellegrino and Wise, 1993). For this reason, we pre-
sume the strength of interareal connections is weak 0 ≤ ε1/2 � 1.
Note, we could choose to make them a different magnitude than
the noise, but for analytical convenience, we choose interareal
connection and noise magnitude to be roughly the same. Analysis
could still be performed in other cases, but it would simply be
more complicated. By setting τ = 1, we can assume that time
evolves on units of the excitatory synaptic time constant, which
we presume to be roughly 10 ms (Häusser and Roth, 1997). The
function wjk(x − y) describes the strength (amplitude of wjk) and
net polarity (sign of wjk) of synaptic interactions from neurons
with stimulus preference y to those with preference x. Following
previous studies, we presume the modulation of the recurrent
synaptic strength is given by the cosine

wjj(x − y) = w(x − y) = cos(x − y), j = 1, 2, (3)

so neurons with similar orientation preference excite one another
and those with dissimilar orientation preference disynaptically
inhibit one another (Ben-Yishai et al., 1995; Ferster and Miller,
2000). Lateral inhibitory type network architectures are sup-
ported by anatomical studies of the delay period neurons in
prefrontal cortex (Goldman-Rakic, 1995). Our general analysis
will apply to any even symmetric function of the distance x − y,
but we typically compute things using (Equation 3) since it eases
calculations. Finally, synaptic connections from area k to j are
specified by the weight function wjk(x − y), and we typically take
this to be the function

wjk(x− y) = Ej +Mj cos(x − y), k �= j (4)

where Ej and Mj specify the strength of baseline excitation and
modulation projecting to the jth area.

Output firing rates are given by taking the gain function f (u)
of the synaptic input, which we usually proscribe to be (Wilson
and Cowan, 1973)

f (u) = 1

1+ e−γ(u− θ)
,

and often take the high gain limit γ→∞ for analytical conve-
nience, so (Amari, 1977)

f (u) = H(u− θ) =
{

0 : u < θ,

1 : u ≥ θ.
(5)

Effects of noise are described by the small amplitude (0 ≤
ε� 1) stochastic processes ε1/2Wj(x, t) that are white in time and
correlated in space so that 〈dWj(x, t)〉 = 0 and

〈dWj(x, t)dWj(y, s)〉 = Cj(x − y)δ(t − s)dtds,

〈dWj(x, t)dWk(y, s)〉 = Cc(x − y)δ(t − s)dtds,
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describing both local and shared noise in either area, j = 1, 2
with j �= k. For simplicity, we assume the local spatial correlations
have a cosine profile Cj(x) = cj cos(x). We also typically assume
the correlated noise component has cosine profile so Cc(x) =
cc cos(x). Therefore, in the limit cc → 0, there are no interareal
noise correlations, and in the limit cc → min(c1, c2), noise in
each area is maximally correlated. For instance, when c1 = c2 =
cc = 1, noise in each area is drawn from the same process.

MULTIPLE-AREA MODEL OF SPATIAL WORKING MEMORY
To incorporate the effects of many coupled, redundant areas
encoding a spatial working memory, we consider a model with
N areas and arbitrary synaptic architecture, given by

τduj(x, t) =
[
−uj + ε1/2

N∑
k= 1

wjk ∗ f (uk)

]
dt

+ ε1/2dWj(x, t) (6)

where uj represents neural activity in the jth area where j =
1, . . . ,N. As before, we set τ = 1, so each time unit corresponds
to the roughly 10 ms timescale of excitatory synaptic conduc-
tance. The weight function wjk(x− y) represents the connection
from neurons in area k with cue preference y to neurons in area
j with cue preference x as described by (Equation 2). For com-
parison with numerical simulations, we take weight functions to
be the cosines (Equation 3) and (Equation 4) and the firing rate
function to be Heaviside (Equation 5). As in the dual area model,
noises Wj(x, t) are white in time and correlated in space so that
〈dWj(x, t)〉 = 0 and

〈dWj(x, t)dWk(y, s)〉 = Cjk(x− y)δ(t − s)dtds,

with j, k = 1, . . . ,N, where local noise correlations are described
when j = k and noise correlations between areas are described
when j �= k. For comparison with numerical simulations, we
consider Cjj(x) = cos(x) and Cjk(x) = cc cos(x) for all j �= k.

NUMERICAL SIMULATION OF STOCHASTIC DIFFERENTIAL EQUATIONS
The spatially extended model (Equation 1) was simulated
using an Euler–Maruyama method with a timestep 10−4, using
Riemann integration on the convolution term with 2000 spatial
grid points. To compute and compare the variances 〈�1(t)2〉 for
the dual and multiple area model, we simulated the system 5000
times. The position of the bump�j at each timestep, in each sim-
ulation, was determined by the position x in each area j at which
the maximal value of uj(x, t) was attained. The variance was then
computed at each timepoint and compared to our asymptotic
calculations.

RESULTS
We will now study how interareal architecture affect the dynam-
ics of bumps in multiple area stochastic neural fields. To start,
we demonstrate that in the absence of reciprocal connectivity
between areas bump attractors exist that are neutrally stable to
perturbations that change their position, which has long been
known (Amari, 1977; Camperi and Wang, 1998; Ermentrout,

1998). Introducing weak interareal connectivity can decrease the
variability in bump position because noise that moves bumps in
the opposite direction is canceled due to an attractive force intro-
duced by connectivity. Perturbations that push bumps in the same
direction are still integrated, so bumps wander due to dynamic
fluctuations, but their effective variance is smaller than it would
be without interareal synaptic connections. In the presence of
noise correlations between areas, effects of noise cancelation are
weaker since stochastic forcing in each area is increasingly simi-
lar. Our asymptotic analysis is able to explain all of this with its
resulting multivariate Ornstein–Uhlenbeck process.

BUMPS IN THE NOISE-FREE SYSTEM
To begin, we seek stationary solutions to Equation (1) in the
absence interareal connections and noise (ε→ 0). Similar anal-
yses have been carried out for bumps in single area populations
(Ermentrout, 1998; Hansel and Sompolinsky, 1998). For this
study, we assume recurrent connections are identical in all areas
(wjj = w). Relaxing this assumption slightly does not dramati-
cally alter our results. Note first stationary solutions take the form
(u1(x, t), u2(x, t)) = (U1(x),U2(x)). In the absence of any inter-
areal connections, we would not necessarily expect the peaks of
these bumps to be at the same location. However, translation
invariance of the system (Equation 1) allows us to set the cen-
ter of both bumps to be x = 0 to ease calculations. The stationary
bump solutions then satisfy the system

U1 = w ∗ f (U1), U2 = w ∗ f (U2), (7)

so the shape of each bump is only determined by the
local connections w. For w given by Equation (3),
since U1(x) and U2(x) are assumed to be peaked at
x = 0, then by also assuming even symmetric solutions,
we find

U1(x) =
∫ π

−π

cos yf (U1(y))dy cos x,

U2(x) =
∫ π

−π

cos yf (U2(y))dy cos x, (8)

where we use cos(x − y) = cos x cos y + sin x sin y. We can more
easily compute the precise shape of these bumps in case of
a Heaviside firing rate function (Equation 5). There is then
an identical active region of each bump such that U1(x) >
θ and U2(x) > θ when x ∈ (−a, a), so the Equation (8)
become U1(x) = U2(x) = 2 sin a cos x. Applying self-consistency,
U1(±a) = U2(±a) = θ, we can generate an implicit equation for
the half-widths of the bumps a given by 2 sin a cos a = sin(2a) =
θ. Solving this explicitly for a, we find two solutions on a ∈
[0,π]: au = 1

2 sin−1 θ and as = π
2 − 1

2 sin−1 θ. Only the bump
associated with as is stable.

The bumps (Equation 7) are neutrally stable to perturbations
in both directions, which can lead to encoding error once the
effects of dynamic fluctuations are considered (Kilpatrick et al.,
2013). Since the two areas are uncoupled, examining bumps’ sta-
bility can be reduced to studying each bump’s stability individu-
ally (see Kilpatrick and Ermentrout, 2013 for details). Translating

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 82 | 225

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kilpatrick Interareal coupling reduces encoding variability

a bump by a scaling of the spatial derivative U ′(x), we find
uj(x, t) = Uj(x)+ ε1/2U ′j (x)e

λt is associated with a zero eigen-
value (λ = 0), corresponding to neutral stability. To see this, we
plug it into the corresponding bump equation of Equation (1) in
the absence of noise and interareal connections and examine the
linearization

λU ′j (x) = −U ′j (x)+
∫ π

−π

w(x − y)f ′(Uj(y))U
′
j (y)dy. (9)

Note, in the limit of infinite gain γ→∞, a sigmoid f becomes
the Heaviside (Equation 5), and

f ′(U(x)) = dH(U(x))

dU
= δ(x − a)

|U ′(a)| +
δ(x+ a)

|U ′(a)| ,

in the sense of the distributions. Equation (9) still hold in
this case. Differentiating (Equation 7), and integrating by parts,
we find

− U ′1 + w ∗ [f ′(U1)U
′
1] = 0,

−U ′2 + w ∗ [f ′(U2)U
′
2] = 0, (10)

where the boundary terms vanish due to periodicity of the
domain [−π,π]. Thus, the right hand side of Equation (9) van-
ishes, and λ = 0 is the only eigenvalue corresponding to translat-
ing perturbations. Thus, either bump (in area 1 or 2) is neutrally
stable to perturbations that shifts its position in either direction
(rightwards or leftwards), since the bump in each area experiences
no force from the other bump.

This changes when we consider the effect of interareal connec-
tivity. Once the two areas of Equation (1) are reciprocally coupled,
bumps are stable to perturbations that translate them in opposite
directions of one another (see Figure 1). Interareal connections
act as a restoring force between the two positions of each bump.
We will demonstrate this in the subsequent section by deriving
a linear stochastic system for the position of either bump in the
presence of small noise and weak interareal connectivity. The
restorative nature of interareal connectivity is revealed by the neg-
ative eigenvalue associated with the interaction matrix (Equation
15) of our stochastic system, as shown in Equation (18).

NOISE-INDUCED WANDERING OF BUMPS
Now we consider the effects of small noise on the position of
bumps in the presence of weak interareal connections. We start
by presuming noise generates two distinct effects in the bumps
(see Figure 2). First, noise causes both bumps to wander away
from their initial positions, while still being pulled back into place
by the bump in the other area. Bump position in areas 1 and 2
will be described by the time-varying stochastic variables �1(t)
and�2(t). Second, noise causes fluctuations in the shape of both
bumps, described by a correction �j. To account for this, we
consider the ansatz

u1 = U1(x−�1(t))+ ε1/2�1(x−�1(t), t)+ · · ·
u2 = U2(x−�2(t))+ ε1/2�2(x−�2(t), t)+ · · · (11)

FIGURE 1 | Effect of interareal coupling on the stability of bumps to

translating perturbations. (A) In the absence of interareal coupling,
bumps (solid) are neutrally stable to perturbations (dashed) that translate
them in opposite directions. (B) In the presence of interareal coupling,
bumps are linearly stable, as revealed by the negative eigenvalue in
Equation (18), to perturbations that translate them in opposite directions.

Armero et al. (1998) originally developed this approach to ana-
lyze of front propagation in stochastic PDE models. In stochastic
neural fields, it has been modified to analyze wave propagation
(Bressloff and Webber, 2012a) and bump wandering (Kilpatrick
and Ermentrout, 2013). Plugging the ansatz (Equation 11) into
the system (Equation 1) and expanding in powers of ε1/2, we find
that atO(1), we have the bump solution (Equation 7). Proceeding
to O(ε1/2), we find

d�− L� =
(

ε−1/2�̇1U ′1 + dW1

ε−1/2�̇2U ′2 + dW2

)
+K(x, t), (12)

where K(x, t) is the 2× 1 vector function

K(x, t) =
(

w12 ∗
[
f (U2)+ f ′(U2)U ′2 · (�2 −�1)

]
dt

w21 ∗
[
f (U1)+ f ′(U1)U ′1 · (�1 −�2)

]
dt

)
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FIGURE 2 | Diffusion of bumps in the dual area stochastic neural field

(Equation 1). (A) Without interareal connections (w12 = w21 ≡ 0), each
bump executes Brownian motion about the domain, due to stochastic forces.
(B) In the presence of interareal connections

√
εw12(x) = √εw21(x) =

0.01(cos(x)+ 1), the position of bump 1 (magenta) is attracted to the

position of bump 2 (cyan) and vice versa. Due to the reversion of each bump
to the position of the other, both bumps effectively wander the domain less.
Local connectivity is described by the cosine (Equation 3); the firing rate
function is Equation (5). Other parameters are threshold θ = 0.5 and noise
amplitude ε = 0.025.

� = (�1(x, t),�2(x, t))T ; and L is the linear operator

Lu =
(−u(x)+ w(x) ∗ [f ′(U1(x))u(x)]
−v(x)+ w(x) ∗ [f ′(U2(x))v(x)]

)

for any vector u = (u(x) v(x))T of integrable functions. Note that
the nullspace of L includes the vectors (U ′1, 0)T and (0,U ′2)T ,
due to Equation (10). The last terms in the right hand side
vector of Equation (12) arise due to interareal connections. We
have linearized them under the assumption |�1 −�2| remains
small, so

f (Uj(x +�k −�j)) ≈ f (Uj(x))

+ f ′(Uj(x))U
′
j (x) · (�k −�j),

where j = 1, 2 and k �= j. To make sure that a solution to
Equation (12) exists, we require the right hand side is orthogonal

to all elements of the null space of the adjointL∗, which is defined

∫ π

−π

pTLudx =
∫ π

−π

uTL∗pdx,

for any integrable vector p = (p(x) q(x)
)T

. It then follows

L∗p =
(−p(x)+ f ′(U1(x))[w(x) ∗ p(x)]
−q(x)+ f ′(U2(x))[w(x) ∗ q(x)]

)
. (13)

We can show that the nullspace of L∗ contains the vector
f1 = (f ′(U1)U ′1, 0)T by plugging it into Equation (13) to yield

L∗f1 =
(−f ′(U1)U ′1 + f ′(U1)[w ∗ [f ′(U1)U ′1]

0

)
= 0
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where 0 = (0, 0)T and we use Equation (10). We can also show
the nullspace ofL∗ contains f2 = (0, f ′(U2)U ′2)T in the same way.
Thus, we can ensure Equation (12) has a solution by taking the
inner product of both sides of Equation (12) with the two null
vectors to yield

〈f ′(U1)U
′
1, ε
−1/2�̇1U ′1 + dW1

+ w12 ∗
[
f (U2)+ f ′(U2)U

′
2 · (�2 −�1)

]
dt〉 = 0

〈f ′(U2)U
′
2, ε
−1/2�̇2U ′2 + dW2

+ w21 ∗
[
f (U1)+ f ′(U1)U

′
1 · (�1 −�2)

]
dt〉 = 0,

where we define the inner product 〈u, v〉 = ∫ π

−π
u(x)v(x)dx.

Therefore, the stochastic vector �(t) = (�1(t),�2(t))T obeys
the multivariate Ornstein–Uhlenbeck process

d�(t) = K�(t)dt + dW(t) (14)

where effects of interareal connections are described by the matrix

K =
(−κ1 κ1

κ2 −κ2

)
, (15)

with

κ1 = 〈f
′(U1)U ′1, ε1/2w12 ∗

[
f ′(U2)U ′2

]〉
〈f ′(U1)U ′1,U ′1〉

,

κ2 = 〈f
′(U2)U ′2, ε1/2w21 ∗

[
f ′(U1)U ′1

]〉
〈f ′(U2)U ′2,U ′2〉

, (16)

and (w12 ∗ f (U2)) · U ′1 and (w21 ∗ f (U1)) ·U ′2 vanish upon
integration since they are odd. Noise is described by the vector
dW(t) = (dW1, dW2)

T with

dW1(t) = −ε1/2 〈f ′(U1)U1, dW1〉
〈f ′(U1)U ′1,U ′1〉

,

dW2(t) = −ε1/2 〈f ′(U2)U2, dW2〉
〈f ′(U2)U ′2,U ′2〉

.

The white noise term W has zero mean 〈W(t)〉 = 0 and variance
described by pure diffusion so 〈W(t)WT(t)〉 = Dt with

D =
(

D1 Dc

Dc D2

)
(17)

where the associated diffusion coefficients of the variance are

D1 = ε

∫ π

−π

∫ π

−π
F1(x)F1(y)C1(x − y)dxdy[∫ π

−π
F1(x)U ′1(x)dx

] ,

D2 = ε

∫ π

−π

∫ π

−π
F2(x)F2(y)C2(x − y)dxdy[∫ π

−π
F2(x)U ′2(x)dx

] .

where Fj(x) = f ′(Uj(x))U ′j (x) and covariance is described by the
coefficient

Dc = ε

∫ π

−π

∫ π

−π
F1(x)f ′(U2(y))F2(y)Cc(x − y)dxdy[∫ π

−π
F1(x)U ′1(x)dx

] [∫ π

−π
F2(x)U ′2(x)dx

] .

In the next section, we analyze this stochastic system
(Equation 14), showing how coupling between areas can
reduce the variability of the bump positions �1(t) and�2(t).

EFFECT OF COUPLING ON BUMP POSITION VARIANCE
To analyze the Ornstein–Uhlenbeck process (Equation 14), we
start by diagonalizing the matrix K = V�V−1 using the eigen-
value decomposition

� =
(

0 0
0 −κ1 − κ2

)
,

V = 1

κ1 + κ2

(
1 κ1

1 −κ2

)
, (18)

V−1 =
(

κ2 κ1

1 −1

)
,

such that � is the diagonal matrix of eigenvalues; columns of
V are right eigenvectors; and rows of V−1 are left eigenvectors.
Eigenvalues λ1, λ2 and eigenvectors v1, v2 inform us of the effect
of interareal coupling on linear stability. The eigenvalue λ1 = 0
corresponds to the neutral stability of the positions (�1,�2)

T

to translations in the same direction v1 = (1, 1)T . The negative
eigenvalue λ2 = −(κ1 + κ2) corresponds to the linear stability
introduced by interareal connections. The positions (�1,�2)

T

revert to one another when perturbations translate them in
opposite directions v2 = (κ1,−κ2)

T .
Diagonalizing K = V�V−1 using Equation (18), we can com-

pute the mean and variance of the vector �(t) given by Equation
(14). First, note that the mean 〈�(t)〉 = eKt�(0) (Gardiner,
2003), which we can compute

〈�〉 =
(
(κ2 + κ1eλ2t)�1(0)+ (κ1 − κ1eλ2t)�2(0)
(κ2 − κ2eλ2t)�1(0)+ (κ1 + κ2eλ2t)�2(0)

)

using the diagonalization eKt = Ve�tV−1. Since λ2 = −(κ1 +
κ2) < 0,

lim
t→∞〈�(t)〉 = [κ2�1(0)+ κ1�2(0)]

(
1
1

)
.

Thus, the means of �1(t) and �2(t) always relax to the same
position in long time, due to the linear stability introduced by
connections between areas. Under the assumption they both
begin at �1(0) = �2(0) = 0, the covariance matrix is given
(Gardiner, 2003)

〈�(t)�T(t)〉 =
∫ t

0
eK(t−s)DeKT (t−s)ds, (19)
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where D is the covariance coefficient matrix of the white noise
vector W(t) given by Equation (17). To compute Equation (19),
we additionally need the diagonalization KT = (V−1)T�VT ,

so eKT t = (V−1)Te�tVT . After multiplying and integrating
(Equation 19), we find the elements of the covariance matrix

〈�(t)�T(t)〉 =
( 〈�1(t)2〉 〈�1(t)�2(t)〉
〈�1(t)�2(t)〉 〈�2(t)2〉

)

are

〈�1(t)
2〉 = D+t + 2κ1r1(t)+ κ1

κ2
r2(t) (20)

〈�2(t)
2〉 = D+t − 2κ2r1(t)+ κ2

κ1
r2(t) (21)

〈�1(t)�2(t)〉 = D+t + (κ1 − κ2)r1(t)− r2(t)

where the effective diffusion coefficients are

D+ = κ2
2D1 + 2κ1κ2Dc + κ2

1D2

(κ1 + κ2)2
, (22)

Dr = κ2D1 − κ1D2 + (κ1 − κ2)Dc

(κ1 + κ2)2
, (23)

D− = D1 − 2Dc + D2

(κ1 + κ2)2
, (24)

so that D+ and D− are variances of noises occurring along
the eigendirections v1 and v2. The functions r1(t), r2(t) are
exponentially saturating

r1(t) = Dr

κ1 + κ2

[
1− e−(κ1 + κ2)t

]
,

r2(t) = κ1κ2D−
2(κ1 + κ2)

[
1− e−2(κ1 + κ2)t

]
.

The main quantities of interest to us are the variances (Equation
20) and (Equation 21) with which we can make a few observations
concerning the effect of interareal connections on the variance of
bump positions.

First, note the long term variance of either bump’s position
�1(t) and �2(t) will be the same, described by the averaged
diffusion coefficient D+, since

lim
t→∞〈�1(t)

2〉 = lim
t→∞〈�2(t)

2〉 = D+t. (25)

As the effective coupling strengths κj are increased, we can expect
the variances 〈�j(t)2〉 approach these limits at faster rates since
other portions of the variance decay at a rate proportional to
|λ2| = κ1 + κ2.

Next, we study the case, across all times t, where connec-
tions between areas are the same (w12 ≡ w21 = wr) and noise

within areas is identical (D1 ≡ D2 = Dl), the mean reversion
rates will be the same (κ1 = κ2 = κ) and terms in Equation
(23) cancel so Dr = 0. Thus, the variances will be identical
(〈�1(t)2〉 = 〈�2(t)2〉 = 〈�(t)2〉) and

〈�(t)2〉 = Dl + Dc

2
t + Dl − Dc

8κ

[
1− e−4κt] .

This demonstrates the way in which correlated noise (Dc)
contributes to the variance. When noise within each area is
shared (Dc → Dl), there is no benefit to interareal coupling and
〈�(t)2〉 = Dlt (see Kilpatrick and Ermentrout, 2013). However,
when any noise is not shared between areas (Dc < Dl), variance
can be reduced by increasing coupling strength κ between areas.
The variance 〈�(t)2〉 is monotone decreasing in κ since

∂

∂κ
〈�(t)2〉 = Dl − Dc

8

(1+ 4κt)e−4κt − 1

κ2
≤ 0.

Inequality holds because (1+ 4κt) ≤ e4κt is ensured by the Taylor
series expansion of e4κt when κt > 0.

Thus, variance is minimized in the limit

lim
κ→∞〈�(t)

2〉 = Dl + Dc

2
t. (26)

Therefore, strengthening interareal connections in both directions
reduces the variance in bump position. On the other hand, in the
limit of no interareal connections, we find limκ→0〈�(t)2〉 = Dlt,
and the variance in a bump’s position is determined entirely by
local sources of noise.

Returning to asymmetric connectivity (κ1 �= κ2), we consider
the case of feedforward connectivity from area 1 to 2 (w12 ≡ 0),
κ1 = 0, so D+ = D1 and the formulas for the variances reduce to

〈�1(t)
2〉 = D1t,

〈�2(t)
2〉 = D1t + 2(D1 − Dc)

κ2

[
1− e−κ2t]

+ D1 − 2Dc + D2

2κ2

[
1− e−2κ2t] ,

so the pure diffusive term of both variances is wholly determined
by the local noise of area 1. Then, only the position of the bump
in area 2 possesses additional mean-reverting fluctuations in its
position, which arise from local sources of noise that force it away
from the position of the bump in area 1. In this situation, the
variance of the bump in area 2’s position is minimized when

lim
κ2→∞

〈�1(t)
2〉 = lim

κ2→∞
〈�2(t)

2〉 = D1t.

Comparing this with Equation (26) we see that, since Dc ≤ D1,
the variances 〈�j(t)2〉 will always be higher in this case than in
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the case of very strong reciprocal coupling between both areas.
Averaging information and noise between both areas decreases
positional variance as opposed to one area simply receiving noise
and information from another. Similar results have been recently
identified in the context of studying synchrony of reciprocally
coupled noisy oscillators (Ly and Ermentrout, 2010).

One important caveat is that if area 1 has more noise than area
2, the weighting of reciprocal connectivity, κ1 and κ2, should be
balanced to minimize the variance. If the average diffusion coef-
ficient D+ is weighted too heavily with the area having the larger
variance, the area with less intrinsic noise can end up noisier than
it would be without reciprocal connectivity. To see this in the
extreme case feedforward coupling, note that if D2 < D1, then
D2t < D1t < 〈�2(t)2〉. Thus, the variance of �2(t) increases as
opposed to the uncoupled case where 〈�2(t)2〉 = D2t.

We now derive the optimal weighting of κ1 and κ2 to minimize
the long term variance (Equation 25) for general asymmetric con-
nectivity, in the absence of correlated noise Dc = 0. To do so, we
fix κ2 and find the κ1 that minimizes D+, which happens to be

κ1 = κ2
D1

D2
.

Thus, for identical noise D1 = D2, setting κ1 = κ2 minimizes D+.
For much stronger noise in area 2 (D2 � D1), κ1 should be made
relatively small. In the case of noise correlations between areas
(Dc > 0), the optimal value of κ1 that minimizes (Equation 25) is

κ1 = κ2
D1 − Dc

D2 − Dc
.

CALCULATING THE STOCHASTIC MOTION OF BUMPS
We now compute the effective variances (Equation 20) and
(Equation 21), considering the specific case of Heaviside firing
rate functions (Equation 5), cosine synaptic weights (Equation 3)
and (Equation 4). Doing so, we can compare our asymptotic
results to those computed from numerical simulations. We com-
pute the mean reversion terms κ1 and κ2 by noting the spatial
derivative of each bump will be U ′1(x) = U ′2(x) = −2 sin a sin x
and the null vector components are

f ′(Uj(x))U
′
j (x) = δ(x+ a)− δ(x − a).

for j = 1, 2. Plugging these formulae into Equation (16), we find
κ1 = ε1/2M1 and κ2 = ε1/2M2.

We first consider the case of uncorrelated noise between areas,
so cc ≡ 0, meaning Dc = 0. We can compute the diffusion coeffi-
cients associated with the local noise in each area assuming cosine
spatial correlations

D1 = c1ε

2+ 2
√

1− θ2
, D2 = c2ε

2+ 2
√

1− θ2
. (27)

We can then compute Equations (20) and (21) directly, for
the case of no noise correlations between areas, by plugging in
Equation (27).

For symmetric connections between areas, κ = ε1/2M1 =
ε1/2M2, as well as identical noise, c1 = c2 = 1, we have
〈�1(t)2〉 = 〈�2(t)2〉 = 〈�(t)2〉 and

FIGURE 3 | Variance in the position of bumps as computed numerically

(red shades) and from theory (blue shades) using Equation (28).

Coupling between areas is symmetric
√

εw12(x) = √εw21(x) =
κ(cos(x)+ 1), so 〈�1(t)2〉 = 〈�2(t)2〉, and there is no shared noise (cc = 0).
(A) The increase in variance is slower for stronger amplitudes of interareal
coupling κ. Notice variance climbs sublinearly for κ > 0, due to the
mean-reversion caused by coupling. (B) Variance drops considerably more
over low values of κ that over high values. Other constituent functions and
parameters are the same as in Figure 2.

〈�(t)2〉= εt

4(1+√1− θ2)
+ ε

16(1+√1− θ2)κ

[
1− e−4κt].

(28)

We compare the formula (28) to results we obtain from numeri-
cal simulations in Figure 3, finding our asymptotic formula (28)
matches quite well. In addition, we compare our results for gen-
eral (possibly asymmetric) reciprocal connectivity to results from
numerical simulations in Figure 4. We also show in Figure 5, as
predicted, when κ2 is held fixed, there is a finite optimal value of
κ1 that minimizes variance 〈�1(t)2〉. Therefore, reciprocal con-
nectivity in multi-area networks should be balanced, in order to
minimize positional variance of the stored bump.

Next, we consider the case of correlated noise between areas,
so cc > 0, meaning Dc > 0. In this case, the covariance terms in
D+ and D− are non-zero. We can thus compute the diffusion
coefficient associated with correlated noise

Dc = ccε

2+ 2
√

1− θ2
.
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FIGURE 4 | Variance in the position of bumps as it depends on

asymmetric reciprocal connectivity (κ1 �= κ2) when noise in each area

is independent and identical (c1 = c2 = 1). Fixing κ2 = 0.02 and
varying κ1, we find (A) the variance 〈�1(t)2 of bump 1 decreases as
coupling from area 2 to 1 (κ1) increases; (B) variance 〈�2(t)2〉 of bump 2
remain relatively unchanged. Other constituent functions and parameters
are the same as in Figure 2.

In the case of symmetric connections between areas,
κ = ε1/2M1 = ε1/2M2, and identical internal noise, c1 = c2 = 1,
we have 〈�1(t)2〉 = 〈�2(t)2〉 = 〈�(t)2〉 and

〈�(t)2〉 = (1+ cc)ε

4
(

1+√1− θ2
) t + (1− cc)ε

16
(

1+√1− θ2
)

κ

[
1− e−4κt] ,

(29)

which reflects the fact that interareal connections do not reduce
variability as much when there are strong noise correlations cc

between areas. We demonstrate the accuracy of the theoretical cal-
culation (Equation 29) as compared to numerical simulations in
Figure 6. Numerical simulations also reveal the fact that stronger
noise correlations between areas diminish the effectiveness of
interareal connections at reducing bump position variance.

FIGURE 5 | Bump position variance depends non-monotonically on

asymmetric connectivity strength. (A) For κ2 = 0.01 and high enough
values of coupling (κ1 = 0.05), variance 〈�1(t)2〉 scales more quickly than
for symmetric coupling (κ1 = 0.01). Layer 1 is being sourced by the noisier
area 2. (B) Non-monotonic dependence of variance 〈�1(t)2〉 on projection
strength from area 2 to area 1 κ1 is shown for fixed time T = 50 and
κ2 = 0.01 fixed. Amplitude of noise in area 2 is twice that of area 1 (c1 = 1
and c2 = 2). Other constituent functions and parameters are the same as in
Figure 2.

REDUCTION OF BUMP WANDERING IN MULTIPLE AREAS
We now examine the effect of interareal connections in net-
works with more than two areas using the system (Equation
6). As with the dual area network without noise or inter-
areal connectivity, stationary bump solutions take the form
(u1, . . . , uN) = (U1(x), . . . ,UN(x)), and translation invariance
let us to set all bump peaks to be located at x = 0 so

Uj = w ∗ f (Uj), j = 1, . . . ,N. (30)

As before, we presume wjj = w, and relaxing this assumption
does not dramatically alter our results. Linear stability analysis
of bumps proceeds along similar lines to the dual area network,
so we omit those calculations and summarize the results. In the
absence of interareal connections, each bump is neutrally stable to
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perturbation in either direction. In the presence of interareal con-
nections, all bumps are only neutrally stable to translations that
move them all in the same direction. Therefore, networks with
more areas provide more perturbation cancelations.

To study how noise and interareal connections affect the
trajectory of bump positions, we again note noise causes all
bumps to wander away from their initial position, while being
pulled back into place by projections from other areas (see
Figure 7). The position of the bump in area j is described by the
stochastic variable�j. Noise also causes fluctuations in the shape

FIGURE 6 | Variance in the position of bumps as noise correlation

between areas is increased. Numerically computed variance (red shades)
match theoretical curves from Equation (29), blue shades, very well.
Reciprocal connectivity reduces variability the most when there is no
correlated noise (cc = 0) between areas. As the shared noise between
areas increased is amplitude (cc = 0.5,1), the advantage of reciprocal
connectivity is diminished. When cc = 1 changing κ does not affect the
variance 〈�(t)2〉 (see formula (29) in the limit cc → 1). Other constituent
functions and parameters are the same as in Figure 2.

of both bumps, which is described by the correction term �j.
Therefore, we presume the resulting state of the system satisfies
the ansatz

uj = Uj(x−�j(t))+ ε1/2�j(x −�j(t), t)+ · · · ,

where j = 1, . . . ,N. Plugging this ansatz into Equation (6) and
expanding in powers of ε1/2, we find that at O(1), we simply have
the system of Equation (30) for the bump solutions. Proceeding
to O(ε1/2), we find

d�− L� = K(x, t)+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ε−1/2�̇1U ′1 + dW1
...

ε−1/2�̇jU ′j + dWj

...

ε−1/2�̇N U ′N + dWN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(31)

where K(x, t) is an N × 1 vector whose jth entry is

Kj =
∑
k �= j

wjk ∗
[
f (Uk)+ f ′(Uk)U

′
k · (�k −�j)

]
dt;

� = (�1(x, t), · · · , �N(x, t))T ; and L is the linear operator

L� =
⎛
⎜⎝
−�1(x)+ w ∗ [f ′(U1(x))�1(x)

...

−�N(x)+ w ∗ [f ′(UN)�N(x)

⎞
⎟⎠

for any integrable vector � = (�1(x), . . . ,�N(x))T . The
nullspace of L is spanned by the vectors (U ′1, 0, . . . , 0)T ;
(0,U ′2, 0, . . . , 0)T ; . . . ; and (0, . . . , 0,U ′N)T , which can be seen

FIGURE 7 | Stochastic evolution of bump position in multi-area

networks. (A) With weak coupling (
√

εwjk (x) = 0.01(cos(x)+ 1) for j �= k)
between N = 3 areas, the position of bumps 1 (magenta), 2 (cyan), and 3
(green) reverts to one another. We show only the evolution of activity u(x, t)

in area 1. (B) For N = 6 areas and the same interareal coupling, the reduction
in bump wandering is even more considerable. The trajectories of bumps in
all areas (colored lines) stay close together. All other parameters are as in
Figure 2.
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by differentiating (Equation 30). The last terms on the right hand
side of Equation (31) arise due to interareal connections. We have
linearized them under the assumption that |�k −�j| remains
small for all j, k. To ensure a solution to Equation (31), we require
the right hand side is orthogonal to all elements of the null space
of the adjoint operator L∗. The adjoint is defined with respect to
the inner product

∫ π

−π

ϒTL�dx =
∫ π

−π

�TL∗ϒdx

where ϒ = (ϒ1(x), . . . , ϒN(x))T is integrable. It then follows

L∗ϒ =
⎛
⎜⎝
−ϒ1(x)+ f ′(U1(x))[w ∗ ϒ1]

...

−ϒN(x)+ f ′(UN)[w ∗ ϒN ]

⎞
⎟⎠ .

The nullspace of L∗ contains the vectors (f ′(U1)U ′1, 0, . . . , 0)T ;
(0, f ′(U2)U ′2, 0, . . . 0)T ; . . . ; and (0, . . . , 0, f ′(UN)U ′N), which
can be shown by applying L∗ to them and using the formula
generated by differentiating (Equation 30). Thus, to be sure
(Equation 31) has a solution, we take the inner product of both
sides of the equation with all N null vectors and isolate d�j terms
to yield the multivariate Ornstein–Uhlenbeck process

d�(t) = K�(t)dt + dW(t), (32)

where effects of interareal connections are described by the
matrix K ∈ R

N×N where the diagonal and off-diagonal entries
are given

Kjj = −
∑
k�=j

κjk, Kjk = κjk

for j = 1, . . . ,N and k �= j, where

κjk =
〈f ′(Uj)U ′j , ε

1/2wjk ∗ [f ′(Uk)U ′k]〉
〈f ′(Uj)U

′
j ,U ′j 〉

,

and we have used the fact that wjk ∗ f (Uk) · U ′j is an odd function
for all j, k, so they vanish on integration. Stochastic forces are
described by the vector

dW(t) =
⎛
⎜⎝

dW1(t)
...

dWN(t)

⎞
⎟⎠ ,

dWj(t) = −ε1/2
〈f ′(Uj)U ′j , dWj〉
〈f ′(Uj)U ′j ,U ′j 〉

.

The white noise vector W(t) has zero mean 〈W(t)〉 = 0, and
covariance matrix 〈W(t)WT(t)〉 = Dt where associated coeffi-
cients of the matrix D are

Djj = ε

∫ π
−π

∫ π
−π

Fj(x)Fj(y)Cj(x − y)dxdy[∫ π

−π
Fj(x)U ′j (x)dx

]2
.

where Fj(x) = f ′(Uj(x))U ′j (x), which describe the variance
within an area and

Djk = ε

∫ π

−π

∫ π

−π
Fj(x)Fk(y)Cjk(x − y)dxdy[∫ π

−π
Fj(x)U ′j (x)dx

] [∫ π

−π
Fk(x)U ′k(x)dx

] ,
which describes covariance between areas. Since correlations are
symmetric Cjk(x) = Ckj(x) for all j, k, then Djk = Dkj for all j, k.

A detailed analysis of the linear stochastic system (Equation
32) is difficult without some knowledge of the entries κjk.
However, we can make a few general statements. We note that
all eigenvalues of K must have negative real part or be zero,
due to the Gerschgorin circle theorem (Feingold and Varga,
1962), which states that all eigenvalues a matrix K must lie in
one of the disks with center Kjj and radius

∑
k�=j |Kjk|. Since

Kjj = −∑k�=j κjk and Kjk = κjk, then

Kjj +
∑
k �= j

Kjk = −
∑
k �= j

κjk +
∑
k �= j

|κjk| = 0 (33)

is the maximal possible eigenvalue, since κjk ≥ 0 for all j, k.
Therefore, we expect N eigenpairs λj, vk associated with K, where
λN ≤ λN−1 ≤ · · · ≤ λ2 ≤ λ1 = 0. This means we can perform
the diagonalization K = V�V−1, where � is the diagonal matrix
of eigenvalues; columns of V are right eigenvectors; and rows
of V−1 are left eigenvectors. Therefore, we can decompose the
stochastic solution to Equation (32), when �(0) = 0 as

�(t) =
∫ t

0
eK(t−s)dW(s) =

∫ t

0
Ve�(t−s)V−1dW(s),

Thus, as we expect, any stochastic fluctuations in Equation (32)
will be integrated or decay over time due to the exponential filters
eλj(t−s). In addition, when �(0) = 0 the covariance matrix can
be computed as

〈�(t)�T(t)〉 =
∫ t

0
eK(t−s)DeKT (t−s)ds, (34)

where D is the matrix of diffusion coefficients for the covariance
〈W(t)WT(t)〉. We now compute the covariance in the specific case
of symmetric connectivity.

In the case of symmetric connectivity between areas, wjk =
wr for all j �= k, so κjk = κ for all j �= k. Effects of connectivity
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between areas are described by the symmetric matrix

K = κJN − NκI

where JN is the N × N matrix of ones and I is the identity. The
eigenvalues of JN are N, with multiplicity one, and zero, with mul-
tiplicity N − 1. Thus, the largest eigenvalue of K = κJN − NκI
is λ1 = 0 with associated eigenvector v1 = (1, . . . , 1)T . All other
eigenvalues are λj = −Nκ for j ≥ 2, with associated eigenvectors
vj = e1 − ej, where j = 2, . . . ,N and ej is the unit vector with a
one in the jth row and zeros elsewhere. Our diagonalization of
the symmetric matrix K = KT = V�V−1 then involves the diag-
onal matrix � of eigenvalues λj; the symmetric matrix V whose
columns vj are right eigenvectors; and the symmetric matrix V−1

whose rows are left eigenvectors. The matrix V−1 takes the form

V−1 = 1

N

⎛
⎜⎜⎜⎜⎝

1 1 · · ·
1 −(N − 1) 1 · · ·

. . . 1
1 · · · 1 −(N − 1)

⎞
⎟⎟⎟⎟⎠ .

We can thus compute the covariance using the diagonalization

eKt = eKT t = Ve�t V−1. In addition, we will assume each area
receives noise with identical statistics (Djj = Dl) and there are
identical noise correlations between areas (Djk = Dc for j �= k), so
D = (Dl − Dc)I + DcJN . Multiplying and integrating (Equation
34), we find the diagonal entries (variances) of 〈�(t)�T(t)〉 are

〈�j(t)
2〉 = Dl + (N − 1)Dc

N
t + (N − 1)(Dl − Dc)

2N2κ

[
1− e−2Nκt] ,

(35)

and the off-diagonal entries (true covariances) are

〈�j(t)�k(t)〉 = Dl + (N − 1)Dc

N
t − (Dl − Dc)

2N2κ

[
1− e−2Nκt] .

As revealed by the diffusive term in Equation (35), the system
still possesses a rotational symmetry, given by the action of rotat-
ing all the bumps in the same direction. Thus, the component of
noise in this direction is not damped out by coupling. Thus, note
that the long term variance of any bump’s position �j(t) will be
approximately described by the averaged diffusion

lim
t→∞〈�j(t)

2〉 = Dl + (N − 1)Dc

N
t.

As the strength of coupling κ or number of areas N is increased,
the variances 〈�j(t)2〉 approach this limit at a faster rate, since the
other portions of variance decay at a rate proportional to |λ2| =
Nκ. Note also that in the limit Dc → Dl, effects of coupling are
negligible and the long term variance of each bump is determined
by the diffusion introduced by its area’s internal noise.

Returning to study the full variance Equation (35) for sym-
metric coupling and noise, we make a few observations. First, in
the limit of purely correlated noise across areas (Dc → Dl), inter-
areal connections have no effect, and 〈�j(t)2〉 = Dlt for all areas

and arbitrary coupling strength. However, if there is any indepen-
dent noise in each area (Dc < Dl), variance 〈�j(t)2〉 can always be
reduced further by increasing coupling strength or the number of
areas since

d

dκ
〈�j(t)

2〉 = (N − 1)(Dl − Dc)

2N2
× (1+ 2Nκ)e−2Nκt)− 1

κ2
≤ 0,

where inequality (1+ 2Nκt) ≥ e2Nκt holds due to the Taylor
expansion of e2Nκt when Nκt ≥ 0, and

d

dN
〈�j(t)

2〉 = −Dl − Dc

N2

+ Dl − Dc

2N3κ

[
2(1+ Nκt)e−2Nκt − N

] ≤ 0

FIGURE 8 | (A) Variance in the position of the bump in the first area
〈�1(t)2〉 builds up more slowly in networks with more areas N, and we
expect similar behavior in all other areas. Fixing the strength of interareal
connections,

√
εwjk (x) = 0.01(cos(x)+ 1) for j �= k, we see that varying N

decreases the variance 〈�j (t)2〉. (B) As in dual area networks, increasing
the level of noise correlations between areas diminishes the effectiveness
of interareal connectivity as a noise cancelation mechanism. Other
parameters are as in Figure 2.
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when N ≥ 2, since Dl ≥ Dc and due to the Taylor expansion
of e2Nκt . Note, we have temporarily treated N as a continuous
variable. Thus, we know the variance 〈�j(t)2〉 to decrease with
increasing κ and expect it to decrease with increasing N.

We can compute the variance 〈�j(t)2〉 explicitly in the case
of Heaviside firing rate functions (Equation 5), cosine synaptic
weights (Equation 3) and (Equation 4). With these assumptions,
as well as there being identical noise to all areas (cjj = 1 for all j,
cjk = cc for j �= k), we find

Dl = ε

2+ 2
√

1− θ2
, Dc = ccε

2+ 2
√

1− θ2
,

so that

〈�j(t)
2〉 = (1+ (N − 1)cc)ε

2N(1+√1− θ2)
t + (1− cc)ε

4N2κ

[
1− e−2Nκt] ,

(36)

which reflects the fact that increasing the number of areas will
decrease variability, when noise between areas is not too strongly
correlated. We demonstrate the accuracy of this formula (36) in
Figure 8. In numerical simulations, as predicted by our asymp-
totic calculations, the variance scales more slowly in time in
networks with more areas.

DISCUSSION
We have shown that interareal coupling in multi-area stochas-
tic networks can reduce the diffusive wandering of bumps. Since
bump attractors offer a well studied model of persistent activ-
ity underlying spatial working memory (Compte et al., 2000),
our results provide a novel suggestion for how the memory net-
works may reduce error. Our calculations have exploited a small
noise approximation for the position of the bump in each area
(Armero et al., 1998; Bressloff and Webber, 2012a). Assuming
connectivity between areas is weak, we have shown the equations
describing bump positions reduce to a multivariate Ornstein–
Uhlenbeck process. In this formulation, we find interareal con-
nectivity stabilizes all but one eigendirection in the space of bump
position movements. Neutral stability does still exist, so stochas-
tic forces that move bumps in all areas in the same direction do
not decay away. However, sources of noise that force bumps in
opposite directions create bump movements that will decay with
time. Thus, interareal connectivity provides a noise cancelation

mechanism that operates by stabilizing the bumps in each area
to stochastic forces that push them in opposite directions. (Polk
et al., 2012) recently explored noise correlation statistics in per-
sistent state networks that reduce wandering. Our work comple-
ments these results by studying synaptic architectures that limit
persistent state diffusion.

Storing spatial working memories with neural activity that
spans multiple brain areas does serve other purposes than poten-
tial noise cancelation. Delayed response tasks that lead to limb
motion can generate persistent activity in the parietal cortex
(Colby et al., 1996; Pesaran et al., 2002) so that motor responses
can be readily executed. In addition, superior colliculus demon-
strates sustained activity (Basso and Wurtz, 1997), which is
an area also thought to underlie directed behavioral responses.
Therefore, activity is distributed between areas providing short
term information storage, like prefrontal cortex (Goldman-Rakic,
1995), and those responsible for motor responses and/or behav-
ior. An additional effect of this delegation of activity is that
reciprocal connections between areas may provide noise cance-
lation during the storage period of working memory. However,
our work suggests distributing working memory-serving neural
activity between areas that receive strongly correlated noise will
not provide as effective cancelation.

Our work should be contrasted with several other results
concerning the stabilization of networks that encode a continu-
ous variable (Koulakov et al., 2002; Goldman et al., 2003; Cain
and Shea-Brown, 2012; Kilpatrick et al., 2013). Pure integrators,
which are usually line attractors, are notoriously fragile to para-
metric perturbations, so (Koulakov et al., 2002) suggested they
may be made more robust by considering networks that integrate
in discrete bursts, rather than continuously. This can be imple-
mented by considering a population of bistable neural units so
that firing rate integration of a stimulus occurs in a stairstep fash-
ion, rather than a ramplike fashion (see Goldman et al., 2003 for
example). Related ideas were recently implemented in a bump
attractor model of spatial working memory (Kilpatrick et al.,
2013), but quantization was implemented with synaptic archi-
tecture rather than single neural unit properties. As opposed
to the approach of quantizing the space of possible stimulus
representations, we have kept the representation space a con-
tinuum. Deleterious effects of noise are reduced by considering
reciprocal connectivity between encoding areas that redundantly
represent the stimulus. Due to noise cancelations, the encod-
ing error of the network decreases as the number of areas is
increased.
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