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Editorial on the Research Topic

Purinergic Signaling and Inflammation

Purine nucleotides and nucleosides are essential building blocks for cellular energy. Extracellular
nucleotides and nucleosides signaling is increasingly recognized to control many other human
physiological processes, including the pathogenesis of inflammatory diseases (Figure 1, material
from Idzko et al.) (1). Adequate inflammatory responses are critical to fighting against invading
pathogens and recovering from tissue injury. However, unresolved or chronic inflammation can
cause tissue injury and disease pathogenesis (2, 3). The proper control of tissue inflammation
requires synergistic action of many different pathways, with purinergic signaling playing diverse and
important roles in this process (4–6). In this special Research Topic, the interaction between
purinergic signaling and inflammation was highlighted by several original, review, opinion, and
perspective articles.

Purinergic signaling orchestrates mucosal inflammation. An opinion article from Antonioli et al.
encapsulates the contribution of adenosine system in many aspects of inflammatory bowel diseases
(IBD), including intestinal inflammation, abdominal pain, and enteric dysmotility. Preclinical
studies indicate that targeting A2A and A3 adenosine receptor has great therapeutic potential for
IBD. While activation of those two adenosine receptors by selective agonists is beneficial in
attenuating many aspects of IBD, this article highlights the need to develop novel, selective ligands
on adenosine receptors. Relatedly, a mini-review article by Vuerich et al. describes how purinergic
signaling controls gut inflammation. Indeed, many studies have indicated that therapeutic targeting of
ATP (P1) receptor, adenosine (P2) receptor, and ENTPD1/CD39, and/or ecto-5′-nucleotidase (CD73)
can directly modulate intestinal inflammation. Themini-review provides a concise overview of the current
knowledge of purinergic-based therapy for IBD. Besides, an original article by Libera et al. elaborates on
the role of CD39 and CD73 in IBD. The study compares the expression of CD39 and CD73 in T cell
populations that include CD4, CD8, and gd T cells in peripheral blood, as well as mucosal tissue from
healthy individuals and IBD patients. Peripheral T cells have a CD39lowCD73high phenotype with high
levels of IL-17A and IFNg, while gut mucosal T cells have a CD39highCD73low phenotype and low
expression of IL-17A, IFNg, and IL-10. These results suggest that CD39 and CD73might be important for
the phenotypic adaptation of T cells in the gut mucosal environment. Extending this to another organ
system, the review article by Li et al. highlights the important role of adenosine signaling in the crosstalk
between hypoxia and inflammation in lung injury. Hypoxia and inflammation are tightly linked together
org May 2021 | Volume 12 | Article 69906914
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FIGURE 1 | Extracellular nucleotide release and signalling during inflammation. During inflammation, multiple cell types release nucleotides, for example ATP or ADP,
from their intracellular compartments into the extracellular space. Nucleotides can be released during mechanical injury, necrosis, apoptosis or inflammatory cell
activation. Several molecular pathways have been implicated in this process, such as vesicular ADP release from platelets, pannexin-mediated ATP release during
apoptosis, and connexin- or pannexin-mediated ATP release from inflammatory cells, such as neutrophils. Extracellular nucleotides function as signalling molecules
through the activation of purinergic P2 receptors. These receptors can be grouped into metabotropic P2Y receptors (P2YRs; GPCRs with seven transmembrane-
spanning motifs) or ionotropic P2X receptors (P2XRs), which are nucleotide-gated ion channels. Each P2XR is formed by three subunits (P2XR monomers), each of
which consists of two transmembrane regions, TM1 and TM2. Binding of three molecules of ATP to the assembled P2X channel causes opening of a central pore.
These conformational changes allow for flux of ions such as sodium (Na+), calcium (Ca2+) and potassium (K+) across the membrane. ATP signalling is terminated by
the enzymatic conversion of ATP to adenosine through the ectonucleoside triphosphate diphosphohydrolase CD39 (conversion of ATP/ADP to AMP) and the ecto-
5′-nucleotidase CD73 (conversion of AMP to adenosine). Similar to ATP, adenosine (A) functions as an extracellular signalling molecule through the activation of
purinergic P1 adenosine receptors. Material from: Idzko et al. (1). Reprinted with permission.
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(7). Hypoxia signaling results in the activation of adenosine signaling
via induction of A2A adenosine receptor and A2B adenosine
receptors (8). Among these, the HIF/adenosine axis provides lung
protection in acute respiratory distress syndrome though it also
promotes inflammation and injury in chronic lung disease (9).
Moreover, this article discusses the strategies to therapeutically
target the adenosine signaling pathway in lung disease.

Inflammation is commonly observed in cancer and purinergic
signaling is crucial in many aspects of cancer development. The
review article by Steingold and Hatfield highlights the evidence to
support targeting hypoxia-A2A adenosine receptor pathway to
release the immunosuppression of anti-tumor T cells. The
activation of hypoxia-adenosine-A2A axis in cancer leads to
immunosuppression by inhibiting the effector function of T cells.
Preclinical and clinical studies suggest that inhibitors targeting A2A,
CD39/CD73, or hypoxia signaling can control cancer development
when combined with immune checkpoint inhibitors. Moreover, a
mini-review by Hamarsheh and Zeiser discusses the contradictory
roles of NLRP3 inflammasome in cancer. NLRP3 inflammasome is
canonically activated by danger-associated molecular patterns when
concurrently exposed to a secondary signal, such as hypoxia, reactive
oxygen species, or P2X7R activation. The article concludes that
NLRP3 inflammasome acts as a double-edged sword in cancer and
future studies should dissect the functional determining factors.

Purinergic signaling is important in modulating immune cell
functions during inflammation. The review article by Ferrari et al.
highlights how purinergic signaling shapes eosinophil phenotype to
elicit pro-inflammatory or anti-inflammatory responses during
homeostasis or pathological conditions. The article summarizes
the diverse functions of eosinophils in the fight against invading
microorganisms and allergic responses. Specifically, the article
elegantly highlights how P2 receptors and P1 receptors
differentially regulate eosinophil migration and function to exert
pro-inflammatory or anti-inflammatory responses during tissue
inflammation. The article concludes that P2 receptor inhibitors are
potential therapeutic candidates in eosinophilic diseases, while
further understanding about nucleotide stimulation of
eosinophils in other inflammatory conditions such as cancer is
needed. P2 receptor signaling is also crucial to the regulation of T
cell function. A mini-review article by Ledderose and Junger
describes the convergence of metabolic and purinergic signaling
in the modulation of T cell function in host immune defense and
inflammatory disorders. ATP accumulation is commonly observed
Frontiers in Immunology | www.frontiersin.org 36
during tissue injury and ATP can bind to P2X and P2Y receptors to
modulate T cell function. This review provides a concise overview
of how different P2 receptors interact with mitochondria to govern
multiple aspects of T cell functions including T cell quiescence,
migration, and formation of the immune synapse. Finally, the
perspective article from Grassi further highlights the functions of
P2X7 receptor in T cell regulation. The article concludes that P2X7
guides the development of gd T cell in the thymus and promotes
the development of Th1 and Th17 responses, conversion of Treg to
Th17 cells, and cell death of Tfh cells in peripheral lymphoid
organs. Demonstrating a particular role in intestinal immune
homeostasis, microbiota-derived extracellular ATP results in
P2X7 activation to induce cell death of effector T cells and, in
turn, attenuates murine model of colitis.

The articles included in this Research Topic provide an
inspiring overview of the interplay between purinergic
signaling and inflammation. The collection of articles in the
Research Topic also shed light on the importance and complexity
of purinergic signaling in different disease settings, such as
mucosal inflammation and cancer. Taken together, the papers
presented in this Research Topic indicate that new therapeutic
developments targeting purinergic signaling are needed to
harness this pathway for the treatment of tissue inflammation.
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The P2X7 Receptor as Regulator of
T Cell Development and Function
Fabio Grassi*

Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona,

Switzerland

Unique structural features characterize the P2X7 receptor with respect to other P2X

family members. Dual gating by eATP and regulated expression of P2X7 can imprint

distinct outcomes to the T cell depending on the metabolic fitness and/or developmental

stage. In the thymus, signaling by P2X7 contributes to γδ T cell lineage choice.

In secondary lymphoid organs, P2X7 stimulation promotes Th1/Th17 polarization of

CD4+ naïve cells, Tregs conversion to Th17 cells and cell death of Tfh cells that

are not stimulated by cognate antigen. Moreover, P2X7 stimulation in eATP rich

microenvironments, such as damaged and/or inflamed tissues as well as tumors, induces

cell death of various T cell effector subsets.

Keywords: P2X7, T cell, extracellular ATP (eATP), T cell effector function, mucosal immunology, T cell development

INTRODUCTION

Signaling by adenosine triphosphate (ATP) emerged very early in evolution and is involved in the
regulation of highly diverse biologic functions. Trimeric ATP-gated ionotropic P2X receptors are
amongst the most ancient signaling channels, having been present in single-cell protozoa and algae
(1). The first evidence of T cell responsiveness to extracellular ATP (eATP) dates back to 1989, when
Di Virgilio et al. showed that eATP induced plasma membrane depolarization and permeability
to low MW dyes, possibly leading to cell death (2). It was then hypothesized that endogenously
generated eATP promoted the effector function of cytotoxic T cells via purinergic receptors (3).
Subsequent experiments indicated that activation of P2X receptors in T cells could contribute to the
outcome of TCR stimulation both in murine and human cells (4, 5). As in other cells of the immune
system, the P2X7 receptor subtype stands out among P2X family members as the most important
regulator of T cell function. It is a non-selective cationic channel characterized by dual gating:
receptor exposure to low concentrations of ATP (e.g., micromolar range) results in small-amplitude
currents, whereas stimulation with ATP in the hundreds micromolar range leads to opening of
a cytolytic pore and cell death (6). Cryoelectron microscopy of the rat receptor in apo (closed
pore) and ATP-bound (open pore) states has unraveled structural insights into P2X7 architecture,
which confer the functional peculiarities that distinguish it from the other P2X family members,
namely low affinity for ATP, lack of desensitization and cell death initiation (7). In particular,
P2X7 combines a P2X domain with a unique “C-cysteine anchor” intra-cytoplasmic motif and a
C-terminal cytoplasmic ballast domain (which contains a Zn coordinating cysteine motif and a
GDP-binding region), both of which are not present in other P2X receptors. The C-terminal region
of P2X7 has been recently hypothesized to originate from the capture of a ballast domain by a P2X
gene in ancestral jawed vertebrates (8).
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SIGNALING BY P2X7

The human and mouse genes encoding for P2X7 are located in
syntenic regions of chromosome 12 and 5, respectively, in close
proximity with the gene encoding the P2X4 receptor. Numerous
splice variants have been identified for the P2X7 receptor in
different species, however, the functional characterization of
the various protein isoforms is largely incomplete [reviewed
in (9)]. The P2RX7 gene is highly polymorphic and single
nucleotide polymorphisms (SNPs) can significantly influence the
functional properties of the receptor (10). Genetic association
studies support non-synonymous SNPs (NS-SNPs) in the
P2RX7 gene as an important genetic factor that alters the
susceptibility of individuals to various pathological conditions.
The predominant expression of P2X7 in cells of the immune
system correlates with detection of NS-SNPs in diseases, in which
immune system cells play a pivotal role in the pathogenesis
[reviewed in (11)].

In addition to eATP, non-nucleotide agonists, including
cathelicidins, amyloidogenic peptide β, and serum amyloid,
have been suggested to activate P2X7 or act as positive
allosteric effectors (10). Moreover, the murine P2X7 receptor
can be ADP-ribosylated by the ADP-ribosyltransferase 2.2
(ART2.2) that catalyzes the transfer of ribose from nicotinamide
adenine dinucleotide (NAD+) to R125 in the ectodomain
of the P2X7 receptor, resulting in its activation (12). In T
cells, P2X7 activation by ADP-ribosylation causes calcium flux,
phosphatidylserine exposure, shedding of L-selectin (CD62L),
cell shrinkage, pore formation and propidium iodide uptake
(13). This alternate mechanism of P2X7 activation is not
observed in humans, which lack ART2.1 and ART2.2 (14),
and is particularly relevant in murine T cells compared to
other cells because of the specific expression of a P2X7 splice
variant, that is sensitive to activation by ADP-ribosylation (15–
17). The high sensitivity of immunosuppressive T regulatory
cells (Tregs) to depletion by NAD+ released during cell
damage or inflammation led to hypothesize a function for the
ART2-P2X7 pathway in murine Tregs homeostasis (18). An
important consequence of P2X7 gating by ADP-ribosylation
is the “spontaneous” P2X7 activation of T cells (19) and
reduced vitality of Tregs, tissue-resident memory (Trm) (20)
and natural killer T cells (21) that co-express high levels
of ART2.2 and P2X7, during the isolation procedure from
mice. This phenomenon has been successfully counteracted
by the injection of ART2.2-blocking nanobodies prior to
organ harvesting (20, 22). The shedding of CD62L mentioned
above as well as of CD27 and IL-6 receptor (IL-6R) by
P2X7 stimulation, are due to P2X7-mediated activation of
metalloproteases, such as ADAM10 and ADAM17 (23–25). Since
CD62L promotes T cell homing to secondary lymphoid organs
(SLOs), P2X7 activation in naïve T cells stimulated by cognate
antigen might promote their egress from SLOs. Interestingly,
Tregs expressing the ATP-degrading enzyme ectonucleoside
triphosphate diphosphohydrolase-1 (CD39) ameliorated contact
hypersensitivity reactions by suppressing ATP-induced CD62L
shedding and promoting CD8+ cells retention in skin-draining
lymph nodes (LNs) (26). Another possible important target

of P2X7 induced metalloprotease activation in T cells is
CD27, a member of the tumor necrosis factor receptor family,
which supports antigen-specific expansion and T cell memory
generation (27, 28). Since CD27 activation by interaction with
its ligand CD70 is crucial for the outcome of T cell response
(29), P2X7-mediated shedding of CD27 might contribute to
the regulation of adaptive immunity and/or immunopathology.
Along another line, the induction of IL-6R shedding by P2X7
could condition T cell polarization toward pro-inflammatory vs.
immunosuppressive programs. These observations indicate the
pleiotropic role this P2X7 feature might have in conditioning T
cell function.

P2X7 IN T CELL DEVELOPMENT

αβ and γδ T cell development in the thymus is characterized
by transition of thymocytes through multiple checkpoints,
most of which are regulated by the rearrangement status and
specificity of the clonotypic TCR. Whereas, γδ cells develop
from CD4−8− double negative (DN) thymocytes, αβ cells
progress from DN to mature MHCI and MHCII restricted
CD8+ and CD4+ T cells, respectively, through an intermediate
CD4+8+ double positive (DP) stage, in which TCR specificity
dictates either positive or negative selection of cells (30). The
analysis of the dynamics of changes in cytosolic Ca2+ elicited
by eATP in thymocytes via P2X7 receptor showed significant
variations between individual cells that were dependent on
the developmental stage. It was hypothesized that eATP could
promote differentiation of most immature DN cells in the outer
cortex; conversely, progression to the DP stage in the inner
cortex would correspond to loss of responsiveness to eATP via
P2X7, thus protecting positively selected cells from eATP released
during massive apoptosis of neglected or negatively selected DP
cells (31). More recently, this phenomenon was explained by
the demonstration of the direct binding of histone deacetylase
(HDAC) 3 to the P2rx7 enhancer and repression of P2X7
signaling in DP cells (32). Nevertheless, protection of DP cells
from death by pharmacological P2X antagonism could suggest
some function of P2X7 in the elimination of neglected DP cells
[(33); Figure 1A].

TCR signal strength is a crucial determinant in T cell fate.
Increased signal strength of γδTCR with respect to pre-TCR
results in induction of the γδ differentiation program. P2X7
signaling contributes to γδ lineage choice by promoting ERK
phosphorylation and induction of early growth response (Egr)
transcripts. Moreover, the impairment of the ERK-Egr-inhibitor
of differentiation 3 (Id3) signaling pathway in γδ cells from
P2rx7−/− mice resulted in diversion of γδ T cells to “innate-like”
NK1.1-expressing cells with limited TCR diversity (34). These
experiments suggest a function of P2X7 in shaping the γδ T cells
repertoire, whereas lineage choice and differentiation to mature
CD4+ or CD8+ αβ thymocytes do not seem to be affected
by P2X7 expression (Figure 1A). Whether and how P2X7
activity might influence cell metabolism in conditioning
γδ thymocytes differentiation has not been addressed
so far.

Frontiers in Immunology | www.frontiersin.org 2 June 2020 | Volume 11 | Article 11799

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Grassi P2X7 in T Cell Physiology

FIGURE 1 | P2X7 activity in T cell development and function. (A) In the thymus, P2X7 activity could promote differentiation of immature DN cells. Signaling by P2X7

contributes to γδ lineage choice by promoting ERK phosphorylation and induction of early growth response (Egr) transcripts. Conversely, progression to the DP and

single positive CD4 or CD8 stages is not influenced by P2X7, albeit P2X7 might function in cell death induction of neglected DP cells. (B) In secondary lymphoid

organs, P2X7 stimulation promotes Th1/Th17 polarization of CD4+ naïve cells, Tregs conversion to Th17 cells and cell death of Tfh cells that are not stimulated by

cognate antigen. (C) Sensitivity of TEM, Tfh, and tissue resident memory T cells to P2X7 mediated cell death in eATP rich microenvironments.

P2X7 IN NAÏVE T CELL RESPONSE

In T cells, the increase in the concentration of cytosolic
Ca2+ that follows TCR stimulation by peptide/MHC complex
is accompanied by mitochondrial uptake of Ca2+. This
phenomenon avoids cellular Ca2+ overload, and contribute to
a rapid clearing of Ca2+ in spatially restricted areas, such
as near Ca2+ channels in the plasma membrane or the ER
(35). Moreover, mitochondrial uptake of Ca2+ stimulates the
aerobic synthesis of ATP (36, 37). TCR triggering of naïve
T cells results in ATP release via pannexin-1 hemichannels
and autocrine stimulation of P2X receptors in the plasma
membrane. Murine naïve CD4T cells express P2rx1, P2rx4
transcripts, and higher levels of P2rx7. The ATP released
upon naïve T cell activation functions as an autocrine
stimulus and sustains MAPK signaling and induction of
pro-inflammatory programs via P2X receptors stimulation
(Figure 1B). Accordingly, pharmacological antagonism of P2X
activity promoted T cell anergy and showed beneficial effects
in autoimmune conditions (38). These effects were also favored
by the conversion of naïve CD4T cells into immunosuppressive
T regulatory cells (Tregs) (39). Autocrine signaling by eATP
via P2X7 receptor was shown to contribute to TCR-mediated
Ca2+ influx, NFAT activation and IL-2 production in human
CD4T cells; blocking of P2X7 signaling inhibited T cell
activation, suggesting P2X7 receptor is required for effective
T cell activation (40). Importantly, expression of CD39 and
CD73, the ecto-5′-nucleotidase that degrades extracellular AMP
into adenosine, by other immune and tissue resident cells can
dramatically condition the outcome of T cell responses (41–43).
The P2xr7 gene is robustly upregulated in T effector/memory
(TEM) cells. P2X7 activity seems to play different functions

in regulating the proliferative response of naïve vs. TEM
cells upon TCR stimulation. Murine P2rx7−/− CD4 naïve
cells did not show any difference in cell proliferation as
compared to WT cells upon TCR stimulation, suggesting
that P2X1 and/or P2X4 could compensate for the lack of
P2X7 activity, an observation made also in human T cells
(44). In contrast, stimulation of P2rx7−/− TEM cells revealed
a peculiar enhancement of cell cycling activity with respect
to the WT counterpart (our unpublished observations). This
phenomenon could be due to the sustained generation of
mitochondrial reactive oxygen species (ROS) that was associated
to P2X7 activity in T cells (45), and induction of premature
cellular senescence.

P2X7 ACTIVITY IN EFFECTOR/MEMORY T
CELL FUNCTION

Extracellular ATP is virtually absent in the interstitium of tissues
in physiological conditions with the notable exception of the
intestine, where eATP generated by the microbiota can permeate
enterocytes (46). In contrast, damaged and/or inflamed tissues
as well as tumors’ microenvironment (TME) are characterized
by eATP concentrations that can reach the millimolar range
(47–49). Therefore, P2X7 expression can crucially impact the
outcome of local immune system response. In this respect,
we have shown that P2X7 stimulation in immunosuppressive
T regulatory cells (Tregs) can result in conversion into pro-
inflammatory IL-17 secreting cells, thereby possibly worsening
the inflammatory tissue damage in pathological conditions [(39);
Figure 1B]. Analogously, P2X7 receptor inhibition promoted
long-term cardiac transplant survival inmurine recipients of fully
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mismatched allograft by reducing T cell activation and Th1/Th17
differentiation (50).

In T follicular helper (Tfh) cells, conversely, P2X7 stimulation
restricts the expansion of aberrant cells and the generation
of self-reactive antibodies in experimental murine lupus, but
its activity is dispensable for regulation of antigen-specific Tfh
cells during parenteral vaccination. P2X7 stimulation likely
controls the development of pathogenic ICOS+ IFN-γ-secreting
Tfh cells, which characterize systemic lupus erythematosus
(SLE), by inducing pyroptosis via caspase-mediated activation
of gasdermin D (Figure 1B). Notably, SLE patients are
characterized by reduced P2X7 activity in circulating Tfh cells
(51). Acute TCR stimulation of Tfh cells robustly downregulates
P2rx7 expression, thus protecting antigen responding T cell
from cell death (52). Similar results have been obtained
in tissue resident memory T cells, suggesting that selective
downregulation of P2rx7 in T cells that productively respond
to cognate antigen would ensure the amplification of pathogen-
destructing cells during infections (53). In contrast, P2X7 activity
is required for the establishment and maintenance of long-lived
central and tissue-resident memory CD8T cells inmice, probably
reflecting the function of P2X7 as ion channel in promoting
mitochondrial function and metabolic fitness (54).

P2X7-MEDIATED T CELL CONDITIONING
IN THE INTESTINE

The intestinal microbiota influences host physiology,
metabolism, and immune system homeostasis. The interaction
between microbes and mammalian immune system results
in the selection and “tolerance” of beneficial species. Within
this inter-kingdom relationship, eATP plays an important
role as a released bacterial metabolite capable of modulating
immune system function. The first evidence that commensal
bacteria-derived ATP could condition host immune system was
provided by Atarashi et al. by showing that a CD70highCD11clow

subset of lamina propria cells could be activated by intestinal
ATP and induce the differentiation of pro-inflammatory Th17
cells (55). Extracellular ATP was shown to activate dendritic
cells (DCs) via P2X7, thereby polarizing the T cell response in
a number of physiological and pathophysiological conditions
(48, 49, 56–60). However, whether P2X7 stimulation in DCs
was responsible for the induction of Th17 cells by intestinal
microbiota-derived eATP was not established. Signaling by
P2X7 is responsible for cell death of Tfh cells in the Peyer’s
patches of the small intestine by bacteria-derived ATP, a
mechanism important in ensuring controlled generation of T
cell dependent secretory IgA (52) and a beneficial shaping of gut
microbiota composition (61). The intestinal microenvironment
profoundly influences the sensitivity of intraepithelial CD8
cells, both the CD8αβ and CD8αα expressing subset, to P2X7
mediated cell death. In fact, retinoic acid causes up-regulation
of P2X7 on purified CD8T cells and induces responsiveness

to extracellular nucleotides. Accordingly, lack of P2X7 led to
enhanced CD8+ T cell responses in the intestinal mucosa,
thus defining P2X7 as a regulatory element in the control of
CD8+ T cells in the intestinal mucosa (62). The induction
of P2X7 upregulation by retinoic acid was observed also in
CD4+ effector T cells. Hashimoto-Hill et al. showed retinoic
acid receptor α binding to an intragenic enhancer region of
the P2rx7 gene (63). Probably, this transcriptional control is
responsible for the robust expression of P2X7 on most intestinal
αβ and γδ T cells, including T-helper type 1 (Th1) and Th17
cells as well as invariant NKT cells (64). Intestinal effector T cells
are effectively deleted by P2X7 mediated cell death and P2X7
activation suppressed T-cell-induced colitis in lymphopenic
mice (Figure 1C). Results obtained with vitamin A-deficient and
P2rx7−/− mice indicate that the retinoic acid-P2X7 pathway
is important in preventing expansion of aberrantly activated T
cells, as observed with “P2X7-hypoactive” Tfh cells in SLE (51).
Therefore, it appears that retinoic acid controls intestinal effector
T-cell populations by inducing P2X7 expression. This pathway
is likely responsible also for P2X7 mediated control of Tfh cells
response to oral vaccination, thereby limiting the generation of
high-affinity secretory IgA (46).

CONCLUDING REMARKS

Dual gating and regulated expression of P2X7 can imprint
distinct outcomes to the T cell depending on the metabolic
fitness and/or developmental stage via autocrine signaling or
microenvironment’s clues, like eATP or other factors (e.g.,
NAD+ in mice) conditioning P2X7 activity. The peculiarity of
P2X7 function as cationic channel and cytolytic pore could
be responsible for some apparently contradictory findings
on P2X7 dependent responses in particular T cell subsets
in different experimental settings. It would be important
to define molecular mechanisms that could affect P2X7
activity in T cells (e.g., gene polymorphism, RNA splicing,
microRNAs, long non-coding RNAs) in different physiological
and pathophysiological contexts.
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Inflammation is involved in tumor development and progression as well as antitumor

response to therapy. In the past decade, the crosstalk between inflammation, immunity,

and cancer has been investigated extensively, which led to the identification of several

underlying mechanisms and cells involved. The formation of inflammasome complexes

leads to the activation of caspase-1, production of interleukin (IL)-1β, and IL-18 and

pyroptosis. Multiple studies have shown the involvement of NLRP3 inflammasome in

tumorigenesis. Conversely, other reports have indicated a protective role in certain

cancers. In this review, we summarize these contradictory roles of NLRP3 inflammasome

in cancer, shed the light on oncogenic signaling leading to NLRP3 activation and IL-1β

production and outline the current knowledge on therapeutic approaches.

Keywords: NLRP3, inflammasome, cancer, therapeutic targets, activation

INTRODUCTION

It is well-established that inflammation caused by viral or microbial infections contributes to
tumorigenesis. However, emerging evidence have shown that it as well has a pivotal role in most
stages of cancer development, besides interfering with the ability of immune system to counteract
tumor cells and affecting response to treatment. These mechanisms are mainly driven by innate and
adaptive immune cells, such as dendritic cells, macrophages, natural killer (NK) cells, neutrophils,
and lymphocytes (1, 2).

One of the central mechanisms contributing to inflammation in immune cells is mediated
by special cytoplasmic protein complexes known as inflammasomes. They are divided based on
their structural features into nucleotide-binding and oligomerization domain (NOD)-like receptors
(NLRs) and absent in melanoma 2 (AIM2)-like receptors (ALRs). In addition, inflammasomes
belong to a larger family of receptors known as pattern recognition receptors (PRRs), where
their function is the recognition of pathogen- or danger-associated molecular patterns (PAMPs
or DAMPs), causing the activation, maturation, and production of pro-inflammatory cytokines
(3). Besides, emerging evidence has proposed that inflammasomes act as a “signal integrator”
detecting changes in cytoplasmic homeostasis. These perturbations, named as homeostasis-altering
molecular processes (HAMPs), are induced by the functional consequences of cellular processes,
where the inflammasome responds to a cellular imbalance rather than a molecular pattern,
triggering inflammation in a sterile context. This provides hints that inflammasome activation via
the HAMP detection pathway might also be involved in disease pathogenesis (4, 5).
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Amongst the inflammasomes family, NLRP3 inflammasome
is the most characterized. Mutations in NLRP3 are associated
with several autoimmune and inflammatory diseases, particularly
a group known as cold-induced auto-inflammatory syndrome
(CAPS). In addition, NLRP3 has been implicated in several
other diseases including inflammatory bowel disease (IBD),
rheumatoid arthritis, and Parkinson’s disease (6). In cancer,
analysis of copy number alterations in tumor samples has shown
NLRP3 with a high frequency of copy gains, thus acting more
as an oncogene (7). However, different roles of inflammasomes
in tumorigenesis and antitumor immunity have emerged in the
past decade (8), without overlooking the well-established role of
cytokines in cancer pathogenesis (9).

Here, we discuss the structure and activation pathways of
NLRP3, and provide a brief updated review on the most recent
research investigating its opposing roles in cancer. Lastly, we list
the potential therapeutic targets and the latest reports and clinical
trials investigating them.

NLRP3 INFLAMMASOME

Historical Background
Since the cloning of IL-1β in 1984 (10, 11) and the
characterization of its various immunological activities,
enormous research has been conducted to further explore
the biology of cytokines and their effects on inflammation
and other physiological roles. The first major contribution
following this, was the identification of IL-1-converting enzyme
(ICE), now named as caspase-1 (12, 13). Despite that, the
underlying mechanisms causing the processing and release of
IL-1ß remained unclear. It was only until 2002, when Martinon
et al. (14) identified a caspase-activating complex, which
leads to the maturation and secretion of IL-1β, now known
as the inflammasome. They continued their pioneering work
in this field (15), which led to discovering the association of
inflammasomes with CAPS (16), as well as gout and type 2
diabetes. Additionally, they reported several inflammasome
agonists, PAMPs including muramyl dipeptide (MDP) (17), viral
DNA (18) and malaria-associated hemozoin (19); DAMPs such
as monosodium urate (MSU) crystals (20); and environment-
derived factors like asbestos, silica (21) and alum (22). A
number of different clinical trials for inflammasome-related
inflammatory diseases were conducted which led to the
development of a therapy for CAPS patients in the clinic (23),
in addition to promising results in several clinical studies
involving gouty arthritis patients treated with anakinra (24, 25).
These revolutionary discoveries paved a new path in the
fields of inflammasome activation, innate immunity cytokines
production, and their involvement in health and disease.

Structure and Activation of the NLRP3
Inflammasome
Inflammasomes are danger-sensing, multimeric protein
complexes that are part of the innate immune response. The
most widely studied and well-characterized inflammasome is
NLRP3, which is characterized by the presence of a central
nucleotide-binding and oligomerization (NACHT) domain,

which is usually flanked by C-terminal leucine-rich repeat
(LRR), and N-terminal pyrin domain (PYD) (Figure 1A) (3).
In brief, a danger signal sensed leads to a conformational
change of NLRP3 causing the exposure of NACHT domain.
NLRP3 undergoes oligomerization by homotypic interactions
between NACHT domains. As a result, the PYD domain of
NLRP3 becomes exposed, recruit the adaptor apoptosis speck
protein (ASC, also known as PYCARD) and bind through their
shared PYD domains (Figure 1A). Following, ASC converts
to a prion-like form and generates long ASC filaments. This
interaction recruits the CARD of pro-caspase-1 facilitating its
binding to the complex. Additionally, the clustering of pro-
caspase-1 forms its own prion-like filaments that separates from
the ASC filaments allowing the auto-cleavage and formation
of the active caspase-1 p10/p20 tetramer, which then processes
cytokine pro-forms into active molecules. Therefore, the cluster
of oligomerized NLRP3-ASC-pro-caspase-1 complex results in
the assembly of the multi-subunit wheel-shaped inflammasome
complex (Figure 1B) (3, 14, 26–29). The activation of NLRP3
inflammasome causes two main effects, the induction of
programmed cell death known as pyroptosis, and/or a pro-
inflammatory response caused by the release of inflammatory
cytokines IL-1β and IL-18.

The canonical activation process requires two main steps
known as priming signal and activating signal (Figure 1C).
The first step is provided by inflammatory stimuli from toll-
like receptors (TLR) ligands or endogenous molecules, which
induce the expression of NF-κB. Additionally, other endogenous
factors and mechanisms have been identified to prime the
inflammasome in sterile inflammatory diseases, such as reactive
oxygen species (ROS), hypoxia, metabolites, oxidized low-density
lipoprotein (oxLDL), amyloids, and complement. The second
step is usually promoted by PAMPs and DAMPs, which cause
potassium ion (K+) efflux, calcium (Ca+2) flux, lysosomal
damage or ROS production leading to NLRP3 inflammasome
assembly, caspase-1 cleavage, and thus the maturation and
secretion of IL-1β and IL-18 (27, 28, 30).

On the other hand, other pathways for NLRP3 inflammasome
activation were described (reviewed elsewhere (31, 32). The
non-canonical NLRP3 inflammasome pathway is activated by
most Gram-negative bacteria, and requires capase-11 (33)
as well as vacuolar rupture mediated by interferon-inducible
guanylate-binding proteins (GBPs). Also, an alternative NLRP3
inflammasome pathway is activated in human monocytes
induced by LPS and requires the molecules RIPK1, FAS-
associated death domain protein (FADD), and caspase-8 (34).

NLRP3 Inflammasome in Cancer
The function of NLRP3 inflammasome in human cancers is
rather a conflicting topic (8, 35), where there is evidence of a
protective anti-tumorigenic effect as well as a pro-tumorigenic
role in different types of cancer (summarized in Table 1). Here,
we discuss both roles shown in murine and human studies and
introduce new insights for the effect of oncogenic mutations in
inducing NLRP3 inflammasome activation in leukemias.

NLRP3 inflammasome have been shown to promote the
development of several cancers, where most studies were
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FIGURE 1 | The structure and canonical activation of the NLRP3 inflammasome complex. (A) The structure of NLRP3 is comprised of three main domains: (i) NLRP3,

containing an N-terminal pyrin domain (PYD), a central NACHT domain, and a C-terminal leucine-rich repeat (LRR) domain; (ii) adaptor apoptosis speck (ASC) which

contains PYD and CARD domains; and (iii) pro-caspase-1 which contains caspase-1 and CARD domains. (B) Upon activation, NLRP3 undergoes oligomerization,

recruits, and binds ASC, which subsequently recruits and binds pro-caspase-1 via their shared domains. The formation of this NLRP3 inflammasome cluster results in

a prion-like assembly of the complex. (C) The activation process of NLRP3 inflammasome consists of two main signals: (i) Signal 1 (Priming), which is induced by

pathogen recognition receptors (PRRs) such as toll-like receptors (TLRs) activated by pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide

(LPS), or other endogenous factors and mechanisms such as reactive oxygen species (ROS), hypoxia, metabolites, oxidized low-density lipoprotein (oxLDL),

(Continued)
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FIGURE 1 | amyloids, and complement (not shown). This leads to the transcriptional upregulation of Nlrp3, Ill1b, and Il18 via transcription factors such as NF-κB. (ii)

Signal 2 (Activation), is provided by PAMPs or damage-associated molecular patterns (DAMPs), such as adenosine triphosphate (ATP) and crystals which activate

different signaling events including ROS, lysosomal damage and K+ efflux, leading to activation and recruitment of NLRP3, oligomerization, and formation of NLRP3

inflammasome complex. The activation and formation of NLRP3 inflammasome has two main consequences: (i) cleavage of Gasdermin D GSDMD and inducing

pyroptosis and/or (ii) auto-cleavage and formation of the active caspase-1 and p10/p20 tetramer which then proteolytically cleaves pro-IL-1β and pro-IL-18 into their

bioactive forms IL-1β and IL-18 prior to their release.

focused on proliferation, survival, metastasis, angiogenesis, and
immunosuppression. In breast cancer, NLRP3 inflammasome,
and IL-1β production promote the infiltration of myeloid cells
such as myeloid-derived suppressor cells (MDSCs) and tumor-
associated macrophages (TAMs), providing an inflammatory
microenvironment thus promoting breast cancer progression
(36). In addition, NLRP3 inflammasome in fibroblasts is
further linked with progression and metastasis (37), and IL-
1β was found to have an immunosuppressive, pro-tumorigenic
in the tumor microenvironment (38). Besides, the NLRP3
inflammasome seems to be an effector for promoting metastasis
via the lymphatic system and favoring mammary carcinoma
development (39). Interestingly, Huber et al. (42) demonstrated
that IL-18 induced by NLRP3 causes the downregulation of
the soluble IL-22 receptor, IL-22-binding protein (IL-22BP),
leading to an increase in the ratio of IL-22/IL-22BP, which at
later stages promotes tumor development (42). Additionally,
NLRP3 deficiency leads to suppression of metastases and
methylcholanthrene (MCA)-induced sarcomas inmouse models,
which were dependent on NK cell and IFN-γ (44). In epithelial
skin cancer, mice deficient for IL-1R and caspase-1 showed partial
protection against skin cancer development (43). Besides, the
roles of inflammasomes in melanoma pathogenesis is established
(65). In particular, NLRP3 inflammasome was shown to be
constitutively expressed and activated in human melanoma
cells. However, these cells secrete biologically active IL-1β
in an autonomous way without the presence of exogenous
stimuli at late stages of the disease (54). In HNSCC, NLRP3
inflammasome is found upregulated in carcinoma tissues
and associated with carcinogenesis and cancer stem cells
(CSCs) self-renewal activation (46–48). Also, NLRP3 signaling
seems to drive immunosuppression in pancreatic carcinoma,
by promoting tolerogenic T cell differentiation and adaptive
immune suppression via IL-10 (56).

In hematological malignancies, the role of NLRP3
inflammasome in normal and malignant hematopoiesis has
been lately reviewed (66). We have recently reported a novel
function of the NLRP3 inflammasome in the pathogenesis of
hematological malignancies, particularly myeloproliferation
in leukemias. Interestingly, and despite the manifestation of
oncogenic KRAS in hematopoietic cells, we could show that
the NLRP3 inflammasome has a key role in the development
of several myeloid leukemias features in vivo, including
cytopenias, splenomegaly, and myeloproliferation. These
phenotypes are often seen in chronic myelomonocytic leukemia
(CMML), juvenile myelomonocytic leukemia (JMML) and
more rarely acute myeloid leukemia (AML) patients harboring
KRAS mutations. Additionally, we found evidence of NLRP3
inflammasome activation upon analyzing JMML, CMML, and

AML patient samples harboring KRAS mutations, providing a
stronger evidence of the participation of NLRP3 inflammasome
in the disease development (49). An open question remains
how the NLRP3 inflammasome activation drives hematological
malignancies, whether by a cell-autonomous signal that
promotes cell proliferation directly or via a modification of the
TME or both.

Conversely, NLRP3 inflammasome was also shown to have an
anti-tumorigenic role. Previously, Ghiringhelli et al. (67) have
proposed that NLRP3 inflammasome is required for dendritic
cell-mediated priming of IFN-γ-producing T lymphocytes
against tumor cells. NLRP3 inflammasome seems to act as a
negative modulator of tumorigenesis in colitis-associated cancer
(59), which is confirmatory to the study emphasizing the
role of NLRP3 inflammasome in the regulation of intestinal
homeostasis and thus protection against colitis (60). In addition,
NLRP3 inflammasome deficiency seems to cause increased
tumor burdens in colorectal cancer. Moreover, Dupaul-Chicoine
et al. (62) reported that NLRP3 inflammasome-mediated IL-18
production suppresses colorectal cancer metastatic growth in
the liver. In contrast to the tumor-promoting function of IL-22
discussed above, NLRP3/IL-18-mediated downregulation of IL-
22BP under controlled production can also provide protective
roles against intestinal tissue damage during the inflammation
peak (42). In melanoma, it was shown that NLRP3 in the TME
weakens the anti-tumor immune response to a cancer vaccine,
by assisting the migration of myeloid-derived suppressor cells
(MDSCs), thus suppressing the T cell response (64).

NLRP3 inflammasome signaling in humans is controlled by a
variety of factors, such as genetic polymorphisms and mutations
that can affect gene expression and ultimately lead to its
activation. These effects were seen in patients with inflammatory
diseases (68–71). Similarly, genetic polymorphisms involved
with NLRP3 inflammasome have also been linked to cancer.
For instance, a single-nucleotide polymorphism (SNP) in
the NLRP3 gene, Q705K (rs35829419), was correlated with
poorer survival in patients with invasive colorectal cancer (41),
postulated as a risk allele for sporadic metastatic melanoma
in Swedish males (72), and also occurs at high frequency
in pancreatic cancer patients (73). Additionally, those with
NLRP3 polymorphisms (rs10754558 and rs4612666) are more
susceptible to gastric cancer when infected with Helicobacter
pylori (74). In hematological malignancies, polymorphisms
restricted only to IL-1β and IL-18 were associated with clinical
and pathophysiological characteristics in AML and chronic
myeloid leukemia (CML) (75, 76). Besides, studies utilizing gene
expression profiling have also implicated the upregulation of
NLRP3 inflammasome in several cancers. For example, NLRP3 is
overexpressed in HNSCC, LSCC, and squamous cell carcinoma
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TABLE 1 | The dual effect of NLRP3 inflammasome in cancers.

Type of cancer Role and mechanism of action References

Pro-tumorigenic role

Breast cancer NLRP3 and IL-1β promoted tumor growth and metastasis via infiltration of myeloid cells (MDSCs and TAMs) providing an

inflammatory microenvironment

(36)

Murine and human cancer-associated fibroblasts sense DAMPs and activate NLRP3 inflammasome pathway leading to

IL-1β secretion

(37)

IL-1β in a TNBC mouse model has an immunosuppressive, pro-tumorigenic role in the TME, and blocking it improves

checkpoint inhibition by anti-PD1

(38)

S1PR1 on TAMs is associated with NLRP3 expression and correlated with lymphangiogenesis and metastasis (39)

Colon cancer NLRP3 is highly expressed in mesenchymal-like colon cancer cells (SW620). NLRP3 is upregulated in colon cancer

epithelial cells HCT116 and HT29 during EMT via TNF-α and TGF-β1

(40)

Colorectal cancer NLRP3 polymorphisms are correlated with poorer survival in patients with invasive CRC patients (41)

NLRP3 senses tissue damage, promotes IL-18 which downregulates IL-22BP leading to IL-22 production and promoting

tumor development at later stages

(42)

Epithelial skin cancer IL-1 and caspase-1 play a role in tumor development. ASC expressed in infiltrating myeloid cells acts as a driver of

tumorigenesis

(43)

Fibrosarcoma NLRP3 acts as a suppressor of NK cell antimetastatic function and CD11b+Gr-1intermediate (Gr-1int ) myeloid cells causing

decreased levels of CCL5 and CXCL9

(44)

Gastric cancer (GC) NLRP3 inflammasome activation and IL-1β secretion is upregulated in GC, induce epithelial cells proliferation and

tumorigenesis by binding to cyclin-D1 promoter which could be reversed by miRNA-22

(45)

HNSCC P2X7 and NLRP3 is upregulated in carcinoma tissues and had a role in survival and invasiveness of HNSCC (46)

NLRP3 is associated with inflammation-induced carcinogenesis and CSCs markers (47)

NLRP3 is overexpressed in human HNSCC tissues, and IL-1β levels were increased in their peripheral blood (48)

Leukemias (CMML,

JMML, and AML)

NLRP3/IL-1β cause myeloproliferation and cytopenias in KRAS-mutant leukemias, mediated by RAC1 activation and ROS

production

(49)

LSCC NLRP3 expression is higher in human cancer tissues compared to normal tissues. High expression of NLRP3 and IL-1β is

correlated with a poorer prognosis

(50)

Lung cancer NLRP3 inflammasome activation enhances the proliferation and metastasis of lung adenocarcinoma cell line A549,

mediated by AKT, ERK1/2, CREB, and upregulation of SNAIL

(51)

Lymphoma NLRP3 inflammasome, through IL-18, promotes lymphoma cell proliferation and inhibits apoptosis, via upregulation of

C-MYC, BCL2, and downregulation of TP53 and BAX

(52)

Melanoma Inhibition of NLRP3 by thymoquinone suppresses metastasis of murine and human melanoma cells by deregulation of IL-1β

and IL-18

(53)

NLRP3 is activated in human melanoma cells, but also constitutively secrete IL-1β via NLRP3 and IL-1R in the absence of

exogenous stimulation

(54)

Myelodysplastic

syndromes (MDS)

NLRP3 inflammasome is overexpressed in MDS HSPCs, drives clonal expansion and pyroptosis via alarmin signals, gene

mutations, and ROS production.

(55)

Pancreatic ductal

adenocarcinoma

NLRP3 promotes differentiation of CD4+ T cells into tumor promoting Th2 cell, Th17, and regulatory T cell population and

suppresses cytotoxic CD8+ T cell, mediated by IL-10

(56)

Prostate cancer Hypoxia causes priming of NLRP3 and AIM2 through upregulation of their receptors and pro-IL-1β (57, 58)

Anti-tumorigenic role

Colitis-associated

cancer (CAC)

NLRP3, PYCARD, or caspase-1 deficiency causes worse disease outcome and morbidity via increased IL-1β and IL-18

secretion

(59)

NLRP3 or ASC and caspase-1 deficiency leads to higher susceptibility to DSS-induced colitis and mortality rate due to

decreased IL-18 levels

(60)

Colorectal cancer

(CRC)

Lack of NLRP3 or caspase-1 causes reduced tumor burden due to decreased levels of IL-18 and impaired production and

activation of IFN-γ and STAT1

(61)

NLRP3 inhibits CRC metastatic growth in the liver by IL-18, NK cells, and increased expression of FasL (62)

NLRP3 senses tissue damage, promotes IL-18 which downregulates IL-22BP leading to IL-22 production and exerting

protective effects against intestinal tissue damage at the peak of inflammation

(42)

Hepatocellular

carcinoma (HCC)

NLRP3 inflammasome components were absent or significantly downregulated in human HCC. NLRP3 deficiency is

correlated with advanced stages

(63)

Melanoma NLRP3 inflammasome impairs anti-tumor response by facilitating migration of myeloid-derived suppressor cells (MDSCs) (64)

AML: acute myeloid leukemia, CMML: chronic myelomonocytic leukemia, CSCs: cancer stem cells, DAMPs: Danger associated molecular patterns, DSS: dextran sodium sulfate, EMT:

epithelial-mesenchymal transition, HNSCC: Head and neck squamous cell carcinoma, HSPCs: hematopoietic stem and progenitor cells, IL-22BP: IL-22- binding protein, JMML: juvenile

myelomonocytic leukemia, LSCC: laryngeal squamous cell carcinoma, NK: natural killer, PDAC: Pancreatic ductal adenocarcinoma, ROS: reactive oxygen species, S1PR1: S1P receptor

1, TAMs: Tumor associated macrophages, TGF-β1: transforming growth factor-β1, Th2: T helper type 2 cell, TME: tumor microenvironment, TNF-α: tumor necrosis factors-α, Triple

Negative Breast Cancer (TNBC).
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tissues compared to normal tissues, and often correlated with
poor prognosis and worse pathology (48, 50, 77). In bladder
cancer, high expression of NLRP3 inflammasome is also found,
making it a potential biomarker for its diagnosis (78). Further
studies will be required to understand the association between
genetic polymorphisms or differential expression of NLRP3
inflammasome and clinical features of cancer.

The understanding of this crosstalk between immunity,
inflammasomes, inflammation, and cancer is the foundation for
implementing anti-inflammatory therapeutic options in cancer
prevention and treatment.

THERAPEUTIC POTENTIAL OF
TARGETING NLRP3 INFLAMMASOME IN
CANCER

The involvement of the NLRP3 inflammasome in several
inflammation-related diseases, including cancer, provided it
as an attractive potential target in designing new drugs
for treatment. Several reported molecules and drugs were
shown to regulate the inflammasome activity. However, many
indirectly affect the inflammasome effector functions by targeting
other molecules. Until today, current treatment of NLRP3
inflammasome-related diseases in the clinic involve targeting
IL-1β or IL-1β receptor by monoclonal IL-1β antibodies or
recombinant IL-1 receptor antagonists. Nevertheless, several
specific small-molecule compounds have been shown to have
anti-inflammatory effects. Here, we review the variety of NLRP3
inflammasome inhibitors which either target components of its
canonical signaling pathway or are specific to NLRP3 protein
(summarized in Table 2).

Anakinra is a recombinant form of interleukin-1 receptor
antagonist (IL-1Ra) (79), which was approved by the US Food
and Drug Administration (FDA) for the treatment of rheumatoid
arthritis patients and autoinflammatory disorders (122, 123). We
have recently reported that treating KrasG12D-mutant leukemia
mouse models with anakinra improves myeloproliferation and
cytopenia phenotypes (49). Due to its clinical safety record and
short life, anakinra is an ideal drug to be used in conjugation
with chemotherapy. Indeed, one clinical trial on metastatic
colorectal cancer reported that the treatment of anakinra besides
fluorouracil (5-FU) plus bevacizumab showed survival benefit
(80), while another showed improved outcome in PDAC patients
when combining anakinra with gemcitabine, nab-paclitaxel, and
cisplatin (AGAP) (81). Although older reports indicated that
anakinra alone was not able to induce myeloma cell death, a
study involving multiple myeloma patients used anakinra in
combination with low-dose weekly dexamethasone, showed an
improved survival for over 10 years compared to the controls
(82). In breast cancer, the use of pre-clinical mouse models
indicated that anakinra treatment decreased tumor growth and
bone metastasis (83). Besides, a clinical pilot study investigated
the administration of anakinra prior to standard chemotherapy
in HER2-negative metastatic breast cancer female patients.
The study revealed that 2-weeks of anakinra treatment alone
could downregulate the expression of several genes for TLR

and IL-1β families, but upregulate the expression of tumor
lysis-associated genes like NK and CD8+ T-cells (84). These
results indicate a promising outlook for the use of anakinra
combined with standard chemotherapy in difference cancers.
However, the effectiveness of anakinra in antitumor applications
needs further investigation through in vivo models and later in
clinical trials.

Canakinumab is a human anti–IL-1β monoclonal antibody,
known for its high specificity to block IL-1β without interference
or cross-reactivity with other IL-1 family members. It was
approved by the US FDA and European Medicines Agency
for treating CAPS (23, 85). Canakinumab has a half-life of
a typical IgG1 antibody (124), which gives it an advantage
over recombinant IL-1Ra by ensuring the full inhibition of
IL-1β over a lengthier period. Interestingly, Canakinumab
Anti-inflammatory Thrombosis Outcomes Study (CANTOS),
a randomized, double-blinded clinical trial of 10,061 lung
cancer and atherosclerosis patients implemented the use of
canakinumab, and resulted in a significant reduction of lung
cancer-caused mortality. This antitumor effect was evident in
lung adenocarcinoma or poorly differentiated large cell cancer
due to the few cases of small-cell lung cancers or squamous
cell carcinomas (86). Currently, canakinumab is being applied in
clinical trials focusing on non-small cell lung cancer (NSCLC),
Triple Negative Breast Cancer (TNBC), colorectal cancer and
metastatic melanoma. In particular, two ongoing Phase III
clinical trials conducted by Novartis pharmaceuticals (CANOPY-
1 and CANOPY-2) are currently investigating pembrolizumab
plus chemotherapy with or without canakinumab, or docetaxel
with canakinumab in NSCLC (ClinicalTrials.gov Identifier:
NCT03626545, NCT03631199). The forthcoming results will
provide a better insight on in safety and efficacy of using
it as combination treatment. However, investigating the use
of canakinumab in other cancers remain less prominent, and
relatively requires more recognition.

P2X7R mediates NLRP3 inflammasome activation and
cytokine release. However, the role of P2X7R in tumor cells
is shown to be either pro-tumorigenic or anti-tumorigenic
[reviewed in Savio et al. (87)]. Nevertheless, several reports
have evaluated the potential of P2X7R antagonists in different
cancers and suggested their efficacy in altering tumor cells
and suppressing cancer progression. For instance, inhibition of
P2X7R caused attenuated tumor proliferation and invasion in
PDAC (88), and decreased invasiveness of A253 cells derived
from epidermoid carcinoma (46).

Thalidomide, a sedative or hypnotic drug, was used
particularly for morning sickness in pregnant women (100).
However, it was shown to have an anti-tumor activity due
to its antiangiogenic properties (125, 126), and later be an
inhibitor of caspase-1 (127). It has been approved as a first-line
therapeutic option in patients with advanced multiple myeloma
in combination with other chemotherapy drugs because of
its anti-tumor activities, resulting in improved response (101,
102). In prostate cancer, the administration of thalidomide
alone or in combination with docetaxel resulted in improved
response and overall median survival (103, 104). However, its
application in other cancer types, such as metastatic melanoma,
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TABLE 2 | A list of compounds targeting NLRP3 inflammasome either indirectly or directly and their therapeutic potential in cancers.

Compound name Mechanism of action Reference Studies in cancer

1. Targets of NLRP3 inflammasome pathway

NLRP3 inflammasome effectors

Anakinra Interleukin-1 receptor inhibitor (79) (80–84)

Canakinumab IL-1β inhibitor (23, 85) (86)

NLRP3 inflammasome activators

P2X7 receptor inhibitors P2X7R inhibitors (87) (46, 88)

NLRP3 inflammasome expression

Andrographolide NF-κB inhibitor (89, 90) (91–95)

Parthenolide NF-κB inhibitor (96) (97–99)

2. Targets of NLRP3 inflammasome components

Thalidomide Caspase-1 inhibitor (100) (101–107)

VX-765 Caspase-1 inhibitor (108) –

Pralnacasan Caspase-1 inhibitor (109) –

Ac-YVAD-CHO Caspase-1 inhibitor (110, 111) –

3. Direct targets of NLRP3 protein

MCC950 Directly binds to the Walker B motif of NACHT domain,

blocking ATP hydrolysis, and formation of NLRP3

inflammasome

(112, 113) (48, 49, 55)

Oridonin NACHT domain and Oridonin share cysteine 279 binding site (114) (115, 116)

CY-09 Directly binds NLRP3 motif, leading to the abrogation of ATP

binding to NLRP3

(117) –

OLT1177 Binds to NLRP3 inhibiting its ATPase activity (118, 119) –

Tranilast Directly binds to the NACHT domain of NLRP3 and inhibition

of ASC oligomerization

(120, 121) –

NSCLC and hepatocellular carcinoma (105–107), did not show
significant usefulness.

In addition, VX-765 (108), Pralnacasan (109), and Ac-YVAD-
CHO (110, 111) are other caspase-1 inhibitors which have shown
few but promising results in their potential in NLRP3-related
diseases. However, their potential as therapeutic targets in cancer
was not investigated.

Other compounds include Andrographolide (89, 90) and
Parthenolide (96), which mainly target NF-κB signaling pathway,
but the later was also shown to directly inhibit NLRP3
inflammasome by interfering with its ATPase activity (128),
have also shown promising results in several cancers (129).
For instance, andrographolide was shown to suppress cancer
cell proliferation, promote apoptosis in colon cancer (91),
breast cancer (92, 93), multiple myeloma (94), and enhance
the antitumor effect of 5-FU in colorectal cancer (95). Besides,
parthenolide have shown positive results in inhibiting tumor cell
proliferation in gastric cancer (97), pancreatic adenocarcinoma
(98), colorectal cancer (99). However, these two compounds have
not been taken further beyond pre-clinical studies.

A number of small-molecule compounds were proposed to
show specific inhibitory effects on NLRP3 activation [reviewed
further in detail elsewhere (130, 131)]. One example is MCC950,
which prevents NLRP3-induced ASC oligomerization, leading
to the inhibition of both canonical and non-canonical NLRP3
inflammasome activation as well as IL-1β secretion, presenting
it as a promising agent in NLRP3-related diseases (112).

Mechanistic studies have revealed that MCC950 directly binds
to the Walker B motif of the NLRP3 central NACHT domain,
blocking the hydrolysis of ATP and thus the formation of
NLRP3 inflammasome. This action is independent of K+ efflux,
Ca2+ flux, or NLRP3–ASC interactions, and occurs without
interfering with TLR signaling or the priming step of NLRP3
activation (112, 113, 130). The use of MCC950 in head and
neck squamous cell carcinoma was shown to delay tumorigenesis
and improve the antitumor response by reducing the numbers
of MDSCs; regulatory T cells (Tregs) and TAMs (48). Besides,
MCC950 treatment in MDS was sufficient to halt restore effective
hematopoiesis by inhibition of pyroptosis (55). Furthermore, we
have recently reported that the use of MCC950 in KrasG12D-
mutant leukemia mouse models improves myeloproliferation
and cytopenia phenotypes, by attenuating NLRP3 inflammasome
(49). However, despite its promising potential in Parkinson’s
disease (132), preclinical and clinical reports studying MCC950
in cancer remain rather limited.

Oridonin is a major bioactive component of herbal plant
Rabdosia rubescens, and is widely used as an over-the-counter
(OTC) herbal medicine for the treatment of inflammatory
diseases (130). Studies have shown that Oridonin can specifically
inhibit NLRP3 inflammasome activation, where NACHT domain
and Oridonin share cysteine 279 binding site (114). The
ability of Oridonin to suppress cell proliferation was previously
demonstrated in breast (133) ovarian (115) and esophageal
(116) cancers. On the other hand, CY-09 (117), OLT1177(118,

Frontiers in Immunology | www.frontiersin.org 7 July 2020 | Volume 11 | Article 144420

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Hamarsheh and Zeiser NLRP3 Inflammasome Activation in Cancer

119), Tranilast (120, 121) present as promising specific NLRP3
inhibitors. However, their potential in NLRP3-related cancers has
not been investigated yet.

In conclusion, despite the promising prospective of the
compounds mentioned above, further studies are still needed
to fully understand their therapeutic potential in NLRP3-related
diseases, especially in cancers.

SUMMARY

Despite the well-characterized crucial functions for NLRP3
inflammasome in the immune system, their roles in cancer
remain rather complicated and elusive. The double-edged
sword effect of NLRP3 inflammasome in cancer appears to be
dependent on several factors, including its levels of expression,
downstream effector molecules (i.e., IL-1β or IL-18), cancer type,
stages of tumorigenesis as well as the potential presence of
mutations affecting NLRP3 expression. Therefore, in order to
further understand these roles, future research needs to address
several points: (i) driving factors of NLRP3 inflammasome
activation in tumors, such as oncogenic mutations or mutations
of inflammasome components, (ii) possible cross-talk pathways
and molecules interacting and affecting the regulation of NLRP3
inflammasome, (iii) effects of TME and its components on
NLRP3 inflammasome activation and vice versa, (iv) effect

of NLRP3 inflammasome on the regulation of immune cells,
antitumor immunity and efficiency of immunotherapy. In
summary, targeting the NLRP3 inflammasome or its downstream
pathways, either solely or in combination with chemotherapy
or other immunotherapeutic approaches, hold a promising
potential in cancers.
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Eosinophils are major effector cells against parasites, fungi, bacteria, and viruses.

However, these cells also take part in local and systemic inflammation, which are central

to eczema, atopy, rhinitis, asthma, and autoimmune diseases. A role for eosinophils

has been also shown in vascular thrombotic disorders and in cancer. Many, if not all,

above-mentioned conditions involve the release of intracellular nucleotides (ATP, ADP,

UTP, etc.) and nucleosides (adenosine) in the extracellular environment. Simultaneously,

eosinophils further release ATP, which in autocrine and paracrine manners, stimulates P2

receptors. Purinergic signaling in eosinophils mediates a variety of responses including

CD11b induction, ROI production, release of granule contents and enzymes, as well as

cytokines. Exposure to extracellular ATP also modulates the expression of endothelial

adhesion molecules, thereby favoring eosinophil extravasation and accumulation. In

addition, eosinophils express the immunosuppressive adenosine P1 receptors, which

regulate degranulation and migration. However, pro-inflammatory responses induced by

extracellular ATP predominate. Due to their important role in innate immunity and tissue

damage, pharmacological targeting of nucleotide- and nucleoside-mediated signaling in

eosinophils could represent a novel approach to alleviate eosinophilic acute and chronic

inflammatory diseases. These innovative approaches might also have salutary effects,

particularly in host defense against parasites and in cancer.

Keywords: eosinophils, extracellular ATP, extracellular adenosine, CD39, CD73, P1 receptors, P2 receptors,

inflammation

INTRODUCTION

Nucleotides and nucleosides are present at high concentrations within the cell where they exert
multiple functions. However, they are not restricted to the intracellular compartments but they
serve as extracellular mediators to eukaryotic cells (1, 2). A growing body of evidence indicates
that released nucleotides represent important modulators to several cell and organ pathways under
both physiological and pathological conditions. Their role in the cardiocirculatory and the nervous
system, in tissue metabolism, respiration and immune function, as well as in gastrointestinal and
hepatic disease pathogenesis has been described recently (3–7).

Extracellular purines and pyrimidines have been implicated in the regulation of ciliary
beat frequency, chloride/liquid secretion, goblet cell degranulation, epithelial mucus secretion,
transmission of the respiratory nervous stimuli and modulation of the airway vascular tone (8–10).
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Accordingly, inhaled ATP is a powerful bronchoconstrictor
in both healthy and asthmatic individuals. Furthermore,
extracellular ATP can act as a damage-associated molecular
pattern molecule (DAMP, also known as alarmin or danger
molecule) to activate the inflammasome with subsequent
upregulation of IL-1β, IL-18, and release of other pro-mobilizing
mediators like high molecular group box 1 (Hmgb1) and S100
calcium-binding protein A9 (S100A9) (11).

Under homeostatic conditions extracellular ATP levels
are rather low. This is due to a moderate release and
rapid degradation by extracellular ATP-metabolizing enzymes
(ectonucleotidases) (12, 13). However, in the course of infection,
inflammation, hypoxic conditions due to ischemia as well
as necrotic and apoptotic cell death ATP is released from
intracellular storage pools and can reach a concentration high
enough to be sensed by surrounding cells expressing P2 receptors
(14–16). Besides the unregulated ATP release as a consequence of
cell damage, mediated secretion of this extracellular messenger
occurs through plasma membrane molecules such as connexins,
pannexins, and P2X7 receptors (17–20). Apart from ATP, uridine
nucleotides (UTP, UDP and UDP-glucose) can also be released in
the extracellular space (21).

Eosinophils are polymorphonuclear cells mainly involved
in the immune defense, tissue remodeling and inflammation.
Activation and migration of these cells to inflammatory sites are
crucial to tissue defense. In addition to the classical immune
activators (chemokines, cytokines, microbial products, allergens,
complement components) eosinophils are also capable to sense
nucleotides that can amplify responses induced by other stimuli
(22). Thus, extracellular nucleotides contribute to eosinophilic
inflammation and tissue damage both in human and animal
models (23, 24). Therefore, nucleotides and nucleosides are
under intense investigation for their capacity to activate and
recruit eosinophils. In this regard, high levels of ATP are present
in the bronchoalveolar lavage fluid of patients suffering from
eosinophilic pneumonia. This mediator also correlates with uric
acid and IL-33 concentration (24, 25).

P2 RECEPTORS

P2 receptors are plasma membrane receptors for extracellular
nucleotides. On the basis of cloning, functional and

Abbreviations: AC, adenylate cyclase; ADO, adenosine; ADP, adenosine

diphosphate; ATP, adenosine triphosphate; BALF, bronchoalveolar lavage fluid;

BzATP, 2’,3’-O-(4-benzoyl-benzoyl)ATP; C3a, complement factor 3a; C5a,

complement factor 5a; CCL11, (eotaxin-1); CCL24, (eotaxin-2); CCL26, (eotaxin-

3); CNS, central nervous system; COPD, chronic obstructive pulmonary

disease; CR, complement receptor; DAMP, damage-associated molecular pattern;

ECP, eosinophil cationic protein; EDN, eosinophil-derived neurotoxin; EPO,

eosinophil peroxidase; EPO, eosinophil peroxidase; GM-CSF, granulocyte

macrophage-colony stimulating factor; GTP, guanosine triphosphate; HDM, house

dust mite; ICAM-1, intercellular adhesion molecule-1; IL, interleukin; LPS,

lipopolysaccharides; LT, leukotriene; MBP, major basic protein; MCP, monocyte

chemoattractant protein; OVA, ovalbumin; PAF, platelet-activating factor;

PGD2, prostaglandin D2; MSCs, mesenchymal stromal cells; PSGL-1, P-selectin

Glycoprotein Ligand-1; ROIs, reactive oxygen intermediates; TGF-β, transforming

growth factor β; TNF-α, tumor necrosis factor α; UDP, uridine diphosphate; UTP,

uridine triphosphate; VCAM-1, vascular cell adhesion molecule 1.

pharmacological data, two P2 receptor subfamilies have
been described: P2X and P2Y receptors (2, 26). Differences in
nucleotide sensitivity and specificity of the P2 receptor subtypes,
allow the activation of distinct P2 receptor subsets depending on
the nucleotide concentration and kind.

The P2X receptor subfamily represents ligand-gated ion
channels selective for monovalent and divalent cations. These
ion channels are homo- or in some cases hetero-multimers
with carboxyl- and amino-terminal cytoplasmatic domains (27,
28). In mammals, seven different subunits have been identified
and named P2X1-P2X7. Extracellular ATP is an agonist for
all P2X subtypes and regulates their permeability to Na+,
K+, Ca2+, Mg2+. While the majority of P2X receptors is
rapidly desensitized (e.g., P2X1 and P2X3), the non-desensitizing
P2X7 represents a peculiar subtype having a long carboxyl-
terminal domain allowing the receptor to undergo a permeability
transition from a plasma membrane channel to a large plasma
membrane pore depending on ATP concentration and the way of
stimulation (26).

Stimulation of the P2X7 subtype by high ATP concentrations
is associated with a permeability transition due to the opening of
a membrane pore with a cut-off of 900 Da (27). Transmembrane
ion fluxes, driven by pore opening, induce transcription and
secretion of different inflammatory cytokines such as IL-1β, IL-
18, IL-6 (23). Pharmacological blocking, genetic ablation and
attenuation of P2X7 function resulted in reduced inflammatory
responses (29–31).

The P2Y receptors are seven transmembrane G-protein-
coupled receptors with an extracellular amino-terminus and
an intracellular carboxyl-terminus. Eight human P2Y subtypes
have been identified and named: P2Y1, P2Y2, P2Y4, P2Y6,
P2Y11, P2Y12, P2Y13 and P2Y14 (32). They differ in agonist
specificity, coupled G-protein and transduced intracellular
signaling. However, according to amino acid homology and
presence of conserved motifs in the transmembrane α-helix
7, two groups have been described. The first group includes
the P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 subtypes, having 25–
52% amino acid identity and a Y-Q/K-X-X-R motif in the
transmembrane α-helix 7 (33).

To the second group belong P2Y12, P2Y13 and P2Y14, with
sequence homology of 47–48% and the presence of the K-E-
X-X-L motif (2). Some evidence suggests that the two P2Y
subgroups differ in G-protein coupling. Hence, the receptors
of the first group couple to Gq/G11proteins, contributing to
calcium release via phospholipase C/inositol-1,4,5-triphosphate
activation; while receptors of the second group couple to Gi/0
proteins, inhibiting adenylate cyclase (AC) (34). Different P2Y
agonists have been identified, among them both adenine and
uridine nucleotides (35). P2Y1, P2Y12, and P2Y13 subtypes are
preferentially activated by ADP (36), whereas UDP is an agonist
at P2Y6. While P2Y2 can be activated by both UTP and ATP,
P2Y4 and P2Y11 are selective for UTP and ATP, respectively. Last
but not least, P2Y14 is activated by UDP-glucose (35).

In the last two decades, P2 receptors gained attention
for their wide tissue distribution and number of modulated
pathophysiological responses. This has also prompted several P2-
based therapeutic approaches (37), as in the context of kidney
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disease, cardiovascular and metabolic disorders as well as central
nervous system (CNS) inflammation.

P1 RECEPTORS

Similar to the P2Y receptors, the P1 receptors are seven-
transmembrane G-protein-coupled receptors but their natural
agonist is adenosine (ADO) (38). ADO exerts ambiguous effects
in different tissues, depending on cell type and P1 receptor
subtypes predominantly expressed (39–41).

Four receptors subtypes have been identified and named:
A1 (ADORA1), A2A (ADORA2A), A2B (ADORA2B), and A3
(ADORA3), respectively. The main differences between the
subtypes concern the affinity to ADO, the coupled G-protein
families and effects on AC. While A1 and A3 inhibit AC, A2A
and A2B drive its activation (38). ADO concentration of the
extracellular milieu ranges from 100 to 500 nM and increases
to levels in the low micromolar range as a consequence of
inflammation, hypoxia and ischemia. Among the subtypes, A2B
shows the lowest affinity for ADO. Accordingly, A1, A2A and
A3 are activated by lower ADO concentrations (10–50 nM);
whereas A2B needs a rather high agonist concentration (1mM)
for stimulation.

Primarily, adenosine receptors have been associated with
dampening acute inflammation and tissue injury. On the one
hand the inhibition of pro-inflammatory cytokine production
and on the other hand the induction of suppressive cytokines
as well as regulatory immune cell differentiation are two known
effects of the anti-inflammatory responses driven by P1 receptors.
Nevertheless, in the context of rheumatoid arthritis or multiple
sclerosis P1 receptors have also been implicated in inflammatory
cell recruitment (42–44).

ECTONUCLEOTIDASES

Four main groups of plasma membrane enzymes are endowed
of the ability of hydrolyzing extracellular nucleotides,
transforming ATP and ADP to ADO thus shifting purinergic
receptor activation from P2 to P1 subtypes. Activity
of ectonucleotidases is fundamental to avoid excessive
accumulation of nucleotides in the extracellular milieu and
to terminate P2 signaling (45). The following families have been
described: ectonucleoside triphosphate diphosphohydrolases

(NTPDases), ecto-5
′

-nucleotidase (CD73), ectonucleotide
pyrophosphatase/phosphodiesterases (NPP) and alkaline
phosphatases (12). NTPDases (among which NTPDase1 or
CD39) catalyze the conversion of ATP or ADP to AMP and
are highly expressed by immune cells and the vasculature
(46–48). Extracellular AMP is further hydrolyzed to the anti-
inflammatory ADO by CD73 (49, 50). However, the CD73 driven
ADO generation has been associated with the potent suppression
of anti-cancer immune responses. Thus, inhibitors of CD73 for
the use in clinical practice are highly desired (51).

The proposed important immunoregulatory activities of
ectonucleotidases are to prevent the development of autoimmune
conditions. Accordingly, we recently observed that CD39

overexpression ameliorates experimental colitis and prevents
hypoxia-related damage in vivo in a dextran-sulfate-sodium-
induced colitis model. In addition, exogenous administration of
a recombinant form of human CD39L3 (APT102) boosted the
regulatory effects of endogenous CD39 in vivo and enhanced
in vitro Treg functions in Crohn’s disease (48). Likewise, the
administration of apyrase, which has ectoenzymatic activity
comparable to CD39, attenuated peribronchial eosinophilic
inflammation and reduced the levels of Th2 cytokines in
the bronchoalveolar lavage fluid of mice with allergic airway
inflammation (52).

EOSINOPHIL GRANULOCYTES

Eosinophils are granulocytes deriving fromCD34+ bonemarrow
precursors expressing CD38 and CD125. Thereby, IL-3, IL-5,
and GM-CSF exposure have been reported to induce eosinophil
differentiation (53, 54). The differentiation process occurs
in about 8 days and is mainly driven by the transcription
factors GATA-1, GATA-2, c/EBP, and XBP1 (55–58). Cytokines
(particularly IL-5) and chemokines (CCL11, CCL24, CCL26)
promote the release of eosinophils from the bone marrow (59).
After circulating in the peripheral blood for 8–12 h, mature
eosinophils home into tissues (mammary gland, adipose tissue,
uterus, gut, lung) where they contribute to maintaining organ
integrity and promote B and T cell immune function (60–64).

Under pathophysiological conditions such as atopic diseases,
rhinitis, eczema, asthma and parasitic infections, chemokine-
mediated CCR3 receptor activation on eosinophils as well as
the stimulation with cytokines such as IL-4, IL-5, IL-9, IL-
13, GM-CSF, RANTES, MCP-3, and MCP-4 have been linked
to the recruitment and accumulation of eosinophils in tissues
including nasal mucosa, lungs, heart, skin, liver and bile
ducts, gut and nerves (65–69). In addition, eotaxin, IL-4, and
IL-13 have been shown to induce the up-regulation of the
adhesion molecules VCAM-1 and PSGL-1 on epithelial cells
and fibroblasts thus further promoting eosinophil trafficking
and recruitment (70, 71). In contrast, IL-6, and IL-11 decrease
tissue infiltration by eosinophils through inhibiting VCAM-1
expression and decreasing production of type 2 cytokines. Pro-
inflammatory cytokines such as IL-1, IL-12, and TNF-α up-
regulate endothelium adhesion molecules, including VCAM-1,
thereby favoring eosinophil diapedesis (67, 72, 73).

Eosinophils themselves produce different cytokines including
IL-1, IL-3, IL-4, IL-5, IL-6, IL-8, TNF-α, TGF-β, GM-CSF and
pro-inflammatory mediators such as leukotriene C4 (LTC4),
platelet-activation factor (PAF) (71, 74), the granular cationic
proteins, major basic protein (MBP) 1, MBP 2, eosinophil
cationic protein (ECP), eosinophil-derived neurotoxin (EDN)
and eosinophil peroxidase (EPO). MBP which is present in the
crystal core of the specific granules has cytotoxic effects due
to interference with electrical properties and permeability of
the cell membrane. MBP also triggers degranulation of mast
cells and basophils (75). ECP favors the entry of cytotoxic
molecules by forming voltage-insensitive, non-selective pores in
the membrane of target cells (54, 68). ECP and EDN, that belong
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FIGURE 1 | Eosinophils play multiple roles within the organism. Eosinophils

are actively involved in the defense against multicellular parasites (e.g., worms)

as well as fungi, bacteria, and viruses. However, they also show detrimental

responses by damaging tissues and organs such as in rhinitis, asthma, atopy,

eczema, etc. Involvement of eosinophils in lung tumor progression and in

thrombosis have been also shown but their role has to be adequately

evaluated.

to the ribonuclease A superfamily, kill single-stranded RNA
pneumoviruses (76). In addition, eosinophils generate reactive
oxygen species, hypohalous acids and lysosomal hydrolases that
are toxic for bacteria and parasites but also for surrounding
tissues (77–80) (Figure 1).

P2 RECEPTORS EXPRESSED BY
EOSINOPHILS

There is currently no systematic study on the expression
of P2 receptor specific mRNAs and proteins in eosinophils.
Another source of uncertainty is represented by the fact that
the expression of individual P2 subtypes is not replicated in
all studies. This bias can be due to the presence (or absence)
of contaminating cells in different eosinophil preparations
and/or to sensitivity of the techniques used. Different studies
revealed that human, murine and rat eosinophils express
mRNAs for different P2X and P2Y receptors including P2X1,
P2X4, P2X5, P2X7, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11 (81–85).
An RNASeq study confirmed expression of P2Y6 and P2X5
mRNAs (86). Proteomic studies have shed light on expression
of P2 receptor proteins, showing that human blood eosinophils
express P2Y2, P2Y4, P2Y13 and P2Y14 as well as P2X1,
P2X2 (87). Several pharmacologic studies performed with P2
receptor agonists and antagonists confirmed functionality of
the receptors on eosinophils. Interestingly, currents evoked
by the P2X agonist alpha, beta-methylene ATP were lower
in eosinophils derived from asthmatic subjects compared to
eosinophils derived from healthy donors, although P2X1 mRNA
and protein expression was comparable in both groups. However,

this effect in eosinophils isolated from asthmatics was negated by
pharmacological degradation of extracellular ATP using apyrase,
suggesting that P2X1 receptors were partially desensitized
due to ATP release by eosinophils and raising the question
why eosinophils from asthmatic subjects might release the
nucleotide (88).

NUCLEOTIDE MEDIATED RESPONSES IN
EOSINOPHILS

Eosinophils are activated by a plethora of soluble mediators
including cytokines such as IL-3, IL-5, IL-8, and GM-
CSF, CC- chemokines, complement factors C3a and C5a,
PAF, prostaglandin D2 (PGD2) and LPA, leukotriene B4
(LTB4) (59, 66, 89–91). Moreover, eosinophils respond to
alarmins released by damaged tissue during infection or
inflammation and stimulate immune responses and tissue
remodeling (92). Nucleotide stimulation of human eosinophils
was reported almost 30 years ago when it was shown that
extracellular ATP secreted by thrombin-stimulated platelets
exerted chemoattractant effects on human eosinophils (93, 94).
Of note, the interaction of platelets and eosinophils contributing
to tissue inflammation and remodeling was demonstrated in later
studies (95–97).

In addition, eosinophils are also capable of secreting ATP
which in turn autocrinally stimulates the release of different
pro-inflammatory mediators by activating P2Y2 receptors (98)
(Figure 2).

EOSINOPHILIC TISSUE INFILTRATION

Airway infiltration by eosinophils is driven by binding of the
cell surface molecule α4β1 integrin (VLA-4) on eosinophils
to VCAM-1. Accordingly, mice deficient for VCAM-1 fail
to develop pulmonary eosinophilia (99, 100). Extracellular
nucleotides (ATP, UTP) have been implicated in modulating
the expression and function of adhesion molecules including
VCAM-1 (101, 102). In this context, P2Y2 receptor signaling
might play an important role since it has been shown to
modulate both membrane-bound and soluble VCAM-1 in a
mouse model of OVA-induced lung inflammation. Furthermore,
P2Y2-deficiency in the samemodel was associated with a reduced
VCAM-1 up-regulation and lung eosinophilia compared to wild
type animals (84).

In addition to VCAM-1, eosinophils express the integrin
family member CD11b. CD11b interacts with CD18 to form
the complement receptor 3 (CR3) heterodimer, which also
contributes to eosinophil migration into inflamed tissue.
Endothelial cells release ATP in response to different stimuli
which might modulate the expression and function of CD11b
and other adhesion molecules in circulating granulocytes (103,
104). Hence, in vitro stimulation of human eosinophils with
ATP results in a fast (within seconds) and dose-dependent up-
regulation of CD11b (105). In line with this, exposure of human
eosinophils to pharmacological P2X and P2Y agonists induces
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FIGURE 2 | Responses induced by extracellular nucleotides and adenosine in eosinophils. Eosinophils express P1 and P2 receptor subtypes whose stimulation has

been linked to different responses. In particular, pro-inflammatory P2-mediated responses (left part) confer to eosinophils a pro-inflammatory behavior, while on the

contrary, anti-inflammatory P1-mediated responses (right part) induce anti-inflammatory effects.

CD11b expression (106). The fast kinetic suggests a nucleotide-
mediated plasma membrane trafficking by intracellularly stored
CD11b rather than an induced transcription of the cd11b gene
which would be delayed. The P2X1 receptor subtype seems to be
crucial in this context, since the P2X1 activation using alpha,beta-
methylene ATP promotes αMβ2 integrin–dependent eosinophil
adhesion. This effect was higher in eosinophils from healthy
individuals compared to patients suffering from asthma (88).

Apart from modulating the expression of adhesion molecules,
a direct chemotactic P2Y2-dependent effect of ATP on
eosinophils has been demonstrated. Of note, eosinophils derived
from asthmatic patients showed an up-regulation of P2Y2
receptor expression accompanied by an increased ATP-driven
migration (22, 106) (Figure 2).

RELEASE OF EFFECTOR
MOLECULES/PRO-INFLAMMATORY
MEDIATORS

Activated by different stimuli such as eotaxin and complement
proteins C3a and C5a, human eosinophils generate reactive
oxygen intermediates (ROIs). Extracellular nucleotides (ATP,
ADP, UTP, GTP, and BzATP) have also been implicated in the
production of ROIs via activating both P2X and P2Y receptors
(83, 106). In accordance, blood eosinophils isolated from

asthmatics showed an increased expression of P2X7 receptors
compared to healthy controls. Simultaneously, these eosinophils
produced higher amounts of ROIs after stimulation with the
P2X7 agonist BzATP (107).

Eosinophil granules contain different enzymatic and non-
enzymatic proteins promoting host defense but also the
pathogenesis of chronic diseases such as asthma, atopic
dermatitis, prurigo nodularis and vasculitis, where they cause
tissue damage associated with inappropriate release. Eosinophil
cationic protein (ECP) is a known marker of eosinophil
activation/participation under pathophysiological conditions
(108). Stimulation of eosinophils with ATP, UTP and UDP,
but not BzATP, ADP or alpha,beta-methylene ATP induces the
release of ECP in a dose-dependent and pertussis toxin sensitive
manner. This suggests the involvement of P2Y receptors,
potentially of the P2Y2 subtype, in purine-driven ECP release.
Similar observations have been made for the eosinophil derived
neurotoxin, a protein closely related to ECP with cytotoxic
properties, which is released following P2Y2 receptor activation
(83, 109). Human and mouse eosinophils also express the P2Y12
receptor. Accordingly, ADP stimulated secretion of eosinophil
peroxidase (EPO) in a P2Y12 dependent manner in human
eosinophils has been shown (85).

Interleukin-8 (IL-8) or CXCL8 is a human chemokine
produced by innate immune cells including eosinophils but
also by endothelial or epithelial cells. Augmented IL-8 secretion
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has been observed in eosinophils from patients with asthma or
atopic dermatitis (110, 111). Human eosinophils secrete IL-8
in response to stimulation with UDP, ATP, alpha,beta-meATP,
and BzATP, while UTP or ADP show no effect. From the
pharmacological profile of the response and use of P2 inhibitors,
both P2Y and P2X receptor subfamilies could be involved in IL-8
secretion. A participation of P2Y6, P2X1 and P2X7 subtypes has
been hypothesized (109). Moreover, a recent study demonstrated
that release of pro-inflammatory cytokines by human eosinophils
upon stimulation with the endogenous danger signal crystalline
uric acid is dependent on autocrine secretion of ATP in the
extracellular space and on the expression of purinergic receptors
(Figure 2) (98).

P1 RECEPTORS EXPRESSED BY
EOSINOPHILS AND THEIR RESPONSES

Adenosine P1 receptors have been shown to strongly suppress
eosinophil pro-inflammatory functions. In asthma, the anti-
inflammatory effects of the drug theophylline are enhanced
by A3 receptors expressed on eosinophils. Accordingly, ADO
administration boosts the beneficial effects of clinically relevant
theophylline concentrations, while administration of the selective
A3 antagonist MRS 1220 alleviates the anti-inflammatory effects
of theophylline. However, A1 and A2 antagonists fail to inhibit
theophylline treatment (112).

Furthermore, A3 activation in eosinophils triggers Ca2+

release from intracellular stores (113, 114). However, A3
activation does not appear to be a prime mechanism for free
radical generation by human peripheral blood eosinophils and
an inhibitory effect of A3 receptor subtypes on the degranulation
of human eosinophils and O2− release has been suggested (115,
116). The same adenosine receptor has been found to have
a regulatory function on the migration of eosinophils to the
site of inflammation. In vitro experiments revealed that the A3
receptor signaling inhibits the migration of human eosinophils in
response to PAF, RANTES, and LTB4 (117). This inhibitory effect
has been confirmed in vivo, where A3 activation significantly
reduces PAF-induced eosinophil migration to the lungs. This
suggests the use of A3 receptor agonists as a therapeutic approach
for asthma and rhinitis (118). Of note, an atypical form of the
A3 receptor found in human eosinophils is positively coupled
to AC and promotes anti-inflammatory responses by inducing
cAMP (113). In some of these human studies, expression of
A3 receptor in eosinophils was determined at the mRNA level
(113, 118) or by immune-labeling (116); while in most of these
earlier investigations presence of A3 receptor was indirectly
proven by functional or inhibition studies using selective agents
or antagonists (112, 115, 117), without the expression of the
receptor being proven per se. In recent studies, expression of
ADORA2B in human eosinophils was detected by RNA-seq
analysis that, however, did not detect presence of A3 receptor in
the same samples (86). Further, a subsequent proteomic study
by Wilkerson and colleagues, did not detect presence of P1
receptors in human eosinophils obtained from the peripheral
blood. These discrepancies might result from differences in

the eosinophil purification protocols or, alternatively, in the
specificity of the techniques used. Further studies are needed
to combine eosinophil RNA and proteomic profiling along with
functional investigations, to resolve these apparent incongruities.

Under certain circumstances, selected adenosine receptors
are also responsive to inosine, a purine formed by deamination
and breakdown of adenosine. It has been shown that inosine
contributes to lung recruitment of eosinophils in a murine model
of allergic OVA-induced respiratory inflammation in an A2A-
and A3-dependent manner (119) (Figure 2).

NUCLEOTIDE METABOLIZING ENZYMES
EXPRESSED BY EOSINOPHILS

Information on expression and function of ectonucleotidases in
human eosinophils are lacking.

Although expression of CD39 (ectonucleotidase-1) was
demonstrated in human leukocytes from sputum and BALF, and
its activity was shown to be modulated by smoking and increased
in chronic obstructive pulmonary disease (COPD) (120), no clear
attribution of CD39 protein to human eosinophil cells has been
done so far.

In the context of asthma, some studies suggest a protective
effect of global (or on regulatory T cells) CD39 expression in the
modulation of eosinophil functions.

In the settings of ovalbumin-induced allergic airway
inflammation, systemic CD39 inhibition by ARL67156 or
through genetic deletion in regulatory T cells, worsens animal
clinical conditions. Interestingly, control mice (i.e., mice
with normal CD39 expression levels), present milder airway
inflammation, associated with significantly lower eosinophil
counts in BALF (121).

A correlation between CD39 levels in the thymus and
eosinophil infiltration in the BALF has been recently observed
also in experimental house dust mite (HDM)-induced allergic
asthma. Results from this study suggest the beneficial effects of
multiple doses of adipose tissue-derived mesenchymal stromal
cells (MSCs). Notably, animals exposed to three doses of MSCs
present significantly reduced inflammation in the lungs, this
being associated to increased levels of CD39 in the thymus and
lower eosinophil counts in the BALF (122).

CONCLUSIONS

While in healthy subjects the number of eosinophils in
the peripheral blood is low, it can increase dramatically
under pathophysiological conditions such as atopic
dermatitis, bronchial asthma, eosinophilic esophagitis,
gastritis, gastroenteritis, colitis or hematological malignancies
(54, 62, 71, 80, 123). The large body of evidence supporting the
critical role of eosinophils in parasitic and inflammatory diseases
has prompted and intensified investigations on potential targets
to modulate cellular responses of eosinophils.

Inflammation is associated with the release of nucleotides in
the extracellular space, where they serve as ligands for purinergic
receptors. Purinergic signaling represents an ubiquitous signal
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transduction and regulatory system (7). Eosinophils express
a wide range of purinergic receptors and purinergic receptor
activation is associated with the recruitment of eosinophils
into inflamed tissue, ROIs production, the release of effector
molecules and the secretion of pro-inflammatory cytokines.
Thus, the inhibition of purinergic receptors on eosinophils would
be highly desirable for reducing detrimental immune responses
and tissue damage related to various disorders. In accordance,
blocking P2 receptors signaling using specific inhibitors or
P2 receptor deficiency could be associated with decreased
eosinophilic inflammation in diverse animal models. Given the
wide range of specific P2 receptor inhibitors available and
the successful application in clinical trials, further research in
P2 inhibition as therapeutic strategy for treating eosinophilic
diseases in humans is warranted.

Besides targeting eosinophil migration and activation, in
inflammation another potential approach is the modulation of
eosinophil-platelets interactions. In asthma patients it has been
demonstrated that platelets bind to eosinophils in the blood.
This event directly correlates with the occurrence of spontaneous
or clinically induced (e.g., allergen challenge) asthmatic attacks
(124). One randomized, placebo-controlled clinical study on the
use of the anti-P2Y12 platelet inhibitor “Prasugrel” in asthmatic
patients, has shown a slight, although not significant reduction,
in the bronchial inflammatory burden (125).

However, other P2Y12 inhibitors (used for the treatment
of thrombosis) have failed to control eosinophil recruitment
in animal models of allergic inflammation (126), suggesting
different levels in platelet activity in response to vascular
injury, when compared to allergic responses (127). Furthermore,
different studies confirmed the involvement of P2Y1 and P2Y14
receptors in platelet-dependent eosinophil recruitment in the
lungs (126, 128, 129).

New developments of effective treatments for eosinophilic
diseases, like asthma or allergy, are also important because
eosinophils are a major source of intravascular tissue factor, a
key initiator of blood coagulation (130). Disorders characterized
by eosinophil accumulation have been associated with an
increased risk of thrombosis. A study conducted on a cohort of
patients affected by hypereosinophilia confirmed the presence
of increased tissue factor expression in eosinophils from these
patients compared to healthy controls (131). However, further
investigation is needed to confirm whether this finding is truly

associated with an increased risk of thrombosis. A comprehensive
profiling of eosinophil P1 and P2 receptor expression pattern at
both mRNA and protein levels would shed light on the function
of these receptors in eosinophils, as well as on their biology
and contribution to the regulation of pathologically relevant
eosinophil responses.

Moreover, differences in the purinergic signaling of
different eosinophil subpopulations could exist and be
important for diseases where eosinophil participation is
predominant (132, 133). Therefore, isolation of eosinophils
subpopulations and analysis of their purinergic network would
be requested. Another prerequisite is the characterization
of the complete panel of cytokine/chemokines released by
eosinophils in response to nucleotide stimulation. In future
studies, it would be relevant to check the effect of ATP and
other nucleotides on production of eosinophil preeminent
cytokines and chemokines such as IL-5, eotaxin and RANTES.
Further efforts should be done to elucidate expression and
function of ectonucleotidases CD39 and CD73 in human
eosinophils; this would give a more complete picture of the
purinergic signaling of these cells and would help to interpret
relationships between purinergic signaling in eosinophils and
other cell types involved in the immune response and tissue
remodeling. Eosinophils are thought to play either positive
or negative roles in cancer, depending on type of tumor (59).
Since nucleosides and nucleotides are present in the tumor
microenvironment and heavily affect immune response against
cancer, it would be worthy to check whether stimulation of the
purinergic network of eosinophils modulate their responses
against tumors.
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INTRODUCTION

The Adenosine System: Enzymes, Transporters, and Receptors
Over the years, a number of evidences have pointed out the relevant contribution of the adenosine
system in the regulation of different physiological functions, highlighting a deep involvement of
this nucleoside in shaping the digestive functions (1). Of note, such modulatory effects are tightly
related to the levels reached by this nucleoside in the biophase of its own receptors (2). In this
regard, it has been well reported that the adenosine levels vary considerably based on the health
status of the tissues (3).

Under physiological conditions, low levels of adenosine are detected in the extracellular milieu,
which stems mainly from the intracellular activity of S-adenosylhomocysteine hydrolase, which
converts the S-adenosylhomocysteine into adenosine (1). Once synthesized, adenosine is extruded
from the cells via nucleoside transporters, classified into: (a) equilibrative nucleoside transporters
(ENTs), bidirectional transporters, acting on the intra- and extracellular levels reached by the
nucleoside; (b) the concentrative nucleoside transporters (CNTs), promoting the intracellular influx
of adenosine against its concentration gradient. Once re-uptaken intracellularly, adenosine is
quickly phosphorylated into adenosine monophosphate (AMP) by adenosine kinase or deaminated
into inosine via the catabolic enzyme adenosine deaminase (1). Under pathological conditions,
the extracellular levels of adenosine increased markedly, mainly via the up-regulation of the
ecto-nucleoside triphosphate diphosphohydrolase 1 (CD39)-5′-nucleotidase (CD73) enzyme axis,
which quickly convert the extracellular adenosine 5’-triphosphate (ATP) into adenosine (4).

The extracellular levels of adenosine are tightly controlled by adenosine deaminase which
converts this nucleoside into inosine, and then to the end product uric acid via xanthine oxidase (5).
In parallel, adenosine kinase also takes part to finely tune the extracellular adenosine concentration,
phosphorylating it once recovered inside the cell (1).

The physiological and pathophysiological activity of adenosine are mediated by the engagement
of four specific G-protein-coupled receptors named A1, A2A, A2B, and A3 (6). The A1 and A3

receptors, once stimulated, induce an intracellular release of calcium via interaction with Gi, Gq,
and Go proteins (7). The A2A and A2B receptors, related with Gs or Golf, activate adenylyl cyclase
(7). Of note, A2B receptors can also elicit the activation of the phospholipase C via Gq protein (7).

Adenosine System in IBD Pathophysiology
IBDs are chronic relapsing disorders affecting the digestive tract, clinically classified as Crohn’s
disease or ulcerative colitis based on symptoms, disease location, and histopathological features (8).

A common denominator observed in IBD patients is deregulated intestinal mucosa functions
as well as an exuberant activity of immune cell populations (9, 10). Indeed, in IBD patients
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the barrier function appears critically compromised, thus leading
to an increased permeability to noxious intraluminal stimuli.
In particular, the bacteria, overwhelming the intestinal barrier,
infiltrate the lamina propria triggering the mucosal immune
system activity and spurring the inflammatory process (11). In
parallel, the IBD patients display both a T cell dysfunction as well
as an antigen-presenting cell alteration (9, 10).

Clinically, it has been reported that Crohn’s disease can affect
any part of the digestive tract (12). In particular, this disorder is
characterized by “patches,” affecting some areas of the gut, leaving
other sections completely unaltered (12). Histologically, Crohn’s
disease displays a transmural inflammation of the bowel wall
(12). By contrast, ulcerative colitis is limited to the colon and the
rectum, with an inflammation occurring only in the innermost
layer of the lining of the intestine (12).

Immunologically, Crohn’s disease is characterized by a
TH1/TH17 paradigm, leading to a marked release of IL-1β, IL-6,
IL-12, IL-17, IL-21, IL-22, IL-23, IL-26, TNF, and IFN-γ (13). The
ulcerative colitis patients showed a TH2/TH9 paradigm, which
determines a massive production of IL-4, IL-5, IL-9, IL-13, and
IL-25 (13).

Over the years, the increasing availability of different
preclinical models of IBDs, allowed a better understanding of
the pathophysiological mechanisms underlying these diseases
(14). At present, more than 60 animal models have been
established to study IBD, distinguished in chemically induced,
congenial mutant, cell-transfer, and genetic models (14).
Among the chemical-induced colitis models, the dinitro- or
trinitrobenzene sulfonic acid (DNBS or TNBS, respectively),
oxazolone and dextran sulfate sodium (DSS)-induced colitis are
widely employed (15). DNBS- or TNBS-administration elicited
a TH1/TH17 immune response, closely mimicking the Crohn’s
disease features (15). The DSS-induced colitis, despite being
widely employed, is a spurious model, displaying a TH1/TH2

cytokine pattern (15). By contrast, ulcerative colitis in humans is
well mimicked by the oxazolone-induced colitis, which typically
exhibits a TH2 immune response (15).

Among the genetically engineered murine models of colitis,
the IL-10-knockout mice spontaneously develop a transmural
pancolitis and cecal inflammation, similar to human Crohn’s
disease (14). In addition, the adoptive transfer models, induced
by the selective transfer of immune cell types, usually CD4+ T
cells, in immunodeficient animals, provided relevant information
about the role of T cells in shaping the mucosal immunity (14).

In parallel, the availability of a number of cell culture
systems allowed to in vitro dissect the relevance of various cell
populations in IBD onset and development (16). However, the
cell culture models display several points of criticisms. Indeed,
most of the cell lines employed are often immortalized neoplastic
cell lines (16). In particular, the colonic cell lines Caco-2,
HT29 and T84, despite displaying morphological and functional
features of differentiated intestinal epithelial cells, they are
characterized by neoplastic features in terms of phenotype and
metabolism, thus not adequately representing the physiological
or the inflammatory condition (16). In this regard, the primary
human intestinal epithelial cells obtained from healthy subjects
or IBD patients should be the most representative model, but

unfortunately their employment is complicated by the extreme
phenotype variability and by the reduced viability once in
culture (16).

Over the years, several evidences highlighted a critical role of
adenosine in the maintenance of intestinal homeostasis, and in
orchestrating the interplay between the intestinal epithelial cells,
the neuromuscular compartment and the enteric immune system
(1). In particular, adenosine and its receptors demonstrated a
profound reorganization in the inflammatory contexts, taking a
significant part in shaping the immune responses (17). On these
premises, several studies investigated the therapeutic potential
of ligands acting on the adenosine system in the management
of intestinal inflammation (17). However, a critical evaluation of
the available pre-clinical studies about the efficacy of drugs acting
on the adenosine system in managing the chronic inflammatory
bowel diseases, is complicated by the heterogeneity of the in vivo
and in vitro models employed, which could lead, in some cases,
to conflicting results.

Role of Adenosine System in Intestinal
Inflammation
Crohn’s patients with active disease displayed an increased A2A

receptor mRNA expression in colonic mucosa, while no changes
were observed in patients with ulcerative colitis (18). Conversely,
others reported a decreased mRNA and protein expression of
A2A receptor in sigmoid colonic mucosa from active ulcerative
colitis patients (19, 20). In addition, the authors observed that
A2A receptor expression was oppositely related with miR-16

expression (19). In particular, miR-16, targeting the 3
′

-UTR of
A2A receptor mRNA, has been found to inhibit A2A receptor
transcription (19). Zhang et al. (20) observed a correlation
between the increase in miR-15 and a decreased expression of
A2A receptor mRNA in colonic tissues from ulcerative colitis
patients. The authors demonstrated in HT-29 cell lines that
miR-15 downregulated A2A receptor mRNA expression, which,
in turn, decreased the activation of pro-inflammatory NF-κB
signaling (20).

Several studies showed that in the presence of bowel
inflammation, A2A receptors critically regulate T cell functions.
Naganuma et al. (21) reported that co-transfer of CD45RBlow

or CD25+ Th cells lacking A2A receptors to immunodeficient
mice transferred of pathogenic CD45RBhigh Th cells failed to
prevent disease. Conversely, co-transfer of wild-type CD45RBlow

or CD25+ Th cells prevented the onset of the disease,
revealing a critical involvement of A2A receptor in the onset of
experimental colitis.

The pharmacological activation of A2A receptors, via inosine
administration, has exerted beneficial effects in animals with
colitis induced by TNBS, indicating the A2A receptor activation
as an intriguing pharmacological strategy for management of
gut inflammation (22). Likewise, oral administration of PSB-
0777, a scarcely absorbed A2A receptor agonist, alleviated bowel
inflammation in oxazolone-induced colitis rats (23). However,
treatment with CGS21680, a recognized selective A2A receptor
agonist failed in ameliorating a murine model of DSS-induced
colitis (24).
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The discrepancy in term of efficacy about the pharmacological
A2A receptor stimulation in the murine models of colitis,
could be ascribable to the difference in the pathophysiological
mechanisms underlying such experimental models. Indeed, it has
been widely recognized that the T cells play a relevant role in the
onset and development of TNBS or oxazolone colitis (25, 26), but
not in DSS colitis (27). Of note, the main immunomodulatory
action of A2A receptors is mainly targeted to T cell population
and only marginally on other immune cell populations (28). In
line with this evidence, a number of data showed a lack of efficacy
of CGS 21680 in stemming the phlogistic process, such as the DSS
colitis, mainly driven by macrophages (29, 30).

Besides A2A receptors, enteric immune and non-immune
cells, with particular regard for intestinal epithelial cells, express
A2B receptors (31, 32). Indeed, both patients and mice with
colitis displayed an increased A2B receptor expression in the
intestinal epithelial cells (33). In this context, A2B receptors
hold a key role in the maintenance of gut epithelial barrier
integrity and functions, through the regulation of secretory
activity, permeability and interaction with bacteria, pivotal
factors implicated in IBD (33). Of note, the endothelial cells
and the macrophages also showed the presence of A2B receptors
(34). Previous studies showed that the pharmacological block
or gene deletion of A2B receptor ameliorated the colitis in mice
(35, 36). Conversely, Frick et al. reported that both the genetic or
pharmacological ablation of A2B receptors augmented the course
of colitis, thus suggesting a protective role for A2B receptors
(37). In addition, they demonstrated that mice with A2B receptor
gene deletion in intestinal epithelial cell were less susceptible
to the development of bowel inflammation, thus confirming a
pivotal role of A2B in the protection against colitis, suppression of
inflammation as well as in preserving intestinal barrier integrity
(38). These conflicting data regarding the role of A2B receptors
in bowel inflammation could result from different experimental
designs, environmental variability and differences in knockout
murine strains, including variation in bacterial flora composition.

Of interest, a role of A3 adenosine receptors in the
pathophysiological mechanisms of IBDs has also been described.
Indeed, both patients with ulcerative colitis and in animals
with experimental colitis displayed a decrease in A3 receptor
expression in colonic tissues (18, 39, 40). However, others
reported an increased level of A3 receptors in peripheral blood
mononuclear cells of Crohn’s patients (41). In a recent study,
Ren et al. (42) showed that patients with ulcerative colitis
were characterized by a decreased A3 receptor expression
along with an increase in TNF and IL-1β concentrations
as well as NF-κB p65 expression in colonic mucosa. The
pharmacological stimulation of A3 receptors via 2-Cl-IB-MECA
reduced the TNF and IL-1β levels and counteracted the
NF-κB p65 activation in colonic tissues from UC patients,
thus suggesting a role of A3 in the pathogenesis of bowel
inflammation (42). Mabley et al. (43) demonstrated that IB-
MECA treatment to DSS mice, TNBS rats as well as IL-
10−/− animals exerted beneficial effects on bowel inflammation,
ameliorating the clinical symptoms and histological signs of
inflammation and suppressed inflammation (43, 44). Conversely,
gene deletion of A3 receptor in mice was associated with a

lower susceptibility to the development of colitis induced by
DSS (40).

Such conflicting findings could be ascribed to different
experimental conditions, including differences in gut microbiota
composition, regarded as an important factor in the development
of colitis (45). In addition, it is worth noting that the ablation
of A3 adenosine receptors determines an upregulation of other
adenosine receptors, such as A2A, which, in turn, exert protective
effects in bowel inflammation (21).

Of interest, besides the adenosine receptors, the CD39/CD73
axis, involved in the adenosine synthesis, is emerging as a novel
pharmacological target in IBD (4).

Gibson et al. observed a decreased expression of CD39 on Tregs

from IBD patients when compared with healthy subjects (46).
In addition, the authors reported that treatment with the anti-
TNF infliximab determined an increase in CD39 expression on
Tregs (46). Bai et al. observed a decreased expression of CD39 in
a Th17 subpopulation with suppressor activity of patients with
IBDs (47). Others reported an increase in CD39+CD8+ T cells
in peripheral blood as well as in the lamina propria of Crohn’s
disease patients (48). Both CD39+ Th17 and CD39+CD8+

T cells have been found to exert immunosuppressive effects
through the production of adenosine (48). Confirming the
immunosuppressive role of CD39 in IBDs it has been observed
that a single nucleotide polymorphism determining low levels
of CD39 expression was related with a higher susceptibility to
the development of Crohn’s disease in a case-control cohort
including 1,748 IBD patients and 2,936 controls (49). Taken
together, these findings suggest a protective role of CD39 in
patients with IBDs.

To better understand the role of CD39 in the pathogenesis
of bowel inflammation has been well characterized by means
of animal models of colitis. Friedman et al. showed that
CD39−/− mice displayed an enhanced inclination to DSS-
induced colitis. Such an effect was rescued by the administration
of exogenous ATPase apyrase (49). Conversely, others observed
that TNBS mice with CD39 gene deletion were characterized
by a lower severity of colitis as compared with wild type TNBS
animals (50). In addition, they observed that the severity of
oxazolone-induced colitis was comparable in CD39 KO mice
as well as in wild-type animals (50). The explanation for
these heterogenous results could be ascribed to the different
experimental models of colitis employed. Indeed, the TNBS
model shows clinicopathological features reminiscent to Crohn’s
disease while oxazolone-induced colitis resembles ulcerative
colitis (26). However, further investigations in mice with cell-
specific and temporal targeting of CD39 are needed to clarify the
involvement of CD39 in bowel inflammation.

A critical role for CD73 in maintaining intestinal homeostasis
has also been described (51–54). Doherty et al. displayed that
patients with IBD were characterized by an increased numbers
of circulating and colonic CD73+CD4+ T cells during the active
phase of inflammation and such an increase was counteracted
following anti-TNF treatment (55). In addition, patients with
active IBD displayed an increase in CD73 on Th17 cells (55).

In order to better clarify the role of CD73 in the onset of
bowel inflammation, several studies have been carried out in
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pre-clinical models of colitis. One of these works demonstrated
an increased expression of CD73 in colonic mucosa of mice
treated with TNBS (51). In addition, the induction of colitis in
CD73−/− mice was associated with worsening clinical course
and inflammation. On the same line, the pharmacological
blockade of CD73 with the selective inhibitor α,β-methylene
ADP increased the severity of colitis inwild type TNBSmice (51).
In addition, Bynoe et al. demonstrated that the protective effects
of CD73 in bowel inflammation resulted from the induction of
IFN-αA, whose administration reversed the deleterious CD73
phenotype (56). However, the activation of CD73 on Tregs was
not dispensable for its protective effects in bowel inflammation.
Moreover, the co-transfer of wild-type Tregs to Rag−/− mice
exerted beneficial effects on bowel inflammation comparable to
co-transfer of CD73 deficient Tregs (56). Based on these data,
it is evident that the relevance of CD73 in the pathophysiology
of the intestinal inflammation. In particular, by means of
CD73 knockout mice, it has been demonstrated that a reduced
expression of this enzyme in effector immune cells contribute
to the IBD pathogenesis. Moreover, the critical role of CD73 in
the maintenance of the colonic epithelium integrity has been
also observed, as corroborated by the marked degree of colonic
inflammation and tissue damage in CD73 knockout mice.

Growing evidence highlights an involvement of ADA in
the IBD pathophysiology (5). Maor et al. showed that Crohn’s
patients during the active phase of the disease displayed higher
circulating ADA and ADA2 levels in comparison with patients
in remission as well as in healthy subjects (57). In addition, the
increased circulating ADA levels in patients with ulcerative colitis
were found to correlate with the severity of the disease (58). An
enhanced expression of ADAwas also observed in animal models
of experimental colitis (59, 60). Of note, treatment with ADA
inhibitor alleviated the severity of inflammation in animals with
colitis (60–63). These findings suggest that ADA could represent
a potential diagnostic marker as well as therapeutic targets in the
treatment of IBDs. Indeed, the simplicity to evaluate the ADA
expression and activity associated with a good cost effectiveness
ratio represent elements in favor of using this enzyme as a useful
inflammatory biomarker in IBD patients, despite this additional
controlled studies are needed to further corroborate the role of
ADA as an independent index of inflammation in IBDs.

As previously described, the nucleoside transporters
actively participate in maintaining the adenosine levels in
the extracellular space. In this regard, Wojtal et al. observed
that colonic tissues obtained from patients with IBDs displayed
increased mRNA levels of ENT1, ENT2, and CNT2 mRNA, thus
leading to hypothesize a reduced bioavailability of endogenous
adenosine (64). Interestingly, Aherne et al. reported that the
administration of dipyridamole, a ENT 1 and ENT2 blocker,
exerted protective effects in a murine DSS model of colitis (65).
In this context, the ENT1 gene deletion did not counteract the
progression of colitis, while ENT2 gene deletion was protective
against intestinal inflammation, suggesting a critical involvement
of ENT2 in the onset and development of bowel inflammation
(65). The mechanisms underlying the anti-inflammatory effects
of ENT2 inhibition or deficiency resulted from the increased
levels of extracellular adenosine that exerted its protective effects

through A2B receptor activation (65). Unfortunately, no data
are available about the beneficial effects of a pharmacological
modulation of ENT2 in other murine models of colitis, not
allowing a comprehensive evaluation of its efficacy in intestinal
inflammation supported by other immune paradigms.

Overall, current human and pre-clinical evidence support
the contention that pharmacological modulation of purinergic
pathways is a suitable therapeutic approach for the treatment
of bowel inflammation. In particular, A2A and A3 receptor
agonists displayed beneficial effects in intestinal dysfunctions
associated with inflammatory bowel disorders, including visceral
pain, diarrhea, ischemia and functional disorders. However,
the role of purinergic system in the modulation of digestive
functions still remains poorly understood and deserves extensive
future investigations.

Role of Adenosine System in Abdominal
Pain
Abdominal pain is a symptom frequently associated with the
presence of IBDs (66). Indeed, a number of patients in the acute
phase of IBD will experience pain, typically improving upon
disease activity decrease (66). Of note, a large part of IBD patients
continue experiencing pain also under clinical remission (66).

Over the past years, huge efforts have been addressed to
characterize the role of the endogenous mediators released
during enteric dysfunctions and involved in pain perception (1).
In this regard, adenosine receptors are actively involved in the
rearrangement of enteric sensory pathways (1).

At present, the role of adenosine in the pathophysiology
of visceral pain has been scarcely deepened and often the
available evidences are conflicting (67, 68). Pre-clinical studies
pointed out an inhibitory effect exerted by adenosine, via A1

receptor activation, on pain transmission both at pre-synaptic
level, counteracting the pain-associated neurotransmitter
release, such as glutamate, calcitonin gene-related peptide and
substance P, and at post-synaptic level, through membrane
cell hyperpolarization (68, 69). Sohn et al. reported that the
intrathecal administration of the A1 receptor agonist R-PIA,
but not the A2A receptor agonist CGS-21680 hydrochloride,
decreased the visceromotor responses (70). Currently, some
authors paid greater attention to the potential anti-nociceptive
effects of A3 agonists (71, 72). For instance, Hou et al.
demonstrated the analgesic effects of A3 receptor agonists
in a mouse model of visceral pain following experimental
colitis (71). At present, no data are available about the putative
analgesic effect of A2A ligands on abdominal pain associated
with experimental colitis. This is an intriguing point to address,
since as previously described, the A2A agonists are actively
under evaluation for IBD management based on their marked
immunomodulatory effects.

Role of Adenosine System in Enteric
Dysmotility Associated With IBD
Over the years, increasing efforts have been addressed to
unravel the link between the enteric inflammation and the
neuronal alterations in the digestive tract. Inflammation-induced
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changes occur in several neuronal compartments, including the
sympathetic prevertebral ganglia, the dorsal root ganglia, and the
enteric ganglia (73).

In this context, the evaluation about the involvement of
adenosine pathways in the pathophysiology of enteric dysmotility
associated with IBDs, has become an area of active investigation
(1, 74, 75). Several evidences highlighted amarked reorganization
of adenosine receptor expression and activity in the presence of
intestinal inflammation (1, 17, 74, 75). Different murine model of
chronic bowel inflammation revealed a reduced modulatory role
by A1 receptors in the small and large bowel (76, 77). The loss
of A1 receptor activity has been ascribed to a sustained exposure
at marked concentrations of adenosine, leading to a receptor
desensitization (14). A reduced inhibitory modulation via A1

receptors on colonic cholinergic responses have been observed
in a rat model of DNBS-colitis. However, the authors related
this event to an increased degradation of endogenous adenosine,
with a consequent reduction of its bioavailability, rather than
to a receptor desensitization (14). Accordingly, Antonioli et al.
reported a limited A1 receptor activation arising from a site-
specific production of adenosine, operated by the enzyme CD73,
preferentially in the A2A receptor biophase (14), previously
reported as critically involved in the modulation of colonic
nitrergic transmission in DNBS-treated rats (78). In the presence
of intestinal inflammation, a reorganization of the receptor
expression and function as well as the presence of functional
interplays with metabolic pathways, have been described also
for A2B receptors (59). Indeed, the inhibitory control exerted
by A2B receptors on colonic contractile responses was impaired
in the presence of experimental colitis, despite an up regulation
of such receptors in the colonic neuromuscular layer from
inflamed animals (59). Molecular investigations demonstrated
the co-localization of adenosine deaminase with the A2B receptor,
suggesting a functional interplay, where adenosine deaminase,
catabolizing the endogenous adenosine, reduced A2B receptor
activation (59). In accordance, adenosine deaminase has also
been shown to play a modulatory role in the activity of the A3

receptor in the inflamed colon (79).
Analogously to what was reported for A2B receptors,

the presence of colonic inflammation was characterized
by the loss of the A3 receptor inhibitory activity, an up-
regulation of functioning A3 receptors occurred (79). This
altered A3 receptor expression occurred concomitantly
with an increase in adenosine deaminase expression in the
colonic neuromuscular compartment of rats with colitis, thus
decreasing the bioavailability of endogenous adenosine in the
A3 receptor microenvironment (79). Based on these evidences,
the pharmacological blockade of adenosine deaminase may
represent an intriguing strategy to limit the inflammatory
process and contextually counteract the enteric motor alterations
typically observed in IBD patients.

CONCLUDING REMARKS

The etiopathogenesis of IBD is still poorly understood, despite a
number of recent evidences revealing that enhanced knowledge
about the immunological mechanisms underlying IBD onset
and progression represent an interesting target to design
and synthesize innovative therapeutic strategies (80). The
current available pharmacological options are effective, but
unfortunately some of these drugs displayed marked adverse
events, such as infections or an enhanced risk of neoplastic
diseases or they lose their effectiveness over time. Indeed, about
one third of the patients show a slight response to these
therapies (80).

A number of pre-clinical studies revealed the involvement
of the adenosine system in the modulation of immune,
functional and sensory systems of the gastrointestinal tract
(81). In this regard, an increasing interest has been focused
toward the A2A and A3 receptor agonists as interesting
targets to generate novel pharmacological entities useful to
manage the digestive dysfunctions. Indeed, the use of selective
A2A or A3 receptor agonists showed beneficial effects in
counteracting the inflammatory burst in murine models of
colitis, acting on both the innate and acquired component
of the immune system (82–85). In parallel, the stimulation
of such receptor subtype revealed to exert a significant role
in the regulation of colonic neuromuscular activity in the
presence of bowel inflammation (77, 79). In particular, the
engagement of A2A or A3 receptors by selective agonists
appear to be an interesting method of management for IBD
patients displaying an increased gut motility and diarrhea
(77, 79). A number of encouraging data are emerging
about the modulatory role of adenosine receptors on visceral
sensitivity (71, 72). The A3 receptor agonists highlighted a
pain-relieving mediated through N-type Ca2+ channel block
and action potential inhibition, suggesting the A3 receptor
agonists as an innovative approach to manage the visceral
pain (59).

These data spurred the interest of the scientific community
toward the development of novel ligands acting selectively on
adenosinergic receptors/enzymes. These novel pharmacological
tools will allow to better deepen the pathophysiological
meaning as well as the putative therapeutic relevance of
the adenosine pathway, paving the way to the development
of novel therapeutic options useful for the treatment
of IBDs.
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The ectoenzymes CD39 and CD73 play a major role in controlling tissue inflammation
by regulating the balance between adenosine triphosphate (ATP) and adenosine. Still,
little is known about the role of these two enzymes and ATP and its metabolites in the
pathophysiology of inflammatory bowel disease (IBD). We isolated mononuclear cells
from peripheral blood and lamina propria of the large intestine of patients diagnosed
with IBD and of healthy volunteers. We then comprehensively analyzed the CD39
and CD73 expression patterns together with markers of activation (HLA-DR, CD38),
differentiation (CCR7, CD45RA) and tissue-residency (CD69, CD103, CD49a) on CD4+,
CD8+, γδ+ T cells and mucosa-associated invariant T cells using flow cytometry. CD39
expression levels of γδ+ and CD8+ T cells in lamina propria lymphocytes (LPL) were
much higher compared to peripheral blood mononuclear cells. Moreover, the frequency
of CD39+ CD4+ and CD8+, but not γδ+ LPL positively correlated with T-cell activation.
The frequency of CD39+ cells among tissue-resident memory LPL (Trm) was higher
compared to non-Trm for all subsets, confirming that CD39 is a marker for the tissue-
resident memory phenotype. γδ+ Trm also showed a distinct cytokine profile upon
stimulation – the frequency of IFN-γ+ and IL-17A+ cells was significantly lower in γδ+

Trm compared to non-Trm. Interestingly, we observed a decreased frequency of CD39+

γδ+ T cells in IBD patients compared to healthy controls (p = 0.0049). Prospective
studies need to elucidate the exact role of this novel CD39+ γδ+ T-cell population with
tissue-resident memory phenotype and its possible contribution to the pathogenesis of
IBD and other inflammatory disorders.

Keywords: CD39, CD73, ATP, adenosine, γδ+ T cells, gut, IBD, tissue-residency

INTRODUCTION

Inflammatory bowel disease (IBD) is the umbrella term for Crohn’s disease (CD), ulcerative colitis
(UC) and indeterminate colitis (IC). These diseases share aetiological and pathophysiological
features and are characterized by a combination of genetic and environmental factors causing
immune dysregulation (1, 2), and altered composition of the gut microbiota (3, 4). As a result,
chronic inflammation of the gastrointestinal tract occurs along with a loss of epithelial barrier
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function (5). Clinically, these diseases are characterized by
symptoms like diarrhoea, abdominal pain, fatigue, weight loss,
and extraintestinal manifestations (6, 7).

Lymphocytes of the large intestine are exposed to high levels
of extracellular adenosine triphosphate (ATP) secreted by i.a.
commensal bacteria (8, 9). The balance between extracellular
ATP and its metabolite adenosine has been identified as a major
factor controlling inflammation in the intestinal milieu (10, 11).
On the surface of T cells, ATP can bind to purinergic receptors
(e.g., P2X7) leading to an increased Ca2+ influx and an enhanced
cellular activation (12), whereas adenosine generally dampens
the T-cell effector functions by binding to P1 receptors such
as the A2A-receptor (11, 13). The degradation of extracellular
ATP to adenosine is controlled by the ectoenzymes CD39 and
CD73 (14–16). In mouse models of dextrane sulfate sodium
(DSS)-induced colitis, genetic deletion of either CD39 (17) or
CD73 (18) caused exacerbation of disease. In humans, single
nucleotide polymorphisms of the human ENTPD1 gene that lead
to a decreased expression of CD39 are associated with increased
susceptibility to Crohn’s disease (17). In 2018, Raczkowski et al.
demonstrated that CD39+ and CD73+ cells in human mucosal
tissue protect the epithelium from the proinflammatory effects
of commensal bacteria-derived ATP in the intestinal lumen (13).
Altogether, these findings strongly suggest that CD39 contributes
to the regulation of the inflammatory microenvironment, and
that changes in CD39 expression or function might promote
the onset and perpetuation of IBD. Surprisingly, there are only
few human studies that comprehensively assessed the CD39 and
CD73 expression patterns of different T-cell subsets in peripheral
blood and mucosal tissue of healthy individuals versus IBD
patients (19, 20).

Tissue-resident memory cells (Trm) are another T-cell
population that has only recently been described, which
contributes to the (dys)regulation of the immunological response.
These cells are particularly adapted to the intestinal niche (21–
23). Specific surface markers for Trm (e.g., CD69 and CD103), as
well as distinct transcriptional profiles (24) have been described
for these cells. For example, it has been shown that CD69+ Trm
in the lung are able to initiate potent immune responses via
production of IFN-γ and IL-2 while simultaneously displaying
a low turnover, thereby preventing excessive inflammation (24).
Thus, Trm are of particular interest in the pathogenesis of IBD
and display potential new targets for therapeutic approaches
(24, 25). Consequently, we wanted to re-evaluate these recent
findings in the context of IBD and the contribution of ATP-
converting enzymes. In particular, we investigated CD39 and
CD73 expression and function of Trm to distinguish them from
their recirculating counterparts.

In summary, using several comprehensive 16-color flow
cytometry panels, we were able to characterize the peripheral and
gut-resident immune cell compositions in healthy individuals
and IBD patients. We assessed the expression of CD39 and
CD73 together with markers of activation (HLA-DR/CD38),
differentiation (CCR7, CD45RA), and tissue-residency (CD69,
CD103, CD49a) on CD4+ and CD8+ T cells and non-
conventional subsets like γδ+ T cells and mucosa-associated
invariant T cells (MAIT) in peripheral blood mononuclear

cells (PBMC) and mucosal tissue. Our data hint towards a
potential role of CD39+ γδ+ T cells with tissue-resident memory
phenotype in IBD pathogenesis warranting future functional
and longitudinal studies focusing on the consequences of their
depletion in the mucosa of patients with IBD.

MATERIALS AND METHODS

Study Design
For this study, individuals undergoing colonoscopies were
recruited at the University Medical Center Hamburg-Eppendorf.
Samples from healthy subjects (n = 27) and patients diagnosed
with IBD (n = 24) were obtained during regular check-up
examinations or when patients were referred to the endoscopy
unit for further diagnostic exploration. Four to five double
biopsies from the colon mucosa were obtained with single-use
biopsy forceps and directly processed afterwards. Additionally,
we analyzed cryopreserved PBMC from healthy donors (n = 9),
UC and CD patients (n = 10). All individuals gave written,
informed consent and this study was approved by the local
Institutional Review Board of the Ärztekammer Hamburg
(PV5798, PV4444, PV4870) and conducted in accordance
with the declaration of Helsinki. Additional information such
as clinical symptoms and treatment, co-existing diseases, or
the histological analysis of biopsies were extracted from the
clinical data bank. Based on the data available, we evaluated
the disease status for each patient (26). For an overview
of the characteristics of patients who donated gut samples,
see Table 1A, for more detailed information about the IBD
patients, see Supplementary Tables S1, S2. An overview of
the patient characteristics of the analyzed PBMC samples can
be found in Table 1B. For a more detailed description, see
Supplementary Table S3.

Sample Acquisition and Processing
Collected in sterile PBS, the samples were processed as previously
described (27, 28). In brief, after incubation in Hank’s Balanced
Salt Solution (HBSS) containing DTT and EDTA for a short
digestion period, they were stored in 6-well, low-binding plates
overnight in RPMI supplemented with 10 % FCS, antibiotics and
antifungals (1 mg/mL Piperacillin/Tazobactam and 1.25 µg/mL
Amphotericin B). The next day, the remaining tissue was
disrupted by pipetting and filtered through a 100 µm nylon mesh.
After that, the isolated mononuclear cells from the lamina propria
were stained and measured immediately. In some cases, the
isolated lamina propria lymphocytes (LPL) were cryopreserved
and stained later due to the organizational set-up. Frozen PBMC
were thawed and stained directly.

Immune Phenotypic Analysis of Surface
and Intracellular Markers of Different
Lymphocyte Subsets
Cells were stained with Zombie NIR Fixable Viability
stain (BioLegend) and fluorochrome-conjugated antibodies
(Supplementary Table S4).
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TABLE 1 | Basic and clinical patient characteristics.

(A) LPL donors

Characteristics HD CD UC IC

n 30 13 15 1

Female/male 16/14 7/6 9/6 0/1

Median age at
sampling (RANGE)

61.3 (34–90) 38.38 (23–58) 45.67 (21–66) 31

Disease specific
medication

Mesalazine - 5 14 1

Azathioprine - 2 2 1

Corticosteroids - 1 2 -

Mercaptopurine - 1 -

Anti-TNF-α - 3 1 -

Anti-IL-12 +
Anti-IL-23

- 2 - -

Anti-α4β7 - 1 1 -

(B) PBMC donors

Characteristics HD CD UC

n 9 5 5

Female/male 5/4 2/3 1/4

Median age at sampling (RANGE) 25,33 (23-29) 48 (28-69) 38,4 (27-54)

Disease specific medication

Mesalazine - - 2

Azathioprine - 1 1

Corticosteroids - 2 3

Anti-α4β7 - 3 1

Anti-TNF-α - 1 -

HD, healthy donors; CD, Crohn‘s disease; UC, ulcerative colitis; IC,
indeterminate colitis; LPL, lamina propria lymphocytes; PBMC, peripheral blood
mononuclear cells.

Certain samples were stained intracellularly as well using
the FOXP3 Fix/Perm buffer set (eBiosciences, San Diego, CA,
United States) (29) according to the manufacturer’s protocol.
The samples were stained with the following fluorochrome-
labeled antibodies: anti-FOXP3 (AF647, clone: PCH101,
eBiosciences, San Diego, CA, United States), anti-IL17A (BV605,
clone: BL168), anti-IFN-γ (PE/Dazzle 594, clone: Mab11),
anti-IL-10 (BV421, clone: JES3-907), anti-CD4 (PerCP-Cy5.5,
clone: SK3) (all Biolegend, London, United Kingdom). For
compensation of the panels, single-stained CompBeads (Anti-
Mouse Ig,κ/Negative Control Compensation Particles Set, BD
Biosciences) were used. As a surrogate for the dye used for
the live/dead staining, we applied the APC-Cy7 conjugated
anti-CD14 antibody (Biolegend, London, United Kingdom). All
samples were analyzed on a BD LSR Fortessa flow cytometer
with FACS Diva version 8 (BD Biosciences) on a PC.

In vitro Stimulation
Before intracellular cytokine stainings (ICS), LPL or PBMC were
stimulated with 50 ng/mL PMA and 500 ng/mL Ionomycin
(Sigma-Aldrich, Seelze, Germany) and incubated at 37◦C and 5%
CO2 for 5 h. For Panel B, which did not include the measurement

of IL-10, we resuspended the cells in RPMI and added Brefeldin
A (1 mg/mL, Sigma−Aldrich, Seelze, Germany) after 1 h. For
detection of IL-10 (Panel C), we resuspended the cells in X-Vivo
Medium (Lonza Walkersville Inc., United States) and after
1 h, we added Brefeldin A and Monensin (2 mM, BioLegend,
London, United Kingdom). After 5 h, the cells were washed
with 2 mL PBS and stained for flow cytometry. For a detailed
portrayal over used LPL samples and conducted experiments, see
Supplementary Table S5.

Data Analysis and Statistics
Cytometric data were analyzed using FlowJo v10.6.2 for Windows
(FlowJo, BD, Franklin Lakes, NJ, United States). For statistical
analysis, GraphPad Prism version 7.01 for Windows (GraphPad
Software, Inc., La Jolla, CA, United States) was used. For multiple
comparisons we computed two-way ANOVAs, whereas for single
comparisons we used Mann–Whitney U tests. For matched
analysis, we performed Wilcoxon matched-pairs signed rank
tests. Before correlation analysis, we tested the expression of
the markers analyzed for Gaussian distribution. If d’Agostino
and Pearson normality test were passed, we applied Pearson’s
correlation and coefficient for bivariate correlation analysis. If
not, Spearman correlation was implemented. In the text, we
describe frequencies as means unless stated otherwise. The data
on the graphs are expressed as means +/- standard deviation. A p-
value equal or less than 0.05 was considered significant. p-Values
are displayed as follows: *p < 0.05, **p < 0.01, ***p < 0.001,
****p< 0.0001. Not significant: ns; p> 0.05. For the t-distributed
Stochastic Neighbor Embedding (t-SNE) analysis, we used the
t-SNE plugin in Flowjo version 10.6.2. Downsampling to 15,000
events was performed on seven healthy donors followed by
followed by concatenation into one file for t-SNE analysis (30).

RESULTS

LPL and PBMC Differ in Their Relative
T-Cell Subset Composition as Well as in
Their Expression Patterns of CD39 and
CD73
In a first step, we compared peripheral blood with intestinal
biopsies from healthy individuals undergoing check-up
colonoscopies with respect to the composition of T-cell subsets
and their expression of CD39 and CD73. Flow cytometry panels
were designed to differentiate between CD4+, CD8+, MAIT,
and γδ+ T cells which were further separated into Vδ2− and
Vδ2+ subsets for some analysis. The gating strategy is shown in
Supplementary Figure S1. In line with other reports (31, 32),
CD4+ T cells were the most frequent T-cell population in both
peripheral blood and the lamina propria of the gut epithelium.
However, while CD4+ T cells were more frequent in PBMC
compared to LPL, the proportion of CD8+ and γδ+ T cells
was higher in LPL than in PBMC (Figure 1A). Moreover, we
observed an accumulation of Vδ2− γδ+ T cells in the gut mucosa
compared to peripheral blood of healthy individuals (LPL 7.05%
vs PBMC 0.72%, p = 0.0005) (Figure 1B). Analysis of CD39
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FIGURE 1 | Relative composition of T-cell subsets and frequency of CD39+, CD73+ and CD39+ CD73+ T-cell subsets in LPL versus PBMC. (A) Frequencies of
CD4+, CD8+ and γδ+ T cells isolated from lamina propria (left) and from peripheral blood (right). (B) Differences of the frequencies of Vδ2− and Vδ2+ T cells between
PBMC (round shapes) and LPL (triangular shapes). (C) Differences of the frequencies of CD39+, CD73+ and CD39+ CD73+ CD4+, CD8+, and γδ+ T cells between
LPL and PBMC. Data from healthy donor’s LPL (n = 30/23) and PBMC (n = 9), presented as means +/- standard deviation. ns ≥ 0.05, *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001, as calculated by two-way ANOVA. LPL, lamina propria lymphocytes; PBMC, peripheral blood mononuclear cells.

and CD73 expression showed that the frequency of CD39+
cells was significantly higher in gut-resident γδ+ and CD8+
T cells compared to the peripheral blood (γδ+: LPL 81.23%
vs PBMC 0.577%, p < 0.0001; CD8+: LPL 59,37% vs PBMC
1.322%, p < 0.0001), while there was no significant difference
between peripheral and gut-resident CD4+ T cells (Figure 1C).
By contrast, the frequency of CD73+ cells was significantly
lower on CD8+ and γδ+ LPL, but was increased on CD4+ LPL
(Figure 1C). The frequency of CD39+CD73+ cells was increased
among gut-derived CD8+ T cells in comparison to peripheral
CD8+ T cells. Altogether, in healthy individuals the frequency of
CD39+ and CD73+ T cells considerably differed between PBMC
and LPL for the respective subsets.

LPL of IBD Patients Show Reduced
Frequencies of CD39+ γδ+ T Cells
Next, we compared mucosa-derived T cells of IBD patients
to those of healthy individuals. We observed no significant
differences in the overall frequencies of CD4+, CD8+, γδ+ T cells,
and MAIT (Supplementary Figure S2A). However, we observed
a decreased frequency of CD39+ cells among CD8+ and γδ+

T cells in individuals diagnosed with IBD compared to healthy
donors (γδ+: HD 78.36% vs IBD 57.65%, p = 0.0049; CD8+: HD
59.37% vs IBD 47.45%, p = 0.0325) (Figure 2A). This reduction
of CD39+ CD8+ and γδ+ T cells did not seem to normalize
after treatment as there was no significant difference between
LPL from patients in remission and patients with intermediate
or severe disease activity (Figure 2B). Gut-derived CD4+ T cells
did not show significant differences in the CD39 expression level
between healthy controls and patients, but we observed a trend

towards a higher frequency of CD39+ CD4+ T cells in patients
with intermediate or severe disease activity compared to those
patients who were in full remission (Figure 2B). In the MAIT
population, there was no difference regarding the frequency of
CD39+ cells present (Supplementary Figure S2B). Furthermore,
we did not observe any differences in the frequencies of CD73+
and CD39+ CD73+ cells among the CD4+, CD8+, γδ+ T cells,
and MAIT subsets between the healthy donors and the patient
group (Supplementary Figure S3).

CD39 Expression of Gut-Derived CD4+

and CD8+, but Not γδ+ T Cells, Was
Associated With Higher Expression of
Activation Markers
Since we only observed differences in CD39 expression between
healthy donors and IBD patients we put particular focus on the
thorough analysis of CD39+ T cells. To assess the activation
status of CD39+ T cells, we also analyzed the expression
of traditional markers associated with T-cell activation and
exhaustion (co-expression of HLA-DR and CD38, PD-1). We
did not find any significant differences between CD39+ T
cells from healthy individuals and IBD patients, either for
the frequency of PD-1+ or HLA-DR/CD38 double-positive T
cells (Figure 3A). In contrast, studying CD39+ versus CD39−
T cells in healthy individuals revealed significant differences:
regarding gut-resident γδ+ and CD8+ T cells, the frequency of
PD-1+ cells was significantly lower among CD39+ compared
to CD39− cells (γδ+: 2.41% vs 23.25%, p = 0.002; CD8+:
18.01% vs 32.96%, p = 0.0371) (Figure 3B). In contrast, the
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FIGURE 2 | Frequency of CD39+ LPL is decreased among γδ+ and CD8+ T cells of patients with IBD compared to healthy donors. (A) Frequencies of CD39+ γδ+,
CD8+, and CD4+ T cells from healthy donors (green, round shapes) and patients with IBD (red, round shapes). (B) Frequencies of CD39+ γδ+, CD8+, and CD4+ T
cells from IBD patients in remission (black, triangular shapes) and patients with intermediate or severe disease activity (red, triangular shapes). Data from LPL of
healthy donors (n = 30) and IBD patients (n = 29), presented as means +/- standard deviation. ns ≥ 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, as
calculated by Mann–Whitney U test. LPL, lamina propria lymphocytes; HD, healthy donor; IBD, patient with inflammatory bowel disease; IBD r, IBD patient in
remission; IBD i/s, IBD patient with intermediate or severe disease activity.

frequency of PD-1+ cells was significantly higher on CD39+
compared to CD39− CD4+ T cells (59.33% vs 43.9%, p = 0.0488)
(Figure 3B). However, further analysis did not reveal any
correlation between the expression of CD39 and PD-1 for any
T-cell subset (data not shown).

With respect to T-cell activation, we observed a significantly
higher frequency of HLA-DR/CD38 co-expressing cells among
CD39+ compared to CD39− CD4+ T cells, and also a
trend towards a higher frequency in the CD39+ CD8+ T-cell
subset (CD4+: 5.839% vs 1.475%, p < 0.0001; CD8+: 12.19%
vs 6.323%, p = 0.0797) (Figure 3C). Next, we performed
correlation analyses to determine whether CD39 expression
was associated with enhanced T-cell activation. Indeed, the
frequency of HLA-DR/CD38 double-positive T cells correlated
with the frequency of CD39+ cells of the CD4+ and CD8+
T-cell compartment. Interestingly, the γδ+ T cells did not
show elevated levels of activation markers among CD39+
γδ+ T cells compared to CD39− γδ+ T cells (3.611% vs
4.987%, p = 0.1729) (Figure 3C). There were no significant
differences detectable for the frequency of HLA-DR+/CD38+
and PD-1+ cells when we compared CD39+ and CD39−
T-cell subsets from healthy individuals with those from IBD
patients (Supplementary Figure S4A). In sum, gut-derived
CD39+ γδ+ T cells in healthy donors were characterized
by low expression of HLA-DR, CD38 and PD-1. While
preserving this phenotype, the frequency of CD39+ γδ+ T
cells in IBD patients was significantly decreased compared
to healthy donors.

CD39 Expression Is Associated With
Different Effector Cytokine Profiles of
Peripheral Versus Intestinal γδ+ and
CD4+ T Cells
Next, we wanted to gain further insight into the functionality
of CD39+ LPL and PBMC. Thus, we stimulated blood- and
gut-derived lymphocytes and performed ICS to assess the
frequencies of IL-17A+, IFN-γ+, and IL-10+ cells (exemplary
plots: Supplementary Figure S5). After 5 h of stimulation with
PMA/Ionomycin, peripheral γδ+ T cells from IBD patients
displayed significantly higher frequencies of IL-17A+ cells
compared to peripheral γδ+ T cells from healthy donors (IBD
1.687% vs HD 0.666%, p = 0.0326) (Figure 4A), contrary to
peripheral CD4+ or CD8+ T cells which displayed no differences
in IL-17A expression (Figure 4A).

Surprisingly, the small population of peripheral CD39+ γδ+

T cells consisted of potent IL-17A producers with significantly
higher frequencies of IL-17A+ cells than in the CD39− γδ+ T-cell
population (healthy: 11.16% vs 0.519%, p = 0.0078). Also, CD39+
CD4+ T cells showed higher frequencies of IL-17A-producing
cells compared to CD39− CD4+ T cells (Figure 4A). We
therefore wondered whether the gut-derived γδ+ and CD4+ T
cells had similar characteristics. In LPL, we did not see differences
in IL-17A production between healthy individuals and IBD
patients for any of the subsets analyzed. As observed in PBMC,
CD39+ CD4+ LPL displayed a higher frequency of IL-17A+ cells
than CD39− CD4+ LPL. In contrast to PBMC, the comparison
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FIGURE 3 | Comparative analysis of PD-1, HLA-DR and CD38 on CD39+ γδ+, CD4+, and CD8+ T cells in LPL of HD versus IBD and CD39+ versus CD39− LPL in
HD. (A) Comparison of the frequencies of PD-1+ and HLA-DR+ CD38+ CD39+ T cells between healthy donors (green shapes) and patients with IBD (red shapes).
(B) Comparison of the frequencies of PD-1+ and HLA-DR+CD38+ cells between CD39+ and CD39− γδ+ T cells of healthy controls. (C) Correlation between
frequencies of CD39+ and HLA-DR+CD38+ T cells. Spearman correlation analysis was applied. Data from LPL of healthy donors (n = 11/18) and IBD patients
(n = 12/18), presented as means +/- standard deviation. ns ≥ 0,05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, as calculated by Mann–Whitney U test (A),
Wilcoxon matched-pairs signed rank test (B) + (C), and Spearman correlation (C). HD, healthy donor; IBD, patient with inflammatory bowel disease; LPL, lamina
propria lymphocytes.
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FIGURE 4 | ICS after short term stimulation of γδ+, CD4+, and CD8+ T cells in PBMC and LPL with PMA/Ionomycin. (A) (Left) Frequencies of IL-17A+ γδ+, CD4+,
and CD8+ T cells from healthy donors (green) and patients with IBD (red); (center) Comparison of the frequencies of IL-17A+ cells between CD39+ and CD39− γδ+

T cells; (right) Comparison of the frequencies of IL-17A+ cells between CD39+ and CD39− CD4+ T cells; data from PBMC in upper row (triangular shapes), data
from LPL in bottom row (round shapes). (B) (Left) Frequencies of IFN-γ+ γδ+, CD4+ and CD8+ T cells from healthy donors (green) and patients with IBD (red);
(center) Comparison of the frequencies of IFN-γ+ cells between CD39+ and CD39− γδ+ T cells; (right) Comparison of the frequencies of IFN-γ+ between CD39+

and CD39− CD4+ T cells; data from PBMC in upper row (triangular shapes), data from LPL in bottom row (round shapes). (C) (Left) Frequencies of IL-10+ γδ+,
CD4+ and CD8+ T cells from healthy donors (green) and patients with IBD (red); (center) Comparison of the frequencies of IL-10+ cells between CD39+ and CD39−

γδ+ T cells; (right) Comparison of the frequencies of IL-10+ cells between CD39+ and CD39− CD4+ T cells; data from LPL (round shapes). Data from healthy
donor’s LPL (n = 17/12) and PBMC (n = 8) and IBD patients’ LPL (n = 11/9) and PBMC (n = 6), presented as means +/- standard deviation. ns ≥ 0.05, *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001, as calculated by two-way ANOVA and Wilcoxon matched-pairs signed rank test (comparison of CD39+ and CD39− cells).
HD, healthy donor; IBD, patient with inflammatory bowel disease; LPL, lamina propria lymphocytes; PBMC, peripheral blood mononuclear cells; ICS, intracellular
cytokine staining.
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of CD39+ and CD39− gut-derived γδ+ T cells did not show
significant differences in the frequencies of IL-17A-producing
cells.

We observed no significant difference of the frequency of
IFN-γ-producing cells between peripheral CD4+, CD8+, or γδ+

T cells of healthy individuals and the respective subsets from
patients suffering from IBD (Figure 4B). Moreover, we did
not find any association between CD39 expression and IFN-γ
production in the aforementioned peripheral T-cell subsets. In
LPL, there were also no differences detectable in terms of IFN-
γ production between the patients and the control group for any
of the subsets. However, comparing CD39+ with their CD39−
counterparts, CD39+ γδ+ T cells as well as CD39+ CD4+ T cells
showed a significantly lower frequency of IFN-γ+ cells (healthy:
CD4+: 47.12% vs 64.57%, p = 0.0004; γδ+: 43.16% vs 85.61%,
p = 0.0001) (Figure 4B). To investigate whether CD39+ T cells
have a rather tolerance inducing role in the gut environment,
we next looked for IL-10 production of these cells (33–36).
Notably, CD39+ CD4+ as well as CD39+ γδ+ T cells of IBD
patients showed a higher frequency of IL-10+ cells than their
CD39− counterparts (CD4+: 3.988% vs 1.309%, p = 0.0102; γδ+:
2.847% vs 0.821%, p = 0.023) (Figure 4C). Taken together, CD4+
T cells seem to maintain their IL-17highIFN-γlow phenotype
when migrating from peripheral blood into the gut mucosa. In
contrast, CD39+ γδ+ T cells from peripheral blood display an
IL-17AhighIFN-γhigh phenotype which is different from the IL-
17AlowIFN-γlow phenotype displayed by CD39+ γδ+ LPL. Gut-
derived CD39+ γδ+ T cells were furthermore able to produce
IL-10 in samples from healthy donors and patients with IBD.

The Majority of CD8+ and γδ+ LPL
Display a Tissue-Resident Memory
Phenotype That Is Associated With High
Expression of CD39
Taking the major differences in CD39 expression between blood
and gut and the unique cytokine profile of gut-resident CD39+
γδ+ T cells into account, we asked how the aforementioned

CD39+ T-cell populations might actually represent Trm. These
Trm were effector memory cells that we identified via CD69
and CD103 expression (for gating strategy, see Supplementary
Figure S1B). As described before by Mackay et al. (37), we
found significantly higher frequencies of CD69+CD103+ Trm
among CD8+ and γδ+ T cells than among CD4+ T cells in the
intestinal lamina propria of healthy individuals (Figure 5A). We
compared the frequency of CD39+ cells among CD69+CD103+
Trm with the non-Trm population (cells expressing none or
only one of the markers, Supplementary Figure S1B). The
frequency of CD39+ cells was significantly higher among Trm
in all subsets (γδ+: 85.7% vs 25.86%, p = 0.0117; CD4+:
30.37% vs 11.05%, p = 0.0078; CD8+: 69.06% vs 31.52%,
p = 0.0117) (Figure 5A).

CD39 as Trm Marker of γδ+ T Cells
In addition to the elevated frequency of CD39+ cells within
Trm, we found a positive correlation between the well-established
tissue residency marker CD69 (24, 38) and CD39 on γδ+ T cells
(p = 0.043, R2 = 0.464) (Figure 5B). To confirm our hypothesis
of the existence of this tissue-resident γδ+ T-cell population, we
performed a t-SNE analysis. As shown in Figure 6, three clusters
representing γδ+ T cells could be readily identified based on their
expression of the γδ T-cell receptor. One cluster corresponded
to Vδ2+ γδ+ T cells while Vδ2− γδ+ T cells were divided into
two clusters. The distribution of CD8+ and CD4+ T cells was
more heterogeneous (data not shown). All three clusters of γδ+ T
cells expressed CD39, CD69, CD103, and CD49a, while they were
negative for CD73.

Next, we evaluated whether the frequency of Trm and
their CD39 expression in LPL of IBD patients was different
from healthy donors. Interestingly, we were not able to
detect significant differences regarding the frequency of Trm
and CD39+ Trm either for CD4+, CD8+, or γδ+ T cells
(Supplementary Figure S4B). However, we observed a trend
towards a lower frequency of γδ+ Trm and CD39+ γδ+ Trm in
IBD patients compared to healthy donors (γδ+ Trm: HD 84.5%
vs IBD 67.64%; p = 0.2089; CD39+ γδ+ Trm: HD 83.94% vs

FIGURE 5 | Frequencies of CD69+ CD103+ γδ+, CD4+ and CD8+ LPL; CD39 as possible signature marker for Trm. (A) (Left) Frequencies of CD69+ CD103+ γδ+,
CD4+, and CD8+ LPL from healthy donors, two data points were removed after testing for outliers; (right) Comparison of CD39+ γδ+, CD4+, and CD8+ Trm (round
shapes) and non-Trm (triangular shapes) from healthy donors. (B) Correlation between frequency of CD69+ and CD39+ γδ+ LPL from healthy donors. R2 denotes
Pearson’s coefficient and p-value. Data of LPL of healthy donors (n = 8/9), presented as means +/- standard deviation. ns ≥ 0.05, *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001, as calculated by Friedman test with Dunn’s multiple comparisons test (A, left graph), Wilcoxon matched-pairs signed rank test (A, right
graph) and Pearson’s correlation analysis (B). Trm, tissue-resident memory cells; LPL, lamina propria lymphocytes.
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FIGURE 6 | Visualization of γδ+ Trm among CD3+ LPL. T-SNE map created from a concatenated file of CD3+ LPL of healthy donors (n = 7). Clusters of TCRγδ+

and TCRγ+Vδ2+ cells (top). TCRγ+Vδ2+ (blue) and TCRγ+Vδ2− (red and orange) were manually gated and overlaid on total CD3+ cells (bottom, left). Expression
of TCRγδ+, TCRγ+Vδ2+, CD69, CD103, CD49a, CD39, CD73 within the gated populations is depicted in histograms (bottom, right). Trm, tissue-resident memory
cells; LPL, lamina propria lymphocytes.

IBD 73.21%; p = 0.7955) (Supplementary Figure S4B). We then
compared cytokine production between Trm and non-Trm in
patients and healthy controls. We found higher frequencies of
IL-17A+ cells among the CD4+ Trm compared to the CD4+ non-
Trm subset. This difference became significant in samples from
IBD patients (Figure 7A). CD8+ Trm also showed significantly
higher frequencies of IL-17A+ cells compared to CD8+ non-Trm
in the context of IBD. This difference was not apparent in healthy
donors. We did not observe significant differences in IFN-γ
production between CD4+ Trm and non-Trm either in controls
or patients. The frequency of IFN-γ+ CD8+ Trm from lamina
propria of healthy controls was significantly lower compared to
non-Trm. Remarkably, γδ+ Trm displayed significantly lower
frequencies of IL-17A+ and IFN-γ+ cells compared to their
non-Trm counterparts in both healthy donors and IBD patients
(healthy: γδ+ IL17A+: 0.709% vs 4.051%, p = 0.0078; γδ+ IFN-
γ+: 37.95% vs 83.85%, p = 0.002; IBD: γδ+ IL17A+: 1.14% vs
4.799%, p = 0.0469; γδ+ IFN-γ+: 38.37% vs 76.83%, p = 0.0078)
(Figure 7B). Taken together, the IL-17AlowIFN-γlow phenotype

of CD39+ γδ+ T cells is in line with the IL-17AlowIFN-γlow

phenotype of γδ+ Trm. Altogether, these results support the
notion that CD39 can be used as Trm marker - especially for
γδ+ T cells.

DISCUSSION

It is commonly agreed that the immune response in the mucosal
compartment is profoundly shaped by extracellular signaling
of ATP and adenosine (10, 11, 39). Several gut-derived cell
populations can modulate their CD39 expression and thereby
influence ATP/adenosine levels (36, 40, 41). We found a highly
significant difference of the CD39 and CD73 expression of CD4+,
CD8+ and γδ+ T cells between LPL and PBMC highlighting
the peculiarity of the mucosal compartment where T cells
adapt their phenotype and their effector functions to this
special environment (21, 22, 42). In particular, peripheral CD4+,
CD8+ and γδ+ T cells displayed a CD39lowCD73high phenotype
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FIGURE 7 | Cytokine production by tissue-resident versus non-tissue-resident CD4+, CD8+, and γδ+ LPL. (A) Production of IL-17A and IFN-γ by Trm (round
shapes) versus non-Trm (triangular shapes) CD4+ and CD8+ LPL from healthy donors (green) and IBD patients (red). (B) Production of IL-17A and IFN-γ by Trm
(round shapes) versus non-Trm (triangular shapes) γδ+ LPL from healthy donors (green) and IBD patients (red). Data from LPL of healthy donors (n = 10) and IBD
patients (n = 8), presented as means +/- standard deviation. ns ≥ 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, as calculated by Wilcoxon
matched-pairs signed rank test. LPL, lamina propria lymphocytes; HD, healthy donor; IBD, patient with inflammatory bowel disease; Trm, tissue-resident memory
cells.

compared to gut-derived CD8+ and γδ+ T cells which showed a
CD39highCD73low phenotype.

Further details about the regulation of CD39 expression on T
cells in humans need to be understood: The change of phenotype
and increased expression of CD39 in the gut suggests a general
association with T-cell activation (13), but increased hypoxia
levels in the mucosal tissue also seem to be involved (43, 44).
Hypoxia leads to elevated levels of the transcription factors HIF-
1α and Sp1 which downstream lead to the upregulation of CD39
surface expression (45).

Surprisingly, we only identified small differences in the
expression patterns of CD39 and CD73 between healthy controls
and IBD patients. It will be important to study whether greater
differences in terms of frequency, phenotype or function will
be evident when analyzing larger cohorts of untreated patients
with more severe IBD disease activity. Additionally, it would
be interesting to distinguish between treatment groups and
patients with UC or CD.

A key finding of our study was the decreased frequency of
gut-derived CD39+ γδ+ T cells in IBD patients regardless of
disease severity compared to healthy donors. Since most of the
gut-resident γδ+ LPL did not express the Vδ2 chain of the γδ

T-cell receptor, we postulate that our observations are applicable
to Vδ1+ γδ+ T cells as they are the dominant γδ+ T-cell subset
in the gut (46). We assume that the reduced frequency of CD39+
γδ+ T cells could indeed be crucial for the development of IBD.
In a murine model of DSS-induced colitis, it was previously
shown that elevated, extracellular ATP levels are associated with
progression of disease (47). Consistent with a regulatory function
of CD39+ cells (34, 36, 48, 49), Otsuka et al. recently described

a distinct subset of γδ+ T cells in mice that was characterized
by CD39 expression and sufficiently suppressed proliferation of
and cytokine production by effector T cells (33). Thus, enzymatic
activity and degradation of ATP of CD39+ γδ+ T cells might
promote an inhibitory environment and should be monitored in
future experiments.

Regulatory T cells (Tregs, CD4+ CD25+ FOXP3+) have been
described to play an important role suppressing inflammation
in IBD (50–52). However, there are contradicting reports about
their relative frequency in the gut (52–55) and only little is known
about their interaction with γδ+ T cells (56, 57). In a small subset
of patients, we analyzed gut derived Tregs alongside with γδ+ T
cells. Neither the frequencies of Tregs in tissue of IBD patients
compared to healthy donors nor CD39 expression significantly
differed in this small sample size (Supplementary Figure S6A).
However, when we performed a correlation analysis to see how
Treg and CD39+ γδ+ T cell frequencies would correspond to
each other, we found a negative association in IBD patients but
not in healthy controls (Supplementary Figure S6B). This could
indicate that an increase of Tregs in the mucosal department
might be a compensatory mechanism to counteract the decrease
of CD39+ γδ+ T cells. To better integrate this observation in the
immune landscape of regulatory T cell subsets and to validate
the overall frequencies of Tregs and their CD39 expression in the
gut, prospective, more detailed studies with larger cohorts need
to be performed.

Importantly, in IBD patients CD39+ γδ+ LPL displayed
only low ex vivo FOXP3 expression but the frequency of
FOXP3+ CD39+ γδ+ LPL was significantly higher compared
to healthy controls (p = 0.0221), (Supplementary Figure S6C).
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FIGURE 8 | Schematic representation of the phenotype and functional profile of tissue-resident CD39+ γδ+ LPL and peripheral CD39+ γδ+ T cells. Surface markers
and intracellular cytokines colored in grey (low frequency) and green (high frequency) for CD39+ γδ+ Trm of the large intestine (left) and CD39+ γδ+ T cells from
peripheral blood (right). Illustration created with the online software BioRender (San Francisco, CA, United States). Trm, tissue-resident memory cells.

In future follow up studies it will be interesting to elucidate
the detailed molecular signature of CD39+ γδ+ LPL with
respect to the expression of other regulatory molecules and
transcription factors.

In our in vitro experiments, the CD39+ γδ+ T cells exhibited
an IL-17AlowIFN-γlow phenotype in contrast to the other CD39+
T-cell subpopulations in the gut. Furthermore, we found that
CD39+ γδ+ T cells were able to produce IL-10 upon stimulation.
The frequencies of IL-10+ CD39+ γδ+ were lower than of IL-10+
CD39+ CD4+ T cells but significantly higher compared to their
IL-10+ CD39− γδ+ counterparts. The main findings regarding
phenotypic and functional properties of CD39+ γδ+ LPL in
contrast to peripheral CD39+ γδ+ are summarized in Figure 8.
One hypothesis that needs to be further explored is whether the
loss of CD39+ γδ+ T cells that are able to produce IL-10 and
upregulate regulatory transcriptional factors like FOXP3 in the
gut mucosa of IBD patients plays an important role in the onset
and perpetuation of IBD.

Lymphocytes in the gut mucosa are constantly exposed to a
special environment that features both commensal bacteria and
potential pathogens (58). Hence, a newly defined Trm population
for first-line defense is present which we hypothesize is playing
a key role in modulating the immune homeostasis of the large
intestine. The important Trm marker CD69 is commonly used
as an early activation marker (59), but it was shown that CD69
expression is not associated with recent activation in mucosal
tissue (24). Of note, CD69 expressed on LPL interacts with
the Sphingosine-1-phosphate-receptor-1 and therefore prevents
tissue egress (60, 61). Synergistically, the integrin CD103 binds
to E-cadherin which is highly expressed on epithelial cells (62).
As a consequence, the expression of CD69 and CD103 prevents
T cells from recirculation between tissue and blood and their
surface expression can be used to identify Trm in the intestine

(23, 63). In line with Zundler et al. who described increased
frequencies of CD4+ Trm in LPL of IBD patients compared
to healthy donors (64), we observed an accumulation of CD4+
Trm in the mucosa from patients with IBD. Moreover, we
detected a slightly decreased frequency of γδ+ Trm in IBD. We
furthermore established a link between CD39 expression and
γδ+ Trm, indicating the decreased frequency of CD39+ γδ+ LPL
in IBD mirrors the loss of γδ+ Trm. So far, this loss has been
shown for intraepithelial CD39+ γδ+ and CD8+ lymphocytes
(19, 20). Our results confirm and extend these findings to the
lamina propria of the large intestine in healthy individuals and
patients with IBD.

Other studies postulate that rather than immunosuppressive
activity, the interaction of Trm with dendritic cells is crucial
for protection of the epithelial tissue in IBD (19). In
contrast, data of Trm promoting inflammation have been
published (64, 65). To our knowledge, our data are the first
indicating that CD39+ γδ+ Trm might play a central, tolerance
modulating role in the gut mucosa since significantly lower
frequencies of Trm produce IFN-γ and IL-17A compared to
non-Trm. Their impaired frequency in IBD patients strongly
suggests that they are involved in the pathogenesis of this
disease. Future studies should focus on investigating the direct
immunosuppressive activity of CD39+ γδ+ Trm by in vitro
inhibition assays.

However, several limitations of the current study should
be noted that are inherent to heterogeneous, cross-sectionally
investigated cohorts of patients with CD, UC, and IC. Patients
were under different disease-specific treatments and some
suffered from concomitant diseases like primary sclerosing
cholangitis or autoimmune hepatitis. Additionally, three patients
had a transplanted liver and received further immunosuppressive
treatment. However, further analysis of the transplanted versus
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not-transplanted IBD patients in this cohort did not reveal
significant differences (data not shown). Future studies should
be of a prospective design with longitudinal analysis of patients
before and under therapy with matched blood and gut samples.
Furthermore, it would be interesting how our findings are
affected by CD39-encoding ENTPD1 polymorphisms (17).

Our data also seem to support the investigation of future
therapeutic approaches that aim to alter purinergic signaling
cascades in IBD patients in order to dampen the overall
inflammation (66). Treatment suggestions based on murine
models include apyrase substitution (47), increase of the
extracellular adenosine concentration via mucosa-specific
inhibition of adenosine uptake (67), or HIF-1α stabilization
(43, 68, 69). The role of CD39-expressing, tissue-resident γδ+

LPL should be highlighted and considered for prospective
investigations in the treatment of IBD.

In summary, our data give a first comprehensive portrayal
of CD39 and CD73 expression patterns on different T-cell
populations with and without tissue-resident memory phenotype
in the large intestine and peripheral blood of healthy individuals
and in the context of IBD.
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Inflammatory bowel disease (IBD) is a serious inflammatory condition of the

gastrointestinal tract. Crohn’s disease (CD) and ulcerative colitis (UC) are two of the most

common IBD manifestations and are both associated with unfettered inflammation, often

refractory to conventional immunosuppressive treatment. In both conditions, imbalance

between effector and regulatory cell immune responses has been documented and is

thought to contribute to disease pathogenesis. Purinergic signaling is a knownmodulator

of systemic and local inflammation and growing evidences point to extracellular

ATP/adenosine imbalance as a key determinant factor in IBD-associated immune

dysregulation. In vitro and pre-clinical studies suggest a role for both ATP (P2) and

adenosine (P1) receptors in dictating onset and severity of the disease. Moreover,

our experimental data indicate ENTPD1/CD39 and CD73 ectoenzymes as pivotal

modulators of intestinal inflammation, with clear translational importance. Here we will

provide an updated overview of the current knowledge on the role of the purinergic

signaling in modulating immune responses in IBD. We will also review and discuss the

most promising findings supporting the use of purinergic-based therapies to correct

immune dysregulation in CD and UC.

Keywords: adenosine receptor, P2 receptor, ectonucleotidase, crohn’s disease, ulcerative colitis

INTRODUCTION

Healthy tissues contain negligible levels of extracellular nucleotides and nucleosides; whereas
inflammatory sites are characterized by accumulation of extracellular ATP and adenosine.

Release of nucleotides in the extracellular environment triggers P2 receptors activation on target
cells. The P2 receptor family includes seven P2X and eight P2Y members, classified based on their
desensitization time and affinity for the ligand. P2 receptors are virtually present on all immune
cells, are mainly activated by extracellular ATP and have been generally described as mediators of
inflammatory processes (1).

Once released in the extracellular environment, nucleotides can be rapidly hydrolyzed
into nucleosides by specific ectonucleotidases. Ectonucleotidases are expressed on the surface
of different immune cell types and belong to several enzymatic families, which have been
functionally and structurally characterized (2, 3). The prototype member of the NTPDase family is
ENTPD1/CD39, a rate-limiting ectoenzyme that hydrolyzes ATP into AMP, which is then further
degraded into adenosine by the ecto-5′-nucleotidase/CD73 (2).
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Once generated, extracellular adenosine can activate P1
receptors (adenosine receptors) on target cells. Adenosine
receptors are classified into four subtypes (A1, A2A, A2B,
and A3) and consist of G-coupled, 7-transmembrane spanning
receptors expressed by a wide range of immune cells. Adenosine
receptors have been mainly associated with immunoregulatory
functions (4). Figure 1 shows how the purinergic signaling
modulates immune responses during inflammation.

In this review, we will discuss the role of the purinergic
signaling, with a focus on P1 and P2 receptors and on
ENTPD1/CD39 and CD73 ectoenzymes, in the context
of inflammatory bowel disease (IBD). We will report the
most important findings obtained from human studies
and experimental models of colitis, and we will also
highlight potential novel therapeutic approaches, such as
administration of exogenous recombinant ectonucleotidases and
targeting of specific intracellular pathways that interfere with
purinergic signaling.

IBD is a chronic inflammatory condition of the
gastrointestinal tract associated with altered gut microbial
composition, disrupted mucosa structure and systemic
biochemical alterations (5, 6). IBD most frequent manifestations
include Crohn’s disease (CD) and ulcerative colitis (UC),
which are diagnosed based on the localization of intestinal
inflammation and clinical symptoms (5, 7).

FIGURE 1 | Purinergic signaling in immune cells. Healthy tissues contain negligible levels of extracellular nucleotides; whereas inflammatory sites are characterized by

accumulation of extracellular ATP that binds purinergic receptors on target cells, further amplifying inflammatory responses. We show here the effects resulting from

the activation of ATP-P2X7R axis in macrophages and dendritic cells. Extracellular nucleotides can be converted into nucleosides by ectonucleotidases present on

Tregs, T regulatory type-1 (Tr1) cells and a subset of Th17-cells. The activity of CD39 and CD73 ectoenzymes expressed by Tregs and converting pro-inflammatory

ATP into anti-inflammatory adenosine is shown. Upon binding to the A2A receptor (A2AR), extracellular adenosine suppresses effector T cell responses, leading to

reduced cell proliferation, limited Th1 and Th2 development and control of IL-17 production by Th17-cells. Notably, A2AR is expressed also by Tregs and its activation

promotes CD39 expression.

Mounting evidence has indicated Th17-cells as the main
effector players involved in IBD tissue damage and several
additional studies have reported the role of purinergic signaling
alterations in the immunopathogenesis of the disease.

Recommended standard therapies for IBD include
corticosteroids (7), immunosuppressive drugs (8, 9), amino-
salicylates (10, 11), and biological agents like infliximab (12).
These currently available treatments, however, are often
associated with adverse effects and limited therapeutic efficacy,
this emphasizing the need for novel and more effective
therapies. Given the role played in the modulation of immune
responses, the purinergic signaling might represent a potential
therapeutic target.

P2X RECEPTOR FAMILY MEMBERS - P2X7

Alterations of purinergic signaling play an important role in
promoting tissue inflammation in IBD and several evidences
support the involvement of P2X receptors and specifically the
P2X7 receptor (P2X7R).

Systemic P2X7R inhibition by administration of the selective
inhibitor A740003 or brilliant blue G, prevents the development
of TNBS-induced colitis in rat models (13). Similarly, P2X7R
deletion is protective in murine models of colitis (14).
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FIGURE 2 | Effects of purinergic signaling modulation in IBD. (A) Effects on colon motility: P2X7R activity has been associated with death of enteric neurons that leads

to impaired colon motility in IBD (15). A2AR activity modulates the inhibitory effect of adenosine on colonic motility during experimental colitis. (B) P2Y receptor

(P2Y2R) expression and activation on intestinal epithelial cells (IEC) increases the expression of chemoattractive proteins, like ICAM-1, in IEC, promoting macrophage

transepithelial migration and adhesion (16). In the inflamed lamina propria and gut epithelium, P2X7R activation triggers IL-1β secretion by IEC in response to

polymorphonuclear leukocyte (PMNL) transmigration (17). (C,D) In Tr1, Treg, and Th17-cells, CD39 expression is induced upon activation of aryl hydrocarbon receptor

(AhR), an intracellular receptor for pollutants, toxins and endogenous compounds, like unconjugated bilirubin (UCB). UCB boosts cell immunoregulatory properties in

vitro and ameliorates the course of experimental colitis in vivo (18). However, in Crohn’s disease or experimental colitis, Treg, Tr1, and Th17-cells are refractory to the

regulatory effects of UCB due to a deleterious effect of hypoxia (19). Notably, we found that HIF-1α inhibition or ABC transporters blockade obtained upon

administration of the antiretroviral ritonavir, limits the detrimental effects of hypoxia in Th17-cells in vitro in in vivo (19). Similarly, administration of the ADPase APT102,

restores the response of Treg and Tr1-cells to the regulatory effects of UCB and ameliorates experimental colitis in vivo (20).

P2X7R activation has been also associated with the death
of enteric neurons that lead to impaired colon motility
(Figure 2A). In rat models of ulcerative colitis, P2X7R co-
localizes with immunoreactive cells in the myenteric plexus
(15). The decrease in neuronal density in the myenteric
plexus has a positive correlation with P2X7R expression in
different neuronal populations present in the area (15). P2X7R
stimulation triggers pannexin-1 (Panx1) channels opening and
inflammasome activation, including the Asc adaptor protein and
caspase cleavage, which results in neuronal death. Accordingly, in
murine models of colitis, selective inhibition of each component
of the P2X7R-inflammasome axis significantly dampens the

inflammation while Panx1 inhibition reduces the colonic
dysfunction in vivo (21).

Additional evidence has indicated that in a model of
2,4-dinitrobenzenesulfonic-acid (DNBS)-induced colitis P2X7R
is upregulated in the neuromuscular layer; notably, increase
in electrically induced contractions was recorded in colonic
preparations, obtained from colitic mice, and exposed to
A804598, a selective P2X7R antagonist (22).

P2X7R expression promotes intestinal inflammation also by
inducing different subsets of effector cells, including mast cells.
Increased numbers of mast cells were found in the colon of CD
patients and experimental murine models of colitis (23). Mast

Frontiers in Immunology | www.frontiersin.org 3 September 2020 | Volume 11 | Article 188260

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Vuerich et al. Purinergic Signaling Modulates Gut Inflammation

cell-deficient or P2X7R−/− mast cell-reconstituted mice present
lower susceptibility to inflammation as compared to the wild type
counterpart. Interestingly, P2X7R-mediated activation of mast
cells triggers release of pro-inflammatory cytokines, chemokines,
and leukotrienes that recruit neutrophils in the inflamed area
(23). Further, P2X7R activation has been linked to death and
retention of regulatory T-cells (Tregs) in the mesenteric lymph
nodes impairing gut immune tolerance (14).

The inflammatory process in the gut is linked to
polymorphonuclear leukocyte (PMNL) transmigration into
the mucosa leading to increased IL-1β production by intestinal
epithelial cells (IEC). Interestingly, in CD patients, P2X7R
is overexpressed in the inflamed lamina propria and gut
epithelium, where P2X7R activation triggers IL-1β secretion by
IEC in response to transmigration of PMNL (17) (Figure 2B).

In the intestinal mucosa, P2X7R is also present on
macrophages and dendritic cells where the expression of this
receptor positively correlates with IFN-γ, TNF-α, and IL-1-β
levels, this leading to epithelial cells apoptosis. Concomitantly,
lower concentrations of IL-10 have been also detected (24). In
vitro experiments, conducted on human colonic mucosa strips,
have revealed that blockade of Panx1 and P2X7R significantly
reduce crypt damage, pro-inflammatory cytokine release, loss of
tight junctions, and cell permeability (25).

It has been hypothesized that the presence of a gain of function
single nucleotide polymorphism or the loss of function SNPs
(His155Tyr, Arg307Gln, and Glu496Ala) affect P2X7R activity
and could be associated with susceptibility to CD. However, no
significant differences were noted among the subjects carrying
the polymorphisms in terms of disease incidence (26). A phase
II clinical trial on patients with moderate to severe CD evaluated
the use of a selective P2X7R antagonist, AZD9056, as a potential
therapeutic approach. Despite not having effects on the levels
of inflammatory biomarkers, oral administration of AZD9056
induced an overall improvement in the disease symptoms (27).
Further investigations are therefore needed to develop P2X7R
antagonists that effectively interfere with the inflammatory
response; in this regard, several compounds have been proposed
and these include Pyroglutamide-Based P2X7R Antagonists (28).

P2X7R, however, plays also an important role in the regulation
of follicular T helper cell density in Peyer’s patches (29) while
favoring the generation of metabolic homeostasis by sensing
microbiota-derived ATP (30).

P2Y RECEPTORS

The G-coupled associated P2Y receptors (P2YR) are also
involved in IBD immunopathogenesis. In vitro experiments
using human nerve-gut preparations and mouse colonic
sensory neurons, showed that P2YR activation triggers visceral
nociceptors stimulation that can lead to the visceral pain
associated with inflammation (31).

Colonic tissue isolated either from IBD patients or mice
with experimental colitis displays higher expression of P2Y2
receptor (P2Y2R) when compared to healthy controls. Further
investigations have revealed that increase in P2Y2R expression

depends on the activity of the C/EBPβ transcription factor, which
is also upregulated in IEC in murine models of colitis (32).
Investigations conducted on human colon cell lines and colonic
tissue from CD and UC patients, revealed that during intestinal
inflammation P2YR expression is also regulated through a NF-
kB p65-dependent mechanism (33). Activation of P2YR, and
particularly P2Y2R, increases the expression of chemoattractive
proteins, like ICAM-1, in IEC; this promoting macrophage
transepithelial migration and adhesion (16) (Figure 2B).

On the other hand, experiments conducted in murine
models of dextran sulfate sodium (DSS) colitis showed that
administration of the P2Y2R agonist 2-thioUTP reduces the
disease activity index and histological scores. These evidences
suggest a role for P2Y2R in the remission phase of IBD (34).

Another study identified a specific activity of P2Y6R that
was found to regulate CXCL8 expression in IEC, promoting
neutrophil recruitment and inflammatory responses (35). In
contrast, in murine models of DSS colitis, P2Y6R deletion has
been associated with extensive intestinal inflammation, resulting
from increased recruitment of Th17/Th1 lymphocytes in the gut
mucosa (36).

In humans, P2Y6R is expressed in a wide range of
inflammatory cells and expression levels increase in activated
CD4+ and CD8+ T-cells. Because of the pro-inflammatory
activity, P2Y6R has been implicated in the pathogenesis of IBD-
mediated intestinal damage (37).

ENTPD1/CD39 AND CD73 ECTOENZYMES

The involvement of ENTPD1/CD39 and CD73 ectoenzymes
in the modulation of intestinal inflammation has been
extensively studied.

In experimental mouse models of colitis, the impact of CD39
expression strictly depends on the model considered as well as
on the cell populations involved in the tissue damage. In the
setting of trinitro-benzene-sulfonic-acid (TNBS)-induced colitis
in humanized mice, Goettel et al., demonstrated that activation
of the transcription factor aryl hydrocarbon receptor (AhR)—
an intracellular receptor for pollutants, toxins, and endogenous
compounds—by indole-3′-carbonyl-thiazole-4-carboxylic-acid-
methyl-ester, induced Tregs and this was linked to CD39
upregulation (38). In contrast, a more favorable course of
TNBS-induced colitis has been observed in CD39-null mice
when compared to wild type controls (39). In the context of
DSS colitis, ENTPD1/CD39 and CD73 expression on activated
macrophages was found to limit inflammation, either by directly
hydrolyzing pro-inflammatory extracellular ATP into adenosine
or by indirectly promoting Treg development (40). Further,
in the same experimental model, CD39 deletion exacerbated
colitis as reflected by heightened disease activity index, higher
levels of pro-inflammatory markers and histological evidence of
tissue injury.

Notably, in humans, the presence of SNPs associated with
lower levels of CD39 expression correlate with increased
susceptibility to CD (41); whereas increased CD39 levels
in peripheral blood Tregs are associated with clinical and
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endoscopic remission (42). Recently Huang and colleagues
reported multiple cellular defects in pediatric colitis and IBD,
including impaired cyclic AMP-response signaling, infiltration of
phosphodiesterase 4B and TNF-expressing macrophages, platelet
aggregation and decrease in CD39-expressing intraepithelial
T-cells (43); notably, administration of the phosphodiesterase
inhibitor dipyridamole ameliorated colitis symptoms in a pilot
study (43).

CD39 is known to play an important role in the
immunosuppressive activity of suppressor Th17-cells (supTh17).
This cell population derives from iTregs upon exposure to Th17
polarizing conditions. SupTh17-cells display high expression of
CD39 and actively contribute to the production of adenosine.
Compared to bona fide pathogenic Th17, supTh17-cells display
higher expression of the enzyme adenosine deaminase and lower
expression of A2A receptor (A2AR), these features making these
cells refractory to the inhibitory effects of adenosine (44).

We recently found that, in human Th17-cells, CD39
expression is induced upon activation of AhR via
unconjugated bilirubin (UCB). Exposure to UCB boosts Th17
immunoregulatory properties in vitro and ameliorates the course
of experimental DSS colitis in vivo (18). Furthermore, Th17-cells
from CD patients are refractory to the immunosuppressive
effects of UCB. This lack of response is directly dependent on
high levels of hypoxia-inducible-factor-1alpha (HIF-1α) that
promotes ABC transporters to favor UCB exit from the cells and
therefore limiting AhR activation. Interestingly, blockade of HIF-
1α or ABC transporters limits the detrimental effects of hypoxia
both in vitro and in vivo (19) (Figure 2C). Further, human CD39
overexpression or administration of APT102—the extracellular
domain with improved ADPase activity of human nucleoside
triphosphate diphosphohydrolase-3 (CD39L3), a member of
the CD39 family—restores AhR-mediated regulatory effects on
CD-derived Tregs in vitro and prevents hypoxia-related damage
in experimental colitis in vivo (20) (Figure 2D).

There is however evidence that in IBD patients with active
disease, CD73 expression in CD4+ T-cells is associated with a
pro-inflammatory Th17-cell phenotype; based on this evidence,
CD73 could be therefore used as a marker to monitor disease
activity during treatment (45).

A2AR

In IBD, the beneficial effects of adenosine generation by CD39
and CD73 ectoenzymes, have been supported by a wealth
of studies. In rat models of chronic experimental colitis,
administration of two different selective adenosine deaminase
inhibitors significantly improved the course of disease (46).
Data revealed that both compounds significantly decreased the
inflammatory parameters and the beneficial effect was abrogated
in the presence of pharmacological blockade of A2AR or A3
receptor (A3R), suggesting a protective role for both these
receptors (46).

A study on the effects of electroacupuncture on visceral pain
in a murine model of TNBS-colitis, showed that the beneficial
effect of the treatment was linked to increased expression of A1R,

A2AR, and A3R and to decreased expression of A2B receptor
(A2BR) in colonic tissue. The antalgic effect was mediated by
inhibition of release of the pro-inflammatory factors substance
P (SP) and IL-1β. This salutary effect was partially abrogated in
the presence of adenosine receptors antagonists (47).

A2AR activity has been associated with amelioration
of spontaneous ileitis and administration of the A2AR
agonist ATL-146e significantly reduced the intestinal mucosa
inflammation, leukocyte infiltration in the gut and release
of proinflammatory cytokines (48). A2AR plays also an
important role in modulating colonic motility. In this regard,
exposure of rat colonic longitudinal muscle preparations
to the receptor antagonist ZM 241385 increases transmural
electrical stimulation-induced contractions, whereas exposure
to the receptor agonist CGS 21680, triggered a concentration-
dependent reduction of contractile responses. Interestingly,
these modulatory functions are further enhanced in preparations
derived from animals exposed to DNBS-induced colitis (49).
Similarly, in rat ileum/jejunum preparations, CGS 21680
administration prevented the TNBS-related inhibition of
acetylcholine-induced contractions and A2BR antagonist
PSB-1115 inhibited the contraction-decreasing effect of TNBS.
The effect was even enhanced in response to combinatorial
treatment with CGS 21680 and PSB-1115, both used at
subthreshold concentrations (50). The beneficial role of A2AR
in the context of experimental colitis has been also supported
by the observation that administration of the A2AR agonist
polydeoxyribonucleotide (PDRN), ameliorated the clinical
symptoms and promoted tissue repair in two models developed
in Sprague-Dawley rats. PDRN administration significantly
reduced the circulating levels of pro-inflammatory cytokines,
along with decrease in malondialdehyde and myeloperoxidase
activity (51). A newly synthetized polar A2AR agonist, in which
polar groups were introduced to prevent peroral absorption
and subsequent systemic side effects, has been proposed
as a potential treatment for IBD. Preliminary experiments
conducted in rat ileum/jejunum preparations showed a
significant improvement of the impaired acetylcholine-induced
contractions and this beneficial effect was boosted by A2BR
selective antagonists (52). Importantly, administration of
this compound in a rat model of oxazolone-induced colitis
limited weight loss and decreased levels of TNF-α in colonic
tissue (53).

In humans, overexpression of the miRNA-16 has been
reported in UC patients. A recent study identified a correlation
between miRNA-16 overexpression and A2AR downregulation
in the colonic mucosa of active UC patients. In the same study it
was also reported that miRNA-16 inhibits the expression of the
A2AR gene by acting at the post-transcriptional level; this effect
being mediated upon engagement of the NF-κB pathway (54).

A2BR

Despite the widely described immunoregulatory effects of
adenosine, there is evidence supporting a pro-inflammatory role
of A2BR in the context of intestinal inflammation.
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Experiments conducted in murine models of colitis induced
by DSS, TNBS, and Salmonella typhimurium showed a
protective effect of A2BR knockout that was associated with
lower neutrophil responses, although cell recruitment to
the inflammatory site was not impacted (55). Accordingly,
administration of the A2BR selective antagonist ATL-801 in
DSS-treated wild type or piroxicam-treated IL-10−/− mice,
significantly lowered severity of colitis along with levels of
pro-inflammatory cytokines (56). Engagement of A2BR has
been also linked to the damage associated with intestinal
ischemia reperfusion (I/R) injury and hypoxia. In this regard,
administration of the A2BR antagonist PSB-1115 results in
protection of the intestinal epithelial structure in a murine model
of intestinal I/R and in an in vitro model of acute hypoxia
(57). Combinatorial administration of PSB-601—another A2BR
antagonist—and the A2AR agonist PSB-0777 was found to limit
the TNBS-induced contractile disruption in rat ileum/jejunum
preparations (52). On the other hand, deletion of A2BR in
IEC has been reported having a protective role (55). As an
example, an epithelial-specific A2BR deletion resulted in a milder
form of experimental colitis, when compared to wild type
controls. Further, in vitro studies have shown that the receptor
activation on epithelial cells enhances a specific barrier repair
response by inducing phosphorylation of vasodilator-stimulated
phosphoprotein (VASP) (58).

A3R

The A3R has been also implicated in the modulation of intestinal
inflammation. In this context, there have been antithetical
reports, providing evidences for either a protective or pathogenic
role for this receptor during intestinal inflammation.

In a murine model of experimental colitis induced by
intrarectal administration of DNBS, the beneficial effect of
adenosine deaminase inhibitors was abrogated in the presence
of A2AR and A3R antagonists, suggesting a protective role
for both receptors (46). Further, inhibition of visceral pain
by electroacupuncture in mice with TNBS-induced colitis, are
accompanied by upregulation of A3R along with A2AR and A1R
(47). Conversely, a study conducted in a murine model of DSS-
induced colitis, revealed a pathogenic effect for the A3R. The
impact of A3R deletion was evaluated on the clinical course
of experimental colitis and on colon motility that was assessed
upon measurement of artificial bead-expulsion, stool-frequency
and FITC-dextran transit (59). Interestingly, A3R deficiency
protected from DSS-induced tissue damage, limiting the CD4+-
cell infiltration in the colon and preserving colon motility (59).
The pathogenic role of A3R was also suggested by a clinical study
that reported higher levels of A3R in PBMCs from patients with
different autoimmune disorders, including CD, when compared
to healthy subjects (60).

However, the effects of A3R expression strictly depend on
the cells, in which the receptor is expressed. A study conducted
on human colonic epithelial cells reported that A3R activation
inhibits NF-kB signaling pathway leading to inhibition of IL-
8 and IL-1β pro-inflammatory cytokines (61). In line with this
observation, the use of the A3R agonist N(6)-(3-iodobenzyl)-
adenosine-5-N-methyluronamide in a rat chronic model of

TNBS-induced colitis showed beneficial effects on the course of
the disease. Interestingly, the receptor inhibitor limited colitis-
induced upregulation of other pro-inflammatory purinergic
receptors like P2X1, P2X4, P2X7, P2Y2, P2Y6, as well as A2AR
and A2BR (62).

Importance of the adenosinergic signaling has been further
supported by the findings of Aherne et al. who showed that
increased intestinal adenosine levels resulting from epithelial
specific deletion of equilibrative nucleoside transporter 2
protected from inflammation in mice with experimental
colitis (63).

Supplementary Table 1 summarizes the effects of purinergic
receptors in IBD pathophysiology.

CONCLUDING REMARKS

Mounting clinical evidence and research data support the
involvement of purinergic signaling alterations in IBD
pathogenesis, with imbalances in the ATP/adenosine ratio
being regarded as underlying immunological dysregulation in
this condition. As already observed in other autoimmune
conditions, promising therapeutic candidates based on
adenosine or ENTPD1/CD39 and CD73 ectonucleotidases
have been identified.

Boosting CD39 expression either by inducing AhR-signaling
or by administering exogenous ADPase, which displays
ectoenzymatic activity comparable to human CD39, showed
important immunoregulatory effects in vitro and in vivo,
in experimental colitis models. Encouraging pre-clinical
data support also the use of selective A2AR agonists, in
association with specific inhibition of A2BR. Inhibition of
P2X7R-mediated responses has been also associated with
beneficial effects.

Taken together, the currently available evidences,
implicate the use of purinergic-mediated strategies as
adjunctive treatments to correct immune dysregulation in
IBD patients.
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Intracellular ATP is the universal energy carrier that fuels many cellular processes.

However, immune cells can also release a portion of their ATP into the extracellular

space. There, ATP activates purinergic receptors that mediate autocrine and paracrine

signaling events needed for the initiation, modulation, and termination of cell functions.

Mitochondria contribute to these processes by producing ATP that is released. Here, we

summarize the synergistic interplay between mitochondria and purinergic signaling that

regulates T cell functions. Specifically, we discuss how mitochondria interact with P2X1,

P2X4, and P2Y11 receptors to regulate T cell metabolism, cell migration, and antigen

recognition. These mitochondrial and purinergic signaling mechanisms are indispensable

for host immune defense. However, they also represent an Achilles heel that can render

the host susceptible to infections and inflammatory disorders. Hypoxia and mitochondrial

dysfunction deflate the purinergic signaling mechanisms that regulate T cells, while

inflammation and tissue damage generate excessive systemic ATP levels that distort

autocrine purinergic signaling and impair T cell function. An improved understanding of

the metabolic and purinergic signaling mechanisms that regulate T cells may lead to novel

strategies for the diagnosis and treatment of infectious and inflammatory diseases.

Keywords: P2X4, mitochondria, inflammation, P2X1, P2Y11

INTRODUCTION

ATP is themain energy carrier of living cells. Therefore, it came as a surprise tomanywhenGeoffrey
Burnstock first reported that neurons release a portion of their cellular ATP and that the released
ATP acts as a signaling molecule for cell-to-cell communication (1). Subsequently, similar ATP
signaling mechanisms were identified in many other tissues and organ systems (2, 3). Purinergic
signaling enables single cells in a multicellular system to calibrate their individual responses in
order to serve the collective interest of the entire organism. Purinergic signaling comprises three
basic elements: (i) mechanisms that produce and release ATP into the pericellular space; (ii)
purinergic receptors that recognize released ATP and its metabolites and elicit intracellular signals
that regulate cell functions; (iii) mechanisms that terminate purinergic signaling by enzymatic
breakdown of ATP, cellular re-uptake, or simple diffusion of ATP and its metabolites away
from cells.

Intact cells can release ATP via vesicular exocytosis or ATP-permeable membrane channels that
include connexin hemichannels, pannexin channels, calcium homeostasis modulator 1, maxi-anion
channels, and volume-regulated anion channels (4, 5). Of these mechanisms, pannexin 1 (panx1)
channels are particularly important in immune cells (6–10). Under basal conditions, resting cells
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release only a small portion of their cellular ATP. However,
mechanical stimuli or the ligation of cell surface receptors such as
the antigen and chemokine receptors of T cells rapidly increase
cellular ATP release (10–12). While regulated ATP release fine-
tunes cell responses, excessive ATP leakage from dying cells
or damaged tissues can act as a danger signal that exacerbates
inflammation, impairs T cell functions, and disrupts immune
responses (13–16).

ATP release and its breakdown products defines immune cell
functions by autocrine stimulation of three different families
of purinergic receptors, namely P1, P2X, and P2Y receptors.
Different combinations of these receptors are present on the
surfaces of virtually all mammalian cells, including the different
immune cell subtypes (17). P1 receptors, which recognize
adenosine, comprise four subtypes: A1, A2a, A2b, and A3
receptors. P2X receptors recognize ATP and consist of seven
members (P2X1-7). Human P2Y receptors comprise eight
members that recognize a wider range of ligands (18–21). P2Y2,
P2Y4, P2Y11, and P2Y13 receptors are activated by ATP; but
certain P2Y receptors also recognize other nucleotides including
ADP (P2Y1, P2Y12, P2Y13), UTP (P2Y2, P2Y4, P2Y6), UDP
(P2Y4, P2Y6), and UDP-glucose (P2Y14) (21, 22). P1 and P2Y
receptors belong to the G protein-coupled receptor (GPCR)
superfamily, while P2X receptors are ATP-gated cation channels
that facilitate the influx of extracellular Ca2+.

Purinergic receptors differ greatly in their desensitization
kinetics and affinities for their individual ligands. The
extracellular concentrations of these ligands depend on
the activities of ectoenzymes expressed on the cell surface
(23). Several different groups of these enzymes have
been identified including ectonucleoside triphosphate
diphosphohydrolases (ENTPDases), ectonucleotide
pyrophosphatases/phosphodiesterases (ENPPs), ecto-5′-
nucleotidase (CD73), adenosine deaminase (ADA), as well
as alkaline phosphatases (23–25). These enzymes are widely
distributed among the different immune cell subpopulations
(24). CD39 (ENTPD1) that converts extracellular ATP and
ADP into AMP, and CD73 that degrades AMP to adenosine
are particularly important modulators of purinergic signaling
in immune cells (26, 27). Once released from cells, ATP and
its breakdown products can either diffuse away from cells or
be internalized by equilibrative and concentrative nucleotide
transporters that are embedded in the cell membrane and return
ATP and its breakdown products for recycling and reuse in
cell metabolism (28). The distribution patterns of ATP release
sites, ectonucleotidases, and nucleoside transporters along with
their relative proximity to P1 and P2 receptors are important
determinants of the purinergic signaling mechanisms that
regulate immune cell functions.

P2X1 RECEPTORS MAINTAIN
MITOCHONDRIAL METABOLISM OF
QUIESCENT T CELLS

Autocrine purinergic signaling is an important mechanism of
immune cell regulation (17, 29–33). Human T cells express

A2a, A2b, A3, P2X1, P2X4, P2X5, and P2X7, as well as all
eight P2Y receptor subtypes (34–36). P2X1, P2X4, P2Y11,
and P2X7 receptors have particularly important roles in the
regulation of CD4T cells (10–12, 36–40). Among these receptors,
P2X1 receptors are most sensitive with an EC50 value of 50-
1000 nM ATP (22, 41). Such ATP levels are well within the
concentration range found in the pericellular environment of
quiescent T cells (42). Constitutive ATP release from cells
overexpressing P2X receptors is sufficient to sustain the modest
Ca2+ uptake that preserves basal mitochondrial metabolism and
ATP synthesis of resting cells (43). P2X1 receptors maintain
mitochondrial metabolism in quiescent human CD4T cells by
facilitating cellular Ca2+ influx that sustains basal mitochondrial
Ca2+ levels (44). Inhibition of mitochondrial metabolism
and interruption of the electron transport chain impairs T
cell migration, indicating that mitochondrial ATP production
fuels the purinergic signaling mechanisms needed for immune
surveillance and T cell functions (12, 45). Indeed, mitochondrial
defects and T cell suppression are cardinal features of sepsis
that correlate with morbidity and clinical outcome (44, 46–
49). Taken together, these findings suggest that P2X1 receptor-
mediated Ca2+ influx, mitochondrial ATP production, basal
ATP release, and autocrine feedback through P2X1 receptors
represent a purinergic-metabolic signaling loop that maintains
cell metabolism of quiescent T cells and allows these cells to
mount the responses needed for effective host immune defense
following chemokine or antigen stimulation (Figure 1A).

P2X4 RECEPTORS AND MITOCHONDRIAL
METABOLISM PROMOTE T CELL
MIGRATION

Stimulation of CXCR4, CCR5, CCR7, and other chemokine
receptors leads to the recruitment of T cells to lymphoid organs
where cell migration enables them to engage and interact with
antigen-presenting cells (APCs) (50–52). Stimulation of CXCR4
by stromal cell-derived factor 1α (SDF-1α) causes rapid surges of
mitochondrial ATP synthesis and panx1-mediated ATP release
from CD4T cells (12, 53). The resulting pericellular ATP levels
trigger P2X4 receptors with an estimated EC50 value ranging
between 0.5 and 10µM (22, 41). Autocrine stimulation of P2X4
receptors promotes waves of Ca2+ influx that further upregulate
mitochondrial ATP synthesis to the levels needed for active T
cell migration (Figure 1B) (12). P2X4 receptors aggregate in raft-
like structures that associate with mitochondria primarily at the
front of migrating T cells where localized ATP synthesis fuels
pseudopod protrusion and forward movement of the cells. These
P2X4 receptor-driven mechanisms are particularly critical for
T cells that move slowly in order to probe their surroundings
for potential antigens (12). Faster moving lymphocytes, however,
gather their mitochondria primarily at the uropod where the
bulk of ATP may be required to fuel actomyosin motor functions
needed for rapid cell migration (45). Inhibition of mitochondrial
ATP synthesis, ATP release, or P2X4 receptor signaling impairs
the ability of T cells to polarize and to migrate in response to
CXCR4 stimulation (12, 45, 53).
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FIGURE 1 | P2 receptors and mitochondria regulate key T cell functions. Autocrine feedback through P2X1 receptors and low-level mitochondrial metabolism

maintain a state of vigilance that quiescent T cells need for immune surveillance (A). Chemokine receptors such as CXCR4 trigger mitochondrial metabolism that

stimulates P2X4 and P2Y11 receptor-mediated excitatory and inhibitory Ca2+ and cAMP signaling pathways that direct cell movement at the front and back of

migrating T cells (B). P2X4 receptor accumulation at the immune synapse enhances T cell receptor (TCR) signaling and promotes antigen recognition and the

engagement of T cells with antigen-presenting cells (C). P2Y11 receptor recruitment to the uropod of polarized cells induces cAMP/PKA signaling that helps direct the

trafficking of mitochondria to the immune synapse (D).

Similar mitochondrial/purinergic feedback loops also
orchestrate the migration of other immune cell subtypes (54–
58). Like T cells, neutrophils depend on excitatory purinergic
receptors, panx1 channels, and mitochondria to coordinate
different aspects of their migration in chemotactic gradient fields
(6, 55). However, neutrophils differ from T cells in that P2Y2
receptors rather than P2X4 receptors amplify the chemotactic
signals that direct cell migration at their leading edge (6, 54).
Microglia, macrophages, and dendritic cells also depend
on autocrine feedback mechanisms and specific purinergic
receptors to regulate cell migration (56–58). Recent studies have
shown that inhibition of the mitochondrial electron transport
chain impairs the motility of neutrophils in zebrafish (59). Thus,
mitochondrial metabolism and purinergic signaling seem to
be preserved features that regulate immune cell migration in
humans and other vertebrates.

P2Y11 RECEPTORS CONTRIBUTE TO T
CELL MIGRATION BY RESTRAINING
MITOCHONDRIAL METABOLISM

According to the local excitation—global inhibition (LEGI)
model of chemotaxis, excitatory mechanisms at the front elicit
cell protrusion, while inhibitorymechanisms at the back promote
the retraction of the cell body during cell migration (60–62).
In neutrophils, P2Y2 receptors provide the excitatory signal at
the front, while A2a adenosine receptors generate the inhibitory
cAMP/PKA signal that causes cell retraction at the back of cells
(63). In T cells, P2X4 and P2Y11 receptors fulfill similar roles in
the regulation of cell migration (12, 64). Like the A2a receptors
of neutrophils, the P2Y11 receptors of T cells can couple to Gαs
proteins that trigger cAMP/PKA signaling pathways (65). P2Y11

receptors bind their natural ligand, ATP, with a reported EC50

value of 2.5 to 63µM, which is similar to the affinity of P2X4
receptors (41). Therefore, the pericellular ATP that surrounds
stimulated T cells can trigger both P2X4 receptor-mediated
Ca2+ influx and P2Y11 receptor-mediated cAMP/PKA signaling
that restrains excitatory signaling and transduction pathways
downstream of Gαi/o-coupled GPCRs like CXCR4 (66, 67). We
found that P2Y11 receptors redistribute to the back of polarized
T cells where they induce cAMP/PKA signaling events that
stabilize cell polarization by locally restricting cell stimulation by
CXCR4 chemokine receptors at the back (Figure 1B) (64). Thus,
P2X4 and P2Y11 receptors synergize to regulate mitochondrial
metabolism and provide T cells with the local excitation and
global inhibition cues that organize pseudopod protrusion and
uropod retraction during T cell migration in a LEGI-type fashion.

P2Y11 AND P2X4 RECEPTORS
ORCHESTRATE THE ACCUMULATION
AND ACTIVATION OF MITOCHONDRIA AT
THE IMMUNE SYNAPSE OF T CELLS

T cells must interact with APCs in order to mount immune
responses. These interactions occur via organized structures
referred to as immune synapses (IS) that consist of microclusters
containing T cell receptors (TCR), CD3, CD28 co-receptors, LAT,
SLP76, LFA-1, microtubules, and other cytoskeletal components
(68). The formation of a stable IS between a T cell and
an APC enables sustained TCR signaling that culminates in
cytokine production and T cell proliferation (69). Efficient T
cell activation also depends on sustained Ca2+ influx from the
extracellular space (70). Just minutes after TCR stimulation,
P2X4 receptors, panx1 channels, andmitochondria accumulate at
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the IS where mitochondria generate the ATP that panx1 channels
release into the synaptic cleft to stimulate P2X4 receptor-
mediated Ca2+ influx (36, 71, 72). P2X4 receptors deliver the
Ca2+ that mitochondria need to synthesize ATP via oxidative
phosphorylation (73). However, mitochondria also act as Ca2+

sinks that fine-tune cytosolic Ca2+ levels for efficient T cell
activation (74). Thus, mitochondria, panx1, and P2X4 receptors
represent a powerful feedforward signaling system that triggers
downstream pathways that involve mitogen-activated protein
kinases (MAPKs) and nuclear factors of activated T cells (NFAT)
and induce IL-2 transcription and T cell proliferation (10, 11, 36).

Successful T cell activation depends on the accumulation of
mitochondria at the IS (71, 72, 75). However, the mechanisms
that orchestrate mitochondrial trafficking to the IS are not
clear (76). In neurons, kinesin and dynein motors accomplish
anterograde and retrograde trafficking of mitochondria along
microtubules (77). In T cells, dynein facilitates mitochondrial
transport to contact sites that T cells form with endothelial
cells during their transmigration across blood vessel walls (78).
Dynamin-related protein 1 (DRP1) is a mitochondrial fission
factor that helps direct mitochondria to the uropod of migrating
T cells and to the IS during APC engagement (45, 75). In neurons,
cAMP promotes directional movement of mitochondria along
the microtubule network (79–82), while local cytosolic Ca2+

hotspots act as mitochondrial stop signals (83). Our recent
work has shown that P2Y11 receptors promote trafficking of
mitochondria to the IS of T cells (84). Thus, P2Y11 and
P2X4 receptors jointly recruit and activate mitochondria at
the IS in order to sustain T cell activation. However, further
studies are needed to reveal the detailed mechanisms by which
these purinergic receptors, motor proteins, and the microtubule
network regulate the complex process that energizes the IS in T
cells (Figures 1C,D).

Several lines of evidence indicate that purinergic signaling
has important physiological implications for in vivo T cell
functions. Consistent with the critical roles of P2X receptors
in T cells, genetic variants of P2X4 and P2X7 receptors were
found to contribute to multiple sclerosis, a T cell-mediated
inflammatory autoimmune disease (85). Furthermore, CD4T cell
infiltration into the spinal cord of mice subjected to experimental
autoimmune encephalomyelitis is attenuated in Panx1 knockout
mice (53). The significance of P2Y11 receptors as regulators of
human immune responses is supported by recent findings that
single nucleotide polymorphisms (SNPs) in the P2Y11 receptor
gene are associated with inflammatory disorders that increase the
risk of acute myocardial infarction and predispose patients to
narcolepsy and reduced T cell viability (86, 87).

SYSTEMIC ATP ACCUMULATION IMPAIRS
IMMUNE CELL FUNCTIONS BY
INTERFERING WITH THEIR AUTOCRINE
PURINERGIC SIGNALING MECHANISMS

T cells travel to lymphoid organs and other host tissues
where they interact with APCs in order to elicit effector
functions needed for host defense. As outlined above, T cell

FIGURE 2 | Systemic ATP accumulation impairs the autocrine purinergic

signaling mechanisms that regulate immune functions. Trauma, burns,

inflammation, cancer, and aging are associated with systemic ATP

accumulation that promotes immune cell dysfunction (16, 88–90). This results

in infections, sepsis, and additional cell damage that exacerbates systemic

ATP levels and propagates immune dysfunction.

functions depend on intricate autocrine signaling mechanisms
to execute their roles in host defense. However, these autocrine
signaling mechanisms are susceptible to paracrine interference
by exogenous ATP that accumulates in response to cell
damage, tissue injury, or inflammation. Systemic ATP levels
also increase in sepsis and in the tumor microenvironment,
which impairs T cell migration, cytokine production, and
T cell proliferation (Figure 2) (16, 88, 91–93). Global and
disproportionate stimulation of P2X1, P2X4, and P2Y11
receptors across the cell surface disrupts the spatiotemporal
sequence of the autocrine purinergic signaling events that
regulate T cells and host immune functions (64, 94).

Besides P2X1 and P2X4 receptors, T cells also express
the P2X7 receptor subtype. P2X7 receptors are comparatively
insensitive to ATP with an EC50 value of ∼780µM (41).
Interestingly, P2X7 receptors remain uniformly distributed
across the cell surface of T cells even during IS formation
with APCs (36). This suggests that P2X7 receptors may act
primarily as mediators of paracrine rather than autocrine
ATP signaling. P2X7 receptor stimulation by external ATP
can alter the composition of T cell subpopulations by
promoting the Th1/Th17 differentiation of CD4T cells, the
conversion of immunosuppressive regulatory T cells (Tregs) into
proinflammatory Th17 cells, and the formation of long-lived
CD8 memory T cell subsets (37, 95). However, P2X7 receptors
may also contribute to the onset of autoimmune diseases such
as type 1 diabetes, namely by enhancing the activation of
autoreactive CD8 effector T cells (96). P2X7 receptors differ from
other purinergic receptors in that they form large and unselective
macropores in response tomillimolar ATP concentrations, which
ultimately results in cell death (33). Physiologically, this enables
P2X7 receptors to control T follicular helper (Tfh) cell numbers
in Peyer’s patches of the small intestine and to modulate the
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production of IgA that shapes the gut microbiota composition
(97). P2X7 receptor stimulation also limits the expansion
of autoreactivity-promoting Tfh cells, whereas Tfh cells that
respond to cognate antigens are protected from P2X7 receptor-
mediated cell death (97–99). On the other hand, P2X7 receptor-
mediated cell death may also contribute to the suppression of T
cell immunity in the presence of pathologically elevated systemic
ATP levels.

Excessive ATP in the systemic environment of neutrophils
has similarly disruptive implications on cell functions.
Overstimulation of excitatory P2Y2 receptors disrupts
neutrophil chemotaxis and bacterial clearance. At the same
time, excessive P2Y2 receptor stimulation by systemic
ATP aggravates inflammatory neutrophil responses such
as oxidative burst and degranulation, which culminate
a in neutrophil-mediated collateral host tissue damage
(Figure 2) (100–102). Systemic ATP may have a similar
impact on other immune cells including macrophages that
depend on P2X4 and P2X7 receptors for bacterial clearance
in polymicrobial sepsis (103, 104). Targeting extracellular
ATP could be a promising approach to overcome systemic
inflammation and immunosuppression in critical care and
cancer patients. The therapeutic potential of this approach is
supported by observations that treatment with apyrase and
other enzymes that hydrolyze extracellular ATP can indeed
improve outcome in mouse models of inflammation and sepsis
(89, 102, 105).

CONCLUDING REMARKS

Breakdown of increased systemic ATP levels can elevate
extracellular adenosine concentrations. Adenosine exerts mostly

anti-inflammatory effects through A2a and A2b receptors.
While adenosine can protect tissues from inflammatory damage,
excessive adenosine signaling contributes to immunosuppression
in cancer and sepsis (106). The suppressive effect of A2a receptor
stimulation on various T cell functions has been studied in
great detail in mice (107). CD39 and CD73 are dominant
enzymes responsible for the conversion of ATP to adenosine.
Both ectonucleotidases are highly expressed by murine Tregs

that suppress T cell functions by generating adenosine and
stimulating A2a receptors (27, 32). In contrast to mice, CD39
expression on human CD4T cells is largely restricted to memory
Tregs (108), and T cell inhibition by adenosine receptor-
dependent pathways seems to be less important in humans than
in mice (109). Interestingly, mice and other rodents do not
possess P2Y11 receptors (110). Thus, mouse models cannot fully
reflect human disease processes. It seems likely that A2 adenosine
receptors inmice fulfill the roles of human P2Y11 receptors in the
regulation of T cell functions. These species-specific differences
must be considered during the development of treatments for
inflammatory, infectious, and other T cell-centered diseases such
as cancer.
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The blockade of immunological negative regulators offered a novel therapeutic approach

that revolutionized the immunotherapy of cancer. Still, a significant portion of patients

fail to respond to anti-PD-1/PD-L1 and/or anti-CTLA-4 therapy or experience significant

adverse effects. We propose that one of the major reasons that many patients do not

respond to this form of therapy is due to the powerful physiological suppression mediated

by hypoxia-adenosinergic signaling. Indeed, both inflamed and cancerous tissues are

hypoxic and rich in extracellular adenosine, in part due to stabilization of the transcription

factor hypoxia-inducible factor 1 alpha (HIF-1α). Adenosine signals through adenosine

A2A receptors (A2AR) to suppress anti-tumor and anti-pathogen immune responses.

Several classes of anti-hypoxia-A2AR therapeutics have been offered to refractory cancer

patients, with A2AR blockers, inhibitors of adenosine-generating enzymes such as CD39

and CD73, and hypoxia-targeting drugs now reaching the clinical stage. Clinical results

have confirmed preclinical observations that blockade of the hypoxia-adenosine-A2AR

axis synergizes with inhibitors of immune checkpoints to induce tumor rejection. Thus,

A2AR blockers provide a new hope for the majority of patients who are nonresponsive

to current immunotherapeutic approaches including checkpoint blockade. Here, we

discuss the discoveries that firmly implicate the A2AR as a critical and non-redundant

biochemical negative regulator of the immune response and highlight the importance of

targeting the hypoxia-adenosine-A2AR axis to manipulate anti-pathogen and anti-tumor

immune responses.

Keywords: adenosine, hypoxia, cancer immunotherapies, T cell, HIF−1α, immune checkpoint, immunology

OVERVIEW OF THE HYPOXIA-ADENOSINE-A2AR AXIS

While hypoxia-dependent generation of extracellular adenosine and subsequent
immunosuppressive signaling through adenosine A2A receptors (A2AR) is deleterious in
the tumor microenvironment (TME), this mechanism normally has an important tissue-protective
function. The suppression of tumor-reactive T cells by hypoxia-adenosine-A2AR signaling in the
TME is a commandeering of this evolutionarily conserved, non-redundant feedback mechanism
to govern inflammation (1–3). Sitkovsky and colleagues were the first to confirm in vivo that this
may explain the paradoxical peaceful coexistence of tumors and antitumor T cells in tumors (4, 5).
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These studies demonstrated that A2AR signaling inhibited
important effector functions of T cells, such as secretion of
pro-inflammatory cytokines (e.g., IFNγ) (6). However, the anti-
inflammatory effects of the hypoxia-adenosine-A2AR axis have
been confirmed and extended to include suppression of T cell
proliferation, cytotoxicity, and induction of anti-inflammatory
cytokine secretion (e.g., IL-10) (7–9).

The hypoxia-adenosine-A2AR axis of immunosuppression
begins with hypoxia and the stabilization of hypoxia-inducible
factor-1alpha (HIF-1α), which increases extracellular adenosine
in part by upregulating adenosine-generating enzymes.
Subsequent signaling through the Gs-coupled/cAMP-
elevating A2ARs induces protein kinase A (PKA)-mediated
inhibition of T-cell receptor signaling and immunosuppressive
transcriptional changes (10). This includes the inhibition of
pro-inflammatory cytokine secretion and an increase in the
levels of anti-inflammatory cytokines that contain a cAMP
response element (CRE) consensus sequence in their respective
promoter regions. While adenosine can also activate cAMP-
elevating adenosine A2B receptors (A2BRs), our research
has focused on A2AR adenosinergic immunosuppression
due to a higher affinity for adenosine and higher expression
on T cells (11–13). Importantly, A2AR expression seems
to be the limiting factor in adenosine-mediated cAMP
generation in T cells since there is no receptor reserve of
A2AR (14). T cells can also possess a memory of A2AR
signaling, allowing the effects of adenosine to persist long after
exposure (15).

Adenosine also exerts immunosuppressive effects through
A2BR, particularly on innate immune cells. Groundwork for
this hypothesis can be found in studies demonstrating that
adenosinergic immunosuppression of IL-12 and TNFα by
macrophages is at least partially A2AR-independent (16). For
example, in lipopolysaccharide-stimulated macrophages, A2BR
activation increases anti-inflammatory IL-10 production by
attenuating translational arrest of IL-10 mRNA (17). Conversely,
A2BR signaling may enhance activation of alternative/Th2
cytokine-activated macrophages, which manifest several anti-
inflammatory functions (18). In group 2 innate lymphoid
cells (IL2C), adenosine has been demonstrated to decrease
IL-5 and IL-13 production through A2BR, but increase IL-
5 production through A2AR. Activation of both A2AR and
A2BR in IL2C results in a net decrease in IL-5 production,
indicating the importance of A2BR on this cell type (19).
Interestingly, HIF-1α-dependent expression of A2BR has also
been shown to induce the enrichment of breast cancer stem
cells (20). Additional studies of preclinical models of acute
lung injury have also demonstrated that an increase in HIF-
1α levels in pulmonary epithelia subjected to cyclic mechanical
stretch resulted in an increase in A2BR expression (21). A2BR-
mediated immunosuppression of a variety of immune cells,
including dendritic cells, has led to the development of dual
A2AR/A2BR antagonists which may prevent adenosinergic
immunosuppression of both innate and adaptive immune
cells (22).

The main metabolic precursor to adenosine is ATP. Under
homeostatic conditions, ATP is magnitudes higher intracellularly
than in the extracellular space (23, 24). However, in inflamed
and cancerous tissues, apoptotic and necrotic cells release ATP
into the extracellular compartment, disrupting this gradient (25).
Excess ATP is then degraded into adenosine by CD39/CD73
(26–29), CD38/CD203a (30–33) and other phosphatases in
certain tissues (28). While the primary mechanism is thought
to be mediated by CD39 and CD73 (34), alternative adenosine-
generating pathways, such as CD38, are an important contributor
to adenosine levels in the TME and inhibit antitumor T cells
via A2AR. Indeed, recent studies have demonstrated that PD-1
blockade can increase CD38 expression, leading to resistance to
αPD-1 therapy (35).

Consistent with findings regarding adenosine-A2AR
immunosuppression, multiple studies from different teams
have confirmed the tissue-protecting roles of CD39 and
CD73. CD39, which converts ATP to AMP, also serves an
anticoagulant function in vasculature (36). Indeed, CD39
has been demonstrated to attenuate both renal ischemia
and acute lung injury (37, 38). CD73, which converts
AMP to adenosine, has also been shown to have a role
in the mediation of cell adhesion to endothelium (39).
Moreover, some tumorigenic functions of CD73 have been
shown to be independent of its enzymatic function, such
as induction of angiogenesis (40). Interestingly, recent
studies have also shown that A2AR signaling can promote
angiogenesis, suggesting a role for the HIF-1α-CD73-adenosine-
A2AR axis in tumor-associated lymphangiogenesis and
metastasis (41).

The upstream portion of the hypoxia-adenosine-A2AR axis
is mediated by hypoxia/HIF-1α. HIF-1α upregulates genes
containing an hypoxia response element (HRE) consensus
sequence that mediates cell survival in hypoxic conditions.
The immunosuppressive role of HIF-1α was first implicated in
studies of HIF-1α−/− Rag-2−/− mice with HIF-1α deletion in T
cells and B cells. These experiments demonstrated that HIF-1α
regulates lymphocyte development and prevents autoimmunity
(42). Subsequent studies of mice with T cell-specific HIF-1α
deletion confirmed an immunosuppressive role for HIF-1α.
These mice exhibited an enhanced antibacterial response due
to the lack of HIF-1α-mediated inhibition of T cells (43).
Studies that prevent HIF-1α stabilization using supplemental
oxygenation have also provided direct mechanistic evidence
for HIF-1α-mediated upregulation of the hypoxia-adenosine-
A2AR axis (44). It must be emphasized that upregulation of
CRE-containing genes and HRE-containing genes may not
be mutually exclusive. The gene encoding the characteristic
regulatory T-cell transcription factor FoxP3, which upregulates
HIF-1α, is induced by CRE activation (45, 46). Thus, it is
suggested that crosstalk exists between CRE and HRE pathways
and they may synergize to strengthen immunosuppression
(47, 48). Physiologically, this is supported by the infectious
tolerance mediated by regulatory T cells in inflamed and
cancerous tissues (49–51).
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PHARMACOLOGICAL TARGETS IN THE

HYPOXIA-ADENOSINE-A2AR AXIS FOR

CANCER IMMUNOTHERAPY

A2ARs
Inquiry into the immunosuppressive functions of adenosine
was catalyzed by the established importance of cAMP as an
immunosuppressive agent (52). cAMP has been demonstrated
to inhibit many effector T cell functions via PKA activation
(53–59). Landmark studies by Sitkovsky provided the first
genetic and pharmacological evidence that the cAMP-elevating
A2AR has a critical and non-redundant immunosuppressive
role in tissue protection during excessive inflammation (6).
These studies also offered insights into why antitumor T cells
often fail to mount an effective response against cancerous
tissue. Indeed, tumors are rich in extracellular adenosine, in
large part due to poor, irregular vasculature resulting in local
hypoxia (60–62). The tumor-protecting role of A2AR was
conclusively established using mice with A2AR gene deletion
(5). This study also complemented genetic evidence with
pharmacological data, demonstrating that A2AR antagonism
or silencing by siRNA enhanced the efficacy of adoptive
cell transfer (ACT) (5). This was supported by follow-up
studies demonstrating that A2AR antagonism during ACT
or adoptive transfer of A2AR-deficient T cells were effective
approaches for enhancing the efficacy of ACT in mice (63).
The therapeutic benefit of A2AR antagonism was shown
to be due in part by increased IFNγ secretion by tumor-
infiltrating adoptively transferred T cells (63). Importantly, this
study also demonstrated that A2AR antagonism improved anti-
tumor immunity independent of the anatomical location of the
tumor and provided long-term tumor-specific memory (63).
Taken together, these studies provided proof of principal for
the use of A2AR antagonists during cancer immunotherapies,
particularly ACT.

The progress in methods of ACT and the studies reviewed
above offered justification to test whether CAR-T cells might also
be susceptible to hypoxia-adenosinergic immunosuppression.
It has been hypothesized that A2AR blockade may improve
efficacy of CAR-T therapies against cancers. This may prove
essential for CAR-T that target solid tumors, which are known
to be hypoxic and extracellular adenosine-rich. Indeed, early
evidence was provided by Albelda’s group demonstrating that
genetic engineering to prevent PKA trafficking to the CAR-
T cell membrane enhanced antitumor function in vivo and
conferred resistance to adenosinergic immunosuppression in
vitro (64). Critical studies by Darcy’s Team demonstrated that
both pharmacological and genetic inhibition of A2AR enhanced
CAR-T efficacy in two distinct murine models of syngeneic
breast cancer. Of clinical relevance, addition of αPD-1 to
the CAR-T/A2AR blockade protocol further enhanced CAR-T
efficacy, as indicated by increased IFNγ production by CAR-T
(65). These findings confirm and extend the observations that
A2AR antagonism enhances production of IFNγ by polyclonal
adoptively transferred T cells in the TME to improve tumor
regression (63).

Pioneering studies by Powell’s Team established that A2AR
agonism can upregulate negative regulators of the immune
response such as LAG-3 (8). Subsequent studies using the A2AR
antagonist CPI-444 have also provided strong justification for
A2AR blockade during cancer immunotherapies. These studies
confirmed and extended observations of improved antitumor
efficacy of ACT in combination with A2AR blockade. Additional
mechanistic evidence justifying A2AR blockade was provided by
demonstrations that A2AR blockade reduced PD-1 and LAG-
3 expression on effector and regulatory T cells, as well as
reduced expression of these immune checkpoint molecules in
tumor-draining lymph nodes (66). Taken together, these findings
indicate that A2AR blockade can prevent inhibition of already
active antitumor T cells, and also prevent inhibition during
initial activation (66). Consistent with this finding, it has also
been demonstrated that A2AR deletion increases terminally
mature natural killer cells in the TME, implicating adenosine
as a negative regulator of innate immune cell maturation as
well (67). Important studies by Miller and Willingham in
multiple preclinical cancer models confirmed that combining
A2AR antagonism with checkpoint blockade improved tumor
regression, strengthening mechanistic evidence to justify clinical
testing of this approach (68). In vitro assays also demonstrated
that CPI-444 prevented adenosinergic inhibition of IL-2 and
IFNγ production by T cells (68). Through analysis of gene
expression, these studies were also able to identify a Th1
expression signature that was associated with positive responses
to dual blockade of A2AR/PD-L1 (68).

These preclinical studies have led to the clinical testing of
A2AR antagonists as a cancer therapy and have yielded promising
results. Against renal cell cancer, A2AR antagonism using CPI-
444 induced durable responses both as a monotherapy and
when combined with the PD-L1 inhibitor atezolizumab. Patients
experiencing positive responses included individuals who had
previously shown resistance to αPD-L1 therapy. Consistent with
preclinical data, alleviation of adenosinergic immunosuppression
resulted in higher cytotoxic T cell tumor infiltration. This study
also elucidated a gene-expression signature that was associated
with positive response (69). In another clinical study, the A2AR
antagonist NIR178 administered both as a monotherapy and in
combination with the PD-1 inhibitor spartalizumab to 24 non-
small lung cancer patients resulted in stable disease in fifteen
patients in addition to one partial response and one complete
response (70). Furthermore, the A2AR antagonist AZD4635
used as a monotherapy and in combination with the PD-
L1 inhibitor durvalumab induced strong responses in three of
eight metastatic castration-resistant prostate cancer patients (71).
These tumors may be naturally adenosine-rich due to prostatic
acid phosphatase activity and therefore a good candidate for
A2AR blockade (71).

CD39/CD73
It has been established that CD39/CD73 also have a major role
in facilitating immune escape by tumors. Indeed, Robson’s Team
established the field of CD39 and were the first to demonstrate
that CD39 deletion alleviated tumor burden in a preclinical
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model of hepatic metastatic cancer (72). Parallel studies by
Smyth’s Team also demonstrated that administration of a CD73
monoclonal antibody (mAb) decreased tumor burden in two
distinct murine tumor models. This approach also suggested that
not only did CD73 inhibit antitumor leukocytes via adenosine
generation, but affected tumor metastasis as well (73). Moreover,
Stagg’s Team demonstrated that CD73 overexpression in human
triple-negative breast cancer correlated with poor prognosis
and resistance to chemotherapy in a preclinical model of
breast cancer (74). Important studies by Smyth’s Team also
demonstrated improved anti-tumor efficacy using an A2AR
antagonist in combination with a CD73 inhibitor to alleviate
tumor burden (75). These findings also highlight the importance
of targeting multiple components of the hypoxia-adenosine-
A2AR axis. Indeed, small molecule inhibitors or monoclonal
antibodies against CD39 and CD73 are emerging as potent
anti-cancer therapies (49, 74, 76–82). Furthermore, αCD73
therapy has been demonstrated to improve the therapeutic
benefit of αPD-1/αCTLA-4 therapy in multiple preclinical cancer
models (80).

Several mAb CD73 inhibitors have exhibited strong antitumor
efficacy in clinical trials with findings consistent with preclinical
data. In 66 pancreatic or colorectal cancer patients, the αCD73
mAb MEDI9447 as monotherapy and in combination with
durvalumab decreased CD73 expression on peripheral T cells.
In addition, MEDI9447 decreased CD73 expression in five out
of nine tumors, which correlated with increased cytotoxic T cell
infiltration (83). The αCD73 mAb BMS986179 as a monotherapy
and in combination with the PD-1 inhibitor nivolumab also
induced partial responses or stable disease in 17 of 59 patients
with various malignancies (84).

HIF-1α

Given the hypoxia-HIF-1α-mediated upregulation of
adenosine-generating enzymes, Sitkovsky’s Team established
in decades-long studies that hypoxia-HIF-1α inhibits T cells
(10). It was then hypothesized and confirmed that the reversal
of hypoxia could prevent the inhibition of antitumor T cells
by hypoxia-adenosine-A2AR-mediated immunosuppression.
Indeed, preclinical studies demonstrated that supplemental
oxygen (60% O2) decreased levels of hypoxia, HIF-1α, and
extracellular adenosine in the TME (44). This was supported by
data demonstrating oxygenation-mediated reduction in CD39,
CD73, A2AR, A2BR, and COX-2 expression (44). Importantly,
supplemental oxygen was also shown to upregulate MHC class I
expression by tumor cells, allowing for increased recognition and
subsequent elimination by antitumor T cells (44). Parallel studies
demonstrated the immunological effects of supplemental oxygen

by showing that oxygenation converts an immunosuppressive
TME to an immunopermissive TME. This resulted in an increase
in many pro-inflammatory cytokines as well as recruitment of
endogenous and adoptively transferred antitumor T cells into
the TME. This was also accompanied by a reduction in many
anti-inflammatory molecules such as TGFβ, CTLA-4, and FoxP3,
as well as an overall reduction in regulatory T cells in the TME
(85). This resulted in significant tumor regression and long-term
survival in preclinical tumor models. Importantly, these studies
also established that the reversal of hypoxia improved the efficacy
of immune checkpoint blockade with αCTLA-4/αPD-1 (85).

HIF-1α can also be pharmacologically targeted using small
molecule drugs such as digoxin, acriflavine, and ganetespib.
Indeed, these drugs have shown efficacy in preclinical
tumor models (86–88). While the immunosuppressive
effects of HIF-1α have been shown to be mediated in part
by hypoxia-adenosinergic signaling, HIF-1α also has other non-
adenosinergic immunosuppressive effects (89). Additionally,
immunosuppression via adenosine-A2AR signaling may not
be completely reversed by only targeting hypoxia/HIF-1α.
Therefore, an ideal approach for completely abrogating the
immunosuppressive effects of the hypoxia-adenosine-A2AR
axis might be the co-administration of both anti-hypoxia-
HIF-1α therapies and A2AR antagonists during cancer
immunotherapy (90).

CONCLUSION

The hypoxia-adenosine-A2AR axis is a potent inhibitor
of antitumor T cells. This pathway presents multiple
pharmacological targets. Of particular importance and
translational value are A2ARs, CD39/CD73, and HIF-1α.
Inhibition of this pathway has been shown to enhance the
efficacy of current cancer immunotherapy approaches, including
αCTLA-4/αPD-1. Multiple studies have reported synergism
between checkpoint inhibitors and several classes of anti-
hypoxia-adenosine-A2AR therapeutics. Our preclinical studies
provided the rationale and justification for combining A2AR
blockade and supplemental oxygen/oxygenation agents during
cancer immunotherapies. We postulate that this approach will
maximize the efficacy of the antitumor immune response in
clinical studies.
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Hypoxia and inflammation often coincide in pathogenic conditions such as acute
respiratory distress syndrome (ARDS) and chronic lung diseases, which are significant
contributors to morbidity and mortality for the general population. For example, the recent
global outbreak of Coronavirus disease 2019 (COVID-19) has placed viral infection-
induced ARDS under the spotlight. Moreover, chronic lung disease ranks the third leading
cause of death in the United States. Hypoxia signaling plays a diverse role in both acute
and chronic lung inflammation, which could partially be explained by the divergent function
of downstream target pathways such as adenosine signaling. Particularly, hypoxia
signaling activates adenosine signaling to inhibit the inflammatory response in ARDS,
while in chronic lung diseases, it promotes inflammation and tissue injury. In this review,
we discuss the role of adenosine at the interphase of hypoxia and inflammation in ARDS
and chronic lung diseases, as well as the current strategy for therapeutic targeting of the
adenosine signaling pathway.

Keywords: adenosine, inflammation, hypoxia, hypoxia-inducible factor, acute lung injury, chronic lung injury
INTRODUCTION

Acute respiratory distress syndrome (ARDS) is common in critically ill patients, characterized by
respiratory failure, pulmonary edema independent of left heart failure, as well as high morbidity and
mortality (1). The mortality rate was 30–40% in the most recent studies despite the latest
improvement in clinical management (2). Pathological characters of ARDS in the acute
“exudative” phase (~7 days) include alveolar epithelial and endothelial injury, resulting in
interstitial and alveolar edema, hyaline membrane formation, and alveolar hemorrhage, as well
as the accumulation of immune cells (1, 3). The main causes for ARDS include pneumonia,
aspiration of gastric contents, severe trauma as well as sepsis (1, 4, 5). The recent global outbreak of
Coronavirus disease 2019 (COVID-19) has placed viral infection-induced ARDS under the
spotlight. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) infection and has resulted in a worldwide pandemic rapidly because of its high transmissibility
and pathogenicity (6). ARDS is one of the most common organ dysfunctions for severe COVID-19,
which accounts for the cause of death in 70% of fatal cases (7, 8). There are several emerging viruses
in the past 20 years, which can induce ARDS-related mortality, such as influenza H1N1 2009,
org January 2021 | Volume 11 | Article 604944181
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influenza H5N1 and H7N9 viruses, the severe acute respiratory
syndrome coronavirus (SARS), and Middle East respiratory
syndrome coronavirus (MERS) (9). It is reported that about
30–40% of the hospitalized patients infected with influenza virus
progress to pneumonia, and influenza A shows a higher
predisposition to ARDS in adults (10). Compared to SARS
(10%) and MERS (35%), COVID-19 shows lower mortality
rates of approximately 5.2%, but higher infectiousness (9, 11).
As of September 6th, 2020, the pandemic of COVID-19 had
affected over 26 million individuals around the world and caused
more than 800,000 deaths worldwide. Therefore, the search for
effective therapeutic approaches for the preventing and
treatment of COVID-19 associated ARDS has become an
urgency. Currently, although there are certain improvements in
the management of ARDS, the treatment for ARDS is in urgent
need. Therefore, the fundamental pathogenesis and effective
treatments for ARDS are still under intensive investigation.

Persistent pulmonary inflammation and tissue remodeling
result in the gradual decline in pulmonary function in patients
suffering from chronic lung diseases including chronic
obstructive pulmonary disease (COPD), asthma, and idiopathic
pulmonary fibrosis (IPF) (3, 12–16). Chronic lung disease ranks
the third leading cause of death in the United States. The risk
factors of chronic lung diseases included genes, environmental
factors, and aging (3, 12, 13, 17). However, one of the common
characteristics among these diseases is dysregulated recruitment
or activation of immune cells, such as neutrophils, macrophages,
dendritic cells, and other effector cells, such as fibroblasts,
myofibroblasts, and airway epithelial cells (AECs), which
accelerates pulmonary remodeling and inflammatory response
(3, 4). The therapeutic approaches for chronic lung diseases focus
on providing symptomatic relief, but pharmacologic compounds
are still lacking to reverse the profound tissue remodeling and
restore lung function in these patients.

Adenosine was first isolated from the heart muscle and
identified as an “adenine compound” that could change cardiac
rhythm when injected in guinea pigs in 1927 (18). Besides its
function in cardiac rhythm, adenosine also modulates
inflammatory responses during hypoxic conditions (19–21). In
this review, we will discuss the interaction between hypoxia and
adenosine signaling, including adenosine, adenosine receptors,
and adenosine metabolism, in acute lung inflammation and
chronic lung diseases. We will also focus on the currently
available approaches for therapeutic targeting of the hypoxia-
adenosine axis in these disease conditions.
BIOLOGY OF ADENOSINE

Extracellular Adenosine Generation
Adenosine, along with ATP and ADP, is considered the main
purinergic signaling molecules (Figure 1). The release of ATP
from intracellular to the extracellular environment contributes to
the formation of adenosine especially when the tissue is in
inflammatory, ischemic, and hypoxic conditions (23, 24). ATP/
ADP in the extracellular space can be converted to adenosine
Frontiers in Immunology | www.frontiersin.org 282
monophosphate (AMP) by ectonucleoside triphosphate
diphosphohydrolase-1 (CD39) (25, 26). Then AMP is further
converted by ecto-5’-nucleotidase (CD73) to extracellular
adenosine (25, 26). Mice with CD39 or CD73 deficiency are
viable, which indicates that nucleotide phosphohydrolysis
regulated by ectoenzymes is not vital in regular physiologic
conditions (27). However, ectonucleotidases still have a crucial
role in disease conditions. For example, the upregulation of
adenosine generation and CD39 and CD73 expression is one of
the protective mechanisms to reduce apoptosis, and alleviate
inflammation in kidney ischemia/reperfusion (I/R) injury models
(28). The deletion of CD39 in mice leads to increased level of ATP/
ADP, and reduced adenosine levels, along with elevated risk of
dysregulated inflammation and tissue injury (29, 30). Similarly,
genetic deletion of CD73 results in higher mortality and delayed
acute lung injury resolution when compared withWTmice because
of the dampened generation of adenosine in regulatory T cells
(Tregs) (31). Therefore, the conversion of ATP/ADP to adenosine is
considered beneficial inmany ischemic and inflammatory disorders.

Adenosine Receptors and Signaling
Adenosine receptors, which include four distinct G-protein
coupled seven membrane-spanning cell surface receptors: the
adenosine A1 receptor (A1AR), the adenosine A2A receptor
(A2AAR), the adenosine A2B receptor (A2BAR), and the
adenosine A3 receptor (A3AR), are crucial for adenosine
mediated responses (3, 19, 21, 27). Both A2AAR and A2BAR
are linked to Gs protein involving activation of adenylate cyclase,
to stimulate cAMP production followed by PKA activation (32–
35). A1AR and A3AR, on the other hand, bear a distinct signal
transduction pathway. For example, A1AR activation inhibits
cAMP accumulations in Chinese hamster ovary cells (36). The
coupling of A1AR to the Gi/o protein pathway attenuates cAMP
signal transduction in hepatic stellate cells (33). Furthermore,
A3AR has been indicated to attenuate adenosine-induced
increase of cAMP in rat vascular smooth muscle cells in vitro
(37) and A3AR knockout mice show an increased level of cAMP
in the cardiovascular system (38). Functionally, Dr. Michail
Sitkovsky’s laboratory identified that A2AAR is crucial for
limiting inflammatory responses as mice with A2AAR
deficiency showed profound tissue damage in inflammation
and endotoxin-induced septic shock (21). The expression of
adenosine receptor subtypes is different in various cell types.
For example, neutrophils and lymphocytes have higher
expression levels of A2AAR, while vascular endothelial cells
have higher levels of A2BAR (39–41). It has been elucidated
that adenosine receptors have important functions in pathologic
conditions. For instance, adenosine has a selective role in
reducing the heart rate via A1AR, which would be a potential
therapeutic method for superventricular tachycardia in mice
(42). Adenosine signaling via A2AAR or A2BAR has a
beneficial effect via shifting proinflammatory immune response
to anti-inflammatory immune response as well as promoting
barrier protection in different animal models (43–48). A3AR is
related to the aqueous humor production in the eye in a
preclinical study (49), and its agonist showed efficacy in
treating dry eye syndrome in a clinical study (50).
January 2021 | Volume 11 | Article 604944
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Intracellular Adenosine Metabolism
The termination of adenosine signaling is mediated by the
transportation of adenosine from the extracellular to the
intracellular space (Figure 1) (27, 51). ENTs and concentrative
nucleoside transporters (CNTs) are nucleoside transporters
found on various cell types (52, 53). According to the
concentration gradient, adenosine moves freely across these
channels because of its diffusion-limited character (53).
Adenosine signaling can be diminished by the transportation
of adenosine into the cell and then metabolized to inosine via
adenosine deaminase (ADA) (54). Additionally, adenosine
kinase can convert adenosine to AMP (55). The activation of
mucosal A2B signaling combined with the repression or deletion
of epithelial ENT2 dampens mucosal inflammation (56).
Another study also showed that elevations of adenosine protect
from liver injury after the genetic deletion or inhibition of Ent1
via A2B signaling in liver ischemia and reperfusion models (57).
HYPOXIA AND INFLAMMATION IN LUNG
INJURY

Hypoxia and inflammation frequently occur in pathogenic
conditions such as cancer, inflammatory bowel diseases,
ischemia/reperfusion injury, and inflammatory lung diseases
Frontiers in Immunology | www.frontiersin.org 383
(58). Hypoxia-inducible factors (HIFs) are crucial in the
responses mediating the crosstalk between hypoxia and
inflammation. Hypoxia-inducible factors (HIFs) have a central
role in regulating tissue adaptation to low oxygen conditions.
HIFs belongs to ab-heterodimeric transcription factors that
include HIF-1a, HIF-2a, and HIF-1b/ARNT subunits. When
oxygen is abundant, HIF-1a or HIF-2a binds to the von Hippel-
Lindau (VHL) gene product, a part of the E3 ubiquitin ligase
complex, and result in proteasomal degradation (59–61). HIFa
and VHL binding are related to the hydroxylation of HIFa
proline residues, which rely on prolyl hydroxylases (PHDs) and
factor-inhibiting HIF (FIH) (60, 61). Under hypoxia, HIFa
subunits can not be hydroxylated as efficiently due to the lack
of oxygen as a substrate for PHDs, which results in the
stabilization of HIF-1a and HIF-2a. Once stabilized, HIFa
translocates to the nucleus and binds to HIF-1b to form a
complex, and in turn bind to hypoxia-responsive elements
(HRE) of the promoter region in the target genes for start
transcriptional regulation (46, 62, 63). Most of the HIFs target
genes are related to metabolism, proliferation, oxygen transport,
and other processes important for hypoxia adaptation (64). HIF
stabilization is demonstrated in inflammatory conditions and
diseases, such as lung injury, inflammatory bowel disease, and
ischemia-reperfusion injury through various mechanisms
(Figure 2) (3, 58, 65). Tissue metabolism in inflammatory
disease has higher local oxygen demand, which induces tissue
FIGURE 1 | Adenosine biogenesis and signaling. ATP and ADP are the main resources of extracellular adenosine. ATP and ADP are dephosphorylated to AMP on
the cell surface by Ecto-nucleotide triphosphate diphosphohydrolase 1 (CD39) and ecto-5’-nucleotidase (CD73) dephosphorylates AMP to adenosine. Adenosine
activates adenosine receptors (A1AR, A2AAR, A2BAR, A3AR) and plays a crucial role in different cells and organs. Adenosine can be transported into the cell by
equilibrative nucleoside transports (ENTs), or be transformed to inosine via CD26-bound adenosine deaminase (ADA) at the cell surface. Under normoxic conditions,
adenosine has a high affinity with adenosine receptors and ENTs. Under hypoxia conditions, the release of extracellular ATP/ADP increased. Finally, HIFs enhanced
the release of extracellular adenosine and adenosine receptors, which modulates tissue barriers and inflammatory response.
January 2021 | Volume 11 | Article 604944
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hypoxia. Additionally, the supply of oxygen decreased due to the
shortage of tissue blood supply in trauma, ischemia, and vascular
occlusion disease, which aggravate tissue inflammation (46,
66). Moreover, cytokines (e.g., IL-1, IFN-b, TNF-a) released
during inflammation have an impact on HIF-1a expression (67,
68). The hypoxic environment in solid tumors and during
ischemia/reperfusion activates NF-kB, which is a crucial
transcription factor regulating inflammation and immune
response (69–71). Therefore, hypoxia and inflammation
usually occur simultaneously during pathogenic conditions,
and they are closely linked to each other.

Acute Respiratory Distress Syndrome
Recently, increasing research effort has provided convincing
evidence of the link between hypoxia and inflammation in
ARDS (72–75). For example, HIF-1a is stabilized under
normoxic conditions by mechanical stretch of alveolar
epithelial cells in vitro and in ventilation-induced lung injury
(VILI) in mice in vivo (72). The normoxic stabilization of HIF-1a
by mechanical stretch could be explained by the inhibition of
succinate dehydrogenase (SDH). Functionally, HIF-1a
stabilization dampens lung inflammation through the
regulation of glucose metabolism in alveolar epithelial cells,
because only mice with alveolar epithelial cell-specific deletion
of HIF-1a show profoundly increased lung inflammation and
pulmonary edema (72). The protective effect of HIF-1a in
alveolar epithelial cells has also been demonstrated in acute
cobalt-induced lung injury models as more neutrophilic
Frontiers in Immunology | www.frontiersin.org 484
infiltration and Th1 cytokines were observed in alveolar
epithelial-specific HIF-1a-deficient mice (76). Additionally,
HIF-2a activation improved endothelial adherens junction
integrity in endotoxin-mediated injury through increasing its
target gene vascular endothelial protein tyrosine phosphatase
(VE-PTP) (77). Furthermore, the pharmacologic activator of
HIF, dimethyloxalylglycine (DMOG), protects the lung alveolar
epithelium during murine VILI and LPS induced acute lung
injury via enhancement of glycolysis (72, 78). Another study
showed that DMOG treatment attenuates Fas Ligand (FasL)-
induced apoptosis in MLE-12 cells in vitro and dampens lung
inflammation, and histopathological changes intratracheal FasL
induced lung injury in mice in vivo (79). These studies suggests
that pharmacological HIF activator could offer lung protection
during ARDS via maintaining alveolar epithelial and endothelial
functions during injury.

Viral infection-induced ARDS has been the center of
attention because of the recent pandemic of COVID-19.
Influenza virus infection is one of the most studied models for
viral pneumonia (80–83). Several studies have shown a close
relationship between hypoxia and inflammation in viral
infection-induced ARDS. For example, respiratory syncytial
virus infection in mice results in the stabilization of HIF-1a in
an oxygen-independent manner (84). Besides, earlier studies
indicated that influenza A (H1N1) virus infection could induce
HIF-1a nuclear translocation but did not change its expression
levels in A549 cells in vitro (85). A recent study indicated that
H1N1 infection stabilizes HIF-1a under normoxic conditions in
FIGURE 2 | Hypoxia and inflammation. Inflammation and hypoxia are co-incidental events in several pathological conditions. Inflammatory stimuli, such as cytokines,
bacterial products, and hypoxia, activate the nuclear factor-kB (NF-kB) pathway. The activation of NF-kB enhances the transcription of HIF-1a mRNA and promotes
HIF activity. Inflammatory mediators, such as nitric oxide (NO), hydrogen sulfide (H2S), reactive oxygen species (ROS), and immunometabolites also control HIF
activity in immune cells, which regulates immunity and inflammation. Activated HIF-1a translocates to the nucleus and promotes the transcription of pro-inflammatory
genes by associating with HIF-1b and the cofactor p300/CBP. This figure is adapted from Regulation of immunity and inflammation by hypoxia in immunological
niches; Cormac T. Taylor and Sean P. Colgan, Nature Reviews Immunology; 17, pages 774–785(2017) (22).
January 2021 | Volume 11 | Article 604944
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A549 cells in vitro and in murine models of H1N1 mediated viral
pneumonia in vivo (86). The normoxic stabilization of HIF-1a is
dependent on the inhibition of proteasome function and
decreasing the expression of factor inhibiting HIF-1 (FIH-1)
(86). Moreover, influenza A virus (IAV) infection-induced acute
lung injury (ALI) also results in hypoxia, and further contribute
to the stabilization of HIF-1a in mouse lung tissue (87).
Functionally, alveolar epithelial type II cell-specific deficient
Hif1afl/fl SPCCre mice showed increased lung inflammation and
mortality during IAV infection in vivo (87). Mechanistically, HIF-
1a deficiency promotes influenza A virus replication in A549 cells
in vitro via reducing glycolysis and enhancing autophagy (87). The
functional role of HIF in SARS-CoV-2 infection associated ARDS
needs to be further investigated.

Chronic Lung Injury
IPF is one of themost common and severe forms of interstitial lung
disease (88). IPF patients suffer from an impaired pulmonary gas
exchange and chronic arterial hypoxemia (89). The important role
of hypoxia and HIFs on fibroblast proliferation and differentiation
has been studied extensively (90–92). Besides the direct impact on
fibroblasts, hypoxia is regarded as one of the potent stimuli for the
production of proinflammatory cytokines. For example, protein
kinase C (PKC) activation promotes the expression of TNF-a and
IL-1b in the pulmonary artery under hypoxic conditions (93).
Additionally, vascular endothelial growth factor (VEGF), a known
target gene ofHIF, is an angiogenesis factorwith proinflammatory,
permeability-inducing roles in murine bleomycin-induced
pulmonary fibrosis (94). Furthermore, HIF-1a stabilization has
been observed in alternatively activated macrophages in a murine
model of bleomycin-induced pulmonary fibrosis and HIF-1a
inhibition in macrophages inhibits the expression of profibrotic
mediators including IL-7 and CXCL1 (95). However, the
involvement of hypoxia signaling in other subtypes of immune
cells during IPF has yet to be elucidated.

Inflammation and hypoxia are also tightly linked in COPD,
including chronic bronchitis and emphysema. For example,
cigarette smoking significantly increases inflammation
mediators expression, such as IL-6, IL-8, and TNF-a (96).
These factors contribute to the activation of hypoxia response
genes (including HIFs, NF-kB) and promote the development of
COPD in rats (97). HIFs are overexpressed in the lung tissue of
COPD patients (98) and HIF-1a level is positively correlated
with the severity of COPD in patients (99). HIF-2a, on the other
hand, has been shown to be decreased in lung tissue from
emphysema patients compared to healthy control (100).
Furthermore, endothelial cell-specific deletion of HIF-2a in
mice results in emphysematous changes in the lung, which was
exaggerated by the treatment of SU5416, a vascular endothelial
growth factor receptor 2 (VEGFR2) inhibitor (100). On the other
hand, endothelial-specific overexpression of HIF-2a in mice was
protected from emphysema (100), suggesting therapeutic
activation of HIF-2 a as a treatment for emphysema.

Hypoxia is frequently encountered in patients suffering from
severe asthma or acute exacerbation (101). How hypoxia and
HIFs influence allergic airway inflammation has been studied
extensively. An earlier study suggested that HIF-1a is stabilized
Frontiers in Immunology | www.frontiersin.org 585
in lung tissues from asthmatic patients and in a murine model of
allergic airway inflammation induced by ovalbumin sensitization
(102). This study also demonstrated that deficiency in HIF-1b
significantly dampens allergic airway inflammation and reduced
ovalbumin-specific antibodies in mice (102). Consistently, HIF-
1a antagonist YC-1 reduced airway hyperresponsiveness and
lung inflammation in a murine model of asthma (103, 104).
Besides its global impact on allergic airway inflammation, the
functional role of HIF-1a in different subsets of immune cells has
also been investigated in asthma. For instance, myeloid-specific
deletion of HIF-1a in mice results in reduced airway
hyperresponsiveness (AHR), and HIF-1a deficient eosinophils
show reduced chemotaxis (104). Furthermore, a recent study
indicates that exposure to 3% oxygen leads to increased T helper
type 2 cells (Th2) cytokine expression inCD8+T cells and adoptive
transfer of these cells exaggerated AHR and lung inflammation in
the ovalbumin model of murine allergic airway disease (105).
Additionally, HIF-1a inhibition reduced Th2 cytokines
expression in CD8+ T cells upon hypoxia exposure, and the
adoptive transfer of HIF-1a deficient CD8+ T cells underwent
hypoxia attenuates AHR and airway inflammation in mice (105).
In summary,HIF-1a is important for thedevelopmentofAHRand
airway inflammation by modulating immune cell chemotaxis and
function. However, the detailed mechanism, such as the
identification of HIF target genes in specific immune cells during
asthma, needs to be further investigated.
ADENOSINE AT THE INTERPHASE OF
HYPOXIA AND INFLAMMATION IN LUNG
INJURY

In the past decades, studies have provided ample evidence that
hypoxia signaling is tightly linked with adenosine signaling (46,
58, 106–112). Previous studies showed that hypoxic condition or
inflammation contributes to the accumulation of extracellular
ATP/ADP due to the damage in the cell membrane (3, 23, 27,
113–115). The increased level of extracellular ATP and ADP is
essential for the generation of extracellular adenosine, which is a
key mediator of inflammatory responses (116, 117). It has been
demonstrated that HRE in the promoter of CD73 gene is crucial
for HIF-1amediated expression in epithelial cells under hypoxic
conditions, and the inhibition of HIF-1a decreases the hypoxia-
inducible CD73 expression (118). Besides HIF-1a, transcription
factor Sp1 is also involved in the transcription of CD39 under
hypoxia conditions, and its protective effect has been
demonstrated during cardiac and hepatic ischemia (29, 46,
119). Moreover, A2AAR has been identified as a target gene of
HIF-2a in human lung endothelial cells (120), while A2BAR has
been identified as a target gene of HIF-1a (121, 122). The links
between HIF and adenosine are not only through regulation of
ectonucleotidases and adenosine receptors but also via
equilibrative nucleoside transporters (ENTs) and its G-protein-
coupled receptors. For example, HIFs are implicated in the
repression of ENT1 and ENT2 (53, 123) and abolish the
conversion of adenosine to AMP by adenosine kinase in cells
January 2021 | Volume 11 | Article 604944
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(46, 55). The close relationship between hypoxia and adenosine
signaling in acute and chronic lung injury have been established
during the past decades (Figure 3).

Extracellular Adenosine Generation
Several studies suggest that adenosine level increases following
hypoxia exposure in animal studies (126) and in human studies
(127, 128). In vitro cell culture experiments and in vivo animal
studies indicated that endogenous adenosine generation inhibits
neutrophil accumulation during hypoxia (129). Particularly,
CD39 deficient mice show an increased level of MPO in colon,
lung, kidney, and liver after 4 h of exposure to hypoxia (8% O2)
compared to wild-type mice. Pharmacological inhibition or
genetic deletion of CD73 in mice leads to a similar phenotype as
CD39 deficient mice, suggesting the importance of extracellular
adenosine generation in hypoxia-induced inflammation.
Moreover, short term exposure to hypoxia increases plasma levels
of adenosine, attenuates pro-inflammatory cytokine release, and
results in an elevated level of IL-10 during experimental
endotoxemia models in humans (130). Extracellular adenosine
levels increase after the mechanical ventilation in mice or
stretched pulmonary epithelial cells (106, 112). Pharmacological
inhibition or genetic deletion of CD39 or CD73 in mice leads to
severe lung inflammation with mechanical ventilation, suggesting
the protective effect of adenosine (106). The relationship between
HIF and adenosine in ARDS during viral pneumonia has not been
clearly demonstrated yet. Nucleotide ATP and adenosine in BALF
have been shown to be increased after the infection of influenza A
virus in mice (131, 132). However, adenosine levels and
pathogenesis of ALI did not show any difference between WT
and CD73-knockout mice after the infection of influenza A virus.
Therefore, CD73 is not considered as one of the crucial factors for
the development of influenza-induced ALI (133).
Frontiers in Immunology | www.frontiersin.org 686
Cellular stress and damage induce the generation of
adenosine in lung tissue of patients with chronic lung disease.
For example, the hypoxic-adenosinergic pathway is activated in
IPF patients with pulmonary hypertension (PH), as marked by
increased expression of HIF-1a, adenosine, adenosine A2B
receptor, CD73, and ENT1 (124). Other studies showed that
adenosine levels are increased in the serum, lymphocytes, and
erythrocytes in healthy smokers compared to healthy non-
smokers and continue to increase with the severity in COPD
patients (134). The same study also demonstrated that patients
with higher levels of adenosine tend to have reduced forced
expiratory volume in one second (FEV1), suggesting a potential
functional link (134). Furthermore, adenosine signaling is
significantly enhanced in COPD as represented by increased
CD73 activity and adenosine receptor levels in lung tissue from
patients with COPD or in murine model of emphysema (135,
136). Adenosine signaling is also enhanced in asthma, and
consequently, a high level of adenosine induces airway
hyperresponsiveness and bronchoconstriction and promotes
human mast cells to release allergen-induced mediators (137).

Adenosine Receptors and Signaling
Adenosine A1 Receptor
A1AR has diverse roles in lung injury. For example, A1AR
deficient mice have increased susceptibility to LPS-induced
acute lung injury with increased PMN recruitment and
microvascular permeability (138). The same study indicated
that pretreatment of A1AR agonist, 2’Me-2-chloro-N6-
cyclopentyladenosine, attenuates PMN recruitment and
microvascular permeability. On the other hand, post-infection
treatment of a combination of A1AR antagonist L-97-1 and
ciprofloxacin improves the outcome of Y. pestis infection in rats,
indicating a protective effect of A1AR (139). Furthermore, A1AR
A B

FIGURE 3 | Links between HIF and adenosine signaling in acute/chronic lung injury. (A) Inflammation and infection results in the stabilization of HIFs in acute lung
injury (112). HIF-1a dependent inhibition of ENT1, ENT2, and adenosine kinase contributes to the accumulation of adenosine (55, 123). A2AAR and A2BAR are two
adenosine receptors that are regulated by HIF-2a and HIF-1a respectively in lung tissue (109, 120, 121). Therefore, the higher level of adenosine, and the activation
of its receptors reduced mortality, pulmonary edema, inflammation in acute lung injury. (B) The activation of the hypoxic-adenosinergic system has been investigated
in chronic lung injury. CD73 and A2BAR are two hypoxia-inducible genes in patients with idiopathic pulmonary fibrosis and pulmonary hypertension (124). The
upregulation of A2BAR enhances cell differentiation, produces profibrotic mediators, and promotes fibroblast to myofibroblast in chronic lung injury (95, 125).
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knockout mice show significantly increased macrophage and
neutrophil infiltration in the airway after influenza A/WSN/33
(H1N1) infection when compared to wild-type counterparts and
daily treatment of A1AR antagonist 8-cyclopentyl-1,3-
dipropylxanthine results in improved outcome (140). Besides
acute lung injury and infection, the activation of A1AR has also
been found on bronchial epithelial cells, and inflammatory cells,
which enhanced the asthma phenotype (141). Mice with ADA
deficiency experience lung injury and inflammation (142). A1AR
deletion in mice exaggerated the pulmonary inflammation
marked by increased expression of IL-4 and IL-13, as well as
matrix metalloproteinases, suggesting a protective role of A1AR
in chronic lung injury (142).

Adenosine A2A Receptor
Exposure to hypoxia (10% O2) attenuates lung inflammation
during LPS-induced lung injury in mice and A2AAR is
indispensable for hypoxia-mediated lung protection (143).
A2AAR expression in myeloid cells is crucial for the control of
neutrophil recruitment to the lung injury and an A2AAR specific
agonist ATL202 offers lung protection in mice during LPS-
induced lung injury (144). The lung protective effect of
A2AAR has also been implicated in cardiopulmonary bypass-
mediated lung injury. Pretreatment of A2AAR agonist
CGS21680 in juvenile rats dampens inflammatory cytokines
and myeloperioxidase levels in the serum as well as pulmonary
edema and lung injury score during cardiopulmonary bypass
−induced organ injury. Another study demonstrated that
A2AAR activation induces the expression of peroxisome
proliferator-activated receptors g (PPARg) via cAMP and PKA
pathways in murine macrophages (145). Combining PPARg
agonist ROSI and A2AAR agonist CGS21680 significantly
reduces lung pathology and the production of inflammatory
cytokines in the lung during murine model of LPS-induced ALI
(145). Moreover, treatment of CGS21680 after the onset of
trauma/hemorrhagic shock-induced lung injury attenuates
pulmonary edema and MPO levels in Sprague-Dawley rats
(146). Interestingly, A2AAR has been identified as a HIF-2a
target in pulmonary endothelial cells in vitro, implicating
the crosstalk between adenosine signaling and hypoxia
signaling (120). Furthermore, treatment of A2AAR agonist
CGS21680 reduces inflammatory cell infiltration to the airway
in murine models of asthma (147). A2AAR deficient mice
experience exaggerated lung inflammation and airway
hyperactivity, suggesting the protective role of A2AAR in
allergic airway diseases.

Adenosine A2B Receptor
A2BAR is an important link between hypoxia and adenosine
signaling in acute lung injury. HIF-1a has been shown to
transcriptionally induce the expression of A2BAR in murine
VILI model (109, 121). For instance, genetic silence or
pharmaceutical inhibition of HIF-1a dampens the expression
of A2BAR in mice during VILI or alveolar epithelial cells exposed
to cyclic stretch (109). A2BAR-dependent adenosine signaling
offers lung protection during endotoxin-induced ALI in mice by
potentiating the regulatory T cell population (148). Furthermore,
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hypoxia-induced vascular leakage also exaggerates in siRNA-
mediated knockdown of A2BAR or A2BAR deficient mice (149).
Furthermore, HIF-1a-dependent induction of netrin-1 attenuated
neutrophil transmigration and dampens inflammation through
A2BAR at pulmonary and colon mucosal surface (150),
suggesting another layer of complexity in the crosstalk between
HIF and adenosine signaling.

In chronic lung injury, hypoxia potentiates the function of
adenosine and promotes the production of IL-6, and induce the
differentiation of fibroblasts to myofibroblasts by increasing
adenosine A2B receptor expression in human fibroblasts (125).
Furthermore, adenosine deaminase-deficient mice have higher
expression of A2BAR and exhibit progressive pulmonary fibrosis
and respiratory distress (151). The crosstalk between hypoxia
and adenosine signaling has been established in the murine
model of IPF (95). For example, HIF-1a inhibition via the
treatment of 17-DMAG results in reduced pulmonary fibrosis
and A2BAR expression in the late stages of murine bleomycin-
induced lung fibrosis in vivo (95). Additionally, HIF-1a
inhibition along with A2BAR deletion or pharmacological
inhibition result in disruption of alternatively activated
macrophages differentiation and IL-6 production in vitro (95).

Of note, while A2AAR and A2BAR reduce mortality,
pulmonary edema, and inflammation in acute lung injury,
A2BAR enhances cell differentiation, produces profibrotic
mediators, and promotes fibroblast to myofibroblast
differentiation in chronic lung injury. The differential role of
A2BAR could possibly be stemming from the different impacts of
downstream signaling in acute or chronic lung injury. As
mentioned above, A2AAR and A2BAR activation lead to the
activation of cAMP and PKA pathway (32–35). The cAMP-
CREB axis is important for the maintenance of endothelial
integrity and the attenuation of lung inflammation during
endotoxin-induced lung injury in mice (152). The protective
effect of cAMP in LPS-induced endothelial permeability is
mediated through PKA (153). cAMP synthesis and PKA
activity are inhibited in oleic acid-induced lung injury, and the
treatment of hydroxysafflor yellow A enhances the cAMP/PKA
pathway and dampened lung inflammation in mice (154).
Furthermore, pretreatment of phosphodiesterase antagonist
PTX enhances cAMP signaling and results in the attenuation
of lung injury during cecal ligation and puncture in mice (155).
These studies suggest a protective role of cAMP and PKA during
acute lung injury. In chronic lung injury, cAMP and PKA
regulate hypercontractility in human airway smooth muscle
cells (156) and phosphodiesterase inhibitors, which prevents
the breakdown of cAMP, are currently being studied as a
treatment for asthma (157). In addition, dibutyryl-cAMP
treatment increases endogenous cAMP levels, enhances PKA
signaling in vitro, and blocked myofibroblast differentiation in
vivo (158). Other cAMP elevating agents also inhibits the
proliferation and collagen production in pulmonary fibroblasts
(159). Thus, the divergent function of A2BAR in acute and
chronic lung injury might not be based on the downstream
activation of the cAMP and PKA signaling pathway. Other
factors could contribute to the response to cAMP activation as
lung fibroblasts from pulmonary fibrosis patients has a deficiency
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in the phosphorylation of cAMP response element-binding
protein (160). Future studies are needed to elucidate the
signaling mechanism of A2BAR mediated responses in
pulmonary injuries.

Adenosine A3 Receptor
A3AR is also expressed in the lung and several previous studies
have indicated the functional role of A3AR in lung injury. The
protective role of A3AR in lung ischemia/reperfusion injury has
been demonstrated by an early study in which the pretreatment of
A3AR agonist IB-MECA attenuated alveolar injury and apoptosis
during lung ischemia and reperfusion injury of isolated cat lung ex
vivo (161). The protective role of A3AR is further supported as
pretreatment of IB-MECA offers lung protection during lung
ischemia/reperfusion injury in cat in vivo (162). In addition,
A3AR agonist CI-IB-MECA pretreatment alleviates lung
ischemia/reperfusion injury in mice, and the protective effect is
abolished in mice with genetic deletion of A3AR (163). Besides
lung ischemia/reperfusion injury, the protective role of A3AR has
also been indicated in LPS-induced lung injury. Indeed, A3AR
deficient mice showed exaggerated PMN infiltration after LPS
inhalation and pretreatment of CI-IB-MECA attenuates the
inflammatory responses and injury (164). Furthermore, A3AR
activation is associated with mast cell degranulation and airway
hyperreactivity. For example, selective activation of A3AR via IB-
MECA results in the release of histamine in mast cells in vitro and
nebulizer treatment of IB-MECA in mice results in mast cell
degranulation in the lung in wild type mice but not in A3AR
deficient mice (165). Adenosine administration results in airway
responsiveness in mice and mice with A3AR deficiency show
attenuated responses marked by reduced mast cell degranulation
and neutrophil infiltration (166). Other studies also demonstrate
the contribution of A3AR in chronic airway inflammation
(167, 168).

Adenosine Metabolism
Besides the impact on adenosine receptors, HIF-1a dependent
repression of ENT1 and ENT2 decreases adenosine uptake and
increases extracellular adenosine, which dampens neutrophil
accumulation and protects vascular barrier during hypoxia in
endothelia and epithelia (123). HIF-1a-dependent repression of
adenosine kinase leading to increased extracellular adenosine
attenuates hypoxia-induced vascular leak in murine models of
sepsis or ALI (169). In addition, adenosine deaminase activity,
ADA2 in particular, is significantly reduced in serum from
COPD patients and smokers when compared to non-smokers
(134), which could further explain the increased level of
adenosine in COPD patients.
THERAPEUTIC TARGETING OF
ADENOSINE

Targeting Hypoxia Signaling
Direct therapeutic targeting of the hypoxia signaling pathway
could profoundly modulate the adenosine signaling pathway.
Frontiers in Immunology | www.frontiersin.org 888
Pharmacologic compounds have been developed for normoxic
stabilization of HIFs by functioning as inhibitors of PHDs.
Several preclinical studies show that these compounds can be
given to animals that are kept under normoxic conditions, and
result in robust stabilization of HIFs (170, 171). In line with this
concept, preclinical studies have shown that pretreatment with
the HIF activator dimethyloxalylglycine (DMOG) is associated
with attenuated organ injury in the heart, lungs, or kidneys (72,
172, 173). Moreover, recently, several pharmaceutical companies
have developed HIF activators as orally available compounds and
several ongoing clinical trials have used them in patients for the
treatment of anemia associated with chronic kidney disease.
These compounds include roxadustat (FG-4592, sponsored by
FibroGen, Astellas, & AstraZeneca), vadadustat (AKB-6548,
sponsored by Akebia), and daprodustat (GSK-1278863,
sponsored by GlaxoSmithKline). Based on phase 3 clinical
trials showing efficiency in increasing hemoglobin levels in
patients with anemia associated with renal insufficiency (174,
175), roxadustat has been approved for treating chronic kidney
disease-related anemia in China and is currently in phase 3
clinical trials in the United States. In the meantime, several phase
2 clinical trials indicated that oral vadadustat is safe and effective
as a treatment for anemia in patients with non-dialysis-
dependent chronic kidney diseases (176, 177), and in patients
receiving hemodialysis previously received erythropoiesis-
stimulating agents (178). Currently, vadadustat is evaluated by
a randomized, double-blinded and placebo-controlled phase 2
clinical trial as a treatment of COVID-19 associated ARDS
(Table 1) (180). These oral available HIF activators could
potentially be efficient for enhancing adenosine signaling
pathways in patients for the prevention of acute lung injury.
On the other hand, HIF inhibitors could potentially inhibit
adenosine signaling as a therapeutic approach for chronic lung
diseases. Currently, HIF-2a inhibitors such as PT2385 and
PT2977 have been investigated by clinical trials mainly as
novel therapeutic approaches for renal cell carcinoma (181).
However, HIF-1a specific inhibitor has yet to be developed for
clinical use, which will be crucial for the inhibition of adenosine
signaling in chronic lung diseases.

Targeting Adenosine Receptors
Adenosine signaling could potentially be targeted for lung
protection during acute lung inflammation via direct
administration of adenosine or utilizing specific adenosine
receptor agonists in both preclinical and clinical settings (182,
183). Several preclinical studies have indicated that direct
administration of adenosine attenuates lung injury (184, 185).
The safety of adenosine administration has also been supported
by previous clinical studies (186, 187). However, due to the short
half-life of adenosine in vivo, adenosine analogs might be a more
feasible option. Adenosine receptor agonists have been
developed for preclinical and clinical use (188). For example,
pretreatment of A2AAR agonist ATL202 inhibits LPS-induced
PMN recruitment, reduced the release of inflammatory cytokines
in the lung, and reduced vascular leakage in mice (144). A2AAR
agonist GW328267C improves lung function in three models of
ALI (HCl instillation 1 h, LPS instillation 16 h, and live
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Escherichia coli instillation) in rats (189). The delivery of
A2BAR-specific agonist BAY 60-6583 attenuate pulmonary
edema, inhibits lung inflammation, and improves histologic
lung injury in murine ALI (73, 107). Furthermore, mice treated
with BAY60-6583 show attenuated oleic acid (OA)-induced
ALI by inhibiting alveolar epithelial cell apoptosis (190).
However, only A1AR, A2AAR, and A3AR agonists have been
evaluated in the clinical setting while the safety and efficacy
ofA2BAR agonists have yet to be established by clinical studies
(188). The usage of adenosine receptor agonists in clinical trials
related to lung injury is summarized in Table 1.

Adenosine receptor antagonists have been developed as
treatment of chronic lung diseases in both preclinical and
clinical settings. For instance, LASSBio-897 (3-thienylidene-3,
4-methylenedioxybenzoylhydrazide) can block the activity of
A2AAR agonist and has anti-inflammatory and anti-fibrotic
role in a mouse model of silicosis (191). Additionally, the
treatment of A2BAR antagonist CVT-6883 dampens lung
inflammation, reduces fibrosis, and attenuates alveolar airspace
enlargement in ADA-deficient mice (192). Similarly, CVT-6883
treatment reduced inflammation and lung fibrosis in murine
bleomycin-induced lung injury (192). Finally, A1AR antagonist
PBF-680 has been and is currently being evaluated by several
phase 1 and phase 2 clinical trials as a treatment of asthma
(Table 1). Although adenosine receptor antagonists have been
investigated for inflammatory conditions, neurodegenerative
diseases, and mood disorders (193), their potential impact on
chronic lung diseases needs to be further evaluated.

Targeting Adenosine Metabolism
Adenosine signaling could also be targeted via modification of
adenosine metabolism. For instance, inhibition or deletion of
ENT1/2 elevates extracellular adenosine levels in lung tissue and
improves pulmonary function by activating A2AAR and A2BAR
receptor and preventing NLRP3 inflammasome activation in
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Pseudomonas aeruginosa infection-induced acute lung injury in
mice (194). Moreover, ENT inhibitor dipyridamole treatment
decreases adenosine uptake, and in turn improves vascular
barrier and reduces neutrophil accumulation in acute
pulmonary inflammation in preclinical studies (108, 123, 195).
Along the same line, dipyridamole is currently investigated
by several clinical trials as a treatment for COVID-19
and associated vascular manifestation (NCT04391179,
NCT04424901, Table 1). Besides targeting ENTs, ADA
administration reduced lung pathology in IL-13 transgenic
mice, which spontaneously develop lung inflammation,
alveolar destruction, and fibrosis (196). Furthermore,
PEGylated adenosine deaminase is currently employed as an
enzyme replacement therapy for patients suffering adenosine
deaminase severe combined immunodeficiency (197) and has
lately been shown to alleviate fibrosis and inflammation in a
murine model of systemic sclerosis (198). PEGylated adenosine
deaminase should be further investigated as a therapeutic
approach for chronic lung diseases.
CONCLUSION

Adenosine signaling is one of the most crucial mediators in the
cross-talk between hypoxia and inflammation. In this review,
many studies suggest that targeting hypoxia and adenosine
signaling could be a promising therapeutic approach for ARDS
and chronic lung diseases. However, further investigation is
needed to address the knowledge gaps in the mechanism of
how HIF-adenosine contributes to different disease conditions
and how to target this pathway in patients. For instance, the
functional link between HIF and adenosine pathway in viral
pneumonia induced ARDS needs to be established, especially for
COVID-19 associated ARDS. Furthermore, the functional role of
TABLE 1 | Clinical trials targeting adenosine signaling in lung diseases.

Drug
(Company)

Target Status Target disease Clinical trial gov
identifier

References

GW328267X A2A adenosine receptor agonist Completed
Phase 1

Acute lung injury NCT01640990

PBF-680 A1 adenosine receptor antagonist Completed
Phase 2

Asthma NCT01939587

PBF-680 A1 adenosine receptor antagonist Recruiting
Phase 2

Asthma NCT02635945

PBF-680 A1 adenosine receptor antagonist Completed
Phase 1

Asthma NCT01845181

PBF-680 A1 adenosine receptor antagonist Completed
Phase 1

Asthma NCT02208973

PBF-680 A1 adenosine receptor antagonist Recruiting
Phase 2

Persistent, mild-to-moderate atopic asthma NCT03774290

Regadenoson A2A adenosine receptor agonist Completed
Phase4

As stress agents for myocardial perfusion imaging in
asthma or COPD patients

NCT00862641 (179)

Dipyridamole Equilibrative nucleoside transporter
inhibitor

Recruiting
Phase 2

COVID-19; SARS-CoV-2 infection NCT04391179

Dipyridamole Equilibrative nucleoside transporter
inhibitor

Recruiting
Phase 2

COVID-19 pneumonia; Vascular complications NCT04424901

Vadadustat Hypoxia-inducible factor prolyl
hydroxylase (HIF-PH) inhibitor

Recruiting
Phase 2

Acute respiratory distress syndrome; coronavirus
infection

NCT04478071
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the HIF-adenosine pathway needs to be demonstrated in COPD
and asthma for the development of novel therapies targeting this
pathway. Pharmacological agents to modulate adenosine
signalings, such as adenosine receptor antagonists and
PEGylated adenosine deaminase, have been investigated in
several disease conditions. However, its potential use for
chronic lung diseases needs to be further evaluated. Taken
together, a detailed understanding of the functional role of the
HIF-adenosine axis is needed for the development of efficient
and safe therapy in pulmonary diseases.
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