About this Research Topic
Sleep quality is often assessed by polysomnographic (PSG) recordings which typically involve a minimum number of electroencephalographic (EEG), electrocardiograhic (ECG), electroculogrammic (EOG) and electromyographic (EMG) sensors. The studies employing the aforementioned modalities usually focus on the identification of sleep stages, macro-architecture (latency, duration), main sleep characteristics (spindles, K-complexes, arousals, awakening events) and breathing disorders (apnea/hypopnea events). Although this type of analysis may quantify the majority of pathologic conditions associated with sleep, it provides minimal knowledge on a system level and the dynamic nature of the functional interactions among brain regions during sleep as well as their deviations from normal functioning.
Network neuroscience and contemporary mathematical tools when combined with advanced data acquisition modalities (high-density EEG, functional Magnetic Resonance Imaging / fMRI) may map the functional connectome with excellent temporal and spatial resolution. This approach is hypothesized to provide robust connectivity and network features which are often correlated with biomarkers and could identify pre-clinical pathological patterns. They could also serve as an objective outcome measure of interventions aiming to ameliorate disease symptoms. Recent advances in unobtrusive sensorial data acquisition give rise to a plethora of wearable or textile devices which map activity and daily living patterns. Sensorial features are usually fused with neurophysiological recordings for providing multi-modal, biomedical engineering, computational frameworks within the context of precision medicine for assessing sleep and sleep-related breathing disorders at early stages. This heterogeneous data fusion results in a big data problem which employs advanced deep learning techniques (e.g. computational networks) for providing novel sleep analytics for pathology prediction and therapy recommendations.
Therefore, we welcome studies that answer fundamental neuroscientific and biomedical questions like (but not limited to) the following:
• How physiological aging, neurodegeneration and psychiatric disorders affect sleep neurobiology, macro-architecture and brain functioning?
• How sleep quality is affected by extreme environments (e.g. isolation, weightlessness, immobility)?
• Is it possible to predict forthcoming sleep quality patterns correlated with the daily lifestyle and activity patterns?
• Could we develop robust machine learning approaches for automatic sleep staging based on polysomnographic and/or sensorial data information?
• Which are the most appropriate biomedical engineering approaches for assessing sleep quality by contactless recordings and/or heterogeneous data fusion?
• How sleep mechanisms promote learning and neuroplasticity? Can we propose novel (beyond the art) ways for enhancing sleep quality and/or dream mapping?
Keywords: Extreme environments, Functional connectivity, Mental disorders, Neuroplasticity, Sleep quality
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.