This paper argues that the still-emerging paradigm of situated cognition requires a more systematic perspective on media to capture the enculturation of the human mind. By virtue of being media, cultural artifacts present central experiential models of the world for our embodied minds to latch onto. The paper identifies references to external media within embodied, extended, enactive, and predictive approaches to cognition, which remain underdeveloped in terms of the profound impact that media have on our mind. To grasp this impact, I propose an enactive account of media that is based on expansive habits as media-structured, embodied ways of bringing forth meaning and new domains of values. We apply such habits, for instance, when seeing a picture or perceiving a movie. They become established through a process of reciprocal adaptation between media artifacts and organisms and define the range of viable actions within such a media ecology. Within an artifactual habit, we then become attuned to a specific media work (e.g., a TV series, a picture, a text, or even a city) that engages us. Both the plurality of habits and the dynamical adjustments within a habit require a more flexible neural architecture than is addressed by classical cognitive neuroscience. To detail how neural and media processes interlock, I will introduce the concept of neuromediality and discuss radical predictive processing accounts that could contribute to the externalization of the mind by treating media themselves as generative models of the world. After a short primer on general media theory, I discuss media examples in three domains: pictures and moving images; digital media; architecture and the built environment. This discussion demonstrates the need for a new cognitive media theory based on enactive artifactual habits—one that will help us gain perspective on the continuous re-mediation of our mind.
Situated approaches to affectivity overcome an outdated individualistic perspective on emotions by emphasizing the role embodiment and environment play in affective dynamics. Yet, accounts which provide the conceptual toolbox for analyses in the philosophy of emotions do not go far enough. Their focus falls (a) on the present situation, abstracting from the broader historico-cultural context, and (b) on adopting a largely functionalist approach by conceiving of emotions and the environment as resources to be regulated or scaffolds to be used. In this paper, I argue that we need to take situatedness seriously: We need (a) to acknowledge that emotions are not situated in undetermined “contexts” but in concrete socio-culturally specific practices referring to forms of living; and (b) to agree that not only are context and emotions used for the sake of something else but also that the meaning-disclosive dimension of affective intentionality is structured by situatedness as well. To do so, I offer a multidimensional approach to situatedness that integrates the biographical and cultural dimensions of contextualization within the analysis of situated affective dynamics. This approach suggests that humans affectively disclose meaning (together) which is at once product and producer of specific forms of living – and these are always already subjects of (politically relevant) critique.
Borsboom and colleagues have recently proposed a “network theory” of psychiatric disorders that conceptualizes psychiatric disorders as relatively stable networks of causally interacting symptoms. They have also claimed that the network theory should include non-symptom variables such as environmental factors. How are environmental factors incorporated in the network theory, and what kind of explanations of psychiatric disorders can such an “extended” network theory provide? The aim of this article is to critically examine what explanatory strategies the network theory that includes both symptoms and environmental factors can accommodate. We first analyze how proponents of the network theory conceptualize the relations between symptoms and between symptoms and environmental factors. Their claims suggest that the network theory could provide insight into the causal mechanisms underlying psychiatric disorders. We assess these claims in light of network analysis, Woodward’s interventionist theory, and mechanistic explanation, and show that they can only be satisfied with additional assumptions and requirements. Then, we examine their claim that network characteristics may explain the dynamics of psychiatric disorders by means of a topological explanatory strategy. We argue that the network theory could accommodate topological explanations of symptom networks, but we also point out that this poses some difficulties. Finally, we suggest that a multilayer network account of psychiatric disorders might allow for the integration of symptoms and non-symptom factors related to psychiatric disorders and could accommodate both causal/mechanistic and topological explanations.
In this paper, I argue for an embodied, embedded approach to predictive processing and thus align the framework with situated cognition. The recent popularity of theories conceiving of the brain as a predictive organ has given rise to two broad camps in the literature that I call free energy enactivism and cognitivist predictive processing. The two approaches vary in scope and methodology. The scope of cognitivist predictive processing is narrow and restricts cognition to brain processes and structures; it does not consider the body-beyond-brain and the environment as constituents of cognitive processes. Free energy enactivism, on the other hand, includes all self-organizing systems that minimize free energy (including non-living systems) and thus does not offer any unique explanations for more complex cognitive phenomena that are unique to human cognition. Furthermore, because of its strong commitment to the mind-life continuity thesis, it does not provide an explanation of what distinguishes more sophisticated cognitive systems from simple systems. The account that I develop in this paper rejects both of these radical extremes. Instead, I propose a compromise that highlights the necessary components of predictive processing by making use of a mechanistic methodology of explanation. The starting point of the argument in this paper is that despite the interchangeable use of the terms, prediction error minimization and the free energy principle are not identical. But this distinction does not need to disrupt the status quo of the literature if we consider an alternative approach: Embodied, Embedded Predictive Processing (EEPP). EEPP accommodates the free energy principle, as argued for by free energy enactivism, but it also allows for mental representations in its explanation of cognition. Furthermore, EEPP explains how prediction error minimization is realized but, unlike cognitivist PP, it allocates a constitutive role to the body in cognition. Despite highlighting concerns regarding cognitivist PP, I do not wish to discredit the role of the neural domain or representations as free energy enactivism does. Neural structures and processes undeniably contribute to the minimization of prediction error but the role of the body is equally important. On my account, prediction error minimization and free energy minimization are deeply dependent on the body of an agent, such that the body-beyond-brain plays a constitutive role in cognitive processing. I suggest that the body plays three constitutive roles in prediction error minimization: The body regulates cognitive activity, ensuring that cognition and action are intricately linked. The body acts as distributor in the sense that it carries some of the cognitive load by fulfilling the function of minimizing prediction error. Finally, the body serves to constrain the information that is processed by an agent. In fulfilling these three roles, the agent and environment enter into a bidirectional relation through influencing and modeling the structure of the other. This connects EEPP to the free energy principle because the whole embodied agent minimizes free energy in virtue of being a model of its econiche. This grants the body a constitutive role as part of the collection of mechanisms that minimize prediction error and free energy. The body can only fulfill its role when embedded in an environment, of which it is a model. In this sense, EEPP offers the most promising alternative to cognitivist predictive processing and free energy enactivism.
In this paper, we engage in a reciprocal analysis of situated cognition and the notion of “meshed architecture” as found in performance studies (Christensen et al., 2016). We start with an account of various conceptions of situated cognition using the distinction between functional integration, which characterizes how an agent dynamically organizes to couple with its environment, and task dependency, which specifies various constraints and structures imposed by the environment (see Slors, 2019). We then exploit the concept of a meshed architecture as a model that provides a more focused analysis of situated cognition and performance. Through this analysis, we show how the model of meshed architecture can be enhanced through (1) the involvement of a more complex set of cognitive processes, (2) a form of intrinsic control, (3) the influence of affective factors, and (4) the role of factors external to the performer. The aim of this paper, then, is twofold: first to work out an enhanced conception of the model of meshed architecture by taking into consideration a number of factors that clarify its situated nature, and second, to use this model to provide a richer and more definitive understanding of the meaning of situated cognition. Thus, we argue that this reciprocal analysis gives us a very productive way to think about how various elements come together in skilled action and performance but also a detailed way to characterize situated cognition.