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Editorial on the Research Topic

Advances in Genomics of Crossbred Farm Animals

INTRODUCTION

Crossbreeding is a common strategy to promote animal production (Sheridan, 1981). In the past
century, crossbreeding has been commonly conducted to produce commercial pigs and poultry
as human food. In subtropical countries, crossbred cattle have been developed that combine the
production performance of Taurine cattle with the tropical adaption of Zebu cattle. Composite
cattle are developed by crossing two or more purebred breeds, aiming at exploiting breed
complementarity and retaining some heterosis (hybrid vigor) in future generations. Dairy cattle
are mostly purebred, but crossbred dairy cattle are becoming increasingly popular in recent years
(VanRaden et al., 2020; Khansefid et al.). Strategically, crossbreeding is a potential approach to
improve sustainability in animal breeding by reducing inbreeding and enhancing fertility, survival,
and other functional traits (Sørensen et al., 2008).

Genomics is an interdisciplinary field of biology focusing on the studies of genomes (Culver
and Labow, 2002). A genome is an organism’s complete set of DNA, including all of its genes.
Unlike classic genetics, which focuses on individual genes and their roles in inheritance, genomics
deals with the collective characterization and quantification of all of an organism’s genes, their
interrelations, and their influence on the organism. From the genomics perspective, crossbred
animals differ considerably from purebred animals because their genome is a mosaic of genome
regions inherited from their purebred ancestors. Thus, genomics solutions for crossbred animals
need to be different. For example, ancestry estimation or genomic breed composition (GBC) in
purebred animals is primarily motivated for breed registries and the identification of purebred
animals when the pedigree is missing or incomplete. In contrast, the estimated GBC for crossbred
animals are used to infer their genomic make-ups from their ancestors. Such information can
help estimate heterozygosity, understand their breeding history, and make management decisions
for crossbreeding programs. The breeding objective with purebred animals is to increase additive
genetic gains, but non-addtive genetic effects such as dominance and epistasis effects are pivotal to
produce crossbred animals of high-performance market values.

The past decades have witnessed many milestone discoveries in animal genomics which have
fundamentally revolutionized many aspects of animal breeding and production (Rexroad et al.,
2019). Nevertheless, there are far more questions still unanswered. This Research Topic represented
an effort toward enhancing the understanding and applications of crossbred genomics. It included
25 papers, covering several aspects of the crossbred genomics in farm animals.
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INTERPRETATIONS OF GENOMIC BREED

COMPOSITION AND “THE IMPURE

PUREBRED PARADOX”

Genomic breed composition (GBC) of an individual animal
refers to the partition of its genome according to the inheritance
from its ancestors or ancestral breeds. The U.S. Council on
Dairy Cattle Breeding (CDCB) uses an alternative term, namely
Breed Base Representation (BBR), which is the adjusted genomic
breed composition on each of five dairy breeds (Ayrshire, Brown
Swiss, Guernsey, Holstein, and Jersey) as the potential parents
(VanRaden and Cooper, 2015). Interpretations of GBC depend
on the estimation methods. For example, admixture model
postulates that an observed genotype for a progeny is an instance
of a multinomial distribution, with genotype probability being a
mixture governed by allelic frequencies of the ancestors. Hence,
GBC are estimated by the weights or admixture coefficients
(Bansal and Libiger, 2015). Linear regression estimated GBC of
to be adjusted regression coefficients of coded genotypes for a
progeny on the ancestral allele frequencies, and bounded between
0 and 1 (Chiang et al., 2010; Kuehn et al., 2014). A genomic
prediction model estimates the SNP effects on candidate ancestry
breeds as binary or categorical traits. GBC equals to the total
genomic value for an animal pertaining to each ancestry breed
(Akanno et al., 2017; Li et al., 2020). Wu et al. proposed a causal
interpretation of GBC based on path theory, which decomposed
the relationships between ancestors and their progenies into
direct and indirect breed (path) effects. GBC was measured by
relative ratio of direct (D-GBC) and combined (C-GBC) breed
determination, respectively, from each putative ancestry breed
to a progeny. C-GBC included direct breed effects and indirect
breed effects due to genomic similarities. The estimated D-GBC
and C-GBC were comparable when the ancestry breeds had
a very distant relationship, and they corresponded well to the
estimated GBC from linear regression and admixture model.
However, large differences arose between D-GBC and C-GBC
when ancestors were highly correlated. Overall, the estimated C-
GBC was closer to the estimated GBC from linear regression and
admixture models than D-GBC.

In reality, all the modern cattle breeds are correlated because
they share common ancestors. The same is true with other farm
animal species. The estimated GBC for a purebred animal is
not always 100%. This phenomenon was referred to as “the
Impure purebred Paradox” (Wang et al.). In the U.S. dairy
genetic evaluation, for example, the reference population for
a dairy breed consisted of animals with a BBR no ≥ 94% for
that breed, and animals with BBR no ≥ 90% received single-
breed genomic evaluation (Wiggans, 2021). This was because
the current methods tend to produce a small GBC value
to a non-ancestry reference breed. The more significant the
genomic similarity, the more noise. Statistically, this situation
was an indication of increased false-negative error rates in the
identification of purebred animals. Wang et al. (2020) proposed
applying regularization in admixture models to estimate GBC
for purebred animals. Regularized admixture methods produced
sparse solutions of admixture coefficients, thus effectively

imposing penalties on small, non-essential components due to
genomic similarity. The non-convex penalty outperformed the
L1 norm penalty to suppress the noise in the estimated GBC.

Several issues are not addressed adequately. Firstly, accurately
assessing GBC requires knowing or reliably estimating the allelic
frequencies for the base population when the ancestor breeds
were developed, because they are not observable. Secondly,
while high-density SNP genotypes were used to estimate GBC,
the impact of SNPs in high linkage disequilibrium on the
estimated GBC has not been well-documented. In admixture
models, for example, the likelihood is computed assuming
mutual independence of SNP loci, but this assumption does
not hold with high-density SNP arrays. Finally, the current
methods do not estimate GBC exactly based on genomic
similarities identical-by-descend (IDB) between a progeny and
the ancestry (reference) breeds. Rather, they reflect more of
genomic similarities identical-in-statue (IIS).

LIMITED EFFORTS WITH DIFFERENTIAL

GENE EXPRESSION PROFILING

Expression profiling is a logical next step after genome
sequencing, which reveals the activity of genes in hundreds
and thousands and depicts a global picture of cellular functions
(Subramanian et al., 2005). Expression profiling experiments
involve measuring relative mRNA abundance in two or more
experimental conditions. Altered gene expression suggests a
change for the protein coded by the mRNA, probably indicating
a homeostatic response or a pathological condition.

There were only three papers addressing differential gene
expression in this Research Topic. Chen et al. compared the
microRNA (miRNA) profiles of pectoral muscle in chickens
at pre- to post-natal stages. Cui et al. identified differentially
expressed miRNAs between cattle with high vs. low milk
protein and fat percentages. A miRNA is a small single-stranded
non-coding RNA molecule containing about 22 nucleotides in
animals. It functions in RNA silencing and post-transcriptional
regulation of gene expression. First discovered in the early 1990s
(Lee et al., 1993), miRNAs were not recognized as a distinct class
of biological regulators until the early 2000s (Bartel, 2004). Chen
et al. investigated the expression pattern of pituitary-derived
circular RNAs and their functions in Landrace × Yorkshire
crossbred pigs. A circular RNA is a single-stranded RNA that
forms a covalently closed continuous loop. Some circular RNAs
have shown potential as gene regulators.

The size and complexity of these gene expression experiments
are crucial to reach reliable interpretations. In reality, however,
lacking sufficient sample sizes was mainly related to financial
constraints, which led to reduced statistical power of the
experiment and difficulty to identify essential but subtle
changes, and limited the extent to which experiments performed
in different laboratories appeared to agree. Different gene
expression between purebred and crossbred animals may have
implications on the expression of heterosis, but relevant studies
are missing in this Research Topic.
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THE JOURNEY CONTINUES WITH

DISSECTING QUANTITATIVE TRAIT

VARIATION AND GENETIC

ARCHITECTURE

Quantitative trait locus (QTL) mapping aims at characterizing

chromosomal regions or genes responsible for quantitative
traits and diseases in terms of genomic positions, effects, and

numbers. A simple QTLmapping experiment starts with crossing

two parental lines differing in their trait values and marker
variants. Segregated QTLs are observed and mapping in the

consequent backcrosses or F2 population. Improved strategies,
such as advanced intercross lines (AIL) (Darvasi and Soller,

1995), can increase the precision of quantitative trait loci

(QTL) mapping due to more recombination events. An AIL is
created by successive generations of pseudo-randommating after

the F2 generation, and recombination events are accumulated

continuously between generations. Wang et al. evaluated a nine-
generation AIL derived from two divergent outbred chicken
lines. Their results showed that the founder genomes were
sufficiently shuffled in the F9 generation. This AIL reference
population yielded a considerably narrower for mapped QTL
than the F2 generations.

Genome-wide association studies (GWAS) emerged as a
powerful tool to investigate associations between quantitative
traits (including diseases) and genetic markers on the entire
genome (Ozaki et al., 2002; Klein et al., 2005). There were
six GWAS studies in this Research Topic, covering cattle,
pigs, and chickens, respectively. Rezende et al. identified five
genomic regions associated with carcass and meat quality traits
in a crossbred Angus-Brahman population. Gao et al. found
significant loci for meat quality traits in pigs. Carcass and meat
quality are important traits that drive profitability and consumer
demand for beef and pork. They are expensive to measure and
unavailable until late in life or after the animal was harvested.
Hence, genetic improvement of carcass and meat quality traits
is not viable through traditional phenotypic selection, but these
traits are perfect candidates for marker-assisted selection or
genomic selection. Instead of alive measurement of carcass
and meat quality traits, Grigoletto et al. attempted to localize
chromosomal regions associated with non-invasive, ultrasound-
based carcass and meat quality traits in Montana Tropical
Composite beef cattle. Li et al. identified several candidate genes
that are associated with metabolites, which are intermediate
or end product (usually small molecules) of metabolism,
in crossbred beef cattle. Li et al. found significant loci in
chromosome 1 and chromosome 4, which explained 6.36 and
4.25% of the phenotypic variance of birth weight. Nie et al.
revealed seven significant SNPs spanning a ∼0.29Mb, harboring
14 candidate genes for tail feather color, in dwarf chickens.

Selection tends to cause specific changes in the patterns
of variation among selected loci and in neutral loci linked to
them, leaving genomic footprints known as selection signatures
(Kreitman, 2000). Such information helps understand how
genomes were shaped during the breeding history and localize
functional genes/genomic regions. Singh et al. identified eleven

common regions harboring genes associated with production
and adaptation in an Indian composite cattle breed developed
by crossbreeding taurine dairy breeds with native indicine cattle.
Their results suggested more substantial selective pressure on
regions responsible for adaptation compared to milk yield. Paim
et al. estimated the genomic composition of the regions identified
as selected (selective sweeps) using a chromosome painting
approach. Selected genomic regions as selection signatures for
founder breeds were identified as well. van der Nest et al.
identified ten candidate regions potentially under strong positive
selection, harboring genes for health and production, in South
African Simbra cattle (5/8 Taurine and 3/8 Indicine). Ganteil
et al. assessed the patterns of runs of homozygosity (ROH)
in animals from three-way crossbreeding. ROH are continuous
stretches of homozygous genotypes in a diploid genome, and
their quantification reflects autozygosity, which occurred when
two parents shared at least one common ancestor (Peripolli et al.,
2017).

Given the polygenic nature of quantitative traits and disease,
an adequate sample size for GWAS often tends to be very
large (Nishino et al., 2018). In reality, however, assembling large
sample sizes is not always possible, particularly for carcass and
meat quality traits because they are difficult or expensive to
measure. A similar challenge arises when conducting GWAS in
isolated small populations. Hence, literature synthetic or meta-
analytical methods provides an alternative to incorporate data
from multiple studies and arrive at more reliable conclusions
by utilizing publicly accessible databases (Wu and Hu, 2012).
Population stratification is another concern with GWAS, which
often result in spurious associations if not properly accounted for.
Population stratification can happen in large GWASwhen perfect
matching of cases and controls is virtually impossible. It is also
likely to occur when studying recently admixed populations and
variants with very small effect sizes.

GWAS do not necessarily pinpoint causal variant and
genes, because most association signals map to non-coding
regions of the genome (Hindorff et al., 2009; Mahajan
et al., 2018). Functional characterization of genetic variants
is needed to move from statistical association to causal
variants and genes, especially in the non-coding genome.
Computational methods are used to predict the regulatory
effect of non-coding variants on the basis of functional
annotations. Target genes can be identified using chromatin
immunoprecipitation and chromosome conformation capture
methods, and experimentally validated using cell-based systems
and model organisms. A development in the past decade
combined QTL analyses with gene expression profiling, i.e.,
by DNA microarrays. Such expression QTLs (eQTLs) describe
cis- and trans-controlling elements for the expression of often
disease-associated genes (Westra et al., 2013).

Most GWAS have been conducted using SNP arrays because
they are cost-effective. Nevertheless, whole genome sequencing
(WGS) permits studying the full frequency spectrum of variants,
including rare variants that are difficult to capture by SNP arrays.
We anticipate that, as the cost of WGS continues to decline,
GWAS using WGS will eventually replace GWAS using SNP
arrays. Until then, the majority of the common variants and
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a substantial fraction of the low-frequency and rare variants
that contribute to disease risk can be identified using affordable
SNP arrays combined with imputation to increasingly large
WGS reference panels (Tam et al., 2019). Low-pass sequencing
(i.e., an average depth <1× coverage) combined with genotype
imputation have been proposed as an alternative to genotyping
arrays which showed increased power for GWAS (Pasaniuc et al.,
2012; Gilly et al., 2019).

EXPENDING THE HORIZONS OF GENOMIC

PREDICTION FOR CROSSBRED ANIMALS

Quantitative traits are determined by thousands of genes with
small effects, which are often difficult to detect (Manolio et al.,
2009; Slatkin, 2009). The merge of genomic selection led to a
revolutionary paradigm shift in animal breeding (Meuwissen
et al., 2001, 2016). With a sufficient number of markers
covering the whole genome, genomic selection concentrates on
estimating their total effect rather than testing single loci for their
significance. Most genomic evaluations, say for dairy cattle, are
separate by breed and crossbreds usually are not included except
for the multibreed evaluation in New Zealand (Winkelman et al.,
2015). Crossbred animals were removed based on counts of
breed check markers (Wiggans et al., 2010). On the other hand,
there has been an increasing interest in genomic predictions
for crossbred animals in recent years (Sørensen et al., 2008).
Starting from April 2019, CDCB offered a genomic evaluation
for crossbred dairy cattle on more than 50 traits yet limited to
crosses of five dairy breeds (VanRaden et al., 2020). Crossbred
evaluations were averages of direct genomic values computed
using marker effects for each of the five pure breeds, weighted by
the animal’s genomic breed composition (VanRaden et al., 2020).

Purebred prediction models do not fully meet the need for
evaluating crossbred animals because they are limited to additive
genetic effects only. On the other hand, non-additive genetic
effects such as dominance and epistasis effects are essential
components contributing to the crossbred performance. Stock
et al. gave a literature review of genomic models for analyzing
livestock crossbred data. Genomic models for crossbred animals
extend purebred models with more complexity, such as the
inclusion of dominance effects, breed-specific effects, imprinting
effects, and the joint evaluation of purebred and crossbred
performance data. A two-way cross additive model is the
simplest example (Christensen et al., 2014), where the additive
genetic value of a crossbreed animal, captured by SNP effects,
is decomposed into a contribution that comes from the sire (or
sire line) and a contribution from the dam (or dam line), plus
a Mendelian sampling term. This basic model can be extended
to three-way (Christensen et al., 2019) and four-way crossings
and include dominance effects as well. SNP effects are assumed
to be either the same or different SNP effects across pure lines.
The latter are referred to as BOA (breed-of-origin of alleles)
models (Sevillano et al., 2016, Lopes et al., 2017). Including
dominance effects is in general advisable, leading to higher
accuracy (e.g., Zeng et al., 2013; Xiang et al., 2016). Nevertheless,
available studies are not sufficiently conclusive as to which

existing method is most suitable for a specific crossbreeding or a
genetic trait architecture. Deep learning methods are non-linear
models providing flexibility to adapt to complicated relationships
between data and output (reviewed by Montesinos-López et al.,
2021). They are particularly appealing for crossbred predictions,
but not covered in this Research Topic.

Apart from statistical models, the establishment of an
appropriate reference population is also crucial to crossbred
predictions. In dairy cattle, for example, genotype data are huge
and unbalanced between breeds. Dairy genomic evaluations are
conducted several times a year. Hence, combing genotypes from
multiple breeds imposes great computational challenge. Besides
that, multiple-breed predictions are less accurate than within-
breed predictions. Training on crossbred animals can increase
the prediction accuracies for crossbred animals (Esfandyari
et al., 2015), but collecting data from crossbred animals is
often difficult and expensive. Optimal training strategies for
crossbred predictions remain to be exploited. Alvarenga et al.
showed that including purebred and crossbred animals in a
joint training population yielded the higher accuracies and
lower biases than only training on purebred animals in single-
trait or multiple-trait analyses. The multiple-trait model treated
purebred and crossbred phenotypes as different traits. Khansefid
et al. proposed a strategy by equalizing breed contributions in
a mixed dairy breed reference of Holsteins, Jerseys, and their
crossbreds, instead of a Holstein-dominated reference. Their
results showed improved genomic predictions for crossbred and
purebred animals using this strategy. With a support vector
machine (SVM) regression model, Tusell et al. also showed
increased accuracies by including crossbred information for
training when predict the performance of purebred and crossbred
pigs. As the genomic data are accumulating indefinitely, the
computational challenge will extremely high. Hence, optimal
sample selection is worth exploiting, which aims at choosing
subsets of training samples that give the same or comparable
prediction accuracy as the whole training set. This concept was
proposed by Frankel (1984) to select a subset of the data that
is representative of the whole resource by removing redundant
or highly correlated samples. Also, high-performance computing
offers a solution to bypass the computational bottleneck (Wu
et al., 2011, 2012; Coninck et al., 2014).

Single-step genomic BLUP enables the inclusion of marker
genotypes into the well-established BLUP methods, which often
leads to increased prediction accuracies (Legarra et al., 2009;
Misztal et al., 2009). This method has been challenged by defining
the genetic base when pedigree and genomic information are
used simultaneously. For predicting crossbred performance,
the challenge becomes how to quantify relationships between
different lines compositions and appropriately define different
base generations. One solution is to use metafounders, which
are pseudo-individuals, that describe the genetic relationship
between the base population individuals (Christensen, 2012;
Legarra et al., 2015). Junqueira et al. showed that using
metafounders increased the accuracy of GEBV and the rate
of genetic gain for tick resistance using single-step genomic
BLUP in multi-breed beef cattle populations. They defined
four metafounders, each for the three pure breeds (Hereford,
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Bradford, and Zebu) and the fourth metafounder assigned to the
remaining base animals with an unknown breed of origin.

Genomic selection in indigenous or minor breeds is often
limited by the number of animals with genotypes and phenotypes
for training. Combining animals from breeds with similar
backgrounds or development history can increase the training
population sizes and prediction accuracy. Oliveira et al.
reported a moderate genetic connectedness between Norwegian
White Sheep and New Zealand Composite Sheep with similar
development history, based on the consistency of gametic phase
and other genetic diversity metrics. Their results suggested a
promising opportunity for cross-country genomic selections.
Gebrehiwot et al. found moderate to high genomic composition
of European Bos taurus cattle in Western African crossbred
cattle. Hence, the genomic information from European Bos
taurus cattle can be borrowed to improve genotype imputation
and genomic selection in the Western African crossbred cattle.
While genomics studies are heavily directed toward major
livestock species and breeds, genomics tools for minor livestock
species and breeds are in need (Das et al.; Gebrehiwot et al.; Yang
et al.).

CONCLUSIONS AND PROSPECTS

Genomics focuses on the structure, function, evolution,mapping,
and editing of genomes (Culver and Labow, 2002). Genomics
studies also included studies of intragenomic phenomena such
as epistasis, pleiotropy, heterosis, and other interactions between
loci and alleles within the genome (Pevsner, 2009). Given such
a broad spectrum of genomics domains, the coverage of this
Research Topic is very limited. The 25 articles are mostly in
the domains of functional genomics and predictive genomics
in crossbred animals. The former used available genomic data
to describe gene functions and interactions, whereas the latter
attempts to predict the performance of individual animals based
on low- to high-density genotype data. Studies in structural
genomics, epigenomics, andmetagenomics in crossbred livestock
animals are essential, but they are not addressed in this collection.

Advances in genomics have triggered a revolution in
discovery-based research and systems biology concerning
complex biological systems. Driving genomics to practice,
genomic prediction is at the core of enhancing animal breeding

and farming management. We anticipate more efforts to
specifically exploit genomic prediction models and cost-effective
training strategies for crossbred animals. Innovative genomic
mating and crossbreeding is appealing for improving commercial
crossbreeding. The objective for crossbreeding is to find optimal
combinations which maximize the general combining ability
(GCA) from the contributing parental lines and the special
combining ability (SCA) between them, penalized by standard
deviation of gamete breeding values passed from the parents to
the offspring. This type of innovative mating or crossbreeding
schemes is expected to produce high-performance and less-
variable crossbred animals.

Finally, predicting heterosis remains a topic of interest.
Heterosis is an old concept proposed by George Harrison
Shull, American botanist and geneticist known as the father
of hybrid corn, in 1914 (Shull, 1948). In animal breeding,
it refers to crossbred performance superiority relative to the
parental average (Lush, 1945). Two competing but not mutually
exclusive hypotheses, dominance hypothesis and dominance
hypothesis, have been proposed to explain heterosis or hybrid
vigor (Crow, 1948). Epigenetic components of hybrid vigor
were established recently, pinpointing the involvement of small
RNAs in the growth, vigor and adaptation of hybrids (Ni
et al., 2009; Baranwal et al., 2012). Heterosis is linearly
related to heterozygosity, considered to be 100% in the
first generation cross (F1) between two diverse parental
breeds. In the following generations, it is measured as
retained heterosis or heterozygosity relative to F1 (Dickerson,
1973). Genomic-estimated retained heterozygosity or heterosis
(GRH) can be used to match parents to obtain optimized
heterosis and produce progeny with improved performance and
replacement females with better lifetime productivity (Akanno
et al., 2017). A silent feature is that GRH provides an
additional metric for the existing purebred genomic evaluation
systems, for example, in beef cattle to include crossbred
predictions without any infrastructural change (Basarab et al.,
2018).
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Laís Grigoletto1,2*, José B. S. Ferraz1, Hinayah R. Oliveira2, Joanir P. Eler1,
Fernando O. Bussiman1, Barbara C. Abreu Silva1, Fernando Baldi3 and Luiz F. Brito2

1 Department of Animal Sciences, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga,
Brazil, 2 Department of Animal Sciences, Purdue University, West Lafayette, IN, United States, 3 Department of Animal
Sciences, College of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, Brazil

The Montana Tropical® Composite is a recently developed beef cattle population that is
rapidly expanding in Brazil and other tropical countries. This is mainly due to its improved
meat quality and adaptation to tropical climate conditions compared to Zebu and Taurine
cattle breeds, respectively. This study aimed to investigate the genetic architecture of
ultrasound-based carcass and meat quality traits in Montana Tropical® Composite beef
cattle. Therefore, we estimated variance components and genetic parameters and
performed genome-wide association studies using the weighted single-step Genomic
Best Linear Unbiased Prediction (GBLUP) approach. A pedigree dataset containing
28,480 animals was used, in which 1,436 were genotyped using a moderate-density
Single Nucleotide Polymorphism panel (30K; 30,105 SNPs). A total of 9,358, 5,768,
7,996, and 1,972 phenotypic records for the traits Longissimus muscle area (LMA),
backfat thickness (BFT), rump fat thickness (RFT), and for marbling score (MARB),
respectively, were used for the analyses. Moderate to high heritability estimates were
obtained and ranged from 0.16 ± 0.03 (RFT) to 0.33 ± 0.05 (MARB). A high genetic
correlation was observed between BFT and RFT (0.97 ± 0.02), suggesting that a similar
set of genes affects both traits. The most relevant genomic regions associated with LMA,
BFT, RFT, andMARBwere found on BTA10 (5.4–5.8 Mb), BTA27 (25.2–25.5 Mb), BTA18
(60.6–61.0 Mb), and BTA21 (14.8–15.4 Mb). Two overlapping genomic regions were
identified for RFT and MARB (BTA13:47.9–48.1 Mb) and for BFT and RFT (BTA13:61.5–
62.3 Mb). Candidate genes identified in this study, including PLAG1, LYN, WWOX, and
PLAGL2, were previously reported to be associated with growth, stature, skeletal muscle
growth, fat thickness, and fatty acid composition. Our results indicate that ultrasound-
based carcass and meat quality traits in the Montana Tropical® Composite beef cattle are
heritable, and therefore, can be improved through selective breeding. In addition, various
novel and already known genomic regions related to these traits were identified, which
contribute to a better understanding of the underlying genetic background of LMA, BFT,
RFT, and MARB in the Montana Tropical Composite population.

Keywords: candidate genes, composite cattle, crossbreeding, genomic regions, single-step Genome-Wide
Association Studies (ssGWAS), Genomic Best Linear Unbiased Prediction (GBLUP), tropical beef cattle
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INTRODUCTION

Both carcass and meat quality traits are paramount for
optimizing the profitability of the beef cattle industry. These
traits are influenced by diet and feeding practices, pre- and post-
slaughter management, and meat processing and storage
methods (Adzitey, 2011; Guerrero et al., 2013; Njisane and
Muchenje, 2017). Despite the apparent effectiveness of these
alternatives, genetic selection is a complementary approach in
which the gains achieved are permanent and cumulative over
generations. In this context, carcass and meat quality traits have
been measured and incorporated in worldwide beef cattle
breeding programs (Reverter et al., 2000; Yokoo et al., 2010;
Berry et al., 2017; Gordo et al., 2018). Carcass and meat quality
traits can be measured in live animals using ultrasound
technology, which is a noninvasive technique (Pathak et al.,
2011; Scholz et al., 2015). Ultrasound-based traits that are
indicators of carcass and meat quality include Longissimus
muscle area (LMA), backfat thickness (BFT), rump fat
thickness (RFT), and marbling score (MARB) (Pathak et al.,
2011; Font-i-Furnols and Guerrero, 2014; Gordo et al., 2018).

Brazil is one of the largest beef cattle producers in the world,
with a population of over 230 million animals (USDA, 2019).
More than 80% of the beef cattle animals currently raised in
Brazil are from the Nellore breed (Bos taurus indicus; Zebu),
which are well adapted to tropical conditions (Ferraz and Felício,
2010). However, Zebu breeds are also well known for poorer
meat quality (Crouse et al., 1989; Bressan et al., 2016; Rodrigues
et al., 2017) when compared to Taurine (Bos taurus taurus)
breeds (e.g., Aberdeen Angus, Red Angus, Senepol, Charolais).
An alternative to improve carcass and meat quality traits, while
keeping the adaptation characteristics of Zebu cattle, is through
the development of composite populations (i.e., crossbreeding
between Taurine and Zebu animals; e.g. Piccoli et al., 2020).

The Montana Tropical® Composite population was firstly
developed in 1994 following studies conducted by the U.S. Meat
Animal Research Center at Clay Center, United States
Department of Agriculture (USDA; Gregory et al., 1993;
Gregory et al., 1994). This composite population was
developed by crossing animals from four different biological
types or breed groups (Ferraz et al., 1999): 1) Zebu breeds (Bos
taurus indicus), 2) Adapted Taurine breeds (Bos taurus taurus),
3) British breeds (Bos taurus taurus), and 4) Continental
European breeds (Bos taurus taurus).

Over the past few years, there has been a great interest in
genetically improving this composite population and better
understanding its genetic background underlying phenotypic
variation of economic importance to the breeders. In this
context, genome-wide association studies (GWAS) can be
performed to identify Quantitative Trait Loci (QTL) associated
with key traits (e.g. carcass and meat quality). Recent GWAS
have successfully revealed significant genomic regions in beef
cattle composite populations [(e.g., Weng et al., 2016; Hay and
Roberts, 2018; Grigoletto et al., 2019)]. Wang et al. (2012)
proposed a GWAS method based on the single-step Genomic
Best Linear Unbiased Predictor (ssGBLUP; Legarra et al., 2009;
Aguilar et al., 2010; Legarra et al., 2014), which has become the
Frontiers in Genetics | www.frontiersin.org 214
gold-standard method for GWAS [also termed single-step
Genome-Wide Association Studies (ssGWAS)]. A variation of
this method, the weighted single-step GBLUP (WssGBLUP;
Wang et al., 2012) usually yields more accurate SNP effects
(e.g. Zhang et al., 2016), and consequently, a greater power to
identify QTLs and functional genes. In this context, the main
goals of this study were to: 1) estimate variance components and
genetic parameters for four ultrasound-based carcass and meat
quality traits (i.e., LMA, BFT, RFT, and MARB) in Montana
Tropical® Composite beef cattle and 2) identify relevant genomic
regions, candidate genes, and metabolic pathways associated
with these traits, using the WssGBLUP method.
MATERIALS AND METHODS

Animal Care Committee approval was not obtained for this
study as all the analyses were performed using pre-
existing databases.

Animals and Phenotypic Data
The descriptive statistics of the pedigree file, including the breed
composition of the animals is shown in Table 1. Breed was
recorded by the producers/technicians or calculated based on
pedigree relationship between the animals. The animals were
classified within each biological group (NABC) as: 1) N: Zebu
breeds, mainly represented by Nellore; 2) A: Taurine breeds
adapted to tropical conditions (Senepol, Belmont Red,
Bonsmara, and Caracu); 3) B: Taurine breeds of British origin
(mainly Angus, Devon, and Hereford); and, 4) C: Continental
European breeds (mainly Charolais, Limousin, and Simmental).
To be considered as a Montana Tropical® Composite (Figure 1),
the animals had to have at least three breeds in their genetic
composition. In addition, the minimum percentage of the
TABLE 1 | Descriptive statistics of the pedigree dataset according to the breed
and biological type composition of the animals.

1Biological Type Number of animals

Montana Tropical® Composite 4444 7,136
4480 4,693
4804 3,125
4840 3,127

Pure breeds N ≥ 90% 3,730
A ≥ 90% 1,461
B ≥ 90% 1,630
C ≥ 90% 181

Crossbreed N × A 116
N × B 2,230
N × C 842
A × B 153
A × C 8
B × C 48

Total 28,480
February 2020 | Vo
1Biological type (NABC system; Ferraz et al., 1999): Zebu breeds (N), Adapted Taurine
breeds (A), British Taurine breeds (B), and Continental Taurine breeds (C). Breed
composition of the Montana Tropical Composite animals: 4444 = 25% N, A, B and C;
4480 = 25% N, 25% A, 50% B, and < 6.25% C; 4804 = 25% N, 50% A, < 6.25% B, and
25% C; 4840 = 25% N, 50% A, 25% B and < 6.25% C. N × A, N × B, N × C, A × B, A × C,
and B × C = the combination of each breed group equals to 50%.
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biological types (breed groups) required to be considered a
Montana Tropical® Composite was 12.5% for group A and
25% for groups N and A together. The maximum proportion
of each group allowed was 37.5% for group N; 87.5% for group A;
and 75% for groups B and C (Santana et al., 2013). The main
contributing breeds to the development of this composite
population were Aberdeen Angus, Red Angus, Nellore,
Senepol, Limousin, Simmental, Hereford, and Bonsmara.

Four ultrasound-based carcass and meat quality traits (LMA,
BFT, RFT, and MARB), recorded on animals born between 2008
and 2016, were included in this study. Animals were raised in 18
farms located at different Brazilian states, Paraguay and Uruguay
(Figure 1). In general, the animals were raised on pastures
composed basically of Brachiaria brizantha. All farms provided
feed supplements in the dry season (from May to August). With
regard to the reproductive breeding scheme, around 60% of cows
were artificially inseminated and 40% were kept in multiple-sire
lots with a cows-to-bull’ ratio of 30:1 or 25:1. The majority of
calves were born between September and December (Spring
season in South America and the beginning of the rainy
period) and weaned at 7 months of age. Weight recording was
obtained at birth and weaning. Further records of yearling
weight, scrotal circumference, and other productive traits were
collected between 14 and 18 months. More details are presented
in Santana et al. (2012), and in a previous GWAS study from the
same population (Grigoletto et al., 2019).

The average (±standard deviation; SD) age of the animals at
the ultrasound measurement was 580.27 (±75.08) days.
Longissimus muscle area (LMA) was measured in cm2, between
the 12th and 13th ribs. Backfat thickness (BFT) was measured in
mm, at a point three-fourths of transverse orientation over the
LMA (Brethour, 2004). Rump fat thickness (RFT) was also
measured in mm, at the junction of the biceps femoris and
Frontiers in Genetics | www.frontiersin.org 315
gluteus medius between the ischium and ilium (Greiner et al.,
2003; Gordo et al., 2012). Marbling score (MARB) was measured
as an indicator of the percentage of intramuscular fat, using a
subjective scale ranging from 1 to 12, based on the U.S.
Department of Agriculture (USDA) quality grades (www.
uspremiumbeef.com/DocumentItem.aspx?ID=21). All traits
were evaluated by ultrasonography using the ALOKA 500 V
device, with a 3.5 MHz linear probe. The images were analyzed
using the LINCE® software (Gabín et al., 2012). Phenotypic
quality control removed records deviating 3.5 SD from the
overall mean within contemporary group (CG). The CGs were
defined based on farms, years, and seasons of birth, sexes, and
management groups. The CGs with less than five records were
excluded from subsequent analyses. Descriptive statistics for the
ultrasound-based carcass and meat quality traits after the data
editing are shown in Table 2.

Genotypic Quality Control
A total of 1,436 bulls were genotyped using a moderate-density
SNP panel containing 30,105 SNPs (GeneSeek Genomic
FIGURE 1 | Illustration of a Montana Tropical® Composite bull (left) and location of the farms (right) participating in the Montana Tropical® Composite breeding
program. The map regions in black indicate Brazilian states and the gray areas represent Paraguay and Uruguay. Photo Credits: Montana Tropical® Composite
website (www.compostomontana.com.br/criadores-montana/).
TABLE 2 | Descriptive statistics, variance components, and genetic parameter
estimate for ultrasound carcass traits in the Montana Tropical® Composite cattle
population.

1Trait N Mean SD s 2
a (SE) s 2

e (SE) h2 (SE)

LMA (cm2) 9,358 58.40 12.79 13.99 (1.73) 33.35 (1.44) 0.29 (0.03)
BFT (mm) 5,768 2.84 0.71 0.25 (0.04) 0.68 (0.03) 0.26 (0.03)
RFT (mm) 7,996 3.16 1.37 0.09 (0.04) 0.45 (0.03) 0.16 (0.03)
MARB (score) 1,972 3.29 1.20 0.18 (0.04) 0.36 (0.04) 0.33 (0.05)
Fe
bruary 2020
 | Volume 11 |
1Traits: Longissimus muscle area (LMA); backfat thickness (BFT); rump fat thickness
(RFT); marbling score (MARB).

N, number of animals; SD, standard deviation; SE, standard error; s2
a additive genetic

variance; s2
e residual variance; h2, heritability.
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Profiler™ LDv4-GGP Bovine LDv4; Illumina, San Diego, CA).
Genotype quality control was performed using the PREGSF90
program (Aguilar et al., 2014; Aguilar et al., 2019). In general,
SNPs with minor allele frequency lower than 0.05, call rate lower
than 90%, extreme deviation from Hardy–Weinberg equilibrium
(defined as the maximum difference between observed and
expected heterozygosity) greater than 0.15 (Wiggans et al.,
2009), and SNPs located in nonautosomal chromosomes were
excluded. A total of 27,196 SNPs distributed on 29 autosomal
chromosomes, and 1,394 genotyped animals (42 animals were
excluded due to call rate lower than 90%) remained for further
analyses. BTA1 is the largest chromosome, with 158.72
Megabase pairs (Mb) covered by 1,602 SNPs, while the BTA27
is the shortest one, with 42.33 Mb covered by 512 SNPs.

Statistical Analyses
Variance components and breeding value prediction. Single-
trait linear animal models and the average-information restricted
maximum likelihood (AI-REML) procedure were used to
estimate heritability and variance components, using the
AIREMLF90 package from the BLUPF90 family programs
(Misztal et al., 2002; Misztal et al., 2014). Genomic breeding
values for all traits were directly predicted using the ssGBLUP
procedure (Misztal et al., 2009; Aguilar et al., 2010; Christensen
and Lund, 2010). The ssGBLUP is a modified version of the
traditional BLUP, in which the inverse of the pedigree-based
relationship matrix (A−1) is replaced by the H−1 matrix. The H−1

is defined as follow (Legarra et al., 2009; Aguilar et al., 2010):

H−1 = A−1 +

0 0

0 tG−1 − wA−1
22

2
664

3
775,

where A–1 was previously defined, t and w are the scaling factors
used to combine G and A22 (assumed as t = 1.0 and w = 0.7 in
order to reduce bias; Misztal et al., 2010; Tsuruta et al., 2011),A−1

22 is
the inverse of the pedigree-based relationship matrix for the
genotyped animals, and G–.G-1 is the inverse of the genomic
relationshipmatrix (G), which was calculated as (VanRaden, 2008):

G = ZZ0=k,

where Z is the matrix containing the centered genotypes (−1, 0,
1) accounting for the observed allelic frequencies; and k is a
scaling parameter, defined as 2 S p(1–p), in which p is the
observed allele frequency of each marker. The weighting factor
can be derived either based on SNP frequencies (VanRaden,
2008) or by ensuring that the average diagonal of G is close to
one as in A22 (Vitezica et al., 2011). In order to minimize issues
with G inversion, 0.05 of A was added to 0.95 of the G matrix.

The single-trait animal models used in this study included the
direct additive genetic and residual as random effects. CG, direct
(individual) heterozygosity (described below), and age of the
animal at the measurement were included as fixed effects in the
model. Thus, the statistical model used in this study can be
Frontiers in Genetics | www.frontiersin.org 416
described as:

yijkl = CGi + b1 Agej − Age
� �

+ b2 HDk
− HD

� �
+ al + ϵijkl ,

where yijkl is the phenotypic record for each trait (LMA, BFT,
RFT or MARB) recorded on the animal l, belonging to the CG i,
at age j, and direct (individual) heterozygosity (HD) k. b1 and b2
are the linear regression coefficients related to the Age and HD

effects, respectively, which were considered as deviations from
the mean (Age and HD) The a1 is the direct additive genetic
random effect for the animal l, and ϵijkl is the residual random
effect associated with the animal l, direct (individual)
heterozygosity k, age j, and CG i. Assuming a matrix notation,
the previous model can be written as:

y = X b+Za + ϵ,

where, y is the vector of phenotypic observations for each trait; b is
the vector of solutions for fixed effects; a is the vector of predictions
for random additive genetic animal effect; ϵ is the vector of random
residual terms; X and Z are the incidence matrices of fixed and
random effects, respectively. It was assumed that: a ~ N(0 Hs2

a)
and ϵ ~ N(0 Is2

a) where s 2
ais the additive genetic variance; s 2

ϵ is the
residual variance; and I is an identity matrix. Thus, the (co)variance
matrix (V) of the random effects can be expressed as:

V =
Hs 2

a

0

0

Is 2
ϵ

" #
,

whereH is the relationship matrix used in the ssGBLUP method.
The non-additive effects of heterozygosity were obtained by
linear regression to the coefficients of direct (individual)
heterozygosity (HD), which were calculated as (Dias et al., 2011):

HD = 1 − o
4

i=1
SiDi

which i represents the biological type (i.e., i = 1, 2, 3 or 4,
indicating the proportion of N, A, B, C, respectively); Si and Di

are the fractions of the ith biological type of sire and dam,
respectively. Coefficients for biological types (N, A, B, and C)
were equal to the proportion of each biological type in the breed
composition (as recorded by the producers/technicians or
calculated based on pedigree relationship between animals),
and it was assumed that the sum of all proportions of
biological types in one animal were equal to one. To avoid
multicollinearity, direct additive effects of the biological type N
were excluded from the statistical models, i.e., the effects for A, B,
and C were estimated as deviations of the additive effects of N
(Dias et al., 2011; Petrini et al., 2012).

Genetic correlations. Amultiple-trait linear animal model was
used to estimate the genetic and phenotypic correlation between all
traits (LMA, BFT, RFT, and MARB) using pedigree and genomic
information. Genetic and phenotypic correlations were calculated
using the AIREMLF90 package from the BLUPF90 family programs
(Misztal et al., 2002; Misztal et al., 2014). The multiple-trait model
February 2020 | Volume 11 | Article 123
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included the same fixed and random effects described above.
However, it was assumed that: a ~ N(0, G⊗H); ϵ ~ N(0, R⊗I);
where a, H, and I are the same as above; G is the additive genetic
(co)variance matrix; R is the residual (co)variance matrix. In this
reasoning, the (co)variance matrix for random effects was:

V =
G⊗H O

0 R⊗ I

" #

Genome-wide association studies (GWAS). The GWAS for
each trait was carried out using the weighted ssGBLUP method
(WssGBLUP; Wang et al., 2012). The same statistical models
described to estimate the variance components and breeding
values were used to identify genomic windows associated with the
traits, as described by Wang et al. (2014) using the BLUPF90 family
programs (Misztal et al., 2002; Misztal et al., 2014). The PREGSF90
software (Aguilar et al., 2014) was used as an interface to the
genomic module to process the genomic information. Also, the
POSTGSF90 software (Aguilar et al., 2014) was used to back-solve
the GEBVs for each trait. To calculate the SNP effects and weights,
we followed the steps proposed by Wang et al. (2014). This method
uses an iterative process, which was repeated three times in this
study, to increase the weight of SNPs with larger effects and decrease
the weight of those markers with smaller (close to zero) effects
(Wang et al., 2014). The GWAS results are reported as the
proportion of variance explained by a moving genomic window
of five adjacent SNPs. Genomic windows that explained more than
1% of the total genetic variance were considered as relevant, i.e.
associated with the trait being analyzed.

Functional Analyses
Positional candidate genes were annotated considering an upstream
and downstream interval of 100 kb (threshold defined based on the
level of linkage disequilibrium in the population) using the Ensembl
Genome Browser (www.ensembl.org/index.html) and the ARS-
UCD1.2 version of the cattle genome (Zerbino et al., 2017).
Furthermore, important SNPs (from the key genomic windows)
were further explored using the Animal QTL Database
(AnimalQTLdb; Zhi-Liang et al., 2019). Functional analyses were
carried out to characterize the gene ontology (GO) terms and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways using the
Database for Annotation, Visualization and Integrated Discovery
(DAVID; Huang et al., 2009). In order to increase the statistical
power of the study, all candidate genes identified for the four traits
were considered in the same functional analysis, as they are all
correlated traits. The significance thresholds used were p-value <
0.05 and false discovery rate (FDR) < 5 based on the Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995), as
implemented in the DAVID software (Huang et al., 2009).
RESULTS

Genetic Parameter Estimates
The variance components and heritability (h2) estimates for
LMA, BFT, RFT, and MARB are presented in Table 2. All
Frontiers in Genetics | www.frontiersin.org 517
traits had moderate to high heritability estimates, which
ranged from 0.16 ± 0.03 to 0.33 ± 0.05. The genetic and
phenotypic correlations are shown in Table 3. The highest
genetic correlation was obtained between BFT and RFT (0.97 ±
0.02), followed by an unfavorable correlation between BFT and
MARB (0.66 ± 0.01). The heritability estimates from the single-
trait and averaged bivariate model analyses were similar, and
therefore, only the heritability estimates from the single-trait
models are reported and discussed here.

GWAS and Functional Analyses
A total of 18, 22, 9, and 11 genomic windows explaining more
than 1% of the total genetic variance were identified for LMA,
BFT, RFT, and MARB, respectively. These regions are harboring
or overlap with 241 positional genes. The main candidate genes
are shown in Table 4 and the complete list is presented in the
“Supplementary Material” section. The genomic windows
identified are spread across all autosomal chromosomes, with
exception of BTA8, BTA16, BTA19, BTA20, and BTA25
(Supplementary file — Tables S1–S4). The Manhattan plots
for all traits are presented in Figure 2.

Two overlapping regions were identified on BTA13: 1) at
47.7–48.5 Mb for BFT and MARB, and 2) at 61.5–63.5 Mb for
BFT and RFT. The highest peaks associated with LMA, BFT,
RFT, and MARB were located on BTA10 (5.4–5.8 Mb; 6.6% of
the genetic variance), BTA27 (25.2–25.5 Mb; 9.3% of the genetic
variance), BTA18 (60.6–61.0 Mb; 6.0% of the genetic variance),
and BTA21 (14.8–15.4 Mb; 6.0% of the genetic variance),
respectively (Figure 2). For LMA, a single genomic window
was identified on BTA14 (22.8 to 23.2 Mb) explaining close to 4%
of the total additive genetic variation. Another region explaining
1.17% of the total additive genetic variance was identified on
BTA18 (5.4 to 5.6 Mb) and contains the WWOX gene which
plays a role in the composition of intramuscular fatty acid
associated with cholesterol homeostasis and triglyceride
biosynthesis (Iatan et al., 2014). A region located on BTA13
(61.6–62.5 Mb) identified to be associated with both BFT and
RFT harbors the candidate genes PLAGL2, ASXL1, and BPIFB2.
This suggests that these genes might have pleiotropic effects on
BFT and RFT. The genomic region located at BTA22 and
harboring the SCAP and ENTPD3 genes accounted for 7.58%
of the total genetic variance for BFT. It is worth noting that we
highlighted selected genes related to BFT and RFT, however, a
total of 13 mutual genes (HCK, TM9SF4, PLAGL2, POFUT1,
KIF3B, ASXL1, NOL4L, COMMD7, DNMT3B, MAPRE1,
TABLE 3 | Genetic (above) and phenotypic (below) correlation (±standard error)
for ultrasound carcass and meat quality traits in the Montana Tropical Composite
beef cattle population.

Traits1 LMA BFT RFT MARB

LMA 0.46 ± 0.05 0.29 ± 0.08 0.27 ± 0.05
BFT 0.53 ± 0.08 0.64 ± 0.03 0.50 ± 0.02
RFT 0.39 ± 0.12 0.97 ± 0.02 0.47 ± 0.03
MARB 0.23 ± 0.01 0.66 ± 0.01 0.55 ± 0.02
February 2
020 | Volume 11
1Traits: Longissimus muscle area (LMA), backfat thickness (BFT), rump fat thickness (RFT)
and marbling score (MARB).
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EFCAB8, SUN5, BPIFB2) were identified for this common
genomic region. A total of 12 biological processes (BP) and
two pathways were significantly enriched (Table 5). Four
biological processes involving visual behavior, associative
learning, muscle tissue morphogenesis, and regulation of fatty
acid biosynthetic processes were highlighted for further discussion.
DISCUSSION

Genetic Parameters
The genetic parameters obtained for ultrasound carcass traits in
the Montana Tropical Composite population (Table 2) are
similar to literature reports (Mourão et al., 2007). For instance,
Meirelles et al. (2010) estimated h2 of 0.24 ± 0.09 and 0.33 ± 0.09
for BFT and LMA, respectively, in Canchim beef cattle (a
Frontiers in Genetics | www.frontiersin.org 618
synthetic population based on crossing between Charolais and
Zebu breeds). Silva et al. (2019) also reported moderate to high
h2 estimates for BFT (0.17 ± 0.06), RFT (0.27 ± 0.07), and LMA
(0.32 ± 0.02) in Nellore beef cattle. Hay and Roberts (2018) also
reported a high h2 estimate for LMA (0.32 ± 0.08) in a composite
population of 50% Red Angus, 25% Charolais, and 25%
Tarentaise beef cattle. The moderate to high heritability
estimates indicate that genetic progress can be achieved for
these traits through selective breeding.

A high and favorable genetic correlation was estimated
between BFT and RFT (r = 0.97 ± 0.02), indicating that these
traits are controlled by a similar set of genes. Furthermore, this
high genetic correlation suggests that indirect genetic progress
can be attained by including only one of these two traits in a
breeding program. Positive but unfavorable genetic correlations
were estimated between BFT and MARB (r = 0.66 ± 0.01), RFT
TABLE 4 | The main genomic regions explaining more than 1% of total genetic variance (%var) of ultrasound-based carcass traits in the Montana Tropical® Composite
beef cattle.

1Trait 2BTA Position (start-
end, in bp)

%
var

Candidate genes

LMA 2 64,808,388–
65,069,037

3.86 NCKAP5, LYPD1, GPR39

6 102,264,376–
102,500,758

6.00 HSD17B13, HSD17B11, NUDT9, SPARCL1, DSPP, DMP1, PPP2R2C, WFS1, JAKMIP1

10 5,392,944–
5,807,684

6.67 HRH2, SFXN1, DRD1

14 22,875,603–
23,252,097

3.48 XKR4, TMEM68, TGS1, LYN, RPS20, MOS, PLAG1

18 25,832,665–
26,209,903

4.17 KIFC3, CNGB1, TEPP, ZNF319, USB1, MMP15, CFAP20, CSNK2A2, CCDC113, PRSS54, GINS3, NDRG4, SETD6,
CNOT1, SLC38A7, GOT2

BFT 2 12,138,830–
12,823,369

3.33 –

13 61,566,683–
62,224,699

3.88 PLAGL2, POFUT1, KIF3B, ASXL1, NOL4L, COMMD7, DNMT3B, MAPRE1, EFCAB8, SUN5, BPIFB2

15 75,727,954–
76,192,434

4.38 MAPK8IP1, C15H11orf94, PEX16, LARGE2, PHF21A, CREB3L1, CHST1, SLC35C1, CRY2

22 12,826,540–
13,203,551

4.75 SCN10A, SCN11A, WDR48, GORASP1, TTC21A, CSRNP1, XIRP1, CX3CR1, CCR8, SLC25A38, RPSA, MOBP, MYRIP,
EIF1B, ENTPD3, RPL14, ZNF619, ZNF621, HSPD1

27 25,252,766–
25,558,906

9.31 PPP1R3B, TNKS

RFT 2 29,948,707–
30,390,796

1.59 SCN7A, SCN9A, SCN1A, TTC21B

14 7,844,432–
8,107,746

1.56 ST3GAL1, NDRG1, CCN4

18 60,682,096–
61,018,825

6.08 ZNF331, MGC139164, NLRP12, MGC157082

18 65,340,963–
65,356,544

1.29 ZNF814

23 3,159,017–
3,581,582

1.30 ZNF451, BEND6

MARB 2 96,082,524–
96,725,242

1.55 PLEKHM3, CRYGD, CRYGC, CRYGB, CRYGA, C2H2orf80, IDH1, PIKFYVE, PTH2R

12 22,901,497–
23,236,520

1.39 LHFPL6, NHLRC3, PROSER1, STOML3, FREM2

15 24,216,319–
24,219,946

4.51 ZW10

21 14,800,548–
15,428,801

6.00 SLCO3A1

28 34,157,181–
34,514,922

3.31 –
1Traits: Longissimus muscle area (LMA), backfat thickness (BFT), rump fat thickness (RFT) and marbling score (MARB). 2Bos taurus autosome (BTA).
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FIGURE 2 | Manhattan plots of the genome-wide association analyses for Longissimus muscle area (A; LMA), backfat thickness (B; BFT), rump fat thickness (C;
RFT) and marbling score (D; MARB) traits. The 29 autosomal chromosomes are shown in different colors. The x-axis represents the chromosome number whereas
the y-axis shows the proportion of genetic variance explained by five adjacent SNPs. The gray line corresponds to the genome-wide threshold of each window that
explained more than 1% of genetic variance.
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and MARB (r = 0.55 ± 0.02), LMA and BFT (r = 0.53 ± 0.08), and
LMA and RFT (r = 0.39 ± 0.02). This is because the industry aims
to increase MARB and LMA while keeping BFT and RFT at a
constant level. However, as these correlations are far from the
unit, genetic progress for all the traits can be achieved by
including and properly weighting them in a selection index. A
favorable correlation was observed between LMA and MARB
(r = 0.23 ± 0.01). Gordo et al. (2018) also obtained a moderate
and positive correlation between LMA and MARB in Zebu cattle.
These findings indicate that selection for carcass traits might
indirectly improve meat quality.

GWAS and Functional Analyses
To our best knowledge, this is the first study reporting genomic
regions and genetic parameters for carcass and meat quality traits
in the Montana Tropical® Composite. The WssGBLUP method
enables the inclusion of phenotypes of ungenotyped animals in
the GWAS, which improves the accuracy of marker effect
estimation (Wang et al., 2012; Aguilar et al., 2019). The
genomic regions presented in Table 4 are harboring candidate
genes related to several biological mechanisms associated with
carcass and meat quality traits. For instance, the PPP1R3B
(protein phosphatase 1, regulatory subunit 3B) gene was
identified to play a role in the expression of all the traits
included in this study. PPP1R3B has been reported to be
associated with meat quality traits in cattle, including pH, meat
color, and shear force (Edwards et al., 2003; Kayan, 2011; Cinar
et al., 2012), and skeletal muscle development in humans (Munro
et al., 2002). In addition, this gene is associated with glucose and
glycogen metabolism. Therefore, it may affect the energy
availability in skeletal muscle and consequently, contribute to
greater muscle growth (Zhao et al., 2019). Also, it regulates
deposition of intramuscular fat relative to subcutaneous fat
deposition (Choat et al., 2003).

The PLAGL2, CALCR, ASXL1, and BP1FB2 genes, identified
to be associated with BFT and RFT, play a role in lipid
metabolism (Van Dyck et al., 2007). More specifically, PLAGL2
Frontiers in Genetics | www.frontiersin.org 820
is part of a subfamily of zinc finger (PLAG) gene family proteins
(Kas et al., 1998). The PLAG1 gene, also identified in this study,
has a great impact on carcass weight in cattle (Littlejohn et al.,
2012). Moreover, many studies have shown that the PLAG gene
family is a key regulator of mammalian growth and body weight
(Littlejohn et al., 2012; Fortes et al., 2013; Utsunomiya et al.,
2017; Muramatsu, 2018; Zhang et al., 2019). The CALCR gene,
located on BTA4 and identified to be associated with BFT, was
previously reported to be associated with angularity, body
condition score and body depth in Holstein cattle (Magee
et al., 2010). The gene INSIG1 (Insulin induced gene 1) has also
been associated with growth and carcass traits, including body
weight, hip width and withers height (Liu Y. et al., 2012), residual
feed intake (Karisa et al., 2013) and milk fatty acids (Rincon et al.,
2012). Furthermore, a group of genes (PLAG1, RPS20,
ATP6V1H, RGS20, LYN, TCEA1, MRPL15, SOX17, RP1,
CHCHD7, SDR16C5, SDR16C6, PENK, FAM110B, CYP7A1,
SDCBP) located on a conserved region on BTA14, previously
reported as a selective sweep region in dairy and beef cattle
breeds (Zhao et al., 2015), might play a crucial role in carcass and
meat quality traits. This region seems to be the most relevant
association with carcass traits in beef cattle (Magalhães et al.,
2016; Hay and Roberts, 2018; Zhang et al., 2019). Furthermore,
LYN, XKR4, and TGS1 genes have already been associated with
hip height (An et al., 2019), insulin-like growth factor 1 level
(Fortes et al., 2012), and carcass traits (including RFT) in Blonde
d’Aquitaine, Charolais, Limousine, Belmont Red, Santa
Gertrudis, and Nellore cattle (Porto-Neto et al., 2012; Ramayo-
Caldas et al., 2014; Magalhães et al., 2016).

The considerable number of common candidate genes (i.e.,
114 genes) identified for multiple carcass traits suggests that
there are important pleiotropic effects regulating phenotypic
expression of these traits. This is also supported by the
moderate to high genetic correlation observed here and in
other studies (e.g. Tonussi et al., 2015; Herd et al., 2018).
Recently, Silva et al. (2017) and Hay and Roberts (2018)
reported several significant regions on BTA14 associated with
TABLE 5 | Enriched Gene Ontology (GO) and KEGG terms obtained from the DAVID database (https://david.ncifcrf.gov; Huang et al., 2009).

Category GO Term p-value FDR Genes

Biological
Process

GO:0008306~associative learning 4.97E-
04

0.84 DDHD2, NDRG4, DRD1, HRH2, LRRN4

GO:0007632~visual behavior 6.93E-
04

1.17 DDHD2, NDRG4, DRD1, HRH2, LRRN4

GO:0008542~visual learning 0.01 1.53 DDHD2, NDRG4, DRD1, HRH2, LRRN4
GO:0060415~muscle tissue morphogenesis 0.008 2.57 CCM2L, MYL3, RXRA, ZFPM2
GO:0007612~learning 0.014 3.6 DDHD2, DRD1, LRRN4, HRH2, NDRG4
GO:0030817~regulation of cAMP biosynthetic
process

0.04 5.2 DRD1, GALR1, WFS1, GALR3

GO:0042304~regulation of fatty acid biosynthetic
process

0.01 5.61 SCAP, INSIG1, PDK4

GO:0044060~regulation of endocrine process 0.04 5.4 FGFR1, CRY2, GALR1
GO:0060986~endocrine hormone secretion 0.04 5.9 FGFR1, CRY2, GALR1
GO:0033002~muscle cell proliferation 0.01 7.3 FGFR1, NDRG4, RXRA, ZFPM2
GO:0007611~learning or memory 0.01 8.1 DDHD2, DRD1, LRRN4, HRH2, NDRG4
GO:0001501~skeletal system development 0.02 8.2 WDR48, FGFR1, CSRNP1, PTH1R, ASXL1, INSIG1, PKDCC, SETD2,

WWOX
KEGG pathway bta00270: Cysteine and methionine metabolism 0.04 14.63 DNMT3B, GOT2

bta04151: PI3K-Akt signaling pathway 0.05 40.64 CREB3L1, COL5A1, FGFR1, FLT4, PIK3AP1, PPP2R3C, RXRA
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BFT and other carcass traits in Zebu and composite beef cattle
populations. The genomic region identified on BTA22
(harboring the SCAP and ENTPD3 genes) was also reported by
Hay and Roberts (2018) to be associated with BFT in tropical
composite cattle. The gene DNMT3B (DNA cytosine-5-
methyltransferase 3 beta), associated with BFT in this study,
was previously associated with marbling score, subcutaneous fat,
Longissimus muscle area, body weight, carcass weight, dressing
percentage in offspring of Wagyu and F1 crossbred cows of
Limousin with Fuzhou Yellow cattle (Liu X. et al., 2012). LCORL
has also been previously associated with carcass weight and fat
thickness at the 12th rib in crossbred beef cattle (Lindholm-Perry
et al., 2011).

The WWOX gene, located on BTA18, has been previously
associated with meat color in Korean native cattle (Lee et al.,
2018). Meat color is one of the main parameters that influence
consumers’ preference (Font-i-Furnols and Guerrero, 2014).
Additionally, meat color has currently been described to be
related to cholesterol homeostasis and fatty acid biosynthesis,
which is likely associated with lipid metabolism (Iatan et al.,
2014). Furthermore, lipid metabolism in mammals is
hypothesized to be associated with immune response and
inflammatory processes. This consequently impacts lean
deposition and subcutaneous fat deposition, as well as growth
rate in cattle (Silva-Vignato et al., 2019).

The number of genotyped animals with phenotypes for the
trait(s) of interest and the density of the panel used (number of
SNPs after the quality control) are two key factors that influence
the identification of important genomic regions, especially those
located in regions with low levels of linkage disequilibrium or
small effect on the trait. These two factors might have
constrained the genomic regions that were identified in this
study. However, the SNP panel used in this study contains
informative SNPs identified in several breeds, which were also
used to develop the Montana Tropical Composite population
(Angus, Red Angus, Nellore, Brahman, Charolais, Gelbvieh,
Hereford, Limousin, Simmental, Holstein, Jersey, Brown Swiss,
Ayrshire, Guernsey, Gyr, Girolando, Brangus, Beefmaster, and
Braford). This might have minimized these effects. In view of the
limitations described here, further studies using larger datasets
and denser SNP panels should be performed to validate the
results reported in this study.

Functional Enrichment Analyses
The moderate to high genetic correlations obtained between RFT
and MARB, BFT and RFT, and the common genomic regions
and candidate genes identified indicate that muscle development
and fat deposition are likely directly correlated processes. Berg
and Butterfield (1976) described that as soon as the animal
reaches mature age, changes in the proportions of specific tissues
are observed. This includes a decrease in muscle-bone growth
rates and an increase in fat deposition rate. The two main
biological processes identified are: 1) “muscle tissue
morphogenesis” (GO:006415) and 2) “regulation of fatty acid
biosynthesis” (GO:0042304). A key gene of the muscle tissue
morphogenesis is RXRA (Retinoid X receptor, alpha), which has
been associated with weaning weight and yearling weight in
Frontiers in Genetics | www.frontiersin.org 921
Charolais and Brahman cattle (Paredes-Sánchez et al., 2015), and
with BFT and meat fatty acids in an Angus–Hereford–Limousin
crossbred population (Goszczynski et al., 2016). The fatty acid
composition is directly linked with intramuscular fat content,
and its major regulation is located in the skeletal muscle in
mammals (Muoio et al., 2002). Meat fatty acid content is a
crucial parameter of consumers acceptability and might become
a key breeding goal in Nellore cattle (e.g., Lemos et al., 2016;
Feitosa et al., 2017; Feitosa et al., 2019), one of the most
influential breeds in the development of the Montana
Composite population. In general, meat fatty acid content is
related to meat quality and flavor and complex interactions
occurring during the animals’ life and post-mortem period
(Mullen et al., 2006).

Two of the highlighted processes are related to behavior
indicator traits: 1) visual behavior and 2) associative learning.
The associative learning is defined as the capacity of an
individual learning a behavior based on the association of
two or more events (Abramson and Kieson, 2016). In
general, animals recognize events related to environmental
factors through this process. For example, the animal's
temperament from previous handling experiences produces
an active learning process to determine how it will react in a
next handling event. Furthermore, mounting behavior can
result in carcass bruising and thus reduce carcass quality
especially depending on the level of BFT (Hoffman and Lühl,
2012). This is a very important finding, as cattle temperament
is significantly associated with handling stress and
consequently, carcass damage, and reduction in meat quality
(Yang et al., 2019). The association between visual behavior
and associative learning processes can also be related to feeding
behavior which is a relevant process associated with feed
efficiency, growth rate, and carcass composition.

The KEGG pathway PI3K-AKT is associated with stimulation
of cell growth and proliferation, and simultaneously inhibits
apoptosis. In this regard, PI3Ks plays a major role in insulin
metabolism (Ma et al., 2017), which is the major hormone
controlling glucose and lipid metabolism (Dimitriadis et al.,
2011). In this context, Shingu et al. (2001) suggested that
insulin secretion may contribute to the difference in growth
patterns and meat quality properties among beef cattle breeds.
Another pathway enriched was “bta00270: Cysteine and
methionine metabolism”, which is associated with meat flavor
development in several species (Mecchi et al., 1964; Minor et al.,
1965; Pepper and Pearson, 1969; Pippen et al., 1969), and likely
associated with intramuscular fat (or MARB). Cysteine and
methionine are considered the largest components of meat
flavor (Werkhoff et al., 1990; Khan et al., 2015). Uncooked
meat has little to no aroma and only a blood-like taste, thus,
the meat flavor is thermally derived by reactions between
carbohydrates and amino acids (Mottram, 1998).
CONCLUSIONS

Our findings indicate that ultrasound-based carcass and meat
quality traits are heritable and therefore can be improved
February 2020 | Volume 11 | Article 123
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through selective breeding. The high genetic correlation between
BFT and RFT indicate that indirect genetic response can be
obtained by selecting for only one of them. The WssGBLUP
method used to perform GWAS enabled the identification of
various novel or already known candidate genes associated with
the carcass and meat quality traits in the Montana Tropical®

Composite population, but the traits studied have a polygenic
nature. Some of the genes identified were previously associated
with traits such as growth, carcass, body condition score, skeletal
muscle growth, carcass fatness, and meat fatty acid composition.
The main biological processes and pathways identified were
“muscle tissue morphogenesis” and “regulation of fatty acid
biosynthetic”, which biologically validate the ultrasound-based
measurements. Further studies using larger datasets (ideally in
independent populations) and denser SNP panels (>30 K) should
be performed in order to validate the results reported in
this study.

DATA AVAILABILITY STATEMENT

The data supporting the results of this article are included within the
article/Supplementary Material. The raw data cannot be made
publicly available, as it is property of the Montana Tropical
Composite breeders and this information is commercially
sensitive. Reasonable requests for access to the raw datasets for
research purposes can be e-mailed to: jbferraz@usp.br (JF).

AUTHOR CONTRIBUTIONS

LG, JF, FB, and LB conceived and designed the project. LG, JF,
JE, FOB, BS organized sample collection and genotyping. LG
Frontiers in Genetics | www.frontiersin.org 1022
performed the analyses. LG, LB, and HO wrote the manuscript.
All authors reviewed and approved the final version of
the manuscript.
FUNDING

This study was financially supported by the Sao Paulo Research
Foundation (Fundação de Amparo à Pesquisa do Estado de São
Paulo — FAPESP) through the grants: 2014/07566-2, 2017/
11919-6, and 2018/20393-0.
ACKNOWLEDGMENTS

The authors acknowledge the Montana Tropical® Composite
breeding program for providing the datasets for this study. We
also thank the Animal Breeding and Biotechnology Group of the
College of Animal Science and Food Engineering (Pirassununga,
Sao Paulo, Brazil) for their contribution to the analysis and data
collection and storage.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2020.
00123/full#supplementary-material
REFERENCES

Abramson, C. I., and Kieson, E. (2016). Conditioning methods for animals in
agriculture: a review. Ciência Anim. Bras. 17, 359–375. doi: 10.1590/1089-
6891v17i341981

Adzitey, F. (2011). Effect of pre-slaughter animal handling on carcass and meat
quality. Int. Food Res. J. 18, 484–490.

Aguilar, I., Misztal, I., Johnson, D. L., Legarra, A., Tsuruta, S., and Lawlor, T. J.
(2010). Hot topic: a unified approach to utilize phenotypic, full pedigree, and
genomic information for genetic evaluation of Holstein final score. J. Dairy Sci.
93, 743–752. doi: 10.3168/jds.2009-2730

Aguilar, I., Misztal, I., Tsuruta, S., Legarra, A., and Wang, H. (2014). “PREGSF90–
POSTGSF90: computational tools for the implementation of single-step
genomic selection and genome-wide association with ungenotyped
individuals in BLUPF90 programs,” in Proceedings of the 10th World
Congress of Genetics Applied to Livestock Production(Vancouver, Canada).
doi:10.1093/bioinformatics/btm108

Aguilar, I., Legarra, A., Cardoso, F., Masuda, Y., Lourenco, D., and Misztal, I.
(2019). Frequentist p-values for large-scale-single step genome-wide
association, with an application to birth weight in American Angus cattle.
Gen. Sel. Evol. 51, 28. doi: 10.1186/s12711-019-0469-3

An, B., Xia, J., Chang, T., Wang, X., Xu, L., Zhang, L., et al. (2019). Genome-wide
association study reveals candidate genes associated with body measurement traits
in Chinese Wagyu beef cattle. Anim. Gen. 50, 386–390. doi: 10.1111/age.12805

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J. R. Stat. Soc 57, 289–300.
doi: 10.1111/j.2517-6161.1995.tb02031.x
Berg, R. T., and Butterfield, R. M. (1976). New concepts of cattle growth (University
of Sydney: Sydney University Press). doi: hdl.handle.net/1813/1008

Berry, D. P., Conroy, S., Pabiou, T., and Cromie, A. R. (2017). Animal breeding
strategies can improve meat quality attributes within entire populations. Meat
Sci. 132, 6–18. doi: 10.1016/j.meatsci.2017.04.019

Bressan, M. C., Rodrigues, E. C., Paula, M. D. L. D., Ramos, E. M., Portugal, P. V.,
Silva, J. S., et al. (2016). Differences in intramuscular fatty acid profiles among
Bos indicus and crossbred Bos taurus × Bos indicus bulls finished on pasture or
with concentrate feed in Brazil. Ital. J. Anim. Sci. 15, 10–21. doi: 10.1080/
1828051X.2016.1139478

Brethour, J. R. (2004). The relationship of average backfat thickness of feedlot steers to
performance and relative efficiency of fat and protein retention. J. Anim. Sci. 82,
3366–3372. doi: 10.2527/2004.82113366x

Choat, W. T., Krehbiel, C. R., Duff, G. C., Kirksey, R. E., Lauriault, L. M., Rivera, J. D.,
et al. (2003). Influence of grazing dormant native range or winter wheat pasture on
subsequent finishing cattle performance, carcass characteristics, and ruminal
metabolism. J. Anim. Sci. 81, 3191–3201. doi: 10.2527/2003.81123191x

Christensen, O. F., and Lund, M. S. (2010). Genomic prediction when some
animals are not genotyped. Gen. Sel. Evol. 42, 2. doi: 10.1186/1297-9686-42-2

Cinar, M. U., Kayan, A., Uddin, M. J., Jonas, E., Tesfaye, D., Phatsara, C., et al.
(2012). Association and expression quantitative trait loci (eQTL) analysis of
porcine AMBP, GC and PPP1R3B genes with meat quality traits. Mol. Biol.
Rep. 39, 4809–4821. doi: 10.1007/s11033-011-1274-4

Crouse, J. D., Cundiff, L. V., Koch, R. M., Koohmaraie, M., and Seideman, S. C.
(1989). Comparisons of Bos indicus and Bos taurus inheritance for carcass beef
characteristics and meat palatability. J. Anim. Sci. 67, 2661–2668. doi: 10.2527/
jas1989.67102661x
February 2020 | Volume 11 | Article 123

mailto:jbferraz@usp.br
https://www.frontiersin.org/articles/10.3389/fgene.2020.00123/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2020.00123/full#supplementary-material
https://doi.org/10.1590/1089-6891v17i341981
https://doi.org/10.1590/1089-6891v17i341981
https://doi.org/10.3168/jds.2009-2730
https://doi.org/10.1093/bioinformatics/btm108
https://doi.org/10.1186/s12711-019-0469-3
https://doi.org/10.1111/age.12805
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/hdl.handle.net/1813/1008
https://doi.org/10.1016/j.meatsci.2017.04.019
https://doi.org/10.1080/1828051X.2016.1139478
https://doi.org/10.1080/1828051X.2016.1139478
https://doi.org/10.2527/2004.82113366x
https://doi.org/10.2527/2003.81123191x
https://doi.org/10.1186/1297-9686-42-2
https://doi.org/10.1007/s11033-011-1274-4
https://doi.org/10.2527/jas1989.67102661x
https://doi.org/10.2527/jas1989.67102661x
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Grigoletto et al. GWAS in Montana Composite Cattle
Dias, R. A. P., Petrini, J., Ferraz, J. B. S., Eler, J. P., Bueno, R. S., da Costa, A. L. L.,
et al. (2011). Multicollinearity in genetic effects for weaning weight in a beef
cattle composite population. Livest. Sci. 142, 188–194. doi: 10.1016/
j.livsci.2011.07.016

Dimitriadis, G., Mitrou, P., Lambadiari, V., Maratou, E., and Raptis, S. A. (2011).
Insulin effects in muscle and adipose tissue. Diab. Res. Clin. Pract. 93, 52–59.
doi: 10.1016/S0168-8227(11)70014-6

Edwards, D. B., Bates, R. O., and Osburn, W. N. (2003). Evaluation of Duroc- vs.
Pietrain-sired pigs for carcass and meat quality measures. J. Anim. Sci. 81,
1895–1899. doi: 10.2527/2003.8181895x

Feitosa, F. L. B., Olivieri, B. F., Aboujaoude, C., Pereira, A. S. C., de Lemos, M. V. A.,
Chiaia, H. L. J., et al. (2017). Genetic correlation estimates between beef fatty acid
profile with meat and carcass traits in Nellore cattle finished in feedlot. J. Appl. Gen.
58, 123–132. doi: 10.1007/s13353-016-0360-7

Feitosa, F. L. B., Pereira, A. S. C., Amorim, S. T., Peripolli, E., de Oliveira Silva, R. M.,
Braz, C. U., et al. (2019). Comparison between haplotype-based and individual snp-
based genomic predictions for beef fatty acid profile in Nelore cattle. J. Anim. Breed.
Genet. 1–9. doi: 10.1111/jbg.12463

Ferraz, J. B. S., and Felício, P. E. (2010). Production systems–An example from
Brazil. Meat Sci. 84, 238–243. doi: 10.1016/j.meatsci.2009.06.006

Ferraz, J. B. S., Eler, J. P., and Golden, B. L. (1999). A formação do composto
Montana Tropical. Rev. Bras. Rep. Anim. 23, 115–117.

Font-i-Furnols, M., and Guerrero, L. (2014). Consumer preference, behavior and
perception about meat and meat products: an overview.Meat Sci. 98, 361–371.
doi: 10.1016/j.meatsci.2014.06.025

Fortes, M. R., Reverter, A., Hawken, R. J., Bolormaa, S., and Lehnert, S. A. (2012).
Candidate genes associated with testicular development, sperm quality, and
hormone levels of inhibin, luteinizing hormone, and insulin-like growth factor
1 in Brahman bulls. Biol. Repr. 87, 58–51. doi: 10.1095/biolreprod.112.101089

Fortes, M. R. S., Kemper, K., Sasazaki, S., Reverter, A., Pryce, J. E., Barendse, W., et al.
(2013). Evidence for pleiotropism and recent selection in the PLAG 1 region in
Australian B eef cattle. Anim. Genet. 44, 636–647. doi: 10.1111/age.12075

Gabín, B., Camerino, O., Castañer, M., and Anguera, M. T. (2012). LINCE: new
software to integrate registers and analysis on behavior observation. Proc.
Comput. Sci. Technol.

Gordo, D. G. M., Baldi, F., Lôbo, R. B., Filho, W. K., Sainz, R. D., and Albuquerque,
L. G. D. (2012). Genetic association between body composition measured by
ultrasound and visual scores in Brazilian Nelore cattle. J. Anim. Sci. 90, 4223–
4229. doi: 10.2527/jas.2011-3935

Gordo, D. G. M., Espigolan, R., Bresolin, T., Fernandes Júnior, G. A., Magalhães,
A. F., Braz, C. U., et al. (2018). Genetic analysis of carcass and meat quality
traits in Nelore cattle. J. Anim. Sci. 96, 3558–3564. doi: 10.2527/jas2011-3935

Goszczynski, D. E., Mazzucco, J. P., Ripoli, M. V., Villarreal, E. L., Rogberg-
Muñoz, A., Mezzadra, C. A., et al. (2016). Genetic characterization of PPARG,
CEBPA and RXRA, and their influence on meat quality traits in cattle. J. Anim.
Sci. Tech. 58, 14. doi: 10.1186/s40781-016-0095-3

Gregory, K. E., Cundiff, L. V., Koch, R. M., and Lunstra, D. D. (1993). Germplasm
utilization in beef cattle. Beef Res. Prog. Prog. Rep. 4, 7–19.

Gregory, K. E., Cundiff, L. V., Koch, R. M., Dikeman, M. E., and Koohmaraie, M.
(1994). Breed effects, retained heterosis, and estimates of genetic and
phenotypic parameters for carcass and meat traits of beef cattle. J. Anim. Sci.
72, 1174–1183. doi: 10.2527/1994.7251174x

Greiner, S. P., Rouse, G. H., Wilson, D. E., Cundiff, L. V., and Wheeler, T. L.
(2003). Prediction of retail product weight and percentage using ultrasound
and carcass measurements in beef cattle. J. Anim. Sci. 81, 1736–1742. doi:
10.2527/2003.8171736x

Grigoletto, L., Brito, L. F., Mattos, E. C., Eler, J. P., Bussiman, F. O., Silva, B. C. A.,
et al. (2019). Genome-wide associations and detection of candidate genes for
direct and maternal genetic effects influencing growth traits in the Montana
Tropical® Composite population. Livest. Sci. 229, 64–76. doi: 10.1016/
j.livsci.2019.09.013

Guerrero, A., Velandia Valero, M., Campo,M.M., and Sañudo, C. (2013). Some factors
that affect ruminant meat quality: from the farm to the fork. Review. Acta
Scientiarum. Anim. Sci. 35, 335–347. doi: 10.4025/actascianimsci.v35i4.21756

Hay, E. H., and Roberts, A. (2018). Genome-wide association study for carcass
traits in a composite beef cattle breed. Livest. Sci. 213, 35–43. doi: 10.1016/
j.livsci.2018.04.018
Frontiers in Genetics | www.frontiersin.org 1123
Herd, R. M., Arthur, P. F., Bottema, C. D. K., Egarr, A. R., Geesink, G. H., Lines, D. S.,
et al. (2018). Genetic divergence in residual feed intake affects growth, feed
efficiency, carcass and meat quality characteristics of Angus steers in a large
commercial feedlot. Anim. Prod. Sci. 58, 164–174. doi: 10.1071/AN13065

Hoffman, L. C., and Lühl, J. (2012). Causes of cattle bruising during handling and
transport in Namibia. Meat Sci. 92, 115–124. doi: 10.1016/j.meatsci.2012.04.021

Huang, D.W., Sherman, B. T., Zheng, X., Yang, J., Imamichi, T., Stephens, R., et al.
(2009). Extracting biological meaning from large gene lists with DAVID. Curr.
Prot. Bioinf. 27, 13–11. doi: 10.1002/0471250953.bi1311s27

Iatan, I., Choi, H. Y., Ruel, I., Reddy, M. P. L., Kil, H., Lee, J., et al. (2014). The
WWOX gene modulates high-density lipoprotein and lipid metabolism. Circ.
Card. Gen. 7, 491–504. doi: 10.1161/CIRCGENETICS.113.000248

Karisa, B. K., Thomson, J., Wang, Z., Stothard, P., Moore, S. S., and Plastow, G. S.
(2013). Candidate genes and single nucleotide polymorphisms associated with
variation in residual feed intake in beef cattle. J. Anim. Sci. 91, 3502–3513. doi:
10.2527/jas.2012-6170

Kas, K., Voz, M. L., Hensen, K., Meyen, E., and Van de Ven, W. J. (1998).
Transcriptional activation capacity of the novel PLAG family of zinc finger
proteins. J. Biol. Chem. 273, 23026–23032. doi: 10.1074/jbc.273.36.23026

Kayan, A. (2011). “Identification of positional and functional candidate genes for
meat and carcass quality in F2 Duroc x Pietrain resource population.
[dissertation/master's thesis],” (Germany: University of Bonn).

Khan, M. I., Jo, C., and Tariq, M. R. (2015). Meat flavor precursors and factors
influencing flavor precursors—a systematic review. Meat Sci. 110, 278–284.
doi: 10.1016/j.meatsci.2015.08.002

Lee, S., Min-Wook, H., So-Young, C., and Kim, J. (2018). Genome-wide
association analysis to identify QTL for carcass traits in Korean native cattle.
J. Anim. Sci. 96, 516–516. doi: 10.1093/jas/sky404.1130

Legarra, A., Aguilar, I., and Misztal, I. (2009). A relationship matrix including full
pedigree and genomic information. J. Dairy Sci. 92, 4656–4663. doi: 10.3168/
jds.2009-2061

Legarra, A., Christensen, O. F., Aguilar, I., and Misztal, I. (2014). Single Step, a
general approach for genomic selection. Livest. Sci. 166, 54–65. doi: 10.1016/
j.livsci.2014.04.029

Lemos, M. V., Chiaia, H. L. J., Berton, M. P., Feitosa, F. L., Aboujaoud, C.,
Camargo, G. M., et al. (2016). Genome-wide association between single
nucleotide polymorphisms with beef fatty acid profile in Nellore cattle using
the single step procedure. BMC Gen. 17, 213. doi: 10.1186/s12864-016-2511-y

Lindholm-Perry, A. K., Sexten, A. K., Kuehn, L. A., Smith, T. P., King, D. A.,
Shackelford, S. D., et al. (2011). Association, effects and validation of
polymorphisms within the NCAPG-LCORL locus located on BTA6 with feed
intake, gain, meat and carcass traits in beef cattle. BMC Gen. 12, 103. doi:
10.1186/1471-2156-12-103

Littlejohn, M., Grala, T., Sanders, K., Walker, C., Waghorn, G., Macdonald, K.,
et al. (2012). Genetic variation in PLAG1 associates with early life body weight
and peripubertal weight and growth in Bos taurus. Anim. Genet. 43, 591–594.
doi: 10.1111/j.1365-2052.2011.02293.x

Liu, Y., Liu, X. L., He, H., and Gu, Y. L. (2012). Four SNPs of insulin-induced gene
1 associated with growth and carcass traits in Qinchuan cattle in China. Genet.
Mol. Res. 11, 1209–1216. doi: 10.4238/2012.May.8.3

Liu, X., Guo, X. Y., Xu, X. Z., Wu, M., Zhang, X., Li, Q., et al. (2012). Novel single
nucleotide polymorphisms of the bovine methyltransferase 3b gene and their
association with meat quality traits in beef cattle. Genet. Mol. Res. 11, 2569–
2577. doi: 10.4238/2012.June.29.1

Ma, M., Wang, X., Chen, X., Cai, R., Chen, F., Dong, W., et al. (2017). MicroRNA-
432 targeting E2F3 and P55PIK inhibits myogenesis through PI3K/AKT/
mTOR signaling pathway. RNA Biol. 14, 347–360. doi: 10.1080/
15476286.2017.1279786

Magalhães, A. F., de Camargo, G. M., Junior, G. A. F., Gordo, D. G., Tonussi,
R. L., Costa, R. B., et al. (2016). Genome-wide association study of meat
quality traits in Nellore cattle. PLoS One 11, e0157845. doi: 10.1371/
journal.pone.0157845

Magee, D. A., Sikora, K. M., Berkowicz, E. W., Berry, D. P., Howard, D. J., Mullen,
M. P., et al. (2010). DNA sequence polymorphisms in a panel of eight
candidate bovine imprinted genes and their association with performance
traits in Irish Holstein-Friesian cattle. BMC Gen. 11, 93. doi: 10.1186/1471-
2156-11-93
February 2020 | Volume 11 | Article 123

https://doi.org/10.1016/j.livsci.2011.07.016
https://doi.org/10.1016/j.livsci.2011.07.016
https://doi.org/10.1016/S0168-8227(11)70014-6
https://doi.org/10.2527/2003.8181895x
https://doi.org/10.1007/s13353-016-0360-7
https://doi.org/10.1111/jbg.12463
https://doi.org/10.1016/j.meatsci.2009.06.006
https://doi.org/10.1016/j.meatsci.2014.06.025
https://doi.org/10.1095/biolreprod.112.101089
https://doi.org/10.1111/age.12075
https://doi.org/10.2527/jas.2011-3935
https://doi.org/10.2527/jas2011-3935
https://doi.org/10.1186/s40781-016-0095-3
https://doi.org/10.2527/1994.7251174x
https://doi.org/10.2527/2003.8171736x
https://doi.org/10.1016/j.livsci.2019.09.013
https://doi.org/10.1016/j.livsci.2019.09.013
https://doi.org/10.4025/actascianimsci.v35i4.21756
https://doi.org/10.1016/j.livsci.2018.04.018
https://doi.org/10.1016/j.livsci.2018.04.018
https://doi.org/10.1071/AN13065
https://doi.org/10.1016/j.meatsci.2012.04.021
https://doi.org/10.1002/0471250953.bi1311s27
https://doi.org/10.1161/CIRCGENETICS.113.000248
https://doi.org/10.2527/jas.2012-6170
https://doi.org/10.1074/jbc.273.36.23026
https://doi.org/10.1016/j.meatsci.2015.08.002
https://doi.org/10.1093/jas/sky404.1130
https://doi.org/10.3168/jds.2009-2061
https://doi.org/10.3168/jds.2009-2061
https://doi.org/10.1016/j.livsci.2014.04.029
https://doi.org/10.1016/j.livsci.2014.04.029
https://doi.org/10.1186/s12864-016-2511-y
https://doi.org/10.1186/1471-2156-12-103
https://doi.org/10.1111/j.1365-2052.2011.02293.x
https://doi.org/10.4238/2012.May.8.3
https://doi.org/10.4238/2012.June.29.1
https://doi.org/10.1080/15476286.2017.1279786
https://doi.org/10.1080/15476286.2017.1279786
https://doi.org/10.1371/journal.pone.0157845
https://doi.org/10.1371/journal.pone.0157845
https://doi.org/10.1186/1471-2156-11-93
https://doi.org/10.1186/1471-2156-11-93
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Grigoletto et al. GWAS in Montana Composite Cattle
Mecchi, E. P., Pippen, E. L., and Lineweaver, H. (1964). Origin of hydrogen sulfide
in heated chicken muscle. J. Food Sci. 29, 393–399. doi: 10.1111/j.1365-
2621.1964.tb01750.x

Meirelles, S. L., Alencar, M. M. D., Oliveira, H. N. D., and Regitano, L. C. D. A.
(2010). Efeitos de ambiente e estimativas de parâmetros genéticos para
características de carcaça em bovinos da raça Canchim criados em pastagem.
Rev. Bras. Zoot. 39, 1437–1442. doi: 10.1590/S1516-35982010000700006

Minor, L. J., Pearson, A. M., Dawson, L. E., and Schweigert, B. S. (1965). Chicken
flavor: the identification of some chemical components and the importance of
sulfur compounds in the cooked volatile fraction. J. Food Sci. 30, 686–696. doi:
10.1111/j.1365-2621.1965.tb01825.x

Misztal, I., Tsuruta, S., Strabel, T., Auvray, B., Druet, T., and Lee, D. H. (2002).
“BLUPF90 and related programs (BGF90),” in Proceedings of the 7th world congress
on genetics applied to livestock production, (Montpellier, France) vol. 33. 743–744.

Misztal, I., Legarra, A., and Aguilar, I. (2009). Computing procedures for genetic
evaluation including phenotypic, full pedigree, and genomic information. J. Dairy
Sci. 92, 4648–4655. doi: 10.3168/jds.2009-2064

Misztal, I., Aguilar, I., Legarra, A., and Lawlor, T. J. (2010). "Choice of parameters for
single-step genomic evaluation for type", in Proceedings of the 61st annual meeting
of the European association for animal production, (Heraklion), 23–27.

Misztal, I., Tsuruta, S., Lourenco, D., Aguilar, I., Legarra, A., and Vitezica, Z. (2014).
Manual for BLUPF90 family of programs (Athens: University of Georgia).

Mottram, D. S. (1998). Flavour formation in meat and meat products: a review.
Food Chem. 62, 415–424. doi: 10.1016/S0308-8146(98)00076-4

Mourão, G. B., Ferraz, J. B. S., Eler, J. P., Balieiro, J. C. D. C., Bueno, R. S., Mattos,
E. C., et al. (2007). Genetic parameters for growth traits of a Brazilian Bos
taurus x Bos indicus beef composite. Genet. Mol. Res. 6, 1190–1200.

Mullen, A. M., Stapleton, P. C., Corcoran, D., Hamill, R. M., and White, A. (2006).
Understanding meat quality through the application of genomic and
proteomic approaches. Meat Sci. 74, 3–16. doi: 10.1016/j.meatsci.2006.04.015

Munro, S., Cuthbertson, D. J., Cunningham, J., Sales, M., and Cohen, P. T. (2002).
Human skeletal muscle expresses a glycogen-targeting subunit of PP1 that is
identical to the insulin-sensitive glycogen-targeting subunit GL of liver.
Diabetes 51, 591–598. doi: 10.2337/diabetes.51.3.591

Muoio, D. M., Way, J. M., Tanner, C. J., Winegar, D. A., Kliewer, S. A., Houmard,
J. A., et al. (2002). Peroxisome proliferator-activated receptor-a regulates fatty
acid utilization in primary human skeletal muscle cells. Diabetes 51, 901–909.
doi: 10.2337/diabetes.51.4.901

Muramatsu, Y. (2018). Multiple marker effects of single nucleotide polymorphisms in
two genes, NCAPG and PLAG1, for Carcass weight in Japanese black cattle.Open J.
Anim. Sci. 9, 129–134. doi: 10.4236/ojas.2019.91011

Njisane, Y. Z., and Muchenje, V. (2017). Farm to abattoir conditions, animal factors
and their subsequent effects on cattle behavioural responses and beef quality—A
review. Asian-Austr. J. @ Anim. Sci. 30, 755. doi: 10.5713/ajas.16.0037

Paredes-Sánchez, F. A., Sifuentes-Rincón, A. M., Cabrera, A. S., Pérez, C. A. G.,
Bracamonte, G. M. P., and Morales, P. A. (2015). Associations of SNPs located at
candidate genes to bovine growth traits, prioritized with an interaction networks
construction approach. BMC Gen. 16, 91. doi: 10.1186/s12863-015-0247-3

Pathak, V., Singh, V. P., and Sanjav, Y. (2011). Ultrasound as a modern tool for
carcass evaluation and meat processing: a review. Int. J. Meat Sci. 1, 83–92. doi:
10.3923/ijmeat.2011.83.92

Pepper, F. H., and Pearson, A. M. (1969). Changes in hydrogen sulfide and
sulfhydryl content of heated beef adipose tissue. J. Food Sci. 34, 10–12. doi:
10.1111/j.1365-2621.1969.tb14351.x

Petrini, J., Dias, R. A. P., Pertile, S. F. N., Eler, J. P., Ferraz, J. B. S., and Mourão, G. B.
(2012). Degree of multicollinearity and variables involved in linear dependence in
additive-dominant models. Pesq. Agrop. Bras. 47, 1743–1750. doi: 10.1590/S0100-
204X2012001200010

Piccoli, M. L., Brito, L. F., Braccini, J., Oliveira, H. R., Cardoso, F. F., Roso, V. M.,
et al. (2020). Comparison of genomic prediction methods for evaluation of
adaptation and productive efficiency traits in Braford and Hereford cattle.
Livestock Sci. 231, 103864. doi: 10.1016/j.livsci.2019.103864

Pippen, E. L., Mecchi, E. P., and Nonaka, M. (1969). Origin and nature of aroma in
fat of cooked poultry. J. Food Sci. 34, 436–442. doi: 10.1111/j.1365-
2621.1969.tb12799.x

Porto-Neto, L. R., Bunch, R. J., Harrison, B. E., and Barendse, W. (2012). Variation
in the XKR4 gene was significantly associated with subcutaneous rump fat
Frontiers in Genetics | www.frontiersin.org 1224
thickness in indicine and composite cattle. Anim. Gen. 43, 785–789. doi:
10.1111/j.1365-2052.2012.02330.x

Ramayo-Caldas, Y., Fortes, M. R. S., Hudson, N. J., Porto-Neto, L. R., Bolormaa, S.,
Barendse, W., et al. (2014). A marker-derived gene network reveals the regulatory
role of PPARGC1A, HNF4G, and FOXP3 in intramuscular fat deposition of beef
cattle. J. Anim. Sci. 92, 2832–2845. doi: 10.2527/jas.2013-7484

Reverter, A., Johnston, D. J., Graser, H. U., Wolcott, M. L., and Upton, W. H.
(2000). Genetic analyses of live-animal ultrasound and abattoir carcass traits in
Australian Angus and Hereford cattle. J. Anim. Sci. 78, 1786–1795. doi:
10.2527/2000.7871786x

Rincon, G., Islas-Trejo, A., Castillo, A. R., Bauman, D. E., German, B. J., and
Medrano, J. F. (2012). Polymorphisms in genes in the SREBP1 signalling
pathway and SCD are associated with milk fatty acid composition in Holstein
cattle. J. Dairy Res. 79, 66–75. doi: 10.1017/S002202991100080X

Rodrigues, R. T. S., Chizzotti, M. L., Vital, C. E., Baracat-Pereira, M. C., Barros, E.,
Busato, K. C., et al. (2017). Differences in beef quality between Angus (Bos
taurus taurus) and Nellore (Bos taurus indicus) cattle through a proteomic and
phosphoproteomic approach. PLoS One 12, e0170294. doi: 10.1371/
journal.pone.0170294

Santana, M. L., Eler, J. P., Cardoso, F. F., Albuquerque, L. G. D., Bignardi, A. B.,
and Ferraz, J. B. S. (2012). Genotype by environment interaction for birth and
weaning weights of composite beef cattle in different regions of Brazil. Livest.
Sci. 149, 242–249. doi: 10.1016/j.livsci.2012.07.017

Santana, M. L., Eler, J. P., Cardoso, F. F., Albuquerque, L. G. D., and Ferraz, J. B. S.
(2013). Phenotypic plasticity of composite beef cattle performance using
reaction norms model with unknown covariate. Animal 7, 202–210. doi:
10.1017/S1751731112001711

Scholz, A. M., Bünger, L., Kongsro, J., Baulain, U., and Mitchell, A. D. (2015).
Non-invasive methods for the determination of body and carcass composition
in livestock: dual-energy X-ray absorptiometry, computed tomography,
magnetic resonance imaging and ultrasound: invited review. Animal 9,
1250–1264. doi: 10.1017/S1751731115000336

Shingu, H., Hodate, K., Kushibiki, S., Ueda, Y., Watanabe, A., Shinoda, M., et al.
(2001). Profiles of growth hormone and insulin secretion, and glucose response
to insulin in growing Japanese Black heifers (beef type): comparison with
Holstein heifers (dairy type). Comp. Biochem. Phys. 130, 259–270. doi: 10.1016/
S1532-0456(01)00249-6

Silva, R. M. O., Stafuzza, N. B., de Oliveira Fragomeni, B., de Camargo, G. M. F.,
Ceacero, T. M., Cyrillo, J. N. D. S. G., et al. (2017). Genome-wide association
study for carcass traits in an experimental Nelore cattle population. PLoS One
12, e0169860. doi: 10.1371/journal.pone.0169860

Silva, R. P., Berton, M. P., Grigoletto, L., Carvalho, F. E., Silva, R. M., Peripolli, E.,
et al. (2019). Genomic regions and enrichment analyses associated with carcass
composition indicator traits in Nellore cattle. J. Anim. Breed. Genet. 136, 118–
133. doi: 10.1111/jbg.12373

Silva-Vignato, B., Coutinho, L. L., Poleti, M. D., Cesar, A. S., Moncau, C. T.,
Regitano, L. C., et al. (2019). Gene co-expression networks associated with
carcass traits reveal new pathways for muscle and fat deposition in Nelore
cattle. BMC Gen. 20, 32. doi: 10.1186/s12864-018-5345-y

Tonussi, R. L., Espigolan, R., Gordo, D. G. M., Magalhães, A. F. B., Venturini, G. C.,
Baldi, F., et al. (2015). Genetic association of growth traits with carcass and meat
traits in Nellore cattle. Genet. Mol. Res. 14, 18713–18719. doi: 10.4238/2015

Tsuruta, S., Misztal, I., Aguilar, I., and Lawlor, T. J. (2011). Multiple-trait genomic
evaluation of linear type traits using genomic and phenotypic data in US
Holsteins. J. Dairy Sci. 94, 4198–4204. doi: 10.3168/jds.2011-4256

USDA. (2019). USDA Agricultural Projections to 2028. U.S. Department of
Agriculture, Office of the Chief Economist, World Agricultural Outlook
Board. Prepared by the InteragencyAgricultural Projections Committee.
Long-term Projections Report OCE-2019-1, 108.

Utsunomiya, Y. T. , Milanesi, M., Utsunomiya, A. T. H., Torrecilha, R. B. P., Kim,
E. S., Garcia, J. F., et al. (2017). A PLAG1 mutation contributed to stature
recovery in modern cattle. Sci. Rep. 7, 17140. doi: 10.1038/s41598-017-17127-1

Van Dyck, F., Braem, C. V., Chen, Z., Declercq, J., Deckers, R., Kim, B. M., et al.
(2007). Loss of the PlagL2 transcription factor affects lacteal uptake of
chylomicrons. Cell Met. 6, 406–413. doi: 10.1016/j.cmet.2007.09.010

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. J. Dairy
Sci. 91, 4414–4423. doi: 10.3168/jds.2007-0980
February 2020 | Volume 11 | Article 123

https://doi.org/10.1111/j.1365-2621.1964.tb01750.x
https://doi.org/10.1111/j.1365-2621.1964.tb01750.x
https://doi.org/10.1590/S1516-35982010000700006
https://doi.org/10.1111/j.1365-2621.1965.tb01825.x
https://doi.org/10.3168/jds.2009-2064
https://doi.org/10.1016/S0308-8146(98)00076-4
https://doi.org/10.1016/j.meatsci.2006.04.015
https://doi.org/10.2337/diabetes.51.3.591
https://doi.org/10.2337/diabetes.51.4.901
https://doi.org/10.4236/ojas.2019.91011
https://doi.org/10.5713/ajas.16.0037
https://doi.org/10.1186/s12863-015-0247-3
https://doi.org/10.3923/ijmeat.2011.83.92
https://doi.org/10.1111/j.1365-2621.1969.tb14351.x
https://doi.org/10.1590/S0100-204X2012001200010
https://doi.org/10.1590/S0100-204X2012001200010
https://doi.org/10.1016/j.livsci.2019.103864
https://doi.org/10.1111/j.1365-2621.1969.tb12799.x
https://doi.org/10.1111/j.1365-2621.1969.tb12799.x
https://doi.org/10.1111/j.1365-2052.2012.02330.x
https://doi.org/10.2527/jas.2013-7484
https://doi.org/10.2527/2000.7871786x
https://doi.org/10.1017/S002202991100080X
https://doi.org/10.1371/journal.pone.0170294
https://doi.org/10.1371/journal.pone.0170294
https://doi.org/10.1016/j.livsci.2012.07.017
https://doi.org/10.1017/S1751731112001711
https://doi.org/10.1017/S1751731115000336
https://doi.org/10.1016/S1532-0456(01)00249-6
https://doi.org/10.1016/S1532-0456(01)00249-6
https://doi.org/10.1371/journal.pone.0169860
https://doi.org/10.1111/jbg.12373
https://doi.org/10.1186/s12864-018-5345-y
https://doi.org/10.4238/2015
https://doi.org/10.3168/jds.2011-4256
https://doi.org/10.1038/s41598-017-17127-1
https://doi.org/10.1016/j.cmet.2007.09.010
https://doi.org/10.3168/jds.2007-0980
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Grigoletto et al. GWAS in Montana Composite Cattle
Vitezica, Z. G., Aguilar, I., Misztal, I., and Legarra, A. (2011). Bias in genomic
predictions for populations under selection. Genet. Res. 93, 357–366. doi:
10.1017/S001667231100022X

Wang, H., Misztal, I., Aguilar, I., Legarra, A., and Muir, W. M. (2012). Genome-
wide association mapping including phenotypes from relatives without
genotypes. Genet. Res. (Camb) 94, 73–83. doi: 10.1017/S0016672312000274

Wang, H., Misztal, I., Aguilar, I., Legarra, A., Fernando, R. L., Vitezica, Z., et al.
(2014). Genome-wide association mapping including phenotypes from
relatives without genotypes in a single-step (ssGWAS) for 6-week body
weight in broiler chickens. Front. Gen. 5, 134. doi: 10.3389/fgene.2014.00134

Weng, Z., Su, H., Saatchi, M., Lee, J., Thomas, M. G., Dunkelberger, J. R., et al.
(2016). Genome-wide association study of growth and body composition traits
in Brangus beef cattle. Livest. Sci. 183, 4–11. doi: 10.1016/j.livsci.2015.11.011

Werkhoff, P., Bruening, J., Emberger, R., Guentert, M., Koepsel, M., Kuhn, W.,
et al. (1990). Isolation and characterization of volatile sulfur-containing meat
flavor components in model systems. J. Agric. Food Chem. 38, 777–791. doi:
10.1021/jf00093a041

Wiggans, G. R., Sonstegard, T. S., VanRaden, P.M.,Matukumalli, L. K., Schnabel, R. D.,
Taylor, J. F., et al. (2009). Selection of single-nucleotide polymorphisms and quality
of genotypes used in genomic evaluation of dairy cattle in the United States and
Canada. J. Dairy Sci. 92, 3431–3436. doi: 10.3168/jds.2008-1758

Yang, F. L., Anschutz, K. S., Ball, J. J., Hornsby, P., Reynolds, J. L., and Pohlman, F. W.
(2019). Evaluating the relationship of animal temperament to carcass characteristics
and meat quality. Meat Mus. Biol. 3, 70–75. doi: 10.22175/mmb2018.08.0022

Yokoo, M. J., Lobo, R. B., Araujo, F. R. C., Bezerra, L. A. F., Sainz, R. D., and
Albuquerque, L. G. D. (2010). Genetic associations between carcass traits
measured by real-time ultrasound and scrotal circumference and growth traits
in Nelore cattle. J. Anim. Sci. 88, 52–58. doi: 10.2527/jas.2008-1028

Zerbino, D. R., Achuthan, P., Akanni, W., Amode, M. R., Barrell, D., Bhai, J., et al.
(2017). Ensembl 2018. Nucleic Acids Res. 46, 754–761. doi: 10.1093/nar/
gkx1098
Frontiers in Genetics | www.frontiersin.org 1325
Zhang, X., Lourenco, D., Aguilar, I., Legarra, A., and Misztal, I. (2016). Weighting
strategies for single-step genomic BLUP: an iterative approach for accurate
calculation of GEBV and GWAS. Front. Genet. 7, 151. doi: 10.3389/
fgene.2016.00151

Zhang, R., Miao, J., Song, Y., Zhang, W., Xu, L., Chen, Y., et al. (2019).
Genome-wide association study identifies the PLAG1-OXR1 region on
BTA14 for carcass meat yield in cattle. Phys. Gen. 51, 137–144. doi:
10.1152/physiolgenomics.00112.2018

Zhao, F., McParland, S., Kearney, F., Du, L., and Berry, D. P. (2015). Detection of
selection signatures in dairy and beef cattle using high-density genomic
information. Gen. Sel. Evol. 47, 49. doi: 10.1186/s12711-015-0127-3

Zhao, L., Huang, Y., and Du, M. (2019). Farm animals for studying muscle
development and metabolism: dual purposes for animal production and
human health. Anim. Front. 9, 21–27. doi: 10.1093/af/vfz015

Zhi-Liang, H., Park, C. A., and Reecy, J. M. (2019). Building a livestock genetic and
genomic information knowledgebase through integrative developments of Animal
QTLdb and CorrDB. Nucleic Acids Res. 47, 701–710. doi: 10.1093/nar/gky1084

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

The reviewer AM declared a shared affiliation, with no collaboration, with one of
the authors, FB, to the handling editor at time of review.

Copyright © 2020 Grigoletto, Ferraz, Oliveira, Eler, Bussiman, Abreu Silva, Baldi and
Brito. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s) are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.
February 2020 | Volume 11 | Article 123

https://doi.org/10.1017/S001667231100022X
https://doi.org/10.1017/S0016672312000274
https://doi.org/10.3389/fgene.2014.00134
https://doi.org/10.1016/j.livsci.2015.11.011
https://doi.org/10.1021/jf00093a041
https://doi.org/10.3168/jds.2008-1758
https://doi.org/10.22175/mmb2018.08.0022
https://doi.org/10.2527/jas.2008-1028
https://doi.org/10.1093/nar/gkx1098
https://doi.org/10.1093/nar/gkx1098
https://doi.org/10.3389/fgene.2016.00151
https://doi.org/10.3389/fgene.2016.00151
https://doi.org/10.1152/physiolgenomics.00112.2018
https://doi.org/10.1186/s12711-015-0127-3
https://doi.org/10.1093/af/vfz015
https://doi.org/10.1093/nar/gky1084
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Frontiers in Genetics | www.frontiersin.org

Edited by:
Shu-Hong Zhao,

Huazhong Agricultural University,
China

Reviewed by:
Tang Zhonglin,

Chinese Academy of Agricultural
Sciences, China
Xiaodong Zhang,

Anhui Agricultural University,
China

*Correspondence:
Xiaolong Yuan

yxl@scau.edu.cn
Jiaqi Li

jqli@scau.edu.cn

Specialty section:
This article was submitted to

Livestock Genomics,
a section of the journal
Frontiers in Genetics

Received: 29 October 2019
Accepted: 04 February 2020
Published: 28 February 2020

Citation:
Chen Z, Pan X, Kong Y, Jiang Y,

Zhong Y, Zhang H, Zhang Z, Yuan X
and Li J (2020) Pituitary-Derived
Circular RNAs Expression and

Regulatory Network Prediction During
the Onset of Puberty in Landrace ×

Yorkshire Crossbred Pigs.
Front. Genet. 11:135.

doi: 10.3389/fgene.2020.00135

ORIGINAL RESEARCH
published: 28 February 2020

doi: 10.3389/fgene.2020.00135
Pituitary-Derived Circular RNAs
Expression and Regulatory Network
Prediction During the Onset of
Puberty in Landrace × Yorkshire
Crossbred Pigs
Zitao Chen, Xiangchun Pan, Yaru Kong, Yao Jiang, Yuyi Zhong, Hao Zhang, Zhe Zhang,
Xiaolong Yuan* and Jiaqi Li*

National Engineering Research Centre for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal
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Being the center of the hypothalamus-pituitary-ovary (HPO) axis, the pituitary plays a key
role in the onset of puberty. Recent studies show that circular RNAs (circRNAs) can
perform as miRNA sponges to regulate development in animals. However, the function of
pituitary-derived circRNAs in first estrus remains unclear in pigs. In this study, we
performed a genome-wide identification and characterization of circRNAs using
pituitaries from Landrace × Yorkshire crossbred pigs at three stages: pre-, in-, and
post-puberty, to describe such pituitary-derived circRNAs in pigs. A total of 5148
circRNAs were found in the gilts' pituitaries, averaging 18 682 bp in genomic distance,
which consisted of approximately 91% exonic, 6% intergenic, and 3% intronic circRNAs.
Furthermore, 158 novel circRNAs were identified for the first time and classified as putative
pituitary-specific circRNAs. Their expression levels during the onset of puberty,
significantly exceeded those of the other circRNAs, and the parental genes of these
putative pituitary-specific circRNAs were enriched in “ssc04917: prolactin signaling
pathway,” “ssc04080: neuroactive ligand-receptor interaction,” and “ssc04728:
dopaminergic synapse” pathways, all of which were consistent with pituitary
functioning. Additionally, 17 differentially regulated circRNAs were found and
investigated for their potential interaction with miRNAs, along with genes, by
constructing a circRNA-targeted miRNA-gene network. Taken together, these results
provide new insight into the circRNA-mediated timing of puberty in gilts at the
pituitary level.
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INTRODUCTION

Puberty can usually be defined as the first estrus of gilts, and the
initiation of puberty implies the acquired capacity for sexual
reproduction in pigs (Nonneman et al., 2016). An early onset of
puberty can shorten the generation interval of livestock, and
further accelerate the genetic breeding process (Rosales Nieto
et al., 2014; Luo et al., 2017). Yet, surprisingly little is known
about the molecular regulation of puberty's timing in pigs.
Previous research has uncovered endocrinological differences
across pubertal onset mainly driven by the hypothalamus-
pituitary-ovary (HPO) axis (Angold et al., 1999; Blakemore
et al., 2010). As the center bridging the hypothalamus
and ovary in the HPO axis, the pituitary is an extremely
important mediator for controlling the synthesis of hormones.
During estrous cycling, an increase in the pulsatile release
of gonadotropin-releasing hormone (GnRH) from the
hypothalamus elicits an increased release of luteinizing
hormone (LH) and follicle-stimulating hormone (FSH) from
the pituitary (Root, 1980; Coe et al., 1981). Additionally,
gonadotropin hormones released from the pituitary have been
shown to be directly related to animals' reproductive associated
traits (Barb et al., 2012).

Circular RNAs (circRNAs) are a novel type of circular RNA
molecules lacking 5′–3′ polarities and polyadenylated tails (Chen
and Yang, 2015), making them more structurally stable than
linear RNAs (Qu et al., 2015). Most circRNAs consist of multiple
exons, as well as introns of protein-coding genes, and are
conserved among different animal species (Szabo and Salzman,
2016). With the advances made in next-generation sequencing
technology, much research on circRNAs has been carried out
using high-throughput RNA sequencing (RNA-seq). In pigs,
recent work has demonstrated circRNAs' involvement in
various organismal processes. For example, through a
comprehensive analysis of porcine cardiac and skeletal
muscles, Chen et al. (2018) showed that circRNAs contribute
to differences in aging. Moreover, circRNAs were defined as a
new biomarker in metabolism-related diseases based on a study
of circRNAs occurring in the subcutaneous adipose tissues of two
pig breeds (Li et al., 2018). For their role in estrus, Li et al. (2018)
investigated the expression of circRNAs in the sheep pituitary,
finding that circRNAs there participated in the regulation of
estrus. By contrast, no puberty- or even estrus-associated study
has yet been performed that has tried to identify circRNAs
in pigs.

Generally, since gilts have an earlier age at first estrus, they
may have a longer productive life, thus farrowing multiple litters
and giving birth to more piglets (Patterson et al., 2010; Saito
et al., 2011). To reveal the relationships between circRNAs and
puberty in the pituitary, here we conducted RNA-seq analyses
using pituitaries from Landrace × Yorkshire crossbred pigs at
three stages: pre-, in-, and post-puberty, to identify circRNAs
and then assemble a circRNA-targeted miRNA-gene network.
To our best knowledge, this study is the first to investigate the
potential regulatory roles of circRNAs during the onset of
puberty in gilts, and so it should provide new insight into this
key developmental process at the molecular level.
Frontiers in Genetics | www.frontiersin.org 227
MATERIALS AND METHODS

Ethics Statement
Animal care and experiments were conducted following
the Regulations for the Administration of Affairs Concerning
Experimental Animals (Ministry of Science and Technology,
China; revised in June 2004) and were approved by the Animal
Care and Use Committee of the South China Agricultural
Un i v e r s i t y , Guangzhou , Ch ina (pe rm i t numbe r :
SCAU#2013-10).

Preparation of Animals and Samples
Three stages during the onset of puberty were used: pre-, in-, and
post-puberty. The onset of puberty was identified by the standing
reflex with the back-pressure test and boar contact (Patterson
et al., 2002). A total of nine Landrace × Yorkshire crossbred gilts
were used: three gilts of 160 days in age without any pubertal
signs were selected as pre-puberty gilts (weight = 81.38 ±
2.40 kg); three gilts exhibiting first pubertal signs served as the
in-pubertal gilts (weight = 110.00 ± 2.00 kg); three gilts 14 days
beyond the pubertal phase were designated as the post-pubertal
gilts (weight = 122.82 ± 9.11 kg). After euthanizing the gilts, their
brains were removed immediately and excess tissues were
removed. The anterior pituitaries were carefully dissected and
frozen immediately in liquid nitrogen, then stored at –80°C until
further use.

RNA Sequencing and Quality Control, and
the Transcriptome Assembly
Pre-, in-, and post-pubertal gilts' pituitaries were homogenized
separately in liquid nitrogen. The total RNAs were extracted
from porcine pituitaries with the Trizol agent (Invitrogen,
Carlsbad, CA, USA), followed by quality testing of the total
RNAs using the Agilent Bioanalyzer 2100 system (Agilent, Palo
Alto, CA, USA). Only those RNA samples with RNA Integrity
Number value > 7.0 were deemed eligible. Then, the rRNA from
the eligible total RNAs was removed using an Epicentre Ribo-
zero rRNA removal kit (Epicentre, Madison, WI, USA). The
rRNA-depleted RNAs were used to synthesize double-stranded
cDNA via the mRNA-Seq Sample Preparation Kit (Illumina,
SanDiego, CA, USA), for which a total of 5 mg cDNA per sample
was sequenced using a HiSeq 2500 Sequencer according to the
manufacturer's instructions, and 150 bp paired-end reads were
generated. These raw reads were processed by 3′ adaptor-
trimming and removal of low-quality reads—having > 10%
unknown bases or > 50% low-mass bases—using Cutadapt
software (Martin, 2011). The reads remaining after quality
control were defined as the clean reads for further analysis.
These acquired clean reads were then mapped onto pig reference
genome Sus scrofa11.1 , using BWA software (Li and
Durbin, 2010).

CircRNA identification
CIRI software (Gao et al., 2015) was applied to obtain the back-
spliced junction (BSJ) reads for circRNA prediction based on the
annotation file downloaded from the Ensembl genome browser
(ftp://ftp.ensembl.org/pub/release-94/gtf/sus_scrofa). Then the
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number of circRNAs' exons and the length of circRNAs were
detected by CIRI-AS module in CIRI software. The expression
levels of circRNAs were quantified as the number of reads
spanning the BSJ reads in terms of RPM (i.e., mapped BSJ
reads per million mapped reads), by using the EBSeq package
(Leng et al., 2013). The differential expression of circRNAs was
determined according to these criteria: false discovery rate (FDR)
< 0.05, log2|fold_change| ≥ 1, and circRNA junction reads ≥ 5.
Further graphical representations of results were performed in
the R platform (R Foundation for Statistical Computing, 2018).
Stage-specific circRNAs were defined here as those circRNAs
only expressed in one pubertal stage. Known circRNAs of pig
were downloaded from the circAtlas 2.0 datasets (Ji et al., 2019),
an integrated resource of circRNAs in vertebrates (http://
circatlas.biols.ac.cn/). In the circAtlas 2.0 database are tens of
thousands of known circRNAs identified from nine porcine
tissue types: brain, heart, kidney, liver, lung, skeletal muscle,
spleen, testis, and retina. The circRNAs identified in the current
study were matched with the database via both starting and
ending genomic positions of circRNAs, and the novel circRNAs
were regarded as the putative tissue-specific circRNAs.
Significant differences between any two pubertal pig groups
were tested with the Welch two-sample t-test.

Functional Enrichment Analysis
The circRNAs–miRNAs interactions were predicted with
miRanda software (John et al., 2004). These were filtered for
predictions with a maximum binding-free energy of less than –20
Frontiers in Genetics | www.frontiersin.org 328
kcal/mol and a miRanda match score ≥ 150. Next, targeted
mRNAs of each selected miRNA were predicted by Targetscan
software (Witkos et al., 2011). The competing endogenous RNAs
networks among the circRNAs, miRNAs, and mRNAs were built
and visualized with Cytoscape software (Su et al., 2014).
Functional enrichment analysis was performed using the
DAVID bioinformatics resource (Huang et al., 2007). Finally,
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway and Gene Ontology (GO) terms with Benjamini-
Hochberg method-adjusted P < 0.05 were identified.

qRT-PCR Analysis
Quantitative real-time reverse transcription-PCR (qRT-PCR)
was carried out using the PrimeScript RT Reagent Kit
(TaKaRa, Osaka, Japan) in a Mx3005P real-time PCR System
(Stratagene, La Jolla, CA, USA) with SYBR Green, according to
the manufacturer's protocol. Divergent primers of 5 circRNAs
were designed to further test the accuracy of the RNA-seq,
namely Circ 1:14408861|14457143, Circ 9:28120503|28122017,
Circ 2:88184110|88206327, Circ 9:75284452|75290025, and Circ
15:74631515|74643464. GAPDH served as an internal reference
to normalize the expression of circRNAs (Table S1). The PCR
conditions were 94 °C denaturation for 5 min, 40 cycles at 94 °C
for 10 s, 52 to 62 °C for 15 s, and 72 °C for 30 s. The 2-ΔΔCt

method was used to analyze the qRT-PCR results. The
Student's t test was used to assess differences in means of any
two pubertal pig groups, for which a P < 0.05 was considered
statistically significant.
FIGURE 1 | Identification of pituitary-derived circRNAs during the onset of puberty in pigs. (A) The Venn diagram of circRNAs detected in pre-, in-, and postpuberty;
(B) Distribution and genomic distance of the circRNAs; (C) Proportion of circRNAs that originated from the exon, intergenic, and intronic regions; (D) The exon
number of the circRNAs; (E) Distribution and transcript length of the circRNAs.
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RESULTS

Identification of Pituitary-Derived
circRNAs During the Onset of Puberty
A total of 5148 circRNAs were detected in all three pubertal
stages: 2779, 4062, and 3167 circRNAs respectively in the pre-,
in-, and post-puberty stages of pigs (Figure 1A). The average
expression level of circRNAs were dynamically changing during
the onset of puberty (Figure 1B). Sus scrofa chromosome (SSC) 1
harbored the most circRNAs, while the SSC10 had the highest
density of circRNAs (Figure 1C). The average genomic distance
of all circRNAs found was 18 682 bp, with 92% of the circRNAs
shorter than 50 000 bp, and the number of circRNAs decreased as
their size lengthened (Figure 1C). The most circRNAs were made
up of two exons, and the length of most circRNAs was about 200
to 300 bp (Figure 1D). After annotation with the pig genome, the
found circRNAs consisted of approximately 91% exonic, 6%
intergenic, and 3% intronic circRNAs, respectively (Figure 1E).

Putative Stage-Specific circRNAs in Gilts
During the Onset of Puberty
A total of 389, 1165, and 545 circRNAs were identified as
putative stage-specific circRNAs from the pre-, in-, and post-
puberty groups, respectively (Figure 1A), and their pair-wise
comparisons did not reveal any significant difference in bp length
(t-test, P > 0.05). Further, the expression levels of pre-puberty
specific circRNAs significantly exceeded those of post-puberty
specific circRNAs (t-test, P < 2.20E−16), with the latter being
significantly higher than the expression levels of in-puberty
Frontiers in Genetics | www.frontiersin.org 429
specific circRNAs (t-test, P < 2.20E−16) (Figure 2A). The
KEGG pathways enriched using the parental genes of stage-
specific circRNAs are listed in Table S2, of which the top five are
shown in Figure 2B–D.

Putative Tissue-Specific circRNAs in Gilts'
Pituitary
To explore the specific circRNAs in pituitary tissue, 4990
circRNAs were identified as known circRNAs that overlapped
with those in circAtlas 2.0, while another 158 circRNAs were
identified as being specifically expressed in pituitary tissue.
Furthermore, the latter, hereon the “putative pituitary-specific
circRNAs,” were significantly shorter than the known circRNAs
(t-test, P = 7.86E-06) (Figure 3A) and these novel circRNAs had
significantly higher expression levels than did the known
circRNAs during the onset of puberty (t-test, P < 2.20E−16)
(Figure 3B). The KEGG enrichment analysis of parental genes of
these putative pituitary-specific circRNAs were enriched in
“ssc04917: Prolactin signaling pathway,” “ssc04080:
Neuroactive ligand-receptor interaction,” and “ssc04728:
Dopaminergic synapse” pathways (Figure 3C).

Analysis of Differentially Expressed
circRNAs
A total of 14 differentially upregulated circRNAs and three
differentially downregulated circRNAs were identified (Table
1). Some of them were derived from different transcripts of the
same genes, such as ESR1 and RALGPS1. All differentially
regulated circRNAs in the pre- vs. in-puberty groups were
FIGURE 2 | Analysis of potential stage-specific circRNAs in pigs. (A) Boxplots of pre-, in-, and post-puberty stage-specific circRNAs' expression levels; the top 5
KEGG pathways enriched using parental genes of pre- (B), in-, (C) and post-puberty (D) stage-specific circRNAs. *** P < 0.001.
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both derived from ESR1 (Table 1). Interestingly, one of them,
circRNA “Circ 1:14408861|14457143,” was identified here for the
first time. Furthermore, the circRNA “Circ 7:121001608|
121012600” was downregulated in the in- vs. post-puberty
groups yet upregulated in the pre- vs. post-puberty groups.

Validation of circRNAs by qRT-PCR
To validate the accuracy of RNA-seq data, a total of five
circRNAs, including four differentially expressed circRNAs—
Circ 1:14408861|14457143 (Figure 4A), Circ 9:28120503|
28122017 (Figure 4B), Circ 2:88184110|88206327 (Figure 4C),
Circ 9:75284452|75290025 (Figure 4D)—and one randomly
selected circRNA: Circ 15:74631515|74643464 (Figure 4E)
were chosen and validated via qRT-PCR.

When compared with the RNA-seq data, similar expression
trends for the qRT-PCR results of all selected circRNAs were
discovered, thus showing that the obtained qRT-PCR results of
these above circRNAs were consistent with the RNA-seq data
(Figure S1).

CircRNA-Targeted miRNA-Gene Network
Prediction
To further explore the putative functions of differentially
expressed circRNAs, these circRNAs were conducted to predict
the binging sites with miRNA targets (Figure 5). The top five
Frontiers in Genetics | www.frontiersin.org 530
plausible miRNA targets were chosen according to their
respective miRanda match score and are listed in Table 1.
According to this study, we found that many of differentially
expressed circRNAs interact with miRNAs that potentially
regulate estrus of pigs. These predicted circRNA-targeted
miRNA-gene networks will be the focus of further research.
DISCUSSION

As a key physiological process of sexual maturation, the timing of
puberty's onset provides a great opportunity for improving the
efficiency of gilts' reproduction. In this study, we identified the
genome-wide landscape of circRNAs in three important pubertal
stages: pre-, in-, and post-puberty. The results showed that the
number of circRNAs were dramatically altered among these three
stages; the most circRNAs detected from in-puberty pigs, followed
by those at post-puberty, with the least number occurring in the
stage of pre-puberty. Many genome-wide analyses of circRNAs in
mammals have been widely conducted using RNA-seq; these
collectively indicate the number of circRNAs can differ between
species, as well among different tissues or ontogeny stages. Of the
5148 circRNAs identified in our study, 158 circRNAs were
distinguishable as putative pituitary-specific circRNAs that are
involved in the prolactin signaling pathway, the neuroactive
FIGURE 3 | Analysis of potential tissue-specific circRNAs in pigs. (A) Boxplots of potential pituitary-specific and known circRNAs' length; (B) Boxplots of potential
pituitary-specific and known circRNAs' expression level; (C) The KEGG pathways enriched using parental genes of potential pituitary-specific circRNAs. *** P < 0.001.
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ligand-receptor interaction, and the dopaminergic synapse.
Prolactin secreted by the pituitary was related to the regulation
of reproductive function, the immune system, osmotic balance,
and angiogenesis (Freeman et al., 2000). The secretion of prolactin
is regulated by endocrine neurons between the hypothalamus and
pituitary, and its regulation mainly depends on the secretion of
dopamine (Bole-Feysot et al., 1998). For the distribution of
circRNAs in the genomic regions, previous studies have shown
extremely differences between different species and tissues. In pigs,
Liang et al. (2017) found that 21.93% of circRNAs in intergenic
regions and 68.40% in exon regions through carrying out nine
organs. Yan et al. (2018) demonstrated that the found circRNAs
consisted of approximately 74.31% exonic, 20.36% intergenic, and
5.33% intronic circRNAs in spleen, and Huang et al. (2018)
demonstrated that more than 86% of circRNAs consisted of
exons while nearly 10% originated from intronic and intergenic
regions in liver. In rats, Yang et al. (2019) found that the circRNAs
consisted of approximately 80.18% exonic, 0.15% intergenic, and
19.67% intronic circRNAs in pulmonary. These observations
strongly support the view that circRNAs' expression occurs in a
specie-specific, tissue-specific, and developmental stage-
specific manner.

Importantly, we identified 17 circRNAs that were differentially
expressed in the gilts, for which we speculated that some parental
genes of differentially regulated circRNAs could influence the
fertility and production traits of female mammals, such as ESR1
(Handa and Weiser, 2014), DENND1A (McAllister et al., 2014),
RALGPS1 (Cochran et al., 2013), andMAML2 (Whittington et al.,
2018). In addition, after identifying the miRNA targets of each
differentially regulated circRNA, we found that some candidate
miRNAs targeted by several circRNAs are linked to mammalian
development of sex differentiation and maturation. For example,
miR-145-5p was found likewise up-regulated after sexual maturity
in pigs (Li et al., 2016) and miR-214-3p was shown to be involved
in the onset of mouse primordial germ and somatic cell sex
differentiation (Fernández-Pérez et al., 2018). Those findings
coupled to our results suggest that circRNAs probably regulate
the onset of puberty.

Interestingly, one of the differentially regulated circRNAs,
circRNA “Circ 1:14408861|14457143,” was reported here in pig
for the first time, and the top five miRNA targets of this particular
circRNA had a predicted interaction with ESR1. ESR1 encodes an
estrogen receptor alpha, a nuclear receptor activated by the sex
hormone estrogen (Green et al., 1986). Previous studies confirmed
that lacking an active ESR1 caused the disruption of normal
pituitary tissue development and function. For instance, female
mice lacking the estrogen receptor alpha in the pituitary
gonadotroph have elevated levels of serum LH and LH beta-
subunit gene expression, indicating that lacking estrogen has a
negative feedback effect on the gonadotroph, with LH values and
estrous cyclicity also found absent in these mice (Singh et al., 2009).
Most circRNAs detected in our study are in the circAtlas 2.0
database, whose circRNAs were identified by at least two tools
(CIRI2, DCC, find_circ, or CIRCexplorer2) to avoid false positives.
Hence, the predictions made in the present study should be reliable.

Our dataset provides fresh insight into the existence of
pituitary-derived circRNAs in pigs, yet this study did have a
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few limitations. Although the rRNA-depleted total RNA-seq
analyses have been used to enrich for circRNAs in previous
studies (e.g., Memczak et al., 2013; Tan et al., 2017; Sekar et al.,
2018), there is no doubt that these sequencing analyses may not
have comprehensively captured all occurring circRNAs.
Furthermore, these enrichment steps may produce a few false
BSJ reads that originated from linear RNAs, which could possibly
Frontiers in Genetics | www.frontiersin.org 732
lead to false detections of circRNAs. To guard against this, we
used CIRI algorithms to identify circRNAs in this study, as they
are reportedly effective for preventing the false detections of
circRNAs that are caused by false BSJ reads (Gao and Zhao,
2018). Finally, the underlying mechanism of these circRNAs
during pigs' pubertal onset still requires carefully elucidation
and verification.
FIGURE 4 | Validation of circRNAs using qRT-PCR. The qRT-PCR results of (A) Circ 1:14408861|14457143, (B) Circ 9:28120503|28122017, (C) Circ 2:88184110|
88206327, (D) Circ 9:75284452|75290025, and (E) Circ 15:74631515|74643464 are shown. The green, red, and blue columns represent the pre-, in-, and post-
puberty pig groups, respectively. * P < 0.05.
FIGURE 5 | The circRNA-targeted miRNA-gene network prediction results of differentially regulated circRNAs. The network prediction results of differentially
regulated circRNAs in (A) the pre- vs. in-puberty group, (B) the in- vs. post-puberty group, and (C) the pre- vs. post-puberty group.
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CONCLUSIONS

This investigation identified and described the circRNAs during
the onset of puberty in gilts' pituitaries. In all, 5148 circRNAs
were found, of which 158 were putative pituitary-specific
expressed circRNAs. Because their expression levels were
significantly higher than those of the remaining circRNAs
during the onset of puberty, this suggested they are involved in
regulating the key function of pituitary tissue. Upon further
examination, 17 differentially regulated circRNAs were identified
and these circRNAs were chosen to construct the posited
circRNA-targeted miRNA-gene network. These results suggest
circRNAs likely play a critical role in puberty's timing in gilts and
thus provide useful information for future investigations of
circRNA-mediated puberty at the pituitary level.
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withRNA-seq data (right). * P < 0.05.
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Birth weight of pigs is an important economic factor in the livestock industry. The
identification of the genes and variants that underlie birth weight is of great importance.
In this study, we integrated two genotyping methods, single nucleotide polymorphism
(SNP) chip analysis and restriction site associated DNA sequencing (RAD-seq) to
genotype genome-wide SNPs. In total, 45,175 and 139,634 SNPs were detected with
the SNP chip and RAD-seq, respectively. The genome-wide association study (GWAS)
of the combined SNP panels identified two significant loci located at chr1: 97,745,041
and chr4: 112,031,589, that explained 6.36% and 4.25% of the phenotypic variance
respectively. To reduce interval containing causal variants, we imputed sequence-
level SNPs in the GWAS identified regions and fine-mapped the causative variants
into two narrower genomic intervals: a ∼100 kb interval containing 71 SNPs and a
broader ∼870 kb interval with 432 SNPs. This fine-mapping highlighted four promising
candidate genes, SKOR2, SMAD2, VAV3, and NTNG1. Additionally, the functional
genes, SLC25A24, PRMT6 and STXBP3, are also located near the fine-mapping region.
These results suggest that these candidate genes may have contribute substantially to
the birth weight of pigs.

Keywords: birth weight, fine mapping, candidate genes, GWAS, pig

INTRODUCTION

The birth weight of pigs is an important economic trait in the livestock industry. It is
closely associated with early survival, weaning weight, and growth rate after weaning (Quiniou
et al., 2002; Smith et al., 2007). Pigs have been selectively bred to produce larger litters,
however, with this increase in litter size, the average birth weight has decreased (Bergstrom
et al., 2009; De Almeida et al., 2014). Birth weight reflects the intrauterine growth of
piglets which is affected by both the maternal supply of nutrition and genetic factors
(Roehe, 1999; Zohdi et al., 2012). Measures of birth weight heritability have ranged from
0.08 to 0.36 (Roehe, 1999; Roehe et al., 2010; Dufrasne et al., 2013), suggesting that it
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is substantially affected by own (fetal) genetic factors as well as
maternal genetic effects. Therefore, it is a worthwhile endeavor
to determine which genes or variants underly this variation
in birth weight.

A few birth weight related markers have been identified by the
study of candidate genes such as MYOG, MSTN and DBH (Te
Pas et al., 1999; Jiang et al., 2002; Tomás et al., 2006). With the
widespread use of customized single nucleotide polymorphism
(SNP) arrays, an increasing number of potential markers have
been identified by genome-wide association study (GWAS).
Wang X. et al. (2016) found over two hundred SNPs associated
with birth weight by using first parity sows whose offspring had
extreme birth weights; Zhang et al. (2018) identified 17 genomic
regions associated with birth weight; Wang et al. (2017) found
12 SNPs that were significantly associated with piglet uniformity;
and 27 differentially selected regions associated with the birth
weight of piglets were detected by Zhang et al. (2014). However,
a birth weight GWAS of Large white pigs by Wang et al. (2018)
was unable to determine any significant loci. The identification of
birth weight associated markers remains difficult to reproduce.

With rapid development of next-generation sequencing
technology, a number of techniques have been widely adopted for
genotyping, including whole genome resequencing and reduced-
representation sequencing (RRS) techniques such as genotyping-
by-sequencing and restriction site-associated DNA sequencing
(RAD-seq) (Baird et al., 2008; Huang et al., 2009; Elshire et al.,
2011). Compared to SNP chip analysis, RRS approaches are
based on restriction site associated fragments and have great
advantages in both the number of SNPs acquired and the ability
to identify novel SNPs. Currently, RRS approaches are widely
employed in combination with GWAS (Bhatia et al., 2013). As
SNP chip analyses only share a small subset of SNPs with RRS
(Brouard et al., 2017), the combination of the two methods in one
population may improve repeatability of GWAS findings.

Trait related loci can be identified with GWAS, however,
the elucidation of the causative variant rather than the loci is
the ultimate goal. The determination of the causative variant
requires a high density of SNPs in a particular region of
GWAS. If the region is not genotyped at a sequence level,
the imputation technique can be used to fill in missing
SNPs from the available reference panels. Due to linkage
disequilibrium between SNPs, the GWAS signal extends across
a large region. Although it is not always possible to directly
identify the causative variant, the region containing the causative
variant can be narrowed down by sophisticated methods (Fang
and Georges, 2016; Huang et al., 2017). The key feature
of these methods is determining SNPs that have a 95%
probability of containing the causative variants, as calculated with
posterior probabilities.

In this study, we used the DNA variants from two different
genotyping approaches, SNP chip and RAD-seq, to perform
GWAS for birth weight. To finely map causative genes, we built
a reference panel for a region-of-interest by deep resequencing
of 28 boars, by which the merged SNPs of RAD-seq and SNP
chip were imputed at the sequence level. Finally, we detected
the potential causative genes within or close to the finely
mapped region.

MATERIALS AND METHODS

Animals and Phenotypes
Pedigree and phenotype records used for this study were
provided by our lab. The pedigree contains 26,539 animals
from 7 generations, including 14,226 Yorkshire and 12,313
Landrace animals. There were 12,661 and 10,635 records of birth
weight for Yorkshire and Landrace piglets, respectively. After
excluding disqualified records (missing birth date or abnormal
records), 10,267 and 8,919 records Yorkshire and Landrace
piglets were included, respectively. A total of 674 purebred
sows (453 Yorkshire, 221 Landrace) born between 2014 and
2016 were selected for RAD-seq. After eliminating abnormal
values (deviated from the third quartile), 668 high quality
records were analyzed.

RAD-seq With BGI-seq500
Genomic DNA was isolated from the ear tissue of pigs; the
double-digest restriction enzyme associated DNA sequencing
method (RAD-seq) was performed using the methods of
Andolfatto et al. (2011) with appropriate modifications. Briefly,
the DNA concentration of all samples was normalized to 50
ng/pr in 96-well plates, and digested with FastDigestTaq I- MspI
(Thermo Fisher Scientific) in 30 µL volume containing 20 µL
DNA (1 µg). An anneal adapter (10 µM) was ligated to the
digestion products by T4 DNA ligase with 23 TaqI-Ms. Then,
24 ligation products were pooled together to form one library
with 15 µL per sample. Agencourt R© AMPure R© XP Reagent was
used for library size-selection. The PCR system contained 50 ng
size-selection products, 25 µL KAPA HiFi HotStart ReadyMix
(kapasystem), and 10 pmol primers. PCR products were purified
by Agencourt R© AMPure R© XP Reagent. The final library quality
(concentration and fragment size distribution) was determined
by a Qubit 2.0 Fluorometer (Thermo Fisher Scientific) and
BiopticQsep100 DNA Fragment Analyzer (Bioptic), respectively.
Every four library products (96 different barcodes) were mixed
together in equal parts which a total weight at 170 ng. The
cycling system contained 48 µL library mix, 1 × T4 DNA ligase
buffer, 0.5 µL T4 DNA ligase (600 U/µL), and 100 pmol Splint
Oligo, were reactions at 37◦C and fragment size distribution
were determined by a Qubit 2.0 Fluorometer (Thermo Fisher
Scientific) and Bioptic Qsep100 DNA Fragment Analyze sample
volume of Agencourt R© AMPure R© XP Reagent. Finally, the
purified cyclizing libraries were sequenced with a BGI-seq500
platform (PE100).

Sequenced paired-end reads for each sow were identified
by barcode and aligned against the Sscrofa reference genome
(version Sscrofa 11.1)1 using the Burrows-Wheeler Aligner
(version 0.7.12) software (Li and Durbin, 2009). SAMtools
(version 0.1.19) (Li et al., 2009) was used to generate the
consensus sequence for each sow and prepare input data for
SNP calling with the Genome Analysis ToolKit (version 3.4)
(McKenna et al., 2010). Raw SNPs with sequencing depth greater
than 2,500 or less than 50 were removed, as SNP with extreme
sequencing depth is most likely caused by a repeat DNA sequence

1https://www.ncbi.nlm.nih.gov/genome/84?genome_assembly_id=317145
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or alignment error. The SNPs underwent quality control (QC)
in which those with a call rate > 0.5, minor allele frequency
(MAF) > 0.05, and p-value > 10−6 for the Hardy-Weinberg
equilibrium test were kept, resulting in 140,948 SNPs. The
missing genotypes were imputed with Beagle software (Browning
and Browning, 2007), and the SNPs were filtered again with
the above QC criteria. Finally, 139,634 high quality SNPs were
retained for subsequent analysis.

SNP Chip Genotyping
These individuals were also genotyped with a Geneseek Porcine
50K SNP Chip (Neogen, Lincoln, NE, United States), which
contained 50,697 SNPs across autosomes and sex chromosomes.
QC of the SNPs was conducted using PLINK (version 1.07)
(Purcell et al., 2007). The SNPs with MAF > 0.05, call rate > 0.97,
and individual call rate > 0.95 were retained. Furthermore, we
removed SNPs that were not mapped to the Sscrofa 11.1 genome,
leaving 45,180 SNPs. The missing genotypes were imputed with
Beagle software and underwent QC with the above QC criteria.
Finally, 45,175 high quality SNPs were included.

Whole Genome Sequencing
We sequenced the whole genome of 28 boars, the ancestors of 453
Yorkshire sows (unpublished), with an average sequence depth
∼19× (ranged from 17.06× to 22.24×). After genome alignment
with Burrows-Wheeler Aligner and SNP calling with the Genome
Analysis Toolkit, 17,017,067 raw SNPs were detected. These
SNPs were filtered using the Genome Analysis Toolkit with
parameters “QUAL < 30 || QD < 2.0 || FS > 60.0 || MQ < 40.0
|| MQRankSum < −12.5 || ReadPosRankSum < −8.0,” and
using PLINK with MAF < 0.05 and p-value < 10−6 for
the Hardy-Weinberg equilibrium test. We removed 761,590
additional SNPs with missing genotypes across the 28 boars,
leaving 11,668,346 high quality SNPs, which were taken as the
reference panel for imputation.

Sequence Level Imputation
The SNPs determined by RAD-seq (140,948 SNPs) and SNP
chip (45,180 SNPs) were merged to produce a high density
SNP set for sequence level imputation. After removing 427
duplicate SNPs from both SNP sets, 185,701 SNPs remained. We
performed sequence level imputation with Beagle by taking the
whole genome sequencing data of 28 Yorkshire boars (described
above) and 20 Landrace pigs (downloaded from https://figshare.
com/articles/data2019_tar_gz/9505259). After QC (MAF < 0.05
and p-value < 10−6), we obtained 9,012,073 overlapping SNP
markers for the two breeds and imputed the RAD_ chip SNPs
of the Yorkshire and Landrace pigs to a genome-wide level.

Variance Component Estimation and
Heritability
Both pedigree and RAD_SNP information were used to build
a kinship matrix among individuals to estimate the variance
components of birth weight. The mixed linear model for this
estimation was:

Y = Xb + Z1u + Z2p + e

where Y is the phenotype vector, b is a fixed effects vector,
i.e., herd-year-season, sex (only in pedigree-based estimation),
breed (2 breeds in SNP-based and 6 strains in pedigree-based
estimation) and birth parity, u is a vector of additive genetic
effects following the multinormal distribution: u ∼ N (0, Aσ2

a)
and ∼ N (0, Gσ2

a), respectively in pedigree and RAD_SNP based
estimations, where A is the pedigree relationship matrix and G
is the genomic relationship matrix constructed based on SNPs
as described in VanRaden (2008). p is a material effects vector:
p ∼ N (0, Iσ2

p) and e is a residuals vector: e ∼ N (0, Iσ2
e ),

and I is an identity matrix. σ2
a, σ2

p, and σ2
e are the additive

genetic, material genetic, and residual variances, respectively. X,
Z1, and Z2 are the incidence matrices for b, u, and p, respectively.
The variance components were estimated using the average
information restricted maximum likelihood procedure in DMU
software (version 6, release 5.22). Heritability of birth weight was
estimated as:

h2
=

σ2
a

σ2
p+ σ2

a+ σ2
e

The standard error of heritability was obtained as Klei and
Tsuruta (2008) described.

Genome-Wide Association Study
The mixed model including a random polygenic effect can be
expressed as:

Y = Xb + Za + Mg + e

where Y is the phenotype vector, which is corrected with
estimated breeding values and fixed effects (only residuals left),
and estimated breeding values are evaluated with the average
information restricted maximum likelihood procedure in DMU;
b is the estimator of fixed effects including breed, g is the SNP
substitution effect and a is the vector of random additive genetic
effects following the multinormal distribution a ∼ N (0, Gσ2

a), in
which G is the genomic relationship matrix that is constructed
based on SNPs as described in VanRaden (2008), and σ2

a is the
polygenetic additive variance. X, Z, and M are the incidence
matrices for b, a, and g, respectively. e is a vector of residual
errors with a distribution of N (0, Iσ2

e ). All single-marker GWAS
analyses were conducted using the EMMAX software (Kang et al.,
2010). Based on the Bonferroni correction, the genome-wide
significant threshold was P < 1/N, where N is the number of
informative SNPs.

Fine-Mapping
The BayesFM-MCMC package (Fang and Georges, 2016) was
used to finely map causative variants, in which the threshold for
SNP clustering was set as r2 = 0.5; the length of the Markov chain
was 510,000 with the first 10,000 discarded (burn-in period). The
threshold to declare significance was set at 1.1 × 10−5, which
was determined from 0.05 divided by the number of SNPs in
the GWAS region. We corrected the phenotypes by subtracting

2http://dmu.agrsci.dk/
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the corresponding breeding values and fixed effects, where the
breeding values were estimated via the DMU package.

Gene-Annotation
SnpEff (version 4.3t) (Cingolani et al., 2012) was used to annotate
the function of SNPs, in which the genome sequence and
the genomic annotation databases (.gff) were required. The
Sscrofa11.1 genome were downloaded from the National Center
for Biotechnology Information3 and the genomic annotation file
(.gff) was downloaded from the web ftp://ftp.ncbi.nlm.nih.gov/
genomes/all/GCF/000/003/025/GCF_000003025.6_Sscrofa11.1/
GCF_000003025.6_Sscrofa11.1_genomic.gff.gz.

RESULTS

RAD-seq and SNP Chip Genotyping
We obtained 139,634 SNPs from RAD-seq and only 45,175
SNPs from SNP chip analysis. First, we compared the allele
frequencies (AF) of SNPs garnered from both genotyping
platforms (Figure 1A). Compared with SNP chip analysis, RAD-
seq more frequently found SNPs with lower AF. Specifically, the
likelihood of RAD-seq finding SNPs with AF < 0.1 was nearly
0.3, almost two times higher than that of SNP chip analysis
(∼0.1). We also compared the distance between adjacent SNPs
determined by the two genotyping methods (Figure 1B). The
adjacent SNPs found by RAD-seq were much closer together than
those found with SNP chip analysis, suggesting that RAD-seq is
more informative and may be helpful to detect causative genes.
Finally, we determined the overlapping SNPs between the two
SNP sets, and surprisingly found only 427 SNP overlaps.

Genome-Wide Association Study
We estimated heritability prior to the association study to
fully understand how much birth weight is inherited. We used
pedigree information and genome SNPs to estimate heritability.
There were 14,226 and 12,313 individuals in the pedigree,
and 10,267 and 8,919 records of birth weight for Yorkshire
and Landrace, respectively. Genome-wide SNP information was
used to build kinship among individuals and heritability was
estimated as 0.094 ± 0.065. Then, once again using the pedigree,
we estimated heritability in Yorkshire and Landrace pigs at
0.162± 0.026 and 0.131± 0.025, respectively (see Table 1), which
are closer to previous reports than the heritability found when
genome-wide SNP information was used.

Next, we performed an association study for genome-wide
SNPs based on a mixed model that accounted for population
kinship (see section “Materials and Methods”). SNP sets from
RAD-seq and SNP chip analysis were merged together, with
two signals on chromosome 1 and 4 exceeding the threshold
(Figure 2A). The positions of the lead SNPs for the two regions
were chr1: 97,745,041 and chr4: 112,031,589, respectively; the
MAF of the lead SNPs were 0.24 and 0.34 and they explained
6.36% and 4.25% of the phenotypic variance, respectively. We
then focused on the two GWAS regions surrounding the lead

3https://www.ncbi.nlm.nih.gov/genome/84?genome_assembly_id=317145

SNPs, which are determined as the surrounding 1∼2 Mb region
around the lead SNP. To confirm the two GWAS signals, we
performed separate GWAS for the RAD-seq and SNP chip
datasets. The region on chromosome 4 was determined to be
significant for the RAD-seq dataset but not for the SNP chip
dataset; where the reverse was true for the region on chromosome
1 (Figures 2C,E). Despite only reaching significance in one
dataset, the –logP values of both regions peak in both datasets,
confirming the reliability of the GWAS signals. To check for false
positives caused by population stratification, we closely examined
the theoretical and observed p-values with a Q-Q plot4. The -logP
values are well fit by a linear regression against theoretical -logP
values (Figures 2B,D,F), suggesting that population stratification
has been well corrected for, although, it is important to note that
two breed populations were simultaneously investigated.

Fine Mapping
To further refine the regions containing causative genes and
variants, we performed fine mapping of the GWAS region
1∼2 Mb around the lead SNP. To increase fine mapping
accuracy, we utilized as many SNPs as possible by merging
the SNPs from both RAD-seq and SNP chip analysis and
removing duplicate SNPs. After applying a stringent filter, we
obtained 5,226 and 7,184 SNPs in the fine mapping regions
of chromosome 1 and 4, respectively. With this high density
of SNPs, we were able to impute SNPs at a sequence level.
Sequence-level imputation requires a sequence-level reference
SNP set. We therefore re-sequenced 28 Yorkshire boars with an
average coverage of ∼19x and downloaded the whole genome
sequencing data of 20 Landrace pigs. This resulted in 11,668,346
and 18,954,748 sequence-level SNPs for Yorkshire and Landrace
pigs, respectively. With these SNPs as a reference panel, we
imputed the merged RAD-seq and SNP chip SNPs at a sequence
level using Beagle software separately for each breed. Then,
we employed BayesFM-MCMC software to narrow down the
clusters containing causative variants. BayesFM-MCMC first
clusters the SNPs within a GWAS region using a hierarchy
clustering algorithm according to r2 among SNPs; then it models
multiple causal variants by carrying out a Bayesian model
selection across the cluster and generates the posterior probability
for each SNP within the cluster, by which a credible set of SNPs
with >95% posterior probability is constructed. The advantages
of BayesFM-MCMC are that (1) it narrows down potential
causative variants by indicating causal variants in the SNP set;
and (2) it efficiently identifies more than one variant if multiple
variants control the investigated trait.

However, because BayesFM-MCMC does not solve a mixed
model with polygenic effects, we corrected the phenotype
values by using the residuals (see section “Materials and
Methods”). First, we conducted a single variant association
for the GWAS chromosome region, 1,96,745,041–98,745,041,
which produced a sharp peak in this region (Figure 3A). We
then employed BayesFM-MCMC to further refine the regions,
and one cluster signal with a posterior probability equal to
1 (greater than the threshold 0.5) was identified. To examine

4https://github.com/YinLiLin/R-CMplot
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FIGURE 1 | Minor allele frequency (MAF) and distance between single nucleotide polymorphisms (SNPs). (A) Frequency of SNPs in different MAF classes for
restriction site associated DNA sequencing (RAD-seq) and SNP chip assays. (B) Frequency distribution of the distance between adjacent SNPs for RAD-seq and
SNP chip assays.

TABLE 1 | The estimated heritability of birth weight for Yorkshire and Landrace with different sources of information.

Population Information Number of pigs Number of pigs σ2
a σ2

p σ2
e h2

sources in pedigree with BW records

Yorkshire Pedigree 14,226 10,267 0.011 (0.002) 0.013 (0.001) 0.043 (0.001) 0.162 (0.026)

Landrace 12,313 8,919 0.011 (0.002) 0.017 (0.001) 0.056 (0.002) 0.131 (0.025)

Yorkshire & Landrace SNPs – 668 0.007 (0.005) 0.024 (0.005) 0.042 (0.005) 0.094 (0.065)

σ2
a , σ2

p, and σ2
e are the additive genetic variance, material genetic variance and residual variance, respectively; standard errors are in parentheses.

which SNPs predominantly explained the posterior probability
in this cluster, we plotted the posterior probabilities for each
SNP (output from BayesFM-MCMC). Most SNPs have miniscule
posterior probabilities and no one SNP gives substantial posterior
probability (f.i. greater than 0.5 or 0.2) in the identified cluster
(Figures 3B,C). We then employed the 95% credible set defined
by BayesFM-MCMC to further refine the causal variants, which
contained 71 SNPs across a ∼100 kb region from 96,895,307
to 97,098,059 (see Supplementary Table S1 for detail). This
100 kb region contained the peak identified with the scan
of single variants (Figure 3A), confirming the refined 100 kb
region was reliable.

Fine mapping of the region on chromosome 4, 111,031,589–
113,031,589 (Figure 4B), identified one cluster signal with a
posterior probability equal to 1. As before, we plotted the
posterior probabilities for each SNP but most SNPs once
again had miniscule posterior probabilities (less than or 0.05)
(Figure 4C). The 95% credible set of causal variants in
chromosome 4 contained 432 SNPs across over a∼870 kb region
from 111,700,218 to 112,569,735 (see Supplementary Table S2
for detail). The peak found in the single-SNP association profile
(Figure 4A) is covered by this ∼870 kb region, once again
confirming the reliability of BayesFM-MCMC for this purpose.
The correlation (r2) among SNPs confirmed that they were highly
linked, which explains why the individual posterior probabilities
of these SNPs are very small.

Candidate Genes
The 71 SNPs of interest on chromosome 1 are located in the
intergenic region, which lies about 53 kb upstream of SKOR2 and
over 317 kb downstream of SMAD2 (Table 2, see Supplementary
Table S1 for details). We hypothesize that these variants are likely
to have regulatory effects on the two nearby genes.

The 432 highly linked SNPs on chromosome 4 are located
within four genes, LOC106510205 (covered by 28 SNPs),
LOC106510207 (covered by 26 SNPs), VAV3 (covered by 160
SNPs), and NTNG1 (covered by 218 SNPs, see Supplementary
Table S2). Among these SNPs, one is a coding amino acid, seven
are located in the 3′ untranslated region and 414 are located
in the intron (see Supplementary Table S2 for details). The
coding variant is a synonymous variant (c.1136 T > A), localized
in gene VAV3. The remaining variants are in non-coding sites
distributed in all four genes, suggesting the causal variant may
have regulatory effect. We searched for functional genes near the
tightly linked region, and thereby included SLC25A24, PRMT6,
STXBP3 as candidate genes (Table 2).

DISCUSSION

We employed two genotyping methods, RAD-seq and a
customized SNP chip assay, to obtain genome-wide distributed
SNPs. The number of SNPs identified by RAD-seq was three
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FIGURE 2 | Genome-wide association study (GWAS) profiles from the merged SNPs of RAD-seq and SNP chip assays (A,C,E) and the corresponding Q-Q plot
(B,D,F) the horizon lines represent the thresholds as determined by Bonferroni correction.

FIGURE 3 | Fine-mapping in the chromosome 1: 96,745,041–98,745,041 region. (A) Individual SNP association study and its locuszoom plot. (B) The posterior
probability of clusters. (C) The posterior probability of SNPs.

Frontiers in Genetics | www.frontiersin.org 6 March 2020 | Volume 11 | Article 18340

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00183 March 25, 2020 Time: 16:49 # 7

Li et al. Fine-Mapping for Pig Birth Weight

FIGURE 4 | Fine-mapping in the chromosome 4: 111,031,589–113,031,589 region. (A) Individual SNP association study and its locuszoom plot. (B) The posterior
probability of clusters. (C) The posterior probability of SNPs.

TABLE 2 | Candidate genes for birth weight located around the causal variants.

chr hgnc_symbol Start_position End_position Function Reported in pig and other species

chr4 VAV3 111825071 112202833 Guanine nucleotide exchange factors
(GEFs) for Rho family GTPase

Pig food conversion ratio (Wang
et al., 2015)

NTNG1 112280899 112615782 Guides axon growth during neuronal
development

Calf birth weight (Cole et al., 2014)

SLC25A24 111580186 111632390 Calcium-dependent mitochondrial solute
carrier

Bovine embryonic mortality (Killeen
et al., 2016)

PRMT6 112698865 112710305 Mediates the asymmetric dimethylation of
Arg2 of histone H3

Bulls sperm concentration (Hering
et al., 2014)

STXBP3 111234154 111294067 Insulin-regulated GLUT4 trafficking Be positively selected for body weight
(Li et al., 2014)

chr1 SKOR2 96795507 96842064 Negatively regulate TGFβ signaling
pathways

More rapid weight gain in African
American males (Tu et al., 2015)

SMAD2 97415716 97,511,358 Mediates the signal of the transforming
growth factor (TGF)-beta

Causative gene for dog body size
(Rimbault et al., 2013)

times greater than those identified by customized SNP chip,
among these, only 427 SNPs overlapped, consistent with previous
reports (Brouard et al., 2017). Furthermore, we found that RAD-
seq was able to genotype more low-frequency SNPs than the SNP
chip assay. As we known, rare and low frequency variants have
been found to partially explain phenotypic variation in some
human diseases and agricultural traits (Quintana-Murci, 2016;
Zhang et al., 2017).

By using genome-wide association combined with post-
GWAS fine mapping, we refined one causative variant to a
∼100 kb region containing 71 SNPs. This region is located in
the intergenic region between SKOR2 and SMAD2. Intergenic
sequences are generally considered as junk sequences. However,
in recent years, studies have increasingly shown that intergenic
sequences contain long-distance regulatory elements and may
also generate a large amount of non-coding RNA through
transcription, thereby regulating the expression of surrounding

genes (Chen and Tian, 2016). SKOR2 is homologous to the
Ski/Sno family of transcriptional co-repressors, which has been
shown to negatively regulate transforming growth factor β

(TGFβ) signaling pathways by binding to Smads (Arndt et al.,
2005). SKOR2 null mice are smaller than their siblings (Wang
W. et al., 2011). SKOR2 polymorphism has also been reported to
be associated with more rapid weight gain in African American
males (Tu et al., 2015). SMAD2 is activated by TGFβ, and
regulates multiple cellular processes, such as cell proliferation,
apoptosis, and differentiation. As we known, TGFβ pathways
play critical roles in bone development (Li et al., 2005). SMAD2
plays an essential role in regulating chondrocyte proliferation
and differentiation in the growth plate (Wang W. et al., 2016).
Additionally, SMAD2 was identified as the causative gene
for the body-size of dogs, and was associated with the total
number of piglets born in Yorkshire pigs as well as with high
fecundity in dairy goats (Rimbault et al., 2013; Lai et al., 2016;
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Wang et al., 2018). Our results suggest that causative variants in
this intergenic region may contribute to birth weight phenotypes
by interfering with the regulatory function of the nearby distal
regulatory elements and causing differential expression of the two
surrounding genes.

We have refined the causative variant on chromosome 4 to
a ∼870 kb region which resides in a big linkage disequilibrium
block containing 4 genes, LOC106510205, LOC106510207, VAV3,
and NTNG1. NTNG1 plays an important role in cell signaling
during nervous system development (Nakashiba et al., 2000) and
is associated with calf birth weight in Holstein cattle (Cole et al.,
2014). LOC106510205 and LOC106510207 are predicted to be
long non-coding RNA (lncRNA), and has not been functionally
characterized to this point. As we known, lncRNA transcription
plays an important role in both cis- and trans-regulation of
nearby gene expression (Sun and Kraus, 2015). VAV3 is located
in the center of the fine mapping region and is near the two
lncRNAs. VAV3 is a member of the VAV gene family that activates
actin cytoskeletal rearrangement pathways and transcriptional
alterations (Zeng et al., 2000). VAV3 is versatile and also regulates
osteoclast function, bone mass, and the homeostasis of the
cardiovascular and renal systems (Faccio et al., 2005; Sauzeau
et al., 2006). Previous knock-out results have shown that Vav3-
deficient mice were protected from bone loss induced by systemic
bone resorption stimuli such as parathyroid hormone or RANKL
(Faccio et al., 2005). Furthermore, VAV3 is associated with
hypothyroidism in humans, food conversion ratio in a male
Duroc pig population, high body weight and growth rate in Boer
goats, as well as sperm concentration in Holstein-Friesian bulls
(Hering et al., 2014; Kwak et al., 2014; Wang et al., 2015; Onzima
et al., 2018).

Several genes near the ∼870 kb tightly linked region were
found to be related to growth and development or have been
identified in others studies (Table 2). For example, SLC25A24
encodes a carrier protein that mediates electroneutral exchange
of Mg-ATP or Mg-ADP against phosphate ions, is responsible
for low fat mass in humans and mice (Urano et al., 2015), and
is also related with bovine embryonic mortality (Killeen et al.,
2016). Mutations in SLC25A24 have been found to be associated
with fontaine progeroid syndrome in humans (Rodríguez-García
et al., 2018). Furthermore, STXBP3 (also known as Munc18c),
involved in insulin-regulated GLUT4 trafficking, has been found
to be positively associated with body weight in Large White and
Tongcheng pigs (Li et al., 2014). Finally, PRMT6, is reported to
be associated with bull sperm concentration (Hering et al., 2014),
and the expression of PRMT6 in skeletal muscle has been found
to be regulated with a strong cis-expression quantitative trait loci
(personal communication). Taken together, the region spanning
VAV3 and NTNG1 is a very important genetic factor underlying
the birth weight of pigs.

Most of the finely mapped SNPs obtained herein were located
in intergenic regions or within introns. Therefore, we propose
that these variants may have a regulatory effect on the expression
of nearby genes, such as SKOR2, SMAD2, VAV3, and NTNG1,
and thereby regulating body development. This research did not
confirm such regulatory mechanisms but has highlighted them
for further investigation.

CONCLUSION

We used the DNA markers from two different genotyping
approaches to perform GWAS, and identified significant loci
in chromosome 1 and chromosome 4 which explained 6.36%
and 4.25% of the phenotypic variance, respectively. To increase
the accuracy of fine mapping, we imputed the merged RAD-
seq and SNP chip SNPs at a sequence level using the SNPs
of high-coverage resequenced pigs as a reference panel. Then,
we employed BayesFM-MCMC software to narrow down the
genomic region of the clusters that contained causative variants.
One cluster was located in an intergenic region, and the
other in a gene coding region. Finally, we identified four
promising candidate genes, SKOR2, SMAD2, VAV3, NTNG1,
that have been associated with growth related traits in other
species including cattle, humans, and dogs. Most SNPs in the
fine mapping region were located in the intergenic region
or introns, and as such we propose that these variants may
have a regulatory effect on the expression of nearby genes,
which deserves further investigation. The birth weight of pigs
is an important economic factor in the livestock industry,
identification of a causal variant would be beneficial to the
molecular breeding of pigs.
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As crossbreeding is extensively used in some livestock species, we aimed to evaluate

the performance of single-step GBLUP (ssGBLUP) andweighted ssGBLUP (WssGBLUP)

methods to predict Genomic Estimated Breeding Values (GEBVs) of crossbred animals.

Different training population scenarios were evaluated: (SC1) ssGBLUP based on

a single-trait model considering purebred and crossbred animals in a joint training

population; (SC2) ssGBLUP based on a multiple-trait model to enable considering

phenotypes recorded in purebred and crossbred training animals as different traits; (SC3)

WssGBLUP based on a single-trait model considering purebred and crossbred animals

jointly in the training population (both populations were used for SNPweights’ estimation);

(SC4) WssGBLUP based on a single-trait model considering only purebred animals in the

training population (crossbred population only used for SNP weights’ estimation); (SC5)

WssGBLUP based on a single-trait model and the training population characterized by

purebred animals (purebred population used for SNP weights’ estimation). A complex

trait was simulated assuming alternative genetic architectures. Different scaling factors

to blend the inverse of the genomic (G−1) and pedigree (A−1
22 ) relationship matrices were

also tested. The predictive performance of each scenario was evaluated based on the

validation accuracy and regression coefficient. The genetic correlations across simulated

populations in the different scenarios ranged from moderate to high (0.71–0.99). The

scenario mimicking a completely polygenic trait (h2
QTL

= 0) yielded the lowest validation

accuracy (0.12; for SC3 and SC4). The simulated scenarios assuming 4,500 QTLs

affecting the trait and h2
QTL

= h2 resulted in the greatest GEBV accuracies (0.47; for SC1

and SC2). The regression coefficients ranged from 0.28 (for SC3 assuming polygenic

effect) to 1.27 (for SC2 considering 4,500 QTLs). In general, SC3 and SC5 resulted in

inflated GEBVs, whereas other scenarios yielded deflated GEBVs. The scaling factors

used to combine G−1 and A−1
22 had a small influence on the validation accuracies, but a

greater effect on the regression coefficients. Due to the complexity of multiple-trait models
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and WssGBLUP analyses, and a similar predictive performance across the methods

evaluated, SC1 is recommended for genomic evaluation in crossbred populations with

similar genetic structures [moderate-to-high (0.71–0.99) genetic correlations between

purebred and crossbred populations].

Keywords: crossbred performance, ssGBLUP, simulated dataset, training population design, WssGBLUP

INTRODUCTION

Crossbreeding schemes are paramount for some livestock
production systems in enabling the exploitation of
complementarity among genetically-divergent breeds and
heterosis effects (Wei and van der Werf, 1994). In tropical
countries, crosses between two cattle sub-species are widely
used to combine climatic adaptability (e.g., from Bos taurus
indicus; Zebu breeds) and productive performance (e.g., from
Bos taurus taurus; Taurine breeds) traits (Gregory and Cundiff,
1980; Mendonça et al., 2019). Genetic selection is performed
on purebred animals in these production systems, aiming to
optimize the performance of crossbred progeny. However, this
poses various challenges to the breeding programs. For instance,
there are large differences in additive and non-additive genetic
parameters in traits measured in purebred or crossbred animals
(Bijma and van Arendonk, 1998), which might constrain the
pooling of all animals into a single training population for
genomic analysis (Ribeiro et al., 2019). However, the large
majority of livestock breeding programs do not account for non-
additive genetic effects when estimating breeding values, and
most economically important traits in livestock are not largely
influenced by non-additive genetic effects (Varona et al., 2018).

Recording large-scale phenotypes on crossbred animals
raised in commercial herds is usually a challenge, especially
for hard- or expensive-to-measure traits, such as individual
feed intake (Ibánêz-Escriche et al., 2009). Over time, several
methods to perform genetic evaluations accounting for
purebred and crossbred information have been proposed
(Bijma and van Arendonk, 1998; Nayee et al., 2016; Junqueira
et al., 2017). For instance, Wei and van der Werf (1994)
proposed a model of breeding value prediction for both
purebred and crossbred animals that maximizes the genetic
response in crossbred animals, even for unknown, or
inappropriate values of correlations of purebred and crossbred
performances, and crossbreeding heritability. However, in the
genomic era, Ibánêz-Escriche et al. (2009) have suggested
that genomic information can increase the response to
selection for crossbred performance even when selecting only
purebred animals.

Genomic selection (Meuwissen et al., 2001) has been
proven to be a useful tool to increase genetic gain, especially
for difficult or expensive-to-measure and/or low-heritability
traits. In this context, several methods have been proposed
to calculate Genomic Estimated Breeding Values (GEBV) for
livestock, such as the single-step Genomic Best Linear Unbiased
Prediction (ssGBLUP; Misztal et al., 2009; Aguilar et al.,
2010; Christensen and Lund, 2010). The ssGBLUP enables

combining the pedigree-based relationship matrix (A) with the
genomic relationship matrix (G) into a hybrid matrix (H).
This increases the accuracy and reduces the prediction bias
of GEBVs when compared to those yielded from multi-step
genomic predictions (Aguilar et al., 2010; Lourenco et al., 2015;
Guarini et al., 2018). Recent studies have evaluated the use of
purebred information to predict crossbred performance using
the ssGBLUP method (Lourenco et al., 2016; Tusell et al.,
2016; Pocrnic et al., 2019). In this context, Lourenco et al.
(2016), using simulated crossbred pig datasets, concluded that
the highest GEBV accuracies were attained when using a training
population combining both purebred and crossbred animals’
datasets. However, the ssGBLUP assumes equal variances for
all Single Nucleotide Polymorphisms (SNPs), which may not
be the most appropriate assumption from a biological point
of view (Meuwissen et al., 2001; VanRaden, 2008; Goddard
and Hayes, 2009). In a recent study, Porto-Neto et al. (2014)
reported that nine out of ten traits evaluated were influenced
by major genes. Consequently, methods that account for
locus-specific variance (e.g., weighted ssGBLUP, WssGBLUP;
Zhang et al., 2016) have been proposed. The main aim
of these methods is to increase the predictive performance
of GEBVs using computationally efficient tools that can be
easily implemented in commercial breeding programs. In the
WssGBLUP method, different SNP weights are used when
calculating the Gmatrix.

The WssGBLUP has been successfully applied to several
genomic prediction studies (Zhang et al., 2016; Lourenco
et al., 2017; Guarini et al., 2019). However, to our best
knowledge, there are no reports evaluating the prediction
ability of WssGBLUP in crossbred animals, especially in F1
populations. Therefore, we aimed to compare the predictive
performance of ssGBLUP and WssGBLUP using different
training populations (based on purebred and/or crossbred
animals) and alternative statistical models (single- or multiple-
trait). One alternative for evaluating the predictive performance
of genomic models is comparing GEBVs and True Breeding
Values (TBVs). However, in practice, the TBVs are usually
unknown and therefore simulated datasets can be advantageous
when comparing models and genomic prediction approaches. In
this context, we evaluated five simulated scenarios mimicking
beef cattle populations (two purebred lines and four F1
populations), in which the trait under evaluation differed in
terms of the number of Quantitative Trait Loci (QTLs) and the
trait heritability (h2) explained by them (h2QTL). Furthermore,
the impact of the genetic distance between training and
validation populations used in the crossbreeding scheme was
also investigated.
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MATERIALS AND METHODS

Only (computationally) simulated datasets were used in this
study. Therefore, the approval of an Institutional Animal Care
and Use Committee was not required.

Simulated Population
Datasets of purebred and crossbred animals were simulated based
on a beef cattle production system. The purebred populations
were simulated to mimic Bos taurus indicus (Line1; Zebu cattle)
or Bos taurus taurus (Line2; Taurine cattle) animals. Crossbred
animals (F1) were originated from the crossing between females
from Line1 and males from Line2. Phenotypes and TBVs were
simulated for a trait with a h2 equal to 0.33 and phenotypic
variance equal to 0.13. This was done to mimic the trait residual
feed intake (RFI; an indicator of feed efficiency), which is a
very important trait in beef cattle breeding programs (Branco
et al., 2014) and has a similar genetic architecture compared
to many other economically important (quantitative) traits
in livestock.

The historical population consisted of 1,020 generations
(Figure 1). During the first 1,000 generations (i.e., from
generation −1,020 to generation −20), 2,000 individuals (1,000
males and 1,000 females) were randomly mated (Brito et al.,
2011; Lourenco et al., 2016). From generation −19 to generation
zero, a first “bottleneck” (i.e., population reduction) was created
by reducing the total number of individuals from 2,000 to
1,500 (750 males and 750 females), which were also randomly
mated. Thereafter, a second “bottleneck” was created by randomly
sampling 100 males and 100 females from generation zero (1,500
individuals) of the historical population. These 200 individuals
were used to create the expansion population (POP) containing
64,000 individuals. The population reductions (“bottlenecks”)
were simulated to create an initial level of linkage disequilibrium
(LD), which will be further explained.

Animals in POP were subjected to random selection, mating,
and culling for eight generations. To increase the number of
animals in POP, we assumed that each female had five offspring,
with the same proportion of males and females. At the end of
the eighth generation, 64,000 animals were available in POP,
which was then used to create Line1 and Line2. Line1 was
developed based on 32,000 females and 640 males, and Line2
was developed based on 3,200 females and 64 males; all of them
were randomly selected from the eighth generation of POP. In
subsequent generations of Line1 and Line2, each female had one
offspring (with the same probability of being male or female),
and the replacement ratio for sires and dams was 0.60 and 0.20,
respectively. Selection and culling in both Line1 and Line2 were
performed based on the lowest and highest Estimated Breeding
Values (EBVs), respectively. EBVs were estimated based on the
Best Linear Unbiased Prediction method (Henderson, 1975),
through an Animal Model and considering the True Additive
Genetic Variance. After 10 generations in Line1 (Bos taurus
indicus), and 30 in Line2 (Bos taurus taurus), the average LD
values (between adjacent SNPs) were similar to those reported
for Bos taurus indicus (r2 = 0.20) and Bos taurus taurus (r2 =

0.33) (Villa-Angulo et al., 2009). Both LD values were assessed

in the last generation using the distance between SNPs up
to 0.05 cM.

The F1 population originated from the random mating of
3,000 females from Line1 with 60 males from Line2. A total
of four F1 populations were created and they differed with
regards to the parental generation used in the crossbreeding
scheme. Parental animals of the F1 populations were from: (i)
F1-1: generations seven and 27; (ii) F1-2: eight and 28; (iii)
F1-3: nine, and 29; (iv) F1-4: ten and 30; in Line1 and Line2,
respectively. The differences in the generation of Line1 and Line2
(e.g., seven for Line1 and 27 for Line2) are due to the simulation
scheme designed to mimic the current pattern of LD and genetic
distance between Nellore and Angus, represented by Line1 and
Line2, respectively.

Simulated Genotypes
The genomic prediction was performed using simulated
genotypes for animals from generations six to eight (for Line1),
generations 26 to 28 (for Line2), and all F1 individuals.
Animals from the last two generations of the purebred lines
(i.e., generations nine and ten for Line1, and 29 and 30 for
Line2) were not included in the analyses in order to maintain
a genetic distance between training and validation populations
(described below). The simulated genotypes consisted of 52,886
bi-allelic SNPs distributed across 29 chromosomes (autosomes),
mimicking the bovine genome. The size of the whole genome
was ∼2,696.54 cM. The number of SNPs and the size of
each chromosome was defined based on information retrieved
from the Illumina Bovine 50K Beadchip (https://support.
illumina.com/downloads/bovinesnp50v2.html), as suggested by
Matukumalli et al. (2009). The SNPs were evenly spaced within
each chromosome and the initial allele frequency for SNPs
and QTLs were equal to 0.50 in the first generation of the
historical population.

Different h2QTL and numbers of QTLs were used in this study:

(i) h2QTL equal to zero, to represent a completely polygenic trait

(SIM1); (ii) h2QTL equal to 1/3 of the trait h2 (i.e., h2QTL equal to

0.11), and 198 QTLs (SIM2); (iii) h2QTL equal to 1/3 of the trait

h2 and 4,500 QTLs (SIM3); (iv) h2QTL equal to the trait h2 (i.e.,

0.33), and 198 QTLs (SIM4); (v) h2QTL equal to the trait h2 and
4,500 QTLs (SIM5). The heritability only due to the QTL effects,
h2QTL, represents the proportion of the total genetic variation
of a trait that is due to a limited number of QTLs (i.e., 198
or 4,500) out of all the markers simulated. In other words, it
does not indicate the complete inheritance mode of the trait,
but the proportion of the total genetic variance explained by the
simulated QTLs. The number of QTLs (198) was defined based
on a systematic review performed for RFI in beef cattle (Duarte
et al., 2019). In addition, simulations considering 4,500 QTLs
were also performed, assuming that not all QTLs for RFI are
currently known.

The effect of each QTL was sampled from a Gamma
distribution with a shape parameter of 0.40. The mutation rate
for both SNPs and QTLs was considered as 10−5 per generation
and locus. The QTL effect captured by the SNP marker can
potentially change across populations and generations due to
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FIGURE 1 | Simulated population scheme representing bottleneck in historical population, breed differentiation, and origin of F1 for all simulated scenarios. The Bos

taurus indicus population is represented by Line1, Bos taurus taurus is represented by Line2.

the population-specific allele frequency and LD levels between
SNP markers and QTLs. In order to minimize the effects of
the simulation (starting values) in the results, ten independent
replicates were carried out for each scenario. Simulations were
performed using the QMSim software (Sargolzaei and Schenkel,
2009).

Genotypic Quality Control
Genotypic quality control was performed independently for each
population (Line1, Line2, and F1 populations) and replicated.
The genotype quality control kept SNPs with minor allele
frequency (MAF) higher 0.05, and departure from the Hardy–
Weinberg Equilibrium (estimated as the difference between
expected and observed frequency of heterozygous) lower than
0.15. Only common SNPs across populations were kept for
further analyses. A summary of the descriptive statistics for
Line1, Line2, and F1 in each scenario is shown in Table 1.
Detailed descriptive statistics for each replicate are shown in
the Supplementary Material (Tables S1A–S1E). The PREGSF90
software (Aguilar et al., 2014) was used to perform the genotypic
quality control.

Genetic Connectedness Between
Populations
Principal Component Analysis (PCA)
In order to better assess the population composition of the
animals and to graphically display the results, we performed a
PCA by decomposition of the genomic relationship matrix (G).
Principal components were assessed using the flag “–pca” of
PLINK 2.0 (Chang et al., 2015).

Consistency of Gametic Phase
The consistency of gametic phase was defined by the Pearson
correlation of signed LD (measured by r) values between two
populations [Line1 vs. Line2; Line1 vs. F1 (F1-1, F1-2, F1-3, and
F1-4); Line2 vs. F1 (F1-1, F1-2, F1-3, and F1-4)]. The LD level
between two SNP markers was measured by r2, in which r2 =

D2

f (A)f (a)f (B)f (b)
; where D = f (AB)−f (A) f (B), and f (AB), f (A),

f (a), f (B), and f
(

b
)

are observed frequencies of haplotype AB
and alleles A, a, B, and b, respectively (Hill and Robertson, 1968).
The LD levels were obtained by the flag “–r2 dprime” using the
PLINK 2.0 software (Chang et al., 2015). The signed r value was
obtained by taking the square root of the r2 value and assigning
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TABLE 1 | Mean and standard deviation (inside parentheses) of phenotypes (X ), inbreeding coefficients (F), average allele A frequency (ρA), average linkage disequilibrium

(LD), and number of markers before (SNPbeforeQC), and after (SNPafterQC ) genotypic quality control for Line1, Line2, and F1 populations, in the different scenarios (SIM).

SIM Pop. X F ρA
aLD SNPbeforeQC

bSNPafterQC

SIM1 Line1 −0.75 (0.136) 0.02 (0.009) 0.33 (0.107) 0.20 (0.005) 48,261 44,834

Line2 −2.83 (0.131) 0.12 (0.026) 0.30 (0.125) 0.30 (0.010)

F1 −1.84 (0.130) 0.02 (0.013) 0.33 (0.110) 0.21 (0.007)

SIM2 Line1 −0.72 (0.135) 0.02 (0.009) 0.34 (0.107) 0.19 (0.006) 48,241 43,995

Line2 −2.69 (0.125) 0.13 (0.026) 0.29 (0.126) 0.31 (0.009)

F1 −1.76 (0.127) 0.02 (0.014) 0.33 (0.109) 0.21 (0.005)

SIM3 Line1 −0.73 (0.136) 0.02 (0.009) 0.34 (0.107) 0.19 (0.006) 48,261 44,097

Line2 −2.80 (0.130) 0.13 (0.026) 0.29 (0.126) 0.31 (0.017)

F1 −1.82 (0.130) 0.02 (0.013) 0.33 (0.110) 0.21 (0.008)

SIM4 Line1 −0.69 (0.129) 0.02 (0.010) 0.34 (0.106) 0.19 (0.005) 48,250 42,142

Line2 −1.98 (0.099) 0.15 (0.030) 0.28 (0.129) 0.36 (0.034)

F1 −1.37 (0.111) 0.02 (0.016) 0.33 (0.109) 0.22 (0.007)

SIM5 Line1 −0.74 (0.136) 0.02 (0.009) 0.34 (0.106) 0.19 (0.006) 48,229 42,410

Line2 −2.70 (0.120) 0.14 (0.027) 0.28 (0.129) 0.36 (0.025)

F1 −1.76 (0.126) 0.02 (0.015) 0.32 (0.109) 0.22 (0.007)

SIM, Simulated dataset; Pop., Population; SIM1, simulated dataset with heritability explained by the quantitative trait loci (h²QTL) = 0; SIM2, simulated dataset with h²QTL = 0.11 and

198 QTLs; SIM3, simulated dataset with h²QTL = 0.11 and 4,500 QTLs; SIM4, simulated dataset with h²QTL = 0.33 and 198 QTLs; SIM5, simulated dataset with h²QTL = 0.33 and

4,500 QTLs; Line1, Line1 population at six, seven and eight generations; Line2, Line2 population at 26, 27, and 28 generations. All parameters were estimated considering all the ten

independent replicates.
aLD was calculated between adjacent SNPs from QMSim.
bSNPafter , overlapping markers segregating in all three populations.

the appropriate sign based on the D value. Data was sorted into
bins based on pair-wise SNP marker distance to determine the
breakdown in the consistency of gametic phase across distances,
and to assess the consistency of gametic phase at the smallest
distances in the current panel, given the number of genotyped
SNPs. For each distance bin, the signed r values were correlated
between all pairs of populations using the cor basic function of
the R statistical software (R Core Team, 2019).

Allele A Frequency Correlation
Assessment of the allele A frequency correlation across
populations was based on the Pearson correlation. The allele
frequency was calculated for each population individually using
the option “–freq” from PLINK 2.0 (Chang et al., 2015).

Genomic Prediction of Breeding Values
Methodological Scenarios
Comparisons between the ssGBLUP and WssGBLUP methods
were based on the predictive ability of the GEBVs of the F1
animals. In other words, we aimed to identify the best scenario
where the selection of purebred animals would result in the
greatest crossbred performance (indicated by the GEBVs of
crossbred animals). A total of five alternative scenarios (SC)
were investigated: (SC1) ssGBLUP based on a single-trait model
considering both purebred and crossbred animals in the training
population; (SC2) ssGBLUP based on a multiple-trait model
considering phenotypes recorded on purebred and crossbred
training animals as different traits; (SC3) WssGBLUP based
on a single-trait model including both purebred and crossbred
animal datasets in the training population (and information

from the three populations to estimate the SNP weights—further
described); (SC4) WssGBLUP based on a single-trait model
considering only purebred animals in the training population
(and only the information from crossbred animals to estimate the
SNP weights); (SC5) WssGBLUP based on a single-trait model
considering only purebred animals in the training population
(and their information to estimate the SNP weights). The
main goal of SC4 was to account for the crossbred allele
frequencies during the G calculation, and SC5 was performed
to evaluate the use of only purebred information to predict
crossbred performance.

The animals included in the training populations were
purebred animals from generations six, seven, and eight (Line1),
and generations 26, 27, and 28 (Line2). When crossbred animals
were included in the training population, animals from F1-1 and
F1-2 populations were used. The scenarios used to create the
different training populations are summarized in Table 2. F1-
3 and F1-4 were used as two different validation populations
in all scenarios, in order to assess the impact of the genetic
distance between training and validation populations in the
genomic predictions.

ssGBLUP and WssGBLUP
The ssGBLUP and WssGBLUP methods were used to combine
phenotypic, pedigree, and genotypic information. Therefore, the
inverse of the H matrix (Misztal et al., 2009; Aguilar et al., 2010;
Christensen and Lund, 2010) used in this study was created as:

H−1
= A−1

+

[

0 0

0 τ (0.95G+ 0.05A22)
−1

− ωA−1
22

]

(1)
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TABLE 2 | Structure of scenarios (SC) using the single-step Genomic Best Linear

Unbiased Prediction (ssGBLUP) or weighted ssGBLUP (WssGBLUP) approaches,

in terms of training population and single nucleotide polymorphism (SNP) weights.

aScenario Training population bSNP weights Statistical model

SC1 Purebred + Crossbred cN/A Single-trait model

SC2 Purebred + Crossbred N/A Multiple-trait model

SC3 Purebred + Crossbred Purebred + Crossbred Single-trait model

SC4 Purebred Crossbred Single-trait model

SC5 Purebred Purebred Single-trait model

aSC1, ssGBLUP using a single-trait model and the training population composed of

purebred and crossbred animals; SC2, ssGBLUP using a multiple-trait model and the

training population composed of purebred and crossbred animals; SC3, WssGBLUP

using a single-trait model, and training population and SNP weights based on both

purebred and crossbred animals; SC4,WssGBLUP using a single-trait model, and training

population composed only of purebred animals, and weights estimated from crossbred

animals; and SC5, WssGBLUP using a single-trait model, and training population and

SNP weights based only on purebred animals.
bPopulation used to estimate the SNP weights in the WssGBLUP.
cN/A, not applicable.

Where A is the pedigree-based relationship matrix, which
included up to five generations of animals with phenotypes or
genotypes, A22 is the subset of the Amatrix related to genotyped
animals, the τ and ω values will be described further, and G is
the genomic relationship matrix, which was created as follows
(VanRaden, 2008):

G =
Z D Z′

k
, withZ = (M− P) (2)

WhereD is a diagonal matrix with weights, k is a scale parameter
defined as 2

∑n
j=1 pj(1− pj), M is a matrix of n SNPs for

each animal, and P is a matrix containing two times the allele
frequency of the second allele p at locus j (pj). In the ssGBLUP
analyses, the D matrix was assumed as an identity matrix. In
the WssGBLUP analyses, D was a diagonal matrix with values
given by weights derived from the SNP solutions, as described
by Wang et al. (2012). The SNP weights were obtained by back
solving the GEBVs using the software BLUPF90 (Strandén and
Garrick, 2009; Wang et al., 2012). First of all, the ssGBLUP was
performed by using Dmatrix as an identity matrix (I). Then, the
SNP weights were derived based on Strandén and Garrick (2009)
and Wang et al. (2012):

û = λDM′G−1(GEBVs) (3)

Where û is a vector of estimated SNP effects, λ is the ratio of
SNP variance to genetic variance, and GEBVs are the genomic
estimated breeding values. The SNP weights to be considered in
the next iteration (second iteration) were derived from the SNP
effects as SNP variances:

dj = û2j 2pj(1− pj) (4)

Where dj is the j SNP weight (equivalent to j SNP variance); û is
a vector of estimated j SNP effect; and p is the allele frequency of
j SNP.

Consequently, a total of two iterations (i.e., using the identity
matrix plus one iteration using the D matrix derived from SNP
solutions) were used in the WssGBLUP because the second
iteration provided higher GEBV accuracies in the preliminary
analysis (Table S2). The SNP solutions were estimated using the
POSTGSF90 software (Aguilar et al., 2014).

As genomic datasets were simulated, all individuals included
in the pedigree also had genotypes. In order to make G−1 and
A22

−1 matrices compatible (Misztal et al., 2017; Oliveira et al.,
2019), different values for the τ (from 0.9 to 2.5; defined at every
0.1) and ω (from 0.5 to 1.2; defined at every 0.1) parameters
were tested. These ranges were chosen based on the literature
(Misztal et al., 2017; Oliveira et al., 2019). As G−1 and A22

−1

matrices were basically the same in all scenarios (i.e., the A22
−1

matrix was the same in all scenarios, and G−1 matrix was the
same in SC1, SC2, and SC3; and training crossbred animals were
excluded from SC4 and SC5, but the validation crossbred animals
remained on all SCs), τ and ω parameters were only tested
using SC1. Thereafter, the tuning parameters that increased the
accuracy and reduced the prediction bias of GEBVs were used
in all analyses. Details about the methods used to calculate the
accuracy and bias (based on regression coefficient) of GEBVs
are described in section accuracy and regression coefficient. The
inbreeding coefficient was estimated using the BLUPF90 family
software (Misztal et al., 2002).

Statistical Models
The ssGBLUP and WssGBLUP analyses were performed using
the BLUPF90 software (Misztal et al., 2002), based on single- and
multiple-trait models. The single-trait models used in SC1, SC3,
SC4, and SC5 are described as:

y = Xb+ Zu+ e (5)

Where y, b, u and e are the vectors of observations; fixed effects
(mean, sex, and population); additive genetic random effects, u∼
N(0, σ 2

uH); and random residuals, e ∼ N(0,σ 2
e I), respectively. X

and Z are the incidence matrices for b and u, respectively. σ 2
u and

σ 2
e are the additive genetic and residual variances, respectively.

Variance components were independently estimated for each
scenario using the AIREMLF90 software (Misztal et al., 2002) and
the Amatrix, since it has been currently recommended in several
ssGBLUP and WssGBLUP studies (Ali et al., 2019; Oliveira et al.,
2019; Pocrnic et al., 2019). The multiple-trait model used in SC2
can be described as:

y3=X3b3+Z3u3+ e3 (6)

Where y3 is a vector of observations considering records from
Line1, Line2, and F1 as three different traits; b3, u3, and e3
are the vectors of fixed effects (mean and sex), additive genetic
random effects, u3 ∼ N(0,G0 ⊗ H), and, random residuals,
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e3 ∼ N(0,R ⊗ I), respectively. X3 and Z3 are the incidence
matrices for the fixed and additive genetic effects, respectively.G0

and R are the additive genetic and residual variance-covariance
matrices, respectively, described as:

G0 =





σ 2
uLine1

σuLine1 ,uLine2 σuLine1 ,uF1
σuLine2 ,uLine1 σ 2

uLine2
σuLine2 ,uF1

σuF1 ,uLine1 σuF1 ,uLine2 σ 2
uF1



 (7)

R =





σ 2
eLine1

0 0

0 σ 2
eLine2

0

0 0 σ 2
eF1



 (8)

Where σ 2
uLine1

, σ 2
uLine2

, and σ 2
uF1

are the additive genetic variances
for Line1, Line2, and F1, respectively; σu is the additive genetic
(co)variance between pairs of populations; σ 2

eLine1
, σ 2

eLine2
, and σ 2

eF1
are the residual variances for Line1, Line2, and F1, respectively.

Accuracy and Regression Coefficient
The predictive ability of tested scenarios was evaluated based
on a comparison of GEBVs and True Breeding Values (TBVs)
of F1 populations. The main goal of the current study was
to evaluate the predictive performance of genomic models
when purebred parents are selected to produce crossbred
progeny with higher genetic breeding value and improved
performance, both indicated by higher GEBVs. Therefore,
accuracies of genomic predictions were estimated as the Pearson
correlation coefficients calculated between GEBVs and TBVs,
for the validation populations (F1-3 and F1-4). In addition, the
regression coefficient (an indicator of inflation or deflation of the
TBVs on GEBVs) was assessed using a linear regression model
of TBVs on GEBVs, for the validation animals. Paired Student’s
t test (Rosner, 1982) was applied to verify significant differences
(P < 0.05) between accuracies and the regression coefficient from
different scheme pairs by using the t-test function available in the
R software (R Core Team, 2019).

RESULTS

Variance and Covariance Components
Genetic parameters and (co)variance components estimated in
the different simulated scenarios using theAmatrix are shown in
Table 3. In general, variance components estimated from SIM1,
SIM2, SIM3, and SIM5 ranged from 0.03 to 0.05 for the additive
genetic variance, and from 0.08 to 0.09 for the residual variance.
Heritability estimated in SIM1, SIM2, SIM3, and SIM5 ranged
from 0.26 to 0.40, which were consistent with the initial value
used in the simulation process (h2 equal to 0.33). For the Line2
and F1 populations in the SIM4, additive genetic variance and h2

were underestimated (additive genetic variance equal to 0.01, and
h2 ranged from 0.11 to 0.13) in comparison to the other scenarios.
Genetic correlations across populations in the different scenarios
ranged from moderate to high (from 0.71 to 0.99).

Genetic Connectedness Between
Populations
Principal Component Analysis
Both purebred and F1 populations clustered separately, and
the F1 animals clustered between both purebreds (as expected).
This is shown by the first and second principal components
(PC) of the genomic relationship matrix, in which the first
principal component explained from 79 to 82% of the total
variation (Figure 2). There was no projection overlapping in all
five simulated scenarios, indicating that the populations were
genetically divergent based on the relationship calculated from
segregating SNPs.

Consistency of Gametic Phase
As presented in Figure 3, the consistency of gametic phase
was reasonably low within purebred lines and low-to-moderate
between purebred and crossbred individuals, even at the smallest
SNP distance bins (from 0 to 60 kb). The consistency of gametic
phase of SNP pairs separated by distances of up to 60 kb between
Line1 and Line2 ranged from 0.13 (SIM4) to 0.22 (SIM1).

Scaling Factors Used to Combine G−1 and
A−1
22Matrices

Different values for τ (from 0.9 to 2.5) and ω (from 0.5 to 1.2)
parameters were tested in SC1 when combining the G−1 and
A22

−1 matrices. Changes in accuracies and regression coefficients
when using these different values are shown in Figures 4 and 5,
respectively. In summary, small or no variation in the validation
accuracies were observed when comparing different values of τ

and ω (Figure 4), except for the combination of low τ and high
ω that resulted in the lowest accuracies. This might be explained
by an inappropriate combination of tuning parameters. However,
a great impact of τ and ω combination was observed in the
regression coefficients (Figure 5). Among all tested values, the
combination of τ equal to 2.2 and ω equal to 0.5 yielded the least
biased GEBVs (i.e., the regression coefficient was closer to one).
Consequently, those τ and ω values were used in further analyses
for all scenarios evaluated.

With regards to the different simulated scenarios, when only
a fraction (or nothing) of the trait h2 was attributed to the QTL
effects (h2QTL), most combinations of τ and ω parameters yielded
less accurate and highly biased GEBVs (validation accuracies
were low and the regression coefficients were far from one). This
suggests that the genetic architecture of the trait has a great
effect on the performance of genomic predictions (Daetwyler
et al., 2010). In this context, when the number of QTLs was high
(4,500) and the h2 explained by them was equal to 0.33 (i.e., h2QTL
equal to the trait h2), greater validation accuracies were observed
(Figures 6A,C) and the GEBV bias decreased (Figures 6B,D).

Genomic Predictions
Due to a large number of scenarios investigated, the Results
section will be split according to the validation population (F1-3
or F1-4).
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TABLE 3 | Mean and standard deviation (in parentheses) of variance and covariance components and genetic parameters estimated for Line1, Line2, and F1 populations.

Line1 Line2 F11 rLine1,Line2 rLine1,F1 rLine2,F1

σ 2
u σ 2

e h2 σ 2
u σ 2

e h2 σ 2
u σ 2

e h2

SIM1 0.05 (0.008) 0.08 (0.006) 0.40 (0.044) 0.05 (0.005) 0.09 (0.003) 0.36 (0.027) 0.04 (0.005) 0.09 (0.004) 0.33 (0.035) 0.71 (0.183) 0.81 (0.127) 0.95 (0.044)

SIM2 0.05 (0.004) 0.08 (0.004) 0.39 (0.026) 0.04 (0.005) 0.09 (0.002) 0.31 (0.030) 0.04 (0.005) 0.09 (0.004) 0.28 (0.034) 0.83 (0.147) 0.87 (0.125) 0.98 (0.019)

SIM3 0.05 (0.004) 0.09 (0.004) 0.36 (0.030) 0.05 (0.004) 0.08 (0.003) 0.36 (0.026) 0.04 (0.006) 0.09 (0.004) 0.32 (0.036) 0.83 (0.141) 0.91 (0.085) 0.95 (0.054)

SIM4 0.04 (0.005) 0.09 (0.004) 0.34 (0.032) 0.01 (0.004) 0.09 (0.002) 0.11 (0.037) 0.01 (0.003) 0.10 (0.001) 0.13 (0.026) 0.96 (0.089) 0.99 (0.009) 0.96 (0.085)

SIM5 0.05 (0.005) 0.08 (0.004) 0.38 (0.031) 0.03 (0.006) 0.09 (0.003) 0.27 (0.043) 0.03 (0.006) 0.09 (0.005) 0.26 (0.044) 0.74 (0.132) 0.86 (0.098) 0.94 (0.057)

SIM1, simulated dataset with heritability explained by the quantitative trait loci (h²QTL) = 0; SIM2, simulated dataset with h²QTL = 0.11 and 198 QTLs; SIM3, simulated dataset with

h²QTL = 0.11 and 4,500 QTLs; SIM4, simulated dataset with h²QTL = 0.33 and 198 QTLs; SIM5, simulated dataset with h²QTL = 0.33 and 4,500 QTLs; σ 2
u , additive genetic variance;

σ 2
e , residual variance; h

2, heritability; rLine1,Line2, genetic correlation between Line1 and Line2; rLine1,F1, genetic correlation between Line1 and F1; rLine2, F1, genetic correlation between

Line2 and F1. 1F1, F1-1, and F1-2 populations.

F1-3 Validation Population
SIM1 is the simulation scenario that yielded the lowest
GEBV accuracy and the highest bias estimates (e.g., regression
coefficient far from one). The average GEBV accuracies in SIM1
ranged from 0.14 (SC3 and SC4) to 0.15 (SC1, SC2, and SC5;
Figure 7A), and the regression coefficients ranged from 0.33
(SC3) to 0.52 (SC2 and SC4; Figure 7B). On the other hand,
the simulated scenario with the highest accuracy and lowest bias
(e.g., regression coefficient close one) was the SIM5. In SIM5, the
average GEBV accuracies ranged from 0.44 (SC4 and SC5) to 0.47
(SC1 and SC2; Figure 7I), and the regression coefficients ranged
from 0.87 (SC3 and SC5) to 1.27 (SC2; Figure 7J).

F1-4 Validation Population
Similarly to the F1-3 validation set, the simulated scenarios
SIM1 and SIM5 yielded the lowest and highest predictive
abilities, respectively. Using the F1-4 validation population (one
generation farther from the F1-3 training population) from the
SIM1 dataset, the GEBV validation accuracy reduced by 13.98%
when compared to the F1-3 validation set. Thus, the GEBV
accuracies ranged from 0.12 (SC3 and SC5; SIM1) to 0.15 (SC2;
SIM1; Figure 8A), and regression coefficients ranged from 0.28
(SC3; SIM1) to 0.52 (SC2; SIM1; Figure 8B). Based on the F1-
4 validation set from SIM5, the validation accuracy reduced by
3.86% compared to F1-3. The accuracies ranged from 0.42 (SC4
and SC5; SIM5) to 0.46 (SC1, SC2, and SC3; SIM5; Figure 8I),
and the regression coefficients ranged from 0.87 (SC5; SIM5) to
1.27 (SC2; SIM5; Figure 8J).

The GEBV accuracies and regression coefficients for
the other simulated scenarios (SIM2–SIM4) are presented
in Figures 7C–G, 8C–G for F1-3 and F1-4 validation
populations, respectively. Furthermore, the GEBV accuracies
and regression coefficients calculated for each replicate
are shown in Tables S3, S4 for F1-3 and F1-4 validation
populations, respectively.

DISCUSSION

Variance and Covariance Components
Genetic correlations for the simulated trait across populations
in the different scenarios ranged from moderate-to-high, which
indicates that Line1, Line2, and F1 are moderate-to-high

genetically correlated. Núñez-Dominguez et al. (1993) reported
a moderate-to-high genetic correlation between purebred-
crossbred populations (ranging from 0.55 to 0.97) for live
weightmeasurements (e.g., birth, weaning, and yearling weights).
Additionally, Newman et al. (2002) also reported moderate-
to-high estimates ranging from 0.48 to 1.00 for moderate-to-
high heritability traits (e.g., carcass weight and percentage of
intramuscular fat). Based on a literature review, Wientjes and
Calus (2017) reported an average genetic correlation between
purebred-crossbred pigs equal to 0.63, with 50% of the estimates
between 0.45 and 0.87 (Wientjes and Calus, 2017). The majority
of the correlations observed in the current study are at the
high end of this range. Assuming the exclusively moderate-to-
high genetic relationship between all population pairs and a
large training population, genomic predictions between those
populations are expected to be reasonably accurate (Daetwyler
et al., 2015).

Genetic Connectedness Between
Populations
Principal Components Analysis absorbs the information of allele
frequencies into a reduced number of independent variables,
facilitating the interpretation of potential population structure.
The first two PCs showed a clear separation between populations
Line1 and Line2, and the F1 animals clustered between both
purebred lines (Figure 2). Additionally, despite the differences in
the F1 generations (F1-1, F1-2, F1-3, and F1-4), all of them were
grouped in a single cluster.

The first principal component (PC1) was strongly correlated
with Line1 in all simulation scenarios, except for SIM2 (Figure 2).
This fact highlights that PC1 increases with an increasing
relationship in Line1. However, different results can be expected
due to the stochastic nature of the simulation analysis and the
sampling process to create the training population (as observed
for SIM2). Thus, the general pattern of PC1 in comparison to
Line1 can be seen as a genomic index that ensures the strong
relationship among individuals belonging to the same line.

The improvement of the predictive ability of two distinct
training and validation populations (e.g., purebred and
crossbred) depends on the similarity or consistency of gametic
phase between the SNPs and QTLs across populations. By
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FIGURE 2 | Principal component decomposition of the genomic relationship matrix of repetition 1 colored by breed-group. Letters represent the simulated scenarios:

(A) Simulated scenario with heritability explained by the quantitative trait loci (h²QTL) equal to zero (SIM1); (B) h2
QTL

equal to 1/3 of trait heritability (h2) (i.e., h2
QTL

equal to

0.11), and the number of QTLs equal to 198 (SIM2); (C) h2
QTL

equal to 0.11 and the number of QTLs equal to 4,500 (SIM3); (D) h2
QTL

equal to trait h2 (0.33), and the

number of QTLs equal to 198 (SIM4); and (E) h2
QTL

equal to 0.33 and the number of QTLs equal to 4,500 (SIM5).
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FIGURE 3 | Consistency of gametic phase (Pearson correlations of signed r values) at given distances for three population pairs. SIM1: simulated scenario with

heritability explained by the quantitative trait loci (h²QTL) equal to zero; SIM2: h2
QTL

equal to 1/3 of trait heritability (h2) (i.e., h2
QTL

equal to 0.11), and the number of QTLs

equal to 198; SIM3: h2
QTL

equal to 0.11 and the number of QTLs equal to 4,500; SIM4: h2
QTL

equal to trait h2 (0.33), and the number of QTLs equal to 198; and SIM5:

h2
QTL

equal to 0.33 and the number of QTLs equal to 4,500.
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FIGURE 4 | Heatmap of accuracy (r) for all combinations of τ and ω scaling factors to blend G−1 and A−1
22 matrices when building the H matrix, using the dataset from

the simulated scenario with heritability explained by the quantitative trait loci (h²QTL) equal to the trait heritability (h2) of 0.33 and 4,500 QTLs.

FIGURE 5 | Heatmap of regression coefficient (β1) for all combinations of τ and ω scaling factors to blend G−1 and A−1
22 matrices when building the H matrix, using the

dataset from the simulated scenario with heritability explained by the quantitative trait loci (h²QTL) equal to the trait heritability (h2) of 0.33 and 4,500 QTLs.

increasing the relationship distance between individuals, the
genomic distance in which the linkage phase will be consistent
across populations decreases. As presented in Figure 3, the
consistency of gametic phase was reasonably low to moderate
among all populations’ pairs. As expected, Line1 and Line2
presented the lowest consistency of gametic phase. Populations
paired with F1 (i.e., Line1 vs. F1, and Line2 vs. F1) presented the
highest consistency of gametic phase.

Both results, PCA and consistency of gametic phase,
suggest that better accuracies of genomic predictions
could be attained when using a single-training population
as the SNP effects seem to be population-specific.
In other words, the lower predictive ability could be
expected when SNP effects estimated based on Line1 is
applied to Line2, or across any combination presented.
However, those assumptions are contrasted by the genetic
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FIGURE 6 | Trend line for average validation accuracy (r, A,C) and regression coefficient (β1, B,D) across all scenarios: ssGBLUP based on a single-trait model

considering both purebred and crossbred animals in the training population (SC1); ssGBLUP based on a multiple-trait model to consider phenotypes recorded on

purebred and crossbred training animals as different traits (SC2); WssGBLUP based on a single-trait model considering both purebred and crossbred animals in the

training population (and information from both populations to estimate the SNP weights (SC3); WssGBLUP based on a single-trait model considering only purebred

animals in the training population (and only the information from crossbred animals to estimate the SNP weights) (SC4); and WssGBLUP based on a single-trait model

considering only purebred animals in the training population (and their information to estimate the SNP weights) (SC5); and simulated scenarios: heritability explained

by the quantitative trait loci (h²QTL ) equal to zero (SIM1); h2
QTL

equal to 1/3 of trait heritability (h2) (i.e., h2
QTL

equal to 0.11), and the number of QTLs equal to 198 (SIM2);

h2
QTL

equal to 0.11 and the number of QTLs equal to 4,500 (SIM3); h2
QTL

equal to trait h2 (0.33), and the number of QTLs equal to 198 (SIM4); and h2
QTL

equal to 0.33

and the number of QTLs equal to 4,500 (SIM5). (A,B) represent F1-3 validation population and (C,D) represent F1-4 validation population.

correlation between Line1 and Line2 (i.e., moderate-to-high
genetic correlations).

Even though a moderate-to-high genetic correlation was
observed between Line1 and Line2, there was still population
stratification. The contrasting results from both analyses (genetic
correlation vs. PCA + consistency of gametic phase + allele
frequency correlation) might be explained by: (i) the similar
selection direction for all populations (i.e., selection of lower
EBV animals from Line1, Line2, and F1), which could result
in a high genetic correlation across these populations for the
trait under selection; (ii) single-trait selection, in which only
the alleles associated with the trait (or in high LD) would
contribute to higher genetic correlation between the populations,
but not all the markers spread across the genome; and, (iii)
specific population parameters (e.g., LD, effective population size,
different number of generations, and SNP marker segregation).
In other words, when simulating a genomic dataset, one needs

to specify: (1) the number of QTLs affecting the trait (this can
be interpreted as the causal mutations affecting the trait, which
are usually the same across populations), and (2) the number of
markers in the dataset, in which some will be in LD with the
QTLs simulated, while the others might be non-related to the
trait and spread out across the whole genome. Thus, it is not
surprising that the QTL effects (causal mutations) and their allele
frequencies across populations (Line1 and Line2) for the trait
under study were similar, which is realistic.

Scaling Factors Used to Combine G−1 and
A−1
22 Matrices

The ssGBLUP and WssGBLUP methods assume that the
statistical model is correct and that allelic frequencies come
from the base population (Oliveira et al., 2019). However, these
assumptions usually do not hold in practice, which can result in
prediction bias (Vitezica et al., 2011). In this context, G−1 and
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FIGURE 7 | Average validation accuracies (r − A,C,E,G,I) and regression coefficients (β1− B,D,F,H,J) with, respectively standard deviations and different letters for

each scenario representing significant differences (P < 0.05) for F1-3 validation population: ssGBLUP based on a single-trait model considering both purebred and

crossbred animals in the training population (SC1); ssGBLUP based on a multiple-trait model to consider phenotypes recorded on purebred and crossbred training

(Continued)
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FIGURE 7 | animals as different traits (SC2); WssGBLUP based on a single-trait model considering both purebred and crossbred animals in the training population

(and information from both populations to estimate the SNP weights) (SC3); WssGBLUP based on a single-trait model considering only purebred animals in the

training population (and only the information from crossbred animals to estimate the SNP weights) (SC4); and WssGBLUP based on a single-trait model considering

only purebred animals in the training population (and their information to estimate the SNP weights) (SC5). Simulated scenarios: heritability explained by the

quantitative trait loci (h²QTL) equal to zero (SIM1); h2
QTL

equal to 1/3 of trait heritability (h2) (i.e., h2
QTL

equal to 0.11), and the number of QTLs equal to 198 (SIM2); h2
QTL

equal to 0.11 and the number of QTLs equal to 4,500 (SIM3); h2
QTL

equal to trait h2 (0.33), and the number of QTLs equal to 198 (SIM4); and h2
QTL

equal to 0.33 and

the number of QTLs equal to 4,500 (SIM5).

A22
−1 matrices are usually not on the same scale (Misztal et al.,

2017; Oliveira et al., 2019). In order to obtain better prediction
accuracies and reduce the bias, Tsuruta et al. (2011) and Misztal
et al. (2013) reported that scaling factors should be used when
combining G−1 and A22

−1 matrices to create theHmatrix.
The different scaling factors tested in this study had no or

small influence in the validation accuracies (Figure 4). These
findings are in agreement with those reported by Oliveira et al.
(2019), who also observed a small impact of these parameters
in the reliability of genomic predictions using real datasets
from three Canadian dairy cattle breeds (Holstein, Jersey, and
Ayrshire). On the other hand, Koivula et al. (2018) reported
significant differences in the validation reliabilities across few
pairwise combinations of τ and ω parameters.

As initially reported by Tsuruta et al. (2011) and Misztal et al.
(2013), different combinations of τ and ω also had a great impact
on the bias estimates in the current study (Figure 5). This can
be explained by the reduction in the variance of the predicted
genetic values resulting in larger regression coefficients (Martini
et al., 2018), depending on the scaling factor combination used.
In general, changes in τ had a smaller impact on the bias than
changes in ω, as also reported by Oliveira et al. (2019). The
best ω parameter assumed in this study (0.50) was lower than
1.00, which increases the importance of pedigree information
on GEBV prediction. This is related to the fact that this study
used a simulated dataset and therefore, the pedigree is complete
and precise.

Genomic Prediction of Breeding Values
Accuracies
In general, significant differences were observed across scenarios
(Figures 7, 8 for F1-3 and F1-4, respectively).

Single-trait vs. multiple-trait model
In general, single- and multiple-trait models yielded similar
results across all the simulated scenarios and validation
populations (Figures 7, 8). Calus et al. (2014) reported
that a single-trait model can result in similar predictive
accuracies compared tomultiple-trait or non-linear models when
assuming a high genetic correlation between the populations
analyzed together. On the other hand, greater predictive ability
was observed by using multiple-trait or non-linear models
when the populations were less genetically correlated (Calus
et al., 2014). Therefore, the genetic connectedness between
populations in a pooled-breed analysis might interfere with
the model performance (Calus et al., 2014). In the present
study, all population pairs presented moderate-to-high genetic

correlations for the trait simulated (Table 3), whichmight explain
the similar predictive ability across all the scenarios investigated.

ssGBLUP vs. WssGBLUP
For the SIM1, SIM2, SIM3, and SIM5, SC1, and SC2 (using
the ssGBLUP method) yielded the highest GEBV accuracies.
This suggests that the ssGBLUP method, using either a single-
or multiple-trait model, performs better than WssGBLUP
for polygenic traits in crossbred animals. We expected that
WssGBLUP would perform better for the scenarios SIM2
through SIM5, and especially for SIM4 and SIM5. Lourenco
et al. (2017) reported that for less polygenic traits (such
as the simulated scenarios mentioned above), the accuracy
might be higher when using WssGBLUP instead of ssGBLUP.
WssGBLUP is advantageous for traits with a reduced number
of causative genes because its assumption is similar to the
genetic architecture of those traits: a finite number of markers
affecting the trait. However, no pattern was observed across those
simulated scenarios for WssGBLUP. In SIM4, the SC3 scheme
(characterized by the WssGBLUP using purebred and crossbred
populations to estimate the SNP weights and predict the GEBVs)
yielded the highest accuracy. The genetic variation of the trait in
SIM4 is completely controlled by fewQTLs. In other words, SIM4
is a less polygenic scenario across all others.

Accounting for breed-specific allele frequencies could
potentially increase the predictive ability in multi-breed models
(Dekkers, 2007; Ibánêz-Escriche et al., 2009; Christensen
et al., 2014). This can be accounted for through WssGBLUP
(e.g., Sevillano et al., 2019). However, small differences were
observed by using ssGBLUP and WssGBLUP in the present
study. The similarity across scenarios might also be partially
explained by the data simulation structure that resulted in a
moderate-to-high genetic correlation across all population pairs,
as they were all selected based on a single trait. Additionally,
the allele A frequency correlations among all population
pairs ranged from moderate (0.24–0.48; Line1 vs. Line2;
Tables S5A–S5E) to high (0.61–0.85; Line1 vs. F1, and Line2
vs. F1; Tables S5A–S5E). In real datasets, differences in allele
frequencies diverge due to different breeding goals across
generations and populations/breeds. Similarly, Lourenco et al.
(2016) did not observe differences in GEBV accuracies when
using breed-specific allele frequencies to build the G matrix
in the genomic evaluation of crossbred animals. Furthermore,
Ibánêz-Escriche et al. (2009) also reported that genomic selection
for crossbred populations using models that fit the breed-specific
effects of SNP alleles are not necessary.

Scenarios SC4 and SC5 had fewer individuals in the training
population than SC1 and SC3 scenarios, which could lead to
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FIGURE 8 | Average validation accuracies (r − A,C,E,G,I) and regression coefficients (β1− B,D,F,H,J) with, respectively standard deviations and different letters for

each scenario representing significant differences (P < 0.05) for F1-4 validation population: ssGBLUP based on a single-trait model considering both purebred and

crossbred animals in the training population (SC1); ssGBLUP based on a multiple-trait model to consider phenotypes recorded on purebred and crossbred training

(Continued)
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FIGURE 8 | animals as different traits (SC2); WssGBLUP based on a single-trait model considering both purebred and crossbred animals in the training population

(and information from both populations to estimate the SNP weights) (SC3); WssGBLUP based on a single-trait model considering only purebred animals in the

training population (and only the information from crossbred animals to estimate the SNP weights) (SC4); and WssGBLUP based on a single-trait model considering

only purebred animals in the training population (and their information to estimate the SNP weights) (SC5). Simulated scenarios: heritability explained by the

quantitative trait loci (h²QTL) equal to zero (SIM1); h2
QTL

equal to 1/3 of trait heritability (h2) (i.e., h2
QTL

equal to 0.11), and the number of QTLs equal to 198 (SIM2); h2
QTL

equal to 0.11 and the number of QTLs equal to 4,500 (SIM3); h2
QTL

equal to trait h2 (0.33), and the number of QTLs equal to 198 (SIM4); and h2
QTL

equal to 0.33 and

the number of QTLs equal to 4,500 (SIM5).

greater accuracies of both larger training population scenarios.
Therefore, additional analyses using the same-size training
populations of SC1 and SC3 vs. SC4 and SC5 were performed
(Tables S6A–S6E). Small or no differences were observed by
using a balanced dataset for SC1 and SC3 scenarios, which do
not change the conclusions previously reported. Therefore, the
differences between ssGBLUP and WssGBLUP were still small.
However, the way the estimation of SNP weights has been
carried out in this and other studies (Ibánêz-Escriche et al.,
2009; Lourenco et al., 2016) might not be optimal. The weights
derivation used is the easiest way to implement the WssGBLUP
in commercial breeding programs, which justify the application
of the method. Alternative ways to derive the SNP weights
have been proposed and might result in better predictive ability
(Su et al., 2014; Karaman et al., 2019), for example through
Bayesian approaches.

Purebred vs. jointly purebred and crossbred training

populations
There are studies indicating that the addition of crossbred
information in the training population to predict crossbred
performance has a positive impact on the predictive ability of
GEBVs (Bijma and van Arendonk, 1998; Bijma et al., 2001;
Lutaaya et al., 2002; Fragomeni et al., 2016; Iversen et al., 2017).
However, Pocrnic et al. (2019), using a dataset with purebred and
crossbred pigs, did not observe differences in GEBV accuracies
when the SNP effects were estimated based solely on purebreds
or obtained through combining purebred and crossbred animals
in the training set. In this study, the high genetic correlations
between purebred and crossbred populations (from 0.81 to 0.99
between Line1 and F1, and 0.94 to 0.98 between Line2 and F1)
might explain the small differences observed when including
crossbred information in the training population (from SC1 to
SC4 vs. SC5, Figures 7, 8). In general, moderate-to-high genetic
correlations between purebreds and crossbred populations tend
to result in higher GEBV prediction accuracies (Pocrnic et al.,
2019). This might be due to the purebred information’s ability
to capture most of the crossbred genetic variation when larger
training sets are available.

Regression Coefficients
Significant differences were observed among regression
coefficients estimated in the different scenarios (Figures 7, 8 for
F1-3 and F1-4, respectively). The GEBV bias obtained in SC3 and
SC5 may be due to the inefficient estimation of SNP weights in
predicting crossbred information, as a merged dataset (purebred
and crossbred) or just purebred information was used to estimate
the SNP weights to predict GEBVs in the crossbred animals in
SC3 and SC5, respectively. As previously mentioned, alternative

ways to derive the SNP weights have been proposed, which could
lead to better predictive performance (Su et al., 2014; Karaman
et al., 2019). In general, less biased GEBVs were obtained in SC2,
which is in agreement with several studies in the literature with
regards to the superiority of multiple-trait models to predict
the performance of crossbred populations (Tusell et al., 2016;
Pocrnic et al., 2019).

Comparing Simulated Datasets
In general, higher GEBV accuracies and regression coefficients
close to one were obtained for SIM4 and SIM5 (simulated
datasets in which all genetic variances were explained by the
QTLs). Simulated scenarios with a small or null number of
QTLs (SIM1, SIM2, and SIM3) might lead to higher GEBV
accuracy when using Bayesian variable selection models (Habier
et al., 2011). In composite beef cattle populations, the accuracy
of GEBVs averaged over twenty economically important traits
ranged from 0.38 to 0.40 across different scenarios (Piccoli
et al., 2017). It is worth noting that as the h2QTL reduced,
the GEBV accuracy decreased and the bias increased. This
indicates that simulated scenarios with h2QTL lower than h2

(total heritability) have a greater bias due to the fact that the
relationship matrix does not account for an infinite number of
loci (Kennedy et al., 1988).

As previously reported by Calus et al. (2014), a greater
predictive performance of the multiple-trait model was observed
under the lower relationship between purebred-crossbred
populations (SIM1) than in a simulated higher relationship
scenario (SIM4) (Figures 7, 8 and Table 3). In general, the
crossbred information included in the training population
during the GEBV estimation process had a greater impact on
GEBV accuracy while using a simulated scenario with lower
genetic correlation between purebred-crossbred populations,
than other simulated scenarios with higher genetic correlation
between populations.

F1-3 vs. F1-4 Validation Populations
Smaller differences in accuracies and regression coefficients were
observed when the F1-3 validation population was used in
comparison to the F1-4. This might be related to the smaller
genetic gap between training and the F1-3 validation population
(Muir, 2007; Goddard, 2009).

CONCLUSIONS

In general, the ssGBLUP method based on a single-trait
model considering both purebred and crossbred (F1) animals
in the training population (SC1), and ssGBLUP based on
a multiple-trait model considering phenotypes recorded on
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purebred and crossbred training animals as different traits
(SC2), yielded the highest accuracies and lowest biases of
GEBVs. Considering the current stratification of the genotyped
population [low consistency of gametic phase across purebred
and F1 populations; clear distinction of populations based
on PCA; but moderate-to-high genetic correlations (ranging
from 0.71 to 0.99)] for the simulated trait across populations,
the ssGBLUP using a single-trait model and a purebred
and crossbred (F1) training population’s scenario (SC1) is
recommended. The SC1 resulted in a similar performance of
genomic evaluations in crossbred animals and it is reasonably
easy to be implemented in practical situations. Further studies
using real datasets should be performed to validate these findings.
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INTRODUCTION

Carps constitute a very large group of freshwater fish belonging to the family Cyprinidae, and are
predominant in aquaculture system accounting for ∼71–75% of freshwater fish production (FAO,
2018). The largest producer of carp is China (78.7%), followed by India (15.7%); the remaining
is produced by Bangladesh, Myanmar, Vietnam, Indonesia and Pakistan collectively, contributing
more than 30% of global aquaculture production in terms of tons (FAO, 2017a). Among the three
Indian major carp species (Labeo rohita, Catla catla and Cirrhinus mrigala), rohu carp (L. rohita) is
the most popular due to its growth potential coupled with high consumer preference. The natural
habitat of this species is the Indo-Gangetic riverine system, encompassing northern, eastern and
central India, as well as the rivers of Pakistan, Bangladesh and Myanmar. The species has also
been introduced in many other countries, including Sri Lanka, the former USSR, Japan, China,
the Philippines, Malaysia, Nepal and some African countries. The traditional culture of rohu in
the small ponds of the eastern Indian states dates back hundreds of years. L. rohita currently
accounts for ∼2.5% of total freshwater aquaculture production worldwide (FAO, 2017b). The
Central Institute of Freshwater Aquaculture, India, has established a selective breeding programme
for rohu carp with the aim of increasing the growth rate of this fish from 700 to 1,000 g in a
year (Chondar, 1999) to more than 1,500 g a year. A genetically improved strain of rohu, called
“Jayanti,” was developed. A 17% higher average growth rate per generation was achieved after four
generations of selection (Das Mahapatra et al., 2006). Our previous studies have also reported DNA
markers such as SSRs (Das et al., 2005; Patel et al., 2009; Sahu et al., 2012), SSR and SNP -based
linkage maps (Robinson et al., 2014; Sahoo et al., 2015) and transcriptome resources (Robinson
et al., 2012; Sahu et al., 2013) in this species. However, whole genome sequence of rohu carp is
still lacking. In this study, we present the first draft genome of rohu to complement the on-going
selective breeding program by generating genomic resources. Besides, the genome information can
be useful for functional and comparative genomics, gene mapping, genome wide association, and
genomic selection studies. With the advancement of sequencing technologies, there has been a
rapid increase in the number of genome assemblies for terrestrial species compared to aquatic
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species (including fish) in the last decade, with a very small
(Kelley et al., 2016) percentage of fish genomes given the most
numerous taxonomic group and huge diversity exhibited by
teleosts (Ravi and Venkatesh, 2018). The representation of carps
in the genome database is further very limited.

Rohu carp is a member of Otophysi, a major clade of modern
freshwater fishes. The superorder Otophysi is currently classified
into four orders: Cypriniformes (carps and minnows; 4,262
species), Characiformes (tetras and piranas; ∼2,100 species),
Gymnotiformes (knifefishes and electric eel; 225 species)
and Siluriformes (catfishes; ∼3,700 species) (Eschmeyer and
Fong, 2015; Nelson et al., 2016). Despite significant advances
recently in delineating lineages within major taxonomic
groups at the molecular level, an increasing number of
whole-genome sequences of fish may be needed to address
the evolution of otophysan lineages and the phylogenetics
at the genome scale. Within this context, the genome
sequence of rohu carp would provide an essential resource
for evolutionary and biological studies in addition to carp
genetic improvement.

Adopting the whole-genome shotgun protocol and a
multi-platform sequencing approach, we for the first time
generated a good quality genome assembly of rohu carp. By
resequencing ten wild populations, we have also identified
approximately five million SNPs. Additionally, we also
performed phylogenetic analysis of rohu and thirteen other
otophysan species to determine the phylogenetic position of
rohu within otophysan lineages.

Value of the Data
Here we report for the first time the draft genome of Indianmajor
carp, rohu widely cultured in Indian subcontinent. The scaffold
N50 was found to be 1.95Mb and there were 26,400 protein
coding genes and 40.63% repeats.

Resequencing of 10 riverine rohu populations identified
∼5 million SNPs which will provide a valuable resource
for undertaking genome wide association studies, genomic
selection, population genomics and fine-mapping of QTLs in
this species.

Phylogenetic analysis taking protein sequences of 335
single copy genes of 14 Otophysans revealed that rohu carp
(Labeoninae) was at a position equidistant to the other species
in the Otophysi clade, forming a sister group.

All the six families and four subfamilies under the four
otophysan lineages were monophyletic.

MATERIALS AND METHODS

Genome Sequencing
A single male rohu (∼1 kg), belonging to seventh generation
of ongoing selective breeding programme of ICAR-CIFA,
was chosen for sequencing. Tissue samples were collected in
September 2013. All handling of fish was carried out following the
guidelines for control and supervision of experiments on animals
by the Government of India and approved by Institutional
Animal Ethics Committee (AEC) of ICAR-CIFA. The fish was
anesthetized followed by harvesting of the testes, liver and

muscle tissues, and isolation of high- molecular weight genomic
DNA using standard phenol-chloroform extraction method
(Sambrook et al., 1989). A multi-platform sequencing strategy
was adopted to generate approximately 130-fold coverage
sequence data for the estimated genome size of 1.5 Gb.
Approximately 1,000 ng of genomic DNA per library was sheared
using a Covaris S2 sonicator (Covaris, Woburn, Massachusetts,
USA) to generate fragments ranging in size from 200 bp to 20 kb.
A total of 18 libraries (single-end, paired-end and mate-paired)
including one large insert library (Supplementary Table 1) were
prepared for Roche 454 (GS FLX), Illumina (Miseq and Nextseq
500), Ion Torrent (PGM), and PacBio (Sequel) sequencing using
respective protocols. Briefly, Roche libraries were prepared and
sequenced using picotitre plates with Titanium or long-read
chemistry (Roche Diagnostic, USA). Illumina Miseq libraries
were prepared using the Nextera XT library prep kit and Illumina
Nextseq 500 libraries were constructed following the TruSeq
PCR-free HT library Prep Kit. In addition, one shotgun library
for Ion-Torrent PGM and one large insert (15–20 kb) library
for the PacBio (Sequel) platform were prepared following the
manufacturer’s instructions.

De novo Genome Assembly and Validation
The raw sequence data were checked for quality using FastQC
and the NGSQC (NGSQC Patel and Jain, 2012). Low quality
(Q < 20) and short (<50 bp) reads were filtered out to
obtain a set of usable reads. The assembly was obtained
using the MaSuRCA assembler (Zimin et al., 2013). First, all
data except for PacBio data were assembled using MaSuRCA,
followed by scaffolding in SSPACE v3.0 (Boetzer et al., 2010).
Gap closing was performed using GapCloser v1.12b, a part of
SOAPdenovo2 (Luo et al., 2012). Second, PacBio reads were
error corrected by Illumina paired-end data using pacBioToCA
module implemented in Celera Assembler (Myers et al., 2000),
followed by assembly in the CANU assembler v1.7 (Koren
et al., 2017). Finally, the gap-closed scaffolds from both analyses
were merged using Quickmerge (Chakraborty et al., 2016)
(Supplementary Figure 1). Scaffolds more than 2 kb in size
were retained to construct the final set. Further, the genome
size of rohu was estimated by using the program Jellyfish as
implemented in MaSuRCA. The completeness of the genome
assembly was assessed using BUSCO version 3.0 (Simão et al.,
2015) andActinopterygii odb9 dataset having a set of 2,586 highly
conserved core eukaryotic genes. In order to check the possible
redundant sequences in the assembly, the k-mer distribution
graph for the complete assembly was generated using jellyfish
followed by a 21-mer profile using the Illumina PE reads. Further,
the Illumina PE reads were mapped to assembly sequences for
analyzing depth distribution for every base in the genome. The
accuracy of the assembly was evaluated by anchoring the scaffolds
onto published SNP and microsatellite marker maps for rohu
(Robinson et al., 2014; Sahoo et al., 2015). For this, SNPs and
microsatellite markers of rohu were used as queries against rohu
scaffolds by Blastn module as implemented in the program CLC
Bio workbench version 7.0.4, with the following parameters:
e-value 1e-10, word size 10, match 2, mismatch −3 and %
identity 90%.
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Genome Organization
SSRs were screened from the genome using MISA software
(Thiel et al., 2003). Repeat identification in the assembled
genome of rohu was carried out by homology-based and de
novo methods. We performed homology-based identification
using RepeatMasker version 4.0.6 against D. rerio RepBase
version 20.07 as the repeat library. The de novo repeat library
was constructed using RepeatModeler version 1.0.10 which
essentially uses two repeat-finding programs, RECON (Bao and
Eddy, 2002) and RepeatScout (Price et al., 2005), along with
Tandem Repeat Finder (Benson, 1999). The consensus sequences
yielded were used as repeat library to mask repeats using
RepeatMasker with default parameters. Transfer RNAs were
screened across the genome using tRNA scan-SE (Lowe and
Eddy, 1997).

Gene Prediction and Functional Annotation
We carried out combined annotation methods using de novo,
homology-based as well as transcriptome-based approaches
to annotate the rohu genome. The program AUGUSTUS
version 3.2.3 (Stanke and Waack, 2003) was used for de novo
prediction of protein coding genes from the repeat masked
rohu genome assembly. RNAseq data derived from various
tissues of rohu (generated in this study and available online)
were used to support the prediction of proteins by mapping
de novo assembled transcripts to the genome assembly. In
homology-based predictions, putative genes were predicted
using trained zebrafish model. We filtered out sequences <100
amino acids from the total predicted protein-coding genes,
followed by a Blastp search against the NCBI non-redundant
database with default parameters. From the resultant hits, partial
and fragmented predictions were checked and removed by
performing Blastp against well characterized protein sequences of
zebra fish for the final set (Supplementary Figure 2). Functional
assignment of the final set of predicted protein sequences was
carried out by BLAST2GO v5.0 (Conesa et al., 2005).

Comparative Genome Analysis
To describe orthologous relationships for the rohu annotated
genes, we compared them employing OrthoVenn (Wang et al.,
2015) with three other diploid cyprinid species, Anabarilius
grahami, Ctenopharyngdon idellus, and Danio rerio. Orthologous
genes shared among these species were depicted through a Venn
diagram. Moreover, to reveal the synteny conservation between
rohu and zebrafish, the rohu genome sequence was compared
with 25 chromosomes of the well-characterized zebrafish genome
using Symap v3.4 (Soderlund et al., 2011).

Whole-Genome Resequencing and SNP

Discovery
Resequencing of 10 wild populations of rohu, covering different
geographical regions of India, was performed using the Illumina
NextSeq 500 platform. The 10 different populations originated
from the five Himalayan riverine systems encompassing
northern, eastern and central India, and five peninsular riverine
systems covering southern India. We sampled 3 individuals
from each population and pooled their DNA for paired-end

Illumina sequencing. The VDAP-GUI pipeline (Menon et al.,
2016) was used for genome wide SNP discovery. Commonly
used linux command (head—number of reads “filename.fastq”
> “filename.fastq”) was used to extract the number of reads
equivalent to the sample having lowest number of reads and then
the data were pooled together to make one dataset for mapping
against draft genome. The data and reference sequence were
then imported into the pipeline, which included quality control
by FastQC version 0.11.2 (www.bioinformatics.babraham.ac.uk/
projects/fastqc/), quality filtering by PRINSEQ version 0.20.4
(prinseq.sourceforge.net/), and trimming with minimum quality
scores of Q20 and sequence lengths of 30 bp. For reference
mapping, the BWA-mem version 0.7.5a algorithm was used
with the following parameters: match score 1, penalty for
mismatches 4 and gap open penalty 6. The SNP/INDEL detection
methods used in VDAP-GUI were SAMtools version 0.1.19,
VarScan version 2.3.7, and FreeBayes version 0.9.10-3. A custom
approach, namely, MultiCom that performs variant discovery
using all the above three algorithms was also used. Final SNPs
were identified by at least two algorithms. Duplicate removal
was performed using the Picard tool (version 1.7.0) (https://
broadinstitute.github.io/picard/).

Phylogenetic Analysis
Phylogenetic relationships were deduced by the maximum
likelihood method, based on the protein sequences of 335 single-
copy genes (Supplementary Data) commonly shared by fourteen
otophysan species representing all four orders, Cypriniformes
(8), Characiformes (2), Gymnotiformes (1), and Siluriformes
(3). We downloaded the protein sequences of A. grahami,
C. auratus, C. carpio, D. rerio, Sinocyclocheilus anshuiensis,
S. graham, and Sinocyclocheilus rhinocerous (Cypriniformes,
including rohu), Astyanax maxicanus, Pygocentrus nattereri
(Characiformes), Electrophorus electricus (Gymnotiformes),
and Ictalurus punctatus, Pangasianodon hypophthalmus and
Tachysurus fulvidraco (Siluriformes) from the database. These
protein data sets were clustered to identify orthologous gene
families with ProteinOrtho (Lechner et al., 2011). Three hundred
thirty five single-copy genes, common to all the above species,
were selected from the clusters for alignment using the software
MUSCLE (Edgar, 2004) with default parameters. The individual
sequence alignments were concatenated, and gaps were removed
before constructing the maximum likelihood phylogenetic tree
using RAxML (Stamatakis, 2014) employing PROTGAMMAJTT
model with 20,000 iterations toward convergence of the
maximum likelihood model and 1,000 bootstrap replicates. Tree
viewer was used for viewing the phylogenetic tree.

RESULTS AND DISCUSSION

Genome Assembly and Validation
The haploid rohu genome containing 25 chromosomes (Zhang
and Reddy, 1991) was observed to have an estimated genome
size of 1.5 Gb, which is similar to the lengths of male and
female genome maps reported in an SNP-based linkage map of
rohu (Robinson et al., 2014). The assembly resulted in 259,627
contigs and 13,623 scaffolds, with contig N50 and scaffold
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N50 values of 30.6 kb and 1.95Mb, respectively (Table 1). The
assembled genome size of L. rohita is 1.48 Gb, accounting for
>98% of the estimated rohu genome size of 1.5 Gb. In total,
393 scaffolds of 13,623 were found to be more than 1Mb in
size. The draft assembly presented here is of good quality and
comparable to other published teleost genomes of similar size
(Supplementary Table 2). The rohu draft genome provides a
proxy for genome completeness based on 2,586 BUSCOs, which
includes 2,472 [95.6%] “complete” BUSCO genes, 1,667 [64.5 %]
single-copy, 805[ 31.1%] duplicated, 19 [0.7%] fragmented and
95 [3.7%] missing BUSCOs. The k-mer distribution and depth
coverage profiles generated indicated very less or no redundant
sequences in the assembly (Supplementary Figures 3–17).

We assessed the accuracy of the assembly by anchoring
sequences onto the SNP and SSR-based genetic maps of rohu
(Robinson et al., 2014; Sahoo et al., 2015). All SNP markers
(3,193) with the sequence information matched at unique
positions in 667 scaffolds, covering approximately 80% of the
genome (Supplementary Table 3). The 667 scaffolds, totaling
1.18 Gb were spread across 1,416 cM of the genome, which was
in agreement with the linkage groups of rohu. Similarly, 146
SSR loci covering 25 linkage groups of rohu were also matched
(Supplementary Table 4).

Genome Organization
RepeatModeler was employed for de novo repeat modeling,
and repeats were found to constitute 40.63% of the rohu
genome. Of these, 34.11, 3.9, and 2.32% were interspersed
repetitive DNA, satellite DNA and simple repeats, respectively
(Supplementary Table 5). The GC percentage (36%) found in
this study is similar to that of the genomes of other cyprinids
(Supplementary Table 6). The overall percentage of repeat
elements observed was similar to the repeat contents of the
cavefish Sinocyclocheilus grahami (Yang et al., 2016) and
grass carp Ctenopharyngodon idellus (Wang et al., 2015),
higher than common carp Cyprinus carpio (Xu P. et al.,
2014) and blunt snout bream Megalobrama amblycephala
(Liu et al., 2017) but lower than zebrafish Danio rerio
(Howe et al., 2013) (Supplementary Table 6). The most
abundant repeat elements in the rohu genome were found
to be DNA transposons, accounting for 33.58% of the
classified elements, followed by retrotransposons (6.1%),
LINEs (3.5%), and SINEs (0.8%), as observed in other carp
genomes. Searching for genome-wide simple sequence repeat
markers of the assembled rohu genome resulted in 557,193

TABLE 1 | Assembly statistics of rohu draft genome.

Parameters Contigs (bp) Merged all

scaffolds (bp)

After gap closing (bp)

(Length > 2,000 bp)

Total number 259,627 147,061 13,623

No. of bases 1,236,201,637 1,563,356,456 1,484,730,970

Max. size 12,383,302 15,225,768 15,225,769

N50 value 30,672 2,123,649 1,959,535

SSRs, with dinucleotide repeats being the most abundant
(Supplementary Table 7).

Gene Prediction and Functional Annotation
The rohu genome is predicted to contain 26,400 protein-
coding genes; 2,516 tRNAs (2,292 tRNAs for standard amino
acids, 3 selenocysteine tRNAs, 39 undetermined isotypes, and
182 predicted pseudogenes) were predicted using tRNAScan-
SE. More than 85% of the predicted genes were supported
by rohu transcriptome data as well as protein database. The
number of genes predicted for rohu is similar to that for other
diploid cyprinids, such as zebrafish, blunt snout bream and grass
carp (Supplementary Table 6). Additionally, scaffold_11,425 of
a size of 16,606 bp, was found to be of mitochondrial origin,
with 13 mRNAs, 22 tRNAs, and 2 rRNAs. Evolution of more
complex eukaryotic organisms was impossible without gene
duplication (Ohno, 1970), and analysis of duplicated genes
in the rohu genome revealed 6,798 (26%) genes with more
than one copy, comparable to the numbers observed for
channel catfish (Liu et al., 2016) and zebrafish (Howe et al.,
2013).

Comparative Genome Analysis
The orthologous gene family analysis in diploid cyprinids, C.
idellus, A. grahami, and D. rerio using, OrthoVenn resulted
in a total of 22,724 clusters (rohu, 16,085; zebrafish, 17,731;
white minnow, 15,372; grass carp, 20,433 orthologous clusters
and 20,034 single-copy gene clusters) (Supplementary Table 8).
A total of 8,994 orthologs are shared by all four species, with
1,669 species-specific gene clusters. Rohu and grass carp share
the highest number of clusters (14,559), followed by rohu
and zebrafish (13,232 clusters) and rohu and white minnow
shared 10,918 (Figure 1A). Synteny between L. rohita and
D. rerio was observed to be well-conserved (Figure 1B), as
evidenced from synteny analysis between rohu scaffolds and
zebrafish chromosomes.

Whole-Genome Resequencing and SNP

Discovery
Genome-wide SNP discovery using the NGS approach is
straightforward and involves assembly of low depth sequencing
data, followed by mapping of reads to a reference sequence,
leading to variant calling. In contrast to livestock species,
breeding programmes in the aquaculture sector have been slower
to adopt genomics tools, mainly due to the paucity of genomic
resources such as linkage maps, SNP arrays and reference
genomes for important cultivable fish species. For species such
as rainbow trout, salmon, and common carp, genomic selection
(GS) and genome-wide association studies (GWAS) are being
performed to improve the accuracy and speed of selective
breeding for important performance traits (Bangera et al., 2017;
Vallejo et al., 2018). To capture the variations in the rohu genome,
low-depth resequencing of 10 wild rohu populations comprising
thirty individuals was performed using Illumina Nextseq 500,
which generated 60 Gb sequence data (40-fold coverage) of rohu
genome. To improve the accuracy of SNP calling, three programs,
SAMtools, VarScan, and FreeBayes, were used in the present

Frontiers in Genetics | www.frontiersin.org 4 April 2020 | Volume 11 | Article 38667

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Das et al. De novo Assembly of Rohu

FIGURE 1 | Comparative genomics of rohu (A) Venn diagram showing orthologous gene clusters among four diploid cyprinids, Labeo rohita, Anabarilius grahami,

Ctenopharyngodon idellus, and Danio rerio. (B) Synteny conservation between rohu and zebrafish using Symap. The genome view is depicted by Circos plot where

25 zebrafish chromosomes (1 to 25) are shown in upper side and 188 largest scaffolds of rohu in the lower side of the ring. The connecting ribbons indicate the

location of conserved synteny blocks between the two species. (C) Phylogenetic relationships of Labeo rohita with 13 other otophysans, inferred from 335

single-copy orthologous genes (protein sequences). Otophysan orders, families and subfamilies are identified by vertical bars against species names. ML bootstrap

values are shown at the nodes.

study generating 4.95 million SNPs. The number of SNPs ranged
from 380,991 to 679,963 in each population, and the number
of common SNPs between any two populations ranged from

100,743 to 200,764. Identification of SNP markers has recently
been carried out for several teleost species e.g., common carp,
rainbow trout and greater amberjack (Xu J. et al., 2014; Palti
et al., 2015; Araki et al., 2018). However, due to lack of SNP
resources, SNP panels and arrays are not available for rohu
carp. Thus, the SNPs identified from riverine populations of
rohu in the present investigation, provide a valuable resource
for undertaking genome wide association studies, genomic
selection, population genomics and fine-mapping of QTLs in
this species.

Phylogenetic Relationship of Rohu Carp

Within Otophysi
The phylogenetic position of L. rohita within Otophysi, revealed
that rohu carp (Labeoninae) was at a position equidistant to the
other species in the Otophysi clade, forming a sister group.

All the six families and four subfamilies under the four
otophysan lineages were recovered as monophyletic groups
(Figure 1C). Several hypotheses have been offered to discuss
the evolutionary history of Otophysi. Characiformes was found
to be a sister group to Gymnotiformes (Rosen et al., 1970);
some authors argued for a sister group between Siluriformes
and Gymnotiformes (Fink and Fink, 1981), whereas others
found Characiformes to be paraphyletic (Nakatani et al., 2011).
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Our results reveal Characiformes, comprising the families
Characidae and Serasalmidae, to be monophyletic, and together
with Siluriformes, it forms a sister group with Gymnotiformes.
This is in agreement with one of the tree topologies (Ha08)
reported earlier (Nakatani et al., 2011). Classifications based
on families and subfamilies are essential for diverse groups,
such as Otophysi, when drawing taxonomic and evolutionary
conclusions. Our results of sub familial relationships analysis
within Cypriniformes are in agreement with recent studies
(Xu P. et al., 2014; Jiang et al., 2018).

In summary, we report here the draft genome of rohu carp
and associated genomics resources. Performing phylogenetic
analysis, we show that rohu forms a sister group relationship
with all remaining otophysans. The draft genome of rohu and
SNPs generated in the present study represent essential resource
for genetic improvement of important performance traits in
this species. Besides, the information generated will provide
foundation for future research in evolutionary biology and
comparative genomics.
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The Norwegian White sheep (NWS) and New Zealand Terminal Sire Composite (NZC)
sheep breeds have been developed based on crossing of multiple breeds, mainly
of Northern European origin. A close genetic relationship between these populations
could enable across-country genomic evaluations. The main objectives of this study
were to assess the genetic connectedness between Norwegian and New Zealand
sheep populations and estimate numerous genetic diversity metrics for these two
populations. A total of 792 NWS and 16,912 NZC animals were genotyped using a
high-density Illumina SNP chip panel (∼606K SNPs). The NZC animals were grouped
based on their breed composition as: Finn, Lamb Supreme, Primera, Texel, “Other
Dual Purpose”, and “Other Terminal Sire”. The average level of linkage disequilibrium
ranged from 0.156 (for Primera) to 0.231 (for Finn). The lowest consistency of gametic
phase was estimated between NWS and Finn (0.397), and between NWS and Texel
(0.443), respectively. Similar consistency of gametic phase was estimated between
NWS and the other NZC populations (∼ 0.52). For all composite sheep populations
analyzed in this study, the majority of runs of homozygosity (ROH) segments identified
had short length (<2,500 kb), indicating ancient (instead of recent) inbreeding. The
variation in the number of ROH segments observed in the NWS was similar to the
variation observed in Primera and Lamb Supreme. There was no clear discrimination
between NWS and NZC based on the first few principal components. In addition,
based on admixture analyses, there seems to be a significant overlap of the ancestral
populations that contributed to the development of both NWS and NZC. There were
no evident signatures of selection in these populations, which might be due to recent
crossbreeding. In conclusion, the NWS composite breed was shown to be moderately
related to NZC populations, especially Primera and Lamb Supreme. The findings
reported here indicate a promising opportunity for collaborative genomic analyses
involving NWS and NZC sheep populations.
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INTRODUCTION

The Norwegian White Sheep (NWS) is a composite breed that
accounts for 70–75% of the total Norwegian sheep population.
This breed is well known for its prolificacy and high growth rates.
Sheep in Norway originates from the Northern European short
tail breeds (Drabløs, 1997). In the 18th and 19th centuries, better-
performing breeds (e.g., Merino for wool production; Oxford
Down, Shropshire, Southdown, Leicester, Cheviot, Blackface,
and Southerland for meat production) were imported from the
United Kingdom and other European countries and used for
crossing with Norwegian breeds. Subsequently, three distinct
breeds Dala, Rygja and Steigar highly influenced by the imports
were formed in the first half of the 20th century. Crossing
between these three breeds along with imported Texel and Finn
sheep took place in the second half of the 20th century. The
composite NWS was officially formed in 2000 including all
aforementioned breeds. Nowadays, the NWS is considered a
dual-purpose breed (meat and wool), with large emphasis on
meat production traits. The NWS breeding program is well
organized and has resulted in substantial annual genetic progress
for growth and carcass yield, reduced subcutaneous fat, and
increased litter size and milking ability (NSG, 2019).

The development history of the New Zealand sheep breeds
is somewhat similar to the NWS, with regards to the founder
breeders used in their formation and crossbreeding schemes
(Brito et al., 2017a). Considering the high genetic variability in
each of these composite populations, a collaborative initiative
could be a feasible alternative to increase the accuracy of genomic
breeding values and other genomic analyses. Benefits may be two-
fold, firstly to enlarge the training population of each country and
secondly to predict breeding values for traits recorded in a single
population (e.g., meat quality, methane emissions).

The genetic connectedness between these two populations
can be determined based on the consistency of gametic phase
(assessed based on linkage disequilibrium – LD between single
nucleotide polymorphisms – SNPs and quantitative trait loci –
QTL), as well as other genetic diversity metrics, including
admixture and population structure (Brito et al., 2017a; Prieur
et al., 2017). Therefore, combining animals from breeds with
similar development history can be an option to overcome
the small size of training population for certain traits in each
population, especially if the divergence between breeds is recent
(Gautier et al., 2007; de Roos et al., 2008). The New Zealand
sheep industry is characterized by a high proportion of composite
breeds and crossbreed animals (Blair, 2011; Brito et al., 2017a),
with various overlapping founder breeds in comparison to the
NWS. However, the genetic similarity between NWS and NZC
sheep populations has not yet been investigated. Knowledge
on the genetic diversity and connectedness between NWS and
NZC populations will contribute to a better understanding
of the development history of both populations and might
result in important practical applications. Thus, the main
objectives of this study were to: (1) assess the genetic diversity
of NWS and NZC sheep populations based on various
metrics; and (2) estimate the genomic connectedness between
both populations.

MATERIALS AND METHODS

All data used in this study were obtained from existing databases
made available by the Norwegian Association of Sheep and Goat
Breeders (NSG; Ås, Norway) and Animal Genomics (AgResearch;
Mosgiel, New Zealand). Therefore, no Animal Care Committee
approval was necessary for the purposes of this study.

Genotypic Data and Quality Control
A total of 792 NWS and 16,912 NZC animals were genotyped
using a high-density (HD) SNP panel (Ovine Infinium R© HD
SNP Beadchip; Kijas et al., 2014). The NZC animals were
grouped based on their recorded breed composition as: Finn,
Lamb Supreme, Primera, Texel, “Other Dual Purpose”, and
“Other Terminal Sire”. The NZC breed groups were formed
following Brito et al. (2017a). Note that both Finn and Texel were
derived from sampling flocks derived from animals imported
to New Zealand in the late 1980s and as such would have a
strong population bottleneck. In order to avoid bias due to
small sample size (Brito et al., 2017b), only populations that
had at least 50 genotyped animals were included in this study.
The threshold of 50 animals was defined based on preliminary
analysis. In addition, similar thresholds were used in other
genetic diversity studies, e.g., Kijas et al. (2012), Prieur et al.
(2017), and Brito et al. (2017b).

The genotypic quality control was performed using the PLINK
1.9 software (Purcell et al., 2007), separately for each population,
and considering all sheep populations together (specification of
the quality control used for the calculation of each diversity
metric are described later on). In brief, SNPs with unknown
or duplicated genomic positions and/or located in the sexual
chromosomes, minor allele frequency (MAF) lower than 0.01,
call rate lower than 95%, and extreme departure from the Hardy
Weinberg equilibrium (p-value < 10−15) were excluded. The
number of genotyped animals in each population, based on birth
year, and the descriptive statistics of the quality control are shown
in Table 1.

Population Characterization and Genetic
Diversity Metrics
Linkage Disequilibrium
The extent of linkage disequilibrium (LD) was calculated for
each breed group using the –r2 flag available in the PLINK 1.9
software (Purcell et al., 2007). Therefore, LD was calculated as the
squared correlation between two alleles at different loci (Hill and
Robertson, 1968), i.e.,:

LD =
D2

f(A)f(a)f(B)f(b)
,

where D = f(AB)− f(A)f(B), and f(AB), f(A), f(a), f(B) and f(b) are
observed frequencies of AB, A, a, B, and b, respectively. Within-
population quality control was used to calculate LD for each
breed (Table 1).

Average LD values were obtained through a binning approach,
in which SNP pairs were sorted into one of 20 bins, based on
pair-wise marker distances. The 20 distance bins (described later)

Frontiers in Genetics | www.frontiersin.org 2 April 2020 | Volume 11 | Article 37172

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00371 April 24, 2020 Time: 14:11 # 3

Oliveira et al. Genetic Connectedness Between Sheep Populations

TABLE 1 | Descriptive statistics of the genomic datasets used for the analyses.

Country Breed Number of animals Year of birth Number of SNPs remaining Number of SNPs removed

5MAF 6CR 7HWE

Norway 1NWS 792 1977 to 2016 526,044 34,189 16,141 793

New Zealand Finn 50 1997 to 2005 482,501 79,316 15,350 0

Primera 8,554 2008 to 2016 502,238 26,145 14,096 34,688

Texel 220 1985 to 2016 504,836 57,631 14,551 149
2DP 1,831 1996 to 2016 526,874 30,492 17,401 2,400

3LambSup 6,092 1995 to 2016 525,952 29,300 13,626 8,289
4TS 165 2005 to 2016 526,175 34,048 16,893 51

All 17,704 1977 to 2016 523,355 25,031 13,880 14,901

1NWS, Norwegian White Sheep; 2DP, “Other Dual Purpose”; 3LambSup, Lamb Supreme; 4TS, “Other Terminal Sire”, 5MAF, minor allele frequency lower than 0.01; 6CR,
call rate lower than 95%; 7HWE, Hardy Weinberg equilibrium (p-value < 10−15).

were defined to represent the LD decay, as suggested by
Barbato et al. (2015). Thus, as defined in preliminary analysis
(results not shown), bins reported in this study were required
to have at least 50 pairwise estimates and were defined as:
lower than 0.01 Mb, from 0.01 until 0.10 defined every
0.01 Mb, from 0.1 to 1 Mb defined every 0.10 Mb, and
greater than 1.10 Mb.

Consistency of Gametic Phase
Consistency of gametic phase was determined by calculating
the square root of the LD values and adding the sign obtained
from the disequilibrium (D) metric, as used in the calculation
of LD. The D values were calculated using the –dprime-
signed option available in the PLINK 1.9 software (Purcell
et al., 2007). Thereafter, the consistency of gametic phase was
assumed as the Pearson correlation coefficient between each
two breed-group pair, using the signed-squared-root values.
The breakdown in the consistency of gametic phase across
distances was determined based on the same bins described
above. Only SNPs in common (after within-population quality
control) among all populations were used to calculate consistency
of gametic phase.

Proportion of Polymorphic SNPs and Distribution of
SNPs by MAF Range
The proportion of polymorphic SNPs (after within-population
quality control) for each population was calculated based on SNPs
with MAF greater than 0.01 (1%). The distribution of SNPs was
calculated for 10 MAF range bins: from 0.01 until 0.50 defined
every 0.05 points in MAF.

Heterozygosity
The observed heterozygosity (HO) per animal, within population,
was calculated as the total number of heterozygotes divided
by the total number of genotypes. The HO was compared
to the expected heterozygosity (HE) under Hardy-Weinberg
Equilibrium. These estimates were calculated after performing
the genotypic quality control for each population (Table 1),
except the Hardy Weinberg equilibrium criteria. Both metrics
were calculated using the –hardy option in PLINK 1.9
(Purcell et al., 2007).

Average Pairwise Genetic Distance
The average pairwise genetic distance between individuals from
each population was calculated as one minus the average
proportion of alleles shared between two individuals (DST). Thus,
the DST was calculated using the –genomic option available in the
PLINK 1.9 software (Purcell et al., 2007) as:

DST =
IBS2+ (0.5× IBS1)

m
,

where IBS1 and IBS2 are the number of loci that share 1 or 2
alleles identical-by-state (IBS), respectively, and m is the total
number of loci. LD pruning was performed prior the calculation
of the genetic distance, by using the –indep option of PLINK 1.9,
considering a window size of 50 SNPs, 5 SNPs to shift the window
at the end of each step, and the variance inflation factor equal
to 2 (PLINK default parameter). A genotypic quality control
considering all sheep populations together was used to estimate
the average pairwise genetic distance.

Runs of Homozygosity (ROH)
Runs of homozygosity were identified using the –homozyg option
available in the PLINK 1.9 software (Purcell et al., 2007),
considering the default options. The default options included
the use of scanning window containing 50 SNPs and at most 1
heterozygous call in a ROH. In addition, the maximum average
distance between SNPs in each ROH was set as 50 kb and the
maximum distance allowed between consecutive SNPs in the
same ROH was 1,000 kb. The minimum number of SNPs to be
considered a ROH was calculated following Lencz et al. (2007), in
order to minimize the probability of homozygous sequences to be
observed by chance. The percentage of false positive ROH was set
to 5% (i.e., p-value < 0.05).

Inbreeding Coefficients
Three different measurements of genomic inbreeding were
calculated for all sheep populations: (1) genomic inbreeding
based on excess of homozygosity; (2) genomic inbreeding
based on the variance of additive genotypes; and (3) ROH-
based inbreeding. The genomic inbreeding based on excess
of homozygosity was calculated as currently performed in
PLINK 1.9 (Purcell et al., 2007), using all genotyped animals
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and SNPs that remained from the genotypic quality control
performed individually for each population (Table 1). The
genomic inbreeding based on the variance of additive genotypes
was calculated as the diagonal of the genomic relationship
matrix (G, calculated as in VanRaden, 2008, method 1,
considering the observed allele frequencies) minus 1. ROH-based
inbreeding was calculated as the genome length covered by ROH
divided by the total genome length across all 26 autosomes.
Pedigree-based inbreeding was also calculated for the NWS
animals, using the Meuwissen and Luo (1992) algorithm, as
implemented in the INBUPGF90 software (Misztal et al., 2002).
All animals related to the genotyped animals (i.e., that had
any relationship with genotyped animals) were included in the
analyses (n = 27,114 animals).

Clustering Populations and Admixture
Analysis
Principal Component Analysis (PCA)
Principal component analysis was performed to investigate the
genomic similarities between NWS and NZC sheep populations,
using the –pca flag available in the PLINK 1.9 software
(Purcell et al., 2007). Principal components were estimated based
on the variance-standardized genomic relationship matrix (G,
calculated as in VanRaden, 2008, method 2), in which the
covariance for each SNP was divided by the respective SNP’s
variance (calculated from the observed MAF). LD pruning was
also performed and the genotypic quality control was performed
considering all populations together.

Admixture Analysis
The genomic make-up (population structure) of each animal
was assessed using the ADMIXTURE software (Alexander et al.,
2009). In summary, this software clusters individuals into k pre-
defined ancestral groups based on distinctive allele frequencies.
The optimal k value was defined through a 10-fold cross-
validation procedure, with k ranging from 1 to 25. Thus, the k
value with the lowest cross-validation error was assumed as the
optimal k value to represent the optimal number of ancestral
breeds. Standard errors were estimated using 100 bootstrapping
replicates, and the convergence acceleration method used was
the quasi-Newton method, with q = 3 secant conditions
(Alexander et al., 2009).

The genomic dataset after performing quality control
considering all populations together and linkage disequilibrium
pruning was used. As sample size can affect the Admixture
analysis, a randomly selected sample of 150 animals from each
sheep population was used for the analyses.

Genomic Population Tree
The genomic population tree was created using the IBS matrix
generated by the –matrix option in PLINK 1.9 (Purcell et al.,
2007). An average distance matrix among populations was
calculated as 1 – (average IBS), which was used to plot
the genomic population tree using the plot(hclust) function
available in R (R Core Team, 2013). The same dataset described
for the admixture analysis was used to create the genomic
population tree.

Signatures of Selection
FST Statistic
FST was calculated for each SNP as the squared deviation
of the average frequency in the NWS population from the
average frequency across NZC populations (i.e., pairwise
comparisons) divided by the allele frequency variance. This
was implemented using the –fst option available in PLINK 1.9
(Purcell et al., 2007). Only SNPs that were in common for all
breed groups were used to estimate the FST statistic. Genotypic
quality control was performed considering all populations
together. LD pruning was also performed. In this context,
SNPs with FST values greater than the average plus three
standard deviations from the mean were considered to be
under selection.

RESULTS

Population Characterization and Genetic
Diversity Metrics
The genetic diversity metrics estimated for NWS and NZC
sheep populations are summarized in Table 2. The average
distances between adjacent SNPs were similar across populations
and ranged from 0.023 Mb (NWS, “Other Dual Purpose”,
Lamb Supreme, and “Other Terminal Sire”) to 0.025 Mb
(Finn). The average LD between adjacent SNPs ranged from
0.156 (Primera) to 0.231 (Finn). Among all NZC populations,
“Other Dual Purpose” and “Other Terminal Sire” Composites
presented the most similar average LD compared to NWS (∼
0.17). The lowest consistency of gametic phase was estimated
between NWS and Finn (0.397), and between NWS and
Texel (0.443), respectively. Similar consistency of gametic
phase was estimated between NWS and the other NZC
populations (∼ 0.52). The distribution of SNPs by MAF
ranges is shown in Figure 1. The proportion of polymorphic
SNPs was lower in the Finn and Texel breeds (83.6 and
88.6%, respectively), and similar among the other populations
(∼ 94.0%). However, the distribution of SNP percentage
was approximately constant by MAF ranges in the different
populations (Figure 1).

The HO was lower than the HE for NWS and “Other Dual
Purpose” (Table 2). All populations had a similar average pairwise
genetic distances (∼ 0.27). In general, inbreeding coefficients
estimated based on the excess of homozygosity and variance of
additive genotype were similar across populations. In addition,
populations with HO lower than HE showed negative inbreeding
coefficients estimated based on these methods (i.e., Finn, Primera,
Texel, and Lamb Supreme). Low inbreeding coefficients were
obtained for ROH-based inbreeding. Finn had the highest,
and “Other Terminal Sire” and NWS the lowest levels of
genomic inbreeding.

Detailed Study of NWS Inbreeding Coefficients
Due to the lack of reports on inbreeding levels in NWS,
a detailed description will be provided here. The average
(SD) pedigree-based inbreeding coefficients for the NWS
were 0.009 (0.019) and 0.027 (0.025), considering all and
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TABLE 2 | Average distance between single nucleotide polymorphisms (Dist, in Mb), average linkage disequilibrium (LD), consistency of gametic phase (GP), proportion
of polymorphic SNPs (Polim,%), observed (HO) and expected (HE) heterozygosity, average pairwise genetic distance (DST), and inbreeding coefficients estimated based
on excess of homozygosity (FE), variance of additive genotypes (FG), and runs of homozygosity (FROH), for Norwegian White Sheep (NWS) and New Zealand
Composite sheep populations.

NWS Finn Primera Texel DP LambSup TS

1Dist 0.023 (0.016) 0.025 (0.018) 0.024 (0.017) 0.024 (0.017) 0.023 (0.016) 0.023 (0.016) 0.023 (0.016)
1LD 0.174 (0.242) 0.231 (0.288) 0.156 (0.228) 0.222 (0.281) 0.172 (0.239) 0.167 (0.235) 0.177 (0.242)
2GP – 0.397 0.548 0.443 0.526 0.538 0.512

Polim 93.50% 83.60% 94.80% 88.60% 94.20% 94.40% 93.50%

HO 0.333 (0.142) 0.346 (0.164) 0.352 (0.141) 0.330 (0.157) 0.333 (0.138) 0.347 (0.14) 0.340 (0.143)

HE 0.335 (0.142) 0.331 (0.148) 0.343 (0.136) 0.325 (0.151) 0.339 (0.14) 0.342 (0.137) 0.340 (0.139)

DST 0.270 (0.011) 0.263 (0.023) 0.271 (0.005) 0.259 (0.018) 0.274 (0.013) 0.272 (0.007) 0.274 (0.018)

FE 0.007 (0.031) −0.046 (0.035) −0.018 (0.016) −0.016 (0.038) 0.017 (0.051) −0.014 (0.021) 0.001 (0.048)

FG 0.007 (0.103) −0.042 (0.107) −0.018 (0.026) −0.012 (0.184) 0.016 (0.076) −0.012 (0.032) 0.001 (0.107)

FROH 0.001 (0.000) 0.020 (0.007) 0.000 (0.000) 0.004 (0.001) 0.001 (0.000) 0.000 (0.000) 0.006 (0.004)

1Dist and LD were estimated between adjacent single nucleotide polymorphisms. 2GP was estimated in distances lower than 0.02 Mb, between NWS and New Zealand
sheep populations. Sheep populations from New Zealand are: Finn, Primera, Texel, “Other Dual Purpose” (DP), Lamb Supreme (LambSup), and “Other Terminal Sire”
(TS). Standard deviations in brackets.

FIGURE 1 | Distribution of single nucleotide polymorphisms (SNP percentage) by minor allele frequency ranges in the Norwegian White Sheep (NWS) and
New Zealand sheep populations. Sheep populations from New Zealand are: Finn, Primera, Texel, “Other Dual Purpose” (DP), Lamb Supreme (LambSup), and “Other
Terminal Sire” (TS).

only genotyped animals, respectively (up to 27 generations
back). Pearson correlations between estimated inbreeding
coefficients using different methods for the NWS are shown in
Supplementary Table S1.

As expected, inbreeding coefficients estimated based on the
excess of homozygosity and ROH had the highest correlation
(0.99; Supplementary Table S1). On the other hand, correlations
calculated between inbreeding coefficients estimated based on
the variance of additive genotypes and the other methods
were negative and of low magnitude (ranging from −0.15
to −0.37). The number of NWS genotyped animals and
average inbreeding coefficients per birth year are presented in
Supplementary Figure S1.

The majority of NWS genotyped animals were born in 2016
(∼ 35%). In addition, a strong decrease in inbreeding estimated
based on the variance of additive genotypes was observed after
1998. The average inbreeding coefficients estimated based on the
ROH was almost constant over time (∼ 0.01). A slight increase
in pedigree- and excess of homozygosity-based inbreeding was

observed over time, but still with a low average of 0.0011 and
0.0008 over years, respectively.

LD and Consistency of Gametic Phase
The LD decay pattern for all populations is shown in Figure 2.
In general, the highest LD was observed for Finn (ranged from
0.322 to 0.100) and Texel (ranged from 0.305 to 0.086). The
LD decay pattern for NWS was similar to the observed for
“Other Terminal Sire” and “Other Dual Purpose”. Primera had
the lowest LD levels across most distances and ranged from
0.248 to 0.025. At the average distance between adjacent SNPs
(∼0.02 Mb), the average LD estimates were moderate in all
populations (>0.15).

The consistency of gametic phase between NWS and the NZC
sheep populations is shown in Figure 3. Among all NZC sheep
populations, Finn had the lowest consistency of gametic phase
with the NWS at all analyzed distances (ranging from 0.443 to
0.026). On the other hand, Primera, Lamb Supreme, and “Other
Dual Purpose” NZC populations had the highest consistency of
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FIGURE 2 | Average linkage disequilibrium (LD) at given distances for
Norwegian White Sheep (NWS) and New Zealand sheep populations. Sheep
populations from New Zealand are: Finn, Primera, Texel, “Other Dual Purpose”
(DP), Lamb Supreme (LambSup), and “Other Terminal Sire” (TS).

FIGURE 3 | Consistency of gametic phase at given distances between
Norwegian White Sheep (NWS) and New Zealand sheep populations. Sheep
populations from New Zealand are: Finn, Primera, Texel, “Other Dual Purpose”
(DP), Lamb Supreme (LambSup), and “Other Terminal Sire” (TS).

gametic phase with NWS, respectively (ranging from 0.580 to
0.090, 0.571 to 0.098, and 0.561 to 0.090, respectively).

ROH
The descriptive analysis of the ROH is summarized in Table 3.
The proportion of ROH segments in each length category for
NWS and NZC sheep populations are shown in Figure 4.
As the number of genotyped animals can influence the ROH
detection, 150 randomly selected animals from each population
were also used to estimate ROH (Supplementary Table S2 and
Supplementary Figure S2).

As expected, a higher number of ROH segments were
observed when including all the available genotypes in the
analysis. However, the average number and size of segments,
the average number of SNPs in a ROH, proportion of sites
homozygous and the proportion of ROH segments in each ROH
length category were similar in both scenarios (Table 3, Figure 4,
and Supplementary Table S2, respectively).

The variation in the number of ROH segments observed in
the NWS was similar to the variation observed in Primera and
Lamb Supreme. However, the average number of ROH segments
was higher for NWS (48.3) than Primera (16.4) and Lamb

Supreme (32.4). In general, there was a large variability in the
average genome size covered by homozygous segments across
populations (Table 3). The maximum genomic region covered
by ROH segments were observed in “Other Terminal Sire”
(775,800 kb) and “Other Dual Purpose” (773,087 kb) animals,
which are from breeds formed by numerous small-sized breeds.
The NWS showed moderate average of total length of segments
(177,692 kb). However, a high variability was observed among
individuals. The average SNP density (number of SNPs per kb)
and the proportion of homozygous sites were similar across all
populations (∼ 5 SNPs/kb, and∼0.997, respectively).

The majority of ROH segments observed in the composite
breeds had short length (i.e., segments were shorter than
2,500 kb), indicating ancient inbreeding. Primera, Lamb
Supreme, and “Other Dual Purpose” had the highest proportion
of short segments compared to the other sheep populations,
which is likely associated with ancient inbreeding. In all
populations, only a small proportion of ROH segments were
longer than 10,000 kb. Primera and Lamb Supreme had the lowest
proportion of long segments (>2,500 kb; Figure 4).

Clustering Populations and Admixture
Analysis
PCA
The principal component decomposition of the genomic
relationship matrix into the first three principal components
is shown in Figure 5. The first, second and third principal
components explained 21.65, 12.68, and 9.32% of the total
genomic variance, respectively. In general, the plot of the first
and second (Figure 5A), and second and third (Figure 5C)
principal components partially discriminate NWS, Finn, and the
other NZC populations. However, the first and third principal
components (Figure 5B) shows a common clustering among
individuals from all populations.

Admixture Analysis
Among all number of ancestral populations compared (i.e.,
k = 1, 2, . . ., 25), k = 21 had the lowest cross-validation
error (Supplementary Figure S3), and therefore, it was used
to represent the optimal number of ancestral populations
in this study. The individual breed composition based on
k = 21 is presented in Figure 6. Finn and Texel seem to
have originated from a similar genetic resource, based on a
lower number of ancestral populations compared to NWS and
other NZC sheep populations. The ancestral populations that
originated the NWS are similar to the ancestral populations that
contribute in the development of “Other Dual Purpose”, Primera
and Lamb Supreme.

Genomic Population Tree
The genomic population tree constructed based on the genomic
distance estimated between NWS and the different NZC sheep
populations is presented in Figure 7. In summary, the Lamb
Supreme was grouped close to Primera, while Texel was grouped
close to “Other Terminal Sire” breed group. The Lamb Supreme
and Primera composite breeds were closer to “Other Dual
Purpose” than Texel and “Other Terminal Sire” breed groups.
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TABLE 3 | Descriptive statistics of the runs of homozygosity (ROH) for the Norwegian White Sheep (NWS) and New Zealand sheep populations.

NWS Finn Primera Texel DP LambSup TS

Ntotal 38,188 2,585 139,971 20,071 103,033 197,510 6,939

Min SNPs 50 35 55 46 54 56 41

nSEG 48.2
[0–85]

51.7
[29–78]

16.4
[0–89]

91.2
[32–131]

56.3
[2–132]

32.4
[3–82]

42.1
[8–136]

Kbi 177,692
[0–647,569]

217,651
[71,553–353,140]

37,609
[0–547,796]

313,411
[82,556–647,105]

164,412
[10,949–773,087]

78,717
[5,295–348,486]

144,698
[13,644–775,800]

Kb 3,685
[1,000–82,746]

4,210
[1,001–67,656]

2,298
[1,000–94,879]

3,435
[1,000–75,723]

2,922
[1,000–131,632]

2,428
[1,000–58,583]

3,441
[1,000–44,028]

nSNP 775
[100–17,105]

811
[101–13,401]

443
[100–18,753]

694
[100–15,323]

616
[100–27,778]

502
[100–12,472]

719
[101–9,515]

density 4.9
[3.3–14]

5.4
[3.7–14.6]

5.5
[3.1–16.1]

5.0
[3.3–13.8]

4.8
[3.0–16.8]

5.0
[3.1–21.2]

4.9
[3.3–13.9]

phom 0.997
[0.893–1]

0.997
[0.963–1]

0.996
[0.874–1]

0.997
[0.940–1]

0.997
[0.912–1]

0.997
[0.890–1]

0.997
[0.932–1]

Sheep populations from New Zealand are: Finn, Primera, Texel, “Other Dual Purpose” (DP), Lamb Supreme (LambSup), and “Other Terminal Sire” (TS). Ntotal: total
number of segments. Min SNPs: minimum number of single nucleotide polymorphisms (SNP) in a ROH, calculated as suggested by Lencz et al. (2007). nSEG: average
number of segments for the individual declared homozygous. Kbi: average size of total homozygous segments per individual. Kb, average of total number of kb contained
within homozygous segments. nSNP, average number of SNPs in run. Density, inverse SNP density in Kb/SNP. Phom, proportion of sites homozygous. Minimum and
maximum values are shown inside brackets.

FIGURE 4 | Proportion of runs of homozygosity segments in each length category for the Norwegian White Sheep (NWS) and New Zealand sheep populations.
Sheep populations from New Zealand are: Finn, Primera, Texel, “Other Dual Purpose” (DP), Lamb Supreme (LambSup), and “Other Terminal Sire” (TS).

In addition, Figure 7 shows a greater differentiation between
Finn and NWS and the other NZC sheep populations. In this
context, the NWS breed seems to be more related to the NZC
populations than Finn.

Signatures of Selection
FST Statistic
A summary of the FST statistics is shown in Table 4 and the
percentage of SNPs falling into each FST category is illustrated
in Figure 8. Most SNPs had very low FST level (<0.10; Figure 8),
indicating that only a few genomic regions were potentially fixed
due to intensive selection pressure. The majority of genomic
regions were identified when contrasting NWS and Finn (5.19%),
and NWS and Texel (2.20%). However, it is important to point
out that the average of the FST statistics considering only the
selected SNPs was low, even for those breeds (0.47 for NWS and
Finn, and 0.41 for NWS and Texel).

DISCUSSION

Population Characterization and Genetic
Diversity Metrics
The average distance between SNPs was similar across
populations as all individuals were genotyped using an HD
SNP chip panel. Finn presented the greatest average distance
between SNPs (0.025 Mb; Table 2), which is a consequence
of the larger number of SNPs excluded due to low MAF
(Table 1). The larger number of SNPs excluded due to MAF
is likely related to the smaller number of genotyped animals
and the reduced genetic diversity compared to the other
populations. In general, the distribution of SNP percentage
was approximately constant by MAF ranges (Figure 1), and
the proportion of polymorphic SNPs was high in all analyzed
populations (Table 2). Thus, even though the proportion of
monomorphic SNPs can be underestimated because not all
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FIGURE 5 | Principal component decomposition of the genomic relationship matrix colored by breed. Breeds from Norway (represented as red triangular dots):
Norwegian White Sheep (NWS). New Zealand sheep populations (represented as circular dots): Finn, Primera, Texel, “Other Dual Purpose” (DP), Lamb Supreme
(LambSup), and “Other Terminal Sire” (TS). Letters in the figure represent the decomposition of the first and second (A), first and third (B), and second and third (C)
principal components, respectively.

Frontiers in Genetics | www.frontiersin.org 8 April 2020 | Volume 11 | Article 37178

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00371 April 24, 2020 Time: 14:11 # 9

Oliveira et al. Genetic Connectedness Between Sheep Populations

FIGURE 6 | Breed composition per animal calculated for Norwegian White
Sheep (NWS) and different New Zealand sheep populations. Sheep
populations from New Zealand are: Finn, Primera, Texel, “Other Dual Purpose”
(DP), Lamb Supreme (LambSup), and “Other Terminal Sire” (TS).

breeds were included in the development of the HD SNP chip,
there is an indication of high genetic diversity in all populations
evaluated in this study.

Heterozygosity measures the level of genetic variation within
a population. Thus, usually populations developed based on
a large number of ancestral populations or under intensive
crossbreeding schemes have high HO and HE (Brito et al.,
2017a). In this context, the levels of HO and HE were high
(>0.32; Table 2). The HO was slightly lower than HE in NWS
and “Other Dual Purpose”. Brito et al. (2017a), studying the
genetic diversity among Primera, Lamb Supreme, Texel, and
“Other Dual Purpose” also reported similar levels of HO and
HE. Similarly, Prieur et al. (2017), working with Romney,
Coopworth, Perendale, and Texel NZC sheep populations,
reported levels of heterozygosity around 0.36. Kijas et al.
(2012), performing a genome-wide scan for the signatures of
selection using 74 diverse breeds from all over the world,
reported an average (SD) HO of 0.33 (0.03). Thus, even
though the authors did not include the NWS and NZC
populations (those studied here), HO estimates found in this
study seems to corroborate with their report. On the other
hand, higher heterozygosity estimates were reported by Vahidi
et al. (2016) (∼ 0.72) and Neubauer et al. (2015) (∼ 0.75),
using microsatellites to study Iranian indigenous and Hungarian
sheep, respectively.

Usually average pairwise genetic distances have been used
to access the genetic distance among populations (e.g., Tolone
et al., 2012; Neubauer et al., 2015). However, within-population
genetic distance is another metric of genetic diversity. In this
study, similar average pairwise genetic distances were estimated
in all populations (Table 2), suggesting similar levels of genetic

diversity within each population. Gaouar et al. (2016), using
microsatellite markers to estimate the population structure and
genetic diversity of five Moroccan sheep breeds, reported higher
levels of genetic diversity among animals (∼ 0.75). In dairy goats,
Brito et al. (2017b) reported similar average pairwise genetic
distances to those found in this study, for the Nubian and
Toggenburg breeds (∼ 0.26).

Inbreeding
Inbreeding can be defined as the probability of an individual
receiving, at a given locus, the same ancestral-allele from
both parents (Wright, 1922). Several studies have reported
the negative effects of inbreeding in sheep (e.g., Drobik and
Martyniuk, 2016; Gholizadeh and Ghafouri-Kesbi, 2016), goats
(Deroide et al., 2016; Mahmoudi et al., 2018), and cattle
(Smith et al., 2010; Pereira et al., 2016; Reverter et al.,
2017). Therefore, monitoring inbreeding is important to avoid
inbreeding depression. On average, genotyped animals in this
study had a low level of genomic inbreeding (Table 2). This
might be attributed to the high gene flow between different
flocks and recent use of crossbreeding in the development of
composite populations.

Similar average inbreeding coefficients were estimated based
on the excess of homozygosity and variance of additive genotype,
which may be related to the fact that both approaches use the
same SNP information (Purcell et al., 2007; VanRaden, 2008).
The inbreeding based on ROH is highly dependent on the
ROH length, which can change with the population (Rodríguez-
Ramilo et al., 2019). Finn had the highest level of genomic
inbreeding based on all metrics. This could be due to the
reduced sample size and sampling approach (e.g., few flocks
sampled). Nonetheless, careful mating decisions are advised
especially in this breed.

Differences in the pattern of inbreeding coefficients over the
years (Supplementary Figure S1) highlight the need of using
different methods to better understand the levels of inbreeding
in the flock. It is important to note that founder animals were
assumed unrelated in this study, which explains the pedigree
inbreeding values of zero in the first years. In this context,
using different methods to deal with founder animals, such as
meta-founders (Legarra et al., 2015; Van Grevenhof et al., 2019),
might more accurately model the inbreeding level based on
pedigree information. ROH-based inbreeding was similar over
time, which might be due to the low levels of inbreeding in
these populations.

LD and Consistency of Gametic Phase
The accuracy of genomic predictions and the power of QTL
detection in genome-wide association studies are partially
determined by the levels of LD in a population (Goddard, 2009).
Usually crossbreed populations exhibit faster LD decay compared
to pure breeds (Prieur et al., 2017). The largest LD values
observed for Finn and Texel (Table 2 and Figure 2) indicate less
independent segregation between SNP markers and QTLs. The
low to moderate LD levels indicate that large training populations
might be required to obtain accurate genomic breeding values
(Meuwissen et al., 2001; VanRaden et al., 2009).
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FIGURE 7 | Genomic population tree comparing the genomic distance between Norwegian White Sheep (NWS) and different New Zealand sheep populations.
Sheep populations from New Zealand are: Finn, Primera, Texel, “Other Dual Purpose” (DP), Lamb Supreme (LambSup), and “Other Terminal Sire” (TS).

The performance of across-population genomic predictions
are highly dependent not only on the levels of LD, but also on
the consistency of gametic phase. The consistency of gametic
phase measures the association between SNPs and QTLs alleles
across breeds, as well as the QTL effects between breeds
(Brito et al., 2017a). Thus, if the genetic distance between
populations is large, the linkage phase will not be consistent
across populations over long distances in the genome. The
low consistency of gametic phase estimated between NWS and
Finn indicates that there might be no improvement in the
performance of genomic predictions by combining both breeds
in a single training population. The consistency of gametic
phase estimated among NWS and the other NZC populations
was moderate (Table 2 and Figure 3), indicating a potential
benefit on using a common training population for genomic
predictions. This is even more important for smaller training
populations (reduced number of animals with genotypes and
phenotypes for certain traits and populations) and has yielded

positive results (Lund et al., 2010; Zhou et al., 2019). Furthermore,
Kizilkaya et al. (2010) and Toosi et al. (2010) showed, based
on simulation studies, that denser SNP panels are needed to
perform across-breed genomic predictions, in order to establish a
high consistency of gametic phase among SNPs and QTLs in the
different breeds.

Similar LD estimates, but higher consistency of gametic phase
were found by Brito et al. (2017a) when studying the relatedness
between NZC populations. Prieur et al. (2017) reported lower
LD estimates (∼ 0.10) in Coopworth, Romney, Perendale, and
Texel. The variation in LD and consistency of gametic phase
estimates corroborates with Kijas et al. (2012), who found
large differences in the estimates among 74 worldwide sheep
breeds. No reports were found in the literature for NWS. Sheep
LD estimates reported in the literature are usually lower than
estimates reported for other livestock species (e.g., Khatkar et al.,
2008; Porto-Neto et al., 2013a,b). This might be due to a smaller
bottleneck in the domestication process, use of a larger number
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TABLE 4 | Mean and standard deviation (inside brackets) of the FST statistics
considering all (FSTAll) and only the selected (FSTSelected) single nucleotide
polymorphisms (SNP) for the contrasted sheep populations.

1Contrasted populations FSTAll Selected (%) FSTSelected

NWS vs. Finn 0.09 (0.123) 5.19 0.47 (0.107)

NWS vs. Primera 0.04 (0.058) 0.29 0.39 (0.034)

NWS vs. Texel 0.08 (0.092) 2.20 0.41 (0.048)

NWS vs. DP 0.04 (0.055) 0.01 0.36 (0.014)

NWS vs. LambSup 0.04 (0.059) 0.21 0.38 (0.028)

NWS vs. TS 0.05 (0.072) 0.83 0.41 (0.052)

1Norwegian White Sheep (NWS) was contrasted with different New Zealand
sheep populations. Sheep populations from New Zealand are: Finn, Primera,
Texel, “Other Dual Purpose” (DP), Lamb Supreme (LambSup), and “Other Terminal
Sire” (TS). SNP with FST values greater than the average plus three standard
deviations were selected.

of breeds and reduced use of reproductive technologies (e.g.,
artificial insemination).

ROH
The ROH pattern contributes to a better understanding of
population history (Purfield et al., 2012, 2017; Bjelland et al.,
2013). ROH can arise when the same chromosomal segment,
inherited from the same common ancestor by both parents,
is passed together to the offspring (Broman and Weber, 2002;
Rodríguez-Ramilo et al., 2019). Short ROH are usually related
to ancient inbreeding as the probability of recombination
from repeated meiosis events will “break-up” the chromosomal
segments (Purfield et al., 2012; Rodríguez-Ramilo et al., 2019).
On the other hand, long ROH segments are related to recent
inbreeding. Longer average ROH segments were observed for
Texel and Finn (Table 3). However, this might be due to
the reduced sample size and sampling process (previously
mentioned). The highest proportions of short ROH segments
observed for Primera, Lamb Supreme, and “Other Dual Purpose”
(Figure 4) indicate that these populations are not highly affected
by recent inbreeding.

The similar ROH results observed when using all genotyped
animals or a random sample (Tables 3, Supplementary Table S2,
Figures 4, and Supplementary Figure S2) indicates that the
latter can be used to accurately estimate ROH, in order to
speed up the analysis. However, the number of ROH segments
identified per animal in each population (Table 3) is related to
the number of animals used in the analysis. Comparing ROH
results from different studies is challenging as there are multiple
factors that can affect the identification of ROH, including the
genotype quality control (Albrechtsen et al., 2010), the number of
heterozygous genotypes (Purfield et al., 2012), and the different
thresholds imposed during the sequence analysis (Howrigan
et al., 2011). Therefore, as suggested by Rodríguez-Ramilo et al.
(2019), there is a great need to establish consistent criteria to
identify and quantify ROH. The criteria used in this study were
similar to those used by Brito et al. (2017b).

Clustering Populations and Admixture
Analysis
PCA
A partial discrimination between NWS, Finn, and the other NZC
populations was observed when analyzing the first and second,
and second and third principal components (Figure 5). However,
the first and third principal components showed an overlap
among individuals from all different sheep populations. These
findings suggest that there is moderate genetic similarity between
these populations, which may be due to their reasonably similar
development history.

Admixture Analysis
The choice of the optimal number of ancestral populations is
a notoriously difficult statistical problem, which also requires
knowledge on the populations’ history (Pritchard et al., 2000;
Alexander et al., 2009; Brito et al., 2015). The large optimal
number of ancestral populations (k = 21) is likely due to the fact
that the populations studied here are, mainly composite breeds
formed based on multiple (>20; Brito et al., 2017a) founder
breeds with different origins. Finn and Texel seemed to have a

FIGURE 8 | Distribution of FST values for the Norwegian White Sheep (NWS) and New Zealand sheep populations. Sheep populations from New Zealand are: Finn,
Primera, Texel, “Other Dual Purpose” (DP), Lamb Supreme (LambSup), and “Other Terminal Sire” (TS).
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lower number of ancestral populations, which may be because
these are the most specialized breeds included in this study. This
is supported by the historical process reported by Brito et al.
(2017a) and Prieur et al. (2017) for the NZC Texel breed. The
ancestral populations from NWS and “Other Dual Purpose” were
similar, especially for the great amount of contribution from the
ancestral populations represented by the blue and pink colors
in Figure 6. In this context, Brito et al. (2017a), studying the
history of NZC breeds, reported that the most common breeds
that contributed to the “Other Dual Purpose” population were
Coopworth, Romney, Highlander and Landmark.

Genomic Population Trees and Signatures of
Selection
The genomic population tree constructed based on the genomic
distance estimated between NWS and the different NZC sheep
populations showed that there is some differentiation between
Finn and NWS and the other NZC sheep populations (Figure 7).
In this context, NWS appears to be more related to the other
NZC populations than to Finn. Most SNPs had very low FST
values (Figure 8), and the average of FST statistics considering
only the selected SNPs was low (Table 4). These findings suggest
that no genomic regions were potentially under selection in the
studied populations.

CONCLUSION

Relatively high genetic diversity was observed within each sheep
population. The NWS breed seems to be moderately related to
the NZC sheep populations, especially Primera, Lamb Supreme
and “Other Dual Purpose”. The moderate genetic relationship
between populations from both countries is likely due to the
high number of ancestral breeds used in their development.
The findings reported here indicate a promising opportunity
for collaborative genomic analyses involving NWS and NZC
sheep populations.
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A variety of statistical methods, such as admixture models, have been used to estimate

genomic breed composition (GBC). These methods, however, tend to produce non-zero

components to reference breeds that shared some genomic similarity with a test animal.

These non-essential GBC components, in turn, offset the estimated GBC for the breed to

which it belongs. As a result, not all purebred animals have 100% GBC of their respective

breeds, which statistically indicates an elevated false-negative rate in the identification of

purebred animals with 100% GBC as the cutoff. Otherwise, a lower cutoff of estimated

GBC will have to be used, which is arbitrary, and the results are less interpretable. In

the present study, three admixture models with regularization were proposed, which

produced sparse solutions through suppressing the noise in the estimated GBC due

to genomic similarities. The regularization or penalty forms included the L1 norm penalty,

minimax concave penalty (MCP), and smooth clipped absolute deviation (SCAD). The

performances of these regularized admixture models on the estimation of GBC were

examined in purebred and composite animals, respectively, and compared to that of

the non-regularized admixture model as the baseline model. The results showed that,

given optimal values for λ, the three sparsely regularized admixture models had higher

power and thus reduced the false-negative rate for the breed identification of purebred

animals than the non-regularized admixture model. Of the three regularized admixture

models, the two with a non-convex penalty outperformed the one with L1 norm penalty.

In the Brangus, a composite cattle breed, estimated GBC were roughly comparable

among the four admixture models, but all the four models underestimated the GBC for

these composite animals when non-ancestral breeds were included as the reference.

In conclusion, the admixture models with sparse regularization gave more parsimonious,

consistent and interpretable results of estimated GBC for purebred animals than the non-

regularized admixture model. Nevertheless, the utility of regularized admixture models for

estimating GBC in crossbred or composite animals needs to be taken with caution.

Keywords: admixturemodels, breed composition, bovine, linear regression, SNP, sparse regularization, nonconvex

penalty
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INTRODUCTION

The estimation of genomic breed composition (GBC)
of individual animals is useful in many aspects, such as
predicting heterosis (Akanno et al., 2018), correcting population
stratification effects in genetic association studies (Jiang et al.,
2010; Mebratie et al., 2019), understanding the population
structure and breeding history of the breeds of interest
(Gobena et al., 2018), and making management decisions for
crossbreeding programs (Pickrell and Pritchard, 2012; Akanno
et al., 2018). In the past decades, pedigree information has
been used to determine the breed composition of animals
(Frkonja et al., 2012). The reliability of pedigree-estimated
breed composition, however, can be compromised by missing,
inaccurate, or incomplete records (vanRaden and Cooper, 2015).
Another advantage with a pedigree-based estimator is that it
yields the same GBC estimates for full-sib progenies of the
same family. In reality, they can vary drastically in their actual
genomic composition inherited from ancestors as the result
of crossing-overs and chromosomal assortments taking place
during meiosis. Instead, GBC can be estimated more accurately
using genomic data, such as SNPs (Chiang et al., 2010; Kuehn
et al., 2011; He et al., 2018) and sequence data (Bansal and
Libiger, 2015; Taliun et al., 2017).

A variety of statistical methods and software packages have
been developed to estimate GBC (Alexander et al., 2009; Kuehn
et al., 2011; Frkonja et al., 2012; Bansal and Libiger, 2015).
For example, a likelihood-based admixture model (vanRaden
and Cooper, 2015; He et al., 2018) has been widely used. It
postulates that a genotype of an SNP for a given animal is a
random event following a probability being a mixture of the
corresponding allele frequencies of its ancestors or ancestral
breeds (Bansal and Libiger, 2015). A challenge with this model
is that it tends to produce non-zero GBC components produced
to reference breeds that shared genomic similarities with a test
animal, which in turn offsets the estimated GBC for the breed
to which this animal belongs. The consequence is that not all
purebred animals have 100% estimated GBC of their respective
breeds, which we refer to as the “Impure purebred Paradox.”
Statistically, it indicates an elevated false-negative rate in the
identification of purebred animals. The same situation happens
with other statistical models such as linear regression. In dairy
cattle, for example, the Council of Dairy Cattle Breeding (CDCB)
in the USA has established a procedure termed Breed Base
Representation (BBR) representing five dairy purebred reference
groups (PRG): Ayrshire, Brown Swiss, Guernsey, Holstein, and
Jersey. The measure of the same name estimated the genomic
breed composition of individual animals using linear regression,
with the estimates restricted to be between 0 and 100% for each
PRG and summed up to 1 per genotyped animal. Their results
showed that the mean BBR percentages were 94.8, 97.0, 97.8,
99.0, and 96.5%, respectively for all males genotyped for these
breeds (201,283 animals), and 95.0, 97.1, 96.9, 98.9, and 96.5%,
respectively, for all genotyped females (994,949 animals). Similar
results were reported in beef cattle as well by Kuehn et al. (2011),
who estimated GBC in seven breeds using linear regression. Their
results showed that the regression coefficients varied from 0.737

(Angus) to 0.981 (Hereford). The regression coefficients were low
for Angus (0.737) and Red Angus (0.883) because these two beef
breeds share a high genetic similarity.

In the present study, regularized admixture methods were
utilized to produce sparse solutions of admixture coefficients,
thus imposing penalties on small, non-essential components due
to genomic similarity. Three forms of sparse regularization were
incorporated into the admixture models, which included the L1
norm penalty, minimax concave (MCP) penalty, and smooth
clipped absolute deviation (SCAD). The L1 norm is the most
commonly used convex surrogate (Tibshirani, 1996), whereas
the other two are non-convex (Fan and Li, 2001; Zhang, 2010).
The difference between convex optimization and non-convex
optimization is that the former has one minimum, and hence the
local optimum is also the global optimum. However, the latter
can have multiple local minima, which are not all the same as
the global minimum (Zhao et al., 2018). Nonconvex penalties
can often lead to a better recovery in signals or variable selection
in machine learning but at the expense of introducing a more
challenging optimization problem (Jiao et al., 2016). The purpose
of the present study was to evaluate the performance of the three
sparsely regularized admixture models in the estimation of GBC
for purebred and composite animals, respectively, in comparison
with the non-regularized admixture model as the baseline model
(Bansal and Libiger, 2015).

MATERIALS AND METHODS

Animals and Genotype Data
The dataset used in the present study included 107,593 animals
from ten breeds, nine pure breeds, and one composite breed. All
these animals were genotyped on the GeneSeek Genomic Profiler
(GGP) bovine 50K version 1 SNP chip (49,463 SNPs), except
that 349 Brahman animals were genotyped on the Illumina 777K
bovine SNP chip (777,962 SNPs). The reference populations
consisted of eight Bos taurus taurus breeds and one Bos taurus
indicus cattle breed. The former included two dairy breeds
(Holstein and Jersey) and six beef breeds (Angus, Hereford,
Limousine, Shorthorn, Simmental, and Wagyu). Brahman is the
only indicus cattle breed used in the present study. Summary
statistics of the reference animals and their genotypes were shown
in Table 1.

Genomic breed composition was estimated based on SNP
panels. The largest panel had 15,708 SNPs (referred to as the 16K
SNP panel) which were common SNPs across five commercial
bovine SNP chips, namely, Illumina Bovine high-density (HD
or 777K) chip, GGP ultra-high-density (UHD or 150K) SNP
chip, GGP HD (80K) SNP chip, GGP 50K version 1 SNP
chip, and GGP low-density (LD or 40K) version 4 SNP chip.
The main reason for us to use the shared content of these
commercial SNP chips was to facilitate the estimation of GBC
using currently available SNP chips in the market. Then, three
panels of uniformly-distributed SNPs (1K, 5K, and 10K) were
selected from the list of 16K common SNPs using the selectSNP
package (Wu et al., 2016). The reason for using subsets of
uniformly-distributed SNPs in the present study was because they
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TABLE 1 | Descriptive statistics of genotype data for the ten cattle breeds used in

the present study.

Breed Number of

genotyped animalsa
Number of

SNPs

Mean FreqA

(SD)b

Angus 20,359 (20,322) 49,463 0.492 (0.247)

Brahman 349 (349) 777,962 0.439 (0.343)

68 (43) 49,463 0.431 (0.363)

Brangus 3,605 49,463 0.477 (0.231)

Hereford 2,423 (2,421) 49,463 0.496 (0.271)

Holstein 20,350 (20,246) 49,463 0.489 (0.254)

Jersey 15,689 (15,607) 49,463 0.489 (0.288)

Limousine 5,043 (5,041) 49,463 0.490 (0.228)

Shorthorn 1,232 (1,218) 49,463 0.491 (0.258)

Simmental 14,754 (14,727) 49,463 0.490 (0.226)

Wagyu 23,721 (21,844) 49,463 0.483 (0.302)

a In the brackets are the number of genotyped animals remained after excluding outliers.
bMean FreqA (SD) =mean (standard deviation) of allele A frequencies of genotyped SNP

for each breed.

tended to minimize linkage disequilibrium on average, given the
number of reference SNPs.

The reference animals for each of the nine pure breeds
(not including Brangus) were selected using the 5K SNP
panel based on the likelihood approach previously described
by He et al. (2018). Briefly speaking, the likelihood that an
animal belonged to a specific breed was computed, assuming
independent multinomial distributions of the SNP genotypes,
computed for each animal. Then, outliers were excluded
from each reference population by removing animals with (-
2)log(likelihood) exceeding a given cutoff value (which was
taken to be two by default). This process excluded 2,170
animals in total, retaining 101,818 “representative” reference
animals for the nine purebred cattle breeds. The distributions of
(−2)loglikelihoods computed for the animals in the nine pure
breeds are shown in Figure S1.

Admixture Model
Consider M SNPs, each having two alleles A and B. The three
possible genotypes were coded numerically to be 2 (AA), 1 (AB),
and 0 (BB). Let there be L reference (or putatively ancestral)
populations, and let qjk be the frequency of alleleA at the kth SNP
in the jth reference population. For a given animal, denote X =

[x1, x2, . . . , xk]
′

to be the vector of admixture coefficients, where
xj represents the genomic admixture proportion of this animal
of the jth population. Then, weighted allele frequency at SNP k,
given the allele frequencies and the admixture proportions for
each reference population, was computed to be fk =

∑L
j=1 qjkxj.

Assuming Hardy-Weinberg equilibrium (HWE) at each SNP
locus, a genotype, say gk at locus k, is an instance generated with
the following probabilities:

Pr
(

gk
∣

∣fk
)

=







f 2
k

if gk = 2

2fk(1− fk) if gk = 1

(1− fk)
2 if gk = 0

(1)

The log-likelihood of all the observed genotypes on this
individual was given by:

L (X ) =
∑M

i=1
ln (Pr

(

gk
∣

∣fk
)

) (2)

The above likelihood (2) can be written as:

L (X ) =
∑M

k=1
[gi ln (f k)+ (2− gk) ln (1− fk )]+ C (3)

where C =
∑M

k=1 ln

(

2
gk

)

. Our goal was to determine the values

for the admixture coefficient vector X = [x1, x2, . . . , xk]
′

that
maximizes L (X ) subject to the constraints xj ≥ 0 and

∑

j xj = 1.

Regularized Admixture Model With L1

Norm Penalty
In the ADMIXTURE-L1 model, estimates of sparse solution X

of the model (2) were obtained by maximizing the logarithm of
likelihood of the data with sparsity enforcing L1-norm penalty on
parameters {xj} ( j = 1, · · ·,k) as follows:

F (X ) , L (X ) −





k
∑

j=1

λ|xj|



 , (4)

where λ(λ > 0) is Lagrange multiplier (i.e., a regularization
parameter) that determines the amount of sparsity in xj.

The gradient of L (X ) with respect to xj were given by

∇ xjL (X ) =
∑n

1

[

giqij

fi
+

(

2− gi
) (

1− qij
)

S (X ) − fi

]

−
2n

S (X )
(5)

where S (X ) denotes the sum of the admixture coefficients.
In (4), L (X ) of F (X ) is differentiable with respect to Xj.

Solving (4) is complicated by the non-differentiability of |X j| at
Xj = 0.We used the subgradient withminimumnorm (Bertsekas
et al., 2003) of F (X ) in (4) as the steepest descent direction and
took a step resembling the Newton iteration in this direction with
a Hessian approximation to solve the above problem (Gill et al.,
1984). Subgradient methods are among the most popular ways
for non-differentiable optimization (Bertsekas et al., 2003). More
detail on the calculation of the search direction is available in
Appendix A.

Regularized Admixture Model With MCP or

SCAD Penalty
In ADMIXTURE-MCP and ADMIXTURE-SCAD, the estimate
of sparse solution X of the model (2) is obtained by maximizing
the logarithm of likelihood of the data sparsity enforcing non-
convex penalty MCP on the parameters {xj} ( j = 1, · · ·,k)
as follows:

F (X ) , L (X ) −
∑k

j=1
rλ(
∣

∣xj
∣

∣) (6)

where λ(λ > 0) and rλ
(∣

∣xj
∣

∣

)

= λ

(

∣

∣xj
∣

∣−
xj
2

2λγ

)

.I{|xj|<λγ} +

λ2γ
2 .I{|xj|≥λγ } (I{ǫ} = 1 if ǫ holds, and I{ǫ} = 0 otherwise).
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Given γ > 1, SCAD has

rλ
(
∣

∣xj
∣

∣

)

= λ
∣

∣xj
∣

∣ .I{|xj|<λ} +

(

λγ

γ − 1

∣

∣xj
∣

∣−
xj
2
+ λ2

2(γ − 1)

)

.

I{λ<|xj|<λγ} +
λ2(γ + 1)

2
.I{|xj|≥λγ } (7)

In the above, γ is the concavity parameter of MCP or SCAD,
which essentially characterizes the concavity of the MCP or
SCAD regularizer: A larger γ implies that the regularizer is
less concave. In this paper, we let γ = 3 as usual. Please
refer to Appendix A for obtaining the subgradient of rλ

(∣

∣xj
∣

∣

)

and Appendix B for computing GBC using Algorithm 1 by
just replacing the subgradient of

∣

∣xj
∣

∣ with the subgradient
of rλ

(∣

∣xj
∣

∣

)

.

RESULTS AND DISCUSSION

Determining Optimal Values for the

Regularization Parameter λ

The optimal values for the parameter λ of the three sparsely
regularized admixture models were obtained using three-fold
cross-validation, based on the 5K SNP panel, and illustrated in
three cattle breeds (Angus, Holstein, and Limousine). The non-
regularized admixture model served as the baseline model for
comparison because it was equivalent to ADMIXTURE-L1 with
λ = 0. Briefly, all the animals for each breed were randomly
split into three subsets. Then, the animals in two subsets were
combined and used as the reference population for estimating
the allele frequencies of SNPs in the 5K panel. The third subset
was used as the testing set, in which GBC was computed for
each animal. The procedure rotated three times so that each
subset was used for testing once and only once. The percentage of
animals with GBC = 1 for their respective breeds was computed
for each of the three sparsely regularized admixture models
under varied settings for the regularization parameter λ. Then,
the optimal values of regularization parameter λ were taken
as such that each sparsely regularized admixture model gave a
higher percentage of purebred animals with 100% GBC of their
respective breeds than the non-regularized ADMIXTURE (λ =

0). By this criterion, the range of optimal values of λ for the
three regularized admixture models appeared to be 0 < λ <

0.60 for Holstein, 0 < λ < 0.36 for Angus, and 0 < λ < 0.30
for Limusine (see Figure 1). In Holstein, the maximal percentage
of individual animals with GBC =1 was 92.7% (ADMIXTURE-
L1 with λ = 0.1), 99.5% (ADMIXTURE-MCP with λ =

0.25), and 99.7% (ADMIXTURE-SCAD with λ = 0.25). In
Angus, the maximum percentage of individuals with GBC = 1
obtained using the regularized admixture models was 92.9% for
ADMIXTURE-L1 with λ = 0.1, 97.6% for ADMIXTURE-MCP
with λ = 0.25, and 98.2% for ADMIXTURE-SCAD with λ =

0.25. In Limousine, the maximal percentage of individuals with
GBC =1 was relatively lower, which was 64.6% (ADMIXTURE-
L1 with λ = 0.1), 70.9% (ADMIXTURE-MCP with λ = 0.25),
and 71.4% (ADMIXTURE-SCAD with λ = 0.20). We, therefore,
decided to take λ = 0.1 for Admixture-L1, and λ = 0.25 for

Admixture-MCP and Admixture-SCAD to estimate GBC in the
following analyses.

Estimated Genomic Breed Composition for

Purebred Animals
With the optimal λ values given to the regularized models
and λ = 0 for the non-regularized model, GBC was estimated
for animals in each of the nine pure breeds using the four
statistical models. In Table 2 are the percentages of animals by
the ranges of estimated GBC obtained using the four models
with the 16K SNP panel for Angus, Holstein, and Limousine,
respectively. Estimated GBC for these three breeds using all
the four SNP (1K, 5K, 10K, and 16K) are shown in Tables S1–
S3. Furthermore, estimated GBC for all the six breeds (also
including Brahman, Hereford, Jersey, Shorthorn, Simmental,
and Wagyu breeds) using the 5K SNP panel are shown in
Tables S2–S5. Hereafter, the percent of animals with GBC =

1 in each breed was taken empirically to be the power for
the identification of purebred animals, though this criterion
was stringent.

The power of identifying purebred animals varied with
the size of SNP panels. The 1K SNP panel had the highest
power for identifying purebred animals in most of the nine
breeds, e.g., Angus and Limous, and the power of identifying
purebred animals decreased as the SNP panel size increased
(Table S1). In Holstein, the 1K SNP panel had either greater
or approximately comparable power as the 16K SNP panel
(Table S1). The loss in power as the panel size increased
was large with the non-regularized model but very slightly
with the three regularized models. A possible reason is the
following. The admixture assumed that all SNP loci were
independent in the likelihood. However, this assumption did
not hold precisely in reality due to linkage disequilibrium
(LD) between SNPs. With uniformly-distributed SNPs, we
found that the 1K SNP panel had the smallest LD between
SNPs, compared to the larger SNP panels. Thus, the 1K
SNP panel gave more accurate likelihood values computed for
these animals than those obtained with larger SNP panels,
subsequently leading to the highest power for identifying
purebred animals. Nevertheless, the models with regularization
seemed to be more robust to the violation of the model
assumption about the independence of SNPs than the non-
regularized model.

Of the four admixture models, the regularized admixture
models had higher power in the identification of purebred
animals than the non-regularized admixture model. With
the 16K panel, for example, the percentage of animals
with Angus GBC =1 was 69.6% with the non-regularized
admixture model, and it was substantially higher (94.1–
97.3%) with the three regularized models (Table 2). Similar
trends were observed in all the other breeds (Tables S1–
S7). Concerning the three models with regularization, the
two models with non-convex penalties (ADMIXTURE-
MCP and ADMIXTURE-SCAD) had a higher power for
identifying purebred animals than the one with the L1 norm
penalty (ADMIXTURE-L1).
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FIGURE 1 | Percent of individuals with GBC=1 obtained by the three regularized ADMIXTURE methods, each with a varying value for the regulation parameter

lambda (λ). Curves were extracted from the surfaces in this figure by fixing the GBC =1 for ADMIXTURE-L1, ADMIXTURE-MCP, and ADMIXTURE-SCAD in Angus,

Holstein, and Limousin, respectively.

TABLE 2 | Percent (%) of animals by categories of estimated GBC obtained using four statistical models with the 16K SNP panel in Angus (A), Holstein (H), and

Limousine (L).

GBC Admixture Admixture-L1 Admixture-MCP Admixture-SCAD

A H L A H L A H L A H L

1 69.6 70.7 47.4 94.1 97.7 65.1 98.6 99.2 72.5 96.5 99.6 70.9

[0.9, 1) 18.9 19.5 9.4 3.3 1.2 6.7 0.4 0.3 4.4 2.3 0.1 4.3

[0.8, 0.9) 8.5 7.0 9.4 1.5 1.0 5.8 0.5 0.4 3.6 0.4 0.1 4.5

[0.7, 0.8) 1.8 2.4 9.2 0.5 0.1 8.7 0.1 0.0 5.0 0.2 0.0 6.1

[0.6, 0.7) 0.4 0.2 13.5 0.2 0.0 6.9 0.2 0.0 5.5 0.2 0.0 7.2

[0.5, 0.6) 0.3 0.0 6.2 0.1 0.0 2.8 0.1 0.0 4.4 0.1 0.0 3.5

[0.5, 0.4) 0.2 0.0 2.6 0.1 0.0 2.0 0.0 0.0 1.8 0.1 0.0 1.1

[0.4, 0.3) 0.1 0.0 1.2 0.1 0.0 0.9 0.0 0.0 1.2 0.0 0.0 0.8

[0.3, 0.2) 0.1 0.0 0.5 0.1 0.0 0.8 0.0 0.0 0.8 0.0 0.0 0.4

[0.2, 0.1) 0.0 0.0 0.4 0.0 0.0 0.2 0.0 0.0 0.4 0.0 0.0 0.3

[0.1, 0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ADMIXTURE, non-regularized admixture model (λ = 0); ADMIXTURE-L1, admixture model with L1 norm penalty (λ = 0.1); ADMIXTURE-MCP, admixture model with MCP penalty (λ =

0.25); ADMIXTURE-SCAD, admixture model with SCAD penalty (λ = 0.25).

The identification power of purebred animals varied
drastically with the nine breeds. The percent of animals with
GBC= 1 was the lowest (47.4–74.4%) in Limousine (Table 2) and
the highest (99.7–100%) in Brahman (Table 2 andTables S1–S7).
Because Brahman was the only indicus cattle breed, which had
distant relationships with the taurus cattle breeds, the power of
identifying purebred Brahman cattle was thus the highest. For
the remaining seven breeds, the percent of animals with GBC
=1 obtained using the three regularized admixture models with
the 5K SNP panel was high in Angus (93.3–98.4%) (Table S1),
Hereford (97.6–99.8%) (Tables S5–S7), Holstein (93.2–99.7%)

(Table S1), Jersey (97.4–99.3%) (Tables S5–S7), and Wagyu
(95.1–98.8%) (Tables S5–S7), but was it was relatively low
in Shorthorn (79.5–83.7%) and Simmental (60.1–65.1%)
(Tables S5–S7). There were mainly two main reasons for the low
power of purebred identification in Limousine and Simmental.
In Limousine, for example, there was an unignorable number
of the “Limousine” animals, which were possibly “progressive”
crosses of Limousine with Angus arity of Limousine cattle with
Angus (Figure 2) and not excluded when applying the cutoff of
(−2)loglikelihood > 2 during the data cleaning (Figure S1F).
Thus, the estimated GBC for these “Limousine” animals showed
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an unignorable portion of Angus GBC (Figure 2). The three
regularized admixture models improved the power substantially
but limited by the portion of “progressive” crosses of Limousine.
A similar situation was observed with Simmental cattle as well.

Estimation of GBC for Composite Animals
The four admixture models were also used to estimate GBC
for the 3,605 Brangus animals. This composite beef breed
was developed to utilize the superior traits of Angus and
Brahman cattle. For official registration, a Brangus animal is
expected to be genetically stabilized at 3/8 Brahman and 5/8
Angus, solid black or red, and polled, and both sire and dam
must be recorded with the International Brangus Breeders
Association (IBBA). Unlike estimating GBC for a purebred
animal, our interest for a composite animal was to know
how much of its genome was inherited from each of its
ancestral breeds.

With the nine reference populations and the 5K SNP panel,
small admixture coefficients showed up for non-ancestral breeds,
such as Hereford, Limousine, Shorthorn, and Simental, in
addition to the two large admixture components for the two
ancestral breeds (Figure 3). Because of these non-zero GBC for
non-ancestral breeds, the estimated GBC of Brangus pertaining
to the two ancestral breeds (Angus and Brahman) were
underestimated, and these two ancestral admixture components
did not add up to 1 (Table 3). For example, based on the
non-regularized ADMIXTURE model, these Brangus were on
average 54.3% Angus and 25.1% Brahman. The three regularized
admixture models elevated the estimated GBC for the two
ancestral breeds, possibly owing to the penalties imposed
on small GBC components of non-ancestral breeds, but the
estimated GBC for Angus (59.5–61.5%) and Brahman (27.9–
28.6%) were still were under-estimated, and they did not add
up to 1 (Table 3). It is a well-known fact that the Brangus are
descendants of Angus and Brahman. Hence, one can reasonably
compute the GBC of Angus and Brahman, respectively, as
relative ratios of admixture components corresponding to
these two breeds only while ignoring estimated GBC for the
remaining breeds. The latter can be understood as the conditional
probability of GBC of the two ancestral breeds for Brangus, given
the probability that Angus and Brahman are their ancestors. The
“conditionally” estimated GBC for these Brangus using the non-
regularized admixture model was on average 68.3% Angus and
31.7% Brahman, whereas, with the three regularized admixture
models, average estimated GBCwas 67.9–68.2%Angus and 31.8–
32.1% Brahman (Table 3). Alternatively, GBC for these Brangus
was estimated by including only the two ancestral breeds in the
reference. With the latter approach, the average estimated GBC
for Brangus was 71.1% Angus and 28.9% Brahman based on the
non-regularized admixture model and 74.6–77.1% Angus and
22.9–25.4% Brahman based on the three regularized admixture
models (Table 3).

The estimated Angus composition in these Brangus animals,
as obtained using the four models, were presumably higher
than the pedigree-expected Angus ratio of 62.5%. There were
possibly two reasons for the elevated Angus GBC. Firstly, the
Brangus have been selected for traits with which Angus has

advantages. Hence, the selection, in turn, could shift allelic
frequencies more toward the Angus origin. Secondly, there was
a mixture of UltraBlack animals in this Brangus dataset. A
King-robus principal component analysis (PCA) based on the
genotypes of the 3,605 Brangus was conducted to infer the
genetic relationships of these Brangus animals using the King-
robus software (Manichaikul et al., 2010). The first principal
component (PC1) and the second principal component (PC2)
described 25.1 and 11.6%, respectively, of the total variation of
Angus GBC in this Brangus population. Three clusters were
identified in Figure 4, which suggested population stratification
of Brangus that varied in their genomic composition for
Angus. The majority (∼86%) of these Brangus cattle were 55–
80% Angus. For the remaining Brangus cattle, around 4% of
animals were < 55% Angus, and around 10% of animals were
>80% Angus. The Brangus cattle having >80% Angus genomic
component were mostly “Ultrablack” (UB) animals. In October
2005, the International Brangus Breeders Association (IBBA)
board of directors approved the creation of the “Ultrablack”
program to take advantage of the strengths of the Brangus and
Angus. A 1/2 “Ultrablack” animals (i.e., the progeny produced
from mating a registered Brangus to a registered Angus) were,
on average, 81.25% Angus. Finally, these sparsely-regularized
models consistently produced larger estimated GBC than the
non-regularized model, which might be an indication of possible
estimation errors. The true GBCs of these Brangus animals,
however, were unknown.

Finally, two assumptions under the present models are
worth discussion. First, it was assumed that each reference
population comprised samples of purebred animals only. This
assumption, however, can be violated in reality because a low
level of introgression in the reference samples can occur. For
example, Brahman cattle carry an average composition of 91%
Bos indicus and 9% Bos taurus (O’Brien et al., 2015). Some of
the taurine genome retained in Brahman even resulted from
recent artificial selection (Fortes et al., 2013). Clustering errors
indistinguishable from the admixture methods occur when ghost
admixture (i.e., introgression from an unsampled population) or
recent bottlenecks are embedded into the demographic history
of an analyzed population (Lawson et al., 2018). Nevertheless,
this assumption was taken approximately for the convenience
of modeling and computation. We also observed that, given
a significant number of animals in a reference population,
the deviation in estimated allelic frequencies for this reference
population due to the mixture of a tiny portion of cross-
bred animals tended to ignorable. Therefore, its impact on the
estimated GBC of the test animals also tended to be trivial
as well. In the Brahman population, for example, there are 25
crossbred progenies of Brahman, which were excluded from the
reference population in the present study. But including them
in the reference had very little impact on the estimated allelic
frequencies and the estimated GBC of the test animals in the
present study.

Secondly, the present admixture models assumed that the
allele frequencies of the ancestral breeds are known and are
estimated a prior, which differed from the unsupervised model-
based clustering algorithms. The latter was originally conceived
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FIGURE 2 | Histogram of the means of estimated GBC for 5,041 Limousin animals, obtained using four statistical models, respectively. Bar plot of the mean GBC

across the 10 breeds, which were estimated by ADMIXUTUR ADMIXUTURE-L1 (λ = 0.1), ADMIXUTURE-MCP (λ = 0.25), and ADMIXUTURE-SCAD (λ = 0.25) using

5K SNP panel. Standard deviations (SD) is abled on the bar of Limousin.

FIGURE 3 | Histogram of the means of estimated GBC for 3,605 Brangus(0.625 Angus, 0.375 Brahman) obtained the four statistical models, respectively. Bar plot of

the mean GBC across the ten breeds, which were estimated by ADMIXUTUR, ADMIXUTURE-L1 (λ = 0.1), ADMIXUTURE-MCP (λ = 0.25), and ADMIXUTURE-SCAD

(λ = 0.25) using 5K SNP panel. Standard deviations (SD) were abled on the Angus and Brahman bars.

to not only estimate ancestry in admixed individuals but also to
study the trajectory of divergence between ancestral populations
that produced the empirical data. This is important because
modern-day breeds of cattle—especially Bos taurus breeds—
were formed quite recently (i.e., in an evolutionary scale) from

mixtures of previously geographically isolated lineages that
were only moderately divergent (FST < 0.10), and are not
necessarily pure distinct lineages from a population genetics
stand point. Assuming fixed allele frequencies for ancestral
ignore the trajectory of genetic characteristics of ancestral
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TABLE 3 | Percent (%) of animals by categories of estimated GBC obtained using four statistical models in Brangus.

Model Nine-reference breeds Two-reference (ancestral) breeds

Angus Brahman Angus Brahman

Meana SD Mean SD Mean SD Mean SD

ADMIXTURE 54.3 (68.3) 11.9 25.1 (31.7) 6.31 71.1 6.70 28.9 6.70

ADMIXTURE-L1 61.5 (68.2) 15.6 28.6 (31.8) 12.1 77.1 8.70 22.9 8.70

ADMIXTURE-MCP 59.8 (68.1) 12.9 27.9 (31.9) 9.1 74.6 7.10 25.4 7.10

ADMIXTURE-SCAD 59.5 (67.9) 13.1 28.1 (32.1) 10.4 75.3 7.50 24.7 7.50

a In the brackets are the relative GBC ratio of Angus and Brahman origin only, respectively, computed with nine reference breeds.

FIGURE 4 | Population distribution across the first (PC1) and second principal component (PC2) on the genotype data of the Brangus individuals. Animals are labels

based on their Angus percent of GBC estimated by ADMIXTURE.

populations over time, but it simplifies the computing in
practice. This is particularly advantageous with the proposed
sparsely-regularized admixture models, which are often more
computationally intensive than the non-regularized admixture
models. Finally, some methods can even accommodate complex
admixtures, such as support vector machines (Haasl et al., 2013;
Durand et al., 2014). Comparison of our methods with support
vector machines was not evaluated in the present study but can
be of interest for future studies.

CONCLUSION

Estimated GBC for purebred animals is complicated by the
presence of small admixture components assigned to non-
ancestral breeds due to the genomic similarities. Thus, not all
purebred animals have 100% GBC for their respective breed
categories, leading to an increased false-negative rate for pure-
breed identification. Otherwise, a lower cutoff of estimated

GBC for purebred animals needs to be used instead, which,
however, is arbitrary. Our results showed that the use of sparse
regularization in the admixture models with appropriately-chose
values of λ effectively shrank non-ancestral GBC estimates
toward zero, therefore reducing the false-negative rate and at
the same time increasing the identification power of purebred
animals. Of the three sparse regularized admixture models, the
two models with nonconvex penalties (ADMIXTURE-MCP and
ADMIXTURE-SCAD) outperformed the admixture model with
L1 norm penalty (ADMIXTURE-L1).

The power of breed identification of purebred animals
varied with reference SNP panels used in the non-regularized
admixture model. The 1K panel giving the greatest power in
most breeds because it had the smallest average LD between
SNPs, which approximately satisfied the model assumption
about the independence of SNPs. Therefore, the computed
likelihood values using the 1K panel aremore accurate than larger
panels (5K, 10, and 16K). Nevertheless, the three regularized
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admixture models were more robust to the violation of model
assumption for SNP independence than the non-regularized
admixture model when estimating GBC using various SNP
panels, because the power of purebred identification with the
regularized admixture model decreased at a considerably slower
rate than the non-regularized admixture model as the SNP
panel sizes increased. As a rule of thumb, a cutoff of GBC
for pure-breed identification is recommended to be 95% for
the non-regularized admixture model and between 0.98 and
0.99 for regularized admixture models, assuming no significant
population stratification and no significant genomic correlations
between the reference breeds.

For composite animals, the three admixture models with
sparse regularization tended to produce larger GBC for these
Brangus animals than the non-regularized admixture model,
which possibly indicated the presence of estimation bias with
the regularized models. While imposing sparse regularization
on estimated GBC is favorable for reducing false-negative error
rate when identifying purebred animals, it can lead to bias in
estimated GBC for crossbred or composite animals, in particular
when dynamic segregation was still going on. Hence, the utility of
regularized admixture models for estimating GBC in composite
animals needs to be taken with caution and the results need
to be checked against those obtained using non-regularized
admixture models.

Finally, a software package that implements the admixture
models with regularization is made available for non-
commercial use (The web link will be provided once the paper
is accepted).
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MicroRNA (miRNA) is known to be an important regulator of muscle growth and
development. The regulation of microRNA on the skeletal muscle phenotype of animals
is mainly achieved by regulating the proliferation and differentiation of myoblasts. In
this study, we sequenced a total of 60 samples from 15 developing stages of the
pectoral muscle and five other tissues at 300 days of Tibetan chicken. We characterized
the expression patterns of miRNAs across muscle developmental stages, and found
that the chicken growth and development stage was divided into early-embryonic
and late-embryonic as well as postnatal stages. We identified 81 and 21 DE-miRNAs
by comparing the miRNA profiles of pectoral muscle of three broad periods and
different tissues, respectively; and 271 miRNAs showed time-course patterns. Their
potential targets were predicted and used for functional enrichment to understand
their regulatory functions. Significantly, GgmiRNA-454 is a time-dependent and tissue-
differential expression miRNA. In order to elucidate the role of gga-miRNA-454 in the
differentiation of myoblasts, we cultured chicken myoblasts in vitro. The results show
that although gga-miRNA-454-3p initiates increase and thereafter decrease during the
chicken myoblasts differentiation, it had no effect on primary myoblasts proliferation.
Furthermore, we confirm that gga-miRNA-454 inhibits myoblast differentiation by
targeting the myotube-associated protein SBF2.

Keywords: chicken, miRNA, myoblast, differentiation, gga-miRNA-454

INTRODUCTION

Skeletal muscle is a type of striated muscle tissue responsible for all voluntary movement in
animals. It accounts for half of the total body weight of the chicken. It is an important organization
involved in regulation of animal metabolism, and strength (Pavlath and Horsley, 2003). The growth
and development of skeletal muscle have an essential influence on meat production performance
of poultry (Anne et al., 2016). Previous research on Tibetan chicken muscles involved physical
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characteristics and processing properties (Qiu et al., 2011). Some
assessed the adaptation of lowland chickens to highland from
several aspects of liquid characteristics, blood gas and blood
volume (León and Monge, 2004). Previous reports on Tibetan
chickens have focused mainly on the physiological, biochemical
and molecular mechanisms related to the adaptation of high-
altitude environments (Monge and Leónvelarde, 1991; Xiao et al.,
2005; Weber, 2007). However, there are few studies on the growth
and development of Tibetan chickens, especially the regulation of
miRNA on muscle growth and development of Tibetan chicken.

Skeletal muscle development is a complicated biological
process controlled by various regulatory factors and signaling
pathways. The muscles in avian development are composed of
multiple myogenic groups (Cossu and Molinaro, 1987; Stockdale
and Jeffrey, 1987). Myoblasts from embryonic and adult chicken
development exhibit intrinsically distinct classes of myogenic
populations. Embryonic myoblasts are most abundant on day
5, whereas fetal myoblasts are most abundant between days 8
and 12 (Stockdale, 1993). In chicken, during early embryonic
and late fetal development, several myoblasts fuse to form
myotubes containing multiple muscle colonies with various
types of fast and slow myosin heavy chain (Bentzinger et al.,
2012). Moreover, it has been reported that the initial stage
of myogenesis in poultry is 3–7 days in the embryonic stage,
and the subsequent fetal stage or the second stage is 8–12
days in the embryonic stage (Cossu and Molinaro, 1987). The
proliferation of chicken embryonic myoblasts and the process
of their differentiation into myotubes largely determines the
number of muscle fibers after birth (Brown, 1987; Goldspink
and Ward, 1979). MiRNAs are involved in various aspects
of skeletal muscle development by targeting transcription
factors at different stages (Güller and Aaron, 2010). Due to
the tissue specificity of miRNA expression, several muscle-
specific miRNAs (“myomiRs”), such as miRNA-1, miRNA-
133, miRNA206 and miRNA-499 have been identified that
control signaling pathways mediating skeletal myogenesis (Horak
et al., 2016). MiRNAs are considered as an integral part of
muscle formation regulatory network, and some miRNAs are
colinearly expressed in time and space during body development
(Wienholds and Ronald, 2005). Of note, some miRNAs are
expressed in diverse tissues of animals and belong to non-specific
miRNAs. However, the expressions of miR-23–27–24 clusters
have limited effect on muscle growth and development in animals
(Lee et al., 2019).

The study of chicken miRNA regulation mainly involves
development in many aspects, including embryos, bones, gonads,
and neuro development, the rest are in terms of immune
function as well as viral infection and treatment (Hornstein
et al., 2005; Dahlberg and Lund, 2007; Rodriguez et al., 2007;
Hicks et al., 2008; McGlinn et al., 2009; Zhao et al., 2009;
Bannister et al., 2011; Burnside and Morgan, 2011; Song
et al., 2013). Studies of miRNAs in chicken embryos have
shown that fibroblast growth factor (FGF)-mediated signaling
negatively regulates the initiation of miR-206 gene expression,
demonstrating for the first time that developmental signaling
pathways impact miRNA expression (Sweetman and Tina,
2006). In addition, by comparing the miRNA expression

profiles of myoblast in the proliferative stage, it was found
that miR-221 and miR-222 were significantly down-regulated
during chicken myoblast differentiation (Cardinali et al., 2009).
Expression of the cell cycle inhibitor protein gene (p27)
regulates differentiation and maturation of skeletal muscle cells
(Cardinali et al., 2009). Recently study showed that under
hypoxia conditions, specific microRNA (miRNA) regulates lung
development, and hypoxia induces the elevation of miR-15a,
thereby inhibiting the expression of Bcl-2 protein in Tibetan
chicken (Du et al., 2017).

This study constructed 13 miRNA libraries of pectoral muscles
and 6 different tissues at different growth stages, screened
time-dependent and tissue-differential expression miRNAs, and
further analyzed possible target genes and related regulatory
pathways of these miRNAs to enrich chicken miRNA The
information reveals the spatiotemporal specific expression
characteristics of miRNAs in muscles, and lays the foundation for
a deep understanding of their role in regulating muscle growth
and development.

MATERIALS AND METHODS

Ethics Statement
All experimental protocols were subject to the Institutional
Animal Care and Use Committee in the College of Animal
Science and Technology, Sichuan Agricultural University, China.

Sample Collection and RNA Extraction
The muscle tissue used in embryonic period of this experiment
was collected by incubation of the eggs in time, and all the
fertile eggs were bought from Jiuding yuan Ecological Livestock
and Poultry Breeding Co., Ltd. located in Mao County, Aba
Tibetan and Qiang Autonomous Prefecture, Sichuan Province.
The entire embryo organization was collected on the 5th day
(E5) and 7th day (E7) of the embryonic stage. We collected
pectoral muscle tissue from six experimental periods at the
embryonic stage of 9th day (E9), 12th day (E12), 15th day
(E15), 18th day (E18), 20th day (E20) and the first day after
hatching (D1). Further, we collected pectoral muscle tissue
from seven periods post-hatching, including the 36th day
(D36), 100th day (D100), 300th day (D300), 2nd year (2Y),
5th year (5Y), 8th year (8Y) and 12th year (12Y), and six
tissues originated from different germ layers at the age of
300th day including brain, liver, ovary, spleen, kidney, pectoral
muscle. All samples were collected in triplicates. To collect
various tissues, birds were slaughtered after giving anesthesia,
and samples were wrapped in aluminum foil, flash frozen
in liquid nitrogen and transported to laboratory, then stored
at −80◦C until RNA extraction. Total RNA was extracted
from individual sample using RNAiso Plus reagent (TaKaRa)
following manufacturer’s recommendations. RNA was quantified
by Nanodrop ND-2000 spectrophotometer (Thermo Fisher
Scientific, United States); and RNA purity was evaluated by
agarose gel electrophoresis. All RNA samples were stored at
−80◦C for subsequent study.
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Small RNA Sequencing and Data
Analyses
Both Small RNA library construction and sequencing were
performed Illumina (Solexa) platform (ANNOROAD, Beijing,
China). The raw reads stored in FASTQ-formatted files were
subjected to quality filtering using fast-tool kit software to remove
low quality reads (>20% bases with a mass value <30), thereby
the high-quality reads were obtained. Cutadapt software (Martin,
2011) was used to further remove the sequencing adapters
and fragments <18 nt and >30 nt in length. Subsequently,
the remaining 18∼30 nt clean reads were aligned to Repbase
database1 to exclude transfer RNA (tRNA), ribosomal RNA
(rRNA), small nuclear RNA (snRNA), small nucleolar RNA
(snoRNA) using bowtie2 software (Langmead, 2010) with perfect
matches. The high quality reads were mapped to Gallus gallus
genome to identify known mature miRNAs or pre-miRNAs
using miRBase database v.212. The unannotated sequences were
mapped to reference genome of zebra finch (Taeniopygia guttata)
is closely related species with chicken in order to predict novel
miRNAs using mapper.pl script from mirDeep2 (Friedlander
et al., 2008). We take miDeep2 scores ≥5 and the secondary
structure p value as yes as candidate miRNAs. A candidate
novel miRNA predicted by at least two samples was considered
as a novel miRNA.

Analysis of miRNA Expression Profiles
Hierarchical clustering analysis was performed based on a
distance matrix of the Pearson correlation of the samples.
Principal component analysis finds low-dimensional linear
combinations of data with maximal variability. To identify
miRNAs which were differentially expressed across development,
we separated 13 time points to three periods based on the
HCL results and used t-test to detect differentially expressed
miRNAs (DE-miRNA) between the three periods and six
tissues of D300, respectively, genes with P-value ≤ 0.05,
fold change (FC) ≥2 or ≤0.5 were denoted as DE-miRNAs
(Ying et al., 2014). The R package, maSigPro (Nueda et al.,
2014) was used for time course analysis of expression data.
A cut-off value for the R-square of the regression model
was taken as 0.6.

Functional Analysis of Target Genes
Prediction of DE-miRNAs targets was performed by the
intersection of miRDB3 and TargetScan4. Next, Gene Ontology
(GO) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis for functional annotation
of target genes were performed using Metascape5 (Zhou et al.,
2019). All genes in the genome were used as enrichment
background with p-value < 0.01, a minimum count of three, and
an enrichment factor >1.5.

1http://www.girinst.org/
2http://www.mirbase.org/
3http://www.mirdb.org/
4http://www.targetscan.org/vert_72/
5http://metascape.org/

Quantitative Real-Time PCR Analysis
We perform Real-time quantitative PCR analysis for randomly
selected 5 known differentially expressed miRNAs and 3
novel miRNAs. First-strand cDNA was synthesized using
miRNA first-strand cDNA synthesis kit (Aidlab Biotechnology
Co. Ltd., Beijing, ChinaqRT-PCR was carried out using the
TransStart R© Top Green qPCR SuperMix (TransGen Biotech,
Beijing, China). The qRT-PCR was performed using mRNA-
specific primers and a universal miRNA reverse primer
5′-TCTAGAGGCCGAGGCGGCCGACATGT-3′. The primer
sequences are listed in the Table 1. U6 gene and β-actin gene
were used as endogenous internal controls for normalization.
We collected cells before transfection as a control group.
The cells in this control group were not treated with mimic,
inhibitor, mimic NC, inhibitor NC. When studying the
expression of gga-miR-454 during the growth of primary
myoblasts, we counted the gga-miR-454 expression collected
at 24 h as 1, and compared it with other time points to
calculate the difference. The 2−11CT method was used
to determine the relative miRNA and mRNA abundance
(Livak and Schmittgen, 2001).

Preparation of Chicken Embryo Extract
The entire embryo was collected by removing the head and
internal organs and washed with DMEM and minced into
small fragments with sterilized scissors. The fragments were
mixed with DMEM/F12 medium in a 1:1 volume with a 50 mL
syringe repeatedly. Repeated freeze-thaw three times in −80◦C.
or liquid nitrogen (Kita et al., 1998). After centrifugation at
10,000 g for 10 min, supernatant was carefully collected into a
15 mL centrifuge tube and stored frozen at −20◦C. Aggregates
were removed by centrifugation at 700 g for 10 min prior to
use of the reagents, followed by the addition of 5% complete
medium supernatant.

Isolation and Culture of Primary
Myoblasts
Embryonated chicken eggs (Arbor Acres) were purchased from
Large Poultry Breeding professional cooperative in Xinjin
County, Chengdu, Sichuan province, China. We refer to
the methods reported in the previous literature (Gerstenfeld
et al., 1984; Yablonka and Nameroff, 1987; Hartley et al.,
1992). Eggs were maintained in incubator at 37.5◦C with a
relative humidity of 60% for 10 days. Myoblasts were isolated
from pectoralis muscle by employing enzyme digestion and
Percoll density centrifugation. Briefly, the pectoral muscle
tissue from 10 embryos was collected under aseptic conditions
and washed with phosphate-buffered saline (PBS) containing
penicillin (100 units/mL) and streptomycin (100 µg/mL). Then
muscle tissues were minced with sterilized sharp scissors
into small fragments of about 1mm3. The fragments were
digested with 0.1% concentration of the type I collagen enzyme
(Solarbio C8140) of two volumes of meat for 30 min at
37◦C, and the supernatant was discarded after centrifugation
at 300g for 5 min. Digestion was repeated with 0.25%
trypsin (Gibco) of three volume of remaining muscle tissue
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TABLE 1 | The primer information of Q-PCR.

Gene Primer Sequence Tm/◦C Product size/bp

Myhc F: CTCCTCACGCTTTGGTAA 58 213

R: TGATAGTCGTATGGGTTGGT

Myog F: GGAGGCTGAAGAAGGTGA 59 149

R: CTGGTTGAGGCTGCTGA

SBF2 F: AAATCCCTCCCAACAAAG 57 78

R: GCCAAAAGGTCACTAACG

β-actin F: GCCAACAGAGAGAAGATGACAC 60 140

R: GTAACACCATCACCAGAGTCCA

gga-miR-454-3p F: CAGUGCAAUAGUAUUGUCAAAGCAU 60 /

R: ATTCTAGAGGCCGAGGCGGCCGACATGT

gga-miR-301b-3p F: GCGGCAGTGCAATAGTATTGTCAAAGCAT 60 /

R: ATTCTAGAGGCCGAGGCGGCCGACATGT

gga-let-7a-2-3p F: CTGTACAACCTCCTAGCTTTCC

R: ATTCTAGAGGCCGAGGCGGCCGACATGT

gga-miR-101-3p F: GGGTACAGTACTGTGATAACTGA

R: ATTCTAGAGGCCGAGGCGGCCGACATGT

gga- miR-133c-3p F: TTGGTCCCCTTCAACCAGCT

R: ATTCTAGAGGCCGAGGCGGCCGACATGT

gga-miR-204 F: TTCCCTTTGTCATCCTATGCCT

R: ATTCTAGAGGCCGAGGCGGCCGACATGT

gga-miR-144-3p F: GGCTACAGTATAGATGATGTACTC

R: ATTCTAGAGGCCGAGGCGGCCGACATGT

new-miRNA-11 F: TCCAGCATCAGTGATTTTGTTG

R: ATTCTAGAGGCCGAGGCGGCCGACATGT

new-miRNA-15 F: AAGCCCTTACCCCAAAAAGCAT

R: ATTCTAGAGGCCGAGGCGGCCGACATGT

U6 F: GGAACGATACAGAGAAGATTAGC 58 Du et al., 2017

R: TGGAACGCTTCACGAATTTGCG

for 20 min at 37◦C. Then, the muscle lysate was sieved
sequentially filtered with a 200 and 400 mesh stainless steel
strainer to remove large debris and the myoblasts were
collected by centrifugation of 2000 rpm for 10 min. A cell
population that contained skeletal myogenic precursor cells
was recovered from 20/60% percoll interface (Yablonka et al.,
1988). The isolated cells were seeded in growth medium (GM)
containing DMEM/F12, 5% chicken embryo extract and 15%
fetal bovine serum (FBS). To induce myoblasts differentiation,
cells were seeded in differentiation medium (DM) containing 2%
horse serum in DMEM.

Cell Staining
The concentration of myoblast cells was adjusted to about
4 × 104 cells/well and then inoculated into the 24-well plates
(5% CO2 incubator at 37◦C), which was then induced to
differentiate after 24 h. It is fixed and dead at the time point
of 24, 48, and 72 h of the paving slab, respectively. Specifically,
the cells were first washed with preheated PBS for 5 min
each, then fixed in methanol for dehydration (5 min), and
then dried on the ultra-clean table for 10 min. Cells were
then incubated with May-Grünwald dilution solution (1:3 in
the sodium phosphate buffer) for 5 min and washed twice
with distilled water. Finally, cells were stained with Giemsa

dilution solution (1:5 in distilled water) for 20 min and then
rinsed thrice with distilled water. The cells visualized under an
optical microscope and microscopic images were captured with
100×magnifications.

Chicken Myoblasts Transfection
When chicken myoblasts reached approximately 80%
confluence, cells were treated with micrONTM miRNA
mimic (100 nM) and micrOFFTM miRNA inhibitor (200 nM)
supplied by Ruibo Biotechnology Co., Ltd., Guangzhou.
Negative controls for mimics and inhibitors were provided
by Ruibo Biotechnology Co., Ltd., Guangzhou, using 100 nM
and 200 nM transfection concentrations, respectively. In
this in vitro transfection cell experiment, we used used
miRNA mimic NC (100 nM) and miRNA inhibitor NC
(200 nM) as negative controls, respectively. In addition, the
recommended range is 10∼200 nM by Ruibo Biological,
usually a larger number of miRNA inhibitors are needed
to observe a better inhibitory effect, which is equivalent
to several times the miRNA mimic amount, which may
be the mechanism of competitive inhibition with miRNA
inhibitors and efficiency. The cells were transfected by using
Lipofectamine 3000 reagent (Invitrogen, United States),
according to manufacturer’s direction.
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Immunofluorescence Analysis
The cells were fixed in 4% paraformaldehyde for 15 min at
room temperature in a 24-well plate. Permeable cells were treated
with 1% Trion X-100 for 10 min at 4◦C. The cells were then
blocked with 2% bovine serum albumin for 30 min at 37◦C.
Subsequently, cells were stained with MyHC primary antibody
(1:100, F59 Santa) at 4◦C overnight and were incubated with goat
anti-mouse IgG conjugated to TRITC (1:100) (Zenbio). Finally,
the cells nuclei were stained with DAPI (1 µg/Ml) to protect the
cells from counterstaining by incubating the cells for 10 min at
room temperature. The cells were observed and photographed
using a fluorescent microscope.

MiRNA Target Identification
miRNA and potential mRNA interaction binding sites were
predicted by Targetscan6 (Lewis et al., 2005)andRNAhybrid2.27

(Gruber et al., 2008). QPCR was used to detect the expression of
target genes after transfection of mimics and inhibitors.

Dual-Luciferase Assay
The 3′-UTR of SBF2 was amplified and cloned into the pmirGLO
dual-luciferase reporter eukaryotic expression vector completed
by Shanghai Bioengineering Co., Ltd., Shanghai. The mutant
SBF2 3′UTR plasmids were generated by missing the seven gga-
miRNA-454 binding sites (5′-TGCACTA-3′). DF-1 cell (Fudan
University Cell Bank) were co-transfected with 100 ng of the
wild or mutant SBF2 3′UTR dual-luciferase reporter and 0.25 µL
of the miR-454 mimic or negative control duplexes using
Lipofectamine 3000 reagent (Invitrogen, United States) in 24 well
plate. After transferring into the cells for 48 h, the cells were
collected and the reaction intensity of firefly fluorescence and sea-
renal fluorescence was measured, and the ratio of the two reaction
intensities was calculated to correct.

Statistical Analysis
Expression of all genes and miRNAs were calculated using
2−11CT method, all data were represented as mean± SEM based
on at least 3 replicates for each treatment. The ANOVA program
of IBM SPSS20 Statistics (SPSS Inc, Chicago, IL, United States)
software was used to analyze the relative expression of each gene,
and the multiple comparison was performed by Duncan method.
The final result is plotted using GraphPad Prism 5 (GraphPad
Software, Inc, San Diego, CA, United States).

RESULTS

RNA-Seq Result
Collect 13 different periods of pectoral muscle tissue and
two chicken embryos and five other tissues of D300, three
replicates per sample, a total of 60 samples were used for next-
generation sequencing. We obtained a total of 745,165,420 raw
reads, with an average of 12,419,423 reads per sample. The
raw reads Q20 was between 98.89–95.75% of these 60 samples.

6http://www.targetscan.org/vert_72/
7https://bibiserv.cebitec.un-i-bielefeld.de/rnahybrid/

Q30 was between 97.88 and 91.6% (Supplementary Table S1).
Then the information of the novel miRNAs of all samples
was predicted, and the miRNA of at least two samples were
predicted as the novel miRNA. Statistics of miRNA species
in different developmental stages and in different tissues
(Supplementary Figure S1). We calculated the base lengths of
Clean data in 15 periods and found that the miRNA length
distributions in different periods were basically the same, mainly
concentrated between 21–24 nt (the percentage of totals ranged
from 69.89 to 90.43) (Supplementary Figure S2). The number
of miRNA expression gradually decreases with the development
of muscles and eventually stabilizes. A total of 834 miRNAs
including 631 preciously identified miRNAs and 203 novel
miRNA candidates were obtained across 13 pectoral muscle
developmental stages. Additionally, a total of 672 miRNAs
including 548 known miRNAs and 124 novel miRNAs were
identified among six tissues collected at the age of 300 days
(Supplementary Table S2). Sequencing data has been uploaded
to NCBI (GSE 139304).

MiRNAs Can Be Classified as Three
Time-Dependent Patterns According
Their Expression Profiles
In order to obtain an overview of the miRNA expression
profiles of 60 Tibetan chicken samples, we performed hierarchical
clustering analysis and principal component analysis. PCA and
HCL analysis was performed using the expression profiles of
different periods of miRNAs. Three clusters containing early-
embryonic (Pre_e, including E9 and E12), late embryonic
(Lat_e, including E15, E18, E20, and D1) and postnatal stages
(Bir_g, including D36, D100, D300, Y2, Y5, Y8, and Y12)
were found (Supplementary Figures S3B, S3D). Indicates that
major distinctions in the miRNA expression profiles occurred
during these three time periods. Clustering analysis revealed
that the lowest miRNA expression similarity was shown between
Y8 and Y12 (Pearson correlation, R = 0.809), whereas E9
and E12 showed the highest expression correlation (Pearson
correlation, R = 0.996), suggesting the correlation between
embryonic prophase were relatively weak compared to with
the post-embryonic growth periods stages. Further, the different
tissue samples examined were separated based on tissue type, in
which the brain, liver, kidney and heart were clearly separated
(Supplementary Figures S3A, S3C).

GgmiRNA-454 Is a Time-Dependent
miRNA
Time series analysis was performed to explore the developmental
dynamics of miRNAs across chicken pectoral muscle. A total of
271 miRNAs showed time-course patterns during the stage of
chicken growth and developmental curve, divided into 9 clusters
(Supplementary Tables S7, S8). Gga-miRNA-454 showed a trend
of increasing first, then decreasing, and finally stabilizing in
the four cluster (Figure 1). To evaluate the stage-dependent
transcriptomic activities across the life cycle of the chicken, we
performed differential miRNA expression analysis by comparing
any two adjacent developmental stages. These developmental
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FIGURE 1 | Time-series analysis.

stages include early-embryonic, late embryonic and postnatal
stages. A total of 81 dynamic DE-miRNAs were obtained by
time difference analysis (Figure 2A). The results showed that 144
miRNAs (32 up-regulated, 112 down-regulated) were detected in
early-embryonic stage and late embryo stage (Pre_E vs Lat_E),
and 287 miRNAs (88 up-regulated, 199 down-regulation) were
detected in late postnatal and postnatal growth stages (Lat_E
vs Bir_G), and 357 miRNAs (82 up-regulation, 275 down-
regulation) were detected in early-embryonic and post-natal
growth stages (Pre_E vs Bir_G) (Figures 2B–D). GgmiRNA-
454 is differentially expressed in the above three periods.
In addition, a total of 21 miRNAs from tissue differential
analysis also predicted targets for 291 unique genes (Figure 3A).

Gga-miR-454 has significant differences compared with other
tissues (Figure 3B).

Target Prediction and Functional Roles
A total of 21 DE-miRNAs from tissue differential analysis
predicted a target of 291 unique genes. GO functional
classification and enrichment analysis of each gene was annotated
by Metascape. The top 20 GO enrichment items were classified
into three functional groups: biological process group (11 items),
molecular function group (5 items), and cellular component
group (4 items). Target genes were mainly enriched in Oocyte
meiosis, Hedgehog signaling pathway, Tight junction, Regulation
of actin cytoskeleton, Signaling pathways regulating pluripotency
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FIGURE 2 | Time difference analysis: (A) The Venn diagram indicates the number of dynamic miRNAs; (B) miRNAs differentially expressed between Pre_E and
Lat_E; (C) miRNAs differentially expressed between Lat_E and Bir_G; (D) miRNAs differentially expressed between Pre_E and Bir_G.

of stem cells, Wnt signaling pathway, TGF-beta signaling
pathway, MAPK signaling pathway, Pathways in cancer, etc.
(Figures 4A,B and Supplementary Tables S3, S4).

There are 58 miRNAs that overlap in dynamic DE-
miRNA and time-course miRNA. A total of 58 time-dependent
miRNAs predicted a target of 2,546 unique genes. In addition,
enrichment results of 58 time-dependent miRNAs were obtained
(Figures 4C,D and Supplementary Tables S5,S6). The top 20 GO
enrichment items were classified into three functional groups:
biological process group (13 items), molecular function group
(2 items), and cellular component group (5 items). Regarding
KEGG, Target genes were significantly enriched in 20 canonical

pathways including Thyroid hormone signaling pathway, Breast
cancer, TGF-beta signaling pathway, Dopaminergic synapse,
AMPK signaling pathway, Endocytosis Axon guidance, Pathways
in cancer, Hippo signaling pathway, Autophagy -animal, MAPK
signaling pathway, etc.

Verify the Accuracy of the
High-Throughput Sequencing by q-PCR
In order to verify the accuracy of high-throughput sequencing, we
randomly performed q-PCR detection of 6 known differentially
expressed miRNAs and 3 novel miRNAs. The results showed
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FIGURE 3 | Organizational difference analysis: (A) The Venn diagram indicates the number of different tissues miRNAs; (B) Expression of gga-miRNA-454 in different
tissues.

FIGURE 4 | Gene Ontology and KEGG Pathway Enrichment Analysis of target genes of stage development and tissue differentially expressed miRNAs: (A) Heatmap
of Gene Ontology (GO) of target genes of tissue differentially expressed miRNAs enriched terms colored by p-values; (B) Heatmap of Kyoto Encyclopedia of Genes
and Genomes (KEGG) of target genes of tissue differentially expressed miRNAs enriched terms colored by p-values; (C) Heatmap of Gene Ontology (GO) of target
genes of stage development differentially expressed miRNAs enriched terms colored by p-values; (D) Heatmap of Kyoto Encyclopedia of Genes and Genomes
(KEGG) of target genes of stage development differentially expressed miRNAs enriched terms colored by p-values.

that q-PCR expression of miRNAs were completely consistent
with our sequencing data (Supplementary Figure S4). We
found that miR-133c-3p had highest expression level in
discrete periods among nine miRNAs, and the trend of
expression level increased with time. MiR-133-3p is a key
regulatory molecule of MiR-133 family, specifically expressed
in muscle and is capable of inducing myoblast proliferation
(Chen et al., 2006).

Primary Chicken Myoblasts Show
Muscle Fusion and Achieve Transfection
Efficiency
Cells were stained at the 24, 48, and 72th of differentiation
to visualize myotubes, cytoplasm and nuclei, the nucleus and
cytoplasm of the cells can be clearly seen (Figures 5A–C). From
the attachment of the cells for 24 h, the cells are found in a
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FIGURE 5 | Cell staining and transfection efficiency detection: (A) 24-h Giemsa staining (100×); (B) 48-h Giemsa staining (100×); (C) 72-h Giemsa staining (100×);
(D) expression of gga-miR-454 after cell transfection of inhibitor; (E) expression of gga-miR-454 after cell transfection of mimic; (F) expression of gga-miR-454
during the growth of chicken primary myoblasts.

FIGURE 6 | Effect of transfection of gga-miRNA-454 mimics and inhibitors on myoblast differentiation: (A) Giemsa staining of transfected gga-miRNA-454 mimic
cells (40×); (B) Giemsa staining of transfected mimic-NC cells (40×); (C) Giemsa staining of transfected gga-miRNA-454 inhibitor cells (40×); (D) Giemsa staining of
transfected inhibitor-NC cells (40×); (E–H) Detection of expression of differentiated genes after transfection of mimetics and inhibitors by QPCR.

single state. At 48 h, the cells become full and elongated at a
dense concentration, and many long spindle-like solitary nuclei
appear in the field of view, then 72 h, saw the number of
myotubes increased, the shape became thicker. At the same time,
we measured the transfection efficiency of cells cultured in vitro
(Figures 5D,E).

Gga-miRNA-454 Has no Effect on
Myoblast Proliferation but Inhibits
Myoblast Differentiation
We found that miR-454 showed a trend of increasing initially and
then decreasing during the process of myoblast proliferation and
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FIGURE 7 | Effect of gga-miR-454 on myoblast proliferation: (A) EDU detection of myoblasts by mimics and inhibitors of gga-miR-454; (B) Percentage of
EDU-positive cells transfected with gga-miR-454 mimics and inhibitors.

differentiation, suggesting its potential involvement in myoblast
proliferation and differentiation processes (Figure 5F). To
observe the effects of gga-miRNA-454 on myoblast proliferation,
we transfected chicken primary myoblast cultured in GM with
an miR-454 mimic and inhibitors or scrambled negative control
duplexes. Furthermore, Giemsa staining demonstrated that
proliferation rate of miR-454-transfected cells was remarkably
reduced compared with that of the control cells with larger
myotube density in the visual field (Figures 6A–D), whereas miR-
454 loss-of-function promoted cell differentiation rate, indicating
that miR-454 can inhibit chicken myoblast proliferation. The
QPCR assay showed that the mRNA expression level of MyHC
and MyoG in the gga-miRNA-454 mimic group was significantly
decreased at 24 h and 48 h after transfection (Figures 6E,F).
NC in the Figure 6E and Figure 6F represents miRNA
mimic negative control. In the gga-miRNA-454 inhibitor group,
the mRNA expression levels of MyHC and MyoG showed a
significant increase at 24 h and 48 h (Figures 6G,H). NC in the
Figure 6G and Figure 6H represents miRNA inhibitor negative
control. 5-Ethynyl-2′-deoxyuridine (EdU) cell proliferation assay
showed that miR-454-transfected cells had no effect on myoblast
proliferation (Figure 7). In addition, miR-454 reduced the
formation of myotubes, and the area of myotube leveled with
MyHC was significantly decreased (P < 0.001) after 48 h of
differentiation in the transfected gga-miR-454 mimic compared
with that of control group (Figures 8A,B). In contrast, the

area of MyHC fluorescently labeled protein was significantly
increased after gga-miR-454 inhibitor transfection (P < 0.001)
(Figures 8C,D). Therefore, the above results showed that gga-
miRNA-454 play an inhibitory role in the differentiation of
chicken myoblasts.

Gga-miRNA-454 Inhibits Myoblast
Differentiation by Targeting the
Myotube-Associated Protein SBF2
Target gene prediction results showed that chicken SBF2 3′UTR
has a potential binding site with miR-454 with a good target
relationship (1G = −25.6 kcal/mol) (Figure 9A). Here, we
studied the involvement of SBF2 in the inhibition of miR-
454 during chicken myoblast proliferation. QPCR results shown
that SBF2 gene expression levels were significantly inhibited in
the gga-miRNA-454 mimic group compared with the control
group, whereas significantly increased in the gga-miRNA-454
inhibitor group. SBF2 can be a potential target gene for miRNA-
454 (Figure 9B). The transfection of myoblasts with miR-
454 in GM downregulated SBF2 mRNA expression level, and
the inhibition of endogenous miR-454 in GM using miR-
454 inhibitor increased SBF2 mRNA expression. In addition,
to validate whether SBF2 is a target gene of miR-454, we
constructed two dual-luciferase reporters with the wide-type
and mutant 3′-UTRs of SBF2, respectively. Compared with
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FIGURE 8 | Immunofluorescence of transfected gga-miR-454 mimic and inhibitor (100×): (A) Immunofluorescence of transfected gga-miR-454 mimic; (B)
Immunofluorescence area statistics of different transfected gga-miR-454 mimic; (C) Immunofluorescence of transfected gga-miR-454 inhibitor; (D)
Immunofluorescence area statistics of different transfected gga-miR-454 inhibitor.

miR-NC, pmirGLO-miR-454 induced a significant decrease in
normalized luciferase activity of the vector containing the
putative miRNA-binding site. In addition, the mutation of the
miR-454-responsive elements in the binding site of SBF2-3′-UTR
(SBF2-mut) resulted in loss of the inhibitory effects of miR-454
(Figure 9C). These results suggested that the predicted site is
a target of miR-454 and is responsible for miR-454 targeting of
the SBF2-3′-UTR.

DISCUSSION

As a public data for miRNA expression of Tibetan
chicken, we have generated a comprehensive chicken RNA-
Seq transcriptomic encompassing five organs across 15
developmental stages from juvenile to old age for both
sexes. The main muscle fibers of birds are formed within six

days of hatching and the secondary muscle fibers are mainly
formed during the embryo development at 12–16 days (Liu,
2012). Taking into account this, the embryonic period of day
5, 7, 9, 12, 15 and day 1 after birth has become a common
time point for studying muscle development. Currently, there
are few reports on the role of miRNAs in chicken muscle
growth and development. Here, we predicted 203 and 124
novel miRNAs in Tibetan chicken from sequencing of samples
from different periods and different tissue, respectively. Further
functional characterization of these miRNAs had a deeper
understanding of Tibetan chicken muscle specificity and
developmental process dependence. In this study, a total of
21 DE-miRNAs were screened based on tissue difference
analysis, Of them, miR-1 and miR-133 were known for their
key roles in skeletal muscle development (Keith and Wen,
2015). In addition, miR-193 has been reported to be associated
with myotonic dystrophy type 2 (DM2) (Greco et al., 2012)
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FIGURE 9 | Targeting relationship between gga-miRNA-454 and SBF2 gene: (A) Target gene prediction; (B) Detection of SBF2 gene expression after transfection of
mimic and inhibitor by QPCR; (C) Dual luciferase activity assay.

and miR-365 associated with inhibition of vascular smooth
muscle cell proliferation (Peng et al., 2014). There are also
some miRNAs to be taken into account, such as miR-6553-3p,
miR-1744-3p, miR-1635.

Based on the results of sample correlation analysis, it is found
that miRNAs of stage E9 and E12 were closely interrelated, E15,
E18, E20, and D1 shared a similar gene expression signature,
whereas D36, D100, D300, Y3, Y5, Y8, and Y12 were clustered
together. This result is consistent with the stage of chicken muscle
growth and development. Therefore, we divide the 13 periods
into three major periods: early-embryonic, late embryo and
postnatal stages. Finding miRNAs related to muscle development
using differential expression analysis and single time series
analysis methods in different periods. A total of 271 time-
course miRNAs were screened by applying biological methods,
including some muscle-specific miRNAs, such as miR-1 and
miR-133, and some non-specific miRNAs, such as miR-23a, miR-
26a, miR-181, miR-222 have been reported to be involved in
the regulation of muscle growth and development (Dey et al.,
2012; Hudson et al., 2014; Bloch et al., 2015). A total of 58
time-dependent miRNAs are both DE-miRNAs and show time-
course patterns. The time-dependent miRNAs included let-7,
miR-133, miR-208b miR-499. Many miRNAs had been found
to participate in the differentiation of muscle fiber types in
developing embryos or adult muscles. The regulatory roles of
these miRNAs are mainly related to TGF-beta signaling pathway,
AMPK signaling pathway, MAPK signaling pathway, etc. These
pathways had been reported to be involved in muscle growth
and development (Schiaffino et al., 2013; Thomson, 2018; Du
et al., 2019). The most significantly enriched pathway was
MAPK signaling pathway. Regulation of extracellular growth
factors through activation of this pathway affects myoblast
differentiation. Notably, Endocytosis Axon guidance, Pathways
in cancer, Hippo signaling pathway, Autophagy -animal, Thyroid

hormone signaling pathway, Breast cancer, also related to
muscle growth and development. When the miRNA mimic
transfection concentration reached 100 nM and the miRNA
inhibitor concentration reached 200 nM, it could achieve the
effect of over-expression and inhibit miRNA-454 (Figures 5D,E).

Among these miRNAs, miR-454 attracted our attention
because it is a time-dependent and tissue-differential expression
miRNA. In poultry, only little research on chicken gga-miR-454
have been reported. Recently, gga-miR-454 has been identified
as direct inhibiter of infectious bursal disease virus (IBDV)
replication by targeting the viral genomic segment B (Fu
et al., 2018). In addition, gga-miR-454 expression was found
lower in eight diverse tissues of chickens not infected with
Marek’s disease virus, which may play a major role in the
pathogenesis of Marek’s disease and tumor transformation (Yao
et al., 2008). The miR-454 has been shown to be down-
regulated in certain human malignancies and is associated
with tumor progression. It plays a major role in colorectal
cancer, prostate cancer, gastric cancer, lung cancer, liver cancer,
and osteosarcoma (Wu et al., 2014; Liang et al., 2015;
Song et al., 2017).

The miR-454 regulates triglyceride synthesis in bovine
mammary epithelial cells by targeting PPAR-γ, which may be
a crucial factor in enhancing the quality of dairy products
(Zhang et al., 2019). Hitherto, the function of miRNA-
454 has been explored in several human diseases, and its
response to pathogenic infection, however, its role in muscle
development has not yet been reported (Wu et al., 2014;
Liang et al., 2015; Song et al., 2017). We have shown that
gga-miR-454 was up-regulated during the proliferation and
then gradually down-regulated during of chicken myoblasts
differentiation. Our results demonstrated that gga-miR-454
inhibits the expression of MyHC and MyoG gene, and inhibit
myoblast differentiation.
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The dual luciferase reporter gene assay indicated that the
SBF2 gene is a target gene of gga-miR-454. The SBF2 gene
encodes a member of the pseudo phosphatase which belongs
to myotube-associated protein family (Othmane et al., 1999).
In addition, interference with SBF2 expression can inhibit the
proliferation and invasion of human oral cancer cells and
induce apoptosis, suggesting that the role of SBF2 gene can
be determined by inhibiting the TGF-β pathway (Tian et al.,
2016). Two representative TGF-β family members including
TGF-β and BMP are endogenously control myogenesis the TGF-
β pathway in a phase-specific manner (Furutani et al., 2011). We
assumed that the SBF2 gene may also exert an effect on myoblast
differentiation by acting on TGF-β pathway. However, the precise
adjustment mechanism still worth for further study.

CONCLUSION

In this study, we sequenced a total of 60 samples from
15 developing stages of the pectoral muscle and five other
tissues at 300 days of Tibetan chicken. We characterized the
expression patterns of miRNAs across muscle developmental
stages, and found that the chicken growth and development
stage was divided into early-embryonic, late embryo and
postnatal stages. We identified 81 and 21 DE-miRNAs by
comparing the miRNA profiles of pectoral muscle of 3 broad
periods and different tissues, respectively; and 271 miRNAs
showed time-course patterns. Their potential targets were
predicted and used for functional enrichment to understand
their regulatory functions. Significantly, GgmiRNA-454 is
a time-dependent and tissue-differential expression miRNA.
In order to elucidate the role of gga-miRNA-454 in the
differentiation of myoblasts, we cultured chicken myoblasts
in vitro. The results show that although gga-miRNA-454-3p
initiates increase and thereafter decrease during the chicken
myoblasts differentiation, it had no effect on primary myoblasts
proliferation. Furthermore, we confirm that gga-miRNA-454
inhibits myoblast differentiation by targeting the myotube-
associated protein SBF2.
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Livestock breeding has shifted during the past decade toward genomic selection. For

the estimation of breeding values in purebred breeding schemes, genomic best linear

unbiased prediction has become the method of choice. Systematic crossbreeding with

the aim to utilize heterosis and breed complementary effects is widely used in livestock

breeding, especially in pig and poultry breeding. The goal is to improve the performance

of the crossbred animals. Due to genotype-by-environment interactions, imperfect

linkage disequilibrium, and the existence of dominance and imprinting, purebred and

crossbred performances are not perfectly correlated. Hence, more complex genomic

models are required for crossbred populations. This study reviews and compares such

models. Compared to purebred genomic models, the reviewed models were of much

higher complexity due to the inclusion of dominance effects, breed-specific effects,

imprinting effects, and the joint evaluation of purebred and crossbred performance data.

With the model assessment work conducted until now, it is not possible to come to

a clear recommendation as to which existing method is most suitable for a specific

breeding program and a specific genetic trait architecture. Since it is expected that a

superior method includes all the different genetic effects in a single model, a dominance

model with imprinting and breed-specific SNP effects is proposed. Further progress

could be made by assuming realistic covariance structures between the genetic effects

of the different breeding lines, and by using larger marker panels and mixture distributions

for the SNP effects.

Keywords: genomic selection, genomic models, livestock, crossbreeding, heterosis

INTRODUCTION

The crossing of different lines or breeds is widely used in animal breeding with the main
aim to produce superior offspring. This superiority results from heterosis and from breed
complementary effects. Continuous and discontinuous crossbreeding schemes have been designed
and are implemented in various livestock species (Lopez-Villalobos et al., 2000; Samorè and
Fontanesi, 2016). In discontinuous schemes, crossbred animals are used solely for production and
are not selected as parents of the next generation. Breeding takes place in the parental breeds
and the breeding goal is usually to improve crossbred performance. The level of organization in
such a system is high and it is sometimes difficult to utilize by-products, such as male offspring of
mother lines. These schemes can be predominantly found in livestock species with a high female
reproduction rate such as pigs and poultry. In continuous breeding schemes, the female crossbreds
are used as parents to breed the next generation. These systems are sometimes implemented in
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livestock species with a low female reproduction rate such
as cattle. Since there are substantial non-additive effects for
reproduction traits in dairy cattle (Jiang et al., 2017), the aims of
crossbreeding in dairy cattle are to improve reproduction traits
and other functional traits by exploiting heterosis and imprinting
and by removing inbreeding depression (Sørensen et al., 2008;
Buckley et al., 2014).

A further form of crossbreeding is the upgrading of
low-performance breeds with high-yielding breeds. This
introgression of genes from high-yielding breeds increases
the production level in subsequent generations and reduces
inbreeding depression by increasing the genetic diversity of the
low-performance breed. This breeding system has frequently
been applied to local breeds, such as the German Vorderwald
cattle (Hartwig et al., 2014, 2015). However, if upgrading is
repeated over several generations, then the breed eventually
goes extinct because the native alleles are removed from its gene
pool. The formation of a synthetic breed can also be seen as
a special form of crossbreeding. A well-known example is the
establishment of the so-called Schwarzbuntes Milchrind in the
former East Germany (Freyer et al., 2008).

Livestock breeding has shifted toward genomic selection,
which is now frequently implemented in large pure breeds.
The core of the system that has been implemented in pure
breeds is a reference population that consists of genotyped and
phenotyped animals. The phenotypes are either the animal’s
own performance records, or deregressed conventional breeding
values. The reference population is needed for the prediction of
marker effects. The marker effects are then used for predicting
genomic breeding values of the genotyped selection candidates.
The reliability of genomic breeding values depends on the size of
the reference population, on the effective number of chromosome
segments, and on the method used for the prediction of marker
effects (Goddard, 2009).

Extensive research has been dedicated to develop statistical
models for the prediction of marker effects. These statistical
models include the SNP-BLUP model that assumes normally
distributed SNP effects, various Bayesian models that assume
more heavy-tailed distributions, as well as non-parametric
and semi-parametric models (Meuwissen et al., 2001; Gianola,
2013). More complex models assume different SNP variances,
depending on the type of control region the SNP belongs
to MacLeod et al. (2016). Some models avoid the prediction
of marker effects by building a genomic relationship matrix
based on SNP genotypes. The most prominent method based
on genomic relationships is GBLUP, which is an equivalent
model to SNP-BLUP (VanRaden, 2008; Goddard, 2009). The
genotyped selection candidates are included in the model, and
their genomic breeding values are calculated by utilizing their
genomic relationships with the reference population. GBLUP
assumes that all animals are genotyped, which is in general
not the case. Therefore, the genomic breeding values are
blended in a second step with pedigree-based breeding values to
obtain genomically enhanced breeding values on which selection
decisions are based. This two-step procedure can be avoided
with so-called single-step GBLUP models (ssGBLUP). They
were developed as extensions of GBLUP. Single-step models

include genotyped and non-genotyped animals simultaneously
(Legarra et al., 2009, 2014; Aguilar et al., 2010; Christensen
and Lund, 2010) and assume a particular covariance structure
for the breeding values that is computed from genomic and
pedigree-based relationships. Fernando et al. (2014) extended
the single step model toward non-normally distributed marker
effects. In purebred routine application mostly additive effects
are considered, with dominance being an integral part of the
estimated breeding values. Some genomic models were extended
toward accounting for dominance explicitly, but this increased
the realibilities of the breeding values only slightly (Su et al., 2012;
Wellmann and Bennewitz, 2012; Azevedo et al., 2015).

To summarize, it seems that in practical purebred genomic
evaluations, GBLUP and ssGBLUP have and will become the
models of choice, and non-additive gene effects are usually
not an issue. The picture is however somewhat different if
data from crossbred animals in combination with the parental
purebred data is analyzed. The potential applications of genomic
models with non-additive genetic effects have been reviewed
by Varona et al. (2018). The main breeding goal is in this
case to improve the performance of the crossbred animals.
Due to genotype-by-environment interaction, imperfect LD, and
the existence of dominance, epistasis and imprinting, purebred
and crossbred performances (PP and CP, respectively) are not
perfectly correlated (e.g., Wei and van der Werf, 1995; Dekkers,
2007; Zumbach et al., 2007; Duenk et al., 2019). Wientjes
and Calus (2017) reviewed existing literature about purebred-
crossbred correlations in pigs. The average from 201 reported
correlation coefficients was 0.63 with 50% of the reported
coefficients being between 0.45 and 0.87. The purebred-crossbred
correlation affects the optimal design of the reference population
(van Grevenhof and van der Werf, 2015) and the choice of an
appropriate genomic model.

While genomic models are well-established for pure breeds,
much research has been conducted in the recent years to develop
genomicmodels for the analysis of crossbred data. The aim of this
study is to review genomic models for the prediction of crossbred
performance that were recently developed and were evaluated
either using simulated or real crossbred data.

GENOMIC MODELS

Genomic models for crossbred data are extensions of purebred
models. The extensions were made in several directions. Most
genomic models for the analysis of crossbred data are developed
for two-way crosses. A two-way crossX is created from a sire line
A and a dam line B, which are usually not inbred. The pure lines
have breeding values aA and aB for PP, and breeding values cA
and cB for CP. Typically, some animals are genotyped, whereas
others are not. The goal is to obtain accurate predictions of the
breeding values for CP by utilizing phenotypic information from
genotyped and ungenotyped purebred and crossbred animals. An
overview over the considered models is given in Table 1.

The SNP alleles are usually assumed to be biallelic, so they
may be coded as alleles 1 and 2. Most authors use centered allele
content matrices as proposed by VanRaden (2008). The centering
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TABLE 1 | Additive and dominance models for the prediction of crossbred

performance.

Data requirements

Phenotyped Genotyped

crossbreds crossbreds

Additive

Models

Parental Model x

BSAM/ASGM x x

Single step x (x)

Dominance

Models

Line-independent (x) (x) Provide more

accurate

breeding

values for CP

than additive

models

Line-dependent (x) (x)

Dominance + Imprinting x x

(x) not necessarily needed but can be utilized.

does not affect the predictions, but affects the model-based
reliabilities (Strandén and Christensen, 2011). We denote with

ZA
G = GA

− 2PA

the centered allele content matrix for the genotyped animals from
lineA, whereby the allele content GA

im ∈ {0, 1, 2} of animal i from
line A is the number of copies of allele 2, animal i has at SNP m,
and PAim is the frequency of allele 2 of SNPm in lineA. Moreover,
we denote with

ZA
X = GA

X − PA

the centered allele origin matrix for alleles from cross X that
originate from line A. That is, GA

X im ∈ {0, 1} is the number of
copies of allele 2, crossbred animal i has obtained from sire line
A at SNPm. These matrices are needed to define genetic values of
purebred and crossbred animals. The vector with breeding values
for CP for animals from lineA has the representation

cA = ZA
G αA, (1)

where αA is the vector with allele substitution effects for CP. The
vector with breeding values for PP has the representation

aA = ZA
G α̃A, (2)

where α̃A is the vector with allele substitution effects for PP. The
equations for aB and cB are similarly.

Most genomic models for two-way crosses utilize, that the
vector aX with additive genetic values of the crossbred animals
can be decomposed into a contribution cA

X
that comes from sire

line A, and a contribution cB
X

that comes from dam line B.
That is,

aX = cA
X
+ cB

X
, (3)

where

cA
X

= ZA
X

αA, and cB
X

= ZB
X

αB .
(4)

The contribution cA
X

from line A can be further decomposed
into a contribution that comes from the breeding values cA for
CP, and into a vector mA

X
that contains the Mendelian sampling

terms of the transmitted gametes (Wei and van der Werf, 1994).
That is,

cA
X

= 0.5 ZXAcA +mA
X
, (5)

where matrix ZXA assigns animals from line A to their
crossbred offspring.

Different models have been developed for predicting CP,
which can broadly be classified into additive models and
dominance models. While some models predict the breeding
values for CP directly with Equation (5), others predict the vector
αA with allele substitution effects for CP. In the latter case, the
estimated breeding values ĉA for CP in line A are obtained by
substituting αA with the prediction α̂A in Equation (1).

Additive Models
Different additive models have been proposed in the literature.
Some models assume that the crossbred animals are genotyped,
whereas others do not. The general additive model for a two-
way cross is a trivariate model that has two equations for
the parental lines, and one equation for the cross. It has the
general representation

yA = XAbA + ZAuA + aA + EA

yB = XBbB + ZBuB + aB + EB

yX = XX bX + ZX uX + . . . + EX ,

where yA, yB , yX are vectors with phenotypic records of the
respective subpopulation, bA, bB , bX are vectors of fixed effects
with design matrices XA,XB ,XX , and uA, uB , uX are vectors
of non-genetic random effects with design matrices ZA,ZB ,ZX .
Finally, aA, aB are the breeding values for PP, and EA,EB ,EX are
the residual terms. The term “. . . ” in the third equation depends
on the respective model.

The first two model equations are needed because PP and
CP are genetically correlated (Wientjes and Calus, 2017), so
phenotypic records of purebred animals increase the reliabilities
of the breeding values for CP.

The Parental Additive Model
The parental additive model is based on Equations (2), (3), and
(5), and is suitable when the crossbred animals are not genotyped.
The model assumes that the Mendelian sampling terms are part
of the residuals, so the model equations become

yA = XAbA + ZAuA + aA + EA

yB = XBbB + ZBuB + aB + EB

yX = XX bX + ZX uX + 0.5 ZXAcA + 0.5 ZXBcB + EX ,

where aA = ZA
G α̃A, aB = ZB

G α̃B , cA = ZA
G αA, and

cB = ZA
G αA.
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The BSAM and ASGM Model
The model with breed-specific allele effects (BSAM) and the
model with breed-independent allele effects, which is also called
the across-breed SNP genotype model (ASGM) are based on
Equations (2–4), and require that the crossbred animals are
genotyped. While the ASGM model predicts one effect per SNP,
the BSAM model predicts one effect for the paternal allele, and
one for the maternal allele of the crossbred animals. Origin-
specific allele effects may occur e.g., due to a different LD pattern
between the marker and the QTL, different gene frequencies
at the QTL, imprinting effects, or the epistatic effects may be
different in the pure breeds. This results in different effects of the
marker alleles and thus affects the estimated breeding values.

The first two equations of the BSAM and ASGMmodel are as
above, whereas the third model equation becomes for the BSAM

yX = XX bX + ZX uX + ZA
XαA

+ ZB
XαB

+ EX .

An equivalent representation for the ASGMmodel is

yX = XX bX + ZX uX + aX + EX .

Ibánez-Escriche et al. (2009) predicted CP of the parental lines
from genotyped crossbred animals with BSAM and ASGM,
whereby the breed-specific allele substitution effects of the BSAM
model were a priori independent. The allele substitution effects
were estimated with BayesB, which is a method that assumes that
many of them are actually zero. An oligogene trait was simulated
with breed-independent QTL effects. Although the SNP effects
are expected to be breed-specific due to differences in LD between
markers and QTL, the authors found that the BSAM model
outperformed ASGM only if the number of markers was low,
the number of records for training was high, and if the parental
breeds were distantly related.

Lopes et al. (2017) used the BSAM model with normally
distributed SNP effects to predict breeding values for CP from
crossbred data, and compared the results with conventional
GBLUP. The model provided similar prediction accuracies as
conventional GBLUP for the traits litter size and gestation
length in pigs. It may be not superior to GBLUP because the
allele substitution effects of the different breeds were implicitly
assumed to be uncorrelated, which is an assumption that is not
likely to be fulfilled.

Sevillano et al. (2019) extended the BSAM and ASGM model
toward a three-way cross and distinguished SNP that showed
a strong trait association from all remaining SNP. For the trait
associated SNP breed-specific effects were estimated, whereas for
the remaining SNP one effect was estimated, regardless of the
allele origin. This model was compared with the BSAM model
and with the ASGM model for the trait daily gain by assuming
normally distributed SNP effects. Purebred as well as crossbred
data was used for training. The results showed a superiority of
their method only if the estimated genetic correlations between
PP and CP for the trait associated SNPs and the remaining SNPs
were unequal.

Vandenplas et al. (2017) derived equations for predicting the
reliability of genomic breeding values for CP for BSAM and
ASGM models and assumed normally distributed SNP effects.

The authors found that BSAMoutperformed ASGM for a specific
parental line, if the effective number of chromosome segments in
the crossbred reference animals that originate from the parental
line is less than half the effective number of all chromosome
segments that are independently segregating.

Additive Single Step Model
While BSAM has the disadvantage that all crossbred animals
have to be genotyped, the parental additive model has the
disadvantage, that the information provided by the Mendelian
sampling terms cannot be utilized for prediction. These problems
could be resolved by using a trivariate model of the form

yA = XAbA + ZAuA + aA + EA

yB = XBbB + ZBuB + aB + EB

yX = XX bX + ZX uX + cAX + cBX + EX

that includes both, genotyped and phenotyped animals.
Christensen et al. (2014) derived the joint covariance matrix AA

of cA
X
, cA, and aA by using the pedigree-based model of Wei and

van der Werf (1994) as a starting point. The authors derived the
covariance matrix AA from pedigree relationships, and replaced
it in a subsequent step by a covariance matrix HA that combines
pedigree and genotype information.

Xiang et al. (2016a) validated the model of Christensen et al.
(2014) in a two-way pig cross for the trait number of piglets
born. The authors found that the inclusion of crossbred genomic
information improved the model-based reliabilities for CP and
reduced to some extent the bias of prediction.

Tusell et al. (2016) used a single-step model for two-way
crossbred pigs and the sire line A, so the model reduced to a
bivariate model. The purebred animals were partly genotyped.
Since the crossbred animals were not genotyped, the third
equation in themodel of Christensen et al. (2014) was replaced by
a parental additive model equation, i.e., the Mendelian sampling
terms were part of the residual. This resulted in a model equation
of the form

yA = XAbA + ZAuA + aA + EA

yX = XX bX + ZX uX + 0.5 ZXAcA + 0.5 ZXBcB + EX .

The authors evaluated six growth and meat traits and found that
the genetic correlations between purebred and CP were larger
than 0.69 for all traits. The accuracies of the genomic breeding
values were higher than those obtained from univariate single-
step models that took either purebred or CP into account, and
also higher than those obtained with pedigree-based models.

Dominance Models
Crossbreeding utilizes heterosis and breed complementarity. A
widely accepted hypothesis is that heterosis arises predominantly
from dominance effects. An animal carries a dominance effect
only if it is heterozygous at a particular QTL. We denote with

ZX
H = HX

−H
X

the centered indicator matrix for heterozygosity. That is, HX
im ∈

{0, 1} equals one, if animal i is heterozygous at SNP m, and H
X

im
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is the heterozygosity of SNP m in line X . The dominance model
assumes that the vector gX with genotypic values of the crossbred
animals has the representation

gX = µX 1+ ZX
G aX + ZX

H dX ,
(6)

where µX is the population mean, aX is the vector
with population-dependent additive effects, and dX is
vector with population-dependent dominance effects.
The genotypic values of purebred animals are defined
accordingly. The trivariate dominance model for a
two-way cross and the parental lines has therefore
the representation

yA = XAbA + ZAuA + ZA
G aA + ZA

H dA + EA (7)

yB = XBbB + ZBuB + ZB
Ga

B
+ ZB

Hd
B
+ EB

yX = XX bX + ZX uX + ZX
G aX + ZX

H dX + EX ,

which we call the dominance model with line-dependent effects.
The vector cA with breeding values for CP from breed A has the
representation given in Equation (1), but the vector with allele
substitution effects for CP is

αA
= aX +

(

1− 2pB
)

◦ dX ,

where pB is vector with allele frequencies in the opposite line,
and the Hadamard product “◦′′ is the component-wise product.
The breeding values and allele substitution effects for line B are

defined accordingly. Predictions âX and d̂X of aX and dX are
needed to get predictions of the allele substitution effects for CP
in lineA with equation

α̂A
= âX +

(

1− 2pB
)

◦ d̂X .

Some solvers are unable to account for the fact that E
(

dX
)

=

µX

d
1 6= 0 for most traits. As shown by Xiang et al. (2016b),

one may write dX = dX∗ + µX

d
1 such that E

(

dX
∗

)

= 0.

Then, the term ZX
H dX in Equation (7) equals ZX

H 1µX

d
+ ZX

H dX
∗
,

where µX

d
is treated as an additional fixed effect. The same needs

to be done for the parental lines. We can write ZX
H 1µX

d
=

µX

d
M(ĥX − hX 1), where M is the number of SNPs, ĥX is the

vector with heterozygosities of the crossbred animals, and hX is
the average heterozygosity of the crossbred animals. Hence, the
value −µX

d
M quantifies the inbreeding depression per unit of

genomic inbreeding.
Vitezica et al. (2016) demonstrated how dominance models

with normally distributed SNP effects can be transformed into
equivalent dominance models with animal effects, whereby
different covariance matrices are needed for the additive
component and the dominance component of the animal effects.
That is, if all SNP effects are normally distributed, then the

SNP effects model can be replaced by the equivalent animal
effects model

yA = XAbA + ZAuA + ZA
H 1µA

d + ãA + d̃∗A + EA

yB = XBbB + ZBuB + ZB
H1µ

B

d + ãB + d̃∗B + EB

yX = XX bX + ZX uX + ZX
H 1µX

d + ãX + d̃∗X + EX

from which the SNP effects can be backsolved. Thereby, the

animal effects satisfy ãX = ZX
G aX , and d̃∗

X
= ZX

H dX
∗
, and so

on. The joint covariance matrices of the animal effects are given
in Christensen et al. (2019).

The SNP effects in Equation (7) were assumed to be line-
dependent, which may be the case because the LD between
SNP and QTL differs between lines. This may be neglected if
the marker panel is sufficiently large. In this case, the SNP
effects can assumed to be line-independent, and we obtain the
simplified model

yA = XAbA + ZAuA + ZA
G a+ ZA

H d + EA

yB = XBbB + ZBuB + ZB
Ga+ ZB

Hd + EB

yX = XX bX + ZX uX + ZX
G a+ ZX

H d + EX ,

which we call the dominance model with line-
independent effects.

Vitezica et al. (2013) emphasized that two different
parameterizations of the dominance model exist. The first
parameterization, which is given by Equation (6), is suitable
for two-way crosses, and includes the additive and dominant
SNP effects. In contrast, the second parameterization includes
the allele substitution effects and the dominance deviations
of the SNP. Both parameterizations are equivalent, but their
interpretation is different.

Model Evaluation
Zeng et al. (2013) compared a Bayesian dominance model with
the corresponding BSAM model and the corresponding ASGM
model. A BayesCπ type method was used to estimate the marker
effects, so the prior assumption was that the SNP effects are
either zero, or come from a normal distribution. The comparison
was done for a simulated two-way crossbreeding program. A
number of 20 generations of selection was simulated with the
aim to improve CP in both parental lines. The marker effects
were estimated only once in generation one from crossbred
animals and used in all subsequent generations. The simulated
traits showed a different degree of dominance variance, ranging
from “large” to “realistic,” or null. The dominance model was
superior to the BSAM model and to the ASGM model. This
superiority depended on the fraction of dominance and thus
heterosis in the data, but even for situations where no dominance
was simulated, the accuracy of the dominance model was similar
to the additive model, indicating the robustness of the model. It
can tentatively be concluded, that the use of a dominance model
is in general advisable, even if dominance is not an important
source of trait variability.

Xiang et al. (2016b) used a dominance model with line-
dependent effects for a two-way cross and the parental breeds.
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The SNP effects were normally distributed, and the additive
and dominance effects of the three different populations were
correlated. The authors found that the increased predictive ability
of the dominance model arose solely from capturing inbreeding
depression. This suggests that dominance effects of individual
QTL have not been captured. The reason may be that a 60K SNP
panel is not sufficient for achieving high LD betweenmarkers and
QTL, and that the normality assumption is unlikely to be fulfilled.

Esfandyari et al. (2016) compared a Bayesian dominance
model with the corresponding Bayesian ASGM model at the
example of litter size in a two-way pig cross, whereby BayesC of
Habier et al. (2011) was used for prediction. Training was on the
parental lines. The prediction accuracies for PP and CP obtained
with the dominance model were both higher than those for PP
obtained with the ASGMmodel.

Implications for Breeding Programs
All additive models for predicting CP rely on phenotypic data
collected from crossbred animals. This can be problematic
in situations where the crossbred animals are not individually
identified and thus such data collection pipeline is not
implemented. This is likely the case on many farms housing
crossbred animals. While additive models require phenotypes
from crossbred animals, this is not the case for dominance
models because the breeding values for CP can be derived
from additive and dominance effects that are predicted in the
pure breed, and from the allele frequencies in the opposite
breed. Esfandyari et al. (2015a) proposed therefore to use
dominance models for selecting purebred animals for CP based
on purebred phenotypic and genotypic information only. They
did a simulation study and estimated the marker effects with
Bayesian LASSO (Park and Casella, 2008; los Campos et al.,
2009). The results showed that the gain in CP was higher when
the purebreds were selected for CPs, which demonstrated the
feasibility of themethod even when no crossbred data is available.
Moreover, combining several related lines into a single reference
population increased the prediction accuracy. However, as shown
by Esfandyari et al. (2015b), training on crossbred animals leads
to a higher selection response than training on purebred animals.
A likely explanation is, that the level of heterozygosity was higher
than in the purebred data.

Although genomic selection for CP is a promising strategy to
increase selection response for CP in the short andmedium term,
Esfandyari et al. (2018) found that genomic selection for CP leads
eventually to lower CP in the long term than genomic selection
on PP. This hold regardless of whether training was on purebred
or crossbred animals.

Dominance Model With Imprinting
Dominance effects, as well as additive effects may depend on
the breed of origin, which may be due to imprinting or breed
complementarity. It could therefore be advantageous to account
for imprinting explicitly. A dominance model with imprinting
needs to distinguish between the paternal and the maternal allele.
If an animal has received allele A1 from line A and allele A2

from line B, then we denote its genotype as A1A2. The centered

indicator matrix for genotype A1A2 is given by

WA1A2
X

= HA1A2
X

−H
A1A2

X ,

where HA1A2
X im ∈ {0, 1} equals one, if animal i from cross X has

genotype A1A2 at SNPm, andH
A1A2

X im is the proportion of animals
from cross X that have this genotype at SNPm.

The dominance model with imprinting assumes that the
vector gX with genotypic values of the crossbred animals has
the representation

gX = µX 1+
(

W21
X +W22

X

)

aXA +
(

W12
X +W22

X

)

aXB

+ W21
X dXA +W12

X dXB , (8)

where µX is the population mean, vectors aX
A

and aX
B

contain
breed-of-origin dependent additive effects, and vectors dX

A
and

dX
B

contain breed-of-origin dependent dominance effects. The
model equation for the crossbred animals becomes

yX = XX bX + ZX uX +
(

W21
X +W22

X

)

aXA

+
(

W12
X +W22

X

)

aXB +W21
X dXA +W12

X dXB + EX . (9)

If imprinting in the parental lines is neglected, then the model
equations for the parental lines remain as in Equation (7). The
vector with allele substitution effects for CP of line A is in
this case

αA
= aX

A
+

(

1− pB
)

◦ dX
A
− pB ◦ dX

B
, (10)

where pB is the vector with allele frequencies in the opposite line.
The proof is given in the Supplementary Material. When the
SNP effects in the cross do not depend on the breed of origin, then
the model simplifies, and becomes identical to the dominance
model with line-dependent effects.

Nishio and Satoh (2015) proposed two alternative
parameterizations for models with dominance and imprinting
and fitted them by assuming normally distributed SNP effects.
Their first model includes an additive effect, a dominance
effect, and an imprinting effect for the heterozygous genotype,
while their second model includes a paternal and a maternal
gametic effect, and a dominance effect. The models provided in
a simulation study more accurate estimates of genotypic values
than GBLUP. While the models of Nishio and Satoh (2015) have
the advantage that only 3 effects are needed in the equivalent
SNP model for modeling the contribution of each SNP to the
genotypic value of an animal, the model in Equation (9) has the
advantage that more rigorous prior assumptions can be made for
the joint distribution of the effects. That is, if the paternal lines
are closely related, then the additive effects aX

A
and aX

B
could

assumed to be a priori highly correlated, as well as the dominance
effects dX

A
and dX

B
. However, the parameterization does not allow

to predict the vectors aX
A
, aX

B
, dX

A
and dX

B
individually.

Esfandyari et al. (2015b) compared in a simulation study
a Bayesian dominance model with imprinting with the
corresponding dominance model with line-independent effects,
but used a different parameterization. The model considered
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imprinting because it included a separate effect for each phased
genotype. Compared to the model proposed above, it has the
disadvantage that the effects have no direct interpretation as
additive and dominance effects. The genetic effects of the parental
breeds were a priori independent. Even though the authors did
not simulate imprinting, they found that the dominance model
with imprinting was superior, if the reference population was
sufficiently large, and if both lines were not closely related. The
reason may be that the LD between markers and QTL was
different in the cross and in the parental lines, so the additive
effects and dominance effects were population-dependent.

DISCUSSION

In this paper, genomic models for the analysis of discontinuous
crossbred data were reviewed. Compared to purebred genomic
models, the reviewed models were of much higher complexity
due to the inclusion of dominance effects, breed-specific effects,
imprinting effects, and the use of PP and/or CP data. In the
following some additional aspects regarding the distribution of
the SNP effects and the model choice are considered.

Distribution of SNP Effects
The normal distribution is the most common assumption about
the distribution of SNP effects. Such models have the advantage,
that they have an equivalent representation as animal models
with genomic covariance matrices for which fast solvers exist,
such as DMU (Madsen et al., 2010), WOMBAT (Meyer, 2007),
ASReml (Gilmour et al., 2009), blupf90 (Misztal, 1999), orMiX99
(Vuori et al., 2006). Although the assumption of a normal
distribution is not likely to be fulfilled when large marker panels
are used, the experience with purebred data suggest that the
reliabilities of the breeding values are only slightly worse than
those obtained with non-normally distributed marker effects.
However, the situation in crossbreeding is different because the
parental lines are commonly distantly related, and it may be
envisaged to evaluate all lines simultaneously in order to increase
the reliabilities of the breeding values. This requires that all QTL
are in high LD with at least one marker, which implies the
necessity to use a large marker panel. However, if the marker
panel is large, then only few markers are needed to capture
the effect of any QTL. Consequently, the true effects of most
markers are actually zero. The model for genomic selection
should account for this and assume as a prior distribution for
the SNP effects a mixture of two distributions. One component
provides the distribution for markers that are in strong LD with
a QTL, and the other one is actually zero. In this case, a random-
variable γm is commonly introduced, which indicates whether
the effects of an SNP m are different from zero. Well-known
examples are BayesB (Meuwissen et al., 2001), BayesC (Habier
et al., 2011), and BayesR (Erbe et al., 2012). Such algorithms
are usually implemented with MCMC algorithms, which results
in long computation times. However, alternative and faster
implementations are available for some models (e.g., Meuwissen,
2009; Shepherd et al., 2010).

For models with additive and dominance effects, an important
aspect is, whether these effects are a priori independent or not.
It may be advantageous to assume that all effects of a particular
SNP m are of the same order of magnitude. This is possible
if all effects of a particular SNP m have conditionally on the
common covariance matrix γmσ 2

m6 a normal distribution, where
σ 2
m ∼ Inv-χ2(v, s) and 6 is an appropriately chosen covariance

matrix. For the dominance model with line-dependent effects,
this means that

(aAm , aBm, a
X
m , dAm , dBm, d

X
m )|σ 2

m, γm ∼ N
(

0, γmσ 2
m6

)

.

It can be shown that in this case, all effects of SNP m would
have for γm = 1 a t-distribution with v degrees of freedom, and
are for γm = 0 equal to zero. Moreover, the magnitude of the
effect size would be similar for all effects of a given SNPm, which
reduces the proportion of overdominant SNP. Developing a fast
algorithm for such a model is an area for future research.

Model Choice
The most suitable model for a breeding program depends
on the achievable accuracies for the breeding values of the
selection candidates, and on the available data. Among the
additive models, the parental model provided the least accurate
predictions for CP, which is because the Mendelian sampling
terms are part of the residual and can therefore not be utilized
for prediction. It has, however, the advantage that the crossbred
animals do not need to be genotyped and may therefore be
suitable for animals with low economic value.

The BSAM and ASGM models provided similar results in
most cases. The BSAM model, however, needs the trace of the
alleles from the purebred parent breed to the crossbred end
product, which is a source of potential errors. This might even
be more a problem when more complex crossbred structures
are involved, e.g., three- or four-way crossbred data. Vandenplas
et al. (2016) and Sevillano et al. (2016) developed a statistical
pipeline for this purpose and applied it to a three-way crossbred
pig data set.

The reviewed papers suggest that the dominance models
provide more accurate genomic breeding values for CP than
the additive models. Although Xiang et al. (2016b) showed that
this gain in accuracy results in the case of normally distributed
SNP effects almost solely from capturing inbreeding depression,
this may be not the case when large marker panels and
appropriate Bayesian models are used for evaluation. Dominance
models have the additional advantage that breeding values for
crossbred performance can be obtained from purebred animals,
so phenotyping and genotyping crossbred individuals may not
be necessary. However, as shown by Esfandyari et al. (2015b),
the accuracy of the breeding values can be increased when
phenotyped and genotyped crossbred individuals are included in
the reference population.

Three different dominance models have been applied to
crossbred data, which are the dominance model with line-
independent effects, the dominance model with line-dependent
effects, and the dominance model with imprinting. The
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dominance model with line-dependent effects is likely to be
inferior to the model with line-independent effects if the SNP
effects of the different lines are falsely assumed to be statistically
independent, the reference population is small, and the lines are
closely related. This could be avoided by specifying a covariance
between the SNP effects of the different lines.

When imprinting is relevant, then a dominance model with
imprinting is of interest. For example, Jiang et al. (2017) found
that there is substantial imprinting for reproduction traits in
dairy cattle. The application of imprinting models requires
that the crossbred animals are genotyped and that the alleles
are traced from the parental lines to the crossbred animals.
Unfortunately, to the best of our knowledge, these models
are not well-analyzed yet. More research should be done in
this area, which includes to analyze all models with common
data sets.

CONCLUSION

Genomic models for crossbred data are of much higher
complexity thanmodels for purebred data, which results from the
inclusion of dominance effects, breed-specific effects, imprinting
effects, and from the joint evaluation of PP and CP. Although
much research has already been done to develop genomic
models for crossbred data, it can be expected that further
progress can be made by developing statistical models that
include all the different genetic effects in a single model, assume
realistic covariance structures between the genetic effects of
different breeding lines, use large marker panels, and assume
realistic distributions for the SNP effects. The comparisons
made in the reviewed papers are not sufficiently comprehensive
to come to a clear recommendation as to which existing
method is most suitable for a specific breeding program and
a specific genetic trait architecture. Some papers suggested

a superiority of dominance models. In the reviewed papers,
the focus was on discontinuous crossbreeding schemes. This
was because, to our best knowledge, no genomic models have
been published that are specifically designed for continuous
crossbreeding schemes.
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Cattle breeding routinely uses crossbreeding between subspecies (Bos taurus taurus
and Bos taurus indicus) to form composite breeds, such as Brangus. These composite
breeds provide an opportunity to identify recent selection signatures formed in the new
population and evaluate the genomic composition of these regions of the genome. Using
high-density genotyping, we first identified runs of homozygosity (ROH) and calculated
genomic inbreeding. Then, we evaluated the genomic composition of the regions
identified as selected (selective sweeps) using a chromosome painting approach. The
genomic inbreeding increased at approximately 1% per generation after composite
breed formation, showing the need of inbreeding control even in composite breeds.
Three selected regions in Brangus were also identified as Angus selection signatures.
Two regions (chromosomes 14 and 21) were identified as signatures of selection in
Brangus and both founder breeds. Five of the 10 homozygous regions in Brangus
were predominantly Angus in origin (probability >80%), and the other five regions had
a mixed origin but always with Brahman contributing less than 50%. Therefore, genetic
events, such as drift, selection, and complementarity, are likely shaping the genetic
composition of founder breeds in specific genomic regions. Such findings highlight a
variety of opportunities to better control the selection process and explore heterosis and
complementarity at the genomic level in composite breeds.

Keywords: composite breeds, crossbreeding, local ancestry, Bos taurus, Bos indicus

INTRODUCTION

Breeding methods that exploit heterosis are common in livestock production. In cattle, the
challenge for adopting terminal crossbreeding systems is consistent genetic composition of
replacement heifers from the maternal breed (Lightner and Williams, 2018). Composite breeds (also
referred to as synthetic breeds) allow for consistency in heterosis retention and heifer replacement.
Brangus, developed in the United States, are an example of a composite breed, defined as 62.5%
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Angus and 37.5% Brahman (International Brangus Breeders
Association1). The breed represents the complementarity
between the tropically adapted Bos taurus indicus and the
temperate high-valued carcass of Bos taurus taurus cattle
(Gregory and Cundiff, 1980; Buzanskas et al., 2017). Brangus
registration by the International Brangus Breeders Association
started in 1949.

After a composite breed is formed, a genetic improvement
program can be applied, selecting animals across generations
based on expected progeny differences (EPD) for specific traits.
The United States Brangus breeder association (IBBA) has
developed EPDs for birth weight, weaning weight, yearling
weight, milk production, total maternal, calving ease direct,
calving ease maternal, scrotal circumference, ribeye area, and
intramuscular fat (International Brangus Breeders Association;1).
Therefore, artificial selection pressure, at varying levels of
intensity, would have been employed on these traits. In this
process, the inbreeding level can increase due the selection of few
parents, especially bulls, and, consequently, decreasing heterosis.
In this scenario, genomic selection signatures may arise after
composite formation (Goszczynski et al., 2017). These genomic
regions with selective sweeps may have different genomic breed
composition than expected due to selective advantages of genes
coming from one of the founder breeds.

The evaluation of selection signatures and genomic breed
composition in composite breeds can contribute to a better
understanding of the genetic effects associated with traits
under selection and the inheritance of loci in crossbreeding
systems (Grigoletto et al., 2019). Concerning the dynamics of
composite breed development (Paim et al., 2020), we can gain
new insights for crossbreeding systems based on a genomic
perspective. The aim of this work was to expand our knowledge
of composite breed genomics by identifying genomic inbreeding
and selection signatures in Brangus. Further, we aimed to
evaluate the genomic breed composition of these selected
regions, identifying differential founder (Angus or Brahman)
contributions to that region.

MATERIALS AND METHODS

Animals
High-density SNP data (777,962 SNP, BovineHD Beadchip,
Illumina, San Diego, CA, United States) from 68 Brahman, 95
Angus, and 59 prominent Brangus sires born from 1970 to 2010
were evaluated in total. Of the animals genotyped, 36 Brahman
and 20 Brangus samples were acquired from the National Animal
Germplasm Program’s (NAGP-ARS-USDA) gene bank (Fort
Collins, CO, United States). The other samples were genotyped
by the USMARC research center (ARS-USDA, Clay Center,
NE, United States).

The Brangus pedigree, provided by the IBBA, consists of
1,152,050 individual animal records from which the genetic
relationship coefficients were computed. The coefficient

1https://gobrangus.com/

of genetic relationship was used to cluster the current
Brangus population using Ward’s method in proc cluster
of SAS University Edition (Copyright© 2012–2018, SAS
Institute Inc., Cary, NC, United States). Brangus were
grouped into 17 clusters. The Brangus animals sampled for
genotyping represented all 17 clusters. Sampled Brangus
bulls were born in 12 states in the southern United States
from 1970 to 2010, and these bulls had 43,393 progeny
recorded by the IBBA.

Pedigree Evaluation
The pedigree file was evaluated using the optiSel package
(Wellmann, 2017) in R 3.4.2 software (R Core Team, 2017).
The Angus, Brahman, and crossbred animals (with pedigree
breed composition other than the 5/8 Angus, 3/8 Brangus) were
considered as ancestors, totaling 75,449 ancestors in the pedigree
file. The number of equivalent generations for each animal
(hereinafter called generations) was calculated by the equation:
g =

∑(
1/2
)n

, where g is the equivalent generation number and
n is the number of generations separating the individual from
each known ancestor. The method used is similar to the equation
described by Welsh et al. (2010).

A summary of the pedigree analysis of the Brangus bulls
used is shown in the Supplementary Material (Supplementary
Figure 1). The index of pedigree completeness (PCI) was
0.94 (±0.143 SD), computed following the MacCluer et al.
(1983) algorithm. PCI is the harmonic mean of the pedigree
completenesses of the parents, summarizing the proportion
of known ancestors in each ascending generation. Pedigree
inbreeding of 0.04 (±0.035) was found for the breed.
The average pedigree relationship was 0.086 (±0.081),
and only 1.69% of the pairs had a pedigree relationship
higher than 0.3.

Filtering and Quality Control of Genomic
Data
Markers with a call rate lower than 95% or not physically
mapped to the bovine genome assembly UMD3.1 were
removed from the analyses. The remaining genotypes were
698,282 SNP markers on the autosomes and 38,581 SNP
on the sex chromosomes (37,538 in X and 1,043 in Y).
Markers with minor allele frequency lower than 1% were
removed. One Brangus sample with a call rate lower than
90% was removed.

Runs of Homozygosity and Selection
Signatures
The runs of homozygosity (ROH) analyses were conducted in
SNP and Variation Suite R© v8.7 (Golden Helix, Inc., Bozeman, MT,
2). The parameters were set to a minimum run length equal to
1000 kb with minimum of 70 SNP, allowing runs to contain up to
two heterozygotes and five missing genotypes with a maximum
gap equal to 50 kb and minimal SNP density of 1 SNP per 50 kb.

2www.goldenhelix.com
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The minimal number of SNP to constitute a ROH (l) was
determined by the same method used by Purfield et al. (2012) and
determined by Lencz et al. (2007):

l =
loge

α
ns . ni

loge(1− het)
, (1)

where ns is the number of SNPs per individual, ni is the
number of individuals, α is the percentage of false positive
ROH (set to 0.01 in this study), and het is the mean SNP
heterozygosity across all SNP.

The incidence of common ROH was transformed to each
breed’s frequency, dividing by the number of animals of each
breed in the analysis. Normality tests were performed, and the
frequency threshold defining the top 1% of the observations
for each breed was determined. The homozygous regions above
the frequency threshold of each breed (38% for Angus, 25.4%
for Brahman, and 25.9% for Brangus) were considered as
selected regions.

According to the length of the ROH, it is possible to
estimate the number of generations traced back to the common
ancestor, which generates the homozygosity in that region. We
classified the ROH into 4 classes (1 = more than 10 generations,
2 = between 5 and 10, 3 = between 3 and 5, and 4 = less than 3
generations) using the equation proposed by Curik et al. (2014):
E
(
LIBD−H|gcA

)
= 100/(2 gcA), where E(LIBD−H | gcA) is the

expected length of an identical by descendent (IBD) haplotype (in
centiMorgans – cM), and gcA is the number of generations from
the common ancestor. The conversion from the recombination
rate metric to physical distance (from cM to Mb) was performed
using the average of the results of Arias et al. (2009) and Weng
et al. (2014). Based on the Curik et al. (2014) equation, for
example, an ROH longer than 13 Mb has most likely originated
from a common ancestor less than three generations ago.

A genomic inbreeding coefficient based on ROH (FROH) was
calculated on each animal according to McQuillan et al. (2008)
with the equation

FROH =

∑n
j=1 LROHj

Ltotal
, (2)

where LROHj is the length of ROHj, and Ltotal is the total size of
the autosomes (using the estimated value in the Btau5.0.1 genome
assembly of 2,522,199,562 bp). For each animal, FROH was
calculated based on each of the four classes explained before and
for each chromosome using the total size of each chromosome as
Ltotal (following the chromosome size estimated by the Btau5.0.1
genome assembly).

Chromosome Painting
We used the copying model, implemented in ChromoPainter
(Lawson et al., 2012), to estimate the ancestry of regions
across each genomic region. This copying model relates the
patterns of linkage disequilibrium (LD) across chromosomes
to the underlying recombination process. The method uses
a hidden Markov model to reconstruct a sampled haplotype.
To reinforce chromosome-painting results, we ran Fst analyses
(Weir and Cockerham, 1984) for each region comparing the pairs

(Angus vs. Brangus and Brahman vs Brangus). The function–fst
in the plink1.9 software3 was used.

We used the founder breeds, Angus and Brahman, as
haplotype donors to the Brangus haplotypes. The ChromoPainter
analyses were performed twice (allowing or not allowing self-
copying) using the linked model. The recombination files were
created using the Perl scripts provided on the ChromoPainter
website4. Beagle3.3 (Browning and Browning, 2007) was used to
phase the genotypes (using 20 iterations).

Simulation Model
We performed a population genetics simulation using the
online tool5. The initial parameters were set to an initial allele
frequency of 62.5% (representing the Angus allele in the first
generation of Brangus); 10 generations; effective population size
of 100; no selection, mutation, migration, and inbreeding (similar
to a neutral model). We performed 50 simulations for each
generation. The raw data were used to calculate the summary
statistics (mean and standard deviation) and to determine the
expected lower and upper value (within 99% of the Gaussian
distribution) of the expected founder composition for each locus.
These lower and upper values were applied as a threshold in
the visualization of chromosome painting results to identify
regions with significant enrichment of alleles coming from one
of the founders.

Identification of Genes and QTL in
Selective Signatures
Genes in the selected regions (ROH islands) were identified in the
Golden Helix GenomeBrowse R© visualization tool v2.1 (Golden
Helix, Inc, Bozeman, MT,6). The genes were identified based
on the NCBI Bos taurus annotation release 105 and Btau5.0.1
genome assembly. The genes list obtained was submitted in
the NetworkAnalyst online tool7, aiming to characterize the
biological process of these genes through the Enrichment
Network tool using the PANTHER database. Thereafter, a search
in the literature and in the Cattle QTL database (available online
at8) was executed to identify traits related to genes located in each
significant genomic region.

RESULTS

The runs of homozygosity (ROH) were categorized into four
classes according to the expected number of prior generations to a
common ancestor (>10, >5, >3, and <3 generations). The ROH
classified as coming from a common ancestor within the previous
3 generations (>13 Mb) was found in Brangus between the
4th and 5th generations, and the incidence increased thereafter
for most chromosomes (Figure 1). That said, 54.2% of Brangus

3www.cog-genomics.org/plink/1.9/
4http://www.paintmychromosomes.com/
5http://popgensimulator.pitt.edu/graphs/allele
6www.goldenhelix.com
7https://www.networkanalyst.ca/
8http://www.animalgenome.org
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FIGURE 1 | Runs of homozygosity (ROH) length observed in Brangus cattle according to the equivalent generation number of each animal. Dashed lines indicate the
length threshold for ROH that relates to a common ancestor at 3, 5, and 10 prior generations (red, blue, and green, respectively) following the equation proposed by
Curik et al. (2014).

animals had long ROH (>13 Mb) indicative of recent inbreeding.
However, chromosomes 17, 23, 26, and 28 did not have any ROH
in this length range (Supplementary Figure 1).

The genomic inbreeding coefficient based on ROH (FROH)
was significantly (p < 0.0001) higher for Angus cattle compared
to Brahman and/or Brangus (Figure 2). Brangus had lower FROH
than Angus for all classes. Brahman and Brangus cattle had the
same FROH for the ROH coming from a common ancestor tracing
through 10 generations (all classes with ROH > 3.9 Mb), which

was not expected and suggests a high effective population size
for Brahman. For ROH coming from more than 10 previous
generations (ROH < 3.9 Mb), Brangus cattle had higher FROH
than Brahman cattle.

Pedigree inbreeding had a positive and significant relationship
with FROH, and a similar pattern was observed in all the
classes of ROH length (Supplementary Figure 2). Brangus cattle
had 8.5 ± 3.97% of genomic inbreeding and 3.9 ± 3.41% of
pedigree inbreeding. Animals with no inbreeding at pedigree

Frontiers in Genetics | www.frontiersin.org 4 July 2020 | Volume 11 | Article 710122

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00710 July 9, 2020 Time: 16:11 # 5

Paim et al. Genomic Breed Composition of Selection Signatures

FIGURE 2 | Genomic inbreeding based on runs of homozygosity (FROH) by breed and by ROH length classes. The t-test comparison results are shown in the top
(ns: not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).

had close to 6% of genomic inbreeding. Averaged across
chromosomes, the rate of FROH increased ≈1% per generation
in Brangus (FROH = 0.0196 + 0.0097∗generation, R2

adj = 0.19,
p-value = 0.0004). The increase in FROH was not observed for all
chromosomes; only chromosomes 4, 10, 13, 15, 23, 26, and 29 had
a positive FROH slope with generation number (Supplementary
Figure 3). All the aforementioned chromosomes, except for 13,
had a high proportion of Angus composition.

Ten genomic regions had ROH with frequency higher than
25.9% in Brangus (the top 1% of ROH frequency). Two of the 10
regions were found to be ROH islands for both founder breeds,
and three ROH islands were observed in Angus (Figure 3). ROH
above a 1% threshold were identified in 10 and 21 regions for
Brahman and Angus, respectively (Supplementary Figure 4).

The genes and known QTLs within homozygous Brangus
regions are shown in Table 1. The main biological process
observed in gene network enrichment analysis from these
homozygous regions were bile acid metabolic process, fatty
acid beta oxidation, pentose phosphate shunt, neuron synaptic
transmission, protein folding, regulation of cell cycle, cholesterol
metabolic process, and unsaturated fatty acid biosynthesis. The
main traits observed in QTL analysis of these regions were body
weight, milk fat, calving ease, milk production, milk protein, body
weight at birth, and fat thickness at the 12th rib (Supplementary
Figure 5). The breed of origin of these regions was investigated
using chromosome painting (Figure 4). FST results show Brangus
had a closer relationship with Angus than with Brahman in
these ROH regions (Table 1). The haplotypes in the regions of
chromosomes 1, 4, 22, 26, and 27 appear to have originated from
Angus. The regions in chromosomes 8, 14, 16, 21, and 23 have a
mixture of Angus and Brahman origin, falling within the range of
expected ancestry based on the whole genome.

DISCUSSION

Overall, Brangus had 63% of the inbreeding level of Angus,
based on runs of homozygosity (ROH) (Figure 2). Brangus had
higher inbreeding than Brahman only in the shortest category
of ROH (<3.9 Mb), which suggests the number of generations
after crossbreeding was not sufficient to break down short ROH.
Brangus had a higher Angus proportion (70.4%) than expected
(62.5%) in the whole genome (Paim et al., 2020). The high
Angus proportion might be related with the initial crossbreeding
to develop the composite associated with genetic drift and
selection for specific traits (Paim et al., 2020). Therefore, the
higher Angus proportion may be linked to this excess of short
ROH in Brangus compared to Brahman. Moreover, inbreeding
across chromosomes was not equal; this may suggest that new
levels of homozygosity are starting to form as a function of
selection pressure and the use of sires that are deemed superior
to their contemporaries.

The length of ROH agree with the generation criteria of Curik
et al. (2014). The ROH coming from a common ancestor within
3 prior generations (>13 Mb) appeared between the 4th and 5th
generation and increased afterward, suggesting inbreeding has
started to accumulate in this relatively new breed.

The inbreeding level increased approximately 1% per
generation corresponding to an effective population size (Ne) of
51.55 (Ne = 1/21F) (FAO, 2013). According to FAO Guidelines
for in vivo conservation of animal genetic resources (FAO, 2013),
the desired inbreeding rate per generation should not exceed 1%
(equal to Ne = 50). A 1% increase in inbreeding was associated
with decrease of −0.23% in yearling weight and −0.64% in body
condition score in a tropical composite beef cattle (Reverter
et al., 2017). Therefore, selection pressure and finite population
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TABLE 1 | Homozygous regions observed in Brangus animals and the identification of genes underlying QTL in each region.

Chra Start
(Mb)

End (Mb) Length
(Mb)

nSNPsb Angusc FST
d nGenese nQTLsf nTraitsg Genes associated with traitsh

Angus Brahman

1 1.56 10.78 9.22 2763 96.5% 0.057 0.277 23 50 33 POLLED locus, ADAMTS5 (milking speed), IFNAR1 (fat thickness
at the 12th rib), CCT8 (conception rate, net merit)

4 70.02 71.46 1.44 514 81.8% 0.014 0.074 16 4 4

4 91.47 95.01 25.00 1060 90.4% 0.067 0.406 76 33 31 Leptin (feed intake and energy balance), AHCYL2 (Longissimus
muscle area)

8 38.70 39.80 1.10 225 70.6% 0.120 0.489 30 14 9

14 24.42 28.79 4.37 1331 72.4% 0.069 0.214 38 280 34 XKR4 (heifer pregnancy, prolactin level, scrotal circumference,
subcutaneous rump fat thickness), PLAG1 (average daily gain,
body weight, carcass weight, intramuscular fat, longissimus
muscle area, marbling score, scrotal circumference, stature),
CHCHD7 (stature), SDR16C5 (fat color in carcass, insulin-like
growth factor 1 level, milk fat percentage, scrotal circumference,
beta-carotene concentration in fat), SDR16C6 (insulin-like growth
factor 1 level, scrotal circumference, stature), FAM110B (carcass
weight, insulin-like growth factor 1 level), SDCBP (carcass
weight), TOX (carcass weight, insulin-like growth factor 1 level),
CA8 (insulin-like growth factor 1 level, milk protein yield), RAB2A
(carcass weight), CHD7 (insulin-like growth factor 1 level)

16 41.24 44.36 3.12 711 65.3% 0.146 0.44 75 562 46

21 0 2.13 2.13 155 71.7% 0.23 0.613 27 78 9

22 11.24 12.22 0.99 243 83.6% 0.181 0.281 24 23 20

23 0 1.09 1.09 167 58.4% 0.058 0.092 1 28 23 KHDRBS2 (calving ease, daughter pregnancy rate, foot angle,
milk fat percentage, milk fat yield, length of productive life, milk
protein percentage, somatic cell score, stillbirth, strength)

26 21.56 24.46 2.90 672 86.3% 0.107 0.306 76 315 57 BTRC (milk c14 index, milk myristoleic acid content), SUFU (milk
c14 index, milk myristoleic acid content, udder structure), CNNM2
(milk c14 index, milk myristoleic acid content, stearic acid
content), INA (myristoleic acid content), NT5C2 (milk c14 index)

27 13.17 13.51 0.34 92 88.9% 0.145 0.319 8 25 12

Genes were identified on the NCBI Bos taurus Annotation Release 105 and Btau5.0.1 genome assembly. aChromosome. bNumber of markers (SNP) inside the region in homozygosity. cProbability of the region coming
from Angus according to chromosome painting results. dFST : Fixation index (Weir and Cockerham, 1984). eNumber of genes inside the region. f Number of QTLs identified in Cattle QTL database. gNumber of traits
associated with the QTLs. hGenes in the region that area associated with a trait (traits of each gene between parenthesis).
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FIGURE 3 | Frequency of each SNP in a run of homozygosity (ROH) in Brangus population according to the chromosome and position. The orange horizontal line
indicates the 1% threshold to classify the SNP to be in an ROH island. Highlighted points indicate SNP above the 1% threshold in the founder breeds (blue for
Angus, green for Brahman, and red in both founder breeds).

FIGURE 4 | Probability of ancestry for regions in chromosomes (Chr) 1, 4, 8, 14, 16, 21, 22, 23, 26, and 27 identified as a selection signature (ROH island) in
Brangus animals (above the top 1% threshold, 25.9% for Brangus). The plots show the average probability of ancestry according to the position in the region
calculated from chromosome painting results. Horizontal dashed line in gray represent the expected maximum (top 1%) and minimum (bottom 1%) threshold for
Brahman ancestry according to simulated data.

size promotes increased inbreeding, suggesting that inbreeding
management remains important for composite breeds.

Three selected regions in Brangus (chromosomes 4, 16, and
23) were identified as Angus selection signatures, and two regions
on chromosomes 14 and 21 were identified as selection signatures
in both founder breeds (Figure 3). Chromosome painting results
showed that five of the 10 homozygous regions in Brangus were

predominantly Angus in origin (probability >80%), and the
other five regions were of mixed origin but always with Brahman
contributing less than 50% (Figure 4).

The traits associated with the predominantly Angus regions
identified in the Cattle QTL database were body condition, body
weight, calving ease, birth weight, fat thickness at the 12th rib,
and milk traits. For example, the region on chromosome 23
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(0–1090080bp) with high ROH frequency in Angus and Brangus
harbored the KHDRBS2 gene, which was previously associated
with calving ease (Cole et al., 2011).

One homozygous locus on chromosome 4 contained the
LEP gene, which is associated with 96 traits in the Cattle QTL
database. This gene is expressed in adipose tissue and codes for
leptin, a hormone known to regulate feed intake and energy
balance in mammals (Woronuk et al., 2012). This gene had been
associated with marbling, fat thickness, rib eye area, and feed
intake in several beef cattle breeds (Souza et al., 2010; Woronuk
et al., 2012; Kononoff et al., 2017). Leptin is considered an
extremely important gene for puberty onset (Williams et al.,
2002). A high Angus contribution (90.4%) to this homozygous
region was identified in Brangus (Table 1). Therefore, an allele
coming from Angus was probably selected in Brangus.

Another homozygous region in chromosome 16 also was
associated with first service conception in yearling Brangus
heifers (Peters et al., 2013). Bos indicus–influenced heifers are
known to have challenges achieving puberty early in life (Sartori
et al., 2010; Fortes et al., 2012b). Therefore, high selection
pressure in Brangus for early puberty since breed formation
probably existed.

Another homozygous region (BTA 14) was previously
identified as a QTL for weaning weight in Brangus (Weng et al.,
2016). Cánovas et al. (2014) reported two genes on BTA14 at
24Mb associated with Brangus heifer fertility traits. This region
harbors PLAG1 and XKR4 genes. The XKR4 was associated with
subcutaneous rump fat thickness, scrotal circumference, serum
concentration of prolactin, and sexual precocity (Fortes et al.,
2012a; Porto Neto et al., 2012; Bastin et al., 2014; Takada et al.,
2018). PLAG1 has been implicated in the regulation of stature
and weight (Littlejohn et al., 2012; Pryce et al., 2012; Song
et al., 2016). This gene was associated with yearling weight in
Australian Tropical Composite breeds (Porto-Neto et al., 2014).
The association studies of these genes used both taurine and
indicine cattle, which confirms our observation of a selection
signature in both founder breeds and a mixed origin of this
region in Brangus.

The C allele of a putative functional mutation (rs109231213)
near PLAG1 significantly increased hip height, weight, net food
intake, age at puberty in males and females and decreased
concentration of IGF-I in blood and fat depth (Fortes et al.,
2013). These authors reported that haplotypes carrying the C
allele had the same surrounding 10 SNP haplotype in B. taurus
and Brahman, probably because the C allele was introgressed
into Brahman from B. taurus cattle. The region with reduced
heterozygosity surrounding the C allele was small in B. taurus
and in Angus in this study (1.7 Mb) but 21.6 Mb long in
Brahmans, here as well as in Fortes et al. (2013). Therefore,
this allele represents a mutation that has been selected almost
to fixation in B. taurus and, likely, introduced into Brahman
cattle during crossbreeding with taurine cattle when indicine
cattle were introduced into the United States (Sanders, 1980;
Fortes et al., 2013).

Selection for growth and growth-related traits, such as average
daily gain, feed conversion, and body size, has been conducted to
improve beef productivity in both taurine and indicine breeds in

the United States for several decades (Willham, 1982). Therefore,
it is likely that favorable alleles for growth in genes with large
phenotypic effects have also increased in frequency in both and
the distribution of allele frequencies at these QTL have become
similar between both populations.

The high Angus contribution for the selected genomic regions
in Brangus cattle could support the use of the Brangus data
for genomic selection and QTL identification (fine mapping)
for Angus. This reinforces previous simulation studies that a
crossbred or an admixed population can be used as training
data for genomic selection and can provide reasonably accurate
estimates of genomic breeding values of purebred selection
candidates (Toosi et al., 2010). Marker estimates obtained from
crossbred populations can be used to select purebreds looking for
crossbred performance (Ibanez-Escriche et al., 2009; Toosi et al.,
2010; MacNeil et al., 2011; Zeng et al., 2013; Lopes et al., 2017).
Moreover, the results highlight how selection criteria can shape
the genetic makeup of the composite.

The genetic composition of a composite breed is dynamic
and changes across generations (Paim et al., 2020). Here, the
selected regions in Brangus were mainly from Angus. The core
idea of developing a composite breed is to exploit heterosis
and complementarity between the breeds and, in the Brangus
example, explore combining the tropical adaptation of zebu cattle
and high yield and meat quality of Angus. These results and
those previously reported (Paim et al., 2020) suggest Brangus
is moving toward traits where Angus excel due to the selection
imposed by breeders. Yield and meat quality (marbling) are
measured and genetic values are available in the association’s
breed improvement program. The “tropical adaptation” traits,
however, are not measured, and consequently, there is no genetic
evaluation for their improvement. Therefore, it is important to
develop and apply methods of measuring tropical adaptation and
selecting for it; otherwise, this beneficial attribute of Brangus
could be lost in future Brangus generations.

CONCLUSION

The majority of selection signatures in Brangus cattle came from
Angus, which can be related to the traits of interest for genetic
improvement and selection. These results demonstrate how
quickly selection and drift can shift the genetic architecture of a
population. Genomic inbreeding was found to be increasing in
the composite population with advancing generations. Therefore,
breeders should be aware of the need to manage inbreeding in
this population. Moreover, composite cattle breeders need to be
aware that selection for a set of specific traits that favor one of the
progenitor breeds over the other can and will alter the original
breed proportions and which, over the long term, may decrease
the utility of the composite.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in the all
genotypic data used for this study are available in the website of

Frontiers in Genetics | www.frontiersin.org 8 July 2020 | Volume 11 | Article 710126

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00710 July 9, 2020 Time: 16:11 # 9

Paim et al. Genomic Breed Composition of Selection Signatures

The Animal-Genetic Resources Information Network (Animal-
GRIN) (https://nrrc.ars.usda.gov/A-GRIN).

ETHICS STATEMENT

Ethical review and approval was not required for
the animal study because no samples were collected
for this study; rather they were collected as part of
other studies or program activities not associated with
this study.

AUTHOR CONTRIBUTIONS

TP analyzed the data, interpreted the results, and wrote
the manuscript. EH analyzed the data, discussed the results,
and revised the text. CW maintained the datasets and
analyzed the data. MT discussed the results and revised
the text. LK was responsible for data curation, discussion
of the results, and revision of the text. SP designed
the study, discussed results, and revised the text. CM
designed the study and revised the text. HB coordinated
the study, discussed and interpreted the results, and
wrote the manuscript. All authors read and approved the
final manuscript.

FUNDING

Coordination for the Improvement of Higher Education
Personnel (CAPES) provided the Ph.D. scholarship for the first
author. USDA-ARS (National Animal Germplasm Program and
the Meat Animal Research Center) provided genotypes and
computing infrastructure.

ACKNOWLEDGMENTS

We thank USDA-ARS (National Animal Germplasm Program
and the Meat Animal Research Center) and Embrapa for
general support; and Instituto Federal de Educação, Ciência e
Tecnologia Goiano for supporting the first author. Mention of
trade names or commercial products in this publication is solely
for the purpose of providing specific information and does not
imply recommendation or endorsement by the United States
Department of Agriculture. The USDA is an equal opportunity
provider and employer.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.00710/full#supplementary-material

REFERENCES
Arias, J. A., Keehan, M., Fisher, P., Coppieters, W., and Spelman, R. (2009). A high

density linkage map of the bovine genome. BMC Genet. 10:18. doi: 10.1186/
1471-2156-10-18

Bastin, B. C., Houser, A., Bagley, C. P., Ely, K. M., Payton, R. R., Saxton, A. M.,
et al. (2014). A polymorphism in XKR4 is significantly associated with serum
prolactin concentrations in beef cows grazing tall fescue. Anim. Genet. 45,
439–441. doi: 10.1111/age.12134

Browning, S. R., and Browning, B. L. (2007). Rapid and accurate haplotype phasing
and missing-data inference for whole-genome association studies by use of
localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097. doi: 10.1086/
521987

Buzanskas, M. E., Ventura, R. V., Chud, T. C. S., Bernardes, P. A., De
Abreu Santos, D. J., De Almeida Regitano, L. C., et al. (2017). Study on
the introgression of beef breeds in Canchim cattle using single nucleotide
polymorphism markers. PLoS One 12:e0171660. doi: 10.1371/journal.pone.017
1660

Cánovas, A., Reverter, A., DeAtley, K. L., Ashley, R. L., Colgrave, M. L., Fortes,
M. R. S., et al. (2014). Multi-tissue omics analyses reveal molecular regulatory
networks for puberty in composite beef cattle. PLoS One 9:e102551. doi: 10.
1371/journal.pone.0102551

Cole, J. B., Wiggans, G. R., Ma, L., Sonstegard, T. S., Lawlor, T. J., Crooker, B. A.,
et al. (2011). Genome-wide association analysis of thirty one production, health,
reproduction and body conformation traits in contemporary U.S. Holstein
cows. BMC Genomics 12:408. doi: 10.1186/1471-2164-12-408
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Guangdong Academy of Agricultural Sciences, Guangzhou, China

The advanced intercross line (AIL) that is created by successive generations of pseudo-
random mating after the F2 generation is a valuable resource, especially in agricultural
livestock and poultry species, because it improves the precision of quantitative trait loci
(QTL) mapping compared with traditional association populations by introducing more
recombination events. The growth traits of broilers have significant economic value in the
chicken industry, and many QTLs affecting growth traits have been identified, especially
on chromosomes 1, 4, and 27, albeit with large confidence intervals that potentially
contain dozens of genes. To promote a better understanding of the underlying genetic
architecture of growth trait differences, specifically body weight and bone development,
in this study, we report a nine-generation AIL derived from two divergent outbred lines:
High Quality chicken Line A (HQLA) and Huiyang Bearded (HB) chicken. We evaluate
the genetic architecture of the F0, F2, F8, and F9 generations of AIL and demonstrate
that the population of the F9 generation sufficiently randomized the founder genomes
and has the characteristics of rapid linkage disequilibrium decay, limited allele frequency
decline, and abundant nucleotide diversity. This AIL yielded a much narrower QTL than
the F2 generations, especially the QTL on chromosome 27, which was reduced to 120
Kb. An ancestral haplotype association analysis showed that most of the dominant
haplotypes are inherited from HQLA but with fluctuation of the effects between them. We
highlight the important role of four candidate genes (PHOSPHO1, IGF2BP1, ZNF652,
and GIP) in bone growth. We also retrieved a missing QTL from AIL on chromosome
4 by identifying the founder selection signatures, which are explained by the loss
of association power that results from rare alleles. Our study provides a reasonable
resource for detecting quantitative trait genes and tracking ancestor history and will
facilitate our understanding of the genetic mechanisms underlying chicken bone growth.

Keywords: chicken, advanced intercross line, bone growth, ancestral inference, QTL fine-mapping, genome-wide
association study, selective sweep, haplotype association study
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INTRODUCTION

Identifying key polymorphisms and dissecting the genetic
architecture of complex growth traits is of considerable interest
in fields like agriculture breeding and evolution. F2 crosses
between divergent outbred lines are traditionally used to map
quantitative trait loci (QTL) in domestic animal and plant
populations (Andersson et al., 1994; Perez-Enciso et al., 2001).
However, it is not enough to rely on a single generation of
meiotic recombination to break up and randomize the parental
genomes to finely map causal variants of complex quantitative
traits (Flint et al., 2005). Improved strategies, such as the
use of larger sample cohorts, the construction of advanced
intercross lines (AIL) (Besnier et al., 2011; Parker et al., 2012),
nested association mapping population (NAM), and multi-
parent advanced generation inter-cross (MAGIC) in animals
and plants (Poland et al., 2011; Gatti et al., 2014; Pascual
et al., 2015) can increase the precision of quantitative trait
loci (QTL) mapping by introducing more recombination events
and together provide a series of alternatives to the traditional
association mapping of populations.

Advanced intercross lines (AILs) were first introduced by
Darvasi and Soller (1995). An AIL is created by successive
generations of pseudo-random mating after the F2 generation,
and recombinations are accumulated continuously between
generations and are easier to construct in species with short
generation intervals and a high tolerance of inbreeding decline.
To date, AIL has been used as a common strategy to improve
the mapping resolution for the genome wide association studies
(GWASs) of model animals, such as fruit flies (Mackay et al.,
2012), mice (Gonzales et al., 2018), chicken (Zan et al., 2017), and
C. elegans (Doitsidou et al., 2016). The significant advantages of
AILs include reducing the QTL confidence interval by 3- to 27-
fold and finely splitting the original QTL into two linked QTLs
(Besnier et al., 2011; Parker et al., 2014; Arends et al., 2016).
However, we should always pay attention to the tradeoff between
mapping resolution and statistical power, as the causal allele
may become rare with a continuous increase of the inbreeding
coefficient in the AIL (Yalcin et al., 2010; Parker et al., 2016).

Bone growth is crucial to poultry production, as skeletal
problems are associated with economic benefits and animal
welfare issues (Tsudzuki et al., 2007; Kapell et al., 2012). Too
long legs give rise to leg problems in high body weight chickens
(Deeb and Lamont, 2002). In healthy chicken, shank length (SL)
and shank circumference (SC) are the two most commonly used
parameters for evaluating bone growth in chickens (Tsudzuki
et al., 2007) and are highly correlated with body weight (BW)
(Gao et al., 2010). Moreover, shank traits can be measured
without slaughter and we can track bone growth of different
periods. We previously reported two major QTLs for growth
traits located on chicken chromosome 1 (GGA1) and GGA27
via a linkage analysis in the F2 generation (Sheng et al., 2013).
To promote a better understanding of the underlying genetic
architecture for growth trait differences, specifically body weight
and bone development, here, we report a nine-generation AIL
derived from High Quality chicken Line A (HQLA) × Huiyang
Bearded (HB) chicken. Detailed information on HQLA, HB, and

AIL is presented in the materials and methods and Figure 1. We
employed genotyping-by-sequencing (GBS) SNPs from F0, F8,
and F9 (Wang et al., 2017) and Beadchip SNPs from the F2 of
AIL (Sheng et al., 2013). Based on these data, we characterized the
gradient of the population structure over these generations and
the potential functional genes of growth traits by a genome wide
association study (GWAS), selective sweep analysis, haplotype
association, and ancestral inference. The integrated analysis
of selection in F0 and GWAS for AIL provides both power
and precision and demonstrates the transmission of important
genetic information between generations.

MATERIALS AND METHODS

The AIL Population
The High Quality chicken Line A (HQLA) is a closed population
founded by the commercial Anak broiler breed and a Chinese
indigenous chicken line, followed by strong artificial selection
over more than 10 generations, according to a weight-based
selection index, while maintaining the meat quality and plumage
color. The Huiyang Bearded chicken (HB) is a Chinese meat-type
breed with a long history (1,600 years), which is characterized by
its slow growth, high meat quality, and muff and beard phenotype
(Guo et al., 2016); currently, HB is in the stage of conservation
and breeding. At 7 weeks of age, the HQLA was 3.2-times the
body weight of HB (Figure 1). The F2 cross was generated by the
reciprocal crossing of the founder lines [4 HQLA♂× 12 HB♀ and
4 HB♂ × 12 HQLA♀, details presented in Sheng et al. (2013)].
Later AIL generations (F3 to F9) were founded by birds from
the F2 population and bred using random mating (Figure 1).
The population size of each generation was maintained at more
than 1,000 individuals. The body weight at 7 weeks of age (BW7)
was around 900 g.

Phenotype
For the F9 generation, body weight was measured at hatching
and every other week until 12 weeks of age. During weeks 4–12,
the shank length and shank circumference were also measured
every 2 weeks. Boxplots for each phenotype were generated to
scan for outliers. Individuals that were further than 1.5 times
IQR away from the upper or lower quartile of the boxplots were
removed. Descriptive statistics of the phenotypes are provided in
Supplementary Table S1.

Genotype
We employed GBS SNPs of F0, F8, and F9 (Wang et al., 2017)
and Illumina Chicken 60K Beadchip SNPs of F2 (Sheng et al.,
2013) for further filtering and analysis. In brief, for F9 generation,
double-enzyme GBS (EcoRI/MseI) libraries were prepared and
sequencing was performed on a Illumina Nextseq500 sequencer.
The TASSEL-4.0 GBS analysis pipeline was used to discover SNPs.
Using VCFtools (0.1.17), the raw GBS SNP filter criteria was set
to: –maf 0.05 –max-alleles 2 –min-alleles 2 –minDP 5 –minGQ
98 –max-missing 0.2 (Danecek et al., 2011). Genotype phasing
of the clean SNPs was done using Beagle 5.0 (Browning and
Browning, 2007) with gt model and impute = true parameters,
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FIGURE 1 | Descriptive statistics for the nine-generation advanced intercross line (AIL) pedigree. The AIL was initiated with 16 High Quality chicken Line A (HQLA)
and 16 Huiyang Bearded (HB) chicken in July 2008 with three generations every 2 years on average. The circle size represents the number of individuals contributing
to the next generation (red for cocks and blue for hens), and the number in parentheses records the sample size of each generation. The ordinate curve represents
the sex-averaged mean body weights at 7 weeks of age.

other parameters were left as default. The GBS SNPs were evenly
distributed across chromosomes (Supplementary Figure S1).
In F2 generation, SNPs (autosome 1–28) that failed to meet
the following criteria were removed: individual call rate (>0.9),
individual SNP call frequency (>0.9), and minor allele frequency
(MAF > 0.05). All the genomic coordinates of the SNPs were
uniformly converted to the chicken reference genome Gallus
gallus, version 5.0 (Ensembl release 94). After that, we kept
161,376 GBS SNPs for 16 HQLA, 14 HB, 185 F8, 602 F9
individuals, and 43,472 Chip SNPs for 492 F2 individuals.

Genetic Parameter Estimation
We evaluated the changes in the population genetic parameters
as a component of generation transmission. LD decay statistics
were analyzed by PopLDdecay 3.31 (Zhang et al., 2019) with a
max distance of 2 Mb. The inbreeding coefficient (F), nucleotide
diversity (π), nucleotide divergent, and minor allele frequency
(MAF) were evaluated by VCFtools (0.1.17) (Danecek et al.,
2011). The heritability and genetic correlations of all traits were
estimated using GCTA package (v1.92) (Yang et al., 2011).

Genome Wide Association Study
The mixed linear model (MLM) approach was used for the
GWAS of the F9 generation, as implemented in the GCTA
package (v1.92) (Yang et al., 2011). The basic model was: y = a
+ bx + g + e, where y is the phenotype, a is the mean term,
b is the additive effect (fixed effect) of the candidate SNP to be
tested for association, x is the SNP genotype indicator variable,
g is the polygenic effect (as captured by the GRM calculated
using all SNPs), and e is the residual. The GWAS statistical
model of body weight included the sex and batch as discrete
covariates and hatch weight as a quantitative covariate. For shank
traits, body weight at the same age were also included as a
covariate, because we focused on QTL scans which are associated

with bone growth. A quantile-quantile (Q-Q) plot generated in
CMplot1 was used to assess the potential impact of population
stratification (Supplementary Figure S2). Bonferroni correction
was applied to correct the number of estimated independent
markers. A subset of SNPs that were in approximate linkage
equilibrium was obtained by removing one in each pair of SNPs
if the LD was greater than 0.2 using PLINK v1.07 (Purcell et al.,
2007). QTL intervals were established after the remaining top
SNPs and their neighboring SNPs with r2 >0.3.

Selective Sweep
To investigate the signatures of selection between HQLA and
HB, four statistical tests were used, including XP-EHH and iHH
(linkage disequilibrium-based), Tajima’s D (frequency spectrum-
based), and Fst (population differentiation-based), to investigate
the signatures of selection between HQLA and HB. The XP-
EHH and iHH value at each locus were estimated by The
selfscan program (v1.2.0a) (Szpiech and Hernandez, 2014), and
the genetic map for our population was 3 cM/Mb. The statistics
for Fst and Tajima’s D were calculated using VCFtools (0.1.17)
(Danecek et al., 2011) with a window size of 200 Kb and
step size of 100 Kb.

Haplotype-Based Association Analyses
A haplotype-based association analysis was performed in the
∼120 Kb fine-mapped QTL region on GGA27 using the following
model:

Y = Xβ+ Zu+e
where Y is a column vector containing the SL10 of the F9
individuals. X is the design matrix including the coding for the
sex of the birds. For each specific interval, there are n haplotypes
for m individuals constructed by several SNPs. Z is the design

1https://github.com/YinLiLin/R-CMplot
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matrix (m × n) containing each haplotype count (coded as 0,
1, 2) of each individual. β is a vector that estimates the fixed
effect of sex, u is a column vector that estimates the allele
substitution effects for each haplotype, and e is the normally
distributed residual.

Ancestral Inference
The RFmix software (v2.03) (Maples et al., 2013) is based on
a discrimination analysis model that can be used to estimate
the genetic ancestry composition of each individual and each
chromosome. Using the F0 population as the ancestor population,
RFmix was used to evaluate the local ancestral source of
individuals in the F9 generation. To determine the haplotype
window size, we set conditional random field spacing (# of SNPs)
(-c) to 9 based on the results of LD with r2 = 0.2 as the critical
value, and generations since admixture (-G) set to 9. Other
parameters were left as default.

RESULTS

Genetic Architecture of the AIL
Population
Inspection of the 161 K variants segregating in AIL chicken
identified several notable characteristics. The ancestral genome
regions that inherited HQLA and HB were uniformly distributed
and fully mixed in the F9 generation (Figure 2A). A total of
156,664 HQLA-HB type recombination events were identified
on 1,204 chromosomes (602 individuals on GGA1 to GGA28).
Each F9 produced an average of 260.24 ± 21.92 crosses, and the
average ratio of HQLA and HB ancestral components was 51.9–
48.1%. PCA showed that all F9 individuals were clustered in the
middle of the two founders, and we did not detect a widespread
population structure or cryptic relatedness in the F9 population
(Figure 2B), which prevented false positive associations.

LD (r2) decays in HQLA were significantly faster than those in
HB, which is consistent with the ancestral cross history of HQLA
(Figure 2C). The F2 generation is characterized by limited short-
range recombination and continued to accumulate as the distance
increased. The r2 decays rapidly in F8 and F9 individuals in
comparison to F2 populations (r2

0.1 = 27 Kb in F9 and r2
0.1 = 570

Kb in F2), supporting the suitability of the F9 population for
high-resolution mapping.

We used GBS SNPs to estimate the nucleotide polymorphisms
(π) in each population (except F2) (Figure 2D) and the
inbreeding coefficient (F) (Figure 2E). HQLA showed
higher nucleotide polymorphisms but lower heterozygosity
levels (higher F value) than HB. This profile is consistent
with the strong artificial selection history of the HQLA
population. Fortunately, the F9 generation maintained a high
nucleotide polymorphism, and only 552 SNPs (0.34%) were
lost compared to the F0 GBS data. Considering the distribution
of minor allele frequencies (MAFs) (Figure 2F), a high
proportion SNPs (30.43%) in F9 had lower allele frequencies
(MAF < 0.1) than F0 (22.46%). This pattern shows that the AIL
population still experiences a slight genetic drift and bottleneck
between F0 and F9.

GWAS Identified Two Major QTLs
Affecting Growth Traits in the F9
Generation
The growth traits of this study population have high heritability
(0.48–0.82, Supplementary Table S2). Using a mixed linear
model, we performed GWAS between the 161,376 GBS SNPs
and 17 growth traits, including BW2-BW14, SC4-SC12, and SL4-
SL12, in 599 F9 individuals. All traits have a high phenotypic
and genetic correlation, especially between the same traits at
different periods. The correlation between SC and BW at different
periods is higher than the correlation between SL and BW
(Supplementary Table S3). At a Bonferroni of 5% (1.01 × 10−6,
0.05/49,318), we identified a large major QTL mainly affecting
body weight at GGA1: 168.6–171.7 Mb (Q1) and a small major
QTL mainly affecting shank development at GGA27: 3.60–3.72
Mb (Q2) (Figures 3A,B and Supplementary Figure S3). These
QTL peaks were narrower than those of the F2 linkage analysis
(Sheng et al., 2013). The most significant associations were for
BW8 at GGA1: 169,241,142 bp (p = 3.8 × 10−16) and SL10 at
GGA27: 3,608,297 bp (p = 6.1 × 10−8). Q1’s confidence interval
was 25-fold that of Q2, partly because the recombination rate of
GGA27 (12.05 cM/Mb) was 4.9-fold that of GGA1 (2.44 cM/Mb)
(Sheng et al., 2013) and the LD in GGA1 is more extensive
than that in GGA27 (Supplementary Figure S4). The broad
loci in Q1 make it difficult to infer which genes are responsible
for the association. We speculate that there is more complex
genetic architecture concealed in Q1, such as multiple linked
minor QTLs. However, clarifying this architecture further is a
very difficult. The following fine-mapping work mainly focuses
on the Q2 interval. It should be noted that the Z chromosome
was excluded in this study due to the pre-GWAS of 297 cocks
(ZZ) showing no significant signal on the Z chromosome.

Selective Sweep Analysis on the F0
Generation Retrieved a Missing QTL on
GGA4
The genes or variants underlying the large phenotypic differences
between HQLA and HB likely evolved rapidly after artificial
selection. Based on this principle, we employed different
statistical tests to investigate the signatures of selection, including
frequency spectrum-based Tajima’s D, the linkage disequilibrium-
based XP-EHH method, and the population differentiation-based
Fst method. However, one must carefully evaluate the results
of selection signals since small sample sizes may introduce
large drift effects. Hence, we combined our GWAS results with
the Animal Quantitative Trait Loci Database2 to conduct a
further screening of each selection signal interval. By comparing
the growth traits associated QTLs with the candidate selection
interval obtained by at least one method, we identified a total
of 10 clear selection signal intervals (S1–S10), four of which
occurred mainly in HQLA and six of which occurred in HB
(Figures 3C–E).

Among these, we highlight the narrowed S6 interval on
GGA4 (Figures 3C, 4A,B) matched the QTL database’s lists of

2https://www.animalgenome.org/cgi-bin/QTLdb/index
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FIGURE 2 | Genetic evaluation of the AIL population. (A) The HQLA-HB type recombination events accumulated from F0 to F9, taking chromosome 1 of all F9

sequencing samples (n = 602) as an example. Local ancestors are marked with HQLA in red and HB in blue. (B) PCA (principal component analysis). (C) The extent
of the LD in different generations of AIL. Values are the mean LD r2 values for all pairs of SNPs binned by distance. The nucleotide diversity (300 Kb windows) and
inbreeding coefficient are shown in (D,E). (F) Minor allele frequency (MAF) distribution for the populations of F0 and F9.

growth traits. This signal spans GGA4: 75.28–75.67 Mb, harbors
some candidate genes (PACRGL, SLIT2, KCNIP4, and mir-218-
1), and has been reported to be significantly associated with
chicken body weight in different populations, such as White
Leghorn × Rhode Island Red cross (Sasaki et al., 2004), Silky
Fowl × White Plymouth Rock cross (Gu et al., 2011), Beijing-
You chickens (Liu et al., 2013), New Hampshire × White
Leghorn cross (Nassar et al., 2015), and Dongxiang Blue-shelled
chickens × White Leghorn cross (Guo et al., 2020). However,
our association results were negative at this location because
HQLA and HB were selected in the same direction (nearly fixed
in HB, Figure 4C), resulting in an extremely low allele frequency
difference (1AF) between them, which led to a further loss of
statistical power in F9-GWAS.

Fine-Mapping and Local Ancestral
Inference for the Mosaic QTL on GGA27
A 120 Kb QTL region (GGA27: 3.60–3.72 Mb) was identified
by 34 GBS SNPs and aggregated using r2 >0.3 with the top five
SNPs of SL10. The GWAS significant SNPs were not continuously
distributed across the region but were instead located in
two peaks separated by regions with no genetic hitchhiking
(Figure 4D). It is difficult to identify the selected interval by
the window-based selection method under large allele frequency
fluctuations (Figures 4E,F) (the mosaic association model).

We further analyzed the genetic architecture of this QTL
using haplotype association analysis. To identify the haplotypes

contributing to the association signal, a multilocus backward-
elimination analysis was performed across the 34 SNPs in the
1.2 Mb region, and the top SNP on GGA1:169,241,142 bp
was selected to control for Q1 effects. Four SNPs (GGA27:
3,608,297 bp, 3,620,306 bp, 3,644,245 bp, and 3,686,628 bp) were
identified to have statistically independent associations with SL10
at a 5% False Discovery Rate (FDR) threshold. The haplotypes
tagged by these 4 SNPs were estimated; in total, 12 haplotypes
were detected (MAF > 0.01 in F9). Tracing back to the F0
generation, we confirmed three HQLA-origin haplotypes (A,
red), four HB-origin haplotypes (B, blue), two shared haplotypes
(gray), and three recombination haplotypes (orange) (Figure 5).

We first focused on the dominance-recessiveness relationship
and computed the phenotype scale for AA, AB, and BB as
1.37± 0.65 cm (n = 95), 0.08± 1.22 cm (n = 201), -1.53± 0.64 cm
(n = 151), respectively. The results showed that HQLA carries the
main length increasing alleles, and heterosis does not commonly
exist in crosses of AB. Next, the additive haplotype substitution
effects on SL10 were estimated. There was a gradient distribution
of haplotype allele effects between decreasing SL10 by 1.57 cm
and increasing it by 2.38 cm (Figure 5). Although most of the
length increasing haplotypes are inherited from HQLA, there
is still fluctuation among them, which is the same in HB. This
effect distribution does not seem to be caused by only one causal
mutation. Some well-known candidate genes related to body
size and bone growth are located within this interval and are
worthy of follow-up research, including PHOSPHO1, IGF2BP1,
ZNF652, and GIP (Figure 4D). However, the proportion of our
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FIGURE 3 | Joint analysis of GWAS in F9 and selection signature identification in F0. The Manhattan plots for BW8 (A) and SL10 (B). The genome-wide 5%
significance threshold -log10P was 5.99. (C) XP-EHH and iHH in HQLA and HB using a ±2 cutoff (top 4.4% genomic region). (D) Tajima’s D in HQLA and HB and (E)
the Fst value with a 200 Kb window using the 99th percentile cutoff. The orange vertical dashed (marked by the letter Q) represents the QTL interval, and the red and
blue vertical dashed (marked by the letter S) represent the selection signature intervals dominated by HQLA and HB, respectively.
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FIGURE 4 | Comparison of the selection interval S6 in (A–C) and the QTL interval Q2 in (D–F). (A,D) The association results of S6 on GGA4 and Q2 on GGA27 with
the genes displayed below. (B,E) The XP-EHH signature of S6 and Q2. (C,F) The MAF distribution for HB and the allele-frequency differences between the HQLA
and HB (1AF) in S6 and Q2, respectively.

recombination haplotypes is too small to give further genetic
evidence in the current population. Further recombinations
(more offspring in AIL Fn) and higher density markers (Davies
et al., 2016; Yang et al., 2019) will clarify this issue.

DISCUSSION

Crosses among well-characterized strains are a mainstay of
modeling organism genetics. We reported a running chicken
AIL that was generated by crossing HQLA × HB, which
was differentially bred for fast growth and slow growth prior
to subsequent intercrossing. Systematic characterization of the
genetic architecture of AIL makes it possible to evaluate the
suitability of different genomic situations for GWAS. Overall,
the F9 of AIL has low linkage disequilibrium between markers
to obtain accurate mapping resolution, an absence of population
structure to prevent false positive associations, and relatively
stable allele frequency to ensure a high enough power to detect
the majority of quantitative trait loci (QTLs). We highlighted the
fine-mapped QTL on the GGA27 derived from GWAS, haplotype
association, and local ancestry inference, which implicated four
candidate genes corroborated by extant human, mouse, and
chicken genetic data.

Although the basic strategy to build the AIL was similar to
that in other studies, certain practical considerations, along with
the AIL’s complex genetic background, affected the design of
this study and its outcomes in important ways. For example,
we observed rich diversity and intense LD decay in the F0
generation, even though the four males were full siblings, and
the 12 females were either half or full siblings, in the HQLA and
HB founders, which is very different from the inbred AIL line of
mice (Gonzales et al., 2018) and other model organisms (Mackay
et al., 2012; Nicod et al., 2016). Compared with other chicken
AILs, HQLA-HB-AIL presents lower levels of SNP diversity loss
(11% SNPs with MAF < 0.05 in F9) than broiler × Fayoumi
AIL (60% SNPs with MAF < 0.05 in F18 and F19) (Van Goor
et al., 2015). Moreover, our previous study (Guo et al., 2016)
reported that the single-nucleotide genome-wide polymorphisms
of F0 were 1.38-fold those of the founders of the Virginia
chicken AIL population (Zan et al., 2019), which illustrates
the high polymorphisms in our population. Thus, this AIL is
more human-like or similar to laboratory outbred mice (Yalcin
et al., 2010) than the inbred AIL mice model, namely that
this AIL has lower levels of LD, lower MAFs, and is more
abundant haplotype diversity; the resulting mosaic association
model also supports this conclusion. This is a double-edged
sword that improves fine-mapping accuracy but affects power
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FIGURE 5 | Haplotype association analysis for the shank length at 10 weeks of age in the 120 Kb candidate region on GGA27. Four SNPs were associated with
SL10 in a multilocus backward-elimination analysis across the segment. Haplotypes were estimated in the founder populations (HB and HQLA) and the F9 AIL
generation across these markers. Twelve haplotypes were inferred in F9 at haplotype frequencies (HF) >0.01, including five unrecombined HQLA haplotypes (red),
six unrecombined HB haplotypes (blue), two shared haplotypes (gray), and three recombination haplotypes (orange). Overall, the haplotype substitution effects
exhibited a gradual distribution of effects on SL10 in F9.

by increasing the multiple testing burden (Parker et al., 2016).
In addition, the diversity of F0 may be due to the breeding
process because HQLA is a commercial strain formed first by
crossing and then by directed selection. This factor gives this
population greater similarities to the three-ancestor MASIC
population from the perspective of ancestors, which can be
monitored by estimating individual ancestry (Supplementary
Figure S5) using the unsupervised ADMIXTURE method
(Alexander et al., 2009).

We also presented a joint analysis of GWAS, and selective
sweep of this AIL was able to comprehensively extract more
genomic features. Firstly, although we cannot rule out the effect
of genetic drift on the selection results, the diversity of F0 still
reduces the false positive rate of the selection signal to some
extent, which allows all candidate intervals to be further studied
based on their association with other phenotypes. Secondly, we
showed a typical example of failing to replicate prior results
on GGA4, which we explained by the loss of GWAS power
that results from rare alleles. This result demonstrated that local
diversity may be lost, even if two founder strains generally
maintain large phenotypic/genotypic differences, which is also a
major performance difference between AIL and MAGIC. Besides,
this study used ∼160 K SNPs, which means that a very large
sample size which not available currently is required to meet the
multiple testing correction of detecting epistatic QTLs. Therefore,
a comprehensive analysis of interaction between directional
epistasis and mutation effects will also be a very interesting issue
to be explored in the near future.

Another core issue of this study is the dissection of key
growth-related (especially for bone development) genes. We
focused on the narrow QTL on GGA27 that contains fewer
genes, and we highlighted some genes that are noted by the

existing literature for their role in the corresponding traits.
This result finely replicated the F2 finding (Sheng et al.,
2013) and is consistent with the QTL-mapping in Japanese
cockfighting (Tsudzuki et al., 2007) and Pekin ducks (Zhou
et al., 2018). The lead SNP at chr27:3,608,297 is associated
with the shank length in F9 AILs, which lies in the intron
of the ZNF652 gene. Although the function of this gene has
not been reported in detail, discoveries from human GWAS
have replicated the significant correlation between ZNF652
and body height in two independent cohorts [rs35587648,
p = 7 × 10−42 in Lango Allen et al. (2010) and rs2072153,
p = 4 × 10−8 in Kichaev et al. (2019)]. Interestingly, three other
genes at this locus, PHOSPHO1, IGF2BP1, and GIP, have been
reported to be related to skeletal development. PHOSPHO1 is
a phosphoethanolamine/phosphocholine phosphatase that has
been implicated in the generation of Pi for matrix mineralization,
a process central to skeletal development. Phospho1−/− mice
display growth plate abnormalities, spontaneous fractures, bowed
long bones, osteomalacia, and scoliosis in early life. Insulin-like
growth factor II mRNA-binding protein 1 (IGF2BP1) belongs
to a family of RNA-binding proteins implicated in mRNA
localization, turnover, and translational control (Bell et al., 2013).
The IGF2BP1−/− mice were, on average, 40% smaller than their
wild-type and heterozygous littermates; growth retardation was
apparent from E17.5 and remained permanent into adult life
(Hansen et al., 2004). Moreover, a GWAS study revealed that a
putative regulatory mutation causes the continuous expression
of the IGF2BP1 gene after birth, which increases body size of
Pekin ducks by 15% (Zhou et al., 2018). Glucose-dependent
insulinotropic polypeptide (GIP) also has been recognized in the
last decade as an important contributor to bone remodeling and
is necessary for optimal bone quality (Guo et al., 2020). GIP
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stimulates osteoblasts and increases bone formation. A decline
in GIP leads to a decline in bone metabolism, which could
be one of the mechanisms that induces osteopenia in diabetics
(Zofkova, 2015). It is possible that all four genes are associated
with shank length and further affect body weight as they are
all involved in growth traits, which is also suggested by the
progressive haplotype accumulation effect (Figure 5). In short,
the above genes provide a starting point to further study the
shank traits. The next analysis requires multi-omics methods,
i.e., combined with a map-based approach, gene expression
analysis, metabolic regulation analysis, causality analysis, and
other optional methods to investigate the molecular mechanism
and causal mutations in this region.

In summary, the HQLA-HB-AIL chicken, which balanced
the avoidance of rare alleles with the requirement for rapid
linkage disequilibrium (LD) decay, is a reasonable resource for
detecting quantitative trait genes. This AIL yielded a much
narrower QTL than the F2 generations, especially the QTL on
chromosome 27. Further, we highlighted the important role of
four candidate genes (PHOSPHO1, IGF2BP1, ZNF652, and GIP)
for bone development. We also identified a missing QTL on
chromosome 4 via the joint analysis of GWAS and a selection
signature analysis, which demonstrated the local limitations of
this population but can be remedied by a multidimensional
analysis. Overall, our study provides a promising resource for this
field of study and will facilitate our understanding of the genetic
mechanisms underlying chicken bone growth.
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FIGURE S1 | Chromosome-wise SNP density in the GBS panel in
physical distance.

FIGURE S2 | Quantile-quantile (Q-Q) plot of all 17 traits.

FIGURE S3 | The Manhattan plots for 15 traits. Phenotypes including BW2 to
BW6, BW10 to BW14, SC4 to SC12, SL4 to SL8, and SL12. The genome-wide
5% significance threshold -log10P was 5.99.

FIGURE S4 | LD decay near two QTL interval. The red line represents the LD
pattern of GGA1: 168–171 Mb (543 SNPs) and the black line represents the LD
pattern of GGA27: 2.16–5.16 Mb (391 SNPs).

FIGURE S5 | Analysis of population structure of F0 and F9. Supervised analysis
showed that all F9 individuals were clustered in the middle of the two founders.
Unsupervised analysis showed K = 3 is the best model that is consistent with the
breeding process of HQLA and F9 cross.

TABLE S1 | Descriptive statistics of the phenotypes.

TABLE S2 | Heritability of 17 traits.

TABLE S3 | Genetic and phenotypic correlation coefficient of 17 traits.

TABLE S4 | The phenotype data.
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Metabolites, substrates or products of metabolic processes, are involved in
many biological functions, such as energy metabolism, signaling, stimulatory and
inhibitory effects on enzymes and immunological defense. Metabolomic phenotypes
are influenced by combination of genetic and environmental effects allowing for
metabolome-genome-wide association studies (mGWAS) as a powerful tool to
investigate the relationship between these phenotypes and genetic variants. The
objectives of this study were to estimate genomic heritability and perform mGWAS and
in silico functional enrichment analyses for a set of plasma metabolites in Canadian
crossbred beef cattle. Thirty-three plasma metabolites and 45,266 single nucleotide
polymorphisms (SNPs) were available for 475 animals. Genomic heritability for all
metabolites was estimated using genomic best linear unbiased prediction (GBLUP)
including genomic breed composition as covariates in the model. A single-step GBLUP
implemented in BLUPF90 programs was used to determine SNP P values and the
proportion of genetic variance explained by SNP windows containing 10 consecutive
SNPs. The top 10 SNP windows that explained the largest genetic variation for each
metabolite were identified and mapped to detect corresponding candidate genes.
Functional enrichment analyses were performed on metabolites and their candidate
genes using the Ingenuity Pathway Analysis software. Eleven metabolites showed
low to moderate heritability that ranged from 0.09 ± 0.15 to 0.36 ± 0.15, while
heritability estimates for 22 metabolites were zero or negligible. This result indicates
that while variations in 11 metabolites were due to genetic variants, the majority are
largely influenced by environment. Three significant SNP associations were detected for
betaine (rs109862186), L-alanine (rs81117935), and L-lactic acid (rs42009425) based
on Bonferroni correction for multiple testing (family wise error rate <0.05). The SNP
rs81117935 was found to be located within the Catenin Alpha 2 gene (CTNNA2)
showing a possible association with the regulation of L-alanine concentration. Other
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candidate genes were identified based on additive genetic variance explained by SNP
windows of 10 consecutive SNPs. The observed heritability estimates and the candidate
genes and networks identified in this study will serve as baseline information for
research into the utilization of plasma metabolites for genetic improvement of crossbred
beef cattle.

Keywords: candidate genes, crossbred beef cattle, functional enrichment analyses, metabolomics, single-step
GBLUP

INTRODUCTION

The metabolic phenotype (or “metabotype”) is a characteristic
metabolite profile that depends on the interactions between
genetic and environmental effects. Commonly, the metabolic
phenotype of an individual is measured from easily accessible
biofluids such as urine or blood (Nicholson and Lindon, 2008).
Additionally, blood metabolites have been shown to be powerful
tools for the indication of the nutritional and health status of
humans and animals. For example, in humans, several blood
metabolites have been identified as biomarkers for diseases
(López-López et al., 2018). In livestock species, associations
between metabolites and economically important traits such
as feed efficiency (Karisa et al., 2014), growth performance
(Widmann et al., 2013), and animal health (Montgomery et al.,
2009) have been reported.

Metabolome-genome-wide association study (mGWAS) is
a powerful tool for identifying genetic variants underlying
metabolic phenotypes and provides new opportunities to
decipher the genetic basis of metabolic phenotypes. Importantly,
mGWAS detect genetic variants that are functionally associated
with metabolic phenotype variation. For example, previous
studies have reported that single nucleotide polymorphisms
(SNPs) in the glutamine synthase 2 gene (GLS2) were associated
with glutamine in human serum, which provides a potential
biological association, as the enzyme GLS2 catalyzes the
hydrolysis of glutamine (Suhre et al., 2011; Kettunen et al., 2012).
Furthermore, genome-wide hits with unknown gene function
offer an opportunity to infer novel biological mechanisms of
the SNP-metabolite association. For instance, Suhre et al. (2011)
experimentally studied the association of the SNP rs7094971
inside the solute carrier family 16, member 9 gene (SLC16A9)
with carnitine and validated that the hitherto uncharacterized
protein was indeed a carnitine transporter in Xenopus oocytes.
Additionally, as metabolites lie between genomic and external
phenotypes, they could explain the variation of external
phenotypes by revealing biological mechanisms underlying
the associations between them. Recent application of GWAS
have successfully uncovered genetic variants that contribute
to variation in both the external phenotype (e.g., type 2
diabetes) and the metabolic phenotype (e.g., fasting glucose
levels) (Stranger et al., 2011).

Due to the rapidly growing number of candidate biomarkers
and the increasing role of metabolites in genetic studies, the
knowledge of the genetic basis of metabolites is therefore a
prerequisite to evaluate new biomarkers and dissect the genetic
architecture of metabolites. Until now, however, knowledge

regarding the genetic level of metabolites in beef cattle has
been limited. Thus, the objectives of this study were to estimate
genomic heritability of 33 plasma metabolites in crossbred
beef cattle, to identify genetic variants, genomic regions and
candidate genes associated with metabolite variation, and to
understand the biological functions and gene networks linked to
these associations.

MATERIALS AND METHODS

Animal, Blood Samples and Nuclear
Magnetic Resonance (NMR)
Spectroscopy
All management and procedures involving live animals, where
applicable, conformed to the guidelines outlined by the Canadian
Council on Animal Care (1993); otherwise, existing data sets
from the various Canadian research herds were used.

The dataset used in this study was obtained from the
Phenomic Gap Project (McKeown et al., 2013). This project
started in 2008 aiming to generate feed efficiency, carcass and
meat quality phenotypes as well as genomic information for
Canadian crossbred beef animals as previously described by
Akanno et al. (2014). A total of 475 Canadian multibreed
composite and crossbred beef cattle was used in this study. The
animals comprised of bulls, slaughter steers, slaughter heifers and
replacement heifers submitted to a feedlot feeding test from 2009
to 2012 and the test groups were labeled as contemporary groups.
The population structure consisted of Beefbooster composite
breed (n = 224) which is predominantly Charolais-based with
infusion of Holstein, Maine Anjou, and Chianina1, Hereford-
Angus (n = 181) crosses, Charolais (n = 68), and Angus (n = 2).

Blood samples were collected in EDTA tubes from each animal
by jugular venipuncture on the first day of the feedlot feeding
test and immediately frozen at −80◦C which is considered
appropriate for storage. Our assumption is that all samples
were affected equally by the freezing process if at all. Therefore,
although the metabolite profiles may not be the same as those
obtained from fresh samples, the freezing process should not be
a source of variation for this study since all samples were frozen
the same way according to best practice. Frozen blood samples
were sent to the Metabolomics Innovation Center at University
of Alberta, AB, Canada in 2014 for analysis. The variation in
time of sample collection is expected to be captured under the

1http://www.beefbooster.com
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“contemporary group” variable applied in subsequent statistical
analysis. Each frozen sample was thawed at room temperature
then centrifuged at 10,000 rpm for 10 min to separate the
plasma then filtered through 3 kDa molecular weight cut-off
filters (Merck Millipore Ltd., Darmstadt, Germany) to remove
macromolecules, including lipids and proteins. As the filter tube
manufacturer treats the filter membranes with glycerol as a
preservative, filters were washed and centrifuged five times before
use. Samples made up of less than 570 µl after filtration were
diluted with HPLC water to ensure adequate volume for NMR
acquisition. A total of 5 mm NMR tube (New Era Enterprises
Inc., Vineland, NJ, United States) contained a total of 700 µl of
total volume of 570 µl filtered serum, 60 µl DSS and 70 µl D2O.
This mixture was vortexed and centrifuged shortly before it was
transferred to an NMR tube for data acquisition. All metabolite
concentrations obtained were adjusted by appropriate factors to
account for the above dilutions, and represent the contents of the
filtered samples, not the contents of the NMR tube.

Spectra were acquired on a 500MHz VNMRS spectrometer
equipped with a 5mm cold probe (Agilent Technologies, Santa
Clara, CA, United States). The pulse sequence used was a 1D-
noesy with a 990 ms presaturation on water and a 4 s acquisition
period. Spectra were collected with 256 transients and four
steady-state scans at 298K.

Spectra were zero filled to 64k points and Fourier transformed.
Spectral phasing was performed on the spectra along with
baseline correction. In total, 33 metabolites were identified and
quantified with a targeted profiling approach using the Profiler
and Library Manager modules in the same software which
contains a total of 304 metabolites. Each spectrum was peer
reviewed by a separate analyst and a final review pass was done
on all of the spectra before exporting concentration results.
Concentration measurements were adjusted to report metabolite
concentrations after the filtration of the samples.

Genotyping, Quality Control and
Prediction of Genomic Breed
Composition
Animals were genotyped using Illumina BovineSNP50 v2
BeadChip (Illumina Inc., San Diego, CA, United States) at Delta
Genomics, Edmonton, AB, Canada. The genotypes were coded
as 0, 1, and 2 and quality control was performed using the
Synbreed package (Wimmer et al., 2012) in R statistical software.
All markers on sex chromosomes and autosomal markers with
minor allele frequency <1%, call rate <90%, and severe departure
from Hardy-Weinberg equilibrium (P < 10−5) were removed.
Missing genotypes were imputed using Synbreed package. After
quality control, 45,266 SNPs on 29 bovine autosomes for 475
individuals remained and were used for this study.

Genomic breed composition was predicted for all individuals
using ADMIXTURE software (Alexander et al., 2009). To predict
breed composition for each animal, a 10-fold cross-validation
procedure was performed to find the best possible number of
ancestors or breeds (K value). The value of K = 4 was chosen
because it had the smallest cross-validation error and yielded
the most accurate breed composition prediction based on prior

knowledge. The four postulated ancestral breeds were Hereford,
Angus, Charolais and Beefbooster TX line. The distribution of
predicted genomic breed composition is shown in Figure 1.
Estimates of genomic breed composition were fitted as covariates
in the various statistical models to correct for population
stratification and breed effects.

Phenotypic Quality Control
Phenotypic records included 33 plasma metabolite
concentrations quantified from blood samples of 475 animals.
A linear regression model implemented in R statistical software
was used to assess the significance of all systematic effects
associated with variation in plasma metabolites. Fixed factors
found to be significant (P <0.05) included contemporary
groups (herd and birth year), animal type (bulls, slaughter
steers, slaughter heifers, and replacement heifers) and genomic
breed composition. These factors were subsequently included
in the mixed model used for estimating heritability and
GWAS. Contemporary group and animal type were fitted
in the model as fixed class effect whereas breed fractions
were fitted as fixed covariates. Residual values of the linear
regression model were checked and those residuals with
more or less than 3 standard deviations from the mean of
residuals were considered as outliers and the associated records
were excluded. The distribution of residuals after excluding
outliers was close to a normal distribution (i.e., a bell shape
without a big tail). The summary statistics of all metabolites
after phenotypic quality control are given in Table 1. In
general, the concentration of plasma metabolites ranged from
20.72 µM (L-methionine) to 5,024.04 µM (L-lactic acid), on
average.

Variance Components and Heritability
Estimation
Variance components and heritability of 33 metabolites were
estimated using a single-trait animal model and genomic
relationship matrix. The genomic relationship matrix was
constructed based on total filtered SNP markers (i.e.,
45,266 SNPs) and using one of VanRaden’s formulations
ZZ
′

/2
∑

pi(1− pi), where Z contains centered genotypes codes
and pi is the minor allele frequency for locus i (VanRaden,
2008). The following mixed effect model (1) implemented
in ASReml version 4.1 (Gilmour et al., 2015) was applied:

y = Xb+Wa+ e (1)

Where y is a vector of phenotypic observation; X is the
design matrix that relates the fixed effects to the observation
and b is a vector of fixed effects of contemporary groups,
animal type and genomic breed composition. W is a design
matrix relating observations to random animal genetic effects;
a is a vector of random additive polygenic effects that
is assumed to be normally distributed as: a ∼ N

(
0, Gσ2

a
)
,

where G is genomic relationship matrix and σ2
a is the

additive genetic variance, e is a vector of random residual
effects that is assumed to be normally distributed as e ∼
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FIGURE 1 | Distribution of predicted genomic breed composition of crossbred beef cattle population (n = 475). Beefbooster is red, Angus is yellow, Hereford is
green, Charolais is blue.

N
(
0, Iσ2

e
)
, with I being an identity matrix and σ2

e is the
residual error variance.

Metabolome-Genome-Wide Association
Study
The genomic heritability obtained from model (1) was used to
screen all metabolites for metabolome genome wide association
analyses. Metabolites with zero or near zero heritability were
excluded from mGWAS. Here, the SNP P values for 11
metabolites with non-zero heritability were determined using
a single-step genomic BLUP (ssGBLUP) approach as described
by Aguilar et al. (2019) and followed by the estimation of the
proportion of additive variance explained by 10 consecutive SNP
windows using a Weighted ssGBLUP (WssGBLUP) approach
(Wang et al., 2012). Both approaches were implemented in the
BLUPF90 programs (Misztal et al., 2002). The mGWAS model
used was similar to model (1) above except that a was assumed to
follow N

(
0, Hσ2

a
)
, where H is the matrix that combines genomic

and pedigree information (Aguilar et al., 2010). The inverse of H
for mixed model equations is:

H−1
= A−1

+

[
0 0
0 G−1

− A−1
22

]

A is the pedigree-based numerator relationship matrix for all
animals, A22 is the numerator relationship matrix for genotyped
animals, and matrix G is the genomic relationship matrix, where
G was weighted as described by Wang et al. (2012) for the
WssGBLUP method.

A rejection threshold based on Bonferroni correction for
multiple testing (0.05/45,266) was applied, which is equal to 5.96
in the −log10 scale. The quantile–quantile (Q–Q) plots of P
values for each SNP were used to compare observed distributions
of −log (P value) to the expected distribution under the null
hypothesis for each metabolite. Manhattan plots of P values for
each SNP were also used to illustrate significant associations at
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TABLE 1 | Descriptive statistics for 33 plasma metabolites: number of animals per
metabolite (n), mean, standard deviation (SD), coefficient of variation (CV),
minimum (Min.) and maximum (Max.).

Trait n Mean SD CV Min. Max.

1-Methylhistidine 435 56.26 22.71 0.40 15.34 136.31

2-Hydroxybutyrate 460 41.23 17.02 0.41 12.26 94.48

Acetic acid 462 264.60 256.05 0.97 33.40 2,056.21

Betaine 448 111.67 52.97 0.47 29.62 298.33

Creatine 451 127.59 44.39 0.35 41.98 262.67

Citric acid 448 120.27 65.38 0.54 15.61 338.45

Choline 456 346.37 173.98 0.50 61.35 960.08

Ethanol 404 61.38 84.91 1.38 13.53 560.94

D-Glucose 452 837.40 692.11 0.83 68.42 3,731.80

Glycine 451 378.65 162.32 0.43 90.38 896.70

Glycerol 452 511.10 354.71 0.69 15.68 1,532.64

Fumaric acid 300 23.85 8.48 0.36 10.75 66.11

Formic acid 454 30.34 28.25 0.93 9.46 370.87

L-Tyrosine 475 65.51 19.32 0.29 22.88 119.90

L-Phenylalanine 454 67.54 19.54 0.29 27.53 125.61

L-Alanine 446 390.34 148.99 0.38 104.46 852.47

L-Proline 465 129.58 41.02 0.32 42.09 257.82

L-Isoleucine 465 52.85 19.88 0.38 15.11 120.63

L-Histidine 450 76.09 28.57 0.38 23.35 150.45

Lysine 460 70.34 26.19 0.37 15.24 154.49

L-Lactic acid 450 5,024.04 2,790.01 0.56 885.17 15,976.05

Pyruvic acid 321 87.56 81.42 0.93 14.23 395.75

Succinic acid 448 58.47 34.46 0.59 14.86 280.58

3-Hydroxybutyric acid 457 86.65 41.66 0.48 18.29 272.70

Creatinine 451 132.14 57.85 0.44 30.77 308.61

L-Glutamine 441 58.97 23.00 0.39 14.35 119.97

L-Leucine 475 93.08 39.48 0.42 25.63 302.17

L-Methionine 193 20.72 4.49 0.22 12.08 33.77

3-Hydroxyisovaleric acid 155 32.38 13.02 0.40 11.70 79.06

L-Valine 454 147.16 49.58 0.34 49.88 313.97

Acetone 260 35.97 19.84 0.55 12.47 125.08

Methanol 447 135.47 76.28 0.56 31.35 383.19

Dimethyl sulfone 449 46.86 19.41 0.41 15.31 128.60

Unit:µM.

the level of each chromosome for the metabolites. All plots were
completed using the R package qqman (Turner, 2014).

Candidate Gene Identification
To identify a candidate gene, the surrounding region of each
significant SNP was surveyed by expanding 100-kbp upstream
and downstream, respectively. The 200-kbp region was defined
based on the average linkage disequilibrium (r2) between pairs of
syntenic SNPs within this distance which is known to be 0.20 in a
related beef cattle population (Lu et al., 2012).

Further, additional candidate genes associated with the top 10
SNP windows that explained the largest proportion of genetic
variance for each metabolite from the WssGBLUP approach were
identified. Positional candidate genes within 200-kbp regions
and those inside the top 10 SNP windows were mapped on Bos
taurus genome view in Biomart available at the Ensembl database
UMD 3.1 version (Zerbino et al., 2018). The functions of all

identified genes were manually searched from the literature to see
if they had a previously identified relationship with the associated
metabolites under investigation.

Analysis of Least Square Means for
Significant SNP
The least square mean of SNPs significantly associated with
metabolites were assessed based on model (2) and implemented
in R where applicable, to see how different allele combinations
for these SNPs resulted in observed differences in the metabolite
concentration.

y = Xb+ SNP + e (2)

Where y, X, b, and e are the same as in model (1) and (2); SNP is
a vector of genotype class 0, 1 and 2 fitted as a classification factor.

Functional Enrichment Analyses
The interpretation of mGWAS using metabolite concentrations
as the target phenotype is a complicated task, because
their concentrations are influenced indirectly by mRNA and
protein expression as well as directly by several environmental
effects. Pathway analysis using prior knowledge improves the
interpretation of mGWAS data and provides insight from the
genetics of biochemical conversions and biological functions.
Functional analyses for the genes associated with each metabolite
were performed using Ingenuity Pathway Analysis software2

(IPA). Several lists including metabolites (PubChem CID) and
candidate genes (Bovine Entrez gene IDs) in Supplementary
Table S1 were imported in IPA for biological function analysis
and network construction. Biological functions were considered
significantly enriched if the P value for the overlap comparison
test between the input list and the knowledge base of IPA for
a given biological function was less than 0.05. Identification
of significant pathways in biological processes was described
in detail by Calvano et al. (2005). The analysis was performed
following IPA default setting and parameters were set to allow
the network to show indirect relationships for the imported
metabolite and gene lists. Indirect relationships assist in the
identification of other metabolites/genes that were not among
the ones in the input list but may be associated with them based
on the IPA biological reference. In addition, the resulting gene
networks are scored and then sorted based on the score not
based on P value, as multiple testing for this sort of analysis
is not feasible.

RESULTS

Heritability Estimates
Eleven metabolites showed low to moderate heritability that
ranged from 0.09 ± 0.15 (succinic acid) to 0.36 ± 0.15
(choline), while heritability estimates for 22 metabolites were
zero or negligible. Table 2 shows the results of all metabolites
with heritability.

2www.Ingenuity.com
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TABLE 2 | Estimates of additive variance (σ2
a ), residual variance (σ2

e ), heritability
(h2) and their standard error (SE) for 11 plasma metabolitesa.

Trait σ2
a σ2

e h2 SE

Choline 6,598.90 11,545.80 0.36 0.15

Creatinine 1,051.67 1,947.73 0.35 0.17

Betaine 402.10 783.09 0.34 0.16

Pyruvic acid 1,027.32 2,007.84 0.34 0.24

L-Lactic acid 639,240 2,268,490 0.22 0.16

Citric acid 477.13 1,719.37 0.22 0.15

Creatine 160.55 843.99 0.16 0.15

D-Glucose 17,497.10 100,579.00 0.15 0.14

Acetone 29.39 185.01 0.14 0.21

L-Alanine 768.05 7,824.22 0.09 0.13

Succinic acid 78.47 838.28 0.09 0.15

aMetabolites with zero or near zero heritability estimates were not listed.

SNP Association, Candidate Genes and
Genetic Effects
Three significant SNP associations were detected for betaine
(rs109862186), L-alanine (rs81117935), and L-lactic acid
(rs42009425) based on Bonferroni correction for multiple testing
(family wise error rate <0.05) (Table 3 and Figures 2–4). The
SNPs were located on chromosome 5, 11, and 22, respectively.
The SNP rs81117935 was found within the catenin alpha 2 gene
(CTNNA2), while the other two SNPs were not mapped to any
known candidate gene (Table 4).

In addition to the identified significant SNPs, the WssGBLUP
method also identified more genomic regions associated
with heritable metabolites based on additive genetic variance
explained by SNP windows of 10 consecutive SNPs. The
proportion of additive genetic variance explained by top 10
SNP windows and genes mapped in these windows are shown
in Supplementary Table S1. The SNP window (107,403,824–
107,704,991 bp) located on chromosome 5 was found to be
associated with citric acid and explained the highest proportion
of additive genetic variance (4.21%) while the SNP window
(35,619,632–36,428,58 bp) with the lowest proportion of additive
genetic variance (0.62%) was located on chromosome 26 and
associated with L-lactic acid. A total of 368 unique genes were
identified within the selected SNP windows (Supplementary
Table S1). Further, five SNP windows showed pleiotropic effects
on two or more metabolites and were mapped to 17 candidate
genes (Table 5).

The least square means of the genotypic classes are given in
Figure 5. All three significant SNPs (rs109862186, rs81117935,
and rs42009425) showed characteristics of additivity with

the associated metabolite as concentration either increased
or decreased with the number of “B” alleles for the three
genotypic classes.

Functional Enrichment Analyses
The eleven heritable metabolites and their candidate genes
were significantly enriched (P < 0.05) for biological functions
related to cellular, tissue, and organ development, cell-to-
cell signaling and interaction, molecular transport, small
molecule biochemistry, lipid metabolism, carbohydrate
metabolism, and cellular growth and proliferation. All
significant biological functions and their P values for each
metabolite are provided in the Supplementary Table S2.
Additionally, the IPA software produced 33 networks with the
input metabolite and candidate gene lists (Supplementary
Table S3) and one of the most informative networks
(Figure 6) was related to lipid metabolism and cell-to-
cell signaling and interaction with betaine and some of its
candidate genes.

DISCUSSION

Heritability Estimates
Metabolites have the potential to serve as biomarkers for
production traits and diseases in livestock (Montgomery et al.,
2009), and the concentration of biomarkers should not vary
too much over the short term within an individual because
such variation could undermine the predictive association in a
single sample (Nicholson et al., 2011b). Most highly conserved
metabolites are also highly heritable (Yousri et al., 2014) and
less influenced by the environmental changes. In this study,
we performed a baseline investigation into the heritability
of plasma metabolites in crossbred beef cattle and identified
potential associations between heritable metabolites and SNP
markers. As certain metabolites are essential for growth and
health, knowledge of the genetic parameters of these important
metabolites could trigger directional selection toward regulating
their concentration in metabolic processes. For instance, alanine
is an essential amino acid for T cell activation (Ron-Harel
et al., 2019) which affects immunity level. Here, a total of
11 metabolites out of 33 showed low to moderate heritability,
suggesting their potential as biomarkers for genetic selection.
Betaine and choline which showed moderate heritability in this
study have been previously identified to be associated with
residual feed intake in beef cattle (Karisa et al., 2014), thus,
they could potentially be used as biomarkers for improving feed
efficiency in beef cattle. The majority of the metabolites with

TABLE 3 | SNPs significantly associated with metabolites: chromosome (Chr), position of SNP on chromosome (bp), minor allele and minor allele frequency (MAF),
nucleotide of SNP, P values of significant test and Bonferroni correction of P values.

Trait SNP Chr Position (bp) Minor allele and MAF Nucleotide (major/minor allele) P Bonferroni correction

Betaine rs109862186 5 118,820,845 B (0.18) T/C 7.63E-07 0.03

L-Alanine rs81117935 11 54,765,154 A (0.45) T/C 9.10E-07 0.04

L-Lactic acid rs42009425 22 41,109,447 A (0.19) A/G 9.94E-07 0.04
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FIGURE 2 | Manhattan plot (A) and QQ plot (B) for betaine, significant SNPs
were determined by Bonferroni correction (red line).

negligible heritability may be largely influenced by environmental
effects such as age, gender, nutrition, medication, and possibly
underlying diseases (Beuchel et al., 2019). The non-heritable
status of these metabolites may be used as a guide to animal
management. For example, ruminants fed silage-based diets
are likely to ingest ethanol because of ethanol production in
fermented feeds (Nishino and Shinde, 2007) and the process of
ethanol detoxification in liver could affect splanchnic nutrient
metabolism (Obitsu et al., 2013). Ethanol showed a negligible
heritability in this study, which suggests that the variation of
ethanol concentration may be mainly affected by management
factors such as feed.

In a related study that utilized milk metabolites from dairy
cattle, Buitenhuis et al. (2013) found heritability estimates that
were similar to estimates observed for five metabolites from
the current study. Although, these studies are not completely
comparable, this finding corroborates the possible existence of a
genetic basis for plasma metabolites. In addition, the negligible
heritability or large standard error observed for some of the
metabolites may be due to the limited number of animals
utilized. Thus, further study may be warranted as this is the first

FIGURE 3 | Manhattan plot (A) and QQ plot (B) for L-alanine, significant SNPs
were determined by Bonferroni correction (red line).

attempt to characterize the genetic basis of plasma metabolites in
crossbred beef cattle.

SNP Association, Candidate Genes and
Genetic Effects
Genetic profiling of plasma metabolites has been previously
studied in other species to assess their value as biomarkers
for disease prediction (López-López et al., 2018). Recently,
metabolomics GWAS was performed to identify genomic regions
associated with variation in milk metabolites in dairy cattle
(Buitenhuis et al., 2013). To the best of our knowledge, this
study is the first attempt at profiling the genetic basis of plasma
metabolites in crossbred beef cattle. The SNPs and candidate
genes identified here revealed the potential association between
metabolomics and genetics, which could help fill the knowledge
gap that exist between genetic level and external phenotype.
The possible signals detected in this study were associated
with betaine, L-alanine and L-lactic acid, and the peaks for
significant additive SNPs including rs109862186, rs81117935,
and rs42009425 were on chromosome 5, 11, and 22. Two of
the SNPs rs109862186 and rs42009425 showed no evidence
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FIGURE 4 | Manhattan plot (A) and QQ plot (B) for L-lactic acid, significant
SNPs were determined by Bonferroni correction (red line).

of a candidate gene within 200-kbp distance, however, SNP
rs42009425 associated with L-lactic acid was reported to be
associated with clinical mastitis in French Holstein cattle (Marete

et al., 2018). The SNP rs81117935 associated with L-alanine was
found to be located within the candidate gene CTNNA2 which is
one of three human alpha-catenin genes. Alpha-catenin functions
as a linking protein between cadherins and actin-containing
filaments of the cytoskeleton (Cooper and Hausman, 2000),
however, it is not known whether CTNNA2 gene may regulates
the concentration of L-alanine in bovine blood. The least square
mean results (Figure 5) showed that the concentration of L-
alanine was significantly (P < 0.05) greater in individuals that
are homozygotes for the “A” allele of SNP rs81117935 while
no significant differences existed for the other two genotypic
classes. Our finding suggests that CTNNA2 gene may play a
role in the regulation of plasma L-alanine which requires further
investigation.

Further, several candidate genes associated with heritable
metabolites were mapped inside the selected SNP windows
of 10 consecutive SNPs based on WssGBLUP analyses. Here,
choline kinase alpha gene (CHKA) which is associated with
choline was mapped inside the SNP window (46,143,465–
46,796,930 bp) on chromosome 29. This gene encodes an enzyme
called choline kinase alpha (Hosaka et al., 1992) which catalyzes
the phosphorylation of choline to phosphocholine (Aoyama
et al., 2004) as a first step in the biosynthesis pathway of
phosphatidylcholine (Lacal, 2001). Phosphatidylcholine is one
of the most abundant phospholipids in all mammalian cell
membranes (van der Veen et al., 2017) and plays a critical
role in membrane structure and also in cell signaling (Lacal,
2001). The importance of phospholipid metabolism in regulating
lipid, lipoprotein and whole-body energy metabolism has been
reviewed by van der Veen et al. (2017). Lipid metabolism has
been previously identified as an important biological function
in relation to beef cattle residual feed intake (Chen et al., 2011;
Alexandre et al., 2015; Mukiibi et al., 2018). Therefore, the
relationship between CHKA gene and choline metabolite used
in this study have potential value for improving feed efficiency
in beef cattle. Interestingly, several overlapped SNP windows
were also identified, which indicates that either two metabolites
were controlled by the same gene or by different genes within a

TABLE 4 | 200-kpb regions around the significant SNPs: chromosome (Chr), position of the region on chromosome (bp), gene in the regions and the location of the gene
compared to SNP location.

Trait Chr Position (bp) Gene name Gene location compared to SNP location

Betaine 5 118,720,845–118,920,845 – –

L-Alanine 11 54,665,154–54,865,154 CTNNA2 SNP is within gene

L-Lactic acid 22 41,009,447–41,209,447 – –

TABLE 5 | Chromosome (Chr) and position of overlapped windows (bp) and genes in the overlap windows.

Traits Chr Position (bp) Gene name

Acetone, L-lactic acid 1 28,675,718–29,049,389 GBE1

L-Alanine, choline 7 13,336,301–13,632,174 IER2, STX10, TRMT1, LYL1, NACC1, NFIX, CACNA1A

L-Alanine, betaine 19 24,357,241–24,917,540 RAP1GAP2, SPATA22, OR1G1, ASPA, TRPV1, TRPV3

L-Alanine, creatine 21 49,290,972–49,623,230 GEMIN2, PNN

Creatine, choline 28 15,916,594–16,124,333 ANK3
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FIGURE 5 | Least square means for the genotypic classes of significant SNPs
associated with betaine (A), L-alanine (B), and L-lactic acid (C), respectively.
All three significant SNPs (rs109862186, rs81117935, and rs42009425)
showed characteristics of additivity with the associated metabolite.

SNP window (Table 5). The substantial polygenic and pleiotropic
nature of the metabolite variation observed in the current study
have been previously reported in human metabolomics studies
(Hu et al., 2018; Gallois et al., 2019).

Several reasons may lead to the few significant SNPs identified.
Firstly, variation in metabolite concentrations may be due to the

polygenic nature of the genes underlying the variation. Polygenic
inheritance for primary metabolites have been reported in plants
(Rowe et al., 2008; Chan et al., 2010; Wen et al., 2014) and
could potentially exist in beef cattle as evident in our study
that utilized primary metabolites. Secondly, the crossbred nature
of our studied population could lead to inconsistent linkage
disequilibrium across multiple populations (De Roos et al., 2009).
Thirdly, the ability to identify SNPs and quantitative trait loci
with large effects on any of the metabolites depends partly on
the amount of variation in metabolite concentration that can be
attributed to genetic source. Here, low to moderate heritability
were observed for some of the metabolites studied. Marker
density is another factor that may lead to identification of fewer
significant SNPs associated with variation in metabolites. In
this study, 50K SNP panel was used for mGWAS, however,
some causative SNPs may not be included in this panel and
thus, would likely not be detected. Studies involving other
beef cattle traits have shown that increasing marker density
from 50K to 7.8 million SNPs can capture more additive
genetic variance and can detect additional or novel significant
SNPs (Wang et al., 2020; Zhang et al., 2020). Therefore, high-
density SNP marker panel or whole-genome sequence data
are suggested for future studies. Lastly, a stringent significance
threshold based on Bonferroni correction for multiple testing
was imposed to identify significant SNPs and exclude false
positive results. However, compared with traditional GWAS,
metabolites are highly correlated to other similar metabolites
and often cannot be considered as independent. The traditional
multiple testing methods may therefore eliminate some valuable
SNPs. Some groups have computed the Bonferroni correction
by counting all the metabolites (Gieger et al., 2008; Illig et al.,
2010; Suhre et al., 2011), while a few other groups have
adopted a less stringent strategy by taking into account the
number of independent metabolites as determined by a principal
component analysis to adjust for multiple test correction
(Demirkan et al., 2012).

Functional Enrichment Analyses
A one-to-one metabolite-to-gene correspondence is not known
a priori (Nicholson et al., 2011a) but functional enrichment
analyses could provide enriched functions and networks of
metabolites and identified candidate genes to give a whole picture
of gene-metabolite associations. Some biological functions that
are significantly enriched may help us improve understanding
of molecular factors for some important traits, such as feed
efficiency. The eight most significantly enriched biological
functions for beef cattle feed efficiency included lipid metabolism,
amino acid metabolism, carbohydrate metabolism, energy
production, molecular transport, small molecule biochemistry,
cellular development, and cell death and survival (Cantalapiedra-
Hijar et al., 2018). Our results supplement the part played
by genetic and molecular factors for these functions, thus,
available data with both information (i.e., metabolite data
and feed efficiency related traits) could be used to elucidate
this hypothesis. Detailed insight into the specific pathways
that are affected by variation in metabolites is a useful first
step to select the most likely hypotheses. A good example is
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FIGURE 6 | The enrichment network for betaine and associated genes, and the molecules in IPA database. The enriched pathway predicted by IPA showed a
potential relationship between betaine, insulin, and phospholipids.

betaine which is widely distributed within the animal body
(Xia et al., 2018) and was reported to enhance the synthesis
of methylated compounds such as phospholipids as well as
directly influence lipid metabolism (Huang et al., 2008). In
addition, a recent study showed that insulin was associated
with phospholipid alterations, but the mechanism is still not
clear (Chang et al., 2019). Interestingly, the enriched pathway
constructed by IPA showed a relationship between betaine,
insulin and phospholipids and provides new insight into the
connection between them (Figure 6), however, this connection
requires experimental validation.

CONCLUSION

This study estimated heritability of 33 plasma metabolites for
crossbred beef cattle and found low to moderate heritability
for 11 metabolites, which provides evidence for the genetic
basis underlying the variation of metabolite concentrations.
Three significant SNP associations were detected for betaine
(rs109862186), L-alanine (rs81117935), and L-lactic acid
(rs42009425) which suggest that the genetic effects may be

largely polygenic. The SNP rs81117935 was found to be within
CTNNA2 gene which is possibly associated with the regulation of
L-alanine concentration in bovine blood. Other candidate genes
were identified based on additive genetic variance explained by
SNP windows of 10 consecutive SNPs. The observed heritability
estimates and candidate genes and networks identified in this
study will serve as baseline information for further research into
the utilization of plasma metabolites for genetic improvement of
crossbred beef cattle.
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Genomic breed composition (GBC) of an individual animal refers to the partition of
its genome according to the inheritance from its ancestors or ancestral breeds. For
crossbred or composite animals, knowing their GBC is useful to estimate heterosis, to
characterize their actual inheritance from foundation breeds, and to make management
decisions for crossbreeding programs. Various statistical approaches have been
proposed to estimate GBC in animals, but the interpretations of estimates have varied
with these methods. In the present study, we proposed a causality interpretation of
GBC based on path analysis. We applied this method to estimating GBC in two
composite breeds of beef cattle, namely Brangus and Beefmaster. Three SNP panels
were used to estimate GBC: a 10K SNP panel consisting of 10,226 common SNPs
across three GeneSeek Genomic Profiler (GGP) bovine SNP arrays (GGP 30K, GGP
40K, and GGP 50K), and two subsets (1K and 5K) of uniformly distributed SNPs. The
path analysis decomposed the relationships between the ancestors and the composite
animals into direct and indirect path effects, and GBC was measured by the relative ratio
of the coefficients of direct (D-GBC) and combined (C-GBC) effects from each ancestral
breed to the progeny, respectively. Estimated GBC varied only slightly between different
genotyping platforms and between the three SNP panels. In the Brangus cattle, because
the two ancestral breeds had a very distant relationship, the estimated D-GBC and
C-GBC were comparable to each other in the path analysis, and they corresponded
roughly to the estimated GBC from the linear regression and the admixture model. In
the Beefmaster, however, the strong relationship in allelic frequencies between Hereford
and Shorthorn imposed a challenge for the linear regression and the admixture model
to estimated GBC reliably. Instead, D-GBC by the path analysis included only direct
ancestral effects, and it was robust to bias due to high genomic correlations between
reference (ancestral) breeds.

Keywords: beef cattle, crossbred animals, genomic composition, SNP arrays, path analysis
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INTRODUCTION

Genomic breed composition (GBC) of an individual animal
refers to the partition of its genome according to the inheritance
from its ancestors or ancestral breeds. At the DNA level, every
individual has two haplotypes, which are linages of genes and
markers. One haplotype is inherited from the father and the
other from the mother. In crossbreeding, a haplotype segment is
usually present in many individuals as descendants of a common
ancestor from which the segment originates. It is also possible
that one progeny can carry two segments that are identical-by-
status (IBS), meaning identical by chance, because they are not
inherited from the same ancestor. The chance of IBS, however,
is minimal if many markers are included in the segments, e.g.,
based on runs of homozygosity (ROH), which are long DNA
segments containing consecutive homozygous loci (Ferencakovic
et al., 2011; Purfield et al., 2012). The information about GBC is
very useful in many aspects. For purebred animals, knowing their
genomic composition can help the registry of purebred animals
when the pedigree is missing (Kuehn et al., 2014; Norman et al.,
2016) or the identification of population structures (Pritchard
et al., 2000; Pickrell and Pritchard, 2012). For crossbred or
composite animals, GBC is often used to estimate heterozygosity,
to understand their breeding history, to characterize their actual
inheritance from foundation breeds, and to make management
decisions for crossbreeding programs (VanRaden and Cooper,
2015; Akanno et al., 2017; Gobena et al., 2018; He et al., 2018).

Various statistical methods have been proposed to estimate
GBC (Pritchard et al., 2000; Tang et al., 2005; Frkonja et al.,
2012; Bansal and Libiger, 2015), but the interpretations of
estimates have varied across methods. For example, linear
regression estimated the GBC of an individual by adjusted
regression coefficients of coded genotypes of each animal as
the progeny on the ancestral allele frequencies (Chiang et al.,
2010; Kuehn et al., 2014; VanRaden and Cooper, 2015). The
regression coefficients, however, have no precise interpretation
of GBC because they can be any real values, not bounded
between 0 and 1. Statistically speaking, linear regression is more
of a prediction method rather than an appropriate approach
for quantifying genomic causality relationships. When applying
the least squares, for example, the linear regression equation
is fitted by minimizing the discrepancy between the observed
dependent values and their fitted value given by the linear
equation. Hence, the usefulness of such an equation is that it gives
the best or closest prediction, independently of the meaning of
predictors, and it provides no exact indication on the causality
relationships of these variables. Likewise, estimated GBC using
a genomic prediction model is also based on estimated variable
effects, which is more of a prediction by its nature than of
causality (Akanno et al., 2017). Besides, a multiple regression
model is not robust to high correlations between independent
variables. In reality, however, modern cattle breeds are genetically
related to various extent (Ajmone-Marsan et al., 2010). Such
strong relationships between breeds give rise to the problem
of multicollinearity, which in turn leads to ill-estimated linear
regression coefficients, e.g., when obtained with least-squares.
Another approach for estimating GBC is the admixture model,

which postulates that an observed genotype is an instance of
a multinomial distribution with the genotype probability being
a mixture of those of their ancestors. In this case, the GBC
of an individual animal is estimated by the weights of the
admixture (Bansal and Libiger, 2015). Like in the case of the
linear regression approach, if ancestors are highly correlated, it
also imposes a challenge to precisely estimate the weights for the
admixture model.

Path analysis has been developed to model causal relationships
between variables. In the path analysis, exogenous (independent)
variables produce both direct and indirect path effects on one or
more endogenous (dependent) variables. The indirect path effects
due to the correlations between the exogenous variables are also
referred to as the correlational effects (Land, 1969). Path analysis
was initially developed by Sewall Wright in a series of general
essays (Wright, 1921, 1934, 1954, 1960a,b) as an analytical tool for
quantitative genetics to measure “ the direct influence along each
separate path in such a system and to find the degree to which
variation of a given effect is determined by each particular cause”
(Wright, 1921).

In the present study, we proposed the use of path analysis
to decompose the causality relationships between composite (or
crossbred) animals and their putative ancestors (or reference
breeds) and to estimate GBC of individual animals in terms of
the relative determination of respective ancestral (or reference)
breeds. Two measures of GBC were used, one accounting only
for the direct path effects of each reference breed, and the
other including both direct and indirect path effects for each
reference breed. The indirect path effects were attributable to the
correlations between the reference breeds. Estimated GBC from
the path analysis was compared with those obtained using the
linear regression and the admixture model, and their similarities
and dissimilarities were discussed as well.

MATERIALS AND METHODS

Animals, Genotypes, and SNP Panels
The genotypes of 150,676 animals sampled from two composite
breeds and eight reference breeds of beef cattle were used
in the present study (Table 1). The composites included
7,605 Beefmaster and 7,969 Brangus. The reference animals
included 45,396 Angus, 2,320 Brahman, 10,423 Hereford, 1,587
Shorthorn, 17,769 Gelvieh, 7,680 Limousin, 23,722 Simmental,
and 26,689 Wagyu before data cleaning. These animals were
genotyped on GeneSeek Genomic Profiler (GGP) LD V3 (GGP
30K) bovine SNP chip (32,179 SNPs), GGP bovine SNP 40K
chip (40,660 SNPs), and GGP bovine 50K bovine SNP chip
(49,463 SNPs), respectively (Neogen GeneSeek Operations,
Lincoln, NE). The GGP 40K bovine SNP chip included
common 31,901 SNPs with the GGP 30K. The GGP bovine
50K had 11,333 SNPs in common with GGP bovine 30K
SNP chip and 16,369 SNPs in common with GGP bovine
50K SNP chip. Data cleaning removed monomorphic SNPs
across all breeds, and SNPs with 10% missing in each breed.
After data cleaning, 10,226 common SNPs (referred to as
the 10K SNP panel) across the three GGP bovine SNP
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TABLE 1 | Number of genotyped animals and number of SNPs on GeneSeek Genomic Profiler (GGP) 30K (GGP 30K), 40K (GGP 40K), and 50K (GGP 50K) SNP chips
used in the present studya,b.

Type Breed GGP30K GGP40K GGP50K nAnim

nAnim nSNP nAnim nSNP nAnim nSNP Before DC After DC

Composite Beefmaster 23 32,179 300 40,663 7,282 49,463 7,605 7,605

Brangus 1,319 32,179 3,053 40,660 3,605 49,463 7,969 7,969

Ancestral Angus 6,839 32,179 18,198 40,660 20,359 49,463 45,396 45,367

Brahman – – 1,811 30,720 509 43,984 2,320 2,271

Hereford 4,000 32,179 4,000 40,660 2,423 49,463 10,423 10,414

Shorthorn – – 355 40,660 1,232 49,463 1,587 1,577

Non-ancestral Gelbvieh 2,763 32,179 5,498 40,660 9,508 49,463 17,769 17,735

Limousin 373 32,179 2,264 40,660 5,043 46,915 7,680 7,677

Simmental 3,130 32,179 5,838 40,660 14,754 49,463 23,722 23,697

Wagyu 1,463 32,179 1,506 40,660 23,720 49,463 26,689 26,364

Sum 19,910 42,823 88,435 152,160 150,676

anAnim = number of genotyped animals; nSNP = Number of SNPs on the chip;
bnAnim (Before DC vs. After DC) = Total number of animals BEFORE or AFTER data cleaning.

chips were retained. Then, from the 10K set, two sets: (1)
1,000 uniformly distributed SNPs (1K panel), and (2) 5,000
uniformly distributed SNPs (5K panel), were selected using
the selectSNP package (Wu et al., 2016). A map view of
the three SNP panels is shown in Supplementary Figure 1.
These three SNP panels were used to estimated GBC for the
composite animals.

Data cleaning on reference animals was conducted following
He et al. (2018). Briefly, the likelihood that an animal belonged to
a specific breed was computed based on a Bayesian multinomial
model, assuming independence between SNP loci. Then, outliers
with the negative two times the likelihood being greater than
two were excluded in each reference population. After data
cleaning, 135,102 reference animals from eight breeds remained
as the reference animals. Of the eight reference cattle breeds,
Brahman is the only Bos taurus indicus breed, and it had the
most remote relationships with the seven Bos taurus taurus
cattle breeds. The relationships between the eight reference
breeds were depicted by a hierarchical clustering analysis
(Murtagh and Legendre, 2014) using the 5K SNP panel and
shown in Supplementary Figure 2. All composite animals were
included in the subsequent analyses because they were test
animals and not used as the reference. Histograms of allele
frequencies for the 10K SNPs for the eight reference breeds
and the two composite breeds are shown in Supplementary
Figure 3. The distributions of allele A frequencies for these
breeds (except Brahman) were approximately “bell-shaped,” but
they were not typical of a normal distribution. They mostly
had “thick” tails, representing SNPs with small minor allele
frequencies (MAF). In particular, the distribution of allele
A frequencies for Brahman had “outstanding” proportions
of SNPs with MAF. These GGP bovine SNP chips (30K,
40K, and 50K) were primarily designed for Bos Taurus cattle,
not for Bos indicus cattle. Possibly, many SNPs could have
small MAF or even be monomorphic. It is also possible that
there existed population mixture or stratification with this
Brahman dataset.

The genomic breed composition (GBC) was estimated
in the two composite breeds. Brangus was developed to
combine the desirable traits of Angus and Brahman cattle
(Briggs and Briggs, 1980). Angus cattle are known for their
superior carcass qualities. Moreover, Angus cows are well known
for their excellent fertility and their capability for milking. The
Brahman has gone through rigorous natural selection and has
developed disease resistance, and overall they have hardiness
and outstanding maternal instincts. For official registration,
a Brangus animal needs to be genetically stabilized at 3/8
Brahman and 5/8 Angus by pedigree, be solid black or red,
and polled, and both sire and dam must be recorded with
the International Brangus Breeders Association (IBBA) (San
Antonio, TX). The Beefmaster was developed in the early 1930s
from a crossing of Hereford cows and Shorthorn cows with
Brahman bulls (Briggs and Briggs, 1980). The original intention
was to produce cattle that could produce economically in the
challenging environment of South Texas. Nowadays, these cattle
are regarded as a versatile, multipurpose breed because they
can be used for both milk and beef production. The exact
mixture of the foundation cattle is unknown but is generally
thought to be about 25% Hereford, 25% Milking Shorthorn,
and 50% Brahman.

Statistical Methods
Linear Regression and the Likelihood-Based
Admixture Model
These two models served as the benchmark for comparison
in the present study. In the linear regression approach, the
genotypes of a crossbred animal are coded to be the proportion
(or frequency) of say allele A in the genotype for all involving
SNPs across the genome. Then, the coded genotypes are regressed
to the corresponding allele A frequencies of SNPs for a set
of reference populations (Chiang et al., 2010; Hulsegge et al.,
2013; Kuehn et al., 2014). Let AA = 1, AB = 0.5, and BB = 0,
which can also be interpreted to be the allele A frequencies
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at the individual level. Denote yi to be a M × 1 vector of
genotypes pertaining to animal i, where M is the number of
SNPs involved, and denote xj to be an M × 1 vector of allele
A frequencies of the M SNPs genotype in reference population
or breed j, for j = 1, . . . ,K where K is the number of breeds.
Then, the GBC is estimated based on the following linear model:

yi = 1µ+

K∑
j=1

bjxj + ei (1)

where µ is an intercept, and bj is the regression coefficient
pertaining to population or breed j, and ei is a vector of
residuals. Because regression coefficients are not bounded
between 0 and 1 by nature, some adjustments are necessary
to restrict the sum of the regression coefficients for each
animal to be 1 (VanRaden and Cooper, 2015; He et al.,
2018).

For crossbred animals whose ancestors originated in different
populations, their genetic composition exhibits multiple
ancestries associated with multiple different genetic clusters or
populations, which therefore can be described by the admixture
model (Pritchard et al., 2000; Tang et al., 2005; Alexander et al.,
2009; He et al., 2018). The admixture model estimates GBC as
the weights for an underlying admixture distribution, which
governs the realization of genotypes for individual animals,
and each component in the admixture corresponds to the allele
frequency of each reference breed. Consider M SNPs, each
with two alleles A and B. Let there be T reference or putatively
ancestral populations with allelic frequencies of these SNPs
assumedly to be known. Denote xij to be the allele frequency
of the allele A at the ith SNP in the jth population. Following
Bansal and Libiger (2015), we estimated the allelic frequencies of
SNPs a priori and then treated them as known in the admixture
model. Let wj represent the admixture proportion for the jth
population and W = [w1, w2, . . . , wk ]

′ be the vector of
admixture coefficients. Then, weighted allele frequency at SNP
i given the allele frequencies and the admixture proportions

was calculated to be fi =
k∑

j=1
xijwj, where xij was the allele A

frequency of the ith SNP in the jth reference breed. Assuming
Hardy-Weinberg equilibrium (HWE) at each SNP locus, the
probability of observing genotype yi at locus i is:

Pr
(
yi|fi

)
=


f 2
i if yi = 2
2fi(1− fi) if yi = 1

(1− fi)2 if yi = 0
(2)

For a given vector of admixture proportions, the log-likelihood of
the observed genotypes g for an individual was defined as:

L (W) =

M∑
i=1

ln(Pr
(
yi|fi

)
(3)

Alternatively, the above likelihood can be written as:

L (W) =

M∑
i=1

[yi ln(fi)+ (2− yi) ln(1− fi)] + C (4)

where C =
M∑
i=1

ln
(

2
yi

)
. Given the matrix of allele frequencies

xij (1 ≤ i ≤ M and 1 ≤ j ≤ K) for k populations, our goal
was to determine the vector W = [w1, w2, . . . , wK]

′ of
admixture proportions that maximize L (W) subject to

the constraints wj ≥ 0 and
K∑
j=1

wj = 1.Optimization of (4),

however, is challenged by the constraint on the admixture

proportions, that is wj ≥ 0 and
K∑
j=1

wj = 1. Alexander et al.

(2009) used sequential quadratic programming combined
with a quasi-Newton acceleration method to optimize the
likelihood function. This method, however, involves the
manipulation and inversion of a possibly large matrix, which
can be computationally intensive. Following Bansal and
Libiger (2015) and He et al. (2018), we utilized the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method to optimize the
likelihood function (4). The BFGS algorithm is a popular
quasi-Newton method for solving non-linear optimization
problems, which utilizes the first derivatives of the likelihood
function and approximates the Hessian matrix of the second
derivatives (Nocedal and Wright, 2006). The constraint
K∑
j=1

wj = 1 is handled by scaling the individual admixture

coefficients by their sum, that is, replacing wj with wj∑K
j=1 wj

in the

likelihood function.

Path Analysis
Intuitively, path analysis can be viewed as an extension
of linear regression in the form of standardized multiple
regression, yet with a focus on inferring causality (Wright,
1921). By centering yi and each xj on zero (i.e., subtracting
the expectation of each corresponding variable), and after
dividing both sides of equation (1) by the standard deviation
of y, the linear regression model can be expressed as:

yi − E(yi)
σyi

=

K∑
j=1

{
bj ×

xj − E
(
xj
)

σyi

}
+

ei − E (ei)
σyi

which can be further re-arranged as:

yi − E(yi)
σyi

=

K∑
j=1

{
bj ×

σxj

σyi
×

xj − E
(
xj
)

σxj

}
+

σei
σyi
×

ei − E (ei)
σei

(5)
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Now, Let y∗i =
yi−E(y)

σyi
, x∗j =

xj−E(xj)
σxj

, e∗i =
ei−E(e)

σei
, b∗j = bj

σxj
σyi

,

and b∗e = 1× σei
σyi

. Then, the above equation is simplified to be:

y∗i =
K∑
j=1

{
b∗j × x∗j

}
+ b∗ei × e∗i (6)

Here, y∗i , x∗j , and e∗i are standardized vectors for genotypes,
allele A frequencies, and residuals, respectively, and b∗j = bj ×
σxj
σyi

is a standardized regression coefficient for an exogenous
variable, which is also referred to as a path coefficient. That is,

pyixj = bj ×
σxj

σyi
(7)

In (6), b∗e is the path coefficient pertaining to the residual
term, which is also referred to as the coefficient of alienation
(Land, 1969). For the estimation of GBC, the presence of this
residual term is relevant for two main reasons. Firstly, Mendelian
sampling deviates the GBC of individual animals from their
expected values. Secondly, the allele frequencies of the ancestral
breeds are contemporary, which can be different from those of
the base populations when the crossbreeding for creating this
composite breed was initiated. Over the years, allele frequencies
of the ancestral breeds can change to a varying extent due to
selection, migration, and inbreeding. In what follows, we ignore
the superscript “∗” for the convenience of notation. If we replace
the standardized regression coefficients with the path coefficient
notation in (6), it gives:

yi =
K∑
j=1

{
pyixj × xj

}
+ pyiei × ei (8)

In the path analysis, a path coefficient measures the fraction
of standard deviation of standardized genotypes of a crossbred
animal for which each ancestor or ancestral breed is directly
responsible, in the sense of the fraction which would be
found if the allele frequencies of one ancestral breed varies
to the same extent as in the observed data while all other
variables (i.e., allele frequencies of the other ancestral breeds)
are constant.

The theory of path analysis states that the correlation between
y and xj is the sum of direct path coefficient plus a sum of terms
each quantifying a correctional or an indirect path effect:

ryixj = pyixj +
K∑
j′ 6=j

pyixj′ rxjxj′ (9)

Thus, a path coefficient represents the direct effect of an ancestor
or ancestral breed to be a cause on the genome of a crossbred
animal while the latter is assumed to be an effect, whereas the
correlation ryixj reflects the genomic similarity between them.
Then, the determination of an endogenous variable (genotypes of
a crossbred animal) on an exogenous variable (allele frequencies
of a reference population) is measured by the coefficient of
determination. For example, the coefficient of determination of xj

on yi is given by the sum of the squared direct path coefficient and
the terms representing the determination of all possible indirect
paths. That is,

dyixj = p2
yixj +

K∑
j′ 6=j

pyixjrxjxj′ pyixj′ (10)

The above is referred to as the coefficient of combined
determination for an exogenous variable (xj), which includes
correlational, indirect path effects. When the correlational effects
are zero or ignored, the above reduces to the coefficient of direct
determination of xj on yi,

dyixj = p2
yixj (11)

Hence, the coefficient of direct determination of an exogenous
variable to the endogenous variable, which is the squared path
coefficient, measures the proportion of the variance of the
endogenous variable for which an exogenous variable is directly
responsible. Then, it can be shown that the total variation
of the endogenous variable is entirely determined by a linear
combination of the exogenous and the residual variable(s).
That is,

K∑
j=1

p2
yixj +

K∑
j′ 6=j

pyxjrxjxj′ pyixj′

+ p2
yiei = 1 (12)

Thus, in view of genomic determination, GBC can be measured
by the relative ratio of the coefficients of either the direct or
combined determination. Hereafter, the former is referred to as
D-GBC and the latter C-GBC hereafter. That is,

D-GBC= p2
yixj/

K∑
j=1

p2
yixj (13)

C − GBC =

p2
yixj +

K∑
j′ 6=j

pyixjrxjxj′ pyixj′

/

K∑
j=1

p2
yixj +

K∑
j′ 6=j

pyixjrxjxj′ pyixj′

 (14) (13)

The sum of GBC for an individual animal is one when using
either of the above two formulas. The difference between the
above two measures of GBC is that correlational or indirect
path effects are included in the estimated C-GBC with (14) but
not in the estimated D-GBC with (13). From the viewpoint of
genetic determination, the correlational or indirect path effects
are attributable to genomic similarities. The proportion of the
variance of the endogenous variable that is not accounted for by
the set of exogenous variables in the system is then quantified to
be:

R = p2
yiei = 1−

K∑
j=1

p2
yixj +

T∑
j′ 6=j

pyixjrxjxj′ pyixj′

 (14)

Note that 1-R can be used as a measure of reliability say for
estimated C-GBC. Given two individuals having the same values
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of C-GBC but different R values, estimated C-GBC is more
reliable for the one with a smaller value of 1-R.

In the above, we have discussed the path analysis applied
to estimate GBC as a form of standardized linear regression,
in which standardized genotypes of each crossbred animal are
regressed on standardized allele frequencies of reference breeds.
The genotypes are coded as the portion of allele A in the
genotypes (i.e., AA = 1, AB = 0.5, and BB = 0), which can also
be viewed as the frequency allele A at the individual level. Put
in another way, the frequency of allele A at each SNP locus
for a given population can be viewed as the average genotype
for that population. Another approach is to obtain the path
coefficients using the correlations between them, as suggested by
the relationships shown in (9). If we extend each equation in (9)
for each of the crossbred animals, it gives:

pyix1 + rx1x2pyix2 + . . .+ rx1xTpyixK = ryix1

. . .

rxTx1pyix1 + rxTx2pyix2 + . . .+ pyixK = ryixT

(15)

where, for example, ryix1 is the correlation between the genotypes
of the crossbred animals and the corresponding SNP allele
frequencies in the first reference population. In matrix notation,
the above becomes:

pyxRxx = ryx (16)

where pyx =
(
pyix1 . . . pyxT

)′,ryx = ( ryx1 . . . ryxT
)′, and

Rxx =


1

rx2x1

. . .

rxTx1

rx1x2 . . .

1 . . .

. . .

rxTx2

. . .

. . .

rx1xT
rx2xT
. . .

1

 (17)

Therefore, the vector of path coefficients is obtained as:

pyx = ryxR−1
xx (18)

Now consider only two exogenous variables, x1 and x2. The
solutions of the path coefficients are obtained as the following:

pyix1 =
(
ryix1 − rx1x2ryix2

)
/
(
1− r2

x1x2

)
pyix2 =

(
ryix2 − rx1x2ryix1

)
/
(
1− r2

x1x2

) (19)

In the above, pyix1 is also recognized as the semi-partial
correlation of x1 on yi, and pyix2 is the semi-partial correlation
of x2 on yi. Like a partial correlation, a semi-partial correlation
compares variations of two variables after certain factors are
controlled for. The difference between them is that, with a semi-
partial correlation, one holds the third variable (x2) constant for
either x1 or yi but not both, whereas with a partial correlation,
one holds the third variable constant for both (Baba et al.,
2004). In terms of their quantities, the absolute value of a semi-
partial correlation, say between x1 and yi, is always no greater
than that of the partial correlation between the two variables.
We used Pearson’s correlations of allele A frequencies in the
path analysis, though the distributions of allele A frequencies
were not exactly normal distributions, but taken to be so
approximately. Alternatively, Spearman’s correlations can be

used as well, which can better capture monotonic relationships.
Nevertheless, relational plots of allele frequencies between breeds
showed apparently linear relationships between a composite
breed and its ancestral breed, not monotonic relationships. That
was another reason for us to use Pearson’s correlations in the
present study. As we found later, both types of correlations gave
well comparable results.

A numeric example is shown in Figure 1, where the GBC is
computed for an Ultrablack, given the assumed GBC of Brangus.
The International Brangus Breeders Association has created an
appendix registry designation of Ultrablack (and Ultrared) for
animals, which are between 12.5 and 87.5% Brangus and the
remainder Angus (or Red Angus) (Waldrip, 2017). For the
convenience of discussion, we will use Ultrablack to represent
first-generation Ultrablack animals (1/2 Brangus × 1/2 Angus).
For the convenience of discussion, we assume that rAB = 0 (no
correlation between Angus and Brahman) and pCEC = 0 (no
residual effect) in this example. Let p2

CA = 0.625 and p2
CB =

0.375, which is equivalent to a causality interpretation that the
Angus origin and Brahman origin accounted for 5/8 (62.5%) and
3/8 (37.5%), respectively, of the genomic variation of Brangus.
Then, the GBC of a 1/2 UltraBlack Brangus is computed as
follows:

dDA = p2
DA +

(
pCA × pDC

)2
= 0.5+

(√
0.625×

√
0.5
)2
= 0.8125

dDB =
(
pCB × pDC

)2
=

(√
0.375×

√
0.5
)2
= 0.1875

In the above, AD is a direct path from Angus to an Ultrablack,
and ACD is an indirect path from Angus to an Ultrablack via
Brangus. Similarly, BCD is an indirect path from Brahman to an
Ultrablack via Brangus. Note that both indirect paths, ACD and
BCD, are two compound paths. The coefficient of a compound
path is the product of all component segments. Hence, under the
assumption of no correlation between the two ancestral breeds,
computed GBC of an Ultrablack agreed with pedigree-expected
ratios of genomic composition for an Ultrablack animal, which
is 81.25% Angus and 18.75% Brahman. Therefore, assuming

FIGURE 1 | Path diagram of the relationships between Brangus (and 1/2
UltraBlack) and two ancestral breeds, namely Angus and Brahman pyx = path
coefficient from x to y; rAB = correlation between Angus (A) and Brahman (B).
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no correlation between the two ancestral breeds, the causality
interpretation of GBC agreed with the pedigree-expected GBC
for an Ultrablack animal.

RESULTS AND DISCUSSION

Estimated Genomic Breed Composition
for Brangus
The Brangus was highly correlated in terms of allelic frequencies
with Angus (0.671–0.714) and moderately correlated with
Brahman (0.442–0.481) because the Brangus was descended
from these two breeds (Table 2). The Brangus animals also had
moderate or high correlations with some non-ancestral breeds,
such as Simmental (0.585–0.628), Limousine (0.512–0.557), and
Shorthorn (0.452–0.520), due to the significant correlations
between Angus and these non-ancestral beef breeds. Also

based on allelic frequencies, Angus was highly correlated with
Gelbvieh (0.765–0.793), Limousine (0.628–0.792), Shorthorn
(0.552–0.611), and Simmental (0.776–0.812). The Brahman is
a Bos taurus indicus cattle breed, and it had low correlations
with the seven Bos taurus Taurus cattle breeds (0.035–0.239).
Thus, a high correlation between the Brangus and a reference
breed does not indicate the genomic causality but the genomic
similarity between them.

The path analysis estimated the genomic effects of these
reference breeds on the Brangus. With the eight reference breeds,
the estimated path coefficients for the two ancestral breeds were
the largest among the eight reference breeds, which were 0.510–
0.552 for Angus, and 0.396–0.407 for Brahman (Table 2). The
D-GBC for the two ancestral breeds was estimated to be 60.2–
63.4% (Angus) and 34.4–36.5% (Brahman), and the C-GBC
for the two ancestral breeds, which included both direct and
indirect path effects, was estimated to be 57.1–58.6% (Angus)

TABLE 2 | Path analysis using the correlation data for 7,969 Brangus animals with eight reference breeds and three SNP panels (1K, 5K, and 10K).

Statistic Breed GGP 30K/GGP 40K GGP 50K

1K 5K 10K 1K 5K 10K

Correlation with Brangus Angus 0.699 0.671 0.692 0.714 0.689 0.711

Brahman 0.442 0.451 0.475 0.444 0.456 0.481

Gelbvieh 0.635 0.606 0.627 0.647 0.622 0.645

Hereford 0.362 0.316 0.310 0.374 0.325 0.321

Limousin 0.532 0.512 0.541 0.546 0.527 0.557

Shorthorn 0.507 0.452 0.478 0.520 0.468 0.495

Simmental 0.610 0.585 0.611 0.624 0.602 0.628

Wagyu 0.278 0.311 0.344 0.288 0.318 0.353

Path coefficient Angus 0.527 0.510 0.539 0.538 0.520 0.552

Brahman 0.402 0.396 0.404 0.403 0.401 0.407

Gelbvieh 0.107 0.086 0.071 0.096 0.085 0.073

Hereford 0.019 0.031 0.008 0.023 0.032 0.009

Limousin 0.030 0.034 0.030 0.037 0.037 0.031

Shorthorn 0.087 0.060 0.051 0.091 0.068 0.058

Simmental −0.007 0.003 0.007 −0.005 0.006 0.007

Wagyu −0.029 0.008 0.003 −0.023 0.007 0.003

D-GBC Angus 60.2% 60.4% 62.9% 61.4% 60.7% 63.4%

Brahman 35.2% 36.5% 35.3% 34.4% 36.0% 34.6%

Gelbvieh 2.48% 1.71% 1.09% 1.94% 1.63% 1.09%

Hereford 0.07% 0.22% 0.01% 0.11% 0.23% 0.02%

Limousin 0.20% 0.28% 0.19% 0.29% 0.31% 0.20%

Shorthorn 1.64% 0.82% 0.56% 1.77% 1.03% 0.71%

Simmental 0.01% 0.00% 0.01% 0.00% 0.01% 0.01%

Wagyu 0.18% 0.02% 0.00% 0.12% 0.01% 0.00%

C-GBC Angus 56.9% 57.1% 56.7% 57.6% 57.2% 57.6%

Brahman 30.2% 32.2% 30.2% 29.4% 31.5% 29.4%

Gelbvieh 6.67% 5.13% 6.66% 5.87% 5.11% 5.87%

Hereford 0.59% 0.92% 0.59% 0.75% 0.95% 0.75%

Limousin 1.41% 1.60% 1.41% 1.75% 1.75% 1.75%

Shorthorn 4.34% 2.63% 4.34% 4.63% 3.08% 4.63%

Simmental 0% 0.16% 0% 0% 0.30% 0%

Wagyu 0% 0.22% 0% 0% 0.20% 0%

The Brangus animals were genotyped on either GGP 30K/GGP 40K bovine SNP chip or GGP 50K bovine SNP chip, respectively.
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and 29.6–32.2% (Brahman) (Table 2). It is noted that, with
the eight reference breeds, the estimated D-GBC and C-GBC
for the two ancestral breeds were both considerably below the
pedigree-expected ratios of 62.5% for Angus origin and 37.5%
for Brahman origin, regardless of the genotyping platforms and
SNP panels used. Hence, by including non-ancestral reference
breeds, it introduced noise (i.e., small estimated GBC for non-
ancestral breeds) in the estimation of GBC for the Brangus,
which in turn offset to a varying extent the estimated GBC for
the ancestral breeds. The estimated D-GBC for non-ancestral
breeds was mostly less than 1%, but the estimated C-GBC for
non-ancestral was large, which for example, was 5.11–6.72%
for Gelbvieh and 2.63–4.67% for Shorthorn, and 1.41–1.77%
for Limousine (Table 2). Estimated D-GBC and C-GBC by the
path analysis using the genotype data showed similar patterns
(Supplementary Table 1). Therefore, when the eight reference
cattle breeds were used, the small amounts of estimated GBC for
non-ancestral breeds offset the estimated GBC for the ancestral
breeds, thus leading to underestimated GBC for the ancestral
breeds, regardless of the models used.

The bias in the estimated GBC can be minimized by excluding
non-ancestral breeds from the reference breed panel based on
a priori information. Because Brangus cattle are descended
from Angus and Brahman, we estimated D-GBC and C-GBC
by including only the two ancestral breeds as the reference
breeds. Then, with these two reference breeds only, the estimated
D-GBC for the Brangus using the correlation data was 71.2–
72.0% Angus and 28.0–28.8% Brahman, and the estimated
C-GBC for the Brangus was 70.2–71.2% Angus and 28.7–
29.8% Brahman (Table 3). Pearson’s correlations were used by
path analysis throughout the present study, though the allele
frequencies of the SNPs were not exactly normal distributions.
Switching to using Spearman’s correlations, for example, led to
slightly different results, but they were well comparable to the
results obtained based on Pearson’s correlations. For example,
based on the Spearman’s correlations of allele A frequencies,
the estimated D-GBC was 69.4–74.1% of Angus and 25.9–
30.6% of Brahman. These values are within a comparable range
of those obtained based on Pearson’s correlations of allele
A frequencies. The estimated D-GBC from the path analysis
using the genotype data was 69.5–71.8% Angus and 28.2–
30.5% Brahman, respectively, and the estimated C-GBC were
68.2–70.9% Angus and 29.1–31.8% Brahman (Table 4). With
the genotype data, the admixture model suggested that the
Brangus were on average 68.8–70.3% Angus and 29.7–31.2%
Brahman, whereas the linear regression indicated that Brangus
was 68.6–70.4% Angus and 29.6–31.4% Brahman (Table 4). The
estimated D-GBC and the estimated C-GBC for the Brangus in
the path analysis agreed approximately with each other when
the correlation in allelic frequencies between the two ancestral
breeds was low (0.051–0.090). In other words, the correlational
indirect path effects between the ancestral breeds are trivial,
and thus the estimated D-GBC agreed well with the estimated
C-GBC. The estimated D-GBC and C-GBC from the path
analysis also corresponded well to the estimated GBC from
the admixture model and linear regression in this Brangus
population (Table 4). It also came to our attention that the

estimated GBC did not show significant differences between
different genotyping platforms and between three SNP panels
used (Tables 3, 4).

The estimated Angus compositions for these Brangus animals
by the three methods were all considerably higher than the
pedigree-expected Angus ratio (5/8 = 0.625) in Brangus. In the
path analysis using the correlation data, for example, the average
of estimate Angus GBC was 71.67% across the three genotyping
platforms and the three SNP panels. There are possibly two
reasons for the elevated Angus composition in these Brangus
animals. Firstly, Brangus animals have been selected toward
Angus type phenotypes for years, which in turn could have left
up the Angus genomic composition in Brangus. Secondly, these
Brangus animals included some UB individuals. The estimated
GBC for these 7,696 Brangus animals was plotted in ascending
order of their Angus composition (Figure 2). The mixture of the
UB animals was identified by the sharp increase of Angus GBC
on the right-hand side of the plot, which roughly accounted for
up to one-fourth of the Brangus animals. By roughly taking the
portion of 1/2 UB animals to be 25%, which have an average
of 81.25% Angus composition, we estimated that the actual
Angus composition of the Brangus (non-UB) animals could be
(71.67%− 81.25%∗0.25)/0.75 = 68.5%.

Estimated Genomic Breed Composition
for Beefmaster
The Beefmaster was highly correlated with the three ancestral
breeds: Brahman (0.544–0.570), Hereford (0.504–0.549), and
Shorthorn (0.443–0.558) (Table 5). There were also moderate
to high correlations (0.396–0.551) between the Beefmaster and
some non-ancestral beef breeds (e.g., Gelbvieh, Limousin, and
Simmental) (Table 5), which arose from the genomic similarities
between the ancestral breeds and the non-ancestral breeds.
A moderate to a high correlation in allelic frequencies between
the Beefmaster and a reference breed was no indication of the
genomic causality, but the genomic similarity between them.
Of the three ancestral breeds, the correlation was low between
Brahman and Hereford (0.035–0.059) and between Brahman and
Shorthorn (0.052–0.10), but it was moderate to high between
Hereford and Shorthorn (0.381–0.428).

With the correlation data and the eight reference breeds,
the path analysis gave the largest estimates of direct path
coefficients to the three ancestral breeds, which were 0.495–
0.522 (Brahman), 0.342–0.380 (Hereford), and 0.216–0.245
(Shorthorn). Accordingly, the estimated D-GBC for the
Beefmaster was 56.2–59.2% (Brahman), 27.5–31.3% (Hereford),
and 11.1–12.4% (Shorthorn), whereas the estimated C-GBC
for the Beefmaster was 42.6–51.3% (Brahman), 28.5–35.9%
(Hereford), and 13.5–15.6% (Shorthorn). Like in the case of
Brangus, with the eight reference breeds, estimated GBCs for
the ancestral breeds were offset by the small GBC components
for non-ancestral breeds (Table 5). The estimated GBC of
non-ancestral breeds in the Beefmaster were mostly less than
1% for D-GBC and all below 5% for C-GBC. Estimated D-GBC
varied only between different data types, and genotyping
platforms, and between the three SNP panels used. The same
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TABLE 3 | Path analysis using the correlation data for 7,969 Brangus animals with two ancestral breeds (Angus and Brahman) as the reference and three SNP panels
(1K, 5K, and 10K).

Statistics GGP30K/GGP 40K GGP 50K

1K 5K 10K 1K 5K 10K

Correlation Brangus vs. Angus 0.699 0.671 0.692 0.714 0.689 0.711

Brangus vs. Brahman 0.442 0.451 0.475 0.444 0.456 0.481

Path coefficient Brangus < -Angus 0.668 0.645 0.654 0.678 0.663 0.673

Brangus < -Brahman 0.418 0.410 0.416 0.424 0.415 0.420

D-GBC Brangus < -Angus 71.9% 71.2% 71.2% 71.9% 71.8% 72.0%

Brangus < -Brahman 28.1% 28.8% 28.8% 28.1% 28.2% 28.0%

C-GBC Brangus < -Angus 71.2% 70.6% 70.2% 71.2% 71.1% 70.9%

Brangus < -Brahman 28.7% 29.3% 29.8% 28.7% 28.9% 29.1%

The Brangus animals were genotyped on either GGP 30K/GGP 40K bovine SNP chip or GGP 50K bovine SNP chip, respectively.
The correlation of allele A frequencies between Angus (A) and Brahman (B) computed for the three SNP panels was rAB = 0.051 (1K), 0.062 (5K) and 0.090 (10K).

TABLE 4 | Comparison of estimated GBC for 7,969 Brangus with genotype data, obtained by the admixture model, linear regression, and path analysis techniques,
respectively, using only Angus and Brahman in the reference breed set.

Model Panel GGP 30K/GGP 40K GGP 50K

Angus Brahman Angus Brahman

Mean SD Mean SD Mean SD Mean SD

Admixutre 1K 69.9% 7.3% 30.1% 7.3% 70.3% 7.1% 29.7% 7.1%

5K 69.8% 6.8% 30.2% 6.8% 70.1% 6.8% 29.9% 6.8%

10K 68.8% 7.1% 31.2% 7.1% 69.1% 7.0% 30.9% 7.0%

Linear regression 1K 70.0% 7.6% 30.0% 7.6% 70.4% 7.6% 29.6% 7.6%

5K 69.5% 7.4% 30.5% 7.4% 69.8% 7.5% 30.2% 7.5%

10K 68.6% 7.5% 31.4% 7.5% 69.0% 7.6% 31.0% 7.6%

Path analysis (D-GBC) 1K 71.8% 11.9% 28.2% 11.9% 71.5% 12.3% 28.5% 12.3%

5K 69.6% 11.8% 30.4% 11.8% 70.2% 12.4% 29.8% 12.4%

10K 69.5% 11.7% 30.5% 11.7% 70.2% 12.3% 29.8% 12.3%

Path analysis (C-GBC) 1K 70.9% 11.7% 29.1% 11.7% 70.6% 12.1% 29.4% 12.1%

5K 68.7% 11.5% 31.3% 11.5% 69.3% 12.0% 30.7% 12.0%

10K 68.2% 11.3% 31.8% 11.3% 68.8% 11.8% 31.2% 11.8%

was true with estimated C-GBC (Table 5). These conclusions
coincided with what we had with the Brangus. When limited
to three ancestral breeds (Brahman, Hereford, Shorthorn) as
the reference, the estimated D-GBC agreed roughly with the
estimated C-GBC for the Beefmaster. The estimated D-GBC was
51.3–55.6% (Brahman), 28.6–33.0% (Hereford), and 14.5–17.2%
(Shorthorn), whereas the estimated C-GBC was 47.6–51.3%
(Brahman), 29.8–34.1% (Hereford), and 17.3–20.6% (Shorthorn)
(Table 6). The differences between the estimated D-GBC and the
estimated C-GBC for Beefmaster were relatively larger than those
observed for Brangus. Similar discrepancies were observed in the
results obtained from the path analysis with the genotype data
(Table 7). In Beefmaster, the discrepancies between the estimated
D-GBC and the estimated C-GBC in the path analysis arose
from some significant correlations in allelic frequencies between
the ancestral breeds (e.g., between Hereford and Shorthorn). In
general, the estimated C-GBC included correlational indirect
path effects, but the estimated D-GBC included direct path effects
only. The impact of correlations in allelic frequencies between

the ancestral breeds on the estimated C-GBC is explained
analytically as follows. In Figure 3 is the path diagram for the
relationships between the Beefmaster and the three ancestral
breeds. Let p2

MB = 2p2,p2
MH = p2, and p2

MS = p2. Proportionally,
the relative direct genomic determination of the three ancestral
breeds on the Beefmaster is 50% Brahman, 25% Hereford, and
25% Shorthorn. Thus, when assuming zero correlations between
the ancestral breeds and no residual effects, the estimated
C-GBC is the same as the estimated D-GBC: 50% Brahman,
25% Hereford, and 25% Shorthorn. However, with non-zero
correlations between the ancestral breeds, estimated C-GBC can
deviate substantially from estimated D-GBC. For example, let
rBH = 0.10,rBS = 0.05, and rHS = 0.40. The estimated C-GBC
for each ancestral breed is computed to be a relative ratio of
combined determination coefficients for each ancestral breed:

C − GBCMB =

2p2
+ rBH ×

√
2p2 ×

√
p2 + rBS ×

√
2p2 ×

√
p2

2p2 + p2 + p2 + 2rBH ×
√

2p2 ×
√
p2 + 2rHS ×

√
p2 ×

√
p2 + 2rBS ×

√
2p2 ×

√
p2
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FIGURE 2 | Distribution of estimated genomic breed composition for 7,969 Brangus animals in ascending order of their Angus composition, obtained using three
statistical methods: (A) admixture model, (B) linear regression, and (C) path analysis (D-GBC).
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TABLE 5 | Path analysis using the correlation data for 7,605 Beefmaster animals with eight reference breeds and three SNP panels (1K, 5K, and 10K).

Statistic Breed GGP 30K/GGP 40K GGP 50K

1K 5K 10K 1K 5K 10K

Correlation with Beefmaster Angus 0.384 0.339 0.385 0.436 0.381 0.434

Brahman 0.552 0.549 0.556 0.544 0.561 0.570

Gelbvieh 0.477 0.450 0.477 0.551 0.486 0.521

Hereford 0.511 0.504 0.504 0.549 0.548 0.543

Limousin 0.441 0.396 0.437 0.528 0.432 0.479

Shorthorn 0.485 0.443 0.483 0.558 0.477 0.520

Simmental 0.454 0.415 0.452 0.526 0.455 0.496

Wagyu 0.367 0.361 0.376 0.435 0.356 0.377

Path coefficient Angus −0.008 −0.030 −0.005 0.011 −0.007 0.023

Brahman 0.498 0.495 0.501 0.522 0.509 0.513

Gelbvieh 0.040 0.066 0.042 0.047 0.059 0.047

Hereford 0.347 0.345 0.342 0.380 0.379 0.363

Limousin 0.015 0.018 0.016 0.041 0.025 0.026

Shorthorn 0.230 0.216 0.227 0.245 0.228 0.235

Simmental 0.028 0.024 0.027 0.020 0.033 0.029

Wagyu 0.041 0.058 0.042 0.023 0.027 0.011

D-GBC Angus 0.02% 0.22% 0.01% 0.03% 0.01% 0.12%

Brahman 58.3% 58.3% 59.2% 56.5% 56.2% 57.9%

Gelbvieh 0.37% 1.02% 0.42% 0.47% 0.76% 0.49%

Hereford 28.3% 28.3% 27.5% 30.0% 31.3% 29.0%

Limousin 0.05% 0.07% 0.06% 0.34% 0.13% 0.15%

Shorthorn 12.4% 11.1% 12.2% 12.4% 11.3% 12.1%

Simmental 0.19% 0.13% 0.17% 0.08% 0.23% 0.19%

Wagyu 0.39% 0.80% 0.41% 0.11% 0.16% 0.03%

C-GBC Angus 0% 0% 0% 0% 0% 0%

Brahman 44.9% 51.3% 44.9% 42.6% 48.8% 42.3%

Gelbvieh 3.54% 3.00% 3.54% 4.82% 27.4% 4.82%

Hereford 33.6% 28.5% 33.6% 35.9% 31.2% 35.9%

Limousin 0% 0.63% 0% 0% 0.95% 0%

Shorthorn 15.5% 13.5% 15.5% 15.9% 14.1% 15.6%

Simmental 0% 0.89% 0% 0% 1.34% 0%

Wagyu 2.41% 2.15% 2.41% 1.11% 0.86% 1.11%

The Beefmaster animals were genotyped on either GGP 30K/GGP 40K bovine SNP chip or GGP 50K bovine SNP chip, respectively.

=
2p2
+ 0.10×

√
2× p2

+ 0.05×
√

2× p2

2p2 + p2 + p2 + 2× 0.10×
√

2× p2 + 2× 0.4× p2 + 2× 0.05×
√

2× p2

=
2.212p2
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√
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√
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√

2p2 ×
√
p2 + 2rHS ×

√
p2 ×

√
p2 + 2rBS ×

√
2p2 ×

√
p2

=
p2
+ 0.05×

√
2× p2

+ 0.4× p2

2p2 + p2 + p2 + 2× 0.10×
√

2× p2 + 2× 0.4× p2 + 2× 0.05×
√

2× p2

=
1.571p2

5.224p2 = 0.282

Therefore, with non-zero correlations between the three
ancestral breeds as the reference, in particular when one or more
of the correlations are large, estimated C-GBC would deviate
considerably from the estimated D-GBC. Generally speaking, the
larger the correlation between the ancestral breeds, the larger the
deviation that it will generate.
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TABLE 6 | Path analysis using the correlation data for 7,605 Beefmaster animals with three ancestral breeds as the reference and three SNP panels.

Statistics GGP30K/GGP 40K GGP 50K

1K 5K 10K 1K 5K 10K

Correlation with Beefmaster Brahman 0.552 0.549 0.556 0.544 0.561 0.570

Hereford 0.511 0.504 0.504 0.549 0.548 0.543

Shorthorn 0.485 0.443 0.483 0.558 0.477 0.520

Path coefficient Brahman 0.513 0.514 0.517 0.536 0.522 0.526

Hereford 0.375 0.381 0.371 0.420 0.417 0.398

Shorthorn 0.275 0.263 0.276 0.310 0.282 0.298

D-GBC Brahman 54.9% 55.2% 55.6% 51.3% 51.9% 52.8%

Hereford 29.3% 30.3% 28.6% 31.5% 33.0% 30.2%

Shorthorn 15.7% 14.5% 15.8% 17.2% 15.2% 16.9%

C-GBC Brahman 50.1% 51.3% 51.0% 46.0% 47.6% 48.0%

Hereford 31.1% 31.5% 29.8% 33.4% 34.1% 31.4%

Shorthorn 18.8% 17.3% 19.2% 20.6% 18.3% 20.6%

The Beefmaster animals were genotyped on either GGP 30K/GGP 40K bovine SNP chip or GGP 50K bovine SNP chip, respectively. Correlations of allele frequencies
were 0.059 (1K), 0.045 (5K) and 0.035 (10K) between Brahman and Hereford, 0.052 (1K), 0.069 (5K) and 0.100 (10K) between Brahman and Shorthorn, and 0.460 (1K),
0.381 (5K) and 0.428 (10K) between Hereford and Shorthorn.

TABLE 7 | Comparison of estimated GBC for 7,605 Beefmaster animals with genotype data, obtained by the admixture model, linear regression, and path analysis
techniques, respectively.

Model Panel GGP 30K/GGP 40K GGP 50K

Brahman Hereford Shorthorn Brahman Hereford Shorthorn

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Admixutre 1K 35.9% 4.2% 37.3% 5.6% 26.8% 5.8% 34.2% 4.7% 38.0% 6.0% 27.8% 6.8%

5K 35.4% 3.3% 36.0% 3.3% 28.5% 3.7% 34.1% 3.9% 37.0% 3.4% 29.0% 4.9%

10K 36.3% 3.3% 34.8% 3.2% 28.9% 3.7% 35.2% 4.0% 35.3% 3.2% 29.5% 4.8%

Linear regression 1K 36.4% 4.7% 38.0% 6.1% 25.6% 6.1% 34.7% 5.4% 38.8% 6.6% 26.5% 7.7%

5K 36.8% 3.7% 36.2% 3.9% 27.0% 4.1% 35.2% 4.4% 37.4% 3.8% 27.4% 5.5%

10K 37.4% 3.7% 35.0% 3.6% 27.6% 4.1% 36.1% 4.5% 35.6% 3.6% 28.3% 5.5%

Path analysis (D-GBC) 1K 50.7% 9.8% 34.9% 10.4% 14.4% 7.2% 47.0% 11.1% 36.9% 11.1% 16.1% 10.9%

5K 54.7% 7.8% 30.3% 6.8% 15.0% 5.8% 51.1% 9.3% 32.8% 6.7% 16.0% 8.6%

10K 54.9% 7.7% 28.7% 6.2% 16.3% 6.2% 52.2% 9.5% 30.0% 6.2% 17.7% 9.1%

Path analysis (C-GBC) 1K 43.2% 9.0% 37.0% 8.5% 19.8% 6.8% 39.9% 9.9% 38.7% 9.0% 21.3% 9.5%

5K 47.5% 7.3% 32.4% 5.8% 20.0% 5.2% 44.3% 8.4% 34.6% 5.6% 21.0% 7.4%

10K 46.9% 7.1% 30.8% 5.3% 22.2% 5.4% 44.5% 8.4% 32.0% 5.1% 23.5% 7.5%

FIGURE 3 | Path diagram of the relationships between Beefmaster and three
ancestral breeds, namely Brahman, Hereford, and Shorthorn. pyx = path
coefficient from x to y; rxy = correlation between x and y.

In Beefmaster, the estimated GBCs from the admixture
model and the linear regression approach seemed to deviate
substantially from pedigree-expected values (i.e., 50% Brahman,

25% Hereford, and 25% Shorthorn). They did not correspond
to those obtained from the path analysis neither. The estimated
GBC of the Beefmaster obtained from the admixture model was
34.1–36.3% (Brahman), 34.8–38.0% (Hereford), and 26.8–29.5%
(Shorthorn). The estimated GBC of the Beefmaster obtained
from the linear regression was 34.7–37.4% Brahman, 35.0–
38.8% Hereford, and 25.6–28.3% Shorthorn. Relatively speaking,
the estimated GBC from the admixture model and the linear
regression were closer to the estimated C-GBC than the estimated
D-GBC, possibly because they all included correlational indirect
path effects except the estimated D-GBC. The distributions of the
estimated GBC for 7.605 Beefmaster animals in ascending order
of the Brahman composition obtained using the three statistical
models are shown in Figure 4.

In the linear regression approach, high correlations between
exogenous variables translate into strong multicollinearity, which
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FIGURE 4 | Distribution of the estimated genomic breed composition for 7,605 Beefmaster animals in ascending order of their Brahman composition, obtained
using three statistical methods: (A) admixture model, (B) linear regression, and (C) path analysis (D-GBC).
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imposes some challenges to the identification of the likelihood
in the admixture model. The problem of model identification
may not necessarily affect the prediction accuracy, but individual
parameters can be unidentified and cannot be estimated uniquely
or reliably. Similarly, high correlations between exogenous
variables can bring challenges for the admixture model to
precisely assess the weights for the underlying admixture
components, which in the admixture model were the allele
frequencies of ancestral breeds as random variables. Arguably,
the linear regression approach and the admixture model are
not appropriate for estimating GBC when the ancestral breeds
are highly correlated. Instead, estimated D-GBC from the path
analysis are robust to deviations due to correlational path effects.

CONCLUSION

We proposed a causality interpretation of genomic breed
composition implemented by the path analysis for composite
animals in the present study. Two measures of GBC using path
analysis were proposed in the present study. Of them, D-GBC
considered only direct path effects of each reference breed,
whereas C-GBC also included indirect path effects due to the
correlation between reference breeds. In Brangus, because the
two ancestors breeds are remotely related, or they have a close to
zero correlation, the estimated D-GBC agreed with the estimated
C-GBC in the path analysis, and they both agreed well with the
estimated GBC by the admixture model and linear regression.
However, when the ancestors are highly correlated, which was
the case with Beefmaster, the estimated D-GBC showed relatively
larger differences from the estimated C-GBC in the path analysis
because the latter included correlational effects due to genomic
similarity between ancestors. Relatively speaking, the estimated
GBC from the admixture model and linear regression were
closer to the estimated C-GBC by path analysis than the
estimated D-GBC. A possible reason is that the estimated GBC
from the admixture model and linear regression (and C-GBC
by path analysis) included correlational effects. Thus, path
analysis provides an alternative interpretation and an estiamation
method of GBC, which arguably has advantages when reference

(ancestral) breeds are highly genetically correlated. Finally,
estimated GBC varied only slightly between different genotyping
platforms (30K/40K vs. 50K) and between the three SNP panel
sizes (1K, 5K, and 10K) when subsets consisted of uniformly
distributed SNPs.
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Genomic technologies have been increasingly applied in livestock production due to
their utility in production management and animal genetic improvement. The current
project aimed to develop genomic resources for the Canadian bison industry, specifically
a parentage verification tool and a subspecies composition tool. Both products stand
to help with building and maintaining purebred and crossbred bison populations, and
in turn bison conservation and production. The development of this genomic toolkit
proceeded in two stages. In the single-nucleotide polymorphism (SNP) discovery and
selection stage, raw sequence information from 41 bison samples was analyzed, and
approximately 52.5 million candidate biallelic SNPs were discovered from 21 samples
with high sequence quality. A set of 19,954 SNPs (2,928 for parentage verification
and 17,026 for subspecies composition) were then selected for inclusion on an
Axiom myDesign custom array. In the refinement and validation stage, 480 bison were
genotyped using the custom SNP panel, and the resulting genotypes were analyzed
to further filter SNPs and assess tool performance. In various tests using real and
simulated genotypes, the two genomic tools showed excellent performance for their
respective tasks. Final SNP sets consisting of 191 SNPs for parentage and 17,018
SNPs for subspecies composition are described. As the first SNP-based genomic toolkit
designed for the Canadian bison industry, our results may provide a new opportunity in
improving the competitiveness and profitability of the industry in a sustainable manner.

Keywords: parentage verification, subspecies composition, bison, genomic tools, SNP genotyping

INTRODUCTION

Bison meat is a growing and economically relevant industry in Canada. According to the Canadian
Bison Association, the industry has seen a compounded annual growth rate of 5% since 1996, with
the Canadian herd at roughly 145,000 animals as of January 1, 20171. Prices have also shown a
strong increasing trend since 2003, from $1.18/lb. to $5.75/lb2. In 2019, Canada exported more

1https://www.canadianbison.ca/resources/resources/data-and-statistics/bison-producers
2https://www.canadianbison.ca/resources/resources/data-and-statistics/price-trends
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than 20,000 live bison to the United States, and its global export
of bison meat was worth more than 17 million Canadian dollars3.
A notable opportunity exists in the Canadian bison industry to
apply genomic tools to assist in the operational management
of bison herds. For this reason, we developed genomic tools
based on single-nucleotide polymorphisms (SNPs) discovered in
the American bison (Bison bison) for parentage verification and
genome composition estimation.

Pedigree records are critical for herd management in animal
production, for which parentage verification is a valuable tool.
Genetic markers have been used in verifying the parentage of
animals for decades. The early efforts can be traced back to the
1980s, and a variety of marker types have been used (Quinn et al.,
1987; Wetton et al., 1987; Scott et al., 1992; Queller et al., 1993),
differing in terms of informativeness, resolution, reproducibility,
and cost (Mueller and Wolfenbarger, 1999; Nadeem et al.,
2018). SNP discovery efforts, coupled with the availability of
high-throughput SNP genotyping arrays, have led to the use
of SNPs for parentage verification in many livestock species.
For example, a set of 100 core SNPs and 100 backup SNPs
makes up the set used for parentage in cattle (ISAG-ICAR SNP
panel)4. These applications of SNPs have demonstrated their
many advantages (Flanagan and Jones, 2019). However, an initial
investment is required to identify and validate suitable SNPs for
the development of the SNP-based genomic tools.

The American bison is composed of two subspecies, plains
bison (Bison bison bison) and wood bison (Bison bison
athabascae), with no reproductive isolation between them (Bork
et al., 1991). The ability to assess subspecies composition
is of interest to the Canadian bison industry, as it would
facilitate efforts to maintain subspecies genetic integrity and
to explore crossbreeding. The latter could help to manage the
level of hybrid vigor and breed complementarity in commercial
production (Bourdon, 1997). For farmed animals with reliable
pedigree records and origin information, genome composition
can be calculated in a relatively straightforward manner.
Alternatively, when such information is not available, which
is generally the case for bison, genetic markers can be used
(Frkonja et al., 2012). Previous work in bison used restriction
fragment length polymorphism (RFLP) and microsatellite
markers to explore the genetic relationship between different
bison populations (Bork et al., 1991; Polziehn et al., 1996; Cronin
et al., 2013) and provided insights into the genetic difference
between the two subspecies and the subspecies composition
of hybrids. However, to date, the Canadian bison industry
has not made wide use of subspecies composition analysis.
As is the case with parentage verification, SNPs would offer
important advantages, but informative and reliable SNPs must
first be identified.

In this study, we performed high-throughput sequencing and
used existing sequence data to discover candidate SNPs for
parentage verification and subspecies composition analysis. We

3https://www.canadianbison.ca/resources/resources/industry-reports/bison-
market-and-supply-update
4https://www.isag.us/Docs/Guideline-for-cattle-SNP-use-for-parentage-2012.
pdf

then genotyped the candidate SNPs in hundreds of additional
individuals and performed simulations to refine these SNP lists
and to develop a breed composition equation and score. Based
on the performance of these tools on a variety of known and
simulated samples, they can inform management decisions aimed
at improving traits and maintaining subspecies integrity and
hybrid vigor. By providing detailed information on the SNP
contents of each tool and the breed composition prediction
approach, we hope that the tools can be used by others and
further refined through, for example, the characterization of
additional reference samples.

MATERIALS AND METHODS

The development of the genomic tools in the current project
proceeded in two stages: (1) SNP discovery; and (2) SNP
validation and refinement. In the first stage, bison whole-
genome DNA sequencing data was generated or collected, SNPs
were identified, and a custom medium-density SNP panel was
constructed. In the second stage, a validation bison population
was genotyped using the custom SNP panel, the performance
of the panel SNPs for parentage and subspecies composition
estimation was evaluated, and a finalized set of SNPs was
proposed. The packages used in the data analysis and related
parameters can be found in Supplementary Table S1.

Stage 1: SNP Discovery
Sequenced Animals
Aiming to obtain genomic information from the North American
bison population, we sequenced 27 bison samples collected
from Canada and the United States. Genomic DNA extraction
from Bison bone and hair samples was carried out using the
Qiagen BioSprint 96 DNA DNeasy extraction protocol (Qiagen,
Mississauga, ON, Canada). Extracted DNA was quantified using
the Qubit dsDNA HS Assay (Life Technologies, Burlington,
ON, United States). Sequencing libraries were constructed
according to the NEXTflex DNA Sequencing Kit protocol (Bio-
O Scientific, Austin, TX, United States). Between 150 ng to
1 ug of input Bison DNA was sheared using the Covaris S2
focused sonicator (Covaris Inc., Woburn, MT, United States),
achieving an average fragment size of 300 to 400 bp. Size
selection of end-repaired product during library preparation
followed the gel-free size selection clean up process using
Agencourt AMPure XP magnetic beads (Beckman Coulter,
Mississauga, ON, Canada). To enable sequencing multiplexing,
adapter indices from the NEXTflex DNA Barcode kit (Bio-O
Scientific) were added to the libraries with 6–10 rounds of
PCR amplification. QC was performed on each library using
the 2100 Bioanalyzer DNA 1000 chip (Agilent Technologies,
Santa Clara, CA, United States) and Qubit dsDNA HS Assay
(Life Technologies) to determine the quality and quantity of
each library, respectively. 26 of the 27 libraries were sequenced
using the 2 × 150 cycles paired-end sequencing workflow on
the HiSeqX Ten (Illumina, San Diego, CA, United States) at
the McGill University and Génome Québec Innovation Centre.
One library was sequenced under the CanSeq150 project using
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TABLE 1 | List of sequenced bison.

ID Type Location Source # Raw reads % Reads mapped* Average sequencing
depth

P1 Plains Caprock Canyons State Park, TX Existing 33,573,898 38% 0.43

P2 Plains Caprock Canyons State Park, TX Existing 35,711,512 44% 0.53

P3 Plains Caprock Canyons State Park, TX Existing 63,428,284 46% 1.01

P4 Plains Caprock Canyons State Park, TX Existing 71,988,836 50% 1.24

P5 Plains the Greater Yellowstone Area Existing 345,862,044 12% 1.21

P6 Plains the Greater Yellowstone Area Existing 300,481,696 26% 2.68

P7 Plains Yellowstone National Park Existing 171,167,934 88% 5.51

P8 Plains Yellowstone National Park Existing 193,911,748 87% 6.19

P9 Plains Yellowstone National Park Existing 285,445,650 83% 8.67

P10 Plains Yellowstone National Park Existing 329,693,516 84% 10.12

P11 Plains Caprock Canyons State Park, TX New 764,693,316 66% 23.47

P12 Plains Caprock Canyons State Park, TX New 843,431,132 62% 23.94

P13 Plains Cypress Hills, SK New 939,516,516 7% 0.48

P14 Plains Drumheller, AB New 1,080,363,884 8% 0.59

P15 Plains Elk Island National Park, AB New 872,769,454 63% 25.40

P16 Plains Elk Island National Park, AB New 874,658,572 67% 27.36

P17 Plains Junction of Bow and Belly Rivers, AB New 1,075,618,578 8% 1.68

P18 Plains Prince Albert, SK New 962,343,124 42% 19.78

P19 Plains Red Rock/YNP Turner Ranch New 899,967,488 78% 37.39

P20 Plains Santa Catalina Island, CA New 899,471,994 58% 25.17

P21 Plains Santa Catalina Island, CA New 1,268,225,668 44% 26.43

P22 Plains Swift Current, SK New 946,903,882 11% 0.71

P23 Plains Unknown New 610,183,530 11% 0.48

P24 Plains Wind Cave National Park, SD New 776,956,818 65% 23.71

P25 Plains Wind Cave National Park, SD New 853,107,274 66% 26.35

P26 Plains Yellowstone National Park New 973,793,586 73% 36.37

U1 Unknown Unknown New 540,095,712 2% 0.08

U2 Unknown Unknown New 838,346,982 1% 0.12

W1 Wood Elk Island National Park, AB Existing 12,968,260 41% 0.18

W2 Wood Elk Island National Park, AB Existing 17,859,638 48% 0.29

W3 Wood Elk Island National Park, AB Existing 58,711,530 45% 0.91

W4 Wood Elk Island National Park, AB Existing 75,729,836 38% 0.99

W5 Wood Alberta, Canada New 465,548,626 18% 2.95

W6 Wood Athabasca Lake, SK New 974,026,536 11% 1.23

W7 Wood Elk Island National Park, AB New 979,762,842 69% 34.14

W8 Wood Elk Island National Park, AB New 991,502,862 73% 36.54

W9 Wood Elk Island National Park, AB New 986,508,748 75% 37.33

W10 Wood Unknown New 1,013,582,276 4% 0.44

W11 Wood Unknown New 1,026,497,582 70% 38.42

W12 Wood Wood Buffalo National Park New 1,000,759,832 24% 8.75

W13 Wood Wood Buffalo National Park New 1,014,848,338 39% 15.27

Bison samples with an average sequence depth >5 were used for SNPs calling. *The percentage was calculated as #(Reads aligned without any bit set in 1804 in the
SAM FLAG)/#(Raw Reads) ∗ 100%, i.e., a read was not considered as mapped if any of the following was true: (1) it was not mapped; (2) its mate was not mapped; (3) it
was not the primary alignment; (4) it failed platform/vendor quality checks; or (5) it is PCR or optical duplicate.

the same workflow at the Sequencing Facility of The Center
for Applied Genomics (TCAG) in the Hospital for the Sick
Kids. Existing whole-genome DNA sequencing data from a
further 14 bison (Forgacs et al., 2016) was included in the
analysis. The resulting data set includes plains (n = 26) and
wood (n = 13) bison (Table 1). The sequence reads have
been deposited in the Sequence Read Archive (SRA), under
BioProject PRJNA658430.

Sequence Alignment and SNP Calling
DNA sequence reads were assessed for quality using FastQC
v0.11.7 (Andrews, 2010), trimmed with Trimmomatic v0.36
(Bolger et al., 2014), and then aligned to the bovine UMD3.1
reference genome with Burrows-Wheeler Aligner v0.7.17 (Li and
Durbin, 2009). Aligned sequences were converted to bam files
with Samtools v1.8 (Li et al., 2009). The bam files were then
sorted, and optical duplicates were marked using Picard tools
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FIGURE 1 | Sequence alignment and SNP calling workflow.

v2.18.7 (Picard Toolkit, 2019). SNP and indel variants were called
using GATK4 v4.0.6.0 (Poplin et al., 2017). More details about the
workflow of sequence alignment and variant calling can be found
in Figure 1 and Supplementary Table S1.

SNP Selection and Custom SNP Panel Creation
Two sets of SNPs were prepared for inclusion on a single custom
SNP panel, one set for parentage verification, and one set for
subspecies composition. More details about the SNP selection
are provided in Figure 2 and Supplementary Table S1. Only
bison samples with an average sequencing depth of at least
5 over the whole genome were included in the analysis for
SNP selection (n = 21; 15 plains bison and 6 wood bison).
SNPs with any of the following characteristics were removed
from consideration: (1) another polymorphism exists in the
36 bp flanking sequences; (2) more than two alleles observed;
(3) GATK QUAL score <1000; (4) missing rate >20%; or (5)
does not pass the QC criteria recommended by GATK45. The
remaining SNPs were further selected based on the intended
application. For parentage verification, the selection was mainly
based on genotyping quality and SNP informativeness. More
specifically, SNPs that met the following criteria were selected for
parentage verification: (1) minor allele frequency (MAF) >0.45;
(2) missing rate <5%; (3) exhibits Hardy-Weinberg Equilibrium
(p > 0.0001); (4) QUAL score >10000; (5) requires only one

5https://gatk.broadinstitute.org/hc/en-us/articles/360035890471-Hard-filtering-
germline-short-variants

probe per strand6. SNP thinning was conducted so that no two
SNPs were located within 1 Mbp to each other, and SNPs removed
during the thinning remained and served as “alternative SNPs.”
For subspecies composition, SNPs were selected if the MAF was
greater than 0.1 and they showed difference in allelic frequencies
(nominal p-value < 0.0001) between the two subspecies in
a genome-wide association study (GWAS). The filtering was
conducted with VCFtools v0.1.15 (Danecek et al., 2011), and
the GWAS was conducted with Plink v1.9 (Chang et al., 2015).
Selected SNPs were submitted to Affymetrix. Those SNPs that
were recommended by Affymetrix’s quality check were included
in a custom Axiom SNP panel. In addition, aiming at 3,000
SNPs for parentage verification, the “alternative SNPs” were
submitted for assessment, and the Affymetrix-recommended
ones were added to the panel. A complete list of the parentage
and subspecies-identification SNPs on the panel is provided in
Supplementary Table S2.

Stage 2: SNP Refinement and Validation
Animals Genotyped Using the Custom Panel
A 480 bison (including three bison sequenced during the first
stage) were genotyped with the custom bison SNP panel in order
to evaluate its performance. These animals came from 19 data
sources from Canada and the United States. Animals with a call
rate lower than 95% (n = 19) were excluded from subsequent

6http://tools.thermofisher.com/content/sfs/brochures/axiom-mydesign-
genotyping-technical-note.pdf
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FIGURE 2 | SNP selection procedure for the custom panel for parentage and subspecies composition analysis.

TABLE 2 | Confidence level of the subspecies label in the validation population.

Confidence level Description Count in the validation population

Plains Wood Hybrid

1 Absolutely confident.
The animal has documentation to show the origins

203 57 0

2 Somewhat confident.
The animal came from a highly reliable source, but it has no
documentation showing the origins

31 0 1

3 Less confident.
Cannot reliably track the origins of the animal or no
documentation exists regarding the origins

31 0 72

4 No data about the confidence 61 5 0

analysis due to possible low sample quality. For evaluating
parentage verification, there were 21 known mother-calf pairs in
the dataset. For evaluating subspecies composition estimation,
subspecies labels (“plains bison” or “wood bison”) were available
for 291 bison with subspecies assignment confidence levels of
1 (Absolutely Confident) or 2 (Somewhat Confident). These
confidence levels were solicited from the providers of the
samples and ranged from 1 (Absolutely Confident) to 3 (Less
Confident) (Table 2).

SNPs for Parentage Verification
Although SNPs had originally been selected for two different
purposes in stage one, all panel SNPs were evaluated for
utility in parentage verification. Those panel SNPs that met all
the following criteria were selected for parentage: (1) overall
call rate >95%; (2) call rate in each subspecies >90%; (3)
overall MAF >0.4; (4) MAF in each subspecies >0.3; (5)
conversion type is not any one of NoMinorHom (no minor
homozygote), OTV (off-target variant), or MonoHighResolution
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FIGURE 3 | Workflow of SNP selection for parentage verification, based on genotype data from the validation population.

(not polymorphic)7; and (6) in Hardy-Weinberg Equilibrium
with a nominal p-value > 0.05. Figure 3 and Supplementary
Table S1 show the criteria used in the selection of SNPs for
parentage verification in more detail.

Removing SNPs in linkage disequilibrium
Those SNPs that passed the screening for parentage verification
were pruned to remove SNPs in linkage disequilibrium (LD).
With any others since independent SNPs provide more power
in parentage exclusion. The pruning was conducted using Plink
v1.9 by removing the less informative SNP (i.e., with a lower
MAF) in LD. The SNPs that remained in the dataset following
LD pruning (n = 191) were treated as the final set of SNPs for
parentage verification. The criteria used in the pruning can be
found in Appendix 1.

Efficiency of parentage exclusion
For the final set of SNPs for parentage verification, a multi-locus
probability of exclusion (PE) was calculated as a measurement
of performance in parentage verification. Multi-locus PE is the
probability to exclude (1) a random unrelated parent when the
other parent is known (Q1); (2) a random unrelated parent when
the other parent is unknown (Q2); or (3) a random unrelated
offspring (Q3) (Dodds et al., 1996). The single-SNP PE (including
Q1, Q2, and Q3) for each SNP can be calculated based on its MAF
in the validation population. In order to assess the performance
of our final set of SNPs for parentage verification, we explored the
relationship between the number of “top SNPs” and the multi-
locus PE, where “top SNPs” were defined as the SNPs with the
greatest MAF in the validation population.

7More details describing the conversion types can be found in the SNPolisher
User Guide at http://tools.thermofisher.com/content/sfs/manuals/SNPolisher_
User_Guide.pdf

By applying dense SNPs in parentage verification, the multi-
locus PE can be extremely close to one. In the following
description and discussion, the probability of non-exclusion
(PN) was used to present the efficiency of parentage tools. The
relationship between PE and PN is:

PN = 1− PE

PE was calculated using R8 and the formulae
described by Dodds et al. (1996).

Testing with known mother-calf pairs
The final set of SNPs for parentage verification was tested with
the 21 known mother-calf pairs in the validation population. The
genotypes of each pair were compared to detect possible false
exclusion. In addition, for each one of the 21 calves, comparisons
were conducted to exclude “presumably unrelated candidates”
as its father, where the “presumably unrelated candidates” were
those genotyped animals coming from a different source based
on available information and unlikely to be the father. The test
served to evaluate the robustness of our SNP set (Tortereau et al.,
2017). The comparison simulated a common parentage scenario,
where the genotypes are known for both the mother and the calf,
and the paternity of a putative father is to be determined (scenario
Q1) (Jamieson and Taylor, 1997).

SNPs for Subspecies Composition
All SNPs selected at stage one went into a screening for subspecies
composition SNPs, which was mainly based on genotyping
quality. A SNP was deemed to be low-quality if (1) its call
rate was lower than 95% in the whole validation population;
(2) its call rate was lower than 90% in either subspecies;

8https://www.r-project.org/
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or (3) it was categorized into one of the three following
conversion types during genotyping: NoMinorHom (no minor
homozygote), OTV (off-target variant), or MonoHighResolution
(not polymorphic)9.

The remaining SNPs were tested in three ways: (1) exploratory
analysis: visualizing the population structure of the validation
population by multi-dimensional scaling (MDS); (2) qualitative
analysis: classifying bison into groups through K-means and
comparing the result to their origin label, and (3) quantitative
analysis: estimating the subspecies composition.

Multi-dimensional scaling
The utility of the selected SNPs in subspecies composition
was first tested with MDS. This technique provides a way to
visualize the SNP-based genetic distance between samples in a
lower-dimensional space (Li and Yu, 2008). The distance was
calculated as the Euclidean distance between samples based on
their genotype (allele counts) of the selected SNPs. The analysis
was conducted with the cmdscale function from the R stats
package10. More details can be found in Supplementary Table S1.
In the output of MDS, it was expected that bison from each
subspecies would cluster together to form two distinct groups.

K-means clustering
Hartigan’s k-means clustering was used to test whether
the selected SNPs could classify samples into two groups,
corresponding to plains and wood bison, which would be strong
evidence to support that the selected SNPs are informative
for estimating subspecies composition. The algorithm aims to
partition the samples into a specified number of clusters (two
in this case) so as to minimize the within-cluster variances
(squared Euclidean distances) (Saatchi et al., 2011). The analysis
was performed using the k-means function from the R stats
package11. Additional details can be found in Supplementary
Table S1. The clustering result was expected to agree with the
origin label of the bison.

Genome composition of bison in the validation population
In order to provide a quantitative measurement of the genome
composition (i.e., genome proportions from plains bison and
wood bison), we further developed an estimation equation based
on constrained genomic regression (Boerner and Wittenburg,
2018). The plains bison with a subspecies assignment confidence
level of 1 (n = 203) and the wood bison with a subspecies
assignment confidence level of 1 (n = 57) were treated as
reference populations, and their population allele frequencies
were calculated for the selected SNPs. The estimation equation
was applied to bison with a confidence level of 1 or 2 labeled as
“plains bison” (n = 234) or “wood bison” (n = 57).

The ith bison’s genome composition was estimated with a
constrained regression:

fi = fPbPi + fW
(
1− bPi

)
+ e, 0 ≤ bP ≤ 1

9More details describing those conversion types can be found in the SNPolisher
User Guide at http://tools.thermofisher.com/content/sfs/manuals/SNPolisher_
User_Guide.pdf
10https://stat.ethz.ch/R-manual/R-patched/library/stats/html/cmdscale.html
11https://stat.ethz.ch/R-manual/R-patched/library/stats/html/kmeans.html

where fi = (fi1, fi2, . . . , fim) is the allele frequencies of the
m SNPs for that bison, fP = (fP1, fP2, . . . , fPm) is the allele
frequencies of the m SNPs in the plains reference population,
fW = (fW1, fW2, . . . , fWm) is the allele frequencies of the m SNPs
in the wood reference population, bPi is the genome proportion
from plains bison for the ith bison (PlainsScore), and e is
the residual error. Since we focused on estimating the genome
composition contributed by plains and wood bison without
considering other possible contributors, 1− bPi is the genome
proportion from wood bison for the ith bison. The constraint of
0 ≤ bP ≤ 1 ensures that the genome compositions are between 0
and 1. The calculation was conducted with R/limsolve (see “text
footnote 8”)12.

The constrained genome regression approach has three
features that led us to apply it here: (1) it runs in a “supervised”
mode, where the reference populations are known; (2) it does not
explicitly require the SNPs to be in linkage equilibrium; and (3)
it has achieved high estimation accuracy in simulation analysis
(Boerner and Wittenburg, 2018).

Genome composition of simulated populations
In addition to the real data from the validation population,
the genome composition estimation method was applied to
six populations simulated using the package hybriddetective
(Wringe et al., 2017). The simulated populations were: (1) pure
plains; (2) pure wood; (3) F1 (plains × wood); (4) F2 (F1 × F1);
(5) backcross to plains (F1 × plains); and (6) backcross to wood
(F1 × wood). The genotypes in each population were simulated
based on the allele frequencies in the corresponding parental
populations. More details can be found in Supplementary
Table S1. Each simulation population consisted of 500 animals.

RESULTS

Stage 1: SNP Discovery
Twenty-seven American bison samples were sequenced for
SNP discovery, and data from an additional 14 bison samples
were obtained from previous studies. Raw sequence reads were
mapped to the bovine UMD3.1 reference genome, and 21 samples
with an average sequencing depth of at least 5 over the whole
genome were used for SNP calling. The number of raw reads,
read mapping percentages, and average sequence depth is given
for each sample in Table 1. Approximately 62 million genomic
variants were discovered from the analysis, among which around
52.5 million variants were biallelic SNPs13. After the first stage of
SNP selection (Figure 2), 2,928 SNPs were selected as candidates
for parentage verification, and 17,026 SNPs as candidates for
subspecies composition. These SNPs were included on a custom
Affymetrix panel, which was then used to genotype 480 bison in
what we refer to as the validation population.

12https://cran.r-project.org/web/packages/limSolve/index.html
13Not all the discovered genomic variants were polymorphic in the sequenced
bison population. Since the bison sequence reads were mapped to bovine reference
genome, the discovered SNPs also included those genomic loci that were fixed in
the 41 sequenced bison samples (about 25.7% of the discovered SNPs).
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FIGURE 4 | The distribution of the SNPs for parentage verification on autosomes.

SNPs for Parentage Verification
Further filtering of SNPs based on MAF, genotype quality, and LD
was performed using the 461 bison genotypes that passed quality
checks. This filtering produced a final set of 191 SNPs deemed
suitable for parentage verification. The distribution of these SNPs
across autosomes is shown in Figure 4.

Efficiency of Parentage Exclusion
A multi-locus probability of non-exclusion (PN) was calculated
for the 191 SNPs based on their MAF, as a measurement of
performance in parentage verification. Three types of PNs were
calculated: (1) the PN for a random unrelated parent when
the other parent is known (termed “Q1”); (2) the PN for a
random unrelated parent when the other parent is unknown
(termed “Q2”); and (3) the PN for a random unrelated offspring
(termed “Q3”). The three PNs for this SNP set were 7.0 × 10−18,
1.1 × 10−11, and 5.0 × 10−28, respectively (Figure 5). For
comparison, the ISAG-ICAR SNP panel, a commonly used

bovine parentage verification tool, achieves a PN of 7.2 × 10−26

for Q3, and 1.4 × 10−10 for Q2 on the German Holstein
population (Schütz and Brenig, 2015). The comparable results
suggested that the SNPs selected in our analysis are informative
and suitable for parentage verification. For American bison, a
microsatellite panel including 15 markers has reported a PN of
0.0266 for Q2 and 0.0024 for Q1. More recent microsatellite
panels have been used in parentage testing for American
bison, usually including more markers, but no PE or PN
report was found.

Testing With Known Mother-Calf Pairs
The genotyped set of animals included 21 known mother-calf
pairs. All 21 pairs were recovered with perfect concordance using
the 191 SNPs. In the meanwhile, consistent with the very low PN
values calculated based on MAF, the test successfully excluded
all “presumably unrelated candidates” for paternity in the typical
parentage testing scenario.
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FIGURE 5 | Probability of exclusion (PE) and probability of non-exclusion (PN) for different numbers of top parentage SNPs. Multi-locus PE is the probability to
exclude (1) a random unrelated parent when the other parent is known (Q1), (2) a random unrelated parent when the other parent is unknown (Q2), or (3) a random
unrelated offspring (Q3).
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FIGURE 6 | Multi-dimensional scaling (MDS) visualization of genetic distances between plains and wood bison determined using the custom panel.

SNPs for Subspecies Composition
A set of 17,018 SNPs remained for use in subspecies composition
analysis after filtering based primarily on genotyping
quality in the validation population. Their performance
in subspecies composition estimation was evaluated with
clustering techniques (MDS and k-means) and constrained
genomic regression.

Multi-Dimensional Scaling
The results of MDS (Figures 6, 7) shows that the plains
bison and the wood bison in the validation population visually
group into three clusters in 2-dimensional space. The two
clusters on the left side correspond to the plains bison samples,
and the cluster on the right side corresponds to the wood
bison samples. On the X1 axis, those plains bison with an
assignment confidence level of 1 (absolutely confident) tend
to be further away from the group of wood bison. These
observations support that the two subspecies are separable using
our selected SNP set. The plot also implies that the plains bison
in the validation population can be further divided into two

sub-populations. However, the focus of the current analysis is on
subspecies composition.

Those bison labeled as hybrid did not appear to be a
group between plains and wood bison. Instead, they are largely
overlapping with one of the plains bison group. Given that
the “Hybrid” label was almost exclusively associated with a low
confidence level, these animals were not able considered to
be informative when judging the effectiveness of our SNP set.
Instead, further validation related to hybrid bison was conducted
using a variety of simulated datasets.

K-Means Clustering
The k-means clustering using genotypes was also able to separate
the plains bison and the wood bison. When the cluster number
was set as 2, the k-means clustering assigned those bison with
reliable origin (confidence level 1 and 2, n = 292) into two groups:
One group included exactly the 57 wood bison, and the other
one included 234 plains bison and 1 hybrid bison. The results
suggest that the selected SNP set provides sufficient information
for plains bison and wood bison composition estimation.
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FIGURE 7 | Multi-dimensional scaling (MDS) visualization of genetic distances between plains and wood bison determined using the custom panel. Cluster inference
was performed by k-means clustering.

Genome Composition Estimation
Six populations (pure plains, pure wood, F1, F2, backcross
to plains, and backcross to wood) were simulated based on
the reference populations (i.e., the bison with a subspecies
assignment confidence level of 1), with 500 bison simulated in
each population. The genetic distance between the simulated
populations and the real validation populations can be found
in Figure 8. The simulated pure bison clustered around the
center of the corresponding pure reference populations. The
simulated F1 and F2 populations largely overlapped, and they
were located in the middle between the simulated pure plains
and pure wood population. The five simulated populations
aligned into a line on the figure, which was expected based
on their relationship. The simulation is based on population-
level allele frequencies in the reference populations. As a result,
the simulated pure bison populations, especially the plains
bison, are more genetically homogeneous than the corresponding
real populations.

These simulated animals served as a way to test the
performance of the genomic composition estimation method,

especially in hybrid populations. Table 3 shows the estimated
genome composition from plains bison (PlainsScore) for the
validation population and simulated populations. The reference
plains population has a median PlainsScore of 100%, and the
reference wood population has a median PlainsScore of 0.87%.
These values were expected for the most reliably labeled plains
and wood bison. Those bison labeled as plains with a subspecies
assignment confidence level of 2 had a median PlainsScore
of 98.67%. The mean of PlainsScore was more sensitive to
the existence of outliers and tended to deviate more from the
expected value for the three populations. For the six simulated
population, their median PlainsScore and mean PlainsScore were
very close to their expected values.

DISCUSSION

Genomic technologies have attracted keen interest in animal
producers by their potential in production management and
animal genetic improvement. They have been, therefore,

Frontiers in Genetics | www.frontiersin.org 11 November 2020 | Volume 11 | Article 585999177

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-585999 November 17, 2020 Time: 14:43 # 12

Yang et al. Genomic Tools for Canadian Bison

FIGURE 8 | Multi-dimensional scaling (MDS) visualization of genetic distances between simulated populations determined using the custom panel.

increasingly applied in livestock production, especially in dairy,
beef, and pork industries (van der Steen et al., 2005; Van
Eenennaam et al., 2014; Berry et al., 2016). Our project aims
to provide two valuable genomic tools for animal management
in the Canadian bison industry: parentage verification and
subspecies composition estimation. Parentage verification plays
an essential role in breeding management as a powerful tool for
maintaining pedigree information. Reliable pedigree information
will clarify the outcome of breeding and support informed
decision-making, such as introducing bulls with preferred
phenotypes or great genetic merit. However, for the bison
industry, maintaining reliable pedigree records may be relatively
challenging, partially due to the lack of artificial insemination
(Dorn, 1995) and the use of multi-sire pasture breeding in some
herds. A low-cost genomic tool for parentage verification would
be a valuable asset. In the last two decades, parentage verification
for the American bison is mostly based on microsatellites14

(Schnabel et al., 2000; Halbert et al., 2004; Mooring and Penedo,
2014). By applying the SNP-based tool developed in the current

14https://vgl.ucdavis.edu/services/dnatyping.php

study, a much higher PE can be achieved thanks to a larger
number of informative genetic markers (McClure et al., 2018).
Other advantages of the SNP-based genomic tools may include
the better reproducibility of genotyping and improved time and
cost efficiency.

In this work, sequence information from 41 individuals
was used to discover more than 52.5 million candidate SNPs.
It is important to note that more than 13.5 million (25.7%)
of these SNPs were monomorphic in the bison samples,
and thus could represent fixed differences between bison
and cattle. Although not of utility in this study, such SNPs
could be helpful for assessing cattle introgression. The number
of discovered SNPs in other studies mapping reads from
a related species to the bovine genome is variable, with
differences likely arising from a variety of factors including
sequence divergence, the number of animals sequenced, and
the sequencing and analytical approaches used. For example,
more than 23 million SNPs were discovered using one
Gayal (Bos frontalis) and the bovine genome UMD3.1 as
the reference (Mei et al., 2016), and more than 35 million
SNPs were detected using 52 Nellore bulls (Bos primigenius
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TABLE 3 | Estimated subspecies composition for reference population and
simulated population.

# Population n Plains score (%)

Median Mean SD

1 Reference – Plains
(Confidence level 1)

203 100.00 99.09 2.28

2 Reference – Wood
(Confidence level 1)

57 0.87 2.16 3.02

3 Plains bison
(Confidence level 2)

31 98.67 94.81 9.81

4 Simulated–Plains 500 99.94 99.85 0.20

5 Simulated–Wood 500 0.00 0.17 0.26

6 Simulated – F1 500 49.95 49.97 0.43

7 Simulated – F2 500 50.04 50.05 0.54

8 Simulated–Backcross–Plains 500 75.00 74.99 0.48

9 Simulated–Backcross–Wood 500 25.03 25.03 0.49

There is no wood bison with a confidence level 2.

indicus) with the latest bovine genome ARS_UCD1.2 as the
reference (Fernandes Júnior et al., 2020). The use of the bovine
reference genome in this manner has drawbacks. For example,
there may be reads that do not align well due to genome
differences that have accumulated, making any overlapping
variants undetectable. In addition, genome differences could
lead to spurious variants when reads from distinct loci align to
a single region on the reference. Although filtering strategies
can address some of these issues, it will be worthwhile re-
aligning the data from this study to a high-quality bison reference
genome once available.

Our genomic tools will also help with a concern of the
Canadian bison industry and non-industry individuals, which
is the genetic integrity of plains bison and wood bison.
Conservation goals are to maintain genetically pure bison
without introgression from other species, especially cattle (Freese
et al., 2007), and to maintain pure wood bison and pure plains
bison. The key to the latter is to correctly distinguish pure
bison for each subspecies and hybrid bison. Based on the
samples available to us, the genome composition estimation
tool will provide valuable information. Conversely, for bison
meat production, the genome composition estimation tool will
enable more accurate and reliable crossbreeding between the
two subspecies, by which producers may explore the possibility
of improving animal performance by exploiting heterosis. An
important consideration for bison producers will be the cost of
these technologies relative to the projected benefits. Given the
widespread of use of parentage tests in cattle and other livestock
species that employ similar numbers of SNPs [e.g., the ISAG-
ICAR cattle SNP panel (see “text footnote 4”)] and the application
of breed composition tools [e.g., breed base representation in
dairy cattle (Norman et al., 2016)], it seems likely that these
tools can be economically viable. In 2018, a genomic toolkit
including both parentage and breed composition tests for cattle
was priced at about CA$45 per sample in Canada15. This cost can

15https://www.canadiancattlemen.ca/features/genomic-tools-for-crossbred-
cattle-in-the-works/

reasonably be expected to go down over time due to continued
advances in technology.

The two SNP-based genomic tools showed high performance
in various tests conducted using a validation population (480
bison) and a simulated dataset (genotypes of 3000 bison).
Compared with a previously reported parentage tool for bison
(Schnabel et al., 2000), our SNP-based parentage tool achieved
a higher PE (i.e., lower PN), largely due to the increase in
the number of included genetic markers. When compared
with a recent SNP-based parentage tool, the commonly used
ISAG-ICAR SNP-based tool for cattle, our parentage tool
showed comparable performance in parentage exclusion (PE
and PN). For plains/wood bison composition, the genomic tool
successfully distinguished those plains bison and wood bison
labeled with confidence, and correctly classified all animals in the
simulated purebred and crossbred populations.

The accuracy and reliability of our genomic tools can be
further improved over time by integrating more testing data and
reliable reference animals. The improvement can be threefold.
First, as more bison are genotyped, the information about
genotyping quality (e.g., call rate or reproducibility) will help
to detect SNPs that are difficult to genotype correctly, which
should be removed from the tools (McClure et al., 2018).
Second, genotype mismatch may be detected even for parent-
offspring pairs with reliable records or strong genomic evidence.
SNPs showing a significantly higher rate of mismatch should
be excluded since they do not show the expected inheritance
pattern. For example, a SNP that does not follow Mendelian
inheritance in parent-offspring pairs or trios may be affected
by copy number variation. Third, including more bison with
known origin into the reference population will provide a better
estimation of allele frequencies in plains bison and wood bison,
which should improve the accuracy of the genome composition
estimation. One challenge of this current work is the limited
numbers of reference samples and the need for reliable subspecies
labels. Ongoing efforts to obtain high-quality samples with clear
lineage information could help to refine the genome composition
scores. Nonetheless, based on the hundreds of samples included
in our study, the composition analysis should have utility in the
Canadian bison industry populations.
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under standard farm management procedures from commercial
bison producers (for whole-genome sequencing and genotyping
by SNP panel). Bison producers in Canada follow the “Code
of Practice for the Care and Handling of Bison” developed by
the National Farm Animal Care Council (http://www.nfacc.ca/).
The Canadian Bison Association provided written consent
approving the analysis of the samples. Written informed consent
was obtained from the owners for the participation of their
animals in this study.
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APPENDIX 1 SNP PRUNING

If the square of correlations (r2) in genotype allele counts was greater than 0.015 between any two SNPs, the less informative SNP (i.e.,
with a lower MAF) was pruned.

When LD is measured in terms of the Pearson’s correlation in genotype allele counts, its null distribution (i.e., no LD) can be
approximately treated as a Student’s t-distribution with degrees of freedom n-2.

t = r
√

(n− 2)/(1− r2)

In our analysis, the sample size n is 461. A cutoff of r2 < 0.015 pruned a SNP if it was significantly (p = 0.001) in correlation
with any other SNPs.
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A total of 31 differentially expressed genes in the mammary glands were identified in our
previous study using RNA sequencing (RNA-Seq), for lactating cows with extremely
high and low milk protein and fat percentages. To determine the regulation of milk
composition traits, we herein investigated the expression profiles of microRNA (miRNA)
using small RNA sequencing based on the same samples as in the previous RNA-Seq
experiment. A total of 497 known miRNAs (miRBase, release 22.1) and 49 novel miRNAs
among the reads were identified. Among these miRNAs, 71 were found differentially
expressed between the high and low groups (p < 0.05, q < 0.05). Furthermore, 21
of the differentially expressed genes reported in our previous RNA-Seq study were
predicted as target genes for some of the 71 miRNAs. Gene ontology and KEGG
pathway analyses showed that these targets were enriched for functions such as
metabolism of protein and fat, and development of mammary gland, which indicating
the critical role of these miRNAs in regulating the formation of milk protein and fat. With
dual luciferase report assay, we further validated the regulatory role of 7 differentially
expressed miRNAs through interaction with the specific sequences in 3′UTR of the
targets. In conclusion, the current study investigated the complexity of the mammary
gland transcriptome in dairy cattle using small RNA-seq. Comprehensive analysis of
differential miRNAs expression and the data from previous study RNA-seq provided the
opportunity to identify the key candidate genes for milk composition traits.

Keywords: mammary gland, mRNA, miRNA, RNA-seq, dairy cattle

BACKGROUND

MicroRNAs (miRNAs), which are a class of non-coding small RNA (sRNA) molecules
with the length of 18-24 nucleotides, are important regulators of gene expression. They
can play important roles in a wide range of biological processes, including animal
and plant development, cell differentiation, proliferation, apoptosis, and metabolism
(Martello et al., 2010; Chen et al., 2012; Rottiers and Näär, 2012; Almughlliq et al., 2019;
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Barbu et al., 2020). In animal cells, miRNAs interact with
a specific sequence in mRNA of the target gene and post-
transcriptionally negatively regulate the expression of target
genes by inhibiting their translation or inducing degradation
of the target mRNAs (Huntzinger and Izaurralde, 2011; Barbu
et al., 2020). MiRNAs have emerged as new potential biomarkers
for miRNA-gene interactions and gene networks responsible for
human diseases and economically important traits in livestock.
Several diseases and conditions have been reported to be
linked with the abnormal expression in miRNAs relating with
differentiation, apoptosis and development (Lewis et al., 2005;
Berezikov et al., 2006b; Lee et al., 2007). Many experimental
techniques and computational methods have been developed to
identify miRNAs (Aravin and Tuschl, 2005; Berezikov et al.,
2006a; Landgraf et al., 2007), and large number of miRNAs
have been identified in primates, rodents, birds, fish, and plants
(Lagos-Quintana et al., 2003; Chen et al., 2005; Finucane et al.,
2008; Glazov et al., 2008).

The bovine mammary gland is a complex organ which grows
and develops after calving and is able to produce more than
30,000 kg of milk in a complete lactation cycle (Hennighausen
and Robinson, 2005; Muroya et al., 2019). Because of its
important functions, the mammary gland, especially mammary
epithelial cells, has been used as the target tissue for gene
expression profiling in order to identify key genes underlying
milk production traits in dairy cattle (Silveri et al., 2006; Bionaz
and Loor, 2008, 2011; Bionaz et al., 2012; Zhang et al., 2016; Pu
et al., 2017; Cai et al., 2018; Ju et al., 2018; Yang et al., 2018; Billa
et al., 2019; Li et al., 2020). However, only a few studies have
been reported related to the miRNAs in the bovine mammary
gland. A total of 798 mature bovine miRNAs have been deposited
in miRBase (Luoreng et al., 2018), Release 22.1 (October 2018)
and 55 of them were detected in the mammary gland. Li et al.
(2012b) reported 283 known miRNAs and 74 novel miRNAs in
the mammary gland of Holstein cows, among which 56 miRNAs
were differentially expressed between lactating and non-lactating
cows and might be involved in regulating lactation. Shen et al.
(2016) identified 292 known miRNAs and 116 novel miRNAs

Abbreviations: PP, protein percentages; FP, fat percentages; MAPK, mitogen-
activated protein kinases; mTOR, mammalian target of rapamycin; HIF-1, hypoxia
inducible factor-1; PI3K-Akt, phosphatidylinositol 3 kinase-protein kinase B;
IACUC, Institutional Animal Care and Use Committee; RIN, RNA integrity
number; CPM, Counts per million; UTR, un-translated region; HEK, human
embryonic kidney; DMEM, Dulbecco’s modified Eagle’s medium; FDR, false
discovery rate; CSN2, β-casein; CSN3, κ-casein; LALBA, α-lactalbumin; DGAT2,
diacylglycerol O-acyltransferase 2; GHR, growth hormone receptor; STAT5B,
signal transducer and activator of transcription 5B; SCD, stearoyl-coenzyme A
desaturase; QTL, quantitative trait loci; GWAS, genome-wide association studies;
TRIB3, tribbles homolog 3; SAA1, serum amyloid A1; SAA3, serum amyloid A3
(SAA3); M-SAA3.2, mammary serum amyloid A3; VEGFA, vascular endothelial
growth factor A,PTHLH, parathyroid hormone-like hormone; RPL23A, ribosomal
protein L23A; DDIT3, DNA-damage-inducible transcript 3; NR4A1, nuclear
receptor subfamily 4, group A, member 1; VEGFA, vascular endothelial growth
factor A; CDKN1A, cyclin-dependent kinase inhibitor 1A; ATF3, activating
transcription factor 3; CHAC1, cation transport regulator homolog 1; TGF-β,
transforming growth factor-beta; EGFR, epidermal growth factor receptor; NF-
κB, nuclear factor kappa-light-chain-enhancer of activated B cells; BRMS1, breast
cancer metastasis suppressor 1; SREBP1, sterol regulatory element binding protein
1; PPARG, peroxisome proliferator-activated receptor gamma; STAT5A, signal
transducer and activator of transcription 5A; MEC, mammary epithelial cells.
1http://www.mirbase.org/

in the bovine mammary epithelial cells, and three of them (bta-
miR-33a, bta-miR-152 and bta-miR-224) might be involved in
milk fat metabolism. Li et al. (2015) detected 370 known and
341 novel miRNAs in the bovine mammary gland infected with
Staphylococcus aureus, and 358 known and 232 novel miRNAs
in control group, 77 of which were differentially expressed
between infected and healthy Holstein cows. In addition, Le
Guillou et al. (2012) found that the overexpression of miR-
30b caused a defect in lactation and delayed involution in
mouse mammary gland.

In a previous study from our lab (Cui et al., 2014), 31
differentially expressed genes was identified by using RNA
sequencing (RNA-Seq) to investigate the mammary gland
epithelial tissues of four lactating Holstein cows with extremely
high and low milk protein (PP) and fat percentages (FP).
The objectives of the present study were to investigate the
miRNA expression profiles in the same mammary gland samples
that were used in the previous RNA-Seq study to identify
known and novel miRNAs, and to perform an analysis of the
differentially expressed miRNAs and previously identified genes.
Some candidate miRNAs and their target genes that may be
involved in milk protein and fat metabolism were identified.

MATERIALS AND METHODS

Animals and Mammary Gland
Tissue Samples
In the current study, the mammary gland epithelium samples
of four lactating Chinese Holstein cows (high group vs. low
group) same as our previous RNA-Seq experiment (Cui et al.,
2014) were used. These four cows were selected from 30,000
Holstein cows in Beijing Sanyuanlvhe Dairy Farming Center, and
the average PP and FP were 3.1% (2.7–3.8%) and 3.6% (3.1–
4.5%) in this population. In order to keep the environmental
factors identical, these four cows in almost the same period
of lactation (353, 341, 377, and 325 days) were collected
from the same farm possessing a total of 800 Holstein cows.
Selected cows were divided into two groups according to the
phenotypic values for PP and FP: two cows (high group)
had high PP (3.6% and 3.8%) and FP (3.9% and 4.5%); the
other two cows (low group) showed low PP (3.0%, 2.9%) and
FP (3.2%, 3.1%).

The cows were killed by electroshock, and then they were
bled, skinned, and dismembered in the same slaughterhouse.
The rear mammary gland from each individual was harvested
within 30 min after slaughtered. White mammary ducts and
pink epithelium tissue were clearly observed when the right
rear quarter of the mammary gland was cut in half lengthways
from the teat and some milk were flowed out. Five pieces of
epithelium tissue samples per cow were carefully collected and
placed into a clean RNAse-free Eppendorf tube, and then stored
in liquid nitrogen for subsequent RNA isolation. All procedures
of collecting samples were carried out in strict accordance with
the protocol approved by the Animal Welfare Committee of
China Agricultural University (Permit Number: DK996). Total
RNA was extracted from one piece of mammary gland epithelium
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samples from each cow and quality was controlled according to
the protocols described by Cui et al. (2014). The value of RNA
integrity number (RIN) from each sample was above 8.0.

Small RNA Sample Preparation and
Sequencing
The preparation of small RNA library, including quality control
and sequencing, was performed by Novogene (Beijing, China).
The preparation of library was performed on 3 µg total RNA per
sample using an IlluminaTruSeq™Small RNA Sample Preparation
Kit (Illumina, San Diego, CA, United States). The samples were
indexed using four codes in order to facilitate sequencing of
these samples on one flow cell channel. Quality control in library
preparation showed that adapter-adapter contamination was
<5% and 85% of the sequences were miRNAs. The samples were
subsequently sequenced on the Illumina Hiseq2000 platform and
50-bp single-end reads were obtained.

Sequencing Data Analysis
The sequencing data were obtained in the format of Illumina
FASTQ (Illumina). The procedure of data filtering included
removing low quality reads, reads containing poly-N stretches,
reads with 5′primer contaminants, reads with 3′primers or the
insert tag, and reads with poly-A, T, G, or C stretches. Thereafter,
the sRNA tags within a certain range (18-30 nt) were retained
for the successive steps. The Q20, Q30, and GC-content of
the cleaned reads were calculated to evaluate the quality of
data. Then, the sRNA tags were mapped to the bovine genome
assembly (UMD3.1.66) using Bowtie (Langmead et al., 2009),
no mismatches were allowed and the “seed” region size was set
at 8 (Gupta et al., 2012; Giurato et al., 2013; Aggarwal et al.,
2014; Kuksa et al., 2018). The mapped sRNA tags were aligned
to the 798 bovine miRNA precursor sequences in miRBase
(Release 22.1) to identify the known miRNA in the sRNA libraries
allowing one mismatch. The sRNA tags that matched known
miRNAs from species other than bovine may be novel bovine
miRNAs, and were predicted the secondary structure, the Dicer
cleavage site, and the minimum free energy of the mapped sRNA
sequences using the miREvo (Wen et al., 2012) and miRDeep2
(Friedländer et al., 2012) software packages.

The expression of miRNA was measured as counts per
million (CPM) using the following formula: normalized
expression = mapped read count/total reads × 1000000 (Zhou
et al., 2010), and DESeq2 R package (1.8.3) (Anders and Huber,
2010; Trapnell et al., 2013) was used to identify significantly
differentially expressed miRNAs between high and low groups
of cows. The threshold for differential expression was|log2
(FC)| > 1 and FDR p < 0.05 when using DESeq2 R package
for differential expression miRNA analysis so that miRNAs
with|log2 (FC)| > 1 and adjusted FDR p < 0.05 were designated
as differentially expressed.

Furthermore, two cows in the same group were used
to eliminate the background noise of individual-specific
transcription by applying a pairwise approach, which enabled
acquisition of more relevant data from the two groups.

Target Prediction, Pathway, and
Annotation Analysis
TargetScan 6.2 and MiRanda (Enright et al., 2003) were used
to predict putative target genes with the established miRNA
seed database and the bovine genome sequence (UMD3.1.66).
TargetScan 6.2 predicts targets by searching for the presence
of conserved 8mer, 7mer, and 6mer sites that match the seed
region of each miRNA. MiRanda predicts targets based on
a development of the miRanda algorithm which incorporates
current biological knowledge on target rules and on the use of
an up-to-date compendium of mammalian miRNAs.

Gene ontology (GO) functional enrichment analysis was
used for the candidate target genes of the miRNAs. GOseq
with the Wallenius non-central hyper-geometric distribution
(Young et al., 2010), which can adjust for the bias in gene
length, was implemented for the GO enrichment analysis. Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al.,
2008) pathways analysis was performed using KOBAS 2.0 (Mao
et al., 2005) software to test the statistical enrichment of the
candidate target genes in the KEGG pathways.

Quantitative Real Time PCR
Expression levels of selected miRNAs were confirmed by
quantitative real-time PCR (qRT-PCR) using the DyNAmo
SYBR Green PCR kit (Applied Biosystems, Foster City,
CA, United States) on a LightCycler480 (Roche Applied
Science, Penzberg, Germany). qRT-PCR of target mRNAs
was performed using specific miRNA stem-loop primers
(Supplementary Table 8) and all reactions were run in triplicate.
Relative quantification of miRNA was quantified using the 2−1 1

CT method and normalized against the U6 gene (ssD0904071006:
Guangzhou RiboBio, Guangzhou, China) for each sample.

Plasmid Construction and Site-Directed
Mutagenesis of 3′UTR in Predicted
Target Genes
The 3′un-translated region (UTR) of four predicted target
genes for the identified miRNAs, TRIB3, M-SAA3.2, PTHLH,
and VEGFA, were PCR amplified using DNA collected
from the bovine mammary gland samples applied for
sequencing in this study as a template, and connected into
pmirGLO Dual-Luciferase miRNA Target Expression Vector
(pmirGLO, Promega) (Figure 1), respectively. The primers
were listed in the Table 1. Afterward, the connected products
were transfected into Escherichia coli, and then verified
the correct sequence and orientation by sequencing. The
QuikChange site-directed mutagenesis kit (Stratagene, La
Jolla, CA, United States) was used to generate the 3′UTR
variants of TRIB3, M-SAA3.2, PTHLH, and VEGFA where
seed sequences recognized by microRNAs were deleted

2http://www.targetscan.org/vert_60/
3http://www.microrna.org/microrna/home.do
4http://geneontology.org/
5http://www.genome.jp/kegg/
6http://kobas.cbi.pku.edu.cn/home.do/
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FIGURE 1 | The pmirGLO vectors with the predicted 3’UTR target sequences of the 4 differentially expressed genes (A) pmirGLO-TRIB3-3′UTR; (B) pmirGLO-
M-SAA3.2-3′UTR; (C) pmirGLO-PTHLH-3′UTR; (D) pmirGLO-VEGFA-3′UTR.

TABLE 1 | PCR primers for TRIB3, PTHLH, VEGFA and M-SAA3.2.

Gene name Forward primer sequence Reverse primer sequence Amplicon (bp) Tm (◦C)

TRIB3 AAAGAGATATGGGTCTCTATGGCTGA AAGATGGATGAAATATGTAAGAGAGATGACA 806 57

PTHLH TTCTCTTTGCAGGAGGCATTGA TTCACCTTCTGAGTCATGATGTAATTTAG 475 57

VEGFA AGACGTCTCACCAGGAAAGACT GACGGAGGTGGGTTAACCACTCA 1050 59

M-SAA3.2 GTCATTGATCCCTTGGAAAGAGGAG CTGTCCTTATACCAAGAATGACACAC 361 59

(Figures 2, 3). After the point mutation, same way was
applied in order to find the correct mutant sequences for
such four genes.

Luciferase Reporter Assays
To further explore the repressing mechanism of miRNAs
on the expression of 4 target genes (TRIB3, M-SAA3.2,
PTHLH, and VEGFA) expression, the full-length TRIB3,
M-SAA3.2, PTHLH and VEGFA 3′UTRs and the corresponding
mutant version (the seed sequences were deleted) were

transfected into human embryonic kidney HEK293 cells (GM-
070001H: Shanghai, China), respectively. These cells were
cultured at 37◦C with 5% CO2 in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 4.5 g/liter glucose, 5%
fetal bovine serum (Invitrogen), 2 mmol/liter glutamine, and
antibiotics. Before transfection, HEK293 cells were plated into
24-well plates at 1.0 × 105 cells/well 24 h. 30 ng empty
pmirGLO vector, pmirGLO-TRIB3/M-SAA3.2/PTHLH/VEGFA-
3′UTR with 50 µl opti-MEM (Invitrogen) and 30 nM
(final concentration) mimic miRNA, inhibitor miRNA, control
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FIGURE 2 | Domain structures of the 4 differentially expressed genes showing
the locations of the seed sequence of the miRNAs within the 3’UTR of theirs.

miRNA (GenePharma) were co-transfected into each well with
1 µl Lipofectamine 2000 (Invitrogen). 30 ng mutants of
the TRIB3/M-SAA3.2/PTHLH/VEGFA 3′UTR with 50 µl opti-
MEM (Invitrogen) and 30 nM (final concentration) mimic
miRNA, control miRNA (GenePharma) were co-transfected into
each well with 1 µl Lipofectamine 2000 (Invitrogen). Relative
firefly luciferase activities (normalized to Renilla luciferase
activities) were measured 24 h after transfection with the Dual-
Luciferase Reporter Assay Kit (Promega) on TECAN Infinite 200
multifunctional microplate reader (TECAN). All experiments
were performed in triplicate so that data averaged from three
independent experiments.

RESULTS

Sequencing and Mapping of the
sRNA Tags
Four new miRNA libraries were constructed using sRNA
isolated from bovine mammary glands and sequenced using
Illumina next-generation sequencing. A total of 10,538,878
(high milk PP and FP), 12,745,512 (high milk PP and FP),
9,744,027 (low milk PP and FP), and 9,682,136 (low milk
PP and FP) high-quality cleaned reads were obtained from
the four sRNA libraries (Supplementary Table 1; NCBI SRA
accession numbers: SRR3631014, SRR3631016, SRR3631053, and
SRR3631054). Distribution of the length for reads showed that
most of the generated reads had 21 (>24%), 22 (>30%), and 23
(>13%) nucleotides (Supplementary Figure 1), which is the size
of most known mature miRNAs. When aligning the sequenced

FIGURE 3 | Locations and sequences of the miRNAs target sites in the 3’UTR
of the 4 differentially expressed genes. The sequences of the miRNAs are
indicated, along with mutations introduced in the target sites (underlined
nucleotides) for generating the mutated reporter constructs.

reads against the bovine genome assembly (UMD3.1.66), it was
found that 77.57%, 76.93%, 80.88%, and 78.15% of them uniquely
aligned from the four libraries, respectively (Supplementary
Table 1); 55-57% of them were aligned in the same direction
as the reference genome sequence, and 20-25% were aligned in
the opposite direction (Supplementary Table 2). The correlation
coefficient (R2) between the two individuals within the high and
low groups for milk PP and FP was calculated based on the
CPM mapped fragment of each cow and was shown to be 0.988
and 0.980, respectively. This indicated that the similarity of the
two biological replicates within each group was sufficiently high
(Supplementary Figure 2).

MicroRNAs Identification and Target
Prediction
Among the uniquely aligned reads across the four samples and
six downloaded miRNA libraries (Cai et al., 2018), 24,320,809
(54.4%) matched known miRNAs in miRBase (Release21.0),
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TABLE 2 | Seventy-one differentially expressed miRNAs between the high and low milk protein and fat percentages groups.

miRNA log2 (fold change) p_Value q_Value Read counts in high group Read counts in Low group

miR-21-5p −1.1183 0 0 503339.5 935032

miR-27a-3p −1.1042 0 0 60379.5 79260

miR-23a −1.0206 0 0 44889.5 71388

miR-145 1.0173 0 0 208070.5 147972.5

miR-148a 1.0635 0 0 466750.5 355164.5

miR-143 1.0707 0 0 1175739 785786.5

miR-22-3p 1.2895 0 0 44296.5 28671

miR-3600 1.2895 0 0 44296.5 28671

miR-151-5p 1.3639 0 0 44938.5 27619

miR-10b 1.4156 0 0 103545.5 56277.5

miR-101 −1.1621 0 0 29463.5 45276

miR-100 1.0945 5.50E-289 1.40E-287 55539 48352.5

miR-339a −1.0197 7.15E-247 1.52E-245 15873.5 23724

miR-191 1.3093 6.74E-233 1.23E-231 34081 25356.5

miR-125b 1.0211 7.42E-228 1.29E-226 46792.5 43191

miR-125a 1.3422 1.60E-185 2.45E-184 22525.5 18141

miR-146b −1.6573 4.40E-161 9.71E-160 6049.5 8584.5

miR-142-5p −1.1379 4.30E-147 6.09E-146 9739.5 14961

miR-19b −1.0332 1.45E-96 2.71E-95 7028.5 10103

miR-29c −1.0287 1.54E-92 2.76E-91 6245 8204.5

miR-339b −1.2469 3.98E-87 4.35E-86 3831 5659

miR-10a 1.5514 1.38E-78 1.42E-77 7065 4517

miR-30f 1.0409 3.84E-67 6.78E-66 10956.5 6760

miR-1 2.1527 4.21E-53 3.75E-52 3057.5 1763

miR-221 −1.2284 3.36E-50 5.48E-49 2693 3967.5

miR-106b −1.2266 3.96E-41 3.16E-40 1653.5 2854.5

miR-142-3p −1.5988 7.50E-41 5.86E-40 1177.5 2269

miR-34a −1.1847 1.12E-40 8.58E-40 2131.5 2912

miR-409a −1.1751 7.26E-40 1.00E-38 2959.5 3838.5

miR-1388-5p −1.6419 3.96E-32 2.75E-31 908.5 1660

miR-9-3p −5.2066 9.10E-31 1.12E-29 502 850

miR-9-5p −2.9879 2.98E-21 3.06E-20 509 750.5

miR-31 −1.1149 4.96E-18 4.56E-17 1507 1851.5

miR-660 1.0526 1.92E-17 1.21E-16 3290 1954.5

miR-19a −1.2632 2.04E-16 1.66E-15 648.5 1079.5

miR-223 −2.2887 9.68E-16 5.78E-15 585 843.5

miR-133a 2.1331 1.02E-14 5.83E-14 742 366

miR-2904 1.2383 4.05E-14 3.08E-13 1249 719

miR-451 1.1448 1.13E-13 8.33E-13 1690.5 1206.5

miR-215 −1.5896 1.32E-13 7.31E-13 533.5 610.5

miR-2284h-5p 1.1255 3.39E-13 2.41E-12 1491 1039

miR-2285o 1.1255 3.39E-13 2.41E-12 1491 1039

miR-196a 1.5328 4.02E-13 3.30E-12 770 630.5

miR-155 −1.4638 5.45E-13 3.76E-12 640 934

miR-190a −1.0688 8.23E-10 4.04E-09 502.5 631.5

miR-184 5.1816 1.61E-09 1.17E-08 648.5 519.5

miR-411c-3p −1.0705 2.31E-09 1.11E-08 535.5 767.5

miR-21-3p −1.7439 1.36E-08 6.19E-08 551 734.5

miR-136 −1.0645 1.4E-07 5.9E-07 678 854.5

miR-18a −1.4777 7E-07 2.78E-06 659 780.5

miR-2478 1.2552 9.4E-07 4.99E-06 873.5 606

(Continued)
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TABLE 2 | Continued

miRNA log2 (fold change) p_Value q_Value Read counts in high group Read counts in Low group

miR-452 1.0282 0.000017 0.000098 650.5 535

miR-135a 1.2434 0.000017 0.000083 598 522

miR-196b −1.0123 0.00003 0.00017 795 770.5

miR-345-5p −1.1028 0.000042 0.00015 591.5 667.5

miR-2887 1.9021 0.000043 0.00015 613.5 500.5

miR-224 1.001 0.00007 0.00037 716.5 536

novel_18 1.7627 0.000084 0.00039 708 574.5

miR-34c −1.1464 0.000093 0.00032 557.5 559.5

miR-410 −1.1162 0.00011 0.00039 588 676

miR-505 −1.0153 0.00011 0.00053 511.5 608

miR-6522 1.0978 0.00011 0.00058 671.5 524.5

miR-455-5p −1.4658 0.00012 0.00039 510 569

miR-363 1.1211 0.00019 0.00086 703 548

miR-3431 1.0333 0.00021 0.001 536.5 510.5

miR-331 1.0571 0.00021 0.00067 721 513.5

miR-33a −1.1294 0.00045 0.00198 549 607

miR-2419-5p 1.2311 0.00058 0.0025 657 556

miR-885 1.3197 0.00179 0.00705 627 585.5

miR-362-3p −1.0196 1.91E-06 1.03E-05 567 708

miR-378c 1.2476 0.000014 0.000072 675 520

which resulted in 497 known bovine miRNAs and 49 novel
bovine miRNAs were identified (Supplementary Tables 3, 4).
Subsequently, two well-established target prediction tools,
TargetScan and miRanda, were used to predict target mRNAs of
the miRNAs, and a total of 12,202 target genes were commonly
predicted for the known and novel miRNAs (Supplementary
Table 5). It is noteworthy that some well-known genes associated
with milk composition traits were included such as β-casein
(CSN2), κ-casein (CSN3), α-lactalbumin (LALBA), diacylglycerol
O-acyltransferase 2 (DGAT2), growth hormone receptor (GHR),
signal transducer and activator of transcription 5B (STAT5B), and
stearoyl-coenzyme A desaturase (SCD) etc. This finding implied
that the identified mammary miRNAs in this study were involved
in metabolism of milk protein and lipid through the regulation of
key genes affecting these traits.

Differentially Expressed miRNAs
Between the High and Low Groups for
Milk PP and FP and Target Prediction
The miRNAs that differed between the high and low PP
and FP groups were determined in this study. A total of 71
top half miRNAs displayed significantly differential expression
between the high and low groups using the DEseq2 algorithm
(p < 0.05, FDR q < 0.05), with 35 were up-regulated and
36 were down-regulated in the high milk PP and FP group
compared with the low group (Table 2). Subsequently, a
total of 5,634 target genes were commonly obtained for these
differentially expressed miRNAs by TargetScan and miRanda
(Supplementary Table 7).

Afterward, the results of the sequencing were validated with
an independent method of real-time PCR assay. By using the
same four mammary gland samples as used for sequencing,

eight known miRNAs and seven novel miRNAs identified in
the present study were randomly chosen for validation. It was
found that the expression levels of miR-125a, miR-2904, miR-
345-5p, miR-378c and Novel-18 were significantly higher in the
high milk PP and FP group than in the low group (p < 0.05),
and the expression levels of miR-21-3p, miR-29c, miR-106b and
miR-190a were lower in the high group than in the low group
(p < 0.05). Whereas, Novel-13, Novel-2, Novel-22, Novel-32,
Novel-4 and Novel-42 did not display significant differences on
miRNA levels between the two groups (p > 0.05) (Figure 4). Such
expression patterns were exactly consistent with those shown by
small-RNA sequencing data.

Gene Ontology Enrichment and Pathway
Analysis
To further investigate the functional associations of the target
genes, gene ontology (GO) annotation analysis was performed.
It was found that these targets have a wide range of diverse
functions, among which most were involved in protein and lipid
metabolism, mammary gland development and differentiation,
and immune functions (p < 0.01, FDR q < 0.01). Under the
GO biological process category, the enriched terms related to
lipid and protein metabolisms and cell growth were included
such as protein binding, protein localization, protein transport,
protein complex, regulation of protein metabolic process, lipid
biosynthetic process, programmed cell death, protein targeting,
lipid metabolic process, amino acid transport, regulation of
protein kinase activity, and cellular response to mechanical
stimulus (Supplementary Table 6).

A KEGG metabolic pathway analysis was also performed
to identify functions that associate with the predicted target
genes using KOBAS. Targets were enriched for functions such
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FIGURE 4 | mRNA expression levels of the 15 randomly selected miRNAs validated with qRT-PCR. *indicates p < 0.05. Blue columns represent the relative miRNA
expression levels by qRT-PCR normalized by U6 in the high group and red columns represent the relative miRNA expression levels by qRT-PCR normalized by U6 in
the low group.

as mitogen-activated protein kinases (MAPK), adipocytokine,
mammalian target of rapamycin (mTOR), glycosphingolipid
biosynthesis, glycerophospholipid metabolism, hypoxia
inducible factor-1 (HIF-1), and phosphatidylinositol 3
kinase-protein kinase B (PI3K-Akt) signaling pathways (Table 3).

For the 71 top half differentially expressed miRNAs, 5,634
target genes were obtained and the targets were highly enriched
in biological process consisting of synthesis and metabolism
of protein and energy metabolism, as well as pathways mainly
related to synthesis and metabolism of lipid and protein including
glutathione metabolism, NF-kappa B signaling pathway, mTOR

signaling pathway, fatty acid degradation, fatty acid metabolism
and protein processing in endoplasmic reticulum (Table 4).

Comparison of the Target Genes of the
Differentially Expressed miRNAs and the
Differentially Expressed Genes Reported
Previously
In our previous study (Cui et al., 2014), 21 of the target genes,
which are listed in Table 5, were found to be differentially
expressed between the high and low groups using the same
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four mammary gland samples in the current study. Among the
21 differentially expressed target genes, the expressions of only
six down-regulated genes and one up-regulated gene matched
the expression profiles of the differentially expressed miRNAs
that targeted them. While 5 down-regulated genes were targeted
by at least one up-regulated miRNA each, and 10 genes were
targeted by both up-regulated and down-regulated miRNAs.
Especially, 7 of the 21 differentially expressed target genes were
the most promising candidate genes affecting milk protein and
fat percentage identified by integrated analysis of differential gene
expression, previously reported quantitative trait loci (QTLs)
and genome-wide association studies (GWAS) (Cui et al.,
2014), including tribbles homolog 3 (TRIB3), serum amyloid A1
(SAA1), serum amyloid A3 (SAA3), mammary serum amyloid
A3 (M-SAA3.2), vascular endothelial growth factor A (VEGFA),
parathyroid hormone-like hormone (PTHLH) and ribosomal
protein L23A (RPL23A). In addition, KEGG pathway analysis
using KOBAS, showed that two of the 21 target genes, DNA-
damage-inducible transcript 3 (DDIT3) and nuclear receptor
subfamily 4, group A, member 1 (NR4A1), were involved in
the MAPK signaling pathway that plays critical role in protein
synthesis and metabolism and fatty acid metabolism pathway
(p < 0.05; Tables 3, 4), and 2 other genes, vascular endothelial
growth factor A (VEGFA) and cyclin-dependent kinase inhibitor
1A (CDKN1A), were involved in the mTOR, HIF-1, PI3K-
Akt, p53 and duct acid secretion signaling pathways, which are
mostly related to synthesis and metabolism of protein and fat
(p < 0.05; Tables 3, 4).

MicroRNAs Repress the Expression of
Target Genes Through the Binding of a
Specific Target Sequence in Their
mRNA 3′UTR
To study the regulatory functions of the identified miRNAs,
four differentially expressed genes were chosen including TRIB3,
M-SAA3.2, PTHLH and VEGFA, which having the expression
pattern negatively correlated with their targeting miRNAs. Using
the dual luciferase reporter assays, whether miR-2904, miR-
339b/miR-146b/miR-339a, miR-29c/miR-106b/miR-190a, and
miR-2904/miR-106b/miR-21-3p regulated the expression of the
TRIB3, M-SAA3.2, PTHLH and VEGFA, respectively, were
detected. Consequently, it was found that the luciferase level in
HEK293 cells with mimics of miR-2904 decreased 40% relative
to those with the empty vector, respectively (p < 0.05), while the
inhibitor of miR-2904 yielded the same luciferase level as negative
control (p > 0.05) (Figure 5). However, when the predicted
binding sites of such miRNA seed sequences were mutated,
luciferase activity was efficiently restored to the control levels
(p > 0.05; Figure 5). Such results clearly indicated the notable
regulatory role of the miR-2904 on the expression of TRIB3 by
directly targeting its 3′UTR. Similarly, with regard to M-SAA3.2,
it was also found that the overexpression of miR-146b, miR-
339a and miR-339b decreased the luciferase levels in HEK293
cells by 80%, 72% and 74% after transfecting these mimics
compared with the negative controls, respectively (p < 0.05), and
the depressed expression of such miRNAs did not change the

luciferase level in HEK293 cells transfected with their inhibitors
(p > 0.05), respectively (Figure 6). When the mutant 3′UTR of
M-SAA3.2 and mimics of the 3 miRNAs were co-transfected,
the luciferase activity was same as the control level (p > 0.05;
Figure 6). For PTHLH, the luciferase level in HEK293 cells
transfected with the mimics of miR-29c, miR-106b and miR-190a
was decreased by 37%, 49%, and 50% relative to the negative
control, respectively (p < 0.05; Figure 7), however, the same
level was kept by transfecting the inhibitors of such miRNAs
(p > 0.05), respectively (Figure 7). When the mutant version of
the PTHLH 3′UTR and mimics of miR-29c, miR-106b and miR-
190a were co-transfected, respectively, the luciferase activities
were same as the control levels (p > 0.05; Figure 7). Whereas, the
expression of VEGFA was not affected by miR-2904, miR-106b
and miR-21-3p (p > 0.05, Figure 8).

DISCUSSION

The current study is the first comparative profiles of the mRNA
and miRNA transcriptome in the mammary gland epithelium
of dairy cows to the best of our knowledge. In this study,
we generated an extensive miRNA expression profile of the
mammary glands from lactating cows with extremely high and
low milk PP and FP, and identified a total of 497 known bovine
miRNAs and 49 novel bovine miRNAs. In previous studies,
bovine miRNAs were identified using computational and direct
cloning approaches (Coutinho et al., 2007; Gu et al., 2007; Jin
et al., 2009, 2010; Long and Chen, 2009; Li et al., 2012b, 2015;
Shen et al., 2016). Li et al. (2012b) identified 298 known miRNAs
in lactating and non-lactating mammary gland of Holstein cows
using miRNA-seq; 204 of them were among the 497 known
miRNAs identified in the current study. Furthermore, 9 of the 71
differentially expressed miRNAs (miR-100, miR-10a, miR-133a,
miR-1, miR-146b, miR-148a, miR-221, miR-30f, and miR-339b)
identified in the current study were also reported by Li et al.
(2012b) as differentially expressed between lactating and non-
lactating bovine mammary glands. Gu et al. (2007) identified 31
distinct miRNAs in the mammary glands of Holstein cows, and
all of these miRNAs was detected in the present study except
miR-142b. Shen et al. (2016) identified 292 known miRNAs in
the bovine primary mammary cells, among which 217 miRNAs
and 38 differentially expressed miRNAs were also identified in the
current study. For the 30 differentially expressed miRNAs in the
lactating goat mammary gland fed ad libitum or deprived of food
affecting milk composition reported by Mobuchon et al. (2015),
only 6 miRNAs, including miR-660-5p, miR-451-5p, miR-125b,
miR-196a, miR-223-3p, and miR-223-5p were detected as well
in the current study. miR-30b related to lactation in mouse (Le
Guillou et al., 2012) was also detected in this study, but did not
show differential expression between high and low groups. The
reason could be due to the mammary gland tissues were collected
from different time points of lactation between the previous (Le
Guillou et al., 2012) and the current studies.

miR-15a has been reported to be critical in cell development
(Bonci et al., 2008), cell cycle (Bandi et al., 2009), and death
(Cimmino et al., 2005; Aqeilan et al., 2010). Li et al. (2012a) found
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TABLE 3 | KEGG pathways assigned to the predicted target genes of the 497 known and 49 novel miRNAs identified in this study.

Pathways Input number p-Value Differentially expressed target genes identified
in our previous RNA-Seq studya,18

Lysosome 101 0.00015

MAPK signaling pathway 182 0.00026 NR4A1, DDIT3

Endocytosis 182 0.00030

Leukocyte transendothelial migration 89 0.00119

Adherens junction 52 0.00166

Glycosaminoglycan biosynthesis 11 0.00257

Chagas disease (American trypanosomiasis) 82 0.00260

mTOR signaling pathway 108 0.00270 VEGFA

Synaptic vesicle cycle 47 0.00289

Adipocytokine signaling pathway 49 0.00299

Bacterial invasion of epithelial cells 59 0.00299

Tight junction 102 0.00304

Collecting duct acid secretion 24 0.00324

Pertussis 61 0.00327

Glycosphingolipid biosynthesis 11 0.00345

SNARE interactions in vesicular transport 30 0.00355

Glutathione metabolism 44 0.00557

Homologous recombination 23 0.00774

Fc gamma R-mediated phagocytosis 68 0.01124

Linoleic acid metabolism 28 0.02387

Pyrimidine metabolism 87 0.02475

Alpha-linolenic acid metabolism 20 0.02550

Glycerophospholipid metabolism 75 0.03191

HIF-1 signaling pathway 78 0.03455 VEGFA, CDKN1A

PI3K-Akt signaling pathway 241 0.03942 VEGFA, CDKN1A

Apoptosis 22 0.04444

Arachidonic acid metabolism 55 0.04654

DNA replication 29 0.04704

KOBAS software was used to test the statistical enrichment of the candidate target genes in the KEGG pathways. aNR4A1, nuclear receptor subfamily 4, group A,
member 1; DDIT3, DNA-damage-inducible transcript 3; VEGFA, vascular endothelial growth factor A; CDKN1A,cyclin-dependent kinase inhibitor 1A.

TABLE 4 | KEGG pathways assigned to the predicted target genes of the 71 differentially expressed miRNAs identified in this study.

Pathways Input number p-Value Differentially expressed
genes identified in our
previous RNA-Seq studya,20

Glutathione metabolism 27 0.015447

p53 signaling pathway 33 0.01608 CDKN1A

Synaptic vesicle cycle 30 0.020395 CDKN1A

Cell cycle 51 0.027481

NF-kappa B signaling pathway 39 0.030627

Fc gamma R-mediated phagocytosis 37 0.035842

Collecting duct acid secretion 15 0.047867 CDKN1A

mTOR signaling pathway 51 0.027261 VEGFA

Fatty acid degradation 15 0.03017

Fatty acid metabolism 18 0.030625 DDIT3

Protein processing in endoplasmic reticulum 49 0.040795

KOBAS software was used to test the statistical enrichment of the candidate target genes in the KEGG pathways. aNR4A1, nuclear receptor subfamily 4, group A,
member 1; DDIT3, DNA-damage-inducible transcript 3; VEGFA, vascular endothelial growth factor A; CDKN1A,cyclin-dependent kinase inhibitor 1A.
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TABLE 5 | Twenty-one differentially expressed target genes from our previous study for the 71 differentially expressed miRNAs.

Differentially
expressed miRNA
identified
in this study

log2 (Fold_Change) p-Value q-Value Differentially expressed
target genes identified in
our previous
RNA-seq study20

log2 (Fold_Change) p-Value q-Value

miR-133a 2.1331 1.0203E-14 5.8256E-14 TRIB3 −2.64 3.38E-08 2.63E-05

miR-1388-5p −1.6419 3.96E-32 2.75E-31

miR-2904 1.2383 4.05E-14 3.08E-13

miR-345-5p −1.1028 0.0000415 0.0001496

miR-362-3p −1.0196 1.9053E-06 1.0284E-05

miR-106b −1.2266 3.96E-41 3.16E-40 PTHLH −0.76 1.69E-05 0.006194

miR-190a −1.0688 8.23E-10 4.04E-09

miR-29c −1.0287 1.5384E-92 2.7568E-91

miR-106b −1.2266 3.96E-41 3.16E-40 VEGFA −1.25 1.35E-06 0.000647

miR-125a 1.3422 1.599E-185 2.447E-184

miR-125b 1.0211 7.422E-228 1.291E-226

miR-21-3p −1.7439 1.36E-08 6.19E-08

miR-2904 1.2383 4.05E-14 3.08E-13

miR-125a 1.3422 1.599E-185 2.447E-184 SAA1 −5.84 9.99E-07 0.000541

miR-125b 1.0211 7.422E-228 1.291E-226

miR-146b −1.6573 4.4E-161 9.71E-160

miR-146b −1.6573 4.4E-161 9.71E-160 SAA3 −2.09 9.90E-11 1.47E-07

miR-146b −1.6573 4.4E-161 9.71E-160 M-SAA3.2 −2.49 4.39E-05 0.013339

miR-339a −1.0197 7.15E-247 1.52E-245

miR-339b −1.2469 3.98E-87 4.35E-86

miR-378c 1.2476 0.0000142 0.000072 RPL23A −5.31 1.88E-05 0.038988

miR-135a 1.2434 0.000017 0.0000832 ATF3 −2.70 1.24E-06 0.000641

miR-142-3p −1.5988 7.5E-41 5.86E-40

miR-155 −1.4638 5.45E-13 3.76E-12

miR-21-3p −1.7439 1.36E-08 6.19E-08

miR-142-3p −1.5988 7.5E-41 5.86E-40 CHAC1 −2.86 8.62E-08 5.97E-05

miR-223 −2.2887 9.68E-16 5.78E-15

miR-339a −1.0197 7.15E-247 1.52E-245

miR-339b −1.2469 3.98E-87 4.35E-86

miR-106b −1.2266 3.96E-41 3.16E-40 SLC25A38 −0.70 1.57E-07 7.35E-05

miR-142-5p −1.1379 4.3E-147 6.09E-146

miR-143 1.0707 0 0

miR-224 1.001 0.0000703 0.00037589

miR-2478 1.2552 9.38E-07 0.00000499

miR-2904 1.2383 4.05E-14 3.08E-13

miR-345-5p −1.1028 0.0000415 0.0001496

miR-21-3p −1.7439 1.36E-08 6.19E-08 NR4A1 2.42 4.10E-07 0.000243

miR-224 1.001 0.0000703 0.00037589

miR-3600 1.2895 0 0 CDH16 −1.27 1.29E-06 0.000641

miR-362-3p −1.0196 1.9053E-06 1.0284E-05 EIF4G3 −0.49 9.76E-06 0.004052

miR-106b −1.2266 3.96E-41 3.16E-40 CDKN1A −2.20 1.22E-05 0.004742

miR-125a 1.3422 1.599E-185 2.447E-184

miR-125b 1.0211 7.422E-228 1.291E-226

miR-22-3p 1.2895 0 0

miR-31 −1.1149 4.96E-18 4.56E-17

miR-3431 1.0333 0.00021287 0.0010055

miR-345-5p −1.1028 0.0000415 0.0001496

miR-148a 1.0635 0 0 BOLA-DQB −6.92 1.21E-05 0.004742

miR-106b −1.2266 3.96E-41 3.16E-40 H4 −2.17 2.07E-05 0.007179

miR-125a 1.3422 1.599E-185 2.447E-184 FAM71A −1.00 2.53E-05 0.008504

(Continued)
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TABLE 5 | Continued

Differentially
expressed miRNA
identified
in this study

log2 (Fold_Change) p-Value q-Value Differentially expressed
target genes identified in
our previous
RNA-seq study20

log2 (Fold_Change) p-Value q-Value

miR-125b 1.0211 7.422E-228 1.291E-226

miR-224 1.001 0.0000703 0.00037589 DDIT3 −1.70 4.01E-05 0.012494

miR-411c-3p −1.0705 2.31E-09 1.11E-08

miR-3431 1.0333 0.00021287 0.0010055 HIST1H2AC −2.01 5.54E-05 0.016423

miR-363 1.1211 0.00018844 0.0008567

miR-1388-5p −1.6419 3.96E-32 2.75E-31 P4HA2 −0.69 9.24E-05 0.025587

miR-23a −1.0206 0 0

miR-30f 1.0409 3.84E-67 6.78E-66

miR-345-5p −1.1028 0.0000415 0.0001496

miR-9-5p −2.9879 2.98E-21 3.06E-20

miR-190a −1.0688 8.23E-10 4.04E-09 C4BPA −1.57 9.20E-10 1.04E-06

TRIB3, tribbles homolog 3; PTHLH, parathyroid hormone-like hormone; VEGFA, vascular endothelial growth factor A;RPL23A, ribosomal protein L23a; ATF3, activating
transcription factor 3; SAA1, serum amyloid A1; CHAC1, cation transport regulator homolog 1; SAA3, serum amyloid A3; SLC25A38, solute carrier family 25, member 38;
NR4A1,nuclear receptor subfamily 4, group A, member 1;CDH16, cadherin 16; EIF4G3, eukaryotic translation initiation factor 4 gamma, 3; CDKN1A,cyclin-dependent
kinase inhibitor 1A;BOLA-DQB, major histocompatibility complex, class II, DQ beta; H4, histone H4; FAM71A, family with sequence similarity 71, member A; DDIT3,DNA-
damage-inducible transcript 3;M-SAA3.2, mammary serum amyloid A3.2; HISTH2AC, histone cluster 1, H2ac;P4HA2, prolyl 4-hydroxylase, alpha polypeptide II;C4BPA,
complement component 4 binding protein, alpha.

FIGURE 5 | MicroRNAs represses the expression of TRIB3 via binding the 3’UTR target sequence. Luciferase activity in HEK293 cells co-transfected with miRNA
mimic, miRNA inhibitor, miRNA control and empty vector for the TRIB3 3’UTR. Luciferase activity was assayed 24 h after transfection. All luciferase values were
normalized to Renilla luciferase. Blue columns represent the luciferase activity co-transfected with miRNA mimic control; Red columns represent the luciferase
activity co-transfected with miRNA inhibitor control; Green columns represent the luciferase activity co-transfected with miRNA mimic; Pink columns represent the
luciferase activity co-transfected with miRNA inhibitor. (A) Represents the luciferase activity of TRIB3 after over- or down-expressed miR-2904 compared with
controls. (B) Represents the luciferase activity of TRIB3 after transfecting mutant vector of miR-2904 compared with control. *Significant difference between the
control and the treatment; **Very significant difference between the control and the treatment.

that miR-15a can inhibit the viability of mammary epithelial cells
as well as the mRNA and protein expression of GHR, which is
a major gene for milk composition traits (Bonci et al., 2008). In
the current study, we also detected miR-15a and predicted that it
may target GHR as well as candidate genes for milk PP and FP
identified in our previous study, namely activating transcription
factor 3 (ATF3), VEGFA, parathyroid hormone-like hormone
(PTHLH), cation transport regulator homolog 1 (CHAC1), and
NR4A1. Therefore, miR-15a was considered may affect milk
composition by regulating the expression of these genes, although
miR-15a was not one of the differentially expressed miRNA

identified in this study. It was reported that miR-23b inhibited
the expression of the transforming growth factor-beta (TGF-β)
signaling (Finnerty et al., 2010). In the current study, miR-23b
and 5 other miRNAs (miR-2454-3p, miR-496, miR-503-3p, miR-
6520, and novel-6) were predicted to regulate STAT5B, which is
known to be involved in TGF-β signaling (Passerini et al., 2008;
Hosui et al., 2009). In addition, genes that are known to affect
milk traits (CSN3, CSN2, LALBA, DGAT2, STAT5B, and SCD)
were predicted to be targets of some of the identified miRNAs,
which implied that they may play critical regulatory roles in
mammary gland development and milk composition.
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FIGURE 6 | MicroRNAs represses the expression of M-SAA3.2 via binding the 3’UTR target sequence. Luciferase activity in HEK293 cells co-transfected with
miRNA mimic, miRNA inhibitor, miRNA control and empty vector for the M-SAA3.2 3’UTR. Luciferase activity was assayed 24 h after transfection. All luciferase
values were normalized to Renilla luciferase. The meanings of different colors are consistent with Figure 5. (A,C,E) Represents the luciferase activity of M-SAA3.2
after over- or down-expressed miR-146b, miR-339a and miR-339b compared with controls, respectively. (B,D,F) Represents the luciferase activity of M-SAA3.2
after transfecting mutant vector of miR-146b, miR-339a and miR-339b compared with control, respectively. **Very significant difference between the control and the
treatment.

It was found that 21 of 31 differentially expressed genes
detected in our previous study (Cui et al., 2014) were the
predicted targets for some of the 71 differentially expressed
miRNAs detected in the present study. Serum amyloid A1
(SAA1), serum amyloid A1 (SAA3), and mammary serum
amyloid A3.2 (M-SAA3.2) were predicted to be regulated by
miR-146b (SAA1 was also regulated by miR-125a and miR-
125b); VEGFA was regulated by miR-125a, miR-125b, miR-106b,
and miR-2904; and ribosomal protein L23a(RPL23A), tribbles
homolog 3 (TRIB3), and PTHLH were regulated by miR-378c,
miR-2904, and miR-106b, respectively. Moreover, Cai et al.,

performed RNA sequencing with mammary gland tissue samples
from six Chinese Holstein cows with three extremely high and
three low milk protein percentage phenotypes and miR-2904,
miR-339b, miR-146b, miR-339a, miR-29c, miR-106b, miR-190a,
miR-21-3p, miR-15a, miR-486, miR-135, miR-101a, miR-152
and miR-139 were found differentially expressed, which were
also identified in our study and targeted on four differentially
expressed genes (TRIB3, PTHLH, VEGFA, and M-SAA3.2). These
seven genes represent the most promising candidates may affect
milk PP and FP in dairy cattle (Cui et al., 2014). Specifically,
miR-146b was reported to be involved mainly in leukemia,
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FIGURE 7 | MicroRNAs represses the expression of PTHLH via binding the 3’UTR target sequence. Luciferase activity in HEK293 cells co-transfected with miRNA
mimic, miRNA inhibitor, miRNA control and empty vector for the PTHLH 3’UTR. Luciferase activity was assayed 24 h after transfection. All luciferase values were
normalized to Renilla luciferase. The meanings of different colors are consistent with Figure 5. (A,C,E) Represents the luciferase activity of PTHLH after over- or
down-expressed miR-29c, miR-106b and miR-190a compared with controls, respectively. (B,D,F) Represents the luciferase activity of PTHLH after transfecting
mutant vector of miR-29c, miR-106b and miR-190a compared with control, respectively. **Very significant difference between the control and the treatment.

epidermal growth factor receptor (EGFR), MAPK, and nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB)
signaling pathways (Mathews et al., 2004; Taganov et al., 2006;
Xiang et al., 2014). The EGFR and MAPK signaling pathways
have been demonstrated to be related to adipocyte differentiation
(Devaraj et al., 2009; Gao and Bing, 2011) and the NF-κB
pathway controls the DNA transcription protein complexes.
In human study, miR-146b was shown to regulate the NF-κB
signaling pathway in which breast cancer metastasis suppressor
1 (BRMS1) has already been implicated, and inhibited both

migration and invasion related to metastasis (Taganov et al.,
2006; Xiang et al., 2014). Members of the miR-125 family
were reported to be implicated in a variety of carcinomas and
other diseases as either repressors or promoters. Sun et al.
(2013) found that up-regulated miR-125 significantly inhibited
the expression of VEGFA both in vitro and in vivo (Jiang
et al., 1997). The miR-125 family was found to be a NF-κB-
dependent gene in the study by Kim et al. (2012). miR-378c
was shown to be involved in the regulation of RPL23A, which
plays a critical role in translation and participates in apoptosis,
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FIGURE 8 | MicroRNAs did not repress the expression of VEGFA via binding the 3’UTR target sequence. Luciferase activity in HEK293 cells co-transfected with
miRNA mimic, miRNA inhibitor, miRNA control and empty vector for the VEGFA 3’UTR. Luciferase activity was assayed 24 h after transfection. All luciferase values
were normalized to Renilla luciferase. The meanings of different colors are consistent with Figure 5. (A,B,C) Represents the luciferase activity of VEGFA after over- or
down-expressed miR-2904, miR-106b and miR-21-3p compared with controls, respectively.

cell division, and differentiation (Wool, 1996; Fang et al., 2012;
Knezevic et al., 2012). This is consistent with previous reported
study where miR-378c was found associated with apoptosis
(Lee et al., 2007; Fang et al., 2012; Knezevic et al., 2012;
Wang et al., 2014).

The GO and KEGG pathway analyses indicated that VEGFA,
NR4A1, DDIT3, and CDKN1A were involved in the MAPK,
mTOR, HIF-1, and PI3K-Akt signaling pathways, respectively.
These four genes were predicted as target genes for miR-106b,
miR-2904, miR-125a(b), miR-21-3p, miR-224, miR-31, miR-345-
5p, and miR-3431. mTOR signaling is known as playing a
fundamental role in adipogenesis (Laplante and Sabatini, 2009),
which is the process that leads to the formation of adipose
tissue and the most important energy storage site in mammals.
It has been demonstrated that mTORC1 positively regulates the
activity of sterol regulatory element binding protein 1 (SREBP1)
and peroxisome proliferator-activated receptor gamma (PPARG)
(Benmoussa et al., 2020), which are two transcription factors
that control the expression of genes encoding proteins involved
in lipid and cholesterol homeostasis (Kim and Chen, 2004;
Porstmann et al., 2008; Kim et al., 2012). HIF-1 is a heterodimeric

transcription factor that increases the phosphorylation of
signal transducer and activator of transcription 5A (STAT5A)
in mammary epithelial cells, and the phosphorylation of
STAT5 is known to play important roles in the regulation
of milk protein gene expression and mammary development
(Shao and Zhao, 2014; Benmoussa et al., 2020). Several
studies have shown that hypoxia causes mammary epithelial
disorganization and induces a cancer cell-like phenotype in
human mammary epithelial cells (MECs) (Whelan et al., 2010;
Whelan and Reginato, 2011; Vaapil et al., 2012). The PI3K-
Akt pathway has important functions in mammary gland
development and function (Wickenden and Watson, 2010). One
of the most important functions of Akt is the regulation of
glucose homeostasis and metabolism, particularly in muscle
and fat tissues (Enright et al., 2003). Therefore, these miRNAs
could play critical roles in regulating formation of milk
composition trait.

Considering that microRNAs regulate gene expression by
targeting specific sequences in the 3′UTR of their cognate genes
(Lewis et al., 2005; Friedman et al., 2009), the regulatory roles
of some miRNAs on their predicted targets were verified using
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dual luciferase report assay transfected with mimics, inhibitors
and mutants of seed sequences. The results demonstrated
that miR-2904, miR-29c/miR-146b/miR-339a, miR-339b/miR-
106b/miR-190a indeed down-regulated the expression of the
TRIB3, M-SAA3.2 and PTHLH, respectively. The molecular
mechanisms of how these miRNAs regulate their targets will
be further validated through RNAi and over-expression in
bovine mammary epithelial cell lines. In addition, it is generally
recognized that miRNAs regulate the expression of target genes
by inhibiting their translation or inducing degradation of the
target mRNAs in animal cells. However, several predicted target
genes were regulated in the same direction of expression as those
of the corresponding miRNAs between high and low groups.
The reason could be due to either target prediction error of the
current commonly used prediction softwares (TargetScan 6.2 and
MiRanda) or some unknown biological mechanisms. Actually,
target prediction was only the first step for studies on interaction
between miRNA and their targets. The miRNAs and targets
with reverse expression patterns will be considered as the key
components for further validation.

In this study, only two biological replicates, which were the
same as in our previous RNA-seq investigation (Cui et al., 2014),
were used for each condition due to the availability of mammary
gland sample from lactating cows, especially high production
ones. In order to minimize false-positive errors and ensure
substantial detection power and accuracy, two strategies were
applied to detect the differentially expressed miRNAs between
milking Holstein cows with high PP and FP and cows with
low PP and FP, by controlling the critical influencing factors.
Small RNA transcripts were deeply sequenced (9-10G data per
transcriptome), and only those differentially expressed miRNAs
ranked in the top half of the expressed miRNAs were considered,
as suggested by Rapaport et al. (2013), Trapnell et al. (2013).
Rapaport et al. (2013) investigated the impact of different
sequencing depths and number of replicates on the identification
of differentially expressed genes, where the authors demonstrated
that with most methods, over 90% of differently expressed genes
at the top expression levels could be detected with using two
replicates and 5% of the reads (Rapaport et al., 2013; Trapnell
et al., 2013). The differentially expressed miRNAs expressed in
the bottom half level were eliminated to ensure the power in
detection. Although mRNA sequencing data was used in this
study, detection of differentially expressed miRNAs is based on
same statistical theory and software (Anders and Huber, 2010).
However, more biological replications are still preferred and
recommended in order to provide broader application (Rapaport
et al., 2013; Trapnell et al., 2013). The more replicates are
performed, the more the detection power is improved. The
potential regulatory roles on target genes from such differentially
expressed miRNAs will be validated further by performing more
in-depth investigation.

CONCLUSION

Using sRNA sequencing, 497 known bovine miRNAs
and 49 novel bovine miRNAs were identified in the

mammary glands of lactating dairy cows. Among all these
miRNAs, 71 were differentially expressed between cows
with the high and low milk PP and FP. Combined with
our previous RNA-Seq data, 21 differentially expressed
genes were predicted as the targets for some of the 71
differentially expressed miRNAs. Biological processes related to
protein metabolism, fat metabolism, and mammary gland
development were enriched for some of the identified
miRNAs, which indicated that they may play critical roles
in regulating of milk protein and fat traits in dairy cattle.
Expression of the TRIB3, M-SAA3.2 and PTHLH were
significantly down-regulated by miR-2904, miR-29c/miR-
146b/miR-339a and miR-339b/miR-106b/miR-190a through
binding the specific target sequences in 3′UTR of these
genes, respectively.
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Pedigree information is incomplete by nature and commonly not well-established
because many of the genetic ties are not known a priori or can be wrong. The
genomic era brought new opportunities to assess relationships between individuals.
However, when pedigree and genomic information are used simultaneously, which
is the case of single-step genomic BLUP (ssGBLUP), defining the genetic base is
still a challenge. One alternative to overcome this challenge is to use metafounders,
which are pseudo-individuals that describe the genetic relationship between the base
population individuals. The purpose of this study was to evaluate the impact of
metafounders on the estimation of breeding values for tick resistance under ssGBLUP
for a multibreed population composed by Hereford, Braford, and Zebu animals.
Three different scenarios were studied: pedigree-based model (BLUP), ssGBLUP, and
ssGBLUP with metafounders (ssGBLUPm). In ssGBLUPm, a total of four different
metafounders based on breed of origin (i.e., Hereford, Braford, Zebu, and unknown)
were included for the animals with missing parents. The relationship coefficient between
metafounders was in average 0.54 (ranging from 0.34 to 0.96) suggesting an overlap
between ancestor populations. The estimates of metafounder relationships indicate that
Hereford and Zebu breeds have a possible common ancestral relationship. Inbreeding
coefficients calculated following the metafounder approach had less negative values,
suggesting that ancestral populations were large enough and that gametes inherited
from the historical population were not identical. Variance components were estimated
based on ssGBLUPm, ssGBLUP, and BLUP, but the values from ssGBLUPm were
scaled to provide a fair comparison with estimates from the other two models. In general,
additive, residual, and phenotypic variance components in the Hereford population were
smaller than in Braford across different models. The addition of genomic information
increased heritability for Hereford, possibly because of improved genetic relationships.
As expected, genomic models had greater predictive ability, with an additional gain for
ssGBLUPm over ssGBLUP. The increase in predictive ability was greater for Herefords.
Our results show the potential of using metafounders to increase accuracy of GEBV, and
therefore, the rate of genetic gain in beef cattle populations with partial levels of missing
pedigree information.
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INTRODUCTION

Pedigree information is incomplete by nature and commonly not
well-established because many of the genetic ties existent between
genealogical information on individuals are not known a priori
or can be wrong (Junqueira et al., 2017). Nonetheless, pedigrees
are usually available for livestock species and have been widely
used in genetic evaluations to improve the accuracy of breeding
value estimation.

New opportunities to assess relationships between individuals
arose in the genomic era. As expected, genomic-based
relationships are independent of pedigree information and,
therefore, are not affected by missingness or incorrect pedigree
recording. Several genomic prediction methods are available
in the literature (Meuwissen et al., 2001; VanRaden, 2008;
Aguilar et al., 2010; Fernando et al., 2014). Some of the methods
(i.e., BayesX, SNP-BLUP, and GBLUP) implicitly assume that
pedigree structure is absent (Christensen, 2012), and the
extension to several populations, including multiple breeds,
is not straightforward because it requires that pedigree and
genomic information is compatible (Harris and Johnson, 2010;
Misztal et al., 2013). The challenge under genomic approaches
is the correct inference of the genetic base population. Usually,
the base population for genomic models is assumed to be
the available set of genotyped individuals, which is mainly
composed of recent animals. In models that combine genomic
and pedigree relationships, i.e., ssGBLUP (Aguilar et al., 2010),
the compatibility between the pedigree and the genomic base is
crucial to avoid bias in GEBV (Vitezica et al., 2011). However,
taking care of this compatibility does not solve the issue of limited
pedigree recording. Because pedigrees for animal populations
only started being recorded recently, the fact that animals could
be related before that is ignored.

When multiple breeds are combined in the same evaluation,
there is usually no pedigree information between breeds.
However, Porto-Neto et al. (2013) and Decker et al. (2014b)
showed that cattle populations had common founders.
Christensen (2012) provided some insights on how to estimate
founder relationships. His suggestions are valid when a single
population is assumed a priori; however, inference extensions
to several founder populations were not exploited. Legarra et al.
(2015) reported a metafounder theory to consider relationships
within and across founder populations; this theory provided a
generalization of unknown parent groups and the developments
shown by Christensen (2012). The metafounder concept relies
on the definition of pseudo-individuals that add some level of
genetic relationship between base individuals in the population
(i.e., founders). In this context, we aimed to evaluate the impact
of metafounders on the estimation of breeding values for tick
resistance under a ssGBLUP model for a multibreed population
composed by Hereford, Braford, and Zebu animals.

MATERIALS AND METHODS

Approval of Animal care and use committee was not needed
because this study used existing datasets historically collected

by the animal breeding program. The raw data cannot be made
public available because they are property of the Braford and
Hereford producers, Embrapa, and GenSys Consultants (i.e.,
data are commercially sensitive). For research purposes, the data
requests should be forwarded along with the research proposal
to fernando.cardoso@embrapa.br.

Phenotype, Genotype, and Pedigree
Information
The data used for investigating the inclusion of metafounders
in genomic evaluations were provided by Conexão Delta G
Breeding Program (Rio Grande do Sul, Brazil). Hereford and
Braford animals from eight herds had log-transformed tick
counts recorded. Braford is a breed resultant of a crossing
between Hereford and Zebu (e.g., Nellore, Brahman, Guzerá).
A detailed descriptive statistic for the log-transformed tick count
is in Table 1. Animals were between 326 and 729 days old
at the time of recording. The contemporary groups combined
farm, gender, year of birth, management group, and tick count
date. Contemporary groups discarded from the dataset had less
than five animals and tick counts above or below 3.5 standard
deviations from the mean. After editing, 146 contemporary
groups remained for further analysis. The phenotypic data
included records from 4,363 animals (928 Hereford and 3,425
Braford) raised under extensive conditions, and the pedigree file
included 12,755 animals. A total of 35.68% of the animals in
pedigree had both parents known, 20.10% of the animals had
unknown sire, 0.24% had unknown dam, and 43.98% had both
parents unknown (i.e., base animals). Among all phenotyped
individuals, 2,188 (525 Hereford and 1,663 Braford) had three
subsequent tick counts, 1,934 (391 Hereford and 1,543 Braford)
had two counts, and 241 (12 Hereford and 229 Braford) had
only one count. Therefore, a total of 10,673 tick counts were
recorded on 2,369 Herefords, and on 8,304 Brafords that had a
maximum of 3/4 of Zebu proportion. The Zebu breed proportion,
heterozygosity, and recombination loss effects were calculated as
proposed by Cardoso and Tempelman (2004) and included as
linear covariates in the model.

TABLE 1 | Descriptive statistics of the log-transformed tick count records for
Hereford and Braford.

Descriptive statisticsa Breed

Hereford Braford

N 2,369 8,304

Minimum 0.0004 0.0004

Q25 1.18 1.11

Mean 1.45 1.33

Median 1.46 1.38

Q75 1.74 1.60

Maximum 2.73 2.72

SD 0.47 0.43

aN, number of observations; Q25, quantile 25%; Q75, quantile 75%; SD, standard
deviation.
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In total 130 sires were genotyped with a high-density SNP
panel (BovineHD—Illumina bead chip with 777,962 SNPs),
whereas the BovineSNP50 Illumina panel (54,609 SNPs) was
used to genotype 3,591 animals. A total of 41,045 overlapping
SNPs were selected for quality control. The quality control
criteria adopted for SNP exclusion were the Hardy–Weinberg
equilibrium chi-square test (p = 10−7), genotype call rate (CR)
(<98%), minor allele frequency (MAF) (<3%), near-perfect
collinearity with other SNPs (r > 0.98), and SNPs in the
same physical position. The criteria adopted to reject samples
were CR < 90%, heterozygosity deviation above three standard
deviations, gender identification errors, and identical genotypes
between different individuals (more than 99.5% of similarity for
all markers). After quality control, a total of 3,591 samples (666
Braford and 2,862 Hereford) and 39,550 markers were retained
for further analysis. Aiming to build a complete 39,550 marker
panel, missing genotypes (0.89% of all genotypes) were imputed
across breeds according to the sliding window method using
FImpute (Sargolzaei et al., 2011).

Metafounder Relationships
The metafounder relationship used in this study was derived
from the methodology proposed by Legarra et al. (2015). In
summary, their approach is a general framework that considers
each ancestral population containing a finite-sized pool of
gametes. Conceptually, that assumption contrasts with the
classical population genetics supposition and suggests that several
ancestral populations might be genetically related, and therefore,
connected. In the aforementioned paper, the authors presented
modifications to the pedigree-based relationship matrix for
populations under different structures (i.e., single and multiple
base populations). The concept of metafounder relies on the
definition of pseudo-individuals to add some level of within
and/or across genetic relationships between base (i.e., founder
or ancestral, γ = 1/Ne) individuals in the population. It is
assumed that every individual from any population might have
some degree of known or unknown relationship due to a
common ancestor. From the perspective of founder individuals,
their relationship can be derived by the use of metafounders,
constructing a modified pedigree relationship matrix, A(0).
The 0 matrix contains the relationship between metafounders
(composed by at least one γ), and its simplest form is exhibited
when the ancestral population is composed of only one breed,
indicating that 0 is a scalar. In cases where the founder
population is composed of several populations and eventually,
with crossbred animals, it is possible to build an extended and
more complex 0. The latter is exactly the case of the population
used in this study, which is composed of Hereford and Braford
(an admixture between Hereford and Zebu) animals.

A total of four metafounders were defined based on breed of
origin, with one metafounder assigned to Hereford, another one
for Braford, and a third one for Zebu. The fourth metafounder
was assigned to the remaining base animals with an unknown
breed of origin. The description of each metafounder group is
in Table 2. Recursive computations of A(0) followed usual rules
(Emik and Terrill, 1949; Karigl, 1981; Aguilar and Misztal, 2008).
The only required modification to include metafounders is the

assumption of γ as the self-relationship for founders. Note that
self-relationship for base animals is traditionally assumed to be
zero due to lack of historical pedigree information. The 0 matrix,
which is composed by within- and across-founder relationships,
was estimated using SNP markers under a generalized least
square (GLS) approach (Garcia-Baccino et al., 2017). In our
study, 0 was a 4 × 4 (co)variance matrix between means across
markers and breeds. Below is a description of the GLS linear
model fitted in this study where the breeding values are split into
within- and across-breed components:

mi = Qµi +
∑
b

Wbub
i +

∑
b,b′ ,b>b′

Wb,b
′

ub,b
′

i + ei,

where mi is a vector of gene contents in the form [0, 1, 2]
from locus i, Qk,b is a matrix, the rows of which sum to 1, and
contains the fraction of ancestry b in individuals k, µi is a vector
for the average of each population, Wb is an incidence matrix
relating individuals from b group in the pedigree to observed
genotypes, with partial relationship matrices for vectors ub

i ∼

N
(

0, Ab (2pi (1− pi
)))

and ub,b
′

i ∼ N
(

0, Ab,b
′ (

2pi
(
1− pi

)))
,

and Ab
(
b,b
′
)

the matrix of pedigree-based relationships among
individuals in population b. The residual term can be defined
as e ∼ N

(
0, σ2

ε

)
. The BLUE of µi can be obtained and then the

variance and covariance between means for markers within and
across populations

(
6̂
)

are estimated. Finally, 0 was estimated as

0 = 26̂ = 2


σ2

µB
σµBµH σµBµZ σµBµu

σ2
µH

σµHµZ σµHµU

σ2
µZ

σµZµU

sym σ2
µU

, where σ2
b and σµbµ

b′

are the variance and covariance parameters for each Hereford
(H), Braford (B), Zebu (Z), and unknown breed of origin (U).

Statistical Models
Three different models were tested in this study, aiming to
evaluate the gain in prediction accuracy due to the inclusion of
metafounders in genetic evaluations. The first model contained
only relationships based on pedigree information (BLUP); the
second model was the single-step genomic BLUP (ssGBLUP),
which combines pedigree and genomic information; the third
model was the ssGBLUP with metafounders (ssGBLUPm). No
restrictions were imposed on the approach to avoid or minimize
inbreeding, and because of that, a total of 130 inbred individuals

TABLE 2 | Number of males and females included in pedigree in each
metafounder constructed based on breed of origin and within (diagonal) and
across (off-diagonals) gamma values (0) estimated using generalized least square.

0

Metafounders Males Females Hereford Bradford Zebu Unknown

Hereford 1,991 1,032 0.61 0.46 0.34 0.49

Braford 3,932 2,431 0.53 0.57 0.50

Zebu 34 34 Symm 0.96 0.52

Unknown 1,228 1,084 0.51
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out of 72,755 were defined by non-zero inbreeding coefficient.
The average inbreeding coefficient from inbred animals was
5.73%, with a maximum of 25%, and 0.06% for all 72,755 animals.

To reduce the computational time for variance components
estimation in average information REML (AIREML), the starting
values were estimated through pedigree-based model via Gibbs
sampling algorithm implemented in GIBBS2F90 (Misztal et al.,
2002). This software implements a Bayesian method using Gibbs
sampler via the Markov Chain Monte Carlo (MCMC) algorithm.
Thus, a Bayesian bivariate pedigree-based repeatability model for
tick count was defined as following data distribution:

yijkl|β, γ, c, a, d, R ∼ N
(

x1jkβ+ x2jkω+ x3jkc+ zka+ zkd, σ2
ek

)
where yijkl is the lth log-transformed phenotypic record for
breed k (1 = Hereford, 2 = Braford) in the jth animal, from
the ith contemporary group; β is a vector of systematic effects;
ω =

[
ωAk ωD

kk′
ωAA

kk′

]
is a vector of Zebu breed proportion,

heterozygosity, and recombination loss effects, represented
respectively by ωAk , ωD

kk′
, and ωAA

kk′
. Additionally, c|C ∼

N
(

0,

[
σ2

c1
σc12

σc21 σ2
c2

]
⊗ I

)
is a vector of random contemporary

group effects; a|Go, A ∼ N
(

0,

[
σ2

a1
σa12

σa21 σ2
a2

]
⊗ A

)
is a vector

of random direct additive genetic effects, where Go is the
additive genetic (co)variance matrix and A is the numerator

relationship matrix; d|D ∼ N

(
0,

[
σ2

d1
σd12

σd21 σ2
d2

]
⊗ I

)
is a vector

of random permanent environmental effects. Furthermore,
x1jk, x2jk, x3jk are known vectors, and zk is an incidence matrix
where the elements of x2jk in column order are follows: (1)
fk, defined as the proportion of alleles from the kth breed
and corresponding to ωAb ; (2) fkk′ being the probability that
a randomly chosen locus from an individual j, one allele is
derived from breed k and the other allele is derived from
breed k’, associated with ωD

bb′
; and (3) 2fkfk′ corresponding

to ωAA
bb′

(Cardoso and Tempelman, 2004). Finally, σ2
ek

is the residual variance for the kth trait. Inverted Wishart
prior densities are specified for the covariance components
as follows: C|6C, n ∼ IW(6C, n), G|6G, n ∼ IW(6G, n),
D|6D, n ∼ IW(6D, n), R|6R, n ∼ IW(6R, n), where 6q is the
respective scale matrix for each q effect and degrees of belief
parameter given by n. All effects were fitted using degree of belief
equals 1 and 6q →∞ aiming to fit a flat distribution.

A total of 100,000 iterations were generated, with the first
30,000 discarded as burn-in, and 1 every 10th sample was
stored for posterior analysis. Posterior means were then used
as starting values in AIREMLF90 (Misztal et al., 2002) using
the YAMS package for efficient sparse computations (Masuda
et al., 2014). AIREMLF90 calculates REML (co)variance estimates
with the Average-Information algorithm, which uses a second
derivative REML algorithm.

A two-trait repeatability animal model was used to estimate
breeding values. The model can be seen as an incomplete version
of the development proposed by Wei and Van der Werf (1994)

because records from one of the purebreds (Zebu animals) were
not available. Notations hereafter follow Wei and Van der Werf
(1994). The model can be defined as:[

yH
yB

]
=

[
XH 0
0 XB

][
βH
βB

]
+

[
ZH 0
0 ZB

] [
aH
aB

]
+

[
ZH 0
0 ZB

] [
dH
dB

]
+

[
eH
eB

]
where yi is the vector of log-transformed tick counts in the ith
breed – Hereford (H) and Braford (B); Xi, and Zi, are incidence
matrices that relate phenotypes to its respective fixed, direct
additive, and permanent environmental effect levels, respectively.
The vector of fixed effect (βi) was composed by an overall
mean and contemporary groups as cross-classified variables; zebu
breed proportion, heterozygosity, recombination loss, and linear
and quadratic effects of age at tick counting were considered
as covariables. The vector of permanent environmental effect

was defined as d ∼ N

(
0,

[
σ2

dH
σdHB

σBH σ2
dB

]
⊗ I

)
; and the residual

vector as e ∼ N
(

0,

[
σ2

eH
0

0 σ2
eB

]
⊗ I

)
Moreover, the vector of

direct additive effects for BLUP was defined as
[

aH
aB

]
∼

N
(

0,

[
σ2

H σHB
σBH σ2

B

]
⊗ A

)
; where σ2

H and σ2
B are the additive

variances for the Hereford and Braford traits, respectively, and
σHB is the additive covariance between breeds.

For ssGBLUP and ssGBLUPm, the A matrix was replaced by
H and H(0), respectively, where H is the realized relationship
matrix and 0 is a matrix of relationships among metafounders.
The H−1 can be defined as following:

H−1
= A−1

+

[
0 0
0 (0.95G+ 0.05A22)

−1
− A−1

22

]
where A−1

22 is the inverse of the pedigree relationships for
genotyped animals. The inverse of the realized relationship
matrix with metafounder, H(0)−1, was also constructed using the
same approach, however, the pedigree-based relationship matrix
was constructed as A(0) instead of A; likewise, A22 was replaced
by A22(0). The genomic relationship matrix (G), was constructed
as:

G =
(M− P) (M− P)

′

2
∑s

j=1 pj(1− pj)
,

where M is the matrix of SNP genotypes for each animal, P is a
matrix of two times the frequency of the second allele p at locus
j (pj), and s is the number of SNP markers. The denominator
is a scaling factor for G. Under ssGBLUP, G was constructed
using realized allele frequencies in the genotyped data, whereas
0.5 allele frequency was used for all loci in ssGBLUPm. VanRaden
(2008) suggests the use of allele frequencies from base animals
(i.e., unselected population) to create the genomic matrix.
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However, SNP markers are not available for base animals
and approximations needs to be used. In those circumstances,
allele frequencies from current population are used to build
genomic matrix and scaling diagonal and off-diagonal elements
of G are required to ensure A, A22, and G compatibility in
single-step approach (Chen et al., 2011; Forni et al., 2011).
The use of 0.5 allele frequency in ssGBLUPm refers to the
population with maximum heterozygosity. All 0 computations
were performed using a new software (GAMMAF90) being
developed by BLUPF90 group1. The software was written in
Fortran 95 and it is integrated in the new BLUPF90 software.

Scenarios
The BLUP model was fitted using the regular relationship matrix
constructed based on Henderson (1976) rules. The relationship
matrix used in ssGBLUP and ssGBLUPm was described in the
previous section.

To compare the estimated variance components and genetic
parameters between models, ssGBLUPm parameters needed
to be adjusted corresponding to (co)variances among the
unrelated breeds (scaled) (Legarra et al., 2015). More specifically,
the scaled genetic variances for Hereford (Braford) were
σ2

aH(B)

(
1− γH(B)

/
2
)
; the scaled genetic covariance for crossbred

performance was σaHB

(
1− γHB

/
2
)
. Note the γH and γB

represents the metafounder genetic relationship within Hereford
and Braford, respectively, and γHB represents the across
metafounder genetic relationship between Hereford and Braford.
Heritabilities were calculated using these scaled (co)variance
components. The genetic correlation between Hereford and

Braford was calculated as ra =
σaHB

(
1−γHB/2

)
√

σ2
aH

(
1−γH/2

)
σ2

aB

(
1−γB/2

) . Finally,

repeatability for Hereford and Braford was calculated as rH =
σ2

aH

(
1−γH/2

)
+σ2

dH
σ2

pH
and rB =

σ2
aB

(
1−γB/2

)
+σ2

dB
σ2

pB
, respectively. The

same formulas were used to compute heritability, genetic
correlation, and repeatability for BLUP and ssGBLUP models,
using the (co)variances estimated by AIREML.

Within-Breed Predictive Ability
In this study, the within-breed predictive ability was used to
measure the model ability to predict unknown phenotypes. For
that, we used a forward validation approach. The selection of
animals to compose the validation set in the forward validation
was based on year of birth. Therefore, training animals were born
from 2008 to 2010, and validation animals were born in 2011.
A total of 198 and 766 animals were part of validation sets for
Hereford and Braford, respectively.

The predictive ability was defined as the correlation between
phenotypes adjusted for fixed effects (ŷ∗i = yi − Xiβi) from a
model using all data where ŷ∗i is the adjusted phenotype for
animals in the ith breed (Hereford and Braford) and fixed effects
as defined in AIREML model. The predictive ability for Hereford
was calculated as cor (ŷ∗H, âH) using information only for the
validation animals. Similarly, the predictive ability for Braford

1http://nce.ads.uga.edu/wiki/doku.php?id=documentation

was computed as cor (ŷ∗B, âB). Standard error for the predictive
ability was generated from 5,000 non-parametric bootstrapping
replicates. All computation was implemented using boot function
from boot R package (Canty, 2002; Team, 2013). Regression of
phenotypes adjusted for fixed effects on (G)EBVs for Hereford
and Braford was used as a measure of the inflation (bias) of
the prediction method, where a regression coefficient of one
denotes no bias.

RESULTS AND DISCUSSION

Metafounder Relationship and
Inbreeding
A total of four metafounders were included in the ssGBLUPm
model. Three metafounders were defined based on breed of origin
(Hereford, Braford, and Zebu) and the last metafounder was
assigned to the remaining base animals with unknown breed of
origin. Table 2 shows the number of males and females included
in each metafounder group.

Self- and across- relationships (0) between Hereford, Braford,
and Zebu breeds estimated by generalized least squares are also
shown in Table 2. As previously defined by Legarra et al. (2015),
γ̂ can be seen as self-relationships. The relationship coefficient
between metafounders was greater than zero, suggesting a
degree of overlap between ancestor populations. The estimates of
metafounder relationships indicate that the Hereford and Zebu
populations in our study might have some ancestors in common.
However, as previously stated, there is no genomic information
for Zebu animals in this study; in fact, only a fraction of all zebu
descendants was used for computations. Thus, the population
under study is a special case of the metafounder theory (Legarra
et al., 2015) where records from one of the pure breeds is
unknown, but genomic information for crossbreds is available.
Moreover, the SNP panel used in this analysis is a blend of
different SNP-chips where the missing genotypes were imputed.
Our intention was not to draw any assumptions on how Hereford
and Zebu breeds have shared a certain portion of the alleles
over generations. For that purpose, there are other approaches
already published in the literature (Alexander and Lange, 2011;
Decker et al., 2014a).

The inbreeding coefficients calculated based on pedigree
and genomic information (with and without metafounders)
are shown in Figure 1. A detailed description of inbreeding
coefficients within breed compositions (i.e., Zebu, Hereford,
and Braford) are available in Supplementary Figure S1. Many
individuals used in this study had missing pedigree information.
Due to the lack of information, almost all the diagonal elements in
A without metafourders are equal zero. Because of the inclusion
of metafounders, an upward shift was observed in the inbreeding
coefficients calculated based on A and H. Additionally, a
few negative inbreeding coefficients were observed. This result
suggests that parents were less related than the average in
the base population (assuming allele frequencies of 0.5). The
classical quantitative genetics theory postulates that inbreeding
for individuals with known parents is a function of parent’s
relationships. Founder individuals are typically assumed to be
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FIGURE 1 | Inbreeding estimates obtained from the diagonal elements of the pedigree (A) and the realized (H) relationship matrices (with and without metafounders).

drawn from a large, unrelated, ancestral population mated
at random. Consequently, inbreeding coefficients for founder
animals are usually defined as zero due to the lack of information.
A different condition arises under the metafounder theory where
base animals are assumed to be related due to a common ancestral
population. In this case, the probability that identical gametes
are shared between individuals may increase; thus, inbreeding
coefficients are upward shifted (Figure 1).

Additional information about the diagonal and off-diagonal
elements of all required matrices to create H and H(0) matrices
are available in Table 3. As previously stated, the inclusion
of metafounders in the numerator relationship matrix and the
assumption of allele frequency equals 0.5 causes an upward shift
on A22 and G.

Variance Components, Heritability, and
Genetic Correlations
Variance components, heritability, and genetic correlations
are available in Table 4. As previously described, variance

components from the metafounder model were scaled to provide
a fair comparison with BLUP and ssGBLUP models. Across
different models, it can be seen that additive genetic, residual, and
phenotypic variances estimated based on the Hereford data were
smaller than those based on Braford. Permanent environmental
variances were similar across models.

In general, variance components and heritabilities were
not considerably different between the genomic models. The
most remarkable difference is seen in the heritability estimates
on Hereford breed, where the inclusion of metafounders
led to an increase of heritability. On the other hand,
the inclusion of genomic information resulted in smaller
heritability estimates on Braford breed. Both conditions can be
attributed to improvements on additive genetic relationships, and
consequently, on permanent environment effects estimation. The
heritability shift observed between non-genomic and genomic
models suggests that incomplete pedigree information may led
to biased estimates on variance components, consequently, on
heritability. This effect was already reported by Junqueira et al.
(2017). A similar result was observed by Aldridge et al. (2020)
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TABLE 3 | Descriptive statistics for diagonal and off-diagonal elements of genomic
matrices required under genomic evaluations.

Parameter

Matrixa Mean Minimum Maximum Variance

Diagonal

A22 1.001 1.000 1.250 0.000

A22 (0 ) 1.258 1.200 1.447 0.000

G 1.001 0.838 1.204 0.002

G (0 ) 1.289 1.185 1.407 0.001

Off-diagonal

A22 0.002 0.000 0.750 0.000

A22 (0 ) 0.504 0.399 1.079 0.001

G 0.002 -0.228 0.678 0.002

G (0 ) 0.558 0.380 1.051 0.002

aA22, numerator relationship matrix of genotyped animals; G, genomic matrix; 0 ,
matrices using metafounder information.

when evaluating several traits in swine. The goal with the use of
metafounders is to make both pedigree and genomic information
more compatible (Legarra, 2016; Meyer and Swan, 2019). In
addition, van Grevenhof et al. (2019) argued that variance
components from a model with metafounders might be more
accurate after variance components rescaling, consequently the
estimation of more accurate breeding values are expected. In fact,
when pedigrees are well structured, the inclusion of genomic
information might not cause an increase in heritability. However,
the pedigree for the population used in this study has many
individuals with unknown parents. The different results between
genomic and non-genomic models come from a better estimation
of relationships through SNP, when pedigree is incomplete.
As observed by Junqueira et al. (2017), improved additive
relationships can cause changes of additive and permanent
environmental effects. In cases where a proper model is used and

variance components are better estimated, higher heritabilities
could be observed, which can benefit selection. This can help
to boost the annual genetic gain in breeding programs because
more reliable heritability estimate is translated into more accurate
prediction of breeding values.

Genetic correlations (ra) between Hereford and Braford were
0.67 (0.022), 0.45 (0.015), and 0.41 (0.017) for BLUP, ssGBLUP,
and ssGBLUPm models, respectively. Note that under genomic
models, the genetic correlation is lower than in BLUP. As
stated by Hidalgo et al. (2020), variance components and genetic
parameters based on A and H can be different if the population
is under genomic selection. In such a case, genomic information
is part of the selection process, and if the genomic information
is not included, variance components can be biased. The genetic
correlation is useful when designing breeding schemes and
defining breeding objectives. In the case of genetic correlation
between different breeds, our results show that some genomic
regions responsible for the control of tick resistance are being
expressed in both purebreds and crossbreds. This result indicates
that the selection of Hereford for tick count resistance may also
account for a positive impact on Braford resistance, when the
latter originates from selected Hereford parents.

Predictive Ability and Bias
The predictive ability for all 198 Hereford and 766 Braford
animals used in the forward validation is in Figure 2 and
Supplementary Figure S2. Forward validation is a good strategy
to mimic the reality of breeding programs and genetics datasets,
where breeding values of young animals are predicted based
on data from older animals. As expected, the pedigree-based
model had the worse predictive ability (0.051 and 0.126 for
Hereford and Braford, respectively) when compared to ssGBLUP
(0.173 and 0.205) and ssGBLUPm (0.208 and 0.209). With
metafounders, there was an additional gain in predictivity for
both breeds, especially for Herefords. This is because the number
of phenotypes and genotypes available for Herefords is much
smaller compared to Brafords, and any increase in prediction

TABLE 4 | Description of variance components, heritability, and genetic correlation estimates (with respect standard-errors) for Hereford and Braford using multibreed
pedigree and genomic information.

Parametersa Modelb

BLUP ssGBLUP ssGBLUPm

Hereford Braford Hereford Braford Hereford Braford

σ2
a 0.003 (0.000) 0.027 (0.002) 0.009 (0.004) 0.018 (0.003) 0.013 (0.001) 0.018 (0.002)

σ2
d 0.018 (0.002) 0.006 (0.001) 0.013 (0.004) 0.013 (0.002) 0.009 (0.001) 0.013 (0.001)

σ2
e 0.060 (0.000) 0.074 (0.001) 0.060 (0.002) 0.074 (0.002) 0.060 (0.002) 0.074 (0.001)

σ2
p 0.081 (0.004) 0.106 (0.004) 0.082 (0.011) 0.105 (0.006) 0.082 (0.004) 0.105 (0.004)

h2 0.040 (0.003) 0.250 (0.003) 0.110 (0.044) 0.170 (0.015) 0.160 (0.005) 0.180 (0.007)

r 0.260 (0.013) 0.310 (0.012) 0.260 (0.080) 0.300 (0.030) 0.270 (0.008) 0.300 (0.010)

ra 0.670 (0.022) 0.450 (0.015) 0.410 (0.017)

aσ2
a , additive genetic variance; σ2

d, permanent environment variance; σ2
e , residual variance; σ2

p, phenotypic variance; h2, additive heritability; r, repeatability; ra, genetic
correlation.
bBLUP, pedigree-based BLUP; ssGBLUP, single-step genomic BLUP; ssGBLUPm, ssGBLUP with metafounders. Variance components under ssGBLUPm were scaled
following the material and methods description.
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FIGURE 2 | Predictive ability from a forward validation in Hereford and Braford when using pedigree (BLUP), single-step genomic BLUP (ssGBLUP), and ssGBLUP
with metafounders (ssGBLUPm). Error bars represents the standard errors estimated using non-parametric bootstrapping.

accuracy is expected to have a direct and positive impact
under practical conditions when selecting breeding candidates.
However, our results may still be limited by the size of the
dataset, number of genotyped animals, and due to lack of animals
with known parents in the pedigree. Perhaps, all allelic diversity
present in the Hereford population could not be captured;
therefore, further analyses using larger populations with more
complete pedigree information are required to have a better
understanding of the impact of using metafounders for the
estimation of GEBV.

The degree of bias of the prediction methods is indicated
by the coefficient of regression of phenotypes adjusted by fixed
effects on (G)EBVs (Table 5). The optimal method to predict
the genetic merit of animals would have a regression coefficient
close to 1. For Hereford breed, the inclusion of metafounders
provided the smallest bias and standard error. On the other
hand, BLUP was the smallest biased model for Braford, with
ssGBLUPm still showing the smallest standard error. According
to Kennedy et al. (1988) relationships account for selection, drift,
and non-random mating, but do not account for wrong definition
of the base population or finite number of loci (Vitezica et al.,
2011; Junqueira et al., 2017). Under those circumstances, fitting
metafounders would contribute to the estimation of breeding
values due to the addition of genetic relationships for founders
of the populations. However, as the uncertainty of relationship
increases, the variance of estimated breeding values may also
increase. Consequently, the breeding values might show high
bias, as it was observed on Braford ssGBLUP and ssGBLUPm.
More studies are required to evaluate the benefits of the
inclusion of metafounders under different proportions of known

TABLE 5 | Regression coefficients (standard error) of phenotypes adjusted by
fixed effects on (G)EBVs for young Hereford and Braford animals under pedigree
and genomic models.

Breeda Model Bias

Braford BLUP 1.11 (0.22)

ssGBLUP 0.85 (0.10)

ssGBLUPm 0.79 (0.09)

Hereford BLUP 0.76 (0.46)

ssGBLUP 1.28 (0.23)

ssGBLUPm 0.89 (0.19)

aBLUP, pedigree-based BLUP; ssGBLUP, single-step genomic BLUP; ssGBLUPm,
ssGBLUP with metafounders.

relationship information. In a simulation study, Bradford et al.
(2019) observed the addition of metafounders led to less biased
models, especially for traits with moderate to low heritability, as
the case of tick count (h < 0.25).

Our study shows the potential of the use of metafounders
to increase the rate of genetic gain across generations due to
a more acurate estimation of breeding values, in accordance to
Xiang et al. (2017). Perhaps, the challenge for Brazilian breeding
programs would be the availability of a large amount of marker
information to calculate a more reliable and robust 0 since
the matrix is built based solely on SNPs. This study focused
on evaluating the impact of metafounders on the estimation of
breeding values, with 0 being computed based on all genotyped
animals. However, only a fraction (28%) of the population is
genotyped and the number of genotyped animals is limited;

Frontiers in Genetics | www.frontiersin.org 8 December 2020 | Volume 11 | Article 556399209

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-556399 November 28, 2020 Time: 19:27 # 9

Junqueira et al. Applying Metafounders on Multibreed Genomic Evaluation

which is the reality in almost all livestock populations. Therefore,
there is still a lack of knowledge on how large the number of
phenotyped and genotyped animals connected to metafounders
should be needed to obtain accurate 0 estimates. Future studies
should investigate the impact of the number of genotyped
animals from different breeds on the estimates.

CONCLUSION

The inclusion of genomic information in a multibreed
Hereford/Braford population provides greater predictive ability
than pedigree-based models for both breeds because of a better
estimation of genetic relationships. When the level of pedigree
missingness is high, the inclusion of metafounders can help to
further increase the ability to predict future performance in small
multibreed populations.
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This study assessed the accuracy and bias of genomic prediction (GP) in purebred
Holstein (H) and Jersey (J) as well as crossbred (H and J) validation cows using different
reference sets and prediction strategies. The reference sets were made up of different
combinations of 36,695 H and J purebreds and crossbreds. Additionally, the effect of
using different sets of marker genotypes on GP was studied (conventional panel: 50k,
custom panel enriched with, or close to, causal mutations: XT_50k, and conventional
high-density with a limited custom set: pruned HDnGBS). We also compared the
use of genomic best linear unbiased prediction (GBLUP) and Bayesian (emBayesR)
models, and the traits tested were milk, fat, and protein yields. On average, by including
crossbred cows in the reference population, the prediction accuracies increased by
0.01–0.08 and were less biased (regression coefficient closer to 1 by 0.02–0.16), and the
benefit was greater for crossbreds compared to purebreds. The accuracy of prediction
increased by 0.02 using XT_50k compared to 50k genotypes without affecting the bias.
Although using pruned HDnGBS instead of 50k also increased the prediction accuracy
by about 0.02, it increased the bias for purebred predictions in emBayesR models.
Generally, emBayesR outperformed GBLUP for prediction accuracy when using 50k
or pruned HDnGBS genotypes, but the benefits diminished with XT_50k genotypes.
Crossbred predictions derived from a joint pure H and J reference were similar in
accuracy to crossbred predictions derived from the two separate purebred reference
sets and combined proportional to breed composition. However, the latter approach
was less biased by 0.13. Most interestingly, using an equalized breed reference instead
of an H-dominated reference, on average, reduced the bias of prediction by 0.16–0.19
and increased the accuracy by 0.04 for crossbred and J cows, with a little change
in the H accuracy. In conclusion, we observed improved genomic predictions for both
crossbreds and purebreds by equalizing breed contributions in a mixed breed reference
that included crossbred cows. Furthermore, we demonstrate, that compared to the
conventional 50k or high-density panels, our customized set of 50k sequence markers
improved or matched the prediction accuracy and reduced bias with both GBLUP and
Bayesian models.
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INTRODUCTION

The interest in providing genomic predictions for crossbred
dairy cows has increased especially in recent years (Harris, 2005;
Sørensen et al., 2008; VanRaden et al., 2020). Crossbreeding in
dairy cattle is common in New Zealand (making up almost 50%
of the milking herd according to New Zealand Dairy Statistics
2018–2019)1, where often the aim of crossbreeding between
Holstein (H) and Jersey (J) breeds is to combine the best of
both breeds, and crossbred dairy bulls are commonly mated
to crossbred cows (Harris, 2005; Harris and Johnson, 2010b).
In addition to heterosis and breed complementarity effects, in
recent years, crossbreeding is considered more as a potential
approach to improve sustainability in dairy cattle breeding by
reducing problems related to inbreeding and to improve fertility,
survival, and other functional traits (Sørensen et al., 2008).
Consequently, the number of genotyped crossbred animals is
growing, and both New Zealand and United States already
provide genomic evaluations for dairy crossbreds (Winkelman
et al., 2015; VanRaden et al., 2020).

The establishment of a suitable reference population for
crossbred predictions in dairy cattle is challenging because ideally
the same reference population should be used to predict the
purebreds for more than a single breed. This is because genomic
evaluations for dairy cattle are typically very computationally
intensive; they are undertaken at a national level for all dairy
animals, involve millions of animal records from both purebred
and crossbred animals, and are re-analyzed several times per
year. Furthermore, the reducing cost of genotyping has resulted
in very large numbers of cows being genotyped in addition to
bulls because commercial farmers are interested in using genomic
prediction to select female replacement animals (e.g., millions of
animals in the United States; VanRaden et al., 2020). While it is
possible that a combination of purebred and crossbred animals
would be the ideal reference population for crossbreds, it is
uncertain that this would be the optimal reference population
for the purebred animals. For purebred dairy cattle, genomic
prediction (GP) is often performed within a single purebred
reference population because often the accuracy of predictions
show high reliability, whereas the accuracy of across-breed GP is
low (Kemper et al., 2015).

The accuracy of GP is highly dependent on the linkage
disequilibrium (LD) between causal mutations and the dense
single nucleotide polymorphism (SNP) markers spread across
the genome (Meuwissen et al., 2001; Habier et al., 2007). Hence,
within-breed GP in major dairy purebreds using a standard 50k
chip (Illumina Bovine SNP50K) works well and has been adopted
in the dairy industry of many countries (Hayes et al., 2009b).
Furthermore, for within-breed GP in dairy cattle breeds, previous
studies showed that there was no, or limited, gain in accuracy due
to an increase in marker density (Harris and Johnson, 2010a; Su
et al., 2012; VanRaden et al., 2013).

The estimated SNP effects from the reference population
would be generally applicable for GP in another population if

1https://www.dairynz.co.nz/publications/dairy-industry/new-zealand-dairy-
statistics-2018-19/

the LD between SNP and causal mutations remains the same
or is very similar across the populations. However, across-breed
GP, which uses the estimated SNP effects from one breed to
calculate genomic estimated breeding values (GEBV) in another
breed, generally shows a low accuracy. For example, using H as
a reference for GP in J and vice versa is reported to produce
a much-lower-accuracy GEBV compared to within-breed GP
(Harris et al., 2008). This could be partially associated with the
high conservation of LD between markers using standard 50k
chip within H or J breeds, whereas to reach almost the same
amount of LD across breeds would require about 300,000 SNPs
(de Roos et al., 2008). Furthermore, there might be some causal
mutations which do not segregate in all breeds or their allele
effects differ in different breeds due to epistasis and differences in
allele frequencies (Goddard et al., 2018). In across-breed GP, the
increase in accuracy of GEBV using high-density (HD) genotypes
(>600 k SNP) compared to 50 k SNP has also been reported to be
limited (Harris et al., 2008; Erbe et al., 2012).

Combining data from different pure breeds into a single
large reference population compared to within-breed GP and
using HD instead of lower-density genotypes for multi-breed
GP have been reported to show small gains (up to about 5%)
in the accuracy of predictions (Pryce et al., 2011; Erbe et al.,
2012; Hozé et al., 2014; Kemper et al., 2015; Goddard et al.,
2018). Furthermore, a multi-breed reference over-dominated by
one breed has recently been reported to reduce the accuracy of
prediction in the breed with a minor contribution to the reference
population (van den Berg et al., 2020).

Instead of increasing the overall density of SNP, an alternative
approach to improve GP for both crossbred and purebred
performance might be to increase the “functional density” of
markers on medium-density SNP chips by enrichment with
causal mutations. Then, individuals could be genotyped with
a lower-priced custom medium-density SNP chip, and the GP
should not suffer from an excessive number of markers for which
effects should be estimated (Goddard et al., 2018). Given the
paucity of functional information and millions of variants across
the genome, obtaining a custom set of variants is challenging
because preferably the set should be useful for predicting multiple
traits. VanRaden et al. (2017) reported that using the imputed
HD genotypes increased the reliabilities of GP by only 0.6
percentage points, but adding a subset of 16,648 SNP with
the largest estimated effects to the 60,671 conventional SNP
genotypes increased reliabilities by 2.7 percentage points. Xiang
et al. (2019) proposed a comprehensive method to rank sequence
variants with functional and evolutionary significance combined
with their multi-trait associations across 34 important dairy
traits. These authors then used this ranking together with further
analyses to prioritize a custom set of medium-density markers
(∼50,000) for a cost-effective SNP panel that we will refer to here
as the “XT_50k chip.”

In simulation studies, it has been shown that the accuracy
of GP for crossbred animals can be increased by combining
pure breeds into a single reference population if the LD
between markers and causal mutations is well conserved across
pure breeds (Esfandyari et al., 2015b). Additionally, Esfandyari
et al. (2015a) reported that using crossbreds in the reference
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population improved the accuracy of crossbred predictions. It
is possible to account for the breed origin of alleles, but this
showed no consistent advantage over a multibreed approach in
real pig data, and accurately allocating a specific breed origin
to alleles was an added complication (Esfandyari et al., 2015a;
Sevillano et al., 2016; Vandenplas et al., 2016). An alternative
and more straightforward method for GP in crossbred is to use
the estimated breed proportions of each animal to calculate a
weighted average of the breeding values (WA_GEBV) from two
or more purebred reference populations (VanRaden et al., 2020).
This approach is especially useful when few crossbred animals
are available for the reference population, for example, because
crossbreds are not routinely phenotyped. However, a limitation
of the method is that crossbreds cannot be exploited in the
reference population.

In GP, using multi-breed populations, there is evidence that
Bayesian statistical methods can improve the accuracy of GEBV
compared to GBLUP methods (Hayes et al., 2009a; Lund et al.,
2016; van den Berg et al., 2019). In GBLUP, the prior assumption
is that SNP effects are from a single normal distribution,
and therefore all have small but non-zero effects (Meuwissen
et al., 2001). However, Bayesian models assume that the SNP
effects follow a non-normal distribution (Meuwissen et al., 2001;
Habier et al., 2011) or a mixture of normal distributions with a
proportion of SNP having a zero effect such as in BayesR (Erbe
et al., 2012; Wang et al., 2015; MacLeod et al., 2016). Therefore,
in a multi-breed reference where LD between causal mutations
and markers is preserved at shorter distances, Bayesian models
should be able to fine-map quantitative trait loci (QTL) more
precisely and produce GEBV with high accuracy than GBLUP
(Toosi et al., 2010; Goddard et al., 2018). Accordingly, MacLeod
et al. (2014) found that a multi-breed reference with a Bayesian
approach outperformed GBLUP for GP in animals that had low
relatedness to the reference set.

We propose that a single multi-breed reference population
including crossbreds, coupled with a set of markers selected to
be closer to causal mutations and a Bayesian prediction model,
could be beneficial for GP in crossbreds while also maintaining
or improving accuracy in purebreds compared to single breed
reference populations.

In the first part of this study, we assessed the accuracy and
bias of GEBV for purebred and crossbred H and J cows using
within-breed, across-breed, and multi-breed GP strategies. The
first aim was to investigate the effect of including crossbreds in the
reference population on purebred and crossbred GP. The second
aim was to test three sets of markers: (a) the Illumina Bovine 50k
SNP marker panel, (b) a custom set of∼46 k markers enriched for
putative causal mutations (XT_50k), and (c) the Illumina Bovine
HD SNP chip augmented with approximately 1,000 custom SNP
(HDnGBS). The third aim was to compare the accuracy of GP
using the GBLUP or Bayesian (emBayesR) methods for all the
above reference sets and marker sets.

In the second part of the study, we compared the accuracy
and bias of GP using a multi-breed reference population that
was either H-dominated or had balanced-breed proportions in
which the potential negative effects of unequal contribution of
the breeds on GP could be avoided. We also explored the benefits

of including crossbred cows in the balanced-breed reference
population. Similar to the first part of the study, GP was
performed with three sets of markers and using GBLUP and
emBayesR approaches.

MATERIALS AND METHODS

Animals
The animals used in this study were available from CRV and
consisted of 14,987 pure H (5,409 H bulls, 953 Red H bulls, and
8,625 H cows), 5,016 pure J (1,101 J bulls and 3,915 J cows), and
20,281 crossbred cows. All cows were born in New Zealand, and
the bulls were from New Zealand or Netherlands. The crossbred
cows were further divided to three subgroups according to the
H:J breed composition as described in “Breed Allocation” (10,125
∼75%H:25%J, 8,675∼50%H:50%J, and 1,481∼25%H:75%J).

Reference Sets
We designed different reference sets to assess GP within
breed, across breed, and for crossbreds (including or excluding
crossbred cows). Furthermore, we studied the potential
benefits of using a balanced-breed instead of a H-dominated
reference population.

The different reference sets are shown in Table 1. Ref. 1
and Ref. 2 consisted of all pure H and all pure J animals,
respectively. Ref. 3 contained all purebred (H and J), and Ref.
5 consisted of all purebred and crossbred animals. Ref. 4. and
Ref. 4′ were both based on two separate single-breed reference
populations (Ref. 1 and Ref. 2) but where the predictions were
proportionally combined for the crossbred prediction and the
single reference prediction used for the purebreds. This follows
the United States dairy evaluation approach for crossbred cows
(VanRaden et al., 2020). For Ref. 4, the breed proportions of
validation cows were defined by using a principal component
analysis (PCA) of their genomic relationship matrix (GRM) to
compare and correct as needed the pedigree defined by a four-
letter breed group based on paternal and maternal grandparents.
For Ref. 4′, Admixture software (Alexander et al., 2009) was used
to define continuous breed proportions with the assumption that
there were only two breeds in the population (k = 2). Ref. 6,
Ref. 7, and Ref. 8 had balanced-breed proportions, and all had
the same set of 2,202 bulls (1,101 H and 1,101 J) but differed
in the cows added in. Ref. 6 included equal numbers of pure
H and J cows, while Ref. 7 contained equal numbers of only
crossbred cows. Ref. 6 and Ref. 7 also contained the same number
of animals. Finally, Ref. 8 included both the purebred cows
from Ref. 6 and the crossbred cows from Ref. 7, and this was
close in the number of animals to Ref. 3 (H-dominated). The
subsets of animals used in these balanced-breed reference sets
were sampled randomly from the full reference to avoid changes
in the average relationships between the reference animals and
the validation animals. Otherwise, any non-random sampling
from the full reference could result in the subset being more/less
closely related to the validation set, and this would confound the
results of GP when compared with the full reference. To help
better differentiate between GP approaches, the reference animals
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and validation sets were intentionally allocated to minimize very
highly related individuals between these groups.

Validation Sets
The same validation cows were used in all comparisons. The cows
in the validation sets were selected to avoid high relationships
with animals in the reference set that included all pure and
crossbred animals (i.e., Ref. 3), so there were no sires, full-
sib brothers and sisters, and maternal half-sib sisters and half-
sib brothers of validation cows in the reference sets. The
number of paternal half-sib sisters were restricted to be as low
as possible. The cow validation set consisted of 3,589 cows
divided into five breed groups as described in “Breed Allocation”
(H, ∼75%H:25%J, ∼%50 H:50%J, ∼%25 H:75%J, and J). Table 2
shows the number of cows in each validation breed group and
the number of their sires, in addition to the average, standard
deviation, and median number of paternal half-sib sisters of
validation cows across different reference sets.

Phenotypes
The phenotypes of milk traits (milk, fat, and protein yields) for
CRV bulls were de-regressed proofs (DRP) on the Australian
scale, derived from international within-breed MACE (2018)
breeding values (Liu, 2009). The phenotypes for the cows were
also DRP equivalents calculated by DataGene in 2018 using
test day records with random regression models and correcting

for the fixed effects (herd, year, season, lactation) following the
approach used for the official Australian dairy cattle evaluations2.
It was convenient to use all data processed on the Australia scale
because they were available as part of another research project
described in Haile-Mariam et al. (2020) combining Australian
and New Zealand data.

Genotypes
Three different sets of markers were evaluated for GP:

(1) conventional Illumina Bovine50k SNP panel with 40,850
SNP after quality control and that overlapped the Illumina
BovineHD panel;

(2) Illumina BovineHD 800k SNP panel with an additional
custom set of about 1,000 SNP (HDnGBS). This set was
then pruned for strong LD where one of each pair of SNP in
LD r2 > 0.95 was pruned out using PLINK (Purcell et al.,
2007). This reduced the number of SNP from 633,375 to
316,396 (pruned HDnGBS), making genomic prediction
analysis more computationally efficient. We tested the
accuracy of the full panel versus the pruned panel in several
analyses and found no significant difference between the
full and the reduced marker sets, so we presented only the
GP with pruned HDnGBS genotypes in this paper; and

2https://datagene.com.au/

TABLE 1 | Number of purebred and crossbred animals in different reference sets.

Purebred bull Purebred cow Crossbred cow

Reference acronym1 Total number H Red-H J H J 75%H:25%J 50%H:50%J 25%H:75%J

Ref. 1 13,985 4,407 953 – 8,625 – – – –

Ref. 2 4,484 – – 1,101 – 3,383 – – –

Ref. 3 18,469 4,407 953 1,101 8,625 3,383 – – –

Ref. 4 18,469 4,407 953 1,101 8,625 3,383 – – –

Ref. 5 36,695 4,407 953 1,101 8,625 3,383 9,262 7,807 1,157

Ref. 6 8,968 1,101 – 1,101 3,383 3,383 – – –

Ref. 7 8,968 1,101 – 1,101 – – 1,157 4,452 1,157

Ref. 8 15,734 1,101 – 1,101 3,383 3,383 1,157 4,452 1,157

1The multi-breed Refs. 6–8 represent balanced-breed sets while Refs. 3–5 are Holstein-dominated sets.

TABLE 2 | Description of the validation cow sets. Included is the number of cows in each breed group, number of sires that they represented, and average ± standard
deviation (median) of the number of paternal half-sib sisters (HSS) of validation cows in the different reference sets (details of reference sets in Table 1).

H 75%H:25%J 50%H:50%J 25%H:75%J J Total

Number of cows 1,002 863 868 324 532 3,589

Number of sires 314 381 355 128 136 951

Ref. 1 HSS 1.37 ± 1.83 (0) 0.83 ± 1.47 (0) 0.42 ± 0.9 (0) 1.21 ± 1.21 (1) 1.16 ± 1.18 (1) 0.96 ± 1.46 (0)

Ref. 2 HSS 0.04 ± 0.36 (0) 0.18 ± 0.56 (0) 0.96 ± 2.57 (0) 6.51 ± 8.31 (3) 9.85 ± 10.97 (6) 2.33 ± 6.23 (0)

Refs. 3 and 4 HSS 1.41 ± 1.92 (0) 1 ± 1.63 (0) 1.38 ± 2.96 (0) 7.72 ± 9.09 (5) 11.02 ± 12.07 (8) 3.3 ± 6.82 (0)

Ref. 5 HSS 6.55 ± 8.58 (2) 10.34 ± 13.31 (3) 10.07 ± 13.63 (3) 76.4 ± 83.63 (37) 55.93 ± 62.69 (29) 21.94 ± 43.48 (4)

Ref. 6 HSS 0.79 ± 1.36 (0) 0.59 ± 1.23 (0) 1.12 ± 2.71 (0) 7.31 ± 8.78 (3) 10.41 ± 11.36 (7) 2.84 ± 6.49 (0)

Ref. 7 HSS 1 ± 1.8 (0) 3.53 ± 5.41 (1) 4.6 ± 6.57 (1) 36.01 ± 39.3 (18) 26.43 ± 28.97 (13) 9.41 ± 20.55 (1)

Ref. 8 HSS 1.78 ± 2.66 (1) 4.12 ± 5.87 (1) 5.72 ± 8.29 (1) 43.32 ± 45.69 (23) 36.84 ± 38.55 (23) 12.24 ± 25.85 (1)
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(3) customized set of 46,516 SNP (XT_50k) which were
selected from whole genome sequence according to
multiple criteria to be closer to or potentially the causal
mutations for 34 economically important traits in dairy
cattle (Xiang et al., 2019, 2020).

Most of the genotypes in our study were first imputed from
lower-density chips (approximately 8,000 SNP overlapping the
50k panel) up to standard 50k and then imputed from 50k to
HD using FImpute (Sargolzaei et al., 2014). Pedigree information
was not used for imputation. The HD SNP set was imputed
to the whole genome sequence using Minimac3 (Das et al.,
2016) having pre-phased the data with Eagle2 (Loh et al., 2016).
Run6 version of the 1,000-bull genome (Daetwyler et al., 2014;
Bouwman et al., 2018) was used as the sequence imputation
reference, and this was also pre-phased with Eagle2 prior to
imputation of the HD genotypes. The custom set of ∼1,000 SNP
and XT_50k SNP was extracted from imputed whole genome
sequence. The LD pruning process for the HDnGBS set was done
with consideration of preferentially removing SNP tagging the
custom set of ∼1,000 SNP. Finally, before performing GP, SNP
with minor allele frequency less than 0.002 were removed.

Breed Allocation
The bulls in our study were purebred by pedigree and allocated
to the H or J breed groups accordingly. However, the cows were
allocated to purebred and crossbred (sub)groups according to
their pedigree information and the first principal component
(PC) calculated from the GRM using GCTA (Yang et al., 2011)
on a core set of 8,185 autosomal low-density SNP that had
been genotyped in all animals. This was done because not all
cows had full breed information and some had incorrect breed
codes. The bull and cow four-letter breed code that depicts
the maternal and paternal grandparent breed based on pedigree
was used to set the first PC boundaries of each group, and the
PCA was used to correct breed codes that appeared incorrect or
were incomplete. The prediction of breed proportion was also
performed in Admixture software (Alexander et al., 2009) using
the same SNP set and including the New Zealand purebred bulls
and cows. The number of ancestral populations (k) in Admixture
was set to equal the expected number of breeds (H and J: i.e.,
k = 2).

Genomic Prediction
We performed GP with two statistical methods, Genomic Best
Linear Unbiased Prediction (GBLUP) (Meuwissen et al., 2001)
and emBayesR (Wang et al., 2015).

GBLUP
The GEBV for the animals were calculated using MTG2 (Lee and
van der Werf, 2016) and by fitting the model shown in Equation 1
for each of the reference sets and each of the milk traits (milk, fat,
and protein yields). Furthermore, GEBV were calculated using
three different marker sets (50k, XT_50k, or pruned HDnGBS
genotypes) to construct the GRM in the model (Yang et al., 2010).

y = Xb+ Zu+ e (1)

where y is a vector of DRP for the milk traits (milk, fat, or
protein yields) of the animals in the reference, X is a design
matrix allocating DRP to fixed effects, b is the vector of fixed
effects (mean, sex, and breed group), and Z is a design matrix
allocating DRP to GEBV in vector u. The variance of the breeding
values is calculated as Var(u) = Gσ2

g , where σ2
g is the additive

genetic variance, G is the GRM constructed from genotypes of
the animals in the reference and validation sets, and e ∼ (0,
Eσ2

e) is a vector of random residual effects in which σ2
e is the

error variance and E is a diagonal matrix as diag(E)i = 1/wi,
where wi is the weighting coefficient for the ith animal. Weighting
coefficients were calculated differently for cows and bulls using
Eqs. 2 and 3, respectively (Garrick et al., 2009).

wCow =
1− h2

ch2
+

1+(n−1)t
n − h2 (2)

wbull =
1− h2

ch2
+

(4−h2)
p

(3)

where h2 is heritability (=0.33), t is repeatability (=0.56), c is
the proportion of variance not explained by markers (=0.2), n
is the number of records for each cow, and p is the number of
daughters for each bull.

emBayesR
Genomic estimated breeding values for the animals were also
calculated with emBayesR method (Wang et al., 2015) using
an in-house software and fitting the model shown in Equation
4. Benefiting from an approximate EM algorithm in the initial
phase, emBayesR is a faster approach for GP compared to fully
dependent Markov chain Monte Carlo (MCMC) algorithm in
BayesR (Erbe et al., 2012) while still sampling the SNP effects
from a mixture of normal distributions.

y = Xb+Wv+ e (4)

where y, X, b, and e are as described in Eq. 1, v is the vector
of estimated SNP effects, and W is a design matrix of SNP
genotypes that were standardized to have a variance of 1. The
proportion (and the additive genetic variance) of the SNP effects
sampled from four normal distributions were set to 0.94 (0), 0.049
(0.0001), 0.01 (0.001), and 0.001 (0.01). Thus, for example, each
SNP had 94% prior chance to have 0 contribution in explaining
the genetic variance of the trait. The number of iterations in
the emBayesR analyses was adapted to achieve consistent results
across the five chains, requiring 1,500 to 2,200 EM iterations with
the convergence parameter set as 1 × 10−7 and 5,000 to 15,000
BayesR iterations. Finally, the results were averaged across the
five MCMC chains.

Validation
In all reference sets, other than Ref. 4 and Ref. 4′, the GEBV were
calculated for the validation cows similar to reference animals
but masking their phenotypes in Eqs. 1 and 4. In Ref. 4 and
Ref. 4′, the breed proportion was used to calculate a weighted
average of the two GEBV (WA_GEBV) calculated from purebred
H and J reference sets (VanRaden et al., 2020). In Ref. 4, the

Frontiers in Genetics | www.frontiersin.org 5 December 2020 | Volume 11 | Article 598580216

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-598580 December 8, 2020 Time: 19:35 # 6

Khansefid et al. Exploiting Crossbreds in Genomic Prediction

GEBV for each animal in the validation set was calculated by
multiplying their GEBV from both Ref. 1 (H only) and Ref. 2 (J
only) by the proportion of H and J breeds estimated according
to the approximate breed groups allocated through PCA and
pedigree information. In Ref. 4′, the GEBV were calculated as
for Ref. 4, but using the exact breed proportions estimated from
Admixture software.

The accuracy and bias of GP for each of the five validation
breed groups were calculated separately. The accuracy was the
Pearson’s correlation coefficient between GEBV and DRP, and the
bias of GP was assessed by calculating the regression coefficient
of DRP on GEBV, so the GP was least biased when the regression
coefficient showed the least deviation from one.

RESULTS

Breed Group Allocation
An important aspect of this study was to ensure that the
cows were correctly allocated to breed groups because crossbred
cows in New Zealand are sometimes inter-crossed for several
generations through the use of crossbred bulls, and some
cows had incomplete or incorrect pedigree breed definitions.
A combination of pedigree breed codes and a PCA of the
GRM were used to allocate cows to five breed categories
(H, 75%H:25%J, 50%H:50%J, 75%J:25%H, and J; Figure 1).
This breed group allocation was then also evaluated with
Admixture software as shown in Figure 2. Generally, the
exact breed proportions predicted in Admixture matched well
with the approximated breed proportion using PCA and
pedigree information.

Reference Populations: Refs. 1–5
In the first part of our study, we compared the accuracy and bias
of GP using reference sets (Table 1) that were either single breed
(Refs. 1 and 2), a mix of purebreds (Refs. 3 and 4), or a mix
of purebreds and crossbreds (Ref. 5). The main focus of testing
different reference sets was to determine if there were reference
sets that work equally well for crossbred and purebred GP. The
results for the accuracy and bias of GP in the five breed group
validation sets are shown as an average across three milk traits
(milk, fat, and protein yields) in Figures 3, 4, respectively, because
the results showed consistent trends across these traits for all
comparisons. However, the individual trait results for different
GP scenarios are provided in Supplementary Figures 1, 2.

The comparison between different reference sets showed that
across-breed GP (i.e., predicting H from the reference consisting
of only purebred J and vice versa) had the lowest accuracy
and largest bias. As expected, the within-breed GP performed
well (i.e., predicting H and J from reference sets consisting of
only purebred H and purebred J, respectively). The crossbred
validation group with breed composition closest to the purebred
reference set had the second best accuracy of GP in Refs. 1. and 2,
while a steep decline was seen in the other crossbred groups using
these single-breed reference sets.

Combining purebred H (Ref. 1) and J (Ref. 2) animals into
a single reference (Ref. 3) resulted in an average increase in the

accuracy by 0.09 and a reduction of bias by 0.08 for crossbreds
compared to single breed references. In Ref. 3 compared to Ref.
1, on average, ∼25%H:75%J cows achieved a maximum gain
in accuracy (0.21) and reduction in bias (0.32). However, for
purebred J cows, the H-dominated Ref. 3 compared to Ref. 2
reduced their accuracy by about 0.03 and considerably increased
the bias by 0.11.

In Ref. 4, we proportionally combined GEBV derived from
the H and J single-breed reference sets (Refs. 1 and 2)
according to the approximated PCA breed proportions for
each validation set. Although this method did not improve
the accuracy of predictions compared to Ref. 3, it did on
average reduce the bias by 0.18. The average reduction in bias
was highest in ∼50%H:50%J (0.23), followed by ∼25%H:75%J
(0.21) and∼75%H:25%J (0.09). We also tested substituting these
approximate breed proportions with the exact Admixture breed
composition for each cow to calculate their GEBV (Ref. 4’). The
accuracy and bias were similar to Ref. 4, and these can be seen in
Supplementary Figure 1 (labeled Ref. 4′).

In Ref. 5, generated by adding crossbred cows to Ref. 3
(H and J), the accuracy increased by between 0.03 to 0.08
in crossbreds compared to Ref. 3 and Ref. 4. For Ref. 5, in
comparison to Ref. 3, there was an average reduction in bias
for all validation breed groups that was highest in ∼50%H:50%J
(0.14), followed by∼75%H:25%J (0.11) and∼25%H:75%J (0.09),
compared to purebred cows with a reduction in bias of GEBV
(0.06). However, in comparing Ref. 5 to Ref. 4, there was only a
reduction in bias for the pure H and the ∼75%H:25%J, while on
average the bias increased for the∼50%H:50%J, 25%H:75%J, and
pure J breed groups.

Genotypes: Marker Sets 50k, XT_50k,
and Pruned HDnGBS (Refs. 1–5)
For single-breed references, comparing three different sets of
markers (Figures 3, 4) showed that using XT_50k or pruned
HDnGBS instead of 50k increased the accuracy of GP for within-
breed prediction (H and J) by about 0.02. In Ref. 1, using XT_50k
(and pruned HDnGBS) instead of 50k consistently improved the
accuracy of GP for crossbred cows by, on average, 0.05 (and 0.04)
and also reduced bias by about 0.08 (and 0.06). In reference sets
3, 4, and 5, there was also a small but consistent advantage in the
crossbred GBLUP accuracy for the XT_50k set over the 50k and
pruned HDnGBS, but there were no consistent differences in the
accuracies using emBayesR. In reference sets 3, 4, and 5, there was
no consistent trend for bias across the three marker sets.

Methods: GBLUP Versus emBayesR
(Refs. 1–5)
Comparing the two different statistical methods for GP
(Figures 3, 4), it was shown that the emBayesR method gave
a consistent increase in accuracy compared to GBLUP for
crossbred and purebred prediction using single-breed reference
sets (Refs. 1 and 2). On average, there was also a small but
consistent advantage in accuracy for emBayesR versus GBLUP
in Refs. 3, 4, and 5 for 50k and pruned HDnGBS marker sets.
However, the benefits of emBayesR over GBLUP in accuracy
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FIGURE 1 | The second principal component (PC) is plotted against the first PC of the genomic relationship matrix constructed using a low-density set of genotypes
of all purebred and crossbred animals in this study.

FIGURE 2 | The admixture breed proportions estimated with Admixture software where each horizontal line represents the breed proportion of each animal.

diminished with the use of the custom XT_50k marker set. The
differences in bias between emBayesR and GBLUP were less
consistent: for example, in Ref. 3, emBayesR reduced the bias of
GP in crossbred cows by about 0.03 compared to GBLUP, but the
bias was similar for both methods in Ref. 5.

Equalizing Breed Proportions in
Reference Sets
In the second part of our study, we compared the accuracy and
bias of GP in Ref. 3 (mixed H and J purebreds and dominated by
H) versus three additional reference sets, where breed proportion
was equalized (Refs. 6, 7, and 8: Table 1) in Figures 5, 6. Refs. 6,
7, and 8 all included the same∼2,200 H and J bulls but differed in

cow composition: purebreds (Ref. 6), crossbreds (Ref. 7), or pure
and crossbreds (Ref. 8).

First, comparing H-dominated Ref. 3 that had ∼18,500
purebred animals versus Ref. 6 that had only ∼9,000 purebreds
balanced across H and J (all J animals from Ref. 3 but the H set
randomly reduced from∼14,000 to∼4,500 animals), on average,
the bias was considerably reduced for all validation sets in Ref.
6, with the most impact in purebreds (reducing by 0.14 for H,
0.10 for J, 0.06 for 75%H:25%J, 0.09 for 50%H:50%J, and 0.10 for
25%H:75%J). The accuracies were similar to Ref. 3, but there was
a consistent trend for the H accuracy to fall in Ref. 6 by 0.01
to 0.02 and J to increase by 0.01 to 0.02. Therefore, GP in the J
breed benefited from simply removing a large proportion of H to
achieve similar breed proportions in Ref. 6, resulting in both bias
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FIGURE 3 | Accuracy of genomic predictions in five validation sets using different reference populations (Refs. 1–5: details in Table 1). The results are averaged
across milk, fat, and protein yields.

FIGURE 4 | Bias of genomic predictions in five validation sets using different reference populations (Refs. 1–5: details in Table 1). The results are averaged across
milk, fat, and protein yields.

and accuracy being restored to similar levels as using purebred J
reference (Ref. 2).

Ref. 7 had the same number of animals as Ref. 6, but
crossbred cows replaced purebred cows. This resulted in a
consistent average increase in the accuracy of GP for the
crossbred validation sets compared to Ref. 6. and Ref. 3. However,
the accuracy for the H and J purebreds consistently reduced.
Ref. 8 included all the cows from Ref. 6 and 7 (pure and

crosses) with ∼15,700 animals, and this restored the purebred
accuracies to either the same (H) or higher (J) than Ref. 3
and Ref. 6. For the all the crossbred validation sets, accuracy
was consistently increased in Ref. 8 compared to Refs. 3 and
6. There was a dramatic reduction in bias for Ref. 8 (balanced-
breed) compared to the H-dominated Ref. 3 for all five validation
sets: on average, the reduction of bias was 0.19 for H, 0.13 for
J, and 0.16 for the crossbred validation sets. Overall, the bias
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FIGURE 5 | Accuracy of genomic predictions in five validation sets using different reference populations (Ref. 3 and Refs. 6–8: details in Table 1). The results are
averaged across milk, fat, and protein yields. Ref. 3 is Holstein-dominated, while Refs. 6–8 have balanced-breed proportions.

FIGURE 6 | Bias of genomic predictions in five validation sets using different reference populations (Ref. 3 and Refs. 6–8: details in Table 1). The results are
averaged across milk, fat, and protein yields. Ref. 3 is Holstein-dominated, while Refs. 6–8 have balanced-breed proportions.

was always highest in the H-dominated Ref. 3 compared to
Refs. 6, 7, and 8.

Figure 7 shows the distribution of the estimated genomic
relationships between a set of purebred bulls common to Refs. 3,
6, 7 and 8 (1,101 H and 1,101 J) and the cows in the five validation
breed groups. The genomic relationships displayed between
these common sets of reference bulls and validation cows were
estimated separately for each reference set and validation animals
using the XT_50k genotypes. It can be seen that the genomic
relationships had a very different distribution when estimated in

the reference population that was dominated by purebred H (Ref.
3) compared to the equalized breed sets in Refs. 6, 7, and 8.

DISCUSSION

This study used approximately 18,500 purebred and 18,200
crossbred dairy animals to comprehensively test a range
of strategies to jointly optimize the accuracy of GP for
crossbreds and purebreds. A novel strategy was tested in which
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FIGURE 7 | The distribution of genomic relationships estimated between a common set of bulls in Ref. 3 and Refs. 6–8 (1,101 H and 1,101 J) and the cows in the
five validation breed groups. The genomic relationships were estimated using the XT_50k genotypes.

breed proportions were balanced in a mixed-breed reference
population with the inclusion of a large number of crossbred
cows and also using a custom SNP chip enriched with sequence
variants. In many dairy industries, one breed dominates, while
other breeds and crosses are important but have substantially
lower numbers genotyped. While this study focused on GP in H
and J breeds, the results are likely to be equally relevant to GP
in other breeds and other livestock groups, such as beef cattle
and sheep, particularly where one breed is more dominantly used
compared to other breeds.

As expected, our single purebred references (Refs. 1 and
2) were suitable only for within-breed GP but provided a
baseline for comparing accuracy and bias for other reference sets.
These single-breed marker effects were also used to compute a
WA_GEBV for crossbreds (VanRaden et al., 2020). VanRaden
et al. (2020) reported the successful use of breed representation
of up to five dairy breeds estimated with Findhap (VanRaden
and Cooper, 2015) for the WA_GEBV. We had crossbreds of
just two breeds and found a similar accuracy of WA_GEBV
using either approximate breed proportions from PCA or the
breed proportions estimated using Admixture software (Refs. 4
and 4′), implying that either approach was valid. However, for
crossbreds of more than two breeds, it would be more practical
to use software such as Admixture or Findhap to predict breed
proportion. Similar to VanRaden et al. (2020), we found that the
WA_GEBV approach was competitive (Ref. 4) if no crossbred
phenotypes were available because it increased the accuracy
compared to a single breed, reduced the bias for crossbreds
compared to a multi-breed reference, and maintained purebred
accuracies. Combining the purebreds into a single multi-breed
reference caused our J accuracy to drop, implying a negative
impact from the multi-breed reference being dominated by H.
A similar finding has been reported for the accuracy of GP of
Australian Red breed by van den Berg et al. (2020) when using

a mixed breed reference strongly dominated by H. Previous
simulation and plant studies also showed that increasing the size
of the reference population by including individuals not closely
related to the validation set could reduce the accuracy of GP
(Neyhart et al., 2017; Mangin et al., 2019).

Although the WA_GEBV approach offers analytical
simplicity, unfortunately, it does not exploit crossbred data
where available. Previous studies have reported the significance
of including crossbred animals in the reference for better GP
(Esfandyari et al., 2015a; van Grevenhof and van der Werf,
2015). We also found that combining all the purebred and
crossbred animals (Ref. 5) could improve accuracy compared
to the WA_GEBV (Ref. 4), but still this incurred an increase
in bias of predictions for crossbreds. We believe this is in a
large part due to the domination of H breed in the reference
(both purebreds and crossbreds) because the bias reduced
considerably by balancing the proportion of H and J in Ref.
6 compared to the H-dominated Ref. 3. Furthermore, the
genomic relationship between the common reference bulls and
validation cows (Figure 7) shows very different distributions of
relationships estimated in the H-dominated Ref. 3 compared to
the balanced-breed reference sets 6, 7, and 8, probably due to
differences in allele frequencies between the breeds. Excluding
a large proportion of H and 75%H:25%J from the reference to
equalize breed proportions, Ref. 6 did reduce the prediction
accuracy in H and 75%H:25%J when compared to the full Ref.
8 (mixed breed and cross set). Notably, however, the accuracy
for the H validation was still equal to that achieved with the
purebred-H-only reference set (Ref. 1), and bias was less in
Ref. 6 vs. Ref. 8. This suggests that a reference set with more
balanced-breed proportions and including crossbreds may
provide a practical compromise for genomic prediction for
both purebreds and crosses. However, in specific cases, this
will also depend on the numbers available for the minor breed
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because if too many H need to be removed, then the accuracy
of prediction for the H will drop below that achieved from a
single-breed H reference set (Ref. 7 vs. Ref. 8). In this case, for
purebred H predictions, the alternative would be to combine
the H purebreds with their closest crosses because our results
demonstrated that the inclusion of crossbreds in the reference
set improved the prediction accuracy in the purebreds (Ref. 8
vs. Ref. 6). Altogether the results highlight the importance of
trying to ensure that genotyped reference sets are developed
to include as many as possible of the minor breeds and their
crosses to encourage genetic diversity and progress across all
breed groups. While we demonstrated improved GP from
the balanced-breed set that included pure and crossbred cows
(Ref. 8), it is possible that this could be further improved by
adding some more H and H-cross animals from the full set,
provided that they are chosen to be the most closely related to
the validation animals. For example, van den Berg et al. (2020)
reported that combining a limited number of H closely related
to Australian Red in a H-dominated multi-breed reference
was the best strategy to improve the GP in Australian Red.
However, in the context of trying to simultaneously improve
the accuracy of both purebred and crossbred groups, this may
not be straightforward. A method proposed by Harris and
Johnson (2010b) within the GBLUP framework to account for
differences in allele frequency between H, J, and crossbreds could
be tested in future work to determine if this mitigates the H
domination effect.

In our study, while the accuracy of GP for crossbred cows
improved considerably with the balanced multibreed reference
that included crossbreds (Ref. 8), the accuracy for crossbreds
was still often lower than the accuracy of predicting purebreds.
However, this could be due in part to the lower accuracy of DRP
in crossbred validation cows compared to that in purebred cows
and the lower relatedness, on average, of crossbred validation
cows compared to purebred bulls (Figure 7). The only exception
was the∼25%H:75%J validation set that met the expected level of
accuracy relative to the purebreds (Ref. 8). This may be because,
on average, this set shared more half-sib sisters with Ref. 8
compared to the other two crossbred validation sets (Table 2).
Therefore, in an industry setting, the accuracy of crossbreds
may be found to be close to the average of parental breeds if
there is high relatedness between crossbred cows in the reference
population with those in the new test sets. It is also likely that
the inclusion of crossbred bulls in the reference would increase
the accuracy of GP in crossbred cows because crossbred bulls in
New Zealand are mainly used for mating with crossbred cows
(New Zealand Dairy Statistics 2018–2019)3.

Another model that has been tested for genomic prediction
of multiple breeds and crosses is the multi-trait model, where
the same trait is fitted as a correlated trait. However, this multi-
trait approach for GP in dairy cattle showed no consistent
improvement over a single-trait model (Olson et al., 2012; Haile-
Mariam et al., 2019; van den Berg et al., 2020). Given that the
correlation between DRP for milk traits for the same animals

3https://www.dairynz.co.nz/publications/dairy-industry/new-zealand-dairy-
statistics-2018-19/

in our study was previously reported to be high (Haile-Mariam
et al., 2019) and given that dairy cattle purebred and crossbred
cows are raised under the same condition and even in the
same herds, a multi-trait approach was not expected to improve
the accuracy of GP.

Our custom panel, XT_50k, included ∼35,000 variants (out
of 46,516) that were close to or included causal mutations for a
range of 34 dairy traits (Xiang et al., 2019). This means that it
is different to most custom panels in that the majority of SNP
were selected as more highly predictive rather than the majority
being random variants enriched with a smaller selected set. It is
useful to evaluate the accuracy of GP in validation sets that are
more distantly related to see if the LD phase between markers
and QTL is preserved more strongly. Therefore, it is interesting
to note that, for the pure H reference (Ref. 1), the XT_50k
genotypes maintained a considerably higher accuracy in the more
distantly related validation sets compared to the 50k. In fact, for
the most distantly related validation sets in Ref. 1, the XT_50k
accuracy even exceeded the high-density panel (HDnGBS) and,
as expected, the emBayesR approach showed a higher accuracy
than GBLUP. The reason for this is likely because the GBLUP
model assumes an infinitesimal model where all markers have
a small effect, while the emBayesR model assumes that a large
proportion of the markers have no effect and also allows for
a more complex genetic architecture by modeling a mixture
of normal distributions, which better accommodates estimating
large effect mutations such as the DGAT1 mutation for milk traits
(Grisart et al., 2004).

The extra value of the XT_50k was less clear in the pure
J reference (Ref. 2), which is possibly a reflection of the
variant discovery work to select markers for the XT_50k being
undertaken in a H-dominated set of animals (Xiang et al., 2019).
However, it could also be partly influenced by the fact that
the J reference set was less powerful than the H reference that
was three times larger. The average improvement here of up to
6% from the XT_50k versus the 50k set is in line with other
studies. For example, VanRaden et al. (2017) reported that adding
16,648 SNP to a 60k panel increased the reliabilities of within-
breed GP when compared to HD genotypes. Brøndum et al.
(2015) reported that adding 1,623 sequence variants identified by
genome-wide association study from multiple breeds to a custom
chip increased the reliabilites by up to 5 percentage points for
production traits in French H.

It was also interesting that, while emBayesR mostly
outperformed GBLUP, in our study, both approaches performed
equally well for the XT_50k set with multi-breed references.
Some previous studies showed that the accuracy of GBLUP
models was more competitive with Bayesian models when
selected QTL markers were modeled by fitting a separate GRM
to that of the random markers to allow their effects to be sampled
from a normal distribution with a higher variance (Khansefid
et al., 2014; Brøndum et al., 2015; Moghaddar et al., 2018).
It is possible that, in our study, GBLUP showed competitive
accuracies to emBayesR without fitting the selected variants
as a separate component because around 80% of the variants
in the XT_50k set were selected as QTL markers, with only
approximately 8,000 that were random markers. This makes the
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XT_50k custom panel quite different to those previously reported
where the proportion of QTL markers was much lower than the
remaining random marker set.

CONCLUSION

Our study compared different reference populations, SNP marker
sets, and statistical approaches (GBLUP and emBayesR) for GP
in purebred and crossbred H and J cows. Generally, we found
that a H-dominated reference had a negative effect on GP of J
and crossbreds. Balancing the breed proportions in the reference
set achieved a comparable accuracy to a H-dominated reference
but a consistently reduced bias for both crosses and purebreds.
Inclusion of crossbred cows in the reference population improved
the accuracy especially for crossbreds. Using a custom marker
panel (XT_50k) instead of standard 50k or pruned HD panels
further improved the prediction accuracy and reduced the bias.
Remarkably, the advantage of emBayesR over GBLUP was very
limited when XT_50k genotypes were used in GP, indicating
the benefits of using a selected set of markers. In conclusion,
to improve crossbred GP, we recommend a balanced-breed
reference containing crossbred animals and using a set of SNP
close to QTL and enriched for causal mutations. Our results
indicate that this may also be a competitive reference for GP
in purebreds, particularly for the less numerous breeds. We
also recommend further research to find an optimized method
of selecting a subset of the dominant breed for a balanced
reference or other corrective algorithms to mitigate the major
breed domination effect on the accuracy and bias of GP in pure
and crossbred cattle.
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Vrindavani is an Indian composite cattle breed developed by crossbreeding taurine dairy

breeds with native indicine cattle. The constituent breeds were selected for higher milk

production and adaptation to the tropical climate. However, the selection response for

production and adaptation traits in the Vrindavani genome is not explored. In this study,

we provide the first overview of the selection signatures in the Vrindavani genome. A

total of 96 Vrindavani cattle were genotyped using the BovineSNP50 BeadChip and the

SNP genotype data of its constituent breeds were collected from a public database.

Within-breed selection signatures in Vrindavani were investigated using the integrated

haplotype score (iHS). The Vrindavani breed was also compared to each of its parental

breeds to discover between-population signatures of selection using two approaches,

cross-population extended haplotype homozygosity (XP-EHH) and fixation index (FST).

We identified 11 common regions detected by more than one method harboring genes

such as LRP1B, TNNI3K, APOB, CACNA2D1, FAM110B, and SPATA17 associated with

production and adaptation. Overall, our results suggested stronger selective pressure on

regions responsible for adaptation compared to milk yield.

Keywords: crossbred cattle, FST, integrated haplotype score, selection signature, XP-EHH

INTRODUCTION

The benefits of crossbreeding between high yielding Bos taurus and environmentally resistant Bos
indicus breeds in tropical production systems have been well-established over the last half-century.
Crossbred cattle have played an important role in meeting India’s rising demand for milk. Despite
constituting only 20.7% of India’s milch herd, the crossbreds contribute 26% of India’s annual milk
production of 187.75 metric tons (DAHDF, 2018-19; 20th Livestock Census, 2019).

A four breed crossing scheme was initiated at the Indian Veterinary Research Institute in
1968. Briefly, a foundation stock of 400 indigenous Hariana cattle was inseminated with Holstein
Friesian (HF), Jersey and Brown Swiss (BSW) semen to produce three genetic groups viz., 1/2
Hariana × 1/2 HF, 1/4 Hariana ×1/2 HF ×1/4 BSW, and 1/4 Hariana ×1/2 HF ×1/4 Jersey.
These genetic groups were evaluated for production, reproduction and environmental adaptation
for seven generations. This was followed by inter-mating and selection to create the present day
composite breed Vrindavani, having 25–50% Bos indicus and 50–75% Bos taurus inheritance (Singh
et al., 2011). From the records of the distribution of frozen semen straws of the superior Vrindavani
bulls, and the cows auctioned to the farmer, it is estimated that presently about 50,000 Vrindavani
cattle are in the field.
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Over the last decade, SNP microarrays and whole genome
sequencing technology has enabled researchers to explore the
genetic architecture and signatures of post-admixture selection in
composite breeds (Decker et al., 2014; Kim and Rothschild, 2014;
Cheruiyot et al., 2018). In Vrindavani cattle, the Bovine SNP50K
array has recently been used to investigate the population
structure of the breed (Chhotaray et al., 2019; Ahmad et al.,
2020). Since the inception of the Vrindavani breeding program
almost five decades ago, the breed has been under selection
for milk production and adaptation to tropical conditions.
We hypothesized that natural and artificial selection has left
footprints on the genome of Vrindavani cattle over the years.
Identification of the regions under selection could improve
our understanding of the molecular mechanisms driving the
environmental adaptation and increased milk production of
composite Bos taurus ×indicus breeds in the tropics. Therefore,
the objective of this study was to detect signatures of selection in
the genome of the Vrindavani cattle using two complementary
approaches. First, the integrated haplotype score (iHS) was
used to detect within-population selection signatures. Second,
we compared Vrindavani to Hariana, HF, Jersey and BSW
by haplotype based (XP-EHH) and single SNP based (FST)
methods to discover the genomic regions where the composite
breed has diverged from each of its parental populations since
the admixture.

MATERIALS AND METHODS

Sample Collection, Genotyping and Quality

Control
Blood samples from 96 lactating Vrindavani cattle in lactations
ranging from 1 to 6 were collected from Cattle and Buffalo
breeding farm of the ICAR-Indian Veterinary Research Institute,
Bareilly, UP (28.3670◦ N, 79.4304◦ E), following approval by the
Institutional Animal Ethics Committee (IAEC). The cows under
study were offspring of 16 sires and were born between year 2013
to 2018, with average lactation stage of 176 days. The Vrindavani
bulls on the farm were selected and culled on the basis of dam
and daughter’s milk yield, respectively. Involuntary culling was
practiced for cows with mastitis.

Genomic DNA was isolated using Qiagen DNeasy Blood
Mini Kit (Qiagen, Valencia, CA) according to the manufacturer’s
instructions. The quality and quantity of DNA were evaluated
using NanoDrop spectrophotometer, agarose gel electrophoresis
and Qubit fluorometer. The extracted DNA samples were
genotyped with the BovineSNP50 v3 BeadChip (Illumina, Inc.)
using manufacturer’s protocols (AgriGenome Labs Pvt. Ltd.,
India) consisting of 53,218 SNPs across the genome at a
mean distance of 37.4 kb. Genotypes were called and processed
using the GenomeStudio software package (Illumina, Inc.). The
SNP coordinates followed the ARS-UCD1.2 assembly of the
bovine genome.

Data of all the 96 Vrindavani animals were used for population
structure analysis and within-breed signatures of selection (iHS).
Quality filtering of data was performed using PLINK v1.9 (Purcell
et al., 2007) by filtering non-autosomal and unmapped SNPs.

SNPs with less than a 90% call rate, minor allele frequency lower
than 0.01 and a significant (P < 0.00001) deviation from Hardy-
Weinberg equilibrium were also removed, leaving a dataset of
41,342 SNPs. After filtering, the total genotyping rate was 99.81%,
and no individual was removed for missing genotypes.

Population Structure Analysis
The expected heterozygosity (He), observed heterozygosity (Ho)
and minor allele frequency (MAF) was estimated using PLINK
1.07 (Purcell et al., 2007). Principal Component (PCA) and
Admixture (Alexander et al., 2009) analyses were performed to
validate the breed separation in our merged dataset. The results
were visualized in R with the basic plot function (R Core Team.,
2018).

Selection Signature Analyses
The within population signatures of selection in Vrindavani (n=
96) were computed using the integrated haplotype score (iHS)
(Voight et al., 2006). The ancestral allele information for the
iHS test was obtained from Rocha et al. (2014) for the 50K
SNP data. The iHS was calculated for each autosomal SNP in
Vrindavani through the package rehh (Gautier et al., 2017).
Candidate regions were identified using a scan window of 100 kb
with a 50 kb overlap. Windows with an average iHS score of
3 (three standard deviations above the mean) or above were
considered as candidate regions for selection.

To ascertain between-population selection signatures,
Vrindavani was compared to each of its parental populations
using XP-EHH (Sabeti et al., 2007) and FST (Weir and
Cockerham, 1984).

The genotypic data of Vrindavani’s parent taurine breeds
(BSW, HF, Jersey) were accessed using WIDDE (http://widde.
toulouse.inra.fr/widde/widde/main.do?module=cattle) and
Hariana cattle through KRISHI (https://krishi.icar.gov.in/jspui/
handle/123456789/31167) web portals. These included 50K SNP
data of HF (n = 30), Jersey (n = 21), BSW (n = 24), and the
HD (777K) genotypes of Hariana (n = 18). The common SNPs
between 50K and HD chip data of Hariana were extracted for
further analysis. Since large differences between the sample
sizes of the groups under comparison can cause inaccurate FST
estimates (Barendse et al., 2009; Bhatia et al., 2013), a subset
of 25 Vrindavani animals was used for the across-population
comparisons. We calculated the pairwise identity by state
(IBS) scores for all the 96 Vrindavani animals using PLINK,
and retained the 25 animals with the least amount of shared
similarity (IBS).

Genotypic data of all the breeds were merged and quality
control was performed again by using the settings mentioned
above leaving 34,197 variants for downstream analysis. The
genotypes were phased using BEAGLE v5.1 (Browning et al.,
2018) using default settings (burnin = 6; iterations = 12; phase-
states= 280).

The XP-EHH scores were calculated for each pairwise
comparison using the package rehh, taking the parental breeds
as the reference population. To detect positive selection in
Vrindavani, average XP-EHH scores were computed for 100-kb
regions with a 50 kb overlap. Regions with absolute XP-EHH
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scores of 3 (Three SD above the mean) or above were considered
as putative candidate regions. The pairwise FST was calculated
with VCFTOOLS (Danecek et al., 2011), with a sliding window
of 100 kb and a 50 kb step size. Windows belonging to the top
0.1% of the FST values were considered as potential regions
under selection. The genes present in the candidate regions
were annotated using the Ensembl Biomart genes database
(release 100). Functional and pathway enrichment analysis was
performed using DAVID (Huang et al., 2009). Each positively
selected region was cross referenced with the literature.

RESULTS

Descriptive Statistics and Population

Structure Analyses
The heterozygosity and MAF values of Vrindavani (Ho = 0.34,
MAF = 0.28) were found similar to the European breeds,
particularly to HF (Table 1). The genetic relationship between
the Vrindavani population and its parent breeds was visualized
using PCA. The first and second principal components explained
62.3% and 11.7% of the total variation, placing the Vrindavani
cattle in between the taurine and indicine breeds which is

TABLE 1 | Number of animals, means of observed (HO) and expected

heterozygosity (HE), minor allele frequencies (MAF) and differentiation (FST )

between each breed with Vrindavani.

Breed N HO (Mean ± SD) HE (Mean ± SD) MAF FST

Vrindavani 96 0.38 ± 0.13 0.34 ± 0.11 0.28 –

Brown Swiss 24 0.31 ± 0.20 0.29 ± 0.17 0.22 0.13

Jersey 21 0.31 ± 0.19 0.26 ± 0.17 0.23 0.14

Holestein-Friesian 30 0.35 ± 0.16 0.34 ± 0.15 0.26 0.08

Hariana 18 0.29 ± 0.18 0.28 ± 0.15 0.20 0.24

in agreement with their known lineage (Figure 1A). They are
however noticeably closer to the Holstein cluster than any of the
other parental breeds. In concordance with Ahmad et al. (2020),
Admixture analysis with K = 4 showed that the average breed
composition proportions for our population of Vrindavani was
42.5%, 26.0%, 17.1%, and 14.4% of HF, Hariana, Jersey and BSW,
respectively (Figure 1B).

Within Population Selection Signatures in

Vrindavani (iHS)
Considering the recent selection history in Vrindavani breed,
the selection sweeps were identified using integrated haplotype
score (iHS) approach. A total of 46 significant SNPs (iHS
≥3) distributed across 12 autosomes were identified within
the candidate regions (Figure 2A, Supplementary Table 1). The
strongest iHS signal (3.9) was found on BTA14 (30.35–30.44Mb).
The top 10 regions with their iHS values and genes are
shown in Table 2. Functional annotation of the selected regions
identified candidate genes related with milk production (APOB,
ANO3, DNMT3A, and POMC) and environmental adaptations
or immunity (DNAJC5B and FYB2).

Across Population Selection Signatures

(FST and XP-EHH)
The Manhattan plots of pairwise XP-EHH analysis between
Vrindavani and its parent breeds are presented in Figures 2B–E,
and the information about the significant regions is in
Supplementary Table 2. The selection signals (positive value of
XP-EHH for Vrindavani), against all parent breeds were detected
on 8 autosomes, of which clusters of SNPs are observed on
BTA1, BTA2, BTA3, BTA4, BTA11, BTA15, BTA16, and BTA25.
BTA4 and BTA3, exhibit the highest number of selected regions
in all the breed comparisons. The selective sweep located on
BTA4 (91.8–92.2Mb) was detected in comparisons with both
BSW and Hariana. It contains the genes SND1 and LRRC4

FIGURE 1 | (A) Principal Component Analysis (PCA) plot showing clustering of Vrindavani crossbred cattle and parent breeds. (BSW, Brown Swiss; HAR, Hariana;

HOL, Holestein; JER, Jersey; VRI, Vrindavani). (B) Admixture analysis of Vrindavani cattle showing proportion of ancestral population (K = 4).
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FIGURE 2 | (A) Plot of the integrated haplotype score (iHS) plot for the Vrindavani cattle. (B–E) Cross-population extended haplotype homozygosity (XP-EHH) plots

for Vrindavani’s comparisons with (B) Brown Swiss, (C) Jersey (D) Holstein, and (E) Hariana. The dotted lines indicate mean ± 3 standard deviations as threshold.

associated with somatic cell count, milk yield and residual feed
intake. Two regions on BTA2 (56.4–56.6Mb) and BTA25 (31.15–
31.3Mb) were detected in comparisons with Hariana and Jersey.
It contains LRP1B gene and QTLs for somatic cell count and
reproduction traits (Cole et al., 2011).

The mean FST values of Vrindavani in comparison to
HF, Jersey, BSW and Hariana were 0.081, 0.110, 0.122,
and 0.175, respectively. The pairwise FST across genome of
the Vrindavani against its parental breeds were plotted in
Supplementary Figure 1. A total of 124 regions were identified,
which were distributed across all autosomes except BTA25 and
BTA26 in breed comparisons (Supplementary Table 3). The
regions on the chromosomes having highest FST values against
HF, BSW, Jersey and Hariana were located on BTA4, BTA7,
BTA10, and BTA3, respectively.

TABLE 2 | List of the top 10 regions identified by the integrated haplotype score

measures (iHS), and the genes present within them.

BTA Start End iHS Gene

14 30,355,171 30,448,182 3.913994 DNAJC5B

11 77,798,022 77,927,967 3.631122 TDRD15, APOB

3 89,219,877 89,464,197 3.570568 C8A, FYB2

3 75,039,363 75,644,478 3.545228 LRRC7

11 73,971,560 74,224,519 3.483963 DNMT3A, POMC, EFR3B

11 82,677,576 83,207,199 3.404882 DDX1, NBAS

1 57,570,680 57,681,112 3.398117 CD200R1L

3 88,677,121 89,136,086 3.383668 DAB1

2 61,535,026 61,675,889 3.291714 LCT, UBXN4, R3HDM1, MIR128-1

3 65,667,175 65,807,163 3.270202 ADGRL4
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The FST signals on overlapping regions located on BTA7
(45.3–48.9Mb), BTA10 (37.4–37.7Mb) and on BTA14 (12.3–
12.6Mb) were observed in comparison with BSW and Jersey,
harboring genes involved with production, reproduction and
functional traits (H2AFY, SPOCK1, PLA2G4D, PLA2G4F, and
GANC). Two selected regions on BTA14 from 12.3 to 12.6Mb
(against BSW and HF) and 27.3–27.9Mb (against Jersey and
HF) were identified. These regions include SPIDR gene (Scaffold
protein involved in DNA repair) associated with milk and milk
protein yield) and NKAIN3 gene (Na+/K+ transporting ATPase
interacting 3) related with insulin-like growth factor one level.

Comparative Analysis of Selection

Signatures
A total of 13 regions on BTA2, BTA3, BTA4, BTA10, BTA11,
BTA14, BTA15, and BTA16 were determined by more than
one approach; with a region on BTA3 (70.2–72.2Mb) common
to all three approaches (Table 3). Out of six regions detected
by both the between population approaches (pairwise FST and
XP-EHH), four regions were detected in comparisons with
taurine breeds (BSW, Jersey and HF); one region in comparison
with the indicine breed (Hariana) and one region against both
taurine and indicine breeds (Table 3). Functional annotation
of the commonly detected regions shows several candidate
genes already reported as selection signals or associated with
economic traits in different cattle breeds. Genes present in these
regions enriched biological processes such as response to virus
(GO:0009615) and post embryonic development (GO:0009791),
and molecular functions such as ATP binding (GO:0005524) and
motor binding (GO:0003774) shown in Supplementary Table 4.

DISCUSSION

The Admixture analysis and PCA plot reflected the presence of
both indicine and taurine ancestry in our Vrindavani population,

TABLE 3 | Selection sweeps identified by more than one test in the Vrindavani

chromosomes (BTA) and annotated genes in these regions.

Test BTA (Start-End

Mb)

Annotated genes

XPEHH(Hariana), FST (Hariana);

iHS

3 (70.2–72.18) TNNI3K

XPEHH(Jersey, Hariana); FST (HF) 2 (55.5–56.7) LRP1B

XPEHH(Jersey); FST (HF) 4 (38.1–40.1) CACNA2D1, 7SK,SEMA3C

XPEHH(Jersey); FST (HF) 4 (52.28–53.65 TFEC

XPEHH(HF); FST (Jersey) 15 (43.3–44.1) TRIM66, STK33,

DENND5A, SCUBE2,

NRIP3

XPEHH(Jersey); FST (BSW) 16 (21.1–22.9) SPATA17, RRP15

XPEHH(Jersey); iHS 11 (77.3–78.0 TDRD15, APOB

XPEHH(Hariana); iHS 3 (64.1–65.8) ADGRL4/ELTD1

FST (BSW); iHS 10 (5767–58.20) MYO5A,bta-mir-1248-2,

MYO5C

FST (HF); iHS 14 (24.36–24.62) FAM110B,UBXN2B

FST (Hariana); iHS 11 (82.67–83.20) DDX1, NBAS

with a higher proportion of taurine ancestry (Holstein). The
dominance of the Holstein component in Vrindavani cattle has
also been recently reported in a different set of Vrindavani
population (Ahmad et al., 2020).

In the present study, we wished to evaluate the effect of natural
and artificial selection on the Vrindavani genome, compared to
its parent breeds. Due to genetic drift (Akey et al., 2002), and
ascertainment bias of the SNP chip toward taurine breeds, it
is difficult to distinguish true signatures of selection from false
positives in crossbred cattle. Thus, three different methods of
signature of selection (iHS, FST, and XP-EHH) were applied
with stringent thresholds to capture putative regions of selection
across the genome.

The regions commonly detected by pairwise cross population
methods (XP-EHH and FST) against taurine breeds on BTA4
contained the CACNA2D1 gene, which is a member of the
calcium voltage-gated channel auxiliary subunit alpha-2/delta.
It is previously reported to be a candidate gene associated with
somatic cell score (Deng et al., 2011) and mastitis resistance
(Yuan et al., 2011). Another gene on this chromosome is
TFEC, reported to be a selection signature in African cattle
and related with resistance to ticks and other tropical disease
(Tijjani et al., 2019).

On BTA14, FAM110B, and UBXN2B genes were identified
to be associated with productive traits, reproductive traits
(Grigoletto et al., 2019) and feed efficiency (Seabury et al., 2017).
Flori et al. (2009) has also reported FAM110 as selection signature
for dairy cattle under artificial selection. The STK33 gene on
BTA15 reported in the FST and XP-EHH analyses against the
Jersey and HF cattle, respectively, were reported as selection
signatures in Gir cattle and are associated with milk production
in indicine cattle (Maiorano et al., 2018).

Commonly identified regions from iHS and cross-
population approaches against Hariana contain TNNI3K
and ADGRL4/ELTD1 genes on BTA 3. TNNI3K is a cardiac
troponin interacting kinase, associated with udder depth
(Kramer et al., 2014), inflammation mechanisms (Wiltshire
et al., 2011) and lameness in Holstein–Friesian cattle (Sánchez-
Molano et al., 2019). The ADGRL4/ELTD1 gene is associated
with milk fat yield (Li et al., 2010) and tick resistance (Porto
Neto et al., 2011) in dairy cattle. Another gene DDX1 on
BTA11 was reported to be involved in bovine mammary
involution in environmental stress conditions (Dado-Senn et al.,
2018). DDX1 is also reported to be associated with linoleic
acid content in Nellore cattle (Lemos et al., 2016) and viral
resistance (Xue et al., 2019). A common region in comparisons
with both taurine and indicine breeds is detected on BTA2. It
harbors LRP1B gene which codes for low density lipoprotein
related with milk yield (Chen et al., 2015) and somatic cell
score (Cole et al., 2011). LRP is widely expressed in several
tissues and plays important roles in lipoprotein catabolism,
blood coagulation, cell adhesion and migration (Haas et al.,
2011).

Overall, the results revealed that selection was operative more
strongly in the regions related to environmental adaptation
than milk yield, despite the latter being a focus of artificial
selection. This could be explained by the presence of a large
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(50–75%) taurine inheritance in the Vrindavani genome, so a
deviation from the parental breeds with respect to adaptation was
not unexpected.

The slow rate of genetic gain with respect to the artificially
selected productivity traits, due to the small and closed nature
of the institutional herd examined in this study may also be
responsible for our findings. Vrindavani is still a relatively new
breed, and we expect these selection signatures to be more
prominent in the coming generations.

CONCLUSION

This study provided the first overview of the selection
footprints in the genome of the composite Vrindavani
cattle of India. The signatures of selection for Vrindavani
breed reveals several genomic regions which were involved
in milk production and adaptation. Our results confirmed
some of the key candidate genes such as CACNA2D1,
DDX1, and ADGRL4 which were known to be previously
associated with immune related and adaptation pathways.
Interestingly, the findings suggest that selection in Vrindavani
was operative more strongly in the regions related to
environmental adaptation than milk yield, despite the latter
being a focus of artificial selection. To further reduce false
positives and increase the resolution of detection of selection
signatures, we suggest validation of this study in a larger
field herd using the HD genotyping array or whole-genome
sequence data.
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Machine Learning Prediction of 
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Growth Rate From Single Nucleotide 
Polymorphisms
Llibertat Tusell 1*†, Rob Bergsma 2, Hélène Gilbert 1, Daniel Gianola 3,4 and Miriam Piles 5

1 GenPhySE, Université de Toulouse, National Research Institute for Agriculture, Food and the Environment (INRAE), 
Castanet-Tolosan, France, 2 Topigs Norsvin Research Center, Beuningen, Netherlands, 3 Department of Animal Sciences, 
University of Wisconsin-Madison, Madison, WL, United States, 4 Department of Dairy Science, University of Wisconsin-
Madison, Madison, WI, United States, 5 Animal Breeding and Genetics Program, Institute of Agriculture and Food Research 
and Technology (IRTA), Barcelona, Spain

This research assessed the ability of a Support Vector Machine (SVM) regression model 
to predict pig crossbred (CB) performance from various sources of phenotypic and genotypic 
information for improving crossbreeding performance at reduced genotyping cost. Data 
consisted of average daily gain (ADG) and residual feed intake (RFI) records and genotypes 
of 5,708 purebred (PB) boars and 5,007 CB pigs. Prediction models were fitted using 
individual PB genotypes and phenotypes (trn.1); genotypes of PB sires and average of 
CB records per PB sire (trn.2); and individual CB genotypes and phenotypes (trn.3). The 
average of CB offspring records was the trait to be predicted from PB sire’s genotype using 
cross-validation. Single nucleotide polymorphisms (SNPs) were ranked based on the 
Spearman Rank correlation with the trait. Subsets with an increasing number (from 50 to 
2,000) of the most informative SNPs were used as predictor variables in SVM. Prediction 
performance was the median of the Spearman correlation (SC, interquartile range in 
brackets) between observed and predicted phenotypes in the testing set. The best 
predictive performances were obtained when sire phenotypic information was included in 
trn.1 (0.22 [0.03] for RFI with SVM and 250 SNPs, and 0.12 [0.05] for ADG with SVM and 
500–1,000 SNPs) or when trn.3 was used (0.29 [0.16] with Genomic best linear unbiased 
prediction (GBLUP) for RFI, and 0.15 [0.09] for ADG with just 50 SNPs). Animals from the 
last two generations were assigned to the testing set and remaining animals to the training 
set. Individual’s PB own phenotype and genotype improved the prediction ability of CB 
offspring of young animals for ADG but not for RFI. The highest SC was 0.34 [0.21] and 
0.36 [0.22] for RFI and ADG, respectively, with SVM and 50 SNPs. Predictive performance 
using CB data for training leads to a SC of 0.34 [0.19] with GBLUP and 0.28 [0.18] with 
SVM and 250 SNPs for RFI and 0.34 [0.15] with SVM and 500 SNPs for ADG. Results 
suggest that PB candidates could be evaluated for CB performance with SVM and 
low-density SNP chip panels after collecting their own RFI or ADG performances or even 
earlier, after being genotyped using a reference population of CB animals.

Keywords: pigs, crossbred, single nucleotide polymorphism, genomic prediction, support vector machine, 
machine learning
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INTRODUCTION

Feed efficiency and growth rate are two of the most important 
components of productivity and sustainability of meat production. 
Many meat production livestock systems rely on crossbred 
(CB) animals (pig, poultry, rabbits, and some beef cattle systems), 
but the genetic improvement of these traits commonly takes 
place in purebred (PB) lines based on PB performance only. 
However, the ultimate goal of selection is achieving competitive 
performances in CB animals raised in commercial farms. The 
genetic gain attained from within line selection in the PB line 
will not be  efficiently transferred to the CB population if the 
genetic correlation between PB and CB performances ( rPB CB, ) 
differs markedly from unity. A low correlation might be  due 
to genotype by environment interactions or presence of 
non-additive genetic effects (Wei and van der Steen, 1991). 
For feed efficiency (FE) and growth traits in pigs, the average 
estimate of rPB CB,  is 0.66 across 27 studies reviewed (Wientjes 
and Calus, 2017). This moderate rPB CB,  value indicates that 
accounting for CB information in genetic evaluation of pig 
PB lines would be a reasonable strategy to boost CB performance 
(Wei and van der Werf, 1995).

With the availability of high-density single nucleotide 
polymorphism (SNP) genotype data, several parametric genomic 
selection (GS) models can be  used to evaluate candidates for 
improved PB and CB performances. Some of the proposed 
parametric models account for additive genetic effects only 
(Ibañez-Escriche et  al., 2009; Christensen et  al., 2014, 2015; 
Tusell et  al., 2016). Other models include both additive and 
dominance effects using either genomic information from PB 
animals (Esfandyari et  al., 2016) or treating PB and CB data 
as different traits (Vitezica et  al., 2016; Xiang et  al., 2016). 
These models differ in complexity and type of phenotypic and 
genotypic information required. To our knowledge, 
non-parametric GS models that account for non-additive genetic 
effects have not been proposed yet in the PB-CB context. 
Finding a suitable genome-enabled prediction model fitted at 
a reduced genotyping cost, but still capable of predicting 
yet-to-be observed two‐ or three-way CB FE and growth 
performances from PB genotypes, is of great interest.

Machine learning methods could be useful for CB performance 
prediction purposes because of their ability to predict outputs 
without assumptions about the genetic determinism underlying 
a trait. This property can be  relevant for predicting CB 
performance because of the need to accommodate non-additive 
genetic effects. Machine learning methods are increasingly used 
when the number of parameters is much larger than the 
number of observations, as it is the case of high-throughput 
datasets such as those with high-density genetic markers for 
GS. Machine-learning models that are non-linear in either 
predictor variables or parameters have been proposed in animal 
and plant breeding to enhance genome-enabled prediction of 
complex traits (Gianola et  al., 2006, 2011; Gianola and van 
Kaam, 2008). Among them, a support vector machine is 
regarded as one of the most efficient machine learning algorithms, 
and it has been used successfully in many different fields 
(James et  al., 2013; Attewell et  al., 2015) including livestock 

and plant breeding (Moser et  al., 2009; Long et  al., 2011; 
Montesinos-López et  al., 2019).

Feature selection, i.e., selection of a subset of predictor 
variables from the input data, reduces computation requirements 
and negative effects on prediction performance of irrelevant 
variables via over-fitting, an especially important matter in 
studies with high-dimensional/high-throughput data 
(Chandrashekar and Sahin, 2014). Finding a prediction model 
able to perform well with a small subset of SNPs can be  of 
interest to predict CB performance from low-density SNP 
chips. In particular, the possibility to evaluate selection 
candidates of the PB lines for improved CB performance 
at a low genotyping cost, especially if a CB reference 
population is needed, is of great interest.

The goal of this research was to assess the ability of support 
vector machine (SVM) regression model trained with different 
sources of phenotypic and genotypic information to predict 
CB feed efficiency and growth rate in pigs. The ultimate objective 
is to design potential strategies for improving pig crossbreeding 
productive performance at reduced genotyping cost.

MATERIALS AND METHODS

All data used in this study were obtained from existing database 
made available by Topigs Norsvin (Beuningen, Netherlands). 
Therefore, no Animal Care Committee approval was necessary 
for the purposes of this study.

Animals
Animals were produced by Topigs Norsvin (Beuningen, 
Netherlands). They consisted in 5,708 boars from a terminal 
sire line (PB) and 5,007 three-way CB growing-finishing pigs 
(CB, 3,399 males and 1,608 females) originated from the cross 
of 348  PB boars and 621 sows from two different maternal 
lines to produce the commercial CB sow, sired by the PB 
terminal sire line. All PB animals were born and raised in 
two specific pathogen free nucleus farms, one of them located 
in the Netherlands, the other one in France. All CB animals 
were born and raised in two commercial farrows to finish 
farms in Netherlands. Semen exchange between both nucleus 
farms takes place routinely. Semen of the (PB) terminal sire 
line used to produce the CB pigs predominantly originated 
from sires born on one of the two nucleus farms.

Both nucleus farms as well as both farrow to finish farms 
were equipped with IVOG feeding stations (INSENTEC, 
Marknesse, Netherlands) that register individual feed intake 
of group housed pigs. All pigs had ear tags with unique 
numbering; therefore, individual feed intake records were 
available for all pigs for each day on test. The pigs were fed 
with ad libitum, a commercially available diet, until the end 
of the performance test (PB) or throughout their entire life (CB).

Phenotypes
Average daily gain (ADG, g/day) was measured for PB animals 
between the beginning (median age of 68  days and median 
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weight of 31  kg) and the end of the test (median age of 
155  days and median weight of 130  kg). ADG was measured 
for CB animals between the start of the grower-finisher period 
(median age of 68  days and median weight of 25  kg) until 
the day before slaughter (median age of 173  days and median 
weight of 124  kg). Only records from PB/CB animals starting 
the test/grower-finisher period between 50 and 105  days of 
age and remaining on test/grower-finisher period between 60 
and 120  days were retained.

Backfat thickness was determined ultrasonically on live 
animals (US-fat in mm) in PB animals at the end of the test 
period and on carcass with the Capteur Gras Maigre device 
(Sydel, in mm) in CB animals. Metabolic weight (g) was 
calculated as MW W Wstart end= +( )( )/

.
2
0 75 , where Wstart  and 

Wend  are the weights at the beginning and at the end of the 
test period, respectively.

Among all PB and CB data available, three subsets of data 
were considered: (i) individual phenotypes from genotyped 
PB individuals (dPB), (ii) individual CB phenotypes that were 
offspring of genotyped PB sires (dCBSIRE), and (iii) individual 
phenotypes from genotyped CB individuals (dCB). Notice that 
some PB sires originating dCBSIRE records had their own dPB 
records and that dCB included only genotyped CB animals.

Separately in each data subset, multivariate outlier records 
of ADG, daily feed intake, backfat thickness, and metabolic 
weight were identified and removed within batch, farm and 
sex (only for CB records) when the squared Mahalanobis 
distance to the center of the distribution was >12 (Drumond 
et  al., 2019). Then, residual feed intake (RFI) was estimated 
as the residual of a linear regression of daily feed intake on 
average daily gain, backfat thickness, and metabolic weight 
(lm function, R Core Team, 2019). After that, phenotypes of 
ADG and RFI were pre-adjusted by environmental effects, 
fitting a linear model (lm function, R Core Team, 2019) for 
each data subset. The model included the effects of age at the 
start of the test (covariate), duration of the performance test 
(covariate), and the combination of farm and batch 
(farm × batch) and sex (only included in the CB data subsets). 
The farm  ×  batch effect resulted from the combination of two 
farms and 2  month period batches for both PB and CB data. 
Only farm  ×  batch levels with ≥10 records were retained for 
the analyses. The adjusted records for the three data subsets 
were obtained after subtracting the estimates of these systematic 
environmental effects to the original traits. The average of 
adjusted CB records per PB sire was calculated in the dCBSIRE 

dataset (median of number of offspring records per sire was 
of 10 with a SD  =  11.8).

Table  1 shows the number of records available for each 
dataset and summary statistics of the phenotypes.

Genotypes
Animals were genotyped using the Illumina Porcine SNP60 
BeadChip (Illumina, Inc., San Diego). SNPs with a call rate 
lower than 0.90 and a minor allele frequency lower than 0.05 
were removed from the whole genotype dataset. Animals with 
a call rate lower than 0.90 and parent-offspring pairs that 
displayed Mendelian inconsistencies were discarded. After this 
quality control, 46,610 SNPs were retained to pursue the analyses. 
Separately in each data subset, zero and near-zero-variance 
predictors were identified and removed with the nearZeroVar 
function with a cut-off for the ratio of frequencies for the 
most common value over the second most common value of 
95/5 (Caret R package, Kuhn, 2008). Subsequently, the 
findCorrelation function (Caret R package, Kuhn, 2008) with 
a cut-off = 0.8 was used to diminish highly pair-wise correlations 
between features. After this genotype edition, 9,523 SNPs were 
retained for the PB individuals from the dPB dataset and 
9,533 SNPs for the PB sires from the dCBSIRE dataset. Genotypes 
from the CB individuals of the dCB dataset were trimmed 
keeping the same 9,533 SNPs retained for the PB sires to 
ensure, for predictive purposes, that the SNPs were also 
segregating in the PB line.

Information Used for Model Fitting and 
Prediction
Three types of training sets and two types of testing sets 
differing in the type of genotype and phenotype information 
included were used to assess the most convenient phenotypic 
and genotypic data to predict CB pig feed efficiency and growth 
rate for establishing a suitable strategy to select PB candidates 
for improved CB performance. The evaluated scenarios are 
summarized in Figure  1.

In the first training set (trn.1), genotypes from PB animals 
were used as predictor variables of their own adjusted RFI or 
ADG record (dPB). In the second training set (trn.2), genotypes 
of the PB sires were the predictor variables for the target response 
of average of adjusted CB records per PB sire (dCBSIRE). Thus, 
in this training set, average CB offspring performance was considered 
a PB sire’s trait. Finally, the third training set (trn.3) consisted 

TABLE 1 | Mean (SD in parentheses and range in square brackets) of residual feed intake (RFI) and daily gain (DG) at fattening for the three data subsets.

Data subset description 
(abbreviation)

RFI (g/day) Average daily 
gain (ADG; g/d)

Number of records Farm × batch levels Males/Females Sires/dams

Individual phenotypes from 
genotyped PB individuals (dPB)

−44 (216)

[−710, 635]

1112 (128)

[688, 1,508]
5,708 46 5,708/0 217/1120

Individual phenotypes of CB 
offspring from genotyped PB sires 
(dCBSIRE)

71 (169)

[−437, 611]

877 (88.55)

[566, 1,265]
3,495 from 257 sires 47 2,520/975 257/490

Individual phenotypes from 
genotyped CB individuals (dCB)

0.10 (150.10)

[−518, 583]

885.5 (87.39)

[541.0, 1285.0] 3,197 53 2262/935 252/478
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of individual CB adjusted phenotypes and genotypes (dCB). Thus, 
in trn.1, the reference population in which the model is fitted is 
exclusively composed of information from the PB animals. In 
trn.2, the model is fitted on phenotype records of CB pigs using 
genotype information from PB animals. Finally, in trn.3, the model 
is fitted exclusively using individual CB information.

The first testing dataset (tst.1) consisted of yet-to-be observed 
PB adjusted records (target trait) that were predicted from 
the own individual PB genotype (dPB). The second testing 
set (tst.2) consisted of yet-to-be observed average of adjusted 
CB offspring records per PB sire (target trait) to be  predicted 
from the sire genotype.

The combination of trn.1. and tst.1 (scenario trn.1-tst.1) 
allows to know the within PB line prediction quality when 
own individual PB genotypes and phenotypes are used. This 
is considered as the benchmark result because current selection 
strategies are based on PB individual prediction. The tst.2  in 
combination with trn.1, trn.2, and trn.3 allowed assessing the 
most convenient phenotypic and genotypic data to predict CB 
pig feed efficiency and growth rate. The combination of trn.1 
and tst.2 (scenario trn.1-tst.2) allows assessing the ability of 
the PB sire genotype to predict their average CB offspring 
performance when the prediction model is fitted using individual 
PB phenotypes and genotypes. In this case, the own phenotype 
and genotype information of the sires from whose CB offspring 
performance are predicted may be present or not in the training 
data, which could have consequences on the quality of prediction. 
The PB candidates could be  evaluated either right after being 
phenotyped themselves or even before (when only their genotypes 
are available). If predictions are accurate enough, the resultant 
fitted model could be  used to improve CB performance by 

selection in PB lines very early in time without the need of 
CB progeny and CB genotypes. The fitted model obtained in 
trn.2 requires progeny records available from PB sires. Combined 
with tst.2 (scenario trn.2-tst.2), it could be  used to improve 
CB performance by selection of PB lines in the case that 
genes involved in growth rate and feed efficiency differ between 
PB and CB populations. Finally, the scenario resulting from 
the combination of trn.3 with tst.2 (trn.3-tst2) explored the 
feasibility of using a CB reference population to fit a model 
to be  used for predicting CB progeny performance from PB 
sire genotypes. This strategy would allow selecting PB lines 
for improved CB performance when CB and PB performances 
have a different genetic determinism (e.g., presence of relevant 
non-additive variance and, therefore, potential heterosis, 
Esfandyari et  al., 2015) while evaluating PB candidates early 
in time. However, it requires genotyped and phenotyped CB 
animals, which is not a common practice in pig breeding schemes.

Model Fitting and Assessment of 
Predictive Performance
For all scenarios and different combinations of prediction 
method (i.e., learner) and SNP subset size, model fitting and 
hyper-parameter optimization were conducted with a nested 
cross-validation. Nested cross-validation allows estimating the 
generalization error of the underlying model and its hyper-
parameter search (Bischl et  al., 2016). It consists of several 
training-validation and testing dataset splits. An outer k-fold 
cross-validation using all data was performed using k-1 equal 
size parts of the original data sets for training the model, and 
the remaining one for testing. Hyper-parameter tuning was 

FIGURE 1 | Three types of training sets (trn.1, trn.2, and trn.3) and two types testing sets (tst.1 and tst.2) differing in the phenotype and genotype data used to 
train and test the prediction models. Pink pig and spotted white pig represent individual purebred (PB) and crossbred (CB) phenotype records, respectively. Three 
spotted white pigs represent average CB offspring phenotype records per PB sire. DNA chains with “PB,” “CB,” and “PB sire” represent the genotype of the PB 
animal, the genotype of CB animal, and the genotype of the PB sire of the CB offspring, respectively.
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performed in an inner cross-validation within each outer training 
fold. Same data split (i.e., same data subsets) was used across 
combinations of learners and datasets to compare prediction 
performance in the same conditions regarding data structure 
and composition.

Within each outer training set, features (i.e., SNPs) were 
standardized and selected according to a ranking based on the 
Spearman Rank correlation between the feature and the target 
trait. Different subsets with increasing number (50, 250, 500, 
750, 1,500, and 2,000) of the most correlated SNPs were selected. 
For each of those SNP’s subsets, a SVM regression model 
(explained in more in detail in the “Learner” section below) 
was fitted to the corresponding training set after identifying the 
optimal hyper-parameters in an inner 6-fold cross-validation.

Model fitting and assessment of predictive performance in 
trn.1-tst.1 scenario was conducted with an outer 10-fold cross 
validation randomly splitting dPB into 10 folds. Within each 
of these 10 folds, standardization of the predictor variables 
using the mean and SD from the corresponding training set 
was first carried on in both the training and testing sets. Then, 
the prediction performance of the model fitted with trn.1 was 
also evaluated in tst.2 separately for (i) the CB sires in tst.2 
whose own individual performance also appeared in the trn.1 
training set (“IN training sires”) and (ii) from those CB sires 
in tst.2 that did not intervene in the trn.1 training set (“OUT 
of training sires”). Model fitting and assessment of predictive 
performance in trn.2-tst.2 and trn.3-tst.2 combinations were 
conducted with an outer 5-fold cross validation repeated five 
times because of the smaller amount of available data. In 
trn.2-tst.2 scenario, the average of adjusted CB records of the 
PB genotyped sires (257 records from dCBSIRE) was randomly 
split into five approximately equal subsets. In scenario trn.3-tst.2, 
the 5-fold was obtained, ensuring that sires with records in 
the testing set had no individual CB progeny records in the 
training set of the same fold. Feature standardization in all 
of those testing sets was carried on using their own information 
(i.e., the mean and standard deviation of the SNPs).

The predictive performance of the models in the testing 
sets was evaluated in terms of accuracy, as the Spearman 
correlation between the true and the predicted trait across the 
k outer testing sets (SC), and in terms of stability/generalizability 
of the results, as the interquartile range (IQR) of those values.

Prediction Performance in the Youngest 
Generations
Predictive performances obtained in trn.1-tst.1, trn.1-tst.2, 
trn.2-tst.2, and trn.3-tst.2 using k-fold cross-validation allowed 
evaluating not only the predictive ability but also the stability 
of results (i.e., sensitivity to changes in the data set) from 
models fitted using different types of phenotype and genomic 
information. In a breeding program, the aim is to predict the 
productive performance of the selection candidates belonging 
to current generation from data coming from individuals of 
previous generations. Trying to emulate this situation, for each 
scenario animals from the last two generations (YOUNG) were 
assigned to the testing set, whereas the remaining ones (OLD) 

were used in the training set. Animals were assigned to a 
generation using the pedigree R package (Coster, 2013) using 
their pedigree information. Table 2 shows the amount of records 
and the number of generations available in the training and 
testing sets. Notice that because of data were split by generation, 
only a single prediction per scenario was obtained (i.e., no 
cross-validation was performed). Thus, for each SNP subset, 
models were fitted in a unique training dataset, after hyper-
parameter tuning by 6-fold cross-validation, and tested on a 
unique testing set corresponding to the two latest generations. 
Accuracy of prediction was measured as the Spearman correlation 
between observed and predicted phenotype, with its median 
and IQR assessed through a bootstrap approach (Efron, 1981). 
Pairs of predicted and observed phenotypes in the testing set 
were assumed to be  independent and identically distributed. 
Pairs corresponding to the number of individuals in the testing 
set were sampled with replacement from the whole testing set 
500 times, and the Spearman correlation was computed in 
each of the 500 bootstrap samples. Denote these new scenarios 
as trn.1OLD-tst.1YOUNG, trn.1OLD-tst.2YOUNG, trn.2OLD-tst.2YOUNG, 
and trn.3OLD-tst.2YOUNG. Dataset trn.1OLD contained individual 
phenotype and genotype information of PB OLD animals. 
Dataset trn.2OLD included average adjusted CB offspring records 
from PB OLD sires. Dataset trn.3OLD consisted of individual 
phenotype and genotype information of CB OLD animals. 
Dataset tst.1YOUNG contained individual phenotype and genotype 
information of PB YOUNG individuals and dataset tst.2.YOUNG 
included average adjusted CB YOUNG offspring records from 
PB sires. Then, the prediction performance of the model fitted 
with trn.1OLD was evaluated in tst.2.YOUNG separately for (i) the 
CB sires in tst.2.YOUNG whose own individual performance also 
appeared in the trn.1OLD training set (“IN training sires”) and 
(ii) from those CB sires in tst.2.YOUNG that did not intervene 
in the trn.1OLD training set (“OUT of training sires”).

Learner
SVM for regression was used as learner. It aims at identifying, 
for a set of prediction variables (x), a function that has a 
maximum deviation ε from the observed values (y) and has a 
maximum margin. SVM generates a model representing a tube 
with radius ε fitted to the data. A complete review on this 
method can be  found in Smola and Schölkopf (2004). The 
power of the SVM resides in a particular mathematical element 
known as kernel. One of the most used kernel is the Gaussian 
Radial Basis (RBF) because almost every surface can be obtained 
with it (Christianini and Shawe-Taylor, 2000). One of the main 
parameters in a SVM is the “cost parameter” (C), which is a 

TABLE 2 | Number of records and generations included in the different types of 
training (trn) and testing sets (tst).

trn.1OLD trn.2OLD trn.3OLD tst.1YOUNG tst.2YOUNG

Number of 
records

3,209 3,059 from 
206 PB sires

3,998 2,499 436 from 
51 PB sires

Number of 
generations

5 5 9 2 2
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trade-off between the prediction error and the simplicity of 
the model. Gamma is the other hyper-parameter of SVM 
regarding the Gaussian function inside the RBF kernel. 
Performance of SVM is very sensitive to changes in this parameter. 
Tested values for hyper-parameter C were 0.001, 0.1, 1, 5, and 
10 and for parameter Gamma 0.005, 0.05, 0.5, and 5. The 
“e1071” R package was used for the analyses (Meyer et al., 2019).

Genomic BLUP (GBLUP) was used as a reference predictive 
method, and it was implemented to assess predictive performance 
within dPB dataset (trn.1-tst.1) and to assess its performance 
for predicting average CB offspring performances from PB sires 
genotypes among the other scenarios. In all cases, the same 
outer training and testing datasets partitions than those used 
with SVM were used. The GBLUP is a genome enabled the 
best linear unbiased prediction model (VanRaden, 2008). GBLUP 
uses genomic relationships to estimate the breeding values of 
the individuals. The genomic relationship matrix was computed 
with the 46,610 SNPs available (VanRaden, 2008) and included 
all animals involved in each scenario. Variance components 
in each scenario were estimated using Gibbs2f90 software 
(Misztal, 1999). Single chains of 250,000 iterations were run 
by discarding the first 25,000. Samples of the parameters of 
interest were saved every 10 iterations. Then, for each scenario, 
predicted phenotypes in the corresponding folds were the BLUP 
solutions obtained with Blupf90 software (Misztal, 1999) using 
the previously estimated variance components.

RESULTS

Predictive performance of all SVM reached a maximum within 
the range of SNP subset sizes investigated, suggesting that 
increasing the SNP subset size beyond 2,000 features would 
not increase the model prediction performance for the dataset 
structure and characteristics of this study.

Prediction Performance of Individual 
Purebred Records
Figure 2 shows boxplots of the Spearman correlations between 
observed and predicted RFI and ADG records obtained from 
a 10-fold cross-validation in trn.1-tst.1 scenario with GBLUP 
and SVM with different SNP subsets. The median SC (IQR, 
in square brackets) between predicted and yet-to be  observed 
PB records across testing sets obtained with GBLUP was 0.23 
[0.04] for RFI and 0.28 [0.03] for ADG. The highest predictive 
performance obtained with SVM was 0.25–0.26 [0.03] for RFI 
with a subset of 500, 750, or 1,000 SNPs and 0.30 [0.05] with 
a subset of 500 SNPs for ADG. In both traits, the prediction 
performance was slightly higher with SVM combined with an 
appropriate SNP subset than with the standard GBLUP that 
used all available SNPs after quality control.

Prediction Performance of Average 
Crossbred Offspring Records
Prediction performances of several models fitted using different 
sources of information in the training set for predicting average 

CB offspring performances from PB sires genotypes are presented 
in this section. Figure  3 shows boxplots of the Spearman 
correlations between observed and predicted RFI and ADG 
records obtained in the tst-2 with SVM combined with increasing 
SNP subset sizes and GBLUP in the trn1.1-tst.2, trn.2-tst.2, 
and trn.3-tst.2 scenarios.

The ability of the PB sire genotype to predict their average 
CB offspring performance when the SVM model was fitted 
using individual PB phenotypes and genotypes (trn.1-tst.2 
scenario, upper panels Figure 3) substantially differed between 
the sires that appeared themselves in the trn.1 (i.e., their 
individual performance is included in trn.1) from those 
who did not. The number of sires that contributed to the 
model fitting in trn.1 with their own PB performance was 
on average (SD) across the 10-fold 120.6 (3.8) out of 257 
sires available. For RFI, the highest predictive ability of CB 
offspring records of the sires having their own performance 
in the training set was obtained with SVM and 250 SNPs 
(0.22 [0.03]) then, increasing the number of SNPs reduced 
the predictive performance. For ADG, the highest SC median 
was obtained with SVM and 500, 1,000, or 1,500 SNPs 
(0.12 [0.05]), and then with 2000 SNPs, SC was reduced. 
With SVM, the highest predictive ability of average CB 
offspring records of the sires that did not have their own 
performance in the training was obtained with 250, 500, 
or 750 features for RFI (0.11 [0.03–0.06]), whereas it was 
null for ADG. GBLUP showed also no predictive ability 
for ADG for the “OUT of training sires” and very poor 
prediction ability for the “IN training sires” (0.10 [0.02]). 
However, for RFI, GBLUP showed the highest predictive 
ability of all models for the “OUT of training sires” (0.25 
[0.07]), whereas predictive ability for the “IN training sires” 
was low. On average, the stability of the results was better 
for sires having individual records in the training sets than 
for un-recorded sires across models.

The ability of the PB sire genotype to predict their average 
CB offspring performance improved when model was fitted 
using the same target trait and features used for the predictions 
(trn.2-tst.2 scenario, middle panels Figure  3). The highest 
predictive ability was obtained with 500 or 750 SNPs for RFI 
(0.15 [0.09]) and with 1,000 SNPs for ADG (0.17 [0.11]). 
Predictive ability of GBLUP was lower than the obtained with 
the best SVM model for both traits: 0.08 [0.12] for RFI and 
0.09 [0.11] for ADG. The stability of the predictions was low 
in this scenario, given the large IQR obtained for the SC 
values across testing sets and models in both traits, which 
can lead to quite good or quite bad predictions (SC ranging 
from −0.12 to 0.45 for RFI and from −0.23 to 0.48 for ADG 
depending on the testing set).

Finally, the ability of PB sire genotypes to predict their 
average CB offspring performance from models fitted with 
individual CB information (trn.3-tst.2) is presented in Figure 3 
(lower panels). The highest predictive performance for RFI 
was obtained with GBLUP (0.29 [0.16]) followed by SVM with 
1,000 features (0.19 [0.09]), whereas the highest for ADG was 
obtained with SVM with only 50 features (0.15 [0.09]). Prediction 
ability with GBLUP was of 0.10 [0.15] for ADG. Like in 
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trn.2-tst.2 scenario, the interquartile ranges of the SC across 
testing sets in the trn.3-tst.2 scenario were large, showing the 
instability of the prediction obtained using these datasets (SC 
ranging from −0.16 to 0.47 for RFI and from −0.15 to 0.39 
for ADG depending on the testing set).

Prediction Performance in the Youngest 
Generations
In this section, the prediction ability of the models used to 
predict average CB offspring performances from the youngest 
generations with the different scenarios trained on previous 
generations are presented.

Figure  4 shows boxplots of the Spearman correlations 
between observed and predicted RFI and ADG records 
obtained with the bootstrap sampling in the testing sets 
of trn.1OLD-tst.2YOUNG, trn.2OLD-tst.2YOUNG, and trn.3OLD-
tst.2YOUNG scenarios with SVM using an increasing number 
of the most informative SNP as predictor variables and 
GBLUP. The presence of own individual PB phenotype 
and genotype in the training set improved the prediction 
ability of the PB sire genotype to predict its young CB 
offspring performance for ADG but not for RFI, where 
both groups of sires had similar prediction performances 
(“IN training sires” vs. “OUT of training sires” in trn.1OLD-
tst.2YOUNG, Figure  4, upper panels). The highest median 
SC (IQR in brackets) between predicted and yet-to 
be  observed average adjusted CB offspring records for the 
“IN training sires” obtained with SVM was 0.34 [0.21] 
and 0.36 [0.22] for RFI and ADG, respectively, with 50 
SNPs. The highest median SC (IQR in square brackets) 
obtained for the “OUT of training sires” with SVM was 
of 0.33 [0.31] with 1,500 SNPs for RFI and 0.11 [0.31] 
with 500 SNPs for ADG. The median SC for the “OUT 
of training sires” obtained for GBLUP was 0.17 [0.26] and 

0.30 [0.29] for RFI and ADG, respectively. The median 
SC for the “IN training sires” obtained for GBLUP was 
null for RFI and 0.12 [0.21] for ADG.

The ability of the youngest PB sires to predict their 
average CB offspring performance with their genotypes when 
model was fitted using the same target trait and features 
from previous generations (trn.2OLD-tst.2YOUNG scenario, middle 
panels from Figure  4) was of 0.17 [0.20] and 0.18 [018] 
with SVM with 500 and 750 SNPs, for RFI and ADG, 
respectively. This scenario leads the poorest predictive CB 
offspring performance compared to the other two ones. 
GBLUP showed the same poor prediction ability: 0.06 [0.18] 
for RFI and 0.09 [0.22] for ADG.

The ability of the youngest PB sire genotypes to predict 
their average CB offspring performance from models fitted 
with individual CB information from previous generations 
(trn.3OLD-tst.2YOUNG, upper panels from Figure 4) was 0.28 [0.18] 
for RFI with SVM and 250 or 750 SNPs and 0.34 [0.15] for 
ADG with SVM with 500 SNPs. In this scenario, predictive 
performances were null with SVM combined with the smallest 
SNPs subset. Predictive performance of GBLUP was 0.34 [0.17] 
for RFI and 0.14 [0.18] for ADG.

Finally, a general trend was observed. The SVM models 
that showed the highest prediction ability and stability across 
the k-fold cross-validations in the three scenarios (i.e., prediction 
performance in tst.2 from model fitting in trn.1, trn.2., and 
trn3, Figure  3), also gave good predictions in the youngest 
generations (tst.2YOUNG) when models were fitted with data from 
older generations (trn.1 OLD, trn.2OLD, and trn3 OLD, Figure  4). 
However, the clearly higher prediction performance of CB 
offspring of the “IN training sires” compared to the “OUT of 
training sires” in the 10-fold-CV (trn.1-tst.2, Figure  3) was 
not clearly denoted when data was split according to OLD 
and YOUNG generations (trn.1OLD‐ tst.2OLD, Figure  4).

FIGURE 2 | Boxplots of the Spearman correlations between observed and predicted residual feed intake and daily gain at fattening records obtained with genomic 
BLUP (GBLUP) and support vector machine (SVM) using different subset sizes of single nucleotide polymorphisms (SNPs) as predictor variables in a 10-fold 
cross-validation for scenario trn.1-tst.1 (see Figure 1 for a description).
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FIGURE 3 | Boxplots of the Spearman correlations between observed and predicted residual feed intake and daily gain at fattening records obtained with GBLUP 
and SVM using different subset sizes of SNPs as predictor variables in a k-fold cross-validation for scenario trn.1-tst.2 (upper panel), trn.2-tst.2 (middle panel), 
and trn.1-tst.2 (lower panel). See Figure 1 for scenario description. In scenario trn1.tst2, “IN” refers to the situation in which the sires have their own performance 
in the training set and “OUT” refers to the opposite situation.
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FIGURE 4 | Box plots for the bootstrap distribution of Spearman correlations between observed and predicted residual feed intake and daily gain at fattening records 
obtained with Genomic BLUP (GBLUP) and support vector machine (SVM) using different subset sizes of SNPs as predictor variables in different scenarios. Testing sets 
were all composed of animals from the last two generations while training sets contained information from animals belonging to all previous ones. See Figure 1 for scenario 
description. In scenario trn1.tst2, “IN” refers to the situation in which the sires have their own performance in the training set and “OUT” refers to the opposite situation.

241

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Tusell et al. Machine Learning Prediction of Crossbred Performance

Frontiers in Genetics | www.frontiersin.org 10 December 2020 | Volume 11 | Article 567818

DISCUSSION

One of the major benefits of implementing GS in pig breeding 
is that elite boars in nucleus herds can be  evaluated on traits 
recorded on animals that even do not bear any kinship with 
them. Traits related to CB performance, whose genetic 
improvement is crucial in pig crossbreeding schemes (Meuwissen 
et  al., 2016), are among them. In this research, the use of 
different sources of information to predict CB performance 
to evaluate PB candidates for RFI and ADG with reduced 
SNP subsets was explored using SVM. Its prediction performance 
was compared to that of GBLUP, used as benchmark.

SVM models have been used in genome-wide prediction 
due to their ability to deal with potential non-linearity 
between features and target traits in animals and plants 
(Moser et  al., 2009; Long et  al., 2011; Montesinos-López 
et al., 2019). Our results indicate that SVM regression models 
were efficient in terms of prediction performance even when 
using a reduced subset of SNPs. This implies that low-density 
SNP panels could be  cost-effective for breeding programs, 
since many animals could be  genotyped at low cost, leading 
to a potential increase in selection intensity. In addition, 
feature selection (i.e., selection of a subset of predictor 
variables from the input data) reduces computation 
requirements and adverse effects on prediction performance 
of irrelevant variables due to over-fitting, which is especially 
an important problem in studies with high-dimensional/
high-throughput data (Chandrashekar and Sahin, 2014). 
Feature selection was performed here in each outer training 
set using the rank correlation between the target trait and 
the SNP prediction. Selection of markers must be done using 
training set data only and must be repeated at each replication 
of the cross-validation when a new training dataset is 
encountered. If feature selection is done using the whole 
dataset before cross-validation, biased estimates of model 
accuracy are obtained (Hastie et  al., 2009). In addition, 
when features have a high level of redundancy, different 
training samples can lead to different feature ranks (and, 
therefore, different subsets of features), which yield the same 
prediction accuracy. In order to design a low-density SNP 
panel for genetic selection or diagnostic, the stability of 
feature selection methods is important. The agreement of 
prediction models produced by an algorithm when trained 
on different training sets is known as “preferential stability” 
(Somol and Novovicova, 2010). Therefore, it is important 
to use a feature selection method that achieves a good 
prediction performance on independent data sets but that 
also produces a stable set of predictors, this understood as 
subsets that are less sensitive with respect to changes in 
the training set. The choice of method also depends on 
the available computational resources. It is desirable to 
evaluate feature selection methods for each specific problem/
dataset because there is no group of methods that outperforms 
all other ones in every dataset (Somol and Novovicova, 
2010; Haury et  al., 2011; Bommert et  al., 2020). In this 
study, rank correlation was chosen as metric based on his 
behavior when using data from scenario trn1.tst1.

Prediction Performance of Individual 
Purebred Records
Within PB animals (trn.1-tst.1 scenario), SVM with an optimal 
number of selected SNPs outperformed the predictive 
performance of the benchmark model (GBLUP) in the two 
traits analyzed (Figure  2). Phenotype prediction using GBLUP 
is performed through the use of genomic breeding values 
obtained from the additive combination of all SNP marker 
effects simultaneously (Meuwissen et  al., 2001). In our study, 
GBLUP using all SNPs available was the benchmark model. 
Further research could be  to test predictive performance of 
GBLUP using subsets of the most informative SNPs. The GBLUP 
has been successful for selection purposes in many breeding 
programs (de los Campos et  al., 2013; Meuwissen et  al., 2016). 
However, its parametric assumptions are not always met and 
other more flexible approaches may attain better predictive 
accuracies (Gianola et  al., 2006). The genetic basis of target 
phenotypes is a major factor affecting differences in prediction 
accuracy between parametric and non-parametric methods. For 
instance, SVM and other non-parametric models outperformed 
parametric models when epistasis influences phenotypes in a 
simulation study (Howard et  al., 2014). This is because 
non-parametric models can deal with interactions among 
predictor variables and non-linear relationships with the target 
variable, (but without explicitly modeling these interactions or 
functional forms). Nevertheless, using such methods for selection 
purposes in a classical framework is not straightforward. This 
is because coefficient estimates are difficult to interpret, precluding 
quantification of additive genetic variance. However, if these 
methods provide a good prediction performance due to their 
ability to capture genetic effects in the broad sense (including 
additive genetics effects), their potential in GS cannot be ignored.

Prediction Performance of Average 
Crossbred Offspring Records
In the scenarios used to test the ability to predict CB offspring 
performance from PB sire genotypes, results suggested that 
the best SVM models (in terms of prediction quality and 
stability of results) gave good predictions of average CB offspring 
records of young candidates using a model fitted with information 
from previous generations. However, predictive performance 
results in the “YOUNG/OLD scenarios” should be  taken with 
caution because only a single realization was performed in 
each comparison. The bootstrap approach performed in the 
testing sets, provides only an approximate uncertainty 
measurement of prediction accuracy. Ideally, learners must 
be  tested across several realizations of independent training/
testing data sets.

Scenarios trn.1-tst.2 and trn.1OLD-tst.2YOUNG assessed the ability 
to predict CB performance in a context, where only PB 
information is used to fit the model. This is classical in pig 
crossbreeding schemes, where genetic improvement of CB traits 
is expected to occur as a correlated response to genetic 
improvement in PB traits. The ability of the PB sire genotype 
to predict average CB offspring performance when the prediction 
model was fitted using individual PB phenotypes and genotypes 
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was low for both RFI and ADG (trn.1-tst.2 scenario, Figure 3). 
In this scenario, the PB genotype was used to predict a different 
response/target trait in the training and in the testing datasets 
(individual phenotype vs. average CB progeny phenotype). Thus, 
predictions obtained in tst.2 somehow reflect that genetic 
differences within a PB line do not produce similar changes 
in the CB population, as estimated correlations between PB 
and CB traits suggested (Wientjes and Calus, 2017). However, 
prediction of CB offspring performance was systematically better 
for sires that had their own record in the training set (“IN 
training” sires), than for sires lacking records in the training 
set (“OUT of training” sires), where predictions were very poor. 
The best SVM model outperformed prediction ability of GBLUP 
except for predicting “OUT of training” sires CB performances 
were a quite high an unexpected predictive accuracy was found 
for RFI using GBLUP. Unfortunately, we  cannot find a suitable 
explanation for the higher predictive performance for the “OUT 
of training” sires with respect to the “IN training sires” for 
RFI. We would expect that sires recorded in the training would 
get better predictions of their CB offspring in the testing set, 
as it has been the tendency for all the SVM models and for 
GBLUP in the other trait. A PCA biplot with the two first 
principal components of the G matrix did not reveal any hidden 
population structure involving trn1 and IN and OUT of training 
tst2 individuals, that could explain this result (not shown).

When evaluating the models under more realistic conditions 
of selection (trn.1OLD-trn.2YOUNG, Figure  4), predictions of CB 
performance of the “IN training sires” were improved for 
ADG, while remaining of similar magnitude for RFI. The 
very poor predictions achieved for the young “OUT of training” 
sires suggests that the strategy to evaluate PB lines for CB 
performance that leads to the shortest generation interval and 
reduced genotyping efforts is clearly far from being feasible 
for ADG. However, it could be  an option for improving RFI, 
because moderate prediction performances were obtained either 
for the “IN training” or the “OUT of training” YOUNG sires. 
Nevertheless, when the own individual performance of the 
young PB sire was included in the data used to fit the model, 
(which reduces the response to selection per time units) an 
acceptable but low prediction quality would be  attained in 
its yet-to-be observed CB offspring (“IN training sires” from 
trn.1OLD-tst.2YOUNG, Figure  4), specially for ADG. Therefore, 
candidates for selection can be  evaluated for their yet-to-be 
observed CB offspring performance right after their own RFI 
and ADG performances are available. This is of interest for 
traits recorded in selection candidates that are usually evaluated 
at the end of the fattening period (at about 160  days of age, 
Tribout et  al., 2013), such as RFI and ADG. This implies that 
the evaluation for CB performance would not require maintaining 
costs of the candidates until they would have progeny CB 
records and candidates could be  evaluated for both PB and 
CB performance simultaneously, which makes possible to 
include CB traits in selection decisions of the PB lines. However, 
it is important to note that the accuracy of prediction obtained 
for the “IN training sires” is probably the result of genetic 
relationships captured by the marker instead of improved 
accuracy due to linkage disequilibrium between the genes and 

the markers, as shown by Habier et  al. (2007). This could 
explain the low prediction accuracy obtained when individuals 
in the testing set were not directly related with individuals 
in the training set. Habier et  al. (2007) recommended 
consideration of the accuracy of predictions from several 
generations after marker estimation, and not only from a single 
generation if the objective is to make predictions over some 
generations after estimation of marker effects. No substantial 
differences in prediction ability were encountered between 
GBLUP and SVM models for most of the cases evaluated in 
trn.1OLD-tst.2YOUNG. However, GBLUP gave better prediction 
ability for predicting ADG offspring records of “OUT of 
training” young PB sires than the best SVM model.

In the presence of genotype by environment and 
genotype  ×  genotype interactions, PB performance can be  a 
poor predictor of CB offspring performance, so the use of a 
CB population as training dataset is advisable (Dekkers, 2007; 
Zeng et  al., 2013; Esfandyari et  al., 2015, 2016). Thus, another 
strategy would be  to have a reference population including 
genotyped and phenotyped CB individuals to fit the model 
and then to evaluate PB candidates for their yet-to-be observed 
CB offspring performance using their own genotypes. This 
approach was assessed in trn.3-tst.2 scenario, which leads to 
a prediction quality similar to the best situation in trn1.tst2. 
Prediction of average CB offspring performance of the youngest 
PB sire using their own genotypes with the best models fitted 
with individual CB information from previous generations 
(trn.3OLD-tst.2YOUNG) was good and close in magnitude to that 
obtained for the “IN training sires” using PB data for training 
(trn.1OLD-tst.2YOUNG), specially using GBLUP. This means that 
with a CB reference population for model fitting, PB candidates 
can be  evaluated for CB performance at an early age, right 
after being genotyped. This strategy would reduce generation 
interval, but at the cost of also genotyping CB individuals. 
Alternatively, the reference population could be  composed of 
a mixture of PB and CB animals, in order to get a more 
representative collection of genetic effects and interactions. 
Other strategy could be  implementing a multi-label prediction 
model jointly considering PB and CB information. Exploring 
such strategies is a subject for further research. In a simulation 
study, Esfandyari et  al. (2016) concluded that training a 
parametric GS model accounting for dominance effects using 
CB data led to greater phenotypic response at the CB level 
compared to training the model on PB lines.

The idea behind scenario trn.2-tst.2 was to fit a prediction 
model using the same genotype and phenotype information 
than what was intended to be  predicted on PB candidates, 
assuming that a phenotype expressed in PB animals was not 
necessarily under the same gene action as a phenotype 
expressed in CB animals. This scenario requires progeny 
records from the PB sires available in the training dataset, 
lengthening the generation interval. The resulting prediction 
ability with SVM models, although still low, was slightly 
better than the one obtained with the models fitted with 
trn.1 (trn.2-tst.2 vs. trn.1-tst.2, Figure  3). This could be  due 
to the fact that genes or effects involved in growth rate and 
feed efficiency differ between PB and CB populations, in 

243

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Tusell et al. Machine Learning Prediction of Crossbred Performance

Frontiers in Genetics | www.frontiersin.org 12 December 2020 | Volume 11 | Article 567818

which using same information for model fitting and prediction 
is advisable. The instability encountered in the predictions 
of trn2.tst.2 scenario can be  explained by the small amount 
of data available in this dataset (i.e., only 257 average CB 
records were available). This problem was not compensated 
by the better predictive performance expected for an average 
than for a single data point. It would be  expected that 
averaging CB offspring records per sire would average out 
dam effects and other environmental effects not accounted 
for in the data pre-adjustment. Prediction accuracy of the 
youngest PB sire generations was very poor with all models, 
possibly because a low level of relatedness between individuals 
of the training and testing sets (Habier et  al., 2007). SVM 
models outperformed the prediction performance of GBLUP.

Our research was mostly focused in finding a prediction 
model suitable for improving a terminal sire line for growing-
finisher pigs CB performance, with effects from maternal 
lines (i.e., effects of CB dams) ignored. To our knowledge, 
this is the first evaluation made of a non-parametric approach 
for predicting CB phenotypes from SNP genotypes. In a 
two‐ or three-way crosses context, the advantage of using a 
non-parametric over a parametric approach is that the first 
does not need to explicitly specify non-additive genetic effects 
(such as dominance and epistasis) nor to account for potential 
non-linear relationships between genotypes and phenotypes. 
We  could show that the tested models could outperform the 
benchmark GBLUP in some of the scenarios explored, opening 
promising future axes of research to refine the use of these 
methodologies in crossbreeding genomic evaluations.

CONCLUSION

SVM is an efficient method for predicting average RFI and 
ADG CB performances from PB sire genotypes using a selected 
subset of SNPs (250–1,000). This makes SVM appealing for 
select candidates to selection of PB sire lines for improved CB 
performance with low-density SNP chip panels. Given the predictive 
performance of SVM in the scenarios explored, selection candidates 
could be  evaluated for CB performance after collection of their 
own RFI and ADG performances in a classical pig crossbreeding 
scheme framework or sooner right after being genotyped using 
a reference population of CB animals. Genetic progress and 
economic impact of these approaches need to be  addressed.
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Crossbreeding in livestock can be used to increase genetic diversity. The resulting

increase in variability is related to the heterozygosity of the crossbred animal. The

evolution of diversity during crossbreeding can be assessed using genomic data. The

objective of this study was to describe patterns of runs of homozygosity (ROH) in animals

resulting from three-way crossbreeding, from parental pure lines, and in their crossbred

offspring. The crossbreeding scheme consisted of a first crossbreeding Pietrain boars

and Large White sows, after which the offspring of the Pietrain × Large White were

crossed with Duroc boars. The offspring of the second crossbreeding are called G0,

the offspring of G0 boars and G0 sows are called G1. All the animals were genotyped

using the Illumina SNP60 porcine chip. After filtering, analyses were performedwith 2,336

animals and 48,579 autosomal single nucleotide polymorphism (SNP). The mean ROH-

based inbreeding coefficients were shown to be 0.27 ± 0.05, 0.23 ± 0.04, and 0.26 ±

0.04 for Duroc, LargeWhite, and Pietrain, respectively. ROHwere detected in the Pietrain

× Large White crossbred but the homozygous segments were fewer and smaller than

in their parents. Similar results were obtained in the G0 crossbred. However, in the G1

crossbreds the number and the size of ROH were higher than in G0 parents. Similar ROH

hotspots were detected on SSC1, SSC4, SSC7, SSC9, SSC13, SSC14, and SSC15 in

both G0 and G1 animals. Long ROH (>16 Mb) were observed in G1 animals, suggesting

regions with low recombination rates. The conservation of these homozygous segments

in the three crossbred populations means that some haplotypes were shared between

parental breeds. Gene annotation in ROH hotspots in G0 animals identified genes related

to production traits including carcass composition and reproduction. These findings

advance our understanding of how to manage genetic diversity in crossbred populations.

Keywords: runs of homozygosity, genomic inbreeding, crossbreeding, swine, genomic diversity

1. INTRODUCTION

Crossbreeding exploits genetic diversity between breeds with different objectives including the
contribution of new genes, the heterosis effect, complementarity between production traits, and
increased genetic variability (Bidanel, 1992). Increase in genetic variability in crossbred animals
is related to their heterozygous status. Crossbred animals become heterozygous for all loci when
parental breeds are homozygous for a different allele. When crossbreeding is used to create a
new synthetic line, two or more parental breeds can be crossed. Crossbred offspring can be
mated among themselves at each generation. After several generations, the animals will become
genetically homogeneous and this population can be considered a new line. One important point
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is the management of genetic diversity during this process. In
this context, characterizing genetic diversity with pedigree data
is impossible because genealogical relationships among parental
breeds used in the crossbreeding cannot be established. However,
genomic data can be analyzed to overcome the problem (Zhang
et al., 2019).

Genomic-based inbreeding coefficients can be computed to
provide information about diversity in a population. In a
recent study, Schäler et al. (2020) distinguished between four
different approaches to calculate the coefficients: variance of
additive genetic values, single nucleotide polymorphism (SNP)
homozygosity, uniting gametes, and runs of homozygosity
(ROH). The first three coefficients depend on estimating
allele frequencies in the population, contrary to ROH-based
inbreeding coefficients. ROH-based inbreeding coefficients are
of real interest in crossbred populations with high levels of
heterozygosity, because inbreeding coefficients calculated using
intermediate allele frequencies are close or equal to 0 (Zhang
et al., 2015).

In a diploid genome, ROH are continuous stretches
of homozygous genotypes, and their quantification reflects
autozygosity (Ferenčaković et al., 2013; Peripolli et al., 2017).
Autozygosity occurs when the two parents of an individual have
at least one common ancestor. ROH can be influenced by genetic
drift, genetic bottlenecks, mating between relatives, or intensive
selection (Peripolli et al., 2017). ROH are not distributed evenly
along the genome. Pemberton et al. (2012) defined two types
of regions in terms of ROH distribution: hotspots, with a high
frequency of ROH, and coldspots, with a low frequency. Hotspots
show a loss of diversity compared to coldspots. In pig, Bosse
et al. (2012) showed that ROH distribution can be influenced by
demographic phenomena and the chromosomal recombination
landscape. An ROH gene content analysis in the same study
showed that only a few ROH are under positive selection.

The study of ROH in crossbred animals provides information
on the genomic similarities between parental lines. ROH shared
between two porcine breeds has already been demonstrated
in Large White and Landrace pigs (Zanella et al., 2016).
Persistence of ROH in crossbred pigs has been reported in real
animals in two-way crossbreeding (Landrace × Large White)
and in simulated animals in three-way crossbreeding [Duroc ×
(Landrace × Large White)] (Howard et al., 2016; Gómez Raya
et al., 2019). These results indicate that similar haplotypes were
selected in porcine breeds and can persist in crossbred offspring.

The objective of this study was to analyze ROH patterns
during three-way crossbreeding aimed at creating a new porcine
line. ROH were searched for individuals resulting from three
parental pure breeds and their offspring over two generations
in order to characterize and compare autozygosity among
pure breeds, and to monitor the modification of ROH in
the crossbreed.

2. MATERIALS AND METHODS

2.1. Genotyped Animals
Genomic data were obtained from the breeding company
NUCLEUS (Le Rheu, France) from a three-way crossbreeding

FIGURE 1 | Crossbreeding scheme. Squares represent males, circles

represent females, and diamonds represent unspecified gender. DRC, Duroc;

G0, (Pietrain × Large White) × Duroc offspring; G1, G0 × G0 offspring; LW,

Large White; PI, Pietrain; PLW, Pietrain × Large White.

protocol (Figure 1). Animals from three pure lines were
genotyped: 80 Pietrain (PI) boars, 240 Large White (LW)
sows, and 89 Duroc (DRC) boars. Crossbred animals were also
genotyped: Pietrain× LargeWhite crossbred offspring (442 PLW
sows), Duroc × PLW crossbred offspring (69 G0 boars and 471
G0 sows) and G0 × G0 crossbred offspring (472 G1 boars and
473 G1 sows). Genotyping was carried out by the Labogena
laboratory using the Illumina Porcine Chip, Porc_XT_60K. We
used a reference map based on the Sus scrofa 11.1 pig genome
assembly. Quality control of genotypes was performed with
PLINK v1.9 software (Chang et al., 2015). Only markers on
autosomes were kept. Markers with more than 5% of missing
genotypes were discarded. We checked that all the animals had
more than 90% genotyped markers. No minor allele frequency
(MAF) pruning was used here according to Meyermans et al.
(2020). After quality control, 2,336 animals and 48,579 SNP were
retained for analysis.

2.2. Population Structure Analysis
First, a multidimensional scaling analysis (MDS) was conducted
to visualize the genetic distances between animals and the
structure of the pig population using PLINK v1.9 software. After
this we computed Cockerham and Weir (1984) FST analysis
with PLINK v1.9 software to quantify genetic differentiation
among pig groups. Finally, an admixture analysis was performed
with ADMIXTURE v1.3.0 software (Alexander et al., 2009).
Here, the number of genetic populations considered was 3
(for K parameter), the number of pure breeds involved in
the crossbreeding.

2.3. Detection of Runs of Homozygosity
ROH were detected with PLINK v1.9 software. First, to choose
the minimum size to define an ROH (in terms of SNP and kb)
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FIGURE 2 | Population structure shown in a multidimensional scaling analysis (MDS) plot of all animals. DRC, Duroc; G0, (Pietrain × Large White) × Duroc offspring;

G1, G0 × G0 offspring; LW, Large White; PI, Pietrain; PLW, Pietrain × Large White.

and the minimum SNP density in an ROH, we selected a range
of minimum numbers of SNP and minimum size in kb according
to Peripolli et al. (2017). Tests of parental populations (Pietrain
and Large White) were then performed to choose the values that
neither underestimated nor overestimated the number of ROH
detected (Ganteil et al., 2020). The values selected to define an
ROHwere 30 SNP and 1,000 kb and theminimumdensity was set
at one SNP per 100 kb. Regarding the parameters for the number
of SNP in the sliding window, Curik et al. (2014) recommended
using a sliding window equal or larger than the minimum size
used to define an ROH.We thus decided to set the sliding window
at 30 SNP. We allowed one missing SNP per sliding window.
To obtain strictly homozygous ROH, no heterozygous SNP were
allowed per sliding window. All the other parameters available in
PLINK that are not mentioned above were default settings.

The ROH were also divided into three classes based on length:
1–8, 8–16, and >16 Mb corresponding to small, medium, and
large ROH, respectively.

2.4. Estimation of ROH-Based Inbreeding
Genomic analyses after detection of ROH were performed
with the R package DetectRUNS (Biscarini et al., 2019). We
calculated the ROH-based inbreeding coefficient (FROH) for each

animal as:

FROH =

∑

LROH

Lautosomes
(1)

where
∑

LROH is the sum of the length of all the ROH detected in
an animal in bp, and Lautosomes is the total length of the autosomes
covered by markers in bp.

The most frequent SNP in ROH are ROH hotspots. To
define the ROH hotspots, we first computed the frequency at
which each SNP is detected in an ROH in each pure breed
and crossbred population. Then, using the method proposed by
Purfield et al. (2017), we selected the top 1% of SNP observed
in an ROH in each pure breed and crossbred population and
adjacent SNP above this threshold were merged into genomic
regions corresponding to ROH hotspots.

2.5. Genomic Annotation
Genomic annotation was performed in G0 crossbreds, the
first generation of the new line. In this generation, ROH
hotspots mean frequent haplotype sharing between Pietrain,
Large White, and Duroc. Genes in ROH hotspots in G0
animals were extracted using Biomart on the Ensembl
website (https://www.ensembl.org/biomart/martview/fbef5263e
7166fc734235c9325399e4d, version 100 released in April 2020).
As dataset, we used the current pig genome assembly (build 11.1),
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FIGURE 3 | Weir and Cockerham FST heatmap for all groups. DRC, Duroc; G0, (Pietrain × Large White) × Duroc offspring; G1, G0 × G0 offspring; LW, Large White;

PI, Pietrain; PLW, Pietrain × Large White.

and the regions of interest on the chromosomes were used as a
filter to extract gene symbols.

3. RESULTS

3.1. Population Genetic Structure
Figure 2 shows the genetic distances between each animal. The
three founder populations, Pietrain, Large White and Duroc,
were well-separated and distant populations. The crossbred PLW
are halfway between Pietrain and Large White populations. This
result is consistent with the chromosome composition of PLW:
half Pietrain and half Large White. The first axis separates
the Pietrain, Large White, and PLW populations from Duroc.
The G0 and G1 crossbred are plotted in the center of the
MDS plot halfway between Duroc and PLW. G0 animals were
more grouped than G1 animals, which were more spread out
in the center of the MDS plot. This result highlights random
segregation and recombination of chromosomes during meiosis.
Thus, G1 animals all inherited in different proportions of Duroc,
Pietrain, and Large White chromosomal segments. In addition,
new original combinations of alleles from the 3 parental breeds
are present in this generation. These results illustrate a generation
of genetic diversity between G0 and G1 animals.

In Figure 3, we presented the pairwise Weir and Cockerham’
FST values between all purebred and crossbred populations.
Among the pure breeds, we observed the highest differentiation

coefficients between Duroc and Pietrain and Duroc and Large
White (0.201 and 0.198, respectively). Pietrain and Large
White are less genetically differentiated with a FST value of
0.159. Between crossbred offspring and their parental pure
breeds, we observed FST values ranged between 0.044 and 0.09.
Concerning G0 and G1 crossbred, they have the lowest observed
FST value.

With the admixture analysis, we can validate the crossbreeding
scheme (Figure 4). We observed the admixture of the crossbred
populations based on 3 different genetic origins. PLW animals
were half Pietrain and half LargeWhite. After, G0 andG1 animals
presented similar profiles of admixture, approximately a quarter
Pietrain, a quarter Large White, and a half Duroc.

3.2. ROH Patterns
We observed different ROH patterns among the 3 pure breeds
and 3 crossbred populations studied (Figure 5). The three pure
breeds had both the greater cumulative ROH length and more
ROH than the crossbred animal. ROH persisted in the three
crossbred populations due to haplotypes shared between parental
breeds. The most ROH and the longest cumulative size were
observed in Duroc animals. Pietrain and Large White animals
had similar numbers of ROH, whereas Pietrain tended to have
higher cumulative length, which means that these animals
had larger ROH than Large White. G1 animals had the most
ROH and the longest cumulative size of ROH of the three
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FIGURE 4 | Admixture analysis of each population from the three-way crossbreeding. The number of clusters was set to K = 3. DRC, Duroc; G0, (Pietrain × Large

White) × Duroc offspring; G1, G0 × G0 offspring; LW, Large White; PI, Pietrain; PLW, Pietrain × Large White.

crossbred populations, and G0 animals had the smallest number
of ROH and the lowest cumulative size. PLW animals were
between the two.

We observed the mean length of ROH detected per
chromosome for each pig population (Figure 6). Pure
breeds presented the highest mean length of ROH along
the chromosomes. Pietrain animals had the highest observed
mean length of ROH in particular for SSC6, SSC8, and SSC15
compared to other groups. For crossbred animals, in all
chromosomes, G1 had a mean length of ROH greater than G0.

Figure 7 shows the ROH-based inbreeding coefficient (FROH)
for each pure breed and crossbred population. As expected,
average FROH was lower in the crossbred individuals (PLW, G0,
and G1) than in the pure breeds (PI, LW, and DRC). The average
FROH for each group was 0.27 ± 0.05, 0.26 ± 0.04, 0.23 ± 0.04,
0.13 ± 0.02, 0.10 ± 0.01, and 0.05 ± 0.01 for Duroc, Pietrain,
Large White, G1, PLW, and G0, respectively.

3.3. ROH Hotspots
Figure 8 shows the frequency of a single SNP detected inside
an ROH along the genome. The exact genomic position of
ROH hotspots are reported in Supplementary Table 1. The
occurrences of ROH varied among the three pure breeds along
the genome. ROH hotspots were identified in Duroc animals on
SSC2, SSC3, SSC9, SSC13, SSC14, and SSC15, and in Pietrain
animals on SSC6 and SSC8. Finally, in Large White animals,
ROH hotspots were identified on SSC1, SSC3, SSC4, SSC6, SSC7,

SSC13, SSC14, and SSC17. Some SNP were located in ROH
particularly on SSC8, in all Pietrain animals. Among crossbred
animals, PLW animals presented ROH hotspots on SSC1, SSC3,
SSC4, SSC6, SSC8, and SSC14. G0 and G1 animals had ROH
hotspots located close together, especially on SSC1, SSC4, SSC7,
SSC9, SSC13, SSC14, and SSC15. These results highlight regions
of the genome where there is high probability of haplotype
sharing between the three parental breeds.

3.4. ROH Size Categories
We divided the homozygous segments into three size classes:
small, medium, and large (Figure 9). The small category was the
most widely represented across the pure breeds and crossbred
populations. The highest frequency of small ROH was observed
in the G0 population and the lowest in the Pietrain population.
Minimum frequencies of the two other size classes were observed
in G0. The three pure breeds showed the highest level of ROH
in the medium and large classes. Among the three crossbred
populations, G1 animals had the highest proportion of medium
and large ROH.

To analyze the distribution of large ROH in more detail,
we only used the frequency of SNP detected in large ROH
(Figure 10). In the Pietrain breed, we detected two frequent
chromosomal regions with large ROH on SSC6 and SSC8 shared
between more than 60 and 80% of animals, respectively. In Large
White, large ROHwere located on SSC1 and SSC13, and inDuroc
animals on SSC9. Like Pietrain, the PLW crossbred had long
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FIGURE 5 | Individual pattern of runs of homozygosity (ROH). The cumulative length of ROH is plotted against the number of ROH detected for each animal. DRC,

Duroc; G0, (Pietrain × Large White) × Duroc offspring; G1, G0 × G0 offspring; LW, Large White; PI, Pietrain; PLW, Pietrain × Large White.

ROH located on SSC8. G0 had no chromosomal regions with
frequent large ROH, but in their offspring (G1) we observed a
slight increase in large ROHonmany chromosomes, for example,
SSC1, SSC6, SSC8, SSC9, SSC13, SSC14, and SSC15.

3.5. Relation Between ROH and Gene
Annotation
Among the ROH hotspots in G0 animals (Figure 8), we first
selected hotspots larger than 1Mb. Thereafter, we kept only ROH
hotspots with an average frequency of detection of SNP in ROH
greater than 0.40. Seven ROH hotspots were kept on SSC1, SSC4,
SSC13, SSC14, and SSC15. The size of the regions ranged from
1.45 Mb (SSC14) to 7.26 Mb (SSC1) (Table 1). We extracted the
list of genes detected in the ROH hotspots and we reviewed the
literature on these genes to find information that could be related
to pig production. Thus, we identified 24 genes of interest in these
hotspots. They were associated with production traits that could
have been under similar selection in the three founder breeds.

4. DISCUSSION

To our knowledge, this is the first ROH characterization in a
three-way crossbreeding program with the aim of creating a new
synthetic pig line. The objective of a new line is to combine the
qualities of several parental breeds in a new synthetic breed. In

this context, managing diversity is a major constraint to long-
term genetic progress. Studying ROH during the creation of a
new line is a useful way to characterize the existing diversity in
founder pure breeds and the resulting diversity in the crossbred
animals in the new line.

4.1. Autozygosity in the Purebred
The three pure breeds had relatively similar FROH . Other authors
have already compared ROH patterns of different breeds. These
studies are difficult to compare because population samples differ
in origin and size, and the parameters used for the detection
of ROH may greatly influence the results (Meyermans et al.,
2020). However, we observed large ROH in pure lines, as already
described in other studies (Bosse et al., 2015; Howard et al., 2016;
Gorssen et al., 2019). Large ROH correspond to recent inbreeding
(Curik et al., 2014), which is expected to be more harmful than
ancient inbreeding, because selection has had time to reduce the
frequency of deleterious alleles that are purged over time (Doekes
et al., 2019).

ROH hotspots were not uniformly distributed along the
genome across the three pure breeds. Consequently, ROH
hotspots in the genome may highlight signatures of selection in
pure breeds. Four ROH hotspots were detected in the central
region of SSC8 in Pietrain. Moreover, this region contained
large ROH (≥16 Mb) as already highlighted in other studies on
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FIGURE 6 | Mean length of runs of homozygosity (ROH) detected per chromosome and group. DRC, Duroc; G0, (Pietrain × Large White) × Duroc offspring; G1, G0

× G0 offspring; LW, Large White; PI, Pietrain; PLW, Pietrain × Large White.

Pietrain populations (Bosse et al., 2015; Gorssen et al., 2019).
One of hypotheses proposed by these authors is the presence of a
selection signature in this region. We showed that Large White
shared similar haplotypes in SSC8 with Pietrain because we
detected ROH in PLW animals. But this region seems less fixed
in Large White than in Pietrain. Another hypothesis to explain
this ROH pattern could be limited recombination in this region,
which is close to the center of SSC8. In pig, this chromosome is
metacentric (Raudsepp and Chowdhary, 2011). Previous studies
showed that regions with high chromosomal recombination rates
tend to be close to telomeres, and close correlations between
ROH distribution or size with recombinations and GC content
have already been observed in pig (Bosse et al., 2012; Tortereau
et al., 2012). The regions with low recombination rates on SSC8
identified by Tortereau et al. (2012) include almost all the ROH
hotspots detected in our Pietrain population. However, these
low recombination rates did not generate ROH hotspots in
Duroc and Large White. More information about the biological
functions of the genes located in this region is needed to better
understand this specific ROH pattern in Pietrain. However, ROH
hotspots cover a large chromosomal region on SSC8making gene
detection more difficult to interpret. Studying the evolution of

these hotspots with crossbreeding between Pietrain and other
porcine breeds would be a good way to monitor the evolution
of ROH in the second generation and to analyze recombination
events. In fact, the persistence of large ROH segments in
crossbred offspring suggests the absence of recombination in
these ROH (Bosse et al., 2012).

4.2. Autozygosity in the Three Crossbred
Populations
ROH were also detected in crossbred individuals. Our results
confirm those of previous studies of the persistence of ROH in
crossbred animals (Howard et al., 2016; Gómez Raya et al., 2019),
where the existence of ROH is explained by haplotype sharing
between parental breeds. PLW animals had a higher FROH
than G0 animals. Moreover, the G0 population presented the
lowest level of autozygosity among the crossbred. As expected,
the maximum diversity during the constitution of this new
line appeared to be achieved in this generation. In PLW,
ROH are generated by haplotype sharing between Pietrain and
Large White and in G0 by haplotype sharing between Pietrain
and Duroc or Large White and Duroc. Gómez Raya et al.
(2019) showed that the correlation between the probability of
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FIGURE 7 | Runs of homozygosity (ROH)-based inbreeding coefficient (FROH) for each genetic type. DRC, Duroc; G0, (Pietrain × Large White) × Duroc offspring; G1,

G0 × G0 offspring; LW, Large White; PI, Pietrain; PLW, Pietrain × Large White.

autozygosity and the genetic differentiation (FST) of breeds
was negative. Consequently, Pietrain and Large White may be
genetically closer than Pietrain and Duroc or Large White and
Duroc. To support this hypothesis, we analyzed FST in our three
pure breeds. The differentiation between Duroc and Pietrain or
Duroc and Large White was higher than that between Pietrain
and Large White. These results are consistent with the FST
obtained by Gorssen et al. (2019). Moreover, genetic distance
between these three breeds has already been analyzed (Buchanan
and Stalder, 2011) and the phylogenetic tree showed that Pietrain
and Large White are close, whereas Duroc is far away, thus
supporting FST results.

Admixture analysis showed similar admixture profiles
between G0 and G1. Variations in the proportions of the
three pure breed genome are due to random segregation of
chromosomes and chromosomal recombinations during the
meiosis. After this, MDS plot showed that the G1 population
was more dispersed than the G0 population.This results suggests
the generation of more diversity in G1 animals than in G0,
but, the ROH patterns in G1 animals revealed an increase in
autozygosity compared to G0 animals. In G1 animals, ROH have
two different origins: either similar breed-specific haplotypes or
haplotypes shared between breeds. The ROH patterns observed
in G1 animals suggest that random segregation of chromosomes
and recombinations during meiosis not only contribute to

autozygosity but also to heterozygosity. Indeed, ROH size
distribution differs in G1 and pure breeds, we observed fewer
large and medium ROH in G1 than in pure breeds due to
recombinations. This observation thus confirms the generation
of genetic variability at G1.

G1 animals also had more large and medium size ROH than
G0 animals. This result shows that some large haplotypes were
not homozygous in generation G0 but became homozygous in
generation G1 with no breakage due to recombinations. Studying
the evolution of these ROH segments in the next generation
of the new line would help understand the distribution of
recombination events along the genome and would also be
interesting with the aim of maximizing diversity in a newly
created line.

Our study showed the interest of using ROH to describe
diversity in a crossbred population. For the management of
diversity, the concept of ROH can be extended to calculate
coancestry. de Cara et al. (2013) suggested a method to estimate
chromosomal segments shared between two individuals because
these segments may be causing ROH in the offspring. So, a
mating strategy based on this method limits the generation
of ROH in the offspring. Genetic management simulations
performed with this method appear to effectively maintain
diversity and fitness compared to methods based on marker-
by-marker coancestry or genealogical coancestry (de Cara et al.,
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FIGURE 8 | Manhattan plots of the frequency of SNP detected inside a runs of homozygosity (ROH). The horizontal line indicates the cutoff level for ROH hotspot

detection in each genetic group. It corresponds to the top 1% SNP most frequently observed in an ROH in each pure breed and crossbred population. DRC, Duroc;

G0, (Pietrain × Large White) × Duroc offspring; G1, G0 × G0 offspring; LW, Large White; PI, Pietrain; PLW, Pietrain × Large White.

2013; Bosse et al., 2015). This method could be associated with
a monitoring of ROH in the future generations of the new
line. Furthermore, when creating a new line, controlling the
percentage of allele origin from the founder pure breeds would
be a good way to preserve the allele specificity of the different
founders. Different methods have been developed to meet this
objective, including the breed origin to allele (BOA) approach,
which assigns BOA in crossbred animals (Vandenplas et al.,
2016).

The next objective of this new line will be the development
of a breeding program. But an important question here is when
to start selection? Indeed, the crossbred population must be
sufficiently mixed and genetically homogeneous before starting
the selection. Some authors suggested starting selection after 2 or
3 generations (Legault et al., 1996), but this could be relevant with
genomic data to provide information justifying the choice of the
starting generation for selection.

4.3. Gene Annotation Analysis
In animal breeding populations, selection can influence the fixing
and extension of ROH (Kim et al., 2013). The aim of our

analysis of gene content in ROH hotspots in G0 animals was to
investigate the potential effect of a similar selection that fixed the
haplotypes in our three founder breeds and could generate ROH
in G0 individuals.

The ROH hotspot on SSC1 carries four interesting genes.
First, IGF1R (insulin like growth factor 1 receptor) was detected.
Pierzchała et al. (2012) showed that the gene expression in
the liver of pigs of different breeds was significantly correlated
with carcass composition traits, negatively with fat content
and positively with meat content. The gene MEF2A (myocyte
enhancer factor 2A) was identified in a new model of regulation
of myogenesis in pigs in which it is hypothesized to play
an important role in the balance between intramuscular
adipogenesis and myogenesis (Zhao et al., 2011). Then, we
detected two genes,ALDH1A3 (aldehyde dehydrogenase 1 family
member A3) and LRRK1 (leucine-rich repeat kinase 1). When
Suwannasing et al. (2018) conducted a GWAS in Large White
for different reproduction traits, they found these two genes
significantly associated with all studied traits.

On SSC4, we identified an ROH hotspot in a region
close to the ROH hotspots identified by Howard et al.
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FIGURE 9 | Frequency of runs of homozygosity (ROH) in the three size classes per genetic type. DRC, Duroc; G0, (Pietrain × Large White) × Duroc offspring; G1, G0

× G0 offspring; LW, Large White; PI, Pietrain; PLW, Pietrain × Large White.

(2016) and Szmatoła et al. (2020). In this region, we
detected genes MMP16 (matrix metallopeptidase 16), CNGB3
(cyclic nucleotide gated channel subunit beta 3), CPNE3
(Copine 3), RMDN1 (regulator of microtubule dynamics
1), WWP1 (WW domain containing E3 ubiquitin protein
ligase 1), SLC7A13 (solute carrier family 7 member 13),
and ATP6V0D2 (ATPase H+ transporting V0 subunit d2)
like in the study of Szmatoła et al. (2020). Moreover,
this region contains many QTL referenced in PigQTLdb
associated with production and meat carcass traits (Hu et al.,
2019).

PLOD2 (procollagen-lysine,2-oxoglutarate 5-dioxygenase 2)
on SSC13 codes for a membrane-bound enzyme involved in the
formation of extracellular matrix. Four mi-RNAs involved in the
inhibition of PLOD2 are differentially expressed in animals with
different muscle development profiles (Ropka-Molik et al., 2018).

On SSC14, in the first ROH hotspot we detected the gene
ALOX5 (arachidonate 5-lipoxygenase). Mehrabian et al. (2008)
found this gene to be involved in adiposity-related metabolic
pathways. In a second ROH hotspot on SSC14, we identified
two genes linked to reproductive traits, LIF (LIF interleukin 6
family cytokine) and GAL3ST1 (galactose-3-O-sulfotransferase
1). LIF has two previously studied polymorphisms, one of which
had a significant additive effect on number of piglets born

alive in German Large White (Spötter et al., 2009). GAL3ST1
was detected in an ROH hotspot in Large White (Shi et al.,
2020) and is hypothesized to be involved in spermatogenesis
(Suzuki et al., 2010). In the same genomic region, we also
found INPP5J (inositol polyphosphate-5-phosphatase J) and
PLA2G3 (phospholipase A2 group III), which are associated
with two type of fatty acids (docosahexaenoic acid and n-3
polyunsaturated fatty acid) in Large White (Zappaterra et al.,
2018).

The four next genes were detected on the first ROH hotspot
on SSC15. XIRP2 (Xin actin binding repeat containing 2) is
involved in the organization of the actin cytoskeleton. In a
study comparing transcriptomics data of muscular tissues in
Polish Landrace and in Pulawska, a local breed, a mutation
in XIRP2 was detected in Polish Landrace animals but absent
in Pulawska animals (Piórkowska et al., 2017). These authors
hypothesized that this mutation could cause finer microtubules
in Polish Landrace and could be linked to the lesser meat quality
observed in the Polish Landrace compared to the local breed.
B3GALT1 (beta-1,3-galactosyltransferase 1) is a membrane-
bound glycoprotein. Sun et al. (2016) observed less expression
of B3GALT1 in the liver of animals fed with high fiber diet
compared with in the liver of animals fed with a low fiber
diet. STK39 (serine/threonine kinase 39) is an actor of the
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FIGURE 10 | Manhattan plots of the frequency of SNP detected inside large runs of homozygosity (ROH). DRC, Duroc; G0, (Pietrain × Large White) × Duroc

offspring; G1, G0 × G0 offspring; LW, Large White; PI, Pietrain; PLW, Pietrain × Large White.

TABLE 1 | Runs of homozygosity (ROH) hotspots in G0 and putative genes of interest under similar selection in the three founder breeds.

Chromosome Positions (Mb) Size (Mb) Number of SNP Genes of interest

1 132.98–140.24 7.26 101 IGF1R, MEF2A, ALDH1A3, LRRK1

4 48.06–50.94 2.88 37 MMP16, CNGB3, CPNE3, RMDN1, WWP1, SLC7A13, ATP6V0D2

13 84.93–88.06 3.13 43 PLOD2

14 46.83–48.28 1.45 45 LIF, GAL3ST1, INPP5J, PLA2G3

14 89.96–91.65 1.69 49 ALOX5

15 72.38–75.16 2.78 39 XIRP2, B3GALT1, STK39, CERS6

15 88.36–91.57 3.21 34 NCKAP1

ROH hotspots listed here are larger than 1 Mb with an average frequency of detection of SNP in ROH greater than 0.40.

cellular stress response signaling pathway. In a comparative study
between human and porcine species, STK39 was reported to be
significantly associated with subscapular skinfold thickness in
human and back-fat thickness in pig (Kim et al., 2012). CERS6
(ceramide synthase 6) is involved in sphingolipids synthesis. In
mice, knock-out of the CERS6 gene provided protection against
obesity (Hammerschmidt et al., 2019). Finally, we detected the
gene NCKAP1 (NCK-associated protein 1) in a second ROH
hotspot on SSC15. Hamill et al. (2012) compared transcriptomic

profiles of pork meat of varying tenderness and found NCKAP1
overexpressed in tender meat.

We detected several genes in ROH hotspots in G0 animals.
Gene annotation is difficult particularly in large ROH hotspots
with a large number of genes, and sometimes no annotation
is available. However, we were able to distinguish interesting
genomic regions on SSC4, SSC14, or SSC15, which could contain
genes under similar selection in the three founder breeds. It
could be relevant to characterize with more precision these
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genes to analyze if some polymorphisms of interest could have
been selected.

5. CONCLUSIONS

The maximization of diversity during the first generations of
a new synthetic line is a prerequisite for long-term genetic
progress. We have shown that ROH detection is an interesting
tool to characterize inbreeding in crossbred animals. ROH
persisted in crossbred offspring of a three-way crossbreeding
program over two generations. This phenomenon can be
explained by haplotype sharing between the three parental
breeds. We have observed an increase in genetic diversity
between G0 and G1 with an analysis SNP by SNP but we have
observed an increase of ROH inbreeding too. This result suggests
that it could be interesting to continue the characterization
of ROH in next generations of the new line to manage
genetic diversity.
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In this study, we evaluated an admixed South African Simbra crossbred population,

as well as the Brahman (Indicine) and Simmental (Taurine) ancestor populations to

understand their genetic architecture and detect genomic regions showing signatures

of selection. Animals were genotyped using the Illumina BovineLD v2 BeadChip (7K).

Genomic structure analysis confirmed that the South African Simbra cattle have an

admixed genome, composed of 5/8 Taurine and 3/8 Indicine, ensuring that the Simbra

genome maintains favorable traits from both breeds. Genomic regions that have been

targeted by selection were detected using the linkage disequilibrium-based methods

iHS and Rsb. These analyses identified 10 candidate regions that are potentially under

strong positive selection, containing genes implicated in cattle health and production

(e.g., TRIM63, KCNA10, NCAM1, SMIM5, MIER3, and SLC24A4). These adaptive alleles

likely contribute to the biological and cellular functions determining phenotype in the

Simbra hybrid cattle breed. Our data suggested that these alleles were introgressed from

the breed’s original indicine and taurine ancestors. The Simbra breed thus possesses

derived parental alleles that combine the superior traits of the founder Brahman and

Simmental breeds. These regions and genes might represent good targets for ad-hoc

physiological studies, selection of breeding material and eventually even gene editing, for

improved traits in modern cattle breeds. This study represents an important step toward

developing and improving strategies for selection and population breeding to ultimately

contribute meaningfully to the beef production industry.

Keywords: simbra, crossbreeding, genomic selection, indicine, taurine

INTRODUCTION

Cattle play an important part in the agricultural economy worldwide. Modern cattle were derived
from at least two independent domestication events that gave rise to two subspecies of cattle (Loftus
et al., 1994; Ajmone-Marsan et al., 2010). The one is humpless Taurine (Bos taurus taurus) cattle,
with Bos primigenius primigenius ancestry, which was domesticated ∼10,500 years ago in Eastern
Europe. The other is the humped zebu or Indicine (Bos taurus indicus) cattle, with Bos primigenius
namadicus ancestry, which was domesticated ∼7,000 years ago in India (Bradley et al., 1996).
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Domestication of cattle resulted in animals with high overall
genetic and phenotypic variability (Taberlet et al., 2008).

The rise of the “breed” concept, and associated intensive
artificial selection, had resulted in specialized cattle breeds that
underwent further organized selection to enhance production
and adaptability (Iso-Touru et al., 2016). Taurine breeds have
been intensively selected for milk and meat yield (Low et al.,
2020). For example, selection for traits associated with meat
production (e.g., fast growth, carcass quality, meat quality, and
meat yield) and increased fertility gave rise to Simmental, which
is the oldest and one of the most widespread Taurine beef breeds
(Bordbar et al., 2020; Ríos-Utrera et al., 2020). In contrast,
selection for high tolerance to parasites, heat resistance and
overall hardiness gave rise to Indicine breeds, such as Brahman,
the first beef cattle breed developed in the United States (Dikmen
et al., 2018).

Various crossbreeds have also been developed to improve
environmental adaptability and desirable performance (Paim
et al., 2020). These cattle breeds combine the favorable
traits/genes that characterized their purebred parental breeds. An
added benefit inherent of crossbreeding is heterosis or hybrid
vigor that may give rise to qualities that are more superior
in the crossbreed than its parental inbred lines (Harrison and
Larson, 2014; Frankham, 2015; Gouws, 2017). Furthermore,
crossbreeding remains an important mechanism for increasing
the overall genetic variation of modern cattle breeds (Kristensen
et al., 2015), especially given the substantial losses incurred due
to intensive selection for improved productivity and adaptability
(Albertí et al., 2008; Taberlet et al., 2008). However, despite
these benefits, it is still unclear whether the genetic composition
of a crossbreed is stable over time (Paim et al., 2020). It
is also not known if crossbreeding may cause reduction in
performance and fitness due to genetic erosion and outbreeding
depression (Harrison and Larson, 2014; Frankham, 2015; Gouws,
2017). Genetic erosion may cause reduction in performance
since genetic diversity is necessary for evolution to occur, while
loss of genetic diversity is related to inbreeding that reduces
reproductive fitness (Reed and Frankham, 2003).

The Simbra crossbreed was developed in the United States
in the late 1960s, shortly after the first Simmental arrived
from Europe (Gouws, 2016). It has been described as the “all-
purpose American breed “and was developed by hybridization of
the Brahman and Simmental breeds (Gouws, 2016). Generally,
crossbreeding of Brahman with Taurine breeds produces hardy
animals with better meat quality than purebred Brahmans
(Crouse et al., 1989; Johnson et al., 1990; Schatz et al., 2014).
The high tolerance of Simbra to harsh conditions (e.g., heat,
humidity, parasites, seasonally poor pasture quality, and large
distances required to be walked while grazing) is thus derived
from its Brahman parentage. In turn, its good meat quality (e.g.,
carcass composition and conformation), early sexual maturity,
milking ability, rapid growth, and docile temperament are
attributed to its Simmental ancestry (Smith, 2010). Although
Simbra cattle are mainly produced in the USA, the breed was
also introduced to other countries. For example, Simbra was
introduced to South Africa in the late 1990s where it is among
the 10 most popular breeds in the country (Scholtz et al., 2008).

Several population studies provided insight regarding genetic
structure of popular South African cattle breeds (e.g., Simmental,
Afrikaner and Nguni) (Bennett and Gregory, 1996; Pico, 2004;
Martínez and Galíndez, 2006; Greyling et al., 2008; Sanarana
et al., 2016; Pienaar et al., 2018). However, little is known
about the genetic diversity and population structure within and
between South African Simbra and the ancestral Brahman and
Simmental breeds.

Various studies showed that information mined from whole
genome data is useful for estimating proportional ancestry,
maximizing genetic variability and for developing breeding
strategies (Kim et al., 2017; Sharma et al., 2017; Bhati et al., 2020).
In other words, knowledge emerging from genomic studies
can be used to improve livestock in terms of meat and milk
production, disease resistance and reproductive health (Kim
et al., 2017; Sharma et al., 2017; Bhati et al., 2020). For example,
genome-wide association studies (GWAS) have been used to
identify genes involved in meat quality in different Taurine
(Gutiérrez-Gil et al., 2008; McClure et al., 2012; Allais et al., 2014;
Xia et al., 2016), Indicine (Tizioto et al., 2013; Magalhães et al.,
2016), and crossbreeds (Bolormaa et al., 2011; Lu et al., 2013;
Hulsman et al., 2014). Genome-based selection strategies are
thus increasingly regarded as invaluable for ultimately improving
cattle fitness, productivity, and quality (Daetwyler et al., 2014;
Kim et al., 2017).

The overall goal of this study was to estimate the
adaptive potential of the Indicine- and Taurine-derived genomic
components in the South African Simbra cattle breed. We
therefore aimed to (i) determine levels of heterozygosity; (ii)
infer the overall population structure and admixture ancestry
in Simbra cattle; (iii) and identify genomic regions subject
to positive selection and to associate these with putative
productivity and adaptive traits. For this purpose, Simbra,
Brahman and Simmental animals were genotyped using the
cost-effective Illumina’s low density Bovine BeadArray (7K)
technology that allows the genotyping of a larger number
of individuals, as part of the South African Beef Genomics
Project. Several studies have successfully used this approach in
genome-wide association studies as genotyping large numbers
of individuals with thousands of SNPs remains prohibitively
expensive for many research groups. The data generated in
this study will be instrumental for informing and designing
appropriate management and breeding strategies for maximizing
Simbra productivity in South Africa and cattle in general.

MATERIALS AND METHODS

Animals
A total of 321 animals were genotyped in this study. These
included animals from the South African Simbra crossbred
population (Simbra, n = 69), as well as Brahman (Bos
taurus indicus, n = 161) and Simmental (Bos taurus taurus,
Simmental n = 91) populations. These animals were part of
stud breeding programs aimed at producing registered Simbra
(3/8 Brahman, 5/8 Simmental; Figure 1) that is registered in
a herdbook, Brahman and Simmental cattle and were not
part of a designed experiment. They were selected based
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on phenotypic appearance, which was consistent with typical
breed characteristics and pedigree information accepted by local
breeders and breed societies.

SNP Genotyping and Quality Control
Genomic DNA was extracted at the ARC-Biotechnology
Platform from blood/hair root samples using Qiagen’s DNeasy
extraction kit (Qiagen, Valencia, CA). The quality and quantity
of the DNA were estimated using a Qubit R© 2.0 fluorometer (Life
Technologies, ThermoFisher Scientific, USA), Nanodrop 1000
spectrophotometer (Nanodrop Technologies, Wilmington, DE),
and agarose gel electrophoresis. These DNAs were then used in
genotyping experiments at the ARC-Biotechnology Platform as
part of the SA Beef Genomics Project during the period 2015–
2018. This was done using the Illumina BovineLD v2 BeadChip
(7K) (Illumina, San Diego, CA), which features 7,931 single
nucleotide polymorphism (SNP) probes that are distributed
across the whole bovine genome, with <3 kilobase pair (kb)
median gap spacing. Samples were processed according to the
Illumina Infinium-II assay protocol (Illumina, Inc. San Diego,
CA, 92122, USA). Only autosomal chromosomes were used, and
SNP quality control was assessed using PLINK (Purcell et al.,
2007). SNPs with a call rate <95% and minor allele frequencies
(MAF) <5% across all breeds were removed. SNPs with a high
linkage disequilibrium (LD) at a threshold of LD ≥0.8 were
also pruned. The SNP & Variation Suite v.8.8.3 (Golden Helix
Inc., Bozeman, MT, USA; www.goldenhelix.com) was used to
estimate the identity-by-descent (IBD) values between pairs of
individuals that can be used to detect and remove related and
duplicate samples.

Genetic Diversity
Various analytical tools were used to estimate the genetic diversity
among the Simbra, Brahman and Simmental populations.
The observed heterozygosity estimates for each population, as
an indication of within-breed diversity, were calculated from
observed genotype frequencies obtained from PLINK (Purcell
et al., 2007). Here, observed heterozygosity was calculated as (N
- O)/N, where N is the number of “non-missing genotypes” for a
given individual and O is the number of observed homozygous
genotypes for that individual. We also estimated the inbreeding
coefficient (F) as a measure of “excess” homozygosity using the
SNP & Variation Suite.

Population Structure
Principal Components Analysis (PCA) (Patterson et al., 2006)
and fastSTRUCTURE (Raj et al., 2014) analyses were used to
identify patterns of admixture and relatedness among the Simbra
cattle, in relation to the Simmental and Brahman populations.
PCA was performed using the EIGENSTRAT methodology
embedded in the SNP & Variation Suite. The fastSTRUCTURE
analysis employed an admixture model and two clusters (K =

2; based on the number of ancestral populations) (Smith, 2010).
The analysis was executed using independent allele frequencies,
and a burn-in of 100 000 iterations, followed by 1 000 000Markov
ChainMonte Carlo iterations. Graphical display of the admixture

output was generated using Distruct v1.1 (http://web.stanford.
edu/group/rosenberglab/distruct.html).

Local ancestry for admixed Simbra animals were inferred
using PCAdmix (Brisbin et al., 2012), which uses PCA to
determine the posterior probabilities for the ancestry of a
genomic region along each chromosome. More specifically,
PCAdmix classifies blocks of SNPs by ancestry through PCA,
projecting the loadings of admixed individuals based on the
loadings of putative ancestors. It employs a Hidden Markov
Model (HMM) to smooth the results and returns the posterior
probabilities of ancestry affiliation for each block from the HMM
(Brisbin et al., 2012).

To prepare input files for PCAdmix, haplotypes were
built using Beagle 5.1 by phasing and imputing missing
genotypes from the SNP unphased data (Browning et al.,
2018). Chromosomes for each individual in a population were
artificially strung together to create two haploid genomes
for the individual to increase the amount of information
used for PCA. Since PCAdmix requires predefined ancestral
groups, we selected two main ancestral groups (Simmental and
Brahman cattle) for the Simbra cattle. PCAdmix was assigned
with a posterior probability threshold of 0.8. In order to
remove highly linked alleles from different populations and
avoid spurious ancestry transitions, ancestral populations were
thinned using a SNPs pairwise linkage disequilibrium (LD)
value (r2) of <0.8. We defined a constant recombination rate
of 1e-8 based on the assumption that 0.01 recombination
occur per 1,000 kb (equivalent to 1 cM) (Khayatzadeh et al.,
2016).

Identification of Selection Signatures
To identify signatures of selection we used LD-based methods
that search for haplotypes driven to complete fixation (Vitti
et al., 2013). These include the integrated haplotype score (iHS),
which is a within-population statistic reflecting the amount of
extended haplotype homozygosity (EHH) for a given SNP along
the ancestral allele relative to the derived allele. Because of the
limitation of this statistic when the selected allele is near fixation,
we also used the method developed by Tang et al. (2007) that
compares EHH profiles between pairs of populations. Based on
EHHS, a so-called “site-specific EHH measure,” the Tang et al.
method estimates a weighted average of the EHH at both alleles
of each SNP in each population. Then, the distribution of the
standardized log-ratio of the integrated EHHS (iES) between
pairs of populations (referred to as Rsb) is used to detect signals
of selection. The advantage of the Tang et al. method is that it
calculates EHH for the entire population instead of partitioning
it into ancestral and derived alleles, which eliminates the allele
frequency constraint and makes it capable of detecting selection
sweeps near fixation. The Rsb scores for Simbra crossbred
cattle were calculated using the Simmental and Brahman as a
reference population.

In this study, the ancestral alleles required for the computation
of iHS were inferred as the most common alleles in the entire
dataset following Bahbahani and Hanotte (2015). Haplotypes for
the iHS and Rsb analyses were derived with fastPHASE (Scheet
and Stephens, 2006) using 10 starts (T10) and 25 iterations
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FIGURE 1 | Illustration of two hybridization schemes (A) and (B) used to establish the Simbra crossbreed (adopted from Paim et al., 2020). A 5/8 Simmental and 3/8

Brahman are the optimum composition needed to retain the favorable traits both parental breeds (O’ Connor et al., 1997; Smith, 2010). Controlled breeding programs

are used to establish the next Simbra generations with the optimum composition.

(C25) of the expectation-maximization (EM) algorithm (Scheet
and Stephens, 2006). The iHS and Rsb analyses were performed
using the rehh package (Gautier and Vitalis, 2012) in R version
3.4.4. For the analysis of within-population an iHS score >5
(equivalent to P-value = 1e-06) and for the analysis of between-
population differences a Rsb score >5 (equivalent to P-value
= 1e-06) were used to infer the candidate genomic regions
under selection.

We also examined the gene content within genomic regions
containing signatures of selection. This was done using
the annotated UMD3.1 reference genome for the Taurine
breed Hereford available on the Bovine Genome Database
(https://bovinegenome.elsiklab.missouri.edu/). To determine
potential overlap of these regions with previously published
quantitative trait loci (QTLs), the bovine database (http://www.
animalgenome.org/cgi-bin/QTLdb/BT/search) incorporated in
the Animal QTL database (Animal QTLdb) of Hu et al. (2019),
was used.

RESULTS

SNP Genotyping and Quality Control
After quality control to remove SNPs with <95% call rate, MAF
< 0.05 and LD (r2 = 0.8), 4 488 SNPs were retained for analyses.
We also performed a sample filtering to limit the inclusion of
very closely related individuals (Figure 2A). Accordingly, all 321
animals were retained for analysis (i.e., 69 Simbra, 161 Brahman,
and 91 Simmental genomes), based on IBD values of ≥0.45. IBD
represents the probability that two randomly chosen alleles of
an individual are inherited from a common ancestor, with the
length of haplotypes shared between individuals being inversely
proportional to the time since divergence from that common
ancestor (Browning and Browning, 2010).

Genetic Diversity
Among the three populations, Simbra and Simmental had
comparable observed heterozygosity values (i.e., 0.427 with
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FIGURE 2 | Identity-by-descent (IBD) results of the crossbred South African

Simbra population, as well as the ancestral South African Simmental and

Brahman populations (A). Green indication a closer genetic distance and red

indicating that the genetic distance is farther. FastSTRUCTURE (Raj et al.,

2014) results from the 7k SNP panel set at K = 2 according to the historical

number of ancestral populations (Smith, 2010). Simmental ancestry are

indicated in red, while Brahman ancestry are indicated in blue (B). First

principal component (PC1) vs. second principal component (PC2) results from

the principal component analysis (PCA) for the Simbra, Simmental and

Brahman populations computed using the SNP and Variant Suite v.8.8.3

(Golden Helix Inc., Bozeman, MT, USA; www.goldenhelix.com) (C).

standard deviation [±SD] of 0.020 and 0.417 with ±SD 0.015,
respectively), which were much higher than those for Brahman
(0.295, ±SD 0.029, n = 161). In comparison with the Simmental
(0.0003, ±SD 0.031) and Simbra cattle (−0.011, ±SD 0.045)
populations, limited diversity was observed for Brahman (0.022,
±SD 0.103) population.

Simbra Population Structure and Genomic
Content
FastSTRUCTURE separated the animals genotyped in this study
into three distinct clusters (Figure 2B). A similar clustering

pattern was observed using PCA (Figure 2C), where 55.66%
of the genetic variability was explained by the first two
principal components (with the first explaining 50.2%). These
three clusters corresponded to the Brahman and Simmental
ancestor populations, and the Simbra population, representing
an admixture between the Taurine and Indicine cattle.

The Simbra hybrid genomes were partitioned into segments of
inferred Simmental and Brahman ancestry using the PCAdmix
algorithm (Figure 3). We used the default parameters in
PCAdmix thereby removing SNPs in high LD (r2 > 0.8) and
SNPs that were monomorphic between the breeds. Subsequent
ancestry inference of each genome revealed that the South
African Simbra breed is composed of a higher average proportion
of Taurine (64.8%, ±SD 8) than Indicine (35.2%, ±SD 8)
backgrounds (Figure 3A), as was expected for the breed (O’
Connor et al., 1997; Smith, 2010). However, 19 of the 69 Simbra
individuals had genomic compositions that deviated substantially
from this expectation (Figure 3A); i.e., the Indicine contribution
was <27.2% in 9 genomes and >43.2% in 10 genomes.

Using the PCAdmix algorithm, we determined the most
probable ancestry along each chromosome of the Simbra
genomes (Figures 3B,C). Accordingly, we identified 256 genetic
ancestry blocks (i.e., block SNPs with the same inferred ancestry),
spread across 29 Bos taurus autosomes (BTA1–BTA29) with
polymorphic SNPs (call rate less <95% and MAF >5% across
all breeds). Of these blocks, 191 (75%) showed a similar pattern
as observed above for the average genome composition (i.e.,
64.8%, ±SD 8 with Taurine and 35.2%, ±SD 8 with Indicine).
The remaining 65 deviated substantially from the expected
distribution pattern, with 22 blocks (33.9%) having an excess
of Indicine ancestry blocks (>43.2% Brahman blocks) and
43 blocks (66.1%) having excess Taurine ancestry (>27.2%
Simmental blocks).

Genomic Regions Containing Signatures of
Positive Selection
Our analyses revealed the presence of nine genomic regions
containing signatures of positive selection in the Simbra genome
(Table 1). These regions were identified using intra-population
iHS and inter-population Rsb analyses (Vitti et al., 2013).
Focusing on the Simbra hybrid cattle, the intra-population iHS
analysis identified eight of these regions, which were located on
BTA 1, BTA 2, BTA 3, BTA 9, BTA 19, BTA 20, and BTA 21
(Table 2; Figure 4A). Additionally, the Rsb analyses identified
five positive selection regions (i.e., on BTA 2, BTA 3, BTA 19,
BTA 20, and BTA 21) using Simmental as reference population,
and two using Brahman as reference population (i.e., on BTA 21
and on BTA 23) (Table 2; Figures 4B,C). Five of these genomic
regions were detected using both the iHS and Rsb statistics. The
region on BTA 21 was identified with Rsb analyses employing
both Simmental and Brahman as reference populations, while
the remainder (i.e., on BTA 2, BTA 3, BTA 19, and BTA 20)
were detected using the Simmental reference population. Overall,
five (BTA 1, BTA 3, BTA 5, BTA 21, and BTA 23) of the nine
regions in which positive selection was detected were located
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FIGURE 3 | Local ancestry for the crossbred South African Simbra cattle

population (A) and representative haplotypes (B,C) inferred using PCAdmix

(Brisbin et al., 2012). The Brahman and Simmental cattle populations were

used as source populations (Smith, 2010).

within genetic ancestry blocks that displayed a deviation in the
expected genomic composition for Simbra (Table 2).

Comparison of all of the identified genomic regions harboring
signals for positive selection signatures to the genomic resources
included in the Animal QTL database, indicated that nine of the
identified regions overlapped with those underlying previously
published QTLs for cattle (Table 2). These QTLs were previously
linked to different biological properties, including reproduction
(interval to first oestrus after calving, QTL:170016; lactation
persistency, QTL:125219; ovulation rate, QTL:10570), milk
traits (milk lauric acid content, QTL:172178), production traits T

A
B
L
E
1
|
G
e
n
o
m
ic
re
g
io
n
s
id
e
n
tifi
e
d
u
si
n
g
iH
S
a
n
d
R
sb

b
e
in
g
u
n
d
e
r
d
iv
e
rg
e
n
t
se
le
c
tio

n
in

S
im

b
ra

c
ro
ss
b
re
d
c
a
tt
le
a
n
d
B
ra
h
m
a
n
a
n
d
S
im

m
e
n
ta
la
s
re
fe
re
n
c
e
b
re
e
d
s.

S
e
le
c
ti
o
n
te
s
ta

S
e
le
c
te
d
p
o
p
u
la
ti
o
n

S
e
le
c
ti
o
n
re
g
io
n

p
o
s
it
io
n
(M

b
)b

S
ta
ti
s
ti
c
s
c
o
re
s
c

S
e
le
c
ti
v
e
s
w
e
e
p

re
g
io
n
s
iz
e
(M

b
)

N
u
m
b
e
r
o
f
S
N
P
s

N
u
m
b
e
r
o
f
g
e
n
e
s

A
n
c
e
s
tr
y
d
e
v
ia
ti
o
n
d

iH
S

S
im

b
ra

B
TA

1
:1
3
1
.6
–1

3
3
.5

6
.5
4

1
.9

4
9

1
3

Ta
u
rin

e
e
xc
e
ss

iH
S

S
im

b
ra

B
TA

2
:1
2
6
.6
–1

2
8
.5

1
1
.0
0

1
.9

5
1

4
4

-

R
sb

S
im

b
ra
+
S
im

m
e
n
ta
l

B
TA

2
:1
2
6
.6
–1

2
8
.6

1
0
.4
6

2
5
1

4
4

-

iH
S

S
im

b
ra

B
TA

3
:3
2
.0
–3

4
.0

9
.2
5

2
8
8

3
4

Ta
u
rin

e
e
xc
e
ss

R
sb

S
im

b
ra
+
S
im

m
e
n
ta
l

B
TA

3
:3
2
.0
–3

3
.9

6
.6
2

1
.9

9
9

3
4

Ta
u
rin

e
e
xc
e
ss

iH
S

S
im

b
ra

B
TA

5
:5
5
.6
–5

7
.7

1
1
.2
4

2
.1

6
6

3
7

In
d
ic
in
e
e
xc
e
ss

iH
S

S
im

b
ra

B
TA

9
:9
.8
–1

1
.8

1
5
.7
7

2
7
6

3
3

-

iH
S

S
im

b
ra

B
TA

1
9
:5
5
.7
–5

7
.7

1
0
.6

2
5
6

7
7

-

R
sb

S
im

b
ra
+
S
im

m
e
n
ta
l

B
TA

1
9
:5
5
.6
–5

7
.7

5
.7

2
.1

5
5

7
7

-

iH
S

S
im

b
ra

B
TA

2
0
:2
1
.2
–2

3
.2

1
1
.8
9

2
8
1

6
-

R
sb

S
im

b
ra
+
S
im

m
e
n
ta
l

B
TA

2
0
:2
1
.2
–2

3
.2

5
.2
2

2
9
0

6
-

iH
S

S
im

b
ra

B
TA

2
1
:5
6
.6
–5

8
.7

7
.7
6

2
.1

5
6

2
0

In
d
ic
in
e
e
xc
e
ss

R
sb

S
im

b
ra
+
B
ra
h
m
a
n

B
TA

2
1
:5
6
.8
–5

8
.7

5
.7
9

1
.9

5
6

2
0

In
d
ic
in
e
e
xc
e
ss

R
sb

S
im

b
ra
+
S
im

m
e
n
ta
l

B
TA

2
1
:5
6
.8
–5

8
.7

6
.0
5

1
.9

5
5

2
0

In
d
ic
in
e
e
xc
e
ss

R
sb

S
im

b
ra
+
B
ra
h
m
a
n

B
TA

2
3
:3
8
.3
–4

0
.3

5
.1
3

2
.0

1
4

1
1

-

a
S
ig
n
a
tu
re
s
o
f
s
e
le
c
ti
o
n
w
a
s
id
e
n
ti
fie
d
u
s
in
g
th
e
tw
o
L
D
-b
a
s
e
d
m
e
th
o
d
s
(R
s
b
a
n
d
iH
S
)
(V
it
ti
e
t
a
l.,
2
0
1
3
).

b
C
a
n
d
id
a
te
re
g
io
n
s
a
re
re
p
re
s
e
n
te
d
a
s
(B
T
A
:
s
ta
rt
–
s
to
p
M
b
),
B
T
A
,
B
o
s
ta
u
ru
s
a
u
to
s
o
m
e
s
.

c
R
s
b
a
n
d
IH
S
s
c
o
re

>
5
(e
q
u
iv
a
le
n
t
to
P
-v
a
lu
e
=
1
e
−
0
5
)
w
e
re
u
s
e
d
to
in
fe
r
th
e
c
a
n
d
id
a
te
g
e
n
o
m
ic
re
g
io
n
s
u
n
d
e
r
s
e
le
c
ti
o
n
.

d
R
e
g
io
n
s
th
a
t
d
is
p
la
ye
d
a
d
e
vi
a
ti
o
n
in
th
e
e
xp
e
c
te
d
g
e
n
o
m
ic
c
o
m
p
o
s
it
io
n
fo
r
S
im
b
ra
,
w
it
h
e
it
h
e
r
a
n
e
xc
e
s
s
o
f
In
d
ic
in
e
o
r
Ta
u
ri
n
e
a
n
c
e
s
tr
y.

Frontiers in Genetics | www.frontiersin.org 6 January 2021 | Volume 11 | Article 608650264

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


van der Nest et al. Genomic Evaluation of Simbra Breed

TABLE 2 | Functional annotation of genomic regions showing evidence of selection in the Simbra crossbred cattle.

Selection testa Selected

population

Selection region

position (Mb)b
Top significant

SNPc

QTLd Biological rolee References

iHS Simbra BTA1:131.6–133.5 BovineHD0100037757 170016 Interval to first

estrus after calving

Zhang et al., 2019

iHS, Rsb Simbra,

Simbra+Simmental

BTA2:126.6–128.6 BovineHD0200037032 125219 Lactation

persistency

Do et al., 2014

iHS Simbra BTA3:32.0–34.0 BovineHD0300010276 179821 Ketosis Nayeri et al., 2019

iHS Simbra BTA5:55.6–57.7 BovineHD0500016044 10570 Ovulation rate Kirkpatrick et al., 2000

iHS Simbra BTA9:9.8–11.8 BovineHD0900002705 15914 Carcass weight Berkowicz et al., 2012

iHS, Rsb Simbra,

Simbra+Simmental

BTA19:55.6-57.7 BovineHD1900016000 4383 Residual feed

intake

Berkowicz et al., 2012

iHS, Rsb Simbra,

Simbra+Simmental

BTA20:21.2–23.2 BovineHD2000006648 5016 Heat intensity Hoglund et al., 2009

iHS, Rsb Simbra,

Simbra+Simmental,

Simbra+Brahman

BTA21:56.6–58.6 BovineHD2100016574 172178 Milk lauric acid

content

Gebreyesus et al.,

2019

Rsb Simbra+Brahman BTA23:38.3–40.3 BovineHD2300011367 11177 Body weight (birth) McClure et al., 2010

aSignatures of selection was identified using the two LD-based methods (Rsb and iHS) (Vitti et al., 2013).
bCandidate regions are represented as (BTA: start – stop Mb), BTA, Bos taurus autosomes.
cTop significant SNP for the Rsb and iHS analyses.
dPotential overlap of the regions that display signatures of selection with previously published quantitative trait loci (QTLs) in the bovine database (http://www.animalgenome.org/cgi-

bin/QTLdb/BT/search).
eBiological role of the QTL in the bovine database (http://www.animalgenome.org/cgi-bin/QTLdb/BT/search).

(residual feed intake, QTL:4383; carcass weight, QTL:15914),
health (ketosis, QTL:179821), and adaptation traits (Heat
tolerance, QTL:31195).

The candidate genomic regions with signatures of positive
selection also harbored annotated genes (6–77 genes) (Tables 1,
3, Supplementary Table 1). These included genes that encode
putative kinesin family member 13A (KIF13A), the small
integral membrane protein 5 (SMIM5), MIER family member
3 (MIER3), Solute carrier family 24 member 4 (SLC24A4),
muscle-specific ligases tripartite motif containing 63 (TRIM63;
also called muscle-specific ring-finger protein 1 or MuRF-1),
as well as the potassium voltage-gated channel subfamily A
member (KCNA10).

DISCUSSION

This is the first study to utilize genome-wide polymorphism
data to investigate the genetic diversity, population structure and
patterns of local ancestry of the South African Simbra hybrid
breed and its Taurine and Indicine ancestor breeds. We also used
the SNP data obtained to identify candidate genomic regions
with signatures of adaptive introgression and positive selection.
The availability of the genome sequencing data from the SA Beef
Genomics Project will make it possible in the future to augment
conventional livestock breeding and performance management
programmes with genomic information.

Our results showed that hybridization of the Taurine and
Indicine breeds conferred a higher genetic diversity of the Simbra
breed in comparison with the purebred breeds (Ghafouri-Kesbi,
2010; Zhang et al., 2015). This was obvious from the negative
inbreeding coefficient (f ) estimate that indicated an excess of

heterozygosity even beyond what is expected under Hardy-
Weinberg equilibrium in the Simbra population (Maiorano et al.,
2018). Compared to the two ancestral breeds, the South African
Simbra population had the highest genetic diversity, although it
was only marginally higher than that of the Simmental breed.
Therefore, hybridization of subspecies remains an important
tool for expanding the genetic variation within modern cattle
breeds (Gregory and Cundiff, 1980). Also, the genetic diversity
inherent to South African Simbra holds significant potential
for improvements in production and environmental adaptability
(Sölkner et al., 1998; Becker et al., 2013).

The limited diversity observed for Brahman breed is most
likely a consequence of intensive artificial selection for improved
productivity (Albertí et al., 2008). It was previously suggested
that the low genetic diversity in the Brahman breed may be
partly ascribed to the use of elite sires (Makina et al., 2014).
Such practices are consistent with the observed F value (0.0003),
which are suggestive of some inbreeding in the Brahman
populations examined (van der Westhuizen et al., 2019). Genetic
diversity within the Simmental population was slightly higher
than in the Brahman breed. This may be because the cattle
BeadChip was optimized for use in Bos taurus taurus breeds
(Cheruiyot et al., 2018).

Genome-wide polymorphism data indicated that the genomic
background of the South African Simbra hybrid breed represents
a mosaic of the Taurine and Indicine ancestor breeds, as
was expected (Smith, 2010). Our data also confirmed the
optimal 5/8 Simmental and 3/8 Brahman composition of the
Simbra genomes included in this study, since this composition
ensures maintenance of favorable traits from both breeds (i.e.,
meat tenderness of the Simmental breed and heat-tolerance of
the Brahman breed) (O’ Connor et al., 1997; Smith, 2010).
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FIGURE 4 | Manhattan plots of genome-wide signatures of positive selection

analyses. Distribution of iHS scores in the Simbra crossbred cattle (A), Rsb

analysis with the Simbra and Simmental cattle (B), and Rsb analysis with the

Simbra and Brahman cattle (C). The iHS and Rsb analysis was performed

using the rehh package (Gautier and Vitalis, 2012) in R v. 3.4.4. The dashed

line corresponds to a significance threshold (–log10) that was set at 6, which is

equivalent to P-value = 1e−06.

Additionally, the PCA and FastSTRUCTURE data also clearly
demonstrated that the South African Simbra has evolved into
a unique breed, as three distinct clusters were identified. This
suggests that, after initial formation and subsequent intense
artificial selection and breeding, the Simbra breed composition
has stabilized over time (Paim et al., 2020).

Our results suggested that crossbreeding, followed by
selection, was key in shaping the genome of the South African
Simbra hybrid breed (Ríos-Utrera et al., 2020). Consistent
with previous studies (e.g., Bahbahani and Hanotte, 2015;
Bahbahani et al., 2017), the two EHH-based statistics used in

this study allowed for the identification of genomic regions
that display signatures of positive selection in the hybrid
genome. These included regions that were identified using the
intra-population iHS statistics, as well as the inter-population
Rsb statistics using the Simmental and Brahman cattle as
reference populations. The candidate regions identified using
the iHS and Rsb statistics supports the role of selection
pressures, and not natural demographic processes, in shaping
the genomic pattern of these regions (Bahbahani et al.,
2018). Also, 25% of the regions displayed ancestry deviation.
Furthermore, only five genomic regions that displayed signatures
of positive selection overlapped with regions containing locus-
ancestry deviation. This may be because EHH-based statistics
identify older signals of selection, while ancestry deviation
is likely caused by recent post-admixture selection (Oleksyk
et al., 2010; Bahbahani et al., 2018). Regions that display
ancestry deviation observed in the young Simbra crossbreed
that was developed in the United States in the late 1960s
(Gouws, 2016), is most likely the result of recent post-
admixture selection.

The South African Simbra hybrid breed appears to be evolving
separately from its ancestoral breeds, with selection driving
the increase in prevalence of advantageous alleles derived from
both the parent breeds (Xu et al., 2015). The presence of
genomic regions displaying locus-ancestry deviation supports
the likelihood that they are important for the adaptability of
Simbra cattle to the local environment (Bahbahani et al., 2018).
The inter-population Rsb statistics, using Brahman as reference,
allowed for the identification of Taurine haplotypes in regions
that are under selection. Similarly, Rsb statistics using Simmental
as reference allowed for the identification of regions that support
selection pressures on Indicine haplotypes. As suggested recently,
the identified genomic regions under selectionmay have adaptive
significance to maximize their reproductive fitness and their
adaptability to environmental challenges (Bahbahani et al., 2018).

Analysis of genes and known QTLs in regions of the Simbra
genome that harbor signals of positive selection suggest that these
are likely involved in its improved environmental adaptability
and productivity (Paim et al., 2020; Ríos-Utrera et al., 2020).
Many of the genes located in these genomic regions have
previously been implicated in traits that are highly valued in
the Simbra composite breed (Smith, 2010). The location of
these regions also overlapped or co-occurred with previously
reported bovine quantitative trait loci (QTLs) (https://www.
animalgenome.org), which strongly reflect the overall breeding
goals of the Simbra breed (Smith, 2010). For example, one of
the adaptive regions located on BTA 23 co-occurred with a QTL
associated with body weight (Lu et al., 2013). This region that
is derived from the Simmental ancestry is important for growth
performance in the Simbra breed (Pico, 2004; Amen et al., 2007;
Smith, 2010; Maúre et al., 2018). The heritability of these traits
may be due to positive selection of gene regions that is caused
by beneficial polymorphisms in the genes affecting the traits,
because mutation that provides a fitness advantage will increase
in frequency in the population (Taye et al., 2017).

Most of the genomic regions experiencing positive selection
were implicated in traits that are valued in breeds of Indicine
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TABLE 3 | Examples of candidate genes within the candidate regions of the different analyses conducted in the study.

Selected populationa Selection region position (Mb)b ENSEMBLE gene IDc ENSEMBLE Gene named

Simbra 1:131.6–133.5 ENSBTAG00000014589,

ENSBTAG00000008299

Claudin 18 (CLDN18) Interleukin

20 receptor subunit

beta (IL20RB)

Simbra, Simbra+Simmental 2:126.6–128.6 ENSBTAG00000001513,

ENSBTAG00000005085

PDLIM1 interacting kinase 1

like (PDIK1L) Tripartite motif

containing 63 (TRIM63)

Simbra 3:32.0–34.0 ENSBTAG00000015459 Potassium voltage-gated

channel subfamily A member 2

(KCNA2)

Simbra 5:55.6–57.7 ENSBTAG00000018361,

ENSBTAG00000008322

R3H domain containing

2 (R3HDM2) Potassium

voltage-gated channel subfamily

A member 10 (KCNA10)

Simbra 9:9.8–11.8 ENSBTAG00000048046 Uncharacterized protein

Simbra, Simbra+Simmental 19:55.6–57.7 ENSBTAG00000010758,

ENSBTAG00000011713

Small integral membrane protein

5 (SMIM5) Uncharacterized

protein

Simbra, Simbra+Simmental 20:21.2–23.2 ENSBTAG00000014248,

ENSBTAG00000047548

MIER family member 3

Uncharacterized protein (MIER3)

Simbra, Simbra+Simmental, Simbra+Brahman 21:56.6–58.6 ENSBTAG00000006620 Solute carrier family 24 member

4 (SLC24A4)

Simbra+ Brahman 23:38.3–40.3 ENSBTAG00000019217 Kinesin family member 13A

(KIF13A)

aSignatures of selection was identified using the two LD-based methods (Rsb and iHS) (Vitti et al., 2013).
bCandidate regions are represented as (BTA: start – stop Mb), BTA, Bos taurus autosomes.
cENSEMBLE gene ID obtained from Ensembl (http://www.ensembl.org/index.html).
dENSEMBLE gene name obtained from Ensembl (http://www.ensembl.org/index.html).

ancestry. For example, the region located on BTA 5 that
displays locus-ancestry deviation (excess of Brahman parent
alleles) co-occurred with a QTL associated with ovulation
rate. This confirms that regions/genes related to fertility and
reproduction are hotspots of selection in breeds living in tropical
environments (Bahbahani et al., 2018). The region located on
BTA 20 co-occurred with a QTL associated with heat intensity
(i.e., heat tolerance), and is derived from the Brahman ancestry.
Adaptation to the harsh South African environment that is
valued in the Indicine parent breed will allow for the Simbra
breed to adapt to climate change that will likely cause South
Africa to become hotter and drier (Girvetz et al., 2019). Of
the genomic regions displaying positive selection, and that co-
occurred with known QTLs linked with production in the
Simmental breed, many were also previously demonstrated to be
under selection in Western and Russian Simmental populations
(Mészáros et al., 2019). These included QTLs associated with
carcass weight that are located on BTA 9, milk production
located on BTA 2 and BTA 21, as well as fertility located
on BTA 1, that display locus-ancestry deviation (excess of
Simmental parent alleles) (Berkowicz et al., 2012; Do et al.,
2014; Gebreyesus et al., 2019; Zhang et al., 2019). These
genomic regions include genes that encode for a SLC24A4
homolog located on BTA 21, which is known to be associated
with milk production and fertility (Nayeri and Stothard, 2016;
Nayeri et al., 2016). Our results could therefore highlight
new regions and pathways that may contribute to variation

in reproductive health, fertility, and milk production in cattle
in general.

Many of the genes occurring in regions under positive
selection in Simbra were previously identified using genome-
wide association studies (GWAS) where they were linked to meat
quality of Taurine, Indicine and composite breeds (Allais et al.,
2014; Hulsman et al., 2014; Magalhães et al., 2016; Xia et al.,
2016). For example, KCNA10 encoded on BTA 3 is likely involved
in determining meat quality in Simbra that may be derived from
the Simmental parent breed (Lang et al., 2000; Fleet et al., 2011).
Other genes, derived from the Brahman parent breed that include
SMIM5 encoded on BTA 19 that display locus-ancestry deviation
(excess of Brahman parent alleles), may negatively influence
carcass and meat properties (e.g., marbling) (Mateescu et al.,
2017; Taye et al., 2017). Some of the adaptive alleles identified
in Simbra were implicated in the sensory characteristics of meat
(e.g., tenderness, flavor, juiciness, and color), which are mainly
affected by proteolytic activities of muscle (Taye et al., 2017). For
example, a homolog of TRIM63 (also called MuRF-1), located
on BTA 2, has been linked with meat tenderness in Nellore
cattle (Indicine) (Muniz et al., 2016). MuRF-1 is an important
component of the ubiquitin-proteasome system, which is the
main proteolytic pathway in skeletal muscle growth in domestic
animals (Koohmaraie et al., 2002). This pathway regulates the
balance between the amounts of muscle proteins synthesized
and degraded to control the skeletal muscle mass (Koohmaraie
et al., 2002). Accordingly, the ubiquitin-proteasome system and
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its components have been linked to meat tenderness (Yin et al.,
2010; Taye et al., 2017), productivity and economic value of
animals (Sadri et al., 2016; Nakanishi et al., 2019). The high
number of genes identified in this study and other studies that
are associated with meat quality, underscore the complexity of
this trait and that it is regulated by multiple interrelated causative
factors and layers of feedback regulation (Diniz et al., 2019).

Some of the genomic regions subject to positive selection
are likely involved in overall health and fitness of the Simbra
breed. For example, the region located on BTA 3, which is
known to be under selection in Western and Russian Simmental
populations (Mészáros et al., 2019) and most likely derived from
the Simmental parent breed, overlaps with a QTL associated
with ketosis (QTL:179821). The latter is a metabolic disorder
where negative energy balances (when energy demand exceeds
intake) affect animal health and productivity (Nayeri et al.,
2019). It has been postulated that such failure to maintain
internal homeostatic and homeorhetic regulation maybe caused
by intense genetic selection (Nayeri et al., 2019). Furthermore,
metabolic disorders have also been demonstrated to negatively
influence the immune response in cattle (Wathes et al., 2009;
Esposito et al., 2014). The results of this study can be used for
further genetic analysis to identify causal variants that affect
ketosis and metabolic diseases.

Likewise, health and fitness traits that had likely been derived
from Indicine ancestry were also encoded in Simbra genomic
regions subject to selection. These regions are located on BTA 5,
BTA 19, BTA 20, and BTA 21, which appear to be derived from
Brahman. BTA 5 harbors a gene encoding KCNA10 (potassium
voltage-gated channel subfamily A member 10) known to
influence potassium metabolism and play a role in human and
animal production and health (Lang et al., 2000; Fleet et al.,
2011). This protein regulates acid-base balance and maintains
cellular pH and electrical gradients (Lang et al., 2000; Fleet et al.,
2011), which has previously been demonstrated to influence
meat quality in cattle (Diniz et al., 2019). Likewise, BTA 21
contains the SLC24A4 gene that encodes amember of potassium-
dependent sodium or calcium exchanger protein family, which
may influence pigmentation related traits that may influence
health (e.g., UV protection) (Sulem et al., 2007). The selection
region on BTA 19 contains a gene encoding the small integral
membrane protein 5 (SMIM5) that is associated with udder
health and clinical mastitis in Holstein cattle (Wu et al., 2015).
The region experiencing selection on BTA 20 harbors a gene
that encodes MIER family member 3 Uncharacterized protein
(MIER3), which is associated with survival in Holstein and Jersey
cattle (Raven et al., 2014).

Finally, analysis of genome-wide polymorphisms further
showed that the genetic diversity of the South African purebred
Brahman parental breed was slightly lower than the Simmental
population. This is similar to what has been reported previously
(Qu et al., 2006; Agung et al., 2016; Utrera et al., 2018). The low
level of diversity in the Brahman breed may be an indication
of relative homogeneity in the South African populations as
a consequence of intensive artificial selection for improved
productivity (Albertí et al., 2008; Taberlet et al., 2008). It was
also previously suggested that the low genetic diversity observed

in the Brahman breed may be partly ascribed to the use of elite
sires (Makina et al., 2014). Such practices are consistent with
the observed inbreeding coefficient (f ) estimate (0.022), which
is suggestive of some inbreeding in the Brahman populations
examined (van der Westhuizen et al., 2019). Although it cannot
be excluded that the low genetic diversity in the Brahman
population may be due to the fact that the cattle BeadChip was
optimized for use in Bos taurus taurus breeds (Cheruiyot et al.,
2018), it is important that genetic diversity must be maintained
and increased for sustainable production andmanagement of this
purebred cattle breed.

CONCLUSIONS

The SNP array data allowed for the assessment of genetic
diversity, population structure and admixture of the South
African Simbra population. Our findings contribute to the
current knowledge of the genetics of the Simbra breed, and
provides insight into how genomic architecture changes with
hybridization and crossbreed formation. Results of this study
emphasize the importance of assessing the genetic diversity,
population structure and admixture of other South African cattle
breeds. It also emphasize the importance of implementing a
management strategy to increase diversity in the purebred breeds.

The genome-wide SNP array further allowed for the
identification of signatures of positive selection in the Simbra
hybrid genome, and these putatively introgressed genomic
regions may have adaptive significance, affecting important
phenotypic traits (e.g., adaption, reproduction, and production)
in the breed. These include Indicine-derived alleles associated
with heat tolerance and Taurine-derived alleles that are associated
with body weight.

Knowledge of the genetics controlling meat quality will
increase the ability of the industry to produce better meat, which
will benefit consumers and should increase the demand for beef,
which is of great interest to the beef industry (Mateescu et al.,
2017). The identified adaptive introgression of alleles of Indicine-
and Taurine derived ancestral genes may lay the foundation
for ad-hoc physiological studies and targets for selection (and
potentially gene editing), that may increase production and
health in modern cattle breeds. Ultimately, this study represents
an important step toward developing and improving strategies
for targeted selection and breeding that will ultimately contribute
meaningfully to the beef production industry of South Africa.
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Meat quality is an important trait for pig-breeding programs aiming to meet consumers’
demands. Geneticists must improve meat quality based on their understanding of
the underlying genetic mechanisms. Previous studies showed that most meat-quality
indicators were low-to-moderate heritability traits; therefore, improving meat quality
using conventional techniques remains a challenge. Here, we performed a genome-wide
association study of meat-quality traits using the GeneSeek Porcine SNP50K BeadChip
in 582 crossbred Duroc × (Landrace × Yorkshire) commercial pigs (249 males and 333
females). Meat conductivity, marbling score, moisture, meat color, pH, and intramuscular
fat (IMF) content were investigated. The genome-wide association study was performed
using both fixed and random model Circulating Probability Unification (FarmCPU) and
a mixed linear model (MLM) with the rMVP software. The genomic heritability of the
studied traits ranged from 0.13 ± 0.07 to 0.55 ± 0.08 for conductivity and meat color,
respectively. Thirty-two single-nucleotide polymorphisms (SNPs) were identified for meat
quality in the crossbred pigs using both FarmCPU and MLM. Among the detected SNPs,
five, nine, seven, four, six, and five were significantly associated with conductivity, IMF,
marbling score, meat color, moisture, and pH, respectively. Several candidate genes
for meat quality were identified in the detected genomic regions. These findings will
contribute to the ongoing improvement of meat quality, meeting consumer demands
and improving the economic outlook for the swine industry.

Keywords: genome-wide association study, crossbred pigs, meat quality, moisture, conductivity, marbling score,
meat color, intramuscular fat content

INTRODUCTION

Meat quality, a comprehensive indicator that includes moisture, intramuscular fat (IMF), pH,
meat color, water-holding capacity, marbling, and tenderness (Noidad et al., 2019), is among the
most important traits in the swine industry. In addition to genetics, non-genetic factors, such as
species, management, and environmental background, affect meat quality (Womack et al., 2012).
Historically, swine research efforts focused on growth performance but neglected meat quality.
However, as living standards improve globally, more consumers are prioritizing meat quality.
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Consequently, pig farmers are interested in improving
meat quality to meet the new meat-market demands
(Nonneman et al., 2013).

Multiple genes, including major genes and genes with
moderate or minor effects, control meat quality. RN, RKAG3,
RYR1, PHKG1, MC4R, and insulin-like growth factor 2 (IGF2)
are the major genes reported to affect meat-quality traits (Milan
et al., 2000; Barbut et al., 2008; Yu et al., 2008; Oczkowicz et al.,
2013; Ma et al., 2014; Lu et al., 2018). In total, 30,580 quantitative
trait loci (QTLs) were released for public access on the pig
QTL database1, which reported 691 pig traits associated with
meat quality. Previous research identified many candidate genes
for meat-quality traits, including adenylosuccinate lyase (ADSL)
associated with drip loss and pH (Ramos et al., 2006; Karol et al.,
2010) and ubiquitin-specific peptidase 43 (USP43) associated with
five meat-quality traits, including IMF, marbling, moisture, meat
color, and color score (Luo et al., 2012). Some regions were
identified for multiple traits, such as on SSC6 from 28 to 29.5 Mb
for purge and IMF containing the candidate genes glucose-6-
phosphate isomerase (GPI) and KCTD15 (Nonneman et al.,
2013). The BDKRB2 and UTRN genes were identified to associate
with IMF in Duroc population using single-locus and multi-locus
genome-wide association studies (GWASs) (Ding et al., 2019).
The MYCT1 and BINP3 genes were found to associate with both
meat color and pH in Qingyu pigs (Wu et al., 2020). Additionally,
most QTLs have been identified using linkage mapping, thus
representing large chromosomal regions (Varona et al., 2002).
As high-density single-nucleotide polymorphism (SNP) arrays
become more accessible, GWASs are being widely used to identify
candidate genes despite most meat-quality traits exhibiting low-
to-moderate heritability (Hermesch et al., 2000; Suzuki et al.,
2005). Further exploration of meat-quality-related genes remains
necessary owing to the insufficient research on gene localization
of meat-quality traits.

Many breeding enterprises favor crossbred
Duroc × (Landrace × Yorkshire) pigs [D (LY)] for their
high feed-utilization rates and large eye muscle area, while meat
quality is often neglected. Meat-quality traits are difficult to
measure and cannot be assessed without slaughter, which greatly
increases the difficulty and cost of breeding programs selecting
for meat quality. In the present study, a GWAS was conducted
using the Porcine SNP50 Genotyping BeadChip to identify
QTLs for meat-quality traits in a crossbred D (LY) porcine
population. This study was conducted to identify candidate genes
and potential breeding markers and more deeply investigate the
genetic architecture of meat-quality traits.

MATERIALS AND METHODS

Ethics Statement
All experimental animals were handled in accordance with the
guidelines of the Institutional Animal Care and Use Committee
of Foshan University. The Institutional Animal Care and Use
Committee of Foshan University approved this study.

1https://www.animalgenome.org/cgi-bin/QTLdb/SS/summary

Animals
We collected 582 D (LY) commercial pigs (249 males and 333
females) from two farms (Fengda and Xinglin) of Guangxi
Yangxiang Co., Ltd. These pigs were offspring of 45 boars and
96 sows. The pigs were reared under the same management
conditions and similar environments, with automatic water and
free food intake (with the nutritional formula shown in Table 1).
Boars and sows were raised separately, and the young boars were
castrated 6–7 days after birth. The pigs were slaughtered in the
same commercial abattoir at 150± 3 days of age.

Phenotypes
Trained personnel recorded the phenotypic data for six meat-
quality traits per individual pig as per the guidelines of
the National Pork Producers Council (NPPC, 1991) of the
United States. All meat-quality measurements were taken on the
left side of the carcass. Meat color was measured as follows:
(1) grayish white (abnormal flesh color), (2) mild gray (inclined
to abnormal flesh color), (3) normal bright red, (4) slightly
dark red (normal flesh color), and (5) dark purple (abnormal
flesh color). Marbling score was assessed from 1 to 5. Both
measurements were assessed subjectively via the longissimus
muscle (LM) according to the NPPC. pH was measured via the
LM using a Delta 320 pH meter (Mettler Toledo, Columbus,
OH, United States) 45 min after slaughter. IMF was determined
from the thoracic lumbar LM via Soxhlet petroleum-ether
extraction. Moisture was analyzed via the thoracic lumbar LM
by routine oven drying. Conductivity was measured via the
dorsal LM between the 13th and 14th ribs using the LF-
STAR conductivity meter (Matthaus, Pottmes, Germany). Meat
color, pH, marbling score, and conductivity were measured
in triplicate for each sample, and the average of the three
measurements was used.

Genotyping and Quality Control
DNA was extracted from the ear tissue using a genome
extraction kit (Wuhan NanoMagBio Technology Co., Ltd.,
China). DNA quality was assessed by measuring the light
absorption ratios (A260/280 and A260/230) at ≥40 ng/µl.
Genomic DNA was genotyped on the GeneSeek Porcine 50K
SNP Beadchip (GeneSeek, Lansing, MI, United States). Quality
control of the SNP data was conducted using PLINK software
(Purcell et al., 2007). Briefly, individuals with call rates >0.95 and
markers with call rates >0.99, minor allele frequencies (MAF)
>0.05, and Hardy–Weinberg (HWE) P > 10−4 were retained.
All markers located on sex chromosomes or in unmapped
regions were excluded. Missing genotypes were imputed using
the Beagle software (Browning and Browning, 2009). After
quality control, 34,057 SNPs were used for subsequent analyses.
Supplementary Table 1 shows the SNP distribution after data
quality control and the average distance between adjacent SNPs
on each chromosome.

Statistical Analyses
Genomic heritability of the meat-quality traits was calculated
by dividing the genetic variance by the sum of the genetic and
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TABLE 1 | Nutritional formula of the D (LY) population.

Components Content

30∼70 kg 70 kg∼Live weight

Energy, MJ/kg 3,292 3,291

Moisture,% 11.74 11.61

Crude protein,% 15.5 15.0

Crude fat,% 1.83 1.68

Calcium,% 0.60 0.55

SID Lys,% 0.90 0.77

SID Met,% 0.27 0.18

SID Trp,% 0.12 0.10

residual variances using the hiblup package (Yin et al., 2019). The
model can be written as follows:

y = Xb+ Zu+ e

where y is the vector of phenotypic values; b is a vector of fixed
effects, including sex, farm of origin, and batch containing the
year-season effect; and u represents breeding values. X and Z
were design matrices for b and u, respectively; e represents the
residual error vector. In this study, u ∼ N(0, Gσ2

u), in which σ2
u

is the unknown additive genetic variance, and G is the genomic
relationship matrix (VanRaden, 2008).

Association analysis was performed using the fixed and
random model Circulating Probability Unification (FarmCPU)
(Liu et al., 2016) and mixed linear model (MLM) (Price
et al., 2006) with the rMVP software (Yin et al., 2020). The
FarmCPU model iteratively uses the fixed and random effects
to simultaneously control false positives and false negatives. The
model can be written as follows:

y = Twi + Pjqj +mkhk + e,

where y is the vector of phenotypic values; T is a matrix of
fixed effects, including sex, farm of origin, batch containing
the year-season effect, and the top three principal components
with the corresponding effect, wi; Pj is the genotype matrix of
j pseudo quantitative trait nucleotides (QTNs), which was used
as the fixed effects; and qj is the corresponding effect. mk is
a vector of genotypes for the kth marker to be tested, and hk
is the corresponding effect. e is the residual effect vector with
distribution, e ∼ N(0, Iσ2

e ), where σ2
e represents the residual

variance. The random effect model was used to select the most
appropriate pseudo QTNs. The model can be written as follows:

y = u+ e,

where y is the vector of the phenotypic values of meat quality; u
is the genetic effects defined by u ∼ N(0, 2Kσ2

u), where K is the
kinship matrix defined by pseudo QTNs, and σ2

u is an unknown
genetic variance; and e is the residual effect vector.

The MLM can be written as follows:

y =Wb+ Za+ Sc+ e,

where y is the vector of phenotypes of each D (LY) pig, a is the
vector of the same fixed effects as those in the FarmCPU model, b

is the vector of the SNP substitution effects, and c is the vector of
random additive genetic effects with a ∼ N(0, Gσ2

a), where G is
the genomic relationship matrix, and σ2

a is the unknown additive
variance. W, Z, and S are the incidence matrices for b, a, and c,
respectively. Because the Bonferroni correction was too strict, the
genome-wide significant thresholds were set as p < 1/N, where N
was the number of SNPs tested in the analyses as per previous
studies (Liu et al., 2015; Xiong et al., 2015; Ding et al., 2019).
In this study, N was 34,057, and the significant threshold was
set to 2.94E−5. Phenotypic correlations among the meat traits
were calculated within the R statistical environment and used
to determine whether they reflected the relationships between
the GWAS results.

Annotation of Candidate Genes
Potential candidate genes were identified within 500 kb upstream
and downstream of the genome-wide significant SNPs on
the Sus scrofa11.1 genome from the Ensembl database2.
Candidate genes were then selected for traits according to their
biological function.

Haplotype Block Analysis
Haplotype block analysis was performed with Haploview
software. Linkage disequilibrium blocks were defined using
Haploview with the default parameters (Gabriel et al., 2002) based
on SNPs with MAF values > 0.05, Mendelian errors < 2, and p in
the HWE test < 10−3.

RESULTS

Phenotype Description and Correlation
Among Meat Traits
Tables 2, 3 summarizes the statistical information and genomic
heritability of the meat-quality traits. Supplementary Figure 1
shows the trait distributions. The mean values for moisture,
IMF, conductivity, pH, marbling score, and meat color were
71.1%, 2.43%, 2.65 mS, 6.36, 3.41, and 3.74, respectively. The
genomic heritability estimates for moisture, IMF, conductivity,
pH, marbling score and meat color were 0.48, 0.31, 0.13, 0.39,
0.37, and 0.55, respectively. Table 4 shows the phenotypic

2http://asia.ensembl.org/
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TABLE 2 | Descriptive statistics for meat-quality traits of 582 pigs.

Traits N Mean SD CV/% Min. Max.

Moisture, % 519 71.10 2.10 2.95 63.57 75.53

IMF, % 522 2.43 0.87 35.68 0.06 5.20

Conductivity, mS 550 2.65 0.53 19.99 1.63 4.87

pH 578 6.36 0.37 5.74 5.29 6.99

Marbling (1–5) 582 3.41 0.61 17.82 2.00 5.00

Meat color (1–5) 581 3.74 0.55 14.71 1.50 5.25

IMF, intramuscular fat; h2, heritability estimates.

TABLE 3 | Estimation of genetic parameters for meat quality.

Traits Additive genetic variance (SE) Residual variance (SE) h2 (SE)

Moisture 1.17 (0.25) 1.29 (0.19) 0.48 (0.08)

IMF 0.21 (0.06) 0.47 (0.06) 0.31 (0.08)

Conductivity 0.04 (0.02) 0.25 (0.02) 0.13 (0.07)

pH 0.04 (0.01) 0.06 (0.01) 0.39 (0.08)

Marbling 0.12 (0.03) 0.20 (0.02) 0.37 (0.08)

Meat color 0.11 (0.02) 0.09 (0.01) 0.55 (0.08)

SE, standard error.

TABLE 4 | Correlation coefficients of meat-quality trait phenotypes in the pigs.

Traits Moisture IMF Conductivity pH Marbling Meat color

Moisture

IMF −0.416**

Conductivity 0.038 −0.041

pH −0.444** 0.078 −0.448**

Marbling −0.326** 0.203** −0.212** 0.433**

Meat color 0.595** −0.137** −0.050 −0.260** −0.083*

*p < 0.05; **p < 0.01. IMF, intramuscular fat.

correlation coefficients for moisture, IMF, conductivity, pH,
marbling score, and meat color. Significant positive correlations
were found between pH and marbling score (r = 0.43;
p < 0.01), meat color and moisture (r = 0.59; p < 0.01),
and marbling score and IMF (r = 0.20; p < 0.01). Moisture
was significantly negatively correlated with IMF (r = −0.41;
p < 0.01), pH (r = −0.44; p < 0.01), and marbling score
(r =−0.32; p < 0.01).

Significantly Associated SNPs Identified
via GWAS and Functional Analysis
Thirty-two SNPs were identified as significant for the traits
investigated (Figures 1–6). Among the detected SNPs, five, nine,
seven, four, two, and five were associated with conductivity, IMF,
marbling score, meat color, moisture, and pH, respectively. In
addition, linkage disequilibrium (LD) analysis was performed
by using the data of the D (LY) population, and the results
are shown in Figure 7. The results show that LD decay
tends to be stable statuses when the distance is 1 Mb.
Thus, genes that located within 1 Mb near the significant
SNPs are identified as potential candidate genes for traits.
In this study, 140 functional genes located within 1 Mb

of the significant SNPs were considered potential candidate
genes (Supplementary Table 2). Eight genes were selected
as candidate genes for meat-quality traits according to their
biological functions.

Conductivity
Five significant SNPs for conductivity were identified on
chromosomes 6 and 15 (Figure 1A). Table 5 provides detailed
information on the significant SNPs, including the SNP,
chromosome (Chr), location (bp), P-value, whether the SNP
is located on or flanking the gene, and distance between the
flanking genes and significant SNPs. Three significant SNPs were
located within a 0.20-Mb segment (from 56.34 to 56.54 Mb) on
SSC15. Among them, the two most significant, ALGA0085588
and ALGA0085585, were located within HERC2 and 93.3 kb
upstream from HERC2, respectively, and were detected by both
the MLM and FarmCPU. ALGA0085594 was also located within
HERC2 via the FarmCPU method. These three significant SNPs
on SSC15 were in a 534-kb haplotype block (Figure 1C). The
other significant SNPs, ASGA0083580 and DRGA0006706, were,
respectively, located within FHOD3 and 53.2 kb upstream from
DSG1 on SSC6.
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FIGURE 1 | (A) Manhattan plots. (B) Quantile–quantile (QQ) plots of the mixed linear model (MLM) and fixed and random model Circulating Probability Unification
(FarmCPU) analyzed for conductivity traits in D (LY) pigs. (C) Haplotype blocks on SSC15, including all significant conductivity-associated single-nucleotide
polymorphisms (SNPs).

IMF
The MLM and FarmCPU methods identified nine
significant SNPs associated with IMF (Figure 2
and Table 6). Among these significant SNPs, four
(WU_10.2_10_48312614, WU_10.2_10_47748520, DRGA00
10501, and WU_10.2_10_48118152) were located within
a 0.50-Mb segment (from 43.10 to 43.60 Mb) on SSC10.
The most significant SNP (WU_10.2_10_48312614) was
identified by both models and was located within an intron
of ST8SIA6. ALGA0006955, ALGA0031885, H3GA0023123,
DBWU0000868, and ASGA0059395 were located on SSC1, 5, 7,
9, and 13, respectively.

Marbling
Both models identified seven significant SNPs associated with
marbling (Figure 3 and Table 7). One SNP (M1GA0013120)
was identified by only MLM. The most significant SNP
(WU_10.2_12_33077453) was located 141.0 kb upstream of
ANKFN1.

Meat Color
The FarmCPU identified four significant SNPs associated with
meat color (Table 8 and Figure 4); the MLM identified no SNPs
for meat color. Three of the four significant SNPs were located
within 0.39 Mb (from 9.20 to 9.59 Mb) on SSC18. The most
significant SNPs, M1GA0023045 and WU_10.2_18_10095600,
were located 22.2 kb from KDM7A on SSC18. The other
significant SNPs (WU_10.2_12_18572268, ASGA0078801, and
WU_10.2_18_10095600) were located within an intron of NMT1
on SSC12 and DENND2A and KDM7A on SSC18, respectively.

Moisture
The FarmCPU identified two significant SNPs associated with
moisture; the MLM identified no significant SNPs associated
with moisture (Table 9). Figure 5 shows the Manhattan and
QQ plots. The significant SNPs, WU_10.2_11_56636318 and
ALGA0062389, were, respectively, located 275.5 and 325.9 kb
downstream from NDFIP2.

Frontiers in Genetics | www.frontiersin.org 5 March 2021 | Volume 12 | Article 614087276

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-614087 March 11, 2021 Time: 17:3 # 6

Gao et al. GWAS for Meat Quality in Pigs

FIGURE 2 | Manhattan and quantile–quantile (QQ) plots of the MLM and FarmCPU analyzed for IMF traits in D (LY) pigs.

FIGURE 3 | Manhattan and quantile–quantile (QQ) plots of the MLM and FarmCPU model analyzed for marbling score in D (LY) pigs.

pH
Five significant SNPs on SSC1 and SSC13 were significantly
associated with pH (Table 10 and Figure 6). Among these SNPs,
four (WU_10.2_1_934682, WU_10.2_1_974053, INRA0002536,
and ASGA0099314) were identified via both the FarmCPU and
MLM. The most significant SNP (ASGA0099314) was located
within ETV5, a protein-coding gene.

DISCUSSION

As living standards continuously improve, consumers have
higher expectations and more rigorous demands regarding meat
quality. Consequently, meat quality is becoming an important
trait in the swine industry and a major issue for pig breeding

programs (Moeller et al., 2010; Gallardo et al., 2012; Nonneman
et al., 2013). With the development of SNP arrays, GWAS
analyses have become important for improving meat quality in
the swine industry. For example, a previous study showed that
several candidate genes, including MC4R, IGF2, ADRB3, and
ATP1A2, heavily affected meat quality (Lu et al., 2018; Mármol
Sánchez et al., 2020). Researchers showed that the AG genotype
of ADRB3 had a higher marbling score and that it could be an
important marker for improving marbling scores (Kenchaiwong
et al., 2020). In this study, we performed a GWAS of meat-
quality traits on crossbred commercial D (LY) pigs and detected
candidate genes and markers to improve meat-quality traits.

In this work, the genomic heritability of the meat-quality traits
ranged from 0.13 to 0.55, which was similar to the results of a
previous study (Miar et al., 2014). The estimated heritabilities
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FIGURE 4 | Manhattan and quantile–quantile (QQ) plots of the MLM and FarmCPU models analyzed for meat color in D (LY) pigs.

FIGURE 5 | Manhattan and quantile–quantile (QQ) plots of the MLM and FarmCPU model analyzed for moisture in D (LY) pigs.

of these meat-quality traits were of low or moderate magnitude,
showing that meat quality can be genetically improved. We
identified 32 SNPs that were significantly associated with meat-
quality traits in crossbred D (LY) pigs. Limited SNPs were
analyzed, possibly owing to the sample size and hybrid nature of
the three-way crossbred population. Previous studies identified
nine SNPs for meat-quality traits in a population of 610 D
(LY) pigs, and 28 SNPs were identified in a population of 336
purebred Chinese Erhualian pigs (Liu et al., 2015). Thus, the
GWAS results may have been related to both the variety and
population size of the pigs.

Notably, in addition to duplicating the QTL for meat quality
found in a previous GWAS, we identified four novel QTLs.
These four novel QTLs were located on a 0.20-Mb region
(56.34–56.54 Mb) significantly associated with conductivity on

SSC15, a 0.39-Mb region (9.19–9.58 Mb) significantly associated
with meat color on SSC18, a 0.04-Mb region (0.56–0.60 Mb)
significantly associated with pH on SSC1, and a 4.25-Mb
region (52.26–56.51 Mb) on SSC1. Additionally, a 2.59-Mb
region (51.89–49.30 Mb) on SSC11 was identified as being
significantly associated with marbling and moisture, containing
the significant SNPs WU_10.2_11_53938211 at 49.30 Mb
for marbling, and WU_10.2_11_56636318 at 51.89 Mb and
ALGA0062389 at 51.83 Mb for moisture. The results showed
that some chromosomal regions might have diverse effects on
meat-quality traits. Moreover, similar to the results of Luo
et al. (2012), moderate correlation coefficients were identified
between marbling and moisture (r = −0.33; p < 0.01). Thus, the
correlation between traits might explain the pleiotropic effects
in some regions.

Frontiers in Genetics | www.frontiersin.org 7 March 2021 | Volume 12 | Article 614087278

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-614087 March 11, 2021 Time: 17:3 # 8

Gao et al. GWAS for Meat Quality in Pigs

FIGURE 6 | Manhattan and quantile–quantile (QQ) plots of the MLM and FarmCPU analyzed for pH in D (LY) pigs.

FIGURE 7 | The linkage disequilibrium decay in populations of D (LY).

We identified five significant SNPs as being significantly
associated with conductivity. Two of these (ALGA0085585 and
ALGA0085588) were identified by the FarmCPU and MLM
and were located near HECT and RLD domain-containing
E3 ubiquitin protein ligase 2 (HERC2). ALGA0085594 was
also located within HERC2. Previous research found that

ATP1A2 was strongly associated with muscle electrical
conductivity because it encoded a subunit of the Na+/K+-
ATPase responsible for maintaining an electrochemical
gradient across the plasma membrane (Mármol Sánchez
et al., 2020). Furthermore, ATP1A2 polymorphisms were
associated with fat-cut percentage (Fontanesi et al., 2012).
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TABLE 5 | Genome-wide significant conductivity-associated SNPs.

SNP Chr1 Location (bp) MAF P value Located gene Flanking genes Distance2 Method3

DRGA0006706 6 115,184,412 0.14 1.53E-05 – DSC1/DSG1 −108,315/+53,265 I

ASGA0083580 6 120,435,160 0.06 1.30E-05 FHOD3 MOCOS/TPGS2 −417,040/+154,871 I

ALGA0085585 15 56,344,774 0.40 1.02E-05/1.82E-05 – MFHAS1/HERC2 −49,683/+93,333 I, II

ALGA0085588 15 56,452,924 0.40 1.02E-05/1.82E-05 HERC2 MFHAS1/ENSSSCG00
000047765

−157,833/+361,732 I, II

ALGA0085594 15 56,538,806 0.33 2.75E-05 HERC2 MFHAS1/ENSSSCG0
0000047765

−243,715/+275,850 I

1SNP located on the Sus scrofa Build 11.1 assembly.
2SNP designated as within a gene distance from the flanking gene-coding region in the Sus scrofa Build 11.1 assembly.
3Method numbers (I, II) represent the FarmCPU and MLM, respectively.

TABLE 6 | Genome-wide significant SNPs associated with IMF.

SNP Chr1 Location (bp) MAF P value Located gene Flanking genes Distance2 Method3

ALGA0006955 1 169,163,416 0.09 6.56E-06 – ENSSSCG0000004
5715/NR2E3

−362,891/+197,313 I

ALGA0031885 5 47,014,709 0.24 2.66E-05 ITPR2 INTS13/– −154,156/– I

H3GA0023123 7 112,784,720 0.15 1.94E-05 – RPS6KA5 ENSSSCG0000
0002438

−31,103/46,939 I

DBWU0000868 9 8,933,427 0.12 1.09E-06 POLD3 LIPT2/CHRDL2 −92,597/+80,680 I

WU_10.2_10_48312614 10 43,603,091 0.38 5.59E-07/
4.15E-06

ST8SIA6 VIM/ENSSSCG000
00046521

−76,919/180,018 I, II

WU_10.2_10_47748520 10 43,105,103 0.37 1.25E-05 CUBN ENSSSCG0000004
8231/TRDMT1

−20,418/329,341 II

DRGA0010501 10 43,457,312 0.20 5.82E-06 TRDMT1 CUBN/VIM −11,444/+58,156 II

WU_10.2_10_48118152 10 43,496,534 0.15 5.30E-06 TRDMT1 CUBN/VIM −81,921/+20,773 II

ASGA0059395 13 177,464,038 0.43 1.33E-06 ROBO2 ENSSSCG00000046597/– −462,956/– I

1SNP located on the Sus scrofa Build 11.1 assembly.
2SNP designated as within a gene distance from the flanking gene-coding region in the Sus scrofa Build 11.1 assembly.
3Method numbers (I, II) represent the FarmCPU and MLM, respectively.

TABLE 7 | Genome-wide significant SNPs associated with marbling score.

SNP Chr1 Location (bp) MAF P value Located gene Flanking genes Distance2 Method3

ALGA0018939 3 50,684,383 0.11 1.38E-08 – – – I

WU_10.2_4_111643880 4 101,653,530 0.36 1.29E-08 HAO2 ENSSSCG00000
006719/WARS2

−79,702/+133970 I

M1GA0013120 9 72,761,757 0.12 1.65E-10/
2.32E-06

– ENSSSCG0000004
8637/SAMD9

−222,088/+202058 I, II

ASGA0044293 9 110,280,507 0.49 7.12E-07 – ENSSSCG00000034739/
ENSSSCG00000015460

−470,585/+179,469 I

WU_10.2_10_5204072 10 3,387,068 0.46 8.68E-10 – BRINP3/– −19,445/– I

WU_10.2_11_53938211 11 49,300,307 0.26 2.99E-09 MYCBP2 FBXL3/SCEL −149,298/+351,366 I

WU_10.2_12_33077453 12 32,245,751 0.43 1.67E-12 – ENSSSCG00000025681/
ANKFN1

−89,735/+141,018 I

1SNP located on the Sus scrofa Build 11.1 assembly.
2SNP designated as within a gene distance from the flanking gene-coding region in the Sus scrofa Build 11.1 assembly.
3Method numbers (I, II) represent the FarmCPU and MLM, respectively.

The function of HERC2 has been related to decreased body
fat mass in mice. We speculated that HERC2 likely affects
the electrical conductivity by affecting fat metabolism in
pigs. Desmoglein 3 (DSG3), another candidate gene for
conductivity, was located 0.1 Mb from the significant SNP,
DRGA0006706, a protein-coding gene whose gene ontology
annotations indicate that it is related to cytosolic metabolic

processes (Drag et al., 2019) and calcium ion binding
(Gaudet et al., 2011).

The ASGA0059395 SNP was located within roundabout
guidance receptor 2 (ROBO2) of the ROBO family. Some
researchers showed that ROBO2 was involved in fat metabolism,
especially in fatty acid composition and includes C18:3IMF
(Sato et al., 2017). Furthermore, SNP WU_10.2_10_48312614
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TABLE 8 | Genome-wide significant SNPs associated with meat color.

SNP Chr1 Location (bp) MAF P value Located gene Flanking genes Distance2 Method3

WU_10.2_12_18572268 12 18,323,553 0.43 1.53341E-05 NMT1 PLCD3/C1QL1 −21,069/+86,557 I

ASGA0078801 18 9,196,074 0.19 2.23566E-05 DENND2A ADCK2/MKRN1 −23,041/+137,610 I

M1GA0023045 18 9,559,135 0.44 6.84623E-06 – SLC37A3/KDM7A −106,542/+22,249 I

WU_10.2_18_10095600 18 9,589,537 0.47 2.53367E-05 KDM7A SLC37A3/PARP12 −136,944/+85,407 I

1SNP located on the Sus scrofa Build 11.1 assembly.
2SNP designated as within a gene distance from the flanking gene-coding region in the Sus scrofa Build 11.1 assembly.
3Method numbers (I, II) represent the FarmCPU and MLM, respectively.

TABLE 9 | Genome-wide significant SNPs associated with moisture.

SNP Chr1 Location (bp) MAF P value Located gene Flanking genes Distance2 Method3

WU_10.2_11_56636318 11 51,835,854 0.42 6.26E-06 – NDFIP2/ENSSSCG00000051397 −275,549/+307,411 I

ALGA0062389 11 51,886,282 0.26 8.98E-06 – NDFIP2/ENSSSCG00000051397 −325,977/+256,983 I

1SNP located on the Sus scrofa Build 11.1 assembly.
2SNP designated as within a gene distance from the flanking gene-coding region in the Sus scrofa Build 11.1 assembly.
3Method numbers (I, II) represent the FarmCPU and MLM, respectively.

TABLE 10 | Genome-wide significant SNPs associated with pH.

SNP Chr1 Location (bp) MAF P value Located gene Flanking genes Distance2 Method3

WU_10.2_1_934682 1 557,299 0.34 1.02E-05/
1.40E-05

PHF10 TCTE3/C6orf120 −5,336/+18,419 I, II

WU_10.2_1_974053 1 596,709 0.35 1.16E-05/
1.58E-05

ENSSSCG00
000004008

C6orf120/THBS2 −18,278/+258,321 I, II

ALGA0003423 1 52,262,327 0.45 2.63E-05 – RIMS1/KCNQ5 −17,393/+173,107 I

INRA0002536 1 56,511,890 0.33 1.01E-05/
1.39E-05

– ENSSSCG00000050040/
ENSSSCG00000029003

−44,660/+17,7178 I, II

ASGA0099314 13 123,889,649 0.37 6.60E-06/
9.35E-06

ETV5 ENSSSCG0000003
9758/DGKG

−74,040/72,114 I, II

1SNP located on the Sus scrofa Build 11.1 assembly.
2SNP designated as within a gene distance from the flanking gene-coding region in the Sus scrofa Build 11.1 assembly.
3Method numbers (I, II) represent the FarmCPU and MLM, respectively.

was detected via two methods and located 0.45 Mb upstream
from transmembrane protein 236 (TMEM236). No research
has found TMEM236 to be involved in fat metabolism, but
its related genes, transmembrane protein 120A (TMEM120A)
and transmembrane protein 120B (TMEM120B), affect adipocyte
differentiation and metabolism in mice and are highly expressed
in fat (Batrakou et al., 2015). Additionally, transmembrane
protein 60 (TMEM60) is another homologous gene associated
with marbling fat in cattle (Lim et al., 2014). TMEM236 is
reportedly associated with fat color (Xia et al., 2016). Thus,
ROBO2 and TMEM236 are strong potential candidate genes for
IMF. Several researchers have reported a positive correlation
between marbling and IMF (Luo et al., 2012; Ma et al., 2013),
which is consistent with the results of this study. Similarly, fat
metabolism also affects marbling. Ankyrin repeat and fibronectin
type III domain-containing 1 (ANKFN1), located 0.14 Mb
from SNP WU_10.2_12_33077453, is involved in regulating fat
androstenone levels (Drag et al., 2019) and might be an important
potential candidate gene for marbling.

Meat color is a complex trait and is affected by pigment
concentration, structural conditions of the muscle tissue, and

the muscle acidification rate (Fan et al., 2008; Mármol Sánchez
et al., 2020). In the present study, the SNPs M1GA0023045 and
WU_10.2_18_10095600 on SSC18 located 106.5 and 139.6 kb
upstream of solute carrier family 37 member 3 (SLC37A3),
respectively, were first associated with meat color. The related
genes, solute carrier family 15 member 4 (SLC15A4) and
solute carrier family 25 member 17 (SLC25A17), participate in
regulating pork quality. Researchers reported that the SLC15A4
c.658AA genotype had better water-holding capacity and reduced
color b∗ and color L∗ (D’Astous-Pagé et al., 2017). SLC25A17 was
also associated with meat color in a previous study (Ma et al.,
2013). Therefore, SLC37A3 may be a potential candidate gene
for meat color, although no reports have demonstrated its role
in meat quality.

Meat moisture content was strongly negatively correlated
with IMF content in our study, which was consistent with
previous studies (Chin et al., 2012; Luo et al., 2012). Leaner
meats generally contain more water because water is essential
for protein synthesis and muscle building. In this study,
the QTLs (from 51.84 to 51.89 Mb) on SSC11, including
WU_10.2_11_56636318 and ALGA0062389, were identified via
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FIGURE 8 | Population principal component analysis.

the FarmCPU model. Previous researchers found that the QTL
on SSC11 was associated with IMF content, drip loss, and meat
color score (Kim et al., 2005; Won et al., 2018). In this study,
we, for the first time, identified the QTLs on SSC11 as being
associated with moisture.

pH is an important meat-quality trait, is affected by glycogen
metabolism, and can affect Pale-Soft-Exudative (PSE) and
Dark-Firm-Dry (DFD) production. Studies have suggested that
PPP1R3B is a candidate gene for pH because it affects glycogen
by stimulating glycogen accumulation (Worby et al., 2008) and
decreases muscle glycogen phosphorylase phosphatase activity
(Doherty et al., 1995). Regulating synaptic membrane exocytosis
1 (RIMS1), which plays a role in regulating voltage-gated calcium
channels during neurotransmitter and insulin release in humans,
was located 17.4 kb of ALGA0003423 on SSC1. This gene might
regulate glycogen metabolism through insulin, thus affecting
pork pH values. Furthermore, insulin-like growth factor 2 mRNA-
binding protein 2 (IGF2BP2), another candidate gene for pH,
encodes a protein that binds the 5′-untranslated region of IGF2
mRNA and regulates its translation. It plays an important role
in glycogen metabolism, and variation of this gene has been
associated with susceptibility to diabetes (Cho et al., 2008). Thus,
RIMS1 and IGF2BP2 may be potential candidate genes for pH
based on their biological functions.

Many factors affect the validity of GWAS results. Population
stratification is an important factor that can lead to false positives
(Pearson and Manolio, 2008). Many studies have reported that
adding group structure to GWAS models improved the accuracy
of the results (Yu et al., 2006; Zhang et al., 2010). In this study,
we performed a principal component analysis and obtained the
eigenvalue decomposition of the genomic relationship matrix.
The results of the principal component analysis are shown in
Figure 8. The results showed that the first, second, and third
principal components comprised 13.7, 9.7, and 8.5% of the
total genomic variance, respectively. To eliminate the influence
of population stratification, the top three principal component
effects controlling the population genetic background were added
into this research model. The number of statistical models was
used to control false positives by adding population structure and
the MLM that was most commonly used for GWAS. However,

although the MLM reduced the incidence of false positives, it
induced false negatives by over-fitting the model to a degree that
enabled missing potentially important associations (Kaler et al.,
2017). As shown in this study, although Manhattan plots from
both MLM and Manhattan plots were similar in meat color and
moisture, MLM leads to false-negative results, while FarmCPU
can overcome the shortcomings of MLM and successfully
identified SNPs or candidate gene for traits. Additionally, we used
two models, the FarmCPU and MLM, to perform a GWAS for six
meat-quality traits in 582 D (LY) pigs. Figures 1–6 show the QQ
plots for meat traits in the different models. In the FarmCPU, the
deflation factors for IMF, moisture, marbling, conductivity, meat
color, and pH were 0.9, 1.1, 1.0, 1.1, 1.1, and 0.9, respectively;
in the MLM, these factors were 1.0, 0.9, 1.0, 1.0, 0.9, and 0.9,
respectively. We found no obvious population stratifications, and
the populations could be managed well using the FarmCPU and
MLM. Additionally, although we identified candidate genes for
meat-quality traits from their biological function and proximity
to significant SNPs (within 1 Mb), candidate genes may exist
outside this distance. FarmCPU identified 29 of 32 significant
SNPs. Moisture and meat color were not identified in the MLM,
thus limiting its use in the present study. The FarmCPU found
all candidate genes for meat-quality traits in this study, whereas
the MLM only found half of these candidate genes. Previous
studies also indicated that FarmCPU identified more candidate
genes in both animals and plants because it better controlled for
false negatives and false positives (Meng et al., 2017; Wang et al.,
2018; Kaler et al., 2019; Bollinedi et al., 2020). Overall, the results
suggested that the FarmCPU model worked well in detecting
candidate genes, particularly for complex meat-quality traits.

CONCLUSION

We conducted a GWAS for meat-quality traits in 582 D (LY)
pigs using both FarmCPU and MLM. Thirty-two significant
SNPs and several subsequent candidate genes were identified
as being associated with meat-quality traits. The biological
functions of the candidate genes aligned well with regulating the
corresponding meat-quality traits. Furthermore, the FarmCPU
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worked well in identifying candidate genes, particularly for
complex meat-quality traits. Overall, the significant SNPs and
candidate genes identified herein may benefit pig-breeding
programs and contribute to further improving meat quality.
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Carcass and meat quality are two important attributes for the beef industry because they
drive profitability and consumer demand. These traits are of even greater importance in
crossbred cattle used in subtropical and tropical regions for their superior adaptability
because they tend to underperform compared to their purebred counterparts. Many of
these traits are challenging and expensive to measure and unavailable until late in life or
after the animal is harvested, hence unrealistic to improve through traditional phenotypic
selection, but perfect candidates for genomic selection. Before genomic selection can
be implemented in crossbred populations, it is important to explore if pleiotropic effects
exist between carcass and meat quality traits. Therefore, the objective of this study was
to identify genomic regions with pleiotropic effects on carcass and meat quality traits in a
multibreed Angus–Brahman population that included purebred and crossbred animals.
Data included phenotypes for 10 carcass and meat quality traits from 2,384 steers, of
which 1,038 were genotyped with the GGP Bovine F-250. Single-trait genome-wide
association studies were first used to investigate the relevance of direct additive genetic
effects on each carcass, sensory and visual meat quality traits. A second analysis for
each trait included all other phenotypes as covariates to correct for direct causal effects
from identified genomic regions with pure direct effects on the trait under analysis. Five
genomic windows on chromosomes BTA5, BTA7, BTA18, and BTA29 explained more
than 1% of additive genetic variance of two or more traits. Moreover, three suggestive
pleiotropic regions were identified on BTA10 and BTA19. The 317 genes uncovered
in pleiotropic regions included anchoring and cytoskeletal proteins, key players in cell
growth, muscle development, lipid metabolism and fat deposition, and important factors
in muscle proteolysis. A functional analysis of these genes revealed GO terms directly
related to carcass quality, meat quality, and tenderness in beef cattle, including calcium-
related processes, cell signaling, and modulation of cell–cell adhesion. These results
contribute with novel information about the complex genetic architecture and pleiotropic
effects of carcass and meat quality traits in crossbred beef cattle.
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INTRODUCTION

A common strategy to improve beef production in tropical
and subtropical areas is crossbreeding. Approximately 40%
of all beef cattle in the United States are raised in the
subtropical Southern and Southeastern areas (Cundiff et al.,
2012). The combination of high environmental temperature
and humidity, greater incidence of parasite-transmitted diseases,
and nutritionally lower quality pastures negatively impacts
the growth rate and reproductive performance of Taurine
(Bos taurus taurus) beef cattle breeds (Burrow, 2015). To
attenuate these impacts, producers in tropical and subtropical
areas use crossbreeding between European Taurine and Zebu
(Bos taurus indicus) breeds as a strategy to enhance beef
production (Lamy et al., 2012). The resulting crossbred
animals combine the tropical adaptation of Zebu cattle
with the production performance of Taurine cattle, and in
tropical and subtropical conditions they frequently perform
better than purebred cattle from the parental breeds due
to heterosis (Burrow, 2015). In subtropical areas of the
United States, Angus × Brahman crosses are preferred
for beef production over other Zebu–Taurine combinations
(Chase et al., 2004).

Carcass and meat quality (visual and sensory) are two
of the most important attributes for the beef industry
because they drive profitability and consumer demand.
Carcass and meat quality are complex concepts that are
described through multiple traits like ribeye area and marbling
(carcass quality); tenderness, flavor, and juiciness (visual
meat quality); and color, texture, and firmness (sensory meat
quality). Each one of these individual component traits are
complex in nature, under the control of multiple genes,
and influenced by environmental factors. Most of these
component traits are challenging and expensive to measure
and unavailable until late in life or after the animal was
harvested. Genetic improvement of such traits is not viable
through traditional phenotypic selection, but these traits are
perfect candidates for genomic selection if genetic markers
accounting for a large proportion of the additive genetic
variation can be identified.

The genetic architecture of carcass quality traits in beef cattle
has been more extensively investigated in purebred (Bolormaa
et al., 2011; Tizioto et al., 2013; Magalhães et al., 2016; Mateescu
et al., 2017) than in crossbred populations (Peters et al., 2012;
Lu et al., 2013; Leal-Gutiérrez et al., 2018; Grigoletto et al.,
2020). Less information is available on meat quality in both
purebred and crossbred populations largely because of the cost
and difficulty associated with measuring these traits on a large
number of individuals. Genomic selection is being incorporated
in an increasingly large number of cattle populations, initially
for traits which are routinely recorded to ensure high levels
of accuracy. Thus, it is important to explore the existence of
pleiotropic effects between these carcass quality and meat quality
(visual and sensory) attributes. This will ensure that genomic
selection programs targeting carcass quality traits will not
negatively affect the meat quality traits. Therefore, the objective
of this study was to identify genomic regions with pleiotropic

effects on carcass and meat quality traits in a multibreed Angus–
Brahman population.

MATERIALS AND METHODS

Cattle Population and Phenotypic Data
The University of Florida Institutional Animal Care and
Use Committee approved the research protocol used in this
study (number 201003744). The cattle population for this
study consisted of 2,384 steers from the University of Florida
multibreed Angus × Brahman herd (Elzo et al., 2016) born
between 1989 and 2018. The breed composition of animals
in this multibreed population ranged from 100% Angus to
100% Brahman, including purebred animals and all crosses
in between them.

Steers were transported to a commercial packing plant
when they reached 1.27 cm of subcutaneous fat over the
ribeye (FOE, cm), where they were harvested under USDA-
FSIS inspection. Carcass quality traits available included hot
carcass weight (HCW, kg), marbling score, FOE, and rib eye
area (REA, cm2). Carcasses were ribbed between the 12th and
13th rib and marbling and REA were visually appraised and
recorded by graders 48 h postmortem. Marbling (MARB) was
graded as follows: Practically Devoid = 100–199, Traces = 200–
299, Slight = 300–399, Small = 400–499, Modest = 500–599,
Moderate = 600–699, Slightly Abundant = 700–799, Moderately
Abundant = 800–899, Abundant = 900–999. Visual meat
quality traits recorded included color (COLOR) on a scale of
1 = extremely bright cherry red to 8 = extremely dark, texture
(TEXT) on a scale of 1 = very fine to 7 = extremely coarse, and
firmness (FIRM) on a scale of 1 = very firm to 7 = extremely
soft. All visual meat quality phenotypes were taken by trained
personnel between the 12th and 13th ribs, 48 h postmortem and
approximately 1 h after ribbing to allow for oxygenation of the
Longissimus muscle. Given the small number of observations at
the high end of the range for COLOR, TEXT, and FIRM, scores
7 and 8 were combined for COLOR, scores 5, 6, and 7 were
combined for TEXT, and scores 4 and 5 were combined for FIRM.

One 2.54 cm thick steak from the longissimus dorsi between
the 12th and 13th ribs was sampled from each animal, and
sensory meat quality traits were assessed in a sensory panel
according to the American Meat Science Association Sensory
Guidelines. Steaks were transported to the University of Florida
Meat Science Laboratory where they were aged for 14 days at
4◦C and then frozen at -20◦C. Prior to sensory panel assessment,
steaks were thawed at 4◦C for 24 h, and cooked on an open-
hearth grill to an internal temperature of 71◦C. Sensory panels
consisted of 8–11 trained members, and six animals were
assessed by each panel. Two 1 cm × 1 cm × 2.54 cm samples
from each steak were provided to each panelist. The sensory
panel measurements analyzed by the sensory panelists included:
tenderness (TEND; 8 = extremely tender, 7 = very tender,
6 = moderately tender, 5 = slightly tender, 4 = slightly tough,
3 = moderately tough, 2 = very tough, 1 = extremely tough),
juiciness (JUIC; 8 = extremely juicy, 7 = very juicy, 6 = moderately
juicy, 5 = slightly juicy, 4 = slightly dry, 3 = moderately dry,
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2 = very dry, 1 = extremely dry), and beef flavor intensity (FLAV;
1 = extremely bland, 2 = very bland, 3 = moderately bland,
4 = slightly bland, 5 = slightly intense, 6 = moderately intense,
7 = very intense, 8 = extremely intense). Average sensory score
from all members of the panel for each steak was used as input in
the statistical analyses.

A factor analysis was used to identify high percentages of
explained common variances between HCW and REA and
between FOE and MARB (data not shown). Subsequently,
REA and MARB were selected for further analyses based on
their economic importance and likelihood of being included
as selection objectives in genetic evaluation programs. Using
a similar approach, TEND, JUIC, and FLAV were selected to
describe the sensory meat quality, and COLOR, TEXT, and FIRM
were chosen to explain visual meat quality.

Genomic Data
DNA was extracted from blood with the QIAamp DNA
Blood Mini DNA kit (Qiagen, Hilden, Germany) following the
manufacturer’s protocol and stored at −20◦C. Genotyping was
carried out on 1,038 of the 2,384 animals using the Bovine GGP
F250 array (GeneSeek, Inc., Lincoln, NE, United States) which
contains 221,115 single nucleotide polymorphisms (SNPs). The
SNP markers mapping to the sex chromosomes, with minor
allelic frequency (MAF) lower than 0.01% and call rate lower than
90% were excluded. After quality control, 125,042 SNP markers
were retained for subsequent genomic analysis.

Estimation of Additive Genetic
Parameters
Average information restricted maximum likelihood (AIREML)
variance components, heritabilities, additive genetic correlations,
and phenotypic correlations were estimated using single-
trait and two-trait single-step genomic best linear unbiased
prediction (ssGBLUP) from single-trait and two-trait animal
linear mixed models. Computations were performed with the
airemlf90 package from the BLUPF90 family of programs from
Ignacy Misztal and collaborators, University of Georgia. The
ssGBLUP procedure utilizes all available phenotypic, pedigree
and genotypic information (Misztal et al., 2009). Thus, the
ssGBLUP mixed model equations require the inverse of the
joint pedigree-genomic relationship matrix (H−1) instead of the
inverse of the classical pedigree-based relationship matrix (A−1).
The H−1 is defined as follows (Legarra et al., 2009; Aguilar et al.,
2010):

H−1
= A−1

+

[
0 0
0 G−1

− A−1
22

]
,

where G−1 is the inverse of the genomic relationship matrix
and A−1

22 is the inverse of the pedigree relationship matrix
for genotyped animals. The G matrix was constructed based
on VanRaden (2008), assuming allelic frequencies from the
current population:

G =
ZZ′

2
∑

pi(1− pi)

where Z is a centered incidence matrix of genotype covariates
(0,1,2), and 2

∑
pi(1− pi) is a scaling parameter in which

pi is the frequency of the reference allele at the ith SNP.
To avoid singularity issues, G inverse was built as G−1

=

(0.95G+ 0.05A22 )−1.
The single-trait and two-trait animal mixed models used in

this study included the direct additive genetic and residual as
random effects, year of birth as a class effect, and age at slaughter
as a covariate, except for TEND and FLAV where age at slaughter
was not significant. The single-trait animal mixed models were
as follows:

y = Xb+ Zu+ e,

where y is a vector of phenotypic records, X is an incidence
matrix linking phenotypic records to fixed effects, b is a vector
of fixed effects, Z is an incidence matrix relating phenotypic
records to direct additive genetic effects, u is a vector of random
animal direct additive genetic effects, and e is a vector of random
residuals. The random vectors u and e were distributed as u ∼
N(0, Hσ2

u) and e ∼ N(0, Iσ2
e ), where σ2

u is the direct additive
genetic variance, σ2

e is the residual variance, H is the joint
pedigree-genomic relationship matrix, and I is an identity matrix.
Thus, the (co)variance matrix of u and e random vectors in
single-trait models (V1) was as follows:

V1 =

[
Hσ2

u 0
0 Iσ2

e

]
The two-trait animal mixed models used to estimate phenotypic
and genetic correlations between pairs of traits included the same
fixed and random effects as the single-trait models. However, it
was assumed that u ∼ MVN(0, T⊗H) and e ∼ MVN(0, R⊗
I), where T that is the additive genetic (co)variance matrix and
R that is the residual (co)variance matrix were defined between
the two traits under analysis, MVN represents the multivariate
normal distribution, and⊗ denotes the Kronecker product. Thus,
the (co)variance matrix of u and e random vectors was as follows:

V2 =

[
T⊗H 0

0 R⊗ I

]
Genome-Wide Scan for Pleiotropic
Effects
Single-trait genome-wide association studies (GWAS) were
carried out using the weighted ssGBLUP (WssGBLUP) procedure
(Wang et al., 2012) to investigate the relevance of direct additive
genetic effects on each of the carcass, sensory, and visual meat
quality traits. The WssGBLUP uses an iterative process, which
was repeated three times in this study, to estimate SNP effects
and weights. In this approach, the weights of SNPs with larger
effects increase, while the weights of markers with smaller effects
decrease. Briefly, SNP effects and weights for the GWAS were
derived as in Wang et al. (2012) as follows:

1. Set the diagonal matrix of SNP variance or weights as
identity, D = I.

2. Construct the G matrix: G = ZDZ
′

λ, where λ =

1/2
∑

pi(1− pi).
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3. Predict GEBVs using ssGBLUP with blupf90 package.
4. Convert GEBVs to SNP effects (â) with postGSf90 package:

â = kDZ′G−1û, where û is the GEBV of genotyped
animals.

5. Compute the weight for each SNP (di) using a non-

linearA variance method: di = CT
|âi|
σ(â)
−2, where CT is

a constant for departure from normality equal to 1.05,∣∣âi
∣∣ is the estimated absolute SNP effect, and σ(â) is the

standard deviation of the vector of estimated SNP effects,
with the maximum change in SNP variance limited to 10
(VanRaden, 2008; Lourenco et al., 2020).

6. Normalize SNP weights to maintain the additive genetic
variance constant.

7. Iterate from step 2, using the obtained weights to compute
the G-matrix.

Inbreeding was considered in the set-up of A−1 to avoid
using ad-hoc scaling parameters while keeping GEBV within an
acceptable level of inflation/deflation (Lourenco et al., 2020). The
percentage of the direct additive genetic variance explained by
a given SNP window was calculated according to Wang et al.
(2012) as:

Var(wi)

σ2
u

× 100 =
Var(

∑B
j =1 Zjâj)

σ2
u

× 100

where wi is the additive genetic value of the ith1-Mb genomic
window, B is the total number of adjacent SNPs within the ith
window, Zj is the vector of genotypes of the jth SNP for all
individuals, and âj is the estimated additive genetic effect for the
jth SNP within the ith window.

The models used to identify genomic windows associated with
the carcass, sensory and visual meat quality traits included all
fixed and random effects from the variance component models.
In addition, these models included phenotypes for all traits
other than the target trait as covariates to correct for causality
(Li et al., 2006; Leal-Gutiérrez et al., 2018). Genomic windows
explaining more than 1% of direct additive genetic variance were
considered to be associated with the analyzed trait. Common
genomic regions involving overlapping windows associated with
two or more phenotypes were considered as pleiotropic regions.
Additionally, common genomic regions including overlapping
windows explaining more than 1% of the direct additive genetic
variance for one trait and between 0.9 and 1% of the direct
additive genetic variance for another trait were considered as
suggestive pleiotropic regions. In both cases, the direct effect of
a genomic region on two or more traits persists even after each
trait was adjusted for all remaining traits.

Functional Analysis
Genes within pleiotropic regions were identified using the
Biomart tool from Ensembl genome browser (Zerbino et al.,
2018). It was assumed that causative mutations were located
within pleiotropic regions detected with the GWAS. Thus, SNP
markers with the largest absolute estimated effect across two
or more traits within each pleiotropic region were used to
identify genes with a pleiotropic effect. A SNP marker was

assigned to a particular gene if it was located within the gene.
Gene ontology (GO) terms for all genes inside the pleiotropic
regions were also retrieved from the Ensembl database to
help determine biological functions and possible mechanistic
pathways influencing carcass and meat quality traits. GO and
pathway enrichment and clustering analyses of all annotated
genes within pleiotropic regions were carried out using the
PANTHER Overrepresentation Test (Mi et al., 2019) and the
DAVID v6.8 Functional Annotation Tool (Huang et al., 2009).

RESULTS AND DISCUSSION

Carcass Quality, Visual and Sensory
Meat Quality Traits
Table 1 presents numbers of animals, means, SD, minimum
and maximum for carcass quality, sensory meat quality, and
visual meat quality traits in the multibreed Angus–Brahman
population. Similar values were reported for these traits in
Brahman and Brahman-influenced populations (Riley et al., 2003;
Smith et al., 2007).

Ribeye area and marbling score are economically important
for producers, particularly marbling due to its high impact on
carcass value set by packers. The average REA (80.72 ± 10.96)
and marbling score (410.44 ± 96.89) were comparable to
national beef industry averages (Shackelford et al., 2012; Boykin
et al., 2017), and similar to data previously reported for the
multibreed Angus–Brahman population (Elzo et al., 2012, 2016;
Leal-Gutiérrez et al., 2019). This indicates that marbling scores
from Angus x Brahman crossbreds are similar to the national
beef industry average and include superior carcasses. Further,
this similarity in marbling scores is especially important for
the Southern United States because crossbreeding with B. t.
indicus is commonly used to provide some level of adaptability
to hot and humid environmental conditions. However, producer
profitability may decrease because crossbred cattle with visible
B. t. indicus characteristics are penalized and their carcasses are
discounted (Riley et al., 2005).

TABLE 1 | Descriptive statistics for carcass, sensory meat quality, and visual meat
quality traits in a multibreed Angus–Brahman population.

Trait1 N Mean SD Min Max

Carcass quality

MARB 2,380 410.44 96.89 150 900

REA, cm2 2,345 80.72 10.96 47.74 129.04

Sensory meat quality

TEND 1,173 5.44 0.88 2.40 7.63

JUIC 1,173 5.29 0.69 3.00 7.50

FLAV 1,173 5.60 0.47 3.80 7.00

Visual meat quality

COLOR 1,599 3.34 1.66 1 8

TEXT 1,336 2.79 0.85 1 7

FIRM 1,335 2.31 0.81 1 5

1MARB, marbling score; REA, ribeye area; TEND, tenderness score; JUIC, juiciness
score; FLAV, beef flavor score; COLOR, color; TEXT, texture; FIRM, firmness.
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While carcass quality is the primary factor determining the
value of a carcass in the beef industry supply chain, consumers
evaluate beef products at purchase time based on visual quality
and at consumption time based on sensory quality. Both the
visual and sensory evaluation of the beef product have an
important impact on the decision to make a repeated purchase,
which is important for sustained or increased demand (Schroeder
et al., 2013). Sensory panel members classified steaks from this
population to be on average slightly to moderately tender, slightly
to moderately juicy and having slightly to moderately intense
beef flavor. About 70% of all steaks were rated tender, 91% juicy,
and 73% having intense flavor. Color was on average slightly
to moderately dark cherry red and similarly texture was fine
to moderately fine, and firmness was firm to moderately firm.
Overall, 77% of the steaks were rated as dark cherry red or lighter,
80% fine in texture, and 63% firm.

Genetic Parameters
Table 2 presents single-trait AIREML estimates of genetic
variances (σ2

u), residual variances (σ2
e ), and heritabilities (h2) with

standard deviation (SD) for carcass quality, sensory meat quality,
and visual meat quality traits in the multibreed Angus–Brahman
population. Heritability estimates for MARB, REA and TEND
were moderate, ranging from 0.43 to 0.53, and consistent with
the average of heritability estimates reported in the literature
(reviewed by Mateescu, 2014). The low estimates of h2 for the
other sensory panel and visual meat quality traits (0.11–0.18)
were generally consistent with values reported in the literature
(Reverter et al., 2003; Dikeman and Pollak, 2005; King et al., 2010;
Mateescu, 2014).

Two-trait AIREML estimates of direct additive genetic and
phenotypic correlations between carcass quality, sensory meat
quality and visual meat quality traits are presented in Table 3.
Ribeye area had consistently the lowest phenotypic correlations
with all other traits (−0.05 to 0.04). Positive moderate phenotypic
correlations existed between MARB and TEND (0.32), MARB
and JUIC (0.32), TEND and JUIC (0.51), TEND and FLAV
(0.43), JUIC and FLAV (0.42), and JUIC and COLOR (0.36).
Negative moderate phenotypic correlations were estimated

TABLE 2 | Single-trait AIREML estimates of genetic variances (σ2
u ), and residual

variances (σ2
e ), and heritabilities (h2) with standard deviation (SD) for marbling, rib

eye area, juiciness, flavor, tenderness, color, texture, and firmness in a multibreed
Angus–Brahman population.

Trait σ2
u σ2

e h2 ± SD

MARB 3176.10 3317.30 0.49 ± 0.05

REA, cm2 1.05 0.94 0.53 ± 0.05

TEND 0.28 0.36 0.44 ± 0.07

JUIC 0.05 0.29 0.15 ± 0.06

FLAV 0.02 0.15 0.10 ± 0.06

COLOR 0.10 0.56 0.15 ± 0.05

TEXT 0.06 0.43 0.12 ± 0.05

FIRM 0.08 0.34 0.19 ± 0.06

MARB, marbling score; REA, ribeye area; TEND, tenderness score; JUIC, juiciness
score; FLAV, beef flavor score; COLOR, color; TEXT, texture; FIRM, firmness.

TABLE 3 | Two-trait AIREML estimates of phenotypic (above diagonal) and direct
additive genetic (below diagonal) correlations between carcass quality, sensory
meat quality, and visual meat quality traits in a multibreed Angus–Brahman
population.

Trait1 MARB REA TEND JUIC FLAV COLOR TEXT FIRM

MARB 0.19 0.32 0.32 0.21 0.03 −0.22 −0.37

REA −0.03 0.10 −0.03 −0.05 0 −0.01 0.04

TEND 0.21 0 0.51 0.43 0.16 −0.08 −0.17

JUIC 0.66 −0.15 0.64 0.42 0.36 −0.01 −0.33

FLAV 0.99 −0.27 0.99 0.99 0.10 0.05 −0.19

COLOR −0.19 0.02 0 −0.54 −0.37 0.23 −0.19

TEXT −0.30 0.24 −0.53 −0.99 −0.99 0.02 0.16

FIRM −0.38 0.24 −0.16 −0.32 −0.99 −0.22 −0.24

1MARB, marbling score; REA, ribeye area; TEND, tenderness score; JUIC, juiciness
score; FLAV, beef flavor score; COLOR, color; TEXT, texture; FIRM, firmness.

between MARB and FIRM (−0.37) and JUIC and FIRM (−0.33).
Examination of direct additive genetic correlations between traits
in this study is important to understand the challenges and
limitations that could result from the inclusion of any of these
traits in selection schemes. High and favorable direct additive
genetic correlations existed between MARB and a number of
other traits (JUIC, FLAV, and FIRM), between all sensory meat
quality traits (TEND, JUIC, and FLAV), and between FLAV
and TEXT and FLAV and FIRM. The moderate favorable direct
additive genetic correlation of 0.21 observed in the present
population between two economically important traits MARB
and TEND was lower than other estimates of 0.40 (Reverter
et al., 2003) and 0.61 (Wheeler et al., 2010). However, this value
(0.21) was comparable to estimates by Riley et al. (2003) for
Brahman cattle, reinforcing the long-held belief of a unique fat-
tenderness relationship in B. t. indicus versus B. t. taurus cattle.
The direct additive genetic correlations reported here between
TEND and other visual meat quality traits are supported by
other studies in both tropical and temperate breeds (Reverter
et al., 2003). Although the relationship between carcass quality
traits (particularly marbling) and meat sensory traits (tenderness,
juiciness, and flavor) is a very important one, few direct additive
genetic correlations have been published to date. This is primarily
due to the difficulty and high cost of measuring sensory quality
traits in large populations.

Genome-Wide Mapping of Pleiotropic
Effects
The proportion of the direct additive genetic variance explained
by 1-Mb SNP windows for carcass quality, sensory meat quality,
and visual meat quality traits across the entire bovine genome
is shown in Supplementary Figure 1. The presence of genomic
regions associated with two or more traits in this study could be
due to the direct and/or indirect effects of these genomic regions
on the traits (Li et al., 2006; Leal-Gutiérrez et al., 2018). Direct
additive genetic effects are the result of a single causal variant
related to multiple traits, independently of its individual effects on
each of them and the dependency or causal relationship between
different phenotypes. These direct additive genetic effects are
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considered true pleiotropic effects (Stearns, 2010; Wagner and
Zhang, 2011). On the other hand, complex relationships exist
between carcass quality, sensory meat quality, and visual meat
quality traits and most of them measure some common attributes
of the system. For example, the amount of marbling measured
by MARB is highly dependent on the variation captured by REA
because fat is deposited as the animal grows, and marbling will
subsequently impact the meat quality traits (O’Connor et al.,
1997; Smith et al., 2007). Because of these dependencies, a
genetic variant associated with one trait will show an association
with the other traits even if it does not have a direct effect on
these other traits. These are considered indirect effects and are
expected to disappear when a trait is corrected for the other
phenotypes in the system.

Conditional genome scan fitting correlated traits as covariates
for the trait of interest allows correcting for indirect effects
and capturing direct additive genetic effects of genomic regions
under analysis (Li et al., 2006). Thus, this approach was
implemented to scan for pleiotropic regions affecting carcass
quality, sensory meat quality, and visual meat quality traits
in the multibreed Angus–Brahman population. The single-trait
WssGBLUP analyses correcting for indirect effects (i.e., including
all remaining traits as covariates; Figure 1 and Supplementary
Figure 2) identified a total of 3,462 non-overlapping 1-Mb
genomic windows for MARB, 3,091 for REA, 3,218 for TEND,
3,710 for JUIC, 3,306 for FLAV, 3,381 for COLOR, 3,319 for
TEXT, and 3,345 for FIRM. Out of these, 4, 8, 5, 8, 3, 6, 2, and
5 windows explained more than 1% of the direct additive genetic
variance for MARB, REA, TEND, JUIC, FLAV, COLOR, TEXT,
and FIRM, respectively (Supplementary Tables 1–8). Significant
overlapping genomic windows from these analyses with target
traits corrected for all other traits are expected to represent
genomic regions with pleiotropic effects on the corresponding
overlapped traits. Five genomic windows on chromosomes BTA5,
BTA7, BTA18, and BTA29 (Table 4) explained more than 1% of
the direct additive genetic variance of two or more carcass quality,
sensory meat quality, and visual meat quality traits. Moreover,
three suggestive pleiotropic regions, defined as regions explaining
more than 1% of the direct additive genetic variance for one
trait and between 0.9 and 1% for another trait, were identified
on BTA10 and BTA19 (Table 4). It is important to point out
that these eight pleiotropic regions were previously identified
as relevant to carcass quality, sensory meat quality and visual
meat quality traits, explaining at least 0.7% of the additive genetic
variance of these traits (Supplementary Figure 1).

Two pleiotropic windows were identified on BTA5. The first
one was located at 26.7–27.5 Mb and explained a high proportion
of the direct additive genetic variance in REA (2.63%) and
MARB (1.31%). The second one was located at 56.2-56.9 Mb and
explained 4.72% of the direct additive genetic variance for REA,
2.45% for TEND, 2.12% for MARB, 1.58% for TEXT, 1.33% for
FIRM, and 1.06% for JUIC. The first region around 25–28 Mb on
BTA5 was previously reported to be associated with numerous
carcass and meat quality traits in beef cattle, specifically MARB
and REA (McClure et al., 2010; Baeza et al., 2011). The second
window on BTA 5 was found to be associated with MARB and
REA (Nalaila et al., 2012; Peters et al., 2012; Saatchi et al., 2014),

TEND (Casas and Shackelford, 2000), while a more distant region
(68.9–69.1 Mb) was associated with juiciness (Gill et al., 2010).

One genomic window located on BTA7 (51.6–52.5 Mb) had
pleiotropic effects on MARB (explaining 2.22% of the direct
additive genetic variance), TEND (1.65% of the direct additive
genetic variance) and TEXT (1.34% of the direct additive genetic
variance), and had a suggestive pleiotropic effect on COLOR
(0.92% of the direct additive genetic variance). Previous reports
also associated this BTA7 region with MARB (McClure et al.,
2010; Mateescu et al., 2017), TEND (Allais et al., 2014), and fat
color (Bedhane et al., 2019).

The genomic region between 61.9 and 62.5 Mb on BTA18
accounted for 2.31, 2.09, and 1.09% of the direct additive
genetic variance for FLAV, COLOR, and TEND, respectively.
Although no specific associations with these traits have been
reported, this BTA18 chromosomal region was involved with
other carcass traits in cattle (Cole et al., 2011; Höglund et al., 2012;
Rolf et al., 2012).

A pleiotropic region located on BTA 29 (43.1–43.4 Mb)
simultaneously affected TEND (1.42% of direct additive genetic
variance) and FLAV (1.22% of direct additive genetic variance).
This is an important region because of its reported association
with meat quality, in particular TEND, and because it harbors the
µ-calpain gene, a well-established candidate gene due to its role
in myofibrillar protein degradation.

A suggestive pleiotropic region on BTA10 (76.2–77.2 Mb)
explained 1.11 and 0.98% of the direct additive genetic variance
for JUIC and MARB. Lastly, two suggestive pleiotropic regions
were detected on BTA19 (27.0–28.0 and 38.2–39.1 Mb). The first
region was associated with TEND (1.13% of the direct additive
genetic variance) and had a suggestive effect on TEXT (0.94%
of direct additive genetic variance), while the second region
explained 1.04 and 0.95% of direct additive genetic variance
genetic variances for JUIC and COLOR, respectively.

Genes Within Pleiotropic Regions
The pleiotropic genomic regions described above contained
about 317 genes (Supplementary Table 9). However, only
candidate genes will be described and discussed here. Genes
flagged by the top 20 markers within a specific pleiotropic
window (i.e., markers with the largest absolute estimated effect
across two or more traits), and with a known function directly
or indirectly associated with carcass and meat quality traits were
defined as candidate pleiotropic genes.

At least two genes in the first pleiotropic region on BTA5
(26.7–27.5 Mb) are directly involved in muscle physiology and
lipid metabolism: Cysteine Sulfinic Acid Decarboxylase (CSAD)
and Tensin-2 (TNS2); hence influencing marbling and ribeye
area. The CSAD gene is involved in taurine biosynthesis. Taurine,
although not used in protein synthesis, is the most abundant free
amino acid in mammalian tissues and has multiple functions,
including skeletal muscular structure and function (Ito et al.,
2008, 2010; De Luca et al., 2015) and lipid metabolism, preventing
fat deposition (Murakami, 2015; Wen et al., 2019). Tensin plays
a role in skeletal–muscle regeneration (Ishii et al., 2013), and
may also cooperate with other actin-binding proteins to modulate
actin assembly (Lo et al., 1994).
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FIGURE 1 | Manhattan plots for bovine chromosomes harboring pleiotropic regions with effect on MARB, REA, TEND, JUIC, FLAV, COLOR, TEXT, and FIRM with
significance thresholds indicated at 1% of the additive genetic variance (dash-dotted red line). The variance explained by 1-Mb genomic windows was estimated
using single-trait WssGBLUP analyses correcting for indirect effects (i.e., including all remaining traits as covariates). The pleiotropic regions were highlighted in
green, and suggestive pleiotropic regions were highlighted in purple.

The second pleiotropic region on BTA5 (56.2–56.9 Mb)
harbors three candidate genes involved in lipid metabolism and
muscle development, namely Low-Density Lipoprotein Receptor-
Related Protein 1 (LRP1), Myosin 1A (MYO1A), and Nascent
Polypeptide-Associated Complex Alpha Subunit (NACA). The
LRP1 gene plays important roles in many cellular and biological
processes, including cell growth and lipid metabolism (Dato
and Chiabrando, 2018), and regulates muscle fiber development
and myoblast proliferation (Lv et al., 2019). MYO1A is a
well-known gene related to muscle development, whereas the
NACA gene is involved in the regulation and differentiation

of myoblast cells and myogenic lineages (Berger et al., 2012),
and lipid metabolism (Cui et al., 2012). In addition, MYO1A,
R3H Domain Containing 2 (R3HDM2), Tachykinin 3 (TAC3),
and G Protein-Coupled Receptor 182 (GPR182) genes were
also reported to be simultaneously associated with carcass
and meat quality latent variables in the same multibreed
Angus–Brahman population (Leal-Gutiérrez et al., 2018). Lastly,
two other genes identified as pleiotropic in this region were
the G Protein-Coupled Receptor 182 (GPR182) gene that was
differentially expressed in the skeletal muscle of finishing pigs fed
a lysine-deficient vs. a lysine-adequate diet (Wang et al., 2016),
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TABLE 4 | Genomic windows explaining more than 1% of direct additive genetic
variances and pleiotropic genomic regions associated with carcass quality,
sensory meat quality, and visual meat quality traits in a multibreed
Angus–Brahman population.

BTA Start location End location Trait Variance Explained, %

Pleiotropic Window BTA5: 26,723,850-27,497,503

5 26,723,850 27,719,719 MARB 1.31

5 26,497,783 27,497,503 REA 2.63

Pleiotropic Window BTA5: 56,183,908-56,925,298

5 55,929,423 56,925,298 MARB 2.12

5 55,947,945 56,939,150 REA 4.72

5 56,081,838 57,079,618 TEND 2.45

5 56,183,908 57,182,379 JUIC 1.06

5 55,929,423 56,925,298 TEXT 1.58

5 55,929,423 56,925,298 FIRM 1.33

Pleiotropic Window BTA7: 51,559,142-52,520,697

7 51,534,263 52,520,697 MARB 2.22

7 51,559,142 52,520,697 TEND 1.65

7 51,364,596 52,357,001 COLOR 0.92

7 51,534,263 52,520,697 TEXT 1.34

Suggestive1 Pleiotropic Window BTA10:76,188,006-77,186,559

10 76,188,006 77,186,559 MARB 0.98

10 76,188,006 77,186,559 JUIC 1.11

Pleiotropic Window BTA18:61,896,649-62,491,546

18 61,559,385 62,559,371 TEND 1.09

18 61,492,103 62,491,546 FLAV 2.31

18 61,896,649 62,896,636 COLOR 2.09

Suggestive1 Pleiotropic Window BTA19:26,984,181-27,979,809

19 26,984,181 27,979,809 TEND 1.13

19 26,984,181 27,979,809 TEXT 0.94

Suggestive1 Pleiotropic Window BTA19:38,188,955-39,131,233

19 38,140,728 39,131,233 JUIC 1.04

19 38,188,955 39,167,086 COLOR 0.95

Pleiotropic Window BTA29:43,148,023-43,405,926

29 43,148,023 44,147,635 TEND 1.42

29 42,416,823 43,405,926 FLAV 1.22

1Overlapping windows explaining more than 1% of the direct additive genetic
variance for one trait and between 0.9 and 1% for another trait.
MARB, marbling score; REA, ribeye area; TEND, tenderness score; JUIC, juiciness
score; FLAV, beef flavor score; COLOR, color; TEXT, texture; FIRM, firmness.
Genomic windows explaining between 0.9 and 1% of direct additive genetic
variances are shown in italic font. The pleiotropic or suggestive pleiotropic windows
are defined based on overlapping windows. Columns show the chromosome
(BTA), the start and end location of the genomic region, the associated trait, and
the direct additive genetic variance explained (%).

and the Retinol Dehydrogenase 16 (RDH16) gene that is
involved in retinol metabolism and seems to be involved in
steatosis in Japanese Black cattle (Ishida et al., 2017). This
second BTA5 region is of particular importance because of its
pleiotropic effects on most of the traits under investigation.
The highlighted candidate genes regulate muscle development,
myoblast proliferation, and lipid metabolism. In addition to
the obvious effect on MARB and REA, these genes could also
affect TEND, TEXT and FIRM given the impact of muscle
fiber diameter and density on these traits (Pearson, 1990;
Lv et al., 2019).

The pleiotropic window identified on BTA7 contains
Protocadherin Beta 1 (PCDHB1), which may directly impact
marbling, tenderness, and texture. Protocadherins are cell-
adhesion molecules and Refoyo-Martínez et al. (2019) found
PCDHB1 to be under selection in cattle. Cadherins are structural
proteins and some of them were associated with marbling,
suggesting that they play important roles in cell adhesion
and differentiation in several bovine tissues (Lim et al., 2011;
Caballero et al., 2014; Martignani et al., 2020). In muscle,
cadherins could be involved in processes that lead to less tender
and visually coarser meat. Consequently, PCDHB1 could directly
influence marbling, tenderness, and texture.

The pleiotropic window identified on BTA18 contains Retinol
Dehydrogenase 13 (RDH13) which could affect color and flavor.
Vitamin A, or retinol, gives beef a yellowish hue (Daley et al.,
2010). Regulation of retinol in muscle by RDH13 would therefore
have a direct effect on color. Elevated levels of vitamin A
precursors in the diet were associated with altered fatty acid
composition of beef (Daley et al., 2010). Additionally, RDH13
was associated with fat deposition in beef cattle (Lindholm-Perry
et al., 2017). The effect of RDH13 on beef fatty acid composition
could have a direct impact on flavor. Another gene in this window
is Ubiquitin Conjugating Enzyme E2 S (UBE2S), a member of
the ubiquitin-conjugating enzyme family with important roles in
protein metabolism and remodeling of adherens junctions. The
role of UBE2S in ubiquitin-mediated proteolysis supports the
association with TEND and this is further reinforced by a GWA
study in Nellore beef cattle which identified the UBE2S gene as
related to meat tenderness (Carvalho et al., 2017).

The suggestive pleiotropic region on BTA10 contains the
Spectrin Repeat Containing Nuclear Envelope Protein 2 (SYNE2)
and Spectrin Beta, Erythrocytic (SPTB) genes. Both genes encode
spectrin proteins that bind actin filaments in the cell to the
nuclear membrane stabilizing the cell’s nucleus. SYNE2 was
previously identified in the same multibreed Angus–Brahman
population as a candidate gene in a region explaining a large
percentage of direct additive genetic variances for carcass quality
(Leal-Gutiérrez et al., 2018). It is an obvious candidate gene due
to its possible role in proteolysis and cell compartmentalization
(Zhang et al., 2007). Changes in the expression of SPTB were
associated with embryonic lethality in cattle (Oishi et al., 2006).

The first suggestive pleiotropic region on BTA19 (27.0–
28.0 Mb) contains four genes that may play important regulatory
functions in metabolism and gene expression: Dynein Axonemal
Heavy Chain 2 (DNAH2), Chromodomain Helicase DNA
Binding Protein 3 (CHD3), Arachidonate 15-Lipoxygenase Type
B (ALOX15B), and Phosphoribosylformylglycinamidine Synthase
(PFAS). The DNAH2 gene codes for a motor protein found in
cilia and flagella that was related to intramuscular fat content
and carcass weight in pigs (Hlongwane et al., 2020). The CHD3
protein deacetylates histones for chromatin remodeling and
may have an important regulatory function. The ALOX15B
gene plays a role in cell signaling. This lipoxygenase converts
arachidonic acid to 15S-hydroperoxyeicosatetraenoic acid, which
is involved in G-protein coupled receptor activation and was
associated with obesity in humans (Goossens et al., 2017).
Finally, PFAS is involved in de novo synthesis of purines and
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mutations in this gene were linked to embryonic lethality in cattle
(Michot et al., 2017).

The second suggestive pleiotropic region on BTA19 (38.2–
39.1 Mb) contains Pyridoxamine 5’-Phosphate Oxidase
(PNPO), G Protein-Coupled Receptor 179 (GPR179), and
Rho GTPase Activating Protein 23 (ARHGAP23). The PNPO
gene regulates vitamin B6 synthesis and mutations in this
gene are known to cause seizures (Ciapaite et al., 2020).
The GPR179 binds glutamate and ARHGAP23 is a GTPase
involved in signal transduction through transmembrane
receptors, thus they may have a regulatory function impacting
juiciness and color.

A total of 19 genes were annotated in the pleiotropic
region identified on BTA29 (43.1–43.4 Mb) and several of them
are structural proteins. Genes coding for anchoring proteins,
previously identified as associated with meat quality traits by
Leal-Gutiérrez et al. (2018), could contribute to tenderization
because they allow the attachment of cytoskeletal proteins,
plasma and organelle membranes, and extracellular matrix
proteins. However, the most important gene in this region is
CAPN, an essential factor in postmortem muscle proteolysis.
Numerous polymorphisms in the CAPN-CAST system were
identified as associated with meat tenderness in various cattle
populations (Leal-Gutiérrez and Mateescu, 2019). While no
functional mutation was identified in CAPN, this gene remains
the main candidate gene for meat quality because of its biological
role. Many of the genes in this region have been identified as
associated with meat tenderness, but more importantly, have
been found to interact with each other, co-localize, and have
co-expression relationships (Braz et al., 2019).

Functional Analysis
Gene ontology and pathway enrichment analyses were
performed to gain insight into the genes located within
the most significant pleiotropic regions using PANTHER
Overrepresentation Test and the DAVID Functional
Classification Clustering tools. The PANTHER classification
according to protein family and functionally important
domains and sites using the INTERPRO database (Mitchell
et al., 2019) is presented in Figure 2. Significant DAVID
Functional Annotation Clustering results for the top
pleiotropic regions are shown in Table 5. DAVID Functional
Annotation Clusters are considered significant above an
enrichment score of 1.1.

Overrepresented terms for GO Biological Processes within
the most significant pleiotropic regions included “Regulation of
Apoptotic Process,” “Regulation of Cell Proliferation,” “Cytokine-
Mediated Signaling Pathway,” “Linoleic Acid Metabolic Process,”
“Cell Adhesion via Plasma Membrane Adhesion Molecules.”
Overrepresented terms for GO Molecular Functions included
“Iron Ion Binding,” “Calcium Ion Binding,” “Steroid Hormone
Receptor Activity,” “DNA Binding,” “Translation Initiation
Factor Activity,” and “Transcription Factor Activity,” Many
of these biological pathways were previously reported to be
important for carcass quality, meat quality, and tenderness
in beef cattle (Guillemin et al., 2012; Mudadu et al., 2016;
Ramayo-Caldas et al., 2016; Mateescu et al., 2017; Leal-
Gutiérrez et al., 2019). It is important to highlight a few
of these enriched pathways given their biological importance
in the carcass and meat quality traits under investigation.
Numerous genes identified in the significant pleiotropic regions

FIGURE 2 | Molecular function analysis of genes located within pleiotropic regions for carcass quality, sensory meat quality, and visual meat quality in a multibreed
Angus–Brahman population.
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TABLE 5 | Top pathways enriched in pleiotropic regions for carcass quality, sensory meat quality, and visual meat quality traits from the DAVID functional annotation
module analysis.

Annotation Cluster 1 Enrichment Score: 28.96

Category Term Count % P-value FDR

GOTERM_CC_DIRECT GO:0005882∼intermediate filament 29 10.10 1.35E-36 3.08E-34

GOTERM_CC_DIRECT GO:0045095∼keratin filament 22 7.67 2.53E-24 2.90E-22

INTERPRO IPR001664:Intermediate filament protein 41 14.29 5.19E-54 2.41E-51

INTERPRO IPR018039:Intermediate filament protein, conserved site 33 11.50 7.59E-44 1.76E-41

INTERPRO IPR002957:Keratin, type I 25 8.71 1.78E-39 2.76E-37

INTERPRO IPR003054:Type II keratin 15 5.23 6.33E-20 7.36E-18

Annotation Cluster 2 Enrichment Score: 1.97

Category Term Count % P-value FDR

GOTERM_BP_DIRECT GO:0043066∼negative regulation of apoptotic process 8 2.79 0.0815398 1

GOTERM_BP_DIRECT GO:0008284∼positive regulation of cell proliferation 6 2.09 0.3570181 1

GOTERM_BP_DIRECT GO:0019221∼cytokine-mediated signaling pathway 3 1.05 0.5191902 1

INTERPRO IPR000980:SH2 domain 7 2.44 0.0070389 0.142308

INTERPRO IPR008967:p53-like transcription factor, DNA-binding 6 2.09 4.79E-04 0.018573

INTERPRO IPR011992:EF-hand-like domain 6 2.09 0.335048 0.978947

INTERPRO IPR013801:STAT transcription factor, DNA-binding 4 1.39 7.32E-05 0.004865

INTERPRO IPR001217:STAT transcription factor, core 4 1.39 1.27E-04 0.005355

INTERPRO IPR013799:STAT transcription factor, protein interaction 4 1.39 1.27E-04 0.005355

INTERPRO IPR013800:STAT transcription factor, all-alpha 4 1.39 1.27E-04 0.005355

INTERPRO IPR015988:STAT transcription factor, coiled coil 4 1.39 1.27E-04 0.005355

Annotation Cluster 3 Enrichment Score: 1.65

Category Term Count % P-value FDR

GOTERM_BP_DIRECT GO:0043651∼linoleic acid metabolic process 3 1.05 0.0033093 0.64134

GOTERM_BP_DIRECT GO:0019372∼lipoxygenase pathway 3 1.05 0.0045868 0.64134

GOTERM_BP_DIRECT GO:0019369∼arachidonic acid metabolic process 3 1.05 0.0160454 1

GOTERM_MF_DIRECT GO:0005506∼iron ion binding 3 1.05 0.6926433 1

INTERPRO IPR020834:Lipoxygenase, conserved site 3 1.05 0.0035124 0.116661

INTERPRO IPR020833:Lipoxygenase, iron binding site 3 1.05 0.0048667 0.125722

INTERPRO IPR000907:Lipoxygenase 3 1.05 0.0048667 0.125722

Annotation Cluster 4 Enrichment Score: 1.42

Category Term Count % P-value FDR

GOTERM_BP_DIRECT GO:0007156∼homophilic cell adhesion via plasma membrane adhesion molecules 5 1.74 0.0602773 1

GOTERM_MF_DIRECT GO:0005509∼calcium ion binding 10 3.48 0.6254933 1

INTERPRO IPR013164:Cadherin, N-terminal 5 1.74 6.69E-04 0.023919

INTERPRO IPR020894:Cadherin conserved site 5 1.74 0.0229436 0.426751

INTERPRO IPR002126:Cadherin 5 1.74 0.0287627 0.477666

Annotation Cluster 5 Enrichment Score: 1.26

Category Term Count % P-value FDR

GOTERM_BP_DIRECT GO:0015031∼protein transport 8 2.79 0.0218376 1

UP_KEYWORDS Protein transport 9 3.14 0.0682724 0.989189

Annotation Cluster 6 Enrichment Score: 1.19

Category Term Count % P-value FDR

GOTERM_MF_DIRECT GO:0008270∼zinc ion binding 13 4.53 0.8806512 1

GOTERM_MF_DIRECT GO:0003707∼steroid hormone receptor activity 4 1.39 0.0515058 1

INTERPRO IPR001723:Steroid hormone receptor 5 1.74 0.005717 0.13292

(Continued)
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TABLE 5 | Continued

INTERPRO IPR001628:Zinc finger, nuclear hormone receptor-type 5 1.74 0.005717 0.13292

INTERPRO IPR000536:Nuclear hormone receptor, ligand-binding, core 5 1.74 0.0066533 0.140626

INTERPRO IPR013088:Zinc finger, NHR/GATA-type 5 1.74 0.0113991 0.220857

Annotation Cluster 7 Enrichment Score: 1.16

Category Term Count % P-value FDR

UP_KEYWORDS Protein biosynthesis 5 1.74 0.0726088 0.989189

UP_KEYWORDS Initiation factor 3 1.05 0.1521805 0.989189

GOTERM_MF_DIRECT GO:0003743∼translation initiation factor activity 3 1.05 0.2050301 1

Annotation Cluster 8 Enrichment Score: 1.10

Category Term Count % P-value FDR

GOTERM_BP_DIRECT GO:0006351∼transcription, DNA-templated 14 4.88 0.129625 1

GOTERM_BP_DIRECT GO:0045893∼positive regulation of transcription, DNA-templated 7 2.44 0.1925483 1

GOTERM_MF_DIRECT GO:0003677∼DNA binding 16 5.57 0.1211263 1

GOTERM_MF_DIRECT GO:0003700∼transcription factor activity, sequence-specific DNA binding 8 2.79 0.6537571 1

Statistics associated with GO terms include significance of enrichment or EASE score (P-value) and false discovery rate (FDR).

are involved in calcium-related processes such as calcium ion
binding, calcium channel, and calcium channel regulator. It
was anticipated that calcium and potassium play a major
role in meat tenderness because of their contribution to the
proteolytic system responsible for muscle contraction and
postmortem tenderization. Genes involved in cell signaling
and modulation of cell–cell adhesion were also identified
as enriched, supporting previous findings in this population
(Leal-Gutiérrez et al., 2019). Disruption of structural proteins
in the myocytes during and after the aging process is
an important determining factor of meat quality. This is
via proteolysis of structural proteins such as desmin and
talin during aging through the activity of the endogenous
µ-calpain-calpastatin system (Koohmaraie and Geesink, 2006;
Bee et al., 2007).

CONCLUSION

Weighted ssGWAS single-trait genome-wide associations
were used to identify genomic regions with pleiotropic effects
on carcass quality, sensory meat quality, and visual meat
quality traits in a multibreed Angus–Brahman population.
Five genomic regions on BTA5, BTA7, BTA18, and BTA29
explained more than 1% of direct additive genetic variance
of two or more carcass quality, sensory meat quality, and
visual meat quality traits. Moreover, three other suggestive
pleiotropic regions were identified on BTA10 and BTA19.
A total of 317 genes were identified across all pleiotropic
regions. Many of the candidate pleiotropic genes encode
anchoring or cytoskeletal proteins, important factors in
muscle proteolysis, and key players in cell growth, muscle
development, lipid metabolism and fat deposition. A functional
analysis of the genes identified in the pleiotropic regions
revealed GO terms directly related to carcass quality, meat

quality, and tenderness in beef cattle, including calcium-
related processes, cell signaling, and modulation of cell–cell
adhesion. Results presented here contribute with novel
information on the complex architecture of direct additive
genetic correlation between carcass and meat quality traits in
crossbred beef cattle.
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Supplementary Figure 1 | Manhattan plots for MARB, REA, TEND, JUIC, FLAV,
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additive genetic variance. The variance explained by 1-Mb genomic windows was
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Supplementary Figure 2 | Manhattan plots for MARB, REA, TEND, JUIC, FLAV,
COLOR, TEXT and FIRM with significant threshold indicated at 1% of the additive
genetic variance. The variance explained by 1-Mb genomic windows was
estimated using a single-trait WssGBLUP analysis correcting for indirect effects.

Supplementary Table 1 | The number of SNPs and direct additive genetic
variance (%) explained in MARB by 1-Mb genomic windows from single-trait
WssGBLUP analysis correcting for indirect effects where all other traits were
included as covariates.

Supplementary Table 2 | The number of SNPs and additive genetic variance (%)
explained in REA by 1-Mb genomic windows from single-trait WssGBLUP analysis
correcting for indirect effects where all other traits were included as covariates.

Supplementary Table 3 | The number of SNPs and additive genetic variance (%)
explained in TEND by 1-Mb genomic windows from single-trait WssGBLUP
analysis correcting for indirect effects where all other traits were included
as covariates.

Supplementary Table 4 | The number of SNPs and additive genetic variance (%)
explained in JUIC by 1-Mb genomic windows from single-trait WssGBLUP analysis
correcting for indirect effects where all other traits were included as covariates.

Supplementary Table 5 | The number of SNPs and additive genetic variance (%)
explained in FLAV by 1-Mb genomic windows from single-trait WssGBLUP
analysis correcting for indirect effects where all other traits were included
as covariates.

Supplementary Table 6 | The number of SNPs and additive genetic variance (%)
explained in COLOR by 1-Mb genomic windows from single-trait WssGBLUP
analysis correcting for indirect effects where all other traits were included
as covariates.

Supplementary Table 7 | The number of SNPs and additive genetic variance (%)
explained in TEXT by 1-Mb genomic windows from single-trait WssGBLUP
analysis correcting for indirect effects where all other traits were included as
covariates.

Supplementary Table 8 | The number of SNPs and additive genetic variance (%)
explained in FIRM by 1-Mb genomic windows from single-trait WssGBLUP
analysis correcting for indirect effects where all other traits were included as
covariates.

Supplementary Table 9 | Genes located within the pleiotropic regions.
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Several studies have evaluated computational methods that infer the haplotypes from
population genotype data in European cattle populations. However, little is known
about how well they perform in African indigenous and crossbred populations. This
study investigates: (1) global and local ancestry inference; (2) heterozygosity proportion
estimation; and (3) genotype imputation in West African indigenous and crossbred
cattle populations. Principal component analysis (PCA), ADMIXTURE, and LAMP-LD
were used to analyse a medium-density single nucleotide polymorphism (SNP) dataset
from Senegalese crossbred cattle. Reference SNP data of East and West African
indigenous and crossbred cattle populations were used to investigate the accuracy
of imputation from low to medium-density and from medium to high-density SNP
datasets using Minimac v3. The first two principal components differentiated Bos indicus
from European Bos taurus and African Bos taurus from other breeds. Irrespective
of assuming two or three ancestral breeds for the Senegalese crossbreds, breed
proportion estimates from ADMIXTURE and LAMP-LD showed a high correlation
(r ≥ 0.981). The observed ancestral origin heterozygosity proportion in putative F1
crosses was close to the expected value of 1.0, and clearly differentiated F1 from all
other crosses. The imputation accuracies (estimated as correlation) between imputed
and the real data in crossbred animals ranged from 0.142 to 0.717 when imputing
from low to medium-density, and from 0.478 to 0.899 for imputation from medium to
high-density. The imputation accuracy was generally higher when the reference data
came from the same geographical region as the target population, and when crossbred
reference data was used to impute crossbred genotypes. The lowest imputation
accuracies were observed for indigenous breed genotypes. This study shows that
ancestral origin heterozygosity can be estimated with high accuracy and will be far
superior to the use of observed individual heterozygosity for estimating heterosis in
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African crossbred populations. It was not possible to achieve high imputation accuracy
in West African crossbred or indigenous populations based on reference data sets
from East Africa, and population-specific genotyping with high-density SNP assays is
required to improve imputation.

Keywords: ADMIXTURE, African cattle, global ancestry, Minimac, LAMP-LD, local ancestry, PCA, SNPs

INTRODUCTION

Indigenous cattle in Africa are an important genetic resource
for diverse human communities, providing products and
by-products, such as food, wealth, and economic security
(Okomo-Adhiambo, 2002). Genetic improvement programs
using artificial selection within the local population are one
method to improve productivity (Effa et al., 2009; Tegegne et al.,
2010). Crossbreeding of locally adapted cattle with high-yielding
European dairy breeds is an alternative strategy to improve
productivity and improve the livelihoods of African smallholder
farmers in a relatively short period (Wuletaw, 2004; Tegegne
et al., 2010). Crossbreeding can increase dairy cattle production
by creating new combinations of genotypes of different breeds
to optimize the additive and heterotic genetic expression and
achieve the desired balance of productivity and adaptation trait
expression (Gregory and Cundiff, 1980; Simm, 1998).

The level of extra heterosis in crossbreds compared to
purebreds is a function of the degree of heterozygosity for the
origin of alleles from the ancestral populations, referred to as
ancestral origin heterozygosity in this study. In a homogeneous
crossbred population that results entirely from inter-se crossing,
the level of ancestral origin heterozygosity is a function of
the breed composition. In other crossbred populations, the
level of ancestral origin heterozygosity depends on the breed
composition of the parents of an individual (McAllister, 2002).
For example, an F1 cross has an ancestral origin heterozygosity of
1.0, which is twice the ancestral origin heterozygosity and hence
twice the expected heterosis of an F2 cross, even though they
have identical breed composition. In order to estimate the level of
heterosis in crossbred populations, one needs to have an estimate
of the ancestral origin heterozygosity for each individual that
is recorded and available for genomic evaluation. An estimate
of breed composition and ancestral origin heterozygosity can
be obtained from complete pedigree information, but pedigree
information is unavailable in most smallholder crossbred dairy
populations (Rege, 2001). An alternative is to genotype animals
for large numbers of SNPs and use this information to estimate
breed composition and heterozygosity.

Molecular genetic markers, most recently SNPs, can be used to
estimate the genetic ancestry of individuals. Methods embedded
in software such as ADMIXTURE (Alexander et al., 2009) or
STRUCTURE (Pritchard et al., 2000; Falush et al., 2003) estimate
global ancestry, i.e., the ancestral breed proportions averaged
across the whole genome. These software programs do not
provide estimates of ancestral origin heterozygosity. Methods
such as Lanc-CSV (Brown and Pasaniuc, 2014), LAMP-LD
(Pasaniuc et al., 2009; Baran et al., 2012), and MULTIMIX

(Churchhouse and Marchini, 2013) provide estimates of local
ancestry, i.e., the breed origin of haplotypes, and hence breed
proportion at every point in the genome. This allows ancestral
origin heterozygosity to be estimated at every point in the genome
and hence also the average ancestral origin heterozygosity
of an individual.

Local ancestry mapping, using the LAMP software
(Sankararaman et al., 2008), was employed in African cattle
populations by Flori et al. (2014) and Bahbahani et al. (2015) to
examine whether their SNP-based signatures of selection showed
a bias to either of the two assumed ancestral populations. The
LAMP software was also used by Khayatzadeh et al. (2018) to
assign ancestral origin of SNP genotypes in a European admixed
cattle population, allowing SNP dominance effects and epistatic
loss to be estimated. The African populations we study here
evolved from one or two (African Bos taurus and African zebu,
respectively) or three (crossbred dairy populations) principal
ancestral populations. We used LAMP-LD, which performs
better than LAMP when there are more than two ancestral
populations (Baran et al., 2012) to estimate global and local
ancestry in these populations.

Crossbreeding and selection are important synergic
approaches to improve production in the long-term. In the
absence of pedigree recording in most indigenous and crossbred
dairy populations, high-density SNP genotypes can be used to
generate a genomic relationship matrix (GRM), enabling genetic
improvement to be rapidly implemented (VanRaden, 2008).
However, genomic selection requires the routine genotyping of a
large number of recorded individuals and selection candidates,
which can be expensive. A strategy to increase genotypic
information while reducing testing costs is to genotype a large
number of individuals with a lower-density assay and impute to
higher density genotypes (Khatkar et al., 2012; Wiggans et al.,
2012; Berry et al., 2014).

Several software programs have been developed for
SNP imputation. These are mainly based either on linkage
disequilibrium (LD) information such as Beagle (Browning and
Browning, 2007), IMPUTE2 (Howie et al., 2009), MaCH (Li et al.,
2010), Minimac (Howie et al., 2012); or on a combination of LD
and family or pedigree information such as Dagphase (Druet and
Georges, 2010), FImpute (Sargolzaei et al., 2011), AlphaImpute
(Hickey et al., 2012), and FindHap (VanRaden et al., 2011).

Recently, Aliloo et al. (2018) assessed the genotype imputation
accuracy in 3,083 East African crossbred cattle genotyped with
the Illumina 777k SNP assay, using FImpute v2.2 (Sargolzaei
et al., 2014), Beagle v4.1 (Browning and Browning, 2016), and
Minimac v3 (Das et al., 2016) and found that Minimac v3 and
a reference set that combines crossbred and ancestral purebred
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animals generally gave the highest accuracy of imputations. But
this study provided no information about whether data from East
African crossbreds would be useful in the imputation of other
crossbred populations in Africa or for indigenous populations.
The accuracy of genotype imputation across populations is
highly affected by the LD and persistence of the LD phase
between populations, which has not been assessed for African
indigenous or crossbred populations. Berry and Kearney (2011)
have documented that the degree of relationship between
validation and reference populations is one of the factors affecting
imputation accuracy. Therefore, it is necessary to estimate
the ancestral background of the indigenous and crossbred
populations to make an informed decision about which animals
and breeds to best use as reference populations.

The overall objective of the current study was to assess the
ability to infer genotypes and genotype ancestry in African
populations based on diverse and local information as enablers
of a range of genetic improvement applications. The study
investigates: (1) Inference of global and local ancestry in West
African crossbreds to obtain substantially more information
on their genetic history. ADMIXTURE and PC analyses were
performed to estimate the global ancestry, while LAMP-LD was
used for local ancestry inference with different approaches in
West African crossbreds. We then compared the performance
of global and local ancestry inference methods; (2) Estimation
of ancestral origin and individual heterozygosity proportions
in West African crossbreds. The ancestral origin heterozygosity
proportion was calculated from the local ancestry inferences
obtained from LAMP-LD, while the individual heterozygosity
was calculated across all loci which are heterozygous; (3)
Accuracy of genotype imputation in African indigenous and
West African crossbred cattle populations when imputing from
low and medium-density to high-density SNP panels, using East
and West African reference populations separately or combined.
This is the first imputation study considering African indigenous
and West African crossbred populations.

MATERIALS AND METHODS

Animals
SNP genotype data of 4,291 animals representing European Bos
taurus dairy breeds, East and West African indigenous and
crossbred dairy cattle sampled from different countries were used
for this study (Table 1). These data were obtained from several
public-domain databases, plus projects run by the International
Livestock Research Institute (ILRI) and collaborators (Marshall
et al., 2017, 2020; Ema et al., 2018), and the Genomics Reference
Resource for African Cattle (GRRFAC) supported by the Centre
for Tropical Livestock Genetics and Health (CTLGH), and the
Dairy Genetics East Africa project (DGEA; Strucken et al., 2017).
The breed classifications of the West African crossbred animals
were based on farmers’ and enumerators’ assumptions as well
as, where available, recorded sire and dam information. These
crossbred animals were classified as undefined crossbreds or as
crosses between the local breed Gobra with Holstein-Friesian,
Montbéliarde, or Normande.

Genotyping and Quality Control
The samples were genotyped on either the Illumina BovineSNP50
BeadChip array (Illumina Inc., San Diego, CA, USA) comprising
54,609 SNPs or the Illumina BovineHD Beadchip (Illumina Inc.,
San Diego, CA, USA) containing 777,962 SNPs, as presented in
Table 1. Data from the Bovine HapMap Consortium et al. (2009)
and the 50k data from Decker et al. (2014) were obtained post
quality control. Genotypes from the DGEA project and Scotland’s
Rural College (SRUC) data were filtered using “SNPQC” an R
pipeline (Gondro et al., 2014), retaining SNPs that had a median
GC score >0.6 and a call rate >90%. The data from Senegal
smallholder farms (Marshall et al., 2017, 2020; Ema et al., 2018)
were processed for quality control using the GenABEL package
(Aulchenko et al., 2007) in R Core Team (2018), retaining SNPs
and animals with call rates >90%. Data from CTLGH and
GRRFAC were quality controlled, including a median GC score
>0.6 and a call rate >0.90%. In all datasets, only autosomal SNPs
were included in this study.

The datasets were merged, keeping only common SNPs
(37,632 SNPs) between the reference (detailed below) and West
African crossbred populations for inference of global and local
ancestry and estimates of heterozygosity proportions (dataset
1). For the genotype imputation, SNPs that had a minor allele
frequency (MAF) lower than 0.01 were removed from medium
and high-density datasets. FImpute V 2.2 (Sargolzaei et al.,
2014) was used to impute the sporadically missing genotypes of
individuals to have complete datasets for all animals at all loci.
The number of SNPs retained was 28,649 from medium-density
(dataset 2), and 621,309 SNPs from high-density panels (dataset
3) across 29 B. taurus autosomes based on UMD 3.1 genome
assembley (Zimin et al., 2009).

Global Ancestry Inference of West
African Crossbred Animals
The global ancestry inference is important to estimate the fraction
of ancestry contributed by each ancestral population as averaged
across the entire genome. In this study, the global ancestry
inference was undertaken using Senegalese (West African)
crossbred populations. The reference populations were African
B. taurus breeds (N’Dama, N’Dama1, Lagune, Baoule, and
Lagunaire, N = 87), European B. taurus dairy breeds (Guernsey,
Holstein, Jersey, Friesian, and Montbéliarde, N = 105), and a
pooled Bos indicus population (N = 105). The pooled Bos indicus
sample included 12 Bos indicus breeds from India, selected from
525 indigenous samples such that within breed relationships were
minimal (Aliloo et al., 2020). The pooled indigenous reference
population was from Senegal (Gobra, Maure, Djakore, hybrid
animals between Gobra and Maure, and Gobra and Guzerat,
N = 105), and the number of indigenous animals were reduced
to make similar population size with other reference groups (also
used in heterozygosity estimation). The African B. taurus, Bos
indicus, and indigenous reference animals are those with zero
European B. taurus breed proportion as determined by prior
ADMIXTURE and PC analyses (Gebrehiwot, 2020; Gebrehiwot
et al., 2020).
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TABLE 1 | Animal populations, numbers, and sources.

Breed Population group Origin/country Number of animals Array (Illumina) Genotype source

Friesian EuB.t United Kingdom 25 BovineHD SRUC

Guernsey EuB.t United States and
United Kingdom

20 BovineHD Bovine HapMap Consortium et al., 2009

Holstein EuB.t United States and NZ 20 BovineHD Bovine HapMap Consortium et al., 2009

Jersey EuB.t United States and NZ 20 BovineHD Bovine HapMap Consortium et al., 2009

Montbéliarde EuB.t France 20 BovineSNP50 Decker et al., 2014

Pooled Bos indicus B.i India 105 BovineHD Strucken et al., 2019

N’Dama WAI Guinea 20 BovineHD Bovine HapMap Consortium et al., 2009

N’Dama WAI Senegal 14 BovineHD GRRFAC

N’Dama1 WAI Cote d’Ivoire 20 BovineSNP50 Decker et al., 2014

N’Dama2 WAI Southeast Burkina Faso 14 BovineSNP50 Decker et al., 2014

N’Dama3 WAI Southwest Burkina
Faso

17 BovineSNP50 Decker et al., 2014

Lagune WAI Benin 20 BovineSNP50 Decker et al., 2014

Lagunaire WAI West Africa 5 BovineHD Bovine HapMap Consortium et al., 2009

Somba WAI Togo 20 BovineSNP50 Decker et al., 2014

Baoule WAI Burkina Faso 20 BovineSNP50 Decker et al., 2014

Baoule WAI Burkina Faso 19 BovineHD GRRFAC

Djakore* WAI Senegal 7 BovineSNP50 Marshall et al., 2020

Gobra* WAI Senegal 118 BovineSNP50 Marshall et al., 2020

Gobra* WAI Senegal 14 BovineHD GRRFAC

Maure* WAI Senegal 12 BovineSNP50 Marshall et al., 2020

Maure* WAI Senegal 15 BovineHD GRRFAC

Gobara × Maure* WAI Senegal 10 BovineSNP50 Marshall et al., 2020

Gobara × Guzerat* WAI Senegal 31 BovineSNP50 Marshall et al., 2020

Bororo WAI Chad 20 BovineSNP50 Decker et al., 2014

Fulani WAI Benin 20 BovineSNP50 Decker et al., 2014

Kuri WAI Chad 20 BovineSNP50 Decker et al., 2014

Borgou WAI Benin 20 BovineSNP50 Decker et al., 2014

Undefined indigenous WAI Senegal 66 BovineSNP50 Marshall et al., 2020

Ankole EAI Uganda 35 BovineHD DGEA

SEAZ EAI Kenya 21 BovineHD DGEA

Boran EAI Kenya 28 BovineHD DGEA

Danakil-Harar EAI Ethiopia 30 BovineHD DGEA

Begait-Barka EAI Ethiopia 30 BovineHD DGEA

Boran EAI Ethiopia 28 BovineHD DGEA

Iringa-Red EAI Tanzania 13 BovineHD DGEA

Singida-White EAI Tanzania 22 BovineHD DGEA

Sheko EAI Ethiopia 18 BovineHD Bovine HapMap Consortium et al., 2009

Kenyan crossbred EXX Kenya 1,378 BovineHD DGEA

Uganda crossbred EXX Uganda 555 BovineHD DGEA

Ethiopia crossbred EXX Ethiopia 545 BovineHD DGEA

Tanzania crossbred EXX Tanzania 462 BovineHD DGEA

Senegal crossbreed WXX Senegal 253 BovineSNP50 Marshall et al., 2020

Senegal crossbreed WXX Senegal 141 BovineHD CTLGH

Total 4,291

*Senegalese indigenous populations used in the pooled indigenous population (N = 105), EuB.t = European Bos taurus, B.i = Bos indicus, WAI = West African indigenous,
EAI = East African indigenous, WXX = West African crossbreds, EXX = East African crossbreds, USA = United States of America, UK = United Kingdom, NZ = New Zealand,
SRUC = Scottish Rural University College, CDN = Canadian Dairy Network.

A maximum likelihood model, as implemented in the
software ADMIXTURE 1.23 (Alexander et al., 2009), was
used to estimate the global ancestry proportions of crossbred
animals. ADMIXTURE was used in two alternatives supervised

analyses where the ancestral reference populations were a
pooled sample of European B. taurus and a pooled sample
of indigenous breeds from Senegal (two-way admixture) (1),
and African B. taurus populations, Bos indicus, and European
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B. taurus dairy breeds (three-way admixture) (2). These reference
populations were chosen based on the ancestral information of
Senegalese crossbreds as detailed by Gebrehiwot et al. (2020)
and Gebrehiwot (2020).

The principal component analysis (PCA) was performed to
explore and visualize the genetic variation between West African
indigenous and crossbred animals and the reference populations.
The PCA was based on a GRM constructed from SNP data
according to the first method of VanRaden (2008) and calculated
as:

GRM = ZZ′/d

where the scaling parameter d was:

d = 2 ∗
∑

(pi ∗
(
1− pi

)
)

The centered genotype matrix (Z) was constructed by
subtracting the P matrix from the genotype matrix M, where
P = 2 ∗ (pi − 0.5), and pi is the allele frequency at locus i.

Local Ancestry Estimation in West
African Crossbred Animals
The genome of admixed individuals resembles a mosaic
of chromosomal regions originating from different ancestral
populations. Finding the regional ancestry at each genomic
location provides more information than the usual estimation
of global ancestry alone (Padhukasahasram, 2014). Here, LAMP-
LD software (Pasaniuc et al., 2009; Baran et al., 2012) was
used to estimate the locus-specific ancestry of West African
crossbreds in two scenarios of ancestry mapping. The two
scenarios were two-way and three-way admixtures, using the
same ancestral populations as for the global ancestry inference
(see above). To infer the local ancestry, the dataset was
first phased using Eagle v2.3.5 (Loh et al., 2016). The local
ancestries of admixed animals were obtained from LAMP-
LD with a window size of 12 SNPs and 15 as the number
of states. LAMP-LD infers the ancestry in each window
based on a likelihood model to trace the origins of admixed
populations based on the haplotype patterns in ancestral
reference populations.

Estimation of Heterozygosity Proportion
Estimation of heterozygosity proportion in West African
crossbred populations was undertaken using two approaches.
Individual heterozygosity was calculated across all loci,
scored as “1” if an individual was heterozygous at a locus
and “0” for each homozygous locus; the mean across all
loci was then recorded. The ancestral origin heterozygosity
proportion was calculated from the local ancestry inferences
obtained from LAMP-LD. Each haplotype of a given crossbred
individual was scored as “1” if it was a heterozygous state
of European B. taurus and indigenous ancestry (two-
way), or African B. taurus or Bos indicus versus European
B. taurus ancestry (three-way), and scored “0” otherwise.
The sum of these scores was divided by the number of
loci to obtain the average ancestral origin heterozygosity
across the genome.

Upper and Lower Limits of
Heterozygosity
In crosses between two populations, the ancestral origin
heterozygosity has upper and lower bounds that depend on
the breed proportions of the crossbred animal and the breed
proportions of its parents. The expectations can be obtained
as the expected frequency of heterozygotes at a single locus,
if the two ancestral parents are fixed for opposite alleles at
that locus. For example, the ancestral origin heterozygosity
of the two parental populations is zero. That for an F1
is exactly 1, which is the upper bound of heterozygosity,
while that of an F2, resulting from the mating of two F1
animals is expected to be 0.5, which is the lower bound of
heterozygosity for animals with 50% ancestry from each parent.
The upper bound of the expected heterozygosity applies to
all crossbreds that have at least one parent being a purebred
ancestor. The lower bound applies to all inter-se matings
between crossbred parents that have identical ancestral breed
composition. The expected ancestral heterozygosity of all other
crosses between crossbred parents lies between the upper and
lower bounds of ancestral origin heterozygosity for animals of
that breed composition.

Analogous bounds can be obtained for individual
heterozygosity when it is assumed that all the animals of a
given ancestral pure breed have the same heterozygosity. In this
case expected heterozygosity can be considered as a trait whose
expectation is the sum of additive genetic and heterosis effects.
If H1 and H2 are the heterozygosity of parent breeds 1 and 2,
respectively, and pi is the breed proportion of parent breed 2 and
ai is the expected ancestral origin heterozygosity of crossbred
animal i, then the expected heterozygosity of that animal, Hi, is:

Hi = H1 + pi(H2 − H1) + aix

where x = HF1 – H1 if p < 0.5 and x = HF1 – H2 if
p > 0.5, and HF1 is the average individual heterozygosity of
F1 animals. The upper and lower bounds for ancestral and
individual heterozygosity are used in the results to illustrate the
utility of ancestral versus individual heterozygosity as a useful
metric in the estimation of genetic parameters of performance in
crossbred populations.

Genotype Imputation in West African
Cattle Populations
Imputation was undertaken using a population-based algorithm,
Minimac v3 (Das et al., 2016) with pre-phased data from Eagle
v2.3.5 (Loh et al., 2016). Minimac v3 was chosen for genotype
imputation because it provided the highest imputation accuracy
in East Africa crossbred populations compared to FImpute and
Beagle (Aliloo et al., 2018).

SNP Information for Imputation
The SNPs in common between the medium-density genotypes
(dataset 2) and the commercially available Illumina BovineLD v2
SNP array (containing 7,931 SNPs) were retained to create the
low-density dataset. There were 5,043, 28,649, and 621,309 SNPs
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in low-density, medium-density (dataset 2) and high-density
(dataset 3) datasets, respectively.

Genotype Imputation Scenarios
Imputation was undertaken within and across geographical
regions focussing mainly on West Africa using East African
populations as a reference. As detailed in Table 2, a total of 36
imputation scenarios were considered to impute West African
indigenous and crossbred populations, while four scenarios
were used to impute East African indigenous and crossbred
populations. Half of the imputation scenarios (18) were designed
to investigate the imputation accuracies from low-density to
medium-density SNP panels, and the other half was used
for the imputation from medium-density to high-density SNP
panels (Table 2). Based on the geographical regions where the
reference populations were sampled from, the 36 imputation
scenarios could be classified into three major groups based on
the reference sets: using East African indigenous and crossbred
individuals combined or separately (Scenario 1), using West
African indigenous and crossbred individuals combined or
separately (Scenario 2), and using a combination of East and West
African indigenous and crossbred individuals (Scenario 3).

To assess the imputation accuracy, direct imputation was
performed for Scenario 1 and five-fold cross-validation for
Scenarios 2 and 3. The target individuals for Scenarios 2 and 3
were randomly divided into five groups, and each group was used
as a validation set, while the four remaining groups were used as
a reference population.

Imputation accuracy was determined with two different
criteria: (1) the allelic correlation of imputed versus real
genotypes, and (2) the concordance rate computed as the ratio
between the number of correctly imputed alleles versus the total
number of imputed alleles.

RESULTS AND DISCUSSION

Global and Local Ancestry Inferences in
West African Crossbreds
Estimates of global and local ancestry for the two-way
admixture generated by ADMIXTURE and LAMP-LD, are
shown in Figure 1. Each vertical bar represents an individual
with the proportion of each ancestry depicted in a different
color. The average European B. taurus and indigenous breed
proportions estimated from ADMIXTURE (Figure 1A) were
0.481 (SD = 0.201) and 0.519 (SD = 0.201), respectively, and
from LAMP-LD (Figure 1B) 0.491 (SD = 0.199), and 0.509
(SD = 0.199), respectively. The correlation between the breed
proportion estimates obtained from the two algorithms was
0.995, showing that they have a strong association.

Estimates of global and local ancestry from the three-way
admixture using ADMIXTURE and LAMP-LD are shown in
Figure 2. The average European B. taurus, African B. taurus, and
Bos indicus breed proportions from ADMIXTURE (Figure 2A)
were 0.515 (SD = 0.199), 0.185 (SD = 0.091), and 0.300
(SD = 0.146), respectively. The average estimates of ancestral

TABLE 2 | Scenarios and the number of animals used in the reference and validation sets to assess imputation accuracy.

Scenario Population in reference Population in validation LD-MD MD-HD

Number in reference Number in validation Number in reference Number in validation

Scenario 1

1A EAI WAI 228 485 228 87

1B EXX WXX 2,982 394 2,982 141

1C EAI + EXX WAI 228 + 2,982 485 228 + 2,982 87

1D EAI + EXX WXX 229 + 2,982 394 229 + 2,982 141

1E EAI EAI 182 46 182 46

1F EXX EXX 2,385 597 2,385 597

Scenario 2

2A WAI WAI 388 97 69 18

2B WAI WXX 388 79 69 29

2C WXX WAI 315 97 112 18

2D WXX WXX 315 79 112 29

2E WAI + WXX WAI 388 + 315 97 69 + 112 18

2F WAI + WXX WXX 388 + 315 79 69 + 112 29

Scenario 3

3A WAI + EAI WAI 388 + 228 97 69 + 228 18

3B WAI + EAI WXX 388 + 228 79 69 + 228 29

3C WXX + EXX WAI 315 + 2,982 97 112 + 2,982 18

3D WXX + EXX WXX 315 + 2,982 79 112 + 2,982 29

3E WAI + EAI + WXX + EXX WAI 388 + 228 + 315 + 2,982 97 69 + 228 + 112 + 2,982 18

3F WAI + EAI + WXX + EXX WXX 388 + 228 + 315 + 2,982 79 69 + 228 + 112 + 2,982 29

WAI = West African indigenous, EAI = East African indigenous, WXX = West African crossbreds, EXX = East African crossbred.
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breed proportions from LAMP-LD (Figure 2B) were 0.501
(SD = 0.194), 0.181 (SD = 0.088) and 0.319 (SD = 0.143),
respectively. The correlation between the estimates of the
three breed proportions obtained from ADMIXTURE versus
LAMP-LD were 0.994, 0.981, and 0.994, respectively. This
correlation was consistent with previous results by Chen et al.
(2014), who found that the LAMP-LD estimates showed a
correlation of 0.989 with a supervised ADMIXTURE analysis
in human populations. The estimates of average European
breed proportion from ADMIXTURE and LAMP-LD for
the three-way scenario were slightly higher (3.4 and 1%,
respectively) than results for two-way admixture. Gebrehiwot
et al. (2020) and Gebrehiwot (2020) found an average exotic dairy
proportion of 0.503 (SD = 0.187) using twelve ancestral reference
populations in a supervised ADMIXTURE analysis of West
African crossbreds with overlapping data, which is consistent
with the estimates here.

The PCA found that the first two PCs accounted for 77.24 and
13.48% of the total genetic variation in the GRM, differentiating
Bos indicus from B. taurus and African B. taurus from other
groups (Figure 3). This is consistent with the patterns found
by several studies (Hanotte et al., 2002; Gautier et al., 2009;
Kim et al., 2017; Verdugo et al., 2019; Gebrehiwot et al.,
2020), analyzing various combinations of African indigenous and
crossbred data along with the three reference groups. The Bos
indicus reference populations clustered tightly together, showing

that they are a pure Bos indicus population, while the African
B. taurus populations clustered together with a few Baoule
individuals appearing to be admixed with Bos indicus. The
crosses between European dairy breeds and African indigenous
breeds were distributed between the European and indigenous
populations. A substantial number of Gobra×Holstein-Friesian,
Gobra × Montbéliarde, Gobra × Normande, and undefined
crossbreds clustered in an intermediate position between the
indigenous and European breeds (Figure 3). The history of
this crossbred population suggests that these animals are likely
F1 crosses but PCA cannot differentiate an F1 from any other
cross resulting in approximately 50% indigenous ancestry. Maure
and Djakore clustered in an intermediate position between Bos
indicus and African B. taurus ancestral populations, while Gobra,
the Gobra×Maure cross, and the Gobra× Guzerat cross spread
between these two ancestral populations, showing a wide genetic
diversity among individuals.

Estimation of Heterozygosity
Individual Heterozygosity in the Reference
Populations
The average individual heterozygosity values for European
B. taurus, African B. taurus, Indian Bos indicus, and indigenous
reference populations as well as West African crossbred
populations are presented in Table 3. Friesian and Jersey

FIGURE 1 | Estimates of breed proportion of West African crossbreds using two-way admixture from (A) ADMIXTURE and (B) LAMP-LD.

Frontiers in Genetics | www.frontiersin.org 7 March 2021 | Volume 12 | Article 584355306

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-584355 March 23, 2021 Time: 16:25 # 8

Gebrehiwot et al. Ancestries, Heterozygosity, and Imputation in African Cattle

FIGURE 2 | Estimates of breed proportion of West African crossbreds using three-way admixture from (A) ADMIXTURE and (B) LAMP-LD.

cattle populations showed the highest and lowest average
heterozygosity of the European dairy breeds with 0.331
(SD = 0.013) and 0.261 (SD = 0.014), respectively. These
results are consistent with previous estimates; for example,
Mbole-Kariuki et al. (2014) found heterozygosities of 0.33
(SD = 0.01) and 0.25 (SD = 0.03) for Holstein-Friesians and
Jersey, respectively.

As expected, the average heterozygosity proportion in
crossbred animals was higher (0.3277, SD = 0.030) than in the
pooled pure reference and indigenous populations (Table 3).
However, the average heterozygosity proportion in crossbreds
were lower than in Friesian, which is due to the outlier animal in
the crossbred group that showed a low heterozygosity proportion
(0.166). The mean heterozygosity of the crossbreds without
the outlier is 0.328. This is still somewhat lower than the
Friesian heterozygosity, however, the crossbreds have a larger
SD (0.029 vs. 0.013) and the median for the crossbreds is
slightly higher (0.339) than the mean, indicating somewhat a
skewed distribution. Moreover, the maximum heterozygosity of
the crossbreds is higher than any of the other populations. The
pooled European B. taurus and African B. taurus populations
had an average heterozygosity of 0.295 (SD = 0.030) and
0.198 (SD = 0.015), respectively. Bos indicus had a low average

heterozygosity of 0.158 (SD = 0.014), which is even lower
than in other studies (Kasarapu et al., 2017; Utsunomiya
et al., 2019); however, most other studies did not use Bos
indicus breeds from India but breeds that are known to
have a complex breeding history including introgression of
B. taurus breeds such as Brahman, Nelore, or Gyr. The low
heterozygosity level in Bos indicus populations is likely due to
ascertainment bias of the SNPs on the assay, which seems to
be even more pronounced in Bos indicus breeds from India.
The pooled indigenous animals had an average heterozygosity
of 0.238 (SD = 0.023), consistent with the extra heterozygosity
expected in admixtures between the African B. taurus and
Bos indicus ancestral populations. Including heterozygosity
proportion in the model for genetic evaluation increases the
prediction accuracy of traits and it also has the potential to
be used in mate selection in order to maximize heterozygosity
in the offspring (De Cara et al., 2011; Iversen et al., 2019).
A previous study by Mbole-Kariuki et al. (2014) using a
medium-density (50k SNPs) dataset reported a lower average
heterozygosity level for N’Dama 0.17 (SD = 0.08) than the pooled
African B. taurus, and a higher average heterozygosity level for
Sheko 0.26 (SD = 0.003) compared to the pooled indigenous
animals in our study.
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FIGURE 3 | Plots of PC1 vs. PC2 for Bos indicus, African and European Bos
taurus, West African indigenous and crossbred populations.

Ancestral Origin Heterozygosity in West African
Crossbreds
The ancestral origin heterozygosity proportions estimated by
LAMP-LD are plotted against the estimated European breed
proportion from either ADMIXTURE or LAMP-LD for the two-
way (Figure 4) and three-way admixture (Figure 5). Animals
with low heterozygosity and low (<2% based on the two-way
ancestry analysis) European breed proportion are interpreted to
be pure indigenous, and animals with low heterozygosity, but
high (>98%) European breed proportion are assumed to be pure
European dairy breeds. Estimation of European breed proportion
using LAMP-LD (Figures 4B, 5B) showed a clearer cluster
than the result obtained from ADMIXTURE (Figures 4A, 5A).
However, animals that showed up as pure indigenous in all other
analyses were estimated by a three-way admixture with LAMP-
LD to have a small proportion of European B. taurus ancestry.
This appears to be due to the model allocating a proportion of
the African B. taurus ancestry to be European B. taurus ancestry.

Theoretically, all crossbreds must sit within the bounds set
by the straight lines between F1 animals, with a European breed
proportion of 0.5 and ancestral origin heterozygosity of 1.0, and
the pure indigenous and European breeds that have European
breed proportion of zero and 1.0, respectively, and an ancestral
origin heterozygosity of zero. Animals that sit on the outer
boundaries are crosses where at least one parent is purebred,
whereas animals inside the boundaries result from a mating of
two crossbred parents. Based on this assumption, Figure 4B fits
the model almost exactly. The plots based on ADMIXTURE
estimates of breed proportion (Figures 4A, 5A) fit the model
least well because the method of estimating global ancestry
by ADMIXTURE differs from that used by LAMP-LD, leading
to inconsistencies between the estimate of breed composition
(global ancestry).

Although it cannot be seen because of over-position of data
points, in Figures 4B, 5B, a high proportion of crossbred
animals with almost exactly 50% European breed proportion had

TABLE 3 | Average heterozygosities of reference and West African
crossbred populations.

Breed Number of
animals

Mean SD Minimum Maximum

Friesian 25 0.331 0.013 0.303 0.360

Guernsey 20 0.268 0.014 0.234 0.291

Holstein 20 0.311 0.015 0.276 0.343

Jersey 20 0.261 0.014 0.227 0.286

Montbéliarde 20 0.295 0.008 0.279 0.303

Pooled populations

European Bos taurus 125 0.295 0.030 0.227 0.360

African Bos taurus 87 0.198 0.015 0.141 0.218

Bos indicus 105 0.158 0.014 0.110 0.181

Indigenous 105 0.238 0.023 0.129 0.261

Crossbreds* 394 0.328 0.030 0.166 0.370

*Crosses between the local breed Gobra with Holstein-Friesian, Montbéliarde,
Normande, and undefined crossbreds.

ancestral origin heterozygosity of almost exactly 1.0 (Figure 4B)
or very close to 1.0 (Figure 5B), which is the heterozygosity
expected for F1 crosses. This is visible in Supplementary
Figures 1A (two-way admixture) and 1B (three-way admixture),
where the number of data points within a particular area of the
plot is counted and presented by a color gradient to show how
many animals occur at each position on the plot. Comparing
Figures 4, 5, and Supplementary Figure 1 shows that the
three-way ancestry model leads to more variable estimates of
European breed proportion by both ADMIXTURE and LAMP-
LD, and more variable estimates of ancestral heterozygosity by
LAMP-LD. Most notably, the LAMP-LD estimates of ancestral
heterozygosity for the putative F1 animals are all almost exactly
equal to the expected value of 1.0 when using the two-
way ancestry model, whereas the estimates from the three-
way ancestry model, while mostly still close to 1.0, include
estimates as low as 0.9.

Supplementary Figure 1 shows that there are clusters of
animals on the outer boundaries around 25 and 75% European
breed proportions, respectively. These are most likely backcrosses
of F1 animals to pure indigenous or pure European animals,
which are expected to have European breed proportions that vary
around 25 and 75%, and heterozygosities that vary around 0.5
because of a random sampling of gametes from the parents. As
most clearly seen in Figure 4B, the majority of animals sit on the
boundary lines indicating that in this crossbred population, the
majority of animals result from a mating involving at least one
purebred parent rather than inter-se matings among crossbred
animals. This is consistent with the fact that these crossbred dairy
populations are relatively recently established and are expanding
(K. Marshall, personal communication).

To further clarify the genetic structure of the crossbred
animals clustered in the intermediate position of the PC
plot in Figure 3, we color-coded the individuals based on
ancestral origin heterozygosity (Figure 6). This confirms that
the majority of animals in the two bands in the middle of
the plot are F1 animals with an ancestral origin heterozygosity
of 1.0. The majority of Gobra x Holstein-Friesian crosses
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FIGURE 4 | Ancestral origin heterozygosity in West African crossbreds plotted against European breed proportion estimated from a two-way admixture using
(A) ADMIXTURE and (B) LAMP-LD.

FIGURE 5 | Ancestral origin heterozygosity in West African crossbreds plotted against European breed proportion estimated from a three-way admixture using
(A) ADMIXTURE and (B) LAMP-LD.

were clustered in the first band (between PC1 = −0.025 to
0.000 and PC2 = −0.02 to −0.01), while the majority of
Gobra × Montbéliarde and Gobra × Normande crosses were
clustered in the other band. A substantial number of undefined
crossbred animals were clustered in one or the other of the
two bands with ancestral origin heterozygosities close to 1.0,
showing that they are Gobra x Holstein-Friesian and Gobra x
Montbéliarde F1 crosses.

Individual Heterozygosity in West African Crossbreds
The plot of individual heterozygosity against European
breed proportion for the West African crossbred cattle
obtained from ADMIXTURE and LAMP-LD using the three-
way admixture is shown in Figures 7A, 8A, respectively.
For completeness, Supplementary Figure 2 shows the
individual heterozygosity against European breed proportion
obtained from ADMIXTURE and LAMP-LD using two-
way admixture. To avoid duplication, only the results of

the three-way admixture are discussed here. The animals
in red color in the Figures 7A, 8A have ≥90% of their
European breed proportion being Holstein-Friesian, while
the animals shown in blue color in Figures 7B, 8B are those
having ≥90% of their European breed proportion being
Montbéliarde.

Across all animals, the individual heterozygosity ranged from
0.166 to 0.37, and the European breed proportion ranged
from 0 to 1. There are evident clusters of animals that have
high heterozygosity proportions (>32%) and are close to 50%
European breed proportion. Virtually all of these animals
are those shown to be F1 crosses in the ancestral origin
heterozygosity results.

The black lines are the expected heterozygosity proportions
for the progeny of crosses involving an average Holstein-
Friesian parent (Figures 7A, 8A) or an average Montbéliarde
parent (Figures 7B, 8B). The green lines are the expected
heterozygosity proportions for the progeny of inter-se matings
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FIGURE 6 | Plots of PC1 vs. PC2 for all West African crossbred animals showing their ancestral origin heterozygosity as color code from red (heterozygosity = 1) to
blue (heterozygosity = 0).

FIGURE 7 | Individual heterozygosity in West African crossbreds plotted against European breed proportion estimated from a three-way admixture using
ADMIXTURE. The black and green lines are upper and lower boundaries of expected heterozygosity for (A) Holstein-Friesian and (B) Montbéliarde crosses.

between crossbred animals of identical breed composition.
The black lines form a theoretical upper boundary of
heterozygosity of crossbred animals, while the green lines
are the theoretical lower boundary. Holstein, Friesian and
Montbeliarde reference samples were used to obtain the
average heterozygosity proportion of the pure Holstein-Friesian

and Montbéliarde parental populations, respectively, and
then used in obtaining the upper and lower boundaries of
the expected heterozygosity. The average heterozygosity of
indigenous animals was obtained as the average heterozygosity
of animals with <2% European breed proportion based on
a two-way ancestry analysis. The average heterozygosity of
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F1 Holstein-Friesian versus F1 Montbéliarde crossbreds was
obtained by identifying F1 animals from the ancestral origin
heterozygosity analyses, and matching these to animals whose
European breed proportion was ≥90% Holstein Friesian or
≥90% Montbéliarde.

The average individual heterozygosity proportions for the
parental indigenous, Holstein-Friesian, and Montbéliarde
populations were 0.241 (ranged from 0.166 to 0.258), 0.311
(ranged from 0.276 to 0.343), and 0.295 (ranged from 0.279
to 0.303), respectively. The mean and range of indigenous
animals include a single outlier with very low heterozygosity,
which the PC plots and admixture analyses indicated was a
pure Bos indicus animal; most likely one of the pure Guzerat
animals known to have been imported into the sample area
from Brazil. This outlier was assigned as crossbred in our
data using farmers’ assessment of breed composition based
on the external appearance of the animal, however, our
genomic breed composition prediction methods showed the
opposite. Previously, Weerasinghe (2014) tested the extent
of farmers knowledge on the ability to identify the breed
composition of the East African crossbreds and concluded that
farmers have a poor understanding of the breed composition
of their animals.

The Holstein-Friesian crosses showed a higher average
heterozygosity proportion than the Montbéliarde crosses, and
this leads to higher upper and lower boundaries of heterozygosity
of Holstein-Friesian crossbreds. The fit to the data is clearly
better in Figure 8 than Figure 7, due largely to LAMP-LD
providing more accurate estimates of European breed proportion
than ADMIXTURE. However, the fit to the data, in general, is
very poor in both figures, with a high proportion of animals
sitting outside the upper and lower boundaries of heterozygosity.
This is due primarily to the large variation in heterozygosity
among purebred ancestors. This variation can be expected among
ancestors in any crossbred population. Thus, in marked contras
to ancestral origin heterozygosity, individual heterozygosity
will provide a very poor measure of heterozygosity caused by
crossbreeding and hence very poor estimates of heterosis of
performance when used in analyses of additive and heterosis
effects in this, and by extrapolation other crossbred populations.
An additional factor in the current population is the small
proportion of crosses resulting from pure Guzerat or Guzerat
x indigenous ancestors. These can be seen in Figures 7, 8 as
animals appearing well below the green line. They are also
evident in Figure 2 as animals with zero or well below expected
African B. taurus ancestry, and in the PC plot (Figure 3)
as animals well below the distribution of points for most
crossbreds. A few animals that are scattered well below the
expected lower boundaries, such as an animal with European
breed proportion around 65% and Holstein-Friesian proportion
≥90%, might be a cross among close relatives resulting in
high inbreeding.

Overall the results on ancestral origin versus individual
heterozygosity show the clear superiority of ancestral mapping
heterozygosity to infer ancestry of individual animals and
as an estimate that can be used to obtain estimates of
additive and heterosis effects in crossbred populations. The

ancestral haplotype inference from LAMP-LD also produced
estimates of European breed proportion that were more
consistent with expectations than ADMIXTURE, which showed
an upwards bias of estimates of European breed proportion
for animals with very low European breed proportions when
using a three-way analysis. Although not tested here, it
is possible that this bias in estimates of European breed
proportion could be corrected by rescaling the Admixture
estimates. But deriving the rescaling method would require
that either the true ancestral bred proportions were known,
which will never be the case, or that better estimates are
available such as those obtained from LAMP-LD. So, in
most cases it seems preferable to simply use the LAMP-LD
estimates directly.

Accuracy of Genotype Imputation in
West African Cattle Populations
Genotype Imputation From Low-Density to
Medium-Density
The concordance and correlation of imputation from low to
medium density under various scenarios are shown in Figure 9.
As expected, for all scenarios the concordance was higher and
much less varying than the correlation. Several authors report
both the correlation and concordance rate to compare the
accuracy of imputation in cattle populations (Dassonneville et al.,
2012; Berry et al., 2014; Aliloo et al., 2018). However, using the
concordance rate as the best measure of imputation accuracy
may be misleading because it was found to inflate accuracy for
rare and low-frequency variants due to chance concordance or
chance agreement (Hickey et al., 2012). To illustrate the effects
of MAF on imputation accuracy, the value of correlation and
concordance of imputed SNPs for the 2F_LD-MD scenario were
plotted against the MAF (Supplementary Figure 3). A higher
concordance value was achieved for SNPs with low MAF and the
value declined as MAF increased, while the correlation value was
not influenced by MAF. This is due to a high chance of correctly
assigning rare alleles based on the allele frequencies of the
population by transferring the major allele as the missing allele.

In this study, the concordance was included for comparison
with published literature but is not further discussed here as it
represents a poor measure of the accuracy of imputation. From
this point onwards, the estimate of the accuracy of imputation
is the correlation of imputed versus true SNP genotypes. A total
of 23,606 SNPs were imputed from low to high-density dataset.
The imputation accuracies from low to medium-density were
very low for all scenarios, ranging from 0.142 to 0.717. The
best-case scenario (1F_LD-MD; r = 0.717), has an r2 of only
0.514; i.e., only 51.4% of the variation in SNP genotypes is
accounted for imputation. Low accuracy of imputation may
not be a major problem for some applications. Figure 9 also
shows the correlation of the off-diagonal elements to the GRM
built with imputed versus true genotypes, and these range from
0.894 to 0.992. This suggests that genomic estimated breeding
values (GEBV) resulting from imputed versus real genotypes
should be very highly correlated in many cases (Wu et al., 2016;
Aliloo et al., 2018).
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FIGURE 8 | Individual heterozygosity in West African crossbreds plotted against European breed proportion estimated from a three-way admixture using LAMP-LD.
The black and green lines are upper and lower boundaries of expected heterozygosity for (A) Holstein-Friesian and (B) Montbéliarde crosses.

FIGURE 9 | Genotype imputation accuracy and GRM correlation between real and imputed genotypes for imputation from low to medium-density.

The imputation accuracies for the crossbreds were relatively
higher when crossbreds or a combination of indigenous and
crossbred populations were used as the reference sets. For
Scenario 1, where East African populations were used as a
reference, the accuracy was higher within the East African
crossbred populations (Scenario 1F_LD-MD), while it was very
low for imputation of West African indigenous populations
(Scenario 1A_LD-MD and Scenario 1C_LD-MD). The accuracy
improved when the imputation was performed within the
West African indigenous (Scenario 2A_LD-MD) and crossbreds

(Scenario 2D_LD-MD). The inclusion of East African indigenous
to West African indigenous reference set did not improve
the imputation accuracy (Scenario 2A_LD-MD versus Scenario
3A_LD-MD), while adding East African crossbreds to the West
African crossbred reference set (Scenario 3D_LD-MD) resulted
in a slight decrease in imputation accuracy.

Imputation accuracies are generally expected to be reasonably
high for European dairy breeds, given that the SNP assays
were in part designed for use in European B. taurus breeds
and that training of imputation is often based on large
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sample sizes. Several authors reported an imputation accuracy
(correlation) greater than 0.9 in European dairy breeds
(Dassonneville et al., 2012; Mulder et al., 2012; Berry et al., 2014).
This allows their widespread use for imputation and then the
application to generate genomic EBVs, allowing lower cost and
wider application of genotyping in genetic improvement. The
accuracy in our African crossbred populations never approaches
that found in European dairy breeds, even where the reference
data involves many thousand animals sampled from the same
population, as in the use of East African data to impute East
African crossbred genotypes. We, therefore, infer that a new
assay will need to be designed if low-density assays are to
be reliable for use in genetic analyses of African crossbred
dairy cattle. Although we have much less data on indigenous
breeds than crossbreds, and hence cannot clearly differentiate
the impact of low sample size versus poor assay design, it
is reasonable to infer that newly designed assays will also be
required for use in African indigenous breeds. Another reason
could be the higher genetic diversity in African indigenous
breeds compared to European dairy breeds (Gebrehiwot, 2020;
Gebrehiwot et al., 2020), which might complicate imputation and
reduces accuracy.

Genotype Imputation From Medium-Density to
High-Density
The imputation concordance and correlation and the
correlation of off-diagonal elements of the GRM for
imputation from medium to high density are shown in
Figure 10. A total of 592,660 SNPs were imputed from
medium to high-density dataset. As expected given the
substantially larger number of SNPs involved and hence
smaller distance between adjacent SNPs, the imputation

accuracy was always higher than when imputing from low
to medium density.

In general, the accuracy was higher when imputation
was performed within the geographical region than across
geographical regions. This observation was also made in
European dairy breeds, were a Holstein reference population
yielded a lower imputation accuracy in German Black Pied
cattle, despite providing a larger reference, compared to using
a reference population of the same breed (Korkuæ et al., 2019).
The accuracy was the highest (correlation = 0.899) when East
African crossbreds were used as a reference set to impute East
African crossbreds (Scenario 1F_MD_HD). This was because of
the larger size of the reference set, and the reference set being
sampled from the same population as the target set. Recently,
Aliloo et al. (2018) reported a slightly higher imputation accuracy
(correlation = 0.927) using a combined data of East African
crossbred cows and bulls compared to the accuracy obtained in
our study, which the data used here is a subset of the populations
used by these authors. The slightly higher accuracy is likely
due to the higher number of SNPs in their medium-density
(dataset (42k SNPs) compared to the number available in our
study (29k SNPs).

In West African populations, the accuracy of imputation
was higher for crossbreds than the indigenous populations.
This is in concordance with (Rowan et al., 2019) who
reported that a multi-breed composite reference significantly
increased imputation accuracy compared to a within-breed
reference population. The highest correlation (0.702) for West
African indigenous animals was found when a West African
indigenous reference population was used (Scenario 2A_MD-
HD), while the lowest correlation (0.478) was found when
an East African indigenous reference population was used

FIGURE 10 | Genotype imputation accuracy and GRM correlation between real and imputed genotypes for imputation from medium to high-density.
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(Scenario 1C_MD-HD). The lower imputation accuracy for
the indigenous populations compared to that of crossbreds is
likely due to a combination of the smaller reference population
size and the relatively high effective population sizes (Ne)
and high genetic diversity in the African indigenous breeds
(Gebrehiwot, 2020; Gebrehiwot et al., 2020). The accuracy of
imputation for the indigenous populations would likely have
been improved if the imputation had been performed within
indigenous breeds, hence maximizing the shared LD between
SNPs, rather than pooling all the indigenous data together; but
sample sizes were too small here to test that hypothesis. The
research here does not directly identify a target number to be
genotyped but by extrapolation from imputation in the East
African crossbred populations (Aliloo et al., 2018) at least 1,000
animals will be needed.

The addition of East African indigenous data to the
West African indigenous reference data (Scenario 3A_MD-
HD) and the addition of the East African crossbred data
to the West African crossbred reference data (Scenario
3D_MD-HD) decreased the accuracies of prediction of West
African indigenous and West African crossbreds by 4 and
1%, respectively. Brøndum et al. (2012) reported a similar
reduction of imputation accuracy in a Holstein population
when Danish, Swedish and Finnish Red cattle populations
were added to the Holstein-Friesian reference set. This is
likely due to a lack of consistent LD phase between these
populations. In all scenarios, adding indigenous and crossbred
reference data to impute crossbreds or adding crossbred data
to indigenous data to impute in indigenous animals either
decreased accuracies or increased only slightly (<3%) compared
to use of crossbred or indigenous reference data alone. These
small changes in accuracy, even when a large amount of
data was added (e.g., Scenario 1C_MD-HD and 1D_MD-HD
versus Scenario 1A_MD-HD and 1B_MD-HD, respectively),
indicate that the additional data had little or no shared LD
phase with the target population. Taken together, the results
show that in order to obtain reasonably high accuracy of
imputation within African indigenous or crossbred populations
substantial reference data will need to be collected for the target
populations because reference data from indigenous or crossbred
populations from other regions of Africa generally provide poor
accuracy of imputation.

The correlations of the off-diagonal elements of the GRMs
constructed using real versus imputed genotypes (Figure 10)
were all above 0.985. This is consistent with previous findings
that even with a high error rate in genotype imputation, the
genomic prediction accuracy still can be high (Wu et al., 2016;
Aliloo et al., 2018). Our study further assessed the correlations
of off-diagonal elements of the GRMs constructed using the
real low-density versus medium-density and medium-density
versus high-density genotypes for East African indigenous and
crossbred populations and obtained correlation of 0.958 and
0.990 and 0.938 and 0.987, respectively. The high correlations
among off-diagonal elements of GRMs from different density
panels implies that the loss in genetic gain to implement
genomic prediction using low or medium-density datasets
compared to high-density genotypes is small in the East

African cattle populations. Previously, Habier et al. (2009)
and Cleveland et al. (2010) supported the feasibility of
undertaking genomic prediction based on low-density genotypes
for practical implementation, and the cost-efficiency of low-
density genotypes allows a much larger proportion of the
population to be included in the genomic evaluation procedure
(Wiggans et al., 2012).

Overall, genomic information from high-density genotypes
provides the opportunity to increase the rate of genetic progress
in breeding programs (Hayes and Goddard, 2001). Though the
price of high-density marker arrays is continually reducing,
genotyping cost still is one of the main limiting factors for
cost-efficient genomic applications. This high cost could be an
issue in developing countries in Africa, where financial resources
are very limited for the key stakeholders, such as smallholder
dairy farmers. Therefore, a strategy that is used to overcome
the cost limitations is to genotype a sufficiently large number of
reference individuals from a given population with higher density
or fully sequenced while the majority will be genotyped with
lower density. This cost-effective strategy provides reliabilities of
GEBVs that are similar to those obtained if selection candidates
were genotyped with the higher-density chip (Khatkar et al., 2012;
Mulder et al., 2012).

CONCLUSION

This study shows that ancestral heterozygosity can be estimated
with high accuracy in African crossbred populations and will
be far superior to the use of observed individual heterozygosity
for estimating heterosis in such crossbred populations. The
population-based imputation results highlighted the effects of
different reference populations, SNP density, and sample size
on imputation accuracy. It has been hoped by research groups
working in Africa that high imputation accuracy might be
achieved in African populations by using large-scale imputation
information from other populations to impute in populations
in which there is limited high-density genotype information,
as has often been found to be possible for different breeds
in developed countries. Unfortunately, the results show clearly
that it was not possible to achieve high imputation accuracy
in West African crossbred or indigenous populations based
on large reference data sets from East Africa, and so larger
population-specific genotype samples, especially considering
the larger genetic diversity of African indigenous cattle, will
be required to achieve high accuracy. This study provides a
strong foundation to integrate genotype imputation into routine
genomic evaluation pipelines for African cattle populations
as a cost-effective way to boost the power of genomic-based
genetic improvement.
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Supplementary Figure S1 | Ancestral origin heterozygosity against European
breed proportion of crossbred animals using LAMP-LD based on (A) two-way
admixture and (B) three-way admixture, showing the number of animals clustered
at a particular location. Note that the clustering algorithm causes exaggerated
shifts of the centroid of each point on the plot compared to
Figures 4B, 5B.

Supplementary Figure S2 | Individual heterozygosity in West African crossbred
cattle plotted against European breed proportion estimated using two-way
admixture using (A) ADMIXTURE and (B) LAMP-LD.

Supplementary Figure S3 | The value of correlation and concordance of
imputed SNPs against the MAF for the 2F_LD-MD scenario.
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Genomic Regions Related to White/
Black Tail Feather Color in 
Dwarf Chickens Identified Using a 
Genome-Wide Association Study
Changsheng Nie 1, Liang Qu 2, Xinghua Li 1, Zhihua Jiang 3, Kehua Wang 2, Haiying Li 4, 
Huie Wang 5,6, Changqing Qu 7, Lujiang Qu 1*  and Zhonghua Ning 1*

1 State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for 
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Washington State University, Pullman, WA, United States, 4 College of Animal Science, Xinjiang Agricultural University, 
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Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China, 7 Engineering Technology Research 
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Although the genetic foundation of chicken body feather color has been extensively explored, 
that of tail feather color remains poorly understood. In the present study, we used a synthetic 
chicken dwarf line (DW), derived from hybrids bred between a black tail chicken breed, 
Rhode Island Red (RIR), and a white tail breed, dwarf layer (DL), to investigate the genetic 
rules associated white/black tail color. Even though the body feathers are predominantly 
red, the DW line still comprises individuals with black or white tails after more than 10 
generations of self-crossing and selection for the body feather color. We first performed 
four crosses using the DW chickens, including black-tailed males to females, reciprocal 
crosses between the black and white, and white males to females to elucidate the inheritance 
pattern of the white/black tail. We also performed a genome-wide association (GWA) 
analysis to determine the candidate genomic regions underlying the tail feather color using 
black tail chickens from the RIR and DW lines and white individuals from the DW line. In 
the crossing experiment, we found that (i) the white/black tail feather color is independent 
of body feather color; (ii) the phenotype is a simple autosomal trait; and (iii) the white is 
dominant to the black in the DW line. The GWA results showed that seven single-nucleotide 
polymorphisms (SNPs) on chromosome 24 were significantly correlated with tail feather 
color. The significant region (3.97–4.26 Mb) comprises nine known genes (NECTIN1, THY1, 
gga-mir-1466, USP2, C1QTNF5, RNF26, MCAM, CBL, and CCDC153) and five anonymous 
genes. This study revealed that the white/black tail feather trait is autosome-linked in DW 
chickens. Fourteen genes were found in the significant ~0.29 Mb genomic region, and 
some, especially MCAM, are suggested to play critical roles in the determination of white/
black tail feather color. Our research is the first study on the genetics underlying tail feather 
color and could help further the understanding of feather pigmentation in chickens.

Keywords: dwarf chicken, tail feather color, inheritance pattern, genetics, genome-wide association study
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INTRODUCTION

Tail feather color can be  different from body feather color in 
birds. Compared with body feather color, the genetic basis of 
chicken tail feather color remains poorly defined. Tail feather 
color is a naturally and sexually selected trait in chickens, as 
well as in wild birds such as the rock sparrow (Griggio et  al., 
2011), barn swallow (Kose and Møller, 1999), and peacock (Weiss 
and Kirchner, 2010), and is combined with artificial selection 
in poultry, especially chickens. Black and white are predominant 
tail feather colors in chickens; however, some chicken breeds 
also display red, blue, yellow, purple, or multi-colored tail feathers.

Feather color is a genetically complex trait, the foundation 
of which has been extensively explored in birds (Delmore et al., 
2016; Cooke et  al., 2017), especially chickens. The dominant 
white, dun, and smoky colors are associated with the PMEL17 
polymorphism (Kerje et  al., 2004). Mutations in MLPH causes 
the dilution of both black eumelanin and red/brown pheomelanin 
pigments (Vaez et al., 2008). Furthermore, more than one gene, 
such as TYR (Chang et  al., 2006; Dorshorst et  al., 2010) and 
SLC45A2 (Gunnarsson et  al., 2007), can be  responsible for 
white feather color. The extended black plumage is associated 
with MC1R (Kerje et al., 2003; Dávila et al., 2015; Charoensook 
et al., 2017). The sex-linked barring feather pattern is controlled 
by the CDKN2A/B locus (Hellstrom et  al., 2010).

Relatively few studies have investigated the inheritance of 
chicken tail color as an isolated trait. Geneticists normally 
regard tail color as part of the body plumage color because 
the tail color is strongly intertwined with body feather color 
in some chicken breeds. White chickens always have white 
tails (Figures  1A,B), individuals with barred plumage always 
have barred tails (Figure  1C), and black cockerels also have 
black tails (Figures  1D–H). However, the segregation of tail 
feather and body feather colors is widely represented in some 
breeds (Figures  1I–P). Additionally, the daughters of male 

Rhode Island Red (RIR; with sex-linked recessive red plumage 
and a black tail) and female Rhode Island White (RIW; with 
sex-linked dominant white plumage) present red body feathers 
and white tail color, indicating that body feather color and 
tail color are controlled by different genes in these chickens. 
We  also observed that dwarf line (DW) hybrids generated 
from more than 10 generations of self-crossings between RIR 
and a white-tailed dwarf layer (DL) line contain both white- 
and red-tailed individuals, even though the hybrids were selected 
for red body feather color. Therefore, in this study, we  used 
this population to investigate the genetic basis of white/black 
tail phenotypes in chickens.

MATERIALS AND METHODS

Animals
The birds used in this study were derived from RIR and DL 
chicken populations (Beinongda commercial breeding farm and 
Jiangsu Institute of Poultry Science experiment farm). The RIR, 
a dual-purpose commercial breed, has red body plumage and 
black tail plumage, and the red feather color is determined 
by a Z chromosome-linked recessive allele. The DL chicken is 
a layer line with white plumage, which is defined by a Z-linked 
dominant allele. The DW chickens with white and black tail 
feathers were generated through more than 10 generations of 
self-crossings of RIR and DL. Because only the red body feather 
color was selected in each generation, independently of tail 
color, the DL population presents both black and white tail 
feathers, whereas most display red body plumage (Figure  2).

Inheritance Pattern of Tail Feather Color
To explain the inheritance pattern of the tail colors, four crosses 
were performed using the black-tailed DW and white-tailed 
DW: black  ×  black (cross 1), black males  ×  white females 

FIGURE 1 | Chicken feather color. (A–H) Body feather color is consistent with tail feather color; (I–P) body feather color is different from tail feather color. Image 
Source: (A) Kerje et al. (2004), (B,D) Feng et al. (2014), (C) Hellstrom et al. (2010), (E–L) Li et al. (2019), (M,N) Wang et al. (2017), and (O,P) Zhang et al. (2016).
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(cross 2), white males × black females (cross 3), and white × white 
(cross 4). Two replicates of the four crosses (crosses 5–8) were 
used to confirm the results. Tail feather color was identified 
at 7  weeks of age when the tail feathers emerged.

Mapping the Genomic Region Underlying 
White/Black Tail Feather Color by a GWAS
A total of 176 adult female chickens were selected, including 
96 black-tailed RIRs and 80 DWs (38 black-tailed and 42 
white-tailed) to perform the GWAS (Figure  2). Blood samples 
from both populations were collected from the wing vein and 
placed into centrifuge tubes containing anticoagulating agent.

Genomic DNA was extracted using phenol/chloroform (Green 
and Sambrook, 2017), and genotyping was performed using a 
600 K Affymetrix Axiom Chicken Genotyping Array (Affymetrix, 
Inc. Santa Clara, CA, United  States; Kranis et  al., 2013). 
Affymetrix Power Tools v1.16.0 (APT) software was then used 

for quality control and genotype calling. Specifically, only samples 
with dish quality control >0.82 and call rate >97% were used 
in the subsequent analysis.

Single-nucleotide polymorphisms (SNPs) with a minor allele 
frequency <1% or a p-value of deviation from Hardy-Weinberg 
equilibrium (PHWE) <1  ×  10−6 were removed. Ultimately, 175 
individuals and 479,579 SNPs were retained for the association 
analysis. Classical multi-dimensional scaling analysis was used 
to detect the population structure using PLINK v1.09 software 
(Purcell et  al., 2007).

Statistical Analysis
To test the association of each SNP with tail feather color, a 
mixed model (Price et  al., 2010) association analysis was used, 
including fixed effects (overall mean and covariates) and random 
effects (SNP effect, individual effect, and residual errors), 
according to the GEMMA (v0.94.1) manual (Zhou and Stephens, 
2012). In the present study, 175 genotyped birds were obtained 
from two different populations; therefore, the first two principal 
components (accounting for 23.89 and 2.31% of the total 
variability) were used as a covariate to account for population 
structure in the analysis.

All the selected SNPs were subjected to linkage disequilibrium 
analysis, using the --indep-pairwise 25 5 0.2 and --blocks-max-kb 
500 commands in PLINK, to generate a pruned subset of 
48,848 SNPs and 77,137 haploblocks with linkage equilibrium. 
Bonferroni adjustment is a widely used method for multiple 
hypothesis testing. Given the correlation between the SNPs in 
linkage disequilibrium, the traditional Bonferroni adjustment 
appears to be  overly conservative, with the key assumption 
that all the tests are independent (Johnson et al., 2010). Herein, 
the sum of independent blocks plus singleton markers was 
used to define the number of independent statistical tests 
(Nicodemus et  al., 2005; Gu et  al., 2011). With this approach, 

FIGURE 2 | Dwarf hens displaying white or black tail feather color. (A) Black 
tail; (B) white tail.

FIGURE 3 | Main feather color subtypes in the offspring of Dwarf chickens. (A–D) The different feather color phenotypes of Dwarf hens; (E–G) the different feather 
color phenotypes of Dwarf cockerels. (H) Some offspring have gray tail feathers.
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125,985 independent tests were suggested to determine the 
p-value threshold. Consequently, the genome-wide significant 
and suggestive p-values were 3.97  ×  10−7 (0.05/125,985) and 
7.94 × 10−6 (1/125,985), respectively. To further location candidate 
region that affect trait, we  performed linkage disequilibrium 
(LD) analysis with genome significantly SNPs in Haploview 
software (v4.2; Barrett et  al., 2005).

In addition, the annotated genes were identified using the 
NCBI and Ensembl annotations of the Gallus Ensemble version 
5.0 genome. A Manhattan plot of genome-wide p-values of 
the association analysis was created using R.1

RESULTS

White Tail Feather Color in Dwarf Chickens 
Is an Autosome-Linked Dominant 
Character
We first made four crosses between white-tailed and black-
tailed chickens and the chickens all showed red body feather color. 

1 https://www.r-project.org/

Because a few outliers were identified in the four crosses, 
we  generated the other four crosses to confirm our results. 
Almost all the offspring presented red body plumage, with a 
few exceptions where the body feather color was white (Figure 3). 
Because body feather color might affect tail feather color, 
we only used the offspring with red body plumage to understand 
the inheritance pattern of white/black tail color. Table 1 presents 
the distribution of white or black tail progenies in the 
eight crosses.

We found that the white/black tail feather color is a Mendelian 
trait, and the white is dominant to the black (Table  1). The 
same results were obtained with both replicates. Because the 
red body feather and tail feather colors were segregated, 
we  concluded that the genes controlling white/black tail color 
were different from those controlling red body feather color; 
additionally, there was no epistatic effect between them.

Candidate Genes on Chromosome 24 
Identified by the GWAS
After quality control, 175 female chickens were analyzed, 134 
(76%) of which presented black tail feather color as the controls, 

TABLE 1 | Progeny phenotypes of eight crosses in the Dwarf chicken population.

Cross Parents Black-tailed offspring White-tailed offspring Mottled offspring Gray-tailed 
offspring

Male Female Male Female Male Female Male Female

1 B1 B 66 58 13 0 0 0 /
2 B W2 26 36 49 39 0 7 /
3 W B 26 27 14 27 0 6 /
4 W W 6 8 53 62 0 20 /
5 B B 146 13 / 0
6 B W 68 74 / 7
7 W B 33 46 / 2
8 W W 16 104 / 4

1Black tail feather.
2White tail feather.
3Outlier, assuming that white tail feather color in the DW chicken is an autosome-linked dominant trait.

A B

FIGURE 4 | (A) Manhattan plot showing the association of all single-nucleotide polymorphisms (SNPs) with the tail feather color (white/black) trait of Dwarf and 
Rhode Island Red chickens. SNPs were plotted on the x-axis according to their position on each chromosome against their association with these traits on the 
y-axis (shown as −log10 p-values). The red and blue lines indicate the genome-wide and suggestive significant association with p-values of 3.97 × 10−7 
(0.05/125,985) and 7.94 × 10−6 (1/125,985), respectively. (B) Linkage disequilibrium (r2) plot association with white/black tail feather color.
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TABLE 2 | Single-nucleotide polymorphisms (SNPs) significantly associated with the tail feather color in the genome-wide association study (GWAS).

SNP GGA1 Position2 (bp) Minor/major   p-value MAF3 Candidate genes (location) Full name Functions

DW RIR

rs314910357 24 4,235,437 T/C 1.12e-07 0.14 0.00 CBL (intron) Cbl proto-oncogene B cell receptor 
endocytosis and ligand-
induced signaling (Jacob 
et al., 2008).

rs313984397 24 4,258,648 C/T 1.54e-07 0.16 0.00 CCDC153 (intron) Coiled-coil domain 
containing 153

NA

rs317369751 24 4,209,809 T/C 1.64e-07 0.11 0.00 MCAM (intron) Melanoma cell 
adhesion molecule

Coordination of 
morphogenesis (Gao 
et al., 2017) and 
endothelial adhesion 
(Guezguez et al., 2007).

RNF26 (downstream 7.14 kb) Ring finger protein 26 Lysosomal positioning 
and movement 
(Cabukusta and Neefjes, 
2018).

rs313530951 24 4,190,968 A/G 1.65e-07 0.11 0.00 ENSGALG00000032979 
(intron)

NA NA

C1QTNF5 (upstream 2.25 kb) C1q and TNF related 5 Disease-related 
(Schwartze et al., 2017; 
Stanton et al., 2017; 
Dinculescu et al., 2018).

USP2 (downstream 3.82 kb) Ubiquitin specific 
peptidase 2

Cell growth or death and 
disease-related (Zhu and 
Gao, 2017).

ENSGALG00000039907 
(upstream 8.51 kb)

NA

THY1 (downstream 17.10 kb) Thy-1 cell surface 
antigen

Myofibroblast apoptosis 
(Liu et al., 2017).

gga-mir-1466 (downstream 
17.03 kb)

gga-mir-1466 NA

rs316093292 24 3,966,635 T/C 3.00e-07 0.06 0.00 NECTIN1 (upstream 65.13 
kb)

Nectin cell adhesion 
molecule 1

Disease-related 
(Takahashi et al., 2018), 
hair follicle 
morphogenesis (Hayashi 
et al., 2016).

rs313273705 24 4,137,245 G/A 3.46e-07 0.08 0.00 ENSGALG00000006746 
(downstream 47.62 kb)

NA NA

ENSGALG00000037367 
(downstream 37.50 kb)

NA NA

rs317350539 24 4,018,982 G/A 3.62e-07 0.13 0.00 ENSGALG00000046117 
(upstream 13.32 kb)

NA NA

DW, Dwarf line; RIR, Rhode Island Red line. 
1Chicken chromosome.
2Position of SNPs according to the Gallus_gallus-5.0 primary reference genome assembly.
3Minor allele frequency.
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and 41 (24%) presented white tail feather color as the cases. 
Based on the Manhattan plot for the white/black tail feather 
color, we observed seven significantly associated SNPs spanning 
from 3.97 to 4.26  Mb (~0.29  Mb) on chromosome 24 
(p  <  3.97  ×  10−7) in the sexually mature hens (Figure  4A; 
Table  2). The linkage disequilibrium plot (Figure  4B) showed 
the detected SNP markers were strongly linked in a  
haplotype block. Moreover, 14 candidate genes were found to 
be  related to tail feather color, including nine annotated genes 
and five anonymous genes, namely: NECTIN1, THY1, gga-
mir-1466, USP2, C1QTNF5, RNF26, MCAM, CBL,  
CCDC153, ENSGALG00000046117, ENSGALG00000006746, 
ENSGALG00000037367, ENSGALG00000032979, and ENSGALG 
00000039907. Additionally, 36 autosomal SNPs were suggestively 
related (7.94  ×  10−6) to the white/black tail feather in chicken 
(Figure  4A; Supplementary Table S1).

DISCUSSION

Tail feather color (white/black) in DW chickens is a qualitative 
trait, and we  assumed that it was controlled by a single gene. 
The results of our crossing experiments supported our 
assumption, and revealed that the white tail feather color in 
DWs is an autosome-linked dominant trait. However, the 
crosses produced some offspring with white body plumage 
and gray tail feathers (Table  1), which has two possible 
explanations. First, the body and tail feather colors are not 
controlled by the same gene in DW chickens. Second, an 
intermediate feather color existed in the population at an 
early developmental period, and most of the heterozygous 
individuals were classified as having gray tail feathers; however, 
a few progeny might have been erroneously classified as black- 
or white-tailed.

We also aimed to locate positional candidate genes 
associated with tail feather color using a 600  K SNP  
panel for genotyping DW and RIR chickens. We  identified 
14 candidate genes in the most significant region on 
chromosome 24, which corresponded to nine known and 
five anonymous genes.

One candidate gene, melanoma cell adhesion molecule 
(MCAM), which encodes an endothelial adhesion receptor or 
an independent receptor for fibroblast growth factor 4, was 
identified as playing an essential role in lymphocyte endothelium 
interactions and morphogenesis (Guezguez et  al., 2007; Gao 
et  al., 2017). Melanocytes are derived from melanoblasts that 
originate from neural crest cells in early chicken embryos 
(Yu et  al., 2004), and fibroblasts can influence melanogenesis 
(Muriel et al., 2010; Kim et al., 2016). Furthermore, Mangahas 
et  al. (2004) reported that human MCAM is involved in 
primary melanocyte development via endothelin upregulation. 
The endothelin 3 locus has been reported to be  responsible 
for hyperpigmentation in chickens (Dorshorst et  al., 2011). 
Moreover, the tumor suppressor locus cyclin-dependent kinase 
inhibitor 2A/B can affect pigmentation phenotypes in the 
chicken (Hellstrom et  al., 2010). Together, these observations 
indicate that MCAM may play an important role in the 

determination of tail feather color, a possibility that warrants 
future validation in the chicken.

Besides the promising candidate gene MCAM, other candidate 
genes were also identified in this ~0.29  Mb region, and have 
various functions (Table  2). For example, C1QTNF5, USP2, 
and NECTIN1 have been reported as being disease-associated 
(Hayashi et al., 2016; Stanton et  al., 2017; Zhu and Gao, 2017; 
Takahashi et  al., 2018). CBL can promote B cell receptor 
endocytosis and attenuate ligand-induced signaling (Jacob et al., 
2008), while RNF26 was found to be associated with lysosomal 
positioning and movement (Cabukusta and Neefjes, 2018). 
THY1 is correlated with myofibroblast apoptosis (Liu et al., 2017).

Currently, the mechanism underlying tail feather color remains 
almost unknown. However, the GWAS results of this study 
may contribute to determining the relationship between these 
candidate genes and tail feather color. Further research is 
necessary to determine the genetic basis underlying tail feather 
color in chickens.

CONCLUSION

Our study showed that the white/black tail feather trait is 
autosome-linked in DW chickens. In addition, the GWAS 
revealed seven significant SNPs spanning a ~0.29  Mb region 
on GGA24 associated with the tail feather color in DW chickens, 
corresponding to 14 genes. Notably, among these 14 genes, 
MCAM may play a critical role in the formation of white/
black tail feather color. Overall, the candidate genes detected 
herein can help elucidate the genomic architecture underlying 
white/black tail feather color and provide novel insights into 
the mechanisms regulating feather color development in DW 
chickens and other breeds.
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