About this Research Topic
Currently, hydrogen fuel cells, including proton exchange membrane fuel cells and anion exchange membrane fuel cells, are widely studied and preliminarily commercialized. However, realizing the widespread application of hydrogen fuel cells requires researchers to address the production, transportation, and storage of hydrogen. Hence, as an alternative for power sources, a great deal of research efforts is put towards direct liquid fuel cells. Recently, numerous works have been performed, both experimentally and theoretically, to expand our fundamental understanding and provide new insights into the electrochemistry of liquid fuel oxidation reaction and oxygen reduction reaction, the catalyst and membrane synthesis and modification, electrode fabrication and optimization, and fuel cell system designs of direct liquid fuel cells. This research helps us to understand the reaction pathways, improve the reaction kinetics, enhance the fuel cell durability, and reduce the system cost.
In this Research Topic on “Advances in the Electrochemistry of Direct Liquid Fuel Cells”, we would like to provide state-of-the-art achievements, from fundamental to applications, on the electrochemistry of direct liquid fuel cells. This Research Topic will cover fundamental aspects on mathematical modeling and simulation, newly developed characterization technologies, novel catalyst and membrane synthesis and modification, and innovative fuel cell system designs. We welcome original research papers, perspectives and review articles, which cover, but are not limited to, the following topics:
• Mathematical modeling including transport phenomena and electrochemical reactions
• Development of novel catalysts with high electrochemical activity
• Studies on liquid fuel oxidation mechanisms and pathways
• Studies on electrode-electrolyte interface electrochemistry
Keywords: Direct liquid fuel cells, Electrochemistry, Liquid fuel oxidation reaction, Oxygen reduction reaction, Electrode-electrolyte interface
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.