
EDITED BY : Guang Hu, Pemra Doruker, Hongchun Li, and Ebru Demet Akten

PUBLISHED IN : Frontiers in Molecular Biosciences

UNDERSTANDING PROTEIN 
DYNAMICS, BINDING AND 
ALLOSTERY FOR DRUG DESIGN

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/research-topics/11378/understanding-protein-dynamics-binding-and-allostery-for-drug-design
https://www.frontiersin.org/research-topics/11378/understanding-protein-dynamics-binding-and-allostery-for-drug-design
https://www.frontiersin.org/research-topics/11378/understanding-protein-dynamics-binding-and-allostery-for-drug-design
https://www.frontiersin.org/research-topics/11378/understanding-protein-dynamics-binding-and-allostery-for-drug-design


Frontiers in Molecular Biosciences 1 June 2021 | Protein Dynamics, Binding and Allostery for Drug Design

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-88966-848-9 

DOI 10.3389/978-2-88966-848-9

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/research-topics/11378/understanding-protein-dynamics-binding-and-allostery-for-drug-design
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/


Frontiers in Molecular Biosciences 2 June 2021 | Protein Dynamics, Binding and Allostery for Drug Design

UNDERSTANDING PROTEIN 
DYNAMICS, BINDING AND 
ALLOSTERY FOR DRUG DESIGN

Topic Editors: 
Guang Hu, Soochow University, China
Pemra Doruker, University of Pittsburgh, United States 
Hongchun Li, Shenzhen Institutes of Advanced Technology (CAS), China
Ebru Demet Akten, Kadir Has University, Turkey

Citation: Hu, G., Doruker, P., Li, H., Akten, E. D., eds. (2021).  
Understanding Protein Dynamics, Binding and Allostery for Drug Design.  
Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88966-848-9

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/research-topics/11378/understanding-protein-dynamics-binding-and-allostery-for-drug-design
https://www.frontiersin.org/research-topics/11378/understanding-protein-dynamics-binding-and-allostery-for-drug-design
https://www.frontiersin.org/research-topics/11378/understanding-protein-dynamics-binding-and-allostery-for-drug-design
https://www.frontiersin.org/research-topics/11378/understanding-protein-dynamics-binding-and-allostery-for-drug-design
http://doi.org/10.3389/978-2-88966-848-9


Frontiers in Molecular Biosciences 3 June 2021 | Protein Dynamics, Binding and Allostery for Drug Design

05 Editorial: Understanding Protein Dynamics, Binding and Allostery  
for Drug Design

Guang Hu, Pemra Doruker, Hongchun Li and Ebru Demet Akten

08 Dynamics Insights Into the Gain of Flexibility by Helix-12 in ESR1  
as a Mechanism of Resistance to Drugs in Breast Cancer Cell Lines

Abbas Khan, Ashfaq-Ur-Rehman, Muhammad Junaid, Cheng-Dong Li, 
Shoaib Saleem, Fahad Humayun, Shazia Shamas, Syed Shujait Ali, 
Zainib Babar and Dong-Qing Wei

22 Molecular Simulation of Oncostatin M and Receptor (OSM–OSMR) 
Interaction as a Potential Therapeutic Target for Inflammatory Bowel 
Disease

Qingqing Du, Yan Qian and Weiwei Xue

31 Selective Inhibition of HDAC1 by Macrocyclic Polypeptide for the 
Treatment of Glioblastoma: A Binding Mechanistic Analysis Based  
on Molecular Dynamics

Yang Zhang, Tingting Fu, Yuxiang Ren, Fengcheng Li, Guoxun Zheng, 
Jiajun Hong, Xiaojun Yao, Weiwei Xue and Feng Zhu

44 Conformational Changes Induced by S34Y and R98C Variants in  
the Death Domain of Myd88

Vijayakumar Gosu, KyeongHye Won, Jae-Don Oh and Donghyun Shin

53 Understanding Thermostability Factors of Barley Limit Dextrinase 
by Molecular Dynamics Simulations

Juan Du, Jianjun Dong, Songjie Du, Kun Zhang, Junhong Yu,  
Shumin Hu and Hua Yin

64 Identification of Alternative Allosteric Sites in Glycolytic Enzymes for 
Potential Use as Species-Specific Drug Targets

Merve Ayyildiz, Serkan Celiker, Fatih Ozhelvaci and E. Demet Akten

83 Allosteric Regulation at the Crossroads of New Technologies: Multiscale 
Modeling, Networks, and Machine Learning

Gennady M. Verkhivker, Steve Agajanian, Guang Hu and Peng Tao

105 Nucleotide-Specific Autoinhibition of Full-Length K-Ras4B Identified  
by Extensive Conformational Sampling

Balint Dudas, Franci Merzel, Hyunbum Jang, Ruth Nussinov, David Perahia 
and Erika Balog

116 A Coarse-Grained Methodology Identifies Intrinsic Mechanisms That 
Dissociate Interacting Protein Pairs

Haleh Abdizadeh, Farzaneh Jalalypour, Ali Rana Atilgan and Canan Atilgan

134 Investigating the Role of the N-Terminal Loop of PD-1 in Binding Process 
Between PD-1 and Nivolumab via Molecular Dynamics Simulation

Wenping Liu, Haoyu Jin, Ting Chen, Gangping Zhang, Shengsheng Lai  
and Guangjian Liu

Table of Contents

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/research-topics/11378/understanding-protein-dynamics-binding-and-allostery-for-drug-design


Frontiers in Molecular Biosciences 4 June 2021 | Protein Dynamics, Binding and Allostery for Drug Design

150 Exploring Allosteric Signaling in the Exit Tunnel of the Bacterial Ribosome 
by Molecular Dynamics Simulations and Residue Network Model

Pelin Guzel, Hatice Zeynep Yildirim, Merve Yuce and Ozge Kurkcuoglu

163 Molecular Dynamics Investigations of Binding Mechanism for Triazoles 
Inhibitors to CYP51

Na Shi, Qingchuan Zheng and Hongxing Zhang

174 Probing the Structural Dynamics of the Plasmodium falciparum  
Tunneling-Fold Enzyme 6-Pyruvoyl Tetrahydropterin Synthase  
to Reveal Allosteric Drug Targeting Sites

Afrah Khairallah, Caroline J. Ross and Özlem Tastan Bishop

191 Enzyme Kinetics by Isothermal Titration Calorimetry: Allostery, Inhibition, 
and Dynamics

Yun Wang, Guanyu Wang, Nicolas Moitessier and Anthony K. Mittermaier

210 Is Crocin a Potential Anti-tumor Candidate Targeting Microtubules? 
Computational Insights From Molecular Docking and Dynamics 
Simulations

Ze Wang, Juan Ren, Nengzhi Jin, Xingyi Liu and Xiaofei Li

222 ANCA: A Web Server for Amino Acid Networks Construction and Analysis

Wenying Yan, Chunjiang Yu, Jiajia Chen, Jianhong Zhou and Bairong Shen

230 Wrangling Shape-Shifting Morpheeins to Tackle Disease and Approach 
Drug Discovery

Eileen K. Jaffe

239 Surveying the Side-Chain Network Approach to Protein Structure and 
Dynamics: The SARS-CoV-2 Spike Protein as an Illustrative Case

Anushka Halder, Arinnia Anto, Varsha Subramanyan, Moitrayee Bhattacharyya, 
Smitha Vishveshwara and Saraswathi Vishveshwara

254 Computational Ways to Enhance Protein Inhibitor Design

Robert L. Jernigan, Kannan Sankar, Kejue Jia, Eshel Faraggi  
and Andrzej Kloczkowski

264 DESP: Deep Enhanced Sampling of Proteins’ Conformation Spaces Using 
AI-Inspired Biasing Forces

Emmanuel Oluwatobi Salawu 

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/research-topics/11378/understanding-protein-dynamics-binding-and-allostery-for-drug-design


EDITORIAL
published: 21 April 2021

doi: 10.3389/fmolb.2021.681364

Frontiers in Molecular Biosciences | www.frontiersin.org 1 April 2021 | Volume 8 | Article 681364

Edited and reviewed by:

Francesco Luigi Gervasio,

University College London,

United Kingdom

*Correspondence:

Guang Hu

huguang@suda.edu.cn

Specialty section:

This article was submitted to

Biological Modeling and Simulation,

a section of the journal

Frontiers in Molecular Biosciences

Received: 16 March 2021

Accepted: 25 March 2021

Published: 21 April 2021

Citation:

Hu G, Doruker P, Li H and Demet

Akten E (2021) Editorial:

Understanding Protein Dynamics,

Binding and Allostery for Drug Design.

Front. Mol. Biosci. 8:681364.

doi: 10.3389/fmolb.2021.681364

Editorial: Understanding Protein
Dynamics, Binding and Allostery for
Drug Design

Guang Hu 1*, Pemra Doruker 2, Hongchun Li 3 and Ebru Demet Akten 4

1Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow

University, Suzhou, China, 2Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh,

Pittsburgh, PA, United States, 3 Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced

Technology, Chinese Academy of Sciences, Shenzhen, China, 4Department of Bioinformatics and Genetics, Faculty of

Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey

Keywords: allostery, drug discovery, molecular dynamics simulation, elastic network model, protein structure

network

Editorial on Research Topic

Understanding Protein Dynamics, Binding and Allostery for Drug Design

Proteins as molecular machines have dynamic structures sampling various conformational
states, which determine their functionality, ligand binding, and allosteric properties. Allosteric
communication as an intrinsic property of proteins (Gunesakaran et al., 2004) can be triggered by
physical (protein-protein interaction, ligand-binding) and chemical (mutations, post-translational
modification) events happening distant from the orthosteric site (Zhang et al., 2020). Protein
dynamics and conformational transitions govern allosteric communication between distinct sites,
which is central for the regulation of protein function, signal transduction, and approaches in
drug discovery.

Computational modeling and simulations at hierarchical levels of complexity have become
requisite for unraveling the link between protein structure, dynamics and function, as well as
toward designing agents that regulate protein function. Being an active research field for over
a century, allostery has become pivotal today in the pursuit of designing allosteric modulators
with specificity. Simultaneously, a wealth of computational methods and tools have emerged for
uncovering how protein dynamics affects ligand binding events and allosteric communication at
the molecular scale.

In this Research Topic, a total of 20 works has been compiled that will be introduced here
based on the diverse computational approaches employed including molecular dynamics (MD)
simulations, elastic network models (ENM), hybrid and integrated methods, and protein structure
networks (PSN).

MD simulation is the most popular computational method used in complementing
experimental techniques as it captures the behavior of proteins in full atomistic detail for
understanding binding and allosteric events (Hollingswort and Dror, 2018), as well as molecular
aspects of diseases and their treatments. Khan et al., performed an integrated computational study
on the estrogen receptor alfa (ERα), which have been observed to be recurrent in metastatic
breast cancer patients. The impact of experimentally-reported ERα polymorphisms was studied
using techniques such as mCSM stability and binding affinity analysis (Pires et al., 2013) and
MD simulations for revealing the dynamical effects on receptor structure. Another cancer type,
Glioblastoma (GBM), is the most common and aggressive intracranial malignant brain tumor.
Histone deacetylase 1 (HDAC1) is a promising target for therapy of GBM, andmacrocyclic peptides
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have gained great attention due to their remarkable inhibitory
selectivity on HDAC1. Zhang et al., employed molecular
modeling approaches including molecular docking and MD
simulation, along with protein-ligand interaction fingerprints
and per-residue binding free energy analysis to explore the
binding of a typical macrocyclic peptide FK228 to both HDAC1
and HDAC6. The blockade of programmed death receptor 1
(PD-1) has become a promising therapeutic approach in cancer
immunotherapy. In Liu et al.’s work, the binding features of
PD-1 with Nivolumab, a humanized IgG4 antibody approved
by the US FDA, were investigated using MD simulations. The
computational analysis suggested that the N-terminal loop of
PD-1 serves as an important gatekeeper for the anti-PD-1
antibody binding, whichmight be a potential target for anti-PD-1
antibody design.

In the brief research report by Du et al., the structure
of Oncostatin M and Receptor (OSM–OSMR) complex was
generated as a potential therapeutic target for inflammatory
bowel disease. Eight “hot spots” residues and six potential
binding sites at the OSM-OSMR interface were predicted
using computational alanine scanning and FTMap (Kozakov
et al., 2015) analysis, which might be useful to guide further
experimental studies and drug design. The article from Shi
et al., compared the binding behaviors of four triazole-based
inhibitors to sterol 14α demethylase enzyme (CYP51), and
identified potential key binding sites. Besides, some possible
tunnel pathways of the inhibitors in these CYP51-inhibitor
complexes were proposed. Using MD simulations, Du et al.
gave a detailed analysis of thermostability factors of barley limit
dextrinase, including eight salt-bridges.

Dudas et al. used the hybrid MDeNM (Costa et al., 2015)
method that combines MD simulations with classical normal
mode analysis for efficient exploration of the conformational
space of full-length K-Ras4B. Unbiased conformational sampling
was carried out for the GDP- and GTP-bound states to determine
the interaction details between a flexible tail-like hypervariable
region (HVR) and the catalytic domain of K-Ras4B. The results
elucidate the molecular details of a population shift mechanism
between the autoinhibited state of the catalytic domain (GDP-
bound) and its active state (GTP-bound). Salawu introduced
DESP method by combining MD simulations and deep neural
networks for enhanced sampling of conformation spaces. Guzel
et al. studied allosteric signaling and communication pathways
in the exit tunnel of the bacterial ribosome. Due to the huge
size of this supramolecular machine, they used coarse-grained
MD simulations (RedMD) (Górecki et al., 2009) and an ENM-
based hybrid method (ClustENM) (Kurkcuoglu et al., 2016)
for conformer generation. Suboptimal pathways based on the
contact topology of conformers elucidated the allosteric signaling
in the ribosomal tunnel.

Normal mode analysis based on ENM facilitates the study
of protein dynamics and allosteric effects in a high-throughput
manner (Krieger et al., 2020). Ayyildiz et al., integrated
ENM-based methods with computational solvent mapping
and sequence/structural alignments for identifying potential
allosteric sites. By applying the method to three glycolytic
enzymes, the specific interface regions connecting the subunits

were predicted as promising target sites for allosteric regulation
and species-specific drug design. Two widely used ENMs-
Gaussian (GNM) (Bahar et al., 1997) and anisotropic network
model (ANM) (Atilgan et al., 2001) - were used by Khairallah
et al., to investigate the collective motions of the 6-pyruvol
tetrahydropterin synthase (PTPS) enzyme and its allosteric
properties. In particular, large fluctuations of the N-terminal
domain and its allosteric role were discussed in the context of
infectious disease treatment.

Abdizadeh et al. used an ENM-based perturbation response
scanning (PRS) (Atilgan and Atilgan, 2009) to identify the
residues that trigger dissociation between interacting protein
pairs. Based on a set of 25 protein complexes, such residues
were identified to be located either at regions with large
conformational changes or at parts of the protein that
are structurally unaffected. Interestingly, the interfacial
residues were responsible for the dissociation in only a
few of the complexes. Furthermore, they categorized four
modes of dissociation based on PRS and electrostatic effects.
Jernigan et al. proposed two ENM-based approaches for
designing peptide-based inhibitors using the influenza
protein hemagglutinin (HA) as the case study. Based on
available experimental structures conformationally most
variable region of HA was identified as a potential target for
diverse ligands. Furthermore, the empirical contact potentials
including an ENM-based entropy term were found successful
in ranking the free energies of peptide/proteins designed
against HA.

Topological description of protein structures has become
a popular tool to quantify protein structures and dynamics
(Liang et al., 2020). By means of joint dynamical/topological
description of SARS-COV2 spike protein, Halder et al., gave
a thorough presentation on the network-dynamical systemic
approach to protein function. In addition, their work highlighted
the advantages of the side-chain network analysis in studying
subtle conformational changes with an emphasis related to
allostery. Gosu et al., used PSN to study the MD ensemble
of Myeloid differentiating factor 88 (Myd88) and AlloSigMA
(Guarnera et al., 2017) to describe allosteric effects of S34Y
and R98C variants. These two mutations were shown not
only to induce a large conformational change of Myd88,
but also influence the interaction with other death domains
in TLR downstream signaling. Wang et al., combined PSN
with some structural dynamics approaches such as molecular
docking, MD simulations, and free energy calculation to
study specific interactions between crocin and tubulin. Their
results pointed to a common residue motif (val175-Xxx176-
Asp177) that could serve as a potential binding site. Yan
et al. designed the ANCA webserver for constructing and
analyzing PSN for interpretation of functional residues and
allosteric regulation.

Three review papers complete our Research Topic in
experimental and computational prospects. Isothermal
titration calorimetry (ITC) is a technique that measures
the thermodynamics of binding reactions and reaction
kinetics. The review by Wang et al., give a broad overview
of the use of ITC to measure the strength, mode, and
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association/dissociation kinetics of enzyme inhibitors, as
well as its potential applications on allostery and drug
design. Jaffe describes the morpheeins model for allosteric
regulation by focusing on porphobilinogen synthase. This
model characterizes the dynamic nature of quaternary
structures/assemblies formed by homo-multimeric proteins
with its implications/applications for drug discovery. Lastly,
Verkhivker et al., provide a comprehensive overview on
the state-of-the-art approaches that advance quantitative
characterization of allosteric mechanisms in proteins, including
experiment-guided Markovian models, simulation-based
multiscale approaches and machine learning. These frontier
technologies not only provide tools for the studying of
molecular basis of allosteric mechanisms, but also help the
discovery of allosteric modulators for therapeutically important
protein targets.
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Incidents of breast cancer (BC) are on the rise on a daily basis and have proven to be the

most prevelant cause of death for women in both developed and developing countries.

Among total BC cases diagnosed after menopause, 70% of cases are Estrogen Receptor

(ER) positive (ER-positive or ER+). Mutations in the LBD (ligand-binding domain) of

the ER have recently been reported to be the major cause of resistance to potent

antagonists. In this study, the experimentally reported mutations K303R, E380Q, V392I,

S463P, V524E, P535H, P536H, Y537C, Y537N, Y537S, and D538G were analyzed,

and the most significant mutations were shortlisted based on multiple analyses. Initial

analyses, such as mCSM stability, occluded depth analysis, mCSM-binding affinity,

and FoldX energy changes shortlisted only six mutations as being highly resistant.

Finally, simulations of force field-based molecular dynamics (MD on wild type (WT)

ERα) on six mERα variants (E380Q, S463P, Y537S, Y537C, Y537N, and D538G) were

carried out to justify mechanism of the resistance. It was observed that these mutations

increased the flexibility of the H12. A bonding analysis suggested that previously reported

important residue His524 lost bonding upon mutation. Other parameters, such as PCA

(principal component analysis), DCCM (dynamics cross-correlation), and FEL (free energy

landscape), verified that the shortlisted mutations affect the H12 helix, which opens

up the co-activator binding conformation. These results provide deep insight into the

mechanism of relative resistance posed to fulvestrant due to mutations in breast cancer.

This study will facilitate further understanding of the important aspects of designing

specific and more effective drugs.

Keywords: ESR1 estrogen receptor, mutation, resistance, simulation, molecular docking, molecular dynamics

(MD) simulation
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INTRODUCTION

Breast cancer (BC) is the primary contributor to a rise in global
female mortality rates. It has been reported that 70% of BC cases
diagnosed after menopause are Estrogen Receptor (ER) positive
(ER+). The human aromatase (HA) enzyme produces estrogens
(17-β-estradiol or estrone) (Magistrato et al., 2017) mainly after
menopause, and its inactivity increases the level of estrogens
in malignant tissues (Liang and Shang, 2013; Sgrignani et al.,
2014, 2015, 2016; Magistrato et al., 2017). These hormones have

a pro-oncogenic effect by either stimulating cell proliferation or
decreasing apoptosis when binding to ERα as an agonist (Liang

and Shang, 2013). The endocrine behavior of ER + BC is mainly

determined by the deficiency of estrogen, which is caused by the
inhibition of downregulators (SERDs), selective modulators of
ERα (SERMs), or Human aromatase. Furthermore, as SERMs
do leads to ERα ubiquitination and degradation, it also covers
the substrate-binding site and alters receptor by changing its
conformation (Osborne et al., 2004).

The ligand, which facilitates estrogen activity in several
essential physiological processes, regulates ERα, which is a
transcription factor and nuclear hormone receptor (Nilsson
and Gustafsson, 2011; Lai et al., 2015). The ligand-binding
domain (LBD), as well as the DNA-binding domain of ERα

(among five separate functional parts), has been determined
crystallographically. ERα becomes stable through the binding of
either agonists or antagonists under physiological conditions and
acts as a dimer. The essential structural element of each LBD
monomer is Helix 12 (H12) and can be seen by observing the
crystal structures. H12 behaves as a molecular switch between
the active and inactive conformation of the receptor. H12
occludes the ligand-binding site on the binding of estrogen
to helix packing H3, H5/6, and H11 (Brzozowski et al., 1997;
Jordan et al., 2015). It remains stable with ERα’s agonist (active)
conformation. However, when an antagonist binds, it inhibits
H12 from assuming the active conformation, and H12 travels
to a groove made by H3 and H5. This relates to antagonistic
(inactive) conformation (Joseph et al., 2016). In recent clinical
scenarios, there are several effective antagonistic uses of ERα:
(i) tamoxifen is a SERM that is active in its metabolites but
inactive in peripheral tissues; and (ii) fulvestrant, which is also
a SERD, without inactivity regulates ERα, which experiences
reduced pharmacokinetic properties (e.g., low water solubility)
(Nilsson and Gustafsson, 2011; van Kruchten et al., 2015).
In recent decades, the use of tamoxifen by BC patients has
reduced the death rate by 25–30%. In ER+ BC patients, 40%
get resistance through disease progression and prolonged therapy
(Jensen and Jordan, 2003). Recently, Robinson et al. (2013),
Toy et al. (2013), Merenbakh-Lamin et al. (2013), and Jeselsohn
et al. (2014) reported ERα polymorphisms (mERαs) in the LBD
between H9 and H10 (S463P), close to the estrogen binding
site (i.e., E380Q) and in the loop that connects H11 and H12
(i.e., L536Q, L536R, Y537C, Y537N, Y537S, and D538G). These
polymorphisms occur at a significant rate in relapsed metastatic
patients. However, it is rare or absent in untreated patients that
have a primary tumor (Robinson et al., 2013; Toy et al., 2013;
Jeselsohn et al., 2014). Experimental studies have suggested the

possible role of these polymorphisms in inherited resistance
to treatments of an endocrine nature (Liang and Shang, 2013)
by developing novel features during BC to avoid the use of
therapeutics. The reported occurrences of a particular ERα

polymorphism vary from case to case, 21–36% of cases in D538G,
5–33% in Y537N, and 13–22% in Y537S, while there are less
occurrence of other polymorphisms (Robinson et al., 2013; Toy
et al., 2013; Jeselsohn et al., 2014). A double mutant D538G and
Y537S was also seen in a few cases (Chandarlapaty et al., 2016).
The overall survival time of patients is not dependent on the
abundance of these mutations (26 months D538G, 20 months
Y537S, and 15 months for double mutant Y537S and D538G)
(Chandarlapaty et al., 2016), with the most aggressive isoform
being Y537S (De Savi et al., 2015; Lai et al., 2015). A previous
study by Pavlin et al. performed a simulation-based study of these
mutations, but their analysis utilized only a single simulation tool
(Pavlin et al., 2018).

In the multifactorial nature of diseases like cancer, various
factors determine the positive, and negative reaction to drugs.
The ultimate objective is therefore to investigate the factors
directly involved in the development of BC drug resistance
and to overcome this problem (Magistrato et al., 2017;
Spinello and Magistrato, 2017). So far, computational studies
on mERαs and their mechanism have been inadequate to
explain K303R, E380Q, V392I, S463P, V524E, P535H, P536H,
Y537C, Y537N, Y537S, and D538G polymorphisms that are
most repeated isoforms (Delfosse et al., 2012; Robinson
et al., 2013; Toy et al., 2013; Fanning et al., 2016; Joseph
et al., 2016). It was indicated that these are constitutively
active mutants but with a different molecular mechanism
(Delfosse et al., 2012; Toy et al., 2013). Other mutants can
also have different activation pathways that lead to therapy
responses that are mutant dependent and are yet to be studied
(Delfosse et al., 2012; Spoerke et al., 2016).

In silico, methods to predict structural implications of
mutations will be beneficial in understanding mechanisms of
drug resistance for quantitative estimation of the phenotypic
resistance outcomes (Khan et al., 2019). To systematically
understand the effects (protein stability changes, flexibitliy drift,
and protein ligand interaction) of these mutations, we performed
in silico saturation mutagenesis. Additionally, we also assessed
the impacts of mutations on the relative sidechain solvent
accessibility, depth, and the residue-occluded packing density.
Extremely detrimental mutations were selected and analyzed for
changes in their interatomic interactions that might explain the
destabilizing effects. To explore further the vibrational entropy
and enthalpy changes of flexible conformations, we employed
an empirical force field-based method, FoldX, a coarse-grained
normal mode analysis (NMA)-based elastic network contact
model, ENCoM, and a consensus predictor that integrates
normal mode approach with graph-based distance matrix in
the mutating residue environment. Finally, simulations of force
field-based molecular dynamics on wild type (WT) ERα and
six variants (E380Q, S463P, Y537S, Y537N, and D538G) were
carried out to justify mechanism of the resistance. To cure all
types of metastatic BC types, this detailed investigation advocates
advancement in precision medicine.
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MATERIALS AND METHODS

Comparative Modeling, Quality
Assessment, and Model Refinement
A crystallized structure of Estrogen receptor alpha (ESR1) was
downloaded from RCSB (PDB ID 1GWQ) (Petrella et al.,
2011). Structural topology was analyzed for the coordinate’s
defects. MolProbity (Chen et al., 2010) was used to evaluate
the quality of the constructed structure, and atomic conflicts
were resolved by energy minimization using the Steepest
descent and conjugate gradient algorithms. Using YASARA
(Land and Humble, 2018), energy minimization was conducted.
The water molecules were completely removed before any
further analysis. Pymol was used for visualization (Scientific
and San Carlos, 2002). The Fulvestrant structure with accession
ID CID802 was obtained from the PubChem database (Kim
et al., 2015). The mutant models and sidechains of the
mutants were optimized using FoldX (Schymkowitz et al.,
2005). Molecular docking of the ESR1 with fulvestrant was
performed by using a Schrödinger suite. A glide tool (Friesner
et al., 2006) was used for docking of the fulvestrant. Since
the structures of fulvestrant and ZB716 are similar, the same
protocol using a flexible docking simulation was performed
with the Induced Fit protocol (IFD) method as previously
reported (Guo et al., 2018). The docking complexes were
refined with the protein–ligand interaction refinement tool
in the Schrödinger suite. Heirarchial optimization of the
complexes that consider the systematic sampling of ligand
position, conformation, and orientations along with the proteins
residues was performed. All these calculations were performed
on the apo structures (wild and mutant) obtained from
MD simulation.

Effects of Mutations on Protein Stability
and Interactions
mCSM (http://biosig.unimelb.edu.au/mcsm/) (Pires et al., 2013),
SDM (Pandurangan et al., 2017), and FoldX were used to
understand the impact of mutations on the thermodynamic
stability of the protein. For SDM, mutant-protein models
were produced using FoldX, which considers preserved
conservation angle laws while identifying the most likely
mutant residue sidechain rotamers. To determine the energy
fold change upon inducing mutations, FoldX utilizes a
linear combination of empirical terms to calculate the
effect of mutations on the protein structure in kcal/mol.
FoldX uses the following equation to calculate each
energy term.

1G = a . 1GvdW + b . 1GsolH + c . 1GsolP + d . 1Gwb

+ 1e . 1GHbond + f . 1Gel + g . 1Gkon + h . T1Smc

+ 1i . T1Ssc + l . 1Gclash

In this expression (a ... l) are relative weights of the different
energy terms used for the free energy calculation. Each term
in the above equation is defined in the original manuscript
(Schymkowitz et al., 2005).

The effect of mutations on the protein–ligand affinity, ESR1-
Fulvestant, was determined by using mCSM-lig (Pires et al.,
2016). ThemCSM-lig server analyzed only residues within 10Å of
the interatomic distance to fulvestrant. The stability changes were
further compared with predictions from other computational
tools in order to estimate the reliability of the predictions.

Changes in Vibrational Entropy and Normal
Mode Analysis
To evaluate the implications of mutations in flexible
conformations on protein stability, we used FoldX, an empirical
force field method that computes free energy changes between
the protein’s native and mutant forms, and an elastic network
contact model (ENCoM) (Frappier et al., 2015), a coarse grain
NMA strategy that takes into account the nature of the amino
acids and aids in calculating vibrational entropy changes upon
mutations. We have also used DynaMut (Rodrigues et al., 2018),
a protein stability consensus predictor based on ENCoM’s
predicted vibrational entropy changes and the stabilization
changes predicted by mCSM’s graph-based signature method.

Conformational Changes
Conformational changes and their impacts on biophysical
properties of the proteins were estimated using SDM
(Pandurangan et al., 2017). The interatomic distances between
each residue and fulvestrant in the protein-ligand complex
were measured and included in the analysis. For all mutations,
secondary structure switches in mutants, changes in relative
solvent accessibility, residue depth in Å, and residue-occluded
packing densities were determined.

Molecular Dynamics Simulation
In order to estimate the dynamic behavior of fulvestrant at
the active site of native and mutant receptors, an all-atoms
simulation using an Amber14 package was carried out (Salomon-
Ferrer et al., 2013) with the ff14SB force field. ForMD simulation,
seven systems have been prepared, including a wild type and
six complex systems with fulvestrant. Each system was solvated
with a rectangular TIP3P water box and neutralized by adding
counter ions. The steepest descent minimization method was
used for energy minimization followed by conjugate gradient
minimization of 3,000 steps. Each system was then gradually
heated for 200 ps−300K. Weak restraints for 2 ns were used to
balance each system’s density, followed by the constant pressure
of 2 ns for system’s balance. A constant pressure of using
Langevin approach was used (1 atm, 300K) (Zwanzig, 1973). To
evaluate long-range electrostatic interactions the Particle Mesh
Ewald (PME) algorithm with default settings in AMBER14 was
used (Darden et al., 1993; Essmann et al., 1995). The threshold
distances for long-range electrostatic interactions and Van der
Waals were set to 10.0 Å, and for hydrogen covalent bonds the
SHAKE algorithm was used. (Ryckaert et al., 1977). A total of
700 ns simulations were carried out using pmemd.cuda (Gotz
et al., 2012). CPPTRAJ and PYTRAJ packages in Amber 14 were
used to evaluate the MD trajectories. We also performed 200 ns
simulation for each apo system.
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Unsupervised Clustering of MD
Trajectories and Gibbs Free Energy
Calculation
Motion in the trajectories from both wild and mutant systems
was calculated by using an unsupervised machine-learning
technique known as Principle component analysis (PCA)
(Pearson, 1901). For this purpose, a CPPTRAJ package in
Amber was used. The reference structure was subjected to
the translational as well as rotational motions. The positional
covariance matrix for atomic coordinates, as well as its
eigenvectors, were calculated. The diagonal matrix of eigenvalues
was obtained by diagonalizing the matrix with the help of
orthogonal coordinate transformation. The eigenvector and its
eigenvalue suggested the principal component of the trajectory
and highlighted the principal dominant global motion of
the structures.

The free energy landscape (FEL) was calculated by using the
first two PCs (PC1 and PC2). Deep valleys plot was used to draw
and understand the native and metastable states of each system
(Hoang et al., 2004). In this study, FEL was calculated using the
following equation based on the first two principal components:

1G (X) = −KBTlnP(X)

where X suggests the response organizes taken by the primary
the two principal components, KB implies the Boltzmann steady,
and P(X) is the dispersion of the framework’s likelihood on the
first two principal components.

Dynamic Cross-Correlation Map (DCCM)
Analysis
Using dynamics cross-correlation maps, the time-subordinate
corresponded movements of C-α atom could be plotted. We,
therefore, implemented DCCM to comprehend the highly
connected movement of the C-alpha atoms when the ligand
is bounded.

Cij =
<1ri1rj>

<< 1ri
2><1rj

2>>

The equation above contains various elements of DCCM plots.
Dri and Drj exemplify the vector of displacement of atoms i and j
while <...> symbolizes the average trajectory.

Binding Affinity Calculations
Thewild andmutant ESR1 systems free binding energy was figure
out by using the script MMPBSA.PY (Hou et al., 2012; Miller
et al., 2012; Xu et al., 2013; Sun et al., 2014, 2018; Chen et al.,
2016), and these energies were calculated by considering 500s
napshots from the MD trajectory. The binding free energy was
determined as:

1Gbind = 1Gcomplex −
[

1Greceptor + 1Gligand

]

where 1Gbind is the absolute free binding energy, and the rest of
the parts are the free energy of the complex, the protein, and the
ligand. Every segment’s free energy was determined by utilizing
the given equation:

TABLE 1 | List of selected mutations and their respective regions (Helix).

Index Mutation Region

1. K303R Helix-1

2. E380Q Helix-12

3. V392I Helix-3

4. S463P Helix-12

5. V524E Helix-11

6. P535H Helix-11

7. P536H Helix-11

8. Y537C Helix-12

9. Y537N Helix-12

10. Y537S Helix-12

11. D538G Helix-12

G= Gbond + Gele + GvdW + Gpol + Gnpol − TS

Gbond, Gele and GvdW indicate interactions among bonded,
electrostatic, and van der Waals states, whereas Gpol and
Gnpol demonstrate the polar and non-polar binders to the free
energy figured by the certain solvent method of the generalized
Born (GB) with SASA perceptible to solvents. Ordinary mode
investigation determined the entropic commitment of TS.

RESULTS

Structure Preparation
Structural coordinates of the ligand-binding domain (LBD) of
the ESR1 monomer were downloaded from RCSB using PDB
ID (1GWQ). An initial visual analysis of the structure revealed
some residues weremissing while others had defects. Themissing
residues were identified by comparing them with the primary
amino acid sequence of ESR1. Missing residues were added,
and structural refinement with YASARA and Fold-X tools was
performed. The final structure was subjected to 200 ns simulation
to obtain the most stable conformation. Eleven mutations
reported by different experimental studies were included as
indicated in Table 1. The mutations were spotted in different
helices of ESR1, and six mutations were found in Helix 12. Only
six mutations E380Q, S463P, Y537S, Y537C, Y537N, and D538G
were selected for MD simulation and post-simulation analyses.
The selection of these mutations is based on pre-MD simulation
analyses, which revealed substantial information about their
specificity. In order to get better insight into the mechanism,
an initial structure was prepared. The 3D structure of ESR1,
its different domains, Helices pattern, and the 2D structure of
fulvestrant are shown in Figure 1.

Analysis of Free Energy Changes Predicted
by Different Computational Tools
Multiple well-implemented algorithms were implied to predict
the stability changes associated with each of the mutations in
the ESR1 structure. Structure-based stability changes predictors
FoldX, mCSM, and SDM were used to calculate effect the
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FIGURE 1 | Figure is showing ESR1 and the resistant drug Fulvestrant (A) showing different domains [Transactivation domain (AF1), DNA Binding Domain, Hinge

Domain, and Transactivation (AF2) or Ligand Binding domain] of ESR1, (B) showing the 2D topology of resistant drug Fulvestrant, and (C) showing the 3D modeled

structure of ESR1 and its different Helices. Helix 12 is highlighted in a green color. (D) The color pattern of different Helices shown in (B). The yellow spot represents

the resistant mutations with negligible effect on the drug, while the red color spot shows mutations with a significant level of resistance effect.

possible mutations at each residue position in the LBD of ESR1.
The rationale for performing these analyses is to understand
how mCSM and SDM, being structure-based predictors of
stability change upon mutations and relate to sequence-based
methods as well as how vibrational entropy changes in normal
mode perturbations.

Mutations-Stability Correlation Analysis
mCSM uses graph-based signatures, where the primary feature
is distances between different atoms. It also uses the common
pharmacophoric features and converts it into digits where
its mutant pharmacophore count is compared with the wild
one. Wild type and mutant residues are represented as
pharmacophore frequency vectors. These feature vectors are
appended to experimentally important thermodynamics features,
such as pH, solvent accessibility, and temperature. Herein, using
mCSM, stability changes upon mutations were calculated, and
average changes ranging from 0.823 to −3.033 kcal/mol was
reported. Mutations, such as E380Q with stability fold change
−1.192 kcal/mol and S463P with stability fold change of −0.689
kcal/mol, Y537S, Y537N, and Y537C with stability fold changes
of−1.899,−1.66, and−0.566 kcal/mol, respectively, were found
to be primarily affected in the highest fold with a destabilizing
effect. In addition, mutation D538G with stability change of
−0.545 kcal/mol was also clustered as destabilizing mutants.

Mutations E380Q and S463P lie near or in the active site (Helix 3
and Helix 11), thus posing high level of resistance to the drug.

On the other hand, mutations Y537S, Y537N, Y537C, and
D538G are spotted in Helix-12, whose flexibility is affected by
these mutations and thus pose significant flexibility drift. It has
been previously reported that the flexibility and replacement of
Helix-12 can cause major destruction on the binding of ligands in
the active site. The active site residues lie on Helix-3 and Helix-
11, which is affected by the motion of Helix-12. According to
the results, the remaining mutations, such K303R, V392I, V524E,
P535H, and P536H, produce the opposite effect (i.e., stability)
and do not induce major changes in affinity or reported to be
least influenced. DynaMut, DUET, CUPSAT, and I-mutant also
rationalized the destabilizing effects of the six mutations E380Q,
S463P, Y537S, Y537C, Y537N, and D538G. All the stability results
predicted by different servers are given in Table 2.

Impact of Mutations on Flexible
Conformations and Changes in Vibrational
Entropy (1S)
FoldX calculated the stability changes between the wild type and
each mutant in the lowest energy conformation. It optimizes the
sidechain rotamers of the mutant residues to attain a low energy
state and calculates the change in free energy between the states.
It can be seen from Table 2 that the mCSM suggested mutations
E380Q, S463P, Y537S, Y537C, Y537N, andD538G aremore likely
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TABLE 2 | The table shows the stability results predicted by different servers and softwares (DUET, ENCoM, DynaMut, mCSM, SDM, and FoldX).

Index Mutation DUET 11G ENCoM 11G DynaMut mCSM 11G SDM 11G FoldX Outcome

1. K303R 0.116 −0.025 −0.217 −0.719 −0.17 −0.03 Stabilizing

2. E380Q −1.192 0.03 0.416 −1.482 −0.4 −0.29 Destabilizing

3. D538G −0.445 0.028 0.265 0.008 −0.54 0.92 Destabilizing

4. Y537S −1.899 −0.027 −0.095 −0.215 −0.39 3.22 Destabilizing

5. Y537N −1.369 −0.809 −0.077 −0.315 −1.66 2.41 Destabilizing

6. H524E −0.243 −0.087 −0.198 −0.73 −0.11 2.02 Destabilizing

7. V392I −0.431 −0.6 −1.726 −0.264 0.16 −0.86 Stabilizing

8. S463P −0.495 −0.606 −1.188 −0.689 −0.09 3.69 Destabilizing

9. P535H −0.036 −0.08 −0.056 −0.312 −1.1 1.65 Destabilizing

10. L536H −0.044 −0.413 −0.174 −0.788 −0.77 0.16 Stabilizing

11. Y537C −0.566 −0.559 0.076 −0.164 0.27 2.22 Destabilizing

to affect the energy changes in the higher fold than the others.
It can be confirmed that mutations in helix-12 are primarily the
major contributor in the energy changes profile.

On the other hand, fully flexible conformers of the
mutants were sampled to compute the difference in vibrational
entropy(1S) between the mutants and wild type. The average
vibrational entropy change was observed from −0.038 to 1.011.
All the calculations were carried out in kcal/mol.K−1. The
maximum vibrational entropy (1S) changes were induced by
mutation Y537N, followed by S463P, Y537C, L536H, D538G,
Y537S, and E380Q. It can be seen in Figure 2 that the six
mutations Y537N, S463P, Y537C, D538G, Y537S, and E380Q
induced higher flexibility than those of the others. These results,
along with the other, i.e., stability changes, clearly pointing out
the importance of these six mutations. It has been previously
reported that these mutations specifically in the Helix-12 pose
major resistance to treatment in breast cancer. It can be seen
that mutations D538G, Y537N, Y537S, and Y537C in helix 12
destabilizes the protein conformation by inducing significant
flexibility drift.

Furthermore, mutations, such as E380Q and S463P, increase
the residual rigidity in some helices while alternative inducing
flexibility in some residues. These changes in flexibility (red)
and rigidity (blue) are mapped onto the corresponding protein
structure and presented in Figure 2. In order to get further
insight into the phenomena, we conducted a simulation analysis
of each apo system for a total of 200 ns. The results suggested
that the mutations induced stability and conformational changes
in the structure of protein. The root mean square fluctuation
(RMSF) was calculated to confirm the flexibles regions and
residual flexibility changes upon mutations. It was noticed that
mutations, such as D538G, Y537N, Y537S, and Y537C, in helix
12 expand its motion. The results of RMSD, RMSF, b-factor,
radius of gyration, and cross-correlation analysis are given in
Figures S1–S5. These results suggest that the major fluctuation
and destabilization effect was caused by E380Q, S463P, Y537S,
Y537C, Y537N, and D538G. Thus, it can be inferred that the
antagonist and co-activator binding conformation is stabilized
by these mutations. When compared to the wild type apo
helix-12, this region of the six mutations E380Q, S463P, Y537S,

Y537C, Y537N, and D538G was found to have greater flexibility
(RMSF Figure S2).

To give further insight into conformational changes induced
by these mutations, secondary structure switches in mutants,
changes in relative solvent accessibility, residue depth in Å, and
residue-occluded packing densities were determined. From the
maximum destabilizing mutations, increases in RSA, residue-
occluded packing densities, and decrease in depth were observed
and are tabulated in Table S1.

Herein, using mCSM-lig, affinity changes upon mutations
were calculated, and average changes ranged from 0.823 to
−3.033 kcal/mol was reported. Mutations, such as E380Q with
affinity fold change −1.399 kcal/mol, S463P with affinity fold
change of −1.305 kcal/mol, Y537S, Y537N, and Y537C with
affinity fold changes of −1.098, −0.878, and −0.931 kcal/mol,
were found to be primarily affected in highest fold with
destabilizing effect. In addition, mutation D538G with an affinity
fold change of−0.909 kcal/mol was also clustered in destabilizing
mutants. Mutations E380Q, S463P, Y537S, Y537N, Y537C, and
D538G were spotted in Helix-12 whose flexibility is affected by
these mutations and thus poses a significant flexibility drift. It has
been previously reported that the flexibility and replacement of
Helix-12 can cause major destruction on the binding of ligands
in the active site (Kuang et al., 2018). The active site residues
lie on Helix-3 and Helix-11, which is affected by the motion of
Helix-12. According to mCSM results, the remaining mutations,
such K303R, V392I, V524E, P535H, and P536H, do not induce
significant changes in affinity or reported to be least influenced.
The results obtained from these analyses are tabulated in Table 3.

Interaction Analysis
Important residues, such as Glu353, Arg394, and His524, are
important for antagonist activity. Upon docking with a wild type
and mutants, these residues were considered for the bonding
analysis. In case of wild type as given in Figure 3, a strong
hydrogen bond with His524 and Glu353 can be easily seen,
while, in case of mutations, such bonds are especially absent with
His524. Thus, we speculate that these mutations also disturb the
bonding pattern of fulvestrant with ESR1. Furthermore, other
hydrophobic and electrostatic interactions are also formed and
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FIGURE 2 | The effect of mutations on the flexibility of different residues. Different colors represent different levels of flexibility.

lost. It is also important that targeting Cys530 residue could help
in resolving the resistance posed by these mutations (Furman
et al., 2019). The number of hydrogen bonds before and after the
MD simulation and their lengths are given in Table S2.

Dynamics and Conformational Transition
of Wild and Mutated ESR1
Dynamics features of all the systems, including RMSD, RMSF,
per-residue RMSF analysis, radius of gyration, and distances of
important atoms/residues of both wild and mutant systems were
calculated after a total of 1,400 ns of simulation time. Different
effects of these mutations differentially affected the dynamics of
these systems.While calculating RMSD, it was found that the wild
system attained the steady-state soon after reaching 10 ns. While
compared to the wild type, these systems (D538G, E380Q, and

S463P) and the RMSD values are relatively high, which is due
to the induction of mutation in the H12 helix, and thus affect
the stability of the protein by targeting the specific residues. It
has been discussed in our results that these mutations, compared
to the other Y537S/N/C, did not affect the protein significantly.
On the other hand, mutations induced at Y537S, Y537C, and
Y537N greatly affected the protein dynamics and stability. It

can be seen that the mutations induced in the H12 at Y537
residue posses higher RMSD than the wild system, which, as has

been discussed in the above results, means that these mutations

significantly affect the protein dynamics, and thus stability is
mostly influenced. These results are consistent with the results
predicted by different methods that the mutation Y537S/N/C
affects the protein in a higher fold as compared to the other three.
Previous studies based on other antagonists also suggested that
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TABLE 3 | FoldX energy changes and mCSM-lig ligand binding affinity fold

change prediction upon mutation in ESR1.

Index Mutations 11S ENCoM Affinity fold

change

Docking

score

1. Wild 00 0.00 −10.5

2. K303R 0.032 −0.445 −9.54

3. E380Q 0.338 −1.399 −6.27

4. D538G 0.355 −0.909 −8.97

5. Y537S 0.340 −1.098 −8.63

6. Y537N 1.011 −0.878 −8.87

7. H524E 0.109 −0.429 −8.7

8. V392I 0.25 0.154 −10.5

9. S463P 0.758 −1.305 −9.54

10. P535H 0.1 0.481 −6.27

11. L536H 0.517 0.444 −8.97

12. Y537C 0.699 −0.931 −8.63

For the wild type, the experimental concentration already reported 0.138 nM was used.

Y537S/N/C is less stable than the others. These mutations are
previously prioritized to be primarily treated for the successful
treatment of breast cancer. Thus, the results we obtained are
consistent with the results predicted in other algorithms and
pervious studies (Jeselsohn et al., 2015; Kuang et al., 2018). All
the RMSDs are given in Figure 4.

Furthermore, residual fluctuations and fluctuation of the
H12 helix residues were calculated as RMSF and per-residue
RMSF. Analyses of the root mean square fluctuations (RMSFs)
by residue in the wild and mutant complexes were compared.
It was found that fluctuation in the H1 helix was observed
due to its continues loop structures and accommodated by few
helix residues. During the simulation time, fluctuation in these
residues was observed to be higher. We also observed high
dynamic activity in a loop preceding H9 helix (residues 160–
166). The most important feature of these wild and complex
systems was understanding the flexibility of H12 helix in all
the systems. It has been previously shown that hydrogen bonds
formed by His524 residue with the antagonist could reduce the
motion of H11 and H12 helices and thus maintain the antagonist
conformation of the protein and avoid the binding of co-activator
which could lead to the reduced activity of this co-complex in
breast cancer. Here, a per-residue RMSF analysis was correlated
with the mutations, and the RMSF of each residue lies in the
H12 helix was calculated. As given in Figure 5, it can be easily
observed that the mutation affected the residual flexibility of the
H12 helix in a higher fold when compared with the wild system.
It can be seen that residual flexibility of each of these residues in
H12 helix is higher than that of the wild system. The flexibility
of H12 increases with the simulation time. Thus, these mutations
substantially affected this helix.

Experimental studies proposed the mechanism that the
movement of H12 is mainly responsible for the conformational
transition between agonist and antagonist and the binding of
a co-activator. Thus, the loss of important hydrogen and other
bonds with the enhanced flexibility reduces the efficacy of the

antagonist and thus fails to restrain the movement of the H12
helix and halt the binding of co-activator to the ESR1. Therefore,
the increased flexibility favors the binding of a co-activator by
supporting the agonist conformation, which was already reported
in the previous study. These hotspot mutations, specifically
Y537S, Y537C, and Y537N, affect the flexibility of the H12 in the
highest fold and are shown in Figure 5 (right panel). Previous
results also suggested that these mutations primarily destabilizes
the binding of antagonists and reduces the interactions with the
H12 by enhancing the conformational transition. Our results also
support the early results reported by different studies: the role of
H12 in terms of its flexibility is the primary cause of resistance
(Merenbakh-Lamin et al., 2013; Robinson et al., 2013; Toy et al.,
2013), and Y537S/C/N are significantly involved in the resistance
to fulvestrant (O’Leary et al., 2018).

To further demonstrate the mechanism of resistance posed
by the H12 helix, we calculated the distance between the ligand
and residue His524, an essential parameter in determining
the role of agonist and antagonist conformation stabilization.
As given in Figure 6, the distance between the ligand and
His524 is minimal in the wild system, while in the other
systems with mutations this distance was found to be increased
range from 0.15 to 0.18 nm in different mutations. The average
distance in the mutated systems was ∼0.15 nm. Hence, the
movement of H11 and H12 is highly correlated, and we speculate
that the loss of important interactions due to the flexibility
could allosterically affect the H11. It has also been previously
shown that this is due to the rotation of His524 from a –
guache to +guache conformation. However, the bond between
Glu339 of H3 and Lys531 of H11 ties together and avoid the
unwinding of the protein. Here, the fluctuation of bond distance
between the ligand and His524 is also an important factor in
determining the stability of each conformation (agonist and
antagonist) because a shift in the orientation between agonist
and antagonist has been previously reported to be associated
with interaction with His524 too. The radius of gyration is given
in Figure 5.

Trajectories Transitions and Dynamic
Motions
A PCA (Principal component analysis) was applied to study and
used to evaluate the distinct protein conformational states in
a principal component (PC) phase space during the molecular
dynamics simulations. Trajectories were projected onto a two-
dimensional subspace using the first three eigenvectors, i.e., PC1,
PC2, and PC3, to understand the conformational transitions
of the complexes. Figure 7 shows that all the complexes
attained two conformational states on the subspace differently
colored (Figure 7). The conjoined distributions of the principal
components of the complexes discovered that the energetically
unstable conformational state blue neared convergence and
attaining a stable conformational state red color. Consequently,
different periodic jumps are required for the transition of
different conformations in mutants.

To further understand the transition mechanism of mutants
and wild complexes frommetastable to native states, eigenvectors
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FIGURE 3 | Showing the bonding pattern of fulvestrant with ESR1 (wild and mutants). The interaction legend is also given in the bottom.

(the first two) were used to calculate and to plot the free energy
landscape (FEL) of the 200 ns trajectory time. Low energy states
were extracted to understand structural evolution. As shown in
Figure 8, the lowest Gibbs energy states are highlighted using

a dark purple color, while the numbers represent the positions
of the structural coordinates sampled from that locus on the
FEL plot. The FEL plot showed that the wild type attained four
different energy states (three metastable and one native). On
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FIGURE 4 | Root Mean square deviation of all the systems compared with the wild type. The black color is showing the wild while the rest of the colors represent the

mutant systems.

FIGURE 5 | Root Mean square fluctuation of all the systems compared with the wild type. The left panel is showing the RMSF and the complete structure of ESR1.

The right panel is showing the fluctuation of Helix-12 which is confirming the flexibility drift caused by the mutations. Each system is shown in a different color.

the other hand, mutations D538G, S463P, E380Q, and Y537S
were found to have three states, including one native and two
metastable states. Mutations Y537C and Y537N probably formed
two metastable states only. The result indicates the frequent
transition of the conformations in the mutants compared to
wild type. Mutations adopted multiple metastable states during

their structural evolution in MD simulations and were separated
by low- and high-energy barriers, respectively. Interestingly,
mutations like Y537C, Y537N, and Y537S were observed in its
profoundly transition state by observing the RMSD plot.

To further examine the residue’s correlative motions,
trajectories were subjected to a dynamics cross-correlation
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analysis. A diverse pattern of correlations was observed in all the
systems. The atomic displacement in mutants was observed to be
high when compared to wild. It can be seen that highly atomic
displacement of H12 in Y537C/N/S is experienced, while in the

FIGURE 6 | Radius of gyration and Distance of 5,000 snapshots obtained

from each system are shown in different color.

case of E380Q and S463P these motions are observed in multiple
atoms of different residues. The results given in Figure 9 clearly
show that all mutants display different correlated motions than
the wild complex.

DISCUSSION

In practice, ER proved to be the prime target for BC therapy,
but poor response or complete resistance developes during the
course of treatment, making treatment a grim challenge and
BC lethal. Comprehension of these mechanisms at a cellular
and genetic level is of paramount importance to evade this
muddle and come up with an effective treatment. Fulvestrant is
a potent antagonist, and it has been characterized to reduce the
burden of breast cancer. The resistance to fulvestrant, caused
by genetic aberrations in ESR1, has been reported (Shi et al.,
2014; Akhmetova et al., 2015; Khan et al., 2018), but the
molecular mechanism subsequently leading to resistance has
not yet been elucidated. Here, we used a logical approach to
understand the mechanism’s underlying resistance to targetting
ER, using structure-guided approaches. The present examination
gives insight into the mechanism behind the fulvestrant
resistance, which could help in designing new anti-BC drugs.
We adopted an extensive computational procedure to unveil the
molecular mechanisms of resistance offered by ESR1 mutations

FIGURE 7 | Principle component analysis of 5000 snapshopts obtained from MD simulation of all the systems.

FIGURE 8 | FEL of PC1 and PC2 obtained from MD simulation of all the systems.
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FIGURE 9 | Distance cross-correlation matrix of both wild and mutant systems.

to fulvestrant. The activity of a native protein is affected by an
aberration that can occur anywhere, not only in the residues
of the active site. Previous studies demonstrated that such
changes have a remarkable impact on the structure and action
of fulvestrant. In the present investigation, the Y537S, Y537C,
and Y537N mutations significantly influence the activity of the
fulvestrant drug. Using multiple servers, such as mCSM, SDM,
DUET and many others, the servers reported that six mutations
have significantly affected the activity of the fulvestrant. Also,
a molecular dynamics simulation revealed that the structural
stability and flexibility directly correlated to the mutation. All
these analyses suggested that the flexibility of H12 could open
up the co-activator confirmation due to enhanced flexibility.
Differences in the docking and free energies also clarified the
distortion caused by these mutations. Furthermore, the principal
component analysis, free energy landscape, and dynamics cross-
correlation analysis also clarified the dominant motions, native
and metastable state, and correlated motions in ESR1 (wild and
mutant systems). These methods have previously been used by
different studies to understand protein dynamics, mechanim of
resistance, and drug interaction (Du et al., 2016, 2019; Yang et al.,
2018).

In conclusion, we quantified the impact of reported mutations
K303R, E380Q, V392I, S463P, V524E, P535H, P536H, Y537C,
Y537N, Y537S, and D538G in the activity of fulvestrant. This
study clarified how these mutations alter structural properties,
binding affinity, stability, and resistance in breast cancer
treatment. Our results provide further understanding into the
factors associated with drug resistance in breast cancer cell lines
and thus provide a useful pathway for the development of new
medications for treatment of breast cancer.
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Therapeutics targeting cytokines such as the oncostatin M (OSM)-mediated inflammation
represent a potential strategy for the treatment of inflammatory bowel disease (IBD).
Despite the investigation of the specific role of the interactions between OSM and the
receptor (OSMR) in IBD pathogenesis, the 3D structure of the OSM–OSMR complex
remains elusive. In this work, the interaction mode between OSM and OSMR at
atomic level was predicted by computational simulation approach. The interaction
domain of the OSMR was built with the homology modeling method. The near-native
structure of the OSM–OSMR complex was obtained by docking, and long-time scale
molecular dynamics (MD) simulation in an explicit solvent was further performed to
sample the conformations when OSM binds to the OSMR. After getting the equilibrated
states of the simulation system, per-residue energy contribution was calculated to
characterize the important residues for the OSM–OSMR complex formation. Based on
these important residues, eight residues (OSM: Arg100, Leu103, Phe160, and Gln161;
OSMR: Tyr214, Ser223, Asp262, and Trp267) were identified as the “hot spots” through
computational alanine mutagenesis analysis and verified by additional MD simulation of
R100A (one of the identified “hotspots”) mutant. Moreover, six cavities were detected
at the OSM–OSMR interface through the FTMap analysis, and they were suggested as
important binding sites. The predicted 3D structure of the OSM–OSMR complex and
the identified “hot spots” constituting the core of the binding interface provide helpful
information in understanding the OSM–OSMR interactions, and the detected sites serve
as promising targets in designing small molecules to block the interactions.

Keywords: inflammatory bowel disease, oncostatin M and oncostatin M Receptor, protein-protein docking,

molecular dynamics simulation, binding sites prediction

INTRODUCTION

Inflammatory bowel diseases (IBDs) are complex chronic inflammatory conditions of the
gastrointestinal tract that are driven by perturbed signal pathways of cytokines such as tumor
necrosis factor (TNF)-α and IL-6 (Neurath, 2014). Nowadays, anti-TNF antibodies (such as
infliximab and golimumab) are mainstay therapies for IBD (Choi et al., 2017). However, there are
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still more than 40% of patients who are non-responsive to anti-
TNF agents, making the discovery of alternative therapeutic
targets a priority (Kim et al., 2017). One of those potential targets,
oncostatin M (OSM)-mediated inflammation, has gained a lot of
interest (Verstockt et al., 2019). It is found that high pretreatment
expression of OSM is strongly associated with failure of anti-
TNF therapy of patients with IBD, which revealed the role of the
receptor (OSMR) as part of a unique pathway that contributes to
the chronicity of intestinal inflammation (West et al., 2017).

OSM belongs to the IL-6 family, and the activation of the
OSM signal pathway is highly determined by the high affinity of
OSM to the receptor (OSMR) (Adrian-Segarra et al., 2018a,b).
The crystal structure of OSM reveals that the protein comprises
four α helices ranging from 15 to 22 amino acids in length
(termed A, B, C, and D) and linked by polypeptide loops
(Figure 1A) (Deller et al., 2000). The OSMR is a member of
the IL-6 receptor family that transduces signaling events of
OSM (Yu et al., 2019). Currently, available antibodies, such as
GSK315234 and GSK2330811, have already been proven to affect
the OSM signal (Verstockt et al., 2019). Although neutralizing
OSM antibodies are being developed and should be considered
as a novel proof-of-concept trial in IBD patients (West et al.,
2017), these developed biological medicines are large, complex,
and relatively fragile molecules, which make them difficult and
expensive to produce and administer on a large scale (Monaco
et al., 2015).

In recent years, development of small molecule modulators
targeting protein–protein interactions (PPIs) has emerged as a
promising therapeutic intervention in complex diseases (Nero
et al., 2014; Nim et al., 2016; Weng et al., 2019). In selecting
biologically relevant protein–protein interfaces, the availability
of computer-aided drug design (CADD) approach has led to
the discovery of small molecules either stabilizing or disrupting
the biological processes (Arkin et al., 2014; Laraia et al., 2015).
The critical role for OSM in antipathogen immunity has not
been described, and targeting OSM–OSMR may offer inhibition
of the inflammatory pathology while preserving protective
immunity (Verstockt et al., 2019). These hypotheses stimulate
the idea of identification of small molecular inhibitors against
the OSM–OSMR interface, which might provide safer and more
broadly effective alternatives to conventional antibodies targeting
monomeric macromolecules. To discover ligands specifically
disrupting the OSM–OSMR interface, the information of the
protein–protein interactions is needed. Unfortunately, the 3D
structure of the OSM–OSMR complex remains elusive (Kim
et al., 2017). It is of paramount importance to understand the
details of the OSM and OSMR complex formation as well as the
potential binding site between the protein–protein interface.

In this work, molecular simulation approaches aimed at
filling the aforementioned gap were performed to accelerate the
discovery of small molecules targeting OSM–OSMR. Starting
from the crystal structure of OSM (Deller et al., 2000) and
the model of the OSMR [a protein-binding region was built
using the leukemia inhibitory factor receptor (LIFR) crystal
structure (Huyton et al., 2007) as a template], the near-
native conformation of the OSM–OSMR complex was obtained
through protein–protein docking. The docking conformation

was further sampled through long-time scale (1 µs) molecular
dynamics (MD) simulation to get the equilibrated binding states.
Based on the simulation trajectory, per-residue binding free
energy decomposition (Tu et al., 2018; Wang et al., 2019)
and computational alanine scanning (CAS) (Huo et al., 2002)
analysis were carried out to identify the protein–protein interface
“hotspots.” Using one of the identified “hotspots” (Arg100) as an
example, an additional 500 ns of MD simulation was performed
to investigate the stability of the R100A mutant complex. Finally,
the “hotspots” were mapped to the seven binding sites located
at the OSM–OSMR interface detected using FTMap (Kozakov
et al., 2011), and three of them were suggested as important
target sites for future designs of small molecular modulators in
the OSM–OSMR interaction.

MATERIALS AND METHODS

Structure Preparation
Construction of OSM Missing Loop
The crystal structure and sequence of OSM were obtained from
the PDB database (PDB code: 1EVS) (Deller et al., 2000). Residues
from 1 to 3 and 135 to 155 (highlighted in red color in Table S1)
were missing in the resolved crystal structure. The coordinates
of the missing fragments of the OSM structure were constructed
using the optimization-based approach (Fiser et al., 2000) in
Modeler (Webb and Sali, 2016).

Homology Modeling of OSMR
The full-length sequence of the OSMR was obtained from
the NCBI database (GenBank: AAI25210.1) (Strausberg et al.,
2002). Then the sequence of the OSMR was submitted to
search a template structure with the BLAST algorithm (Schaffer
et al., 2001). Searching result showed that the sequence identity
between the OSMR and LIFR was higher than 30%, especially
in the protein-binding domain (57%). Therefore, based on the
crystal structure (PDB code: 2Q7N) (Huyton et al., 2007) of the
LIFR (residues from 201 to 383), 10 homology models of the
OSMR protein-binding domain was constructed using Modeler
(Webb and Sali, 2016).

Protein–Protein Docking
OSM–OSMR docking was performed using the protein docking
module of the latest version of Rosetta (Alford et al., 2017).
Before docking, the PDB structures of OSM and OSMR were
first formed through the script of clean_pdb.py. The formed
structures of the two proteins were refined by running the Rosetta
relax protocol, and the PDB files consisting of refined OSM
and OSMR were generated. Then, according to the knowledge
of the residues of OSM for OSMR binding detected by site
mutagenesis studies (Adrian-Segarra et al., 2018b), the generated
two complexes were loaded into PyMOL (Schrödinger, 2010) and
with OSM reoriented to contact with the OSMR. To ensure low-
energy starting side-chain conformations for docking, further
prepacking of the OSM and OSMR complexes were conducted.
Finally, 10,000 poses were calculated for the OSM–OSMR
interactions using the Monte Carlo (MC) refinement method
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FIGURE 1 | (A) Structure of oncostatin M (OSM); the modeled fragments are colored in red. (B) Sequence alignment between oncostatin M receptor (OSMR) and
leukemia inhibitory factor receptor (LIFR). (C) Structural alignment of OSMR homology model (red) and LIFR crystal structure (green). (D) Docking funnel of OSM and
OSMR. Inset: the top scoring conformation as near-native OSM–OSMR structure.

(Gray et al., 2003), with the pre-packed conformation as a
starting point.

Docking Funnel Analysis
With InterfaceAnalyzermover in RosettaScripts (Fleishman et al.,
2011), the RMSD was calculated from the heavy atoms of the
interface residues (Table S2) using each pose of the top five
scorers as a reference structure (Chaudhury et al., 2011). The
docking funnel was then identified through plotting total_score
against RMSD. Finally, the top scoring structure with the
lowest RMSD was selected as the successful pose of the OSM–
OSMR complex.

Molecular Dynamics Simulation
Molecular dynamics (MD) simulation was performed with GPU-
accelerated PMEMD in AMBER14 (Babin et al., 2014). The
selected near-native structure of OSM–OSMR from Rosetta
docking was used as the initial conformation for MD simulation.
The LEaP (Wang et al., 2006) was applied to assignAMBERff14SB
force field parameters (Maier et al., 2015) for the two proteins,
and two disulfide bonds in OSM and one disulfide bonds in the
OSMR were identified and added. The complex was immersed
into a rectangular periodic box of TIP3P (Hornak et al., 2006)

water molecules, and the system was neutralized with two
chloride ions. The distance between any protein atom and the
edge of the box was set to 10 Å, and the prepared system contains
86,446 atoms per periodic cell. Starting from the representative
snapshot of wild type OSM–OSMR, additional MD simulation
was performed on the R100A complex using the same setup.

MM/GBSA Binding Free Energy
The binding free energy (1Gtol) between OSM and OSMR was
estimated by the end-point molecular mechanics generalized
Born surface area (MM/GBSA) approach (Kollman et al., 2000)
as below:

1Gtol = 1EvdW + 1Eele + 1Gpol + 1Gnonpol (1)

where 1EvdW and 1Eele are the van der Waals and electrostatic
interaction energies, and 1Gpol and 1Gnonpol are the polar
and non-polar solvent energies, respectively. 1EvdW and 1Eele
were calculated using AMBER ff14SB (Maier et al., 2015) in the
gas phase. 1Gpol was calculated by solving the GB equation
(Onufriev et al., 2004) with the dielectric constants of solute and
solvent set to 1 and 80, respectively. 1Gnonpol was calculated by
1Gnonpol = γ × SASA, where γ = 0.0072, and SASA is referred
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to the solvent-accessible area and determined using a water probe
radius of 1.4 Å (Sitkoff et al., 1994).

To further analyze the energy contribution between OSM and

OSMR at a per-residue basis (1G
per−residue
calc

), the total binding
free energy was decomposed by:

1G
per−residue
calc

= 1E
per−residue
vdW

+ 1E
per−residue
ele

+ 1G
per−residue
pol

+ 1G
per−residue
nonpol

(2)

The definition of each term in Equation (2) is similar as in
Equation (1), except that SASA was computed by recursively
approximating a sphere around an atom, starting from an
icosahedron (ICOSA) (Babin et al., 2014).

Computational Alanine Scanning
Mutagenesis
Computational alanine scanning (CAS) mutagenesis was widely
used to characterize the “hotspots” associated to protein–protein
interactions (Huo et al., 2002). The whole process included the
generation of mutated snapshots, and the binding free energy
difference (11Gcalc) between the wild type (WT) and mutant
(MUT) complex is calculated below

11Gcalc = 1GMUT − 1GWT (3)

whereGWT andGMUT refer to theMM/GBSA binding free energy
of the WT and MUT complexes, respectively. Snapshot(s) of the
WT of OSM-OSM and LIF-LIFR complex were collected from
the last 500-ns trajectory and the crystal structure 2Q7N (Huyton
et al., 2007), respectively. Alanine mutation was generated by
truncating the selected mutation residue at Cγ and by replacing
Cγ with a hydrogen atom at a 1.09-Å distance from Cß along the
direction of the Cγ-Cß bond (Huo et al., 2002).

Detection of Druggable Binding Sites
Based on the representative snapshot of the OSM–OSMR
structure derived from the long-time simulation and the crystal
structure of LIF–LIFR (Huyton et al., 2007), FTMap (Kozakov
et al., 2011) was employed to detect the druggable binding site
in the protein–protein interaction complexes. FTMap uses a
fragment-based mapping algorithm that implements an efficient
fast Fourier transform (FFT) correlation approach to search a
global protein surface for potential druggable binding sites. The
fragments include 16 small organic probe molecules (benzene,
cyclohexane, ethane, ethanol, isopropanol, isobutanol, acetone,
acetaldehyde, dimethyl ether, acetonitrile, urea, methylamine,
phenol, benzaldehyde, acetamide, andN, N-dimethylformamide)
of varying sizes, shapes, and polarities (Kozakov et al., 2015).

RESULTS AND DISCUSSION

Modeled Structures of OSM and OSMR
The missing structures of OSM (Table S1), including
the N-terminal fragment (1–3, AAI) and loop (135–
155, SDTAEPTKAGRGASQPPTPTP), were built and

refined using Modeler (Webb and Sali, 2016) because
sequence identity between the loops of OSM and LIF
(SKYHVGHVDVTYGPDTSGKDV) was only 10.3%. In
addition, structural alignment indicated that the conformations
of the two terminals that link the loops in the crystal structures
of 1EVS and 2Q7N was significantly different (Figure S1).
Therefore, the missing loop of OSM was predicted based on its
own crystal structure 1EVS. Homology modeling approach in
Modeler (Webb and Sali, 2016) was applied to provide the 3D
structure of the OSMR binding domain (146–331) using the
LIFR crystal structure (PDB code: 2Q7N) (Huyton et al., 2007) as
a template. Figure 1B shows that the sequence identity between
the OSMR and LIFR binding domain was 57%. As a result,
10 models were predicted for OSM and OSMR, respectively,
and the model for each of them (Figures 1A,C) was selected
by picking the structure with the best DOPE assessment score
considering the Lennard–Jones potential and GBSA implicit
solvent interaction (Shen and Sali, 2006).

Prediction of OSM–OSMR Interaction
Profiles
The Near-Native Conformation of OSM–OSMR

Complex
To predict the OSM–OSMR binding funnel, RosettaDock was
used to sample 10,000 poses from the starting position. The
starting position was estimated according to the knowledge
of binding site residues identified by site mutagenesis studies
(Adrian-Segarra et al., 2018b), as the presence of a docking
funnel is considered to be the most robust measure of success
in a docking simulation (Chaudhury et al., 2011). Here, the
top five scorers of the OSM–OSMR complex were used as
references to plot the docking score of all 10,000 poses as a
function of RMSD (Figure S2). One of the top five structures
presenting the most reasonable docking funnel, in which the
near-native conformations consistently have better scores than
the non-native conformations (Chaudhury et al., 2011), is
shown in Figure 1D. Therefore, the top scoring structures
with the lowest RMSD in Figure 1D was selected as the
initial conformation of OSM–OSMR for further studies. In
addition, given that the structure of OSM is very similar
to that of LIF, and the OSMR is modeled using the LIFR
as the template, the structure of the OSM–OSMR complex
was modeled based on the crystal structure of the LIF–LIFR
complex. The calculated RMSD between the template-based and
docking structures of the OSM–OSMR was 3.37 Å, suggesting
that the two modeled structures are very similar with each
other (Figure S3A). However, several spatial clashes were found
between the interface of OSM and OSMR in the template-based
OSM–OSMR complex (Figure S3B). As a result, it is proposed
that the docking pose of the OSM–OSMR complex is more
suitable for further investigation.

The Simulated Equilibration States of OSM–OSMR

Complex
Starting from the docking conformation, 1 µs of all-atom MD
simulation was performed for OSM–OSMR in explicit water.
The time evolution of the RMSD of the Cα atom of proteins
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FIGURE 2 | Per-residue energy profiles in (A) OSM and (B) OSMR contribute to the formation the complex. (C) The cartoon representation of the interaction mode of
OSM–OSMR interface. Only the important residues (the absolute energy contribution ≥1 kcal/mol) are labeled.

with respect to the initial coordinates of the docking pose is
shown in Figure S4A. The RMSD values of OSM (∼4 Å) and
OSMR (∼5 Å) showed that the two protein partners underwent
conformation changes over the course of the simulation. In
addition, compared with OSM and OSMR, the higher RMSD
of the complex (∼6 Å) suggested that the rotation of the
two-partner orientation occurred. The extended root mean
square fluctuation (RMSF) analysis of the protein residues
indicated that the loop residues (135–155) in OSM were more
flexible during the simulation; however, the interface residues
in both OSM and OSMR were stabilized due to the non-bond
interactions (Huang et al., 2019) between the two proteins
(Figures S4B,C). Compared with the RMSF analysis of the OSM
residues (Figure S4B) with the plot of B-factor of the LIF residues
(12–180) in the crystal structure 2Q7N (Figure S5) indicated that
OSM shares a similar structural fluctuation with LIF, especially in
the loop region (135–155).

The Thermodynamics Properties of OSM–OSMR

Complex
To characterize the thermodynamics properties between OSM
and OSMR interaction, the snapshots derived from the last 500-
ns equilibrated trajectory were used to estimate the MM/GBSA
(Kollman et al., 2000) binding free energy. The decomposed
energy terms of the total binding free energy (Gtol) indicated
that electrostatic interaction energy (Eele, −338.29 ± 44.73
kcal/mol), van der Waals interaction energy (EvdW , −82.02 ±

7.17 kcal/mol), and non-polar solvent energy (Gnonpol, −11.74
± 1.08 kcal/mol) play important roles in the formation of the
protein–protein complex, whereas polar solvent energies (Gpolar ,
383.11± 43.06 kcal/mol) were unfavored for the interaction.

In addition, per-residue energy decomposition analysis was
performed to identify the important residues for the OSM–
OSMR complex formation. The residues with an absolute

energy contribution of more than 0.5 kcal/mol are listed in
Table S3. The chart of the per-residue interaction energy and
the interaction mode between OSM and OSMR are further
shown in Figure 2. The per-residue energy decomposition
analysis successfully predicted five residues in OSM (AB loop:
Gly39, Leu40, Lys44, and Leu45; D helix: Phe160) reported by
experiments, which played specific roles in activating OSMR
signaling (Adrian-Segarra et al., 2018a,b). In addition, seven
new residues (Arg36, Asp41, Val42, Arg100, Leu103, Gln161,
and Leu164) in OSM were predicted as the important ones
that contribute to the protein–protein interaction. Moreover, the
18 residues (Cys179, Leu181, Phe205, Ile206, Asn208, Lys209,
Gly210, Tyr214, Glu216, Gln219, Gly220, Asn221, Val222,
Ser223, Asp262, Ala264, Leu265, and Trp267) characterized in
the OSMR were informative in experimentally verifying these
residues, which may play an important role in OSM and OSMR
interaction (Huang et al., 2019).

“Hot Spots” Located at OSM–OSMR
Interface
In the context of protein–protein interaction, residues that
made major contribution to the binding of free energy were
termed as “hot spots,” which can be determined by alanine
scanning mutagenesis (Zerbe et al., 2012). These “hot-spots” are
highly interesting since the protein–protein interaction could
be disrupted by targeting them (Grosdidier and Fernandez-
Recio, 2008). Herein, to find the “hot spots” located at the
OSM–OSMR interface, the computational alanine scanning
(CAS) mutagenesis calculation was conducted on the residues
with an absolute energy contribution of more than 1 kcal/mol
identified by the per-residue energy decomposition analysis
(Yang et al., 2018; Du et al., 2020). There were eight “hot
spots” (OSM: Arg100, Leu103, Phe160, and Gln161; OSMR:
Tyr214, Ser223, Asp262, and Trp267) with a relative binding
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FIGURE 3 | “Hot spots” and potential binding sites located at the OSM–OSMR interface. (A) Computational alanine scanning calculation of the 19 residues with
absolute energy contribution of more than 1 kcal/mol identified in per-residue energy decomposition analysis. (B) Interactions of the eight “hot spots” located at the
OSM–OSMR interface. The hydrogen bonds are displayed as green dashes. (C) Comparison of the equilibrated state conformation of wild-type OSM–OSMR with the
snapshot of R100A mutant after 470-ns molecular dynamics (MD) simulation. (D) Potential binding sites in the OSM–OSMR complex identified through FTMap
analysis. The detected 10 sites are labeled (0–9) and shown as surface with different colors in the structure.

free energy (G) of more than 2 kcal/mol (Figure 3A) (Moreira
et al., 2007; Tu et al., 2018). Figure 3B clearly shows that
some important non-bond interactions formed among those
“hot spots,” such as the hydrogen bonds between Arg100
and Asp262, Gln161, and Ser223, and the π-π interaction
between Phe160 and Tyr214. Among them, Phe160 was found
to play an important role in OSM–OSMR recognition (Adrian-
Segarra et al., 2018a,b). In addition, the other predicted “hot
spots,” especially R100 and D262, were predicted to have a
11G larger than 8 kcal/mol, which might be very useful for
further theoretical and experimental studies. To investigate the
stability of the mutant, using R100A complex as an example,
an additional MD simulation (500 ns) was performed starting
from the representative snapshot of wild-type OSM–OSMR.
The calculated RMSD values of the OSM–OSMR complex are
shown in Figure S4D. It is noted that RMSD significantly
increased by around 470 ns for the R100A (∼8 Å) complex.
In addition, snapshots with the largest RMSD value during the
simulation were extracted and shown in Figure 3C. Compared
with the equilibrated state conformation of the wild-type OSM–
OSMR, significant conformational change near the mutation site
occurred in the R100A complex.

Moreover, using the crystal structure of the LIF–LIFR complex
(PDB code 2Q7N), CAS analysis was performed on residues

(Pro51, Phe52, Pro53, Leu56, Pro106, Leu109, Phe156, Gln157,
Ile234, Val258, Asn261, Ser262, Ile267, Ile310, and Leu313)
corresponding to the residues (Arg39, Asp41, Val42, Leu45,
Arg100, Leu103, Phe160, Gln161, Phe205, Asn208, Lys209,
Tyr214, Asp262, and Leu265) located at same position in the
OSM–OSMR interface. It is found that Pro106, Phe156 in LIF,
and Ile267 in LIFR (Figure S6), corresponding to Arg100, Phe160
in OSM, and Tyr214 in OSMR could be regarded as common
“hot-spot” residues for both the OSM–OSMR and LIF-LIFR
complexes. In themeanwhile, alaninemutations of other residues
have little effect in the interaction energy of the LIF–LIFR
complex, suggesting that the interface of the LIF–LIFR complex
is significantly different from that of the predicted OSM–OSMR.

Detection of Druggable Sites in
OSM–OSMR Interface
Through FTMap (Kozakov et al., 2011) analysis of the MD
simulation-derived structure of the OSM–OSMR complex, 10
potential druggable binding sites were detected from fragment-
based searching of the global protein surface (Figure 3D),
indicating that the conformation of the residues in the
recognition interface is very flexible. To further verify the
feasibility of the predicted OSM–OSMR model for potential
binding sites analysis, the crystal structure of the LIF–LIFR
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TABLE 1 | List of key interacting residues within 4 Å of the bound probe molecules
in the detected potential binding sites rendered as spheres in Figure 3D.

Site OSM OSMR

0 Arg36, Ile37, Gln38, Gly39,
Pro93, Asp97, Leu98, Ser101,
Leu103

Ile206, Arg207, Asn208, Lys209

1 Gln38, Gly39, Leu40, Leu45,
Phe160, Lys163

Ser178, Cys179, Gly210, Thr211,
Asn212, Tyr214,

2 Phe205, Ile206, Leu231, Phe232,
Val233, Ser234, Ala264, Leu265,
Gly266

3 Lys44, Leu45, His48, Phe160 Asn176, Val177, Ser178, Tyr214,
Cys215, Glu216, Ser218, Gln219,
Gly220, Val222

4 Arg36, Ile37, Gly39, Leu103 Ile206, Arg207, Asn208, Lys209,
Gly210

5 Asp97, Leu98, Arg100, Ser101 Ile206, Ala264, Leu265, Gly266

6 Asp158, Ala159, Phe160 Gln146, Asn212, Tyr214, Val222,
Lys227, Gly228, Val230

7 Ile206, Gly210, Thr211, Asn212,
Leu231, Val233

8 Arg84, Asp87, Leu88, Arg91,
Arg162, Glu165, Gly166

9 Arg84, Pro151, Thr152, Pro153

The identified “hot spots” by computational alanine mutagenesis were shown in bold.

complex was submitted for FTMap analysis using the same
approach. The result showed that a total of 14 potential
binding sites were detected, and the location of the position
is similar with that of the OSM–OSMR complex (Figure S7).
Therefore, it could be concluded that the predicted OSM–
OSMR model is feasible for binding site prediction analysis. For
the OSM–OSMR complex, the protein residues that interacted
with bound fragments (within 4 Å) in the binding sites are
summarized in Table 1. As shown in Table 1, six of the 10
sites (sites 0, 1, 3–6) were located at the interface of the
OSM and OSMR interaction. Sites 2 and 7 were located
in the OSMR (Table 1), and sites 8 and 9 were found in
OSM (Table 1 and Figure 3D).

To further evaluate the druggability of the detected binding
sites in the OSM–OSMR complex, the identified eight “hot spots”
were mapped to the protein residues summarized in Table 1.
Interestingly, two common “hot spots” (OSM: Phe160, OSMR:
Tyr214) were found in sites 1, 3, and 6. However, only one
hot spot (OSM: Arg100 or Leu103) was found in sites 0, 4,
and 5, and no “hot spot” was found in sites 2, 7, 8, and 9.
This could be understand through the relationship between
“hot spots” and ligand binding “hot spots” in the protein–
protein interface, in which additional topological requirements
were needed in a “hot spot” for small molecule binding (Zerbe
et al., 2012). Therefore, sites 1, 3, and 6 were important target
sites for designing inhibitors that may inhibit the protein–
protein interaction between OSM and OSMR. In addition, as

the binding site analysis was performed on the global protein
surface, the predicted sites 2, 7 in OSMR and sites 8, 9 in OSM,
especially the latter two sites (Figure 3D), which are located
far away from the interface, could be regarded as potential
allosteric sites.

CONCLUSION

Targeting the OSM and OSMR pathway represents a potential
strategy for the treatment of IBD. In this work, the interaction
between OSM and OSMR was investigated by employing
computational simulation techniques including homology
modeling, protein–protein docking, and long-time scale
MD simulation. Post-analysis of the equilibrated simulation
trajectory characterized seven new residues in OSM and 18
residues characterized in the OSMR as the important ones
contributing to the protein–protein interaction. Based on
these important residues, computational alanine scanning and
FTMap analysis detected eight “hot spots” and six potential
binding sites located at the OSM–OSMR interface. It is
interesting to note that, compared with the equilibrated state
conformation, significant conformational change near the
mutation site occurred in the R100A (one of the identified “hot
spots”) complex during MD simulation. Further mapping of
the eight “hot spots” in the detected binding sites suggested
that sites 1, 3, and 6 were important target sites, which
may be used for designing inhibitors to block OSM and
OSMR interaction.
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Glioblastoma (GBM) is the most common and aggressive intracranial malignant

brain tumor, and the abnormal expression of HDAC1 is closely correlated to the

progression, recurrence and metastasis of GBM cells, making selective inhibition of

HDAC1a promising strategy for GBM treatments. Among all available selective HDAC1

inhibitors, the macrocyclic peptides have gained great attention due to their remarkable

inhibitory selectivity on HDAC1. However, the binding mechanism underlying this

selectivity is still elusive, which increases the difficulty of designing and synthesizing the

macrocyclic peptide-based anti-GBM drug. Herein, multiple computational approaches

were employed to explore the binding behaviors of a typical macrocyclic peptide FK228

in both HDAC1 and HDAC6. Starting from the docking conformations of FK228 in the

binding pockets of HDAC1&6, relatively long MD simulation (500 ns) shown that the

hydrophobic interaction and hydrogen bonding of E91 and D92 in the Loop2 of HDAC1

with the Cap had a certain traction effect on FK228, and the sub-pocket formed by

Loop1 and Loop2 in HDAC1 could better accommodate the Cap group, which had a

positive effect on maintaining the active conformation of FK228. While the weakening

of the interactions between FK228 and the residues in the Loop2 of HDAC6 during

the MD simulation led to the large deflection of FK228 in the binding site, which also

resulted in the decrease in the interactions between the Linker region of FK228 and

the previously identified key amino acids (H134, F143, H174, and F203). Therefore, the

residues located in Loop1 and Loop2 contributed in maintaining the active conformation

of FK228, which would provide valuable hints for the discovery and design of novel

macrocyclic polypeptide HDAC inhibitors.

Keywords: HDAC, macrocyclic peptides, molecular docking, MD simulation, binding free energies, interaction

fingerprints
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INTRODUCTION

Glioblastoma (GBM) is the most common and aggressive
intracranial malignant brain tumor with the median survival
duration <2 years in spite of chemotherapy, radiation or surgical
resection (Natsume et al., 2019). In the current chemotherapies,
such as temozolomide, drug resistance is the predominant
obstacle (Zhang et al., 2012; Chen et al., 2019; Kim et al.,
2019; Rahman et al., 2019; Su et al., 2019; Xingyi et al., 2019).
On the basis of the latest experimental results obtained from
the large-scale profiling which included the whole exome and
RNA sequencing, it can be learnt that genetic and epigenetic
mechanisms are involved in the occurrence and progress of
glioma cells (Cancer Genome Atlas Research, 2008; Brennan
et al., 2013), especially the aberrant epigenetic silencing of genes
caused by histone deacetylation (Vaissiere et al., 2008; Cartron
et al., 2013). A large number of researches have proven that
significant nuclear expression of histone deacetylase 1 (HDAC1)
occurred in GBM cells during the process of tumor progression,
recurrence, and metastasis (Bhat et al., 2008; Kim et al., 2008;
Campos et al., 2011; Li et al., 2016, 2018a; Zhang et al.,
2016; Staberg et al., 2017; He et al., 2019; Natsume et al.,
2019). In addition, the invasive and proliferative phenotype of
GBM cells was found to be related to the overexpression of
HDAC1 level (Han et al., 2013). Moreover, HDAC1 inhibitors
developed for a variety of tumors have been extensively tested
in clinical trials as a single drug or in combination with other
chemotherapy agents (Lu et al., 2008; Tan et al., 2010; Campos
et al., 2011; Dong et al., 2013; Tang et al., 2018). Currently, four
HDAC inhibitors (HDACi) including Vorinostat, Romidepsin,
Panobinostat, and Belinostat have been approved by FDA for
anticancer therapeutics, and some other HDAC inhibitors (such
as Ricolinostat) are still in the clinical trials to treat hematological
and solid malignancies (Yang et al., 2016; Eckschlager et al., 2017;
Li et al., 2018b).

Unfortunately, there are no clinical or approved cases of
HDACi currently effective for the treatment of GBM. This is
because targeting the key epigenetic enzymes, oncogenes, and
pathways specific to glioblastoma cells by the drugs has proved
to be of great challenges (Sturm et al., 2014), for example,
the lower effective inhibitory concentrations within the tumor
cells and adverse toxicological effects (Lee et al., 2015). In
order to overcome the shortcoming caused by the limited
stability and unacceptable pharmacokinetic properties of most
existing drugs or molecules, various molecular skeletons were
designed to improve the HDAC1-based drugs development,
which conform the pharmacophore model of traditional HDACi,
namely containing Cap group (Cap), Connect unit (CU), Linker
region (Linker), and Zinc Binding Group (ZBG) (Figure 1;
Dehmel et al., 2008; Varasi et al., 2011; Choi et al., 2012; Giannini
et al., 2014; Krieger et al., 2017). Among these pharmacophores,

Abbreviations: Cap, capping group; CD, catalytic domain; CU, connect

unit; GBM, Glioblastoma; HATs, histone acetyltransferases; HDAC6, Histone

deacetylase 6; HDACi, HDAC inhibitors; MD, Molecular Dynamics; MM/GBSA,

Molecular Mechanics Generalized Born Surface Area; sHDAC6Is, selectivity of

HDAC6 inhibitors; ZBG, zinc binding group

the ZBG should penetrate deep into the bottom of the active
pocket and chelate with zinc ion located in the catalytic center
to compete with the protein for zinc ion, thereby inhibiting the
catalytic activities of HDACs. And such binding pattern in the
active pocket is the active conformation of the HDAC inhibitors
(Krieger et al., 2019; Shen et al., 2019; Vergani et al., 2019).

Interestingly, the skeletons with macrocyclic Cap have better
inhibitory activities against HDAC Class I than Class II, among
which the macrocyclic peptide inhibitors account for a large
proportion (Mwakwari et al., 2010; Rajak et al., 2013; Tapadar
et al., 2015). As inhibiting class II HDACs (represented by
HDAC6) can lead to unwanted toxic and side effects (especially
serious cardiac toxicity) (Roche and Bertrand, 2016), targeting
specific HDAC subtypes has shown great therapeutic potential.
The macrocyclic HDACi targeting only Class I HDAC family
or HDAC1 are regarded as lower toxicity and more tolerable
than pan-HDAC inhibitors, which have shown great potential
values of clinical therapeutic effects (Benelkebir et al., 2011;
Bhansali et al., 2011; Mallinson and Collins, 2012; Salvador
et al., 2014; Decroos et al., 2015; Pilon et al., 2015; Chen
et al., 2017; Cheng et al., 2017; Kim et al., 2017). However,
there are currently no crystal structures of HDAC1 and HDAC6
complexed with macrocyclic HDACi that have been resolved.
Therefore, it is urgent and necessary to reveal the difference in
the binding mechanism of macrocyclic HDACi in HDAC1&6 at
the atomic level.

In this study, Romidepsin (FK228) was applied as a case
study to investigate why macrocyclic polypeptide inhibitors
tend to inhibit HDAC1, and various computational approaches
were adopted to explore the binding modes of FK228 in
HDAC1&6. First, the studied complexes of FK228 in HDAC1&6
were constructed via molecular docking approach. Second, the
docked results were further verified by molecular dynamic (MD)
simulation. Finally, the key residues responsible for the difference
in binding energy of macrocyclic HDACi in HDAC1&6 were
identified. In summary, the mechanism underlying why FK228
prefer to inhibit HDAC1 was elaborate through differential
energy contributions and interaction fingerprints among the
identified key amino acids, which could provide valuable
information for the drug discovery on the basis of selective
inhibition of HDAC1 in the future.

RESULTS AND DISCUSSION

Construction of FK228 Complexed
HDAC1and6 Structures
On the basis of the resolved protein crystals of HDAC1&6
available in Protein Data Bank (PDB) (Hai and Christianson,
2016; Watson et al., 2016), there were 75 and 68 binding
poses of FK228 in HDAC1 and HDAC6 generated by molecular
docking, respectively. Except for the docking score, the spatial
similarity of the docking pose to the largazole thiol in HDAC8
was considered in selecting the conformations of FK228
in HDAC1&6 (Figure 2). This was because there were no
HDAC1&6 crystals resolved with macrocyclic inhibitors, and
HDAC8 (HDACClass I) protein crystal with similar active pocket
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FIGURE 1 | Molecular skeletons of HDAC inhibitors with macrocyclic Cap group.

FIGURE 2 | Superimposition of FK228 in HDAC1&6 and HDAC8 complexed

with depsipeptide inhibitor.

as HDAC1&6 complexed with largazole thiol could provide
important clues for the choice of the initial conformations of
FK228 in HDAC1&6 (Figure 2). According to Figure S1, it

could be learnt that binding sites of HDAC1&6 were mainly
composed of loop regions, namely loop 1–7. In addition, the
selected docked poses suggested that the Cap group of FK228
had interactions with the residues at the rim of the active pocket
of HDAC1&6, and the Linker coupled with ZBG penetrate the
active pocket, which made the ZBG chelating with the zinc
ion in catalytic center. Moreover, the orientation of FK228 in
HDAC1&6 is highly coincident with the largazole thiol inhibitor
inHDAC8 (Figure 2), which verified the reliability of the docking
conformation to some extent. According to the Tables S1, S2, it
could be found that the RMSD values were basically negatively
correlated with the absolute value of the docking scores, and the
smaller RMSD values could reflect the better binding of FK228 in
the HDAC1&6 to some extent. In order to verify the reliability
of the experiments, one additional initial conformation of the
constructed system have been selected for the further molecular
dynamic simulation (Figure S2).

Evaluating the Stability of MD Simulation
via RMSD Analysis
The Complexes Stabilities Along the Simulation

Monitored by RMSD
The selected docking conformations of HDAC1&6 in complex
with FK228 were sampled by 500 ns MD simulation, and the
dynamic trajectories of the studied complexes were supervised
through the RMSD plots of the backbone-atoms of HDAC1&6,
heavy-atoms of FK228, and the backbone-atoms of the amino
acids in the binding pocket (within 5 Å of ligand) as the function
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FIGURE 3 | Root mean square deviations of protein backbone atom, ligand heavy atoms, and the backbone atoms of the residues in the binding site as the function

of time in MD simulations.

FIGURE 4 | Comparison of the initial conformation and the representative conformation of the FK228 in HDAC1&6: (A) FK228 in HDAC1 system; (B) FK228 in

HDAC6 system.

of simulation time (Figure 3). Insight from the RMSD values
in Figure 3, the FK228-HDAC1 and FK228-HDAC6 systems
reached the equilibrium states around 350 and 50 ns, respectively.

Moreover, according to the RMSD values of the additional
independent simulations also showed that the constructed
systems reached the equilibrium around 200 ns (Figure S3), and
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FIGURE 5 | Comparison of interaction fingerprints of FK228 in HDAC1&6 in the final 50 ns simulations with that of the optimized docking poses: (A) interaction

fingerprints of FK228 in HDAC1; (B) interaction fingerprints of FK228 in HDAC6.

the difference in the fluctuation of the binding site of the two
simulations were caused by the flexible loop domain.

The Conformational Rearrangements of FK228 in

HDAC1and6
The representative structures of FK228 binding to HDAC1&6
were obtained from the equilibrated trajectories and were
compared with their corresponding initial conformations
(Figure 4). During the MD process, the protein conformational
changes were calculated by VMD software, the values were
1.85 and 1.92 Å for the HDAC1-FK228 and HDAC6-FK228
systems, indicating the small change in the conformation of
protein. According to Figure 4A, it can be learnt that slight
spatial shift of FK228 occurred in HDAC1 active site and the
binding conformation maintain the interaction of sulfhydryl
group (ZBG) chelating with the zinc ion (∼3.2 Å) through
inserting deeply into the active pocket. In contrast, for FK228 in
HDAC6 (Figure 4B), there was a large deflection of the ZBG in
the ligand from the initial conformation, namely straying from
the catalytic center (∼9.6 Å). In order to verify the reliability of
the experiment, the conformational rearrangement of FK228 in
HDAC1&6 of the additional independent experiment was also
analyzed, and based on Figure S4, it could learnt that FK228
could maintain the active conformation in HDAC1 but not
in HDAC6 (ZBG was also far away from the zinc ion). The
conformational rearrangements investigated by MD simulation
imply that the protein-ligand binding modes is the leading
cause of the significant difference of FK228 inhibitory activity to
HDAC1&6 and need to be further explored.

Molecular Mechanism of FK228 Selectivity
to HDAC1and6
Insights From the FK228-HDAC1and6 Interaction

Fingerprints
The binding modes of FK228 in HDAC1&6 are related to
the interactions between drugs and amino acids of the target

proteins. Thus, the interaction fingerprints analysis was used
to explore the difference of FK228-HDAC1&6 binding modes
(Figure 5). Figure 5A indicates that FK228 can maintain its
interactions with the P22, E91, and D92 located at Loop1 and
Loop2 of HDAC1 before and after MD simulation. For HDAC6-
FK228 complex, although FK228 can maintain the interaction
with P24 of Loop1, the interaction with S91 of Loop2 in the initial
conformation was disappeared after MD simulation (Figure 5B).
In addition, according to the interaction fingerprints, E91
locating on the Loop2 of HDAC1 contributed to a strong
hydrophobic interaction with FK228, and the corresponding site
on HDAC6 has no interaction with FK228, leading to the weak
interaction between FK228 and Loop2 of HDAC6, which is the
main reason of the large spatial shift of FK228 in the binding site
of HDAC6.

Insights From the Calculated Binding Free Energy of

FK228-HDAC1and6 Complexes
The total binding free energies of HDAC1-FK228 and HDAC6-
FK228 were −37.01 and −27.84 kcal/mol, which was consistent
with the inhibitory gradient of FK228 toward HDAC1 and
HDAC6 (Table 1). To qualify the energy contribution of each
amino acid in HDAC1&6 for FK228’s binding, the total binding
free energies were decomposed at amino acid basis and the
important ones with high contribution (≥0.1 kcal/mol) (Zheng
et al., 2017) were identified. As shown in Figure 6 the values
of amino acids energy with high contribution in each complex
varied significantly (taking FK228-HDAC1 as example, the
contribution of F143 equaled to −2.39 kcal/mol, which was
almost 22 times of C93’s energy contribution). As expected, the
contributions of the amino acids at the corresponding position on
HDAC1&6 also varied greatly. Taking G295 in HDAC1 and N306
in HDAC6 as example, it contributed −0.18 and −1.94 kcal/mol
to the binding of FK228 in HDAC1 and HDAC6, respectively.

In comparison with the residues D92 located at Loop2 of
HDAC1, the reduction of the energy of corresponding residues
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TABLE 1 | Calculated and experimental data of FK228 binding to HDAC1 and

HDAC6 (1G is in kcal/mol and IC50 value is in nM).

Systems 1Eele 1EvdW 1Gpol 1Gnon-pol 1Ga
MM/GBSA

ICb
50

HDAC1–FK228 −12.47 −40.38 21.21 −5.37 −37.01 3.97

HDAC6–FK228 −8.18 −24.68 11.53 −4.51 −25.84 787

aCalculated MM/GBSA binding free energies in this study.
b IC50 values obtained from previous study (Yurek-George et al., 2007).

S91 of HDAC6 contributed to FK228’s binding enhanced our
understanding of the difficulty of FK228 to maintain the initial
conformation in HDAC6 of during MD simulation. As a result,
the large spatial shift of FK228 in the binding site of HDAC6 led
to the decreased energy contribution of the amino acids in the
active site of HDAC6, such as F143, H174, and F203 (Figure 6),
consisted very well with the decrease in the interacting frequency
with these residues when compared with HDAC1 (Figure 7). For
the Zn2+, the calculated energy contributing to FK228 binding in
the active site of HDAC1 was−0.75 kcal/mol, while there was no
energy contribution in HDAC6 system (Figure 6).

The Key Role of Residue D92 in FK228 Binding to

HDAC1
Both interaction fingerprints and amino acid energy contribution
analysis found that residue D92 plays a key role in FK228
binding to HDAC1. The representative conformation obtained
from the MD simulation trajectory in Figure 8 showed that the
carbonyl group of D92 and nitrogen atom on the Cap group
of FK228 could form a hydrogen bond. To further explore
the huge difference in energy contribution of D92 in HDAC1
and its corresponding amino acid S91 in HDAC6, the distance
between the two atoms forming the hydrogen bond during
the equilibrium simulation (400–500 ns) was monitored, and
the average distance between the two atoms forming hydrogen
bonds was 3.15 Å (Figure 8). However, the side chain of S91 in
HDAC6 lacked the hydrogen bond acceptor and its hydrophobic
interaction with FK228 would gradually disappear with the
deflection of its spatial position during the MD simulation
(Figures 4B, 5B).

The Active Site Radius of Gyration Confirmed the

Trend of FK228 to HDAC1
Physical and structural properties of the active pockets are closely
related to the binding affinities of the ligands (Narang et al., 2019;
Thillainayagam et al., 2019), the calculated binding free energy
(Table 1) has successfully predicted the higher binding affinity of
FK228 to HDAC1. To further evaluate the interactions between
the FK228 and HDAC1&6, the radius of gyration (Rg) for the Ca-
atoms of HDAC1&6 active pockets, which could be applied as
an important and effective parameter to evaluate the structural
integrity and compactness of the studied systems. The time
evolution plot of Rg was calculated and shown in Figure 9. It is
noted that the average Rg value of HDAC1-FK228 system is lower
than that of HDAC6-FK228. The lower value of Rg of HDAC1-
FK228 system indicated that the binding pocket of HDAC1much
more compacted and that FK228 could stay stably at the active

site, which provided a guarantee for stronger interaction between
FK228 and amino acids in the active pocket of HDAC1.

Overall Comparison of the Binding
Conformations of FK228 in HDAC1and6
According to previous studies, HDAC inhibitors could exert the
inhibitory activities by chelating with zinc ion at the catalytic
center via the ZBG group deep into the bottom of the active
pocket. According to Figure 10, the distance between the zinc ion
and the sulfur atom on the ZBG of FK228 varied greatly in the
two studied systems. In the HDAC1-FK228 system, the distance
between the zinc ion and the sulfur atom on the ZBG of FK228
was about 3.5 Å, but the relative positions of sulfur and zinc ion
is relatively larger in HDAC6-FK228 system. Furthermore, it can
be learnt that Loop1 and Loop2 of HDAC1 formed a sub-pocket
during the MD simulation process that could well-accommodate
the sulfhydryl group on the Cap group and anchored the Cap
group (Figure 11). The anchoring effects of Loop1 and Loop2
played a vital role in maintaining the binding conformation
of FK228, and the relatively small spatial biases ensured the
interaction of FK228 with important amino acids in the HDAC1
active pocket. However, for the HDAC6-FK228 system, the ZBG
group did not penetrate the active pocket bottom to compete
with the protein for metal zinc ions, and the previously calculated
Rg value also indicated that the HDAC6 active pocket is less
compacted, reducing the potential for interaction with FK228,
which was the main reason for the large deflection of the Cap
group at the active pocket.

CONCLUSION

As the first approved macrocyclic HDAC inhibitor, FK228 was
used as a molecular probe to compare its binding conformation
inHDAC1 andHDAC6, and to explore themolecularmechanism
of FK228’ tendency to inhibit HDAC1 at the atomic level through
a variety of in silico approaches. For HDAC6-FK228 system,
the disappearing hydrophobic interaction of S91 (located in the
HDAC6 Loop2 region) with FK228 during the MD simulation
and the lack of the corresponding residue of E91 (located in
the HDAC1 Loop2 region) together weakened the anchoring
effects of HDAC6 Loop2 to the FK228 Cap during the MD
process, leading to the large spatial conformational deviation of
the docking conformation and resulting the reduced interaction
between the FK228 Linker region and the conserved amino acids
in the HDAC6 pocket. In the case of HDAC1-FK228 system,
K228 could maintain the interactions with D92 (hydrogen
bonding) and E91 (hydrophobic interaction) on Loop2 after the
dynamic trajectory reached equilibrium, and the interactions
with H21 and P22 on Loop1 were also strengthened.Moreover, in
the process of molecular dynamics simulation, Loop1 and Loop2
on HDAC1 could form a sub-pocket that better accommodated
the Cap group of FK228, maintaining the active conformation
of FK228 at the binding pocket and ensuring ZBG chelating
with the zinc ion and competing with the protein for the metal
zinc ion, thereby exerting the inhibitory activity on HDAC1.
The interaction of the Cap group with the Loop1 and Loop2
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FIGURE 6 | The per-residue binding free energy decomposition of 31 residues with high energy contribution (≥0.1 kcal/mol) to the interaction in at least one studied

complex: FK228 in HDAC1 (light green); FK228 in HDAC6 (light orange).

FIGURE 7 | Comparison of the interaction fingerprints of FK228 in HDAC1&6 under the equilibrium trajectories.

regions contributes tomaintaining the active conformation of the
HDACi and should be especially considered on subsequent drug
design based on selective inhibition of HDAC1.

MATERIALS AND METHODS

The Construction of the Studied Systems
The studied systems FK228-HDAC1&6 were obtained by
molecular docking using the Glide (2009) software embedded in
Maestro (2009) with default parameters of standard precision.
The 3D structure of FK228 was drawn by ChemBioDraw
(Dickson et al., 2014) and saved in SDfile (∗.sdf), then processed
with LigPrep [OPLS-2005 (Price and Brooks, 2005) force fields]
to generate the low-energy stable conformation. Additionally,

the 3D structure of FK228 was preprocessed by Epik (2009)
(pH = 7.0 ± 2.0) to generate the ionized state. After that,
the protein structures of HDAC1&6 available in Protein Data
Bank [PDB entry: 5ICN (Watson et al., 2016) and 5EDU (Hai
and Christianson, 2016)] were processed by Protein Preparation

Wizard (Maestro, 2009) module in Maestro (2009) to add the
hydrogen atoms, assign protonation states and partial charges by
OPLS-2005 (Price and Brooks, 2005) force field, and minimize
the whole protein crystal to prepare the receptor for molecular
docking. Theminimization process is completed when the RMSD
value reached 0.30 Å. Furthermore, the spatial coordinates of
largazole analog in HDAC8 were referred when defining the
docking grid due to the similar binding pockets (Cole et al.,
2011; Du et al., 2011; Decroos et al., 2015; Gantt et al., 2016).
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FIGURE 8 | H-bond analysis between D92 and FK228 in the two constructed systems.

FIGURE 9 | Analysis of radius of gyration of the two studied systems.

In molecular docking, 5,000 poses were generated during the
initial phase of the docking calculation, out of which best
400 poses were chosen for energy minimization by 100 steps
of conjugate gradient minimizations (the details shown in
Supplementary Materials).

Molecular Dynamics (MD) Simulation
MD simulation was performed within AMBER16 (2016) using
GPU-accelerated PMEMD on 16 cores of an array of two 2.6 GHz
Intel Xeon E5-2650v2 processors and 4 pieces of NVIDIA Tesla
K40C graphic card. AMBER force field ff14SB (Dickson et al.,
2014) and Li/Merz ion parameters (Li and Merz, 2014; Li et al.,

2015a,b) were used for the protein and SPC/E water. General
AMBER force field 2 (gaff2) was applied to assign the parameters
of FK228 in each complex, and the atom types and partial charges
of FK228 could be derived on the basis of RESP calculation
through antechamber (Wang et al., 2006). In addition, the
geometrical optimization and electrostatic potential calculation
for FK228 were conducted at HF/6-31G∗ level through Gaussian
09 software (Gaussian 09, 2009). The Zn2+ was processed by
12-6-4 model (Li et al., 2015a) imbedded in Amber16. When
the constructed systems were processed by LEaP (AMBER16,
2016), it could be found that FK228-HDAC1 and FK228-HDAC6
systems were solvated with a cubic water box, and the vdw box
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FIGURE 10 | Distance between the sulfur atom in the ZBG of FK228 and zinc ion in the studied systems.

FIGURE 11 | Comparison of the binding pattern of FK228 in HDAC1&6.

sizes were 527706.39 Å3 (12,126 water molecules) and 510534.33
Å3 (11,910 water molecules), respectively. In addition, there were
two sodium ions in HDAC1-FK228 system that were used to
neutralize the negative charge, and six sodium ions were used to
neutralize the negative grid charge in the HDAC6-FK228 system.

Before the MD simulation, the processed research systems
were subjected to the initial energy minimization through two
procedure (Xue et al., 2018a; Zhang et al., 2019). The first step
was to apply harmonic restraint on solute atom (force constant
= 10 kcal·mol−1

·Å−2), and the second step was to release all
atoms to move freely. In each step, energy minimization was
conducted by the steepest descent method for the first 5,000
steps and the conjugated gradient method for the subsequent
5,000 steps. Then, each studied system was heated from 0 to
100K and then gradually to 310K with the protein restrained
over 100 ps in the NVT ensembles. Subsequently, 10 times (5 ns)
unrestrained equilibration at 310Kwere performed to equilibrate
system’s periodic boundary condition. Finally, the unrestrained
500 ns production simulation was conducted for the prepared
four systems in NPT ensembles under the temperature of 310K
and the pressure of 1 atm. Temperature was controlled by

Langevin dynamics and the pressure was controlled usingMonte
Carlo barostat (2016). In all the simulations, Particle-mesh Ewald
(PME) (Darden et al., 1993) was used to handle the long range
electrostatic interaction, and SHAKE algorithm was exploited to
keep all bonds rigid (Larini et al., 2007; Fu et al., 2018; Xue
et al., 2018a; Yang et al., 2018). Time step of simulation was set
2.0 fs and a 10.0 Å cutoff was used for non-bonded interactions
(Xue et al., 2018b; Du et al., 2019).

All the analysis of MD trajectories, including as root mean
square deviation (RMSD), the representative structures from the
trajectories, binding free energies, were analyzed and predicted
via cpptraj and mm_pbsa.pl programs embedded in AMBER16.
Structural visualization was performed in PyMOL software
(PyMOL 1.31).

Protein-Ligand Interaction Fingerprints
Analysis
Interaction fingerprints between the FK228 and the HDAC1&6
were calculated via Ichem (Da Silva et al., 2018; Southan, 2018),

1PyMOLMolecular Graphics System, v. 1.3. Schrödinger, LLC, New York, NY.
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and the calculation systemmainly consisted of the ligand and the
binding site (residues within 6 Å of the FK228’s mass center).
Firstly, conformation optimization and energy optimization were
carried out for the docking poses of FK228 in HDAC1&6,
and then interaction fingerprints was applied to carry out
for the optimized conformations to calculate the interaction
between FK228 and receptors in the initial conformation.
Secondly, 500 snapshots were extracted from the equalized
simulated trajectories (between 400 and 500 ns) to indicate the
interacting effects between the FK228 and HDAC1&6, which was
compared with interactions of the initial states of the studied
systems. During the process of calculation, seven important
interactions (hydrophobic interaction, aromatic, H-bond donor,
H-bond acceptor, positively ionizable, negatively ionizable, and
metal coordination) were applied to assess the interaction
fingerprints between the ligand and receptor by parsing atoms
and bond connectivity fields in the form of one-dimensional (1D)
descriptors consisting of 1 and 0, and the results were shown
by radar plots. In addition, detailed information about the rules
of detecting the interactions between protein and ligand were
shown in Table S3.

Calculation of the Binding Free Energy
MM/GBSA approach using a single molecular dynamic trajectory
was adopted to calculate the binding free energy (1GMM/GBSA)
regardless of entropic influence between the docked ligands and
the receptor (Chen et al., 2017; Wang et al., 2017a, 2019; He et al.,
2018), and in this study, 500 snapshots were extracted from the
equilibrium trajectories (450–500 ns) for calculation via cpptraj.
The calculation equation was as follows:

GMM/GBSA = 1EvdW + 1Eele + 1Gpol + 1Gnonpol (1)

Where, 1EvdW represented the van der Waals interactions
contribution, 1Eele stood for the electrostatic energy
contribution, 1Gpol was the polar solvent interaction energy
calculated with the GB model (igb = 2) and Gnonpol was the
non-polar solvation free energy, which was evaluated using
LCPO method (0.0072 × 1SASA, SASA indicating the solvent
accessible area with a probe radius of 1.4 Å) (Weiser et al., 1999;
Zheng et al., 2016).

Calculating the Per-Residue Energy
Contribution
The per-residue energy contribution 1G

per−residue
MM/GBSA between the

residues located in HDAC1&6 and the docked ligands was
calculated using the following formula:

1G
per−residue
MM/GBSA = 1E

per−residue

vdW
+ 1E

per−residue

ele

+ 1G
per−residue

pol
+ 1G

per−residue

nonpol
(2)

Where, the three terms, namely (1E
per−residue

vdW
), 1E

per−residue

ele
and

1G
per−residue

pol
, were defined in the same way as the corresponding

terms in formula 2, and 1G
per−residue

nonpol
was calculated using the

ICOSAmethod (Wang et al., 2006, 2017b).

Radius of Gyration Calculation
The residues consisting of the binding site were selected to
calculate the radius of gyration of the studied systems, and there
were 30 residues in each systems. In this study, the equilibrium
trajectories (450–500 ns) were used to calculate the Rg of the
specified residues via cpptraj.
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Myeloid differentiating factor 88 (Myd88) is a universal adaptor protein that plays a

critical role in innate immunity by mediating TLR downstream signaling. Myd88 death

domain (DD) forms an oligomeric complex by association with other DD-containing

proteins such as IRAK4. Despite its universal role, polymorphisms in Myd88 can result in

several diseases. Previous studies have suggested that, out of several non-synonymous

single-nucleotide polymorphisms (nsSNPs), the variants S34Y and R98C in the DD of

Myd88 disrupt the formation of the Myddosome complex. Therefore, we performed

molecular dynamics (MD) simulations on wild-type (Myd88WT) and mutant (Myd88S34Y,

Myd88R98C) DDs to evaluate the subtle conformational changes induced by these

mutations. Our results suggest that the S34Y variant induces large structural transitions

compared to the R98C variant as evidenced by residual flexibility at the variable loop

regions, particularly in the H1–H2 loop, and variations in the collective modes of motion

observed for wild-type and mutant Myd88 DDs. The residue interaction network strongly

suggests a distortion in the interaction pattern at the location of the mutated residue

between the wild type and mutants. Moreover, betweenness centrality values indicate

that variations in the distribution of functionally important residues may be reflected by

distinct residue signal transductions in both wild-type and mutant Myd88 DDs, which

may influence the interaction with other DDs in TLR downstream signaling.

Keywords: Myd88, polymorphism, molecular dynamics simulation, principal components, betweenness centrality

INTRODUCTION

Pattern recognition receptors (PRRs) play a crucial role in triggering the host innate immune
response against harmful microbial organisms (Takeuchi and Akira, 2010; Thompson et al., 2011).
Toll-like receptors (TLRs) are an important class of PRRs that are activated when pathogen-
associated molecular patterns (PAMPs) are sensed. There are about 13 TLRs in mammals, and
each TLR senses PAMPs with different specificities. Few TLRs, such as TLR3, TLR7/8, and TLR9,
are localized in endosomes, whereas other TLRs are localized extracellularly. Intracellular TLRs
recognize nucleic acids, whereas extracellular TLRs such as TLR2, TLR4, and TLR5 recognize
lipopeptide (TLR2), lipopolysaccharide (LPS), and flagellin, respectively (Kawai and Akira, 2010;
Kawasaki and Kawai, 2014). When PAMPs are detected, TLRs trigger the signaling mediators
and activate NF-κB, thereby inducing proinflammatory genes encoding cytokines and chemokines
(Gosu et al., 2012; Liu et al., 2017). TLR signaling is predominantly described as myeloid
differentiating factor 88 (Myd88)-dependent and Myd88-independent pathways. Myd88 is a
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universal adaptor protein that associates with all TLRs except
TLR3. TLR3 is mediated through adaptor proteins such as TRIF.
In humans, there are five adaptor proteins such as Myd88, TRIF,
Mal, TRAM, and SARM in TLR signaling (Troutman et al., 2012).
Out of these, MyD88 seems to be crucial because of its universal
role in signaling and involvement in innate immunity. Myd88-
deficient mice have been shown to be susceptible to leishmanial
infection (Muraille et al., 2003; von Bernuth et al., 2012), and
Myd88-deficient macrophages have been shown to be defective in
the production of TNF and NO upon mycobacterial stimulation
(Fremond et al., 2004). Moreover, Myd88 point mutations have
been associated with several deadly bacterial infections (von
Bernuth et al., 2008; Cervantes, 2017). In addition, Myd88
polymorphisms in chicken also increase their susceptibility to
salmonella pullorum infection (Liu et al., 2015). The point
mutations in Myd88 have been reported in a previous report
(von Bernuth et al., 2008). Experimental reports suggest that out
of several non-synonymous single-nucleotide polymorphisms
(nsSNPs), S34Y and R98C variants interfere with theMyddosome
complex (George et al., 2011). In particular, the S34Y variant is
inactive in all Myd88-dependent signaling (Nagpal et al., 2011).

The Myd88 adaptor protein is 296 amino acids (aa) long
and comprises a modular domain structure with N-terminal
death domain (DD), intermediate domain (ID), and C-terminal
TIR domain. The DD is crucial in forming the Myddosome
complex via interactions with IRAK4 and IRAK1/IRAK2 DDs,
whereas the TIR domain is important for initiating downstream
signaling via interactions with the TLR-TIR domain. Extensive
structural analyses have been performed on the TIR domains,

FIGURE 1 | Root mean square fluctuation (RMSF) and hydrogen bond analysis. (A) The structure of Myd88 DD. Mutant positions are highlighted. (B) The RMSF of

backbone atoms of concatenated trajectory (270 ns) from all replicates of each system for wild-type and mutant Myd88. (C) The intramolecular hydrogen bonds for

concatenated trajectory (270 ns) of wild-type and mutant Myd88.

which is largely conserved among adaptor proteins as well as
TLRs (Ohnishi et al., 2009; Mahita and Sowdhamini, 2018).
However, there have been very few studies on the structure
of Myd88 DD and the variants of Myd88. The Myddosome
complex has been resolved through protein crystallography,
which suggested that the Myd88 DD is oligomeric in solution
with six molecules of Myd88, four molecules of IRAK4, and
four molecules of IRAK2. The DD is a small domain that
is ∼90 aa, and is composed of six helices connected by
loops (Lin et al., 2010) (Figure 1A). The rare point mutations
S34Y and R98C have been suggested in a previous report to
disrupt the formation of the Myddosome complex (George
et al., 2011; Nagpal et al., 2011). Moreover, several studies
have been reported that show that perturbations due to point
mutations originate allosteric mechanism of protein functional
activity (Guarnera and Berezovsky, 2019a,b; Tan et al., 2019;
Tee et al., 2019). Hence, studies on conformational changes
or allosteric mechanism induced by point mutations in the
DD of Myd88 may provide structural insights to better
understand how the single point mutations influence the
DD–DD interactions.

In this study, we evaluated the wild-type Myd88 DD
(Myd88WT) and Myd88 mutants (Myd88S34Y, Myd88R98C) using
molecular dynamics (MD) simulations of 100 ns with three
replicates using different initial velocities. Furthermore, we
performed principal component analysis (essential dynamics)
and residue network analysis to better understand the subtle
conformational changes induced by these point mutations in the
DD of Myd88.
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MATERIALS AND METHODS

Preparation of Wild-Type and Mutant

Structures of Myd88 DD
The Myd88 crystal structure has been previously deposited in
the Protein Data Bank (PDB) as a Myddosome complex (Lin
et al., 2010). We downloaded the Myddosome complex (PDB
ID: 3MOP) and extracted the structure of the Myd88 DD.
After initial minimization, we truncated both the N- and C-
termini because of the long loop structures and considered the
residues between 20 and 117 aa; this was considered the wild-type
model (Myd88WT). Furthermore, we changed serine to tyrosine
at residue 34, and changed arginine to cysteine at residue 98
using the mutation option in PyMOL with probable rotamers
to construct mutant models (Myd88S34Y and Myd88R98C) of the
Myd88 DD. Finally, we assessed the stereochemical properties
using the ProQ webserver.

MD Simulation Protocol
We subjected all of the structures (Myd88WT, Myd88S34Y,
and Myd88R98C) to atomistic MD simulations using Gromacs
5.1.4 (Van Der Spoel et al., 2005; Pronk et al., 2013) with
AMBER-ff99SB-ILDN force field (Lindorff-Larsen et al., 2010)
similar to our previous report (Gosu et al., 2019). At first,
we prepared the topology files using pdb2gmx, placed the
structure in a dodecahedral box, and maintained a periodic
distance of 12 nm from the protein to the box wall. Tip3p water

molecules 6,947, 6,945, and 6,947 were included for Myd88WT,
Myd88S34Y, and Myd88R98C, respectively. To neutralize the
system, four, four, and five sodium ions were included for
Myd88WT, Myd88S34Y, and Myd88R98C, respectively. The energy
minimization was performed using the steepest descent method
with 1,000 kJ/mol/nm as a maximum tolerance. Using the
energy-minimized structure, NVT equilibration simulations
were performed for 100 ps. Subsequently, an NPT equilibration
simulation was performed for 500 ps using positional restraints.
All of the bonds were restrained using the Lincs algorithm, and
short-range electrostatics and Van der Waals interactions were
accounted for with a 1.0-nm cutoff, and long-range electrostatics
were maintained using the Particle Mesh Ewald (PME) method.
Temperature (300K) and pressure (1.0 bar) were maintained
using v-rescale, amodified Berendsen thermostat, and Parrinello-
Rahman barostat, respectively. Production simulations were
performed without positional restraints for 100 ns. Three
independent replicate simulations using different initial velocities
were performed for all the systems.

Principal Components (PCs) and Free

Energy Landscape (FEL) Analysis
PCs calculations were used to obtain concerted motions during
simulations that are likely significant for biological function. We
calculated PCs on the concatenated trajectory (last 90 ns of each
replicate from three systems) as reported in previous reports
(Gosu and Choi, 2014; Gosu et al., 2019). After removing the

FIGURE 2 | Collective modes of motions. (Top panel) The projection of PC1 and PC2, PC2 and PC3, and PC1 and PC3 is shown. The covariance of each

eigenvalue with respective eigenvector is shown. In addition, cumulative percentage is also shown. (Bottom panel) Two extreme conformations with 30 frames from

the concatenated trajectory for PC1 are shown and sequentially superimposed. The minimum (red) to maximum (blue) conformations are shown. The circle represents

the large conformational changes.
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rotational and translational motions, the covariance matrix was
constructed and diagonalized, which yielded a set of eigenvalues
(amplitude) and eigenvectors (direction of motion). We obtained
eigenvalues and eigenvectors using the gmx covar and analyzed
the data using the gmx anaeig tool from the gromacs package
(van Aalten et al., 1995; Yamaguchi et al., 1998). The gmx sham
tool was used to construct the FEL, which is a combination of
data points from the reaction coordinates of PC1 and PC2, and
plots were drawn using the Mathematica version 12.

Residue Interaction Networks
Residue interaction networks (RINs) are widely used to
understand the impact of mutations on proteins. We constructed
representative structures of each system (both wild type and
mutants) as a network, in which the nodes represent residues
and the edge represents contacts between residues using
RINalyzer (Doncheva et al., 2011) and the structure viz module
implemented in cytoscape 3.14, similar to a previous report

(Anwar and Choi, 2017). The contact distance between any
two residues was considered at 5 Å. Furthermore, the network
topological parameters were calculated as an undirected network
using the network analyzer (Assenov et al., 2008). Betweenness
centrality (CB), closeness and node degree distribution were
calculated. CB is an important factor that suggests the residues
crucial for the functional importance of the proteins (Lee et al.,
2014; Basith et al., 2019). In addition, we also constructed
RIN using the RING2.0 webserver, which was useful to
inspect the various interactions such as hydrogen bonds,
Van der Waals interactions, and ionic interactions in protein
models (Piovesan et al., 2016).

Evaluation of Allosteric Effects
To quantify the allosteric effects under mutation for Myd88
DD, a statistical mechanical model implemented in the
AlloSigMA server (Guarnera et al., 2017) was used. This method
estimates the free energy of each residue used by the allosteric

FIGURE 3 | Free energy landscape (FEL) and representative structures. (A) FEL of the wild-type and mutant Myd88 are shown using PC1 and PC2 as reaction

coordinates. (B) The representative structures of Myd88 were considered and superimposed. The black circle represents the variation in the H1–H2 loop. (C) The

superimpositions of the wild-type representative structure on both mutants are shown along with RMSD values.
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communication under mutation or binding events, which is
effectively verified in previous studies (Takeuchi and Akira,
2010; Guarnera and Berezovsky, 2016; Su et al., 2018a,b). We
initiated perturbations at different positions (34 and 98) using
UP mutation to simulate the bulky residues at these positions
and subsequently calculate the free energies accountable for
allosteric communication.

RESULTS AND DISCUSSION

Structural Dynamics of Wild-Type and

Mutant Myd88 DDs
The Myd88 DD structure (Myd88WT) was extracted from the
Myddosome complex (PDB ID: 3MOP). After initial inspection,
we constructed the mutant Myd88 DD models (Myd88S34Y

and Myd88R98C). Subsequently, we subjected all three models
(Myd88WT, Myd88S34Y, and Myd88R98C) to conventional MD
simulations for 100 ns with three independent replicates (total
300 ns) using different initial velocities. To assess the stability
of all of the systems, we calculated the root mean square
deviation (RMSD) of backbone atoms with respect to the initial
structure for the whole MD trajectories. RMSD suggested that
all of the replicates showed a consistent increase in RMSD
until ∼10 ns. Thereafter, RMSD values ranged from 0.1 to
0.3 nm for Myd88WT, 0.1–0.4 nm for Myd88S34Y, and 0.1–0.2 nm

for Myd88R98C (Figure S1). However, the replicates of each
system had slight variations in the RMSD values. In particular,
Myd88WT showed more variations among replicates. Myd88WT

was stable during the whole MD trajectory; however, it showed
large flexibility at the end of the simulation (Figure S1). The
observed RMSD values between wild-type and mutant models of
the Myd88 DD indicated that the global structural deviation did
not vary largely. Furthermore, the radius of gyration (Rg) of the
backbone atoms revealed that all of the systems were compact
during the simulations (Figure S1). However, the difference in
Rg values indicate that S34Y mutant in Myd88 may exhibit
large conformational changes compared to R98C mutant. In
addition, we also observed that solvent accessible surface area
(SASA) averaged from three replicates were 61.52, 63.03, and
61.8 for Myd88WT, Myd88S34Y, and Myd88R98C, respectively.
Despite the compact folding of the DD, the increase in SASA
for mutant Myd88 (in particular Myd88S34Y) compared to wild-
type Myd88 indicated obvious conformational changes induced
by mutations (Figure S1).

Residue Flexibility and Intra-Hydrogen

Bonds During Simulations
From the three replicates of each system, we concatenated
the last 90 ns trajectory (a total of 270 ns for each system)
for further analysis. We checked residual flexibility using root

FIGURE 4 | Network topology. (Top) The residue networks constructed using a cutoff of 0.5. The residues located in the helices are indicated in red, whereas

residues located in the loop are indicated in light pink. (Bottom) The residue network properties are shown in the table for wild-type and mutant Myd88. (Bottom

right) The node degree distribution is shown.
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mean square fluctuations (RMSFs) of backbone atoms for the
concatenated trajectory. The variation in the RMSF values
suggested that the residual flexibility was similar between the
wild-type and mutant systems except at the C-terminal residues
and variable loop regions (Figure 1B). Deeper inspection of
RMSF values indicated high residue flexibility at the H1–H2
loop region (39–48) in Myd88S34Y compared to both Myd88WT

and Myd88R98C. Moreover, the residue movements were larger
in Myd88S34Y compared to other systems. This was reasonable
because the change in serine (small amino acid) to tyrosine
(bulky amino acid) at residue 34 may induce conformational
changes in the surrounding region (Figure S2). Additionally,
Myd88R98C and Myd88WT show similar residue fluctuations;
however, large fluctuations for wild type were observed in the
region of helix 6 (100–117). Furthermore, we analyzed the intra-
hydrogen bonds for all systems, which indicated their slight
variations, particularly for the Myd88S34Y mutant. On average,
80, 77, and 80 hydrogen bonds were observed for Myd88WT,
Myd88S34Y, andMyd88R98C, respectively (Figure 1C). The above
analyses cumulatively suggested that mutations in Myd88 DD
had an impact on the overall structural organization, which may
influence the DD–DD interaction in the downstream signaling
of TLRs.

Collective Motions of Wild-Type and

Mutant Myd88 DD
In order to assess the dominant modes and conformational
changes particularly induced by mutations, we performed

a principal component analysis (PCA) on the concatenated
trajectory (270 ns) of each system. The PCA indicated that the
first few eigenvectors had eigenvalues >1 nm2 as shown in
Figure 2. The diagonalized co-variances of wild-type and mutant
models were 81.19 for Myd88WT, 89.9 for Myd88S34Y, and
48.65 for Myd88R98C. This indicated that Myd88S34Y underwent
a large fluctuation compared to Myd88WT and Myd88R98C.
The cumulative percentage of mean square fluctuation for
the first 15 eigenvectors were 68% for Myd88WT, 69% for
Myd88S34Y, and 55% for Myd88R98C. Furthermore, the first three
eigenvectors contribute large motions, i.e., 60% for Myd88WT,
61% for Myd88S34Y, and 32% for Myd88R98C (Figure 2). To
assess the possible reason for less global dynamics (only 32%
for first three PCs), of the Myd88R98C mutant, we performed
the RMSD calculations at residue 98 position for concatenated
trajectory of all models, which show that Arg at the 98
position is largely flexible compared to Cys at position 98
in mutant (Myd88R98C) model (Figure S2A). The minimum
distance calculations between Arg98/Cys98 with Phe36 from
helix 1, Ala45 from the H1–H2 loop, and Asp100 from helix
6 suggest possible local structural alterations; in particular, the
minimum distance between Cys98 and Ala45 from the H1–H2
loop is higher inMyd88R98C compared to wild type (Figure S2C).
Moreover, the SASA (Figure S2E) and atomic fluctuations
(Figure S3A) at the 98 position is largely varied compared to
wild type. All the above analysis suggests that this mutant (R98C)
may alter the interaction pattern particularly with the H1–
H2 loop at the mutant surrounded region, thereby leading to

FIGURE 5 | Network centrality. The variation in the betweenness centrality (CB) between wild-type and mutant Myd88 is shown. Residues showing CB ≥ 0.02 are

presented in the table. The residues identified are shown on the corresponding structures of Myd88S34Y and Myd88R98C. The mutant residues Y34 and C98 are

shown in orange color on the corresponding structures.
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less dynamics globally compared to Myd88WT and Myd88S34Y.
Additionally, the trajectories obtained for the first three PCs were
projected on the phase space (Figure 2), which indicated that
the Myd88S34Y mutant was more dynamic compared to other
systems. The spreading of the trajectory on the phase space
clearly indicated few clusters for the Myd88S34Y mutant, whereas
Myd88R98C shows less spreading of the trajectory compared
to wild type. Hence, it was evident that the serine-to-tyrosine
mutation at residue 34 had a large impact on the structure within
the Myd88 DD.

In order to assess the variations in the collective motions of
the wild-type and mutant systems, we considered two extreme
positions with 30 frames form the concatenated trajectory of
all the systems along the first three eigenvectors as shown
in Figure 2 and Figure S3B. In addition, Movies S1–S9 show
animations of the motions for all systems along the first three
eigenvectors. ThemutantMyd88, in particularMyd88S34Y, shows
overall large fluctuations. The first dominant mode (PC1) in
Myd88WT shows that the H1–H2 loop region (39–48) moves
toward helix 3; in contrast, the mutants moved in the opposite
direction (Figure 2 and Movies S1–S3). However, large motions
were observed in Myd88S34Y, indicating that this mutant altered
the structural organization of Myd88 DD, which may influence
the symmetry required for Myddosome formation. Moreover,
helix 6 was observed to undergo large motion in both the
wild type and mutants. The second and third dominant modes
(PC2 and PC3) show overall large motion in helix 6 as
well as in the H1–H2 loop (Figure S3B and Movies S4–S9).
Furthermore, in order to assess the low-energy structures, we
performed a FEL analysis, which suggested that Myd88WT

may not undergo large conformations during simulations

compared to mutants. Importantly, Myd88S34Y underwent large
conformations as shown in Figures 3A,B, particularly in the
H1–H2 loop. Myd88R98C exhibits less conformational difference;
however, this mutant also shows variation in the H1–H2 loop
region compared to Myd88WT (Figure 3C).

RINs and Network Centrality
Recently, it has become common to consider graph theory to
construct the RINs, thereby identifying the crucial residues for
protein function. To understand the difference in the flow of
information for wild-type and mutant Myd88, we constructed
RINs on the representative structures using RING (default
parameters) and RINlyzer with a contact threshold of 5 Å and
then analyzed the topological parameters using the network
analyzer. Each residue was considered as node and the contacts
between the nodes are considered as edges. The RING analysis,
which is useful to understand multiple interaction types involved
in the residue networks, indicated that the hydrogen bond and
van der Waals interactions largely varied at the location of
the mutations, suggesting that this distinct conformation at the
mutant position lead to the overall conformational changes in
the DD (Figure S4). The RIN and RIN topological parameters are
shown in Figure 4. The node degree distribution indicated large
variations in RINs between wild-type and mutant Myd88. The
network diameter and radius varied among wild-type andmutant
Myd88; however, the clustering coefficient and characteristic
path length indicated that the network belonged to small world
topology. Moreover, the total number of edges was varied
among the three systems, indicating that each one exhibits
significant differences in signal transduction within the protein
(Figure 4). Subsequently, we calculated betweenness centrality

FIGURE 6 | Free energy of Myd88 mutants. Dot represents the mutant residue in the corresponding mutant model.
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(CB), closeness (CC), and degree (CD) for indications of large
variations between wild-type and mutant Myd88 (Figure S5). In
particular, betweenness centrality was useful for identifying the
functionally important residues that are involved in transducing
the signal within the protein. Hence, we considered the cutoff
(CB ≥ 0.04) and illustrated the residues to better understand
the differences in wild-type and mutant Myd88 (Figure S5).
We observed that the distribution of functionally important
residues varied in the wild type and mutants. For an in-
depth understanding, using the condition (|CB

Myd88WT – CB
Myd88S34Y| ≥ 0.02), (|CB

Myd88WT – CB
Myd88S34Y| ≥ 0.02), we

calculated the betweenness centrality variation between wild-
type and mutant models (Figure 5). From this analysis, we
observed that some of the residues in both the mutants were
similar, which indicated that the mutation in Myd88 DD may
lead to an allosteric mechanism. In order to assess the allosteric
mechanism under mutation, free energy (1gres) of each residue
was calculated using the AlloSigMA server. The prediction of
free energy (1gres) indicated that the residues surrounded by
the mutant at the 34 position is stabilized (negative free energy);
however, the H2–H3 loop, the H4–H5 loop, and helix 5 were
destabilized (positive free energy). Similarly, the residue free
energy (1gres) calculated undermutation at position 98 indicated
less stabilization (negative free energy) at the surrounding region
of position 98 and destabilization (positive free energy) in
the region of helices 1, 3, 4, and 6 (Figure 6). Compared to
S34, R98 mutant shows a large destabilized region, indicating
that R98 side chain is involved in interactions between the
H1–H2 loop, helix 1, and helix 5; however, upon mutation,
these interactions may be disturbed as shown from minimum
distance calculations (Figure S2). Hence, it is possible that point
mutation in Myd88 DD may exert an allosteric mechanism to
regulate the function of protein, which is similar to previous
reports suggesting the possible allosteric mechanism of protein
function induced by point mutations through perturbations
(Guarnera and Berezovsky, 2019a,b; Tee et al., 2019).

CONCLUSION

Myd88 is a crucial signaling adaptor in TLR signaling and is
associated with the innate immune system. Myd88 deficiency
in mice results in several immune diseases. Moreover, the
polymorphisms in TLR signaling mediators are important
because of the crucial role of these molecules in innate immunity.
Hence, in this study, we performed MD simulations on wild-
type and mutant Myd88 DDs to better understand the subtle
conformational changes induced by the mutations in the DD of
Myd88. First, we extracted the crystal structures of the Myd88
DD from PDB (ID: 3MOP) and then applied mutations by

replacing serine with tyrosine at position 34 and arginine with
cysteine at position 98. Finally, all three models (Myd88WT,
Myd88S34Y, and Myd88R98C) were subjected to MD simulations.
Our results suggest that the high residue flexibility (in the mutant
model Myd88S34Y) in the H1–H2 loop region at residues 39–
48 may affect Myddosome formation. Furthermore, we observed
variations largely at the loop regions of Myd88S34Y compared

to other systems (Myd88WT and Myd88R98C), which strongly
indicated that the S34Y mutation induced large conformational
changes particularly at the loop regions and might affect the
symmetry required for Myddosome formation. The variation
in the betweenness centrality (CB) as well as changes in the
free energies (1gres) of each residue upon mutation indicate
that point mutation in Myd88 DD affects the dynamics, which
may lead to allosteric regulation of Myd88 functional activity.
MDs and residue network analysis are powerful tools to better
understand the structure–function relationship of proteins. We
hope that the results obtained from this study may help in
understanding allosteric synergism induced by mutations in the
DD of Myd88, which may have an influence in the formation of
the Myddosome complex.
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Limit dextrinase (LD) is the only endogenous starch-debranching enzyme in barley
(Hordeum vulgare, Hv), which is the key factor affecting the production of a high
degree of fermentation. Free LD will lose its activity in the mashing process at high
temperature in beer production. However, there remains a lack of understanding on the
factor affecting the themostability of HvLD at the atomic level. In this work, the molecular
dynamics simulations were carried out for HvLD to explore the key factors affecting the
thermal stability of LD. The higher value of root mean square deviation (RMSD), radius
of gyration (Rg), and surface accessibility (SASA) suggests the instability of HvLD at
high temperatures. Intra-protein hydrogen bonds and hydrogen bonds between protein
and water decrease at high temperature. Long-lived hydrogen bonds, salt bridges, and
hydrophobic contacts are lost at high temperature. The salt bridge interaction analysis
suggests that these salt bridges are important for the thermostability of HvLD, including
E568–R875, D317–R378, D803–R884, D457–R214, D468–R395, D456–R452, D399–
R471, and D541–R542. Root mean square fluctuation (RMSF) analysis identified the
thermal-sensitive regions of HvLD, which will facilitate enzyme engineering of HvLD for
enhanced themostability.

Keywords: barley limit dextrinase, thermostability, molecular dynamics simulation, hydrogen bond, salt-bridge

INTRODUCTION

Limit dextrinase (LD), also termed R-enzyme, pullulanase, isoamylase, or amylopectin 6-
glucanohydrolase, is the only endogenous starch-debranching enzyme in barley (Hordeum vulgare,
Hv) that digests amylopectin and dextrins (Manners et al., 1970; Yang et al., 2008). HvLD belongs to
the glycoside hydrolase family 13 subfamily 13 (GH13_13) and can cleave α-1,6-glucosidic bonds
in limit dextrins derived from amylopectin (Stam et al., 2006).

Barley is a major raw material in beer production. The major biochemical process in brewing is
to degrade barley starch into fermentable sugars, which are further converted into alcohol by yeast
metabolism. HvLD as a specific enzyme to digest amylopectin and dextrins is the key factor affecting
the production of a high degree of fermentation (Wang et al., 2015). There are three different
forms of LD existing in barley: insoluble bound, soluble inactive, and active free. Only the free
form is capable for degrading amylopectin (Sissons et al., 1994). The essential industrial process
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of brewing includes three steps: malting, mashing, and
fermentation. Mashing is usually performed at 60–70◦C
and at a pH of below 4.5 (Moshi et al., 2015). The heat resistance
of LD in free form is poorer than the bound or latent form
(Sissons et al., 1995). Free LD will lose its activity in the mashing
process at a temperature higher than 63◦C (Sissons et al., 1995).
High themostability and activity of LD is desirable for the
beer production.

Several crystal structures of HvLD have been reported (Vester-
Christensen et al., 2010; Møller et al., 2012a, Møller et al.,
2015a,b). The HvLD structure contains four domains (Vester-
Christensen et al., 2010) (shown in Figure 1): the N-terminal
domain, a carbohydrate binding module 48 (CBM48), a catalytic
(β/α) 8 domain containing the two catalytic residues (Asp473,
nucleophile; Glu510, general acid/base) and the transition-state
stabilizer (Asp642), and a C-terminal domain. The N-terminal
domain includes residues 2–124 resembling carbohydrate
binding module 21. CBM48 includes residues 125–230. The
catalytic domain contains residues 231–774 and the C-terminal
domain contains residues 775–885.

FIGURE 1 | The overall structure of Barley limit dextrinase. N-domain,
Magenta; CBM48, cyan; catalytic domain, wheat; C-domain, light green;
Ca2+ ions, red spheres. The catalytic residues (Asp473, Glu510, and Asp642)
are represented in sticks.

There are several works focused on improvement of the
themostability of pullulanase derived from bacteria (Chen et al.,
2015; Li et al., 2015; Chang et al., 2016; Wang et al., 2016).
However, it is still lacking the understanding on the factor
affecting the themostability of HvLD at the atomic level. It is
suggested that enzymes keep their structural stability by various
kinds of non-covalent interactions, such as hydrogen bonds, salt
bridges, disulfide bonds, and hydrophobic interaction (Nick Pace
et al., 2014; Nilofer et al., 2017). Recently, molecular dynamics
(MD) simulation, as a useful tool, has been widely applied to find
important characteristics of protein stability (Alizadeh-Rahrovi
et al., 2015; Sharma and Sastry, 2015; Jiang et al., 2016; Idrees
et al., 2017; Gu et al., 2019).

In this work, MD simulations were carried out for barley limit
dextrinase (HvLD) to explore the key factors affecting the thermal
stability of LD. The root mean square deviation (RMSD), radius
of gyration (Rg), and surface accessibility (SASA) were calculated
to explore the dynamics of HvLD. Intra-protein hydrogen bonds,
protein–water hydrogen bonds, salt bridges, and hydrophobic
interaction were analyzed to find the factors about the thermal
stability of HvLD. Finally, root mean square fluctuation (RMSF)
analysis was performed to identify the thermal-sensitive regions
of LD. The structural and dynamic details will help to understand
the driving forces that lead to the stability of HvLD at different
temperatures, which will facilitate enzyme engineering of HvLD.

MATERIALS AND METHODS

Systems Preparation
The X-ray structure of barley LD (PDB ID: 4CVW) (Møller et al.,
2015a) was obtained from the RCSB Protein Data Bank. The
LD inhibitor was removed from this structure. The structure of
barley LD (PDB ID: 4CVW) was superimposed on the free form
of HvLD (PDB ID: 4AIO) (Møller et al., 2012b). The missing
residues (43-PSN-45, 102-FGADGK-107) were also built based
on the coordinate of the corresponding residues in the free form
of HvLD (PDB ID: 4AIO). A mutant of LDD317A was constructed
to evaluate the effect of salt bridge between Asp317 and Arg378.

MD Simulations
Standard AMBER ff03 force field (Wang et al., 2004; Hornak
et al., 2006) was assigned to the protein. The force field
parameter developed by Bradbrook et al. (1998) was assigned
for the Ca2+. The protonation state of ionizable residues was set
under pH 5.5 based on the pKa values calculated by the H++
server (Anandakrishnan et al., 2012). Na+ ions were added to
neutralize the overall system. Each system was embedded in a
rectangular box of the TIP3P water molecule (Jorgensen et al.,
1983), maintaining a distance of 10 Å from any solute atom to
the boundary.

The MD simulations were performed using AMBER12.
Energy minimization was carried out with a decreasing harmonic
force constraint on the protein. The minimized system was
gradually heated from 0 K to the desired temperature within 200
ps under the NVT ensemble condition. The temperature was
set as 298 K, 318 K (optimum temperature), and 343 K (the
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highest mashing temperature), respectively. To investigate the
effect of calcium ions for the structural stability, three systems
without Ca2+ at 298, 318, and 343 K were also constructed.
The temperature was set as 298 and 343 K for LDD317A.
Then, the system was relaxed within 1.55 ns under the NPT
ensemble condition. Finally, a total of 100 ns was simulated to
produce trajectories under the NPT ensemble condition for each
system. A 50-ns MD simulation was conducted for LDD317A

at both temperatures. The covalent bonds to hydrogen atoms

were constrained using the SHAKE algorithm (Coleman et al.,
1977) and the Particle Mesh Ewald (PME) method (Darden
et al., 1993) was employed to calculate long-range electrostatic
interactions. The real space cutoff was set at 10.0 Å, the same
as that for van der Waals interactions. The grid-spacing and
convergence criteria of PME calculation was set to 1 Å and
1.0E-05, respectively. The time step used for the simulations was
set to 2 fs. The atom coordinates were saved every 10 ps for
subsequent analysis.

FIGURE 2 | Time evolution of the backbone RMSD versus the starting structure of HvLD. The simulation data obtained at 298, 318, 343, 298 K, without Ca2+,
318 K without Ca2+, and 343 K without Ca2+ are shown in black, magenta, red, cyan, deep teal, and blue, respectively.

FIGURE 3 | Radius of gyration (Rg) plot. The simulation data obtained at 298 K, 318 K, 343 K, 298 K without Ca2+, 318 K without Ca2+, and 343 K without Ca2+ is
shown in black, magenta, red, cyan, deep teal, and blue, respectively.
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Analysis
All of the analyses were performed using the analytical tools
cpptraj (Roe and Cheatham, 2013) module in AMBER tools
and VMD (Humphrey et al., 1996). The RMSD was calculated
as the deviation between backbone atoms of the protein with
respect to the initial structure’s backbone atoms, averaged over
the backbone atoms. For the RMSF and SASA, the average
value was calculated over time. SASA was calculated for all of
the residues, hydrophobic residues, hydrophilic residues, and
catalytic residues (Asp473, Glu510, and Asp642), respectively.
The Rg was calculated by VMD.

The hydrogen bond was calculated based on a maximum
cutoff distance between the donor and the acceptor at 3.5 Å
and the angle of donor–hydrogen–acceptor larger than 120◦. The
average value of the number of hydrogen bond was calculated
as the ratio of the sum of the total number of HBs in each
frame to the total number of frames. The redundant hydrogen
bonds between the same donor and acceptor but with different
hydrogen atoms were removed, saving the one with the highest
occupancy. The HBs were analyzed by considering the chemical
properties of different residues, including charged residues (Arg,
Lys, Asp, and Glu), polar residues (Gln, Asn, Ser, Thr, Tyr, and
Cys), and hydrophobic residues (Ala, Ile, Leu, Phe, Val, Pro,
Gly, Met, and Trp).

The salt bridges (SBs) were considered to be formed if the
distance between an oxygen atom of an acidic residue (Oδ1 and
Oδ2 of ASP and Oδ1 and Oδ2 of Glu) and the nitrogen atom of

a basic residue (Nε, Nη1 and Nη2 of Arg and Nζ of Lys) was less
than 4 Å. The average value of the number of SBs was calculated
as the ratio of the sum of the total number of SBs in each frame
to the total number of frames. The SBs between the same two
residues but different atoms were regarded as unique, keeping the
one with the highest occupancy.

It is suggested that all C atoms within 3.9 Å interacts
through hydrophobic contacts (Stojanovic and Zaric, 2009). We
calculated the hydrophobic contacts between all the hydrophobic
atoms (C, Cα, Cβ, Cδ, Cδ1, Cδ2, Cε, Cε1, Cε2, Cε3, Cγ, Cγ1,
Cγ2, Cζ, Cζ2, Cζ3, and Cη2) with a cutoff of 4 Å, without
redundancy. The structures were visualized by VMD and PyMOL
(Schrödinger, 2010).

A one-way ANOVA was conducted here to evaluate whether
the differences are significant for systems containing Ca2+,
318 K/298 K and 343 K/298 K, and systems without Ca2+

(318 K/298 K and 343 K/298 K) for the RMSD, Rg, and SASA.
The difference is considered significant in the case of P < 0.05.

RESULTS AND DISCUSSION

Dynamics of Barley LD
In order to identify the key factors responsible for instability of
HvLD at high temperature, MD simulations were performed at
different temperature conditions (298, 318, and 343 K) to predict
the molecular behavior over the period of time using AMBER. To

FIGURE 4 | Total solvent-accessible surface area (SASA). (A) Time evolution of total SASA. (B) The distribution of total SASA. The simulation data obtained at 298,
318, 343, 298 K without Ca2+, 318 K without Ca2+, and 343 K without Ca2+ are shown in black, magenta, red, cyan, deep teal, and blue, respectively.

TABLE 1 | Average value of SASA in different systems.

Systems SASApho SASAphil SASAtotal SASAcatalytic

298 K 110.48 ± 2.87 237.15 ± 2.52 347.63 ± 4.29 60.32 ± 7.83

318 K 111.56 ± 1.98 237.34 ± 2.81 348.90 ± 3.95 61.81 ± 6.90

343 K 110.05 ± 2.18 239.00 ± 2.81 349.05 ± 3.78 65.57 ± 7.34

298 K, no Ca2+ 114.29 ± 3.16 251.51 ± 4.05 365.80 ± 6.52 67.34 ± 8.36

318 K, no Ca2+ 111.15 ± 2.05 246.28 ± 3.30 357.43 ± 4.75 71.56 ± 9.25

343 K, no Ca2+ 116.19 ± 2.67 252.08 ± 4.91 368.26 ± 6.79 71.88 ± 8.14
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investigate the effect of calcium ions for the structural stability,
MD simulations were also conducted for the three systems
without Ca2+ (298, 318, and 343 K). The structural stability of
six systems was examined by calculation of the RMSD of the
backbone atoms relative to the initial structure. Figure 2 shows
the RMSD variations of the six systems with respect to simulation
time. It is observed that the systems are equilibrated and thus
suitable for exploring the dynamics of HvLD. The first three
systems achieved equilibrium at 20, 10, and 25 ns, respectively.

The RMSD values for the backbone atoms of HvLD converge at
1.40± 0.11 and 1.39± 0.10 Å at 298 and 318 K and 1.59± 0.16 Å
at 343 K. The statistical analysis suggests that the differences are
significant (P < 0.05) (Supplementary Table S1). HvLD in the
systems without Ca2+ exhibits large variation compared with the
initial structure at 298 and 343 K. The backbone RMSD increases
rapidly and major structural distortion occurs at 343 K.

The radius of gyration (Rg) reflects the compactness of protein
structure. To detect the compactness of the overall structure, the

TABLE 2 | Average numbers of hydrogen bonds in different systems.

Systems Total MM MS SS chr-chr pho-pho phi-phi pho-phi

HB HBa HBb HBc HBd HBe HBf HBg

298 K 756.05 283.61 178.40 171.83 99.54 130.50 74.05 207.83

318 K 776.17 297.84 175.45 169.51 104.83 136.48 72.03 207.73

343 K 720.27 265.37 175.74 166.44 91.80 127.46 73.69 206.42

298 K, no Ca2+ 754.33 295.91 178.82 150.73 81.55 140.52 74.21 204.34

318 K, no Ca2+ 732.57 283.64 171.22 154.77 82.36 133.26 73.05 205.53

343 K, no Ca2+ 745.39 287.05 174.38 155.38 90.66 138.89 66.77 195.73

aMain chain–main chain hydrogen bonds. bMain chain–side chain hydrogen bonds. cSide chain–side chain hydrogen bonds. dHydrogen bonds between charged
residues. eHydrogen bonds between hydrophilic residues. fHydrogen bonds between hydrophobic residues. gHydrogen bonds between hydrophilic residues and
hydrophobic residues.

FIGURE 5 | The number of hydrogen bonds (y-axis) based on percentage existence time (x-axis).

TABLE 3 | Average numbers of protein–water hydrogen bonds in different systems.

Systems Pro-water M-water S-water chr-water pho-water phi-water

Total HBa HBb HBc HBd HBe HBf

298 K 928.69 273.55 655.14 358.89 243.81 323.87

318 K 925.18 270.69 654.49 356.18 239.94 326.95

343 K 894.48 257.36 637.11 349.38 227.40 315.66

298 K, no Ca2+ 967.29 275.80 691.49 390.55 245.21 329.83

318 K, no Ca2+ 954.70 277.43 677.27 378.16 245.75 328.70

343 K, no Ca2+ 924.28 262.96 661.31 363.69 237.24 321.18

aProtein–water total hydrogen bond. bMain chain–water hydrogen bond. cSide chain–water hydrogen bond. dCharge residues–water hydrogen bond. eHydrophilic
residues–water hydrogen bond. fHydrophobic residues–water hydrogen bond.
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radius of gyration (Rg) of the protein in six systems was also
calculated, as shown in Figure 3. According to RMSD plot, all
the systems converged after 25 ns. We calculated the average
Rg ranging from 25 to 100 ns in each system. The averaged Rg
value indicated that the compactness of HvLD increases when
the temperature rises. HvLD has the most compact structure at
the lowest temperature (298 K, Rg: 29.95 ± 0.09 Å). Moreover,
HvLD exhibits similar compactness at 318 K (Rg: 29.97± 0.08 Å)
and 343 K (Rg: 30.14 ± 0.09 Å). The structure of HvLD is
less compact at the higher temperature than it at the lower
temperature, indicating expansion of protein structure at higher
temperature. The HvLD exhibited higher Rg values at three
systems without Ca2+, with the value of 30.69 ± 0.15 Å (298 K),
30.47 ± 0.10 (318 K), and 31.13 ± 0.34 Å (343 K), respectively.
This result indicated that the structure of protein in the system
without Ca2+ was less compact than those systems with Ca2+.
In addition, with the temperature rising, the structure of HvLD
becomes less compact.

To evaluate the exposure of protein atoms to solvent, SASA
was also obtained by calculating the surface area of atom in
contact with solvent molecules. From Figure 4A, it is found

FIGURE 6 | Monitoring the hydrogen bonds between the OD1 atom of
Asp403 and the ND1 atom of His404 during MD simulation. (A) 298 K; (B)
318 K; (C) 343 K; (D) 298 K without Ca2+, (E) 318 K without Ca2+, (F) 343 K
without Ca2+.

that the total SASA values show a slight increase with a rise
of temperature. The averaged SASA is 347.63 ± 4.29 nm2,
348.90 ± 3.95 nm2, and 349.05 ± 3.78 nm2 at 298 K, 318 K, and
343 K, respectively, while in the systems without Ca2+, the total
SASA values exhibit significant increase at both temperatures.
The averaged SASA is 365.80 ± 6.52 nm2, 357.43 ± 4.75 nm2,
and 368.26 ± 6.79 nm2 at 298 K, 318 K, and 343 K, respectively.
Total SASA, SASA of hydrophilic residues and catalytic residues,
increases relatively from 298 K to 343 K (Table 1). The
distribution of SASA is displayed in Figure 4B. It can be observed
that the total SASA is from 331 to 359 nm2 at 298 K, with the
major peak at 349 nm2 (20.73%). The same major peak appears at
318 K (18.94%) and 343 K (22.00%), respectively. In the systems
without Ca2+, the total SASA increases dramatically. The range
of SASA is from 337 to 383 nm2, with the major peak at 367 nm2

(14.91%) at 298 K. The range of SASA is from 337 to 371 nm2,
with the major peak at 359 nm2 (18.95%) at 318 K. The SASA
at 343 K distributes at a range of 339–391 nm2, with the major
peak at 365 nm2 (13.31%). This profile is consistent with the trend
of Rg values, which indicates that HvLD become less compact
with more solvent penetration into the core of the enzyme at
high temperatures.

The hydrogen bond interaction is considered important in
protein folding, stability, and function. It can be seen that
HvLD lost 55 hydrogen bonds at 343 K with respect to 298 K
(Table 2). The number of hydrogen bonds also decreases in
the systems without Ca2+. Based on the percentage existence
time of HBs (Figure 5), short-lived HBs (0 < X ≤ 10%)
increase significantly at 343 K, indicating that most of them
appear transiently at high temperature. In contrast, the number
of long-lived HBs decreases at 343 K, indicating that these
interactions are unable to maintain at high temperature. In
addition, the number of substantially live HBs (10 < X ≤ 90%)
at 343 K is more than the corresponding value at 298 K,
indicating that these HBs contribute to the stability of HvLD.
We analyzed the HBs with occupancy higher than 50% at
298, 318, and 343 K. There are 56 HBs becoming weak and
their occupancy decreases with the increase in temperature
(Supplementary Table S2). These HBs are very sensitive
to temperature changes and they affect the thermostability
of HvLD.

Besides, we also analyzed the effect of temperature on main
chain–main chain HBs, main chain–side chain HBs, and side
chain–side chain HBs. There are more MM HBs compared
with two other types. There are 18 MM HBs broken at 343 K
compared with those at 298 K. MM HBs are important in
secondary structure formation. The decrease of the number
of MM HBs indicates that the stability of the secondary
structure of the enzyme would be impaired. MS HBs and SS
HBs exhibit slight decrease at 343 K with respect to 298 K.
Moreover, HBs among the residues having similar/different
chemical properties (charged–charged residues, hydrophobic–
hydrophobic residues, hydrophilic–hydrophilic residues, and
hydrophobic–hydrophilic residues) were analyzed. Among these,
the number of HBs between hydrophilic–hydrophilic residues
and hydrophobic–hydrophilic residues does not exhibit a
significant difference at different temperatures, while the amount
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of HBs between charged–charged residues and hydrophobic–
hydrophobic residues reduces at 343 K compared with that
at 298 K. In the systems without Ca2+, the amount of the
total HBs, MM HBs, MS HBs, and HBs for hydrophobic–
hydrophobic residues, hydrophilic–hydrophilic residues, and
hydrophobic–hydrophilic residues also decreases at 343 K
compared with 298 K. The amount of SS HBs and HBs for
charged–charged residues increases at 343 K compared with
298 K, indicating that there are new hydrogen bonds formed in
the distorted structure.

The changes of HBs between protein and water were also
explored in the temperature range of 298–343 K, which is
displayed in Table 3. There is a decrease in protein–water HBs
from 298 to 343 K, due to the loss of both M-water HBs and
S-water HBs from 298 to 343 K. Besides, the number of HBs
for hydrophobic residues to water, hydrophilic residues to water,
and charged residues to water reduces at higher temperatures,
indicating that the network of HBs between HvLD and water
molecules is broken. In the systems without Ca2+, the amount
of total protein–water HBs and other types of protein–water
HBs decreases at 343 K compared with 298 K, indicating the
large change of the network of HBs between HvLD and water
molecules in these two systems.

The Stability of the Hydrogen Bond
Between D403 and H404
Structural stability may also affect the catalytic activity of this
enzyme. The hydrogen bond between D403 and H404 is favorable
for the stability of the catalytic triad, which is suggested in
a previous work (Møller et al., 2015b). The distance between
these two residues was monitored during the whole trajectory.
It can be seen that the interaction is more stable at 298 and
318 K (Figure 6). When the temperature rises, the interaction
becomes unstable (at 343 K). In addition, most of this interaction
disappeared in the system without Ca2+ at 343 K. The unstable
interaction would be unfavorable for the stability for the catalytic
triad of Asp473–Glu510–Asp642.

Salt Bridge Interaction Analysis
Besides hydrogen bonds, salt bridges are also very important for
the stability of protein (Horovitz et al., 1990; Strop and Mayo,
2000; Jelesarov and Karshikoff, 2009). Salt bridges in enzyme
may contribute to its stability at high temperature (Vieille and
Zeikus, 2001; Kundu and Roy, 2010). Recently, Guo et al. (2018)
summarized factors may contribute to the thermostability for
pullulan-hydrolyzing enzymes. They found that there are more

FIGURE 7 | The number of unique salt bridges based on the percentage existence time at cutoff of 4 Å.

TABLE 4 | Average length and occupancy of important salt bridge interactions of HvLD at 298, 318, and 343 K.

Salt bridge 298 K 318 K 343 K

Occupancy (%) Distance (Å) Occupancy (%) Distance (Å) Occupancy (%) Distance (Å)

E568–R875 99.75 2.85 ± 0.17 81.06 3.28 ± 0.93 64.94 3.79 ± 1.12

D317–R378 99.19 2.84 ± 0.16 52.92 3.70 ± 0.62 59.23 3.55 ± 0.83

D803–R884 98.19 2.80 ± 0.12 92.80 2.82 ± 0.14 86.48 2.86 ± 0.20

D457–R214 97.66 2.88 ± 0.26 98.04 2.89 ± 0.26 73.57 3.35 ± 0.72

D468–R395 94.19 2.93 ± 0.25 91.04 2.96 ± 0.34 88.36 2.97 ± 0.32

D456–R452 94.10 3.06 ± 0.31 77.22 3.41 ± 0.92 57.88 3.75 ± 1.01

D399–R471 89.25 2.88 ± 0.24 88.84 2.85 ± 0.30 75.38 2.98 ± 0.34

D541–R542 84.31 3.11 ± 0.53 86.82 3.13 ± 0.44 67.38 3.63 ± 1.15
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FIGURE 8 | The number of unique hydrophobic contacts based on the percentage existence time at cutoff of 4 Å.

FIGURE 9 | RMSF plots of the backbone atoms of six systems. (A) 298 and 318 K. (B) 298 and 343 K. (C) Simulation at 298 and 318 K without Ca2+.
(D) Simulation at 298 and 343 K without Ca2+.

salt bridges in thermophilic pullulan-hydrolyzing enzymes than
mesophilic ones, suggesting the importance of salt bridge for
the enzyme pullulan-hydrolyzing thermostability. In this work,
the salt bridges were identified using a 4-Å distance cutoff. We
can observe that the number of short-lived salt bridges increases
from 298 to 343 K (Figure 7), while the number of long-lived
salt bridges decreases from 298 to 343 K. It is indicated that

the short-lived salt bridges form transiently at high temperature.
Some long-lived salt bridges are broken at high temperature. The
number of long-lived salt bridges also decreases in the systems
without Ca2+, which suggests that ions Ca2+ contribute to the
stability of salt bridges.

We also analyzed the salt bridges with occupancy higher
than 50%. The length of each salt bridge was averaged over

Frontiers in Molecular Biosciences | www.frontiersin.org 8 April 2020 | Volume 7 | Article 5160

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00051 July 7, 2020 Time: 16:19 # 9

Du et al. Thermostability Factors of Barley Limit Dextrinase

FIGURE 10 | Snapshots of HvLD structures from MD trajectories. (A) Comparison of the structure extracted from the system at 298, 318, and 343 K, which are
colored by white, wheat, and light blue, respectively. (B) Comparison of the structure extracted from the system at 298, 298, and 343 K without Ca2+, which are
colored by white, wheat, and light blue, respectively. The high flexible region was colored by red.

the whole trajectory. There are 33, 30, and 29 salt bridges
with occupancy higher than 50% during the simulations at 298,
318, and 343 K and 19 and 16 salt bridges in two systems
without Ca2+ at 298 and 343 K. The salt bridges are noted
to decrease in number with an increase in temperature. There
are 21 common salt bridges identified at 298, 318, and 343 K.
Among these salt bridges, five could still be maintained well even
at high temperatures, suggesting an essential role in stabilizing
this enzyme. There are eight salt bridges exhibiting comparable
occupancy at three temperatures. These salt bridges were also not
affected by increases in temperature. These 13 salt bridges are
correlated with the partial structural stability of HvLD, while 8
salt bridges become weak and their occupancy decreases with an
increase in temperature (Table 4), including E568–R875, D317–
R378, D803–R884, D457–R214, D468–R395, D456–R452, D399–
R471, and D541–R542. These salt bridges are very sensitive to
temperature changes and they affect the thermostability of HvLD.
All of the salt bridges are located on the surface of HvLD.

To evaluate the function of salt bridge, the salt bridge between
Asp317 and Arg378 was selected. The MD simulations on
LDD317A at 298 and 343 K were conducted to evaluate the effect
of salt bridge D317–R378 on the thermal stability of HvLD. It is
indicated that the break of this salt bridge destabilizes the protein.
The LDD317A exhibited higher RMSD, Rg, and SASA than LDWT

at 298 K and 343 K (Supplementary Figure S1).

Hydrophobic Contacts
Protein stabilization is maintained by various interactions.
Hydrophobic interaction is one of the important part of them
(Van Dan Burg et al., 1994). Unique hydrophobic contacts were

calculated as described in the “Materials and Methods” section.
The percentage of time is displayed in Figure 8. It can be seen
that the short-lived unique hydrophobic contacts (0 < X ≤ 10%)
increase from 298 to 343 K. Long-lived hydrophobic contacts
(90 < X ≤ 100%) decrease from 298 to 343 K. It exhibits the same
trend with hydrogen bonds and salt bridges. A similar situation
also occurs in systems without Ca2+.

Identification of Thermal-Sensitive
Regions
To explore the structural and dynamic changes, we identified the
thermal-sensitive regions of HvLD by analyzing the structural
mobility based on the RMSF of the backbone atoms with respect
to the initial structure. Figure 9 shows that the RMSF values
of most regions of HvLD fluctuate slightly at a temperature
of up to 343 K, suggesting that these regions are relatively
thermostable. Some regions showed steep RMSF fluctuations at
high temperature, such as 318 and 343 K, indicating that those
are thermal-sensitive regions. It can be observed in Figure 9
that the highest fluctuations occur at the N-terminal because it
was not restrained. Also, some loops that always exhibit high
fluctuation at different temperatures may be due to their intrinsic
flexibility, including residues 102–107, 135–138, and 575–582.
Besides, regions that fluctuated higher than 0.5 and 1.0 Å are
highlighted by magenta and red in Figure 9. Larger fluctuations
are observed at 318 K or 343 K, such as residues 21–29, 42–
46, 341–349, and 410–415. These regions are predicted to be
thermal-sensitive regions. In a previous work, it was suggested
that residues 23–27, 42–48, 102–109, and 806–810 exhibited high
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flexibility, with low level electron density (Vester-Christensen
et al., 2010), which is consistent with our results. To compare
with those systems without Ca2+, it can be observed that the
flexibility of LD is all higher in these systems than that at 298 K.
In particular, these loops exhibit high fluctuations, including
residues 21–29, 42–46, 322–350, 410–415, 428–442, 550–557,
575–582, 720–740, and 805–812.

To exhibit these regions in HvLD, the higher fluctuation
regions were mapped onto the tertiary structure. As shown in
Figure 10, it is observed that some of them are located near
the catalytic crevice, including residues 550–557 (Figure 10A).
The high flexibility of these regions would decrease the stability
of the catalytic triad. Residues 21–29, 42–46, 341–349, and
410–415 are located in surface loops (Figure 10A). In the
systems without Ca2+, there are large conformational change
of residues 322–350, 428–442, 720–740, and 805–812 at high
temperature (343 K) (Figure 10B). The loss of Ca2+ made the
significant conformational change of a long loop in catalytic
(β/α) eight domain, previously described as loop 2 (Jespersen
et al., 1991; Mikami et al., 2006; Turkenburg et al., 2009) (the
site for Ca1) (Supplementary Figure S2), indicating that this
Ca2+ are important for maintaining the stable conformation of
HvLD at high temperature. The conformational change of loop 2
affected the conformation of residue 322–350 and 720–740. The
removal of another Ca2+, which is located between α1 and α2,
had a weaker effect on the conformation of HvLD at different
temperatures. This Ca2+ contributes less to the stability of HvLD.

CONCLUSION

In the present study, thermostability factors of barley LD were
investigated by MD simulations. The higher value of RMSD, Rg,
and SASA suggests the instability of HvLD at high temperatures.
Intra-protein hydrogen bonds and hydrogen bonds between
protein and water decrease at high temperature. Long-lived
hydrogen bonds, salt bridges, and hydrophobic contacts are lost
at high temperature. The salt bridge interaction analysis suggests
that these salt bridges are important for the thermostability of
HvLD, including E568–R875, D317–R378, D803–R884, D457–
R214, D468–R395, D456–R452, D399–R471, and D541–R542,
which are located on the surface of HvLD. Based on RMSF
calculations for HvLD at various temperatures, several thermally
sensitive regions of HvLD were identified, such as residues 21–29,

42–46, 341–349, and 410–415. The structural and dynamic details
will help to understand the driving forces that lead to the stability
of HvLD at different temperatures, which will facilitate enzyme
engineering of HvLD for enhanced thermostability.
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Three allosteric glycolytic enzymes, phosphofructokinase, glyceraldehyde-3 phosphate
dehydrogenase and pyruvate kinase, associated with bacterial, parasitic and human
species, were explored to identify potential allosteric sites that would be used as prime
targets for species-specific drug design purposes using a newly developed approach
which incorporates solvent mapping, elastic network modeling, sequence and structural
alignments. The majority of binding sites detected by solvent mapping overlapped with
the interface regions connecting the subunits, thus appeared as promising target sites
for allosteric regulation. Each binding site was then evaluated by its ability to alter the
global dynamics of the receptor defined by the percentage change in the frequencies of
the lowest-frequency modes most significantly and as anticipated, the most effective
ones were detected in the vicinity of the well-reported catalytic and allosteric sites.
Furthermore, some of our proposed regions intersected with experimentally resolved
sites which are known to be critical for activity regulation, which further validated our
approach. Despite the high degree of structural conservation encountered between
bacterial/parasitic and human glycolytic enzymes, the majority of the newly presented
allosteric sites exhibited a low degree of sequence conservation which further increased
their likelihood to be used as species-specific target regions for drug design studies.

Keywords: allosteric regulation, glycolytic enzyme, elastic network modeling, species-specific, drug discovery

INTRODUCTION

Glycolysis is the most essential metabolic sequence of enzymatic reactions in all living cells that
converts glucose into pyruvate to produce energy in the form of adenosine triphosphate (ATP) and
reduced nicotinamide adenine dinucleotide (NADH). The process has a dual effect in the sense
that while it metabolizes six-carbon sugars into smaller three-carbon compounds which are later
used for a large amount of ATP production or fat synthesis, it also generates a small amount of
ATP (Meyerhof and Junowicz-Kocholaty, 1943; Barnett, 2003). Thus, it is nearly ubiquitous in all
living cells and essential for the survival of biological organisms. Glycolytic pathway is a sequence
of ten consecutive reactions catalyzed by ten different enzymes, three of which are known to be
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allosteric; phosphofructokinase, glyceraldehyde-3 phosphate
dehydrogenase and pyruvate kinase which appear on the third,
the sixth and the last reaction, respectively.

As glycolysis is essential for living cells, allostery is equally
crucial for regulating protein’s activity (Monod et al., 1963;
Perutz, 1989; Koshland and Hamadani, 2002). Allostery is defined
as the correspondence of conformational changes between two
distant sites in the protein which usually incorporate a catalytic
region and another so-called effector site. The functional state
of the enzyme becomes under the regulation of a ligand or the
so-called effector binding, since the catalytic region consequently
becomes either accessible or inaccessible to substrates. After the
first allosteric model (MWC model) proposed by Monod et al.
(1965) which defined allosteric proteins as symmetric oligomers
with identical protomers found in at least two conformational
states (T and R) with different ligand-binding affinities (Monod
et al., 1965), Weber put forward a powerful concept for allosteric
regulation which is the population shift or re-distribution of
protein’s conformational states (Weber, 1972). Accordingly, all
proteins have a repertoire of conformational states from which
they select to adopt in a particular functional state, and the
ligand binding merely alters the selection of these conformations
(Elber and Karplus, 1987; Pan et al., 2000). Hence, if that
repertoire or the dynamic ensemble of conformations underlies
the allosteric behavior, apparently one can suggest that all
proteins are potentially allosteric (Gunasekaran et al., 2004). In
fact, two decades old experiments demonstrated that allostery can
be introduced into proteins of which their functional state do not
rely on allostery, either by site-directed mutagenesis or a strong
binding molecule (Falcon and Matthews, 2001; Wang and Kemp,
2001; Santamaría et al., 2002).

Allostery is merely a redistribution of conformational states as
a consequence of a structural perturbation which is merely the
binding of a ligand at a distal site. The same type manifestation
is also recognized as a result of mutation, changes in pH,
temperature, ionic strength and covalent modification such
as phosphorylation and acetylation as the population shift is
an intrinsically embedded dynamic feature of proteins. As
previously reported for HIV protease and reverse transcriptase,
the apo and ligand-bound forms of an enzyme represent two
different conditions under which the receptor display distinct
dynamics or communication networks (Temiz and Bahar, 2002;
Kurt et al., 2003).

The general acceptance of allostery as an intrinsic feature
of all proteins revolutionized the drug design efforts in an
unprecedented way (Ellis, 1998; Christopoulos, 2002). One of the
major advantages of targeting allosteric sites rather than catalytic
or so-called orthosteric regions was the low degree of sequence
conservation which enables the design of species-specific drug
molecules. The first step of allosteric drug design thus involves the
identification of these distinct sites away from the catalytic region
which would display a high degree of sequence variability among
species. For allosteric proteins, the so-called allosteric regions
are usually well-established through experimental studies, yet
alternative sites might exist for the same protein which will
enrich the likelihood of effective drugs with greater specificity.
Furthermore, for non-allosteric proteins, these “secret” allosteric

sites can be exposed and used as target in drug design studies with
unprecedented success.

Several well-established approaches exist to detect alternative
allosteric sites. Some relies on static structures of proteins
acquired from NMR or X-ray experimental studies, while
others investigate large scale motions such as hinge bending
via normal mode analysis (NMA) using coarse-grained elastic
network model (Bahar and Rader, 2005; Tama and Brooks,
2006) or molecular dynamics simulations (Hornak et al., 2006;
Lou and Cukier, 2006; Dilcan et al., 2019), since large scale
motions involving large domains can be correlated with protein
function. Moreover, large scale motions defined by the slowest
frequency modes present an intrinsic feature of the protein
(Tobi and Bahar, 2005) and also defines the distant couplings
which is the nature of allostery. Therefore, it is crucial to
identify potential sites in the protein that will perturb this
communication and eventually the dynamic equilibrium which
might lead to a functional disorder. Besides low-frequency
modes, local disturbances in the conformation represented by
high-frequency modes also play a critical role in transmitting
signals between distant sites (Hammes-Schiffer and Benkovic,
2006; Hawkins and McLeish, 2006).

Allosteric communication in a protein is evolutionarily
encoded in a protein structure and conducted via a well-defined
network comprising a limited amount of conserved residues
which is strongly coupled (Lockless and Ranganathan, 1999).
This well-defined communication channel is evolutionized, i.e.,
optimized to fulfill the functional requirements with minimal
energy requirement. There exist several theoretical studies
which highlight the existence of functional key residues which
persistently appear in pathways of allosteric signal propagation
(Süel et al., 2003; Ming and Wall, 2005). Perturbations
on these residues strongly affect the cooperative network
within proteins and thus it is of paramount importance to
develop novel approaches to effectively identify these residues.
A computational study conducted by Liu and his coworkers used
an ensemble-based model and suggested that functional sites
may be uniquely coupled to structural fluctuations and can be
identified by the way a bound ligand to these sites effect the
conformational manifold (Liu et al., 2007). Another noteworthy
computational algorithm developed by Flechsig makes use of
in silico designed synthetic structures which are represented by
elastic networks and a strategy of evolutionary optimization
to iteratively improve allosteric coupling or signal propagation
along simple pathways incorporating a set of interacting
residues (Flechsig, 2017). According to the model, allostery
is considered as a consequence of optimized communication
between distant functional sites. Another pioneering work by
Guarnera and Berezovsky emphasizes the importance of the
causality and energetics of allosteric communication (Guarnera
and Berezovsky, 2019). They used ligand binding and mutations
as a source of perturbations and hypothesized that perturbation
of functional sites can identify latent allosteric sites based on
the fact that allosteric communication is symmetric in nature
(Guarnera and Berezovsky, 2016a).

Our procedure in this study uses the well-known normal
mode analysis using a coarse-grained elastic network model

Frontiers in Molecular Biosciences | www.frontiersin.org 2 May 2020 | Volume 7 | Article 8865

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00088 May 12, 2020 Time: 19:56 # 3

Ayyildiz et al. Identification of Alternative Allosteric Sites

which predicts the change in the frequencies of lowest-frequency
modes as a result of a ligand binding (Kaynak et al., 2018).
The approach is based on the fact that as the lowest-frequency
modes consist of global motions that control the protein
function, the sites which would display the highest frequency
shift would correspond to either active catalytic sites or potential
allosteric sites. Combining this structure-based approach with
an energy-based algorithm for detecting “hot spots” that are
likely to be druggable sites, a powerful prediction tool was
obtained. Each one of the catalytic sites was identified as strongly
druggable in addition to well-recognized allosteric sites. Besides,
our procedure suggested unique alternative allosteric locations
observed at the interface of monomeric subunits. Interface
regions in oligomeric proteins usually accommodate potential
allosteric sites as the global dynamics in complex systems is
most often described by the relative rearrangement of these
subunits (Kurkcuoglu et al., 2011, 2015). Thus, a structural
perturbation at the interface such as ligand binding most often
disrupts the dynamic character and eventually the catalytic site.
Moreover, proposed allosteric sites were investigated based on
sequence and structural similarity between bacterial/parasitic
enzyme and its human counterpart. In all these sites, a satisfactory
amount of sequence variation was observed despite a high degree
of structural similarity. Thus, our future drug design efforts
which will target these slightly conserved sites will potentially
yield species-specific drug molecules. Furthermore, our results
were compared to a well-established algorithm which predict
binding sites (DoGSiteScorer) using a Difference of Gaussian
filter solely based on 3D structure of the protein and assess
their druggability using a support vector machine which is
a linear combination of three descriptors describing volume,
hydrophobicity and enclosure (Volkamer et al., 2012a). The
binding pockets with highest scores successfully agreed with
our predictions of druggable binding sites. Despite the lack of
experimental support, the observation of all well-known catalytic
and allosteric sites as druggable provided a powerful critical
assessment of our approach. Finally, the allosteric effect of our top
druggable sites in each enzyme was confirmed via a powerful tool
AlloSigMA (Guarnera and Berezovsky, 2016b; Guarnera et al.,
2017), which demonstrated a decrease in the dynamics of several
catalytic regions as a result of a ligand binding.

MATERIALS AND METHODS

System Preparation
Several X-ray crystallographic structures deposited at the Protein
Data Bank for three glycolytic enzymes phosphofructokinase
(PFK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
and pyruvate kinase (PK) were extracted for species of Homo
sapiens (H. sapiens) (Kung et al., 2012; Kloos et al., 2015;
White et al., 2015), Staphylococcus aureus (S. aureus) (Mukherjee
et al., 2010; Axerio-Cilies et al., 2012; Tian et al., 2018) and
three parasites, Trypanosoma cruzi for GADPH (T. cruzi)
(Guido et al., 2009), Trypanosoma brucei (T. brucei) for PFK
(McNae et al., 2009) and Leishmania mexicana (L. mexicana)
for PK (Rigden et al., 1999) and the selected ones were listed in

TABLE 1 | Tetrameric structures of glycolytic enzymes extracted from
PDB databank.

Human Bacterium

Enzyme (H. sapiens) (S. aureus) Parasite

PFK 4RH3a 5XZ7b 3F5Mc (T. brucei)

GAPDH 4WNId 3HQ4e 3DMTf (Cruzi)

PK 4G1Ng 3T0Th 1PKLi (L. mexicana)

a4RH3; the structure with the least amount of missing residues with a resolution of
3.02 Å.
b5XZ7; the only available X-ray structure reported so far with a resolution of 1.6 Å.
c3F5M; the ATP-bound form of PFK enzyme with a resolution of 2.7 Å
d4WNI; the T229K mutant form at 2.3 Å resolution.
e3HQ4; the C151S mutant of GADPH1 complexed with NAD from S. aureus
MRSA252.
f 3DMT; the glycosomal GADPH at 2.3 Å resolution in complex with irreversible
iodoacetate inhibitor.
g4G1N; M2 isoform in complex with an activator and at 2.3 Å resolution.
h3T0T; MRSA PK structure at 3.1 Å resolution in complex with an inhibitor.
i1PKL: the structure of Leishmania Pyruvate Kinase at 2.35 Å resolution.

Table 1 along with the details of each structure provided at the
footnote section.

Sequence and Structural Alignment
To identify similarities and differences between human and
bacterial/parasitic species at the level of primary structure,
pairwise amino acid sequence alignment was performed using
Needleman-Wunsch global alignment algorithm (Needleman
and Wunsch, 1970) via EMBOSS-Needle (Rice et al., 2000)
web server using the following default parameters; Blosum62 as
similarity matrix (Henikoff and Henikoff, 1992), gap penalty as
10 for opening and 0.5 for extension, and no end gap penalty.
As for displaying the structural differences, the super module of
PyMOL graphics visualization tool was used (Schrödinger, 2015).
Super module superposes two structures based on the positions of
backbone α-Carbon atoms regardless of their amino acid identity.
It uses a dynamic programming algorithm which incorporates
a series of refinement cycles to eliminate unfit pairing and thus
minimizing the root mean square deviation (RMSD) between two
aligned structures. Finally, each receptor structure was colored
based on sequence identity, similarity and differences as well as
RMSD value, to identify variations emerging at both primary
and tertiary level.

Computational Solvent Mapping
(CS-Map)
Computational solvent-mapping was used to identify all possible
ligand binding sites via docking small drug-like organic
molecules over the entire receptor surface. For that purpose,
the widely used FTMap (Brenke et al., 2009; Kozakov et al.,
2015) tool was employed. As for all CS-Map algorithms, FTMap
was constructed based on the assumption that binding pockets
incorporating the “hot spots” provide major contributions to
the free energy of binding, and thus are likely to bind drug-
like ligands with high affinity (DeLano, 2002; Ciulli et al.,
2006; Metz et al., 2012; Hall et al., 2015). The algorithm
uses fast Fourier transform (FFT) correlation approach which
effectively and quickly samples billions of probe’s poses and
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calculate their energies based on a detailed energy function
which is CHARMM27 (Brooks et al., 1983). A total of
sixteen organic probe molecules (isopropanol, acetaldehyde,
phenol, benzaldehyde, urea, dimethyl ether, acetonitrile, ethane,
acetamide, benzene, methylamine, cyclohexane, ethanol, N,N-
dimetylformamide, isobutanol and acetone) varying in size and
chemical compositions were used for docking. Initially, each
probe was docked using rigid body algorithm, and a total of 2,000
generated poses were energy-minimized and clustered based
on proximity. Clusters were then ranked by their Boltzmann-
averaged energy values. Overlapping clusters of different probe
types were assembled into consensus sites (CS) identified as
“hot spots.” When several CS were found to be near each other
on the surface of the protein, there is a strong indication of a
potential “druggable” binding region. In a sense, FTMap mimics
the experimental NMR or X-ray crystallographic studies which
attempt to solve the protein structure using a variety of organic
solvents which often form clusters in active sites of the protein.

In addition to solvent-mapping the overall tetrameric
structure, each monomeric subunit was solvent-mapped
individually. This approach increases the number of alternative
solutions by enabling regions that would not be accessible in
a tetrameric arrangement. Considering the fact that an X-ray
structure only represents an instantaneous state of the receptor
in time, the monomeric decomposition and mapping approach
attempts to alleviate that drawback, and provides alternative
binding sites that would not be detected otherwise. However,
this approach may give rise to clusters that would be inaccessible
from outside if they happen to be located at the interface of
monomeric subunits and thus should be discarded.

While all parasitic/bacterial species of PFK are tetrameric
structures, H. sapiens PFK is dimeric where each monomer
consists of two domains. As depicted in Figure 1A, each
domain is the counterpart of one chain in tetrameric structure
of parasitic/bacterial PFK. Thus, when H. sapiens PFK was
decomposed into its monomeric subunits for solvent-mapping,
bacterial PFK was also decomposed into its two-chain units
corresponding to one monomeric unit in human and then
solvent-mapped for compatibility, in addition to chain-by-
chain decomposition. For GADPH and PK, two-chain solvent
mapping was not necessary, as they were tetrameric in all species
(see Figure 1B).

ENM-Based Residue Scanning
Elastic network model (ENM) is a powerful theoretical approach
used to predict the global or essential dynamics of biomolecular
structures which is then used to establish the relationship between
the structure and the functional mechanism (Tirion, 1996;
Haliloglu et al., 1997; Doruker et al., 2000; Atilgan et al., 2001). In
this model, the protein was represented as a collection of beads
connected by Hookean springs corresponding to a collection of
atoms connected by fluctuating bonds. Furthermore, the springs
connected the atoms only if they were closer than a predefined
cutoff distance of 15 Å in the native structure. In our study,
we used a residue scanning method that was developed based
on this coarse-grained standard ENM (Kurkcuoglu et al., 2015).
In this new approach, each residue represented by its backbone

α-Carbon as a single node was redefined such that side-chain
heavy atoms will be included as extra nodes. It was proposed that
these new additions will mimic the presence of a bound ligand
interacting with that residue. The effect was then quantified by
the change in the ith collective mode’s eigenvalue λi upon adding
the extra nodes to the selected residue,

% shift for mode i (%si) =
λi
(
modified

)
− λi

(
original

)
λi
(
original

) × 100

The percentage shift for each residue was determined as an
average over the 20 slowest modes as 20 slowest essential
modes dominated more than 90% of the global dynamics

of all three receptors. The average value %s =
20∑

i=1
(%si)/20

was then represented using a color gradient on the protein’s
X-ray structure. The regions which incorporate residues with
highest %si values were simply proposed as potential allosteric
sites. Furthermore, another theoretical method DoGSiteScorer
(Volkamer et al., 2012b) incorporating physicochemical pocket
features and perturbation based on normal-mode analysis
(NMA) has been employed to support our findings.

Merging FTMap and ENM-Based
Residue Scanning Results
Clusters identified from FTMap were further explored to identify
all proximal residues situated within 5 Å of the bound solvent
molecule observed in that cluster. Then, a mean percentage
frequency shift value for each cluster was determined as the
average over all n residues neighboring all the bound solvent

molecules in that cluster as Ŝ =
n∑

j=1
(%sj)/n. If a cluster’s Ŝ value

was smaller than 50%, that cluster was simply discarded from
analysis as its interaction with a ligand would have a negligible
impact on the global dynamics of the receptor. In case the
number of alternative solutions is scarce, the threshold value was
decreased to 25%.

Determination of Interface Regions
Using Relative Solvent Accessible
Surface Area (rSASA)
Interface regions are known to incorporate conserved “hot spot”
residues which majorly contribute to the free energy of binding to
another subunit or partner protein, thus are frequently targeted in
species-specific drug design studies (Clackson and Wells, 1995;
Bogan and Thorn, 1998). In addition, binding of a ligand at
the interface is suggested to disrupt protein’s global dynamics
which is most often governed by the close correspondence
between monomeric units. In this study, the interface regions
were determined based on relative solvent accessibility surface
area (rSASA) which is a widely used metric to identify buried and
exposed residues in the structure. rSASA was defined as a residue’s
solvent accessibility (ASA) normalized by its maximum ASA
value. Maximum ASA for each residue X previously reported in
Tien’s work (Tien et al., 2013) was derived as the highest ASA
achieved in a Gly-X-Gly tripeptide construction evaluated for
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FIGURE 1 | Solvent mapping strategy in (A) H. sapiens PFK, (B) T. brucei/S. aureus PFK where binding sites proposed by FTMap were illustrated with circles.

all sterically possible conformations. Accordingly, a residue was
found at the interface if its rASA value in the monomeric form is
greater than its rASA value in the complex form (Levy, 2010).

RESULTS AND DISCUSSION

Solvent Mapping and ENM Analysis
Detected Several Druggable and
Potential Allosteric Sites At/Near
Interface Regions
Consensus sites (CS sites) or hot spots were determined for
the overall tetramer, and also for each chain separately, to
increase the number of alternative binding sites. In addition,

for PFK enzyme only, solvent mapping was also employed on
an assembly of two chains, as the corresponding PFK structure
in human species existed as a dimer with each monomeric
unit corresponding to two chains in bacterial/parasitic species
tetrameric structure (see Figure 1A in Materials and Methods
section). As listed on the third column of Table 2, for tetramer
mapping, the highest number of CS sites was 18 in S. aureus of
PK (SaPK), and the lowest number was 8 observed in human
GADPH (hGADPH). The number of CS sites in chain-by-chain
mapping was comparable to that found in tetramer mapping.
Overall, GADPH demonstrated the lowest amount of CS sites in
all three species.

Several CS sites obtained from chain-by-chain mapping had to
be discarded as they either coincided with CS sites obtained from
tetramer mapping or became solvent inaccessible in tetrameric
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TABLE 2 | Number of clusters determined before and after filtering protocols for three glycolytic enzymes (PFK, GADPH, and PK) in different species (H. sapiens,
S. aureus, T. brucei, T. cruzi, and L. mexicana).

(1) Total Number of Clusters/

(2) Non-Overlapping Solvent-Accessible Clusters/

(3) After ENM filtering (frequency shift > 25%/50%)

Enzyme Species Tetramer Chain A Chain B Chain C Chain D Chain AB* Chain CD* TOTAL

PFK H. sapiens 13 11 12 13 9 10 11 79

13 9 11 12 8 2 2 66

13/13 7/3 9/5 9/5 8/5 2/2 2/2 50/35

S. aureus 17 12 11 11 11 11 12 85

17 9 8 8 8 4 4 58

17/17 5/4 4/3 4/3 5/4 4/4 4/4 43/39

T. brucei 13 10 11 9 10 13 12 78

13 10 10 9 10 4 5 61

13/8 8/7 8/3 6/3 7/3 4/3 5/5 51/32

GADPH H. sapiens 8 7 7 9 8 – – 39

8 6 7 9 7 – – 37

8/8 3/3 3/2 4/2 3/1 – – 21/16

S. aureus 14 6 9 8 7 – – 44

12 3 6 6 4 – – 31

12/12 3/3 6/6 6/5 4/3 – – 31/29

T. cruzi 15 7 9 7 9 – – 47

15 5 5 5 7 – – 37

15/2 5/5 5/2 5/2 7/7 – – 37/18

PK H. sapiens 12 12 10 10 9 – – 53

12 11 9 9 8 – – 49

12/5 9/7 8/4 7/3 8/4 – – 44/23

S. aureus 18 8 12 10 10 – – 58

18 8 11 9 9 – – 55

18/10 6/4 7/4 7/4 7/4 – – 45/26

L. mexicana 15 9 11 9 9 – – 53

15 6 9 5 5 – – 40

15/6 3/3 7/6 5/5 2/1 – – 32/21

*Chains AB and CD correspond to one monomeric subunit in H. Sapiens (see Materials and Methods section).

arrangement. Numbers listed in the second row of each cell in
Table 2 indicate the number of non-overlapping and solvent
accessible clusters. Lastly, each site in the remaining list was
evaluated based on its percent frequency shift value averaged for
all the residues in the immediate vicinity (%s), as mentioned in
Materials and Methods section. Accordingly, CS sites displaying
an average %s lower than 50% was eliminated in the first run.
To increase the number of alternative binding sites, a second
threshold of 25% was also used in case the number of solutions
is limited. As listed in the third row of each cell in Table 2, the
total number of CS sites was found to be significantly higher
in PFK enzyme for all three species than either GADPH or
PK. Another unexpected outcome was S. aureus displaying the
highest number of hot spots among species for all three enzymes,
with the highest number being 39 observed for PFK and all
satisfying 50% frequency threshold.

The location of all consensus sites listed in Table 2 was
presented extensively in Supplementary Figures S1–S3 for all
three enzymes. It was noticeable that the majority of CS sites
was detected at/near interface regions as indicated in blue color.

Furthermore, the existence of more than one CS site situated
nearby further emphasized the existence of a druggable site.
Supplementary Tables S1–S3 list all these druggable sites with
two or more CS sites. Some of these clusters were marked with
either a single or a double star which indicate those that did not
fulfill 25 and 50% frequency shift criterion, i.e., ineffective sites.
CS sites with double stars were those having a frequency shift
between 25 and 50%, and were used in case of limited number
of alternative solutions. Isolated CS sites were those with no close
proximity to any other CS sites. They were only observed for PFK
and PK enzymes and listed separately in the footnote section of
the corresponding table.

To further highlight the most probable target regions, all
druggable sites with two or more effective CS which gave rise
to a frequency shift above 50% in global dynamics were listed
in the following Table 3. In addition, residues constituting each
site were determined based on their proximity to the clusters
(<5Å) and listed in Supplementary Tables S4–S6 for each
enzyme separately. The top druggable site on the list given
in bold character incorporates the highest amount of CS and
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TABLE 3 | Druggable sites incorporating several consensus sites labeled with an ID composed of a number and a letter.

Enzyme Druggable site ID S. aureus Parasite H. sapiens

PFK 1 4-5-7-8-12-15-17 1-9-13-6AB-7AB 4-7-8-11CD

2 1-2-3-6-11-16 7-11-5CD-12CD 5D-6D-7D

3 2A-10A-11A# 5-6CD-9CD-11CD 6B-7AB-1

4 2D-9D-11D 2A-3A-5A-8A 3-5-9

5 2B-10B 3-12-13AB 5B-10B

6 6A-7A 4C-8C

7 10B-11B 6-11

8 7D-10D 10-12

9 4B-9B

10 6C-9C

11 2-5C

GADPH 1 1A-2A-5A-7A-8A-9A-2 1D-3D-4D-6D-7D-9D-3 1-2-3-4-5-6

2 2B-3B-4B-7B-8B-5 2A-3A-4A-5A-7A-12 2A-4A-7

3 3C-4C-6C-7-8-12 1B-6B-7B 2B-4B

4 3D-4D-5D-3-14 2C-4C 2C-5C

5 1-4-6-10-11 2D-8

PK 1 2-3-16-18 4C-5C-6C 2-4-5-6

2 4-5-13-15 1B-9B-11B 3A-8A-9A-12A

3 1A-2A-6A 9C-5-14 1B-9B

4 1B-2B-8B 8-8A 1C-5C

5 2C-3C-5C 7-13 7D-9D

6 2D-3D-4D

# The ID is composed of a single number which is sometimes followed by a letter. The number indicates the rank of that cluster; the smaller the number, the most
populated the consensus site is, which increases the likelihood of that cluster. The letter indicates the mapping type, i.e., “A” indicates chain-by-chain mapping result
coming from chain A, etc.

was illustrated in Figure 2 for each three enzymes of each
species. PFK exhibited the highest amount of distinct druggable
sites among three enzymes, varying from 5 for S. aureus up
to 11 for H. sapiens. In GADPH, 2 –5 druggable sites were
detected only, yet each site was crowded with several CS.
Pyruvate kinase displayed a total of 5–6 druggable sites for
each species, each holding 2–4 effective consensus sites. It is
important to note that all druggable sites shown in Figure 2
also have symmetric counterparts which are shown in detail in
Supplementary Figures S1–S3.

S. aureus Phosphofructokinase (SaPFK)
Indicated an Alternative Allosteric
Region in Addition to Well-Known
Allosteric and Catalytic Regions
For phosphofructokinase enzyme, all druggable sites listed in
Table 3 were observed at the interface region as depicted in
detail in Supplementary Figure S1. Seven CS located at the
top druggable site were picked up from solvent mapping of the
tetrameric structure, as illustrated in green at the top left figure
of Figure 2. In the vicinity of this region, there exist isolated
consensus sites obtained from chain-by-chain solvent mapping
and are distinguishable by their magenta color, reinforcing the
promise of this site for allosteric regulation. The second top
druggable site on the list with six CS is the symmetric counterpart
of the first and is located on the exact opposite face of the enzyme
(see Supplementary Figure S1A). Either one of these sites can

be safely proposed as an allosteric target region. Furthermore, a
computational study conducted by Mitternacht et al. recognized
the same exact region via Monte Carlo simulations as a possible
binding site as it showed characteristics of being coupled to the
intrinsic motion of the protein (Mitternacht and Berezovsky,
2011). Furthermore, this proposed region has an equivalence
in human species which also incorporates top druggable site as
depicted in Figure 2 (top right corner). On the other hand, as the
human PFK is composed of two dimers where each monomeric
unit is equivalent to two dimers in bacterial PFK, there is no
interface in this proposed allosteric site. Recently, drug discovery
studies aim the interface regions for identifying new allosteric
drug candidates that would likely inhibit enzymatic activity
through changing the global dynamics and thus preventing large
dynamics subunit motion required for forming the active site
(Pommier and Cherfils, 2005; Rahimova et al., 2018). Hence, the
absence of any interface at the correspondin garea in human
PFK might offer some advantage when designing drug molecules
specific for S. aureus PFK.

Moreover, our computational approach was employed for
the dimeric form of human PFK which represents the inactive
state, hence our conclusion would not be complete without
investigating the active state of human PFK which is a tetramer.
The tetrameric active form of human PFK incorporates two
dimers and as each dimer corresponds to one tetrameric structure
in bacteria, the human PFK becomes the equivalence of two
bacterial tetramers. Consequently, an additional solvent mapping
and elastic network modeling was employed using the human
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FIGURE 2 | Potential druggable sites proposed for three enzymes of different species, (A) bacteria (S. aureus), (B) parasite (T. brucei, Cruzi, or L. mexicana) and (C)
human (H. sapiens) using solvent mapping (FTMap). Interface regions between subunits indicated in blue color. Experimentally reported allosteric and catalytic
regions were highlighted in yellow and orange, respectively. Clusters colored in green and magenta correspond to results for tetrameric and chain-by-chain solvent
mapping, respectively.
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FIGURE 3 | Different views of the same snapshot of human PFK colored based on frequency shift in (A) dimeric (inactive) and (B) tetrameric (active) forms, for which
the top druggable site is highlighted with a cyan circle. Consensus sites at the top druggable site of human PFK in (C) dimeric (inactive) and (D) tetrameric (active)
forms. Clusters colored in green and magenta correspond to results for tetrameric and chain-by-chain solvent mapping, respectively.

tetramer and the clusters with frequency shifts above 50% were
collected together with clusters obtained for the human dimer
only. As indicated with a color gradient in Figures 3A,B, the
intensity of the frequency shifts in human tetramer in 3b was
significantly lower than those in dimer form in 3a. On the other
hand, as anticipated, the highest intensity of frequency shift in

tetramer form was observed at the interface region through which
the second subunit bind.

The proposed druggable site encircled in the left figures
clearly indicate the active tetramer form displaying a lower
degree of frequency shift compared to dimer form. Consequently,
the number of druggable sites which satisfied the frequency
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FIGURE 4 | Alternative allosteric regions proposed in S. aureus and PFK indicated by circled consensus sites. Yellow patches indicate the experimentally observed
allosteric sites (Kloos et al., 2015; Tian et al., 2018). ATP and F6P were illustrated with orange and yellow sticks. Clusters colored in magenta correspond to results
for chain-by-chain solvent mapping.

shift threshold of 50% in tetramer was significantly reduced
(see Figures 3C,D). This further increased the potential of our
proposed site to be the most suitable target region for designing
species-specific drug molecules, as the same region in active
form of human PFK would not favorably accommodate any
drug molecule or if that happens, the receptor’s global dynamics
would not be affected by its binding as much as its bacterial
counterpart would.

The three remaining druggable sites listed for S. aureus in
Table 3, were observed in the vicinity of the active site (depicted
in orange in Supplementary Figure S1), thus they are far from
functioning allosterically. Still, it clearly demonstrates the power
of our computational approach to detect catalytic sites as well
as allosteric sites which both require a coupling between ligand
binding and protein’s intrinsic dynamics. Furthermore, there
exist a second region in SaPFK which incorporates one isolated
CS visible at the top and its symmetric counterpart at the bottom
view of the receptor as depicted in Figure 4, thus creating a region
for possible allosteric regulation. No such cluster was observed in
the same region in human PFK. Besides, this second alternative
site is passing through an interface region, further accentuating
its potential role in allostery. However, these consensus sites
were detected within reach to a well-known binding site for
two allosteric effectors which are the activator ADP-Mg and the
inhibitor phosphoenolpyruvate (PEP), as depicted with yellow
surface in Figure 4 (Schirmer and Evans, 1990). Although this
site cannot be introduced as novel, the findings are supportive of
our procedure’s prediction power.

For proposing a potential target region for designing species-
specific drug molecules that would bind more strongly to
SaPFK than its human equivalence, we need to make sure that
either structural or sequence conservation is minimum at the
region of interest. As illustrated in Figure 5A, a snapshot of

SaPFK colored based on sequence similarity/identity between
human and bacteria clearly displays a low degree of sequence
conservation in the proposed site, as highlighted with an
abundancy of white spaces corresponding to dissimilar residues.
Furthermore, the overall structural RMSD between two species
was determined as 1.56 Å, and this value is even lower for
the confined region at the top druggable site. As the human
counterpart of this proposed allosteric region in SaPFK also
incorporates the top druggable site with four CS as depicted in
Supplementary Figure S1, the degree of variation at sequence
level is satisfactorily low for proposing this site as a target in the
design of species-specific drug molecules.

T. brucei PFK (TbPFK) Suggested an
Alternative Allosteric Region in Addition
to a Site Within Reach to a Catalytic
Region
Similar to S. aureus, the top druggable site incorporating five
CS was observed in a region passing through an interface and
was the counterpart of the allosteric region in S. aureus, as
illustrated in Figure 2B (top middle). In the vicinity of this
region, there exist several other druggable and consensus sites
strengthening its likelihood to be allosteric. Moreover, there exist
two alternative sites represented by encircled areas located at
close proximity to each other and to an interface region as
illustrated in Figure 5B. The symmetric counterparts of these
regions also exist at the opposite site of the receptor as illustrated
in detail in Supplementary Figure S1. However, each of these
sites coincide with the well-known binding area of the substrate
F6P shown with yellow sticks, therefore unlikely to be suggested
as an allosteric site. In human counterpart, a similar observation
was made, i.e., two distinct druggable sites were detected as
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FIGURE 5 | (A) Sequence similarity between human and S. aureus PFK illustrated on a snapshot and a sequence alignment with top druggable site encircled in
yellow. ESPript 3.0 tool (Robert and Gouet, 2014) used for graphical illustration of sequence alignment. Potential allosteric sites represented by clusters encircled in
blue for (B) T. brucei and (C) human PFK. ATP and F6P colored in orange and yellow, respectively. (D) Sequence similarity illustrated on a snapshot of TbPFK at two
different angles. Similar, identical and dissimilar residues colored in orange, blue and white, respectively.
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FIGURE 6 | (A) Tunnel like region as a potential allosteric site in S. aureus GADPH using different perspectives. (B) S-loop was depicted with yellow patches, key
residues S50 and S287 in the tunnel region, colored in red and cyan, respectively. Sequence similarity between S. aureus and human GADPH, illustrated on (B) a
snapshot in two different angles and (C) a sequence alignment. See caption of Figure 5 for color coding. Tunnel region encircled in red.
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FIGURE 7 | (A) Potential allosteric sites in S. aureus pyruvate kinase along with structural alignment of S. aureus and human PKs. Dark blue represents regions
similar in both species, whereas white and pale blue regions correspond to unmatched regions, respectively. Sequence similarity illustrated on (B) a snapshot with
two different views where proposed site encircled in red, well-reported IS–130 bound allosteric site encircled in yellow, proposed site with cluster ID 17 encircled in
cyan. See caption of Figure 5 for color coding. (C) Top druggable site strongly proposed as a potential allosteric site in L. mexicana pyruvate kinase.

depicted in Figure 5C, each close to ATP and F6P binding
area, but also near the interface region. On the other hand, the
area in between these two druggable sites might be proposed
as a druggable target site for allosteric drug candidates as it is
passing through an interface which might perturb the global
dynamics of the receptor essential for its activity. In addition,
it displays a low level of sequence conservation represented by
mostly white and orange spaces as in Figure 5D. Furthermore,
the top druggable site displays a significantly low level of sequence

conservation as depicted with a nearly white area encircled as
in Figure 5D, thus would be an ideal location to be targeted for
species-specific drug discovery.

Tunnel Region Observed in GADPH Can
Be a Potential Allosteric Site
GADPH displayed a distinct profile of druggable sites which
were well packed with several CS in both bacteria and parasite.
However, top sites on the list were observed near the catalytic
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TABLE 4 | Top druggable sites for each enzyme from each species and their corresponding DogSite binding pockets with score and rank.

Enzyme S. aureus Region Score*/rank Parasite Score/rank Region

PFK 4-5-7-8-12-15-17 Allosteric 0.81/3 1-9-13-6AB-7AB 0.80/4 Allosteric

1-2-3-6-11-16 Allosteric 0.81/3 7-11-5CD-12CD 0.80/4 Allosteric

2A-10A-11A Catalytic 0.49/13 5-6CD-9CD-11CD 0.80/4 Allosteric

2D-9D-11D Catalytic 0.49/13 2A-3A-5A-8A 0.81/3 Catalytic

2B-10B Catalytic 0.78/6 3-12-13AB 0.80/4 Allosteric

6A-7A N/A Catalytic

10B-11B 0.53/16 Allosteric

7D-10D 0.52/17 Allosteric

GADPH 1A-2A-5A-7A-8A-9A-2 Catalytic 0.80/2 1D-3D-4D-6D-7D-9D-3 0.48/6 Catalytic

2B-3B-4B-7B-8B-5 Catalytic 0.76/3 2A-3A-4A-5A-7A-12 0.44/8 Catalytic

3C-4C-6C-7-8-12 Catalytic 0.73/4 1B-6B-7B 0.72/3 Catalytic

3D-4D-5D-3-14 Catalytic 0.64/8 2C-4C 0.81/1 Catalytic

1-4-6-10-11 Allosteric 0.80/2

PK 2-3-16-18 Allosteric 0.76/6 4C-5C-6C 0.42/9 Allosteric

4-5-13-15 Allosteric 0.71/8 1B-9B-11B 0.81/4 Catalytic

1A-2A-6A Catalytic 0.58/18 9C-5-14 0.83/3 Catalytic

1B-2B-8B Catalytic 0.57/19 8-8A 0.81/4 Catalytic

2C-3C-5C Catalytic 0.63/16 7-13 0.81/4 Catalytic

2D-3D-4D Catalytic 0.53/21

*Minimum-maximum range for score values:
S. aureus PFK: [0.14-0.88]; T. brucei PFK:[0.16-0.86];
S. aureus GADPH: [0.14-0.83]; T. cruzi GADPH:[0.15-0.81];
S. aureus PK: [0.15-0.84]; L. mexicana PK:[0.11-0.86].

region and thus cannot be proposed as allosteric (see Figure 2).
On the other hand, our procedure accurately detects all catalytic
sites in addition to allosteric ones. An additional druggable site
which appeared in Table 3 with five CS for S. aureus, was detected
in a tunnel like region passing through the center of the receptor
as depicted in Figure 6A. In T. Cruzi GADPH, consensus
sites which appeared in the same tunnel region only displayed
a moderate amount of frequency shift which was determined
between 25 and 50%, whereas those in human and S. aureus
GADPH, the 50% criterion was fulfilled.

Agreeably, the tunnel like location coincided with a well-
known dynamic S-loop which is known to be modulated by
phosphorylation of Ser50, Ser203, and Tyr41 in regulating
the enzymatic activity through NAD-binding pocket and
oligomer assembly (Dubey et al., 2017). The regulatory effect
of GADPH S-loop via its phosphorylation is a universal
feature as the phosphorylated sites consist of well conserved
residues. Dephosphorylated Ser50 and Tyr41 both play a part
in homodimerization by hydrogen bonding across the dimer
interface with S287 and stabilizes the neighboring S-loop,
whereas dephosphorylated Ser203 induces the fit of S-loop
into the neighboring NAD-binding pocket by forming atomic
interactions with three other S-loop residues. Among these
residues, S50 and S287 were visible in the tunnel region, as
illustrated in Figure 6B in red and cyan color, respectively. In
addition, S-loop was depicted with yellow patches.

The tunnel region was further investigated for the amino acid
sequence similarity between human and bacterium/parasite in
order to guarantee that the proposed site incorporates distinctive
features for identifying drug molecules that would specifically

inhibit the enzyme of the infecting organism which is S. aureus.
Colored based on sequence similarity between human and
bacterium/parasite, the snapshots and the sequence alignment
in Figure 6C clearly demonstrate the low degree of sequence
conservation at the tunnel region. On the other hand, the
structural RMSD value for the same region was exceptionally low
at around 0.34 Å.

S. aureus Pyruvate Kinase Displayed
One Allosteric Site at the Center Cutting
Across the Interface Region and Another
at the Junction of A/C Domain
As listed in Table 3, the top druggable site corresponds to
a region which is located at an opening in the center of
the receptor and crossing an interface region. Its symmetric
counterpart can also be observed at the other side of the orifice
and both of these clusters were listed as top two druggable
sites in Table 3. Moreover, a well-known allosteric site exists
in the same orifice which accommodates the inhibitor IS-
130 (N’-[(1E)-1-(1H-benzimidazol-2-yl)ethylidene]-5-bromo-2-
hydroxybenzohydrazide) which was previously identified by
Cilies and his coworkers as a potential allosteric inhibitor
targeting methicillin-resistant Staphylococcus aureus (MRSA)
(Axerio-Cilies et al., 2012). As illustrated in Figure 7A with
yellow sticks at the top and bottom of the orifice, it is located
at the so-called small C-C interface separating the subunits of
the receptor, thus by disrupting the essential salt bridges which
help to stabilize the small C-C interface and lock the tetramer in
the active R-state, it may prevent the conformational transition
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FIGURE 8 | AlloSigMA results for top druggable sites and their symmetric counterparts in (A) PFK, (B) GADPH and (C) PK enzymes of S. aureus species. Proposed
sites depicted with blue circles on the left, while catalytic regions indicated on the right side. Red and blue regions correspond to regions with decreased (1G < 0)
and increased (1G > 0) dynamics, respectively.

to an active state (Morgan et al., 2010). Our newly proposed
target site indicated by green sticks on the right and the left
side of the orifice (encircled in red) is passing directly through
the so-called large interface region, thus might eventually affect
the rocking motion of the subunits necessary for activation. The
human pyruvate kinase has a potential druggable site in the same
corresponding region, however, the center of the receptor has
a distinct shape with a nearly closed orifice almost inaccessible
to the other side (see Figure 7A). Furthermore, this predicted
druggable site coincide with the same pocket where quinolone

sulfonamide activators bind (Kung et al., 2012). Besides, sequence
alignment indicates this area with high amounts of variations
which further emphasizes our proposed site as an ideal target for
species-specific drug design (see Figures 7B and Supplementary
Figure S4A). The remaining four clusters appeared in the vicinity
of each of the four catalytic sites, as illustrated in Supplementary
Figure S3, hence do not suggest an allosteric feature. A second
alternative allosteric site in SaPK appeared at the junction of A
and C domain of one subunit as depicted by cluster with id 17
encircled with cyan in Figures 7A,B. No cluster was observed
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in human PK at the same corresponding site. Furthermore,
sequence similarity analysis displayed a high degree of variation
which indicated a likelihood of species specificity.

L. mexicana Pyruvate Kinase Displayed a
Distinct Allosteric Site Nearby an
Interface Region
As illustrated in Figure 7C, a distinct druggable site on LmPK
was observed in the vicinity of an interface region, far away
from both catalytic sites and the central region. Based on a low
degree of sequence conservation, it is likely to provide a distinct
binding site for specific drug candidates (see Supplementary
Figure S4B). The remaining four druggable sites listed in Table 3
were detected at each of the four catalytic sites. Furthermore,
there was no druggable site at the center which satisfied 50%
frequency shift threshold as in human or bacteria. On the other
hand, four isolated consensus sites have been detected at the
center at the same exact locations as in human or bacteria, but
in terms of effecting/shifting the frequency of the normal modes,
they remained moderately within the range of 25–50%. Still, they
can be proposed as possible target sites for species-specific drug
design studies for L. mexicana PK.

Critical Assessment of Binding Pockets
With DoGSiteScorer
Our findings were compared to potential binding pockets
predicted by the algorithm DogSiteScorer which is a grid-
based method solely based on protein’s tertiary structure divided
into subpockets, each assigned to a score value. DogSite scores
appear between 0 and 1 with the most probable binding pockets
displaying score values closer to 1. Each one of our druggable
sites previously listed in Table 3 was re-evaluated based on the
scores of DogSite pockets to which they overlapped. As shown in
Table 4, high-score DogSite pockets coincided successfully with
our predicted top druggable sites.

For S. aureus PFK, the predicted top druggable sites
overlapped with the DogSite pocket ranked in third with 0.81
score value. The top two DogSite pockets with only slightly
higher scores, 0.87 and 0.88, corresponded to catalytic regions
where ATP binds (see Supplementary Figures S5A,B). The top
druggable site in T. brucei which corresponded to the same
location as in S. aureus and proposed to be allosteric, successfully
coincided with a DogSite pocket of 0.8 score value which was the
fourth highest. Interestingly, a second alternative allosteric site
which was observed at the interface and proposed for T. brucei
PFK as outlined with a yellow rectangle in Figure 6C, displayed
a favorable DogSite pocket with 0.81 score value as also depicted
in Supplementary Figure S5C. Moreover, the top score DogSite
pocket in T. brucei PFK was detected in the interior region of
the receptor unlike other binding cavities reported so far (see
Supplementary Figure S5D).

For S. aureus GADPH, the tunnel region proposed to be an
allosteric site displayed a pocket with 0.8 score value ranked in
second (see Supplementary Figure S6A). Almost all catalytic
regions overlapped with high-score pockets (see Supplementary
Figures 6B,D). Interestingly, the corresponding tunnel region

in Cruzi GADPH which did not appear among druggable sites
due to its moderate frequency shift coincided with a favorable
DogSite binding pocket with 0.80 score value ranked in second
(see Supplementary Figure S6C). This finding increases the
likelihood of the same tunnel region to be an allosteric site in
parasite species as well, despite its relatively low frequency shift.

The new allosteric region proposed for S. aureus PK at the
center of the structure neighboring the large interface coincided
with the DogSite pocket ranked in sixth with a value of 0.76
which is not far from the highest score of 0.84 obtained for this
structure (see Supplementary Figure S7A). On the other hand,
catalytic regions appeared as druggable sites in our list were not
strongly selected by DogSite. For L. mexicana PK, the proposed
allosteric site located far from the origin and nearby an interface
was not a highly favorable pocket for DogSite with only 0.42
score value ranked in the ninth position. On the other hand, the
remaining four catalytic sites coincided well with highly scored
DogSite pockets (see Supplementary Figure S7B).

Support From AlloSigMA Server
Finally, our proposed allosteric sites were evaluated with
AlloSigMA tool (Guarnera and Berezovsky, 2016b; Guarnera
et al., 2017) which quantifies the allosteric effect of a ligand
binding and/or mutation at a site on the basis of a per-
residue free energy which is obtained by solving all possible
protein local configurations. For our three allosteric enzymes, we
investigated the effect of a ligand binding to our top druggable
sites in S. aureus only. Other druggable sites and species will be
considered in a future work.

Accordingly, the ligand binding to the proposed top druggable
site and its symmetric counterpart in each of three enzymes
caused a fair amount of decrease in residue dynamics in all
catalytic regions. In phosphofructokinase, the highest decrease
in allosteric effect was quantified by a negative mean free energy
of –0.31 ± 0.11 and –0.15 ± 0.38 for ATP and F6P binding
sites, respectively. Mean 1G values of all four catalytic sites
were listed as in Figure 8A. All four catalytic regions encircled
in yellow for F6P displayed a comparable degree of mean 1G
which was around –0.1, whereas ATP binding site encircled
in orange displayed two different values, one nearby –0.3 and
the other –0.02.

Similarly analysis was conducted for the known allosteric site
of SaPFK illustrated in Figure 4, for comparison only. Binding of
an effector molecule at the allosteric site is known to increase the
activity of the receptor. Ligand binding with AlloSigMA exhibited
a moderate amount of increase in the dynamics of F6P binding
site with mean 1G values varying between 0.12 and 0.25, whereas
ATP binding site in two of the four monomeric units displayed a
decrease in dynamics with a mean 1G value of –0.5.

In GADPH, there exist four catalytic sites in which the
substrate glyceraldehyde 3-phosphate (G3P) as well as the
cofactor NAD binds. Two of these sites were illustrated with
yellow circles as in Figure 8B, while the remaining two are on
the opposite face of the receptor. The probe ligand was bound
on both sides of the tunnel simultaneously. Accordingly, all four
G3P sites displayed negative 1G values between –0.66 ± 0.84
and –0.24 ± 1.1, whereas only two NAD binding sites showed
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unaltered dynamics with low positive 1G values, 0.05± 0.67 and
0.09 ± 0.61. The proposed tunnel region clearly demonstrated a
fair amount of allosteric effect on all four catalytic regions.

Finally, for pyruvate kinase, the allosteric effect via ligand
binding to two symmetric proposed sites at the central region as
depicted in Figure 8C, manifested itself as a moderate amount
of decrease in the dynamics of each of the four catalytic regions
where the substrate PEP would bind. On the other hand, all
four ADP binding sites displayed only a slight increase in their
dynamics. Furthermore, a similar analysis was conducted for
the known allosteric site, which was occupied by the allosteric
inhibitor IS-130 at the central region as illustrated in Figure 7A.
Surprisingly, the allosteric effect was the opposite of that observed
for our proposed site, with an increase in dynamics in the
majority of PEP and ADP binding sites with mean 1G values as
high as 0.78± 0.21.

CONCLUDING REMARKS

Our new approach consisting of a combination of well-
established algorithms such as normal mode analysis using elastic
network model and solvent-molecule binding site detection
algorithm along with sequence and structural alignments
demonstrated an exceptional prediction power for discovering
alternative allosteric sites in the protein which were proposed
as potential target sites for species-specific drug design efforts.
The fact that nearly all well-reported catalytic and allosteric sites
for three glycolytic enzymes have been identified undoubtedly
supports the accuracy of our findings. Besides, several alternative
allosteric sites have been identified for each one of three enzymes.
SaPFK presented a novel allosteric site which had one of the
highest DogSiteScore value in addition to an allosteric effect
perturbing the dynamics of all four catalytic regions. The second
glycolytic enzyme, GADPH, presented the tunnel region as a
potential allosteric site. Notably, this tunnel region incorporates
the critical S-loop which owns the universal regulatory effect of
the enzyme activity via its phosphorylation. The ligand binding
to two symmetric sites at the tunnel region induced a fair amount
of decrease in all four catalytic regions of the receptor. Finally, the

two symmetric binding sites proposed for pyruvate kinase at the
central region, exhibited allosteric features which were stronger
than the known allosteric inhibitor sites nearby.

Although our current work was focused on allosteric enzymes
only, the remaining seven glycolytic enzymes that do not display
any allosteric feature in their functioning can be investigated
using the same approach to identify potential allosteric sites
that might be used to regulate the enzymatic activity of these
enzymes. As our current strategy is solely based on the intrinsic
nature of allostery supposedly owned by all proteins, there is
always a likelihood of encountering a novel allosteric site that
will be proposed as a target region for developing effective
allosteric drugs.
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Allosteric regulation is a common mechanism employed by complex biomolecular

systems for regulation of activity and adaptability in the cellular environment, serving

as an effective molecular tool for cellular communication. As an intrinsic but elusive

property, allostery is a ubiquitous phenomenon where binding or disturbing of a distal

site in a protein can functionally control its activity and is considered as the “second

secret of life.” The fundamental biological importance and complexity of these processes

require a multi-faceted platform of synergistically integrated approaches for prediction

and characterization of allosteric functional states, atomistic reconstruction of allosteric

regulatory mechanisms and discovery of allosteric modulators. The unifying theme and

overarching goal of allosteric regulation studies in recent years have been integration

between emerging experiment and computational approaches and technologies to

advance quantitative characterization of allosteric mechanisms in proteins. Despite

significant advances, the quantitative characterization and reliable prediction of functional

allosteric states, interactions, and mechanisms continue to present highly challenging

problems in the field. In this review, we discuss simulation-based multiscale approaches,

experiment-informed Markovian models, and network modeling of allostery and

information-theoretical approaches that can describe the thermodynamics and hierarchy

allosteric states and the molecular basis of allosteric mechanisms. The wealth of

structural and functional information along with diversity and complexity of allosteric

mechanisms in therapeutically important protein families have provided a well-suited

platform for development of data-driven research strategies. Data-centric integration of

chemistry, biology and computer science using artificial intelligence technologies has

gained a significant momentum and at the forefront of many cross-disciplinary efforts.

We discuss new developments in the machine learning field and the emergence of

deep learning and deep reinforcement learning applications in modeling of molecular

mechanisms and allosteric proteins. The experiment-guided integrated approaches

empowered by recent advances in multiscale modeling, network science, and machine
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learning can lead to more reliable prediction of allosteric regulatory mechanisms and

discovery of allosteric modulators for therapeutically important protein targets.

Keywords: allosteric regulation, multiscale modeling, Markov state models, network analysis, deep learning,

reinforcement learning, drug discovery

INTRODUCTION

Allosteric regulation is an efficient and robust mechanism
for molecular communication and signaling in the cell
employed by proteins for regulation of activity and adaptability
during processes of signal transduction, catalysis, and gene
regulation (Monod et al., 1965; Koshland, 1998; Changeux and
Edelstein, 2005; Popovych et al., 2006; Changeux, 2012). The
recent breakthroughs in nuclear magnetic resonance (NMR)
technologies have enabled dynamic studies of large biomolecules
at atomic resolution, and are now frequently employed as
powerful diagnostic tools of allosteric communications in
proteins (Boehr et al., 2006; Jarymowycz and Stone, 2006;
Mittermaier and Kay, 2006, 2009; Sprangers et al., 2007;
Korzhnev and Kay, 2008; Kalodimos, 2011; Kay, 2011, 2016;
Rosenzweig and Kay, 2014; Lisi and Loria, 2016, 2017;
Huang and Kalodimos, 2017; Jiang and Kalodimos, 2017).
Allosteric molecular events can involve complex cascades of
thermodynamic and rapid dynamic changes that occur on
different spatial and temporal scales. The thermodynamic-
centric energy landscape concepts and conformational selection
models of allosteric regulation have gained a considerable
prominence in recent years, rooted in the assumption that
statistical ensembles of preexisting conformational states and
communication pathways are intrinsic to a given protein system
(Astl et al., 2019) and allow for modulation and redistribution
induced by external perturbations, ligand binding, andmutations
(Gunasekaran et al., 2004; Tsai et al., 2008, 2009; del Sol et al.,
2009; Csermely et al., 2010, Zhuravlev and Papoian, 2010; Ma
et al., 2011; Wrabl et al., 2011; Hilser et al., 2012; Nussinov,
2012; Motlagh et al., 2014; Tsai and Nussinov, 2014; Nussinov
and Tsai, 2015; Guo and Zhou, 2016; Liu and Nussinov, 2016;
Astl et al., 2019). Conformational dynamics redistributions in
the absence of appreciable structural transformations are the
hallmark of the “entropy-driven” allosteric mechanisms in which
allosteric interactions can be mediated through alterations of
functional motions and rebalancing of rigid and flexible protein
regions (Cooper and Dryden, 1984; Stevens et al., 2001; Dam
et al., 2002; Kern and Zuiderweg, 2003; Frederick et al., 2007;
Tzeng and Kalodimos, 2009, Nesmelova et al., 2010; Kalodimos,
2011, 2012; McLeish et al., 2013; Li et al., 2014; Buchenberg
et al., 2017; Stock and Hamm, 2018; Wodak et al., 2019).
The quantitative elucidation of these highly dynamic and often
elusive processes continues to present formidable technical
and conceptual challenges. Despite significant advances, the
quantitative characterization and prediction of functional
allosteric states, interactions andmechanisms continue to present
highly challenging problems in the field. The fundamental
biological importance and complexity of these processes require
innovative computational and experimental approaches that

can advance current understanding of allosteric regulatory
processes. A systematic interdisciplinary effort is needed to
leverage the burgeoning knowledge about allosterically regulated
proteins to develop robust experiment-informed computational
tools for atomistic prediction of allosteric mechanisms. In
this review we discuss and analyze how recent advances in
biophysical simulations and network science can be integrated
with NMR spectroscopy experiments and leverage the rising
power ofmachine learning (ML) approaches to enable the reliable
quantitative characterization of allosteric regulation mechanisms
and facilitate allosteric drug discovery. We discuss in details
computational strategies that leverage biophysical and network-
based modeling with NMR experiments for characterization
and probing of allosteric regulatory mechanisms. The review
also critically discusses advantages and limitations of emerging
approaches including Markovian modeling and the information-
theoretical analysis of dynamic flows in allosteric networks in
addressing present challenges and open questions of allosteric
regulation mechanisms.

NETWORK-BASED APPROACHES IN

STUDIES OF ALLOSTERIC REGULATION

MECHANISMS

It has been recognized that allosteric regulation is a global
property of protein systems that can be described by the residue
interaction networks in which the effector binding initiates a
cascade of coupled fluctuations propagating through the network
and eliciting long-range functional responses at distal sites
(Atilgan et al., 2004; Brinda and Vishveshwara, 2005, 2010;
del Sol and O’Meara, 2005; Bode et al., 2007; Sethi et al.,
2009; Vijayabaskar and Vishveshwara, 2010; Csermely et al.,
2013; Di Paola and Giuliani, 2015; Dokholyan, 2016). The
graph-based network approaches have offered a simple and
effective formalism for describing allosteric interactions, where
the dynamic fluctuations are mapped onto a graph with nodes
representing residues and edges representing weights of the
measured dynamic properties. The network-centric methods
have represented a powerful complementary strategy to physics-
based landscape models of protein dynamics by quantifying
global functional changes (Vendruscolo et al., 2002; Atilgan
et al., 2004; Brinda and Vishveshwara, 2005, 2010; Ghosh and
Vishveshwara, 2007, 2008; Hansia et al., 2009; Bhattacharyya
and Vishveshwara, 2011; Ghosh et al., 2011; Csermely et al.,
2012; Gasper et al., 2012; Bhattacharya and Vaidehi, 2014;
General et al., 2014; Dokholyan, 2016; Adhireksan et al., 2017),
identifying key functional centers and allosteric communication
pathways (Verkhivker et al., 2002; del Sol and O’Meara, 2005;
del Sol et al., 2006; Sethi et al., 2009, 2013; Vijayabaskar and
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Vishveshwara, 2010; Rivalta et al., 2012; Vanwart et al., 2012;
Farabella et al., 2014; Di Paola and Giuliani, 2015; Kalescky et al.,
2015, 2016; Hertig et al., 2016; Ricci et al., 2016; Stolzenberg
et al., 2016; Palermo et al., 2017; Zhou et al., 2017, 2019a,b;
Liang et al., 2019; Li et al., 2019). Recent years have witnessed
the proliferation of numerous computational tools for predicting
allosteric pathways and communications in proteins (Ming and
Wall, 2005, 2006; McClendon et al., 2009; Tehver et al., 2009;
Mitternacht and Berezovsky, 2011; Bowman and Geissler, 2012;
Panjkovich and Daura, 2012, 2014; Goncearenco et al., 2013;
Kaya et al., 2013; Stetz and Verkhivker, 2017). The network
studies have also suggested that rapid signal transmission of
allosteric interactions through small-world networks encoded in
protein folds may be a universal signature encoded in protein
families (Tsai et al., 2009; Di Paola andGiuliani, 2015). Significant
bodies of computational and experimental studies have shown
that integration of network-based approaches with structural and
biochemical studies can provide a robust platform for further
exploration and atomistic characterization of allosteric states and
regulatory mechanisms controlled by allostery.

Functional residues in residue networks are often connected
via strong evolutionary relationships (Lockless and Ranganathan,
1999; Suel et al., 2003; Halabi et al., 2009; Aguilar et al., 2012;
McLaughlin et al., 2012; Simonetti et al., 2013). Coevolution
of protein residues can reflect correlated functional dynamics
of these sites in mediating residue-residue contacts (Socolich
et al., 2005), protein folding transitions (Morcos et al., 2011),
and allosteric signaling in protein complexes (Wang et al., 2019).
Coevolving residues could also form direct communication
paths in the interaction networks with connections weighted
according to dynamic couplings and coevolutionary interaction
strengths between nodes (Chakrabarti and Panchenko, 2009,
2010; Nishi et al., 2011). Dynamic and coevolutionary residue
correlations may also act as synchronizing forces that determine
modular organization of allosteric interaction networks and
enable efficient allosteric regulation (Stetz and Verkhivker,
2017). These results have motivated the development of
novel community-based methods for modeling ensembles
of allosteric communication pathways in protein structures
(Tse and Verkhivker, 2015a,b; Verkhivker et al., 2016; Stetz
and Verkhivker, 2017). Using this computational framework,
it was found that efficient allosteric communications in
various signaling proteins could be controlled by structurally
stable functional centers that exploit dynamically coupled
residues in their local communities to propagate cooperative
structural changes. The important revelation of these studies
was that dynamic and evolutionary residue correlations may
act as synchronizing forces to enable efficient and robust
allosteric regulation.

Examining proteins as dynamic regulatory machineries that
fluctuate between functional allosteric states and modulated by
ligand binding or mutations is critical to understanding the
molecular principles of signaling in the cell. Computational
studies of allosteric regulation in signaling proteins have led to
important mechanistic insights, better atomistic understanding
of complex regulatory processes and continuous integration
with structural and functional experiments. A variety of
computational approaches have been extensively explored in

investigations of allosteric mechanisms in protein kinases. These
studies included experiment-guided structural modeling and
protein folding analysis (Levinson et al., 2006; Zhang et al.,
2006; Kornev et al., 2008; Han et al., 2011; Jura et al., 2011;
Shan et al., 2011, 2012, 2013; Taylor and Kornev, 2011; Tzeng
and Kalodimos, 2011; Levinson and Boxer, 2012, 2014; Taylor
et al., 2012a,b; Meharena et al., 2013; Shaw et al., 2014; Shukla
et al., 2014; Kornev and Taylor, 2015; Schulze et al., 2016;
Narayanan et al., 2017; Levinson, 2018; Ruff et al., 2018),
molecular simulations and free energy computations (Yang
and Roux, 2008; Dixit and Verkhivker, 2009, 2011a,b; Yang
et al., 2009; Arkhipov et al., 2013; Lin and Roux, 2013; Lin
et al., 2013, 2014; Dixit and Verkhivker, 2014; Meng and Roux,
2014; Fajer et al., 2017; Kim et al., 2017; Meng et al., 2017),
and network modeling (James and Verkhivker, 2014; Tse and
Verkhivker, 2015a,b,c; Czemeres et al., 2017; Stetz et al., 2017;
Astl and Verkhivker, 2019a,b). By examining residue interaction
networks in protein kinases a unifying mechanistic model
of allosteric coupling between the ATP-binding and substrate
binding sites conserved among kinases was proposed (Tse and
Verkhivker, 2015a,b,c; Stetz et al., 2017). A theoretical framework
for rationalizing binding preferences of the kinase inhibitors
was developed establishing the relationships between ligand
binding and modulation of the residue interaction networks
(Tse and Verkhivker, 2015a,b,c). Atomistic modeling of the ABL
kinase regulation using a combinationmolecular dynamics (MD)
simulations, structural perturbation methods and network-
centric analysis (Astl and Verkhivker, 2019a,b) has provided
evidence of allosteric interactions and communication pathways
in the ABL interaction networks that supported and explained the
underlyingmechanisms proposed in the pioneering NMR studies
(Saleh et al., 2017).

Computational studies of allosteric regulation in molecular
chaperones Hsp90 and Hsp70 have also been instrumental to the
progress in the field by complementing biochemical experiments
and providing a detailed dynamic view of the functional cycle
and mechanisms (Colombo et al., 2008; Morra et al., 2009,
Verkhivker et al., 2009; Morra et al., 2010, 2012; Matts et al.,
2011a,b; Chiappori et al., 2012, 2016; Dixit and Verkhivker, 2012;
Lawless et al., 2013; Verkhivker, 2014, 2018a,b; Paladino et al.,
2015; Stetz and Verkhivker, 2015, 2016, 2017, 2018; Czemeres
et al., 2017; Stetz et al., 2017). Using a network-based formalism
of allostery, computational studies have captured NMR-observed
direction-specific nature of signal propagation pathways in the
Hsp70 chaperone (Stetz and Verkhivker, 2015, 2017).

Studies of allosteric mechanisms have indicated that
integration of experiment-informed molecular simulations with
network-based formalisms of allostery may provide a convenient
and powerful platform for atomistic characterization of allosteric
states and regulatory mechanisms. The lessons from studies
of signaling proteins including protein kinases and molecular
chaperones have suggested that allosteric regulation mechanisms
can proceed via a non-trivial and often elusive combination of the
three classical models of allostery: induced fit, conformational
selection, and dynamic allostery. Computational modeling
and atomistic simulations of protein systems and functional
assemblies have shown that allosteric mechanisms may not
necessarily imply a simple switching between the crystal
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structures of the inactive and active states, but often represent
a complex regulatory machinery in which binding and external
perturbations could give rise to a spectrum of functionally
relevant and yet often hidden allosteric conformations exhibiting
a range of activity levels.

ALLOSTERIC REGULATION AND

DETECTING ALLOSTERIC STATES

THROUGH INTEGRATION OF NMR

EXPERIMENTS AND COMPUTATIONAL

MODELING

The growing number of high-resolution crystal structures and
wealth of structural information about protein systems have
had an enormous impact on computational and simulation
approaches, facilitating development of knowledge-based
methods and advanced sampling techniques. However, allosteric
functional states in proteins are often highly dynamic and
short-lived representing low populated, high energy states that
are rarely directly observed in X-ray crystallography experiment.
A large amount of conformational sampling is typically needed
to uncover and isolate high-energy functional states simulations.
For instance, cryptic (or hidden) allosteric sites sporadically
appear during conformational transitions of a protein in the
presence of a bound ligand. These hidden allosteric sites are
invisible in crystal structures and can be detected due to the
stabilization of the low-populated, higher-energy conformation
by certain compounds. Even with the advanced sampling
techniques and enormous computer power that is now available,
the experimental validation and confirmation of allosteric states
represents the key component to ensure robust quantitative
modeling and analysis of allosteric mechanisms.

NMR spectroscopy is a powerful method for studying protein
dynamics and allosteric mechanisms by probing multiple time
scales and detecting residue-specific conformational changes
associated with ligand binding (Boehr et al., 2006; Jarymowycz
and Stone, 2006; Mittermaier and Kay, 2006, 2009; Sprangers
et al., 2007; Korzhnev and Kay, 2008; Kalodimos, 2011; Kay,
2011, 2016; Rosenzweig and Kay, 2014; Lisi and Loria, 2016,
2017; Huang and Kalodimos, 2017; Jiang and Kalodimos,
2017). The micro- to milli-second time scale protein motions
measured in relaxation-dispersion experiments can provide
information about the distribution of conformational states
and thermodynamics and kinetics of allosteric protein changes.
Protein dynamics can also be investigated by NMR methods
other than traditional relaxation experiments. Residual dipolar
couplings are sensitive to motions occurring across a vast
time scale, ranging from seconds to faster than nanoseconds.
Conformational changes in isotopically labeled proteins upon
ligand binding can be detected by two-dimensional heteronuclear
single quantum coherence (HSQC) spectroscopy for large
protein systems (Sprangers et al., 2007; Korzhnev and Kay,
2008). Chemical shift mapping of protein residues upon ligand
binding provides a specific and precise fingerprint of allosteric
propagation effects that allows to detect site-specific binding
responses, characterize pathways of allosteric communication

and differentiate between competitive and allosteric inhibitor
binding (Grutsch et al., 2016; Berjanskii and Wishart, 2017;
Krivdin, 2017; Nerli et al., 2018). The NMR technologies
have enabled structural studies of conformational dynamic
processes at atomic resolution and are used to identify coupled
networks and communication pathways in allosteric proteins
(Swain and Gierasch, 2006; Smock and Gierasch, 2009; Shi and
Kay, 2014; Grutsch et al., 2016). Relaxation dispersion NMR
methods have enabled detection and characterization of rare and
energetically excited conformational states that play significant
role in dynamic activation of protein function and allosteric
mechanisms (Vallurupalli et al., 2012; Kalbitzer et al., 2013;
Munte et al., 2013; Sekhar and Kay, 2013, 2019; Williamson
and Kitahara, 2019). Characterization of low-lying excited
states of proteins by high-pressure NMR under equilibrium
conditions can allow for detection of reversible transitions that
are functionally relevant, providing means for probing dynamic
energy landscapes of allosteric mechanisms (Kalbitzer et al.,
2013; Williamson and Kitahara, 2019). High-pressure NMR can
help to identify these conformations, including low populated
functional states, and characterize their energies and kinetics
of conformational changes (Williamson and Kitahara, 2019).
By measuring redistributions in the conformational entropy,
pressure-dependent chemical shifts can help to sequester low-
populated functional states (Kalbitzer et al., 2013; Munte et al.,
2013; Williamson and Kitahara, 2019).

Recent years have witnessed the development of various
approaches that investigate NMR chemical shift perturbations
to identify potential allosteric networks and structural dynamics
in proteins (Selvaratnam et al., 2011, 2012; Robustelli et al.,
2012; Cembran et al., 2014). NMR chemical exchange
saturation transfer (CEST) experiments can provide adequate
characterization of slower exchange processes, identify invisible
states, and slow conformational exchange (Long et al., 2014;
Anthis and Clore, 2015; Yuwen et al., 2017). NMR chemical
shift covariance (CHESCA) and projection (CHESPA) analyses
can identify blocks of dynamically coupled residues collectively
forming allosteric interaction networks (Selvaratnam et al., 2011,
2012; Boulton et al., 2014, 2018; Boulton and Melacini, 2016).
Allosteric proteins subjected to specific perturbations (ligand
binding, mutations) cause residues that belong to the same
effector-dependent allosteric network to exhibit a concerted
response signal. CHESCA approach can detect patterns of
correlated changes in the chemical shifts between apo and holo
states due to perturbations and isolate allosterically coupled
regions (Figure 1). This method is particularly effective in
detecting allosteric networks within dynamic and partially
unstructured regions (Boulton and Melacini, 2016; Boulton
et al., 2018). NMR chemical shift perturbations have been
recently used in combination with Markov model network
analysis to reveal the dynamic flow of communication between
allosteric communities in the protein kinases (Aoto et al.,
2016). NMR-guided computational modeling can leverage
CHESCA approach for computation of the chemical shift
correlation matrices in the known allosteric states obtained
using crystal structures of complexes with allosteric ligands.
The experimental NMR chemical shifts can guide molecular
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FIGURE 1 | Integration of NMR experiments and computational approaches for experiment-guided analysis of allosteric states and mechanisms.

simulations and network analysis by reporting on blocks of
dynamically coupled residues forming allosteric interaction
networks. Through integration of these experimental data into
accelerated atomistic simulations, a more detailed mapping
of the functional landscapes and relevant allosteric states can
be achieved.

Protein systems can be efficiently simulated on longer time
scales by accelerated meta-dynamics approaches (Limongelli
et al., 2013; Palazzesi et al., 2013, 2017; Sutto and Gervasio,
2013; Bonomi and Camilloni, 2017; Kuzmanic et al., 2017;
Yang et al., 2018; Brotzakis and Parrinello, 2019) where the
experimental and computed NMR chemical shifts (Shen and
Bax, 2010; Han et al., 2011) are often used to determine
collective variables (Granata et al., 2013; Xia et al., 2013;
Palazzesi et al., 2017). NMR chemical shifts can be also
evaluated using structure-based CamShift approach (Kohlhoff
et al., 2009) with collective variables defined as the difference
between experimental and calculated chemical shifts. These
NMR-guided simulation techniques have enabled adequate

sampling of the conformational space and robust structure
reconstruction using experimental constraints (Robustelli et al.,
2010; Cavalli et al., 2011; Granata et al., 2013). NMR chemical
shift observables can be also used in combination with other
collective variables in meta-dynamics simulations to guide the
efficient exploration of allosteric states and functional transitions
(Kimanius et al., 2015; Ansari et al., 2016).

A combination of powerful and expensive NMR spectroscopy
equipment, biophysical techniques and protein expression
platforms is often required to obtain structures of allosteric
states for protein systems and experimental validation of short-
lived hidden functional conformations. Despite unique abilities
of NMR spectroscopy to detect highly dynamic events and
examine conformational landscapes of allosteric proteins, the
NMR applications for high-resolution reconstruction of allosteric
states are still fairly limited owing to complexity and cost
of these experiments. Hence, development of novel research
strategies based on innovative integration of NMR spectroscopy
and experiment-guided simulation approaches become especially
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important and clearly represent the most promising avenue for
further explorations going forward.

MARKOV STATE MODELS IN STUDIES OF

ALLOSTERIC REGULATION

Given the complexity of thermodynamic and kinetic factors
underlying allosteric regulatory events, the information-based
theory of signal propagation (Chennubhotla and Bahar, 2006,
2007; Chennubhotla et al., 2008) and stochastic Markov state
models (MSMs) (Prinz et al., 2011; McGibbon et al., 2014;
Pande, 2014; Shukla et al., 2015, 2017; Wu et al., 2016; Husic
and Pande, 2018) have become increasingly useful states-and-
rates network models with the continuously developing open
source software infrastructure (Cronkite-Ratcliff and Pande,
2013; Bowman, 2014; Bowman and Noe, 2014; Harrigan
et al., 2017). The MSMs have been successfully adopted for
describing the transitions between functional states during
allosteric events (Bowman et al., 2015; Hart et al., 2016;
Sengupta and Strodel, 2018). Combined with MD simulations,
MSM approaches can provide connectivity maps of states on
the free energy landscape, estimate the effect of allosteric
perturbations on the conformational equilibrium, and rigorously
describe kinetics of allosteric transitions. Recent advances in the
field have highlighted how MSM tools can help to recognize
structural and dynamic patterns of conformational ensembles,
identify functional allosteric states hidden in the conformational
ensembles and reconstruct allosteric mechanisms (Sengupta
and Strodel, 2018). Markov models have been employed for
understanding of the reaction mechanisms, thermodynamics
and free-energy landscape population shifts, the hierarchy of
timescales and the structural basis of allosteric events (Prinz et al.,
2011; Pande, 2014; Shukla et al., 2015, 2017; Zhou et al., 2017,
2019a,b).

When combined with appropriate general coordinates, MSM
could be a very powerful tool to reveal intrinsic states of the
proteins (Malmstrom et al., 2015). The important component
of the MSM approach in studies of allosteric systems is the
employment of robust dimensionality reduction techniques to
identify experimentally-informed collective variables that can
enhance sampling and provide efficient detection and separation
of functional allosteric states. Dimension reduction is often
performed using time-lagged independent component analysis
(TICA) (Schwantes and Pande, 2014; Perez-Hernandez and Noe,
2016; Noe and Clementi, 2017; Olsson et al., 2017). In these
approaches, the simulation samples can be divided into substates
assuming that conformations within each substate share kinetic
similarity and could interconvert rapidly (Bowman et al., 2009;
Zhou and Tao, 2018; Zhou et al., 2018a,b). t-SNE method was
recently developed as a dimensionality reduction method with
minimum structural information loss revealing that both one-
dimensional (1D) and two-dimensional (2D) models of t-SNE
method are superior to other tools in distinguishing functional
states of allosteric proteins (Zhou et al., 2018a,b). MSMs and
transition network models are widely applied to extract kinetic
descriptors from equilibrium simulations. Directed Kinetic

Transition Network (DKTN) which is a graph representation of
a master equation was developed for describing non-equilibrium
kinetics in allosteric proteins (Zhou et al., 2019a,b). Markov
modeling studies have also examined the timescales and intra-
molecular pathways implicated in allostery by introducingmaster
equation-based approach for allostery by population shift (Long
and Bruschweiler, 2011). Another study employed a graph-
theoretic approach and Markov stability analysis for modeling of
signaling pathways and characterization of allosteric sites (Amor
et al., 2014).

Current allosteric models have suggested that conformational
and dynamical distribution phase space accessible for allosteric
interactions in proteins is much larger than the experimentally
visible landscapes provided through crystallographic and NMR
experiments. As a result, external perturbations, such as
mutations and/or ligand binding that could significantly affect
conformational space and dynamic distribution of allosteric
proteins and can be employed as probes to explore functional
consequences of allosteric phenomena. The recently developed
Rigid Residue Scan (RRS) simulation method has been
shown as effective tool to perturb protein dynamics and
assess both conformational and dynamical redistributions in
allosteric systems (Kalescky et al., 2015, 2016). Using the RRS
method, the predictive models for light-oxygen-voltage-sensing
(LOV) domains allostery have been developed that identified
the experimentally verified mutants with distinctive allosteric
regulatory effects. The results of this analysis have suggested
how manipulating functional regions with light in LOV proteins
could link chemistry and allostery, providing a path for rational
engineering of LOV ontogenetic tools.

EXPLOITING ALLOSTERIC MECHANISMS

AND CRYPTIC BINDING SITES FOR

DISCOVERY OF ALLOSTERIC

MODULATORS

Multiscale simulations and MSM approaches have shown that
allosteric mechanisms may not necessarily imply a simple two-
state switch between the major inactive and active states, but
often represent a dynamic multilayered regulatory machine
in which binding and external perturbations could give rise
to a discrete spectrum of functionally relevant and yet often
hidden allosteric conformations exhibiting a range of activity
levels. Experiment-informed Markovian modeling studies have
shown a promise in adequately describing the hierarchy
of allosteric states by recognizing structural and dynamic
patterns of conformational ensembles and identifying functional
allosteric states that are hidden in the crystal structures of
allosteric proteins. Discovery of multiple hidden allosteric
sites by combining Markov state models and experiments has
been advanced and applied for antibiotic target TEM-1 β-
lactamase (Bowman et al., 2015). Bowman et al. used MSM
approach of a ligand-free protein to identify allosteric sites
based on several signatures of collective dynamics, namely the
presence of a pocket in a significant fraction of the population
and the presence of correlated motions between the newly
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discovered pocket and the active site which provides means
for allosteric communication between distant sites. The central
to this pioneering work is a close integration with labeling
experiments on TEM-1 β-lactamase that were performed to test
the existence of hidden allosteric sites as feasible targets for
allosteric drug design (Bowman et al., 2015). These illuminating
studies have shown for the first time the power of integrated
tools to identify, characterize and exploit hidden allosteric sites,
highlighting the robust nature of Markov modeling tools in
guiding the experiments. It has been argued that the wealth
of thermodynamic, kinetic and structural data derived from
MSMs can guide further development of experimental tools
for discovery of hidden allosteric states and invisible cryptic
allosteric binding sites.

The results suggest there are many undiscovered hidden
allosteric sites that can be characterized and targeted with
rational drug design (Cimermancic et al., 2016; Oleinikovas
et al., 2016; Beglov et al., 2018; Kuzmanic et al., 2020). The
hidden allosteric sites are invisible in crystal structures and
cryptic sites can emerge as a result of stabilization of rare,
high-energy states by small fragment probes. The allosteric
mechanisms of cryptic site formation may involve a delicate
interplay between induced-fit and conformational selection that
can be modeled using elaborate replica-exchange sampling
techniques (Oleinikovas et al., 2016). Collectively, experiment-
informed multiscale simulation studies have shown that these
tools can adequately describe complexity and stochasticity that
underlies the thermodynamics and hierarchy of allosteric states
and the molecular basis of allosteric mechanisms.

Recent advances in understanding allosteric regulation and
activation mechanisms of therapeutic signaling proteins such as
protein kinases have fueled unprecedented efforts to discover
targeted allosteric inhibitors. Allosteric kinase inhibitors do not
compete with ATP and could be more selective by binding to the
regulatory sites outside of the ATP binding site (Dar and Shokat,
2011). Allosteric kinase inhibitors can improve target specificity
and play an important role in the precision medicine initiative in
oncology. NMR and X-ray crystallography studies have revealed
a detailed atomistic picture of allosteric regulation in many
protein kinases, showing how interacting signaling modules
form a multilayered regulatory mechanism that exploits various
allosteric switch points powered by binding or phosphorylation
at different sites of the regulatory kinase complexes (Saleh et al.,
2017). Recently discovered allosteric inhibitors of the ABL kinase
GNF-2, GNF-5, and ABL001 (Asciminib) bind to the allosteric
pocket near the C terminus of the ABL kinase domain stabilizes
the inactive conformation of the kinase (Adrian et al., 2006;
Zhang et al., 2010). Using solution NMR, X-ray crystallography,
mutagenesis and hydrogen exchange mass spectrometry, it was
shown that allosteric inhibitors can induce long-range structural
and dynamic changes in the remote ATP-binding site (Adrian
et al., 2006; Zhang et al., 2010; Wylie et al., 2017; Schoepfer
et al., 2018). While the field of kinase inhibitors has enjoyed
unprecedented success manifested in multiple FDA approved
drugs, the development of allosteric kinase activators has been
lagging behind. The mechanisms underpinning allosteric action
of kinase activators can proceed by destabilization of the inactive
state, stabilization of the active state, facilitating of the active

state, and dynamic responses to phosphorylation in regulatory
sites (Dar and Shokat, 2011; Fang et al., 2013; Hu et al.,
2013; Cowan-Jacob et al., 2014). Structural and biochemical
studies of allosteric inhibitors and activators of ABL kinase
have indicated that structural environment near the allosteric
pocket can serve as a sensor of ligand binding, triggering either
stabilization of the inactive state or large conformational shift
and activation. Furthermore, synergistic actions of allosteric and
ATP competitive inhibitors have provided evidence that binding
can perturb dynamics at distal regions and elicit ligand-specific
communication between binding sites. Computational studies
have detailed how allosteric inhibitors and activators may exert
a differential control on allosteric signaling between binding
sites (Astl and Verkhivker, 2019a). It was found that while
inhibitor binding can strengthen the inhibitory ABL state and
induce allosteric communications directed from the allosteric
pocket to the ATP binding site, DPH activator may induce a
more dynamic kinase state and preferentially activate allosteric
couplings between the ATP and substrate binding sites (Astl and
Verkhivker, 2019a).

By combining computational and experimental approaches
a significant progress has been made in discovery of allosteric
modulators of Hsp90 and Hsp70 chaperones. Recent studies
have demonstrated that the C-terminal domain (CTD) of
Hsp90 is important for dimerization of the chaperone and
contains a second nucleotide binding site (Marcu et al., 2000a,b).
The bacterial gyrase inhibitor novobiocin, a member of the
coumeromycin family of antibiotics, is an Hsp90 antagonist
that was found to inhibit a second ATP binding site at the
C-terminus. Novobiocin binds the C-terminal nucleotide pocket
and displaces both ATP and geldanamycin, and inhibits Hsp90’s
function (Marcu et al., 2000a,b). The principal advantage of
C-terminal inhibition over N-terminal inhibition is the lack of
a heat shock response upon ligand binding at the C-terminus
of Hsp90. The first compounds that clearly differentiated
between the C-terminus of Hsp90 and DNA gyrase, and
converted a well-established gyrase inhibitor into a selective
Hsp90 inhibitor were initially reported by Donnelly and Blagg
(2008), Matts et al. (2011a), Matts et al. (2011b), Garg et al.
(2016, 2017a,b), Hall et al. (2016), Khandelwal et al. (2016),
and Kumar MV et al. (2018). The first experimental-guided
computational prediction and mapping of hidden allosteric sites
in Hsp90 combined NMR analysis, proteolytic fingerprinting
and photoaffinity labeling with multiscale modeling of Hsp90
interactions and docking (Matts et al., 2011a,b). Computational
predictions provided the first atomic resolution model of
Hsp90 binding with the C-terminal modulator that fully
satisfies the available experimental data and provide key insight
for the structure-based design of allosteric Hsp90 inhibitors.
In the subsequent study, a novel, computational approach for
the discovery of allosteric inhibitors based on the physical
characterization of signal propagation mechanisms was applied
to the Hsp90 chaperone (Morra et al., 2010). By characterizing
the allosteric hotspots of the inter-domain communication
pathways, dynamic pharmacophore models to screen small
molecules were developed. The computational predictions
were combined with experimental validation showing that
the selected molecules bind the allosteric sites of Hsp90,
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exhibit anti-proliferative activity in different tumor cell lines,
and destabilize Hsp90 client proteins (Morra et al., 2010).
The recent series of studies by Colombo and colleague have
reported results of computer-aided design and synthesis of new
allosteric ligands with micromolar to nanomolar anticancer
activities, demonstrating the power of computational approaches
in discovering allosteric modulators that can probe the
relationships between structure dynamics and function of the
Hsp90 proteins and regulatory complexes with client proteins
(Sattin et al., 2015; D’Annessa et al., 2017; Masgras et al., 2017;
Ferraro et al., 2019; Hu et al., 2020; Sanchez-Martin et al., 2020).
Computational targeting of the Hsp90 client proteins based
on the prediction of locally unstable substructures in proteins
was used to develop potent probes and peptides blocking
Hsp90-client interactions (Colombo et al., 2020). Recent
efforts have also produced small molecules that can inhibit
the inter-chaperone protein-protein interactions for Hsp70
chaperone (Gestwicki and Shao, 2019). These chemical probes
have shown a considerable promise in interrogating chaperone
networks in a range of models. Design, synthesis, and biological
evaluation of small molecules that regulate the interaction
between two Hsp70 and HOP chaperones reported the first class
of compounds that specifically modulate these protein-protein
interactions and inhibit protein folding events (Zaiter et al.,
2019). An integrated computational and experimental approach
probed allosteric mechanisms of Hsp70 binding, showing that
symbiotic employment of different research tools in dissecting
allosteric events in signaling proteins can be instrumental
to discover selective allosteric modulators of protein
functions (Rinaldi et al., 2018).

NEW DEVELOPMENTS IN MODELING OF

ALLOSTERIC REGULATION:

INFORMATION-THEORETICAL ANALYSIS

OF DYNAMIC FLOWS AND ENTROPY

TRANSFER IN PROTEINS

The emerging computational approaches that are now
employed for studies of allosteric states and mechanisms
include experiment-informed network approaches, Markovian
modeling and also the information-theoretical methods that
model dynamic flows and entropy transfer in complex systems.
By describing protein dynamics as a dynamically evolving
network of interconnected modules, the topological regularities
of the network structure can be identified, while filtering out
the relatively unimportant details. A modular description of
a network can be viewed as a compression of that network
topology, and the problem of community identification can
be viewed as a problem of finding an efficient compression of
the network structure and topology. Using this premise, the
challenge of identifying the community structure of complex
networks describing dynamic energy landscapes of allosteric
proteins can be reformulated as an information-theoretic
approach. Flow-based model methods operate through a
stochastic walk on the dynamics of the network rather than
on its topological structure, where communities consist of
dynamically interconverting conformations among which the

dynamic flow can persist for a long time and define functionally
significant states (Rosvall and Bergstrom, 2007, 2008, 2010, 2011;
Lancichinetti and Fortunato, 2009; Schaub et al., 2012; Rosvall
et al., 2014; Kawamoto and Rosvall, 2015). This information-
theoretical analysis can quantify the structure and dynamics
of the proteins from a unified perspective in which short term
dynamics is integrated into a long term behavior of the system
through a modular description of dynamic flows occurring
on a given network (Figure 2). In this approach, a random
walk is used as a proxy for the dynamic flow on the network.
The map equation method implemented by the Infomap
algorithm (Edler et al., 2017) can find the optimal community
partition of the dynamic conformational ensembles on different
time scales (derived from MD simulations or MSM maps of
macrostates) and identify dynamically persistent (as opposed
to topology-derived) communities of functional macrostates.
This dynamic flows method compresses the flows by aggregating
nodes (states) with rapid stochastic movements, revealing
network regularities as distinct dynamic modules in which
flows are contained on a given time scale. The map equation
has been also extended to the higher-order Markov dynamics
(Lancichinetti and Fortunato, 2009; Lambiotte et al., 2011,
2019; Schaub et al., 2012; Rosvall et al., 2014; Delvenne et al.,
2015; Salnikov et al., 2016). NMR chemical shift perturbations
have been combined with Markov modeling and information-
theoretical analysis to reveal the dynamic flow of communication
between allosteric communities and identify critical residue
nodes within the communication pathways in protein kinases
(Aoto et al., 2016).

This information-theoretical approach can also explore the
dynamic evolution of the hierarchical multi-layered interaction
networks and has a potential to uncover hidden allosteric states
associated with the different dynamic time scales (Figure 2).
Synchronization and causality are basic non-linear phenomenon
observed in diverse complex systems, including allosterically
regulated proteins. When studying allosteric mechanisms and
communications in proteins, it is important not only to
detect synchronized allosteric states, but also to identify causal
relationships between them. The knowledge of information-
theoretic measures is essential for the analysis of information
flow between allosteric states and presents a challenging
problem (Hlavácková-Schindler et al., 2007). The problem of
finding a measure that is sensitive to the directionality of
the flow of information has been explored using non-linear
Granger causality of time series (Ancona et al., 2004). An
asymmetric quantity termed Transfer Entropy (TE), has been
proposed to estimate the directionality of the coupling and
flow of information (Schreiber, 2000). The information-theoretic
approaches measuring causal influences in multivariate time
series (Hlavácková-Schindler et al., 2007; Ito, 2016; Darmon
and Rapp, 2017) can be also applied to studies of allosteric
protein states and mechanisms. The quantitative models of
information flow between two correlated processes (Schreiber,
2000) were adopted to quantify time delayed correlations and
entropy transfer between residue pairs as a measure of allosteric
coupling in proteins (Hacisuleyman and Erman, 2017a,b).
Through analysis of entropy transfer, one can determine residues
that act as drivers of the fluctuations of other residues, thereby
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FIGURE 2 | Overview of the information-theoretic framework for modeling of allosteric states and communications. The upper panel presents structure-based

community detection. The lower panel illustrates modeling of the dynamical flows on the MSM maps of states and hierarchical dynamics-based detection of allosteric

states and persistent communities.

determining causality in the correlations and identifying residues
that act as drivers of allosteric communication in proteins
(Hacisuleyman and Erman, 2017a,b). The relative entropy
concept from information theory was used as a quantitative
metric to develop a method for measurement of the population
shift during allosteric transitions (Zhou and Tao, 2019). The
developed relative entropy-based dynamical allosteric network
(REDAN) model was sucessfully applied to the second PDZ
domain (PDZ2) in the human PTP1E protein, providing an
accurate assessment of allosteic pathways (Zhou and Tao, 2019).
A rigorous mathematical framework offered by the information-
theoretical formalism of dynamic network flows combined with
biophysical simulations may prove to be useful for finding
modular patterns and dynamically persistent communities
of macrostates. The integration of this methodology with
NMR experiments can aid in the better identification of
functional allosteric states by matching evolution of dynamic
communities against the NMR chemical shift patterns and
biophysical experiments.

THE RISE OF THE MACHINES:

ALLOSTERIC MECHANISMS THROUGH

THE LENS OF MACHINE LEARNING

Over the last few years, advances in the ML field have driven
the design of new computational systems that improve with

experience and are able to model increasingly complex chemical
and biological phenomena (Goh et al., 2017; Korotcov et al., 2017;
Chen et al., 2018a; Popova et al., 2018; Dimitrov et al., 2019;
Mater and Coote, 2019). ML techniques have been successfully

applied to various computational chemistry challenges (Husic

and Pande, 2018), pharmaceutical data analysis (Burbidge
et al., 2001), protein–ligand binding affinity prediction problems

(Ballester and Mitchell, 2010, Decherchi et al., 2015), dissecting
molecular determinants of protein mechanisms and biochemical

reactions (Li et al., 2015, Cortina and Kasson, 2018, Shcherbinin
et al., 2019). Data-intensive ML modeling can be also applied

for detection and classification of allosteric protein states. The
integration ofMarkovmodeling, simulations andML approaches

into robust and reproducible computational pipelines with the

experimental feedback can be explored for atomistic modeling

and classification of allosteric states (Figure 3). Several ML
algorithms including decision tree and artificial neural networks

were employed in combination with MSM approaches to
develop classification models of functionally relevant allosteric

conformations that exhibit very similar tertiary structures (Zhou

et al., 2018a,b). Despite the lack of significant conformational

change between allosteric states of the second PDZ domain
(PDZ2) in the human PTP1E protein, which is a prototypical

example of dynamics-driven allostery, it was demonstrated that
both algorithms could build effective prediction models and

provide reliable quantitative evaluation of the contributions from
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FIGURE 3 | A general prototypical workflow of MSM approaches and ML modeling for detection and classification of functional allosteric states.

individual residues to the difference between the two allosteric
states (Zhou et al., 2018a,b). A high prediction accuracy and
sensitivity of the ML models to small structural and dynamic
changes have demonstrated the utility of these approaches in
probing subtle allosteric changes. Deep neural networks were
used in combination with MD simulations of the PDZ3 domain
of PDS-95 revealing that allosteric effects can be quantified as
residue-specific properties through two-dimensional property-
residue maps (Hayatshahi et al., 2019). These residue response
maps could accurately describe how different protein residues are
affected by allosteric perturbations exerted on the protein system.
Another ML-based analysis of protein dynamics was employed
to compare the binding modes of TEM-1 β-lactamase in different
catalytic states (Wang et al., 2019). While conventional analysis
methods including principal components analysis (PCA) could

not differentiate TEM-1 in different binding modes, neural
networkmodels resulted in an excellent classification scheme that
differentiated between closely related functional states (Wang
et al., 2019). This study has provided a unique insight into the role
and specific function of individual residues, highlighting their
contributions to the delicate thermodynamic balance between
allosteric states.

The remarkable rise of deep learning (DL) relying on the
robust function approximations and representation properties
of deep neural networks has provided us with new tools to
automatically find compact low-dimensional representations
(features) of high-dimensional data (LeCun et al., 2015).
DL models have achieved outstanding predictive performance
making dramatic breakthroughs in a wide range of applications,
including automatic speech processing and image recognition
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(Toledano et al., 2018; Kim et al., 2019; Hey et al., 2020; Wu
et al., 2020). In the words of Geoffrey Hinton who is the
founder of DL technologies “Deep Learning is an algorithm
which has no theoretical limitations on what it can learn; the
more data you give and the more computational time you
provide the better it is” (LeCun et al., 2015). Deep neural
network methods were successfully applied to predict intrinsic
molecular properties such as atomization energy based on simple
molecular geometry and element types (Rupp et al., 2012). DL
models were recently used for structure-functional prediction of
cancer mutations and functional hotspots of ligand binding in
cancer-associated genes (Agajanian et al., 2018). The developed
models can capture∼90% of experimentally validatedmutational
hotspots and yield novel information about molecular signatures
of driver mutations. In the recent studies, we have proposed
novel DL architectures capable of predicting functional protein
hotspots directly from raw nucleotide sequence information
(Agajanian et al., 2019). These studies have shown that DL
models can learn high importance features from raw genomic
information and produce reliable recognition and classification
of functionally significant cancer mutation hotspots. Moreover,
these DL models can often outperform computational predictors
of cancer mutations that are based on protein sequence and
structure features (Agajanian et al., 2019). The success of DL tools
in deciphering important functional phenotypes directly from
primary sequence information is encouraging as these models
can bypass the need for a large number of empirically-derived
functional and structural features. However, ML methods often
result in “black box” models with limited interpretability. There
has been an explosion of interest in transparent and interpretable
ML models to enable more efficient data mining and scientific
knowledge discovery (Holzinger et al., 2014). Our investigations
have also provided a roadmap how to combine DL predictions of
functional sites with subsequent biophysical analysis to aid in the
interpretability of ML models and facilitate their applications in
biological problems (Agajanian et al., 2018, 2019).

One of the primary goals of artificial intelligence (AI) is
to produce fully autonomous agents that interact with their
environments to learn optimal behavior, improving over time
through trial and error. An important mathematical framework
for experience-driven autonomous learning through interactions
with the environment is reinforcement learning (RL) (Sutton
and Barto, 1981; Barto, 1994; Botvinick, 2012; Hassabis et al.,
2017). While previous RL approaches lacked scalability and
were limited to fairly low-dimensional problems, a marriage
between deep neural networks and RL resulted in the new
rapidly evolving field of deep reinforcement learning (DRL) that
has achieved remarkable success in game-oriented and various
scientific applications, attaining a wide popularity and celebrity-
like following among researchers (Mnih et al., 2015; Silver
et al., 2017; Botvinick et al., 2019; Jaderberg et al., 2019; Senior
et al., 2019). DRL concepts leverage and symbiotically combine
neural network modeling with reinforcement learning, in which
optimization strategies are crafted based on the trade-offs and
competition between rewards and punishments rather than
conventional deterministic or stochastic exploration methods.
After years of serving as a mere inspiration rather than a practical

tool, DRL techniques have taken off overcoming scalability and
data limitation issues, and exploding into one of the most intense
areas of AI research. Recent years have witnessed the expansion
of DRL applications into biomedical research including but not
limited to biomedical informatics, drug discovery (Baskin, 2020;
Grebner et al., 2020), and toxicology (Chary et al., 2020).

The rationale for employing DRL technologies in studies
of allosteric regulation is to capitalize on conceptual and
algorithmic similarity between Markov decisions processes
(MDPs) which are at the core of RL methods and Markovian
modeling of allosteric states in proteins. Several methods
adopted RL-based conceptualization to develop MDP algorithms
for conformational mapping of the protein landscapes and
detection of functional allosteric states. REinforcement learning
based Adaptive samPling (REAP) algorithm has shown a
considerable promise by adopting RL principles in which an
agent (or learning algorithm) takes actions in an environment
(conformational protein landscape) to maximize a reward
function (Shamsi et al., 2018). In this study, the action is
associated with launching a pool of simulations along different
collective variables (reaction coordinates), with the reward
function proportional to the efficiency of a reaction coordinate
to sample space and detect unknown states, and the agent
selecting the directions which are most rewarding ultimately
leading to the optimal adaptive strategy (Shamsi et al., 2018).
Similar concepts were used to develop a goal-oriented sampling
method, termed fluctuation amplification of specific traits (FAST)
for rapid search of conformational space and identification of
distinct functional states by balancing search near promising
solutions (exploitation) and attempts to find novel solutions
(exploration). Inspired by the RL ideas, this methods runs pools
of simulations from starting points chosen based on the reward
functions that encourages discovery of new conformations with
selected physical properties (Zimmerman and Bowman, 2015;
Zimmerman et al., 2018). Generative neural networks have
been recently proposed as a tool for the discovery of efficient
collective variables that are fundamental for adaptive exploration
of the conformational landscapes and finding functional states
and hidden allosteric states by guiding sampling toward poorly
explored regions (Chiavazzo et al., 2017; Chen et al., 2018b;
Hernandez et al., 2018; Mardt et al., 2018). MD simulations were
combined with DL approach to train an autoencoder (Hinton
and Salakhutdinov, 2006) in order to generate new protein
conformations andmine conformational space of the bound state
from an ensemble of unbound protein structures (Degiacomi,
2019). Another interesting study employed autoencoder-based
detection algorithm to explore dynamic allostery induced by
ligand binding based on the comparison of time fluctuations
of distance matrices obtained from MD simulations in ligand-
bound and unbound forms (Tsuchiya et al., 2019). In this
method, the autoencoder neural network is first trained on
the time fluctuations of protein motions in the apo form, and
the trained autoencoder is then applied to analyze patterns of
fluctuations in the holo form. Using this elegant implementation
of RL approach, the authors mapped allosteric communication
networks of the dynamically coupled residues and ligand pockets
in the PDZ2 domain induced by binding (Tsuchiya et al.,
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2019). Allosteric pocket crosstalk defined as a temporal exchange
of atoms between adjacent pockets in the MD trajectories
can produce a fingerprint of hidden allosteric communication
networks (La Sala et al., 2017). The recent RL-inspired studies of
allosteric systems suggested that simulation-drivenMLmodeling
and analysis of conformational landscapes may uncover rarely-
populated functional states and shed the light on the key features
of allosteric communications between visible and hidden binding
pockets in proteins.

DRL is a continuous trial-and-error based sampling-learning
process where the agent tries to apply different combination of
actions on a state to find the highest cumulative reward. Although
DRL methods can tackle a wide range of learning problems
with a rigorous mathematical formulation, the challenges posed
by the properly crafted interplay between rich data acquisition
and delayed rewards remains a significant impediment to
the widespread of RL methods in many application domains,
including prediction of allosteric protein states and mechanisms.
The challenges of DRL approaches often lie in the art of designing
robust reward function. The hybrid reward functions with a
weighted combination of topological, dynamic, and network-
based rewards describing different characteristics of allosteric
states may represent a potentially interesting strategy to mitigate
the inherent deficiencies of RL and DRL methods. For this, the
rewards may be treated as neural networks trained on the set of
known allosteric states. A new saga in the rapidly evolving DRL
field was the development of episodic-based DRL algorithms that
estimate the value of actions and states using episodic memories
where the agent stores each encountered state along with the sum
of rewards obtained during the n time steps (Botvinick et al.,
2019). The episodic memory-based models can be extended to
develop curiosity reward bonus functions for efficient exploration
of the environment and detecting states in the poorly accessible
regions (Han et al., 2020). In this context, DRL framework
that iterates episodes of DRL and community decomposition of
the dynamic network flows on the conformational landscapes
may enhance the interplay between sampling and learning, thus
facilitating identification of hidden allosteric states. Different
from traditional DRL approaches, this strategy can consider
communities of states as intermediate stages in the learning
process, rather than unique states, which could potentially lead
to a more robust and versatile learning procedure (Figure 4).

Deep neural network (DNN)models, most notably variational
autoencoder (VAE) (Gomez-Bombarelli et al., 2018) and
generative adversarial networks (GANs) (Sorin et al., 2020;
Zhong et al., 2020) have proven fruitful in chemical discovery
and molecular design of novel synthesizable chemical probes.
Automated chemical design approaches employed VAE neural
networks for a data-driven continuous representation of
molecules (Gomez-Bombarelli et al., 2018). GAN models are
often considered as one of the most significant advances in the
field of machine learning, and their success has generated a
considerable momentum with growing number of applications
including molecular design of novel chemical probes and
materials (Guimaraes et al., 2017; Kadurin et al., 2017a,b;
Olivecrona et al., 2017; Yu et al., 2017; Gupta et al., 2018;
Polykovskiy et al., 2018; Putin et al., 2018a,b) (Figure 4).

By leveraging sequence data generation (SeqGAN) approach
(Yu et al., 2017); Objective-Reinforced Generative Adversarial
Networks (ORGAN) (Guimaraes et al., 2017) combines GANs
and RL to apply the GAN framework to molecular design with
domain-specific rewards and feedback. Of particular importance
is MolGAN, an implicit, generative model for small molecular
graphs that circumvents the need for expensive graph matching
procedures and adapts GAN approach to operate directly on
graph-structured data (Cao and Kipf, 2018). CycleGAN provides
unpaired image-to-image translation using Cycle-Consistent
Adversarial Networks (Zhu et al., 2017). MolCycleGAN, which
extended the CycleGAN framework with an added loss and extra
encoding network, maps from distribution to distribution on
unpaired samples, so it can amplify the size of our dataset in
the process by taking all of the pairing combinations rather than
relying on a training dataset of predefined molecule-inhibitor
pairs (Maziarka et al., 2020). The advantage of MolCycleGAN
is the ability to learn transformation rules from the sets of
compounds with desired and undesired values of the considered
property. The methodological and algorithmic progress in GAN
applications to molecular discovery has been further catalyzed
by the development of several comprehensive benchmarking sets
embedded into a sophisticated cheminformatics infrastructure
supporting open-source implementations of molecular features
and learning algorithms (Olson et al., 2017; Polykovskiy et al.,
2018; Racz et al., 2019). Despite recent developments in GANs
models, the applicability of these tools for molecular design
continues to present a promise rather than a validated strategy,
lacking systematic and comprehensive tools to target specific
protein families and interrogate molecular mechanisms. There is
also growing interest in generative models which can incorporate
both chemical and structural information about small molecules
and their interactions with protein targets.

SYNERGIES AND LIMITATIONS OF

COMPUTATIONAL APPROACHES FOR

QUANTITATIVE MODELING OF

ALLOSTERIC REGULATION

A systematic interdisciplinary effort is needed to leverage
the burgeoning knowledge about allosterically regulated
proteins in the development of experiment-informed data-
oriented computational tools for prediction of allosteric
mechanisms and allosteric drug discovery. The main advantage
of experiment-informed Markovian modeling is the ability of
this technique to adequately describe hierarchy of allosteric
states and the molecular basis of allosteric mechanisms.
Using a combination of NMR-guided simulations and MSM
approach, we can determine structural and dynamic patterns
of conformational ensembles and identify functional allosteric
states that are hidden in the conformational ensembles. The
critical challenges of these methodologies for modeling allosteric
regulation phenomenon is selecting a set of experimentally-
informed collective variables defined by the intrinsic dynamics
to provide the optimal projection of the landscape into
functional allosteric states. In this context, the newly emerging
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FIGURE 4 | An overview of data-intensive ML platform for allosteric research and allosteric drug discovery.

information-theoretical flow approaches and modeling of
entropy transfer in proteins can represent viable complementary
tools for adequate reconstruction of functional conformational
landscapes in proteins. The proposed integration of biomolecular
simulations and NMR experiments with machine learning into a
comprehensive research platform is expected to produce a toolkit
of approaches for prediction of allosteric states and mapping of
allosteric mechanisms.

Network algorithms, information-theoretical approaches and
DL models may be time-consuming and require a systematic
exploration and engineering of features and neural net
architectures with a constant and evolving feedback from
NMR experiments to validate and confirm predictions. Several
different ML architectures can be further explored to address
potential efficiency and convergence problems including transfer
learning, imitation learning, episodic control and dueling
networks. To achieve synergies and robust integration of
emerging technologies for predicting allosteric regulation
mechanisms, a new open science infrastructure development
is required which implies extensive sharing of experimental

and computational data, software and knowledge across many
discipline. Through integrative studies of allosteric mechanisms
empowered by biophysical and data science approaches we
can expand the toolkit of to dissect and interrogate allosteric
mechanisms and functions in the therapeutically important
protein families.

CONCLUSION

The growing body of computational and experimental studies
has shown that integration of data-driven biophysical
and ML approaches can bring about new drug discovery
paradigms, opening up unexplored venues for further
scientific innovation and unique biological insights. The
integration of computational and NMR approaches into a
novel research platform that explores experiment-informed
physical simulations, Markov state modeling, information-
theoretical formalism of dynamic allosteric networks under
the unified umbrella of machine learning will key to dissect
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molecular rules of allosteric regulation. The innovative
cross-disciplinary approaches that expand the knowledge,
resources and tools for studies of allosteric regulation can
promote a broader usage of new technologies to understand
and exploit allosteric phenomenon through the lens of
chemical biology, material science, synthetic biology and
bioengineering. By developing an open science infrastructure
for machine learning studies of allosteric regulation and
validating computational approaches using integrative
studies of allosteric mechanisms, the scientific community
can expand the toolkit of approaches and chemical probes
for dissecting and interrogation allosteric mechanisms in
many therapeutically important proteins. The development
of community-accessible tools that uniquely leverage the
existing experimental and simulation knowledgebase to enable
interrogation of the allosteric functions can provide much
needed impetus to further experimental technologies and enable
steady progress.
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K-Ras is one of the most frequently mutated oncogenes in human tumor cells. It consists
of a well-conserved globular catalytic domain and a flexible tail-like hypervariable region
(HVR) at its C-terminal end. It plays a key role in signaling networks in proliferation,
differentiation, and survival, undergoing a conformational switch between the active and
inactive states. It is regulated through the GDP-GTP cycle of the inactive GDP-bound
and active GTP-bound states. Here, without imposing any prior constraints, we mapped
the interaction pattern between the catalytic domain and the HVR using Molecular
Dynamics with excited Normal Modes (MDeNM) starting from an initially extended HVR
conformation for both states. Our sampling captured similar interaction patterns in
both GDP- and GTP-bound states with shifted populations depending on the bound
nucleotide. In the GDP-bound state, the conformations where the HVR interacts with
the effector lobe are more populated than in the GTP-bound state, forming a buried
thus autoinhibited catalytic site; in the GTP-bound state conformations where the HVR
interacts with the allosteric lobe are more populated, overlapping the α3/α4 dimerization
interface. The interaction of the GTP with Switch I and Switch II is stronger than that of
the GDP in line with a decrease in the fluctuation upon GTP binding.

Keywords: K-Ras4B, KRas4B, autoinhibition, molecular dynamics, normalmodes, conformational search,MDeNM

INTRODUCTION

Members of the Ras (Rat sarcoma) family of small GTPases are conformational switches involved
in signal transduction originating from receptor-mediated extracellular signals to the nucleus,
controlling cellular proliferation, differentiation, and survival (Hernandez-Alcoceba et al., 2000;
Cherfils and Zeghouf, 2013; van Hattum and Waldmann, 2014).

Ras signaling is determined by the GTPase cycle: inactive GDP-bound and active GTP-bound
states, which change the conformation of Ras and its affinity to bind to downstream effectors—
such as Raf kinase (Pacold et al., 2000; Fetics et al., 2015) and phosphatidylinositol 3-kinase
(PI3K) (Pacold et al., 2000). The intrinsically very slow GDP/GTP exchange and GTP hydrolysis
rates are increased by two types of regulatory proteins. Guanine nucleotide exchange factors
(GEFs) catalyze the release of GDP which is followed by GTP binding, and the GTPase activating
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proteins (GAPs) catalyze GTP hydrolysis (Bos et al., 2007),
resulting in GDP-bound conformations. Oncogenic mutations
lock Ras in its active, GTP-bound conformation, being always
available to downstream effectors, which leads to uncontrolled
cell growth and cancer (Prior et al., 2012). Mutant GDP-bound
proteins may also shift their conformations to a GTP-bound-
like state.

Three main isoforms of human Ras, N-, H-, and K-Ras,
the latter having two splice variants, K-Ras4A and K-Ras4B,
are known. K-Ras4B has been observed at higher levels (Koera
et al., 1997; Plowman et al., 2003) and plays an essential role
in cell growth and development. All Ras isoforms share a
highly conserved catalytic domain (sequence identity >89%)
and a flexible, C-terminal hypervariable region (HVR, sequence
homology < 15%) (Castellano and Santos, 2011). For structural
details see Figure 1.

To anchor in the membrane and signal, K-Ras4B undergoes
post-translational modifications (PTM), including methylation
and farnesylation of its CAAX C-terminal box at Cys-185. This
farnesyl group together with the lysine-rich HVR direct the
interaction of K-Ras4B with the negatively charged lipids of the
inner face of the plasma membrane (Brunsveld et al., 2009; Jang
et al., 2015, 2016a; Prakash et al., 2016; Prakash and Gorfe, 2017).
Emerging nuclear magnetic resonance (NMR) spectroscopy data
and computational studies show that in solution, the catalytic
domain and the HVR can interact (Abraham et al., 2009; Lu
et al., 2015). NMR measurements showed that the HVR of
H-Ras dynamically interacts with the catalytic domain, which
exhibits increased flexibility in the truncation of the HVR
(Thapar et al., 2004). Based on NMR interaction patterns,
recent computational studies provided several possible models
of the complete K-Ras4B in solution (Chavan et al., 2015;

FIGURE 1 | K-Ras4B secondary structure elements. GDP and farnesyl are
represented in CPK representation, Mg2+ with vdW sphere.

Lu et al., 2015; Jang et al., 2016a). The molecular dynamics
(MD) simulations showed that full-length GDP-bound K-Ras4B
could promote an autoinhibited state through HVR-catalytic
domain interactions, while looser interactions have been detected
for the GTP-bound state, which could release autoinhibition.
Autoinhibition is typically a transient state, which explains the
difficulties in obtaining its structure experimentally, e.g., by NMR
or crystallography. Autoinhibition protects against spurious
activation and proteolysis (reviewed in Nussinov et al., 2018).
Even if the interaction of the autoinhibiting segment is weak, its
large population at the active/functional site effectively shields
it, which explains why oncogenic drivers often aim to release it
(Nussinov et al., 2020).

Here, we perform a conformational space mapping of the
full-length GDP- and GTP-bound K-Ras4B in solution without
imposing any prior knowledge or constraints on the catalytic
domain-HVR interactions. We start from an extended HVR
conformation and use a computational method that combines
MD and the normal mode approach, called Molecular Dynamics
with excited Normal Modes (MDeNM) (Costa et al., 2015). In
agreement with previous studies, we found that GDP-bound
full-length K-Ras4B favors an autoinhibited conformation, while
in solution the GTP-bound protein favors a conformation
where the autoinhibition is lifted leading to an active state.
The autoinhibition in the GDP-bound state is realized by the
interaction of HVR with Switch I and Switch II at the effector
lobe, thereby blocking the effector binding site. In turn, the
conformations populated in the GTP-bound state exhibit an
HVR interaction with α4 at the allosteric lobe, thus blocking
the α3/α4 dimerization site. In the GDP-bound state, these
conformations hardly exist. In particular, our results show that
compared to the GDP-bound form, the interaction of the GTP
nucleotide is stronger with both Switch I and Switch II in
agreement with the decrease in fluctuation upon GTP binding,
and the measured binding affinity, Kd values (John et al., 1993).

MATERIALS AND METHODS

Molecular Dynamics with excited Normal Modes (MDeNM)
(Costa et al., 2015) simulations were carried out on full-length
(residues 1-185) farnesylated and methylated (FME) K-Ras4B
in its inactive GDP-bound and active GTP-bound forms. The
starting coordinates of the catalytic domain were taken from
crystal structures with PDB ID 4OBE (Hunter et al., 2014) and
3GFT, respectively. For the active state, the GTP analog GppNHp
was modified to GTP, and His61 was mutated back to the
native Gln61.

MDeNM simulations and analysis were performed with
CHARMM (Brooks et al., 2009) using CHARMM all-atom
additive force field C36 (Best et al., 2012) while conventional
MD simulations were carried out with NAMD (Phillips et al.,
2005) using the same CHARMM force field mentioned above.
The GDP/GTP parameters were combined from the ADP and
guanine parameters existing in CHARMM, while the parameters
for farnesylated Cys were taken from our previous studies (Jang
et al., 2016b).
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Ourmain objective in carrying out theMDeNM simulations is
a deep exploration of the conformational preferences of the two
Ras forms. The structures of the catalytic domain deposited in
Protein Data Bank differ in length (e.g., in 4EPT the structure
is determined up to amino acid 166; in 3GFT up to 167, in
4OBE to 169), indicating that the C-terminal amino acids have
higher fluctuation. Consequently, for the GDP bound state we
created three initial structures with different HVR orientations.
In these structures, the HVR was built starting at residues 167,
168, and 169, respectively, from the internal coordinate table
of CHARMM, yielding a linear conformation distant from the
catalytic domain. In order to relax the HVR, the first 100 steps
of steepest descent were followed by 1,000 steps of adopted basis
Newton-Raphson energy minimization. Then the HVR of these
structures was heated to 300K in 10 ps followed by a 90 ps
equilibration while the catalytic domain was kept fixed. This
procedure leads toHVR conformations that face different sides of
the catalytic domain, as can be seen in Supplementary Figure 1.
In order to have the same initial HVR conformations to study the
nucleotide dependent catalytic domain-HVR interactions in an
unbiased manner, the same three orientations of the HVR were
applied to the GTP-bound state using 3GFT for the structure of
the catalytic domain as described above.

The six obtained structures were solvated using CHARMM-
GUI (Jo et al., 2008; Lee et al., 2016). In all cases, a rectangular
box containing TIP3 water molecules extending 15 Å in all
directions from the surface of the protein was generated with a
concentration of 0.10M NaCl. For the energy calculations, the
dielectric constant was set to 1. The Particle Mesh Ewald (PME)
method was used to calculate the electrostatic interactions with
a grid spacing of 1 Å or less having the order of 6; the real
space summation was truncated at 12.0 Å, and the width of
the Gaussian distribution was set to 0.34 Å−1. Van der Waals
(vdW) interactions were reduced to zero by “switch” truncation
operating between 10.0 and 12.0 Å.

Solvated systems were energy minimized with progressively
decreasing harmonic restraints: first, the steepest descent was
used with the harmonic force constant decreased every 500
steps of 10, 1, and 0.1 kcal/mol/Å2, followed by 200 steps
of conjugate gradient with a 0.1 kcal/mol/Å2 force constant.
Unrestrained minimization was then applied for 100 steps with
the steepest descent, 200 steps with the conjugate gradient,
and 1,000 steps with the adopted basis Newton-Raphson
method. The energy-minimized structures were heated and
equilibrated at 300K for 200 ps in an NVT ensemble, followed
by a 5 ns NPT run at a pressure of 1 atm. The Langevin
dynamics was used with the damping coefficient of 1 ps−1,
a piston oscillation period of 50 fs, and a piston oscillation
decay time of 25 fs. The integration time step was set to
2 fs.

MDeNM Simulations
In order to map the conformational space more efficiently
than with classical MD simulations, the Molecular Dynamics
with excited Normal Modes (MDeNM) (Costa et al., 2015)
method was used. The normal modes necessary for the MDeNM
simulations were calculated by considering the final structures

resulting from the 5 ns MD run for both GDP- and GTP-bound
FME full-length K-Ras4B. The energy of the two structures was
minimized using the steepest descentmethod, the harmonic force
constant decreasing every 1,000 steps, adopting the values 10,
1, 0.1, and 0 kcal/mol/Å2, followed by 50,000 steps of adopted
basis Newton-Raphson method. After the energy minimization,
the normal modes were calculated using the VIBRAN module
of CHARMM. For the MDeNM calculations, based on their
RMSF contribution, the 10 lowest frequency normal modes
were taken.

In the second step, the final structure of the 5 ns MD
run for all 3 models of both GDP- and GTP-bound states
(in total six systems) was considered as initial structures for
MDeNM simulations: randomized linear combinations of the
first 10 lowest frequency normal modes were generated, giving
excitation directions. These excitation directions were then used
to kinetically excite the systems during MD simulations yielding
to different replicas. The excitations were carried out during the
MD simulations with successive kinetic energy injection along
the direction of the combined mode in the form of velocity
increment equivalent to an overall 10 K temperature increment of
the system. Excitations were performed in the same direction at
every 2,500 steps of the MD simulation, giving a relaxation time
of 5 ps for the system in each excitation cycle. The dissipation of
the energy inserted in each cycle was checked by to ensure that
there is no appreciable accumulation of kinetic energy along the
excitation direction. Each period of excitation-relaxation yields a
given conformation. The other parameters of the MD remained
the same as those described above.

In total 264 MDeNM replica simulations were carried out
corresponding to different NM combination directions for the
three models in GDP- and GTP-bound states. In order to ensure
an exhaustive search of the conformational space, the newly
generated replicas were compared to the previously accepted
ones and were only kept if the root-mean-square deviation
(RMSD) value—between the structures displaced by 1 Å along
the mode combinations—was greater than 1.65 Å. 32 excitations
per replica were generated, resulting in 8,448 structures for each
of the systems.

MD Simulations
In order to compare the conformational space mapped by
MDeNM to the conformations accessible by conventional
MD simulation, three parallel 200 ns long MD simulations
were performed for both the GDP- and GTP-bound states,
having the same starting structures as the MDeNM simulations
(i.e., the final structure of the 5 ns equilibration run). The
parameters for the 200 ns run were identical to those of the 5
ns equilibration.

Interaction Energy Calculations
The binding preferences of the HVRwith the allosteric or effector
lobe regions in the GDP- or GTP-bound K-Ras4B were analyzed
by comparing distributions of HVR interaction energies, 1EHVR.
The interaction energy of a given structure was evaluated as
a difference between the energies of bound and a reference
unbound state in which the HVR is completely detached, as
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given by

1EHVR(a/e) = Ebound(a/e) −
〈

Enon−bound

〉

(1) (1)

where Ebound(a/e) is the HVR interaction energy of a structure
within either the allosteric (a) or effector (e) lobe and
<Enon−bound> the reference energy of its unbound state. The
interaction energy is evaluated as a sum of pairwise electrostatic

and vdW potential energy contributions between the HVR and
its environment including the protein and the solvent by using
CHARMM36 force field. The interaction energy of the reference
state, in which the HVR is exposed exclusively to the solvent
composed of explicit water molecules and ions, is obtained as
an average over a sufficiently large number of conformations
(15,500) to ensure a converging value. The simulations were
carried out using the Hungarian KIFU supercomputing facility.

FIGURE 2 | Distance-based interaction map between the catalytic domain and the HVR of K-Ras4B. (A) GDP-bound, (B) GTP-bound state. (C) 3D structure of
K-Ras4B with the effector lobe and (D): the allosteric lobe in front. The nucleotide and the farnesyl group are represented as CPK, Mg2+ as VDW sphere. Structural
regions of the catalytic domain color-coded along the y-axis of (A) and (B) are mapped with identical coloring onto the C and D part of the figure.
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RESULTS AND DISCUSSION

Interactions of the HVR With the Catalytic
Domain
In order to identify the interacting residues of the catalytic
domain and the HVR, a distance-based criterion was applied to
the conformations generated byMDeNM: if the distance between
two heavy atoms of a residue within the catalytic domain and a
residue in the HVR was less than 5.5 Å, these two residues were
considered interacting (Bowerman and Wereszczynski, 2016).
Based on this criterion, our analysis shows that the interacting
catalytic domain-HVR residues detected by MDeNM contain
all the interacting residues identified by NMR measurements
(Thapar et al., 2004; Chavan et al., 2015; Lu et al., 2015; Jang et al.,
2016a).

Figure 2 shows the interaction map based on the calculations

described above for both the GDP- and GTP-bound structures.

The number of interactions within a given population goes from

white (no structure with such an interaction) to black (maximum

number of structures with the given interaction), as indicated in
the legend. On the x-axis HVR residue numbers, on the y-axis
those of the catalytic domain are presented. Figure 2A shows the
pairs of interacting residues for the GDP-bound state, Figure 2B
those for the GTP-bound state. In order to identify the structural
elements of the catalytic domain which interact with the HVR,
different regions are designated by bars of different colors on
the vertical edges of the graphs. The same color coding is kept
for Figures 2C,D, where the three-dimensional structure of the
protein is represented from different views.

A striking difference can be observed between the GDP-
and GTP-bound states. In the GDP-bound form, the HVR
shows extensive interactions with Switch I (blue) (including the
effector binding site), β1, β2, and β3 (green), and Switch II (red)
(Figure 2A), while in the GTP-bound form, these interactions are
either sparsely populated or non-existent (Figure 2B). This is in
agreement with previous observations (Chavan et al., 2015; Lu
et al., 2015; Jang et al., 2016a), demonstrating that in the GDP-
bound state, the HVR hinder approach to the effector binding

FIGURE 3 | Distributions of interaction energies between the HVR and the catalytic domain of K-Ras4B, within the GDP- and GTP-bound population. HVR interactions
(A) with the effector lobe in the GDP-bound (black) and GTP-bound (red) state; (B) with the allosteric lobe in the GDP-bound (gray) and GTP-bound (wine) state; (C)
with the effector (black) and the allosteric (gray) lobe in the GDP-bound state; and finally (D) with the effector (red) and the allosteric (wine) lobe in the GTP-bound state.
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site, by overlapping with Switch I and Switch II, brings the system
to autoinhibition (Figure 2C).

For the GTP-bound state, there are interactions between
the very first residues (170-173) of the HVR and the N-
terminal part of the catalytic domain (residues 1-6) and
the loop, L3, (residues 47-50)—which connects β1 and β2
strands (noted in green) (Figure 2B). However, the interactions
between the second part of the HVR and Switch I (blue)
and Switch II (red) are sparsely populated with only the
last residues at the farnesylated C-terminal end of the HVR
interacting with this region. This indicates that in the GTP-
bound state, the C-terminal end of the HVR shifts toward
the allosteric lobe or is detached from the catalytic domain
(Figure 2D), but the interaction with the effector lobe is very
weakly populated.

The olive-colored region shows the HVR interaction with the
C-terminal end of α3 and the loop between α3-β5, while the
yellow-colored region shows the HVR interaction with the C-
terminal end of α5 (Figures 2C,D). The main difference between
the GDP- and GTP-bound states is that in the GDP-bound form,
the N-terminal region of the HVR interacts with α3/α5, and
the C-terminal region interacts with the Switch II region at
the effector lobe. However, in the GTP-bound form, the more
populated interactions extend to the C-terminal region of the
HVR that interacts with the catalytic domain residues located in
spatial proximity of the N-terminal region of HVR, such HVR
forming a loop by itself.

Unlike the interacting regions in the effector lobe, HVR
interactions at the regions designated by purple and orange of
the allosteric lobe are almost non-existent in the GDP-bound
state, while they are strongly present in the GTP-bound form.We
observed that HVR residues, Asp173, Lys175, and Lys177 interact
with residues 135-142 of α4 (noted purple), loop L9 and β6 (noted
orange) in the catalytic domain. Interestingly, this region is part
of the allosteric Ca2+-acetate binding site described by (Buhrman
et al., 2010).

A possible dimerization interface of K-Ras4B was observed
at the α3/α4 region of the allosteric lobe (Muratcioglu et al.,
2015). In this dimerization mode, the effector binding sites are
exposed, allowing the recruitment of Raf and its dimerization,
which is a prerequisite for its activation (Inouye et al., 2000).
Our results indicate that the HVR-α4 interaction, which is almost
non-existent in the GDP-bound form, but highly populated in the
GTP-bound state, disfavors dimerization at this helical interface
in the GTP-bound form in solution. On the other hand, in the
GDP-bound state with the HVR associating with the effector
binding region, it blocks the β-sheet dimer formation interface
(Muratcioglu et al., 2015). These results may explain why GTP-
bound K-Ras4B is predominantly monomeric in solution, even
at high protein concentrations. In vivo, in the presence of the
membrane, the HVR largely associates with the membrane in
the GTP-bound state, so this GTP-bound inhibitory scenario
is unlikely to play a significant role. Nonetheless, it still
provides some insight into the inherent tendencies of the
HVR behavior.

To understand the differences in the sparsity of the distance
map between GDP- and GTP-bound states, we calculated the

interaction energy between the HVR and the catalytic domain,
1EHVR. The conformations generated by the simulation protocol
(above) were divided into three groups: (i) conformations with
the HVR detached from the catalytic domain giving rise to the
reference state, (ii) conformations with the HVR interacting with
the effector lobe of the catalytic domain, and (iii) conformations
with the HVR interacting with the allosteric lobe of the catalytic
domain. Interaction energies of the HVR were then calculated in
the presence of explicit solvent for all conformations in the three
groups according to Equation (1).

The HVR interaction energy distributions illustrate a higher
relative frequency of structures when the HVR interacts with the
effector lobe within the GDP- than the GTP-bound population
with respect to their whole structural population (Figure 3A).
In contrast, higher relative frequency can be seen of the HVR
interaction with the allosteric lobe in the GTP-bound state
(Figure 3B). This suggests that the HVR of GDP-bound K-
Ras4B favors the interaction with the effector lobe (Figure 3C),
while that of GTP-bound K-Ras4B tends to reside in the
allosteric lobe (Figure 3D), resulting in the differences in
the sparsity between the lower parts of the distance based
interaction maps (Figures 2A,B). Figure 3A also shows that
the GDP-bound interaction energy distribution falls deeper,
indicating stronger interactions of the HVR with the effector
lobe within the GDP-bound than the GTP-bound population.
While (as Figure 3B shows) in the HVR interaction with the
allosteric lobe, we observe that for both GDP- and GTP-
bound states the peaks of the distributions are located close
to each other, indicating no difference in interaction energy
of the HVR with the allosteric lobe irrespectively of the
bound nucleotide.

In summary, whereas in the GDP-bound state interactions
with the effector lobe are more populated and are shifted toward
the low energy values, in the GTP-bound state, it is the opposite:
structures interacting with the allosteric lobe are much more
numerous than those interacting with the effector lobe, and the
interaction energy of HVR with the allosteric lobe falls deeper
than with the effector lobe.

Interactions of the Nucleotides With the
Switch Regions
In order to characterize the interaction of the nucleotides with the
catalytic site, the root-mean-square fluctuation (RMSF) of the Cα

atoms on the MDeNM generated conformations for both GDP-
and GTP-bound forms was calculated (Figure 4). This agrees
with the previous findings: in the calculations, we observed that
the GDP-bound form exhibits a higher RMSF at both Switch I
and Switch II regions. As expected, the HVR (residues 167-185)
has a considerably larger fluctuation in both systems compared
to the catalytic domain.

To elucidate the behavior of the switch regions from an
energetic point of view, the interaction energies between the
nucleotides (with the coordinating Mg2+: Mg2+-GDP/Mg2+-
GTP) and the Switch I/Switch II regions were calculated for
the MDeNM conformations. In the interaction with Switch I
(Figure 5A), the interaction energy of Mg2+-GTP is considerably
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FIGURE 4 | RMS fluctuation of Cα atoms on MDeNM generated
conformations of GDP- (black) and GTP-bound (red) K-Ras4B. For the better
visualization of the catalytic domain regions the y-axis is enlarged up to and
cropped at 15 Å.

more favorable than that of Mg2+-GDP, suggesting the well-
known stiffening conformation of Switch I in the active form,
which is more available to downstream effectors (Cherfils
and Zeghouf, 2013; Lu et al., 2016). In the interaction with
Switch II (Figure 5B), the Mg2+-GTP-bound population shows
two peaks in its distribution, corresponding to two different
conformational states, both falling deeper than that of the Mg2+-
GDP, which is in agreement with the decrease of RMSF in
the GTP-bound form and explains the stronger binding of
GTP vs. GDP (John et al., 1993).

As seen in Figure 5B, the two conformational states of
Mg2+-GTP/Switch II are likely to be identical to state 1
(higher energy conformation) and to state 2 (lower energy
conformation) (Spoerner et al., 2010), which are in chemical
equilibrium in solution. State 1 was identified as having a
low affinity for effectors and low intrinsic hydrolysis, and
state 2 as an “effector-binding state” showing high affinity for
effectors and being stabilized by them. Figure 6 shows the
environment of a conformation from state 1 and from state 2
with superimposed nucleotides. The conformations of state 1
show weaker interactions between the nucleotide (Mg2+-GTP)
and the Switch II, lacking the H-bond formed between the donor
N atom of Gly60 and the oxygen acceptor atom of γ-phosphate of
GTP. This H-bond only exists in the state 2 conformations. Since
this strong H-bond is present in the initial structure, showing
a distance of 2.80 Å between GTP:O1G (acceptor) - Gly60:N
(donor), the existence of the state 1 can be interpreted as the
result of the moderate excitation kinetic energies introduced by
MDeNM being capable of breaking the H-bond and contributing
to a more fluctuating Switch II, resembling the inactive, GDP-
bound K-Ras4B. This interaction is completely absent due to the
lack of γ-phosphate in the GDP-bound state.

As stated previously, the HVR has a considerably larger
fluctuation in both systems compared to the catalytic domain.
To elucidate the internal flexibility of the HVR, we analyzed
the rotational angle space of its residues. The dihedral angles

FIGURE 5 | Distributions of interaction energies between the nucleotide
(Mg2+-GDP: black, Mg2+-GTP: red) and (A): switch1 region, (B): switch2
region of K-Ras4B.

defined by consecutive Cα atom quadruplets were calculated
within the HVR for the GDP- and GTP-bound population
(Supplementary Figure 2). The base of the HVR (N-terminal
part of it) shows a bent configuration in both states with a
richer rotational distribution in the case of the GDP-bound
state. Both states exhibit a distributional peak corresponding
to a rather elongated configuration for the parts following
the bend of the base of the HVR. The difference between
the activation states is that the HVR of the GTP-bound
population has a slightly more restricted rotational profile;
still, in some regions, two population peaks are observed
one corresponding to an elongated structure and the other
to a sharp bending located at the residue levels of 169, 172,
and 175.

Comparison of MDeNM and MD
In order to compare the conformational space mapped by
MDeNM to conformations accessible by classicalMD simulation,
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FIGURE 6 | Examples of GTP-bound K-Ras4B in state 1 and state 2,
superimposed at their nucleotides. The shorter donor-acceptor distance
corresponds to state 2.

three parallel MD simulations of 200 ns were performed for
both the GDP- and GTP-bound forms, having the same starting
structures as the MDeNM simulations. In general, the RMSF
follows the same pattern both on MDeNM (solid line) and
MD (dotted line) generated structures (Figure 7). However,
two major differences can be noted: (i) the HVR shows
approximately four times higher values for MDeNM compared
to the MD conformations, demonstrating that MDeNM maps
a considerably larger HVR conformational space; (ii) the
GDP-bound Switch II shows a 2-fold RMSF in the case of
MDeNM compared to the classical MD. This difference is not
visible in the GTP-bound form, due to the presence of γ-
phosphate.

To compare the two methods, we present the distance-
based interaction maps between the catalytic domain and HVR
among the conformations of both MDeNM (Figures 8A,B) and
MD (Figures 8C,D) simulations for the two nucleotide-binding
states. The striking difference between the results of the two
methods is that the HVR-catalytic domain contacts are more
dispersed in the case of MDeNM than for classical MD, the latter
being more localized. For the GDP-bound form (Figures 8A,C),
both methods show contacts between the HVR and the C-
terminal of the catalytic domain (yellow); the C-terminal end
of α3 (olive); α2 (red); β1, β2, β3 (green); the C-terminal

FIGURE 7 | RMS fluctuation of Cα atoms among the MDeNM (solid) and MD
(dotted) generated conformations for GDP- (black) and GTP-bound (red)
K-Ras4B.

end of α4 (magenta) and β6 (orange), which simply form
the “northern hemisphere” of the catalytic domain, with the
north-pole being the N-terminal region of HVR. The major
difference between MDeNM and MD manifested at the active
site of the protein is the degree of autoinhibition, which is
more populated by MDeNM and the extent of the HVR-Switch
I/Switch II (blue and red respectively) contact and its versatility
being greater again by MDeNM. The GTP-bound form also
shows contact with the “northern hemisphere” (yellow, olive,
red, green, magenta, orange) indicating a broader conformational
mapping with the MDeNM method than with the classical
MD. Two regions are more populated in the case of MD than
MDeNM: the interaction of the farnesylated C-terminal end
with α4/β6 (magenta/orange), and with Switch I (blue). In both
cases, visual examination of the MD trajectory revealed that after
the HVR found an energetically favorable position it spends
considerably more time around the given local minima before
moving further, thus exploring the conformational space in a
more limited manner.

Another measure to compare the ensembles generated by
MDeNM and MD for both states of the enzyme is the
overall distribution of the RMSD values with respect to the
starting structure (Supplementary Figure 3). If the RMSD of the
catalytic domain (without HVR) is calculated, the distribution
of the RMSD for the GDP- bound state is 1.9 ± 1.7 Å
on the MDeNM, and 1.5 ± 1.2 Å on the MD generated
ensemble, while for the GTP-bound state it is 1.7 ± 1.5 Å
for MDeNM and 1.2 ± 0.2 Å for MD. On one hand, these
values demonstrate that the GDP-bound catalytic domain is
more flexible than the GTP-bound one; on the other hand,
they also show that MDeNM explores a larger conformational
space (both the average RMSD values and the deviations
are higher).

If for the RMSD calculations the full-length protein is
considered, for the GDP-bound state the values are 12.1 ±

4.0 Å for MDeNM and 11.6 ± 1.9 Å for MD, while for
the GTP-bound state 12.4 ± 4.0 Å on the MDeNM and
10.8 ± 2.1 Å on the MD generated structures. The tendency
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FIGURE 8 | Distance-based interaction map between the catalytic domain and the HVR of K-Ras4B. (A) and (B) correspond to conformations of MDeNM for the
GDP- and GTP-bound population, respectively. (C) and (D) correspond to conformations of MD for the GDP- and GTP-bound state, respectively. The color-coding of
the structural regions within the catalytic domain along the y-axis is identical to Figure 2.

in the full-length case is similar to the one shown for the
catalytic domain by itself, magnified by the fluctuation of
the HVR.

CONCLUSION

As MDeNM revealed and was confirmed by MD simulations,
almost all catalytic domain-HVR interactions exist in both
GDP- and GTP-bound K-Ras4B. In the GDP-bound form, the
population of the conformers is shifted toward a state where
the farnesylated C-terminal HVR interacts with the effector
lobe of the catalytic domain, blocking both effector binding
and dimerization through β-sheet formation. In contrast, in

the GTP-bound form, these conformations either do not exist
or are poorly populated. In addition, in the GTP-bound state,
the population of the conformers is shifted in such a manner
that becomes highly populated when the HVR interacts with
the allosteric lobe, exposing the effector binding sites. The
GTP-bound form provides the HVR conformation overlapping
with the α-helix dimer interface at the allosteric lobe, but
these conformations are much less populated in the GDP-
bound state.

Thus, MDeNM proves capable of an extensive sampling
of the interaction of the HVR with the catalytic domain,
capturing ensembles that were shown earlier for the GDP-
bound K-Ras4B states and revealing new distributions for the
GTP-bound states where HVR binding overlaps the α3/α4
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dimerization surface. Even though in the presence of the
membrane the extent of these interactions is unclear, MDeNM
captures the HVR tendencies, which may nonetheless be
partially populated.
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We address the problem of triggering dissociation events between proteins that have
formed a complex. We have collected a set of 25 non-redundant, functionally diverse
protein complexes having high-resolution three-dimensional structures in both the
unbound and bound forms. We unify elastic network models with perturbation response
scanning (PRS) methodology as an efficient approach for predicting residues that have
the propensity to trigger dissociation of an interacting protein pair, using the three-
dimensional structures of the bound and unbound proteins as input. PRS reveals that
while for a group of protein pairs, residues involved in the conformational shifts are
confined to regions with large motions, there are others where they originate from
parts of the protein unaffected structurally by binding. Strikingly, only a few of the
complexes have interface residues responsible for dissociation. We find two main modes
of response: In one mode, remote control of dissociation in which disruption of the
electrostatic potential distribution along protein surfaces play the major role; in the
alternative mode, mechanical control of dissociation by remote residues prevail. In the
former, dissociation is triggered by changes in the local environment of the protein, e.g.,
pH or ionic strength, while in the latter, specific perturbations arriving at the controlling
residues, e.g., via binding to a third interacting partner is required for decomplexation.
We resolve the observations by relying on an electromechanical coupling model which
reduces to the usual elastic network result in the limit of the lack of coupling. We validate
the approach by illustrating the biological significance of top residues selected by PRS
on select cases where we show that the residues whose perturbation leads to the
observed conformational changes correspond to either functionally important or highly
conserved residues in the complex.

Keywords: perturbation response scanning, elastic network model, protein complexes, structural motifs,
electrostatic potential distribution, protein–protein dissociation, allostery, cooperative conformational change

INTRODUCTION

Chemical and physical processes within assemblies of proteins in the cellular environment are
events often encompassing multiple time and length scales. Therefore, different modeling tools are
commonly used to describe the network of interactions featuring the protein dynamics (Adcock
and McCammon, 2006; Tozzini, 2010). In this vein, coarse-grained models (CG), with several
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atoms of the protein grouped into one bead and in the absence
of atomic details of the solvent molecules have been developed
to supplement the extremely expensive atomistic modeling of
large scale motions of biomolecular aggregates (Orozco, 2014;
Atilgan, 2018). CG models have proved to aid sampling efficiency,
predict allosteric regulations (Ming and Wall, 2005) and describe
conformational transition pathways (Kim et al., 2002; Miyashita
et al., 2003). One useful measure of large-scale protein mechanics
in the context of CG models is the elastic network model
(ENM) (Tirion, 1996; Bahar et al., 1997; Hinsen, 1998). ENMs
are based on the assumption that the potential energy of the
system is approximated harmonically about a single minimum
energy conformation. Methodologically, in ENM, the atomic
details of the biomolecule structure are reduced to a network
of nodes (typically one site per residue) connected by harmonic
springs. Since all springs are in a relaxed state in the network,
no energy minimization is required, in comparison to normal
mode analysis in which an expensive initial energy minimization
is required prior to calculating the Hessian matrix. For large
biomolecules and multi-protein complexes, ENM models with
a resolution lower than standard have been used (Durand
et al., 1994; Doruker et al., 2002; Chennubhotla et al., 2005;
Ahmed and Gohlke, 2006; Kurkcuoglu et al., 2009; Ross C.
et al., 2018). The gross representation of large assemblies has
proven to predict dynamics of the rigid and flexible parts of
the proteins (Ross C.J. et al., 2018). Anisotropic network model
(ANM) and Gaussian network model (GNM) are amongst the
most widely used ENM-based methods (Bahar et al., 1997;
Atilgan et al., 2001). While GNM is applied to produce the
amplitudes of isotropic thermal motions, ANM describes both
amplitudes and directionality of anisotropic motions. Increased
amount of data for proteins of different forms (free, liganded, or
complexed), elucidates the correlation between protein function
observed in experiments and the global motions predicted by
ANM/GNM analyses. Numerous studies have employed ENM-
based models to explore various aspects of protein structural
dynamics. These include identifying and visualizing collective
motions (Kong et al., 2003), predicting modes of motion
underlying function (Baysal and Atilgan, 2001b; Keskin et al.,
2002; Zheng and Doniach, 2003; Whitford et al., 2007), and
explaining details of conformational changes of various types
and amplitudes (Tama and Sanejouand, 2001; Krebs et al., 2002;
Zheng et al., 2007). ENMs may be applied to the refinement
of medium to low-resolution structures of electron microscopy
density maps of large macromolecular complexes or molecular
envelopes derived from small-angle x-ray scattering (SAXS)
data (Delarue and Dumas, 2004; Hinsen et al., 2005). Within
the concept of ENM, researchers have developed approaches
to generate feasible pathways for conformational transitions
between two end conformers (Kim et al., 2002; Orellana et al.,
2019), removing the need for expensive molecular dynamics
(MD) simulations and all-atom empirical force fields to set up
intermediate conformations. ENMs are also applied to determine
the main evolutionary transformations of structural changes
among homologous proteins (Leo-Macias et al., 2005; Han
et al., 2008). In such an approach, for a given set of proteins,
evolutionary direction is argued to be a combination of a small

subspace projected by a few low frequency modes imposed by
inter-residue contact topology.

We have extended ENM to analyze allosterically significant
residues and function-related motions of proteins via a technique
named perturbation-response scanning (PRS) (Atilgan and
Atilgan, 2009; Atilgan et al., 2010a). The methodology inserts
fictitious forces on selected atoms and predicts the response
within the realm of linear response theory (LRT). In vivo, the
perturbation may arrive in the form of changing environmental
conditions such as pH or ionic strength (Abdizadeh et al.,
2015a; Sensoy et al., 2017), or it may act directly on the
chain as in pulling (Carrion-Vazquez et al., 2003; Dietz et al.,
2006) or other single-molecule experiments, as well as through
mutations or ligand binding. PRS serves as a tool to gain insight
into molecular origins of mechanical feedbacks of bimolecular
structures through recording response to each inserted force on
each residue of a protein (Atilgan and Atilgan, 2009; Atilgan et al.,
2010a, 2011; Abdizadeh et al., 2015b; Abdizadeh and Atilgan,
2016). It is further capable of recognizing how directionality of
the inserted force may coordinate the response of the protein in
a functional motion (Jalalypour et al., 2020). PRS requires two
distinct conformations of a protein, determined, e.g., by x-ray
crystallography, as input; and relies on LRT to relate virtual
external forces acting on a protein to the perturbed positions
of the residues (Ikeguchi et al., 2005). In PRS, one scans a
protein structure residue by residue through applying forces
in many directions and records the subset of responses that
encourage conversion to another known conformation of the
protein. Thus, one can map the regions on the protein surface
whose perturbation might lead to the expected conformational
change. Besides mapping active site residues that are prime
regions for invoking conformational transitions, this approach
also has the potential of pointing out allosteric locations and
drug target regions. For example, previously, we have studied
the proteins calmodulin (Atilgan et al., 2011) and ferric binding
protein (Atilgan and Atilgan, 2009) via PRS. By mutating those
residues that were implicated in allosteric communication, we
later verified through classical MD simulations that they affect
the conformation distributions (Aykut et al., 2013; Guven et al.,
2014). In a later study, we have performed PRS on subtilisin in
complex with its inhibitor to pinpoint hot residues involved in
catalytic mechanism and stability of the enzyme (Abdizadeh et al.,
2015b). PRS has also been used in the conformation generation
step of a flexible docking scheme for exploring protein-ligand
interactions (Bolia et al., 2014). In a similar methodology,
Mottonen et al. (2010) and Jacobs et al. (2012) have used a
method based on distance constraint model to impose constraints
on the torsional degrees of freedom of the protein to mimic a
hypothetical ligand-binding situation.

In this manuscript, we utilize these CG approaches to
address a major challenge for structural biology in providing
a mechanistic view of the behavior of molecular complexes
and their conformational changes. Protein-ligand and protein–
protein interactions (PPI) govern most of the cellular processes
(De Las Rivas and Fontanillo, 2010). Many studies investigate
the protein-ligand complexes and look for functional regions,
binding sites or druggable cavities (Lichtarge and Sowa, 2002;
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Xie et al., 2009; Siragusa et al., 2015). On the other hand,
PPI allow a protein to perform its biological function by
interacting with another partner protein (Ozdemir et al., 2019).
Therefore, the interface is usually considered as a candidate to
be targeted by a potential drug such as orthosteric or allosteric
PPI modulators (Xie et al., 2009; Ni et al., 2019). Studying
PPIs and protein-interaction networks may provide insights
into new opportunities in the medical, biotechnological, and
pharmaceutical fields. Hence, several approaches have been
proposed to study PPIs (Ozdemir et al., 2019). A number of
bioinformatics techniques have been developed to predict PPI
networks based on genomic-context, sequence homology and
structural similarity (Shi et al., 2005). Most systematic studies
involving protein–protein complexes focuses on the interaction
interface to determine compatibility of the structures or attempts
to study individual PPI and predicts residues, called hotspots,
effective in recognition of partner proteins (Liu Q. et al., 2018;
Qiao et al., 2018). Alanine scanning mutagenesis is the major
experimental method to identify hotspots (Kenneth Morrow
and Zhang, 2012). In one study, non-covalent interactions
(hydrophobic, van der Waals, and hydrogen bonding) are
found to account as the major forces operating at the PPI
interfaces (Gao et al., 2004). Available computational techniques
for PPI hotspot prediction are roughly divided to two groups
whereby most use the complex structure and a few utilize
unbound structures (Ozdemir et al., 2019). Generally, hotspots
resulting from the computations are compared to those from
alanine scanning mutagenesis experiments (Bradshaw et al.,
2011; Ibarra et al., 2019). In addition, machine learning-based
methods have been developed to predict hotspots, considering
the amino-acid features and conservation information (Liu S.
et al., 2018). Most recently, by ignoring the internal structures of
the molecules and scanning the protein surface for the so-called
“interaction fingerprints,” geometric deep learning algorithms
have been developed for predicting protein-protein complexes
(Gainza et al., 2020). Although these approaches attempt to
define a general interaction pattern based on parameters such
as structure, hydrophobicity or polarity, there is no general
rule to be used in PPI prediction due to their diversity
(Ni et al., 2019).

In this work we address a reverse problem: How is it
possible to trigger dissociation events between proteins which
have already formed a complex? We study 25 sets of protein
complexes utilizing PRS with the ENM harmonic potential to
determine regions responsible for rendering known complexes
incompatible. Elastic network construction helps one to probe
conformational changes due to altered physical and chemical
environment (Atilgan et al., 2012). Accordingly, the information
needed for assessing protein–protein interactions can be derived
from knowledge of inter-residue contact topology, buried in the
Hessian matrix deduced from ENM (Bahar et al., 2010). Rather
than focusing on the interface of the interacting subunits, we
relate the physical effects of the internal dynamics of protein
complexes to the motions involved in their dissociation. We
show that PRS maps residues that may alone initiate the
structural change between the bound and unbound forms during
dissociation processes of the protein complexes.

MODELS AND METHODS

The conformational change was analyzed via PRS between two
different conformers of a protein, one in its complexed form
with another protein, and the other in its unbound form. The
propensity to convert between conformations was examined for
these two states of the protein by employing fictitious forces.
The detailed theory of PRS has been laid-out in previous studies
(Atilgan and Atilgan, 2009; Atilgan et al., 2010a). In brief, the
unbound state of a protein may be described by a perturbation
of the Hamiltonian of the bound state, or vice versa. Under LRT,
the shift in the coordinates due to unbinding is approximated by
Yilmaz and Atilgan (2000) and Atilgan and Atilgan (2009):

1R1 = 〈R〉1 − 〈R〉0 '
1

3kBT
〈1R1RT

〉01F =
1

3kBT
H−11F

(1)
where the subscripts 1 and 0 denote perturbed and unperturbed
configurations of the protein, kB is the Boltzmann constant
and T is temperature. 1F vector contains the components
of the externally inserted force vectors on the selected
residues; e.g., for the perturbation of a single residue i,
(1F)T =

{
000 . . . 1Fix1Fiy1Fiz . . . 000}

1×3N
. H−1 is the

variance-covariance matrix which may be obtained from either
the atomic coordinate trajectories of MD simulations of suitable
length (Atilgan et al., 2012), or by imposing the approximation
of harmonic springs between pairs of interacting atoms. In
this work, we generate the H−1 matrix from a coarse-grained
approach, constructing a network of N nodes on the Cα atoms of
the protein complexes whose coordinates are directly used from
their protein data bank (PDB) entries. Any given pair of nodes
interacts in accord with a conventional harmonic potential, if the
nodes are within a cut-off distance, rc, of each other. This leads to
a total of M interactions. Within the scope of an elastic network
of residues that are connected to their neighbors by linear-elastic
springs, one gets the 3N × M direction cosine matrix B (Yilmaz
and Atilgan, 2000). BBT is exactly the Hessian if harmonic
interactions with uniform force constants for all M bonds in the
network are assumed. (BBT)−1 is the covariance matrix H−1

for a given configuration, which is also an N × N supermatrix
whose ijth element is the 3 × 3 matrix of correlations between
the x-, y-, and z-components of the fluctuations 1Ri and 1Rj of
residues i and j.

H of the system has at least six zero eigen-values
corresponding to the purely translational and rotational motions.
The eigen-value distribution of the Hessian of proteins is such
that the low-frequency region is more crowded than expected
of polymers or other condensed matter (Ben-Avraham, 1993).
Thus, the choice of the cutoff distance, rc, for the construction of
the Hessian is critical for extracting protein-like properties from
the systems studied (Atilgan et al., 2010b). For all the proteins
studied in this work, we coarse-grain the crystal structure so that
each residue is represented by the coordinates of its Cα atom. To
account for the flexibility of proteins, we repeat the PRS analysis
for a variety of cut-off distances in the range of 10.0–14.0 Å
in increments of 1 Å; the lower limit of 10 Å agrees with the
definition of first coordination shell of residues in proteins
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(∼ 7 Å). For each network structure, we ensure that the system
has six zero eigen-values corresponding to the translational
and rotational degrees of freedom of the protein. The smallest
common rc at which we obtain six zero eigenvalues for all the
proteins tested is 9 Å.

PRS technique relies on repeating the above LRT calculation
(Equation 1) by scanning the residues of the protein one-by-
one and focusing further on those perturbations that overlap
with the conformational change, 1R1 = 〈R〉1 − 〈R〉0. There is
no a priori assumption on how a force might be generated at a
particular point. Conversely, after finding the force/residue pair
that best leads to the conformational change of interest, we relate
this finding to possible causes. In this study, PRS is applied by
scanning each residue in 500 random directions.

To assess the quality of the predicted displacements of all
residues resulting from a force applied on selected residue
i, we use the correlation coefficient between the predicted
and experimental displacements, averaged over all the affected
residues, k:

Ci =

∑N
k=1

[
(1Rk)

i
−
(
1R

)i
] (

1Sk −1S
)

(N − 1) σRσS
(2)

In equation 2, the overbar indicates the average, 1Sk are
the displacements between the initial and the target forms
obtained from the PDB structures, σS and σR are the
respective standard deviations for experimental and calculated
displacements. A value close to 1 implies good agreement
with the experimental conformational change, while a value
of zero indicates lack of correlation between experimental and
theoretical findings. Several approaches were taken to select
the residues that are effective in directing the protein toward
alternative conformations depending on the distribution of the
maximum of the Ci values, Ci

max, obtained from the 500
perturbations and calculated through equation 2. We first list
Ci

max in ascending order: (1) If there is a sharp decrease in the
Pearson correlation values, we list the top residues until that gap.
(2) If there is a smooth decrease in the Pearson correlation values,
we list the residues that are common among top 10 residues of
all cut-off values. We also check the location of the residues that
do not survive these selection criteria. We have found that the
variable residues observed among top residues in different cut-off
values are spatial neighbors of the listed ones.

Protein Complex Selection
We analyzed a set of 25 protein complexes in their bound and
unbound forms (Table 1, column 2). We collected protein pair
structures from those reported in Benchmark 0.0 of ZDOCK
(Chen and Weng, 2002). The complexes are non-redundant and
they have X-ray structure solved at better than 2.90 Å resolution.
They include a wide variety of function and affinities; they belong
to different biological families. The constituent unbound forms
of all the 25 complexes are available in the PDB with solution
NMR or X-ray structures solved at better than 3.50 Å resolution.
For the proteins resolved by solution NMR, we always use the
first model for the PRS calculations. More specifically, we have
chosen the protein complexes with no less than two missing

residues along the protein chain, either in the bound or unbound
form. Furthermore, if the number of residues in the bound and
unbound components differ, we only analyze the common parts
of the bound and unbound proteins.

Optimization of the Cut-Off Distance
For each pair of experimental structures, the unbound form
is superimposed on the bound form, followed by the residue
displacement vectors computation, 1S. In this study, we perturb
the bound form of each protein by applying a random force to
the Cα atom of each residue in the complex. We select residues
whose perturbation leads to the 1R vector (equation 1) that
best resembles the dissociated proteins using equation 2 as the
measure. For a given protein, we select the cut-off distance, ropt
that yields the closest agreement with the displacement vectors
from experiments for at least one residue (Table 1, column 8).
We verify that the residue indices that provide the best Pearson
correlation value are always present within the range perceived
as the highest correlation value for all cut-off distances studied.
We note that the correlation values reported in Table 2 (column
5 and 6) are not affected for the range of values ropt ± 1 Å for all
of the 25 protein complexes. Strikingly, although many of these
proteins display large Pearson correlation values, the numbers of
residues yielding the highest values differ among proteins. For
some proteins, there is not much specificity on the residue to be
perturbed to reproduce the conformational change. For others, by
perturbing a very specific location, the complete conformational
change is obtained. The former category is exemplified by
fibrinogen-binding protein (pdb code: 3D5S; Haspel et al., 2008)
while serine protease and its proteinaceous inhibitor (pdb code:
1D6R; Koepke et al., 2000) is an example of a protein complex
that we need to perturb in a specific location to mimic the
dissociated conformation.

RESULTS AND DISCUSSION

The structural difference between the bound and the unbound
forms, based on the Cα superposition of the binding partners,
show that while for 22 of the cases the interface RMSD is less
than 1.5 Å; for two cases interface RMSD is 1.5–2.2 Å and two
cases have interface RMSD greater than 2.2 Å (Humphrey et al.,
1996). For the pair of initial and target forms of the proteins
present in bound and unbound form, we perform STAMP
structural alignment, implemented in VMD 1.9.1 MultiSeq
plugin (Humphrey et al., 1996). We record the RMSD between
the structures of the target forms with the initial structure which
vary between 0.4 and 4.3Å (Table 1, column 6). Although large
motions of side chains and surface loops is always present as a
local conformational change, we do not detect any discernible
shape change on a global scale in proteins in their bound form
compared to the respective unbound constituents. For all cases,
the main chains essentially have the same conformation in bound
and unbound forms and the binding partners interact as rigid
bodies. However, the superposition of mobile segments of the
proteins in the complex and corresponding unbound forms
produces higher RMSDs (Table 1, column 7) and can be as large

Frontiers in Molecular Biosciences | www.frontiersin.org 4 August 2020 | Volume 7 | Article 210119

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00210 August 21, 2020 Time: 15:50 # 5

Abdizadeh et al. Dissociation of Protein Pairs

TABLE 1 | General features of protein complexes studied.

Type protein complex PDB codes (Bound:
chain/Unbound:

chain) (X-ray
resolution, Å)

Amino acid
length

N Global
RMSD (Å)

Local RMSD
Regions of motion

(residue:Å)

Cutoff,
ropt (Å)

Type I Alpha amylase: Alpha amylase
inhibitor

1CLV:A/1JAE:A
(2.00/1.65)

2–471 470 0.5 81–90: 1.8
290–300: 2.5

440–450:1.7

12

1CLV:I/1HTX:A
(2.00/NMR)

501–532 32 0.9 511–520:1.0
520–525:1.3

MAP kinase-activated protein
kinase 2:Mitogen-activated protein
kinase 14

2OZA:A/1KWP:A
(2.70/2.80)

51–215 165 2.0 65–70:6.2
70–75:8.0

75–80:3.0

14

2OZA:B/1P38:A
(2.70/2.10)

16–169 154 1.7 16–21:1.8
25–30:2.3
30–35:5.3
35–40:2.6
55–58:2.4
97–100:2.2
115–120:2.9

120–125:2.9

Trypsin:Trypsin inhibitor 1AVX:A/1QQU:A
(1.90/1.63)

16–245 230 0.5 95–100:0.85
165–170:0.85
215–220:0.90
240–245:0.75

13

1AVX:B/1BA7:A
(1.90/2.50)

501–623 123 0.5 545–550:0.6
595–600:0.8

Ras-related protein Ral-A:Mono-
ADP-ribosyltransferase
C3

2A9K:A/1U90:A
(1.73/2.00)

13–178 166 0.6 47–51:0.8
56–62:0.8

70–75:2.1

11

2A9K:B/2C8B:X
(1.73/1.70)

45–245 201 1.2 70–82:1.2
140–150:1.5
180–185:2.9

209–216:3.3

Ribonuclease SA:Barstar 1AY7:A/1RGH:A
(1.70/1.20)

1–96 96 0.5 28–30:0.7
39–41:0.7

61–65:0.9

13

1AY7:B/1A19:A
(1.70/2.76)

1–89 89 0.6 5–15:0.95
55–66:0.95

Carboxypeptidase
A:Metallocarboxypeptidase
inhibitor

4CPA:A/1YME:A
(2.50/1.53)

1–307 307 0.5 132–136:1.8
245–249:1.2

13

4CPA:I/1H20:A
(2.50/NMR)

4–37 34 1.1 10–16:1.6
17–21:2.1

Ribonuclease A:Ribonuclease
inhibitor

1DFJ:E/9RSA:A
(2.50/1.80)

1–124 124 0.7 15–17:0.8
90–95:1.2
110–114:1.0

12

1DFJ:I/2BNH:A
(2.50/2.30)

1–456 456 1.5 1–30:2.9
40–55:2.6

414–423:2.7
443–451:3.1

Superoxide dismutase:copper
chaperone for superoxide
dismutase

1JK9:A/2JCW:A
(2.90/1.70)

1–153 153 0.8 51–62:2.5 13

1JK9:B/1QUP:A
(2.90/1.80)

3–222 220 4.3 3–10:5.4
30–40:5.3
50–70:6.9
160–170:5.7

Carboxypeptidase
A1:Metallocarboxypeptidase
inhibitor

2ABZ:A/1M4L:A
(2.16/1.25)

5–305 301 0.4 245–250:1.3 13

(Continued)
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TABLE 1 | Continued

Type protein complex PDB codes (Bound:
chain/Unbound:

chain) (X-ray
resolution, Å)

Amino acid
length

N Global
RMSD (Å)

Local RMSD
Regions of motion

(residue:Å)

Cutoff,
ropt (Å)

2ABZ:C/1DTV:A
(2.16/NMR)

5–65 61 1.3 12–15:2.1
52–56:1.5

Ferredoxin-NADP
reductase:Ferredoxin I

1EWY:A/1GJR:A
(2.38/2.10)

9–303 295 1.1 50–54:1.4
67–74:3.3

102–112:2.0
221–236:2.3
262–270:1.4

280–287:1.2

12

1EWY:C/1CZP:A
(2.38/1.17)

1–98 98 0.8 10–15:1.5
50–67:1.5

Cysteine protease:cysteine
protease Inhibitor

1PXV:A/1X9Y:A
(1.80/2.50)

223–392 170 2.5 330–339:9.1
375–382:3.9

11

1PXV:C/1NYC:A
(1.80/1.40)

0–109 110 0.9 0–5:1.6
91–96:1.3
104–109:2.7

Type II Chemotaxis protein
CHEY:Chemotaxis protein CHEA

1FFW:A/3CHY:A
(2.70/1.66)

2–129 128 0.5 90–92:1.1
110–112:0.9

124–130:1.3

12

1FFW:B/1FWP:A
(2.70/NMR)

160–226 67 1.8 165–170:2.6
200–205:2.6

210–215:2.3

Cell division protein
FTSZ:Hypothetical protein PA3008

1OFU:A/2VAW:A
(2.10/2.90)

11–316 306 0.5 70–72:0.9
122–125:0.9
202–208:2.7
231–235:1.2
268–273:1.8
288–293:0.9

299–306:2.0

12

1OFU:X/1OFT:A
(2.10/2.90)

45–160 116 0.8 70–72:1.1
87–90:1.0

Complement C3:Fibrinogen-binding
protein

3D5S:A/1C3D:A
(2.30/1.80)

8–298 291 0.4 44–51:1.7
165–171:1.0

12

3D5S:C/2GOM:A
(2.30/1.25)

15–75 61 0.4 15–19:0.7
70–75:0.9

Bovine hymotrypsinogen A:human
pancreatic secretory trypsin
inhibitor (Kazal-type)

1CGI:E/2CGA:A
(2.30/1.80)

1–245 245 1.5 31–39:1.2
140–154:4.5
183–195:3.5

216–223:1.6

13

1CGI:I/1HPT:A
(2.30/2.30)

(1–56) 56 1.8 1–5:4.4
10–14:3.2

17–20:1.5

Elastase:Elafin 1FLE:E/1QNJ:A
(1.90/1.10)

16–245 229 0.9 59–62:1.4
96–106:1.6
166–176:1.7
186–196:1.3

216–226:1.7

13 Å

1FLE:I/2REL:A
(1.90/NMR)

11–57 47 2.8 11–43:3.5

Type III Interleukin-6 receptor beta chain
Leukemia inhibitory factor

1PVH:A/1BQU:B
(2.50/2.00)

101–301 201 0.9 130–135:1.7
210–215:1.3
240–245:1.3

295–301:1.8

12

1PVH:B/1EMR:A
(2.50/3.50)

22–180 159 0.9 135–140:1.3
140–150:2.0

150–160:1.6

(Continued)

Frontiers in Molecular Biosciences | www.frontiersin.org 6 August 2020 | Volume 7 | Article 210121

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00210 August 21, 2020 Time: 15:50 # 7

Abdizadeh et al. Dissociation of Protein Pairs

TABLE 1 | Continued

Type protein complex PDB codes (Bound:
chain/Unbound:

chain) (X-ray
resolution, Å)

Amino acid
length

N Global
RMSD (Å)

Local RMSD
Regions of motion

(residue:Å)

Cutoff,
ropt (Å)

Alkaline
metalloproteinase:Proteinase
inhibitor

1JIW:P/1AKL:A
(1.74/2.00)

1–470 470 1.2 20–22:1.5
185–195:7.3

10

1JIW:I/2RN4:A
(1.74/NMR)

8–105 98 1.4 18–25:3.4
50–55:1.2

95–98:2.2

Heat shock protein HSP82:HSP90
Co-chaperone CDC37

1US7:A/1AH6:A
(2.30/1.80)

2–207 206 0.8 54–57:1.3
91–99:3.5

100–117:1.7
198–203:1.3

10

1US7:B/2W0G:A
(2.30/1.88)

148–276 129 1.0 224–228:1.4
235–240:1.3
240–255:2.7

270–276:1.9

Trypsinogen:Bowman-Birk
proteinase inhibitor precursor

1D6R:A/2TGT:A
(2.30/1.70)

19–245 217 0.6 96–99:0.7
144–146:0.8
188–194:2.6

217–220:1.6

11

1D6R:I/1K9B:A
(2.30/2.80)

7–63 57 1.0 30–35:1.3
42–46:1.4

57–59:1.1

Type IV Falcipain 2:Chagasin 2OUL:A/2GHU:A
(2.20/3.10)

15 to 224 240 0.6 1–5:2.1
115–120:1.0
153–158:1.2

185–195:2.6

12

2OUL:B/2H7W:A
(2.20/1.70)

4–110 107 0.6 60–65:1.7

ATP-dependent Clp protease
ATP-binding subunit clpA:
ATP-dependent Clp protease
adaptor protein clpS

1R6Q:A/1R6B:X
(2.35/2.25)

1–141 141 1.0 15–20:1.2
68–76:2.8
91–102:1.6

13

1R6Q:C/3O1F:A
(2.35/1.40)

26–106 81 0.4 37–40:0.6

NAD(P) transhydrogenase subunit
alpha part 1: NAD(P)
transhydrogenase subunit beta

2OOR:A/1L7D:A
(2.32/1.81)

1–220 220 0.6 45–50:0.9
80–85:1.3

164–170:1.6
204–207:1.2

214–220:1.1

12

2OOR:C/1E3T:A
(2.32/NMR)

30–201 172 2.2 30–50:2.8
140–150:2.9

170–190:2.4

Alpha-Chymotrypsin:Protease
inhibitor LCMI II

1GL1:A/1MTN:F
(2.10/2.80)

16–146 131 0.5 71–82:1.3
143–146:1.0

12

1GL1:I/1PMC:A
(2.10/NMR)

2–33 32 1.6 7–23:2.1

Alpha amylase:Tendamistat 1BVN:P/1PIG:A
(2.50/2.20)

2–496 495 0.7 51–55:0.8
108–112:2.3
140–150:1.5
238–243:1.9
303–308:2.7

347–351:1.4

13

1BVN:T/1HOE:A
(2.50/2.00)

804–874 71 0.5 827–830:0.6
838–840:0.7

860–862:0.7

as 9.1 Å (see the case of cysteine protease and its inhibitor;
Filipek et al., 2003), the largest deviations being mostly confined
to flexible unstructured stretches, i.e., turns and bends.

Recording the residues identified by PRS (Table 2; those with
Ci values exceeding the value listed in column 6), displays those
encouraging the conformational change from the bound form
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TABLE 2 | PRS results and classification of the protein complexes.

Type protein complex PDB codes
(Bound:chain/

Unbound:chain) (X-ray
resolution, Å)

Correlation
Bound/Unbound

Ci
max >Ci Interface

residues
First shell
residues

Remote site
residues

Type I Alpha amylase:Alpha
amylase inhibitor

1CLV:A/1JAE:A
(2.00/1.65)

0.92 0.87 0.87 G292:A N/A N/A

1CLV:I/1HTX:A
(2.00/NMR)

0.75 0.76 0.66 W57:A,
N138:A,
V151:A,
G152:A

N/A N/A

MAP kinase-activated
protein kinase
2:Mitogen-activated protein
kinase 14

2OZA:A/1KWP:A
(2.70/2.80)

0.97 0.68 0.65 L70:A G71:A N/A

2OZA:B/1P38:A
(2.70/2.10)

0.96 0.80 0.80 N/A N/A G171:A,
Q175:A,
Y176:A

Trypsin:Trypsin inhibitor 1AVX:A/1QQU:A
(1.90/1.63)

0.9 0.62 0.59 N/A N/A L520:B,
K552:B

1AVX:B/1BA7:A
(1.90/2.50)

0.87 0.42 0.40 N/A N/A S579:B,
F580:B,
A581:B,
D598:B,
K611:B

Ras-related protein
Ral-A:Mono-ADP-
ribosyltransferase
C3

2A9K:A/1U90:A
(1.73/2.00)

0.78 0.8 0.79 N/A N/A Y66:B, G67:B,
L68:B, S69:B,

D112:B

2A9K:B/2C8B:X
(1.73/1.70)

0.73 0.68 0.62 N/A N/A S181:B,
F209:B,
A210:B,
G211:B

Ribonuclease SA:Barstar 1AY7:A/1RGH:A
(1.70/1.20)

0.93 0.72 0.69 N/A N/A L41:B, T42:B,
G43:B, W44:B

1AY7:B/1A19:A
(1.70/2.76)

0.75 0.52 0.50 N/A N/A E8:B, E57:B,
Q58:B

Carboxypeptidase
A:Metallocarboxypeptidase
inhibitor

4CPA:A/1YME:A
(2.50/1.53)

0.97 0.70 0.70 N/A N/A S134:A

4CPA:I/1H20:A
(2.50/NMR)

0.50 0.70 0.66 N/A N/A K177:A,
S199:A, I274:A

Ribonuclease
A:Ribonuclease inhibitor

1DFJ:E/9RSA:A
(2.50/1.80)

0.76 0.59 0.58 N/A N/A G186:I, D213:I,
P450:I, G451:I

1DFJ:I/2BNH:A
(2.50/2.30)

0.80 0.91 0.89 N/A N/A L22:I, A46:I,
L47:I, R48:I,

A49:I

Superoxide
dismutase:copper
chaperone for superoxide
dismutase

1JK9:A/2JCW:A
(2.90/1.70)

0.70 0.78 0.76 N/A I69:B D67:B, A68:B

1JK9:B/1QUP:A
(2.90/1.80)

0.70 0.60 0.57 N/A N/A C27:B, P54:B,
S55:B

Carboxypeptidase
A1:Metallocarboxypeptidase
inhibitor

2ABZ:A/1M4L:A
(2.16/1.25)

0.96 0.75 0.73 Q16:C,
V17:C

C18:C N/A

2ABZ:C/1DTV:A
(2.16/NMR)

0.56 0.75 0.75 N/A E31:C N/A

Ferredoxin-NADP
reductase:Ferredoxin I

1EWY:A/1GJR:A
(2.38/2.10)

1.00 0.70 0.67 N/A N/A V67:A, D68:A,
K69:A

1EWY:C/1CZP:A
(2.38/1.17)

0.80 0.74 0.72 N/A I62:A T164:A, F183:A

(Continued)
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TABLE 2 | Continued

Type protein complex PDB codes
(Bound:chain/

Unbound:chain) (X-ray
resolution, Å)

Correlation
Bound/Unbound

Ci
max >Ci Interface

residues
First shell
residues

Remote site
residues

Cysteine protease:cysteine
protease Inhibitor

1PXV:A/1X9Y:A
(1.80/2.50)

0.55 0.9 0.85 N/A H54:C V10:C, Y11:C,
H44:C

1PXV:C/1NYC:A
(1.80/1.40)

0.72 0.80 0.80 N/A N/A V109:C

Type II Chemotaxis protein
CHEY:Chemotaxis protein
CHEA

1FFW:A/3CHY:A
(2.70/1.66)

0.83 0.75 0.74 N/A N/A K190:B,
G191:B,
L195:B,
A197:B

1FFW:B/1FWP:A
(2.70/NMR)

0.77 0.61 0.54 N/A N/A G52:A, V54:A,
D57:A, N59:A

Cell division protein
FTSZ:Hypothetical protein
PA3008

1OFU:A/2VAW:A
(2.10/2.90)

0.92 0.83 0.82 H89:X, R93:X L87:X, T88:X N/A

1OFU:X/1OFT:A
(2.10/2.90)

0.90 0.58 0.56 I207:A D210:A,
L271:A,
S272:A

N/A

Complement
C3:Fibrinogen-binding
protein

3D5S:A/1C3D:A
(2.30/1.80)

0.92 0.70 0.69 N/A N67:C,
K70:C,
Q71:C

N/A

3D5S:C/2GOM:A
(2.30/1.25)

0.78 0.80 0.78 N/A N/A R10:A, L11:A,
K12:A, H13:A,
L14:A, I15:A,
V16:A, T17:A

Bovine hymotrypsinogen
A:human pancreatic
secretory trypsin inhibitor
(Kazal-type)

1CGI:E/2CGA:A
(2.30/1.80)

0.60 0.70 0.68 T30:I, Y31:I,
P32:I

N/A N/A

1CGI:I/1HPT:A
(2.30/2.30)

0.48 0.83 0.79 G197:E A179:E N/A

Elastase:Elafin 1FLE:E/1QNJ:A
(1.90/1.10)

0.96 0.75 0.65 N/A N/A T11:I, K12:I,
P13:I, L33:I,

K34:I

1FLE:I/2REL:A
(1.90/NMR)

-0.30 0.71 0.66 N/A N/A L123:E,
A208:E,
V209:E

Type III Interleukin-6 receptor beta
chain Leukemia inhibitory
factor

1PVH:A/1BQU:B
(2.50/2.00)

0.89 0.85 0.83 N/A N/A R276:A,
I277:A, E294:A,

A295:A,
S296:A,
G297:A

1PVH:B/1EMR:A
(2.50/3.50)

0.84 0.58 0.54 N/A N/A G147:B,
P148:B,
D149:B,
T150:B

Alkaline metalloproteinase:
Proteinase inhibitor

1JIW:P/1AKL:A
(1.74/2.00)

0.98 0.85 0.78 N191:P,
A192:P

G193:P N/A

1JIW:I/2RN4:A
(1.74/NMR)

0.80 0.79 0.73 N/A N/A E21:I, A22:I

Heat shock protein
HSP82:HSP90
Co-chaperone CDC37

1US7:A/1AH6:A
(2.30/1.80)

0.80 0.79 0.79 N/A A97:A N/A

1US7:B/2W0G:A
(2.30/1.88)

0.92 0.79 0.79 N/A N/A A244:B

Trypsinogen:Bowman-Birk
proteinase inhibitor
precursor

1D6R:A/2TGT:A
(2.30/1.70)

0.96 0.78 0.78 N/A N/A N/A

(Continued)
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TABLE 2 | Continued

Type protein complex PDB codes
(Bound:chain/

Unbound:chain) (X-ray
resolution, Å)

Correlation
Bound/Unbound

Ci
max >Ci Interface

residues
First shell
residues

Remote site
residues

1D6R:I/1K9B:A
(2.30/2.80)

0.50 0.70 0.70 N/A N/A H33:I, S34:I

Type IV Falcipain 2:Chagasin 2OUL:A/2GHU:A
(2.20/3.10)

1.00 0.87 0.83 N/A D148:A,
Y37:B,
G41:B

G40:B

2OUL:B/2H7W:A
(2.20/1.70)

0.25 0.78 0.76 N/A I68:A S113:A,
V114:A,
D148:A,
F219:A

ATP-dependent Clp
protease ATP-binding
subunit clpA:ATP-dependent
Clp protease adaptor
protein clpS

1R6Q:A/1R6B:X
(2.35/2.25)

0.85 0.82 0.77 N/A E73:A, K49:C D45:C, L61:C

1R6Q:C/3O1F:A
(2.35/1.40)

0.76 0.76 0.74 S118:A N/A E7:A, Y122:A

NAD(P) transhydrogenase
subunit alpha part 1:NAD(P)
transhydrogenase subunit
beta

2OOR:A/1L7D:A
(2.32/1.81)

0.23 0.68 0.68 N/A N103:C,
P105:C

L214:A, T220:A

2OOR:C/1E3T:A
(2.32/NMR)

0.52 0.50 0.49 A166:A N/A M167:C

Alpha-
Chymotrypsin:Protease
inhibitor LCMI II

1GL1:A/1MTN:F
(2.10/2.80)

1.00 0.76 0.52 N/A N/A S76:A, S77:A

1GL1:I/1PMC:A
(2.10/NMR)

−0.40 0.87 0.76 C58:A, C14:I K13:I N/A

Alpha amylase:Tendamistat 1BVN:P/1PIG:A
(2.50/2.20)

0.89 0.64 0.64 A823:T C811:T N/A

1BVN:T/1HOE:A
(2.50/2.00)

0.68 0.57 0.53 N/A N/A Q5:P, T6:P,
Q7:P, S8:P,

R10:P, V804:T

to unbound form do not necessarily reside on these flexible
structures. We have collected 161 effector residues from PRS
calculations (Table 2, columns 7–9). While 63 of them are
located on flexible loops with large motions and high RMSD
values, we identify 30 residues residing on α-helices and 35 on
β-strands. The remaining are on loops that do not display any
large structural change upon binding.

The average motions of the proteins, quantified by the
root mean square fluctuations (RMSFs), are usually expected
to dampen upon binding, especially at the binding interface
residues, even when the protein conformation is unaltered
(Baysal and Atilgan, 2001a). RMSFs of each protein complex
constituents in their bound and unbound form are derived
from auto-correlation of the residues in each protein pair. By
treating the H−1 matrix as an N × N supermatrix, whose ijth
element is the 3 × 3 second moment matrix of correlations
between the x-, y-, and z-components of the fluctuations 1Ri
and 1Rj of residues i and j (Baysal and Atilgan, 2001b) are
calculated, whose diagonal elements predict the RMSFs (Atilgan
et al., 2001). The cut-off distances, ropt , optimized for building
the Hessian matrix of each protein complex have the same
values as rc chosen for PRS analysis. We report the correlation
values between proteins in their bound and unbound form for

all the protein pairs; the similarity between the RMSF profiles
of a protein in its bound and unbound form is expressed as
a Pearson correlation and is listed in column 4 of Table 2.
We observe that there is a significant change in RMSF of
binding region residues in one of the constituents in each pair,
so far as to have a negative correlation in some cases; e.g.,
fluctuation patterns in some regions of the protein is reversed
upon complexation. This means that the local fluctuations of
the interface area vary in at least one protein upon complex
formation, while local fluctuations of their binding partners
display the same pattern as the unbound form. However, in
an exceptional case of transhydrogenase complex (pdb code:
2OOR; Bhakta et al., 2007), we observe low correlations, 0.23 and
0.52, between the binding proteins and their unbound form. For
this protein complex, the RMSF curves of both the constituents
display a significant transformation of fluctuation pattern upon
protein binding.

Features of the Amino Acids Involved in
Dissociation Event
From the 8828 residues, 161 of them are selected by PRS.
These residues, whose perturbation encourages the unbound over
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TABLE 3 | Types of amino acids selected by PRS compared to all residues in the study.

Non-polar Charged Polar amino

Residue type A V L I M F G W P D E R K N Q T Y S H C

PRS residues (%) 10 7 9 4 1 3 13 1 3 6 4 3 6 4 4 5 4 9 2 3

All residues (%) 8 7 9 5 2 4 8 2 4 6 6 4 6 5 4 6 4 7 2 3

TABLE 4 | Secondary structure attributes of amino acids selected by PRS compared to all residues in the study.

α-helix π-helix 3-10 helix β-strand Isolated bridge Turn Coil Total

PRS residues (%) 19 0.0 2 20 1 29 29 100.0

All residues (%) 26 0.0 4 24 2 26 18 100.0

the bound form, are distributed among all amino acid types.
The percentage of each amino acid type in our analysis pool
and their contributions in PRS analysis are listed in Table 3.
PRS does not display any preference over amino acid types
and any contribution to PRS selection is corroborated to the
population of the amino acid type in the total analysis pool. For
example, methionines and tryptophans, each with 1% frequency
are the least detected residues by PRS. They are also less
frequently seen in the analysis pool (2% of the population).
The only residue type that is observed significantly more that
in the average pool is glycine which constitutes 13% of all
PRS selected residues, compared to its 8% abundance in the
residue data set.

In Table 4, we report the local secondary structure attributes of
residues detected by PRS compared to all residues. The secondary
structures are assigned by the “Timeline” plugin of VMD and
are calculated based on the STRIDE algorithm (Humphrey et al.,
1996). Among all the protein complexes, we do not find any
π-helix type of structure. Residues in the total analysis pool are
mostly populated by turns, α-helices and β-strands with 26, 26,
and 24% distribution, respectively. However, we find that most
preferred regions by PRS defined residues are on coils and turns,
each with 29% of all PRS defined residues, although they populate
only 44% of the analysis pool. In particular, the enhancement
of coil residues in the PRS selection is statistically significant, as
these are represented by 29% in the PRS sub-pool, up from 18%
of all residues in the original pool of residues.

We divide the protein structure into three zones; interface,
first coordination and remote, so as to categorize the location
of the PRS selected residues. The interface of the two proteins
present in the complex is defined by the Cα atoms of the
residues from the two sides of the pair residing within 7 Å
cut-off distance of each other. We define first coordination
shell residues as those located within 7 Å cut-off distance from
any interface residue. All remaining residues are classified as
remote, defined as those residing beyond the first coordination
shell of the interface. We observe that except for the case of
alpha amylase and its inhibitor (pdb code:1CLV; Pereira et al.,
1999), PRS selects for remote residues (Table 2). In fact, in 9
cases PRS selected only residues away from the interface. The
remaining 16 protein complexes display residues from different
parts of the protein in their PRS analysis, including, but not

limited to the interface. In fact, these residues are overwhelmingly
located on or near the outer surface, as indicated by their depth
values from the surface as calculated by the DEPTH server
(Tan et al., 2013) and listed in Supplementary Table S1. In
fact, those few that are deeply located (depth greater than 5 Å;
shown in bold) are part of a network of interactions whose
one end is located on the surface. Thus, the interface of a
protein complex is not the controlling region for dissociation of
the two proteins.

Remarkably, residues signaling the dissociation of each
protein in a given complex are not located on the same
protein in all cases. Accordingly, effective sites involved in the
dissociation of various protein complexes found in PRS analysis
are categorized into four groups based on their responses to the
perturbations on the protein. Proteins in which dissociation is
signaled through remote residues of the complex are labeled as
Type I (11 cases). In this group, PRS top rated residues are all
confined to one of the binding proteins. Thus, residues on this
protein also control the conformational changes of the binding
partner. Type II are the proteins in which residues confined to
one of the proteins control the other binding protein and vice
versa. Type III are the proteins in which each constituent controls
its own dissociation event; therefore, essential residues are
clustered on the “self ” protein. Finally, in Type IV both partners
are essential for the dissociation to occur, as residues signaling the
dissociation are scattered on both binding partners. Tables 1, 2
are organized according to these four distinct groups (I–IV).

Long Range Control of Dissociation Is
Coupled to Electrostatic Effects
In a subset of the cases, perturbation of specific sites on only
one of the constituents in the protein complex modulates
dissociation. We label these as Type I group of protein complexes.
The functional amino acids defined by PRS which are involved
in disintegrating the contact network displays no specific
perturbation location in Type I; they may be located on the
interface, first shell or remote locations of the protein tertiary
structure. Thus, the local perturbations which lead to global
conformational shifts between bound and unbound states are not
bundled in a specific region.
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FIGURE 1 | Example of Type I electrostatic isocontour shifts upon binding;
α-amylase/α-amylase inhibitor drawn at ±0.5 kBT/e; blue is positive and red is
negative. The signaling protein, α-amylase, where all PRS determined
residues reside (Table 2), maintains its electrostatic potential distribution while
α-amylase inhibitor displays altered electrostatic potential distribution.
(A) α-amylase in the unbound form, with overall negative electrostatic potential
distribution along the surface. (B) α-amylase inhibitor in its unbound form with
a mixed pattern of negative and positive negative electrostatic potential
distribution along the surface. (C) α-amylase/α-amylase inhibitor complex with
overall negative electrostatic potential distribution. The spatial orientation of
the proteins in the complex is kept the same as the respective unbound
forms. Dashed circle indicates positioning of the inhibitor in the complex.

To determine if these long range effects are controlled by
electrostatics, we obtain the electrostatic potential distributions
on the biomolecular surface using the APBS package (Baker
et al., 2001). In APBS calculations, parameters are set to their
default values; i.e., biomolecular and solvent dielectric constant
are set to 2 and 78.54, respectively, the radius of the solvent
molecules is 1.4 Å and the temperature is 298.15 K; finally, the
cubic B-spline discretization method is used to grid biomolecular
point charges. Electrostatic effects play a major role in the
functionality of this group of protein complexes. Monitoring the
electrostatic potential distribution along the protein surfaces in
their bound and unbound forms reveals that any given protein
in the complex whose electrostatic potential distribution state
is stable in their bound and unbound form is also the protein
controlling dissociation. Conversely, the binding partner that
does not have any PRS determined residue displays considerable
change in its charge distribution. In Figure 1A, we exemplify
how the electrostatic potential distribution on the surface of the
protein changes from the free to the bound form.

Type II group represents another set of protein complexes
with remotely controlled conformation changes from the bound
to the unbound form. In this group, there is cross-controlled
dissociation; i.e., residues that lead to the conformational change
upon dissociation on one protein are located on the partner
in the complex. We observe that perturbations in a stretch of
consecutive resdues is required to trigger the interconversion
between two conformational endpoints (see Table 2, Type II).
In addition, analysis of the electrostatic potential distribution

FIGURE 2 | Example of Type II electrostatic isocontour shifts upon binding;
Efb-C and its complement target C3d drawn at ±0.5 kBT/e. Blue is positive
and red is negative. (A) C3d in its unbound form, with a mix of
negative/positive electrostatic potential distribution along the surface.
(B) Efb-C in its unbound form with predominantly positive electrostatic
potential distribution along the surface. (C) Efb-C/C3d complex. Dashed circle
displays Efb-C protein in the complex and the rest of the surface belongs to
C3d protein. Both proteins display a mixture of negative/positive electrostatic
potential distribution along the surface. In particular, positive surface of the
Efb-C displays increased negative areas upon complex formation, while C3d
loses negative patches. The spatial orientation of the proteins in the complex
is kept the same as that presented in unbound forms.

shows that the proteins interacting with each other possess
a similar state of charge distribution. Thus, if the unbound
forms had a different electrostatic potential distribution, they
reorient themselves to the same state upon protein complex
formation. In Figure 2, we illustrate electrostatic potential
surfaces before and after complex formation in Efb-C and its
complement target C3d (pdb code: 3D5S; Haspel et al., 2008).
In fact, it has been reported that formation and stability of
Efb-C binding to C3d is electrostatic in nature (Haspel et al.,
2008). Kinetic experiments in salt concentrations of 75–600 mM
indicate the sensitivity of association/dissociation phases of wild
type and various mutants to ionicity (Haspel et al., 2008). This
suggests overall electrostatic contribution to be of importance
in the initial complex formation and further in stabilizing the
complex under the prevailing conditions. Our PRS analysis
of Types I and II is further improved by these observations
such that under various environmental perturbations, disruption
of long-range and short-range electrostatic complementarity
seem to impair stability and affect complex formation of
binding partners.

Remarkably, electrostatic effects provide an excellent
description for the observed pattern in both Type I and
Type II complexes. Electrostatic interactions are the primary
factors of pH dependent processes in biochemical reactions.
Particularly, we find that among the 16 protein complexes
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FIGURE 3 | Example complexes demonstrating dissociation scenarios discussed in the text. The color of each subunit is associated with its name. Residues
controlling dissociation of the pink colored proteins are displayed as red beads, and those for ice blue ones as gray beads: (A) C3bot-RalA complex as an example
of Type I proteins. PRS selected residues that control the dissociation are confined to RalA compartment. Substrate recognition site of C3bot (residues 207–214) is
shown in magenta. (B) Chemotaxis CheA:CheY complex as an example of Type II proteins. (C) Alkaline protease and its cognate inhibitor as an example of Type III
proteins. (D) dI2dIII1 complex of proton-translocating transhydrogenase as an example of Type IV proteins. Loop residues that become less mobile upon ligand
binding due to surface closing of the protein are displayed in magenta.

included into Type I and II groups, 13 of them belong to
enzymes. Enzymatic activities are known to be pH dependent
and protonation state of catalytic and active site residues
are effective in potential distribution of the binding region.
Consequently, charge distribution of these regions will
modulate the interactions between the proteins and the reaction
products. It has been reported that, enzymes make use of their
preoriented environment to stabilize the transition state and the
reduction in catalytic energy is accomplished by electrostatic
stabilization of the active site of the enzyme (Warshel, 1998;
Warshel et al., 2006).

In the same vein, we propose that the electrostatic
characteristics of residues top-rated by PRS might be found
essential to specificity and ligand binding properties in enzymatic
reactions. For example, in the Type I complex C3bot-RalA
(Ras-related protein Ral-A:Mono-ADP-ribosyltransferase
C3, pdb code:2A9K; Pautsch et al., 2005), displayed in
Figure 3A, residues 207–214 of C3bot (displayed in magenta
in Figure 3A) are part of the substrate recognition site and
important in catalytic activity. PRS selects residues 209–
211 as candidate positions to provoke the dissociation of
the complex. Another key region involved in dissociation
upon force application is residue 112 of C3bot, which also
contributes to complex formation. In addition, residue 181
is located on a loop responsible in substrate recognition.
Accordingly, perturbation of specific sites found by PRS analysis
and experimentally verified to be functionally important

might reorient the enzyme/substrate dipoles that organize
the catalysis and destabilize the charged transition state
(Thomas et al., 1985). These changes might thus prevent the
binding event or promote dissociation after the chemical
reaction has terminated.

We also find that the effect of the local charge distribution on
enzyme functions is not limited to the active site and that the
remote locations on the protein are effectively involved in the
dissociation process. Mutations of charged patches remote from
either the protein or ligand binding site might alter the binding
kinetic rates, shift pKas and lead to weak molecular recognition
(Thomas et al., 1985). In response to a particular perturbation,
exposure to a different environment, reorganization of charged
atomic groups and dielectric relaxation of the protein affects
the electrostatic potential distribution of the interface or active
site region considerably, creating the steering forces that guide
the dissociation reaction. Thus, a local change of interactions at
a remote site leads to a global structural change that modifies
the organization of the interface contact network and leads
to dissociation of the two proteins. The contribution of this
distal perturbation on enzyme/inhibitor activity basically may be
viewed as leading to a cooperative conformational transition. In
both Type I and Type II, the information transmission between
remote functional sites on one protein and the entire structure of
the interacting partner naturally occurs via the interface linkage.
In such proteins, the network of contacts in the interface could
form a so-called “conductive” region so that the signal from
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one protein is transferred through the interface to control the
functionality of the second binding protein.

As one of the test beds, we have studied chemotaxis
CheA:CheY complex (pdb code:1FFW; Gouet et al., 2001).
PRS finds residues 52, 54, 57, and 59 of CheY to play a
role in selecting the unbound over bound conformation in the
presence of an external force (Figure 3B). This complex is an
example of remote communication between a two-component
signal-transducer. pH dependent catalytic activity has also been
observed in chemotaxis CheA:CheY, in which ligand binding on
CheA is conducted to CheY. Phosphorylation reaction on H48
of CheA subsequently transfers to D57 of CheY and the complex
dissociates (Silversmith et al., 1997). CheY itself is incapable of
providing an acidic residue during the phosphorylation event and
the complex formation with CheA results in a conformational
change on CheY as an acidic residue (D57) donates a proton
to a phosphodonor in an optimal orientation and the protein–
protein phosphotransfer occurs (Silversmith et al., 1997). The
pH dependence of the phosphotransfer kinetics in the pH range
of 7.5–10, studied through two mutants of CheY active site
residues shows simply a moderate decrease in rate constants
compared to the wild type CheY. This observation suggests
that conserved active site residues do not have an essential and
direct role in catalysis. Thus, the loss of activity throughout
this range for phosphotransfer to wild type CheY is attributed
not to deprotonation events on CheY; rather it is likely due
to deprotonations in CheA (Silversmith et al., 1997). Variability
of position 59 of CheY as a non-conserved and indirect
active site residue in modulating the autophosphorylation of
CheY with small molecule phosphodonors shows no detectable
binding between the phosphodonor and CheY, validating
the significant impact of position 59 on autophosphorylation
kinetics (Thomas et al., 2013). Mutation of N59 to R, K,
M, L, A, D, and E results in both increase and decrease in
autophosphorylation rate constants. Substitution with positively
charged residues increases the kinetic rates while substitution
with negatively charged residues decreases the rate, implying how
local electrostatic interactions at position 59 modulate the CheY
autophosphorylation (Thomas et al., 2013).

Auto-Controlled Conformational
Transitions Are Correlated to Mechanical
Organization of the Protein in Type III
Complexes
In Type III group of protein complexes, dissociations of either
constituent of the complexes are governed by a local perturbation
on the respective protein. We label this behavior as auto-
controlled dissociation. In this category, all the residues involved
in global transformation of bound to unbound forms are located
out of the interface region, trypsinogen and its Bowman-Birk
proteinase inhibitor precursor (pdb code:1D6R; Koepke et al.,
2000) being an exception. We observe that in Type III complexes,
the global RMSD between bound and unbound forms of each
protein varies between 0.6 and 1.4 Å. However, regions of high
mobility exist in which the local RMSD may take values as
high as 7.3 Å (Table 1). Such regions belong to unstructured

surface exposed loops where they display large deviations upon
complex formation. The amino acids identified by PRS in
this group belong to these regions and very specific locations
may be perturbed so that the local fluctuations of the amino
acids choose the conformational switch to the target structure.
Thus, mechanical motions of the loops produce essential
conformational transitions under such point perturbations.

Contrary to Type I and II complexes, the electrostatic potential
distribution along the protein surfaces of Type III reveals
that each protein maintains the same electrostatic potential
distribution state in their respective bound and unbound forms.
This means that for any protein complex in this group,
orientation of the negatively and positively charged surfaces of
the constituents has the same distribution in their respective free
forms. Thus, the analysis identifies an “insulating” interface area
that prevents the allosteric communication between interacting
proteins and each protein functions independently under various
perturbations. We note that while there are also stretches with
large RMSDs in Type II protein complexes, those regions cross-
control the dissociation of the binding proteins remotely and
their own shape changes are not mechanically controlled.

As an example case, for the alkaline protease and its cognate
inhibitor (pdb code: 1JIW; Hege et al., 2001) classified as Type
III, PRS finds residues 191–193 of protease which are in direct
contact with the N-terminus of the inhibitor (Figure 3C). The
latter has been shown to coordinate the catalytic zinc anion
(Hege et al., 2001). Such an interaction adds to the structural
stability and leads to a low dissociation constant. Upon any
kind of perturbation applied to residues 191–193 of the protease,
disruption of the interactions in this region would change the
extended conformation of the N-terminus and modify the zinc
coordination and thus might facilitate the dissociation process.

Combined Perturbations on Both
Partners Is Essential for Dissociation in
Type IV Complexes
In Type IV group of protein complexes, dissociation of the two
constituents might be triggered by point perturbations on either
subunit. This contrasts Type III complexes where perturbation
of any subunit will mediate the disruption of interactions in
the protein pair, facilitating dissociation. Different functional
subdomains may exist on these proteins which contribute to
binding to diverse set of ligands in their functional pathway
and promote dissociation. Additionally, complexes in our test
set involving transmembrane proteins also fall into this group.
Presence of each fragment of the protein pair in different
compartments of the cell environment assist their exposure
to different perturbation scenarios and support the idea of
simultaneous perturbation of both partners of the protein
complex in the dissociation process. As an example, we focus on
dI2dIII1complex of proton-translocating transhydrogenase (pdb
code:2OOR; Bhakta et al., 2007). The complex is found in the
membrane compartment of the bacteria or animal cells. Proton
transfer across the membranes is facilitated by conformational
changes of transhydrogenase. PRS identifies residues A166, L214
and T220 of dI subunit and residues N103, P105 and M167
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TABLE 5 | Summary of types of complexes and properties of their dissociation mechanisms.

Complex Type (# of
complexes out of total 25)

Control Range Electrostatic change
upon binding

I (11) Centralized on one protein; residues on one protein controls
conformational changes on both proteins

Long-range Yes

II (5) Cross-control; residues on one protein controls the conformational
change in the other partner

Long-range Yes

III (4) Auto-control; residues on the same protein control their own
conformational change

Local No

IV (5) Scattered control; residues on both proteins control the
conformational changes

Local No

of dIII subunit to be effective in dissociation of the complex
(Figure 3D). dI and dIII protrude from the membrane while a
third compartment dII spans the membrane. Thus, each part of
the protein is exposed to a different part of the cell, making the
protein susceptible to alternative perturbation scenarios. Residue
T220 of dI is part of a loop (residues 220–240; Figure 3D
magenta) that becomes less mobile upon ligand binding due to
surface closing of the protein (Bhakta et al., 2007). Furthermore,
M167 of dIII is in the neighboring site of H2NADH and any
perturbation on this site might alter the proton pump reactions
due to changes made to interaction network of ligand binding
region. Accordingly, any perturbation on H2NADH binding
region in dIII subdomain may alter the structural features of dI
subdomain through remote communication.

CONCLUSION

There is plethora of work addressing association of proteins
partaking in complexes, and the consensus is to focus on the
interface to determine the major features of binding events
(Gainza et al., 2020), concentrating on, e.g., pockets formed
upon complexation (Li et al., 2004), prediction of binding
energies based on the interface (Moreira et al., 2007), close-
range electrostatic interactions (Kumar and Nussinov, 2002), and
conserved residues along the interface (Kumar and Nussinov,
2002; Li et al., 2004). However, to alter protein functions, e.g.,
for therapeutic applications, it is also essential to understand
the mechanisms affecting their dissociation, a question that has
not been thoroughly explored, to the best of our knowledge.
In this work, we have studied the characteristics of residues
responsible for the dissociation of a set of 25 non-redundant
protein complexes, using PRS as the predictor of residues
whose perturbation encourages the unbound conformations.
Significance of the residues identified by PRS are discussed in
detail for four sample cases (Figure 3).

In a statistical analysis of the PRS identified residues, we find
that in terms of residue types, the only significant enhancement
is in glycine residues, up from 8% of all residues found in
the protein set to 13% in the subset of residues implicated
in protein dissociation. This is in contrast to the studies
reporting on hotspots on the interaction surface, whereby
tryptophan (21%), arginine (13.3%), and tyrosine (12.3%)
have the highest probabilities of occurrence (Moreira et al.,

2007). Moreover, PRS identifies residues labeled as controlling
dissociation are also significantly enhanced on loops, and
are predominantly located on the complex surface, remote
from the interface. This finding is plausible, since in contrast
to an association event whereby interface compatibility is a
major determinant, exposed residues are expected to partake in
disrupting the complex.

We find that dissociation events disclosed by PRS analysis may
be classified into four main groups as summarized in Table 5. The
nature of the events leading to dissociation are either expected to
be due to mechanical perturbations arriving at certain locations
on the surface, or due to environmental triggers that interfere
with the electrostatic potential distribution of the complex. In the
latter case, a signature event is in the change of the electrostatic
potential distributions of one of the binding partners (see Type I
in Tables 1, 2 and Figure 1) or both of them (Type II complexes;
Figure 2). The physics of these observations are resolved by an
electro-mechanical coupled ENM proposed by our group (Sensoy
et al., 2017). Accordingly, we find that even in the absence of
an external force, positional displacements may still be obtained,
provided there is electromechanical coupling. The role of PRS
is to identify residues where such equivalent forces are focused
on and are relevant to the observed conformational change.
In the absence of coupling, the conformational change may
indeed be triggered by an external force, e.g., upon binding of a
ligand. Therefore, PRS either identifies the residues that facilitate
displacements by mechanical perturbations (Type III and IV),
or those which are mechanical mimics to the effects expedited
by changes in electric displacement (Type I and II). In the latter
situation, a coupling term that links electrical drive to mechanical
response survives.

This study is a step toward developing descriptors aimed
at disrupting protein complexes with the aim of developing
therapeutic approaches to alter the function of proteins
working in tandem. In particular, targeting remote sites
to destabilize interacting proteins using unique approaches
will aid in the emerging field of allosteric drug design
(Guarnera and Berezovsky, 2020).
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The blockade of immune checkpoints, such as programmed death receptor 1 (PD-1)
and programmed death ligand 1 protein (PD-L1), is a promising therapeutic approach
in cancer immunotherapy. Nivolumab, a humanized IgG4 antibody targeting PD-1, was
approved by the US Food and Drug Administration for several cancers in 2014. Crystal
structures of the nivolumab/PD-1 complex show that the epitope of PD-1 locates at
the IgV domain (including the FG and BC loops) and the N-terminal loop. Although
the N-terminal loop of PD-1 has been shown to play a dominant role in the complex
interface of the static structure, its role in the dynamic binding process has not been
illustrated clearly. Here, eight molecular systems were established for nivolumab/PD-
1 complex, and long-time molecular dynamics simulations were performed for each.
Results showed that the N-terminal loop of PD-1 prefers to bind with nivolumab to
stabilize the interface between IgV and nivolumab. Furthermore, the binding of the
N-terminal loop with nivolumab induces the rebinding between the IgV domain and
nivolumab. Thus, we proposed a two-step binding model for the nivolumab/PD-1
binding, where the interface switches to a high-affinity state with the help of the
N-terminal loop. This finding suggests that the N-terminal loop of PD-1 might be a
potential target for anti-PD-1 antibody design, which could serve as an important
gatekeeper for the anti-PD-1 antibody binding.

Keywords: PD-1, nivolumab, N-terminal loop, molecular dynamics simulation, two-step model

INTRODUCTION

Cancer, the leading cause of death worldwide, constitutes a considerable burden to
society (Bray et al., 2018; Miller et al., 2019). Cancer immunotherapy, that is, harnessing the
immune system to battle tumors, has attained remarkable achievement in cancer treatment.
Cancer immunotherapy comprises various treatment approaches, including antitumor
monoclonal antibodies, cancer vaccines, and antibodies that block immune inhibitory
pathways (Mellman et al., 2011; Couzin-Frankel, 2013). Among these treatments, blockade
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of immune checkpoints is the most promising approach to
activate therapeutic antitumor immunity (Ribas and Wolchok,
2018). The 2018 Nobel Prize in Physiology or Medicine was
awarded to James P. Allison and Tasuku Honjo for their
pioneering discoveries that led to the development of immune
checkpoint inhibitors, which block the inhibitory action of T cell
molecules, including programmed death receptor-1 (PD-1) and
cytotoxic T lymphocyte-associated protein 4 (CTLA-4) (Pardoll,
2012; Guo, 2018; Zaidi and Jaffee, 2018).

PD-1 is an immune checkpoint receptor of the CD28 family
expressed in tumor and immune cells (Keir et al., 2008). It is a 288
amino acid type I transmembrane receptor, and its ectodomain
consists of four domains, namely, signal peptide, N-terminal
loop, extracellular immunoglobulin variable (IgV) domain, and
stalk region. The blockade of the interaction between PD-1
and its ligand programmed death ligand 1 protein (PD-L1) was
observed to restore the attenuated immune response and lead to
increased antitumor and antiviral activities (Hirano et al., 2005;
Zitvogel and Kroemer, 2012; Sharma and Allison, 2015). Several
PD-1/PD-L1 pathway inhibitors, including pembrolizumab,
nivolumab targeting PD-1 and atezolizumab, durvalumab, and
avelumab targeting PD-L1, have been approved by the US Food
and Drug Administration (FDA) for the treatment of multiple
cancers to date (Callahan et al., 2016; Ivashko and Kolesar, 2016;
Leventakos and Mansfield, 2016; Bellmunt et al., 2017; Kim,
2017; Muller et al., 2017; Rittmeyer et al., 2017; Sidaway, 2017;
Syed, 2017). Humanized IgG4 antibody nivolumab received the
most attention and was approved for the treatment of melanoma,
metastatic non-small-cell lung cancer, renal cell carcinoma, and
Hodgkin lymphoma in 2014.

Two crystal structures of the nivolumab/PD-1complex have
been reported in 2015 and 2016, respectively, providing interface
information at the atomic level (Figures 1A,E; Lee et al., 2016;
Tan et al., 2017). Three loops of PD-1 provide a flexible platform
for nivolumab binding, including the N-terminal loop, the FG
loop, and the BC loop. The FG and BC loops locate on the
IgV domain. Previous studies showed that the FG loop (i.e.,
PD−1PRO130 and PD−1LYS131) is a binding site for PD-L1 as
well as a “hot spot” for several immune checkpoint blockade
monoclonal antibodies, such as GY-5 and GY-14 (Zak et al., 2015;
Liu and Liu, 2017; Chen et al., 2019a). They clearly suggest a
steric clash blockade mechanism of nivolumab. Unexpectedly,
the N-terminal loop of PD-1 is far from the interface of PD-1/PD-
L1 complex but contributes the majority of hydrogen bonds
(H-bonds) to the binding of nivolumab and PD-1. Experiments
further proved that the truncation of the N-terminal loop of
PD-1 would abolish the nivolumab binding (Tan et al., 2017).
Thus, the N-terminal loop of PD-1 plays a dominant role in
the complexation of PD-1 and nivolumab. In spite of this, how
the N-terminal loop regulates the dynamic binding process has
not been answered clearly. Molecular recognition is a dynamic
process, and the binding of a ligand to its receptor is regarded
not as a single, frozen structure but rather a macromolecule in
constant motion (Moroni et al., 2015). Considering the two-site
mode (the N-terminal loop and the IgV domain) at the interface
of the nivolumab/PD-1 complex, we assumed a two-step binding
model, where the N-terminal loop will help switch the binding to
a stronger state whether it comes across nivolumab firstly or not.

Molecular dynamics (MD) simulation is well suited for
studying the dynamics of proteins (Liu et al., 2018). We have

FIGURE 1 | Eight molecular systems of nivolumab/PD-1 complex. (A) Complex I. It is downloaded from the PDB with accession code of 5GGR. (B) Complex
I-N-truncated. It is built through cutting off the N-terminal loop of PD-1 of Complex I. (C) Complex I-N-rotated. It is built through the rotation of the N-terminal loop of
PD-1 of Complex I. (D) Complex I-IgV-rotated. It is built through the rotation of the IgV domain of PD-1 of Complex I. (E) Complex II. It is downloaded from the PDB
with accession code of 5WT9. (F) Complex II-N-truncated. It is built through cutting off the N-terminal loop of PD-1 of Complex II. (G) Complex II-N-rotated. It is built
through the rotation of the N-terminal loop of PD-1 of complex II. (H) Complex II-IgV-rotated. It is built through the rotation of the IgV domain of PD-1 of Complex II.
The nivolumab is shown in silver (Surface mode). The N-terminal loop of PD-1 is shown in blue (New Cartoon mode). The FG loop and the BC loop of the IgV domain
are shown in red, and the rest parts of the IgV domain are shown in yellow (New Cartoon mode).
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used MD simulations to elucidate conformational selection and
induced fit mechanisms in the binding of PD-1 and PD-L1 via
MD simulations, and found that the CC’ loop of PD-1 is flexible
and switches from an open form to a close one to stabilize
the PD-1/PD-L1 complex (Liu et al., 2017). MD simulation
is also proven to be a useful tool to detect the “hot-spots”
in the complex interface, such as the 6B4/GPIba complex, the
10B12/GPVI complex, the PD-1/PD-L1 complex, and the PD-
1/pembrolizumab complex (Fang et al., 2012; Liu et al., 2016;
Liu and Liu, 2017).

Therefore, MD simulations were adopted here to investigate
the role of the N-terminal loop of PD-1 in the dynamic
binding process between PD-1 and nivolumab. Two crystal
structures of the nivolumab/PD-1 complex were used to
build eight molecular systems with different binding states to
mimic the scenarios with or without the N-terminal loop,
and the N-terminal loop binds firstly or not (Figure 1).
The results show that the N-terminal loop of PD-1 prefers
to bind with nivolumab to stabilize the complex interface
between the IgV domain (i.e., FG loop and BC loop)
and nivolumab. The binding of the N-terminal loop with
nivolumab also induces the rebinding between the IgV domain
and nivolumab. These findings suggest a two-step binding
model, in which the interface of nivolumab/PD-1complex
switches to a stronger binding state with the help of the
N-terminal loop of PD-1.

MATERIALS AND METHODS

System Setup
Eight nivolumab/PD-1 complex structures were set up for MD
simulations (Figure 1). First, two crystal structures of the
nivolumab/PD-1 complex with accession codes of 5GGR and
5WT9 were downloaded from the PDB, and were designated
as Complex I and Complex II respectively (Figures 1A,E).
Both structures include a long N-terminal loop at the complex
interface, but in different lengths (PD−1SER27-PD−1ASN33 for
complex I, PD−1LEU25-PD−1ASN33 for complex II). Actually,
Complex II has an intact N-terminal loop and Complex I only
lacks two residues, because the residues before PD−1LEU25
belong to the signal peptide, which will be post-translationally
removed and cannot be secreted. Second, the N-terminal loops
of Complex I and II were cut off, and the remaining structures
were designated as Complex I-N-truncated and Complex II-N-
truncated (Figures 1B,F). Third, the N-terminal loop of Complex
I and Complex II was rotated backward at the interface with 90◦
to dissociate from nivolumab, with the IgV domain of PD-1 and
nivolumab fixed. These two structures were used to mimic the
scenario where the IgV domain of PD-1 binds to nivolumab at the
first step and designated as Complex I-N-rotated and Complex II-
N-rotated (Figures 1C,G). Finally, the IgV domain of Complex
I (PD−1PRO34-PD−1ARG143) and Complex II (PD−1PRO34-
PD−1LEU142) was rotated backward at the interface with 90◦
to dissociate from nivolumab, with the N-terminal loop and
nivolumab fixed. These two structures were used to mimic the
scenario where the N-terminal loop of PD-1 binds to nivolumab

at the first step and designated as Complex I-IgV-rotated and
Complex II-IgV-rotated (Figures 1D,H).

The N- and C-terminal residues of each complex were
acetylated and amidated, respectively, to mimic the continuation
of the protein chains. The missing residues of PD-1 in each
complex structure were modeled by the SWISS-MODEL server,
with the free PD-1 structures with PDB accession codes 3RRQ
and 2M2D as templates (Bordoli et al., 2008; Biasini et al., 2014).
The protonation state of each protein residue at neutral pH was
determined with the software PROPKA (Bas et al., 2008). Each
complex was first solvated with TIP3P water molecules in a
rectangular box with walls at least 15Å away from any protein
atom. Then, Na+ and Cl− ions were added to neutralize the
systems at a 150 mM salt concentration. The final system each
consists of ∼35,500 water molecules, ∼100 Na+ and ∼100 Cl−
ions (Supplementary Table S1).

MD Simulations
VMD 1.9.3 program was used for visualization, modeling, data
analysis, and conformation presentation (Humphrey et al., 1996).
NAMD 2.11 program with CHARMM36 all-atom force field was
used for simulations (Phillips et al., 2005; Best et al., 2012).
The cMAP correction for protein backbone, a time step of
2 fs, and a periodic boundary condition were applied in the
simulations. The particle mesh Ewald method and a smooth
cutoff of 12 Å were employed to calculate the full electrostatic
and van der Waals forces.

First, each system was energy-minimized for 5,000 steps with
all protein atoms fixed and for another 5,000 steps with all atoms
free. Next, each system was heated gradually from 0 to 310 K
in 1 ns. Then, equilibrium simulation of 100 ns was performed
thrice (named Equ1, Equ2, and Equ3) for each system. A 310 K
heat bath was manipulated using the Langevin thermostat, and a
1 atm pressure was controlled using the Langevin piston method
during equilibriums.

Data Analysis
Transient complex formation usually relies on H-bonds
(Kar et al., 2012), and they are the dominant linkers at the
interface of nivolumab/PD-1 complex (Lee et al., 2016; Tan et al.,
2017). Therefore, H-bonds across the interface in simulations
were detected using VMD software with in-house scripts.
An H-bond was defined if the donor–acceptor distance and
bonding angle were smaller than 3.5 Å and 30◦, respectively.
The survival ratio of an H-bond was defined as the percentage of
bond survival time.

The root mean square deviation (RMSD) of heavy atoms was
used to illustrate the stability of the structures as well as the
conformational changes of the N-terminal loop and IgV domain
of PD-1. When analyzing the RMSD for the N-terminal loop and
IgV domain of PD-1, the structures of nivolumab were aligned.
Buried solvent-accessible surface area (SASA) of each complex,
representing the interface area, was calculated using VMD
software with handwritten scripts. The interaction energy, mainly
including van der Waals and electrostatic energy, was calculated
using NAMD Energy plugin (version 1.4) provided in VMD 1.9.3.
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RESULTS

Interface Analysis of the Nivolumab/PD-1
Complex
To describe the dynamic picture of the interface of the
nivolumab/PD-1 complex, two crystal structures of the complex
with accession codes 5GGR and 5WT9 were downloaded
from the PDB database, and designated as Complex I and
Complex II (Figures 1A,E), respectively. They were solvated
with TIP3P water molecules in a rectangular box. Equilibrium
simulation of 100 ns was performed thrice (named Equ1, Equ2
and Equ3) for each complex after an energy minimization of
10,000 steps. The RMSD of heavy atoms showed that these
two complexes had reached a local minimum after 20 ns
(Supplementary Figures S1, S2).

Variations of buried SASA, interaction energy, and number
of H-bonds were recorded for each complex to evaluate the
stability of the complex interface (Figures 2, 3), and their
distributions are shown in Figure 4. The buried SASA of
Complex I fluctuated around 1,600 Å2, and its interaction energy
and number of H-bonds fluctuated around −260 kcal/mol
and 6, respectively (Figures 2A–C, 4A–C). However, the
interface of Complex II was larger and stronger, with
buried SASA, interaction energy and number of H-bonds
fluctuating around 1,800 Å2, −320 kcal/mol and 6, respectively
(Figures 3A–C, 4D–F).

H-bonds with a maximum survival ratio of above 0.2 were
sorted out to recognize the interaction residues because they
are proposed as the dominant linkers across the interface (Lee
et al., 2016; Tan et al., 2017; Table 1). In total 15 H-bonds

were detected for Complex I, and 20 for Complex II. Interaction
residues on PD-1 of these two complexes all located on three
loops, including the N-terminal loop (PD−1ASP26, PD−1PRO28,
PD−1ASP29, and PD−1ARG30), the BC loop (PD−1THR59,
PD−1SER60, and PD−1GLU61), and the FG loop (PD−1ALA129,
PD−1PRO130, and PD−1LYS131) (Figures 2D–F, 3D–F). The FG
loop formed five H-bonds in both the interfaces of Complex
I and Complex II with the highest survival ratio of 0.68.
The BC loop formed four and six H-bonds at the interface
of Complex I and Complex II, respectively, with the highest
survival ratio of 0.53. Although the numbers of H-bonds were
similar to those of the FG loop, the interface formed by the
BC loop was more vulnerable because it only appeared in
two of three runs for both Complex I and Complex II. The
average survival ratios of the H-bonds involved with the FG loop
were higher than those with the BC loop, while the standard
deviations with the FG loop were lower than those with the
BC loop (Table 1). As the FG loop is a binding region for PD-
L1, these results clearly suggest a stable steric clash blockade
mechanism of nivolumab.

In the crystal structures, the N-terminal loop of PD-1 is
not a binding site for PD-L1 but forms a major interface
with nivolumab. In our simulations, it involved in six H-bonds
at the interface of Complex I and contributed nine H-bonds
to the interface of Complex II, with the highest survival
ratio of 0.82. The standard deviations of the survival ratios
of the H-bonds formed by the N-terminal loop were a little
high. This might be due to the high flexibility of the long
N-terminal loop, which consists of eight residues (PD−1SER27
to PD−1PRO34) in Complex I and 10 residues (PD−1LEU25
to PD−1PRO34) in Complex II, and can only be constrained

FIGURE 2 | Buried SASA (A), interaction energy (B), and number of H-bonds (C) of Complex I in three runs (Equ1, Equ2, and Equ3). (D–F) Show the last frame of
Complex I in Equ1, Equ2, and Equ3, respectively. The nivolumab is shown in silver (Surface mode). The N-terminal loop of PD-1 is shown in blue and the IgV domain
of PD-1 is shown in yellow (New Cartoon mode). The interaction residues of PD-1 are shown in red (Licorice mode).
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FIGURE 3 | Buried SASA (A), interaction energy (B), and number of H-bonds (C) of Complex II in three runs (Equ1, Equ2, and Equ3). (D–F) Show the last frame of
Complex II in Equ1, Equ2, and Equ3, respectively. The nivolumab is shown in silver (Surface mode). The N-terminal loop of PD-1 is shown in blue and the IgV
domain of PD-1 is shown in yellow (New Cartoon mode). The interaction residues of PD-1 are shown in red (Licorice mode).

FIGURE 4 | (A–C) Demonstrate distributions of buried SASA, interaction energy, and number of H-bonds for Complex I, Complex I-N-truncated, Complex
I-N-rotated, and Complex I-IgV-rotated. (D–F) Demonstrate distributions of buried SASA, interaction energy, and number of H-bonds for Complex II, Complex
II-N-truncated, Complex II-N-rotated, and Complex II-IgV-rotated.

by one side. ThePD−1ASP26 located at the N-terminal loop
formed two H-bonds with nivolumab in Complex II, but it was
missing in Complex I. Thus, the N-terminal loop in Complex
II formed a larger interface with nivolumab. These MD results
showed that interactions between the N-terminus of PD-1 and
nivolumab are definite and stable on the nanosecond time
scale we simulated.

Truncation of the N-Terminal Loop of
PD-1 Impairs the Interface Between
PD-1 and Nivolumab
The N-terminal loop of PD-1 greatly contributes to the interface
of the nivolumab/PD-1 complex, and mutagenesis study revealed
that the cut-off of the N-terminal loop abolished the binding
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TABLE 1 | Summary of survival ratio and involved residues of H-bonds in the interface of complex I and complex II.

Complex Bond No. PD-1 Nivolumab Survival ratio#

Secondary structure Residue Atom Residue* Atom Equ1 Equ2 Equ3 Max Ave Std

Complex I 1 N-terminal loop ASP29 OD1 GLY33H N 0.41 0.72 0.80 0.80 0.76 0.06

2 ARG30 N ASN31H O 0.52 0.70 0.76 0.76 0.66 0.12

3 ASP29 OD2 ASN99H ND2 0.32 0.61 0.66 0.66 0.53 0.18

4 ASP29 OD1 ASN99H ND2 0.37 0.15 0.08 0.37 0.20 0.15

5 ASP29 OD2 GLY33H N 0.36 0.02 0.00 0.36 0.13 0.20

6 PRO28 O TYR53H N 0.28 0.16 0.21 0.28 0.22 0.06

7 FG loop ALA129 O THR56L OG1 0.30 0.57 0.64 0.64 0.50 0.18

8 PRO130 O THR56L N 0.50 0.62 0.56 0.62 0.56 0.06

9 LYS131 NZ ASP101H OD2 0.36 0.27 0.29 0.36 0.31 0.05

10 LYS131 N ASP100H O 0.35 0.28 0.32 0.35 0.32 0.04

11 LYS131 NZ ASP101H OD1 0.26 0.32 0.31 0.32 0.30 0.03

12 BC loop GLU61 OE2 THR28H OG1 0.01 0.43 0.39 0.43 0.28 0.23

13 GLU61 OE2 THR28H N 0.00 0.41 0.31 0.41 0.24 0.21

14 GLU61 OE1 THR28H OG1 0.01 0.32 0.31 0.32 0.21 0.18

15 GLU61 OE1 THR28H N 0.00 0.24 0.28 0.28 0.17 0.15

Complex II 16 N-terminal loop ARG30 N ASN31H O 0.82 0.76 0.25 0.82 0.61 0.31

17 ASP29 OD2 GLY33H N 0.59 0.00 0.11 0.59 0.23 0.31

18 ASP29 OD1 ASN99H ND2 0.52 0.23 0.33 0.52 0.36 0.15

19 ARG30 NH1 ASN31H OD1 0.45 0.03 0.00 0.45 0.16 0.25

20 ASP29 OD2 ASN99H ND2 0.29 0.14 0.42 0.42 0.28 0.14

21 ASP29 OD1 GLY33H N 0.36 0.01 0.28 0.36 0.22 0.18

22 PRO28 O TYR53H N 0.21 0.09 0.27 0.27 0.19 0.09

23 ASP26 OD2 LYS57H NZ 0.09 0.10 0.24 0.24 0.14 0.08

24 ASP26 OD1 LYS57H NZ 0.06 0.24 0.17 0.24 0.16 0.09

25 FG loop PRO130 O THR56L N 0.28 0.68 0.60 0.68 0.52 0.21

26 LYS131 NZ ASP101H OD2 0.50 0.18 0.28 0.50 0.32 0.16

27 LYS131 NZ ASP101H OD1 0.35 0.38 0.42 0.42 0.38 0.04

28 ALA129 O THR56L OG1 0.08 0.29 0.06 0.29 0.14 0.13

29 LYS131 NZ ASN99H O 0.25 0.15 0.16 0.25 0.19 0.06

30 BC loop THR59 O THR28H N 0.00 0.53 0.05 0.53 0.19 0.29

31 GLU61 N GLY26H O 0.00 0.42 0.04 0.42 0.15 0.23

32 GLU61 N THR28H OG1 0.01 0.00 0.32 0.32 0.11 0.18

33 THR59 O ASN31H ND2 0.05 0.01 0.27 0.27 0.11 0.14

34 SER60 OG GLY26H O 0.00 0.27 0.01 0.27 0.09 0.15

35 THR59 OG1 ASN31H ND2 0.01 0.21 0.03 0.21 0.08 0.11

*The name of the residues with H or L indicating that the residues are on the heavy or the light chain of nivolumab. #Equ1, Equ2, and Equ3 donate three runs. Max
represents the maximum value of three survival ratios of a bond. Ave represents the average value of three survival ratios of a bond. Std represents the standard deviation
of three survival ratios of a bond.

between PD-1 and nivolumab. How will the truncation of the
N-terminal loop impair the interfaces? To answer this question,
we cut off the N-terminal loops in Complex I and II, and
designated them as Complex I-N-truncated and Complex II-N-
truncated (Figures 1B,F). These two systems were simulated with
the same scenario as before. The RMSD of heavy atoms showed
that these two complexes reached a local minimum after 20 ns
(Supplementary Figures S3, S4).

Variations of buried SASA, interaction energy, and number
of H-bonds along the simulation time were analyzed, as shown
in Figures 5A–C, 6A–C, and their distributions are shown
in Figure 4. The buried SASA of Complex I-N-truncated
greatly decreased to around 900 Å2, and its interaction energy

and number of H-bonds dropped to -180 kcal/mol and 3,
respectively. The buried SASA of Complex II-N-truncated
greatly decreased to around 1,000 Å2, and its interaction
energy and number of H-bonds dropped to -180 kcal/mol
and 3, respectively. These results indicate that the truncation
of the N-terminal loop seriously impairs the binding between
PD-1 and nivolumab (Figures 5D–F, 6D–F). Moreover, the
binding strength of Complex I-N-truncated is similar to that
of Complex II-N-truncated, implying that Complex II is more
stable than Complex I because it has a longer N-terminal
loop (PD−1LEU25 to PD−1PRO34) than Complex I (PD−1SER27
to PD−1PRO34). This conclusion was further proved by the
H-bonds with a survival ratio of above 0.2, where nine H-bonds
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FIGURE 5 | Buried SASA (A), interaction energy (B), and number of H-bonds (C) of Complex I-N-truncated in three runs (Equ1, Equ2, and Equ3). (D–F) Show the
last frame of Complex I-N-truncated in Equ1, Equ2, and Equ3, respectively. The IgV domain of PD-1 is shown in yellow (New Cartoon mode). The interaction
residues of PD-1 are shown in red (Licorice mode).

FIGURE 6 | Buried SASA (A), interaction energy (B), and number of H-bonds (C) of Complex II-N-truncated in three runs (Equ1, Equ2, and Equ3). (D–F) Show the
last frame of Complex II-N-truncated in Equ1, Equ2, and Equ3, respectively. The IgV domain of PD-1 is shown in yellow (New Cartoon mode). The interaction
residues of PD-1 are shown in red (Licorice mode).

for Complex I-N-truncated, and ten for Complex II-N-truncated
were found with the interaction residues contributed by the
FG and BC loops of PD-1, similar to those in Complex I and
Complex II (Table 2).

Although the interface of the nivolumab/PD-1 was seriously
impaired by cutting off the N-terminal loop of PD-1, the
dissociation was not observed. A possible reason is that the
energy barrier involved in the FG and BC loops of PD-1 was too
high to overcome within our simulation time. However, analysis

of accessibility of water molecules around the FG and BC loops
revealed one major difference before and after deletion of the
N-terminal loop. As shown in Figures 7A,B, the difference lies
in extra water accessibility near the BC loop, where about nine
and ten more water molecules entered within 4 Å of the BC
loops of Complex I-N-truncated and Complex II-N-truncated.
For the FG loop, the water accessibility showed no significant
change. This result suggests the interface involved in the BC loop
is protected from water attack by the N-terminal loop. Deleting
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TABLE 2 | Summary of survival ratio and involved residues of H-bonds in the interface of complex I-N-truncated and complex II-N-truncated.

Complex Bond No. PD-1 Nivolumab Survival ratio#

Secondary structure Residue Atom Residue* Atom Equ1 Equ2 Equ3 Max Ave Std

Complex I-N-truncated 1 FG loop PRO130 O THR56L N 0.77 0.74 0.71 0.77 0.74 0.03

2 ALA129 O THR56L OG1 0.60 0.57 0.61 0.61 0.59 0.02

3 LYS131 NZ ASP101H OD1 0.34 0.42 0.39 0.42 0.38 0.04

4 LYS131 NZ ASP101H OD2 0.40 0.29 0.31 0.40 0.33 0.06

5 BC loop GLU61 OE1 TYR102H OH 0.21 0.38 0.42 0.42 0.34 0.11

6 GLU61 OE2 TYR102H OH 0.30 0.25 0.38 0.38 0.31 0.07

7 GLU61 OE1 THR28H OG1 0.15 0.29 0.01 0.29 0.15 0.14

8 GLU61 OE2 THR28H OG1 0.08 0.26 0.14 0.26 0.16 0.09

9 GLU61 N GLY26H O 0.18 0.23 0.20 0.23 0.20 0.03

Complex II-N-truncated 10 FG loop PRO130 O THR56L N 0.75 0.47 0.71 0.75 0.64 0.15

11 LYS131 NZ ASP101H OD1 0.52 0.46 0.33 0.52 0.44 0.10

12 ALA129 O THR56L OG1 0.52 0.32 0.10 0.52 0.31 0.21

13 LYS131 NZ ASP101H OD2 0.29 0.27 0.33 0.33 0.30 0.03

14 LYS131 N ASP100H O 0.03 0.34 0.06 0.34 0.14 0.17

15 LYS135 NZ ASP100H OD1 0.00 0.32 0.00 0.32 0.11 0.18

16 LYS131 NZ ASN99H O 0.09 0.26 0.02 0.26 0.12 0.12

17 GLN133 OE1 TYR49L OH 0.03 0.20 0.05 0.20 0.09 0.09

18 BC loop GLU61 N GLY26H O 0.03 0.28 0.05 0.28 0.12 0.14

19 GLU61 N THR28H OG1 0.00 0.02 0.22 0.22 0.08 0.12

*The name of the residues with H or L indicating that the residues are on the heavy or the light chain of nivolumab. #Equ1, Equ2, and Equ3 donate three runs. Max
represents the maximum value of three survival ratios of a bond. Ave represents the average value of three survival ratios of a bond. Std represents the standard deviation
of three survival ratios of a bond.

FIGURE 7 | Number of water molecules within 4 Å of the BC (A) and FG (B) loops of Complex I, Complex I-N-truncated, Complex II and Complex II-N-truncated in
three runs. *p < 0.05, **p < 0.01.

the N-terminal loop might lead to a fast dissociation of the BC
loop from nivolumab.

The N-Terminal Loop of PD-1 Prefers to
Interact With Nivolumab to Stabilize the
Complex Interface Further
Two binding regions were mapped on PD-1 for nivolumab,
namely, the N-terminal loop and the IgV domain (including the
FG loop and the BC loop), implying the possibility of a two-
step binding process. Therefore, four additional complexes were

built to verify this hypothesis. First, the N-terminal loop of PD-
1 in Complex I and Complex II was rotated backward against
the interface to dissociate from nivolumab to mimic the scenario
where the IgV domain of PD-1 binds to nivolumab at the first
step, designated as Complex I-N-rotated and Complex II-N-
rotated, respectively (Figures 1C,G). Second, the IgV domain of
PD-1 in Complex I and Complex II was rotated backward against
the interface to dissociate from nivolumab to mimic the scenario
where the N-terminal loop of PD-1 binds to nivolumab at the
first step, designated as Complex I-IgV-rotated and Complex
II-IgV-rotated, respectively (Figures 1D,H).
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Similarly, Complex I-N-rotated and Complex II-N-rotated
were simulated for 100 ns thrice after an energy minimization of
10,000 steps. The RMSD of heavy atoms showed that these two
complexes reached a local minimum after 20 ns (Supplementary
Figures S5, S6). Buried SASA, interaction energy, and number
of H-bonds of Complex I-N-rotated and Complex II-N-rotated
are shown in Figures 8A–C, 9A–C, respectively, and their
distributions are demonstrated in Figure 4. For Complex I-N-
rotated, its buried SASA decreased to around 800 Å2 during Equ1
and Equ2, and its interaction energy and number of H-bonds
decreased to around -180 kcal/mol and 3, respectively, which
was close to the binding strength of Complex I-N-truncated.
However, its buried SASA increased to around 1,400 Å2 during
Equ3 with interaction energy and number of H-bonds fluctuating
around−280 kcal/mol and 7, respectively, which was close to the
binding strength of the initial Complex I.

Were these changes induced by the N-terminal loop or the
IgV domain of PD-1? To answer this question, the number of

intermolecular H-bonds formed by the N-terminal loop and the
IgV domain of PD-1 was calculated (Figures 8D,E). H-bonds
with a survival ratio of above 0.2 are listed in Table 3. The results
clearly demonstrated that the increase of the complex interface
was mainly caused by the N-terminal loop. The RMSD of the
N-terminal loop in relative to its initial conformation in Complex
I further confirmed that it returned back toward nivolumab in
Equ3 (Figure 8F). The N-terminal loop bound to nivolumab with
six H-bonds (Bond No. 1–6 in Table 3) formed by PD−1ARG30
and PD−1PRO28 after 10 ns in Equ3, but it kept free in Equ1 and
Equ2 until the end of simulations (Figures 8G–I).

The buried SASA of Complex II-N-rotated increased to
around 1500 Å2 in all three runs (Figures 9A–C). Its interaction
energy decreased to around −350 kcal/mol in Equ1 and Equ3,
and to around −250 kcal/mol in Equ2. The number of H-bonds
of Complex II-N-rotated increased to 4 in Equ1 and Equ2,
but to 6 in Equ3. Next, the number of H-bonds formed by
the N-terminal loop as well as its RMSD in relative to its

FIGURE 8 | Buried SASA (A), interaction energy (B), and number of H-bonds (C) of Complex I-N-rotated in three runs (Equ1, Equ2, and Equ3). (D,E) Show the
number of H-bonds formed by the N-terminal loop and the IgV domain of PD-1, respectively. (F) shows the RMSD of the N-terminal loop of PD-1 of Complex
I-N-rotated in relative to its initial conformation in Complex I in three runs. (G–I) Show the last frame of Complex I-N-rotated in Equ1, Equ2, and Equ3, respectively.
The N-terminal loop of PD-1 is shown in blue and the IgV domain of PD-1 is shown in yellow (New Cartoon mode). The interaction residues of PD-1 are shown in red
(Licorice mode).
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FIGURE 9 | Buried SASA (A), interaction energy (B), and number of H-bonds (C) of Complex II-N-rotated in three runs (Equ1, Equ2, and Equ3). (D,E) Show the
number of H-bonds formed by the N-terminal loop and the IgV domain of PD-1, respectively. (F) Shows the RMSD of the N-terminal loop of PD-1 of Complex
II-N-rotated in relative to its initial conformation in Complex II in three runs. (G–I) Show the last frame of Complex II-N-rotated in Equ1, Equ2, and Equ3, respectively.
The N-terminal loop of PD-1 is shown in blue and the IgV domain of PD-1 is shown in yellow (New Cartoon mode). The interaction residues of PD-1 are shown in red
(Licorice mode).

initial conformation in Complex II were calculated, as shown
in Figures 9D–F and H-bonds with a survival ratio of above
0.2 are listed in Table 3. The results reveal that the N-terminal
loop rebuilt the complex interface and formed stable H-bonds
with nivolumab in all three runs after 20 ns, especially in Equ3.
PD−1ARG30 and PD−1ASP26 on the N-terminal loop formed
two H-bonds with ASN31H and LYS57H of nivolumab (Bond
No. 16 and 22 in Table 3) in Equ1, whereas PD−1LEU25 formed
one bond with TYR53H in Equ2 (Bond No. 17 in Table 3).
The interface between the N-terminal loop of PD-1 and the
nivolumab in Equ3 was most stable, with five H-bonds formed
by PD−1ARG30 with ASN31H and ASP100H of nivolumab (Bond
No. 15, 18–21 in Table 3 and Figures 9G–I).

Overall, on the nanosecond time scale, the N-terminal loop
of PD-1 prefers to interact with nivolumab to stabilize the
complex interface further. Interfaces of Complex I-N-rotated and
Complex II-N-rotated tend to be stronger with the help of the
N-terminal loop of PD-1. The binding strength indexes showed
bimodal distributions, especially for the interaction energy of
Complex II-N-rotated (red lines in Figure 4).

Binding of the N-Terminal Loop With
Nivolumab Could Induce the Rebinding
of the IgV Domain With Nivolumab
For the IgV-rotated complexes, the RMSD of heavy atoms
showed that Complex I-IgV-rotated fluctuated more violently
than Complex II-IgV-rotated in three runs (Supplementary
Figures S7, S8). Buried SASA, interaction energy, and number of
H-bonds of Complex I-IgV-rotated and Complex II-IgV-rotated
are shown in Figures 10A–C, 11A–C, respectively, and their
distributions are demonstrated in Figure 4. For all three runs of
Complex I-IgV-rotated, the buried SASA fluctuated around 700
Å2, the interaction energy fluctuated around −70 kcal/mol, and
the number of H-bonds fluctuated around 3 (Figures 10A–C).
The interface of complex I-IgV-rotated was mainly contributed
by the N-terminal loop of the PD-1 within our simulation time
(Figures 10D,E), with seven H-bonds formed by PD−1PRO28,
PD−1ASP29, and PD−1ARG30 with ASN31H, GLY33H, TYR53H,
and ASN99H of nivolumab (Bond No. 1–7 in Table 4 and
Figures 10G–I). The RMSD of the IgV domain in relative to its
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TABLE 3 | Summary of survival ratio and involved residues of H-bonds in the interface of complex I-N-rotated and complex II-N-rotated

Complex Bond No. PD-1 Nivolumab Survival ratio#

Secondary structure Residue Atom Residue* Atom Equ1 Equ2 Equ3 Max Ave Std

Complex I-N-rotated 1 N-terminal loop ARG30 NH1 ASN31H O 0.00 0.00 0.75 0.75 0.25 0.43

2 PRO28 O TYR53H OH 0.00 0.01 0.60 0.60 0.20 0.34

3 ARG30 NH1 ASP100H OD1 0.02 0.03 0.54 0.54 0.20 0.30

4 ARG30 NH2 ASP100H OD2 0.02 0.09 0.48 0.48 0.20 0.25

5 ARG30 NH2 ASP100H OD1 0.00 0.05 0.24 0.24 0.10 0.13

6 ARG30 NH1 ASP100H OD2 0.01 0.02 0.23 0.23 0.09 0.12

7 FG loop PRO130 O THR56L N 0.65 0.71 0.65 0.71 0.67 0.03

8 ALA129 O THR56L OG1 0.41 0.53 0.43 0.53 0.46 0.06

9 LYS131 NZ ASP101H OD1 0.27 0.44 0.49 0.49 0.40 0.12

10 LYS131 NZ ASP101H OD2 0.48 0.21 0.25 0.48 0.31 0.15

11 LYS131 NZ ASN99H O 0.14 0.13 0.23 0.23 0.17 0.06

12 BC loop GLU61 N GLY26H O 0.00 0.43 0.00 0.43 0.14 0.25

13 GLU61 OE1 TYR102H OH 0.01 0.39 0.00 0.39 0.13 0.22

14 GLU61 OE2 TYR102H OH 0.03 0.25 0.00 0.25 0.09 0.14

Complex II-N-rotated 15 N-terminal loop ARG30 NH1 ASN31H O 0.00 0.00 0.62 0.62 0.21 0.36

16 ARG30 NE ASN31H OD1 0.52 0.00 0.00 0.52 0.17 0.30

17 LEU25 O TYR53H OH 0.00 0.52 0.00 0.52 0.17 0.30

18 ARG30 NH1 ASP100H OD2 0.00 0.00 0.41 0.41 0.14 0.24

19 ARG30 NH2 ASP100H OD1 0.00 0.00 0.40 0.40 0.13 0.23

20 ARG30 NH1 ASP100H OD1 0.00 0.01 0.38 0.38 0.13 0.22

21 ARG30 NH2 ASP100H OD2 0.00 0.00 0.38 0.38 0.13 0.22

22 ASP26 OD1 LYS57H NZ 0.24 0.02 0.05 0.24 0.10 0.12

23 FG loop PRO130 O THR56L N 0.62 0.78 0.81 0.81 0.74 0.10

24 LYS131 NZ ASP101H OD2 0.43 0.32 0.50 0.50 0.42 0.09

25 ALA129 O THR56L OG1 0.14 0.32 0.40 0.40 0.29 0.13

26 LYS131 NZ ASP101H OD1 0.19 0.20 0.32 0.32 0.24 0.07

27 LYS131 N ASP100H O 0.26 0.11 0.03 0.26 0.13 0.12

28 BC loop GLU61 N GLN1H OY 0.00 0.00 0.27 0.27 0.09 0.16

29 THR59 OG1 GLY26H O 0.00 0.00 0.22 0.22 0.07 0.13

*The name of the residues with H or L indicating that the residues are on the heavy or the light chain of nivolumab. #Equ1, Equ2, and Equ3 donate three runs. Max
represents the maximum value of three survival ratios of a bond. Ave represents the average value of three survival ratios of a bond. Std represents the standard deviation
of three survival ratios of a bond.

initial conformation in Complex I showed that the IgV domain
of PD-1 remained free in all three runs, which caused great
fluctuations (Figure 10F).

By contrast, for all three runs of Complex II-IgV-rotated, the
buried SASA increased to nearly 1,600 Å2, the interaction energy
decreased to nearly −300 kcal/mol, and the number of H-bonds
increased to around 6. The number of H-bonds formed by the
N-terminal loop and the IgV domain of PD-1, as well as the
RMSD of the IgV domain in relative to its initial conformation
in Complex II are shown in Figures 11D–F. It can be seen
that the N-terminal loop of PD-1 maintained a stable interface
with nivolumab on the nanosecond time scale, and changes were
mainly caused by the IgV domain, which got close to and formed
stable interface with nivolumab in all three runs. The FG loop
(PD−1LYS131) and BC loop (PD−1THR59) of PD-1 interacted
firmly with nivolumab (ASN31H, ASN99H, and ASP101H) by
forming four bonds in Equ1 (Bond No. 17–19, 26 in Table 4
and Figure 11G). PD−1LYS131 of FG loop and PD−1GLU61 of
BC loop formed five H-bonds with ASP50L and THR28H of

nivolumab in Equ2 (Bond No. 21–25 in Table 4 and Figure 11H).
The FG loop (i.e., PD−1LYS131 and PD−1PRO130) formed two
H-bonds with ASP101H and THR56L of nivolumab in Equ3
(Bond No. 19–20, Figure 11I). Thus, in our simulations, binding
of the N-terminal loop with nivolumab could further induce the
interaction of the IgV domain with nivolumab, which would
switch the interface of nivolumab/PD-1 complex to a stronger
binding state (purple lines in Figures 4D–F).

DISCUSSION

The N-terminal loop of PD-1 has not attracted much attention
in recent years because it is not a binding region for PD-
L1. However, it was proven critical for the binding between
PD-1 and nivolumab, which is a humanized IgG4 antibody
approved by the FDA for several cancers. Crystal structures of
nivolumab/PD-1 complex showed that the interaction residues
of PD-1 locate on the N-terminal loop and IgV domain. The
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FIGURE 10 | Buried SASA (A), interaction energy (B), and number of H-bonds (C) of Complex I-IgV-rotated in three runs (Equ1, Equ2, and Equ3). (D,E) Show the
number of H-bonds formed by the N-terminal loop and the IgV domain of PD-1, respectively. (F) Shows the RMSD of the IgV domain of PD-1 of Complex
I-IgV-rotated in relative to its initial conformation in Complex I in three runs. (G–I) Show the last frame of Complex I-IgV-rotated in Equ1, Equ2, and Equ3,
respectively. The N-terminal loop of PD-1 is shown in blue and the IgV domain of PD-1 is shown in yellow (New Cartoon mode). The interaction residues of PD-1 are
shown in red (Licorice mode).

N-terminal loop of PD-1 greatly contributes to the complex
formation, and we believe that it should also play an important
role in the dynamic molecular recognition process. As dynamics
of terminal loops are hard to predict based on crystal structure
alone, eight molecular systems of nivolumab/PD-1 complex with
different binding states were established, and long-time MD
simulations of three replicas were performed for each of them,
with the total simulated time of 2.4 µs. Our results proposed a
two-step binding mode, in which the N-terminal loop of PD-
1 could switch the complex interface into a stronger binding
state. When the IgV domain binds to nivolumab first, the
N-terminal loop of PD-1 prefers to interact with nivolumab
to stabilize the complex interface. When the N-terminal loop
is occupied by nivolumab, it could further induce the binding
between the IgV domain (i.e., the FG and BC loops) of PD-
1 and nivolumab.

The present results provided a detailed picture on the
dynamic properties of the N-terminal loop of PD-1 in molecular
interactions. Although this is the first time to systematically study

the function of the N-terminal loop of PD-1, the N-terminal
loops of other proteins have been revealed to have similar
regulatory functions. For example, the N-terminus of model
protein thaumatin serves as a major binding for cisplatin
fragments (Russo Krauss et al., 2016). The N-terminal loop
residues of beta-amyloid plays a key role in its interactions
with integrin receptor and cell surface (Venkatasubramaniam
et al., 2014). The N-terminal loop region of A1 domain in
von Willebrand factor could stabilize A1A2A3 complex and
modulate platelet activation under shear stress (Ju et al., 2013).
Surface-exposed loops, generally as the most flexible parts of
a protein structure, are not mere connectors but also have the
potential to interact with solvent, ligands, and other biomolecules
(Papaleo et al., 2016).

Since loop regions are too flexible to be resolved by
crystallography, our simulations pave the way for investigating
the binding mechanism between PD-1 and nivolumab. With the
proposed two-step binding mode, nivolumab might be at least
twice as likely to bind PD-1 as other antibodies with only one
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FIGURE 11 | Buried SASA (A), interaction energy (B), and number of H-bonds (C) of Complex II-IgV-rotated in three runs (Equ1, Equ2, and Equ3). (D,E) Show the
number of H-bonds formed by the N-terminal loop and the IgV domain of PD-1, respectively. (F) Shows the RMSD of the IgV domain of PD-1 of Complex
II-IgV-rotated in relative to its initial conformation in Complex II in three runs. (G–I) Show the last frame of Complex II-IgV-rotated in Equ1, Equ2, and Equ3,
respectively. The N-terminal loop of PD-1 is shown in blue and the IgV domain of PD-1 is shown in yellow (New Cartoon mode). The interaction residues of PD-1 are
shown in red (Licorice mode).

binding site. Furthermore, due to the high flexibility and mobility
of the N-terminal loop, it can greatly facilitate the scanning
efficiency and thus increase the probability of PD-1-nivolumab
binding. This is of great importance for molecular interactions in
the crowded intracellular environment.

Besides the binding process, our work also revealed the role
of the N-terminal loop in augmenting the PD-1-nivolumab
residence time, which is defined as the reciprocal of the
dissociation rate constant. An abundance of experimental data
suggests that high-affinity drug interactions with macromolecular
targets generally rely on multistep binding and dissociation
described by the two-step, induced-fit model (Copeland, 2016).
Here, we show that the dissociation trajectory for the PD-
1/nivolumab complex probably involves a retrograde induced-fit
mechanism, that the N-terminal loop of PD-1 is able to rebind
the dissociated nivolumab and IgV domain before nivolumab is
completely released from PD-1 (Figure 11). Thus, the retrograde
induced-fit mechanism creates multiple kinetic and structural

barriers to nivolumab dissociation. This might partially explain
why nivolumab has a nearly 10-fold higher affinity than that
of pembrolizumab (Kd = 3.06 vs. 29 pM) (Fessas et al., 2017),
another humanized anti-PD-1 monoclonal antibody approved
by FDA, although the epitope of nivolumab is distinctly smaller
than that of pembrolizumab (buried surface areas = 1,487 vs.
2,126 Å2). This model suggests that the N-terminal loop of PD-1
may be viewed as a “kinetic gatekeeper” that guides the docking
of nivolumab onto the IgV domain and prevents nivolumab
from dissociating.

Apart from the role of pulling the IgV domain back
to nivolumab, the N-terminal loop may also increase the
nivolumab residence time by shielding the IgV-nivolumab
H-bonds from water. In previously reported studies, the
relationship between long residence time and accessibility of
water has been established (Schmidtke et al., 2011; Magarkar
et al., 2019). In this study, binding of the N-terminal loop
with nivolumab can create an environment of lower dielectric
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constant around the BC loop, shielded from bulk solvent
(Figure 7). Such a solvent-shielded environment might result in
the strengthening of non-covalent forces between the BC loop
and nivolumab, such as hydrogen bonds, hydrophobic forces and
van der Waals forces.

The function of the N-terminal loop of PD-1 for nivolumab
requires its structure to be as complete as possible. The
N-terminal loop of PD-1 in Complex I-N-rotated only bound
with nivolumab in one run (Equ3 for complex I-N-rotated,
Figure 8I), and it did not induce the rebinding of the IgV domain
with nivolumab in the simulations (Figure 10). By contrast,
the N-terminal loop of PD-1 interacted with nivolumab in all
three runs of Complex II-N-rotated (Figure 9) and successfully
induced the binding of the IgV domain with nivolumab in the
simulations of Complex II-IgV-rotated (Figure 11). The reason
is that the N-terminal loop of PD-1 contained 10 residues
(PD−1LEU25 to PD−1PRO34) in Complex II, but it only eight
residues (PD−1SER27 to PD−1PRO34) in Complex I. The missing
residues in Complex I, such as PD−1LEU25 and PD−1ASP26,
could also form stable H-bonds with nivolumab (Bond No. 23–
24 in Table 1, Bond No. 17 and 22 in Table 3, and Bond

No. 16 in Table 4). Therefore, the N-terminal loop of PD-
1 in Complex II-N-rotated is more likely to be captured by
nivolumab. Moreover, the interface between the N-terminal loop
of PD-1 and nivolumab in Complex II-IgV-rotated (around 800
Å2 and -140 kcal/mol) was stronger than that in Complex I-IgV-
rotated (around 700 Å2 and −70 kcal/mol), which is more
beneficial in pulling the IgV domain back to nivolumab.

Despite the use of massive computational resources and
highly precise models (full atomic representation and detailed
force field), plain all-atom MD simulation is still insufficient for
adequately exploring biomolecular structural dynamics. Multiple
evidences indicate that long simulations cannot address how to
catch the possible transition paths, which are still rare during µs-
long MD due to inherent stochasticity and high-energy barriers.
Nevertheless, we may predict some approximate behavior from
simulations that suffer from sampling inefficiencies, in certain
conditions e.g., upon introducing mutations or relaxation
after removing ligands (Orellana, 2019). Here, we employed
different starting configurations and multiple short simulations
to enhances the configuration space sampling to better probe the
conformational changes (Knapp et al., 2018; Chen et al., 2019b,c;

TABLE 4 | Summary of survival ratio and involved residues of H-bonds in the interface of complex I-IgV-rotated and complex II-IgV-rotated.

Complex Bond No. PD-1 Nivolumab Survival ratio#

Secondary structure Residue Atom Residue* Atom Equ1 Equ2 Equ3 Max Ave Std

Complex I-IgV-rotated 1 N-terminal loop ASP29 OD1 GLY33H N 0.22 0.41 0.95 0.95 0.53 0.38

2 ARG30 N ASN31H O 0.84 0.82 0.71 0.84 0.79 0.07

3 ASP29 OD2 GLY33H N 0.68 0.49 0.00 0.68 0.39 0.35

4 ASP29 OD2 ASN99H ND2 0.23 0.44 0.64 0.64 0.44 0.21

5 ASP29 OD1 ASN99H ND2 0.55 0.41 0.22 0.55 0.39 0.17

6 PRO28 O TYR53H N 0.25 0.29 0.29 0.29 0.28 0.02

7 ARG30 NH1 ASN31H OD1 0.20 0.15 0.05 0.20 0.13 0.08

Complex II-IgV-rotated 8 N-terminal loop ASP29 OD1 GLY33H N 0.95 0.06 0.24 0.95 0.42 0.47

9 ASP29 OD2 GLY33H N 0.00 0.90 0.70 0.90 0.53 0.47

10 ARG30 N ASN31H O 0.84 0.82 0.80 0.84 0.82 0.02

11 ASP29 OD1 ASN99H ND2 0.17 0.67 0.49 0.67 0.44 0.25

12 ASP29 OD2 ASN99H ND2 0.63 0.17 0.31 0.63 0.37 0.24

13 ARG30 NH1 ASN31H OD1 0.19 0.04 0.36 0.36 0.20 0.16

14 PRO28 O TYR53H N 0.26 0.19 0.29 0.29 0.25 0.05

15 ARG30 NE ASN31H OD1 0.28 0.14 0.06 0.28 0.16 0.11

16 ASP26 OD1 LYS57H NZ 0.07 0.09 0.20 0.20 0.12 0.07

17 FG loop LYS131 NZ ASP101H OD1 0.49 0.00 0.01 0.49 0.17 0.28

18 LYS131 NZ ASN99H O 0.28 0.00 0.09 0.28 0.12 0.14

19 LYS131 NZ ASP101H OD2 0.22 0.00 0.26 0.26 0.16 0.14

20 PRO130 O THR56L N 0.18 0.00 0.21 0.21 0.13 0.11

21 LYS131 NZ ASP50L OD1 0.00 0.20 0.01 0.20 0.07 0.11

22 BC loop GLU61 OE1 THR28H OG1 0.08 0.32 0.00 0.32 0.13 0.17

23 GLU61 OE2 THR28H N 0.03 0.31 0.00 0.31 0.11 0.17

24 GLU61 OE1 THR28H N 0.02 0.25 0.00 0.25 0.09 0.14

25 GLU61 OE2 THR28H OG1 0.13 0.23 0.01 0.23 0.12 0.11

26 THR59 O ASN31H ND2 0.22 0.06 0.13 0.22 0.14 0.08

*The name of the residues with H or L indicating that the residues are on the heavy or the light chain of nivolumab. #Equ1, Equ2, and Equ3 donate three runs. Max
represents the maximum value of three survival ratios of a bond. Ave represents the average value of three survival ratios of a bond. Std represents the standard deviation
of three survival ratios of a bond.
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Chen et al., 2020). Fortunately, the conformational transitions of
the nivolumab/PD-1 complex we concerned have been observed
in a simulation time of 100 ns. For example, the N-terminal loop
of PD-1 rotated back toward the interface and interacted with
nivolumab in all three runs of Complex I-N-rotated (Figure 9).
Moreover, the IgV domain of PD-1 also rotated back toward
the interface and interacted with nivolumab with the help of
the N-terminal loop of PD-1 in the simulations of Complex II-
IgV-rotated (Figure 11). This work provides useful dynamics
information on the role of the N-terminal loop in the molecular
recognition process between PD-1 and nivolumab.

Previous research usually focused on the “hot-spot” of PD-
1, such as the FG loop and the C’D loop. Our results suggest
that the N-terminal loop of PD-1, which acts as an important
gatekeeper for the binding of nivolumab and PD-1, should also
be considered in the anti-PD-1 blockade antibody design. We are
hopeful that the results presented in this study will ultimately
provide a theoretical framework to understand the structural
landscape of N-terminal loop of PD-1. In general, this opens a
new opportunity for medicinal biologists or chemists to optimize
affinity for antibodies, if such gatekeepers can be identified.
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The bacterial ribosomal tunnel is equipped with numerous sites highly sensitive to the
course of the translation process. This study investigates allosteric pathways linking
distant functional sites that collaboratively play a role either in translation regulation or
recruitment of chaperones. We apply perturbation response scanning (PRS) analysis to
700 ns long and 500 ns long coarse-grained molecular dynamics simulations of E. coli
and T. thermophilus large subunits, respectively, to reveal nucleotides/residues with the
ability to transmit perturbations by dynamic rationale. We also use the residue network
model with the k-shortest pathways method to calculate suboptimal pathways based
on the contact topology of the ribosomal tunnel of E. coli crystal structure and 101
ClustENM generated conformers of T. thermophilus large subunit. In the upper part of
the tunnel, results suggest that A2062 and A2451 can communicate in both directions
for translation stalling, mostly through dynamically coupled C2063, C2064, and A2450.
For a similar purpose, U2585 and U2586 are coupled with A2062, while they are also
sensitive to uL4 and uL22 at the constriction region through two different pathways at
the opposite sides of the tunnel wall. In addition, the constriction region communicates
with the chaperone binding site on uL23 at the solvent side but through few nucleotides.
Potential allosteric communication pathways between the lower part of the tunnel and
chaperone binding site mostly use the flexible loop of uL23, while A1336–G1339 provide
a suboptimal pathway. Both species seem to employ similar mechanisms in the long
tunnel, where a non-conserved cavity at the bacterial uL23 and 23S rRNA interface is
proposed as a novel drug target.

Keywords: bacterial ribosome, ribosomal tunnel, allostery, signal relay, trigger factor, translation
arrest, antibiotics

INTRODUCTION

Ribosomal complexes synthesize proteins according to the genetic information on mRNA across
all kingdoms of life. The ribosome complex called as 70S in bacteria is formed by the association
of two subunits, small subunit 30S, and large subunit 50S through numerous inter-subunit bridges
(Liu and Fredrick, 2016). Each subunit is formed of ribosomal RNAs (16S, 5S, and 23S rRNA)
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FIGURE 1 | Large subunit 50S, including P-tRNA (gray), polyAla chain
(turquoise) and ribosomal proteins protruding to the ribosomal tunnel, namely
uL4 (pink), uL22 (brown), uL23 (red) are shown. Nucleotides A2451 (PTC),
A2062, U2585–U2586 (ribosomal tunnel), and residues Gly91 (tip of uL22
loop), Glu18 (trigger factor binding site on uL23), Gln72 (tip of uL23 loop),
which are investigated in this study are also indicated. In all figures, PyMol
(DeLano Scientific LLC., 2002) is used for the molecular visualization.

and around 50 ribosomal proteins. The subunits have different
functional properties in translation, while they function
together as a complex (Ramakrishnan, 2002; Schmeing and
Ramakrishnan, 2009). The large subunit 50S catalyzes peptide
bond synthesis at the highly conserved catalytic cavity peptidyl
transferase center (PTC), where nucleotides G2251, G2252,
A2451, C2452, U2506, U2585, A2602 play critical roles in the
translation process (Polacek et al., 2003; Youngman et al., 2004;
Erlacher et al., 2005; Martin Schmeing et al., 2005; Long et al.,
2006; Selmer et al., 2006; Amort et al., 2007; Deutsch, 2014).
The nascent polypeptide chain attached to the peptidyl-tRNA
(P-tRNA) grows through the ∼100 Å long ribosomal tunnel.
The ribosomal tunnel wall is mainly formed of 23S rRNA
nucleotides. Nucleotides close to the PTC are highly conserved
while nucleotides toward the exit site exhibit variations in
bacteria and eukaryotes (Liutkute et al., 2020). Few ribosomal
proteins, namely uL4, uL22, and bacteria-specific extension of
uL23 also reside on the ribosomal tunnel. The extended loops
of these proteins reach from the solvent side into the ribosome
exit tunnel as shown in Figure 1. Approximately 25 Å far from
the PTC, the loops of uL4 and uL22 form the narrowest part
of the ribosomal tunnel, also referred to as the constriction
region. Toward to its exit, the ribosomal tunnel accommodates a
vestibule, where the long loop of uL23 protrudes.

The ribosomal tunnel is not a passive passageway but is
actively taking a role in translation regulation (Wilson and
Beckmann, 2011; Ito and Chiba, 2014; Liutkute et al., 2020).
Several polypeptides with arrest sequences of up to ∼20 amino
acids are known to stall the translation process at the elongation

or termination steps for a variety of biological outputs. Some
nascent chains require cofactors like amino acids as in TnaC
(Cruz-Vera et al., 2005) and antibiotics as in ErmCL (Vazquez-
Laslop et al., 2008; Ramu et al., 2011) to stall the protein synthesis
in bacteria. Cofactor-dependent translation arrest usually serves
to regulate the gene expression related to the cofactor itself. On
the other hand, SecM (Yap and Bernstein, 2009; Bhushan et al.,
2011) and MifM (Chiba et al., 2009) control their translation
without necessitating cofactors. SecM-mediated translation arrest
is used to regulate protein export, whereas MifM-mediated
translation arrest optimizes both the quality and quantity of
membrane proteins under changing physiological conditions.
The arrest sequence recognition in these cases realizes due to
specific interactions between the nascent chain and the ribosomal
constituents at the upper part of the ribosomal tunnel, limited
with the PTC and the constriction region. Not far from the
PTC, the flexible nucleotide A2062 can trigger a conformational
change at the PTC after sensing the arrest sequence on the
nascent chain, such as by making contacts with Asp21 on TnaC
or Arg163 on SecM, then stall the protein synthesis (Cruz-
Vera et al., 2005; Bhushan et al., 2011; Ito and Chiba, 2013).
Polypeptide stalling mechanisms also involve direct interactions
with nascent chain and the ribosomal tunnel elements A2058,
A2059, G2061, A2503, U2504, G2583, U2584, U2585, U2609
(close to the PTC), as well as A751, A752 (close to the constriction
region) and flexible loops of uL4 and uL22 (at the constriction
region) (Seidelt et al., 2009; Ito and Chiba, 2013; Deutsch, 2014;
Figure 1). For the antibiotic-dependent arrest of ErmCL, a signal
relay mechanism is suggested between the flexible nucleotide
A2062 and nucleotides A2451 and C2452 at the A- site crevice
of the PTC, assisted by nucleotides A2503, G2061 and U2504
(Vazquez-Laslop et al., 2008; Ramu et al., 2011). This network of
nucleotides is also supported by graph and elastic network studies
on T. thermophilus ribosome complex structures at different
translation states (Guzel and Kurkcuoglu, 2017). Similarly, signal
relay mechanisms proposed for the SecM include nucleotides
A2062 and A2503 (Gumbart et al., 2012) as well as U2585, U2586
and U2506 (Zhang et al., 2015).

Nascent polypeptide chains can compact to adopt secondary
structures in the narrower parts of the ribosomal tunnel, and
their tertiary structures at the wider regions (Liutkute et al.,
2020). Here, the dynamics of the large subunit (Kurkcuoglu et al.,
2009), the ribosomal tunnel geometry (Trylska, 2010; Trovato
and O’Brien, 2016) together with its electrostatic potential seems
to play an important role on complexity and production rate of
small folded proteins (Kudva et al., 2018). During its passage
through the ribosomal tunnel, compacted chain interacts with
the ribosomal tunnel elements and affects the recruitment of
chaperones to the exit of the tunnel in bacteria (Trabuco et al.,
2010a; Lin et al., 2012; Deutsch, 2014; Denks et al., 2017). This
suggests conformational crosstalk not only within the tunnel
but also outside the tunnel at the solvent side (Lu et al., 2011;
Lin et al., 2012). Here, recruitment of signal recognition particle
and trigger factor (TF), both binding uL23 at the solvent side is
driven by the nascent chain at the early stages of the translation
process. While the nascent chain containing a specific sequence
can promote the binding of the signal recognition particle, a
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compacted nascent chain can lessen the recruitment of the TF
to the ribosome complex. These are possibly driven by a network
of nucleotides/residues between the extension of uL23 into the
ribosomal tunnel and chaperone binding site again on uL23
(Bornemann et al., 2008; Lin et al., 2012) (marked by Glu18 on
uL23 in Figure 1). More interestingly, the degree of TF binding is
shown to be dependent on the location of the compacted chain in
the ribosomal tunnel (Lin et al., 2012). Interactions between the
compacted nascent chain and flexible loop of uL23 have a high
effect on TF binding, while interactions at the middle parts of the
ribosomal tunnel slightly reduce TF recruitment. However, the
upper part of the ribosomal tunnel does not affect the recruitment
of the chaperone.

Evidently, allostery is an important mechanism at the
ribosomal tunnel during translation. The key components that
play in regulating the translation process are dispersed along the
exit pathway. However, the molecular details of the allosteric
communication pathways between these distinct sites remain
elusive. At this point, the network of nucleotides and residues on
the ribosomal tunnel taking a role in constant communication
of the distant functional regions can be considered as targets to
eliminate bacterial activity. Indeed, the region marked by the
sensor A2062 is an attractive site for macrolides and ketolides
in bacteria (Wilson, 2014; Arenz and Wilson, 2016), where most
of these antibiotics allosterically stop the catalytic activity of the
PTC. To reveal details of allosteric networks and suggest more
plausible druggable sites, computational approaches focusing on
the contact topology of the ribosomal tunnel can be employed for
relatively fast and efficient screening.

In this study, we use two different methods to reveal potential
allosteric communication pathways along the ribosomal tunnel:
coarse-grained molecular dynamics simulations (Górecki et al.,
2009) and residue network model (Guzel and Kurkcuoglu,
2017). Previous coarse-grained molecular dynamics simulations
of length 500 ns (Trylska et al., 2005) enabled to observe
functional motions of the ribosomal complex. Here, 700 ns long
coarse-grained molecular dynamics simulations of the ribosomal
complex of E. coli with a polyAla chain in the ribosomal tunnel
(PDB ID 4v5h; Seidelt et al., 2009) is performed. Then, the
perturbation response scanning (PRS) method (Bakan et al.,
2011; General et al., 2014) is applied to the resulting covariance
matrix to identify effectors and sensors at the ribosomal tunnel.
We also calculate k-shortest pathways on the residue network
representation of ribosomal complex of E. coli (PDB ID 4v5h).
To reveal any similarities in potential allosteric communication
pathways between bacterial species, the ribosomal complex of
T. thermophilus (PDB ID: 4v5d) is studied with the PRS using
500 ns long coarse-grained molecular dynamics simulations.
Then, k-shortest pathways of 101 conformers of the ribosomal
complex of T. thermophilus previously generated by ClustENM
(Kurkcuoglu et al., 2016) using PDB ID 4v9m (Zhou et al.,
2013) are calculated. Although the specific interactions between
the nascent chain and the ribosomal tunnel are critical in
the sequence-dependent arrest of translation, the dynamical
traits of nucleotides for this task must strongly rely on the
topology of the structure. In this line, we aim to reveal pathways
of nucleotides/residues that maintain constant communication

through tertiary interactions, which can be commonly used in
bacteria to regulate the translation of specific nascent chains or
the recruitment of chaperones.

We first assess our computational approach by investigating
allosteric communication pathways between the flexible A2062
and the PTC A-site A2451, which is previously studied in detail
(Vazquez-Laslop et al., 2008; Ramu et al., 2011). Then, we
focus on SecM interacting nucleotides U2585–U2586 (E. coli
numbering), investigate signal relaying in the upper part of the
tunnel and discuss our results in the light of previous studies
(Nakatogawa and Ito, 2002; Seidelt et al., 2009; Wilson and
Beckmann, 2011; Gumbart et al., 2012; Tsai et al., 2014). Finally,
allosteric communication of Glu18 on uL23 with two different
sites, namely Gln72 on uL23 (lower part of the tunnel, Figure 1),
and Gly91 on uL22 β-hairpin (constriction region of the tunnel,
Figure 1) is explored. These two residues represent the distinct
zones that are reported to play a role in the recruitment of TF
(Lin et al., 2012). Each case is discussed in detail while seeking a
consensus of the two different methods. Findings for E. coli and
T. thermophilus are also compared, where a common mechanism
for allostery in the bacterial ribosomal tunnel as well as a novel
drug binding region is proposed.

MATERIALS AND METHODS

To reveal potential allosteric communication pathways between
distant functional sites, we use two different approaches and two
different species. 700 ns long coarse-grained molecular dynamics
simulations of E. coli ribosomal complex 70S are employed
in PRS analysis. Sensitivity profiles of A2062, U2585–U2586
on 23S rRNA, and Glu18 on uL23 are analyzed to determine
nucleotides/residues highly coupled to these functional sites
in their dynamics. Then, the k-shortest pathways method is
used to predict suboptimal pathways between distant functional
sites around the ribosomal tunnel of E. coli. In addition,
500 ns long coarse-grained molecular dynamics simulations of
T. thermophilus ribosomal complex 70S are investigated with
the PRS method. Then, 101 conformers of the T. thermophilus
ribosomal complex 70S generated with ClustENM are studied
with the k-shortest pathways method focusing on the same
functional sites. Here, molecular dynamics simulations provide
local fluctuations of the ribosomal tunnel elements at a time
scale that can reflect experimental B-factors. The residue network
model used here takes contact topology of the native structure
as a basis and highlights the “wirings” between predetermined
sites of the molecular machine using the k-shortest pathways
method. ClustENM provides an effective sampling around the
functionally relevant low-frequency motions and gives distinct
and reasonable topologies to investigate with the k-shortest
pathways method.

Data Set
The crystal structure of the ribosomal complex of E. coli
with PDB ID 4v5h of resolution 5.8 Å includes 5S, 16S and
23S rRNAs, around 50 ribosomal proteins, a P-tRNA and
polyAla chain in the ribosomal tunnel, as depicted in Figure 1
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(Seidelt et al., 2009). The crystal structure of T. thermophilus
ribosomal complex with PDB ID 4v5d of resolution 3.5 Å
contains 70S with A-, P-, E-tRNAs, and mRNA (Voorhees
et al., 2009). In addition, large subunit 50S from 101 different
conformers of the T. thermophilus ribosomal complex (PDB
ID 4v9m of resolution 4.0 Å) with elongation factor G
previously generated by ClustENM (Kurkcuoglu et al., 2016)
are used. ClustENM is an iterative algorithm, which generates
plausible full-atom conformers by deformation along with the
collective modes of the elastic network model. The generated
conformers are then clustered, and a representative conformer
from each cluster is energetically minimized in implicit solvent.
Obtained conformers are taken as starting structures for another
round, and this procedure is repeated for several generations.
Construction of several generations of conformers at full atomic
scale provides an accurate sampling of large conformational
changes of biomolecules in large systems. Ribosomal complex
conformers employed in the data set were generated using five
low-frequency vibrational modes with two generation cycles,
which corresponded to five different classes of structures. These
structures include functional conformational states, such as the
ratchet-like motion of subunits and correlated motion of the L1
stalk with the E-tRNA, as detailed in Kurkcuoglu et al. (2016).

Coarse-Grained Molecular Dynamics
Simulations
Coarse-grained molecular dynamics (CGMD) simulations are
performed using RedMD (Górecki et al., 2009), which is suitable
to study ribosome dynamics. The full-atom ribosome complexes
70S with PDB IDs 4v5h and 4v5d, are described as a one-bead
model, where pseudo-atoms are located at Cα and P atoms
to represent residues and nucleotides, respectively. The total
potential energy of the structure is given by,

E = E1−2 + E1−3 + E1−4 + Ebp + Enon-bonded (1)

The harmonic E1−2, E1−3, and E1−4 account for pseudo-bond,
pseudo-angle, and pseudo-dihedral interactions involving two,
three, and four successive beads, respectively. Ebp indicates
the harmonic interactions between the nucleic acid base-pairs,
and Enon−bonded energy term represents the Morse potential
to determine non-bonded interaction energy considering
anharmonicity as,

V(r) = AP,Cα(r0)
[
1− exp (−α (r − r0))

]2 (2)

V(r) is used for both local and non-local non-bonded
interactions. The local terms are calculated within a cut-off
distance Rcut−off , which is 12.0 Å for Cα and 20.0 Å for P
atoms. For the non-local terms, a cut-off distance of 35.0 Å
is taken for all nodes. For local interactions, r0 is taken as
the equilibrium distance in the native structure, while for non-
local interactions it changes according to the node type. AP,Cα

is an exponential function, which differs for P· · ·P, Cα · · ·Cα

and P· · ·Cα interactions and decreases with increasing distance
between pseudo-atoms. All parameters used in this study are
listed in Supplementary Table 1. In order to account for the

solvent-ribosomal complex 70S interactions, Langevin dynamics
are applied by adding viscous and random forces to Newton’s
equation of motion. Here, for the E. coli ribosomal complex 70S,
two independent simulations of 700 ns are performed. For the
ribosomal structure 70S of T. thermophilus, two independent
simulations of 500 ns are carried. Prior to simulations, each
system is subjected to an energy minimization as implemented
in RedMD. Each system is heated from 10 to 300 K, and
then production simulations are run at 300 K with a collision
frequency of 2 ps−1 for Langevin dynamics. RedMD describes a
constraint between CCA end of P-tRNA and polyAla chain to fix
the polypeptide from one end, where the remaining is allowed to
fluctuate in the ribosomal tunnel.

Perturbation Response Scanning
CGMD simulations are used to reveal the effectors and the
sensors in the dynamic large subunit 50S of the ribosome. The
effectors propagate signals in response to external perturbations
and the sensors have a high propensity to sense signals.
These two different dynamic properties of nucleotides/residues
can shed light on the allosteric mechanisms in the tunnel
region of the supramolecule. We used ProDy to perform PRS
analysis on the CGMD trajectories (Bakan et al., 2011). In the
PRS module of ProDy, a perturbation (one nucleotide/residue
at a time) is applied by employing a 3N-dimensional force
vector based on Hooke’s law F = H •1R . Then, displacements
of nucleotides/residues as a response to that perturbation is
observed considering the overall network. An N × N PRS matrix
(heat map) is generated to display the influence and sensitivity
profiles of nucleotides/residues (Atilgan and Atilgan, 2009;
General et al., 2014). The jth column of the PRS matrix represents
the response of all nucleotides/residues to the perturbation at
nucleotide/residue j, and the average of this column elements
point to the signal transmission potential of nucleotide/residue
j as a sensor. The ith row of the matrix describes the response
of ith nucleotide/residue to perturbations at all other sites and
the average of the elements along the row indicates the potential
of that nucleotide/residue acting as a propagator or an effector
(Dutta et al., 2015).

k-Shortest Pathways
Structures from the data set are represented as undirected
weighted graphs, formed of nodes linked by edges. Here, each
node is located at Cα (residue) or P atom (nucleotide). The
neighboring nodes are linked by edges, where the edge lengths
indicate the strength of interactions. In this line, the length of an
edge between a node pair (i,j) is calculated based on their local
interaction strengths or affinity aij as,

ai,j =
Nij√
Ni.Nj

(3)

Nij is the total number of heavy atom-atom neighboring of the
(i,j) node pair within a cut-off distance of 4.5 Å. A weighting
factor of Ni.Nj overcomes any bias due to the different sizes
of nucleotides/residues. The edge length between (i,j) node pair
can be described as the inverse of the interaction strength,
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a−1
ij . With this approach, the edges representing both bonded

and non-bonded interactions have comparable values. Here,
the communication capability of a node pair is assumed to
be proportional to its interaction strength, and thus strongly
interacting nodes are close to each other having the ability to
transmit information using conformational changes (Brinda and
Vishveshwara, 2005; Chennubhotla and Bahar, 2007; Seeber et al.,
2015; Guzel and Kurkcuoglu, 2017).

After constructing the residue network model of the ribosome
structure, k-shortest pathways between the selected source and
sink nodes are calculated using Dijskra’s algorithm (Dijkstra,
1959) and Yen’s algorithm (Yen, 1971). As the network is
undirected, the source and sink nodes are interchangeable, i.e.,
k-shortest pathways from the source to the sink are identical
to those from the sink to the source. The value of k = 20 was
previously found sufficient to reveal suboptimal pathways on
the ribosome complex at different translation states (Guzel and
Kurkcuoglu, 2017). This value is controlled for this study as well,
which is discussed later. The length (or cost) of each pathway
is determined by summing node-pair edge lengths. As one node
may be found on more than one pathway, the occurrences of the
nodes are calculated. In this way, suboptimal pathways between
two functional sites can be determined; moreover, pathways
of nodes with high occurrences can be suggested as potential
allosteric pathways.

RESULTS AND DISCUSSION

We aim to explore potential allosteric communication pathways
between distant regions at the long exit tunnel, also the
nucleotides/residues that form these pathways. For this purpose,
we focus on three different sites: (1) A2062 at the upper part
of the ribosomal tunnel; (2) U2585–U2586 at the upper part
of the ribosomal tunnel; and (3) Glu18 on uL23, which marks
the binding region of trigger factor (TF) at the solvent side.
We discuss our findings following this sequence of locations,
i.e., from the upper part of the tunnel to its lower part
toward the polypeptide exit. Results from CGMD simulations
and k-shortest pathways calculations complement each other
by revealing dynamic and topological features of the ribosomal
tunnel, respectively. Finally, conservation analysis is carried for
uL23 sequences of H. sapiens and bacteria to reveal potential
druggable regions to stop the bacterial activity.

CGMD simulations of 700 ns long are used to obtain the
dynamics of the E. coli ribosomal complex including both
small and large subunits. Root mean square deviation (rmsd)
and energy profiles of two independent runs are given in
Supplementary Figure 1A. As Run1 has smaller fluctuations
in rmsd, this trajectory is analyzed and reported. Principal
component analysis (PCA) of the trajectory is carried using
Bio3d (Grant et al., 2006). The variance percentages in the
scree plot indicate that the first five PCs describe the half
of the motions (Supplementary Figure 2A). Here, the PC-
one corresponds to the anti-correlated motions of the uL1
and uL11 stalks, while the rotational motion of the small
subunit 30S, similar to the ratchet-like motion is also noted

(Supplementary Figure 3A). In the PC-two, uL1 stalk makes
an anti-correlated motion with respect to the remaining of the
complex, and in the PC-three, the anti-correlated motion of the
stalks and the small subunit 30S is depicted. The ratchet rotation
of the subunits requires GTP hydrolysis on the elongation
factor G for the translocation of tRNAs. However, the ribosome
complex is able to do a similar motion during the course of
the simulations. Other two PCs also correspond to different
functional motions of the ribosome complex required for the
translation process. In Supplementary Figure 4, normalized
B-factors are displayed for the large subunit 50S, and ribosomal
proteins uL4, uL22, uL23, which are investigated in this study.
The crystal structure 4v5h lacks experimental B-factors, therefore
these values are taken from another crystal structure with PDB
ID 4v9d (Dunkle et al., 2011) to assess the findings. The Pearson
product correlation is calculated to compare the experimental
and calculated fluctuations. Correlation coefficients are found as
0.75 (high amplitude fluctuation of the L1 stalk is excluded), 0.71,
0.59, and 0.58 for 23S rRNA, uL4, uL22, and uL23, respectively,
which indicate good agreement of the calculated values with
experimental data.

We also perform 500 ns long CGMD simulations of the
T. thermophilus ribosome complex. The rmsd and energy profiles
of two independent runs are shown in Supplementary Figure 1B.
The rmsd increases up to 5.0 Å due to the large displacement of
bL9 extended to the solvent side. Based on smaller fluctuations
in rmsd, Run1 is analyzed in this study. The scree plot for the
variance percentages of the PCs is shown in Supplementary
Figure 2B, where the first five PCs describe more than half
of the motions. With a more focused look, the highly flexible
bL9 is noted to dominate the motions in the first PCs (not
shown). We then exclude bL9 from the PCA to clearly observe
collective motions of the ribosomal complex (Supplementary
Figure 3B). Accordingly, the PC-one corresponds to the ratchet-
like motion of the subunits where two subunits rotate around
the same axis in opposite directions. The PC-two shows the
correlated motion of uL1 stalk and E-tRNA and the PC-three
corresponds to an anti-correlated motion of the subunits such
as to open/close the interface from the A-site. All these motions
are critical in different steps of the translation. In Supplementary
Figure 5A, normalized B-factors are given for the large subunit
50S, including bL9. The Pearson product correlation between
the experimental and calculated fluctuations is determined as
0.76 for the 23S rRNA while excluding very high peaks of the
calculated fluctuations. Correlation coefficients for the ribosomal
proteins uL4, uL22, and uL23 are found as 0.63, 0.75, and 0.45,
respectively, where the trends in both fluctuation curves highly
agree (Supplementary Figure 5).

Then, perturbation response scanning (PRS) analysis using the
covariance matrix from PCA of the large subunit 50S trajectories
is carried to get insights into two groups of residues, “sensors,”
and “effectors,” which are both important for long-range signal
transmission in allostery. In Supplementary Figure 6, the
strongest effectors and sensors in the large subunit of E. coli
and T. thermophilus are given. The strongest effectors, which
are the most influential nucleotides/residues, are mostly located
in the core regions, where the PTC and the ribosomal tunnel
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are located. The nucleotides A2062 and U2585–U2586, and the
residue Glu18 on uL23, which are chosen as source nodes in
k-shortest pathways calculations, are determined as moderate
effectors in the E. coli structure (Supplementary Figure 6A). For
the T. thermophilus structure, A2062 and C2586 are noted to
have moderate effectivity when compared to the remaining of
the structure (Supplementary Figure 6C). On the other hand,
the sensors that are highly sensitive to external perturbations are
located at the periphery sites (Supplementary Figures 6B,D).
Here, uL1 and uL11 stalks are highly mobile parts of the large
subunit (Supplementary Figures 4A, 5A), they have also high
sensitivity. This finding is meaningful in the sense that regulation
of critical translation steps including the exit of tRNAs and
elongation factor-G turnover during protein synthesis by uL1 and
uL11, respectively (Harms et al., 2008; Trabuco et al., 2010b). In
addition, the ribosomal protein bL9 in T. thermophilus structure,
which has a closed conformation in the E. coli structure, has
high flexibility (Supplementary Figure 5A) and high sensitivity
(Supplementary Figure 6D). This finding may have a functional
significance since bL9 helps the regulation of stress response
protein RelA for the survival of the cell under stress conditions
(Pei et al., 2017).

Potential Allosteric Communication
Pathways Between A2062 and the PTC
A2062 is a critical nucleotide that interacts with antibiotics
and nascent chains, and its related stalling mechanisms
include sensing, interpreting, and relaying of a signal to
PTC (Vazquez-Laslop and Mankin, 2014). An allosteric
communication mechanism for drug-dependent ribosomal
stalling was previously suggested between A2062 and nucleotides
A2451 and C2452 at the A-site crevice of the PTC (Vazquez-
Laslop et al., 2008; Ramu et al., 2011). Here, we further explore
this mechanism by investigating a data set including numerous
conformers from long CGMD simulations and ClustENM, while
comparing the results for the large subunit 50S of E. coli and
T. thermophilus.

Figure 2A indicates locations of the most influential
nucleotides on A2062, obtained from the CGMD simulations
of E. coli ribosomal complex (also listed in Supplementary
Table 2). These nucleotides can be classified as having the
strongest dynamic coupling with A2062, and thus they have
high potential to establish allosteric communication with A2062.
Among these, A2450, A2451, A2503, G2061, C2063, C2064, and
U2504 are depicted, which are previously proposed to involve in
an allosteric network linking the flexible A2062 to the PTC (Ramu
et al., 2011; Guzel and Kurkcuoglu, 2017). Here, the universally
conserved non-Watson-Crick base-pair A2450–C2063 is highly
coupled to A2062, which may help to increase the strength
of long-range signal transmission, as was previously suggested
(Guzel and Kurkcuoglu, 2017).

A2503 and U2504 are also noted as strongly coupled
nucleotides with A2062, underlying their role on allosteric
communication, as was previously shown for antibiotic-
dependent stalling (Vazquez-Laslop et al., 2008, 2010; Seidelt
et al., 2009). The presence of erythromycin restricts the passage of
the nascent polypeptide in the tunnel, which in turn forces A2062

FIGURE 2 | Nucleotides/residues from the sensitivity profile of A2062 based
on CGMD simulations of (A) E. coli ribosomal complex with PDB ID 4v5h, and
(C) T. thermophilus ribosomal complex with PDB ID 4v5d. Nucleotides/
residues forming the k-shortest pathways on (B) E. coli large subunit with
PDB ID 4v5h, and (D) T. thermophilus conformers generated by ClustENM
using crystal structure with PDB ID 4v9m. polyAla chain in the ribosomal
tunnel is shown in turquoise, ribosomal protein uL4 in salmon and uL22 in
brown. In (B,D) cyan and blue sticks represent the most and the least
frequent nucleotides from the calculated pathways, respectively.

to adopt an orientation clashing with A2503. This restriction
then stalls the protein synthesis of ErmCL (Vazquez-Laslop
et al., 2010). Binding of tiamulin causes similar conformational
rearrangements involving A2504 (Gürel et al., 2009). In the
CGMD simulations, there is no antibiotic to trigger such
a situation, and polyAla chain in the ribosomal tunnel has
moderate coupling with A2062, especially from Ala24 and Ala25.
Consequently, the coupling of A2062 and A2503–U2504 seems
to be inherent to maintain constant communication.

We also note that A2062 and U2585 are coupled, where the
latter is in close proximity with Ala24 of the polyAla chain.
Indeed, U2585 is known to interact with Pro24 of SecM for
ribosomal stalling (Wilson and Beckmann, 2014). In CGMD
simulations, Ala24 is sandwiched between U2585 and C2063,
which can relay signal from A2062. Another interesting finding is
the coupling of A2062 with G2251 and G2252 at the P-site crevice
of the PTC. Here, the dynamic coupling is plausibly maintained
using the CCA end of P-tRNA and A2450–A2451 at the A-site of
the PTC. Another possible route is provided by C2065 and C2066,
which are neighboring G2252.
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Moreover, sensitivity analysis highlights Lys63–Arg67 on the
uL4 loop protruding to the ribosomal tunnel. Especially, the long
side chain of Lys63 is oriented to A2062, which suggests the
potential role of uL4 in allosteric signaling in this region.

The sensitivity profile of A2451 from CGMD simulations
for E. coli is also investigated and given in Supplementary
Table 3. PRS analysis stresses that the communication between
A2451 and A2062 is in both directions; a perturbation on one
nucleotide is sensed by the other and vice versa. Similarly,
A2451 is also dynamically coupled to G2061–C2066, G2251–
G2252 at the P-site crevice of the PTC and G2447–U2448,
highlighting these nucleotides as elements of an allosteric
network sharing information.

k = 20 shortest pathways are calculated between A2062 and
A2451 based on the large subunit crystal structure 4v5h of E. coli.
The cost of the pathways converges for all investigated cases of
E. coli (Supplementary Figure 7A), indicating that the value of
k = 20 is suitable for the analysis as was previously shown for the
ribosome structures (Guzel and Kurkcuoglu, 2017). The analysis
points to nucleotides known to be critical in ribosomal stalling
(Figure 2B). The shortest pathway is determined as A2062 →
C2063 → A2450 → A2451, where all these nucleotides have a
high occurrence in the calculated 20 pathways (Supplementary
Table 4 and Supplementary Figure 8A). In addition, four
sequential amino acids (Ala21–Ala24) on polyAla chain and A76
of P-tRNA are found on the shortest pathways linking A2062 and
A2451, successfully capturing the role of a specific nascent chain –
ribosomal tunnel interactions to trigger ribosomal stalling.

CGMD simulations taking a dynamic approach and k-shortest
pathways method using a static crystal structure have high
agreement on allosteric communication pathways at the upper
part of the ribosomal tunnel of E. coli. Then, we investigate
the CGMD simulations of T. thermophilus ribosomal complex,
lacking the polypeptide chain in the tunnel. PRS analysis suggests
that dynamic couplings of nucleotides in the upper part of the
ribosomal tunnel (Figure 2C) highly agree with those in the
E. coli case (Figure 2A), even in the absence of the nascent
chain. The lists of nucleotides/residues with high sensitivity
values for A2062 and A2451 are given in Supplementary
Tables 5, 6, respectively.

In addition, we employ the k-shortest pathways method
to a collection of 101 large subunit conformers previously
generated from the crystal structure 4v9m of T. thermophilus
using ClustENM (Kurkcuoglu et al., 2016). These conformers
are generated around the low-frequency normal modes of
the large subunit, which describe global functional motions
of the structure, such as anti-correlated motions of the large
stalks L1 and L7/L12 (Trylska et al., 2005), and reveal folding
zones of the ribosomal tunnel (Kurkcuoglu et al., 2009).
Therefore, they provide plausible structures to investigate
allosteric communication pathways based on the conformational
rearrangements around the ribosomal tunnel. A total of
2020 shortest pathways (k = 20 pathways/conformer × 101
conformers) are calculated, where the costs of all pathways
converge at k = 20 (Supplementary Figure 7B). The analysis
indicates that nucleotides with the highest occurrences highly
agree with the findings from CGMD and k-shortest pathways of

the E. coli crystal structure (Figure 2D, Supplementary Table 7,
and Supplementary Figure 8B). While the nascent chain is
missing from the conformers, the shortest pathway is determined
as A2062 → C2063 → C2064 → A2450 → A2451. All these
nucleotides are commonly determined from CGMD simulations,
k-shortest pathways calculations of E. coli, and T. thermophilus.
These results imply that signal relay mechanism between two
relatively distant functional nucleotides A2062 and A2451 is the
same in both species.

The similarity in the findings for both bacterial species stems
from the contact topologies of their ribosomal structures. When
the large subunits 50S of E. coli (4v5h) and T. thermophilus
(4v9m) are structurally aligned, the rmsd is 2.5 Å over all atoms,
and 1.6 Å when only phosphorous atoms are considered. The
deviation is due to the flexible uL1 stalk. Then, a cylindrical
region with a radius of 40.0 Å around the central axis of the tunnel
is taken into account; the rmsd is found as 1.3 Å over all atoms.
On the other hand, the rmsd values between the large subunits
50S of E. coli (4v5h) and T. thermophilus (4v5d) are calculated
as 2.3 Å (all atoms), 1.3 Å (only phosphorous atoms), and 0.9 Å
(all atoms, tunnel wall). We also calculate the number of contacts
of the nucleotides investigated in this study (Supplementary
Figure 9). Accordingly, the contact numbers are highly similar
for E. coli and T. thermophilus structures.

Successful prediction of critical residues of the well-known
signal relay mechanism at the upper part of the ribosomal tunnel
motivates us to employ our approach for estimating allosterically
predisposed nucleotides/residues between other distal functional
sites in E. coli and T. thermophilus.

Potential Allosteric Communication
Pathways Between U2585–U2586 and
the PTC
During the synthesis of SecM, the ribosomal stalling process
requires two components: a well-conserved stalling sequence
and a ribosomal tunnel topology ready to detect this important
detail, where U2585 and U2586 play a critical role (Zhang et al.,
2015). Here, we focus on the contact topology of the ribosomal
tunnel and investigate the sensitivity profiles for U2585–U2586
obtained from CGMD and PRS analyses. For the E. coli case,
nucleotides A751–A753, A781–A782, U1782, A2062, A2439,
and A2602 are found to be dynamically coupled to U2585–
U2586, implying their role on long-range signal transmission
between U2585–U2586 and the PTC (Figure 3A and
Supplementary Tables 8, 9).

We note two apparent networks of nucleotides coupled to
U2585–U2586 dynamics at the opposite sides of the ribosomal
tunnel. The first contains U1782, U2609, and A751 neighboring
the flexible β-hairpin of uL22. The other involves A2062, C2063,
C2064, C2443, G2444, and A2059 next to the uL4 loop. The
constriction region of the tunnel, where uL4 and uL22 loops
protrude, is therefore linked to U2585–U2586. Moreover, closer
to the tunnel entrance, A2439 and A2062 are coupled with
U2585–U2586. These three networks of nucleotides agree well
with the previous structural study on SecM mediated stalling
(Seidelt et al., 2009). The analysis indicates that U2585–U2586
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FIGURE 3 | Nucleotides/residues from the sensitivity profile of U2585–U2586
based on CGMD simulations of (A) E. coli ribosomal complex with PDB ID
4v5h, and (B) T. thermophilus with PDB ID 4v5d. Nucleotides forming the
k-shortest pathways on (C) E. coli large subunit with PDB ID 4v5h, and
(D) T. thermophilus conformers generated by ClustENM using crystal
structure with PDB ID 4v9m. Coloring is as in Figure 2.

are not coupled with A2450–A2451 at the PTC, to which a
signal/perturbation is plausibly directed through A2062–C2064
as previously discussed. As the polypeptide in the ribosomal
tunnel does not contain a stalling sequence, we do not detect any
significant coupling between the polyAla chain and nucleotides
U2585–U2586. At this point, the results underline that at
the upper part of the ribosomal tunnel, there exist multiple
sites constantly monitoring and communicating during the
translation of chains with or without stalling sequences.

Interestingly, we detect the same picture for the
T. thermophilus ribosome tunnel: three different networks
of nucleotides linking U2585–C2586 (i) to A2602 using C2441–
C2442, (ii) to uL4 using C2063, C2064, C2443, G2444, and
(iii) to uL22 using G785, A1780, A752, C753 (Figure 3B and
Supplementary Tables 10, 11).

Closer to the PTC of E. coli, A2602 is coupled to U2585 and
U2586. A2602 is known to be critical in nascent peptide release
(Polacek et al., 2003) but not in drug-dependent translation
arrest of ErmCL (Koch et al., 2017). Additionally, in all species,
sparsomycin binds A2602 to change the PTC conformation
(Porse et al., 1999). We also note the dynamic coupling of
A2602 with U2586–C2586 in T. thermophilus. Considering the

location and role of the highly conserved A2602 in the PTC, this
nucleotide has a high potential to take a role in the translation
arrest of other nascent chains that can employ different signal
relay mechanisms.

Then, k = 20 shortest pathways between U2586 and A2451
are determined for E. coli large subunit structure (Figure 3C,
Supplementary Table 4 and Supplementary Figure 10A). The
most frequently occurring nucleotides are determined as U2585,
C2063, C2064, and A76 of P-tRNA, which are suggested to
maintain distant communication. Here, as the method is based
on the contact topology of the structure, residues of the polyAla
chain also involve in suboptimal pathways. The shortest pathways
are in good agreement with the CGMD results as well as with the
previously reported signal relay mechanisms (Seidelt et al., 2009).

Shortest pathways calculations between U2586 and A2451
on T. thermophilus large subunit conformers point to C2063–
C2066, C2440–G2446, A2450, and A2587 as the nucleotides with
highest occurrences (Figure 3D, Supplementary Table 7 and
Supplementary Figure 10B). The shortest pathways calculated
for these conformers involve more neighboring nucleotides when
compared to k-shortest pathways for E. coli structure, due to
lack of polypeptide in the ribosomal tunnel. Nonetheless, CGMD
and k-shortest pathways of ClustENM conformers agree on the
potential allosteric pathways. The contact topology points to
functionally important nucleotides, such as G2251 at the P-site of
PTC (Supplementary Table 7). Highly conserved flexible U2506
is another important nucleotide found from the calculations. This
nucleotide plays a key role in peptide bond synthesis (Martin
Schmeing et al., 2005) and contributes to pleuromutilin binding
pocket together with A2058, A2059, and G2505 in E. coli and
T. thermophilus (Long et al., 2006; Killeavy et al., 2020).

Potential Allosteric Communication
Pathways Between uL23 and the
Ribosomal Tunnel
The sensitivity profile of Glu18 on uL23 from CGMD simulations
is visualized in Figure 4A and given in Supplementary Table 12.
Nucleotides/residues dynamically coupled to Glu18 are mostly
populated at the lower part of the ribosomal tunnel. On uL23,
residues His15–Ser17, Lys33, Val63, Gly65, Lys81, Lys82 are
highlighted, where Gly65 and Lys81 are located on the hinge of
the flexible loop protruding to the tunnel. Moreover, 23S rRNA
nucleotides G1339, G1395, A1610, A1616, have high potential
to relay signal at the lower part of the ribosomal tunnel. Here,
the polyAla chain from the crystal structure is 20 amino acids
long and does not interact with the uL23 loop. Still, our findings
highly agree with the experimental observations indicating that
the interactions between the compacted nascent chain and the
lower part of the tunnel strongly modulate the recruitment of TF
and signal recognition particle (Lin et al., 2012).

While nucleotides of 23S rRNA and residues of uL23 are
dynamically coupled at the lower part of the tunnel, this coupling
seems to continue toward the constriction region of the tunnel
through few nucleotides. As noted from Figure 4A, A1610–
A1616 on 23S rRNA neighboring β-hairpin of uL22 can plausibly
assist relaying signal between the inner wall of the ribosomal
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FIGURE 4 | (A) Nucleotides/residues from the sensitivity profile of Glu18 (uL23) based on CGMD simulations of E. coli ribosomal complex with PDB ID 4v5h. Insets
show pathways from different perspectives. Nucleotides/residues forming the k-shortest pathways (B) between Glu18 (uL23) and Gln72 (uL23) and (C) between
Glu18 (uL23) and Gly91 (uL22) on E. coli large subunit with PDB ID 4v5h. Coloring is as in Figure 2.

tunnel at the constriction region and solvent side. In addition,
A56–U59, G452, and G458–A460 of 23S rRNA reaching the
hinge of the uL4 loop are also involved in a network of coupled
nucleotides linking the constriction region and the chaperone
binding site. We do not detect any other nucleotide/residue
near the upper regions of the tunnel coupled to Glu18. These
findings support the previous FRET results (Lin et al., 2012);
the chaperone binding site is weakly linked to the constriction
region marked by flexible loops of uL4 and uL22, but not
to upper regions close to the PTC. However, if an allosteric
communication between the chaperone binding site and the
PTC exists, approaches achieving higher time scales would be
necessary to reveal the mechanism.

Potential allosteric communication pathways between Glu18
on uL23 and ribosomal tunnel of E. coli are further investigated
using the k-shortest pathways method. Since the method requires
a source and a sink node, we first calculate k = 20 shortest
pathways between Glu18 and Gln72 (uL23). Twenty shortest
pathways include only residues of uL23 based on contact
topology of the crystal structure (Figure 4B, Supplementary
Table 4 and Supplementary Figure 11A). Here, tertiary
interactions on uL23 trace a path using His70 (tip of uL23 loop)
→ Gly65 (hinge of uL23 loop) → Lys64 → Val63 → Asp79
→ Trp80 → Lys33 → Ser17 → His15 → Glu18, between the
inside of the tunnel and the solvent side, consistent with CGMD
results. Then, k = 20 shortest pathways are calculated between
Glu18 and Gly91 on uL22 β-hairpin (Supplementary Figure 12A
and Supplementary Table 4). Gly91 is known to be a hot spot
for the nascent chain stalling (Wilson and Beckmann, 2011). As
displayed in Figure 4C, the shortest pathways involve mostly 23S
rRNA nucleotides, where Lys19 (uL23)→ A1392→ U1316→
C1315 → C1314 → G1332 → A1609 → A1616 → C1615 →
A1614 is the shortest route between distant Glu18 (uL23) and

Gly91 (uL22). These results highly agree with the PRS analysis
of CGMD simulations and also suggest the suboptimal pathways
between these distant sites.

Potential communication pathways between chaperone
binding site on uL23 and both lower part and the constriction
region of the tunnel are investigated for large subunit 50S
of T. thermophilus. Figure 5A displays the nucleotides and
residues, which are dynamically coupled to Glu15 of uL23.
Similar to the findings for E. coli simulations using PRS analysis,
nucleotides/residues with high sensitivity cluster on and around
uL23, but interestingly they do not reach uL22. Here, CGMD
simulations of the T. thermophilus ribosome complex are
500 ns long, whereas time length is 700 ns for the E. coli
ribosome complex simulations. This implies that the signal
transmission between these distant regions, Glu15 on uL23
and the loop of uL22, plausibly requires longer than 500 ns.
Then, ClustENM conformers of T. thermophilus are analyzed
with the k-shortest pathways method. Figure 5B shows the
nucleotides and residues on a total of 2020 shortest pathways
between Glu15Tt (T. thermophilus numbering) and Arg68Tt at
the tip of the uL23 loop. Two suboptimal pathways are noted;
one tracing uL23 residues similar to the results for E. coli (see
Figure 4B) and the other using 23S rRNA nucleotides. Shortest
pathways calculations point that allosteric communication
between chaperone binding site and the lower part of the
tunnel can employ tertiary interactions both on uL23 and
23S rRNA depending on the conformational rearrangements
(Supplementary Table 7 and Supplementary Figure 11B).
It is worth to note here that ClustENM conformers provide
conformations that reveal shortest pathways similar to those
obtained from PRS analysis of CGMD simulations.

Suboptimal pathways between Glu15 on uL23 and Gly91 on
uL22 determined from ClustENM conformers of T. thermophilus
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FIGURE 5 | (A) Nucleotides/residues from the sensitivity profile of Glu15 (uL23) based on CGMD simulations of T. thermophilus ribosomal complex with PDB ID
4v5d. Insets show pathways from different perspectives. Nucleotides/residues forming the k-shortest pathways (B) between Glu15 (uL23) and Arg68 (uL23) and (C)
between Glu15 (uL23) and Gly91 (uL22) on ClustENM conformers of the T. thermophilus large subunit with PDB ID 4v9m. Coloring is as in Figure 2.

are shown in Figure 5C (also see Supplementary Table 7 and
Supplementary Figure 12B). These pathways employ similar
nucleotides as in E. coli, where nucleotides G1332Tt-G1338Tt and
C1612Tt-A1616Tt are highlighted as potential components of an
allosteric network common to both ribosomal structures.

Finally, we perform conservation analysis of ribosomal protein
uL23 by multiple sequence alignment for E. coli, T. thermophilus,
and H. sapiens to explore suitable sites for drug design. Sequence
alignments are done using the Clustal Omega program with
the default settings on the UniProt.org server. Supplementary
Figure 13A displays the results of the E. coli structure. Here,
the hinge of the uL23 loop, which plausibly plays a critical role
in signal relaying in trigger factor recruitment, is not conserved
among human and E. coli/T. thermophilus. Especially, a small
non-conserved cavity is detected around the hinge of the uL23
loop, contoured by residues Lys9, Arg12, His15, Lys33, Lys36,
Ser78, and Trp80 in E. coli. Functional motions of long loops
are often controlled by the hinge regions, highlighting this site
attractive as a drug target. Moreover, electropositive side chains
of these residues interact with the electronegative backbone of
U59–U62 on 23S rRNA, which in turn holds uL23. Binding of
a small molecule on this cavity while interacting with the 23S
rRNA nucleotides can affect the functional motions of uL23 in the
ribosome complex. Worth to note that conservation of the cavity
is low among bacteria as well (Supplementary Figure 13B),
which in turn suggests this region as a species-specific target
site. Moreover, uL23 also hosts the signal recognition particle
providing two binding sites; globular domain (Glu18 and
Glu52) and the loop (Gly71) (Denks et al., 2017). Accordingly,
interacting with the tip of the uL23 loop is suggested to enable
the signal recognition particle to sense the arrival of the nascent
chain. After sensing the nascent chain from the loop motions,
the binding affinity of the chaperone apparently increases, then
the chaperone proceeds with the standby or anticipatory mode

and later with the recognition step. Consequently, blocking the
motions of this loop can also affect the binding of the signal
recognition particle.

CONCLUSION

The ribosomal tunnel can be considered as having three
compartments, an upper part, a middle part and a lower
part, similar to folding zones (Deutsch, 2014), where separate
control elements regulate translation process. At the upper part,
23S rRNA nucleotides A2062, U2585, U2586 control co-factor
dependent/independent translation arrest of specific sequences
(Cruz-Vera and Yanofsky, 2014; Ito and Chiba, 2014; Vazquez-
Laslop and Mankin, 2014). Our results indicate that, even in
the absence of a specific stalling sequence or a co-factor, a
network of inherently coupled nucleotides exists, which is ready
to detect the sequence then stall the translation. Especially,
CGMD simulations point out that the communication of A2062
and A2451 at the PTC is in both directions, dictated by the
contact topology. On the other hand, critical nucleotides U2585–
U2586 are not dynamically coupled to the PTC, yet they can
communicate with A2451 through C2063–C2064. We determine
two other distinct suboptimal pathways linking U2585–U2586 to
uL4 and uL22 loops at the constriction region, which marks the
middle part of the ribosomal tunnel.

At the lower part of the tunnel, other allosteric
communication pathways plausibly exist to regulate the
recruitment of chaperones to the ribosomal complex. Here,
uL23 is acting as a bridge between the chaperone binding region
at the solvent side and the vestibule, where compacted chains
are waiting to emerge. We suggest that the chaperone binding
site is strongly communicating with the ribosomal tunnel
using the uL23 loop and His15, Ser17, Lys33, while nucleotides
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A1336–G1339 also contribute. On the other hand, a weak signal
relaying path from the chaperone binding site uses nucleotides
G458–A460 and C1611–C1615 respectively reaching uL4 and
uL22 loops at the constriction region. Based on 700 ns long
CGMD simulations, we do not detect any dynamic coupling
between the chaperone binding site and the upper part of the
ribosomal tunnel.

As the contact topology of E. coli and T. thermophilus are
highly similar, PRS analysis results and k-shortest pathways
calculations point to similar suboptimal pathways implying
similar signaling mechanisms at their ribosomal tunnels. The
conservation analysis of uL23 using H. sapiens, E. coli, and
T. thermophilus sequences reveals a non-conserved pocket
contoured by polar amino acids as well as 23S rRNA nucleotides
U59–U62, which is proposed as a novel site for drug design to
disrupt the function of uL23.
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The sterol 14α demethylase enzyme (CYP51) is an important target of fungal infections.
However, the molecular mechanism between triazoles inhibitors and CYP51 remains
obscure. In this study, we have investigated the binding mechanism and tunnel
characteristic upon four triazoles inhibitors with CYP51 based on the molecular docking
and molecular dynamics simulations. The results indicate the four inhibitors stabilize
in the binding cavity of CYP51 in a similar binding mode. We discover a hydrophobic
cavity (F58, Y64, Y118, L121, Y132, L376, S378, S506, S507, and M508) and the
hydrophobic interaction is the main driving force for inhibitors binding to CYP51. The
long-tailed inhibitors (posaconazole and itraconazole) have stronger binding affinities
than short-tailed inhibitors (fluconazole and voriconazole) because long-tailed inhibitors
can form more hydrophobic interactions with CYP51. The tunnel 2f is the predominant
pathway for inhibitors ingress/egress protein, which is similar to the other works of
CYP51. This study could provide the theoretical basis for the development of efficient
azoles inhibitors and may lead a better insight into structure–function relationships
of CYP51.

Keywords: molecular dynamics simulations, MM-GB/SA, CYP51, triazoles, tunnels

INTRODUCTION

Life-threatening infections caused by fungi have increased rapidly, especially for patients that have
immunocompromised diseases, such as AIDS, cancer, and organ-transplantation (Bongomin et al.,
2017; Lee et al., 2020). It is reported that fungal diseases kill 1.5 million people per year, whose
number is almost equal to the death of tuberculosis, and nearly three times as that of malaria
(Brown et al., 2012; Bongomin et al., 2017). Among all kinds of fungal pathogens, Candida albicans
is the most general fungi, which leads to candidemia (Antinori et al., 2016; Lee et al., 2020). To deal
with the serious effects of life-threatening fungal infections, the development of antifungal agents
has become a widespread concern (Lepesheva et al., 2018). In fungal cell membrane, the sterol
14α demethylase enzyme (CYP51) is responsible for catalyzing the lanosterol 14α methylation to
produce ergosterol which can regulate the integrity, fluidity and permeability of the cell membrane
(Balding et al., 2008; Lass-Floerl, 2011; Ene et al., 2012; Hargrove et al., 2016). Thus, influencing the
growth and replication of fungi by inhibiting CYP51 has become a strategy for the development of
antifungal agents (Lepesheva et al., 2008; Choi and Roush, 2017).
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GRAPHICAL ABSTRACT

As we all know, there are four clinical triazoles agents
targeting CYP51 for the treatment of systemic fungal infections:
fluconazole (Flu), itraconazole (Itc), voriconazole (Vor), and
posaconazole (Pos) (Lepesheva et al., 2018; Lee et al., 2020). The
structures of four inhibitors are shown in Figure 1, they can
be divided into short-tailed agents (ST: Flu and Vor) and long-
tailed agents (LT: Itc and Pos) (Keniya et al., 2018). As the drug
resistance mutations in CYP51 of Candida albicans increased,
the effectiveness of four existing inhibitors is limited (Warrilow
et al., 2019; Nishimoto et al., 2020). Therefore, elaborating the
molecular mechanism of the existing drugs is very positive for
further design and development of new drugs.

The successful resolution of the crystal structure of Candida
albicans CYP51 by Lepesheva group inspired us to explore the
molecular mechanisms between inhibitors and CYP51 (Hargrove
et al., 2017). Molecular dynamics (MD) simulations are widely
used to study the molecular mechanisms of inhibitors and
enzyme (Watson et al., 2017; Sun et al., 2018; Xiao et al.,
2020). Thus, we employed MD simulations and molecular
docking to explore the binding mechanism between inhibitors
and CYP51 in the present study. The results might offer
insights into the structure–function relationships of CYP51 and
provide the molecular basis for the rational design of new
azoles inhibitors.

MATERIALS AND METHODS

Preparation of Molecular Systems
The three-dimensional structure of Candida albicans CYP51
enzyme was obtained from the Protein Data Bank (PDB code:
5FSA) (Hargrove et al., 2017). Moreover, the structures of the
four inhibitors: Flu (Compound CID: 3365), Vor (Compound
CID: 71616), Itc (Compound CID: 55283), and Pos (Compound
CID: 468595) were obtained from the PubChem database.
After removing the ligand from the complex, the apo protein
(Supplementary Figure S1) was saved by the Discovery Studio
3.1 (Studio, 2011). The CDOCKER protocol of Discovery Studio
3.1 (Studio, 2011) was employed to build the four complex
structures, including Flu-CYP51 complex, Vor-CYP51 complex,
Itc-CYP51 complex, and Pos-CYP51 complex.

Molecular Docking
CDOCKER (Studio, 2011) is a grid-based molecular docking
method by CHARMm force field. The geometry optimization of
four ligands was performed by Gaussian 09 (Frisch et al., 2009)
at the B3LYP/6-31G (d) level. The CHARMm force field was
applied to ligands and receptors. The receptor was held rigid,
whereas ligands were allowed to flex during the refinement. The
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FIGURE 1 | The structures of (A) fluconazole, (B) voriconazole, (C) itraconazole, and (D) posaconazole.

input site sphere was defined as a radius of 12 and 18 Å for
short-tailed inhibitors (Flu and Vor) and long-tailed inhibitors
(Itc and Pos), respectively. The other docking information was
set as the default value. A conformational search of the ligands
was performed by a grid-based simulated annealing method.
The ligands were firstly heated to 700 K (2000 steps) and
then annealed to 300 K (5000 steps). The value of the grid
extension was set as 8 Å. The top 20 poses of each complex
were saved for comparison and analysis. Finally, combined with
the information of binding site in the literature (Nair et al.,
2016; Hargrove et al., 2017) and docking score, the bested
conformation of each system was chosen as the initial structure
for the subsequent MD simulations.

Molecular Dynamics Simulations
For each system, geometry optimization of four inhibitors was
performed by Gaussian 09 (Frisch et al., 2009) with the ab
initio calculation method at the B3LYP/6-31G (d) level (Lee
et al., 1988; Andersson and Uvdal, 2005). For charge derivation,
the restrained electrostatic potential (RESP) fitting procedure
was used (Bayly et al., 1993). The force field parameters of
inhibitors were supplied by the general AMBER force field
(GAFF) in the Antechamber module of AMBER 16 package
(Wang et al., 2004, 2006; Case et al., 2016). The force field
parameters developed by Shahrokh et al. were assigned to heme
(Shahrokh et al., 2012). Finally, all missing atoms and hydrogen
atoms were added using the t-leap procedure in the AMBER
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16 package (Case et al., 2016). MD simulations were performed
by the AMBER 16 package using the ff14SB force field (Maier
et al., 2015; Case et al., 2016). To ensure the overall neutrality of
the systems, counterions were added. All systems were subjected
to MD simulations in explicit solvent, and all systems were
solvated with TIP3P water box with 10 Å between the solute
boundary (Yoo and Xantheas, 2011). First, protein and inhibitor
were fixed with a 500 kcal/mol/Å2, and minimized the energy
of all water molecules and counterions for 10000 steps of
steepest descent (SD) followed by 10000 steps of the conjugate
gradient. Subsequently, to remove conflicting contacts, the entire
system was repeated for 12000 steps of SD minimization and
8000 steps of CG minimization. Next, the system was gradually
heated up to 310 K in the NVT ensemble, thereby applying
harmonic restraints with a force constant of 10.0 kcal/mol/Å2

on the solute atoms, and equilibration was performed three
times with 3000 ps using a force constant of 5.0 kcal/mol/Å2

(Loncharich et al., 1992). Finally, 200 ns MD simulations were
performed using the NPT ensemble without restraints. We used
the Particle mesh Ewald (Darden et al., 1993) technique with
a non-bonded cutoff of 12.0 Å to limit the direct space sum
to treat the long-range electrostatic interactions. The SHAKE

(Krautler et al., 2001) algorithm was used to constrain bonds
involving hydrogen atoms. The time step of MD simulation was
set to 2 fs, and sampling was performed every 10 ps into the
MD file. Cluster analysis was performed by employing average
linkage as the clustering algorithm (Shao et al., 2007). All figures
in this contribution were generated by PyMOL (DeLano, 2002).
The hydrogen bonds and hydrophobic interactions between
the inhibitors and CYP51 were studied using LigPlot + v.2.2
(Laskowski and Swindells, 2011).

Free Energy Calculations
The Molecular Mechanics Generalized Born Surface Area (MM-
GB/SA) method implemented in AMBER 16 package was
performed to calculate the binding free energy (Sun et al., 2014;
Case et al., 2016), as well as the free energy decomposition of
the four inhibitors systems. For each system, 2000 snapshots
were selected from the last 100 ns MD trajectories to calculate
the relevant energies. The binding free energy (1Gbind) in
MM-GB/SA between enzyme and ligand was summarized as the
follows:

1Gbind = Gcomplex − (Greceptor + Gligand) (1)

FIGURE 2 | (A) RMSDs of backbone atoms of protein, (B) backbone atoms of binding cavity residues, and (C) heavy atoms of the inhibitor as a function of time.
Black, red, blue, pink, and green for Flu, Vor, Itc, Pos, and Apo system, respectively. (D) RMSF values of the backbone Cα atom of each residue. The region of F-F′ ′

loop, F′ ′ helix, and F′ ′-G loop is shown in cyan rectangle.
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1G = 1EMM +1Gsol − T1S (2)

1EMM = 1Eint +1Eele +1EvdW (3)

1Gsol = 1GGB +1GSA (4)

In equation (2), 1EMM , 1Gsol, and TS represent molecular
mechanics components in the gas phase, the stabilization energy
due to solvation, and a vibrational entropy term, respectively.
1EMM represents the summation of 1Eint , 1Eele, and 1EvdW
which are the internal, coulomb, and van der Waals interaction
terms, respectively. 1Gsol represents the solvation energy, which
is divided into the electrostatic solvation free energy (1GGB)
(Hawkins et al., 1996) and the non-polar solvation free energy
(1GSA). 1GGB can be obtained by using the generalized Born
method, and 1GSA is calculated as follows:

1GSA = γSASA+ β (5)

Here, γ and β, two empirical constants, were set as 0.0072
and 0.00 kcal/mol/Å2, respectively, and SASA (Weiser et al.,
1999) represents the solvent accessible surface area determined
by a probe radius of 1.4 Å. To estimate the change in
conformational entropy (T1S) for all atoms, the normal-mode

analysis was performed using the nmode module of AMBER
16 package (Case et al., 2016). 100 snapshots from the
last 100 ns MD trajectories were used to calculate the
entropic contribution.

Energy decompositions were performed to identify the
important residues within the systems. Here, only per-residue
decomposition was included, which was used to separate the
energy contribution of each residue from the combination of
enzyme with the inhibitor into three terms: van der Waals
contribution (1EvdW), electrostatic contribution (1Eele), and
solvation contribution (1GGB +1GSA).

Analysis of Access Tunnels
CAVER (Chovancova et al., 2012) is a famous software to explore
routes leading from buried cavities (active sites) to enzyme
surfaces. The starting point for the tunnel search was located
in the position between heme and the inhibitor. The CAVER
algorithm (Petrek et al., 2006) divides three-dimensional space
into a grid and calculations are based on grid points. During
calculations, the probe radius and the clustering threshold were
set to 0.8 and 4.5 Å, respectively. A total of 200 frames of each
system were extracted from the last 100 ns MD simulations
trajectories. Other parameters were maintained at their default
settings. Subsequently, tunnels were visualized by using PyMOL
(DeLano, 2002).

FIGURE 3 | (A) The representative structures of Flu system and Vor system. (B) The 2D diagrams of the detailed binding information of Flu system and Vor system.
The protein is shown in white cartoon, the inhibitor and heme are displayed in orange sticks. The molecular interactions show hydrophobic interactions as semi-arcs
with red eyelashes.
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FIGURE 4 | (A) The representative structures of Itc system and Pos system. (B) The 2D diagrams of the detailed binding information of Itc system and Pos system.
The protein is shown in white cartoon, the inhibitor and heme are displayed in orange sticks. The molecular interactions show hydrogen bonds as green dashed lines
and hydrophobic interactions as semi-arcs with red eyelashes.

RESULTS AND DISCUSSION

Determination of the Optimal Binding
Pose of Inhibitor by Docking Analysis
The CDOCKER protocol (Studio, 2011) is a CHARMm-based
docking method, which was carried out to obtain an optimum
initial model of the complex. To determine the reliability of
this docking method, co-crystallized ligand (Pos) was firstly re-
docked into defined cavity with the CDOCKER protocol. It has
been reported that the distance between the nitrogen atoms on
the triazole ring of ligands and the iron atom of heme (N6Flu-
Fe, N1Vor-Fe, N4Pos-Fe; N7Itc-Fe) is less than 5 Å (Nair et al.,
2016; Hargrove et al., 2017). The optimal conformation was
the one with the best score among the structures that satisfy
the above distance condition. The root-mean-square deviation
(RMSD) value between the docking and initial conformation of
Pos was 1.18 Å, which suggested that the CDOCKER protocol
was suitable for docking in this work. The ligands Flu, Vor,

and Itc were successively docked into the receptor, and the
optimal binding pose was selected for the further MD analyses
according to the above criteria. For the sake of clarity, Flu-CYP51
complex, Vor-CYP51 complex, Itc-CYP51 complex, and Pos-
CYP51 complex was referred to as Flu system, Vor system, Itc
system, and Pos system, respectively.”

The Structural Stability and Dynamics
Properties of the Inhibitor-CYP51
Systems
In the 200 ns MD simulations of five systems, the root-
mean-square deviation (RMSD) value of backbones atom of
protein, binding cavity residues, and heavy atom of inhibitors
were calculated to investigate the structural stability of CYP51.
As shown in Figures 2A–C, each system gradually reached
equilibrium, which remained quite stable during the last 100 ns.
Thus, all subsequent analysis was performed on the last 100 ns
of the simulation trajectories. Comprehensively considered these
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TABLE 1 | Binding free energies (kcal/mol) and its components of four
inhibitors systems.

Flu Vor Itc Pos

1EvdW −42.98 −49.12 −90.33 −91.32

1Eele −6.48 −1.31 −7.00 −12.81

1GGB 25.78 21.62 23.53 35.44

1GSA −4.99 −5.71 −9.76 −10.02

1Epolar
a 19.30 20.31 16.53 22.63

1Enon−polar
b

−47.97 −54.83 −100.09 −101.34

1Gmmgbsa
c

−28.67 −34.51 −83.56 −78.71

T1S −20.17 −19.43 −31.04 −30.18

1Gbind
d

−8.50 −15.08 −52.52 −48.53

a1Epolar = 1Eele +1GGB. b1Enon−polar = 1EvdW +1GSA. c1Gmmgbsa =

1EvdW +1Eele +1GGB +1GSA. d1Gbind = 1Gmmgbsa – T1S.

TABLE 2 | Decomposition of binding free energy (kcal/mol) on per residue basis
for Flu system, Vor system, Pos system, and Itc system.

Residue Flu Vor Itc Pos

Y118 −1.84 −2.90 −1.82 −2.03

F126 −0.92 −0.53 −1.05 −0.71

Y132 −1.39 −0.82 −0.71 −0.85

F228 −1.02 −0.74 −0.88 −0.24

T311 −0.27 −0.99 −2.78 −0.98

L376 −1.91 −2.19 −1.90 −2.11

M508 −0.76 −2.40 −3.63 −3.41

F380 −0.23 −0.74 −1.02 −1.09

A61 0.01 0.01 −0.70 −1.37

Y64 0.01 −0.02 −1.07 −1.40

L87 0.01 0.04 −1.19 −1.08

L88 0.01 0.02 −1.08 −1.33

P230 0.01 −0.02 −2.38 −1.25

F233 −0.06 −0.24 −1.04 −1.47

H310 −0.74 −0.62 −2.16 −0.54

S506 0.02 0.06 −1.21 −1.36

S507 −0.05 −0.07 −1.00 −1.01

RMSD values of systems, the binding of the inhibitors reduced
the perturbation of the protein to some extent. To further explore
the effect of inhibitors binding on fluctuations of a certain
residue, the root-mean-square-fluctuation (RMSF) of backbones
Cα atoms in CYP51 was calculated (Figure 2D). The comparison
of RMSF between the Apo system and four inhibitors systems
showed that the fluctuations were mostly similar except for
the structural elements of F-F′′ loop, F′′ helix, and F′′-G loop
(Supplementary Figure S1). This region is also called F-G loop
in P450 enzyme, which may affect the channel characteristics of
the enzyme (Cojocaru et al., 2007). The F- F′′ loop, F′′ helix, and
F′′-G loop showed large RMSF values in Apo system (Figure 2D).
Compared with Apo system, the RMSF values of Flu, Vor, and Itc
systems were reduced, while that of Pos system was increased.
Further analysis showed that due to the 2-hydroxypentan of
Pos is close to the F-G loop, the instability of 2-hydroxypentan
(Supplementary Figure S2) caused the F-G loop to change
greatly, thus increasing the RMSF value of the F-G loop. These

results indicated that inhibitors binding may affect protein tunnel
characteristics by influencing the conformations of F- F′′ loop,
F′′ helix, and F′′-G loop. These results suggested that inhibitors’
binding increased the stability of CYP51. Local conformational
changes of F-G loop caused by inhibitors binding may affect the
protein tunnel characteristics.

Analysis Inhibitor Binding Mode
To explore the binding mode of inhibitor in the binding cavity of
CYP51, clustering analysis was used to extract the representative
conformation. As shown in Figures 3A, 4A, the shared triazole
ring of four inhibitors located above the heme was coordinated
with the heme. The halogenated phenyl was pointed toward to the
crack between the I helix and the B′-C loop. The rest side chain
oriented toward the entrance of the binding cavity of CYP51.
These results indicated the four inhibitors maintained a similar
binding pattern. The 2D diagrams displayed the interaction
between inhibitor and protein. As shown in Figures 3B, 4B,
the hydrophobic interaction was the main driving force for
inhibitors binding to CYP51. Based on molecular shapes and
scaffolds, the four inhibitors were divided into two kinds of
inhibitors: ST inhibitors and LT inhibitors (Keniya et al., 2018).
ST inhibitors (Flu and Vor) formed hydrophobic interaction with
the shared residues Y118, F126, Y132, F228, G303, G307, and
T311 (Figure 3B). For LT inhibitors (Itc and Pos), they formed
hydrophobic interaction with the common residues F58, Y64,
Y118, L121, Y132, L376, S378, S506, S507, and M508 (Figure 4B).
The important and obvious discrepancy of two kinds of inhibitors
was the length of the side chain. Comparing with ST inhibitors,
the extended side chains of LT inhibitors (Itc and Pos) provided
additional points in contact with the azole target CYP51. Thus, LT
inhibitors can form more hydrophobic interactions with CYP51
than ST inhibitors, which may demonstrate LT inhibitors have
stronger binding affinities with CYP51.

The analysis of inhibitor binding mode suggested four
inhibitors hold a similar binding pattern and the hydrophobic
interactions were the dominant driving force for inhibitors’
binding to CYP51. For both types of inhibitors, LT inhibitors
can form hydrophobic interactions with more residues due to the
characteristics of their long side chains. This may indicate that LT
types of inhibitors are more suitable for targeted CYP51.

Rational Ranking of Binding Ability by
Binding Free Energy Calculations
To gain energic information about the four inhibitors systems,
the binding free energy calculations were performed by the
MM-GB/SA method, and the entropy contributions were
also considered. As presented in Table 1, the total 1Gbind
values of Flu, Vor, Itc, and Pos systems were −8.50, −15.08,
−52.52, and −48.53 kcal/mol, respectively. LT inhibitors (Pos
and Itc) had stronger binding affinities when compared with
ST inhibitors (Flu and Vor), which confirmed our previous
speculation. Our results showed the rational ordering of
binding affinities in different systems which were consistent
with that of the experimental inhibitory effects (Hargrove
et al., 2017). Further analysis of the binding free energy
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FIGURE 5 | Access tunnel identified from the average structures of (A) Flu system, (B) Vor system, (C) Itc system, (D) Pos system, and (E) Apo system, respectively.
The protein backbone is shown in cartoon. Tunnels are shown in sphere for blue (2f), green (2a), magenta (2e), orange (2ac), yellow (s), red (w), and cyan (1).

indicated that the contributions of van der Waals interactions
(1EvdW), electrostatic energy (1Eele), and non-polar solvation
energy (1Gnon−polar) were favorable for the formation of the
inhibitors’ complexes. As listed in Table 1, non-polar interaction
(1Gnon−polar) was mainly responsible for the formation of the Flu
system (−47.97 kcal/mol), Vor system (−54.83 kcal/mol), Pos
system (−101.34 kcal/mol), and Itc system (−100.09 kcal/mol).
In comparison to the non-polar interaction, polar interaction
of the four systems had an unfavorable contribution. The
entropy change values of the four systems were less than zero,
which were detrimental to the binding of the inhibitors to
the CYP51. The results of free energy analysis elaborated that
non-polar interaction was the key factor for the binding of
inhibitors and CYP51.

The total binding free energy was decomposed into residues to
identify key residues for inhibitors binding to CYP51. Essential
residues with the binding free energy value below −1.0 kcal/mol
were listed in Table 2. The number of residues meeting to the
criterion were 4, 3, 14, and 12 in four systems, respectively, which
also indicated that the LT inhibitors were tightly bound to CYP51.
We found that Y118 and L376 had significant contributions in
inhibitors binding of all four inhibitors systems, Y64, L87, L88,
P230, F233, F380, and M508 made outstanding contributions
during the LT inhibitors binding.

Tunnel Analysis
Illustrating the tunnel characteristic of CYP51 is beneficial to
develop new inhibitors and understand the structure–function
relationships of CYP51 (Yu et al., 2016; Fischer et al., 2018).
In this work, 200 frames were extracted from the last 100
ns trajectories to classify and analyze the characteristics of
access pathways in four inhibitors systems and Apo system. The

tunnels were clustered by the average-link algorithm according
to the pairwise distances of tunnels. On the basis of spatial
and secondary structure, the nomenclature of these tunnels is
defined systematically by Wade group (Cojocaru et al., 2007).
The five highest ranked tunnels of five systems were all displayed
in Figure 5, and the characteristics of these tunnels were
summarized in Table 3. As shown in Figure 5, the locations of
five tunnels were marked with different color spheres (Flu system:
2f, W, S, 1, and 2e; Vor system: 2f, 2a, W, S, and 2e; Itc system: 2f,
S, W, 1, and 2a; Pos system: 2f, 2a, W, S, and 2ac; Apo system:
2f, S, W, 2a, and 2ac). Tunnels 2f, 2a, 2e, and 2ac are subclasses
of tunnel 2. Tunnel 2f locates between the F-G loop, Pro-rich
loop, and A helix, whereas tunnel 2a locates between the F-G loop
and B′-C loop (Supplementary Figure S1). Tunnel 2e egresses
through the B′-C loop, and tunnel 2ac egresses between the B′
helix and the G helix (Supplementary Figure S1). Tunnel W
(water tunnel) egresses at the base of the B′-C loop near the
C-terminus of the B helix, and tunnel S (solvent tunnel) runs
between the E, F, and I helices and β5 sheet (Supplementary
Figure S1). As listed in Table 3, tunnel 2f was the most frequently
identified collective pathway and had the highest bottlenecks
radius in five systems. Thus, tunnel 2f was regarded as the
predominant tunnel for inhibitors ingress/egress from the active
site to the surface of CYP51, which was similar as the other works
of CYP51 (Monk et al., 2014; Yu et al., 2016; Gao et al., 2018).
The occurrence of tunnel 2f was different slightly in five systems,
which may be related to the size of the inhibitors. In the LT
systems (Itc and Pos), the inhibitor is long and bulky, and its
binding mode analysis showed that its long side chain extended
to the entrance of the tunnel 2f, resulting in a fully opened tunnel
2f. In the ST systems (Flu and Vor), the inhibitor is in small size,
and the inhibitor was submerged in the binding cavity of CYP51,
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TABLE 3 | Characteristics of the five top ranked tunnels of Flu system (A), Vor
system (B), Itc system (C), Pos system (D), and Apo system, respectively.

(A) Characteristics of Flu system

Tunnel 2f W S 1 2e

Occurrence 93% 82% 34% 25% 11%

Mean bottleneck radius [Å] 1.26 0.99 0.96 0.91 0.84

Max. bottleneck radius [Å] 1.74 1.26 1.45 1.19 0.97

Mean pathway length [Å] 23.86 23.50 21.14 29.70 21.40

(B) Characteristics of Vor system

Tunnel 2f 2a W S 2e

Occurrence 98% 84% 77% 27% 15%

Mean bottleneck radius [Å] 1.26 1.08 0.92 0.97 0.83

Max. bottleneck radius [Å] 2.08 1.83 1.18 1.47 0.93

Mean pathway length [Å] 25.88 28.70 24.08 21.80 2

(C) Characteristics of Itc system

Tunnel 2f S W 1 2a

Occurrence 100% 89% 85% 51% 34%

Mean bottleneck radius [Å] 2.00 1.09 0.95 0.93 0.93

Max. bottleneck radius [Å] 2.46 1.56 1.30 1.31 1.34

Mean pathway length [Å] 16.95 20.23 23.69 33.58 20.95

(D) Characteristics of Pos system

Tunnel 2f 2a W S 2ac

Occurrence 100% 86% 81% 38% 16%

Mean bottleneck radius [Å] 1.86 1.78 0.93 1.03 1.00

Max. bottleneck radius [Å] 2.25 2.39 1.23 1.89 1.69

Mean pathway length [Å] 24.65 24.20 22.24 19.56 24.60

(E) Characteristics of Apo system

Tunnel 2f S W 2a 2ac

Occurrence 88% 80% 69% 65% 38%

Mean bottleneck radius [Å] 1.69 1.34 0.91 1.44 1.40

Max. bottleneck radius [Å] 2.37 1.72 1.40 2.03 2.10

Mean pathway length [Å] 20.92 19.93 23.31 22.53 22.82

causing decreased slightly in the opening frequency of tunnel 2f,
which was in line with the RMSF analysis that inhibitors’ binding
affected the tunnel characteristic. Further, we determined the
essential residues lining the dominant tunnel 2f, and all residues
located within the 3 Å distance from the tunnel surface will be
regarded as tunnel-lining residues (Supplementary Table S1).
The key residues (F58, Y64, Y118, L121, Y132, L376, S378, S506,
S507, and M508) determined based on the binding mode analysis
and per-residue binding free energy decomposition analysis
also belong to the tunnel-lining residues. Most of the tunnel-
lining residues were hydrophobic residues, which formed a stable
hydrophobic cavity and provided hydrophobic interactions that
play an indispensable role in inhibitor stabilization. Thus, when
designing more efficient inhibitors, the interactions between
inhibitors and these residues should be rationally increased and
the new inhibitors should be hydrophobic ligands.

CONCLUSION

The sterol 14α-demethylase enzyme (CYP51) belongs to
cytochrome P450 family essential in sterol biosynthesis, which
is the target for fungal infections. In this work, molecular
docking and molecular dynamics simulations were employed to
investigate the binding mechanism and tunneling characteristics
between four inhibitors and CYP51, so as to provide useful
information for inhibitors design. The results show that four
inhibitors bind CYP51 in similar binding mode and hydrophobic
interactions are the main driving force for inhibitors binding
to CYP51. Due to long-tailed inhibitors (posaconazole and
itraconazole) can contact with more residues of CYP51
by hydrophobic interactions than short-tailed inhibitors
(fluconazole, voriconazole), long-tailed inhibitors have stronger
binding affinities. Tunnel analysis showed that tunnel 2f is the
predominant pathway for inhibitors ingress/egress from the
active site to the surface of CYP51. We discover a hydrophobic
cavity and identify the key residues (F58, Y64, Y118, L121, Y132,
L376, S378, S506, S507, and M508) which are responsible for
anchoring the inhibitors binding to CYP51. Therefore, in order
to enhance the binding affinity of inhibitors to CYP51, we should
focus on strengthening hydrophobic interactions of inhibitors
and these residues, while longer inhibitors are probably best
suited to target CYP51. Taken together, the results obtained in
this study will be valuable for designing potent azoles inhibitors
and improve the understanding of the structure–function
relationships of CYP51.
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The de novo folate synthesis pathway is a well-established drug target in the
treatment of many infectious diseases. Antimalarial antifolate drugs have proven to
be effective against malaria, however, rapid drug resistance has emerged on the
two primary targeted enzymes: dihydrofolate reductase and dihydroptoreate synthase.
The need to identify alternative antifolate drugs and novel metabolic targets is of
imminent importance. The 6-pyruvol tetrahydropterin synthase (PTPS) enzyme belongs
to the tunneling fold protein superfamily which is characterized by a distinct central
tunnel/cavity. The enzyme catalyzes the second reaction step of the parasite’s de novo
folate synthesis pathway and is responsible for the conversion of 7,8-dihydroneopterin
to 6-pyruvoyl-tetrahydropterin. In this study, we examine the structural dynamics of
Plasmodium falciparum PTPS using the anisotropic network model, to elucidate the
collective motions that drive the function of the enzyme and identify potential sites for
allosteric modulation of its binding properties. Based on our modal analysis, we identified
key sites in the N-terminal domains and central helices which control the accessibility
to the active site. Notably, the N-terminal domains were shown to regulate the open-to-
closed transition of the tunnel, via a distinctive wringing motion that deformed the core
of the protein. We, further, combined the dynamic analysis with motif discovery which
revealed highly conserved motifs that are unique to the Plasmodium species and are
located in the N-terminal domains and central helices. This provides essential structural
information for the efficient design of drugs such as allosteric modulators that would
have high specificity and low toxicity as they do not target the PTPS active site that is
highly conserved in humans.

Keywords: de novo folate synthesis pathway, malaria, antifolate drugs, structural dynamics, motif discovery,
allosteric modulation
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GRAPHICAL ABSTRACT |

INTRODUCTION

Despite the major progress achieved to eradicate malaria, the
mosquito-borne disease remains a major public health problem
(World Health Organization, 2018). Malaria is transmitted
through the bite of an infected female Anopheles mosquito. Five
species from the genus Plasmodium cause malaria in humans,
namely: Plasmodium falciparum (P. falciparum), P. vivax, P.
ovale, P. malariae and P. knowlesi. Among these five species,
P. falciparum is the most pathogenic (Snow, 2015).

Tetrahydrofolate derivatives are essential for the one-carbon
unit transfer during nucleotide biosynthesis and amino acid
metabolism (Nzila et al., 2005). This has led to the de novo folate
synthesis pathway being recognized as an attractive metabolic
target for the treatment of numerous infectious diseases,
including malaria (Swarbrick et al., 2009). The antimalarial
antifolate drugs target the de novo folate synthesis pathway of
the parasite to limit the production of folate derivatives and
thereby prevent the growth and reproduction of the parasite. The
two main targeted enzymes are dihydrofolate reductase (DHFR)
and dihydropteroate synthase (DHPS), which are inhibited by
the use of pyrimethamine and sulfadoxine antifolate drugs.
The two drugs have also been used in synergy to target
both enzymes simultaneously. However, resistance against the
available antifolate drugs has emerged rapidly and has been
observed even with the use of higher drug dosages, rendering

these drugs ineffective in many cases. The combination therapy
was previously used to overcome the resistance, however, in many
cases, this treatment also failed as the parasite has also developed
tolerance to a combination of drugs (Alker et al., 2008). The
emerging resistance to antimalarial drugs drives a continuous
need to develop drugs that have a novel mechanism of action.
In this study, we explore an alternative drug target and drug
targeting sites in the de novo folate synthesis pathway.

The first reaction of the de novo folate synthesis pathway is
catalyzed by guanosine-5’-triphosphate (GTP) cyclohydrolase
(GCH1), which converts the GTP moiety to the 7,8-
dihydroneopterin (DHNP) (Colloc’h et al., 2000). The enzyme
6-pyruvol tetrahydropterin synthase (PTPS) then converts
DHNP to 6-pyruvoyl-tetrahydropterin (PTP) via an internal
redox transfer and final elimination of the DHNP phosphate
tail (Bürgisser et al., 1995). The PTP product is then processed
further by the downstream enzymes of the de novo folate
synthesis pathway, including 6-hydroxymethyldihydropterin
pyrophosphokinase (HPPK), DHPS, dihydrofolate synthase
(DHFS) and DHFR (Kümpornsin et al., 2014).

PTPS is a hexameric lyase enzyme that has 3-fold symmetry
(Bürgisser et al., 1995). The protein is composed of six identical
monomers that assemble via tight hydrogen bonds to form two
trimer structures (Nar et al., 1994). The two trimers join via a
head-to-head association to form the functional hexameric unit
(Figure 1). The trimers are 60 Å in diameter and have a height of
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FIGURE 1 | (A) Top view (B) Side view of P. falciparum PTPS 3D structure (PDB: 1Y13). The 3D structure is composed of a dimer of trimers with D3 symmetry (Nar
et al., 1994). The yellow dashed box shows the location of one of the six active sites.

30 Å (Nar et al., 1994). The structure of PTPS is characterized
by a conically shaped central barrel that accumulates a cluster
of basic and aromatic residues (Nar, 2011). PTPS has six
zinc-containing active sites, and each site is buried in a deep
cavity of 12 Å formed between every three adjacent monomers
(Figure 1). Three histidine residues (H29, H41, H43) coordinate
the metal ion through their NE2 atoms during the catalysis
of the substrate (Khairallah et al., 2020). The deeply buried
active sites of PTPS are accessible to the substrate through the
central opening along the axis of the trimer (Bürgisser et al.,
1995). Previous studies suggested that the barrel is necessary
for the stabilization of the multimeric association and therefore
incorporates a sophisticated use of functional allostery (Colloc’h
et al., 2000). The PTPS enzyme belongs to the tunneling fold
(T-fold) protein superfamily (Colloc’h et al., 2000). Enzymes of
the T-fold superfamily exhibit a conserved structural topology
and, with the exception of the active residues, have low sequence
similarity (Colloc’h et al., 2000). The structural conservation that
exists despite the low sequence similarity, points to its importance
in maintaining protein function. Therefore, the characterized
structural features of this protein superfamily, including its
distinct central cavity, may encompass undiscovered allosteric
sites that can be exploited for drug discovery.

Allostery is defined as the regulation of a protein’s structure
and activity by the binding of an effector molecule at a site
other than the conserved active site (Nussinov and Tsai, 2013).
Allosteric drugs are highly specific to sites other than the
active sites, and therefore induce the desired effect of either
activating or inhibiting a protein via a mechanism that does
not rely on targeting a site that is highly conserved in humans.
As a result, they are considered to be far less toxic to the
host. However, discovering allosteric sites that have a dominant
effect on protein conformation and respective compounds that

modulate these sites is far more challenging than orthosteric
drug discovery (Lu et al., 2019; Amamuddy et al., 2020).
As in many cases, the location of allosteric sites is often
unknown and their effects on the intrinsic motion of the
protein are difficult to determine experimentally (Suplatov and
Švedas, 2015). Our recent review article proposes a number of
integrated computational approaches to identify allosteric sites
(Amamuddy et al., 2020).

Protein structures are dynamic in that they undergo large-
scale domain changes in response to the binding of ligands or
other compounds, thereby assuming different conformational
states that allow them to perform certain functions (Bahar et al.,
2007; Henzler-Wildman and Kern, 2007; Teilum et al., 2009;
Nussinov and Ma, 2012; Loutchko and Flechsig, 2020; Zhang
et al., 2020). Studying large-scale structural changes can elucidate
key sites that modulate the functional mechanisms of a protein
(Penkler et al., 2017, 2018; Guarnera and Berezovsky, 2020;
Shrivastava et al., 2020). Several experimental and computational
approaches are used to measure quantitatively the structure,
dynamics, and function of macromolecules. A comprehensive
review of different approaches is provided by Orozco (2014);
Palamini et al. (2016), and Maximova et al. (2016). In
this study, we have applied Normal Mode Analysis (NMA),
calculated on the Anisotropic Network Model (ANM) to
uncover collective motions that are essential for the tunnel
gating mechanism of PTPS, and thus pinpoint potential sites
that modulate the allostery of the enzyme to be targeted in
future anti-malarial drug discovery. The NMA analysis was
combined with protein motif discovery to elucidate motifs
that are located in regions that are essential to the dynamics
of PTPS and that are uniquely conserved in Plasmodium
PTPS enzymes. The identified motifs further support our
finding of regions responsible for the PTPS conformational

Frontiers in Molecular Biosciences | www.frontiersin.org 3 September 2020 | Volume 7 | Article 575196176

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-575196 September 25, 2020 Time: 19:49 # 4

Khairallah et al. Dynamics of 6-Pyruvoyl Tetrahydropterin Synthase

transitions and therefore establish guidelines toward the selective
inhibition of this enzyme.

MATERIALS AND METHODS

Structural and Sequence Data Retrieval
The PTPS crystal structure of the P. falciparum was retrieved
from the online Protein Data Bank (PDB ID: 1Y13). The protein
functional unit consists of six identical chains, a total of 978
residues. This structure was used to construct an ENM on the
Cβ atomic coordinates of the protein, as found in the PDB file.
The Cβ atoms were selected because it has been shown that they
provide a better representation of the side chains orientation.
A harmonic potential within a cut-off distance (Rc) of 15 Å was
used to account for the pairwise interactions between all of the
Cβ atoms.

For motif analysis, the protein sequences of PTPS from
20 different species, including 9 Plasmodium species, four
mammalian species, four bacteria species and three fungi species
(Supplementary Table S1) were retrieved using the P. falciparum
PTPS sequence as a query in a BLAST search (Altschul et al.,
1990) to identify other Plasmodium homologs in the PlasmoDB
(Aurrecoechea et al., 2009) and mammalian, bacterial and fungi
homologs in UniProt (Bateman, 2019). The BLAST search tool
was used with default alignment parameters.

Calculation of the Normal Modes
NMA was predominantly performed using the MODE-TASK
tool suite (Ross et al., 2018) which employs the ANM (Atilgan
et al., 2001) to construct an ENM of the protein structure.
Although the ANM has been described previously (Atilgan et al.,
2001), we provide a summary here. In the ANM, each residue
of the P. falciparum PTPS structure was represented by a node
placed at its Cβ atom coordinate and all interactions between
each pair of residues separated within a defined cutoff distance,
Rc = 15 Å, was modeled as a set of springs with a uniform force
constant γ. This yielded a network that contained N nodes and
M springs representing the total number of interactions defined
in the network, such that any given pair of nodes within Rc of
each other will interact in accord with a conventional harmonic
potential. The normal modes of this network are calculated in
the absence of an external force, under an equilibrium condition.
In the general case of N residues connected by M springs, the
Hessian Matrix H is a 3N × 3N super-matrix that may be
derived from the second derivatives of the overall potential V,
with respect to the components of Ri, where Rj are the fluctuation
vectors of the individual residues. Therefore, the Hessian matrix
describes the force constant of the system. H is composed of
N × N super-elements, i.e.,

H =


H11 H12 · · · H1N
H21 . . . H2N
... . . .

...

HN1 . . . HNN

 (1)

where each super-element Hij is a 3 × 3 matrix that holds the
anisotropic information regarding the orientation of nodes i,j
The ijth super-element (i 6= j) of H is defined as:

Hij =

 ∂2V/∂ Xi∂ Xj ∂2V/∂ Xi∂ Y j ∂2V/∂ Xi∂ Zj
∂2V/∂ Y i∂ Xj ∂2V/∂ Y i∂ Y j ∂2V/∂ Y i∂ Zj
∂2V/∂ Zi∂ Xj ∂2V/∂ Zi∂ Y j ∂2V/∂ Zi∂ Zj

 (2)

At equilibrium, the second derivatives may be calculated for the
ANM using the β-carbon position vectors of PDB structures such
that the elements of the off-diagonal Hij are given by the equation:

∂2V/∂ Xi∂ Y j =− γ (Xj − Xi)(Yj − Yi)/S2
ij (3)

And the elements of the diagonal super-elements Hii are given by
the equations:

∂2V/∂ X2
i = γ

∑
j

(Xj − Xi)
2/S2

ij (4)

For the diagonal elements of Hii and

∂2V/∂ Xi∂ Yj = γ
∑
j

(Xj − Xi)(Yj − Yi)/S2
ij (5)

For the off-diagonal elements of Hii
H can be decomposed into 3N-6 eigenvalues and 3N-6

eigenvectors that correspond to the respective frequencies and
directions of the individual non-trivial modes. The modes with
the lowest frequencies are termed the slowest modes and define
the most collective, or global, motions of the protein. The highest
frequency modes describe the more localized motions of the
protein. The VMD program (Humphrey et al., 1996) was used to
visualize the eigenvectors describing the structural change in each
mode. Lastly, mechanical stiffness calculations (Eyal and Bahar,
2008) were performed on the ANM of the PTPS using the ProDy
Python package (Bakan et al., 2011, 2014) and the obtained results
were visualized using Matplotlib library and VMD.

In addition, the Gaussian Network Model (GNM) calculations
were performed using the DynOmics portal (Li et al., 2017),
specifically to identify hinge regions within the structure of PTPS.
The GNM calculations were performed using a cutoff distance
of 15 Å, with a spring constant scaling factor of 10 for contact
distances ≤4.0 Å and a distance scaling exponent of 2. The
Dynomics portal was further used to validate the high-frequency
vibrating residues and to analyze the mechanical properties of
PTPS, by obtaining a color-coded representation of the PTPS
structure based on the mobility of the residues from the resultant
low and high GNM modes.

Calculation of the Residue Mean Square
Fluctuations
The inverse of H is equivalent to the covariance matrix C that
is composed of N × N super-elements. Each off-diagonal, ijth,
super-element of H−1 contains the 3 × 3 matrix of correlations
between the x-, y- and z-components of fluctuation vectors of
residues i and j, while the ith super-element of H−1 describes
the self-correlation between the components of fluctuation
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vectors of residue i. For any given mode, the mean square
fluctuations (MSF) of individual residues can be obtained by
summing the components of fluctuation. The MSF profiles from
individual normal modes were calculated using MODE-TASK
(Ross et al., 2018).

Residue Cross-Correlation Analysis
The BIO3D R package for the exploratory analysis of the structure
and sequence data (Grant et al., 2006) was used to compute the
deformation energy and residue cross-correlation. The BIO3D
cross-correlation S(i, j) is given by:

S
(
i, j
)
= (1ri.1rj)/(1r2

i )
1
2 (12

rj)
1
2 (6)

where 1ri and 1rj are the displacement vectors for atoms i
and j, respectively. The elements S(i, j) are stored in matrix
form and displayed as a three-dimensional dynamical cross-
correlation map. If Sij = 1 the fluctuations of atoms i and j are
completely correlated (same period and same phase), if Sij = -1
the fluctuations of atoms i and j are completely anti-correlated
(same period and opposite phase), and if Sij = 0 the fluctuations
of i and j are not correlated.

The deformation energy signifies the energy density due to
deformation as a function of position (Hinsen, 1998) given
by Eq. 7. It provides a measurement of the individual atom’s
energy contribution toward the structural deformation. PTPS
deformation energy was derived from the eigen energies and
vectors of the first not trivial 20 normal modes according
to the equation:

E =
1
2

N∑
1

K
(
R(0)
ij

) ∣∣∣(ri − rj
)
.R(0)

ij

∣∣∣2∣∣∣R(0)
ij

∣∣∣2 (7)

where ri, rj donate the displacement of atom i and j in the mode to
be analyzed, Rij(0) is the pair distance vector (Ri–Rj) in the input
arrangement and K is the pair force constant.

Motif Discovery
Motif discovery was performed using Multiple Expectation
Maximisation for Motif Elicitation (MEME) vs 4.11 (Bailey et al.,
2015) to identify highly conserved motifs in the Plasmodium
PTPS enzymes. A fasta file containing PTPS protein sequences
was parsed to the MEME analysis software. The motifs search
size was set to the range between 6 and 20 residues. The
Motif alignment search tool (MAST) was then used to identify
overlapping motifs (Bailey and Gribskov, 1998). A Python script
was then used to analyze MAST files and MEME log files.
Motif conservation was calculated as a number of sites per the
total number of sequences, and the results were displayed as
heatmaps. Motifs that were uniquely conserved in Plasmodium
species were mapped onto the 3D structure of P. falciparum PTPS
and visualized using the PyMOL Molecular Graphics System
(DeLano, 2014).

RESULTS AND DISCUSSION

Notable Conformational Changes Were
Captured by the Lowest Frequency
Non-degenerate Modes of P. falciparum
PTPS
In this study, the ANM was applied to the structure of PTPS
to classify its collective motions that have the propensity to
lead the enzyme from one conformational state to another, and
thus modulate its function. Further investigation of the residue
fluctuations within the modes was performed to identify highly
active regions that may drive these motions. The nature of
allosteric modulation requires a high degree of collectivity which
is often well-described by the low-frequency modes (Bahar et al.,
2010). The NMA of PTPS (a 3-fold symmetry structure) yielded a
total of 2,934 modes. The first 20 slowest non-trivial modes were
selected for the characterization of the global intrinsic motions of
the protein structure.

Normal modes obtained from symmetrical structures are
highly susceptible to degeneracy, thus producing degenerate and
non-degenerate modes. The degenerate modes share the same
frequency and consequently any orthogonal transformation. In
contrast, non-degenerate modes characterize unique directions
of motions that often capture global meaningful motions that
account for large conformational changes. Previous studies
showed that dominant conformational changes of complexes
were captured within the slowest non-degenerate modes (Atilgan
et al., 2001; Chennubhotla et al., 2005; Shrivastava and Bahar,
2006; Wako and Endo, 2011; Isin et al., 2012; Lee et al., 2017; Ross
et al., 2018). Here, we identified eight non-degenerate modes of
PTPS. These non-degenerate modes exhibited unique eigenvalues
(i.e., frequencies) and displayed unique global motions. Table 1
shows the first 20 non-trivial normal modes of PTPS, their
associated frequencies, degeneracy levels and the contribution
of each mode to the overall motion of the protein. Although
the contribution of the individual modes was low and did not
reveal a single dominant motion, we suspect that this may be a
consequence of the large size of the protein and the extensive
degeneracy of the normal modes. Here we have analyzed the
first 20 slowest modes which only represent 0.68% of the total
modes, yet when combined they account for 11.08% of total
motion of the protein. Similarly, the 8 non-degenerate modes
only represent 0.27% of the total modes but account for 3.64%
of total motion. The displacement vectors of the individual
non-degenerate modes were studied as well as the MSF average
over the 20 slowest and 20 fastest frequency normal modes.

To visualize the atomic displacements during the collective
motions of PTPS, the respective eigenvectors of each of the
eight non-degenerate modes were projected onto the structure
of PTPS (Figure 2). Movies were constructed by projecting the
eigenvectors onto the structure as a set of frames in which
the vectors were added to the original atomic coordinates in
increasing steps and then visualized using VMD. The atomic
displacement during these modes was then examined to identify
distinctive motions that are associated with the enzyme’s tunnel
gating such as opening, closing or rotation as well as any other
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TABLE 1 | PTPS first 20 non-trivial normal modes, associated eigenvalues, and
level of degeneracy.

Mode Eigenvalue Degeneracy Contribution%

Mode 1 0.33 2 1.38

Mode 2 0.33 2 1.37

Mode 3 0.48 1 0.96

Mode 4 0.55 2 0.84

Mode 5 0.55 2 0.84

Mode 6 0.89 1 0.52

Mode 7 0.92 1 0.50

Mode 8 0.95 2 0.48

Mode 9 0.96 2 0.48

Mode 10 0.96 2 0.48

Mode 11 0.97 1 0.47

Mode 12 1.02 2 0.45

Mode 13 1.03 2 0.44

Mode 14 1.21 1 0.38

Mode 15 1.34 2 0.34

Mode 16 1.35 2 0.34

Mode 17 1.63 1 0.28

Mode 18 1.68 1 0.27

Mode 19 1.79 1 0.26

Mode 20 1.95 2 0.24

The first six trivial modes were excluded, therefore mode 1 represents mode 7.

notable movements that resulted in structural changes around the
tunnel or active site. The eight non-degenerate modes captured
coupling movements between the tunnel gating, the N-terminal
β-strands, and the central helices thus demonstrating that these
regions primarily regulate the global dynamics of the protein.
Furthermore, the observed structural changes of the tunnel
were often accompanied by structural deformation around the
active site region.

PTPS Tunnel Displayed Several Distinct
Movements That Involved the
Fluctuations of the N-Terminal β-Strands
The modal analysis captured four distinctive motions that
resulted in structural changes around the tunnel and the active
site of PTPS. Mode 3 captured an asymmetric global twist of the
terminal domains of the two PTPS trimers, characterized by their
rotation in opposite directions (Supplementary Movie 1). From
visual inspection, it appeared that the twisting of the terminal
domains controlled the expansion and narrowing of the tunnel.
Most notably, the diameter of the tunnel was smaller when the
terminal domains followed a wringing motion with respect to the
principal axis. We, therefore, suggest that the fluctuations of the
terminal domains modulate the tunnel gating and consequently
induces structural changes around the active site region. In
mode 6, a notable tilt of the entire terminal domains was
observed, leading to a side to side motion of the protein structure
(Supplementary Movie 2). A stretching motion that resulted in
the lateral expansion and contraction of the tunnel was captured
in mode 7. From visual inspection, it appeared that this expansion
and contraction was largely driven by the extensive movement of

FIGURE 2 | The projection of the eight slowest non-degenerate modes onto
the structure of PTPS. Eigenvectors have been projected as a set of arrows
that denote the direction of motion of the protein Cβ atoms. The 3D structure
is PTPS P. falciparum (PDB ID: 1Y13). Each of the protein chains is colored
differently for illustration purposes.

the terminal and central helices (Supplementary Movie 3). Mode
11 displayed a tilting motion of two central helices in an opposite
direction to the third central helix (Supplementary Movie 4).

The identified motions within the tunnel were often
accompanied by structural changes in the active site region, in
which the tunnel acted as a connecting vessel to allow the entry
of the substrate and provide the active site with flexibility. This
further demonstrates how the tunnel gating mechanism exerts
such control on the active site and illustrates the functional
relevance of this cavity in the catalytic mechanism of the protein.

The N-Terminal Domain Wringing Motion
Modulated the Exposure of the Protein
Tunnel
Visualization of the non-degenerate modes revealed three modes
in which the wringing of the N-terminal domains promoted
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the surface exposure of buried regions within the tunnel. In
particular, Mode 14 captured the outward and inward movement
of the PTPS tunnel (likened to an engulfing movement)
(Supplementary Movie 5). Mode 17 presented a prominent
bending of the central helices from side to side, resulting in
the protein tightening in the same direction (Supplementary
Movie 6). Mode 18 featured a breathing motion that is
characterized by the upward and downward movement of the
central β-sheets (Supplementary Movie 7). Mode 19 displayed
a clockwise rotation of the protein core that is associated
with the terminal regions twisting in the opposite direction
(Supplementary Movie 8). Within the eight identified non-
degenerate modes, residue 76 to 114 of the N-terminal β-strands
and residue 136 to 150 of the central helices exhibited the
highest mobility (Figure 9A), which propelled the global motions
of the protein. The expansion of the tunnel may promote the
binding of PTPS to accessory proteins. Other proteins of this
family are known to associate with other proteins, for example,
the T-fold enzyme GCH1 is known to physically associate
with another pentameric enzyme via the central opening of
its tunnel in order to regulate its activity (Maita et al., 2004;
Higgins and Gross, 2011).

Based on our modal analysis, we suggest that the flexibility
of the tunnel is essential for the efficiency of the active site. The
tunnel appears to modulate entry of the substrate via expansion
and contraction which is primarily driven by the rotation of the
N-terminal regions, thus allowing the substrate to pass through
the tunnel into the active site for catalysis. Furthermore, we
hypothesize that the twist and shear motions propel the substrate
through the tunnel. Taken together, these results further the
understanding of the functional dynamics of the PTPS enzyme,
which will serve as significant guidelines toward the design
of allosteric modulators that target structural regions that are
pertinent to the function of the enzyme, and therefore the life
cycle of the malarial parasite.

MSF of the Individual Normal Modes
Showed That the N-Terminal β-Strands
and Central Helices Displayed the
Highest Fluctuation
The atomic MSF profiles of the eight non-degenerate low-
frequency modes were calculated and plotted (Figure 3). In
each of the individual profiles, the N-terminal β-strands and the
central helices have shown a notable fluctuation when compared
to the protein core. Sharp peaks on the MSF profile distinguished
these regions (Figure 3). The calculated MSF of the slowest 20
normal modes and the experimental B-factor were compared
to validate the fluctuations that were predicted in the normal
modes. Figure 4B shows the atomic fluctuation over the first
20 non-trivial low-frequency modes mapped onto the PTPS
structure. The combination of the slowest 20 modes identifies
the PTPS terminal domains as the most mobile (red) regions of
the structure (Figure 4B). The simplified models of the ANM
were shown to agree with the experimental B-factor results, as
presented in Figure 4.

Deformation Analysis Demonstrated a
Significant Build-Up of Deformation
Energy in the PTPS Tunnel
Deformation is defined as any structural change caused by either
an external force or a change in temperature (Bao, 2002). When
the applied force is sufficient, a notable deformation can be
observed; otherwise, the structure will resist the applied force and
revert to its original state. After obtaining the normal modes,
an analysis of the deformation energy distributed across the
structure was performed to observe which regions of the structure
were deformed during these global motions. The obtained
results showed that the extensive fluctuations of the N-terminal
domains, as seen in the MSF profiles, caused a significant build-
up of deformation energy in the tunnel region of the enzyme. This
demonstrates that the fluctuation of N-terminal domains has a
long-distance effect on the tunnel core, which is located ∼30 Å
away. The deformation energy values were calculated as the sum
of the contributions of the first 20 non-trivial modes. The derived
energy values were mapped onto the PTPS structure (Figure 5).
We observed low deformation energy in the fluctuating terminal
domains (blue), which was accompanied by high deformation
energy within the tunnel region (red).

Residue Cross-Correlation Analysis
Presented the Movement of the
N-Terminal Domains in a Concerted
Manner
A heatmap showing the cross-correlation of the Cβ atom pairs
is shown in Figure 6. Only motions in the first 20 non-trivial
modes were selected in the calculation to highlight the residues
involved in the protein collective motions. The residue cross-
correlation analysis highlighted regions moving in a concerted
manner, which therefore illustrates their involvement in the
structural dynamics of the enzyme. The off-diagonal elements
presented a positive correlation coefficient within the same chain,
more specifically the residues of the terminal β-strands displayed
correlation motion. Given the fact that PTPS is a multimeric
protein, chains within one trimer exhibited a similar direction
of motion. Anticorrelated motions were identified across the two
dimers which can be understood due to the twisting or wringing
of the helices across the trimers. The observed anticorrelation
across the two trimers designates the opposing twisting or
wringing of the terminals, therefore allowing the tunnel to open
and close accordingly.

Motif Analysis Revealed Uniquely
Conserved Sites in Plasmodium PTPS
Enzymes
Protein motifs are evolutionarily conserved sequence patterns
that might unearth a biological function. Identifying the motifs
and their structural locations can, therefore, provide insight into
regions that modulate protein function. It can further reveal
key residues that are unique and typically required to retain
the protein function and structural stability (Mackenzie and
Grigoryan, 2017; Ross et al., 2017; Zheng and Grigoryan, 2017).
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FIGURE 3 | Individual MSF profiles of the eight non-degenerate modes. The yellow blocks represent each chain of the protein structure. The residues index is
labeled for one chain along the lower abscissa and according to the P. falciparum (PDB ID: 1Y13) file.

Following the analysis of the dynamics of the enzyme, we
performed motif discovery to identify highly conserved motifs in
P. falciparum PTPS and residues that are potentially involved in
maintaining the secondary structure of the enzyme. The motif
discovery was performed on the PTPS homologue sequences
from four mammalian species including human, four bacterial
species, three fungal species, and nine other Plasmodium species.
A total of 27 motifs were identified. The analysis revealed four
motifs (motifs 5–8) that were conserved in the Plasmodium
PTPS enzyme sequences but were not detected in any of the
mammalian species. Motifs 6–8 were uniquely conserved in the
Plasmodium species, while motif 5 was also found among the
bacterial and fungal PTPS enzymes. A heat map illustrating the
occurrence of the motifs is shown in Figure 7.

The conserved Plasmodium motifs were mapped onto the
crystal structure to identify their location (Figure 8). Motif 5
was located in the central β-sheet strands forming the tunnel
cavity, motif 6 and 7 were located in the N-terminal antiparallel
β-strands, as well as a loop linking the β-sheet strands and
motif 8 was located in the central α-helices region. Motif
7 and 8 were shorter and more conserved relative to other

motifs, which further suggests functional importance. As shown
by the NMA, these regions were responsible for modulating
the PTPS conformational transitions of the tunnel. The results
presented significant structural and sequence differences between
the Plasmodium PTPS enzyme and the human PTPS. As all of the
identified motifs were not found in the human PTPS, this vital
difference can be exploited for the attainment of drug selectivity
and future antimalarial drug design.

The Lowest and Highest-Frequency
Normal Modes Revealed Residues of
Notable Mobility That Were Also Located
in the Conserved Structural Motifs
The low-frequency normal modes are often associated with
large amplitude conformational changes which are essential
for function (Mahajan and Sanejouand, 2015). The first
20 modes illustrate the substantial contribution of the
PTPS helices to the protein’s global motion, in which they
regularly control the tunnel movement via wringing or
bending motions. In the MSF profile, the most substantial
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FIGURE 4 | (A) The experimental B-factors mapped onto the PTPS 3D structure. (B) Atomic mobility over the slowest 20 modes. Regions of the lowest fluctuation
are shown in blue, higher mobility in green, yellow, and red. The fluctuations color scale is from blue to red (High/ flexible to low/rigid) atomic fluctuation. The figure
demonstrates the high mobility of the terminal regions, central helices, and rigidity of the protein core, indicating that the NMA predicted motions have captured most
of the experimentally determined motions. (C) Experimental B-factor plot and (D) Lowest 20 modes MSF profile. The residues index is labeled for one chain along
the lower abscissa and according to the P. falciparum (PDB ID: 1Y13) file.

FIGURE 5 | Deformation energy values mapped onto the PTPS 3D structure (A) Top view (B) Side view. The colors of the atoms indicate the amount of deformation.
The dark blue regions are the least deformed, whereas red areas are strongly deformed.

contributions to the atomic fluctuations emerged from
the terminal and central helices (Figure 9A). The residues
G35, K97, N107, and S145 showed notable fluctuations in
the MSF profile. This demonstrates their key role in the
global dynamics of the enzyme. Notably, residue N107 was

found in motif 7 (position 9) and S145 was found in motif
8 (position 10) (Figure 8), further highlighting residues
that are highly conserved in the Plasmodium species and
which were active in modes that captured notable structural
changes in the enzyme.
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FIGURE 6 | A heatmap representation showing the Cβ atoms pairwise cross-correlation. The correlation matrix ranges from −0.4 to +0.4. The scale color bar on the
right indicates the extent of the correlation in which the red color highlights correlated motions (residue pairs moving together in the same direction), while the blue
color highlights the anti-correlated movements (residue pairs moving in opposite direction). The yellow bars along the bottom represent each chain of the protein.

As the frequency increases, the modes become more localized
and are accompanied by fast vibration of individual residues.
It has previously been reported that high-frequency vibrating
residues overlap with residues that are highly conserved and have
an essential role in stabilizing the protein, and thus maintaining
its function (Haliloglu et al., 2005). High-frequency vibrating
residues in PTPS were identified from the average MSF calculated
over the 20 highest frequency modes (Figure 9B). These included
the active site residues H29, H41, and H43 as well as other
important residues for the enzyme catalysis. The residues L78,
I83, V159, E161, and A167 showed high fluctuation in the MSF
profile of the fastest modes. Motif analysis showed that these
residues do in fact overlap with sites of high conservation,
with L78 and I83 found in motif 6 at (position 3 and 8),
V159, E161, and A167 in motif 5 (position 6, 8, and 14),
respectively (Figure 8).

Previous studies established that a cluster of hydrophobic
residues surrounds the active site pocket and interacts with
the substrate ring (Bürgisser et al., 1995; Colloc’h et al., 2000).
Here we show that several of these hydrophobic residues also
fluctuated in the high-frequency modes (Figure 10B). Residues
E161 and T127, which are located at the bottom of the active
site pocket (Figure 10A), showed significant fluctuation of the
fast frequency modes, with E161 displaying the highest residue
fluctuation (Figure 9B). These two residues were previously

reported for their key role in substrate recognition and binding,
as they both act as proton donors and acceptors during catalysis
(Nar et al., 1994; Bürgisser et al., 1995; Ploom et al., 1999;
Nar, 2011). Furthermore, Nar and colleagues reported that
T105, T106, and E107, located around the active site pocket,
constitute an acceptor site for the substrate ring during catalysis
in the Rattus norvegicus. PTPS structure (PDB ID: 1B6Z). In
the P. falciparum PTPS structure these residues are equivalent
to S126, T127, E129, all three of which corresponded to high-
frequency vibrating residues. Overall, the combined results
obtained from our NMA and motif analysis have revealed
conserved residues in the Plasmodium species that have key
structural significance, with strong potential to modulate the
stability and function of the enzyme. Thus, the characterized
regions can then be proposed as alternatives that can be targeted
and kept in consideration for future drug design efforts.

Hinge Residues Were Identified and
Found to Overlap With High-Frequency
Vibrating Residues Located in the
Protein Core
Hinge regions are often found between domains in a protein
to allow flexibility, in which they permit the domains to
move relative to one another or clamp down on a substrate
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FIGURE 7 | MEME heat map summarizing motif information for groups of PTPS homologue sequences. The white regions show sequences lacking a motif and the
level of conservation increases from blue to red.

(Towler et al., 2004; Yang and Bahar, 2005; Amusengeri and
Tastan Bishop, 2019). The hinge residues, act as anchoring
points and are involved in the propagation of large-scale
conformational changes. The ANM provides a 3D description
of motions identified in the modes, whereas in GNM the
motion is projected to a mode space of N dimensions and
therefore provides a description of atoms’ mean squared

displacements. GNM calculations are considered to be the
preferred method for predicting the magnitude of motions at
the cost of losing directions (Atilgan et al., 2001) and thus
easily allow the identification of hinge sites. The DynOmics
portal was used to recognize hinge residues (Li et al., 2017).
The server provided information about key sites involved in the
collective mechanics and allostery of the protein by mapping
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FIGURE 8 | The MEME sequence logo contains a stack of letters at every position in the motif. The height of the letters represents the probability (in bits) of the letter
occurring at that position multiplied by the number of times that residue occurs within that site in each motif site in the total dataset (Bailey et al., 2015).

FIGURE 9 | MSF profiles of (A) Low-frequency and (B) High-frequency normal modes. Residues with the highest fluctuations of the slowest modes and the fastest
modes are labeled. The dark green, purple, red, and lime green bars highlight the location of motif 5, 6, 7, and 8 respectively. N107 is located in motif 7 (position 9),
S145 in motif 8 (position 10), L78, and I83 are located in motif 6 (position 3 and 8) and V159, E161, and A167 are located in motif 5 (position 6, 8, and 14)
respectively.
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FIGURE 10 | (A) The structure of P. falciparum PTPS and the metal center (active site) showing in the circled zoom with the active site residues: H29, H41, H43, and
the two catalytically important residues T127 and E161. (B) Boxed zoom showing the location of the identified high vibrating residues.

FIGURE 11 | GNM based identification of global hinge sites over the low-frequency modes. Hinge residues are located at the crossover line where the eigenvectors’
values are equal to zero. Residues surrounding the hinge residues showed significant fluctuation in the positive and negative direction of motion. The identified hinge
residues include the active site residues, H29, H41 and H43; the catalytically important residues, H80, T127 and E161; and the active site neighboring residues,
Y45, L49, D89, F93, L103, N107, C117, S148, V159 which are illustrated by arrows.
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of the coarse-grained conformations driven by collective modes
to their full-atomic representations. The domain separations
analysis based on modes of the GNM disclosed hinge sites
(residues that exhibit minimal displacements in the softest two
modes). The labeled residues in Figure 11 correspond to the
interfacial residues whose neighboring residues have a different
sign in the eigenvector relative to themselves. Thus, these
interfacial residues act as hinges about which their neighboring

residues are displaced in opposite directions. Specifically, we
identified hinge sites that overlapped with residues of the active
site: H29, H41, and H43 as well as E161. The functional
importance of these residues was supported by previous studies
in which the mutation of these residues resulted in either a
complete or a dramatic loss of enzymatic activity (Bürgisser
et al., 1995; Nar, 2011). Furthermore, the active residues were
responsible for the coordination of the catalytically important

FIGURE 12 | Color-coded representation of the PTPS structure based on the mobility of the residues within the (A) Low-frequency and (B) High-frequency GNM
modes. The color scale varies from blue as the most rigid to red as most mobile sites. The figures were obtained from the DynOmics portal (Li et al., 2017). (C) A
mechanical resistance matrix obtained by calculating the effective force constant in response to uniaxial extensional forces exerted at each pair of residues. The
scale varies from blue as residue pairs of the strongest interaction/rigid to red residue pairs of the weakest interaction/flexible. (D) A cartoon representation of a
single chain of P. falciparum PTPS with the residues of strongest interaction mapped onto the structure and shown as red spheres. (E) The mean value of the
effective spring constant over all pairs for each residue, with the secondary structures shown along the upper abscissa. The color bar shows strong regions/rigid in
blue and weak regions/mobile in red. The figures were generated using the Matplotlib library and VMD.
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metal ion (Khairallah et al., 2020). The residues Y45, L49, T127,
S148, V159, E161 (as well as their neighboring residues) also
corresponded to high frequency vibrating residues that were
identified in the ANM (Figure 9B), suggesting that high-
frequency vibrating residues correspond to rigid points about
which significant conformational changes occur.

To further validate the high-frequency vibrating residues that
were identified in the ANM, we used the DynOmics portal to
analyze the mechanical properties of PTPS to identify the most
rigid residues in the GNM (Figure 12). The results obtained
from the DynOmics portal were in agreement with our findings
from the ANM. Firstly, the N-terminal and central helices were
predicted to have high mobility in the low-frequency modes,
while the most rigid residues were located in the active site region
(Figure 12A). Secondly, the GNM calculations performed using
DynOmics located high energy hotspots in the active site region
which directly overlapped with the high-frequency vibrating
residues that were identified in the ANM (Figure 12B).

The ProDy Python package for protein structural dynamics
analysis (Bakan et al., 2011, 2014) was also used, in particular, the
ProDy MechStiff function to evaluate the mechanical stiffness of
the PTPS protein (Eyal and Bahar, 2008). A mechanical stiffness
matrix was then produced by calculating the effective force
constants in response to uniaxial extensional forces exerted at
each pair of residues (Eyal and Bahar, 2008; Figure 12C). The
obtained results illustrated that pairs located in the active site
and the surrounding region exhibited strong pairs of interactions.
This suggests that the residues of the active site H29, H41 and
H43 as well as its surrounding catalytic residues including T127
and E161 bear a relatively strong resistance to deformation.
Figure 12E shows the results averaged over all pairs for each
residue, which provides a profile of the mechanical resistance
of individual residues to deformation. Some residues, especially
those located in the active site and surrounding area were more
rigid than others and more resistant to deformation, as indicated
by this profile. More specifically, these residues involved the
active site residues H29, H41, and H43 as well as S17, L78,
I83, F93, T127, G131, and E161 which were also among the
highly conserved, high frequency vibrating and hinge residues.
A cartoon representation of a single chain of the P. falciparum
PTPS is shown in Figure 12D. The figure shows pairs of residues
with the strongest effective force constant and their location
within the protein structure. The identified pairs of T127, E16,
G131 were located around the active site area and were also
among the high vibrating and hinge residues.

CONCLUSION

Antifolate drug resistance is a major challenge in the fight against
malaria and the need to develop new drugs with a unique
mechanism of action has become more crucial than ever. In
this study, we classify the dynamics of the parasite’s de novo
folate synthesis pathway enzyme PTPS, in an attempt to uncover
key regions that modulate conformational transitions which are
imperative to its function. Notable global motions of functional

significance were captured within the low-frequency non-
degenerate modes. In particular, we showed that the opening and
closing of the PTPS central tunnel was driven by the distinctive
twisting and wringing of the terminal regions. Furthermore,
the displacements observed in the PTPS N-terminal domains
appeared to have a long-distance regulatory effect on the rigid
core of the protein, located more than 30 Å away. Motif analysis
further validated our findings with the identification of structural
motifs that are uniquely conserved in the Plasmodium PTPS
enzymes. These conserved motifs were located in the N-terminal
domains, the central helices as well as the protein tunnel, and
point toward the functional importance of these regions in the
Plasmodium PTPS enzyme. Collectively these results suggest
an opportunity for selective inhibition as these regions are not
conserved in Human PTPS. Specifically, these regions can be
proposed as potential allosteric sites for future antimalarial drug
discovery attempts.
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Isothermal titration calorimetry (ITC) involves accurately measuring the heat that is
released or absorbed in real time when one solution is titrated into another. This
technique is usually used to measure the thermodynamics of binding reactions.
However, there is mounting interest in using it to measure reaction kinetics, particularly
enzymatic catalysis. This application of ITC has been steadily growing for the past two
decades, and the method is proving to be sensitive, generally applicable, and capable
of providing information on enzyme activity that is difficult to obtain using traditional
biochemical assays. This review aims to give a broad overview of the use of ITC to
measure enzyme kinetics. It describes several different classes of ITC experiment, their
strengths and weaknesses, and recent methodological advancements. A summary
of applications in the literature is given and several examples where ITC has been
used to investigate challenging aspects of enzyme behavior are presented in more
detail. These include examples of allostery, where small-molecule binding outside the
active site modulates activity. We describe the use of ITC to measure the strength,
mode (i.e., competitive, uncompetitive, or mixed), and association and dissociation
kinetics of enzyme inhibitors. Further, we provide examples of ITC applied to complex,
heterogeneous mixtures, such as insoluble substrates and live cells. These studies
exemplify the wide range of problems where ITC can provide answers, and illustrate
the versatility of the technique and potential for future development and applications.
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INTRODUCTION

Enzymes are catalytic proteins that are ubiquitous in living systems and play central roles
in virtually all cellular processes, such as metabolism, active transport, sensing, regulation,
communication, and signal transduction and integration (Hunter, 1995; Capaldi and Aggeler, 2002;
Benhar et al., 2009; Reyes-Turcu et al., 2009). Consequently enzymes constitute approximately
44% of all validated drug targets, including human enzymes whose dysregulation is linked to
disease, and foreign enzymes expressed by pathogens (Zheng et al., 2006). In addition, enzymes
are the most efficient catalysts known and have many industrial and medical applications (Choi
et al., 2015). For example, hydrolases break polysaccharides down into their component sugars,
with applications to food processing, pulp and paper, and biofuel industries (Guzman-Maldonado
and Paredes-Lopez, 1995; Sun and Cheng, 2002; Kuhad et al., 2011). Their high selectivity and
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biocompatibility have also made enzymes useful as
therapeutics, for instance in the treatment of phytobezoars
(Kramer and Pochapin, 2012).

In general, enzymes show saturation kinetics, which can be
rationalized according to the Michaelis–Menten/Briggs–Haldane
(MM/BH) model shown in the scheme below

E+ S
k1


k−1

ES
kcat
→ E+ P (1)

where an enzyme molecule (E) binds a substrate (S) with
association and dissociation rate constants k1 and k−1,
respectively, to form the Michaelis complex (ES). The enzyme
then acts on the substrate to produce the product (P) with a
rate constant kcat. This kinetic scheme gives rise to the familiar
MM/BH equation where the enzyme velocity, ν0, has a saturable
dependence on the substrate concentration:

v0 =
d [P]
dt
= −

d [S]
dt
=

Vmax[S]
Km + [S]

(2)

Vmax is the maximum rate of catalysis in the theoretical presence
of an infinite quantity of substrate and Km is the concentration of
substrate required to achieve half-maximal velocity, as illustrated
in Figure 1. In terms of the rate constants in Scheme 1,

Vmax = kcat [E] (3)

and
Km =

k−1 + kcat

k1
(4)

The relationship between enzyme velocity and substrate
concentration can be linearized according to the double-
reciprocal or Lineweaver–Burk plot, in which ν0

−1 is plotted as a
function of [S]−1, shown below:

1
v0
=

Km

Vmax[S]
+

1
Vmax

(5)

The slope of the resulting straight line isKm/Vmax, the x-intercept
is −Km

−1 and the y-intercept is Vmax
−1. The parameters Km

and kcat provide simple metrics of an enzyme’s behavior and
quantify how activity changes in response to changing solution
conditions, addition of inhibitors or activators, changes in the
amino acid sequence of the enzyme, chemical modification of the
substrate, or exchanging one cofactor for another, among other
factors. Thus, methods for measuring Km and kcat are among the
foundational techniques of molecular biosciences.

Most enzyme assays measure the concentrations of substrate
and/or product as a function of time. The rates of disappearance
and/or appearance give the enzyme velocity, which can be fitted
according to Equations 2 or 5. Note that care must be taken in the
choice of enzyme and substrate concentrations in order to ensure
that both Km and kcat can be robustly extracted from the data
(Stroberg and Schnell, 2016). These experiments can be classified
in two types: continuous (or real-time) and discontinuous
assays (Harris and Keshwani, 2009). In a continuous assay, the
concentrations of substrates or products are measured in the
reaction mixture at the same time as catalysis proceeds. For

the most part, they employ spectroscopies, such as fluorimetry,
UV/vis absorption, or nuclear magnetic resonance, and rely on
substrates and products having different spectroscopic signatures
(Easterby, 1973; Seethala and Menzel, 1997; Reetz, 2001; Shu
and Frieden, 2005). While this is sometimes true in the native
reaction, in many cases continuous assays require experimental
modifications. Substrates can be chemically altered so that they
change color or fluoresce when converted to products (Reetz,
2001). While convenient, this approach has the drawback that
a customized substrate must be produced for each enzyme of
interest, and non-native chromogenic or fluorogenic substrates
do not necessarily have the same reaction kinetics as the natural
substrate. Alternatively, in coupled enzyme assays, the reaction
mixture includes secondary enzymes that accept the product
of the first enzymatic reaction as a substrate and produce
downstream spectroscopic changes, such as the interconversion
of NAD+ and NADH that have very different extinction
coefficients for light at 340 nm (Easterby, 1973; McKay and
Wright, 1995). This approach allows native substrates to be used,
but the assay places limitations on the composition of the reaction
mixtures, for example product inhibition or activation studies
are impossible (McKay and Wright, 1995) and accurate results
depend on choosing appropriate concentrations of the coupled
enzymes and secondary substrates. When it is not possible
to monitor substrate or product concentrations in real time,
discontinuous enzyme assays must be used. In these experiments,
the reaction is quenched at various time points after initiation
and the substrates and products are separated by an ancillary
technique, such as liquid chromatography, gel electrophoresis,
centrifugation, or mass spectrometry (Reetz et al., 2004; Hooff
et al., 2012; Tauran et al., 2014) and quantified, for instance
spectroscopically, radiometrically, or by an immunosorbent assay
(Butler, 2000; Kerner and Hoppel, 2002; Hastie et al., 2006).
These additional steps add time, expense, and uncertainty to the
characterization process.

Isothermal titration calorimetry (ITC) is well known as a
powerful tool for studying host/guest binding interactions, but
has recently gained in popularity as a general and versatile
kinetic assay (Todd and Gomez, 2001; Di Trani et al., 2018a,b).
ITC has the advantage of directly measuring the heat flow
produced by catalysis in real time (Todd and Gomez, 2001;
Di Trani et al., 2017). Since most chemical reactions are
either exothermic or endothermic, ITC can be applied to
study virtually any enzymatic reaction, without the need for
customized reporter molecules, additional coupled enzymes, or
post-reaction separation. Furthermore, kinetic ITC experiments
can be performed with conventional dilute enzymatic reaction
mixtures, even with opaque samples, and require far less enzyme
than ITC binding studies (Oezen and Serpersu, 2004). The study
of enzyme kinetics has been briefly described in several surveys
of the ITC field (Freyer and Lewis, 2008; Liang, 2008; Ghai
et al., 2012; Atri et al., 2015) and has been the focus of more
technically detailed reviews (Hansen et al., 2016; Mazzei et al.,
2016). Here, we discuss how ITC can be applied to a broad array
of problems in enzyme biochemistry, including understanding
inhibition and allosteric modulation and studying heterogeneous
reaction mixtures, from the perspective of our own work in
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FIGURE 1 | Michaelis-Menten kinetics. (A) Velocity (ν0) of a typical
enzyme-catalyzed reaction versus substrate concentration ([S]).
(B) Double-Reciprocal (Lineweaver–Burk) linearized plot (1/ν0 vs. 1/[S]) of the
rates in (A).

the field. We have tried to choose examples that illustrate how
ITC studies can go beyond measuring the parameters usually
associated with the term “enzyme kinetics” such as Km, kcat, K i,
etc. and extend to observing additional dynamic phenomena like
inhibitor association and release, substrates slowly entering the
bacterial periplasm, or rearrangements of crystalline chitosan, as
described below.

ENZYME KINETICS BY ISOTHERMAL
TITRATION CALORIMETRY

ITC Instrumentation
Isothermal titration calorimetry instruments measure in real
time the thermal power that results when one solution (in a
syringe) is titrated into another (in a sample cell), as illustrated
in Figure 2. A pair of cells, typically coin-shaped or cylindrical
with volumes on the order of 200–1,400 µL, are termed the
sample and reference cells and contain the analyte solution
and reference buffer (or pure water) respectively (Malvern,
2016; TA, 2019). The cells are housed inside a thermostated
adiabatic jacket, that is maintained at a temperature slightly below
the user-specified value for the cells. Electric resistive heaters,
termed the feedback and reference heaters are located on the
outer surfaces of the sample and reference cells, respectively,
and must supply a constant flow of heat to maintain the cell
temperatures at their set point. A Seebeck device sandwiched
between the two cells detects any differences in temperature
(1T) and modulates the power supplied to the feedback heater
in order to keep the temperatures of the two cells identical.
An automated injection syringe protrudes into the sample cell,
which is stirred either by rotation of the paddle-shaped syringe,
or by the action of a separate propeller, depending on the make
and model of the instrument. A series of injections (typically
between 1 and 20 µL) is made into the sample cell. If the reaction
between the injectant and analyte is exothermic, there will be a
concomitant drop in the power supplied by the feedback heater
to maintain a constant temperature. Conversely, if the reaction
is endothermic, there will be an increase in feedback power.
Once the reaction is complete or the rate becomes negligible,
and no further heat is produced or absorbed in the sample cell,
the feedback power returns to baseline. The raw output of an

ITC instrument is the feedback power measured as a function
of time (typically at 1 s intervals). When characterizing binding
or reaction thermodynamics, the deflection of the ITC signal
from baseline is integrated over the entire injection, and is
used to extract enthalpy differences between the unreacted and
reacted states (i.e., free vs. bound or substrates vs. products).
When characterizing kinetics, the instantaneous output power is
interpreted in terms of the reaction velocity, since the rate of heat
production or absorption in sample cell is directly proportional
to the rate of the reaction. This is slightly complicated by the
fact that the ITC signal lags behind heat events in the cell,
however, there are several approaches to overcoming this issue,
as discussed in later sections. Furthermore, it should be noted
that obtaining accurate reaction rates requires accurate heat
rates, so it is important to calibrate the calorimetric response
(Demarse et al., 2011).

ITC Kinetics Methods
The instantaneous rate of heat production in the ITC sample
cell, dQ/dt, is directly proportional to the reaction velocity
(ν0 = d[P]/dt) and the enthalpy change of the reaction catalyzed
(1rH = Hproduct − Hsubstrate), according to

dQ
dt
= Vcell1rH

d [P]
dt

(6)

where Vcell is the volume of the sample cell. Thus with ITC-
derived dQ/dt values obtained as a function of time, it is
straightforward to precisely calculate enzyme velocity at any
point in the experiment, provided 1rH and Vcell are known. This
is obtained from the integrated area of an ITC peak obtained
by injecting a known amount of substrate into a sample cell
containing sufficient enzyme to rapidly convert it entirely to
product,

1rH =
∫
∞
t=0

dQ
dt dt

nS
(7)

where nS is the number of moles of substrate injected. In
their seminal 2001 paper, Todd and Gomez describe two main
approaches for designing ITC experiments that rapidly measure
ν0 as a function of substrate concentration, allowing the enzyme
kinetic parameters to be extracted by fits to Equations 2 or 5.
They referred to these as “Pseudo-first Order” and “Continuous”
assays, although these terms have been largely replaced with
“multiple injection” and “single injection” and we will use the
latter terms here. A broad variety of ITC enzyme kinetics
experiments have been developed in subsequent years, however,
most build on one or the other approach, so it is worthwhile to
describe them in some detail, as foundational to the field. In both
types of experiment, the reaction is initiated one or more times by
mixing enzyme and substrate solutions via injection(s) from the
syringe into the sample cell. However, the two methods differ in
the concentrations of enzyme and substrate used, the appearance
and information content of the data, and the analysis.

Multiple Injection Assays
In a multiple injection ITC enzyme kinetic assay, the enzyme
concentration is chosen to be sufficiently low so that substrate
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FIGURE 2 | A typical ITC enzyme kinetics experiment. The reaction is initiated when substrate in the syringe is injected into the sample cell containing enzyme. If the
reaction is exothermic (endothermic), less (more) feedback power must be supplied to the sample cell to keep it at the same temperature as the reference cell. The
instantaneous value of the feedback power is the ITC output.

FIGURE 3 | Multiple injection and single injection ITC enzyme kinetic data. (A) Multiple injection assay of prolyl oligopeptidase in the sample cell and one of its
substrates, thyrotropin releasing hormone, in the syringe (Di Trani et al., 2017). The downward spikes correspond to dilution artifacts from each injection (3, 3, 6, 6, 6,
10, 30, 30, 30, 60, and 60 µL). Larger injections produce larger spikes. The displacement, following each injection, of the horizontal baseline relative to the initial
baseline (red dotted line) is proportional to the enzyme velocity. (B) MM/BH plot calculated from the data in (A). Error bars correspond to the standard deviations of
three repeat experiments. (C) Single injection assay with trypsin in the sample cell and one of its substrates, benzoyl-L-arginine ethyl ester, in the syringe (Di Trani
et al., 2018b). Data collected during (after) the 30 s injection are plotted in orange (blue). (D) Deconvolution of the data in (C) to remove the effect of the delayed
instrument response according to Equation 10 and an empirical response function. Note that during the first 30 s, the substrate is injected into the sample cell faster
than it is consumed and its concentration gradually increases, while the reaction velocity asymptotically approaches the maximum Vmax value, in accordance with
the MM/BH Equation (orange circles). After the injection ends, the substrate continues to be consumed and its concentration gradually drops, while the reaction
velocity decreases to zero once more (blue circles). (E) MM/BH plot generated from the data in (D) using Equation 8. The rate versus [S] values are superimposable
for the injection (orange, increasing [S]) and post-injection (blue, decreasing [S]) halves of the experiment, providing cross-validation for the data.

depletion during the experiment is negligible but high enough to
provide good signal (Todd and Gomez, 2001). As a result, the
instantaneous heat (dQ/dt) and ITC signal are ideally constant
(horizontal) between substrate injections and resemble a series
of steps, one per injection (Figure 3A). The displacement of
each step relative to the initial baseline is directly proportional

to ν0, according to Equation 6. Exothermic and endothermic
reactions give descending and ascending steps, respectively, if the
raw feedback power is plotted as a function of time. The injections
are designed such that early steps have [S] << Km and the final
injections have nearly saturated the enzyme with [S] >>Km. The
concentration of substrate present in the sample cell after each
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injection is known from the concentration of substrate in syringe
and volumes of all injections, while the reaction velocity can be
read directly from the vertical position of each step, tracing out
a complete Michaelis Menten curve (Figure 3B). In practice, we
find that the condition of negligible substrate consumption is met
when [E] ≤ (10−4 s) × Km/kcat. Enzyme concentrations that are
too high will give steps that slope toward the initial baseline, and
will lead to overestimates in the amount of substrate present at
each step. Enzyme concentrations that are too low will lead to
disappearingly small steps that are obscured by instrument noise.

There are several potential advantages to multiple injection
assays compared to single injection ones. Firstly, they can
accommodate substantially lower enzyme concentrations. For
example in Figures 3A,B, saturation is reached at about 4.5 mM
substrate with a Vmax of 40 nM s−1. At that rate, it would take
more than 105 s or 28 h for the enzyme to convert a sufficient
quantity of S to P to complete a single injection assay (see below),
which is too long for practical purposes. It should be noted that
1rH must be determined in a separate measurement for multiple
injection assays, while it is obtained directly from single injection
data, thus comparable amounts of enzymes can be consumed
when all the necessary experiments are factored in. Secondly,
the readout portions of the experiment, i.e., the approximately
horizontal signals, are easy to distinguish from injection artifacts,
which themselves tend to be smaller since less substrate is added
in each injection. Secondly, product accumulation is also less
than for single injection assays. In a single injection assay, the
amount of product present near the end of an ITC peak is
necessarily several-fold greater than the Km, since the enzyme is
initially saturated with substrate. In contrast, much less substrate
is converted to product during a multiple-injection experiment,
ideally less than 5% (Hansen et al., 2016). Thus much less product
is produced during a multiple injection assay compared to a
single injection one. This is advantageous when strong product
inhibition is present (Wang et al., 2019), although conversely,
if product inhibition is of interest yet relatively weak, single
injection assays would be the more sensitive option. Furthermore,
since the data are drawn from post-injection periods where
the enzyme velocities have stabilized to constant values, the
timescale of the instrument response to changing heat flow can
be ignored, simplifying the analysis (as described below). The
main disadvantages are that the determination of a single pair
of kcat and Km values requires a complete series of injections,
making this technique relatively slow, and that the total amount
of heat generated is much less, making it more susceptible to
instrument noise.

Single Injection Assays
In a single injection ITC kinetic assay, the amount of enzyme is
typically chosen to be large enough so that the injected substrate
can be fully converted to product on the timescale of minutes
or tens of minutes. The concentration of substrate is chosen
so that the injection appreciably saturates the enzyme, i.e., the
concentration of substrate in the sample cell immediately after
the injection is several-fold higher than the Km (Transtrum
et al., 2015; Di Trani et al., 2018b). Single injection assays can
be initiated either by injecting substrate (syringe) into enzyme

(cell) or enzyme (syringe) into substrate (cell). Either case, the
ITC feedback power exhibits a large deflection immediately after
the injection, decreasing for exothermic reactions and increasing
for endothermic ones due to the heat released or absorbed by
catalysis. Large heat flows continue as long as the enzyme remains
saturated with substrate. The signal gradually returns to the
pre-injection baseline as the substrate is consumed as shown
in Figure 3C. It should be noted that single injection assays
are usually performed with substantially more dilute enzyme,
leading to peaks that are much broader, on the order of 20–
60 min, in contrast to the 100 s shown here. Our group has
been developing ways to collect and analyze data for rapid single
injection experiments, such as those shown in Figure 3C, offering
over 10-fold reductions in measurement time and opening the
door to new types of experiment (Di Trani et al., 2018b; Wang
et al., 2019). Single-injection ITC data can be fitted directly by
numerically integrating Equation 2 to give [S](t) and ν0(t), and
calculating dQ/dt as a function of time according to Equation
6, or using non-linear least squares optimization to find the
values of Km and kcat that best reproduce the experimental
values. This approach has the advantage that the baseline and
instrument response time (see below) can be fitted along with
the MM/BH parameters (Transtrum et al., 2015; Di Trani et al.,
2017). Alternatively, the concentration of substrate present at any
time, t, during the heat spike can be calculated by recognizing that
the fraction of total substrate remaining at t is equal to the ratio
of the heat generated after time t relative to the total amount of
heat generated during the heat spike:

[S] (t) =
∫
∞
t

dQ
dt dt

∫
∞
0

dQ
dt dt

[S] (t = 0) (8)

Together, the ν0 and [S] values trace out a complete
Michaelis–Menten curve. We find that substrate is consumed
sufficiently rapidly for this technique to be applied when
[E] ≥ (10−2 s) × Km/kcat. When the concentration of enzyme is
too low, the heat spike persists for such a long time (several hours
or more) that the return to baseline is difficult to distinguish.
However, the enzyme must be at a low enough concentration
so that the return to baseline takes at least seconds to tens of
seconds. More rapid reactions start to become obscured by
the response function of the instrument (as described below)
(Di Trani et al., 2017).

The defining feature of this approach is that a full enzyme
kinetic characterization is achieved in a single injection. Thus,
with substrate in the syringe, it is straightforward to perform
many single injection measurements within the same ITC
experiment, simply by programming several injections (as many
as 10 or 20) spaced at appropriate intervals (Cai et al., 2001;
Ertan et al., 2012; Pedroso et al., 2014; Siddiqui et al., 2014;
Maximova and Trylska, 2015; Di Trani et al., 2018b; Mason
et al., 2018; Abis et al., 2019; Maximova et al., 2019; Wang
et al., 2019). For the sake of clarity, we will refer to these
as recurrent single injection experiments, to distinguish them
from the very different approach termed multiple injection
experiments (see section “Multiple Injection Assays,” above).
At the simplest level, recurrent single injection experiments
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provide repeat measurements of enzyme kinetic parameters and
improve the effective signal to noise ratio, although they do
not replace true replicate experiments for estimating parameter
uncertainties. Catalytic activity is repeatedly characterized over a
period of time, giving information on the stability of the enzyme
(Mason et al., 2018). These experiments also provide a sensitive
measure of product inhibition (or activation), since the product
accumulates in the sample cell with each injection (Cai et al.,
2001; Wang et al., 2019). The recurrent single injection approach
can be adapted to rapidly characterize other types of inhibition as
well, as described below (Di Trani et al., 2018b).

Alternatively, single-injection assays can be performed with
enzyme in the syringe. This variation is preferable for substrates
that are poorly soluble, or those that form suspensions
rather than solutions, since they can remain at working
(diluted) concentration in the sample cell with constant stirring
throughout the experiment (Lonhienne et al., 2001; Ali et al.,
2013a,b; Commin et al., 2013; Pedroso et al., 2014; Lehoczki et al.,
2016; Kaeswurm et al., 2019). Similarly, if very high substrate
concentrations (100 s of mM) are needed (e.g., for enzymes with
very large Km values), it can be unfeasible to inject sufficient
amounts of substrate without generating large injection heat
artifacts, related to the large dilutions. Instead, the concentrated
substrate can be equilibrated in the sample cell and small
injections of dilute enzyme can be used to initiate the reaction
(Lonhienne and Winzor, 2002; Lonhienne et al., 2003). Lastly, the
barrel of the injection syringe lies exterior to ITC insulated jacket.
If experiments are being performed at temperatures approaching
the enzyme melting point, placing the enzyme in the syringe
(which is at ambient temperature) allows it to spend as little
time as possible at high and destabilizing temperatures (Ali
et al., 2013a,b, 2015). It is worth noting that with enzyme in
the syringe, recurrent single injection assays, as described above,
are not possible, since the maximum concentration of substrate
is necessarily present at the beginning of the measurement and
cannot be replenished once conversion to product is complete.
Another consideration is that small amounts of material can
leak from the tip of the injection syringe during the long initial
equilibration step, as well as between injections (although these
delays are shorter). While this is true for both substrate- and
enzyme-injection setups, the leakage is potentially far more
serious with enzyme in the syringe, as this can act on the substrate
in sample cell throughout the equilibration period, consuming
much or all of it before the experiment has begun. In contrast,
leakage of a few µL of substrate from the tip of the syringe
does not dramatically imperil the procedure. Consequently, it is
recommended to employ a buffer “plug” when injecting enzyme,
a few µL of buffer that is drawn up into the needle after
loading the syringe with an enzyme solution (Malvern, 2010,
Malvern, 2014).

Rapid Enzyme Kinetics Measured by ITC
In many cases, the ITC signal can be considered nearly equal (and
technically opposite) to the instantaneous rate of heat generation
in the sample cell (i.e., ≈−dQ/dT). This approximation holds
when the relevant portions of the heat signal vary slowly
with time, such as in multiple injection assays and in cases

where the peaks for single injection assays are broad (tens of
minutes). For short reactions with rapidly varying heat signals,
the situation becomes substantially more complicated. There
are several physical processes that must occur before the heat
generated by enzymatic catalysis is detected in the ITC output
(Todd and Gomez, 2001; Burnouf et al., 2012). These include
a heat transfer delay, which is the length of time necessary
for the solid phase thermocouple to detect the small change
in sample cell temperature (Wiseman et al., 1989; Freire et al.,
1990; García-Fuentes et al., 1998; Ebrahimi et al., 2015) and the
electronic response that alters the power supplied to the feedback
heater, driving the temperature gradient between the cells back to
zero (Wiseman et al., 1989). These steps are typically described
collectively as an instrument response function, f (t) which can
be thought of as the instrument signal that would result from an
instantaneous burst of heat being released in the sample cell. If
the release of heat in the sample cell is described by the time-
dependent function h(t), then the instrument output is given by

g (t) = f (t)⊗ h (t) =
t
∫
0
f (τ) g (t − τ) dτ (9)

where ⊗ indicates the convolution. The finite instrument
response has the effect of spreading out the observed signal
compared to the actual heat profile, such that peaks begin
more gradually and die away more slowly. The instrument
response function is often assumed to have a simple exponential
shape (López-Mayorga et al., 1987; García-Fuentes et al., 1998;
Velázquez-Campoy et al., 1999; Burnouf et al., 2012; Vander
Meulen and Butcher, 2012) f (t) ∝ exp

{
−

t
τ

}
, where τ is referred

to as the response time and is typically on the order of 5–15 s
(Burnouf et al., 2012). Accounting for the instrument response
can be done in one of two ways. In the first, non-linear least
squares fitting can be used to find the enzyme kinetic parameters
that generate an instantaneous heat function, h(t), which when
convoluted with the assumed instrument response function,
f (t), best reproduces the ITC peak shape, g(t). In the second,
one can use the Tian equation and the assumed value of τ to
mathematically remove the spreading effect of the instrument
response (Backman et al., 1994).

We have recently shown that the assumption of a simple
exponential response function is incompatible with experimental
ITC peak shapes, and that f (t) is a more complicated function
of time. We found that the response function can instead be
equated to the signal obtained from very short (0.1 s) injections of
a model host/guest system, such as EDTA injected with Ca2+. We
termed this approach an empirical response model (ERM), and
it reproduces ITC peaks quantitatively, producing sub-second
time resolution (Di Trani et al., 2017). The empirical response
model can be used for direct fitting to raw ITC data, according
to Equation 9, or can be used to deconvolute the instantaneous
heat function from the instrument response (Di Trani et al., 2017,
2018b). This second approach relies on the convolution theorem
which states that, given Equation 9, then

F
(
g (t)

)
= F

(
f (t)

)
·F

(
h (t)

)
(10)
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where F indicates the Fourier transform. The deconvoluted
instantaneous heat function is then given by h (t) =
F−1

(
F(g(t))
F(f (t))

)
, as exemplified in Figures 3C–E. It must be

emphasized that the instrument response [f (t)] varies with the
manufacturer and model, as well as the temperature, solution
viscosity, and stirring speed, among other factors, and must
be measured using very short injections (e.g., Ca2+/EDTA)
performed under conditions as close to those of the experiment
of interest as possible (Di Trani et al., 2017). This approach is only
really necessary when measuring reactions that take place on the
same timescale as the instrument response (i.e., roughly less than
20–30 s). For slow reactions that take tens of minutes or more
to complete, the instrument response can be largely ignored,
while for intermediate timescale reactions, the approximation of
a single instrument response time, τ, is adequate.

An alternative approach, termed initial rate calorimetry
(IrCal), avoids the issue of modeling the instrument response
function altogether (Honarmand Ebrahimi et al., 2015).
Honarmand Ebrahimi et al. (2015) found empirically that the
initial slope of the ITC signal is proportional to the peak velocity
of the enzyme after the injection. The constant of proportionality
can be determined by calibration experiments. A series of
substrate injections of different sizes is made, and the initial
slopes of the injections reveal how the ν0 varies with [S]. One
drawback of this approach is that each injection gives only a
single ν0 value, in contrast to a typical ITC single injection assay,
which yields tens to hundreds of ν0 values at different [S].

ITC Enzyme Kinetics Applications
Overview
We have performed a comprehensive search of the scientific
literature and identified 73 publications between 2001 and
2019 reporting ITC-derived kinetic data on 59 different
enzymes including hydrolases, transferases, oxidoreductases,
lyases, ligases, and a protein folding chaperonin, listed in
Supplementary Table 1. The authors explained their choice of
ITC with a variety of reasons, including that ITC can represent
the only continuous assay available, that it can exploit the
native substrate where alternative continuous assays require
chemically-modified chromogenic or fluorogenic substrates, that
ITC avoids potential artifacts associated with coupled enzyme
assays, and that ITC allows continuous assays to be performed on
heterogeneous and spectroscopically opaque mixtures. multiple
injection-type ITC experiments were used for 35 enzymes, single
injection-type ITC experiments were used for 27 enzymes, and
enzyme-injection assays were used for 8 enzymes. Several of
these publications focused on the development of new ITC
kinetics approaches, such as IrCal and ERM above, and others are
described below. Many of these studies focused on characterizing
homogeneous enzymes exhibiting classical MM/BH kinetics.
However, many others described more complex systems, such
as enzymes with cooperative kinetics, those interacting with
allosteric effectors or inhibitors, and those in heterogeneous
media, such as insoluble hydrated polymers or even living cells.
We describe some interesting examples from our own work and
the work of others below.

Allostery and Cooperativity
Allostery is a key feature of biological systems in which covalent
modification or ligand binding at one site influences the activity
at distant sites in a macromolecule or macromolecular assembly.
Allosteric regulation plays a central role in metabolism and
cell signaling (Guarnera and Berezovsky, 2019) and has been
identified as a source of new drug targets (Monod et al.,
1965; Koshland et al., 1966; Perutz, 1989; DeDecker, 2000;
Fenton, 2008; Guarnera and Berezovsky, 2020); thus, detailed
descriptions of allostery have far-reaching implications (Zhang
et al., 2020). For example, the downstream products of a
biosynthetic pathway can down-regulate the activity of the
enzyme catalyzing the first committed step, maintaining balance
between different branches of core metabolism through the
process of feedback inhibition (Spencer and Raffa, 2004; Gerhart,
2014). Alternatively, enzymes may require allosteric activators in
order to function, providing an extra layer of control (Willemoës
and Sigurskjold, 2002; Lunn et al., 2008). In the special case that
the substrate itself acts as an allosteric effector, enzyme kinetics
necessarily deviate from the classical MM/BH model. This can
often be accounted for mathematically with a Hill coefficient
of cooperativity, n, such that the enzyme velocity is given by
the expression

v0 =
Vmax[S]n

Kn
m + [S]n

(11)

Values of n> 1 indicate positive cooperativity, such that substrate
binding makes an enzyme more active toward additional
substrates, and give characteristically sigmoidal ν0 vs. [S] plots. In
a simple interpretation, an enzyme with a given Hill coefficient,
n, either binds exactly n molecules of substrate or none at
all. When binding a molecule of substrate at an allosteric site
reduces enzyme activity toward additional substrates (substrate
inhibition), enzyme velocity can often be described by the
expression

d[P]
dt
=

Vmax[S] + V
′

max

(
[S]2

K′i

)
Km + [S]

(
1+ Km

Ki

)
+

(
[S]2

K′i

) (12)

where Vmax is the maximum velocity of the reaction when
the allosteric site is empty, V ′max is the maximum velocity
when the allosteric site is filled, and K i and K ′i are the
equilibrium dissociation constants for substrate binding at the
allosteric site when the active site is empty and filled, respectively
(Jeoh et al., 2005).

Isothermal titration calorimetry represents a powerful tool
for characterizing complex enzyme allosteric interactions. For
instance, ITC was used to measure the kinetics of pyruvate
kinase (PK) (Lonhienne and Winzor, 2002; Lonhienne et al.,
2003) which catalyzes the transfer of a phosphate from
phosphoenolpyruvate to ADP as part of the last step of glycolysis.
Allosteric binding of the amino acid phenylalanine (Phe) shifts
PK to an inactive form, and is believed to be related to cellular
damage in the genetic disease phenylketonuria (Hörster et al.,
2006; van Spronsen et al., 2009). Lonhienne and Winzor (2002),
Lonhienne et al. (2003) were interested in how the presence
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of osmolytes affected the active/inactive transition. PK has
traditionally been studied using a coupled enzyme assay, which
is suboptimal for studying the effects of high concentrations of
osmolytes, since it is challenging to distinguish effects on PK
from effects on the secondary enzymes of the coupled assay. ITC
avoids these issues, since enzyme activity is detected directly.
They performed enzyme injection assays (Figure 4A), where
the displacement in the baseline after enzyme is injected is
proportional to the velocity of the reaction. While this approach
avoids large injection artifacts, it is somewhat time consuming
as separate experiment must be performed for each data point
in Figure 4B. They obtained standard MM/BH curves in the
absence of Phe. In the presence of 6 mM Phe, the curve shifts to
right, indicating a lower substrate affinity, and develops sigmoidal
character, a hallmark of positive cooperativity. Interestingly,
addition of the osmolyte proline shifted the curve back to the
original location, corresponding to a return of the inactive state
to the active state.

In another example, Rohatgi et al. (2015) used ITC to fully
characterize the complex kinetic mechanism of gluconokinase,
which transfers a phosphate from ATP to the common
nutrient gluconate. They used multiple injection enzyme
assays, injecting gluconate into enzyme at a constant ATP
concentration. The traces clearly show declining activity at
higher substrate concentrations indicative of substrate inhibition
(Figures 4C,D). Interestingly the shapes of the plots varied as
a function of ATP concentration in a way that was consistent
with substrate inhibition occurring via the formation of an
enzyme·ADP·gluconate ternary complex.

Our lab recently used ITC to characterize prolyl-
oligopeptidase (POP) a validated drug target for multiple
myeloma (Di Trani et al., 2018a) allowing study of the
native peptide substrate, rather than the chemically-modified
colorigenic substrate analog that is typically used. We performed
ITC single injection assays and found that at lower enzyme
concentrations, data were well fit by the standard MM/BH
equation, while at higher concentrations, cooperativity became
more apparent, with n > 2 at an enzyme concentration of 2 µM
(Figures 4E,F). At the high enzyme concentrations where this
behavior becomes apparent, the reactions go to completion in
10 s or less, underlining the potential of ITC to characterize rapid
reaction kinetics.

More exotic ITC thermograms were obtained for the versatile
peroxidase (VP) from Bjerkandera adusta, which has potential
applications in the degradation of the industrial and agricultural
materials (Abdel-Hamid et al., 2013; Wang et al., 2013). VP
can employ both lignin peroxidase and manganese peroxidase
mechanisms in the degradation of humic materials (Siddiqui
et al., 2014). ITC single injection assays (fulvic acid injected
into VP) performed under conditions where both mechanisms
are active gave biphasic heat spikes where each phase can be
attributed to one of the mechanisms and each showed cooperative
kinetics (Figures 4G,H). The data were well fit by the modified
Hill Equation

v =
Vmax1[S]n1

Kn1
m1 + [S]n1 +

Vmax2[S]n2

Kn2
m2 + [S]n2 (13)

with n1 = 1.7 for the 1st phase and n2 = 10 for the 2nd
phase. Interestingly, the second injection gave broader peaks
than the first, indicative of product inhibition, as described in
more detail below.

Enzyme Inhibitors
Quantitative information on inhibitor binding is critical for
developing drugs (Su and Xu, 2018) and understanding how
enzymes function in living systems (Hulme and Trevethick,
2010). In fact ITC is primarily used to measure these types of
host–guest interactions and a quick literature search for “ITC
and inhibitor” yields more than 1,300 articles (using Clarivate
Analytics Web of Science). In a traditional ITC experiment, the
enzyme and inhibitor are placed in the sample cell and injection
syringe, respectively, and a series of injections are made, while
the instrument records the heat released or absorbed by the
binding process itself (Su and Xu, 2018). This gives a wealth
of thermodynamic information on the interaction, since the
Gibbs energy and enthalpy of binding are detected separately,
as the shape and overall magnitude of the saturation isotherm,
respectively (Sigurskjold, 2000; Tellinghuisen, 2008; Keller et al.,
2012; Su and Xu, 2018). Under favorable circumstances, the
kinetics of binding can be measured as well (Burnouf et al., 2012;
Piñeiro et al., 2019).

However, there are some drawbacks to this approach. Firstly,
traditional ITC experiments require substantially more material
than many other techniques used to measure binding, such as
fluorescence or surface plasmon resonance. The recommended
concentration of enzyme in the sample cell is roughly 5–500
times the inhibitor dissociation constant, K i, [i.e., Wiseman
“c” values of 5–500 (Wiseman et al., 1989)] often leading
to requirements for protein on the micromolar to tens of
micromolar scale (Malvern, 2010, Malvern, 2014). On the flip
side, enzyme/inhibitor interactions that are too tight can be
challenging since the enzyme concentration should not be more
than about 1,000-fold greater than K i, and very low enzyme
concentrations lead to vanishingly small heat signals. This
can be overcome with competition assays (Velazquez-Campoy
and Freire, 2006), but the procedure is far more complicated.
Finally, a traditional ITC binding experiment is not suited to
characterizing all modes of inhibition. Competitive inhibitors
bind exclusively to the free enzyme (E) and are suitable for
traditional ITC binding experiments. In contrast, uncompetitive
inhibitors bind exclusively to the enzyme/substrate Michaelis
complex (ES), and in principle would not show an interaction
at all in a traditional experiment. Mixed inhibitors bind to both
E and ES, but the results of a traditional experiment would
not reflect the true inhibition properties of the compound.
Furthermore, an ITC binding experiment alone does not contain
sufficient information to identify the inhibition mode.

These drawbacks can be overcome with ITC-based enzyme
kinetic experiments. Firstly ITC kinetics experiments require
far less enzyme than binding experiments. In a binding
experiment, a single molecule of enzyme generates heat only
once, when it forms a complex with the inhibitor. Whereas in
a kinetics experiment, a single molecule of enzyme produces
heat continuously as it undergoes multiple turnover. This allows
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FIGURE 4 | Non-MM/BH enzyme kinetics observed by ITC. (A) Single injection experiments with pyruvate kinase in the syringe and phosphoenolpyruvate and ADP
in the sample cell (Lonhienne and Winzor, 2002). The displacement of the horizontal baseline is proportional to the velocity of the enzyme. (B) Baseline
displacements (1P) obtained at different [PEP] (O), in the presence of phenylalanine as an allosteric effector (�), and in the presence of phenylalanine and proline as
a molecular crowding agent (�). (C) Multiple injection assay with gluconokinase and ATP in the sample cell and gluconate in the syringe (Rohatgi et al., 2015).
(D) Enzyme velocities from (C), fitted to a variant of Equation 12 that accounts for formation of the non-productive E·ADP·gluconate ternary complex. (E) Single
injection assay with substrate (thyrotropin releasing hormone) in the syringe and prolyl oligopeptidase (POP) in the sample cell (Di Trani et al., 2017). Points are
experimental data, red and blue curves are the best fits with classical MM/BH model, and cooperative model (Equation 11) with n = 2.4, respectively.
(F) Dependence of the extracted Hill coefficient on POP concentration (0.125, 1.2, and 2 µM). (G) Single injection assay with versatile peroxidase in the sample cell
and fulvic acid in the syringe, exhibiting biphasic cooperative kinetics (Siddiqui et al., 2014). (H) Reaction rates as s function of substrate concentration calculated
from (G). In (G,H), data were extracted from the original reference using Graph Grabber v2.0.2 (Quintessa) and plotted using MATLAB (MathWorks); red solid curves
indicate the first injection and blue dashed curves indicate the second injection.
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ITC enzyme kinetics experiments to routinely be performed
with sub-nM protein concentrations, which is outside the typical
concentration range of ITC binding experiments. Furthermore
ITC kinetics experiments are suitable for all modes of inhibition
and can be performed in such a way that the mode and associated
parameters are clearly evident. Finally, as detailed below, ITC
differs fundamentally from other enzyme assays in that it detects
the instantaneous velocity directly, while other methods measure
concentrations of substrates, products, or reporters as a function
of time and extract enzyme velocity indirectly. This makes ITC
uniquely sensitive to how enzyme velocity changes with time,
for instance as inhibitors exert their influence. Thus ITC has
great potential for measurement of inhibitor association and
dissociation rates.

A quantitative analysis of enzyme inhibition typically involves
determination of the mode (competitive, uncompetitive, or
mixed) and the inhibitor dissociation constant K i. For mixed-
mode inhibitors, there are separate K i values for binding to E
and to ES. Apparent Km

app and kcat
app values are measured at

different concentrations of inhibitor [I] and analyzed collectively
to extract the inhibition parameters. For a competitive inhibitor

kapp
cat = kcat; Kapp

m = Km

(
1+

[I]
Ki

)
(14)

and a double-reciprocal plot of 1/ν0 vs. 1/[S] obtained at different
[I] gives a series of lines that intersect at the y-axis. For an
uncompetitive inhibitor

kapp
cat =

kcat

1+ [I]
K′i

; Kapp
m =

Km

1+ [I]
K′i

(15)

where K ′i is the dissociation constant for the inhibitor and ES
complex and a double-reciprocal plot gives a series of parallel
lines. For mixed inhibitors

kapp
cat =

kcat

1+ [I]
K′i

; Kapp
m = Km

(
1+ [I]

Ki

)
(

1+ [I]
K′i

) (16)

and a double-reciprocal plot gives a series of lines that intersect
elsewhere than the y-axis. In the case that K i = K ′i, the inhibitor
is said to be non-competitive and the lines intersect at the x-axis.

Characterization of enzyme inhibition can largely be
accomplished with the experiments described in Section “ITC
Kinetics Methods.” For example, ITC was used to characterize
inhibitors of pancreatic α-amylase, which hydrolyses starches
into monosaccharides in the gut (Kaeswurm et al., 2019). It has
been proposed that a variety of polyphenol plant metabolites
inhibit α-amylase, slowing glucose absorption by the intestine,
and reducing spikes in insulin levels with implications for the
management of diabetes (Hanhineva et al., 2010). The authors
tested a panel of naturally occurring polyphenols, together
with the known potent α-amylase inhibitor acarbose. They
used a single injection assay where α-amylase was injected into
1 mM trisaccharide substrate, with or without 100 µM of each
phenolic inhibitor. The enzyme injection technique allowed
them to initiate the reaction with very small (1 µL) additions
of dilute reagent (1 µM enzyme), thereby almost entirely

avoiding injection artifacts. Each experiment consists of a single
peak, corresponding to the complete conversion of substrate
to product over the course of about 2.5 h. The resulting ITC
isotherms are shown in Figure 5A and MM/BH plots calculated
from these data are shown in Figure 5B. Interestingly, all of the
polyphenols affected both the kcat of the enzyme (indicated by
the height of the asymptote in Figure 5B) and the Km, indicating
mixed modes of inhibition, although the curves were not fitted
quantitatively in this study. Mixed inhibition was also observed
using experiments with a colorimetric assay detected by UV/vis
spectroscopy. Note that while these assays were performed
injecting enzyme into substrate pre-incubated with inhibitor,
similar assays can also be performed by injecting substrate into
enzyme pre-incubated with inhibitors (Catucci et al., 2019).

When ITC inhibition experiments are performed with the
inhibitor loaded in the sample cell prior to data collection, as in
the examples above, then the procedure must be repeated several
times in order to accurately measure inhibition parameters.
This demands a considerable investment of time, since the
cleaning, loading, equilibration, and data collection must be
performed separately for each inhibitor concentration. Our lab
has developed a procedure for considerably shortening this
timeline, allowing much higher throughput of samples (Di Trani
et al., 2018b). This approach is a variation of a standard recurrent
single injection assay, with the modification that the syringe
contains both substrate and inhibitor. A series of injections
is made with each ITC peak giving a kcat and Km pair. The
inhibitor accumulates with each injection, such that the activity
of the enzyme decreases in each successive peak, and provides a
thorough sampling of different inhibitor concentrations. Typical
data are shown in Figure 5C, with each peak clearly broader
than the preceding one, reflecting slower catalysis by the enzyme
(trypsin inhibited with benzamidine in this case). Each peak is
complete within 5–10 min and a total data set can be collected
in under an hour. The peaks were analyzed by fitting directly to
the raw ITC data. The extracted kcat

app was very similar for each
peak, while the Km

app increased linearly with increasing peak
number and inhibitor concentration (Figure 5D), as expected
for a competitive inhibitor (Equation 14). The y-intercept of
the line is Km and the slope is Km/K i. Alternatively, the peaks
can be deconvoluted using the empirical response function (see
Rapid Enzyme Kinetics Measured by ITC, above) and converted
to double-reciprocal plots in a model-free manner (Figure 5E).
The data give a series of straight lines that intersect at the
y-axis, consistent with the competitive inhibition mechanism of
benzamidine. This approach gives full kinetic characterization
for as many as ten different inhibitor concentrations in a
single experiment, providing assessment of inhibition mode
and strength. Note that direct fitting of ITC peaks is more
straightforward and is generally preferred to deconvolution-
based approaches. The double-reciprocal plot is primarily useful
for illustrating the extent to which data follow the MM/BH
equation and obey a given pattern of inhibition, as it is easier
to spot deviations from linearity and identify intersections than
it is to judge the shapes of ITC peaks by eye. More recently,
this method was applied to the study of human soluble epoxide
hydrolase, which is involved in cardiovascular homeostasis,
hypertension, nociception, and insulin sensitivity through the

Frontiers in Molecular Biosciences | www.frontiersin.org 10 October 2020 | Volume 7 | Article 583826200

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-583826 October 13, 2020 Time: 17:28 # 11

Wang et al. ITC Enzyme Kinetics

FIGURE 5 | Enzyme inhibition characterized by ITC single injection-type assays. (A) Inverse injection assay with α-amylase in the syringe and the substrate
2-chloro-4-nitrophenyl-maltoside (GalG2CNP) in the syringe together with a variety of inhibitors: ACA (acarbose), CA (chlorogenic acid), EC (epicatechin), ECox
(oxidized epicatechin), EGCG (epigallocatechin gallate), Mlv-3-glc (malvidin-3-glucoside) (Hanhineva et al., 2010). (B) MM/BH curves calculated from the curves in
(A). (C) Single injection assay with substrate (benzoyl-L-arginine ethyl ester) and inhibitor (benzamidine) in the syringe and trypsin in the sample cell (Di Trani et al.,
2018b). (D) Km

app values extracted from direct fits to each of the injections (different colors) in (C). (E) Data from (C), deconvoluted using the empirical response
model (Equation 10), converted to ν0 and [S] and presented as a double-reciprocal plot. (F) Single injection assay with substrate (ATP) in the syringe and
aminoglycoside-3′-phosphotransferase IIIa (APH) and kanamycin A in the sample cell (Wang et al., 2019). Under these dilute conditions [ATP] << Km, ITC peaks
decay exponentially with rate constant keff = kcat/Km. keff decreases with each injection due to product inhibition by ADP. (G) Plot of [APH]/keff as a function of total
accumulated ADP concentration.

metabolism of a variety of epoxy-fatty acids (Abis et al., 2019).
There is interest in inhibiting this enzyme in order to raise
physiological levels of epoxy-fatty acids, which have been shown
to have beneficial biological activities, and to reduce the levels of
the reaction products, dihydroxy fatty acids, many of which are
cytotoxic (Wagner et al., 2017). Previous assays of this enzyme

relied on liquid chromatography/tandem mass spectrometry
which is a discontinuous method with non-negligible liquid
handling steps. The authors showed that single injection ITC
assays can clearly distinguish the different kinetics of different
epoxy fatty acids providing a simpler and more robust route to
characterization. As well, they validated the multiple inhibitor
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injection method for this system using a previously identified
antagonist, setting the stage for rapid ITC-based screening for
inhibitors of this enzyme.

A similar type of situation occurs when the enzyme is inhibited
by the reaction product. In this case, the product of the reaction
accumulates after each injection, leading to progressively slower
catalysis. In fact, slowing catalysis with subsequent injections
in a single injection ITC experiment is a hallmark of product
inhibition (Cai et al., 2001). A challenge can arise when inhibition
is strong, since the product generated by a single injection
can be sufficient to essentially abrogate activity of the enzyme
in subsequent injections. This was the case in our studies of
several bacterial kinases and their inhibition by the reaction
product ADP (Wang et al., 2019). Interestingly, ADP inhibition
of kinases cannot be studied using the standard coupled enzyme
assay for kinase activity, since ADP is reconverted to ATP by
the secondary enzymes (McKay and Wright, 1995). In order
to avoid excessive inhibition of the enzymes, we injected the
substrate ATP at a concentration well below the Km. Under
these conditions, substrate consumption follows simple first-
order kinetics with rate constant, keff = kcat[E]/Km

app, where
Km

app increases with each injection as product (i.e., inhibitor)
accumulates. Data for dilute ATP injected into aminoglycoside-
3′-phosphotransferase IIIa are shown in Figure 5F, clearly
exhibiting broadening of successive peaks. A plot of [E]/keff vs.
[I] is linear (Figure 5G) with a slope of Km

kcat
·

1
Ki

and a y-intercept
of Km

kcat
; the ratio of the two gives the inhibition constant, K i. Using

this approach, we found that the K i for ADP was comparable
or lower than the Km for ATP, for all three kinases studied,
implying that inhibition by ADP influences kinase activity
in vivo. We also identified a more complex mechanism for a
dimeric pantothenate kinase, wherein ADP is activating at low
concentrations and becomes inhibitory at higher concentrations,
consistent with allosteric communication between the two active
sites (Wang et al., 2019).

As discussed in Section “Multiple Injection Assays,” there
are some advantages associated with multiple injection ITC
enzyme assays, and this holds true for inhibitor characterization
as well. For instance, the urease enzyme acts on urea to
produce bicarbonate and two equivalents of ammonia. Multiple
injection ITC assays produce far less reaction product than
do single injection ones; in this case it helps to minimize the
production of ammonia which is alkaline, volatile, and corrosive.
Urease inhibitors have potential antimicrobial and agricultural
applications (Kosikowska and Berlicki, 2011; Upadhyay, 2012).
Benini et al. (2014) used multiple injection ITC assays to
characterize inhibition of urease by fluoride ions. Typical raw
ITC data are shown in Figure 6A, while the corresponding
MM/BH curves for urease activity in the presence of 0,
400, and 800 µM NaF are shown in Figure 6B, revealing
a mixed mode of inhibition. Interestingly, the competitive
and uncompetitive components (K i and K ′i in Equation 16)
showed different pH dependencies, and the authors could link
the two different inhibition modes to two different locations
of fluoride ion binding in the active site, as determined by
X-ray crystallography.

Our lab has recently designed a pair of experiments which
build on the multiple injection ITC experiment to give additional
information on inhibitor association and dissociation rates (Di
Trani et al., 2018a). In the association experiment (Figure 6C),
the syringe contains the inhibitor and the sample cell contains
dilute enzyme and sufficient substrate to maintain an essentially
constant concentration throughout the experiment. The rate of
catalysis is initially constant, giving a horizontal line. A series of
injections is made, in this case of reversible covalent inhibitors
targeting prolyl oligopeptidase in the sample cell. In each case, the
enzyme was increasingly inhibited and the power values shifted
upward, since the rate of (exothermic) catalysis was reduced after
each injection. As highlighted in Figure 6D, this shift occurred
gradually over tens to hundreds of seconds, which corresponds
to the time required for the inhibitor to bind in the active site.
Furthermore, the upward shift of the ITC signal became smaller
for each subsequent injection, as the enzyme became increasingly
saturated with inhibitor. The decrease in the sizes of the steps is
related to the inhibition constant, K i, and the values of kon and K i
can be fitted numerically to the data. The disassociation rate can
then be calculated as koff = kon × K i.

In the dissociation experiments, the sample cell contains only
the substrate and the syringe contains enzyme saturated with
an inhibitor (prolyl oligopeptidase and a reversible covalent
inhibitor), which is added to the cell in a series of injections
(Figure 6E). Immediately following each injection there was
no change in the rate of catalysis in the sample cell as the
added enzyme was fully inhibited. However, the large dilution
(>20-fold) experienced by the injectant led to a net dissociation
of the inhibitor and a gradual downward shift of the ITC
signal as the freshly released enzyme began to act on the
substrate (Figure 6F). The downward shift of the ITC signal
became smaller for each subsequent injection, as the inhibitor
accumulated in the sample cell and the net dissociation of each
injection diminished. The decrease in the sizes of the steps is
governed by the value of K i. Data for the series of injections can
be fitted simultaneously to yield koff and K i (Figure 6F). The
association rate can then be calculated as kon = koff/K i. Note
that concentrations of enzyme are so low in these experiments
(≈10 nM) that ITC detects only heats of catalysis, while heats
of inhibitor/enzyme binding can be safely ignored. This method
exploits the fact that ITC measures enzyme velocity directly.
A traditional concentration-based enzyme assay would detect
the gradual decreases and increases in enzyme velocity vividly
illustrated in Figures 6D,F as slight curvature in the product
buildup curve, making quantitative analysis far more difficult
(Di Trani et al., 2018a).

Heterogeneous Mixtures
A unique aspect of ITC enzyme kinetic assays is their general
ability to provide real-time measurements on opaque systems
that are unsuitable for typical bulk spectroscopic techniques. One
example of this is ITC enzyme kinetics experiments performed on
suspensions of living cells (Wang et al., 2017, 2018; Zhang et al.,
2018; Lv et al., 2019). Comparing the behavior of enzymes in vitro
and in situ is critical for understanding how they work in living
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FIGURE 6 | Enzyme inhibition characterized by ITC Pseudo-First-Order-type assays. (A) Multiple injection-type ITC assays with urea in the syringe and urease in the
sample cell (Benini et al., 2014). (B) MM/BH plots from data similar to (A) with fluoride ion concentrations of 0, 0.4, and 0.8 mM, fitted to a mixed inhibition model
(Equation 16). In (A,B), data were extracted from the original reference using Graph Grabber v2.0.2 (Quintessa) and plotted using MATLAB (MathWorks). (C) Inhibitor
association kinetics experiment with prolyl oligopeptidase (POP) and substrate (thyrotropin releasing hormone, TRH) in the sample cell and reversible covalent
inhibitor in the syringe (Di Trani et al., 2018a). (D) Overlay of injections 1–3 from (C) (colored points) with best global fits to a kinetic model of association (black
curves). (E) Inhibitor dissociation kinetics experiment with TRH in the sample cell and POP and a reversible covalent inhibitor in the syringe (Di Trani et al., 2018a).
(F) Overlay of injections 2–5 from (E) (colored points) with fit best global fits to a kinetic model of dissociation (black curves).

systems and can reveal how enzyme kinetics are tied to additional
layers of biological dynamics. Furthermore, studying enzymes in
the intact organism avoids the question of whether activity has
been compromised by extraction and circumvents the need for
purification steps at all. For instance, Zhang et al. (2018) used
ITC to study the metallo-β-lactamase NDM-1 in living cultures of
Escherichia coli. NDM-1 cleaves carbapenems, providing bacterial
resistance to these “last resort” β-lactam antibiotics. Development
of NDM-1 inhibitors has the potential to resensitize resistant
bacteria and offers an avenue for treating these kinds of serious
drug-resistant infections (Zhang et al., 2018). NDM-1 is located
in the periplasm of Gram-negative bacteria, anchored to the
inner leaflet of the outer membrane by a lipidated cysteine
residue (Palzkill, 2013). Thus the natural environment of NDM-1
is not well recapitulated by purified enzymes in solution. The

authors used cefazolin as a test substrate, injecting it into either
purified NDM-1 (Figure 7A) or live E. coli bacteria expressing
the enzyme (Figure 7B). Very similar single injection-type heat
signals were obtained in both cases, with all injected substrate
being consumed within 100–200 s in the case of purified protein
and 400–600 s in the case of live cells. Cefazolin injected in
live bacterial cultures not expressing NDM-1 gave negligible heat
signals. The amount of NDM-1 present in the live cells was not
determined and differences in enzyme concentration could have
contributed to differences in kinetic profiles in Figures 7A,B.
However, the authors also made the intriguing suggestion that
the slower kinetics in live cells could be due, at least in part, to
the time lag of cefazolin entering the periplasm and hydrolyzed
products leaving. The results presented in their study suggest
that ITC could be a powerful tool for studying these processes
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FIGURE 7 | Isothermal titration calorimetry characterization of heterogeneous mixtures. (A) Single injection assays with substrate (cefazolin) in the syringe and
purified NDM-1 in the sample cell (Zhang et al., 2018). (B) Single injection assays with cefazolin in the syringe and a suspension of live E. coli bacteria expressing
NDM-1 in the sample cell. (C) Experiments in (B) repeated with various concentrations of an inhibitor (D-captopril) added to the E. coli suspension. (D) IC50

calculation, taking the magnitude of each peak in (C) as proportional to enzyme activity. Single injection assays with chitinase in the injection syringe and (E) soluble
chitin fragments or (F) insoluble chitin in the sample cell (Lonhienne et al., 2001). Vertical arrows indicate timings of injections.

in future work. The authors went on to test a live-cell screen
for NDM-1 inhibitors, using a panel of previously reported
compounds. Data are shown in Figure 7C for a similar assay
to Figure 7B, with cefazolin injected in live cells pre-incubated
with different concentrations of known inhibitor, D-captopril; as
the concentration of inhibitor was raised, the ITC heat peaks
became increasingly broad, indicative of slower catalysis and
enzyme inhibition. Taking the absolute amplitudes of the peaks
as a measure of enzyme activity, the set of ITC data gave an IC50
of about 50 µM (Figure 7D), in good agreement with previous
measurements on purified protein (Zhang et al., 2018). The
authors repeated the experiments on four different clinical strains
of pathogenic bacteria. Interestingly, different strains showed
different levels of activity, perhaps reflecting different levels
of NDM-1 expression, different accessibility of the periplasmic
space, or both. This study paves the way for using ITC both as a
rapid screen for inhibitors of antibiotic resistance genes, and also
as a tool for probing the resistance profiles of clinical isolates.

Other examples of opaque reaction mixtures are those
involving insoluble substrates (Lonhienne et al., 2001; Murphy
et al., 2010a,b, 2012, 2013) or enzymes immobilized on insoluble
matrices (Henzler et al., 2008; Henao-Escobar et al., 2014; Ali
et al., 2015; Mason et al., 2018) where the components are
combined as a suspension or slurry. These mixtures are of great
industrial importance, in part because the insoluble carbohydrate
polymers cellulose and chitin are the two most abundant organic
compounds on earth, present in large quantities in vascular
plants and arthropod exoskeletons, respectively (Berlemont
et al., 2016). Cellulose and chitin modifying enzymes have
many potential applications in biofuel production, chemical
upcycling, agriculture, and textile production (Turner et al.,
2007). Lonhienne et al. (2001) used ITC to characterize the
activity of psychrophilic bacterial chitinases, which hydrolyse
glycosidic bonds in chitin. They studied both an insoluble
suspension of powdered chitin and a sample in which the chitin
had been cleaved by acid hydrolysis into soluble fragments of
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40–100 kDa. When a series of injections of dilute chitinase
were made into a sample of soluble chitin fragments, the heat
flow increased in a series of steps of equal size (Figure 7E), as
expected, since for normal MM/BH kinetics, the total reaction
velocity is proportional to the concentration of enzyme. In
contrast, when chitinase was injected into the chitin suspension,
the first injection produced a large increase in heat flow, the
step associated with the second injection was much smaller,
and subsequent injections did not increase the rate of catalysis
at all (Figure 7F). The authors attributed this to saturation
of the chitin substrate. The bulk of the material forms an
interconnected network buried in the colloidal particle and is
therefore inaccessible to enzymatic attack. Once the surfaces of
the particles are covered by enzyme molecules, the addition of
further enzyme does not increase the rate of hydrolysis. An
additional interesting feature of the ITC data is the slow and
gradual increase in enzyme velocity after the first injection. The
steady-state rate of catalysis was not reached until roughly 15 min
after the enzyme was added. The authors attribute this lag to the
opening of crystalline regions on the colloid surface to expose
new fibril ends that are susceptible to the enzyme. This study
vividly illustrates how ITC data can give information not only on
enzyme kinetics, but also on the dynamic processes to which the
enzyme activity is linked.

DISCUSSION

The methods and examples discussed above illustrate the
power and potential of ITC as a universal enzyme assay.
ITC offers real-time monitoring of enzymatic reactions in
cases where other types of continuous assays are unavailable.
This is exemplified by human soluble epoxide hydrolase
(Abis et al., 2019) discussed above, where previous work
had relied on a combination of quenching the reaction at
various time points and analyzing the composition by liquid
chromatography and tandem mass spectrometry (Morisseau
et al., 2010). The ability to employ natural substrates is another
large asset for ITC. This is particularly true when the MM/BH
parameters obtained for chemically modified colorigenic or
fluorogenic substrate analogs do not match those obtained for
the native substrate by ITC. For example, glycosidase activity can
be measured spectrophotometrically with synthetic substrates,
such as maltooligomer derivatives with chromogenic chloro-
nitrophenyl (CNP) groups attached (Klaus et al., 1999; Morishita
et al., 2000; Ramasubbu et al., 2005). Separate studies on
α-amylase and glycogen phosphorylase found the Km values
of the fluorogenic substrate analogs to be substantially lower
than those of the native substrates determined by ITC, possibly
due to interactions of the chromophore with the active site
of the enzyme (Lehoczki et al., 2016; Szabó et al., 2019).
Thus ITC represents a simple way to accurately characterize
how enzymes interact with their biologically relevant molecular
partners. ITC also offers advantages for enzymes where the
standard assay involves indirect readout with a coupled-
enzyme system. This is particularly true when adding co-
solutes or inhibitors that affect enzymatic activity since the

secondary enzymes can be affected as well as the enzyme of
interest, as discussed above for pyruvate kinase (Lonhienne
and Winzor, 2002; Lonhienne et al., 2003). In addition, testing
spectroscopically active inhibitors or other effector molecules can
become a challenge when using spectrophotometric assays, i.e.,
with chromogenic or fluorogenic probes, or with coupled assays.
In contrast, deeply-colored inhibitors are fully compatible with
ITC inhibition assays (Zebisch et al., 2012). Furthermore ITC’s
ability to characterize opaque samples further extends the reach
of this technique beyond spectroscopically-accessible systems.
The examples described above involving suspensions of live cells
(Wang et al., 2017, 2018; Zhang et al., 2018; Lv et al., 2019)
and insoluble substrates (Lonhienne et al., 2001; Murphy et al.,
2010a,b, 2012, 2013), illustrate how the surrounding milieu can
influence enzyme activity and how ITC can be a probe of these
more complex dynamics.

Over the past 20 years, the number of publications using
ITC to measure enzyme kinetics has been growing at an ever-
accelerating rate (Supplementary Figure 1). The advantages of
ITC described above are becoming increasingly recognized, and
we expect that this trend will continue as the technique becomes
more visible and widely known. Most of the studies to date
have employed the two main types of experiment described in
the original paper by Todd and Gomez (2001), i.e., multiple
injection and single injection assays. However, we believe that
the full potential of ITC as an enzyme kinetic technique is
only starting to be explored and that the development of
innovative methods and novel capabilities will help to drive
the further growth of the user community. Our group (Di
Trani et al., 2017, 2018a,b; Wang et al., 2019) and others
(Honarmand Ebrahimi et al., 2015; Transtrum et al., 2015)
have recently reported methodological advances that push limits
of the technique. One area of interest is the development of
strategies for quantitatively addressing the finite response time of
ITC instruments (Honarmand Ebrahimi et al., 2015; Transtrum
et al., 2015; Di Trani et al., 2017). For example, our Empirical
Response Model, described above, has performed well under a
variety of conditions, and allowed us to, for example, characterize
very rapid reactions and clearly identify non-MM/BH kinetics
from single ITC peaks (Di Trani et al., 2017). In developing
this model, we found that the kinetics of post-injection mixing
can be largely ignored under many conditions. However, this
approximation should likely be revisited and is an area ripe
for advancement, perhaps by incorporating some ideas used
in analyzing binding kinetics by ITC (Burnouf et al., 2012).
More generally, there are an enormous number of ways to
generate different ITC experiments. As an illustration, for a
simple ternary system of enzyme/substrate/inhibitor, one can
imagine that each of the components can be loaded in either the
syringe or the sample cell, and can be either dilute (C << Km,
K i) or concentrated (C >> Km, K i). This, in principle, gives 64
distinct arrangements, only a few of which have been investigated
to date. There are likely scenarios in which many of these
hypothetical experiments would yield uniquely useful data. When
one considers the number of multi-substrate enzymes (Wang
et al., 2019) and multiple enzyme systems with shared substrates
or products (Murphy et al., 2010a), as well as the effects of
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allostery and substrate or product inhibition, the complexity of
the experiment-space and versatility of ITC starts to become
apparent. Finally, the ability of ITC to extract meaningful kinetic
data from systems as complicated as biopolymer suspensions
(Henzler et al., 2008; Ali et al., 2015) or even living cells
(Wang et al., 2017, 2018; Zhang et al., 2018; Lv et al., 2019)
holds great promise for understanding enzyme behavior in situ
and in vivo. One could imagine expanding this approach to a
multitude of other complex and heterogeneous media, such as
purified cellular components, homogenized tissue or soil samples,
and nanostructured materials, to name a few. It is our belief that
between advancements in experimental design and analysis and
sample selection and preparation, the full potential of ITC to
study enzyme kinetics will become evident in the coming years.
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Although it is known crocin, a hydrophilic compound from the herbal plant Crocus
sativus L., has promising antitumor activity, the detailed mechanism of its antitumor
activity was not well understood. Recent experiments suggested tubulin as the primary
target for the antitumor activity of crocin. However, due to a lack of crystal structure of
tubulin bound with crocin, the exact binding mode and interaction between crocin and
tubulin remains exclusive. In the present work, a computational study by integrating
multiple conformation docking, molecular dynamics simulation as well as residue
interaction network analysis was performed to investigate the molecular mechanism
of crocin-tubulin interaction. By comparing the docking score, the most likely binding
mode CRO_E1 were identified from 20 different binding modes of crocin in the vinca
binding pockets. Further molecular dynamics simulation of CRO_E1 complex showed
the binding of crocin is more stable than the inhibitor soblidotin and vinblastine. During
the simulation course, an excessive number of hydrogen bonds were observed for
the ligand crocin. The binding free energy of crocin-tubulin complex was calculated as
−79.25 ± 7.24 kcal/mol, which is almost twice of the ligand soblidotin and vinblastine.
By using energy decomposition, hot residues for CRO_E1 were identified as Gln11,
Gln15, Thr72, Ser75, Pro173-Lys174-Val175-Ser176-Asp177, Tyr222, and Asn226 in the
β-chain, and Asp245, Ala247-Leu248, Val250, Asn329, and Ile332 in the α-chain. Residue
interaction network analysis also showed the importance of these hot residues in the
interaction network of crocin-tubulin complex. In addition, a common residue motif
Val175-Xxx176-Asp177 was discovered for all three bindings, suggesting its importance
in future drug design. The study could provide valuable insights into the interaction
between crocin and tubulin, and give suggestive clues for further experimental studies.

Keywords: tubulin, anti-tumor activity, molecular docking, molecular dynamics simulation, binding free energy,
residue interaction network
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INTRODUCTION

Exploiting drug candidates from traditional Chinese medicine
is of great interests in drug discovery. Saffron is the dried
stigma of Crocus sativus L., which is a species of the Iridaceae
family widely cultivated in China, Iran, India, Italy, Israel,
Spain, and Turkey (Bathaie and Mousavi, 2010; Alavizadeh
and Hosseinzadeh, 2014). Since ancient times, saffron is
used as a dietary ingredient as well as medicinal herb in
the treatment of various diseases (Bathaie and Mousavi,
2010). Crocin (CRO) is a hydrophilic carotenoid that are
separated from saffron (Alavizadeh and Hosseinzadeh, 2014).
As one of the main characteristic ingredients, CRO and its
derivatives account for nearly 10% of total compounds in
saffron (Pfander and Wittwer, 1975; Tsimidou and Tsatsaroni,
1993). Chemically, CRO is a di-glycosyl polyene ester of
crocetin containing a 20-carbon carotenoid backbone and
two D-gentiobioses as carbohydrate moieties (Alavizadeh
and Hosseinzadeh, 2014). Experiments have shown that
CRO has wide pharmacological effects including antioxidant,
neuroprotective, antidepressant and antiproliferative (Alavizadeh
and Hosseinzadeh, 2014). More importantly, the good
hydrophilic property of CRO made it an attractive candidate in
drug development.

Pharmacological studies showed that CRO exhibits promising
antitumor activities (Bolhassani et al., 2014; Hoshyar and
Mollaei, 2017). Several mechanisms were proposed to understand
the antitumor activity of CRO, including inhibition of DNA
and RNA synthesis (Abdullaev et al., 2003), interaction with
topoisomerases (Bajbouj et al., 2012), induction of apoptosis
(Sun et al., 2013; Amin et al., 2015), and so on. However, one
of the drawbacks of these mechanisms is the lack of clarifying
the primary target protein of CRO. Recently, biochemical as
well as proteomic approaches suggested microtubules as the
primary target of CRO (Hosseinzadeh et al., 2013; Hire et al.,
2017; Sawant et al., 2019). Microtubule is a dynamic biopolymer
composed of tubulin, which is a heterodimer composed of β and
α subunit (Dumontet and Jordan, 2010). Microtubule dynamics,
i.e., the assembly or disassembly of tubulin, plays essential roles
in cell cycle (Dumontet and Jordan, 2010). The interference
of microtubule dynamics could induce mitotic arrest and cell
apoptosis. Due to the reason, tubulin is a target for a number
of antitumor drugs including vinblastine (VBL), paclitaxel and
colchicine (Dumontet and Jordan, 2010). It was found that CRO
could competitively bind with tubulin at VBL site, disrupting
microtubule dynamics and inhibiting cell proliferation (Hire
et al., 2017; Sawant et al., 2019).

However, due to a lack of crystal structure of tubulin
bound with CRO, the binding mode and detailed molecular
interaction between tubulin and CRO is still unknown. In
this work, we investigated the interaction between tubulin
and CRO through computational approaches. The possible
binding modes of CRO were explored through multiple
conformation docking strategy. Then, molecular dynamics
simulation was performed to fully consider the flexibility of
tubulin and CRO. Molecular mechanics/generalized born surface
area (MM/GBSA) method was applied to obtain a detailed

energy contribution from key contact residues. Additionally,
the underlying characteristics of key residues were analyzed
from residue interaction network. Our study could provide
valuable insights into the interaction between CRO and tubulin
at molecular level, and give suggestive clues for further
experimental studies.

MATERIALS AND METHODS

Structure Preparation
The structure of tubulin having different vinca binding pockets
were obtained from the Research Collaboration for Structural
Bioinformatics protein database, including 1Z2B (bound with
VBL), 3DU7 (bound with phomopsin A), 3E22 (bound with
soblidotin, SBD) and 5NJH (bound with triazolopyrimidine).
Molecular Operating Environment (MOE, 2019) software was
used for structural preparation. Each structural data was cleaned
by removing all unnecessary subunits and small molecules,
leaving a ligand molecule, β and α-subunit. Missing amino acid
residues and hydrogen atoms were added by QuickPrep in MOE.
Energy minimization was performed by using Amber10 force
field, with 0.1 RMS kcal/mol/A2 as a gradient.

Multiple Conformation Docking With
MOE
After the preparation of tubulin dimer with different vinca pocket
conformations, multiple conformation docking was performed
with MOE. In the multiple conformation docking strategy, an
ensemble of different pocket conformations was used instead of
a specific pocket conformation. Multiple conformation docking
is different from traditional docking protocol, allowing the
investigation and comparison of conformational variations of
binding pockets. In order to compare the binding mode, all
prepared tubulin structures were superimposed with reference to
1Z2B. The conformational difference of the binding pockets was
measured by an MOE SVL script.

Retrieved from PubChem, the ligand structure of CRO
(Figure 1D) was imported in MOE and docked into the vinca
binding site of each prepared conformation. The vinca binding
site was defined as residues within 4.5 Å to the ligand of
each prepared tubulin structure. For ligand docking with each
receptor conformation, a set of 30 ligand conformations was
produced to account for ligand flexibility. Docking structures
were then refined by Amber10 force field and finally five poses
were generated and ranked according to GBVI/WSA1G scoring
method. The scoring function is defined as following:

1Gbind ≈ γ

[
2
3
(1Eele +1Esol)+1EvdW + δ1SA

]
+ K (1)

where 1Eele, 1Esol and 1EvdW are the electrostatic, solvation,
and van der Waals terms, respectively, 1SA is exposed SA, K is
the average entropy change, γ and δ are two parameters obtained
by training. The GBVI/WSA1G scoring function was trained by
the forcefield MMFF94x and AMBER99 to estimate the binding
free energy between a ligand conformer and a binding pocket
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FIGURE 1 | Tubulin bound with four different ligands (1Z2B, 3DU7, 3E22, and 5NJH, see the “Materials and Methods” part for more information) were compared by:
(A) superposition of four binding pockets; (B) calculating RMSD matrix in angstrom; (C) superposition of four ligands. The chemical structure of CRO was shown in
panel (D).

(Naïm et al., 2007). The CRO poses at each corresponding tubulin
were filtered to remain the one with the highest 1G score.
After that, the CRO-tubulin complex was exported for further
molecular dynamics simulations.

Molecular Dynamics Simulations
After the docking step, a set of CRO binding modes were obtained
for different pocket conformations of tubulin. Each binding
complex was further analyzed by molecular dynamics (MD)
simulation. The AMBER18 program was used to perform MD
simulation. The ff14SB force field parameters were assigned to
the prepared tubulin structure. For ligand molecules, the force
field parameters described by General Force Field (GAFF) (Wang
et al., 2004) were generated using the Antechamber program
in AMBER18. The RESP charge fitting technique (Bayly et al.,
1993; Cieplak et al., 1995; Fox and Kollman, 1998) was applied
to calculate partial charges of ligands. The ligand and tubulin
structure were then combined by using the LEaP program.
A rectangular periodic box of water molecules was generated by
using TIP3P water model (Jorgensen et al., 1983), extending at
least 10 Å in each direction. The whole system was neutralized
with sodium ions as counterions.

Three steps of minimization were performed in prior to MD
simulation. In the first stage, only the positions of water molecules
were optimized by fixing ligand-tubulin complex with a restraint
force constant of 10.0 kcal/mol/Å2. In the second stage, the
restrains on the complex were partially released by only fixing

Cα, N, O with a restraint constant of 5.0 kcal/mol/Å2. In the
third stage, the entire system in solvated box was minimized by
releasing all restraints. Each minimization steps contained 10,000
cycles including the first 1,000 cycles of the steepest descent
algorithm and the remaining 9,000 cycles of conjugate gradient
method. The minimized structure was used as starting input
for MD simulation. The temperature of system was gradually
raised from 0 to 300 K in 200 ps canonical ensemble (fixed N,
V, and T) heating process by applying the Langevin dynamics
with a collision frequency of 2.0. The system was equilibrated
by 300 ps NPT equilibration (fixed N, P, and T) at 1.0 bar
and 300 K, with all residues restrained by a force constant of
1.0 kcal/mol/Å2. Finally, the position restraints were released,
and a production phase of 90 ns was performed under the
same conditions as in NPT equilibration. Coordinates were
saved for every 10 ps. In all of the MD simulations, 2.0 fs was
used as time step and 8.0 Å was used as short-range cutoff
value for non-bonded interactions. The long-range electrostatic
interactions were calculated through the particle-mesh Ewald
(PME) method (Darden et al., 1993). Bond restraints including
hydrogen atoms were realized by applying SHAKE algorithm
(Ryckaert et al., 1977). MD trajectories were processed and
analyzed by evaluating RMSD value of the tubulin and ligands.
The RMSF and the hydrogen bond analysis were performed by
cpptraj tool in AMBER18. The same protocol was applied for
all simulation processes of different conformation of binding
pockets and ligands.
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MM/GBSA Binding Energy Calculation
For each ligand-tubulin complex, the MD trajectory was used to
estimate the binding energy (1Gtotal) between ligand and tubulin,
which is the sum of van der Waals, electrostatic, polar and non-
polar solvent energies. To effectively calculate the binding energy,
MM/GBSA method (Wang et al., 2017, 2019) was applied to the
following thermodynamic relation:

1Gbind,sol = 1Gbind,vac +1Gcom,sol − (1Glig,sol +1Grec,sol)
(2)

where 1Gbind, sol and 1Gbind,vac are the binding energies
in solvent condition and vacuum condition, respectively, and
1Gcom,sol, 1Glig,sol and 1Grec,sol are the solvation free energies
of complex, ligand, and receptor, respectively. The solvation free
energy can be attributed to an electrostatic and a non-electrostatic
contribution through the equation:

1Gsol = Gele|
ε=80
ε=1 +1Gnonele (3)

The electrostatic contribution can be solved by the linearized
GB method, while the non-electrostatic contribution can be
estimated by an empirical SA term. In this study, we used the
solute dielectric constant of 1, the solvent dielectric constant
of 80, and water probe radius of 1.4 Å. 1Gvac is determined
by calculating non-bonded interaction energy (1EMM) between
ligand and receptor and entropy change (1SNMA) during ligand
binding:

1Gvac = 1EMM − T •1SNMA (4)

In case of different ligands binding to the same protein,
the entropy contribution can be neglected if only the hotspot
residues and interaction features rather than the absolute Gibbs
free energy were to be evaluated. For this reason, we collected
multiple snapshots from MD trajectory for the MM/GBSA
calculation at 100 ps intervals. The binding energies between
different conformations of binding pocket of tubulin and ligands
were obtained and compared for further analysis. In addition,
to achieve a detailed picture of the interaction between ligand
and tubulin, MM/GBSA method was applied to decompose the
interaction energy at a per-residue basis without considering
entropy contributions.

Residue Network Calculation
The web server RING-2.0 (Piovesan et al., 2016) was used to
build the residue interaction network by using protein and
protein-ligand structures. RING-2.0 algorithm could derive a
network through two steps, i.e., identifying node-node pair by
measuring physical distance and recognizing the interaction
type of each pair (Piovesan et al., 2016). In the computation,
we have considered all atoms of each residue for distance
measurement and display only one interaction per interaction
type for simplicity reason. Then, the derived networks were
imported into Cytoscape (Shannon et al., 2003) for topological
analysis. In the network graph, residues and interactions between
residues were represented as nodes and edges between nodes,
respectively. The degree, betweenness and closeness centrality
was computed by using NetworkAnalyzer (Assenov et al., 2007),

which are key values measuring the importance or centrality of a
node in the network.

RESULTS AND DISCUSSION

Multiple Conformation Docking
The vinca binding pocket of tubulin dimer has different
conformations while bound to different inhibitors. As screened
from the Protein Data Bank, at least four entities were found
to represent tubulin bound to structurally different inhibitors at
vinca binding pocket. The PDB structures include tubulin-VBL
complex (PDB ID: 1Z2B), tubulin-phomopsin A complex (PDB
ID: 3DU7), tubulin-SBD complex (PDB ID: 3E22) and tubulin-
triazolopyrimidine complex (PDB ID: 5NJH) (Figure 1C).
According to induced-fit theory, the shape of the binding cavity
will change according to ligand geometries. Comparison of these
binding pockets indicated a great deal of structural variety upon
binding of structurally diverse ligands (Figure 1A). The RMSD
matrix showed the structural differences among four binding
pockets. Despite the similarity between the binding pockets of
1Z2B and 3DU7, the binding cavities varies significantly (with
RMSDs> 1.5 Å) (Figures 1A,B).

Ligand geometry could significantly change the conformation
of the same binding pocket. Since the binding mode of CRO
is largely unknown, the exploration of docking by different
conformations of binding pockets allows to probe the binding
mode and interaction between CRO and tubulin. In the study,
CRO was docked into four different conformations of the binding
pocket of tubulin by using MOE software. The selection of
tubulin structures (PDB ID: 1Z2B, 3DU7, 3E22, and 5NJH) from
the Protein Data Bank helps to investigate and compare different
binding modes of CRO.

Figure 2A showed the docking matrix of possible binding
modes of CRO by multiple conformation docking method.
Each row represents the conformation of the binding pocket of
tubulin, where Z, D, E, and N stands for 1Z2B, 3DU7, 3E22,
and 5NJH, respectively. By MOE docking, the first five top
ranked conformers of CRO were listed for each binding pocket.
The binding matrix therefore has collected a total number of
20 different binding modes of CRO (Figure 2A). The RMSD
values of the screened conformers of CRO were calculated
and listed in Figure 2B. Ranging from 7.07 to 12.26 Å, the
RMSD matrix indicated that a significantly diversity of the ligand
geometry was obtained from the multiple conformation docking
method. The conformers of CRO with the highest score in
each binding pocket were shown in Figure 3. As shown in the
figure, the geometry and orientation of CRO differs significantly
in the four binding pockets. In fact, the conformers of VBL
and their locations in four pockets also varies in different
binding pockets (Figure 2C). This indicated the flexibility
of ligand in binding with a specified pocket conformation,
and also rationalized the necessity for performing multiple
conformation docking.

The detailed interactions between tubulin and ligand for
different binding modes were analyzed, and residues involving
the binding interaction were plotted in Supplementary
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FIGURE 2 | Twenty binding modes for CRO (A) and VBL (C) discovered by multiple conformation docking strategy. The RMSD matrix of CRO (B) and VBL (D) was
created to compare the different ligand conformations. For VBL, PDB structure was used to demonstrate the possibility of screening correct ligand conformation by
using multiple conformation docking strategy. All units are in Å.

Figure S1. The interacting residues were highlighted in the
protein sequence as shown in Supplementary Figure S2
(for ligand CRO) and S3 (for ligand VBL). The 2D map is
a projection of 3D structure in Figure 3, which provides a
clear representation of the binding interaction in 3D structure.
Interestingly, although the ligand pose varies significantly
(Figures 2B,D), some common modes were observed for the
protein residues involving the binding interaction. For the
ligand CRO, the common modes shared Gln15, Val175-Ser176,
Tyr208, Pro220-Thr221-Tyr222 in the β-chain, and Leu248, Pro325,
Val328-Asn329, Ile332, Phe351, Val353, Ile355 in the α-chain. Similar
patterns were observed in the binding mode of the ligand VBL,
including Val175-Ser176, Pro220-Thr221-Tyr222 in the β-chain,
and Leu248, Pro325, Val328-Asn329, Phe351, Val353, Ile355 in the
α-chain.

As can be seen in Figure 2A, E1 for CRO is the most
favorable binding mode from the perspective of binding energy.
Actually, the GBVI/WSA 1G scores for the first three modes
in 3E22 binding pocket are higher than other investigated

binding pockets, indicating 3E22 is the most likely conformation
for the binding pocket of CRO. In comparison, the most
favorable binding mode for VBL is Z1. Since the crystal structure
of tubulin bound to VBL has been solved, we compared
the predicted binding mode Z1 with its crystal structure.
As shown in Figure 2D, the RMSD value between Z1 and
its PDB structure is 1.08 Å, meaning the computed binding
mode is highly similar to its crystal structure. This suggests
our method of multiple conformation docking is useful in
finding the correct binding mode. For this reason, we will use
the binding mode E1 for CRO as the starting structure for
further investigation.

Ideally, the screening of the correct binding modes was
achieved through calculating of some physical quantities, such
as binding energy, by averaging over an infinite conformational
space of both ligand and binding pocket. According to the
ergodic hypothesis, this is equivalent to performing time average
from zero to infinity (Cramer, 2004). In molecular dynamics
simulation, a finite period of time (typically in nanosecond scale)
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FIGURE 3 | Ligand conformations with the highest docking scores of CRO
(left) and VBL (right) in the binding pocket.

was engaged to focus on the most representative microstates of an
ensemble. Therefore, it is necessary to enumerate representative
microstates of the CRO-tubulin complex.

Molecular Dynamics Simulations
Based on the constructed structure of CRO-tubulin complex
identified in the multiple conformation docking step, MD
simulations were performed to further achieve rationalized and
stable complex. The stability of tubulin and CRO in the binding
site were assessed by the root-mean-square derivation (RMSD)
values of Cα atoms with respect to the initial conformation
during the MD simulation period, as shown in Figure 4. Since
SBD is the ligand molecule in crystal structure of 3E22, MD
trajectories of SBD and VBL were obtained and RMSD values of
Cα atoms were plotted accordingly for comparison (Figure 4).
Significant fluctuations in RMSD plots were observed in the
first 60 ns for all three ligands CRO, SBD, and VBL, indicating
protein domain movements upon ligand binding. Then the three
RMSD curves achieved stable plateaus for the last 30 ns. In
the stable stage, the RMSD values kept at around 2.8 Å with
respect to the initial protein conformation. However, in the first
60 ns the RMSD fluctuations of CRO is significantly smaller than
VBL and SBD. This means a slighter conformational change of
tubulin upon CRO binding as compared to VBL and SBD. It
is likely the ligand CRO is better accommodated in the protein
than VBL and SBD.

FIGURE 4 | Monitoring of RMSD change over the MD simulation course for
the tubulin bound with ligand CRO (black), VBL (blue), and SBD (red). The
RMSD value of Cα of each MD trajectory was calculated and plotted against
simulation time.

To further investigate the flexible protein segments attributing
the RMSD fluctuations, the root-mean-square fluctuation
(RMSF) values of tubulin upon binding of each ligand were
calculated based on the all-atom MD trajectories (Figure 5).
It could be discovered that the average fluctuations of
CRO binding is smaller SBD and VBL. The RMSF curves
of SBD and VBL are highly similar, but are significantly
distinct from CRO. This suggests a different binding mode
of CRO from the traditional inhibitors SBD and VBL.
Furthermore, a lower average RMSF value throughout tubulin
indicate the CRO binding mode is more favorable than SBD
and VBL.

Hydrogen Bond Analysis
To primarily investigate the binding affinity between the ligands
and tubulin, we performed hydrogen bond analysis along the
90 ns MD trajectories of each ligands. The results were presented
in Figure 6. The frequencies of hydrogen bonding between
tubulin and the ligand CRO, SBD, and VBL were plotted versus
snapshots extracted from MD trajectories. As demonstrated in
Figure 6, the average frequency of hydrogen bonding of CRO
was around 6, which is larger than the average frequency of SBD
and VBL. Although the strength of each hydrogen bond was
not considered yet, but it is highly likely that the formation of
excessive amounts of hydrogen bond between CRO and tubulin
will lead to a much more stable binding mode than SBD and VBL.
In the next part, the binding energy of each ligand will be further
analyzed by MM/GBSA methodology.

MM/GBSA Binding Energy Calculation
To estimate the binding energy of ligands and tubulin,
MM/GBSA method was performed to calculate energy
contributions (Wang et al., 2017, 2019). The three methodologies
of MM, GB, and SA were utilized to compute energy
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FIGURE 5 | Comparison of the backbone RMSF values of tubulin bound with different ligands CRO (black), SBD (blue) and VBL (red). The β (top) and α (below)
chain were plotted separately.

FIGURE 6 | The analysis of hydrogen bonds between tubulin and different ligands CRO (left), SBD (middle), and VBL (right). The density of frame was 50
frames/ns.

contributions from van der Waals (vdw), electrostatic (ele),
polar and non-polar surface solvation interactions (Wang
et al., 2017, 2019). According to the all-atom MD trajectories
shown in Figure 4, the last 20 ns frames were all considered to
perform MM/GBSA for all three ligands. A total number of 2,000
frames were extracted for the computation to obtain reliable
binding free energies. It should be pointed out that a complete
estimation of binding free energy includes the calculation of
entropy contribution. However, since we are interested in

elucidating the dominate factors in different binding modes
rather than computing the exact value of free energy, therefore
the computationally expensive entropy calculations were
neglected in this part.

The computed results of MM/GBSA and corresponding
energy components terms for the three ligands were listed
in Table 1. The methodology of MM/GBSA allows detailed
decomposition of the free energy into different interaction
contributions, which is convenient for the analysis of each term
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TABLE 1 | MM/GBSA binding energy between the protein and different ligand
CRO, SBD and VBL.

Mode Contribution (kcal/mol) 1Gtotal (kcal/mol)

vdw ele Polar Non-polar

CRO_E1 −89.64 −115.30 138.94 −13.25 −79.25 ± 7.24

SBD_E1 −56.84 −381.00 404.62 −7.72 −40.94 ± 3.71

VBL_E1 −66.07 −39.94 71.87 −8.32 −42.49 ± 2.95

separately. As shown in Table 1, the polar solvation energies
are the only unfavorable terms for all three ligands. And the
remaining terms of the van der Waals, the electrostatic and the
non-polar solvation interactions have attributed a total energy
of −79.25 ± 7.24, −40.94 ± 3.71, and −42.49 ± 2.95 kcal/mol

for the ligand CRO, SBD, and VBL, respectively. This means
the binding of three ligands are thermodynamically favorable,
which is accordance with experimental observations that all three
ligands are good inhibitors for tubulin. On the other hand,
the binding free energy of CRO is almost twice of traditional
inhibitors SBD and VBL, suggesting its potential high inhibition
efficiency toward tubulin.

Key Residues Analysis
The energy contribution of each residue-ligand pair was
decomposed to obtain a detailed energy analysis on the
interaction between tubulin and the ligands. By using this
quantitative analysis, it is helpful to investigate and identify key
residues as hot spots involving in the binding interaction. The
decomposed binding free energies of each residue-ligand pair

FIGURE 7 | Energy contributions of each residue-ligand pair for the ligand CRO (top), SBD (middle) and VBL (bottom).
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were plotted versus the position number of each amino acid in
Figure 7. The peaks in the figure showed the energy contributions
of each residue.

Residues with an absolute energy contribution larger than
2 kcal/mol were identified as hot residues. For the CRO
binding, 11 (Gln11, Gln15, Thr72, Ser75, Pro173-Lys174-Val175-
Ser176-Asp177, Tyr222, and Asn226) and 6 (Asp245, Ala247-Leu248,
Val250, Asn329, and Ile332) hot residues were identified in the
β and α chain, respectively (Figure 8). In comparison, 4 (in β

chain) and 6 (in α chain) hot residues were identified for SBD,
and 4 (in β chain) and 9 (in α chain) were identified for VBL
(Figure 8). Clearly, the total energy contributions of hot residues
in the binding of CRO is larger than SBD and VBL. This is in
line with energy analysis by MM/GBSA method, indicating a
strong interaction between CRO and tubulin. In addition, the hot
residues in the beta chain involving in the binding of CRO were
significantly different from SBD and VBL, suggesting a distinct
binding mode of CRO. An interesting binding motif of Val175-
Xxx176-Asp177 in the beta chain was discovered to the common
element involving the binding of different ligands CRO, SBD and
VBL. This peptide motif may serve as a critical site for further
development of tubulin inhibitor.

In order to compare the CRO-tubulin complex structure
before and after molecular dynamics simulation, a snapshot
at 80 ns in the stable plateau of MD trajectory of CRO_E1
was extracted as a representative structure of the post-MD
structure. The 2D interaction map and pocket residues were
shown in Supplementary Figure S4. It should be noted
that the 2D interaction map in Supplementary Figure S4
is different from the hot residue map in Figure 8. The
hot residue map considers the average energy contribution
(>2 kcal/mol) throughout the MD simulation period, while
the 2D interaction map identifies important pocket residues

from a static structure. The comparison of 2D interaction
map between pre-MD (Supplementary Figure S2) and post-
MD (Supplementary Figure S4) showed the common residues
were reserved, including Gln15, Val175-Ser176, Pro220-Thr221-
Tyr222 in the β-chain, and Leu248, Pro325, Val328-Asn329,
Ile332, Phe351, Val353 in the α-chain, which indicates the
interacting residues in the binding pocket were conserved
features for CRO.

Community Network Between CRO and
Tubulin
Community network analysis of protein, also named as residue
interaction network (RIN) analysis, is a valuable method in
deciphering the topology and dynamics of protein structure
(Shcherbinin et al., 2019). By modeling a protein structure as
residue nodes and interaction edges, the RIN approach allows to
uncover key characteristics of the protein as well as rationalize
drug design by topologically measuring the binding interactions
(Hu et al., 2014; Liang et al., 2018, 2019, 2020). To better
understand the interaction between CRO and tubulin, the RIN
of tubulin and its bound state with CRO were constructed
accordingly (Figure 9). As shown in Figure 9, residues involving
in more than one interaction with the remaining residues or
ligand (blue node) were represented as nodes. Residues in the
β and α chain of tubulin were colored in pink and green,
respectively. In the RIN, the non-covalent interactions including
hydrogen bonding (purple), ionic interaction (blue), van der
Waals interaction (yellow), and π–π stacking (orange) were
represented as undirected edges between nodes. For simplicity,
only one interaction per interaction type was plotted in the
network. The discussion here was based on the interaction
simplified network, but it should be pointed out that the

FIGURE 8 | Key residues distribution in β and α chain for ligand CRO (top), SBD (middle) and VBL (bottom) by MM/GBSA energy decomposition method.
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FIGURE 9 | The residue interaction network of tubulin-CRO complex. Each node represents a residue in β chain (pink), α chain (green) or ligand (blue). The size of
each node was linearly correlated with the degree of the node. The label of each node was numbered sequentially by taking the two chains as one sequence, which
means the number 1–428 and 429–865 represents β and α chain, respectively. Each edge represents the interaction between nodes, including hydrogen bonding
(purple), ionic interaction (blue), van der Waals interaction (yellow), and π–π stacking (orange).

TABLE 2 | Comparison of the degree, betweenness and closeness centrality of the key residues of tubulin and tubulin-CRO complex.

Chains Residues Tubulin-CRO complex Tubulin

Betweenness Closeness Degree Betweenness Closeness Degree

B GLN11 0.0000 0.1307 2 0.0000 0.0775 1

B THR72 0.0449 0.1331 5 0.0053 0.0839 4

B PRO173 0.0000 0.1290 1 NA NA 0

B LYS174 0.0080 0.1293 3 0.0000 0.0841 2

B VAL175 0.0945 0.1413 4 0.0013 0.1014 3

B TYR222 0.1619 0.1417 5 0.0006 0.0968 4

C ALA675 0.0000 0.1290 1 NA NA 0

C LEU676 0.0109 0.1302 3 0.0009 0.0881 2

C VAL678 0.1983 0.1425 3 0.0039 0.1011 2

C ASN757 0.0381 0.1339 4 0.0030 0.1011 3

1) NA means the node was neglected by Cytoscape since its degree was deduced to 0; 2) the label of each node was numbered sequentially by taking the two chains
as one sequence, which means the number 1–428 and 429–865 represents β and α chain, respectively.

discussion could be extended to an advanced network with
multiple edges between nodes.

In network graph theory, the degree, betweenness and
closeness centrality are characteristic values for measuring the
importance of a node in a network (Shcherbinin et al., 2019).
To investigate the ligand-binding induced change of the key
residues as discovered in molecular dynamics simulation, we have
computed the degree, betweenness and closeness centrality of the

ligand and key residues. A comparison of the degree, betweenness
and closeness centrality of the key residues between tubulin and
tubulin bound with CRO were listed in Table 2. It could be found
that the degree, betweenness and closeness centrality of each node
was increased after the binding of the ligand CRO. Actually, the
betweenness and closeness centrality of CRO (0.3199 and 0.1481,
respectively) were ranked the highest in the network, indicating
its vital importance in the interaction with tubulin. Therefore,
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the key residues were deeply connected with other parts of the
network through the interaction with CRO. In other words,
their importance or centrality in the network was increased after
binding with the ligand, supporting the conclusion from the
previous MD analysis.

CONCLUSION

Currently, the crystal structure of tubulin bound with CRO is
still lacking, which hinders our understanding of the interaction
between CRO and tubulin. In this paper, we have screened the
most likely binding mode CRO_E1 of CRO in the vinca binding
pocket of tubulin based on multiple conformation docking
strategy. Furthermore, molecular dynamics simulation method
was involved to investigate the mechanism of interaction of
CRO_E1. The results showed the excessive number of hydrogen
bonds of CRO_E1 plays an important role in the CRO-tubulin
binding. Energic analysis showed the binding free energy of CRO
is almost as twice as the inhibitor soblidotin and VBL, suggesting
a favored binding of CRO in the vinca binding pocket of tubulin.
Hot residues were analyzed by energy decomposition, and were
shown to be in accordance with their topological characteristics
in the interaction network. Although hot residues involving
the binding were different, a common residue motif Val175-
Xxx176-Asp177 was identified for the three ligands, suggesting
its importance in future drug design. The results in this paper
provide new insights into structural basis of the interaction
between CRO and tubulin, which is valuable for future drug
design and development targeting tubulin.
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Amino acid network (AAN) models empower us to gain insights into protein structures
and functions by describing a protein 3D structure as a graph, where nodes represent
residues and edges as amino acid interactions. Here, we present the ANCA, an
interactive Web server for Amino Acids Network Construction and Analysis based on a
single structure or a set of structures from the Protein Data Bank. The main purpose of
ANCA is to provide a portal for three types of an environment-dependent residue contact
energy (ERCE)-based network model, including amino acid contact energy network
(AACEN), node-weighted amino acid contact energy network (NACEN), and edge-
weighted amino acid contact energy network (EACEN). For comparison, the C-alpha
distance-based network model is also included, which can be extended to protein–
DNA/RNA complexes. Then, the analyses of different types of AANs were performed
and compared from node, edge, and network levels. The network and corresponding
structure can be visualized directly in the browser. The ANCA enables researchers
to investigate diverse concerns in the framework of AAN, such as the interpretation
of allosteric regulation and functional residues. The ANCA portal, together with an
extensive help, is available at http://sysbio.suda.edu.cn/anca/.

Keywords: Amino acids network, ANCA portal, network analysis, protein structure, allosteric regulation,
functional residues

INTRODUCTION

With the increasing number of high-resolution 3D structures of biomolecules, including proteins,
protein–DNA complexes, and protein–RNA complexes, the development of rapid and efficient
methods to perform large-scale analysis for them is needed. A variety of structure-based
computational tools and methods is developed to satisfy the new challenges (Romero-Rivera
et al., 2016; Liu et al., 2019; Sequeiros-Borja et al., 2020), such as consensus-based, machine
learning-based, molecular dynamics (MD) simulation-based, quantum-mechanic simulation-
based methods, and so on. The network concepts and methods have been widely used in numerous
problems in different fields of biological science including the study of protein structures and
functions (Hu et al., 2017). Amino acid network (AAN) models, which are undirected networks
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consisting of amino acid residues and their interactions,
have opened numerous opportunities to reveal new insights
in understanding the function of biomolecules from large-
scale 3D structure data. Compared with traditional structure-
based methods, studying a biomolecule from a network
perspective not only gives a systems-level understanding of
the biomolecule structure through topological information and
global connectivity (Yan et al., 2014; Zhou et al., 2014) but
also provides an efficient way for characterization of each
individual amino acid within the complex interaction network,
such as protein–protein interfaces (Di Paola et al., 2015), catalytic
residues (Zhou et al., 2016), and allosteric regulation (Di Paola
and Giuliani, 2015; Yan et al., 2018).

Nowadays, several Web tools that construct different types of
AANs have facilitated progress in this area of research. RING2.0
constructs an AAN based on the physicochemical interactions
between the residues, which include covalent and non-covalent
interactions (Piovesan et al., 2016). Protein contact atlas focuses
on the non-covalent interactions within structures and shows
them at different scales ranging from atomic level to the entire
macromolecule level (Kayikci et al., 2018). webPSN investigates
structural communication in macromolecules by constructing
static and dynamic AANs (Felline et al., 2020). Furthermore,
AAN-based Web servers such as MDN (Ribeiro and Ortiz,
2015), NAPS (Chakrabarty and Parekh, 2016), and RIP-MD
(Contreras-Riquelme et al., 2018) provide tools for quantifying
protein dynamic based on MD simulation trajectories. More tools
and Web servers for network can be found in a recent review
(Liang et al., 2020). However, many of the AAN models only
considered amino acid interactions on a geometric level but
not on the chemical properties of the proteins. An alternative
strategy for the simulation of the interactions is using the energy
between residues. We proposed an amino acid contact energy
network (AACEN) based on a coarse-grained contact energy
called environment-dependent residue contact energy (ERCE;
Yan et al., 2014), which takes into account the type of secondary
structure for each residue and is more efficient and easier for
characterizing the energy between residues (Zhang and Kim,
2000; Shen and Vihinen, 2003). Moreover, another inadequacy of
most AAN models is the disregard for heterogeneity of residues
and treating all nodes as the same in the network. To address this,
we improved our AACEN model by assigning residue properties
as node weights and named it as node-weighted amino acid
contact energy network (NACEN; Yan et al., 2018).

In this paper, we developed a Web server called ANCA
(Amino Acids Network Construction and Analysis) for
construction and analysis of our previously proposed ERCE-
based network models AACEN and NACEN. To refine our
ERCE-based models, we also added the edge-weighted amino
acid contact energy network (EACEN) model in our Web
server using the ERCE as link weights. Moreover, a C-alpha
distance-based network (C-alpha) model was also included
in our ANCA for two purposes. Firstly, the C-alpha model
can be used as the comparison network for our ERCE-based
models for proteins or protein complexes. Secondly, ANCA also
provides the construction and analysis for single and multiple
protein–DNA/RNA complexes based on the C-alpha model. The
organization of our portal ANCA was shown in Figure 1.

METHODS AND IMPLEMENTATION

The ANCA Web server is comprised of two core modules
entitled “single structure” and “multiple structures.” The
single-structure module provides the construction and
analysis for one structure with any one of the AAN
models at a time, while in the multiple-structures module,
the structures can be analyzed in batches using any of
the four types of AAN models. The former module is
more suitable for carrying out a detailed analysis for one
structure (either a PDB code or a PDB file). The latter
module can be used for comparison analysis of different
structures. Both modules support four types of AAN
construction, analysis, and visualization. Moreover, ANCA
can provide the option of distance-based AAN construction for
protein–DNA/RNA complexes.

Amino Acid Network
Amino Acid Contact Energy Network
As defined in our previous studies (Yan et al., 2014; Zhou
et al., 2014), an amino acid residue in the protein or
protein complex is denoted as a node and a link is set to
two nodes if the ERCE (Zhang and Kim, 2000; Shen and
Vihinen, 2003) between them is less than 0. ERCE is an
improvement of Miyazawa–Jernigan’s model by an extension
of residue alphabet from 20 to 60, which considers the 20
amino acids in three secondary structural states. ERCE eij
between residues i and j was defined as in our previous
studies (Yan et al., 2014), and then according to the eij, the
element in the adjacent matrix AM of AACEN was set to
1 if eij was less than 0, otherwise the element was set to 0
(Yan et al., 2018).

Node-Weighted Amino Acid Contact Energy Network
Based on AACEN, we have developed a NACEN module to
characterize and predict functional residues. In this network
representation, links between residues were defined the same
as in AACEN, and the properties of residues, including relative
solvent accessibility (SAS), mass, hydrophobicity, polarity, or
user-self defined node weights (Yan et al., 2018).

Edge-Weighted Amino Acid Contact Energy Network
In EACEN, the links between residues were weighted by ERCE
and the adjacent matrix AM of EACEN was defined as:

AMij =

{
0, eij ≥ 0
wij, eij < 0

(1)

Where wij is the normalization of the contact energy eij between i
and j:

wij =

{
0.0001, if

∣∣eij∣∣ = ∣∣eij∣∣min
|eij|−|eij|min
|eij|max−|eij|min

, if
∣∣eij∣∣ 6= ∣∣eij∣∣min

(2)

C-Alpha Distance-Based Network
ANCA can construct the network for protein–protein,
protein–DNA, or protein–RNA complex based on the
distance between represented atoms. For a protein–protein
complex, the link between two residue nodes in the network
was established if the distance between C-alphas of the
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FIGURE 1 | Organization of ANCA (Amino Acids Network Construction and Analysis). A schematic view of ANCA input, analysis, and output is provided here.

residues is lower than a threshold (Di Paola et al., 2013).
For a protein–DNA complex or protein–RNA complex,
we use one node to represent one amino acid, and three
nodes of P, C4∗(sugar group), and C2 (base group)
atoms to represent each nucleotide of the DNA or RNA
(Delarue and Sanejouand, 2002).

As mentioned above, our portal provides the above four AAN
models, including two unweighted AANs (C-alpha and AACEN)
and two weighted AANs (NACEN and EACEN). The C-alpha
model can be used not only for protein and protein–protein
complex but also for protein–DNA/RNA complex. But since
the network is constructed just based on the distance between

C-alpha atoms, it is a relatively coarse model. AACEN is an
ERCE-based network model that can be used just for protein
or protein complex but provide more detailed information by
considering the local environment of the residues (Zhang and
Kim, 2000), and it has been used to compare protein structures
and evolution (Yan et al., 2014, 2016). NACEN and EACEN
are also ERCE based. The difference is the former one also
employs the characters of residues as node weights, so it is
more suitable to explore residue function (Yan et al., 2018),
while the latter one assigns the ERCE between residues as the
link weights that provide more detailed information on the
links between residues than the unweighted model, so it can be
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helpful for studying the communication between residues, such
as allosteric regulation.

Analysis and Visualization of the Amino
Acid Network
ANCA can be used for the network analysis of proteins, protein–
protein complexes, and protein–DNA/RNA complexes from the
node level, edge level, and network level. The detailed definition
of the parameters was listed in http://sysbio.suda.edu.cn/anca/.

At node level, the topological parameters of nodes are
calculated, including degree, betweenness, closeness, transitivity,
and average shortest path length (Lnet). Moreover, for NACEN,
we also calculated the weighted degree, betweenness, and
closeness centralities based on the node weights. Their definitions
were in our previous work (Yan et al., 2018). At the edge level,
edge betweenness centrality is calculated for each edge to evaluate
the importance of the edge. Moreover, the long-range link, which
is related to protein secondary structure density and residue
evolution rate (Yan et al., 2014), is also labeled. At the network
level, the node number (n), edge number, Lnet , density, and
diameter of the network are calculated.

The ANCA provides two types of visualization for protein
molecule 3D structure and AAN. ANCA uses NGL Viewer
(Rose and Hildebrand, 2015) to display the protein molecule 3D
structure using the NGL JavaScript library. The visualization for
the AAN is implemented using R package networkD3 (Allaire
et al., 2017). In the AAN view, the lines represent the edges
and the dots represent the amino acid. When the mouse pointer
hovers over the dot, the amino acid name will be shown beside
the dot. Users can use the mouse to manipulate the graph, such
as scroll mouse wheel to zoom in or out of the graph, move the
mouse by pressing the left button to rotate or drag the graph, and
so on. The color of the protein molecule 3D structure and the
AAN can consist with the chain name.

Implementation
The ANCA portal can be accessed by modern popular Web
browsers, including Chrome, Internet Explorer, Safari, and
Firefox, without installing any specialized software or browser
plug-ins. The Apache1 was used as the Web server, which is
a secure, efficient, and extensible open-source HTTP server.
The application was realized using three-tiered architecture.
In the view tier, the front-end program was developed using
PHP2, the user interface interaction was realized using jQuery3,
and the advanced interaction control DataTable4 was adopted
to represent the result data. In the controller tier, we used
C# and.NET Framework 4.05 to implement the logic process
program, and the R program was used to construct and analyze
the AANs. In the model tier, MySQL6 was used to store execution-
related information.

1http://www.apache.org/
2https://www.php.net/
3https://jquery.com
4https://www.datatables.net/
5https://docs.microsoft.com/en-us/dotnet/csharp/
6https://www.mysql.com/

WORKFLOW OF ANCA

Step 1: Module Selection
The step-by-step workflow of ANCA is shown in Figure 2.
The first step is module selection for single structure or
multiple structures (step 1 in Figure 2). Both modules support
the four types of AAN construction and analysis including
AACEN, NACEN, EACEN, and Cupalpha distance-based AAN.
In the single-structure module, one of the AAN is constructed.
The results page shows the topological properties of the
AAN and the visualization of structure and network. While
in multiple-structures module, any type from the four AAN
models can be constructed and analyzed for each structure,
and the results page will demonstrate summary information
for all the AANs.

Step 2: Input Data Upload and Parameter
Setting
This step contains three procedures (Figure 2). First, PDB
ID or file in PDB format of the structure should be filled
in or uploaded (A in Figure 2). The input file should have
a.pdb extension. The second procedure (B in Figure 2) is
the selection of AAN type, i.e., AACEN, NACEN, EACEN,
and C-alpha distance-based AAN. Then, the parameters of
the corresponding AAN type should be specified. For AACEN
and NACEN, the threshold of energy and distance between
residues should be set. Besides these two parameters, users
should also specify the node weights of residues either by
selecting the default properties of residues, including SAS,
mass, hydrophobicity, and polarity or by uploading the file
(.txt) that contains user-self defined property. Lastly, the e-mail
address can be optionally provided (C in Figure 2) that will
be used to receive the results page link from ANCA portal.
More detailed description is available at http://sysbio.suda.edu.
cn/anca/

Step 3: Output Description
The output of the ANCA is composed of three parts:
visualization, network information, and network topological
properties. For visualization, the protein structure and
corresponding network are shown in the results page of
the Web server, and both of them are colored by the chain
of structure. For network information, the results page
provides files with adjacent matrix, edge list, and node
list of the network. For network topological properties,
the ANCA provides the parameters from the node level,
edge level, and network level, which have been shown
in the Analysis and Visualization of the Amino Acid
Network section.

CASE STUDY

To evaluate the performance of ANCA, we carried out case
studies for the single-structure module and multiple-structures
module separately, as follows:

Frontiers in Molecular Biosciences | www.frontiersin.org 4 November 2020 | Volume 7 | Article 582702225

http://sysbio.suda.edu.cn/anca/
http://www.apache.org/
https://www.php.net/
https://jquery.com
https://www.datatables.net/
https://docs.microsoft.com/en-us/dotnet/csharp/
https://www.mysql.com/
http://sysbio.suda.edu.cn/anca/
http://sysbio.suda.edu.cn/anca/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-582702 November 12, 2020 Time: 15:10 # 5

Yan et al. AAN Construction and Analysis Portal

FIGURE 2 | Step-by-step workflow of ANCA.
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FIGURE 3 | Results page for the case study.
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Case 1 Single-Structure Module:
Node-Weighted Amino Acid Contact
Energy Network for Human PDZ Domain
Postsynaptic density-95/Discs large/Zonula occludens 1 (PDZ)
protein domain family is a protein–protein interaction module,
which is involved in dynamic regulation of signaling pathways
and scaffolding and has emerged as a paradigmatic model
system for intra-domain allostery (Reynolds et al., 2011;
McLaughlinJr., Poelwijk et al., 2012). Here we tried to use
our portal ANCA to investigate the allosteric residues of the
third PDZ domain of PSD-95 (PDB 1BE9) by the NACEN
model. As shown in Figure 2, we chose the single-structure
module and NACEN network type with default threshold
and selected polarity as node weights. Then, the network
and protein structure can be visualized and the topological
parameters of the network were listed. At last, the residues
were ordered by the weighted closeness centrality (Cw), and
the results showed that the top 3 residues were PHE337,
TYR392, and PHE340 as shown in Figure 3. Among the top
3 residues, two of them, TYR392 and PHE340, have been
validated as allosteric residues by double-mutant cycle analysis
(Gerek and Ozkan, 2011).

Case 2 Multiple-Structures Module: All
Network Types for Multiple Structures
At this part, we constructed and analyzed all the four types
of network, including AACEN, NACEN, EACEN, and C-alpha
network for two structures, PDZ3 in case 1 and protein–RNA
complex MDA5 double-stranded RNA Filament (PDB 6G19)
with default parameters at one time. Then, ANCA portal gave the
results page with summary information for each network and the
link of the network in the column “Run Status.” The links point
to the page containing detailed information for each network as
described in case 1.

CONCLUSION

ANCA is a comprehensive portal for the construction
and analysis of network representations of protein

and protein–protein/DNA/RNA complexes to explore
and understand the macromolecules at different levels
of organization. It can help in the management of
heterogeneous information sources, such as structural,
sequence, physicochemical, and dynamical information
of residues. Another advantage of our portal is that
it also allows scientists to address diverse questions
by choosing different network models. For example,
NACEN is more suitable to identify the functional
residues in the structures, while EACEN can capture the
intramolecular information flow to help in understanding the
allosteric regulation.
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Homo-multimeric proteins that can come apart, change shape, and reassemble
differently with functional consequences have been called morpheeins and/or
transformers; these provide a largely unexplored context for understanding disease and
developing allosteric therapeutics. This article describes such proteins within the context
of protein structure dynamics, provides one detailed example related to an inborn error
of metabolism and potential herbicide development, and describes the context for
applying these ideas for understanding disease and designing bioactive molecules, such
as therapeutics.
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INTRODUCTION

A great number of medically relevant proteins are homo-multimers, some of which exist as
an equilibrium of alternate assemblies that are both non-additive and functionally distinct. The
phenomenon wherein protein homo-multimers can come apart, change shape while dissociated,
and reassemble into an architecturally and functionally different assembly has been called the
morpheein model of protein allostery (Jaffe, 2005; see Morpheein in Wikipedia1). A key to this
protein structure dynamic is that the required conformational change is spatially forbidden within
the context of either assembly. Proteins with this capacity can be called morpheeins and the
alternate assemblies can be called morpheein forms. The dynamic process of dissociation and
association makes this mode of allostery distinct from the classic Monod-Wyman-Changeux and
Koshland-Nemethy-Filmer models; it provides a conceptually distinct approach to understanding
normal protein function, disease-associated protein dysfunction, drug action, and approaches
to drug design. This article describes the morpheein model for allosteric regulation, provides a
disease relevant example in the protein porphobilinogen synthase, and considers current and future
research intended to capitalize on targeting quaternary structure shape shifting in many different
proteins as a way to understand disease and develop therapies. Because there are so few well
characterized examples, even the most comprehensive treatments of allosteric drug discovery do
not address proteins that are established to sample a dynamic equilibrium of assemblies comprised
of alternate protomer conformations whose interconversion is forbidden within the assemblies
(Lu et al., 2019a,b).

MORPHEEINS WITHIN THE CONTEXT OF PROTEIN
STRUCTURE DYNAMICS

The existence of morpheeins is one of many protein structure dynamic phenomena that falls outside
the classic one sequence – one structure – one function paradigm. Consequently, such discoveries

1http://en.wikipedia.org/wiki/Morpheein
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have been surprising (e.g., Breinig et al., 2003; Kashlan and
Cooperman, 2003; Bornholdt et al., 2013), often serendipitous,
and have been accompanied by the introduction of alternate
related nomenclature such as transformers and metamorphic
proteins (e.g., Murzin, 2008; Lopez-Pelegrin et al., 2014;
Wasserman and Saphire, 2016; Dishman and Volkman, 2018).
These refer to a continuum of quaternary structure dynamics
which expand our view of protein structure beyond the level
of primary, secondary, tertiary and quaternary. In the study
of ribonucleotide reductase as a drug target, the investigator
Aye has referred to going beyond quaternary structure as
“breaking the fourth wall”; in the study of Ebola virology, the
investigator Ollmann-Saphire has termed it the “fifth level of
protein structure” (Wasserman and Saphire, 2016; Long et al.,
2019). Herein, we use the term “fifth level of protein structure” to
refer to equilibria of alternate assemblies comprised of alternate
protomer conformations. This builds on the established concept
that protein function is a consequence of an equilibrium of
protein structures (Parisi et al., 2015). Both Aye’s and Ollmann-
Saphire’s treatments highlight that normal protein structure
dynamics can include architecturally distinct assemblies with
alternate functions that are comprised of different protomer
conformations. These assemblies exist as equilibria in the absence
of chemical modification. The populations (e.g., mole fraction)
of alternate morpheein forms responds to environmental factors
(e.g., ionic strength, pH) and most significantly to ligand
binding. These factors may govern the predominance of alternate
morpheein forms in different cellular locations. Single amino
acid substitutions that alter the mole fractions of alternate
morpheein forms can cause disease (e.g., Jaffe and Stith, 2007).
The morpheein model of protein allostery is a dissociative
allosteric model most closely related to the equilibrium models
of Nussinov (e.g., Kar et al., 2010) and Hilser (e.g., Motlagh
et al., 2014), with the added dimension of quaternary structure.
In the prototype morpheein described below, porphobilinogen
synthase, the alternate functions are high activity (on) vs. low
activity (off) (Jaffe and Stith, 2007; Jaffe and Lawrence, 2014;
Jaffe, 2016, 2020). In the Ebola virus VP40 protein, the alternate
functions are entirely separate activities, each one of which
is essential for the viral life cycle (Bornholdt et al., 2013).
Proteins that can moonlight (carry out unrelated functions, like
VP40) were first discovered in the 1980’s (e.g., Gurney et al.,
1986), and often arose from cloning the gene responsible for
a biological function only to discover that the cloned protein
sequence was already known to have a different function.
A fascinating example is the protein originally identified as the
glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase,
which now has many documented functions, many of which
can be targeted for drug discovery (e.g., Kopeckova et al.,
2020; Lazarev et al., 2020). The known moonlighting proteins
have recently been assembled by the investigator Jeffery into
a MoonProt R© database, which currently has ∼400 listings
(Mani et al., 2015; Chen et al., 2018). In most instances it
remains to be determined if alternate moonlighting functions
are associated with alterations at the fifth level of protein
structure. A related fifth level phenomenon is the reversible
filamentation of some enzymes, recently reviewed by Horton

(Park and Horton, 2019, 2020). Outstanding questions for many
filament-forming proteins is whether they are morpheeins (with
alternate protomer conformations), moonlighting proteins (with
more than one function), or both. Two related enzymes,
CTP synthase and IMP dehydrogenase are exemplars of this
unknown. Each, separately and together, undergo changes in
multimerization or filament formation in response to the state
of the cell, but functional distinctions among these assemblies are
yet unknown (Simonet et al., 2020).

Figure 1 illustrates the morpheein phenomenon using
differently shaped dice to represent different conformations of
the protomer. Monod first used dice assemblies to illustrate
quaternary structures (Monod, 1965). Figure 1 shows
equilibration between two alternate conformations of the
protomer, where one is represented by a cubic die and the other
is represented by a pyramidal die. Although not obvious from the
representative shapes, the interconversion of these conformations
does not require any substantial changes in the protein fold at
the level of secondary or tertiary structure. The interconversion
is spontaneous; it does not require any external input of energy.
It may involve small regions of order – disorder transition. For
example, interconversion between the protomer conformations
represented by the cube and pyramid could be a hinge motion

FIGURE 1 | A dice based illustration of the morpheein phenomenon. That the
alternate assemblies have different functions makes this a dissociative model
for protein allostery. In this illustration, the stoichiometry of the alternate
assemblies is different; this is just an example, not a prerequisite. (A) Cubic
and pyramidal dice are used as symbolic (not structural) representations of
alternate conformations of a protomer that can self-assemble through
association of two complementary surfaces. In this case, the two surfaces are
represented by the die face with one and with four dots. The tetramer
resembles a stack of boxes; the pentamer resembles a flying saucer. The red
dashed circle is a multimer-specific surface cavity that can serve as a ligand
binding site. Note that the orientation of the protomer is not retained in the
illustration of the multimer. (B) The diamond shaped ligands can bind to the
multimer-specific binding site and draw the equilibrium toward the assembly
of cubic dice, thus dictating protein function. This figure was adapted (with
permission) from an image first printed as the journal cover associated with
(Lawrence et al., 2008).
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between two folded domains of each protomer that allows the
die face with five dots to associate with the die face with six
dots, burying these surfaces. Hinge motions allow protomer
shape change without requiring a change in protein fold. In
Figure 1, the higher order multimers form by association of
the die face with one dot to the die face with four dots. The
cubic die forms a symmetric tetramer; the pyramidal die forms
a symmetric pentamer. It is easy to imagine how these two
assemblies, though made up of chemically identical components,
will interact with different cellular partners and potentially
have different functions. Note that the surface of the tetramer
contains a multimer-specific surface cavity that can serve as
a ligand binding site (dashed circle in Figure 1A). The ligand
could be a natural allosteric effector molecule, a drug, or another
cellular entity (protein, nucleic acid, lipid, membrane surface).
The pentamer does not have this same surface cavity and will
not interact with the same ligand. In Figure 1B, addition of
the imagined ligand causes stabilization of the tetramer, which
will draw the structural equilibrium toward the tetramer and
alter the protein’s function to that of the tetramer. All of this
happens in the absence of post-translational modifications or any
other covalent changes to the protein. We note, however, that
changes in protein sequence, post-translational modification,
or the presence of purification tags can shift the position of the
equilibrium (mole fraction of alternate morpheein forms) and
enhance or inhibit allosteric ligand binding.

THE PROTOTYPE MORPHEEIN –
PORPHOBILINOGEN SYNTHASE (PBGS)

PBGS Provides a Physiologic Relevance
to the Morpheein Model of Allostery
The physiologic relevance of the morpheein model of allostery
was first realized for the protein porphobilinogen synthase
(PBGS), whose quaternary structure dynamic is illustrated in
Figure 2A (Breinig et al., 2003; Selwood et al., 2008). Here I
paint a broad picture of PBGS, highlighting key aspects of its
fifth level of protein structure and refer the reader to recent
reviews for more details (Jaffe and Lawrence, 2014; Jaffe, 2016). In
the PBGS example, optimal enzyme activity requires controlled
access to the enzyme active site, which is gated by the opening
and closing of an active site lid. Each protomer has a complete
active site, but securely closing the active site lid depends upon
a network of molecular interactions that can only be achieved
in the octamer (Jaffe, 2016). In the PBGS example, the alternate
assemblies have different multimer-specific surface cavities that
can be used for the development of bioactive molecules. The
alternate assemblies also have different size, shape, and surface
charge, which allows them to be separated by biochemical and
biophysical methods such as native PAGE and ion exchange
chromatography (Breinig et al., 2003).

The PBGS catalyzed reaction is essential for all organisms that
rely on methanogenesis, photosynthesis, and/or respiration, thus
covering every branch of cellular life. With all this evolutionary
time to adapt to the organism’s needs and to function in different

FIGURE 2 | The equilibrium of alternate morpheein forms of PBGS. In all
panels, octamer (or pro-octamer dimer) components are in shades of pink;
hexamer (or pro-hexamer dimer) components are in shades of blue. (A) The
reaction coordinate diagram for the interconversion of human PBGS
morpheein forms [adapted with permission from Selwood et al. (2008),
copyright 2008, American Chemical Society]. In this illustration, one dimer is
shown in shaded ribbons (darker/lighter) while the other dimers are in space
filling with the same coloring. Note the low mole fraction of the essential
dimeric intermediates (Selwood et al., 2008). (B) The pH rate profile (10 mM
substrate, Bis-tris propane buffer) for WT human PBGS and the
disease-associated F12L variant, which strongly favors the hexameric
assembly [images adapted from Breinig et al. (2003)]. KM and VMAX

determinations varied substrate from 10 µM to 10 mM at pH 7 and pH 9.
Below illustrates that the position of the quaternary structure equilibrium is a
function of pH; at neutral pH the WT protein is predominantly octamer while at
pH 9, it is predominantly hexamer. The pH dependent transition from octamer
to hexamer for WT human PBGS accounts for the basic arm of the pH rate
profile (Selwood et al., 2008). A key component of this pH dependence is the
protonation of an arginine residue, which sits at a multimer specific interface
between the N-terminal arm of the dark pink subunit and the αβ-barrel of the
dark gray subunit, as indicated by the yellow arrow (Tang et al., 2006). This
arginine is spatially equivalent to an allosteric magnesium ion found in PBGS
from species that are neither metazoan nor fungal. The octamer-specific
interface stabilizes a closed active site lid. The white diamond indicates the
hexamer-specific surface cavity that was successfully targeted for
identification of species-specific (plant) PBGS inhibitors (Lawrence et al.,
2008).

cellular environments (e.g., cytoplasm, chloroplast, apicoplast),
factors governing the fifth level of PBGS protein structure
are not evolutionarily conserved. Additionally, the amino acid
composition of the targeted surface cavities is not conserved,
unlike active site residues. This makes the allosteric regulation
of PBGS a potential target for the development of antimicrobials
and herbicides. In some species (e.g., plants, bacteria, archaea)
the equilibrium position depends upon an allosteric magnesium
binding at an interface only present in the octamer (see yellow
arrow in Figure 2B). In PBGS from metazoa and fungi, which
lack the magnesium binding site, in its place is the guanidinium
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group of an arginine residue. In the human PBGS variant where a
leucine is substituted for Phe12 (F12L), from which we obtained
the crystal structure of the hexameric assembly (Breinig et al.,
2003), this conserved arginine does not contact the neighboring
N-terminal arm. In an apicoplast, PBGS has evolved to contain
a C-terminal extension that prevents the hinge motion necessary
to convert pro-octamer dimer to pro-hexamer dimer; this hinge
motion is illustrated in Figure 2A. Thus, in apicoplast PBGS
the equilibrium components are limited to octamer and pro-
octamer dimer (Jaffe et al., 2011). This phylogenetic variation
demonstrates that evolution of the fifth level of protein structure
provides another opportunity for the adaptation of protein
functional control.

Control of PBGS Morpheein Forms by pH
and Ligand Binding
The human PBGS pH rate profile (Figure 2B) helped reveal a
pH dependence to the quaternary structure equilibrium of wild
type human PBGS (see the bottom panel of Figure 2B; Selwood
et al., 2008). The crystal structures of the PBGS octamer (e.g.,
Jaffe, 2004; Jaffe et al., 2011; Mills-Davies et al., 2017) show
that a non-reacting moiety of the KM-determining substrate
interacts with the active site lid, essentially closing the lid and
allowing deprotonation of an active site lysine required for
essential Schiff base formation. With an open active site, this
deprotonation requires a high solvent pH, as is seen in the pH
rate profile of the constitutively hexameric F12L variant. The
crystal structures of the protomers in the human PBGS octamer
vs. hexamer superpose remarkably well, but differ in two key
ways. First is the backbone hinge between the αβ-barrel and
the N-terminal arm domains; this dictates assembly to octamer
vs. hexamer. Second is the presence of an ordered active site
lid, which is only present in one hemisphere of the octamer.
Both structures contain active site ligands in a half-of-the-
sites stoichiometry (one hemisphere) (PDB: 1E51, 1PV8). Only
the ligand-containing octamer active sites contains atoms that
derive from the KM-determining substrate, which are securing
a closed conformation of the active site lid through a network
of bonds between the substrate’s carboxyl group and basic
residues on the lid.

Although the PBGS quaternary structure equilibrium is
controlled by different factors in different branches of life,
there are unifying characteristics in the pH rate profiles
of alternate PBGS morpheein forms. Mammalian PBGS at
neutral pH (see Figure 2B, bottom), and plant/bacterial PBGS
with magnesium present are predominantly octameric and are
documented to have KM values in the range of ∼150 µM
(Mitchell and Jaffe, 1992; Jaffe et al., 1995; Breinig et al., 2003),
which is the range of the cellular substrate concentration.
The isolated hexameric F12L variant (see Figure 2B), and the
bacterial Escherichia coli PBGS without magnesium exhibit KM
values (at neutral pH) that are well above the physiological
substrate concentration, in the range of 5–20 mM. Addition
of magnesium to a magnesium-free E. coli PBGS sample has
been shown to shift the quaternary structure equilibrium to
octamer (Figure 3A) and reduce the KM to that characteristic

FIGURE 3 | Native PAGE illustrates how allosteric ligands control the
distribution of PBGS morpheein forms. (A) The distribution of morpheein
forms of E. coli PBGS responds to magnesium and substrate (ALA), both of
which stabilize the octamer [image adapted with permission from Jaffe et al.
(1995), copyright 1995 American Chemical Society]. In this example the
protein was purified with zinc, but not magnesium (Jaffe et al., 1995). The
E. coli PBGS octamer and the position of the allosteric magnesium are
established by crystal structure (Kervinen et al., 2001). Hexamer, tetramer, and
dimer positions are modeled on the assumption that mobility of all assemblies
is governed by the same charge/mass ratio. (B) The distribution of morpheein
forms of plant PBGS (Pisum sativum) responds to the addition of EDTA, which
strips the magnesium, destabilizing the octamer and favoring accumulation of
hexamer [image adapted from Breinig et al. (2003)]. In this example the protein
was purified in the presence of magnesium (Kervinen et al., 2000; Breinig
et al., 2003) and multimer size was determined by analytical ultracentrifugation
(Kokona et al., 2008). (C) Binding the KM determining substrate of human
PBGS relies upon an active site zinc ion. Removing the zinc with
1,10-phenanthroline destabilizes the octamer [image adapted with permission
from Jaffe (2016) copyright 2016 American Chemical Society]. (D) A ligand
discovered through computational docking to a hexamer-specific binding site
on plant PBGS stabilizes the hexamer [image adapted with permission from
Lawrence et al. (2008)]. This ligand inhibits the plant enzyme, but does not
affect the activity of the human enzyme [not shown, Lawrence et al. (2008)].

of octamer (Mitchell and Jaffe, 1993; Jaffe et al., 1995). Similarly,
treatment of a plant PBGS with EDTA causes a shift from
octamer to hexamer (Figure 3B; Breinig et al., 2003). For
human PBGS, this same phenomenon can be demonstrated by
removal of a catalytic zinc ion that is essential for binding the
KM-determining substrate (Figure 3C; Jaffe, 2016). The high
KM values for PBGS that are not octameric derives from an
inability to secure the closed active site lid, leaving the KM-
determining substrate loosely bound. What is striking about
the pH rate profile of WT human PBGS is the shift in KM
values between pH 7 and pH 9, where the kinetic parameters
resemble that of hexameric F12L. In fact, WT human PBGS
at pH 9 exhibits a double hyperbolic kinetic behavior. At low
substrate concentration, the observed reaction rate is dominated
by the low KM (high VMAX) octameric component, which is at
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a relatively low mole fraction. As the substrate concentration
starts to approach the KM of the hexamer, the observed enzyme
catalyzed reaction rate become dominated by the high KM
(low VMAX) hexameric component (which is at a high mole
fraction). This double hyperbolic kinetic phenomenon, caused
by a mixture of species with different kinetic constants follows
a classic treatment of isozymes. The alternate morpheein forms
of PBGS are not isozymes. Rather, they are a slowly exchanging
mixture octamer and hexamer.

An Inborn Error of Metabolism Is Linked
to Perturbation of an Equilibrium of
Morpheein Forms
ALAD porphyria is a rare inborn error of metabolism caused
by dysfunctional PBGS and inherited as a recessive disease
(Maruno et al., 2001). ALAD, an abbreviation for amino-levulinic
acid dehydratase, is an alternate name for PBGS; it remains in
clinical use. There are eight known disease-associated variants
and all patients are compound heterozygotes. Only one disease-
associated variant alters an amino acid at the enzyme active site.
When heterologously expressed and purified from E. coli, the
disease-associated human PBGS variants all show an increased
propensity to populate the hexameric assembly at neutral pH
(Jaffe and Stith, 2007). This can be illustrated by the appearance
of the double hyperbolic kinetic phenomenon at neutral pH
(Figure 4), which is indicative of a mixture of octamer and
hexamer. It is also seen by native PAGE and ion exchange
chromatography, both of which separate the octamer from the
hexamer, as confirmed by the established crystal structures of
the wild-type and the constitutively hexameric F12L variant
(Breinig et al., 2003).

FIGURE 4 | The activity vs. substrate relationship for disease-associated
human PBGS proteins indicate the presence of two morpheein forms at
neutral pH. The dashed lines are fitted to the hyperbolic Michaelis–Menten
equations, which is an excellent fit for the WT protein. The solid lines are
double hyperbolic fits (the sum of two species with different KM and VMAX

values) [image adapted with permission from Jaffe and Stith (2007)]. The
kinetic behavior of each variant shows evidence for a mixture of low KM and
high KM morpheein forms, corresponding to octamer and hexamer (Jaffe and
Stith, 2007). The wild type protein shows this double hyperbolic behavior at
pH 9 (see Figure 2B).

We have posited that the disequilibrium of alternate
assemblies contributes to the complex phylogenetic patterns seen
in the most common inborn error of amino acid metabolism,
phenylketonuria, which is caused by dysfunctional phenylalanine
hydroxylase (Jaffe et al., 2013; Jaffe, 2017). Although it is
now established that phenylalanine hydroxylase can equilibrate
between architecturally distinct high activity and low activity
tetrameric assemblies, it is not yet established whether tetramer
dissociation is a required component their interconversion
(Jaffe, 2017).

WE COULD EASILY HAVE MISSED THE
FIFTH LEVEL OF PROTEIN STRUCTURE
WHEN STUDYING PBGS

The four levels of protein structure are introduced in every
biochemistry text. Additionally, the relationship between
sequence, structure, and function is the foundation of broad
applications of bioinformatics, which drive much biomedical
research. For the first 20 years that we studied PBGS, we were
not looking for the fifth level of protein structure. All of our
data prior to ∼2003 was interpreted within the context that
PBGS has one fixed quaternary architecture, which is an octamer
(e.g., Wu et al., 1974), in possible equilibrium with tetramers
or dimers comprised of the same protomer conformation. For
example, our published model of the protein concentration
dependence of a plant PBGS included only dimer, tetramer,
and octamer (Kervinen et al., 2000). A few publications had
suggested that PBGS is a hexamer (e.g., Stolz and Dornemann,
1996). But, we believed that one of these interpretations
must be incorrect.

The first PBGS crystal structure, published in 1997, showed
the architecture of the octamer, establishing precedent, as crystal
structures often do (Erskine et al., 1997). As described above,
the third decade of our work with PBGS revealed the protein
as the prototype morpheein. We would not have seen this but
for a confluence factors. (1) With a focus on the evolution of
metal ion usage, we had correlated sequence variations with
in vitro behaviors looking at PBGS from mammals, bacteria,
and plants (e.g., Jaffe, 2003). By the time we fully evaluated
this relationship, the first crystal structure of a bacterial PBGS
showed the location of the allosteric magnesium binding site
(Frankenberg et al., 1999). It is present in the octamer and absent
in the hexamer. (2) We had not used purification tags, which
allowed ion exchange chromatography to reveal the separation
of PBGS morpheein forms during purification. It was a surprise
when the disease-associated PBGS variant F12L had a very
different mobility on an ion exchange column relative to the
charge-equivalent WT protein (Breinig et al., 2003). (3) Had
we not chosen to study the F12L variant, we would not have
had the stable hexamer as a reagent for comparative analysis.
For decades we had been discarding the small amount of
low activity hexameric mammalian PBGS that is present at
neutral pH and separated during our purification of wild type
proteins. When studying a human PBGS variant from which the
catalytic zinc binding site had been removed, we consistently
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saw two peaks on an ion exchange column, but could not
discriminate these by circular dichroism or enzyme kinetics.
By kinetic criteria they were the same, because addition of
substrate converted the hexamer to the octamer during the long
time-course assays for these very low activity variants. Substrate
stabilization of the octameric assembly can be illustrated using
2-dimensional native PAGE during which the gel is incubated
in assay mixture between the two dimensions (e.g., Jaffe et al.,
1995; Lawrence et al., 2008; see also Figure 3A). (4) Had we
not obtained the crystal structure of F12L, we would not have
seen the structure of the hexamer. From this, and knowledge
of the location of the allosteric magnesium from prior crystal
structures, we realized the octamer ↔ hexamer equilibrium
as the basis for allosteric regulation of PBGS. Our extensive
work on E. coli PBGS (including the 1995 documentation of
the native PAGE phenomenon shown in Figure 3A) could
now be reinterpreted within the context of this new allosteric
model. Having previously interpreted our data in terms of a
classic primary, secondary, tertiary, and quaternary structure
paradigm, we had overlooked hints that the PBGS octamer was
part of an equilibrium of differently sized morpheein forms. For
example, a 13C NMR study of labeled substrate bound to E. coli
PBGS (in the absence of magnesium) had unexpectedly yielded
NMR line widths significantly narrower relative to an octameric
mammalian PBGS (Jaffe and Markham, 1988; Mitchell and Jaffe,
1993), suggesting a faster rotational correlation time indicative of
a smaller multimeric size.

FINDING PROTEINS THAT EXPERIENCE
THE FIFTH LEVEL OF PROTEIN
STRUCTURE

Since the fifth level of protein structure provides an additional
way to manipulate protein function, it also provides an additional
approach to allosteric drug discovery. Consequently, there is
value in identifying proteins that behave as morpheeins. This
goal remains difficult. The initial discovery of the morpheein
character of PBGS was serendipitously based on in vitro
protein behavior coupled with X-ray crystal structures showing
architecturally different assemblies comprised of different
protomer conformations, but not different folds. This discovery
was not based on a bioinformatics approach. The PBGS
example presented itself because there happened to be a
naturally occurring variant, F12L, that sufficiently stabilized the
hexameric assembly to obtain its crystal structure. Although
the wild-type human PBGS was later realized to readily
equilibrate between octamer and hexamer in a pH-dependent
fashion (Figure 2), to date all conditions that have yielded
diffraction quality crystals of the wild-type protein favored
crystals comprised of octamer. Serendipity favored our studying
F12L; we could not have predicted the effect of this mutation.
Well-established computational approaches (e.g., the program
FoldX; Schymkowitz et al., 2005) which analyze the overall
thermodynamic effect of amino acid substitutions will fail to
predict substitutions that shift the position of an equilibrium
of morpheein forms. A similar story applies to the discovery of

alternate morpheein forms and alternate functions of the Ebola
virus VP40 protein (Bornholdt et al., 2013).

Our initial approach to identifying proteins that use the fifth
level of protein structure was to manually search the literature
for proteins that have one or more characteristics that we had
documented for PBGSs. This approach was especially challenging
as most of these characteristics were not contained in the
searchable abstract or keywords and much of the older literature
was not yet available as text-searchable PDF documents. Some
of the characteristics we focused on are listed in Table 1; the
characteristics included in Table 1 are each consistent with
an equilibrium of alternate assemblies, but none are strictly
diagnostic. Each of these behaviors can be otherwise attributed.
Trevor Selwood’s herculean efforts generated boxes of reprints
and a list of putative morpheeins (Selwood and Jaffe, 2012). This
list, originally posted on Wikipedia (Morpheein1), to date has not
been actively edited by the community. Failure to gain research
support for using the literature to identify proteins that function

TABLE 1 | Protein behaviors that might indicate an equilibrium of
morpheein forms.

Characteristic Comments

SDS-pure protein separating
into alternate bands on native
PAGE can indicate multimers of
alternate stoichiometry (or
conformation).

Native PAGE can be routinely incorporated into
the final stages of protein characterization.

SDS-pure protein that
separates into alternate forms
using ion exchange
chromatography

This has been used to monitor the
interconversion of alternate assemblies as a
function of ligand.

The enzyme-kinetic
phenomenon known as
hysteresis.

This can be observed if the transition from a low
activity form to a high activity form occurs
during the assay [as we have shown for the
R240A variant of PBGS (Tang et al., 2006].

Double hyperbolic kinetics (the
sum of two hyperbola with
different kinetic constants).

This can indicate alternate morpheein forms
with different kinetic constants. Seeing this may
require using a broad range of substrate
concentration (see Figure 4).

X-ray crystal structures of
multi-domain proteins that
cannot be superposed without
clashes. This observation is
often dismissed as an artifact of
crystal packing.

Many multi-domain proteins do not produce
diffraction quality crystals. A common approach
is to truncate one or more domains. If
overlaying the common elements of such
structures causes domains to clash, this could
be a sign of alternate assemblies. This was
observed for alternate truncated constructs of
HIV integrase (Andrake and Skalka, 2015).

Protein concentration
dependent specific activity can
indicate alternate activities
associated with different
multimeric stoichiometries.

This is seen for all PBGS that use only
magnesium [e.g., (Petrovich et al., 1996;
Kervinen et al., 2000; Shanmugam et al.,
2010)].

Evidence for soluble protein
multimers that dissociate along
a hydrophilic protein-protein
interface.

This is a difficult characteristic to search for as
many crystal structure files are at insufficient
resolution to position water molecules. PBGS
crystal structures contain phylogenetically
conserved water molecules at the
subunit-subunit interfaces that dissociate upon
formation of the dimeric morpheein forms
(Selwood et al., 2008).
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as morpheeins turned this to a back-burner approach. Yet, the
relatively small number of established morpheeins precludes
designing a bioinformatics method for their identification. Jeffrey
has described the same dilemma for the development of a
bioinformatics approach to identifying moonlighting proteins
(Mani et al., 2015).

Nevertheless, a key question remains as to how we can use
what we have learned from PBGS to harness the fifth level of
protein structure for drug discovery. In the PBGS example, the
difference between the protomer that forms a hexamer and the
protomer that forms an octamer is a hinge between two domains,
without significantly altering the fold of these domains. This
is also the case for alternate assemblies of the HIV integrase
protein, where a hinge motion dictates formation of a core-core-
dimer vs. a reaching dimer; and where it has been pointed out
that small molecule stabilization of one or the other dimer, to
prevent their interconversion, could yield a therapeutic (Bojja
et al., 2013). For integrase, this promise has not yet materialized.
In the case of VP40, alternate multimerization architectures
also appear to arise from hinge motions between two domains,
without significant refolding (Bornholdt et al., 2013). In the VP40
example, ligand association (RNA or membrane) dramatically
stabilize one assembly relative to another allowing the protein to
fulfill different essential function in the viral life cycle. Although
not yet realized, drugs that prevent the interconversion of such
assemblies could form the basis of a therapeutic. Research to
facilitate this approach is ongoing (e.g., Buzon et al., 2020).
In other cases wherein allosteric drugs could be imagined
to work by stabilizing one of alternate assemblies (such as
ribonucleotide reductase) the detailed molecular structures of
alternate assemblies are only beginning to be revealed. Some
of these are described in two recent reviews on the rich
oligomeric and functional repertoire of both mammalian and
bacterial ribonucleotide reductase enzymes (Thomas et al., 2019;
Long et al., 2020).

IDENTIFYING ALLOSTERIC
REGULATORS (E.G., THERAPEUTICS)

Using PBGS as an example, we have demonstrated how an
equilibrium of morpheein forms can be manipulated in ways
related to drugs. Realistically, ALAD porphyria is such a rare
disorder that finding an octamer-stabilizing allosteric effector
is, at best, an academic exercise. However, stabilization of a
PBGS hexamer could form the basis for an antimicrobial or
herbicide. To test this hypothesis, we targeted a hexamer-
specific surface cavity on the model of a plant PBGS hexamer
(in silico docking/in vitro testing) and found a hexamer-
stabilizing inhibitor that did not affect human PBGS (Lawrence
et al., 2008). Figure 3D illustrates the hexamer-stabilizing
effect of the discovered compound (named morphlock-1).
Unlike the enzyme active site, the multimer specific surface
cavities is not phylogenetically conserved. We also used native
PAGE to screen libraries of approved drugs as well as
environmental contaminants (Lawrence et al., 2011, 2013). These
studies revealed an explanation for some porphyria-promoting

drug side effects as well as the potential for environmental
contributions to confound genotype/phenotype correlations.
These demonstrations indicate that small molecule modulation
of equilibria of morpheein forms is a viable approach to drug
discovery. Nevertheless, a computational approach to identifying
such modulators requires molecular resolution models and/or
structures of alternate assemblies; these are not yet available for
most putative morpheeins.

CONCLUSION AND FUTURE OUTLOOK

Proteins that can come apart, change shape, and reassemble
differently with functional consequences provide expanded
opportunities for understanding disease and designing
therapeutics. This fifth level of protein structure provides
another example where the one sequence/one structure/one
function rule fails to provide the correct framework for data
interpretation. Biophysical techniques that are becoming more
widely available, (e.g., SEC-MALS, SEC-SAXS, cryo-EM, light
scattering, to name just a few) are revealing the shape changing
behavior of many disease-associated multimeric proteins.
Other forms of microscopy are revealing changes in protein
locations within cells. In some instances, these are associated
with protein filamentation. All of these observations suggest
the potential for harnessing the fifth level of protein structure
for therapeutic advantage. As described, a few notable examples
include ribonucleotide reductase (Thomas et al., 2019; Long
et al., 2020), HIV integrase (Andrake and Skalka, 2015; Gupta
et al., 2016), and Ebola VP40 protein (Bornholdt et al., 2013; Del
Vecchio et al., 2018).
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Surveying the Side-Chain Network
Approach to Protein Structure and
Dynamics: The SARS-CoV-2 Spike
Protein as an Illustrative Case
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Smitha Vishveshwara 3* and Saraswathi Vishveshwara 2*
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Network theory-based approaches provide valuable insights into the variations in global
structural connectivity between different dynamical states of proteins. Our objective is to
review network-based analyses to elucidate such variations, especially in the context
of subtle conformational changes. We present technical details of the construction
and analyses of protein structure networks, encompassing both the non-covalent
connectivity and dynamics. We examine the selection of optimal criteria for connectivity
based on the physical concept of percolation. We highlight the advantages of using
side-chain-based network metrics in contrast to backbone measurements. As an
illustrative example, we apply the described network approach to investigate the global
conformational changes between the closed and partially open states of the SARS-
CoV-2 spike protein. These conformational changes in the spike protein is crucial for
coronavirus entry and fusion into human cells. Our analysis reveals global structural
reorientations between the two states of the spike protein despite small changes between
the two states at the backbone level. We also observe some differences at strategic
locations in the structures, correlating with their functions, asserting the advantages of the
side-chain network analysis. Finally, we present a view of allostery as a subtle synergistic-
global change between the ligand and the receptor, the incorporation of which would
enhance drug design strategies.

Keywords: protein side-chain network, allostery, network theory, SARS-CoV-2 spike protein, conformational

dynamics, network parameters, molecular dynamics simulations

INTRODUCTION

The concept of allostery has evolved for more than half a century (Monod et al., 1965;
Koshland et al., 1966; Cooper and Dryden, 1984; Cui and Karplus, 2008; Changeux,
2011; Motlagh et al., 2014). This word in simple terms means “action at a distance” and
implies long-distance communication within and across the three-dimensional structures
of proteins. Fundamental understanding of the principles guiding allostery in proteins
came from two classical models, the concerted Monod–Wyman–Changeux (MWC)
(Monod et al., 1965) model and the sequential Koshland–Nemethy–Filmer (KNF) model
(Koshland et al., 1966), with the structural insights coming from one of the earliest crystal
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structures of hemoglobin (Perutz, 1970). An exponential increase
in the availability of protein structures in different functional
states has improved our comprehension of the phenomenon
of allostery (Liu and Nussinov, 2016; Greener and Sternberg,
2018). Studies over the past decades have associated allostery
in proteins with accompanying conformational variations.
Such conformational changes range from dramatic alterations
at the protein backbone level to subtle re-orchestrations
involving protein side chains in the absence of appreciable
backbone variations (Bhattacharyya and Vishveshwara, 2011;
Motlagh et al., 2014; Tsai and Nussinov, 2014; Salamanca
Viloria et al., 2017). It is this latter mode of conformational
fluctuations and long-range signaling that are more challenging
to capture.

Current advances in both experimental and theoretical
techniques have started shedding light into these subtle
conformational variations. In particular, long-range
molecular dynamics (MD) simulations, providing equilibrium
conformational ensembles, have offered extensive computational
characterization of the conformational dynamics in
proteins/protein complexes (Lindorff-Larsen et al., 2010, 2016;
Karandur et al., 2020; Mysore et al., 2020). The goal of these
studies ranges from understanding the fundamental biophysical
principles to understanding more practical applications for drug
design (Borhani and Shaw, 2012; de Vivo et al., 2016). Over the
past decades, this topic has been extensively discussed in many
excellent articles and reviews (Bagler and Sinha, 2005; Ghosh and
Vishveshwara, 2007; Cui and Karplus, 2008; de Ruvo et al., 2012;
Bhattacharyya et al., 2016; Astl et al., 2019; Zhang and Nussinov,
2019; Verkhivker et al., 2020; Zhang et al., 2020).

Network theory-based analyses of protein structure (Bagler
and Sinha, 2005; Atilgan et al., 2012) and dynamics have provided
unprecedented insights into the global structural connectivity
of proteins and its complexes in the context of allostery and
other biological processes (Atilgan et al., 2012; Di Paola et al.,
2013; Bhattacharyya et al., 2016; Gadiyaram et al., 2019; Krieger
et al., 2020; Verkhivker et al., 2020). When combined with
information on conformational variations, as obtained from
molecular dynamics, network approaches have elucidated several
examples of protein structure–function relationships (Doruker
et al., 2000; Sethi et al., 2009; Bhattacharyya et al., 2013; Papaleo,
2015; Tse and Verkhivker, 2015; Doshi et al., 2016).

In essence, it has become possible to obtain a better
perception of biological phenomena at the molecular level, such
as allostery, evolutionary effects, and transport phenomena,
mediated through macromolecules, by employing two major
concepts: (1) viewing macromolecules, such as proteins, as
one single connected entity, where perturbations can affect the
conformations at the local or global level, and (2) considering
the dynamically accessible conformations of proteins, and the
interconversion of their populations under different conditions
as a key to biological functions. Regarding the concept
of viewing proteins as a single unit, the connections at
the non-covalent level play an important role since these
are pliable for minor perturbations that are encountered at
normal physiological conditions, unlike the covalently stitched
polymer chains.

A number of approaches available in the literature (some
of them referenced above) differ in how we view the protein
structure as a single unit, connected through non-covalent
interactions. One can focus on backbone connectivity alone,
or connectivity at the level of side chains (explicit atoms or a
representation through centroids) (Greene, 2012; Bhattacharyya
et al., 2016; Kayikci et al., 2018). There are a number of
ways to define the connectivity criteria and assign strengths of
interactions. Similarly, the dynamical conformational landscape
can be obtained at the explicit atomic level or indirectly achieved
through methods like ENM, which provides cooperative modes
of motion (Krieger et al., 2020; Zhang et al., 2020). The
atomic level description can be obtained experimentally through
biophysical techniques such as X-ray crystallography, cryo-EM,
and NMR, and computationally through molecular dynamics
(MD) simulations.

The identification of specific regions responsible for the
overall perturbation and the reorganization of interactions to
yield a different conformation in the landscape has received great
attention. This is a crucial step in the process of making the
connection between molecular events and protein functions. The
methods range from direct analysis of the structures to ones
developed based on the physical, mathematical, and engineering
principles. Many such concepts are integrated together in
computational programs to obtain critical biological insights
(Greener and Sternberg, 2018; Verkhivker et al., 2020; Zhang
et al., 2020). Network theory is a widely used approach which
provides explicit information on the role of constituent amino
acids on the stability of structure networks at a global level
(Atilgan et al., 2010; Brown et al., 2017; Gadiyaram et al.,
2018). A vast range of experimental and computational studies
have taken up the challenge of correlating biological cellular
functions to the molecular level changes. Understanding protein
connectivity and dynamics can provide molecular mechanistic
insights into the various biological processes, like allostery
(Atilgan et al., 2007; Verkhivker et al., 2020; Wang et al.,
2020a), protein–protein or protein–nucleic acid interactions
(Brinda and Vishveshwara, 2005; Keskin et al., 2005; Sathyapriya
et al., 2008; Sethi et al., 2009), and ligand/perturbation-induced
conformational variations (Csermely et al., 2013; Bandaru et al.,
2017; Creixell et al., 2018). Such calculations may also aid
the identification of epitopes for drug-binding and capture
drug-induced conformational changes in proteins and protein
complexes (Csermely et al., 2013; Krieger et al., 2020).

The focus of this review is to provide a brief account
of the different network theory-based techniques targeted
at (i) characterizing protein structures as a single entity
connected by non-covalent interactions and (ii) integrating
with conformational dynamics, for which several comprehensive
reviews are available (Atilgan et al., 2012; Hu et al., 2017;
Verkhivker et al., 2020). The main emphasis here is on the
development and application of protein side-chain network
approaches (Bhattacharyya et al., 2016; Salamanca Viloria et al.,
2017; Kayikci et al., 2018), which have been shown to capture
subtle conformational differences that are sometimes elusive to
conventional analyses, such as the root mean square deviation
(RMSD) at the backbone level. Here, we have considered
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the SARS-CoV-2 Spike glycoprotein (Zhu et al., 2020) as an
illustrative example to demonstrate the capabilities of side-chain
network studies. Our focus on analyzing SARS-CoV-2 spike
protein, in particular, stems from its critical role in COVID-19
and the immediacy posed by the global pandemic caused by this
highly infectious coronavirus.

In order to appreciate the relevance of side-chain network
studies on the SARS-CoV-2 spike protein, here we provide
an introduction to this protein in the context of its structure
dynamics and function. SARS-CoV-2 belongs to the family of β-
coronaviruses, and is closely related to the earlier pathogens, such
as SARS-CoV and MERS-CoV, which caused severe respiratory
diseases in 2004 and 2013, respectively. To develop promising
therapeutic strategies, we need a clear understanding of the
mechanism of action of the SARS-CoV-2 virus. A succinct
summary of the structures of the SARS-CoV-2 spike protein
and its interactions with the host cell membrane has been
recently provided (Wang et al., 2020b; Xia et al., 2020a; Zhu
et al., 2020). These studies highlight how the recognition of
the human ACE2 receptor by the spike protein mediates viral
entry into the host cell. A simplified version of the interaction
between the human ACE2 receptor and the SARS-CoV-2 spike
protein, with an emphasis on the structure of the spike protein,
shows the steps that lead to viral fusion to the host cell
membrane (Figure 1). Long-timescale MD simulations of the
viral spike protein in different conformations have been recently
made available under the Creative Commons Attribution 4.0
International Public License (D. E. Shaw Research., 2020).
Further, a few computational studies on the SARS-CoV-2 spike
protein, to explore putative allosteric binding sites (Di Paola et al.,
2020) and the role of glycans (Casalino et al., 2020) have also been
recently published.

The SARS-CoV-2 spike protein is a homotrimeric complex
that is pivotal to the coronavirus entry into host cells and
one of the key drug targets for COVID-19 (Hoffmann et al.,
2020; Huang et al., 2020). In this article, we have selected the
closed (PDB_ID: 6VXX) and partially open (PDB_ID: 6VYB)
structures of the spike protein (Walls et al., 2020) as examples
to explicitly elucidate the protein side-chain network concepts.
Each subunit in the spike protein is organized into an S1 and
S2 domain (Figures 2A,B) (Xia et al., 2020a; Zhu et al., 2020).
The S1 domain hosts the receptor-binding domain (RBD) that
recognizes the human ACE2 receptor (Figures 2A,B) and the N-
terminal domain (NTD). In order to engage the ACE2 receptor,
the RBD undergoes a conformational change much like the
opening and closing of a hinge (Figure 2C). It is either in the
receptor-inaccessible state (closed state) or receptor-accessible
state (open state), governing access to the factors that control
ACE2 binding (Figure 2C). The S2 domain hosts the TMPRSS2
cleavage site and the heptad repeat 1 and heptad repeat 2
(HR1/HR2) domains, which are the targets for fusion inhibitors
(Xia et al., 2020a,b).

Backbone alignment of a closed structure (PDB_ID: 6VXX)
and a partially open structure (PDB_ID: 6VYB) reveals small
structural differences except that in the partially opened state
the receptor-binding domain of one subunit swings outward
as compared to the closed state (Figure 2C). This is an

ideal model system to apply protein side-chain-based network
calculations, as the observed backbone changes are small, but
carries important functional information. The availability of
long-scale MD simulation trajectories of the closed and partially
open states of the spike protein (D. E. Shaw Research., 2020)
further emboldened our choice of using the spike protein as our
model system. This data allows us to demonstrate the capabilities
of the dynamically stable protein side-chain network, correlating
structural connectivity with conformational dynamics.

In the section Protein Structure Network (PSN) Perspective
Into Structural Organization, an overview of network theory in
the context of protein side-chain networks, connectivity criteria
for the protein backbone (PBN) and the side-chain (PScN)
networks, the selection of optimal strength of interaction from
percolation theory perspective, and the cluster identification
from graph spectral analysis are presented. In the section
Protein Structure Network (PScN) for Dynamically Accessible
Conformational Ensembles, the method for integrating network
analysis with dynamically stable conformational landscapes is
introduced. Additionally, the differences between the closed
and open trimeric states of the SARS-CoV-2 spike protein are
elucidated through chosen network metrics. This is followed by a
Summary and Outlook section.

PROTEIN STRUCTURE NETWORK (PSN)
PERSPECTIVE INTO STRUCTURAL
ORGANIZATION

Network Theory-Based Representation of
Protein Structures
The overall shape of protein structures at a molecular level
is captured elegantly through secondary structures, such as
helices, beta strands and sheets, and loops, formed by the
backbone atoms of the polypeptide chain. Based on non-
covalent interactions, the Ramachandran map characterized the
allowed regions of the backbone torsion angles (ϕ,ψ) and
demonstrated that the allowed conformational space of the
polypeptide chain mainly consists of compact secondary and
super-secondary structures, stabilized by backbone hydrogen
bonds (Ramachandran et al., 1963). However, there are also
numerous examples where despite insignificant differences at
the protein backbone level, subtle conformational changes at
the protein side-chain level guide a plethora of biological
functions (Ghosh and Vishveshwara, 2007; Sethi et al., 2009).
Such examples have motivated the development of techniques
to completely map structural connectivity of proteins at both
the backbone and side-chain interaction levels, enabling us to
correlate even subtle structural variations that elude backbone-
based alignments with biological functions.

The study based on the mathematical principles of network
theory enables us to view the protein structures with non-
covalent interactions as a single, global network. Numerous
studies have formulated the backbone and the side-chain
structural connectivity in proteins using adjacency matrices and
analyzed them using various network metrics (del Sol et al.,
2006; de Ruvo et al., 2012; Bhattacharyya et al., 2016; Kayikci
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FIGURE 1 | SARS-CoV-2 employs the spike glycoprotein to enter its host cell. The spike protein is composed of two domains, the S1 domain that hosts the
receptor-binding domain (RBD), and the S2 domain. The S2 domain arbitrates the fusion of the viral and host cell membranes. Activation of the spike protein happens
by cleavage at two sites (S1/S2 and S2′) by the Furin TMPRSS2 protease. The spike protein initially binds to the ACE2 receptor on the host cell through its RBD. On
activation, it sheds the S1 domain, enabling S2 to fuse to the host cell membrane. This figure was adapted from Structural and functional mechanism of SARS-CoV-2
| Abcam (https://www.abcam.com/content/structural-and-functional-mechanism-of-sars-cov-2-cell-entry).

et al., 2018; Astl et al., 2019; Krieger et al., 2020; Verkhivker
et al., 2020). While protein backbone networks (PBN) capture
the non-covalent connectivity at the level of the backbone atoms,
protein side-chain networks (PScN/PSN) capture the structural
connectivity at the level of non-covalent interactions between
side-chain atoms. A representation of the global connectivity
across the protein structure in terms of networks can capture
the effect of perturbations at the local level and also across
the entire protein structure network. This property is key to
the understanding of how ligand or mutation-induced local
conformational changes affect the global structure of a protein,
and therefore its function.

An analysis of the network metrics from such a connectivity
matrix allows the identification of allosteric communication
pathways within a protein structure network by affording insights
into the interconnected global architecture of proteins. A variety
of network metrics can be used to analyze these protein structure
networks (both PBN and PScN). The choice of the network
metric being used depends on the question of interest. Briefly,
metrics such as hubs and clustering coefficient indicate the degree
of a residue and its connectivity to neighboring residues. The
percolation behavior of a network can be captured in terms
of clusters and cliques/communities (Palla et al., 2005; Deb
et al., 2009). The molecular details of pathways responsible for
allosteric signaling can be examined using the algorithms to

identify shortest paths of communication (Ghosh et al., 2011; Tse
and Verkhivker, 2015).

Protein Structure Network Based on
Backbone (PBN) and the Side-Chain
(PScN) Connectivity
Protein Structure Network refers to the representation of the
three-dimensional structural connectivity in a protein in terms of
a connectivity or adjacency matrix. In network theory language,
individual amino acid residues are termed as nodes and the
connections between them are defined as edges. In case of
the protein backbone network (PBN), Cα atoms are generally
considered as the representative of nodes and a distance of about
6.5 Å or less (based on the radial distribution of Cα atoms in
protein structures) between any two sequentially non-adjacent
residues are considered as an edge (Miyazawa and Jernigan,
1985; Patra and Vishveshwara, 2000). The construction and
application of PBN have been extensively discussed in earlier
reviews (Greene, 2012; Di Paola et al., 2015). Here, our focus
is on the technical details of construction and the subsequent
application of amino acid side-chain-based protein structure
networks denoted as PScN (or PSN). There are different ways of
measuring side-chain connectivity, such as the distance between
the centroids of the side-chains, or all atom–atom pairwise
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FIGURE 2 | Sequence and structural organization of the SARS-CoV-2 spike protein. (A) Domains of SARS-CoV-2 spike protein are depicted along with the two
critical sites of cleavage. (B) These domains are shown on the structure of the spike protein (PDB_ID: 6VXX, only chain A is shown for clarity). The backbone is
represented as a cartoon, and the domains are color-coded based on (A). The first residue at the two cleavage sites is highlighted as spheres and labeled. (C)
Backbone alignment (chain B only) of the closed and partially open states of the spike protein reveals conformational changes at the RBD (shown by the arrow), with
the rest of the domains showing RMSD <0.5 Å (a low backbone RMSD of <0.5 Å is also observed for chain A/C between the closed and partially open states).

distances. Pairwise distances between all atoms of the side-
chain of residues i and j (nij) and values within a distance of

4.5 Å (related to the sum of atomic radii; Heringa and Argos,
1991) capture explicit atomic-level connectivity. A normalization
value of the total number of interactions (nij) with respect
to the maximum values (Ni and Nj) observed from a large
dataset of high-resolution crystal structures of proteins provides
a uniform basis of evaluation as shown in Equation 1 (Kannan
and Vishveshwara, 1999; Sathyapriya et al., 2008).

Iij =
nij

√

NiNj
× 100 (1)

This expression allows us to weigh the strength of the interactions
(edge weights) in a systematic manner, which can be uniformly
applied to all protein structures. Edge weight (Iij) can range
from a value of zero to one. Values close to zero and one
represent weak and strong side-chain connections, respectively.
In general, strong connections can be related to nucleation
centers formed by the interactions between the residue pairs
such as oppositely charged, stacked aromatic residues, or polar
residues involved in hydrogen bonds. The weak interactions, on
the other hand, usually emerge from a smaller number of non-
covalent interactions (nij) between pairs of hydrophobic amino
acid residues. Generally, these interactions aid in bridging the
strongly connected nucleation centers and in organizing the
overall tertiary structure of the proteins. A PScN is constructed
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based on a user-defined value of Iij (termed Imin), and an edge
is drawn when the calculated Iij between a pair of residues
exceeds Imin.

Percolation Profile for the Largest
Connected Subnetwork as a Function of
Edge Weight
To formalize the effect of the edge weight cutoff (Imin) on the
properties of PScN for protein structures, the concept of the
largest connected subnetwork (cluster or cliques/communities)
transition profile was established and has been applied to a wide
range of biological problems (Deb et al., 2009; Brinda et al.,
2010). The PScN constructed from low values of Imin results
in a dense matrix with a large fraction of the residues in the
protein getting connected, yielding the largest cluster of the size
∼80–90% of the amino acid residues in the protein. The PScN
at higher Imin values consists only of strongly connected edges,
leading to a sparse matrix. The largest cluster in such a case
does not cover a major fraction of the residues in the protein
structure. On the other hand, in the largest cluster from a PScN
of low Imin, although it encompasses a large fraction of residues,
the ratio of signal/noise is low in this network. It is therefore
important to identify an optimal Imin to construct the PScN,
without losing information from a sparse graph or encountering
low signal/noise from a dense graph.

The identification of the optimal Imin to construct the PScN
has been addressed from the concepts of percolation within
a system, as defined by percolation transition point. In these
studies, the PScN is characterized by amacroscopically connected
subnetwork obtained from Imin, around the transition point. The
sizes of the largest cluster (LClu) or the largest clique/community
(LCli) in the protein structure network are measured as a
function of network connectivity at various Imin values. Plotting
the values of LClu or LCli as a function of Imin leads to a
sigmoidal curve. The transition point of this sigmoidal curve
is identified as the percolation transition point at which a
giant connected cluster still permeates the protein structure
network. Interaction strength (Imin) around this transition
point balances the problems of identifying non-specific, weak
interactions at smaller Imin values, and discontinuous, sparse
network connectivity across the structure at high Imin values.
From earlier studies, it is shown that generally the transition
point occurs in the range of Imin values 0.2 to 0.4 (Brinda et al.,
2010). This transition point is noted to be a common feature in
most protein structures.

In this study, we have analyzed the largest cluster percolation
profile for the partially open and closed states of the SARS-
CoV-2 spike protein. The plots of Imin vs. LClu are generated
from the dynamically stable adjacency matrices (the generation
of which is described in the section Protein Structure Network
(PScN) for Dynamically Accessible Conformational Ensembles)
corresponding to the closed (PDB_ID: 6VXX) and partially open
structure (PDB_ID: 6VYB) of the spike protein (Figure 3). A
noteworthy feature is that the profiles of the closed and partially
open states show some differences in the percolation transition
point. These differences are specifically located in the transition

regions of Imin (between 0.2 and 0.3), with the closed state
exhibiting a plateau of the LClu consisting of about 2000 residues,
whereas, in the partially open state, the plateau is around a
1,000-residue cluster. Structurally, this is reminiscent of the
conformational variations between the two states, with more
residues held together as the largest cluster in the closed state,
in comparison with the partially open state in the transition
region. Based on earlier studies, as well as this one, we infer that
the results obtained from the interaction strengths around the
percolation transition point, Imin value of 0.3, are more sensitive
and also provide a global view of the structural connectivity in
proteins. In the analysis described in subsequent sections, we
have used an Imin value of 0.3 to generate the networks.

Network Parameters of the PScN
With an increase in availability of data in various fields, the
advancement in the research area of large-complex network
studies has moved in different directions, such as problem and
data-driven approaches, development of efficient algorithms,
and availability of computational packages (Newman, 2001;
Newman and Girvan, 2004; Palla et al., 2005). As we have
seen above, the crucial input to obtain a solution to the graph
is the connectivity or adjacency matrix in which the nodes
and edges are defined based on the chosen application. The
connectivity matrices (PBN/PScN) can be analyzed using well-
established algorithms and network metrics, which can be
used to describe various structural and functional properties of
the protein. Some of the frequently used network metrics for
analyzing protein/macromolecular structures are hub, clustering
coefficient, cluster, cliques, and communities, and the shortest
paths of communication rely on well-established mathematical
algorithms (Dijkstra, 1959; Newman, 2001, 2004; Palla et al.,
2005). Details of these individual parameters and their physical
significance have been extensively discussed in past reviews.
A brief description of the parameters and their physical
significance follows.

Hubs represent highly connected residues in the protein
structure network, which essentially refer to the degree of a node.
In some general networks, the degree of certain nodes can be
very large (Newman, 2001; Tsai et al., 2009). However, the degree
of any residue in PScN generally does not exceed 10 due to the
steric constraints. The hubs are key in maintaining structural
stability and information flow in the protein structure network
and are often termed as “hot spots” in the structure (Amitai
et al., 2004; del Sol et al., 2006). Clusters, commonly identified
using the depth first search (DFS) algorithm (Cormen et al.,
2001), are a set of residues that are connected in a way that the
number of intra-cluster connections is higher than the number
of intercluster connections, involving these residues. Clusters
evaluated at different Imin values are used to predict the strength
of connectivity within a network as well as to study interfacial
interactions in protein complexes (Brinda and Vishveshwara,
2005).

Cliques are defined as completely connected subgraphs in
a network such that every residue is connected to every other
residue in this subgraph. An assemblage of cliques that share
common edges are termed communities (Palla et al., 2005).
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FIGURE 3 | Percolation profile for the largest connected cluster as a function of edge weight for the closed and partially open structures of the SARS-CoV-2 spike
protein. The differences between these conformational states manifest as deviations in the connectivity profile in the region around the percolation point (0.2–0.3).

Cliques and communities are used to identify regions of rigidity
and higher-order connectivity in protein structures (Ghosh
and Vishveshwara, 2008). Like LClu, described in the section
Percolation Profile for the Largest Connected Subnetwork as a
Function of Edge Weight, the largest identified communities
(LCli) can also provide insights into the percolation behavior of
strongly connected components within a protein as a function of
Imin (Deb et al., 2009). Floyd-Warshall and Dijkstra algorithms
for computing the shortest paths of communication have
been widely used to determine the critical residues involved
in allosteric communication in proteins, and for mapping
ligand-induced conformational changes (Atilgan et al., 2007;
Bhattacharyya and Vishveshwara, 2011; Pandini et al., 2012).
The specific choice of a network metric used for analyzing
a protein structure network is therefore determined by the
structural–biological insight we plan to seek. In the section
Protein Structure Network (PScN) for Dynamically Accessible
Conformational Ensembles, we will demonstrate the application
of some of these parameters, by comparing the hubs and
cliques/communities between the closed and partially open
states of the SARS-CoV-2 spike protein, in their dynamical
equilibrium states.

Graph Spectra of PScN
The graph spectral methods based on analyzing eigenvalues
and eigenvector components of the connectivity matrices are
another approach that has been extensively used to analyze
protein structure networks (Hall, 1970). Graph spectral analysis
on such a network is performed by studying the eigenspace of the
Laplacian matrix associated with it. For a network with n nodes,

the Laplacian L is an n x nmatrix that satisfies equation 2.

XTLX =

∑

u∼v

wuv (x (u) − x (v))2 (2)

where the summation is over every pair of nodes (u, v) connected
by an edge with weight wuv for some vector X in the space of
nodes. It is shown that the Laplacian may be expressed in terms
of the degree matrix D and the adjacency matrix A as equation 3
(Hall, 1970; Chung, 1997).

Luv = Duv − Auv (3)

The eigenvalues and eigenvectors of the Laplacianmatrix contain
information about the connected components or clusters of the
network (Gadiyaram et al., 2016). The eigenvector corresponding
to the lowest non-zero eigenvalue of the Laplacian, called the
Fiedler vector, contains the clustering information. Sorting the
Fiedler vector by value (FVC) (the components range from values
−1 to +1) identifies nodes that are part of the same cluster. In
this manner, all the clusters in the graph, ranging from the largest
cluster with maximum number of residues to isolated edges, can
be obtained as an analytical solution to the Laplacian matrix of
the graph.

We have considered the example of the SARS-CoV-2 spike
protein receptor-binding domain (RBD) (Figures 2A,B) to
demonstrate the capability of the graph spectral analysis from the
Laplacianmatrix. Specifically, we have extracted the clusters from
the sorted Fiedler vector of the receptor-binding domain (RBD)
of the spike protein (PDB_ID: 6LZG), which is complexed with
the target ACE2 receptor (Wang et al., 2020b). The adjacency
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matrix is constructed as a binary matrix with Iij ≥ 0.3, with the
elements taking values one and zero, respectively. A plot of sorted
Fiedler components (FVC) as a function of the nodes (residue
details given in Supplementary Table S1) is shown in Figure 4A.
The slope of the FVC plot is also shown in this figure, which
provides a clearer indication of cluster separation (Sistla et al.,
2005). The clusters with the number of residues four and above
are plotted on the structure of the RBD (Figure 4B). Thus, the
graph spectral analysis is a powerful analytical method to extract
the clustering information in protein structure networks.

It should be noted that there are limitations of performing
graph spectral calculations, such as on large datasets (e.g.,
long MD simulation trajectories), as they are computationally
expensive. However, the method provides unique information
which is difficult to obtain directly from other methods. For
instance, information can be extracted not only for clusters
within a protein but also on the interfaces between domains in a
single protein or across subunits in multimeric proteins (Brinda
et al., 2005; Sistla et al., 2005). Graph spectral studies can also
be performed on weighted networks, improving the accuracy.
Further, it lends itself for quantitative comparison of networks
by providing a score and allows us to identify the regions of the
network which are dissimilar. A brief review of these aspects has
been presented earlier (Gadiyaram et al., 2019).

PROTEIN STRUCTURE NETWORK (PScN)
FOR DYNAMICALLY ACCESSIBLE
CONFORMATIONAL ENSEMBLES

Biological systems exist in a dynamic equilibrium which
alters under different conditions of temperature and ionic
strengths, in complex with endogenous ligands/small
molecules/drugs/interacting proteins, and so on. A glimpse
of the accessible conformational landscape can be obtained by
studying a large number of experimentally solved structures
in different conditions or through long-timescale molecular
dynamics (MD) simulations. The network properties that we
described above for a single structure of proteins can also
be extended to study the dynamically average properties of
conformational ensembles. Depending on the objective, a
judicious choice has to be made as to whether to get the averages
from all the structural snapshots along the MD trajectory or
from selected structures representing various local minima along
the trajectory.

Dynamically Stable Protein Structure
Network (PScN) for Conformational
Ensembles
Analyses of protein conformational ensembles have been
facilitated by the development of multiple open-source program
packages (Eargle and Luthey-Schulten, 2012; Bhattacharyya
et al., 2013; Chakrabarty and Parekh, 2016; Brown et al., 2017;
Felline et al., 2020) that analyze multiple structural snapshots in
dynamically accessed conformational states. The critical element
in many of these open-source software is the ability to implement
network theory-based calculations to analyze MD simulation

trajectories. Some of these packages (PSN-Ensemble, webPSN
v2.0, and NetworkView) also enable the use of residue pairwise
interaction energies to weigh the connectivity matrix.

In this review, we discuss the general concepts of network
theory-based analysis of protein conformational ensembles,
specifically using PSN-Ensemble as an example software package.
The basic principles and capabilities of PSN-Ensemble have
been described before (Bhattacharyya et al., 2013). Briefly,
PSN-Ensemble provides a consolidated and automated analysis
platform, bridging network studies with protein conformational
dynamics. Taking the coordinates of structural snapshots from
conformational ensembles (MD simulations, NMR studies, or
multiple crystal structures) as input, the program computes
protein side-chain connectivity matrices (PScN). The individual
matrices can be averaged by imposing a user-defined cutoff
for dynamic stability (say X%). This “dynamically stable” PScN
retains any interaction that appears in greater than X% of the
structural ensemble, highlighting interactions that persist in a
user-defined fraction of the ensemble.

Network parameters and metrics, as described in the section
Protein Structure Network (PSN) Perspective Into Structural
Organization, can be used to analyze the dynamically stable PScN.
Using the dynamically stablematrix, PSN-Ensemble can compute
structural hotspots (e.g., hubs/cliques) and analyze structural
rigidity or flexibility (e.g., cliques/communities) (Ghosh and
Vishveshwara, 2008; Bhattacharyya and Vishveshwara, 2011),
percolation properties of the network (e.g., clusters and largest
cluster transition profile) (Deb et al., 2009; Brinda et al., 2010),
molecular determinants of allosteric signaling (e.g., shortest
paths of communication) (Ghosh and Vishveshwara, 2007),
and ligand/perturbation-induced conformational variations (e.g.,
hubs/cliques/communities) (Sukhwal et al., 2011; Creixell et al.,
2018).

Here we provide an example of the application of network
theory to analyze MD simulation trajectories. Using PSN-
Ensemble, we analyze the long-timescale MD simulation
trajectories (10 µs each) of SARS-CoV-2 spike protein in the
closed and partially open states (D. E. Shaw Research., 2020).
Based on the fact that the interaction strength around the
percolation transition point is most sensitive while providing
a global view of the structural connectivity (Figure 3), an Imin

value of 0.3 is chosen to construct the PScN for the two states
of the spike protein. Further, the dynamically stable PScN for
the MD conformational ensemble is computed at a cutoff of
50%. We compared the hubs and cliques/communities from
the dynamically stable PScN for the closed and partially open
states of the spike protein. The results of these analyses on
the spike protein are summarized in the subsequent sections
as an example of network theory-based comparison of different
conformational states.

Analysis of Dynamically Stable Metrics of
PScN for the Closed and Partially Open
States of the SARS-CoV-2 Spike Protein
In this section, we compare the side chain network properties
related to rigidity/flexibility (hubs, cliques/communities) from
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FIGURE 4 | Graph spectral analysis of RBD from SARS-CoV-2 spike protein. (A) Side-chain cluster plot of the RBD obtained from the sorted Feidler vector
components (FVC-at Iij = 0.3). Y-axis: sorted FVC; x-axis: nodes corresponding to FVC (node details in Supplementary Table S1). Nodes with identical FVC belong
to a cluster. The red dotted line represents the slope of the FVC plot. The constant zero values of slope correspond to clusters, and spikes in the slope indicate the
separation between clusters. (B) Representation of the side-chain clusters identified through FVC on the structure of RBD. The clusters are color-coded green
(largest), blue (2nd largest), yellow (6 residue cluster), orange (5 residue cluster), and cyan (4 residue cluster).

the long-timescale MD trajectories on the closed and partially
open states of the SARS-CoV-2 spike protein (10 µs each)
(D. E. Shaw Research., 2020). In order to engage the host cell
receptor (ACE2), the receptor-binding domain (RBD) of the
spike protein undergoes conformational changes, much like the
opening of a hinge (Walls et al., 2020). The closed state of
the spike protein (PDB_ID: 6VXX) is receptor inaccessible. A
partially open structure, with one of the subunits exhibiting
RBD opening (PDB_ID: 6VYB), is representative of the receptor
accessible states of the protein. Using PSN-Ensemble on the MD
simulation trajectories, we analyzed the global conformational
changes between these closed and partially open states.

The root mean square deviation resulting from a backbone
alignment of the closed (PDB_ID: 6VXX) and partially open
(PDB_ID:6VYB) structures of the spike protein is ∼0.5 Å. In
addition, each subunit in the trimeric spike protein shows <

∼0.5 Å root mean square deviation when compared to each
other, either within or between the two conformational states
(closed and partially open). This indicates highly symmetric
trimeric organization in the starting structures used for the
long MD simulations, in terms of backbone superposition. The
two states mainly differ in the conformations of the RBD in
one subunit, with the rest of the domains relatively unchanged
at the backbone level (Figure 2C) (Walls et al., 2020). Subtle
conformational changes that differentiate these two states elude
backbone-based structural comparisons, which cannot efficiently
capture re-orientations at the protein side-chain level. These
factors make the SARS-CoV-2 spike protein conformational
states an ideal model system to highlight the benefits of side-
chain-based network (PScN) analysis.

To compute the dynamically stable PScN, we extracted
conformational snapshots every 100 ns from the two MD
simulation trajectories of the spike protein in its closed
and partially open states (D. E. Shaw Research., 2020).
About 100 snapshots from each trajectory are used as an
input to the software package PSN-Ensemble to calculate
network metrics that persist in at least 50% of the structural
ensemble. A comparison of the dynamically stable hub and
cliques/communities between the closed and partially open states
of the spike protein shows how the conformational change
in the RBD leads to global structural rearrangements, which
percolates into the membrane-binding domains of the spike
protein. Through this highly relevant example, we reaffirm
the advantages of using protein side-chain network-based
calculations in capturing the changes in structural connectivity
and conformational dynamics in proteins under different
conditions of activity, ligand binding, environmental stimulus,
and allosteric communication.

Comparison of Dynamically Stable Hubs Between the

Closed and Partially Open States of Spike Protein
As mentioned in the section Network Parameters of the PScN,
the residues that form four or more connections with other
residues are defined as hubs and these are considered as
dynamically stable, if they appear as hubs in at least 50%
of the MD simulation snapshots. These hubs are considered
structural hotspots. A change in the number and location of
the dynamically stable hub residues in the closed and partially
open states of spike protein captures the differences in structural
connectivity between these two states. The three subunits in the
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closed and partially open states of the trimeric SARS-CoV-2 spike
protein show a total of 187 common dynamically stable hubs
(Supplementary Table S2). The common hubs between the two
states represent the structural connectivity in the PScN which
remains unchanged between the two conformational states. The
three subunits exhibit mostly symmetrical distribution of these
common hubs, in terms of both number of hubs and the
participating residues (Supplementary Table S2).

The distinctive structural features of the closed and partially
open states are shown by the hubs that are unique to each
conformational state. A comparison of these unique hubs
reveals striking differences between the closed (64 unique hubs)
and partially open states (74 unique hubs). The number and
distribution of these dynamically stable unique hubs show large
variations between corresponding subunits of the trimeric spike
protein, in going from the closed to the partially open state
(Figure 5, Supplementary Table S2). Strikingly, the number and
distribution of the unique hubs among the three subunits within a
particular conformational state also show significant differences.
This indicates asymmetry between the three subunits of the spike
protein, in both closed and partially open states. This asymmetry
is exhibited at the side-chain network level, despite the highly
symmetric nature of the spike protein structure in terms of
backbone alignment of every subunit with every other subunit
(RMSD < 0.5 Å).

Depiction of these unique hubs on each subunit of the
respective conformational states reveals structural rewiring in
the entire SARS-CoV-2 spike protein as the RBD goes from the
closed to the open conformation. Here, we discuss the differences
observed in chain A (detailed differences for all the three subunits
are summarized in Figure 5). In chain A, the partially open
state of the spike protein shows an increased number of hubs
in the NTD as well as in the region connecting the HR1 and
HR2 domains (Figure 5). The increased number of dynamically
stable hubs suggests enhanced connectivity in these regions as
the spike protein transitions into a partially open state. Our
results also suggest that the conformational changes in RBD
between the two states induce significant reorganization in the
dynamically stable PScN. These global side-chain conformational
changes are reflected as differences in the distribution of hubs
(Figure 5), especially at sites distant from the RBD, despite
minimal backbone reorganization between the two states.

Comparison of Dynamically Stable Cliques and

Communities Between the Closed and Partially Open

States of Spike Protein
Cliques represent a subset of residues within a protein structure
network where each residue is connected to every other residue
(Palla et al., 2005). Cliques represent higher-order connectivity
in a network, highlighting regions of structural rigidity in the
context of protein structures. An assemblage of cliques through
shared edges/interactions is defined as communities (details in
the section Network Parameters of the PScN). Communities
capture the percolation of structural rigidity through the protein
structure network. Together, comparison of cliques/communities
reflects subtle conformational changes that alter regions of
rigidity/flexibility in protein structural organization.

We compared the dynamically stable cliques and
communities obtained from the SARS-CoV-2 trimeric spike
protein in the closed and partially open states (Figure 6,
Supplementary Tables S3A–C). The conformational changes
that accompany the transition between the two states of
the spike protein are reflected by the cliques/communities
that are unique to each state. For clarity, we will only focus
on the dynamically stable cliques/communities formed
at the trimeric interface between the three subunits (also
see Supplementary Tables S3A–C for a comparison of all
cliques/communities between partially open and closed states of
the spike protein).

Interfacial cliques/communities are an excellent metric to
measure changes in connectivity or interaction between subunits
for multimeric proteins. In the closed state of the spike protein,
a large number of unique interfacial cliques are seen within the
RBD of the three subunits (Figure 6, Supplementary Table S4).
A total of 32 unique interfacial cliques are identified in the closed
state, involving residues in the RBD, NTD, SD1, S2, and HR1
domains in the spike protein. This suggests a tightly packed
trimeric interface in the closed state with rigid connections
between the residues across the three subunits. In contrast, only
21 unique interfacial cliques are observed in the partially open
state, with marked alterations in the domains participating in
the cliques. Only eight common interfacial cliques are shared
between the two conformational states, indicating significant
variations in the trimeric interface packing.

Interestingly, most interfacial cliques formed by the RBD
residues are lost in the partially open state. This, as expected, may
be due to opening of the RBD in one of the subunits in the spike
protein, which leads to a weakening of the interfacial connections
involving the RBD residues across the trimer. Interestingly, this
conformational change percolates to domains that are distant
from the RBD, with cliques altering across the entire spike protein
(Figure 6, Supplementary Table S4). A slight increase in the
number of interfacial cliques is noted near the HR1/HR2 domain,
especially in the region connection the cores of HR1 and HR2.

In this section, we have demonstrated the utility of side-chain
network metrics like hubs, clusters, and cliques/communities
by correlating the function of partial RBD opening to global
conformational changes at the side-chain interaction level. We
have shown that the local conformational changes at the RBD
lead to extensive re-orchestration of the entire spike protein
side-chain network.

SUMMARY AND OUTLOOK

The term “allostery” was coined more than half a century ago,
to characterize the action of proteins away from the classically
identified binding site (Monod et al., 1965; Koshland et al.,
1966; Changeux, 2011). The mechanism of action was described
through lock-and-key or induced fit models. Our understanding
of the protein structure–function relationship has increased
with advancement in structural biology. Today, there is an
exponential increase of structural data from experiments such
as X-ray crystallography, NMR, and Cryo Electron Microscopy
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FIGURE 5 | Depiction of dynamically stable unique hub residues in the three subunits (Chain A/B/C) for the (A) closed and (B) partially open conformational states of
the trimeric SARS-CoV-2 spike protein. The protein backbone is shown in cartoon representation, and each subunit is color coded. The unique hub residues in each
subunit for the two conformational states are represented as spheres and these residues are labeled.

(Structural Biology Shapes Up | Science | AAAS., 2016; Nitta
et al., 2018). In parallel, computational biology has reached the
maturity to explore the conformational space of large protein
assemblies through long timescale MD simulations (Lindorff-
Larsen et al., 2016; Wang et al., 2019; Mysore et al., 2020).

The data from experimental structural biology and
the MD simulations have become a rich source of
information to investigate macromolecular systems in
atomic details. Mining such valuable data for protein
conformation and dynamics, in order to unravel biological
function at a molecular level and provide meaningful and
reliable predictions for experimental biologists, has been

a challenge. This has led to multidisciplinary approaches
and adaptation of different domain expertise to investigate
the importance of specific amino acids toward the stability
and functions of proteins from various perspectives. Some
of the computational concepts and methods that have
made their way to address biological systems are network
theory, accessible modes, machine learning, and percolation
phenomenon, in combination with highly valuable chemical and
biological inputs.

Here we have presented a focused review of the protein
structures from a network perspective. Specifically, we have
focused on the networks of side-chain connectivity to highlight
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FIGURE 6 | Depiction of dynamically stable unique cliques at the interface between the three subunits (Chain A/B/C) for the (A) closed and (B) partially open
conformational states of the trimeric SARS-CoV-2 spike protein. The protein backbone is shown as cartoon, and each subunit is color coded. The interfacial cliques
are highlighted as spheres. A zoomed-in view of each interfacial clique is provided with the participating residues labeled.

the unique benefits of this approach. We have described the
method of quantifying connectivity and identifying the optimal
connectivity criteria by employing concepts from percolation
theory. We have also discussed the global connectivity of
the protein side-chains and clustering of interacting residues
from the graph spectral perspective. We have pointed out
that the highly similar backbone conformations of proteins
can host a repertoire of conformational landscapes, which
subtly differ in their side-chain interactions. Thus, mild
perturbations to proteins can lead to side-chain reorganizations
that elude backbone-based structural studies and drive allosteric
communication. We have briefly touched upon a variety of
approaches to investigate allostery, on which excellent recent
reviews are available.

Molecular dynamics simulations can yield an ensemble of
protein conformations, which can capture both the backbone
and the side-chain level differences in interactions. Analysis of
MD simulation trajectories using side-chain network formalism
provides a global view of protein structural connectivity from
a dynamic perspective. We have reviewed the methodology
for such integration of MD simulation with network theory-
based analyses.

Due to the global pandemic caused by the highly infectious
COVID-19, we have chosen the SARS-CoV-2 spike protein as
an example to illustrate the dynamic PScN perspective. We
have investigated the molecular dynamics trajectories of the
closed and partially open states of the trimeric spike protein
that have been made available by D.E. Shaw Research (D. E.
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Shaw Research., 2020). Backbone-based structural comparison
between the closed and partially open states reveals minimal
structural changes. Highlighting the importance of side-chain
network analyses, a dynamic PScN-based comparison reveals
key differences between the two conformational states. The
present investigation highlights the differences at the side-
chain interaction level, between the two states such as (1) the
differences in the size of the largest connected clusters (LClu) in
the percolation transition region, with the closed state beingmore
stable than the open state, and (2) the differences in the network
parameters such as hubs, cliques, and communities.

A comparison of the network properties of the partially open
and closed forms of the SARS-CoV-2 spike protein reaffirms
that different functional states of proteins can adopt very
close backbone topology. While substantial side-chain network
parameters like hubs, cliques, and communities are also common
to both the forms, the unique ones are strategically located
in various parts of this multimeric protein. For example, the
local conformational changes during the RBD opening lead to
extensive re-orchestration of the entire spike protein network,
more pronounced in the interfacial region of the trimeric
contacts. The different functional states are carefully balanced
through the re-organization of side-chain connectivity tomediate
interactions with the ACE2 receptor, and ultimately viral fusion
to host cell membrane. A detailed study of these interactions
between the SARS-CoV-2 spike protein and ACE2 receptor or
relevant antibodies/drugs from a side-chain network perspective
will be the subject of future investigations.

In addition to offering insights into the structure–function
correlation in proteins at the side-chain connectivity level, the
dynamic network-based studies also provide a new perspective
of allostery. The flexibility of the protein involved in interactions
with ligand/drug or other proteins is as important as their
interacting partners, to have a productive signaling output.
Allostery should be viewed as a synergistic–global interaction
between the ligand (or the environment) and the receptor. The
mechanism of long-distance communication involves specific
routes and subtle changes in the communication paths, in
order to signal at a distance. Analysis of PScN reveals allosteric
communication paths via side-chain interactions even without
substantial backbone reorganization. A stimulus at the ligand-
binding pocket may be transmitted to the desired destination
through subtle reorganization of the side-chain interactions that

are allowed in the equilibrium dynamical state. Comparison
between the two states of the SARS-CoV-2 spike protein
reveals significant changes in the hubs and cliques/communities
in regions distant from the RBD. The global reorganization
of the side-chain connectivity between the two states of
the spike protein could also influence the communication
paths within and across proteins. Thus, one can consider the
conformational landscape as being made up of various side-chain
network paths.

Finally, in the context of treatment of infections, the
antibodies and vaccines are produced in response to the global
topology of the host protein or receptor. They complement the
naturally evolved receptor more globally around the binding
sites. The drugs, on the other hand, which are designed based
mainly on the binding site information, may not be highly
effective. As we have seen here, the binding site residues are held
loosely or tightly by the residue clusters, firmly anchoring some
of the interacting residues deep within the pocket. The drug-
development strategies would benefit by incorporating the side-
chain network connectivity information into their design, thus
providing a rationale for incorporating the effects of variations in
global structural connectivity in proteins.
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Two new computational approaches are described to aid in the design of new

peptide-based drugs by evaluating ensembles of protein structures from their dynamics

and through the assessing of structures using empirical contact potential. These

approaches build on the concept that conformational variability can aid in the binding

process and, for disordered proteins, can even facilitate the binding of more diverse

ligands. This latter consideration indicates that such a design process should be less

restrictive so that multiple inhibitors might be effective. The example chosen here

focuses on proteins/peptides that bind to hemagglutinin (HA) to block the large-scale

conformational change for activation. Variability in the conformations is considered

from sets of experimental structures, or as an alternative, from their simple computed

dynamics; the set of designe peptides/small proteins from the David Baker lab designed

to bind to hemagglutinin, is the large set considered and is assessed with the new

empirical contact potentials.

Keywords: protein design, peptide design, computational design, protein ensemble, protein potentials

INTRODUCTION

Influenza infection is a widespread cause of major medical concern because of rapid viral evolution,
which causes both occasional pandemics and, more frequently, health problems almost every year.
It has been estimated that the annual outbreaks by influenza A and B viruses over the past 100
years have had an even greater impact than all other past pandemics combined (Wilson et al.,
1981; Bullough et al., 1994; Bizebard et al., 1995). The extremely high mutation rate of the virus
means that any given vaccine soon becomes outdated. Thus, vaccination offers limited protection,
especially when facing the highly virulent nature and rapid evolution of influenza (Chen et al.,
1999). Although some effective anti-influenza drugs have been developed, drug resistance usually
appears rapidly.

Hemagglutinin (HA) is a major surface glycoprotein of this virus that is involved in four of
the most important aspects of influenza infection: (a) it is the target of antibodies that neutralize
infectivity, (b) it undergoes antigenic drift to escape neutralization, (c) it binds to cell-surface
receptors to initiate infection, and (d) it mediates the fusion of viral and host membranes essential
for viral entry. The large-scale conformational changes in HA are critical for the steps in which the
virus inserts itself into the host cells by fusing to the host membrane, and the residues involved in
this process are highly conserved across different types and subtypes during antigenic drift. These
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residues can serve as important targets for developing broad-
reacting antiviral inhibitors (Jiang et al., 1993; Wild et al., 1994;
Chan et al., 1998; Skehel and Wiley, 1998). Based on a set
of crystal structures of the HA-antibody complex showing the
conformational changes to HA during the essential activation
steps, David Baker and his colleagues designed a novel HA
inhibitor for Group 1 of type A virus (Fleishman et al., 2011).

Influenza HA is a homo-trimeric protein where each
monomer contains two disulfide-bonded polypeptides, HA1
and HA2. HA1 is responsible for attaching to host cell-surface
receptors, and HA2mediates the fusion of the influenza envelope
with the endosomal membrane thus allowing the entry of
influenza RNA into the host cell. The pre- (Wilson et al., 1981)
and post-fusion structures (Bizebard et al., 1995) of HA1 are
essentially the same, while those of HA2 (Wilson et al., 1981;
Bullough et al., 1994; Chen et al., 1999) are drastically different
(see Figure 1).

The structural change in HA2 includes a partial unfolding
of the long α-helix into a loop (dark blue) and the folding of
an inter-helix loop (in red) into a part of the long α-helix, thus
delivering both N- (blue) and C-terminal (pink) fragments to
the same end of the molecule upon the fusion of viral and
endosomal membranes.

The protein gp41 of HIV-1 is the membrane fusion protein,
similar to HA2 of HA (Skehel and Wiley, 1998). In that
case, peptides derived from the C-terminal region of gp41
corresponding to the outer-layer helices, referred to as C-
peptides, were found to inhibit HIV-1 infection with IC50 in
the nanomolar range (Jiang et al., 1993; Wild et al., 1994; Chan
et al., 1998). C-peptides are believed to act by binding to the

FIGURE 1 | The HA in the pre- (A), intermediate (B), and post-fusion (C)

states. The termini of HA1 (light blue) and HA2 are labeled as N1, C1, N2, and

C2, respectively, in (A). The dotted lines in (C) indicate unresolved regions. The

structures have all been aligned on the cyan helix, which is the only region in

that domain that does not change during the transition.

exposed surface of the N-terminal central three-helical bundle
in a transient pre-fusion gp41 intermediate, thereby blocking
membrane fusion. One such L-peptide, T-20/Enfuvirtide with
36 residues, was approved previously as a drug by the Food
and Drug Administration (FDA) (FDA Notifications, 2003); it
showed high efficacy in suppressing resistant HIV-1 strains.
Moreover, efforts to target a prominent pocket on the surface of
the central three-helical bundle have led to the discovery of small,
cyclic D-peptides that inhibit HIV-1 infection, thereby validating
the pocket as a potential target for small-molecule HIV-1 fusion
inhibitors (Eckert et al., 1999).

To evade host antibody recognition, the HA protein on the
surface of influenza virus, primarily on the globular domain,
must constantly mutate. This interferes in important ways with
any vaccine and reduces the vaccine’s efficiency and useful
lifetime. However, no matter how much the influenza virus
mutates, it must maintain the ability to induce membrane fusion
to ensure its propagation. Thus, the stem domain that is primarily
responsible for inducingmembrane fusion is the most conserved.
Ian Wilson’s group identified antibodies that broadly neutralize
influenza A virus Group 1 (Ekiert et al., 2009) (Figure 2A),
Group 2 (Murphy and Webster, 2001), Group 1 and 2 (Ekiert
et al., 2012), and influenza type A and B viruses (Dreyfus et al.,
2012) (see Figure 2B). All these antibodies recognize epitopes
located in the stem domain. David Baker’s group designed small
proteins against influenza A virus Group 1 (Fleishman et al.,
2011) (Figure 2A). In addition, they identified a conserved patch
on the surface of the central helical bundle in the low-pH post-
fusion state (Figure 2C). These three interfaces may all serve as
useful targets for developing inhibitors against influenza virus.

Molecular recognition in general and protein-protein
interactions in particular are essential in almost every aspect
of biological function. Moreover, proteins that bind other
proteins with high affinity and high specificity have numerous
applications for diagnostics and therapeutics. Currently,
antibodies are by far the most commonly used proteins for both

FIGURE 2 | Interfaces on HA that could likely be targeted in inhibitor design.

(A) The interface conserved among Group 1 influenza A virus (in colors). (B)

The interface conserved among all influenza A and B viruses. (C) The

conserved patch on the surface of the central helical bundle at low-pH on HA.
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TABLE 1 | The PDB identifiers of the 43 structures of hemagglutinin used here for

extracting dynamics.

1HGD 2HMG 3FKU 4BGZ 4KPQ

1MQL 2IBX 3HMG 4BH1 4KPS

1MQM 2WR7 3LZG 4DJ6 5HMG

1MQN 2WRB 3M5G 4EDB

1RD8 2WRD 3M6S 4F23

1RUY 2WRE 3S11 4F3Z

1RUZ 2WRF 3SM5 4FIU

1RV0 2WRG 3UBE 4GXX

1RVX 2WRH 3VUN 4JTX

2FK0 3EYM 3ZTJ 4KDM

detection and therapeutic intervention. However, antibodies
are large proteins that are expensive to produce and difficult to
deliver. Thus, it would be important progress for biomedicine to
be able to design novel protein-binding modules at will.

The set of 88 proteins that were designed and tested by Baker
et al. provides an excellent test set for use in the present study.
Below we consider the dynamics of the structure in two different
ways, from a set of experimental structures and from computed
dynamics. Then we apply new knowledge-based free energies to
rank the different designs, specifically predicting which designs
are likely to bind. Baker and colleagues were not able to do this
without experimental testing. These are empirical-free energy
contact potentials developed by Jernigan, Kloczkowski, and
Faraggi that have proven to be highly successfully in blind-tests
at past CASP experiments. In the present paper, we aim to make
some suggestions for new ways to sample conformations of a
target protein and how to assess the designed structures.

MULTIPLE EXPERIMENTAL STRUCTURES
CAPTURE THE IMPORTANT FUNCTIONAL
MOTIONS WITHIN A HEMAGGLUTININ
STRUCTURE SET

The 43 structures of hemagglutinin listed in Table 1 were
collected from the PDB with a BLAST search, retaining only
those structures present as trimeric complexes of the HA1 and
HA2 subunits. The individual subunits were extracted separately
and aligned. This yields a total of 129 structures of the HA1
+ HA2 monomers that were superimposed onto the central
structure (PDB: 1 mqm) using the Combinatorial Extension (CE)
algorithm, and these have a continuous distribution of RMSDs
from 0 to 3.3 Å.

After these structures have been superimposed, the
covariances for all pairs of positions were computed. Then
Principal Component Analysis is performed on this dataset.
The input is the set of all of the structures in the set (Teodoro
et al., 2002, 2003). From these data, the average position of each
point in the reference structure is computed as <xi >, and
the covariances for each pair of points, i and j, was computed
according to cij =

〈

(xi − 〈xi〉)
(

xj −
〈

xj
〉)〉

, where brackets < >

indicate averages over the set of structures. The covariancematrix

FIGURE 3 | Principal component contributions to the total motions of

hemagglutinin. Percent of variance explained by each individual PC is shown in

blue and the cumulative contribution of each PC to the total variance/motion in

red. The first 5 PCs account for 90% of the total motions present in the set of

43 structures.

C can be decomposed as C = P∆PT , where the eigenvectors P
represent the principal components (PCs) and the eigenvalues
are the elements of the diagonal matrix ∆. The eigenvalues
are sorted in order. Each eigenvalue is directly proportional
to the amount of the total variance it captures. The results of
this analysis are shown in Figure 3 for the set of coarse-grained
hemagglutinins, which shows how truly limited the characteristic
motions are within the structure set. Clearly, it does not require
many of these characteristic motions to capture nearly all of the
overall motions.

CHARACTERIZATION OF THE GLOBAL
MOTIONS IN HEMAGGLUTININS

Based on their sequences, HAs have been subdivided into two
main groups: Group 1 (H1, H2, H5, H6, H8, H9, H11, H12, H13,
and H16) and Group 2 (H3, H4, H7, H10, H14, and H15) (Air,
1981). Interestingly, the first three PCs separately cluster into
these two major groups, with minor exceptions. The distribution
of the experimental structures over the PCs are shown in Figure 4
for pairs of PCs. This distinctive clustering can be seen clearly.

Different conformations can bind to different partners and
thus include dynamics in the process that will improve the
probability of success in computational protein design. When
the PCs are visualized on the structures, it can be seen that the
first three PCs primarily represent motions in the B-loop (blue)
that are involved in the large-scale transition. PC1, PC2, and PC3
can be interpreted as primarily involving conformations changes
in the C-terminus, the central, and N-terminus parts of the B-
loop (see Figure 5). Interestingly, the B-loop is a region with a
strong tendency to form a coiled-coil and is implicated in the
formation of the pre-hairpin intermediate in the “spring loaded
mechanism” of HA action (Carr and Kim, 1993; Xu and Wilson,
2011). The PC3 motion also clearly demonstrates the shift in the
loop necessary for it to position itself at the top of helix C. In
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FIGURE 4 | Distribution of the 129 HA monomeric structures projected onto the first 3 PCs. (Left) PC2-PC1 space and (Right) PC3-PC1 space. PC1 separates the

Group 1 and Group 2 hemagglutinins into different clusters. Outliers H13 and H16 have been eliminated from the figure for the sake of clarity. PC1 has a major gap

between the two groups of clustered structures. PC3 appears to be populated in two somewhat similar clusters, with Group 1 showing a particularly wide range of

PC3 values.

addition, PC2 captures a hinge motion in the head of HA with
respect to the stem as well as well as amotion at the N-terminus of
HA2 (fusion peptide) that is subsequently exposed for insertion
into the membrane during fusion. These computed structures
show a high level of variability of conformations particularly
for the B-loop, which relate well to the known conformational
transition, even though the full extent of motions is not shown
in Figure 5. As shown in Table 2, these PCs provide a useful
representation of changes present in the ensemble of structures.

ANISOTROPIC NETWORK MODELS (ANM)
CAN SUBSTITUTE, OF INSUFFICIENT
NUMBERS OF EXPERIMENTAL
STRUCTURES ARE AVAILABLE

Elastic Network Models of proteins, such as the Gaussian
Network Model (GNM) and Anisotropic Network Models
(ANM) of proteins as developed by Tirion (1996), Bahar, Erman,
and Jernigan (Bahar and Jernigan, 1994, 1998; Bahar et al., 1997a;
Demirel et al., 1998; Atilgan et al., 2001; Doruker et al., 2002a,b;
Doruker and Jernigan, 2003; Sen et al., 2006), computationally
yield information about protein fluctuation dynamics, the
directions of motions of the residues and atoms around their
equilibrium positions. This information has already been used by
Bahar, Jernigan, Kloczkowski, and many others with significant
success (Bahar and Jernigan, 1994; Keskin et al., 2002a,b; Isin
et al., 2012) to explain functional motions and mechanisms
in proteins, nucleic acids, and large biological assemblies, such
as the ribosome. ANM could be used as an alternative to
calculate the normal modes from a single structure when
insufficient numbers of experimental structures or structures
having sufficient variability are not available to perform PC
analysis, then normal modes from the elastic network models
could also be used to compute entropies (Zimmermann et al.,
2012) (But, as we show below, contact entropies are simpler

and provide significant gains). In ANM, the potential energy
V is a function of the displacement vector D of each point in
the structure V =

γ

2DHDT , where γ is the spring constant
for all closely interacting points in a structure (here we used
a cutoff distance of 13 Å between alpha-carbons for coarse-
grained models retaining only Cα atoms) to establish the spring
connections between residues), and H is the Hessian matrix
containing the second derivatives of the energy, with respect to
each of the coordinates x, y, z. For a structure with n residues,
the Hessian matrix H contains n× n super-elements each of size
3 × 3. The Hessian matrix H can be decomposed (Atilgan et al.,
2001) as H = M3MT , where Λ is a diagonal matrix comprising
the eigenvalues with the eigenvectors forming the columns of
the matrixM. This decomposition generates 3n-6 normal modes
(the first six modes account for the rigid body translations and
rotations of the system) reflecting the vibrational fluctuations, so
singular value decomposition is utilized.

COMPARING DIRECTIONS OF MOTIONS
USING OVERLAPS

The alignment between the directions of a given experimental
PC and a given computed normal mode can be measured by
comparing the directions of motion in their overlap, as defined

by Tama and Sanejouand (2001): Oij =
|Pi·Mj|

‖Pi‖‖Mj‖
, where Pi is the

ith PC for andMj is the jth normal mode. A perfect match yields
an overlap value of 1, meaning these motions are in the same
direction. We also define the cumulative overlap (CO) between

the first k vectorsMj and Pi as CO
(

k
)

=

(

k
∑

j=1
O2
ij

)
1
2

.

The high overlaps between the two methods ensures the
reliability of the computed dynamics. The 1st, 2nd, and 3rd PCs
have good overlaps of 0.57, 0.43, and 0.34 with the 3rd, 2nd, and
1st individual modes, respectively. We compare the first three
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FIGURE 5 | Visualization of the first three PC motions on the structures of HA. The two structures shown in each column are two extreme conformations

representative of the changes indicated in each individual PC. PCs 1, 2, and 3 can be identified as winding and unwinding of the C-terminal, central, and N-terminal

parts of the B-loop (blue) into a helix. PC2 captures the hinge bending of the structure between the head and stem regions as well as movement of the N-terminus of

HA2. The blue highlighted segments indicate the parts of the structure exhibiting a broad range of conformations.

PC’s from the X-ray set with the first 20 normal modes from
the elastic network models, and these are relatively high between
all three PCs of the X-ray hemagglutinin and the set of normal
modes for the computed normal modes (see Table 2).

STRATEGIES FOR GENERATING AND
RANKING AN ENSEMBLE OF
STRUCTURES AND IDENTIFYING A
STRUCTURE MODULE TARGETED FOR
INHIBITOR DESIGN

Identifying the most conformationally variable part of the
structure is the aim here. These are the parts of a structure that
should be the most useful to use for inhibitor design. These parts
can be identified simply by computing the changes in all internal

TABLE 2 | Cumulative overlaps between computed ANM modes and PCs from

the set of experimental hemagglutinin structures.

CO

3 Modes 6 Modes 20 Modes

PC1 0.60 0.66 0.71

PC2 0.50 0.57 0.65

PC3 0.40 0.44 0.60

Values above 0.5 are in bold.

distances over the ensemble. Examples of such potential binding
parts to target have been extracted from the ensemble of sampled
conformations for HA generated by utilizing combinations of the
first several PCs (Figure 6). This highly variable segment should
be susceptible to binding by a broader range of ligands.
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FIGURE 6 | Examples of the diversity of conformations from the first 3 PCs for the B loop (blue) of hemagglutinin. The PCs can be used to generate an ensemble of

conformations. Each of three shows a conformation generated from one PC. The motions showed that this loop is the most flexible part of the structure and

possesses an extremely diverse set of conformations.

ASSESSING PEPTIDE/PROTEIN DESIGNS
WITH NEW EMPIRICAL CONTACT
POTENTIALS

Here we present new strategies for the assessment of bound
ligand structures by taking as our target the designed small
proteins from David Baker and his colleagues that were targeted
to bind hemagglutinin (Fleishman et al., 2011; Fleishman
and Baker, 2012). This provides an interesting relatively large
dataset, which we can use to test our assessment method. The
Baker designs, originating from small, monomeric proteins in
the PDB having between 80 and 250 residues, were targeted
against a hydrophobic region on the “stem” of hemagglutinin.
Of the 88 designs that they tested, only two were reported
to have detectable binding affinity for hemagglutinin (this
affinity was subsequently improved in rounds of randomization
and selection).

Four-Body Coarse-Grained Contact
Potentials (Feng et al., 2007, 2010)
Four-body potentials were developed by Kloczkowski and
Jernigan to account for the cooperative interactions in proteins;
they take into account the coarse-grained contact interactions
together with the extent of solvent exposure, and thus provide
a more detailed and more cooperative representation of protein
interaction energies than do pairwise potentials. Capturing
this cooperativity is considered to be critical for evaluating
densely packed protein structures. These potentials are highly
empirical and are based simply on the observed frequency
of occurrences of different types of amino acids in closely
interacting quartets of amino acid types within a large set of
protein structures. We have found that these four-body contact
potentials can discriminate well between native structures
and partially unfolded or deliberately misfolded structures.
These have also included short-range backbone energies
(Bahar et al., 1997b). We tested these optimized potentials
at CASP9 as the prediction group 4_BODY_POTENTIALS
from Iowa State University. There were 110 other human
prediction groups participating in CASP9 competition, and 140
prediction servers. According to Nick Grishin, the assessor of
free modeling techniques at CASP9, 4_BODY_POTENTIALS

was one of most successful groups in free modeling at
that time, ranking third according to the averaged zscore
both for best models and top models. Free modeling is
the most difficult and most challenge in protein structure
prediction, when the sequence of the protein has only a
low sequence similarity in comparison to any known protein
structures. This success at CASP9 demonstrates clearly that
the cooperative multibody interactions are an appropriate tool
for assessing predicted structures, and we apply them here
to Baker’s hemagglutinin inhibitor structures. Later we added
in electrostatic interactions, and these were tested at the
subsequent CASP10.

Including Entropies in the Inhibitor
Assessments
The Elastic Network Models (ENM) have proven themselves to
be highly useful in representing the global motions for a wide
variety of diverse protein structures (Bahar and Jernigan, 1997,
1998, 1999; Bahar et al., 1997a,b,c; Bahar et al., 1998, 1999;
Demirel et al., 1998; Keskin et al., 1998, 2000, 2002a,b; Jernigan
et al., 1999, 2000, 2008; Atilgan et al., 2001; Bahar and Rader,
2005; Sen et al., 2006; Jernigan and Kloczkowski, 2007; Yang
et al., 2007, 2008, 2009; Zhu and Hummer, 2010; Bakan et al.,
2011; Karaca and Bonvin, 2011; May and Brooks, 2011; Peng and
Head-Gordon, 2011; Uyar et al., 2011; Wieninger et al., 2011;
Zheng, 2011; Zheng and Auerbach, 2011; Zimmermann et al.,
2011a,b; Duttmann et al., 2012; Gniewek et al., 2012; Isin et al.,
2012; Martin et al., 2012; Ruvinsky et al., 2012; Globisch et al.,
2013; Kim et al., 2013; Sanejouand, 2013; Dasgupta et al., 2014).
Since they have proven to be so successful in capturing the most
important motions of protein structures, it is reasonable to expect
that they should also be able to estimate the conformational
entropies of structures. We employ the Elastic Network Model
to compute the motions of protein structures, and then these
motions are then used directly to approximate the entropy of a
conformation (Zimmermann et al., 2011c, 2012). We previously
(Zimmermann et al., 2011c) used vibrational entropies based on
the frequencies of the normal modes, but more recently have
found significant gains by utilizing the mean square fluctuations
computed from the ENM as a direct measure of entropy: 1S ∝
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FIGURE 7 | Ranking by coarse-grained free energies of inhibitor proteins designed against hemagglutinin. Free energies are given on the ordinate axis (arbitrary

scale), and the different structures (from the pdb) are indicated along the abscissa. The eight top-ranked structures with favorable free energies can be seen to be

HB22, HB36, HB51, HB56, HB65, HB68, HB80, and HB88. This demonstrates the utility of the coarse-grained free energies to computationally screen for favorable

structures. The two structures HB36 and HB80 were experimentally shown to be functional.

Ŵ−1
=

N
∑

i=2

1
λi

(

QiQ
T
i

)

, where Q is a normal mode vector, λ the

corresponding square frequency, Γ the system’s Hessian, and
Γ −1 its pseudo-inverse. We obtain the Free Energy changes from
1G = 1E – T1S by simply combining the four-body potential
with the ENM-based entropy (Zimmermann et al., 2012). The
excellent blind-tested performance of our method in CASP
experiments shows that our methodology is an outstanding tool
for assessing protein designs, such as the ones from Baker’s
hemagglutinin inhibitor designs.

THESE NEW FREE ENERGIES
SUCCESSFULLY SELECT NATIVE-LIKE
POSES IN PROTEIN-PROTEIN DOCKING

We have applied this method to the set of 89 inhibitor
proteins designed against hemagglutinin by David Baker’s group,
and we find that it provides a useful screen for that set of
structures. Structures having the lowest energies indicate stable
favorable conformations. However, stable structures are not
always functional. In this case, we tested a set of eight structures at
local minimums of the energy landscape ranked by their energies.
From these, it was reported that two of them were found to be
functional (see Figure 7).

DISCUSSION

We have outlined a simple new way to use protein dynamics
for peptide/protein design studies. This approach serves to
identify those specific regions in the structure having particularly
wide-ranging conformational variability, which could be of
particular importance for targeting computational design efforts.
Specifically, the highly variable segments should be able to

bind to a particularly wide range of diverse ligands. Such
variable conformations are well-known to be important for the
promiscuous binding exhibited by disordered proteins and using
this approach should have some advantage. Using such more
localized protein targets might be an important new approach
for targeted computational design. Another advantage of this
is that more exhaustive computations can be carried out for
smaller targets.

Application of the potentials described above to assess
structural designs would allow ranking of sets of designed
inhibitor proteins. The differences in rankings should allow
to conclude the extent to which the large-scale backbone
fluctuations identified in the dynamics could be utilized in
the design process. This would require a significantly larger
effort than has been presented here. Of course, the potentials
themselves are empirical and could be modified to reflect the
data from the experimental studies on the designed molecules for
the specific class of targeted protein, which is one of the major
advantages of the adaptability of the empirical potentials in any
particular application.

Our approach can be extended by detailed analysis of allosteric
sites that are important for drug design. Most drugs are designed
to bind directly to the primary active sites, called orthosteric sites,
to inhibit or modify the function of the protein. Binding of a drug
to the active site prevents binding to a virus or other disease-
related agent and most drugs are designed to fit into the primary
active sites. However, adverse side effects of a drug may occur
because many enzymes or receptors with related functions may
have similarities in their active sites.

A new approach to drug design is based on secondary binding
site effects. In this approach, small molecule drugs are designed
to bind at secondary binding sites called allosteric sites (Tsai
andNussinov, 2014; Dokholyan, 2016; Guarnera and Berezovsky,
2016, 2020; Schueler-Furman and Wodak, 2016; Wodak et al.,
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2019; Zhang et al., 2020). A potential drug—an allosteric
modulator binds to an allosteric site and remotely modifies
the conformation of the primary binding site of the protein.
Allosteric sites are controlled by intrinsic protein dynamics,
and the approach proposed here could also be applied to these
allosteric sites.
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DESP: Deep Enhanced Sampling of
Proteins’ Conformation Spaces Using
AI-Inspired Biasing Forces
Emmanuel Oluwatobi Salawu*

Machine Learning Solutions Lab, Amazon Web Services (AWS), Herndon, VA, United States

The molecular structures (i.e., conformation spaces, CS) of bio-macromolecules and the
dynamics that molecules exhibit are crucial to the understanding of the basis of many
diseases and in the continuous attempts to retarget known drugs/medications, improve
the efficacy of existing drugs, or develop novel drugs. These make a better understanding
and the exploration of the CS of molecules a research hotspot. While it is generally easy to
computationally explore the CS of small molecules (such as peptides and ligands), the
exploration of the CS of a larger biomolecule beyond the local energy well and beyond the
initial equilibrium structure of the molecule is generally nontrivial and can often be
computationally prohibitive for molecules of considerable size. Therefore, research
efforts in this area focus on the development of ways that systematically favor the
sampling of new conformations while penalizing the resampling of previously sampled
conformations. In this work, we present Deep Enhanced Sampling of Proteins’
Conformation Spaces Using AI-Inspired Biasing Forces (DESP), a technique for
enhanced sampling that combines molecular dynamics (MD) simulations and deep
neural networks (DNNs), in which biasing potentials for guiding the MD simulations are
derived from the KL divergence between the DNN-learned latent space vectors of [a] the
most recently sampled conformation and those of [b] the previously sampled
conformations. Overall, DESP efficiently samples wide CS and outperforms
conventional MD simulations as well as accelerated MD simulations. We acknowledge
that this is an actively evolving research area, and we continue to further develop the
techniques presented here and their derivatives tailored at achieving DNN-enhanced
steered MD simulations and DNN-enhanced targeted MD simulations.

Keywords: conformation space, deep neural network, protein,molecular dynamics simulation, variational autoencoder

INTRODUCTION

The functions of biomolecules are encoded in their structures and dynamics (Council and others 1989;
Karplus andKuriyan, 2005; Yang et al., 2014). And there are innumerable pieces of evidence linking the
basis of many diseases to anomalies in the structures and the dynamics of the molecules that are
involved in the biological systems that the diseases affect (McCafferty and Sergeev, 2016; Chiti and
Dobson, 2017; Guo et al., 2017; Hartl, 2017; Tramutola et al., 2017; Salawu, 2018a; Ittisoponpisan et al.,
2019; Laskowski et al., 2020) because the normal functioning of the biological systems depends on the
molecules’ proper structures and dynamics. Furthermore, the various structures that a molecule can
take (i.e., the molecule’s conformation space, CS) and their associated MD are not only of vital
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importance in deciphering of many diseases (Salawu, 2018a;
Salawu, 2018b) but are also crucial in the drug development
efforts targeted at curing or managing many diseases (Carlson
and McCammon, 2000; Lee et al., 2018; Pawełand and Caflisch,
2018; Wang et al., 2018; Lin et al., 2020). These recognitions have
motivated extensive efforts in the field of structural biochemistry
and form the rationale for many structural biology studies (such as
through X-ray crystallography, NMR, and Cryo-EM) and the
creation of the Protein Data Bank (Berman et al., 2000) as well
as other databases for molecular structures. Nonetheless,
considerable challenges exist because the solely static molecular
structures obtained through the wet laboratory approaches alone
(such as the ones listed above) often fall short of providing enough
insights into the dynamics of the molecules of interest. These
challenges have led to the growing roles and the increasing
importance of computational approaches, such as molecular
dynamics (MD) simulations, that are often used for studying
the dynamic behaviors of molecules and their interactions with
other molecules as well as for exploring much wider CS of the
molecules of interest.

While it is generally easy to computationally explore the CS of
small molecules (such as peptides and ligands), the exploration of
the CS of larger a biomolecule beyond the local energy well and
beyond the initial equilibrium structure of the molecule is
generally nontrivial (Shaw et al., 2008; Shaw et al., 2009) and
can often be computationally prohibitive for a molecule of
considerable size. These difficulties arise from the existence of
energy barriers between different states that the molecule could
assume, thereby hindering the movement of the molecule from
one structural state to another (Hamelberg et al., 2004; Hénin and
Chipot, 2004; Salawu, 2020). At this point, it is important to
acknowledge existing efforts targeted at removing, avoiding/
sidestepping, lowering, or surmounting these energy barriers,
thereby achieving enhanced sampling of the CS of molecules.
Therefore, we recognize some of the previous publications in this
domain and highlight them in the next paragraphs.

Most of the existing popular approaches for achieving
enhanced sampling may be broadly viewed in two categories,
namely: those that require the user to specify well-defined
collective variables (CVs)/reaction coordinates (RCs) (Babin
et al., 2008; Laio and Gervasio, 2008; Bussi and Laio, 2020)
and those that do not require the user to explicitly specify the
CV/RC (Sugita and Okamoto, 1999; Hamelberg et al., 2004;
Moritsugu et al., 2012; Harada and Kitao, 2013; Miao et al.,
2015; Chen and Ferguson, 2018; Salawu, 2020). Reconnaissance
meta-dynamics uses a self-learning algorithm for accelerated
dynamics and is capable of handling a large number of
collective variables by making use of bias potentials created as
a function of individual locally valid CVs that are then patched
together to obtain the sampling across a large number of
collective variables (Tribello et al., 2010). Some of the
challenges of reconnaissance meta-dynamics such as those
associated with the creation of bias potentials as a function of
individual locally valid CVs could be addressed by any technique
that could potentially learn a compressed representation of those
CVs and efficiently explore the combined CVs together in the
compressed space. This is the subject of an actively growing

research area that leverages the powers of deep neural networks
(DNNs)/machine learning (ML). Bridging the fields of enhanced
sampling and ML, Bonati et al. (2019) developed DNN-based
variationally enhanced sampling that uses neural networks to
represent the bias potential in a variational learning scheme that
makes it possible for the efficient exploration of even high-
dimensional free energy surfaces. In a similar way, reweighted
autoencoded variational Bayes (RAVE) models MD simulation
trajectories using the VAE whereby the learned distribution of the
latent space variable is used to add biasing potentials, thereby
penalizing the repeated sampling of the most favorable frequently
visited states (Ribeiro et al., 2018). Although other enhanced
sampling methods implement the biasing protocol in two steps,
RAVE’s identification of the RC and its derivation of unbiased
probability distribution occur simultaneously. And through the
systematic use of the Kullback–Leibler (KL) divergence metric,
RAVE can identify physically meaningful RCs from among a
group of RCs explored.

In addition to the efforts mentioned above, the combination of
well-tempered meta-dynamics and time-lagged independent
component analysis to study rare events and explore complex
free energy landscapes have also been looked into (McCarty and
Parrinello, 2017). Since the initial choice of CVs formeta-dynamics
is often suboptimal, the work shows the finding of new and optimal
CVs with better convergence properties by the analysis of the initial
trajectory using time-lagged independent component analysis
(McCarty and Parrinello, 2017). However, a more recent study
has shown that rather than using linear dimension reduction
methods (such as independent component analysis) a modified
autoencoder couldmore accurately encode the low dynamics of the
underlying stochastic processes of MD simulations better than
linear dimension reduction methods (Wehmeyer and Noé, 2018).
Indeed, there are continuous and growing efforts in the
combinations of DNN models and MD simulations in the
enhancement of the sampling of molecules’ CS and other
various aspects of molecular sciences (Allison, 2020; Salawu,
2020; Sidky et al., 2020).

In this work, we present Deep Enhanced Sampling of Proteins’
Conformation Spaces Using AI-Inspired Biasing Forces (DESP),
which also combines DNNs andMD simulations to create a robust
technique for enhanced sampling of CS of molecules. Here, a DNN
model is trained alongside MD simulations of the molecule of
interest such that the models learn a compressed representation of
the sampled structures of the molecule. The latent space vectors of
the DNN model are then used in ways that provide useful
information for inferring appropriate biasing potentials that are
then used for guiding the MD simulations, thereby allowing
efficient sampling of the molecule’s CS. More specifically, the
use of the KL divergence between the VAE’s latent vectors of
the current conformation (obtained from theMD simulations) and
the VAE’s latent vectors of the known, previously sampled,
conformations makes it possible to bias the MD simulation
away from visiting previously sampled conformations and
rather toward visiting previously unsampled conformations.

The AI-based enhanced sampling approach presented in this
work is not dependent on having prior knowledge of the
molecule’s CS distribution and does not require any careful
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selection of collective variables. Therefore, this approach is very
promising, given that the selection of appropriate collective
variables is often very challenging (Tribello et al., 2010), and
there is no well-defined solution that can fit all situations/all
molecular systems. Rather than requiring manual specification of
the collective variables to use, DESP, by itself, learns the
compressed representation of the molecular system of interest
and derives biasing potentials based on the distribution of the
molecule’s conformations in that compressed representation
space. The results obtained show that DESP outperforms both
conventional and accelerated MD simulations, and efficiently
samples wider CS than conventional and accelerated MD
simulations. Furthermore, the ideas in DESP are generalizable
and may be used for implementing other forms of biased MD
simulations including targeted and steered MD simulations. In
the next section, we present the methods that make DESP
possible and thereafter the overall DESP algorithm.

MATERIALS AND METHODS

Protein Molecules Used
We began with a smaller protein/peptide (alanine dodecapeptide
with 12 alanine residues, A12) and modeled its 3D structure using
RPBS (Alland et al., 2005). The small size of alanine
dodecapeptide helped in the initial testing and fine-tuning of
DESP. In addition to A12, we obtained a solution nuclear
magnetic resonance (NMR) structure of GB98 that was
expressed in Escherichia coli BL21 (DE3) from the Protein
Data Bank (Berman et al., 2000), PDB ID: 2lhd (He et al.,
2012). GB98 was selected because of its relatively small/
medium size and because of the presence of the various
secondary structure types (namely, alpha-helix, beta-sheet, and
coils) in it. On the other hand, any protein could be used for the
demonstration of the functionality of DESP, and the ones used
here are just examples.

Creation of the Initial Molecular Systems
Assignment of appropriate residues’ charges and protonation
states were handled using PDB2PQR (Dolinsky et al., 2007; Jurrus
et al., 2018). Using AmberTools18’s tLeap (Pearlman et al., 1995;
Case et al., 2005; Salomon-Ferrer et al., 2013a; Salomon-Ferrer
et al., 2013b), ff14SB (Maier et al., 2015) force-fields for the
proteins, and ions234lm_126_tip3p for the ions and the water
molecules (Li and Merz, 2014), we created explicitly solvated
molecular systems for A12’s and GB98’s molecular dynamics
(MD) simulations with OpenMM (Eastman et al., 2017)
containing 2068 TIP3P water molecules (42.38Å × 48.80Å ×
47.15Å box size, for A12) or 9,981 (101.10Å × 94.35Å × 98.34Å
box size, for GB98) TIP3P water molecules.

Energy Minimization and Heating
Each of the molecular systems was energy-minimized using
OpenMM (Eastman et al., 2017). The energy minimizations
were done in two stages—weakly (2.5 kcal/mol/Å2) restraining
all the alpha carbon atoms in the first stage, and without any
restraints in the second stage. With the weak restraints (2.5 kcal/

mol/Å2) reapplied on the alpha carbon atoms, the molecular
systems were steadily heated to a temperature of 310 K in a
canonical ensemble using the Langevin thermostat (Pastor et al.,
1988).

Conventional Molecular Dynamics
Simulations
During both the equilibration and production runs, we controlled
the systems’ temperatures and pressures using the Langevin
thermostat (Pastor et al., 1988) with a collision frequency of
2ps−1 and the Monte Carlo barostat (Chow and Ferguson, 1995;
Åqvist et al., 2004), respectively. Full electrostatic interaction
energies were calculated using the particle mesh Ewald method
(Darden et al., 1993). A cutoff distance of 10Å and a cubic spline
switch function were used when calculating nonbonded
interactions. All bonds in which at least one atom is hydrogen
are constrained using the SHAKE algorithm (Ryckaert et al.,
1977). All production run MD simulations were performed at 2
femtoseconds time step. Overall, the results from 800 ns of
conventional MD simulations, 800 ns of accelerated MD
simulations, and 280 ns of DESP MD simulations are
presented in this work for each of the A12 and the GB98
molecular systems.

Representations of the Molecules for Deep
Learning Modeling
Since considerable changes in the conformation of biomolecules
can be captured by variations in the dihedral angles of the
molecules (Salvador, 2014; Cukier, 2015; Ostermeir and
Zacharias, 2014; Lemke and Peter, 2019), we represent a
molecule’s conformation by the cosine and the sine of the
dihedral angles (Mu et al., 2005) of that conformation. For
these, we make use of the omega (ω), phi (ϕ), psi (ψ), and
chi1 (χ1) dihedral angles (with examples illustrated in
Figure 1). Although using both the cosine and the sine of
each of the dihedral angles doubles the dimensionality, it helps

FIGURE 1 | Dihedral angles in a short segment of a protein. While the
omega (ω), phi (ϕ), and psi (ψ) dihedral angles are in the proteins backbone, the
chi1 (χ1) dihedral angle is at the beginning of an amino acid’s side chain.
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in removing the adverse effect that the periodicity of the dihedral
angles would have had on the modeling. Extensive details of the
benefits of using the dihedral angles (Lemke and Peter, 2019) and
of simultaneously using both their cosines and sines have been
documented elsewhere (Mu et al., 2005) and, for brevity, are not
repeated here.

DNN Architecture: Variational Autoencoder
Our DNN of the type variational autoencoder (VAE) has a simple
architecture, as shown in Figure 2. The input layer takes both the
cosine and the sine of the dihedral angles’ representation of the
molecular conformation (giving rise to a vector of dimension
DDihedrals*2) as input. The input layer is followed by N hidden
layers (whereN � 7 in the current case). Each of the hidden layers,
numbered n � [1, 2 . . . N], has DDihedrals/n nodes. The next layer
is made up of two latent space vectors, each of size (DDihedrals*2)/
(N + 1), which is (DDihedrals*2)/8 in the current case. The first

latent space vector represents the mean for the Gaussian
distribution that the latent space encodes (i.e., mean in
Figure 2), while the second vector represents the natural
logarithm of the variance for the Gaussian distribution that
the latent space encodes (i.e., ln_var in Figure 2). The DNN
architecture up to this point is the encoder (Figure 2).

The decoder, which is like a mirror image of the encoder,
begins with an input layer with (DDihedrals*2)/(N + 1) nodes and is
followed by M hidden layers (where M � 7 in the current case).
Each of the hidden layers, numbered m � [M, M-1 . . . 1], has
(DDihedrals*2)/m nodes. The output (which is the final) layer emits
the reconstructed cosine and sine of the dihedral angles of the
molecular conformation that was passed in as input. To allow the
passage of backpropagation signals through the entire VAE
(i.e., from the decoder to the encoder), we connect the
encoder and the decoder by a re-parameterization trick that is
made up of an equation that takes the output of the encoder
(namely, the vector of mean, and the vector of the logarithm of
variance) as an input and uses it to sample from the
corresponding normal distributions. This is done indirectly by
initially drawing samples from the standard normal distribution.
The samples drawn are then scaled and shifted accordingly using
the variance vector and the mean vector, thereby obtaining the
intended distribution (see the re-parameterization expression in
Figure 2). The output of the re-parameterization is then fed into the
decoder’s input layer (Figure 2). We used PyTorch (Paszke et al.,
2019) with CUDA support for building all deep neural network
models in this study. Given the architecture of the DNN and its
inputs and outputs, we can now examine how the DNN is trained.

DNN Training
We defined the model’s loss function as a weighted combination
(Eq. 1) of reconstruction loss captured by mean square error
(MSE) loss (Eq. 2) and the Kullback–Leibler (KL) divergence loss
(Eq. 3). We set the weighting parameter, w, to 0.1 so that the MSE
loss has a higher weight (1–0.1 � 0.9) than the KL divergence loss
(0.1). We arrived at this weighting scheme from our preliminary
experiments through grid search, wherein we observed that
setting the KL divergence’s weight to 0.1 helped in the faster
convergence of the model loss and in achieving a much better
reconstruction accuracy for the trained model, on both the
training dataset and validation dataset.

Lossmodel � (1 − w)pLossMSE + (w)pLossKL (1)

LossMSE � 1
n
∑n
i�1

(Yi − Ŷ i)2 (2)

LossKL � DKL {N [(μ1, . . . , μn)T , diag(σ2
1, σ

2
n)]

∣∣∣∣∣∣∣∣∣∣N (0, I)}
� 1

2
∑n
i�1
[σ2

i + μ2i − ln(σ2
i ) − 1]

(3)

The KL Divergence upon which Eq. 3 is based represents a special
case involving the KL-divergence between a multivariate normal
distribution, N [(μ1, . . . , μn)T , diag(σ21, . . . , σ2n)] with means
μ1, . . . , μn and variances σ21, . . . , σ

2
n, and a standard normal

distribution, N (0, I) .

FIGURE 2 | The architecture of the DESP’s VAE model. The dimension
of the input layer (as well as the output layer) is two times the number of
dihedral angles because both the cosine and the sine of each of the dihedral
angles are used to deal with periodicity issues (Mu et al., 2005). Each of
the hidden layers is a fully connected (FC) layer, followed by parameterized
rectified linear units (PReLUs). The latent space between the encoder and the
decoder has a dimension that is one-eighth of the input dimension to learn a
compressed representation of the molecules in a reduced dimension. The
encoder and the decoder are connected through the re-parametrization trick
wherein samples are selected from the standard normal distribution, N (0, I),
and then scaled by the variance and shifted by the mean.
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For the minimization of the loss and, thus, the training of the
model, we used the Adam optimizer proposed by (Kingma and
Ba, 2014) and with the modifications proposed by (Reddi et al.,
2019). We initialized the learning rate to 1e-4, the betas [which
are used for computing the running averages of gradient and its
square (Paszke et al., 2019)] to 0.9 and 0.999, and the weight
decay (which is a form of L2 regularization penalty) to 0.01. We
used a multistep learning rate scheduler to gradually reduce the
learning rate as the training proceeds through 50 equally
distributed epoch milestones. At each of the milestones, the
new learning rate is obtained by multiplying the current
learning rate by 0.99. We used a batch size of 512 and set
out to run 5,000 epochs in the initial training of the model.
We adopt early stopping if the model does not improve over
250 consecutive epochs, in which case we would retain the
last known best model and stop further training of
the model.

DESP: Deep Enhanced Sampling of
Proteins’ Conformation Space Algorithm
Having described the individual components of the DESP above,
we now present the overall DESP algorithm (Figure 3) that
combines DNN with MD simulations to achieve enhanced
sampling of the conformation space of macromolecules. It
begins with the initialization of the total number of MD
simulation steps needed (e.g., NNeeded � 1e9), the number of
MD simulation steps for the initial short MD run (NShort � 1e7)
that will be used for the initial DNN model training, the total
number of steps completed (NCompleted � 0), the number of steps
to run before saving a frame (NSaving � 1e4), and the total number
of steps completed before updating the biasing potentials (NBiasing

� 50). While NCompleted essentially ranges from 0 to NNeeded over
time, the other variables are relatively as follows:

NBiasing ≪ NSaving ≪ NShort ≪ NNeeded (4)

FIGURE 3 | DESP algorithm. The DESP combines DNNs with MD simulations to achieve enhanced sampling of molecules’ conformation spaces.
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We use “<<” to signify a difference of one order of magnitude or
more. NBiasing, NSaving, NShort, NNeeded, and NCompleted are natural
numbers.

We run NShort steps of unbiased MD simulation, saving frames
for every NSaving steps. The saved frames are added to a pool of
frames (i.e., set SFrames): increase NCompleted by Nshort

(i.e., NCompleted ← NCompleted + NShort). We use the MD
simulation’s frames in SFrames (or its subset, selected
randomly) to train the VAE and save the trained VAE
(VAETrained). While NCompleted is less than NNeeded, we
continue the biased MD simulations coupled with the usage of
the VAETrained and its further training as follows. 1) Calculate the
KL divergence (using latent vectors of the VAETrained’s means and
variance, based on Eq. 5) between the last frame of the MD
simulations and the representative/sampled structures from pool
SFrames. 2) Run the ongoing MD simulation for NBiasing steps, but
now by adding a biasing potential (VBiasing, as defined in Eq. 6)
that is based on the KL divergence. Keep track of the VBiasing.
Increase NCompleted by NBiasing (i.e., NCompleted ← NCompleted +
NBiasing). 3) For every NSaving steps of theMD simulations, add the
new frame to pool SFrames. And for every NSaving * 100 steps of the
MD simulations (which means that additional 100 new frames
would have been added to SFrames), we use the frames in SFrames

(or its subset, selected randomly) to further train the VAETrained.
When the NCompleted is equal to NNeeded, we stop the MD
simulations and use the trajectory of VBiasing to reweigh the
MD simulation trajectory.

The KL Divergence upon which the biasing potential is based
involves pairs of multivariate normal distributions of the same
dimension and can be represented by Eq. 5, which denotes the KL
divergence of N 1 ∼ N (μ1, Σ1) from N 0 ∼ N (μ0, Σ0).

VKL � DKL(N 0 ||N 1)

� 1
2
(tr(Σ−1

1 Σ0) + (μ1 − μ0)T∑−1
1
(μ1 − μ0) − k

+ ln(detΣ1

detΣ0
)) (5)

Vbiasing � (VKLupper / VKL)2 (6)

where VKLupper , which is set to 1e-5 in this work, is a weak upper
bound of VKL. VKLupper is a settable parameter but can be left at this
default value obtained from our preliminary experiments where
this provided optimal enhanced sampling without making the
system unstable. This value can be tuned up or down to modulate
how aggressive (high VKLupper) or conservative (low VKLupper) the
enhancement of the sampling should be. The obtained VBiasing is
added to the potential energy term involving the protein atoms.

At this point, we find it important to further clarify that the use
of dihedral angles as input to the VAE in DESP does not mean
that dihedral angles are being used directly as the reaction
coordinates for biasing the MD simulations. Using all the
dihedral angles by themselves would be overwhelming
(especially for medium-sized to large-sized molecules) and,

more importantly, will not work if used directly even with
existing enhanced sampling methods. On the other hand, the
VAE learns the compressed representation of the molecular
system, and it is the compressed representation (obtainable
from the latent space vectors of the VAE, see Figure 2) that is
used for achieving the biasing, as presented in the algorithm (see
Figure 3). In other words, generally, a bias potential V(R) used in
the MD simulation would depend on R, the atomistic coordinate,
usually through some collective variables. The same is, in
principle, true in the current work, except that the bias
potential V(R) used in DESP depends on R’, where R’ is a
compressed representation of R that is obtained from the DNN.

Reweighing of the Probability Distribution
The probability, p’ (RC), along a reaction coordinate of interest,
RC (r), where r represents the atomic coordinates r1

3, . . . , rn
3,

based on the biased MD simulations can be reweighed using
VBiasing to obtain the un-normalized probability distribution, p
(RC), of the canonical ensemble (Sinko et al., 2013; Miao et al.,
2015; Salawu, 2018a) as shown in Eq. 7. And the reweighed free
energy change can be obtained from Eq. 8.

p(RCa) � p’(RCa)p e
βVbiasing
a

∑M
a�1 e

βVbiasing
a

for a � 1, . . . , M (7)

where β � − 1
kBT

.

F(RCa) � β lnp(RCa) (8)

FIGURE 4 | Initial structures of the proteins studied. (A) A12 is a
dodecapeptide with 12 alanine residues, and (B) GB98 is a small protein with
four beta-sheets and one alpha helix.
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RESULTS AND DISCUSSION

GB98 is a Small Protein With One α- and
Four β-Folds, While A12 is a Dodecalanine
We show the initial 3D structure of the studied molecules, A12

and GB98, in Figures 4A,B, respectively. A12 is a peptide with 12

alanine amino acids, while GB98 is a small protein with four beta-
sheets, and one alpha-helix (He et al., 2012; Salawu, 2016). These
small-sized and medium-sized molecules helped in illustrating
the capabilities of DESP.

DNN Model Loss During the DESP
The initial training of the DESP’s VAE started with a high
model total loss (LossModel, Eq. 1) of approximately 915.71
(Figure 5, for the GB98 molecular system), which decreased
steadily as the model continued to learn the compressed
representation of the molecule under study (inset of
Figure 5). The initial model training was stopped when
the LossModel reached 66.65 after 5,664 epochs and would
not further decrease for the next 250 epochs. The LossModel

during the subsequent training of the DNN alongside the
DNN-biased MD simulations (using the MD simulation’s
newly generated molecular structures) is shown in the rest of
Figure 5 from epoch 5,664 to the end.

The reader would notice that the LossModel obtained during the
subsequent training of the model alongside the DNN-biased MD
simulations is slightly higher than the smallest LossModel obtained
in the initial model training. This is interesting and
understandable because the initial training of the DESP’s
DNNs was done using only the structures/conformations of
the molecule obtained from conventional MD simulations in
the first segment of the DESP (Figure 6A), while the subsequent
training of the DNNwas done using the more structurally diverse
conformations of the molecule obtained during the biasing
segment of the DESP (Figure 6B).

The initial stages of DESP (as well as the initial stage of the
accelerated MD) simulations are identical to those of

FIGURE 5 | Model loss values during the DESP for the GB98 molecular
system. The loss decreased steadily in the first segment of the DESP (see the
inset). The model’s loss is slightly higher in the subsequent training of the
model because the model was exposed to a more diverse molecular
structure. The trajectory of the loss for the A12 molecular system is similar in
the overall structure/trend to that of the GB98 molecular system and is not
shown here for brevity. DESP systematically modifies the molecular system’s
energy surface.

FIGURE 6 | The potential energy for A12 (top) and GB98 (bottom) molecular
systems. (A and E) The initial stages of DESP (as well as the initial stages of
accelerated) MD simulations are identical to conventional MD simulations and have
identical systems’ potential energies. (B and F) The trajectories of the potential
energy for the conventional MD simulations are shown in green; (C and G) those for
the accelerated MD simulations are shown in blue; while (D and H) those for the
DESP MD simulations are shown in red.

FIGURE 7 | Projections of the trajectory to the first principal component
for GB98 (bottom). The projection of each of the frames in the DESP trajectory
into the PC1’s space (A) and PC2’s space (B) are shown for GB98. Similar
projections for the A12 molecular system do not offer additional
information and are now shown here for brevity.
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conventional MD simulations, and the molecular systems are
observed to have identical systems’ energy surfaces/
distributions as conventional MD simulations. Indeed, in
the current work, for a given molecular system, after
equilibration, the ongoing conventional MD simulation is
forked/copied into three: one for continuation as a
conventional MD simulation, one for continuation as an
accelerated MD simulation, and one for continuation as a
DESP MD simulation. At the start of the biasing phase of
DESP, we observed that the molecular systems’ energies are
modified and the potential energies increase and change
based on the conformation being sampled (Figures 6A–D
for the A12 molecular system, and Figures 6E–H for the GB98
molecular system; not drawn to the same scale for all the MD
simulations). The modification of the systems’ potential
energies makes it possible for the system to escape possible
energy barriers, thereby encouraging the sampling of wider
conformation spaces (Figure 7; Figure 8).

DESP Efficiently Samples a Wider Range of
a Molecule’s Conformation Space Than
Both Conventional and Accelerated MD
Simulations
To compare the conformation spaces sampled by DESP to that
sampled by conventional and accelerated MD simulations, we
carried out dihedral principal components analysis (dPCA) on
the molecule’s dihedral angles (namely, phi, psi, omega, and chi1)
by making use of both the cosine and the sine of each of the

dihedral angles (Mu et al., 2005) and projected each of the
sampled structures from the DESP and from both the
conventional and accelerated MD simulations into the
principal components’ (PC) space. A visualization of the
trajectory in the PC space (see Figure 7 for the first two PCs,
PC1 and PC2) shows that DESP samples a wider range of the
molecule’s conformation spaces than the conventional and the
accelerated MD simulations (Figure 7) despite that the DESP is
just about one-third as long (i.e., ∼280 ns) as the conventional and
the acceleratedMD simulations (i.e., ∼800 ns, Figure 6; Figure 7).

It is worthy of note that the distributions shown in Figure 7
are unweighed and cannot be strictly interpreted in the
probability sense most especially for the DESP and for the
accelerated MD simulations that involve the use of biasing
potentials. It is, therefore, important to reweigh any DESP-
obtained (or accelerated-MD-obtained) distribution while
considering the biasing potentials (Salawu, 2018a; Sinko et al.,
2013; Miao et al., 2015). Such reweighting can be achieved
through Eqs 7, 8 or as described in previous publications
(Sinko et al., 2013; Miao et al., 2015; Salawu, 2018a).

For the potentials of mean force (PMF) obtainable through the
reweighting of the trajectories, we use two physically
interpretable/physically meaningful reaction coordinates,
namely, the molecule’s radius of gyration (RoG) and the
molecule’s root mean square deviation (RMSD) from the
experimentally solved structure (i.e., the NMR structure in the
case of GB98) or the initial structure (i.e., the energy minimized
modeled structure in the case of A12). The PMF obtained from the
reweighed trajectory (Figure 8) further establishes that DESP

FIGURE 8 | Potentials of mean force (PMF) showing the distribution of the sampled conformations by conventional MD, acceleratedMD, and DESPMD simulations
of A12 (top) and GB98 (bottom) molecular systems. Reweighting has been done wherever necessary. Comparison using PMF based on physically meaningful collective
variables, namely, the root mean square deviation from a known experimental/initial structure (RMSD) and the radius of gyration (RoG) are shown for conventional (A and
D), accelerated (B and E), and DESP (C and F) MD simulations for the A12 (top/A, B, C) and the GB98 (bottom/D, E, F) molecular systems. Overall, one would
notice that the rightmost panels (C and D) show wider and more diverse regions visited by the molecular system, which means that the DESP can explore more
conformation spaces than either the conventional (A and B) or the accelerated (B and E) MD simulations for these collective variables. The regions with stable
conformations sampled by both DESP and accelerated MD simulations but not sampled by the conventional MD simulations are marked with “K,” while the regions
sampled by DESP alone but not sampled by either the conventional or the accelerated MD simulations are marked with “L” and “M.”
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samples have much wider conformation spaces than the
conventional and the accelerated MD simulations. We show
the PMF obtained from collective variables (CVs) defined by
the combination of the RMSD and the RoG in Figure 8.

From the energy landscape one sees regions with stable
conformations that are sampled by DESP but are not sampled
by the conventionalMD simulations (see Figures 8A–C for the A12

molecular system, and Figures 8D–F for the GB98 molecular
system). For the sake of illustration, we mark the regions sampled
by both DESP and accelerated MD simulations but not sampled by
the conventional MD simulations with “K” (Figures 8B,C), and we
mark the regions sampled byDESP alone but not sampled by either
the conventional MD simulations or the accelerated MD
simulations with “L” and “M” (Figure 8F). Overall, one would
notice that the rightmost panels (C, D) show wider and more
diverse regions visited by the molecular system, which means that
the DESP can explore more conformation spaces than either the
conventional (A, B) or the accelerated (B, E) MD simulations, to
the extent of capturing a few global but moderate unfolding and
refolding events. The comparison of the energy landscapes shows
that while DESP shows a moderately better sampling of a wider
range of conformation spaces than both the conventional and the
accelerated MD simulations for a small molecular system (namely,
A12, Figures 8A–C), the superiority of the sampling efficiency of
DESP is more remarkably evident for larger molecules as shown by
the medium-sized GB98 molecular system wherein DESP samples
much wider regions/conformations spaces than both the
conventional and the accelerated MD simulations (Figures
8D–F). This is desirable because it is with the larger molecules
that highly efficient conformation space samplingmethods, such as
DESP, are most needed.

CONCLUSION

In this work, 1) It has been shown, with computational
experiments and pieces of evidence obtained therefrom, that it
is possible to enhance the MD simulation sampling of molecules’
conformation spaces using deep learning techniques (VAE in the
current case). 2) It has been shown one of the possible ways with
which it could be achieved, namely, by biasing the MD
simulations based on the VAE’s latent space vectors. 3) The
use of the KL divergence of the DNN-learned latent space
vectors of the most recently sampled conformation from the
previously sampled conformations made it possible to bias
the MD away from visiting already sampled conformations,
and thereby encouraging the sampling of previously
unsampled states. 4) It should be noted that the ideas in
DESP are generalizable and may be used for implementing
other forms of biased MD simulations, including targeted and
steered MD simulations, and we explore these in our
subsequent articles.
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