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Editorial on the Research Topic

Gravitational Waves: A NewWindow to the Universe

This Research Topic focuses on gravitational waves, and their role in advancing knowledge in
research areas ranging from cosmology to high energy physics to nuclear physics.

The first article of this Research Topic (Palenzuela) provides a short introduction to the field of
numerical relativity, including also a summary of the 3+1 decomposition of Einstein’s equations,
allowing the reader to get a broad overview of the equations and numerical methods used in this
field. Numerical relativity is one of the fundamental tools for the study of compact binary mergers
and it has allowed for the study of gravitational wave sources, such as the ones discussed in the
following articles.

Ciolfi and Foucart present an overview of the state of the art in the field of binaries composed of
two neutron stars (NSs) or of an NS and a black hole (BH). Neutron star binaries have gained a lot
of attention since the detection of the first gravitational wave (GW) signal emitted by one of such
systems (GW170817). Observations of an electromagnetic counterpart have provided evidence for
the presence of a relativistic jet and for the ejection of high-density NS material. The formation of a
jet, and the properties of the ejecta have been the subject of numerous investigations, and they are
reviewed in Ciolfi.

Similarly, in Foucart the reader will find an overview of NS-BHmergers and in particular of what
theoretical models predict for their GW and electromagnetic (EM) emission. In the case of NS-BH
mergers it is critical for the NS to be tidally disrupted by the companion BH in order to be able to
produce bright EM signals and this is strongly correlated with the binary properties, including the
NS equation of state.

One of the most detected sources of GWs is given by binary BHmergers and these are discussed
in detail in Schmidt. This review describes both how these sources can be modeled from a
theoretical point of view as well as the properties, such as masses and spins, of the many binary
BH systems detected by the LIGO-Virgo Collaboration.

Among the GW sources detected by LIGO/Virgo to date, GW170817 was especially important
since it was accompanied by electromagnetic radiation covering a very broad spectrum, from
gamma-rays to radio. Detailed modeling of both the prompt (gamma-ray) emission and the
following longer-wavelength radiations demonstrated that the properties of this source were
consistent with those of a classical short gamma-ray burst (SGRB), hence firmly establishing the link
between those and an NS-NS merger. Given the importance of this finding, Lazzati is specifically
devoted to a review of the source GW170817 and its connection to SGRBs.

Another important source of EM emission from a binary NS merger is given by the so-called
kilonova, described in Barnes. With respect to SGRBs, kilonovae have the advantage of being
isotropic emitters and therefore may be detected with most binary NSmergers. They also constitute
the site for the production of heavy elements. Barnes provides a review of the theoretical models
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used to predict the heavy element production and observational
appearance, and what we have learned from their first
observation associated with GW170817.

The last two articles are dedicated to an overview of the
formation channels of solar mass binary BH systems (Mapelli)
and of future detections of supermassive BHs with LISA (Sesana).
More specifically, Mapelli reviews the two main channels of
BH-BH formation, that is the isolated one resulting from
standard binary evolution, and the dynamical one, in which
binaries are formed as a results of gravitational interactions in
dense environments.

Looking into the future of gravitational wave science, Sesana
provides a broad overview of the potential science with the Laser
Interferometer Space Antenna (LISA). Expected to be launched
in the 30s, GW detections with this instrument are expected to
open an additional window into the Universe, and especially in
the way the enigmatic supermassive BHs lurking in the center of
galaxies were assembled.
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Introduction to Numerical Relativity
Carlos Palenzuela*

Departament de Fisica & IAC3, Universitat de les Illes Balears, Palma, Spain

Numerical Relativity is a multidisciplinary field including relativity,

magneto-hydrodynamics, astrophysics and computational methods, among others,

with the aim of solving numerically highly-dynamical, strong-gravity scenarios where

no other approximations are available. Here we describe some of the foundations

of the field, starting from the covariant Einstein equations and how to write them

as a well-posed system of evolution equations, discussing the different formalisms,

coordinate conditions, and numerical methods commonly employed nowadays for the

modeling of gravitational wave sources.

Keywords: numerical relativity, Einstein equations, 3+1 decomposition, formulations, gauge conditions,

numerical methods

1. INTRODUCTION

General Relativity is the theory that identifies gravity as the curvature of a four dimensional
space-time manifold. The consequences of this identification deeply changed our conception of
Nature. From the physics point of view, Relativity introduced new ideas, like that time and space
are not absolute but depend on the observer, that the effects of gravity propagate at the speed of
light, or that energy and matter are equivalent and can modify the structure of both space and
time, among others. From the mathematical point of view, the main consequence is that gravity
can be described by using the tools of differential geometry, where the basic object to represent
a manifold is the metric gab that allow us to compute distances between neighboring points. The
famous Einstein equations describe the dynamics of the four-dimensional space-time metric and
how it is deformed by a given mass-energy distribution. On the other hand, the Bianchi identities
from differential geometry ensure that the divergence of the Einstein tensor vanishes, implying
the conservation of the stress-energy tensor (i.e., corresponding to energy and linear momentum
conservation), which describes how matter moves in a curved spacetime.

One of the greatest achievements of General Relativity was the prediction of gravitational waves,
space-time deformations produced by acceleration of masses which behave like waves as they
propagate away from the sources. Gravitational waves are essentially unscattered between emission
and detection, thereby giving direct information about the sources powering these phenomena.
Precisely due to the weak interaction of these waves with matter, their existence was initially
only confirmed indirectly by observations of the orbital dynamics of binary pulsars (Hulse and
Taylor, 1975; Will, 2014). However, current kilometer-scale interferometric gravitational wave
(GW) detectors, such as Advanced LIGO (aLIGO) (Abramovici et al., 1992) and Advanced Virgo
(adVirgo) (Caron et al., 1997) facilities, since 2015 have directly detected gravitational waves on the
kiloHertz frequency regime, consistent with the merger of binary black holes and binary neutron
stars (Abbott et al., 2019). Further improvements on these detectors, as well as new ones added
to the array of GW observatories, will allow to establish many routinary GW observations in the
next few years. These new observations allow us a new way to study some of the most energetic
and exotic processes in the universe and start a new era of gravitational wave astronomy that
will inevitably lead to unprecedented discoveries and breakthroughs not only in Astrophysics
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and Cosmology, but also in fundamental theories like gravity
and nuclear physics. The detection, identification, and accurate
determination of the physical parameters of sources is crucial
to validate (and challenge) not only our theories but also our
astrophysical models, which rely both on precise experimental
data and on the availability of template banks of theoretical
waveforms. For the slow inspiral, when the neutron stars (NSs) or
black holes (BHs) are widely separated, analytical approximations
for the gravitational waveforms are provided by perturbative
post-Newtonian (PN) expansion techniques (Blanchet, 2014).
For the last orbits and merger, where the fields are particularly
strong and most might be gained in terms of insight on
fundamental physics, the PN expansion breaks down and the
full Einstein equations have to be solved numerically. This has
only become possible after a series of breakthroughs in the field
of Numerical Relativity (Pretorius, 2005a; Baker et al., 2006b;
Campanelli et al., 2006a), calling for an incorporation of this new
type of information into data analysis strategies and methods.
Since then, outstanding progress has been made to explore the
late stage of binary coalescence with numerical methods. The
next sections summarize some of the foundations of Numerical
Relativity, with a view on the modeling of gravitational sources,
from the construction of a well-posed evolution system to the
numerical methods commonly employed to solve them. Notice
that this review focus on Cauchy formulations, excluding other
alternatives. For a wider overview of all the possible formulations,
please see Lehner (2001).

2. EVOLUTION SYSTEMS

2.1. Einstein Equations
The equations of motion of a classical theory like General
Relativity can be derived directly from a suitable action by using
the Euler-Lagrange equations, leading to the well-known Einstein
equations (Misner et al., 1973),

Gab ≡ Rab −
R

2
gab = 8πTab, (1)

where Gab is the Einstein tensor, Rab is the Ricci tensor of the
spacetime represented by the metric gab, R ≡ gabRab is the Ricci
or curvature scalar, and Tab is the stress-energy tensor describing
generically the matter-energy distributions in the spacetime. We
have chosen geometric units such that G = c = 1 and adopt
the convention where roman indices a, b, c, ... denote space-time
components (i.e., from 0 to 3), while i, j, k, ... denote spatial ones
(i.e., from 1 to 3).

The Ricci tensor can be written in terms of the Christophel
symbols Ŵa

bc
as follows

Rab ≡ ∂cŴ
c
ab − ∂aŴ

c
cb + Ŵc

cdŴ
d
ab − Ŵc

daŴ
d
cb,

Ŵc
ab = 1

2
gcd

(

∂agbd + ∂bgad − ∂dgab
)

, (2)

Notice that Equations (1–2) form a system of ten non-linear
partial differential equations (PDEs) for the spacetime metric
components gab, which are coupled to the matter fields by means
of the stress-energy tensor.

On the other hand, an important relation in differential
geometry, known as the (contracted) Bianchi identities, implies
the covariant conservation law for the Einstein tensor and,
consequently, for the stress-energy tensor,

∇aG
ab = 0 H⇒ ∇aT

ab = 0,

∇aT
ab = ∂aT

ab + Ŵa
acT

cb + Ŵb
acT

ac (3)

where ∇a is the covariant derivative, the generalization of the
partial derivative on a manifold. These covariant equations
correspond to conservation laws for both the energy and linear
momentum, which are the basic physical equations to describe
any matter field. Notice also that the Bianchi identities imply
that four of the ten components of Einstein’s equations cannot
be independent. This redundancy gives rise to both the four
coordinate degrees freedom and the four constraint equations,
which will be clearly manifested in the 3+1 decomposition
described in the next section.

2.2. The 3+1 Decomposition
Despite its elegance and compactness, the covariant form of the
four-dimensional Einstein equations is not suitable to describe
how the gravity fields evolve from an initial configuration
toward the future. In such case, it is more intuitive to consider
instead a time succession of three-dimensional spatial slice
geometries, called foliation, where the evolution of a given slice
is given by the Einstein equations (for more detailed treatments
see for instance; Gourgoulhon, 2007; Alcubierre, 2008; Bona
et al., 2009; Baumgarte and Shapiro, 2010; Shibata, 2015). This
3+1 decomposition, in which the four-dimensional manifold
is splitted into “space+time” components and the covariant
Einstein equations are converted into evolution equations for
three-dimensional geometric fields, can be summarized in the
following steps:

• specify the choice of coordinates. The covariance of Einstein
equations implies that they can be written in the same generic
way on any system of coordinates, which can be defined
by a set of observers. The spacetime can be foliated by a
family of spacelike hypersurfaces 6, which are intersected by
a congruence of time lines that will determine our observers
(i.e., our system of coordinates). This congruence is described
by the vector field ta = αna + βa, where na is the timelike
unit vector normal to the spacelike hypersurfaces, α is the
lapse function which measures the proper time of the Eulerian
(orthogonal) observers and βa is the shift vector that measures
the displacement, between consecutive hypersurfaces, of the
time line ta followed by the observers with respect to the
normal na (see Figure 1).

• decompose every 4D object into its 3+1 components. The choice
of coordinates allows for the definition of a spatial projection
tensor γ a

b ≡ δa
b
+ na nb. Any four-dimensional tensor can be

decomposed into 3+1 pieces using either the spatial projector
to obtain the spatial components, or contracting with na for
the time components. For instance, the line elementmeasuring
the distance between neighboring points can be written by
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FIGURE 1 | Foliation of the spacetime manifold. The lapse function α measures the proper time along the normal na to the hypersurface 6t, which is equipped with an

induced metric γij . The shift vector β i measures the displacement, on consecutive hypersurfaces, between the observer time lines ta and the normal lines na.

using these generic 3+1 coordinates as

ds2 = gabdx
adxb = −α2 dt2+γij(dx

i+β idt) (dxj+β jdt), (4)

where the spatial three-dimensional induced metric γij is
just the projection of the four-dimensional metric gab into
the space-like hypersurface 6. Other objects, like the stress-
energy tensor, can also be decomposed into its various
components, namely

τ ≡ Tab na nb, Si ≡ −Tab n
a γ b

i, Sij ≡ Tab γ a
i γ

b
j. (5)

• write down the field equations in terms of the 3+1 components.
Within the framework outlined here, the induced metric
γij is the only unknown, since both lapse and shift are set
by our choice of coordinates. In differential geometry it
is also common to define an additional tensor Kij with a
strong geometrical meaning, as it describes the change of the
induced metric along the congruence of normal observers.
This definition involves the Lie derivative Ln, a generalization
of the directional derivative along the vector n in a manifold.
Therefore, the definition of the extrinsic curvature and the
3+1 decomposition of Einstein equations form an hyperbolic-
elliptic system of PDEs, commonly known as the Arnowitt-
Deser-Misner (ADM) formalism (Witten, 1962; York, 1979),
which can be written as

Kij ≡ −1

2
Lnγij = − 1

2α

(

∂t − Lβ

)

γij,

Lβγij = βk∂kγij + γik∂jβ
k + γkj∂iβ

k, (6)
(

∂t − Lβ

)

Kij = −∇i∇jα + α

(

Rij − 2Ki
kKjk + trKKij

− 8π
[

Sij −
γij

2
(trS− τ)

])

, (7)

H = Ri
i + (trK)2 − Ki

j Kj
i − 16π τ = 0, (8)

Mi = ∇j

(

Ki
j − trK δi

j
)

− 8π Si = 0. (9)

where we have defined the trace of any three-dimensional tensor
Cij as trC = γ ijCij. The evolution hyperbolic Equations (6,7) for
the evolved fields {γij,Kij} are complemented with the energy and
momentum constraint Equations (8,9), that have to be satisfied
at each hypersurface. This system of equations needs to be
completed with a specification of the coordinate system, that
is, by a choice of lapse and shift {α,β i}. The ADM formalism
still preserves the covariance under spatial or time coordinate
transformations (i.e., 3+1 covariance). Notice that, although
manifest four-dimensional covariance is lost when performing
the 3+1 decomposition, the solution space is still invariant under
general coordinate transformations.

One can take advantage of the contracted Bianchi identities to
prove that the constraint Equations (8,9) are just first integrals
of the evolution ones (6,7), so that if the constraints are satisfied
on an initial hypersurface (i.e., H = Mi = 0 at 6t),
they will remain satisfied for all times. This redundancy of
the equations allows for different evolution approaches. The
most straightforward choice, the constrained evolution approach,
involves solving simultaneously both the evolution equations
and the constraints, but it presents several difficulties. From
the theoretical point of view, it is not clear how to split
the dynamical modes, solved through evolution equations,
from the constrained ones, enforced by elliptic equations.
From the computational point of view, elliptic equations are
computationally more expensive and difficult to solve efficiently
than hyperbolic ones. A simpler alternative is given by the free
evolution approach, where the fields are obtained uniquely from
the evolution equations, while the constraints are enforced only
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at the initial time (i.e., although they can be computed during
the evolution to estimate the validity of the solution). Notice
however that discarding the constraint equations breaks the
underlying invariance of the solutions. Due to its simplicity, the
free evolution approach has traditionally been the most common
choice in Numerical Relativity applications without symmetry
assumptions, particularly in efforts associated to the modeling of
gravitational wave sources.

It is important to stress that any astrophysical scenario,
except those including only black holes, involves some type of
matter, which will evolve on a curved spacetime as described by
Equation (3).We can also perform the 3+1 decomposition on this
equation to obtain the evolution for the matter energy density τ
and the momentum density Si, namely

(∂t − Lβ )τ + α∇k S
k = α

(

τ trK − 2Sk ∂k lnα + KijS
ij
)

, (10)

(∂t − Lβ )Si + α∇k S
k
i = α

(

Si trK − Ski ∂k lnα − τ ∂i lnα

)

. (11)

Notice that these equations need a closure relation Ski =
Ski(τ , Si) that will depend on the type of matter considered.

2.3. Formulations of the Einstein Equations
Any mathematical model representing a physical system must
be described by a well-posed system of equations, meaning
that there exists a unique bounded solution that depends
continuously on the initial data. Such requirement is relevant
not only from a conceptual point of view, but it is of crucial
importance in computational applications: a numerical solution
solving an ill-posed problem is not enforced to converge to
its corresponding continuum solution. A clear example of
this undesired behavior can be observed in the ADM free
evolution system resulting directly from the 3+1 decomposition
of Einstein equations. Although the ADM formalism was
extensively used at the dawn of Numerical Relativity due to its
simplicity, the presence of several numerical instabilities in the
three-dimensional case made it unsuitable for computational
applications. The reason behind these instabilities, as it was
shown in the nineties, was the ill posedness of the ADM
system in 3+1 dimensions when supplemented with standard
gauge conditions.

Since then, there have been several attempts to construct
well-posed free-evolution formalisms, either by selecting a
particular gauge or by mixing the constraints with the evolution
equations to modify the principal part of the system. The
mathematical structure of the Einstein field equations was
first investigated on a specific coordinate choice, called the
harmonic gauge, in which the spacetime coordinates follow
wave equations and can be written as Ŵa ≡ gbcŴa

bc
= 0

(Witten, 1962). This choice allowed to greatly simplify Einstein
equations, which could then be written as a set of (well-posed)
generalized wave equations, gcd∂c∂dgab = Hab(g, ∂g), where
Hab is a quadratic function in the metric first derivatives. This
Harmonic formalism, written for different set of fields and for
generalized harmonic conditions (Pretorius, 2005b; Lindblom
et al., 2006), was used successfully to model the coalescence
of compact objects, like black holes (Pretorius, 2006; Szilágyi

et al., 2009), boson stars (Palenzuela et al., 2007), and neutron
stars (Anderson et al., 2008).

Another very convenient way to write down Einstein
equations is the Baumgarte-Shapiro-Shibata-Nakamura (BSSN)
formalism (Shibata and Nakamura, 1995; Baumgarte and
Shapiro, 1999), which relies in three important modifications of
the ADM system. First, it applies a conformal decomposition
on the evolved fields, partially motivated by the fact that the
Schwarschild black hole solution is conformally flat. Therefore,
a conformal metric γ̃ij, with unit determinant, and a conformal,

trace-less, extrinsic curvature Ãij can be introduced as

γ̃ij = χ γij, Ãij = χ
(

Kij −
1

3
γij trK

)

. (12)

These new definitions involve the appearance of two new
constraints, γ̃ = 1 and trÃ ≡ γ̃ ijÃij = 0, which will be
denoted as conformal constraints from now on to distinguish
them from the energy-momentum physical constraints. The
second modification consists on extending the space of solutions
by introducing a new evolved field Ŵ̃i = γ̃ jk Ŵ̃i

jk = −∂jγ̃
ij,

namely the contraction of the Christoffel symbols associated to
the conformal metric. The third modification, which is essential
to achieve a well-posed system, is to add the momentum
constraint in a specific way to the evolution equation for this new
quantity Ŵ̃i (i.e., which is originally calculated, as usual, by taking
the time derivative of its definition). Notice that the last two
modifications are analogous to rewrite themomentum constraint
as an evolution equation and affect strongly the principal
part of the system (i.e., the terms with derivatives of highest
order), transforming the free-evolution ADM ill-posed system
into a well-posed one, when supplemented with appropriate
gauge conditions (Sarbach et al., 2002; Gundlach and Martín-
García, 2006). This formalism, with the 1+log slicing and the
gamma-freezing shift conditions described below, has been used
successfully to model the coalescence of black holes without the
need of excising the interior of the apparent horizons to remove
the physical singularity from the computational domain (van
Meter et al., 2006; Brügmann et al., 2008), making them especially
convenient for black hole simulations (Baker et al., 2006a;
Campanelli et al., 2006b; Sperhake, 2007). Notice however that
the BSSN formalism was already being used successfully to model
the coalescence of binary neutron stars (Shibata and Uryū, 2000,
2002), although the lack of advanced computational techniques
like Adaptive Mesh Refinement (AMR) prevented the calculation
of accurate waveforms until several years later.

An asymmetry of the BSSN formalism is manifested on
the different ways to treat the physical constraints, since the
momentum constraint is mixed with the evolution equations
but the energy constraint is not. Related to this, and like
many other contemporary formalisms, BSSN does not include
any mechanism to control dynamically unavoidable constraint
violations, which could grow significantly during a numerical
simulation, even if they are only seeded by tiny discretization
errors (Lindblom and Scheel, 2002). The Z4 formalism, which
was introduced as a extension of the Einstein equations to
achieve a well posed, hyperbolic evolution system free of
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constraints (Bona et al., 2003, 2004), allowed to address these
issues in an elegant general-covariant way. The equations of
motion can be derived from a suitable action via a Palatini-type
variation (Bona et al., 2010), obtaining

Rab + ∇aZb +∇bZa = 8π

(

Tab −
1

2
gab trT

)

+ κz
(

naZb + nbZa − gabn
cZc

)

, (13)

where Za is introduced as a new four-vector measuring the
deviation from Einstein’s solutions, which are those satisfying the
algebraic condition Za = 0. Although the original formulation,
corresponding to the choice κz = 0, is completely covariant,
additional damping terms were included to enforce dynamically
the decay of the physical constraint violations associated to
Za (Brodbeck et al., 1999). As it is shown in Gundlach et al.
(2005), all the physical constraint modes are exponentially
damped if κz > 0. However, since the damping terms are
proportional to the unit normal of the time slicing na, the
full covariance of the system is lost due to the presence of
this privileged time vector. The 3+1 decomposition of the Z4
formalism given by Equation (13) leads to evolution equations
for the evolved fields {γij,Kij,Zi,2}, where we have defined the
normal projection 2 ≡ −naZ

a. Notice that now there are
ten evolution equations to solve ten unknowns; the original
elliptic constraints in the Einstein Equations have been converted
into evolution equations for the new four-vector Za, which can
be understood roughly as the time integral of the energy and
momentum constraints. Einstein’s solutions are recovered when
the algebraic constraint Za = 0 is satisfied. Finally, the most
important feature is that the evolution system, when combined
with suitable gauge conditions, is directly well-posed, without the
need of further modifications (Bona and Palenzuela, 2004).

The Z4 formalism has also been useful to understand also
the constraint evolution system (i.e., subsidiary system) and
the connection among different formalisms. For instance, the
Harmonic formalism can be recovered from the Z4 one by
substituting the harmonic condition with Ŵa = −2Za (Bona
et al., 2003), and a version of the BSSN by a symmetry-breaking
mechanism (Bona et al., 2004). Along these lines, one can take
advantage of the Z4 formalism flexibility to incorporate the
ability to deal with black hole singularities without excision.
The conformal and covariant Z4 (CCZ4) formalism (Alic et al.,
2012) was constructed by performing the same conformal
transformations as in the BSSN formalism (i.e., see also Bernuzzi
and Hilditch, 2010 for other conformal but non-covariant Z4
formulations) but using, instead of trK and Zi, the following
quantities as evolved fields,

trK̂ ≡ trK − 22, Ŵ̂i ≡ Ŵ̃i + 2

χ
Zi, (14)

so that the evolution equations are closer to those in
the BSSN formulation. The full list of evolved fields is
then given by {χ , γ̃ij, trK̂, Ãij, Ŵ̂i,2} and follow the evolution
equations (Bezares et al., 2017),

∂t γ̃ij = βk∂kγ̃ij + γ̃ik ∂jβ
k + γ̃kj∂iβ

k − 2

3
γ̃ij∂kβ

k

− 2α
(

Ãij −
1

3
γ̃ij trÃ

)

− κc

3
αγ̃ij ln γ̃ , (15)

∂tÃij = βk∂kÃij + Ãik∂jβ
k + Ãkj∂iβ

k − 2

3
Ãij∂kβ

k (16)

− κc

3
α γ̃ij trÃ+ χ

[

α
((3)R̂ij + R̂

χ
ij − 8π Sij

)

−∇i∇jα

]TF

+ α

(

trK̂ Ãij − 2ÃikÃ
k
j

)

,

∂tχ = βk∂kχ + 2

3
χ

[

α(trK̂ + 22)− ∂kβ
k
]

, (17)

∂ttrK̂ = βk∂ktrK̂ −∇i∇ iα

+ α

[

1

3

(

trK̂ + 22
)2 + ÃijÃ

ij + 4π
(

τ + trS
)

+ κz2

]

+ 2Zi∇iα, (18)

∂t2 = βk∂k2 + α

2

[

(3)R+ 2∇iZ
i

+ 2

3
tr2K̂ + 2

3
2

(

trK̂ − 22
)

− ÃijÃ
ij

]

− Zi∇iα

− α

[

8π τ + 2κz 2

]

, (19)

∂tŴ̂
i = β j∂jŴ̂

i − Ŵ̂j∂jβ
i + 2

3
Ŵ̂i∂jβ

j + γ̃ jk∂j∂kβ
i + 1

3
γ̃ ij∂j∂kβ

k

− 2Ãij∂jα + 2α
[

Ŵ̃i
jkÃ

jk − 3

2χ
Ãij∂jχ − 2

3
γ̃ ij∂jtrK̂

− 8π γ̃ ij Si

]

+ 2α

[

−γ̃ ij

(

1

3
∂j2 + 2

α
∂jα

)

− 1

χ
Zi

(

κz +
2

3
(trK̂ + 22)

)]

, (20)

where the expression [. . .]TF indicates the trace-free part with
respect to the metric γ̃ij. The non-trivial terms inside this
expression can be written as

R̂
χ
ij = 1

2χ
∂i∂jχ − 1

2χ
Ŵ̃k
ij∂kχ − 1

4χ2
∂iχ∂jχ + 2

χ2
Zkγ̃k(i∂j)χ

+ 1

2χ
γ̃ij

[

γ̃ km
(

∂k∂mχ − 3

2χ
∂kχ∂mχ

)

− Ŵ̂k∂kχ

]

,

(3)R̂ij = −1

2
γ̃mn∂m∂nγ̃ij + γ̃k(i∂j)Ŵ̂

k + Ŵ̂kŴ̃(ij)k

+ γ̃mn
(

Ŵ̃k
miŴ̃jkn + Ŵ̃k

mjŴ̃ikn + Ŵ̃k
miŴ̃knj

)

,

∇i∇jα = ∂i∂jα − Ŵ̃k
ij∂kα

+ 1

2χ

(

∂iα ∂jχ + ∂jα ∂iχ − γ̃ij γ̃
km ∂kα ∂mχ

)

,

Notice that damping terms proportional to a free parameter κc
have been included in order to dynamically control the conformal
constraints, exactly in the same way as it is done with the
physical ones.

2.4. Gauge Conditions
The principle of general covariance implies that the laws of
physics, and in particular Einstein equations, must take the same
form for all observers. This implies that they have to be written in
a generic tensor form for any system of coordinates. The choice
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of coordinates is commonly referred as gauge freedom, and it
corresponds to define the congruence of our observers, i.e., the
time vector ta by setting the lapse and shift. Notice that setting
gauge conditions is not only necessary to close the system of
equations: these additional degrees of freedom can also be useful
both to avoid coordinate or physical singularities and to adapt to
the underlying symmetries appearing in our simulations. Besides
the summary presented here, further details on the different
gauge conditions can be found for instance in Gourgoulhon
(2007), Alcubierre (2008), Bona et al. (2009), Baumgarte and
Shapiro (2010), and Shibata (2015).

The simplest gauge conditions, known as geodesic
coordinates, are obtained setting α = 1 and β i = 0, so
that the time coordinate coincides with the proper timer of the
Eulerian observers (i.e., those following timelike geodesics). A
simple perturbation analysis shows however that any formalism
supplemented with this choice of coordinates might suffer of
unstable non-physical modes. Even worse, this gauge condition
might also lead to coordinate singularities, since Eulerian
observers will focus into a single point such that the spatial
volume

√
γ → 0. Coordinate pathologies can be prevented by

imposing suitable geometrical conditions, which usually involve
some type of elliptic equations (Smarr and York, 1978). This is
the case, for instance, in the maximal slicing condition trK = 0,
which, when imposed at all times, implies

∇ i∇iα = α
[

KijK
ij + 4π(τ + S)

]

. (21)

This slicing condition is called singularity-avoiding condition
because the lapse function α goes to zero when the spatial volume√

γ goes to zero, avoiding the coordinate singularities during the
evolution by slowing-down the proper time of the observers near
strong-gravity regions. Another interesting geometrical property
to be satisfied would be the minimal distortion condition, which
can be written as

∇ j∇jβ
i + 1

3
∇ i∇jβ

j + Rijβ
j = 2∇j

[

α(K ij − 1

3
γ ijtrK)

]

. (22)

This shift condition minimizes the changes in the shape of the
volume elements, independently of their size. Both the maximal
slicing and the minimal distortion conditions (21, 22) are elliptic
equations. These type of equations are computationally much
more expensive than hyperbolic evolution ones, and are usually
avoided or transformed into hyperbolic ones in the context of free
evolution formalisms.

Indeed, hyperbolic evolution equations are preferred and were
already adopted to enforce some interesting property, like for
instance the harmonic coordinates, which ensured the well-
posedness of the Harmonic formalism (Witten, 1962). A suitable
family of evolution equations for the lapse is given by the Bona-
Massó slicing condition (Bona et al., 1995),

∂tα = β i∂iα − α2 f (α) trK, (23)

which, for any f (α) ≥ 1, is not only singularity avoiding, but
also maintains the well-posedness of the formalism. The case
f (α) = 1 correspond to the harmonic slicing condition, while

that f (α) → ∞ mimics the maximal slicing condition Equation
(21). A common choice in numerical applications, especially
those involving black holes, is to use the so-called 1 + log
slicing condition, corresponding to f (α) = 2/α. This choice has
excellent singularity avoidance conditions, since near the physical
singularity α → 0, mimicking the maximal slicing condition.

A suitable family of hyperbolic dynamical equations
for the shift-vector β i is given by the Gamma-driver
condition (Alcubierre et al., 2003),

∂tβ
i = β j∂jβ

i + g(α) Ŵ̂i − ηβ i, (24)

where g(α) is an arbitrary function depending on the lapse
function and η a constant damping parameter introduced to
avoid strong oscillations during the shift evolution. This gauge
condition not only maintains the well posedness of BSSN and
CCZ4 formalisms, but also mimics the minimal distortion
condition Equation (22), trying then to minimize the stretching
of the spatial coordinates. For numerical simulations involving
black holes and neutron stars, standard values are g(α) = 3/4
and η ≈ 2/M, being M the mass of the compact object.
Notice that in most of the literature the evolution of the shift
is written in terms of an auxiliary field Bi, which however
does not seem necessary for most of the relevant numerical
scenarios (van Meter et al., 2006).

3. NUMERICAL METHODS

In the same way that any reasonable physical model must be
described by a well-posed PDE system, any numerical solution
must satisfy the following three conditions: (i) consistency,
meaning that the discrete derivative operators reduce to the
continuum ones as the resolution (i.e., the amount of discrete
points sampling the continuum domain) increases; (ii) stability,
such that the numerical solution is bounded and depends
continuously on the initial data, and (iii) convergence, that
is, the numerical solution tends to the continuum one as
resolution increases.

Fortunately, it is not necessary to prove these three
conditions, since Lax-Richtmyer equivalence theorem states
that the numerical approximation of well-posed problems is
convergent if and only if the scheme is stable and consistent (Lax
and Richtmyer, 1956). Since consistency can be obtained quite
trivially, the relevant question here is how to discretize the
equations such that the well-posedness at the continuumproblem
translate into stability at the discrete one. Let us consider the
following generic set of hyperbolic PDE at the continuum,

∂tu = P(u, ∂u) (25)

whereP is the evolution operator, which can depend on arbitrary
spatial derivatives of u. A popular technique to discretize this
continuum problem is by using theMethod of Lines (MoL), which
decouples the treatment of space and time coordinates (Schiesser,
1991). In the first step, only the spatial dimensions are discretized,
while leaving the time continuous. This semi-discrete problem
consist on a set of ordinary differential equations for Ui(t) =
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u(t, xi), one for each discrete spatial point xi, separated by a mesh
size 1x. The semi-discrete equations can formally be written
by substituting P → P, a discrete version of the evolution
operator, written in terms of discrete derivative operators D.
In the second step, the fully discrete problem is obtained after
discretizing in time, such that the fully discrete solution is given
by Un

i = u(tn, xi) at each discrete time tn, separated by a time-
step 1t. The discrete equations can formally be written again by
substituting ∂t by a discrete time integrator Dt . As it is shown
in Gustafsson et al. (1995), the fully discrete problem preserves
the stability of the semi-discrete problem if it is integrated with
a locally-stable time integrator, as for instance any Runge-Kutta
of at least 3rd order. Thus, the problem is then reduced to ensure
the stability of the semi-discrete problem by choosing a suitable
space derivative discretization.

3.1. Smooth Solutions
For sufficiently smooth solutions, the full procedure to
ensure convergence of the numerical solution can be found
in Gustafsson et al. (1995) and summarized as follows: starting
from a well-posed system at the continuum, apply the MoL,
discretize in space with derivative operators satisfying certain
conditions and then integrate with a Runge-Kutta of third order
or higher. A problem at the continuum is well-posed if the
solution satisfies an energy estimate which bounds some norm
of the solution at some fixed time. A tool that is used in
the derivation of such energy estimates is the integration by
parts rule. Analogously, a semi-discrete problem can be shown
to be stable if the discrete difference operators D satisfies the
summation by parts rule, which is the discrete version of the
integration by parts (see Calabrese et al., 2004 and references
within for early works introducing these techniques in Numerical
Relativity). For non-linear equations it is usually necessary to
remove the high-frequency (unphysical) modes not accurately
represented in the grid, which can grow continuously in time
at any fixed resolution. The easiest way to damp these modes
is by adding a filtering operator QdU to the right-hand-side
of the semi-discrete equations, like for instance the Kreiss-
Oliger dissipation operator (Kreiss and Oliger, 1973). This
operator vanishes at infinite resolution, such that the semi-
discrete problem is still consistent, and it is designed not to
spoil the accuracy of the numerical scheme. Notice that not
only Einstein equations, but any hyperbolic system of non-linear
PDEs without the presence of either shocks or discontinuities,
can be solved with these methods.

3.2. Non-smooth Solutions
Although it is not the case with Einstein evolution systems, if
the equations are genuinely non-linear like in fluid dynamics,
discontinuities and shocks (i.e., a region with a crossing of the
characteristics of the system) might appear even from smooth
initial data. Discrete operators based on Taylor expansions,
assuming smoothness of the solution, are going to fail near
these regions and will produce artificial oscillations leading to
unphysical solutions. Therefore, any spatial discretization able
to handle shocks needs to take advantage of the integrated or
weak-form of the equations (LeVeque, 1990). Let us consider a

system of non-linear PDEs, like the conservation of energy and
momentum given by Equations (10, 11), which can be written in
the balance law form (Font et al., 2000)

∂tu+ ∂kF
k(u) = S(u) (26)

where the fluxes Fk(u) and the sources S(u) depend on the fields
but not on their derivatives. There are two popular different
schemes to discretize these equations, based either on finite
volumes or on finite differences (Shu, 1998). The starting point of
the finite-volume approach is the integral of the previous balance
law equation in a spatial volume element dV ,

∂tū+
∮

FkdSk = S̄ (27)

where ū and S̄ are the volume integrals of the corresponding
quantity in the cell and we have used Gauss theorem to convert
the volume integral of the fluxes into a surface one, being dSk the
surface element. This weak form can be easily discretized with a
conservative scheme, namely

∂tŪi = − 1

1x

[

Fi+1/2 − Fi−1/2
]

+ S̄i. (28)

The problem is then reduced to compute (i) the solution at
the grid points Ui from the volume averages Ūi, and (ii) the
numerical flux at the interfaces Fi±1/2. These two steps must
be performed in such a way that the semi-discrete solution is
Total Variation Diminishing (TVD), or at least Total Variation
Bounded (TVB), meaning essentially that no new extremes
are allowed in the solution, which prevents the appearance
of artificial oscillations. Notice that these conditions are more
restrictive than stability, where the solution can still grow
under certain tolerant bounds. The procedure to construct a
shock-capturing scheme is the following. First, one needs to
reconstruct the fields at the interfaces xi±1/2 using information
either from the right (R) or from the left (L) to the interface (see
Figure 2), namely (uRi±1/2, u

L
i±1/2). Commonly used high-order

reconstructions, preserving the monotonicity of the solution to
prevent spurious oscillations, are for example the Weighted-
Essentially-Non-Oscillatory (WENO) reconstructions (Jiang and
Shu, 1996; Shu, 1998) andMP5 (Suresh and Huynh, 1997). Then,
a suitable flux-formula is required to solve, at least approximately,
the jump on the fields at each interface (i.e., Riemann problem),
by combining information from the right and from the left,
namely Fi±1/2 = F(uRi±1/2, u

L
i±1/2). This flux-formula usually

requires information on the characteristic structure of the system
(i.e., eigenvectors and eigenvalues). This approach has been the
most commonly employed in binary neutron star simulations,
see for instance (Shibata and Uryū, 2002; Anderson et al., 2008;
Baiotti et al., 2008; Liu et al., 2008; Yamamoto et al., 2008; Mösta
et al., 2014).

Higher-order schemes are relatively easy to achieve with the
finite-difference approach, providing an efficient approach to
high-order shock-capturing methods (Shu and Osher, 1988).
However, high-order finite-difference numerical schemes applied
to the magneto-hydrodynamics (MHD) equations have not been
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FIGURE 2 | The computational uniform grid xi . The left (L) and right (R) states

reconstructed at the interfaces xi±1/2 are required to calculate the numerical

flux Fi±1/2.

as robust as those based on finite-volume. Nowadays that is
not a great inconvenient, and the possibility to achieve high
order accuracy is leading to more efforts on implementing
these methods on computational MHD codes (Radice et al.,
2014; Bernuzzi and Dietrich, 2016). Although the derivation is
different, the conservative scheme given by Equation (28) is
still valid, where now Ū means just Ui, the value of the field
in the grid point. Again, the problem is reduced to compute
a suitable numerical flux at the interfaces such that solution
is essentially non-oscillatory and preserves, or at least bounds,
the Total Variation. The procedure starts by performing a
Lax-Friedrichs splitting, where it is introduced the following
combination of fluxes and fields F±i = 1/2(Fi ± λUi), being
λ the maximum eigenvalue in the neighborhood of the point.
These combinations are interpolated at the interfaces by using

a monotonic reconstruction, like the high-order ones discussed
before. The flux at the left of the interface FLi+1/2 is reconstructed

using the values {F+}, while that the flux at the right FRi+1/2 is

reconstructed using the values {F−}. The final numerical-flux
is obtained just as Fi+1/2 = FRi+1/2 + FLi+1/2. At the lowest

order reconstruction, FLi+1/2 = F+i and FRi+1/2 = F−i+1, so
that the final numerical-flux reduces to the popular and robust
Local-Lax-Friedrichs flux (LeVeque, 1990).

Finally, notice that efforts considering other techniques
to solve self-gravitation neutron stars, like the discontinuous
Galerkin methods (Hébert et al., 2018), are underway and might
be an interesting option in the near future.
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The first combined detection of gravitational waves and electromagnetic signals from

a binary neutron star (BNS) merger in August 2017 (an event named GW170817)

represents a major landmark in the ongoing investigation of these extraordinary systems.

In this short review, we discuss BNS mergers as events of utmost importance for

astrophysics and fundamental physics and survey the main discoveries enabled by

this first multimessenger observation, including compelling evidence that such mergers

produce a copious amount of heavy r-process elements and can power short gamma-ray

bursts. We further discuss some remaining key open questions regarding this event and

BNS mergers in general, focusing on the current status and limitations of theoretical

models and numerical simulations.

Keywords: neutron stars, compact binarymergers, gravitational waves,multimessenger astrophysics, gamma-ray

burst, kilonova

INTRODUCTION

Binary neutron star (BNS) mergers are among the most intriguing events known in the universe,
with impressive scientific potential spanning many different research fields in physics and
astrophysics. Investigating these mergers offers a unique opportunity to understand hadronic
interactions at supranuclear densities and the equations of state (EOS) of matter in such extreme
conditions while gaining crucial insights into the strong gravity regime, high-energy astrophysical
phenomena of primary importance, such as gamma-ray bursts (GRBs), the origin of heavy elements
in the local universe, formation channels of compact object binaries, and cosmology (see e.g., Faber
and Rasio, 2012; Baiotti and Rezzolla, 2017 and references therein).

The merger of two neutron stars (NSs) is accompanied by a strong emission of gravitational
waves (GWs) and a rich variety of electromagnetic (EM) signals covering the entire spectrum,
from gamma-rays to radio. Such a unique combination of signals makes these systems ideal
multimessenger sources and allows us to observe them up to cosmological distances. Moreover,
among their EM “counterparts,” BNS mergers have long been thought to be responsible for
short gamma-ray bursts (SGRBs) (Paczynski, 1986; Eichler et al., 1989; Narayan et al., 1992;
Barthelmy et al., 2005; Fox et al., 2005; Gehrels et al., 2005; Berger, 2014) as well as radioactively
powered “kilonova” transients associated with r-process nucleosynthesis of heavy elements (Li and
Paczyński, 1998; Rosswog, 2005; Metzger et al., 2010)1.

1Merging mixed binaries, each composed of an NS and a black hole (BH), share most of the above features, also being
promising GW sources, potential SGRB central engines, and potential sources of radioactively powered kilonovae. However,
the properties of the emitted signals could be very different. Here we focus on BNS mergers only and refer the reader to other
reviews (e.g., Shibata and Taniguchi, 2011) for the case of NS-BH binary mergers.

.
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A major step forward in the study of BNS mergers was made
possible by the first GW detection for this type of event by
the LIGO and Virgo Collaboration in August 2017 (an event
known as GW170817) (Abbott et al., 2017d). This merger was
also observed in the EM spectrum, via a collection of gamma-
ray, X-ray, ultraviolet (UV), optical, infrared (IR), and radio
signals, thus also providing the first multimessenger observation
of a GW source (Abbott et al., 2017e). This breakthrough led to
a number of key discoveries, including a striking confirmation
that BNS mergers can launch SGRB jets (Abbott et al., 2017c;
Alexander et al., 2017, 2018; Goldstein et al., 2017; Hallinan
et al., 2017; Margutti et al., 2017; Savchenko et al., 2017; Troja
et al., 2017; Lazzati et al., 2018; Lyman et al., 2018; Mooley
et al., 2018a,b; Ghirlanda et al., 2019) and are ideal sites for r-
process nucleosynthesis (e.g., Arcavi et al., 2017; Coulter et al.,
2017; Kasen et al., 2017; Pian et al., 2017; Smartt et al., 2017; see
also Metzger, 2019 and references therein), the first GW-based
constraints on the NS EOS (Abbott et al., 2019) and the Hubble
constant (Abbott et al., 2017b), and more. The most important
lessons learned from this event are discussed in section .

Besides the remarkable results mentioned above, the
GW170817 event also raised a number of questions, some
relating to details of the merging process that remained only
poorly constrained. For instance, the remnant object resulting
from the merger appears most likely to be a metastable massive
NS that eventually collapsed into a BH, but the lack of clear
indications of its survival time until collapse leaves doubts
regarding the nature of the SGRB central engine, which could
have been either the massive NS or the accreting BH (see e.g.,
Ciolfi, 2018 for a recent review). Theoretical modeling of the
merger process via general relativistic magnetohydrodynamics
(GRMHD) simulations (see Figure 1) offers the best chance to
tackle the open questions and to establish a reliable connection
between the merger and post-merger dynamics and the
observable GW and EM emission (e.g., Ciolfi, 2020b and
references therein). In section , we briefly report on the status of
the research in this direction, with reference to specific challenges
posed by the GW170817 event. Finally, concluding remarks are
given in section .

THE BNS MERGER OF AUGUST 2017

The characteristic “chirp” signal of GW170817, with both
frequency and amplitude increasing over time up to a maximum,
leaves no doubt that the source was a merging compact binary
with component masses fully consistent with two NSs (Abbott
et al., 2017d). In addition, the BNS nature of the source is
arguably reinforced by the EM counterparts observed along
with GWs (Abbott et al., 2017e). Under the BNS assumption,
this single detection significantly improved our estimate for
the corresponding local coalescence rate (the value reported in
Abbott et al., 2017d being R = 1540+3200

−1220 Gpc
−3 yr−1)2.

For this event, most of the information inferred from GWs
came from the inspiral phase up to merger, while the lower

2Under the assumption that GW190425 was also a BNS merger, the updated rate
would be R = 250–2810Gpc−3 yr−1 (Abbott et al., 2020).

detector sensitivity at frequencies above 1 kHz did not allow for
a confident detection of the post-merger signal (Abbott et al.,
2017d). Despite such limitations, it was possible to start placing
the first limits on the NS tidal deformability and thus constrain
the range of NS EOS compatible with the event (see e.g., Abbott
et al., 2019; Kastaun and Ohme, 2019) by measuring finite-size
effects (i.e., deviations from the point-mass waveform) in the last
orbits of the inspiral. Moreover, by combining the luminosity
distance derived from GWs with the EM redshift measurement
that the identification of the host galaxy (NGC4993) allowed, it
was possible to obtain the first constraints on theHubble constant
based on a GW standard siren determination (Abbott et al.,
2017b).

The observation of a gamma-ray signal emerging about 1.74 s
after the estimated time of merger enabled us to confirm that
GWs propagate at the speed of light with a precision better
than 10−14 (Abbott et al., 2017c), which excluded a whole range
of gravitational theories beyond general relativity. At the same
time, this high-energy signal (called GRB 170817A) was found
to be potentially consistent with an SGRB, albeit orders of
magnitude less energetic than any other known SGRB (Abbott
et al., 2017c). Combining the prompt gamma-ray emission with
the multiwavelength afterglows (in X-ray, optical, and radio)
monitored for several months, it was possible to eventually
converge to the following picture (Abbott et al., 2017c; Alexander
et al., 2017, 2018; Goldstein et al., 2017; Hallinan et al., 2017;
Margutti et al., 2017; Savchenko et al., 2017; Troja et al., 2017;
Lazzati et al., 2018; Lyman et al., 2018; Mooley et al., 2018a,b;
Ghirlanda et al., 2019): (i) the merger remnant launched a highly
relativistic jet (Lorentz factor > 10), in agreement with the
consolidatedGRB paradigm (e.g., Piran, 2004; Kumar and Zhang,
2015); (ii) the burst was observed off-axis by 15–30◦, and the
low-energy gamma-ray signal detected was not produced by the
jet core but rather by a mildly relativistic outflow moving along
the line of sight; (iii) the on-axis observer would have seen a
burst energetically consistent with the other known SGRBs. This
provided the long-awaited compelling evidence that BNS mergers
can generate SGRBs. Furthermore, the off-axis view of a nearby (∼
40Mpc distance) SGRB jet gave us an unprecedented opportunity
to study its full angular structure.

The other major result related to GW170817 is the first clear
photometric and spectroscopic identification of a kilonova, i.e.,
a UV/optical/IR transient powered by the radioactive decay of
heavy r-process elements synthesized within thematter ejected by
the merger process (e.g., Arcavi et al., 2017; Coulter et al., 2017;
Kasen et al., 2017; Pian et al., 2017; Smartt et al., 2017; see also
Metzger, 2019 and references therein). This confirmed that BNS
mergers produce a significant amount of elements heavier than
iron, up to very large atomic mass numbers (A > 140).

OPEN QUESTIONS AND ONGOING

RESEARCH

The discoveries connected with GW170817 certainly represent
a breakthrough in the field, but a lot remains to be understood
concerning both this event and BNS mergers in general. Part of
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FIGURE 1 | Example of BNS merger simulation in GRMHD (from the models presented in Ciolfi et al., 2017). The temporal sequence shows the bulk of the NS(s) in

white together with color-coded isodensity surfaces.

our ignorance can be ascribed to current observational limits.
For instance, much better constraints on the NS EOS will
become available with the considerably higher sensitivity of
third-generation GW detectors (Punturo et al., 2010; Abbott
et al., 2017a), allowing also for confident detection of the
post-merger GW signal, while the merger rate, the formation
scenarios of BNS systems, and the GW-based Hubble constant
determination will improve greatly with the increasing number of
detections. On the other hand, there are many aspects for which
the information encoded in the observed signals (in particular
in the EM counterparts) cannot be fully exploited because of the
present limitations of theoretical models. This situation urgently
calls for further development on the theory side, particularly
in the context of BNS merger simulation in general relativity,
which represents the leading approach to elucidating the physical
mechanisms at work when two NSs merge.

In the following, we discuss recent results of BNS merger
simulations and the associated limitations, focusing on
interpretation of the August 2017 event. In particular, we
consider the two most important EM counterparts of this event:
(i) the SGRB and its multiwavelength afterglows, and (ii) the
kilonova transient.

SGRB Central Engines and GRB170817A
Understanding the launching mechanism of an SGRB jet from
a BNS merger and the nature of the remnant object acting
as central engine is among the main motivations for the
development of numerical relativity simulations of such mergers
(e.g., Rezzolla et al., 2011; Kiuchi et al., 2014; Kawamura et al.,
2016; Ruiz et al., 2016; Ciolfi et al., 2017, 2019). The great progress
made in this type of simulation, especially over the past decade,
has allowed us to draw important conclusions, even though the
final solution of the SGRB puzzle is still ahead of us.

According to the most discussed scenario, an SGRB jet would
be launched by a spinning BH surrounded by a massive (∼
0.1M⊙) accretion disk, which is a likely outcome of a BNS
merger. Recent simulations (Just et al., 2016; Perego et al.,
2017b) have shown that a jet powered by neutrino-antineutrino
annihilation would not be powerful enough to explain the
phenomenology of SGRBs, reinforcing the idea that SGRB
jets should instead be magnetically driven. Various GRMHD
simulations (e.g., Rezzolla et al., 2011; Kiuchi et al., 2014;

Kawamura et al., 2016; Ruiz et al., 2016) have explored the
latter possibility, confirming the formation of a low-density
funnel along the BH spin axis and finding indications of an
emerging helical magnetic field structure that is favorable for
accelerating an outflow. In addition, simulations reported in
Ruiz et al. (2016) were the first to show the actual production
of a magnetically dominated mildly relativistic outflow, and the
authors argued that such an outflow could in principle reach
terminal Lorentz factors compatible with an SGRB jet. While
the results obtained so far do not provide the ultimate answer,
current simulations suggest that the accreting BH scenario
is a promising one (see e.g., Ciolfi, 2018, 2020b for a more
detailed discussion).

The alternative scenario in which the central engine is a
massive NS remnant has also been investigated via GRMHDBNS
merger simulations, although a systematic study commenced
only recently (Ciolfi et al., 2017, 2019; Ciolfi, 2020a). In this
case, the higher level of baryon pollution along the spin axis
could hamper the formation of an incipient jet. The longest
(to date) simulations of this kind, recently presented in Ciolfi
(2020a), showed for the first time that the NS differential rotation
can still build up a helical magnetic field structure capable of
accelerating a collimated outflow (see Figure 2), although such
an outcome is not ubiquitous3. In addition, for the case under
consideration, the properties of the collimated outflow (and in
particular the very low terminal Lorentz factor) were found to be
largely incompatible with an SGRB jet (Ciolfi, 2020a). This result
reveals serious difficulties in powering an SGRB that might apply
to massive NS remnants in general, thus pointing in favor of
the alternative BH central engine. In order to confirm the above
conclusion, however, a greater variety of physical conditions
needs to be explored (e.g., by including neutrino radiation).

For the GRB 170817A event, neither the observations nor the
current theoretical models can confidently exclude either one of
the two scenarios. Nevertheless, BNS merger simulations have
already provided valuable hints in favor of the accreting BH
scenario (Ruiz et al., 2016; Ciolfi, 2020a), and the continuous

3Note that a collimated outflow was also reported in studies where an ad-hoc

dipolar field was superimposed by hand on a differentially rotating NS remnant
(e.g., Shibata et al., 2011; Siegel et al., 2014; Mösta et al., 2020).
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FIGURE 2 | Collimated helical magnetic field structure emerging along the

spin axis of a long-lived BNS merger remnant (from a simulation presented in

Ciolfi, 2020a). Several semi-transparent isodensity surfaces are also shown for

the highest rest-mass density region (with density increasing from gray to red).

improvement of numerical codes and the degree of realism of
their physical descriptions could soon lead to a definitive answer.

Another important limiting factor for the interpretation of
GRB 170817A is the considerable gap between the relatively
small time scales and spatial scales probed by GRMHD merger
simulations (up to order ∼ 100ms and ∼ 1000 km) and those
relevant for the propagation of an incipient jet through the
baryon-polluted environment surrounding the merger site (&1 s
and & 105 km). The ultimate angular structure and energetics of
the escaping jet, which are directly related to the prompt and
afterglow SGRB emission, are therefore very hard to associate
with specific properties of the merging system and a specific
launching mechanism. One of the most important challenges
to be addressed in the near future is therefore to obtain a self-
consistent model that is able to describe the full evolution from
the pre-merger stage up to the final escaping jet.

Merger Ejecta and the Kilonova Transient

AT2017gfo
During and after a BNS merger, a relatively large amount of
material (up to ∼ 0.1 M⊙) can be ejected, either via dynamical
mechanisms associated with the merger process (tidally driven
and shock-driven ejecta) or via baryon-loaded winds launched
by the (meta)stable massive NS remnant and/or by the accretion
disk around the newly formed BH (if any). Depending on the
thermodynamical history and composition (in particular the
electron fraction Ye) of each fluid element within the ejecta,
the r-process nucleosynthesis takes place and produces a certain
amount of heavy elements (i.e., heavier than iron). Later on, the
radioactive decay of these elements powers the thermal transient

commonly referred to as a kilonova (e.g., Metzger, 2019 and
references therein).

For a given ejecta component, the peak luminosity, peak
time, and peak frequency (or temperature) of the corresponding
kilonova are mainly determined by the ejecta mass, velocity, and
opacity (e.g., Grossman et al., 2014). While the mass and velocity
depend on the mass ejection mechanism, the opacity is directly
related to the nucleosynthesis yields. In particular, high electron
fractions (Ye & 0.25) typically produce elements up to atomic
mass numbers A . 140, maintaining a relatively low opacity of
∼ 0.1–1 cm2/g, whereas more neutron-rich ejecta (Ye . 0.25)
allow the production of elements up to A > 140 (including the
group of lanthanides), which leads to much higher opacities of
∼ 10 cm2/g (e.g., Kasen et al., 2013; Tanaka and Hotokezaka,
2013).

When applied to the kilonova of August 2017, the above
picture reveals that the observed transient (AT 2017gfo) was
generated by at least two distinct ejecta components (e.g., Kasen
et al., 2017)4, one having mass ≈ 1.5–2.5 × 10−2M⊙, velocity
≈ 0.2–0.3 c, and a relatively low opacity of ≈ 0.5 cm2/g, leading
to a “blue” kilonova peaking at∼1 day after merger, and the other
havingmass≈4–6×10−2M⊙, velocity≈ 0.1 c, and amuch higher
opacity of ∼10 cm2/g, leading to a “red” kilonova emerging on a
time scale of∼1 week. One of the current challenges is to identify
the mass ejection mechanisms responsible for these components.
In such a quest, numerical relativity simulations of BNS mergers
play a pivotal role.

The “red” part of the 2017 kilonova is perhaps the easier of
the two to account for. The very large mass and low velocity
would exclude dynamical mass ejection and point to a baryon-
loaded wind. In particular, the mass expelled by the accretion
disk around the BH (i.e., after the collapse of the NS remnant)
appears to match the requirements, including a relatively high
opacity, or equivalently a low electron fraction, for at least part
of the material (e.g., Siegel and Metzger, 2018).

The origin of the “blue” kilonova is more debatable. The
ejecta mass is rather high, but then so is the velocity (v &

0.2 c). The former still raises doubts over a dynamical ejection,
while the latter represents a potential problem for post-merger
baryon-loaded winds. The magnetically driven wind from the
(meta)stable NS remnant offers a viable solution (Ciolfi and
Kalinani, 2020), thanks to the enhanced mass ejection and the
simultaneous acceleration due to themagnetic field (as previously
suggested, e.g., in Metzger et al., 2018). In this case, neutrino
irradiation would also be fundamental for raising the Ye of
the material, limiting the r-process nucleosynthesis, and thus
maintaining a low opacity (Metzger et al., 2018). We stress,
however, that other viable scenarios exist (e.g., Kawaguchi et al.,
2018; Nedora et al., 2019).

Current kilonova models are still affected by several
uncertainties around the microphysical parameters, the radiation
transport (which is treated with strong approximations), and
the mass ejection mechanisms. Nonetheless, we are witnessing
rapid theoretical and numerical progress that will keep guiding
us toward a more solid interpretation of the observational data.

4Three-component models were also proposed (e.g., Perego et al., 2017a).
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CONCLUDING REMARKS

The growing interest in BNS mergers over the past few decades
has recently been boosted by the multimessenger observation
of the August 2017 event, GW170817. Among numerous
breakthrough results, this BNSmerger has provided fundamental
confirmations of theoretical predictions, in particular the
association with SGRBs, which was already supported by indirect
evidence but still unproven, and the production of heavy r-
process elements and the related kilonova transients. This success
on the theory side certainly strengthens motivation for the

development of models and numerical simulations. At the same
time, the case of GW170817 has shown that present and near-
future observations are likely to contain much more information
than we are currently capable of exploiting, making further
advancements in our ability to interpret the data more urgent
than ever.
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Of the three main types of binaries detectable through ground-based gravitational

wave observations, black hole-neutron star (BHNS) mergers remain the most elusive.

While candidates BHNS exist in the triggers released during the third observing run of

the Advanced LIGO/Virgo collaboration, no detection has been confirmed so far. As

for binary neutron star systems, BHNS binaries allow us to explore a wide range of

physical processes, including the neutron star equation of state, nucleosynthesis, stellar

evolution, high-energy astrophysics, and the expansion of the Universe. Here, we review

some of the main features of BHNS systems: the distinction between disrupting and

non-disrupting binaries, the types of outflows that BHNS mergers can produce, and the

information that can be extracted from the observation of their gravitational wave and

electromagnetic signals. We also emphasize that for the most likely binary parameters,

BHNS mergers seem less likely to power electromagnetic signals than binary neutron

star systems. Finally, we discuss some of the issues that still limit our ability to model and

interpret electromagnetic signals from BHNS binaries.

Keywords: black holes, neutron stars, gravitational waves, kilonovae, gamma-ray bursts, numerical relativity

1. INTRODUCTION

The first observation by the LIGO-Virgo collaboration (LVC) of gravitational waves (GWs) coming
from merging black holes (Abbott et al., 2016, GW150914) and neutron stars (Abbott et al., 2017c,
GW170817) made GW astrophysics a reality. Since then, the LVC has confirmed an additional 9
binary black holes (BBH) (Abbott et al., 2019), with dozens of other systems announced in public
alerts1. BBH mergers were also discovered by an independent search pipeline used on publicly
available LVC data (Venumadhav et al., 2019). Most recently, an event that may have been a second
binary neutron star (BNS) merger was reported by the LVC (Abbott et al., 2020, GW190425)2.

BNS and black hole-neutron star (BHNS) systems play an especially interesting role in this
new field of astrophysics. By observing neutron star mergers, we gather information about the
equation of state of neutron stars (Flanagan and Hinderer, 2008; Abbott et al., 2018), about
the origin of heavy elements produced through r-process nucleosynthesis (Freiburghaus et al.,
1999; Drout et al., 2017; Pian et al., 2017), and about the expansion rate of the Universe (Abbott
et al., 2017b; Hotokezaka et al., 2019). Neutron star mergers also power at least a subset of short
gamma-ray bursts (SGRBs) (Abbott et al., 2017a), as well as UV/optical/infrared kilonovae (Li and
Paczynski, 1998; Roberts et al., 2011; Chornock et al., 2017; Coulter et al., 2017; Cowperthwaite
et al., 2017; Evans et al., 2017; Nicholl et al., 2017; Soares-Santos et al., 2017; Villar et al., 2017), and

1Public alerts from the LVC are available online at https://gracedb.ligo.org/.
2GW190425 has observed masses that could also plausibly be explained as a very low mass BHNS merger, if ∼ (2−3)M⊙
black holes exist.
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radio emission from ultra-relativistic jets and mildly relativistic
outflows (Nakar and Piran, 2011; Hotokezaka et al., 2016; Mooley
et al., 2018). The event rates of BNS and BHNS mergers remain
however very uncertain (Abadie et al., 2010; Belczynski et al.,
2016; Abbott et al., 2020). Only two potential BNS mergers have
been officially confirmed so far, and no BHNS mergers, even
though a number of candidates can be found within the LVC’s
public alerts.

The evolution of BHNS binaries can be divided into three
main phases: a millions-of-years long inspiral during which the
two objects slowly lose energy and angular momentum to GW
emission; a merger phase lasting about 1 ms and resulting in
either the tidal disruption of the neutron star (see Figure 1) or
its plunge into the black hole; and, for disrupting systems only,
a seconds-long post-merger phase during which more matter
is ejected or accreted onto the black hole. These three phases
happen on widely different timescales, and involve different
physical processes and observable signals. In this manuscript, we
will review each stage of a BHNS’s evolution in turn, and discuss
important properties of the associated GW and electromagnetic
(EM) signals.

BHNS systems cover a high-dimensional and largely
unconstrained parameter space. Our priors for the properties
of black holes and neutron stars in BHNS binaries come from
their observation in other types of binary systems or from
theoretical considerations, and are accordingly quite uncertain.
While most neutron stars observed in BNS systems have masses

FIGURE 1 | Time evolution of a disrupting BHNS binary, including: onset of mass accretion (top left), unstable mass transfer (top right), evolution into a long tidal tail

(bottom left), and circularization into an accretion disk (bottom right).

in the [1.2− 1.6]M⊙ range (Özel et al., 2012), more massive
neutron stars exist, up to at least ∼ 2M⊙ (Demorest et al., 2010;
Antoniadis et al., 2013). Most galactic black holes have masses
of [5 − 15]M⊙ (Özel et al., 2010), but black holes observed
through GWs are often more massive (Abbott et al., 2019).
Whether black holes can be formed within the “mass gap”
between the most massive neutron stars and∼5M⊙ also remains
an important open question. The magnitude and orientation of
black hole spins are unknown, and while most BHNS binaries are
expected to have negligible eccentricities (Peters and Mathews,
1963), eccentric BHNS binaries cannot entirely be ruled out and
have evolutions very distinct from circular binaries (Stephens
et al., 2011). Obtaining reliable models for the observable
signals powered by BHNS binaries across this vast parameter
space can be difficult, yet the dependence of these signals in
the properties of BHNS binaries is what allows us to extract
valuable information from observations. In this review, we
mostly consider circular binaries, leaving as free parameters the
massesMNS,BH of the compact objects, their dimensionless spins
#»χNS,BH, and the equation of state of dense nuclear matter, which
sets the radius RNS of a given neutron star.

2. BINARY INSPIRAL

From an observational point of view, the millions of years of GW
driven inspiral that eventually result in the merger of a BHNS
binary constitute an extended dark age between the supernova
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explosion that created the neutron star and the bright GW and
EM emissions that accompany the merger. Ground-based GW
detectors, such as LIGO and Virgo only become sensitive to
BHNS binaries seconds to minutes before merger. Most of our
efforts thus focus on understanding the very end of the inspiral.
To first order, the GW-driven inspiral of BHNS binaries proceeds
as for black holes of the same masses and spins. GW detectors are
mostly sensitive to the chirp mass

Mc =
(MNSMBH)3/5

(MBH +MNS)1/5
(1)

of a system, while individual mass measurements suffer from
large statistical errors for all but the brightest events. As for
BNS systems, the main observable effect of the finite size of
neutron stars before merger is the acceleration of the GW-driven
inspiral due to tides (Flanagan andHinderer, 2008): large neutron
stars merge earlier than more compact stars. GW detectors are
primarily sensitive to the resulting change in the phase of the GW
signal. To first order, that change is linear in the dimensionless
tidal deformability parameter (Hinderer et al., 2010), defined for
BHNS systems as

3̃ = 32

39

M4
NS(MNS + 12MBH)

(MNS +MBH)5
k2

C5
NS

(2)

with CNS = MNSG/(RNSc2) the compaction of the neutron star,
and k2 its dimensionless l = 2 Love number. Both k2 and
RNS depend on the equation of state of nuclear matter inside
the neutron star. Unfortunately, 3̃ becomes very small when
MBH ≫MNS. As a result, finite size effects in BHNS mergers are
expected to be detectable only for close-by events involving low-
mass black holes (Lackey et al., 2014). The usefulness of BHNS
binaries for the determination of the neutron star equation of
state largely depends on the event rate of BHNS mergers that
involve low-mass black holes. The existence of black holes within
the supposed “mass gap” would be particularly convenient in that
respect. For reference, recent results from the LVC (Abbott et al.,
2018), NICER (Miller et al., 2019; Riley et al., 2019), and joint
analysis of both datasets (Landry et al., 2020; Raaijmakers et al.,
2020) find RNS ∼ (10.5− 14.5) km, with variations due to the
chosen astrophysical data, equation of state model andmaximum
NS mass.

Additionally, it can be difficult to unequivocally determine that
a given GW signal is powered by a BHNS merger. In the absence
of an EM signal, our main method to determine the nature of
merging compact objects is to use their inferred masses, and to
assume that any object below a fixed threshold mass is a neutron
star. This clearly introduces an untested astrophysical prior in the
interpretation of the data. It can also be difficult to determine
whether a system is a high mass ratio BHNS system or a more
symmetric BBH system with the same chirp mass (Hannam et al.,
2013)3. Furthermore, if black holes are commonly formed with

3If we allow for primordial black holes within the samemass range as neutron stars,
low-mass BHNS mergers can also mimic BNS systems, even if we observe an EM
counterpart (Hinderer et al., 2019).

large spins misaligned with the orbital angular momentum of
the binary, BHNS binaries may experience significant orbital
precession. As the GW templates currently used by detection
pipelines do not take orbital precession into account, this could
lead to the loss of a significant fraction (∼30%) of BHNS
systems (Harry et al., 2014), with an observational bias toward
the detection of non-processing systems. Analysis of the observed
population of BHNS binaries thus require careful consideration
of observational biases and of the probabilistic nature of the
characterization of a signal as a BHNS system.

Finally, we note that the availability of reliable GW templates is
crucial to the analysis of merger events. In that respect, significant
progress have been made in recent years on precessing waveform
models (Schmidt et al., 2012; Hannam et al., 2014; Pan et al.,
2014; Smith et al., 2016; Khan et al., 2019; Varma et al., 2019),
which may be of particular importance for BHNS systems, and
on the inclusion of tidal effects in waveform models (Lackey
et al., 2014; Bernuzzi et al., 2015; Hinderer et al., 2016; Dietrich
et al., 2017; Nagar et al., 2018). Recent high-accuracy numerical
simulations of BHNS inspirals (Foucart et al., 2019) show
reasonable agreement between tidal models and simulations,
except for rapidly spinning neutron stars. It should however be
noted that state-of-the art simulations still have numerical errors
at the level of ∼10–20% of the phase difference between BBH
and BHNS waveforms, which puts a limit on how far waveform
models can be tested in practice.

3. MERGER DYNAMICS

The merger of a BHNS binary follows one out of two
potential pathways: either the neutron star is disrupted by
the tidal field of the black hole, leading to mass ejection
and the formation of an accretion torus around the black
hole; or the neutron star plunges into the black hole
whole. Qualitatively, the physical processes leading to these
two potential outcomes are well-understood (Lattimer and
Schramm, 1976). As the binary spirals in, the neutron star
first reaches either the radius of the innermost stable circular
orbit (ISCO) of the black hole RISCO, or the disruption
radius Rdis. Roughly speaking, disruption happens if Rdis &

RISCO, i.e., if the neutron star is tidally disrupted outside
of the ISCO. This division between disrupting and non-
disrupting systems creates two classes of events with very distinct
observational properties.

Qualitatively, if the neutron star is treated as a test mass
and the black hole spin is aligned with the orbital angular
momentum of the binary, the ISCO radius scales as RISCO =
f (χBH)GMBH/c2, with f a function ranging from 1 to 9 and
decreasing for increasing (prograde) spins (Bardeen et al., 1972).
For large mass ratios and in Newtonian physics, the disruption
radius scales as Rdis ∼ k(MBH/MNS)1/3RNS, with k a numerical
constant with a mild dependence on the equation of state and the
black hole spin (Fishbone, 1973; Wiggins and Lai, 2000). From
these simple scalings, we deduce that disruption will be favored
for (a) low-mass black holes; (b) prograde black hole spins; and
(c) large neutron star radii.
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FIGURE 2 | Maximum value of the mass ratio MBH/MNS for which a BHNS system will disrupt as a function of the neutron star radius RNS and aligned component of

the dimensionless black hole spin χBH, assuming MNS = 1.35M⊙ (Foucart et al., 2018). Results for other MNS can be obtained by looking at the disruption condition

at constant CNS = GMNS/(RNSc
2 ).

A more quantitative understanding requires general
relativistic simulations (Duez et al., 2008; Etienne et al.,
2009; Chawla et al., 2010; Kyutoku et al., 2010; Foucart et al.,
2012; Kawaguchi et al., 2015). Simulations tell us that for
quasi-circular binaries, mass transfer is always unstable. We
can also predict which systems disrupt (see Figure 2), and for
disrupting systems how much mass remains outside of the black
hole after disruption (Pannarale et al., 2011; Foucart, 2012;
Foucart et al., 2018)—typically a few tenths of a solar mass.
While these predictions were first made for systems with aligned
black hole spins, simulations also show that for misaligned
black hole spins, simply using in fitting formulae the aligned
component of the black hole spin or replacing the ISCO radius
by the radius of the innermost stable spherical orbit (ISSO)
provides reasonably accurate predictions (Foucart et al., 2013b;
Stone et al., 2013; Kawaguchi et al., 2015). Overall, the outcome
of a BHNS merger can be predicted with reasonable accuracy as
a function of just three dimensionless parameters: the symmetric
mass ratio η = MNSMBH/(MNS+MBH)2, the aligned component
of the dimensionless black hole spin χ‖, and the neutron star
compaction CNS (Foucart et al., 2018). However, these models do
not apply to systems with large eccentricities: partial disruption
of the neutron star is then possible (Stephens et al., 2011), and we
do not have reliable predictions for the outcome of the merger
in the larger-dimensional parameter space of eccentric BHNS
systems. There have also been too few simulations to robustly
characterize binaries with rapidly rotating neutron stars.

For non-disrupting BHNS systems, the merger ends the
interesting part of the evolution. The GW signal is practically

identical to a BBH system with the same component masses
and spins (Foucart et al., 2013a; Lackey et al., 2014), there is
neither mass ejection nor accretion disk, and we do not expect
detectable post-merger EM signals. In the rest of this review, we
will thus focus on the more interesting disrupting BHNS systems.
However, disrupting systems may very well be a small minority
of the observed BHNS binaries. Even a relatively low mass black
hole (MBH ∼ 7M⊙) requires a moderate-to-high black hole
spin χ‖ & (0.2−0.7) to disrupt neutron stars with equations
of state compatible with GW170817. The BBH systems detected
so far have black holes of high mass and/or low spin (Abbott
et al., 2019; Venumadhav et al., 2019) that would be highly
unlikely to disrupt neutron stars—though the rapidly spinning
BH candidate reported in Zackay et al. (2019) provides some
hope for the existence of disrupting BHNS binaries. While we
should be ready for a population of disrupting BHNS mergers,
we should acknowledge that the idea that most BHNS mergers
undergo tidal disruption is currently disfavored.

Disrupting BHNS systems provide us with a wealth of
additional information. First, the GW signal is cut off when
disruption occurs, at a frequency fcut ∼ (1−1.5) kHz that depends
on the equation of state of the neutron star. The inclusion
of that cut-off frequency in waveform models (Lackey et al.,
2014; Pannarale et al., 2015) can help constrain the equation of
state of neutron stars, complementing the information provided
by the tidal dephasing (Lackey et al., 2012; Lackey et al.,
2014). Second, a disrupting BHNS binary typically ejects a few
percents of a solar mass of material. The ejection of neutron-
rich matter at mildly relativistic speeds is extremely important
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to the study of BHNS and BNS mergers: as the ejecta expands
into the surrounding interstellar medium, it undergoes r-process
nucleosynthesis, forming many of the heavy elements observed
today on Earth. The outcome of the r-process is not, however,
unique: more neutron-rich ejecta (approximately, with <∼25%
protons) forms heavier r-process elements than more neutron-
poor ejecta (Wanajo et al., 2014; Lippuner and Roberts, 2015).
This matters if we wish to understand nucleosynthesis in the
Universe, but also to understand the properties of the observable
optical/infrared kilonovae powered by radioactive decays in the
ejecta. If heavier r-process elements are produced, the opacity of
the ejecta increases, causing the kilonova to be dimmer, of longer
duration, and shifted from the optical to the infrared (Kasen
et al., 2013). Kilonova signals also contain information about the
mass, velocity, composition, and geometry of the ejecta (Barnes
and Kasen, 2013; Kawaguchi et al., 2016). Thus, if we can
connect the ejecta properties to the parameters of the binary,
we can use kilonovae observations to complement and cross-
check GW observations of BHNS systems. In BHNS system, the
merger ejecta, or dynamical ejecta, has fairly well-constrained
properties. It is cold, very neutron-rich (∼ 5% protons), and
moves at an average velocity v ∼ (0.1−0.3)c. It is also quite
different from the dynamical ejecta of BNS mergers: there is
more mass ejection in disrupting BHNS binaries, the ejecta is
very asymmetric, and there is no neutron poor component to
the ejecta that may power an optical kilonova. Fits to the result
of numerical simulations have provided us with relatively robust
predictions for its mass (Kawaguchi et al., 2016) and asymptotic
velocity (Kawaguchi et al., 2016; Foucart et al., 2017) that can
be used to develop kilonovae models. While higher accuracy
predictions for the properties of the dynamical ejecta would
certainly be useful in the long term, this phase of the evolution
is quite well-understood when compared to the formation and
evolution of post-merger remnants.

4. POST-MERGER REMNANTS

In our description of the evolution of BHNS binaries, we have so
far only considered the effects of general relativity (GWs, ISCO,
. . . ), of ideal hydrodynamics (tides and tidal disruption), and of
the nuclear equation of state of cold dense matter in neutrinoless
beta-equilibrium. During inspiral and merger, this is generally
sufficient to capture the most important observable features of
BHNS binaries. This changes dramatically after merger: as bound
matter from the disrupted neutron star begins to circularize,
mostly through hydrodynamical shocks and interactions between
the tidal tail and the forming accretion disk, magnetic fields
and neutrinos start to play an important role. Magnetic fields
and turbulent eddies will grow due to the Kelvin-Helmholtz
instability at the disk-tail boundary, heating the disk and driving
outflows (Kiuchi et al., 2015), while neutrinos cool the denser
regions of the disk and heat its corona (Lee et al., 2009; Deaton
et al., 2013; Janiuk et al., 2013; Foucart et al., 2015). Neutrino
absorption in the corona can drive a disk wind (Dessart et al.,
2009) and, more importantly, preferential absorption of electron
neutrinos over electron antineutrinos leads to an increase in the

ratio of protons to neutrons in the outflows (Foucart et al., 2015).
At later times the growth of the magnetorotational instability
leads to an increase in the strength of the magnetic field, angular
momentum transport and heating in the disk, accretion of matter
onto the black hole, and the production of mildly relativistic
outflows for multiple seconds after the merger (Fernández and
Metzger, 2013; Siegel and Metzger, 2017; Fernández et al., 2019).
Finally, depending on the large-scale structure of the magnetic
field after merger, continuous or more intermittent relativistic
jets may be produced ∼0.1–1 s after merger (Paschalidis et al.,
2015; Siegel and Metzger, 2017; Ruiz et al., 2018; Christie et al.,
2019), potentially leading to the production of a SGRB.

Numerical simulations and theoretical models have made
important strides in the study of post-merger remnants over
the last decade, yet this remains by far the most uncertain
part of the evolution. A first problem is that only one
magnetohydrodynamics simulation has used sufficient resolution
to capture the growth of the Kelvin-Helmholtz instability at the
disk-tail boundary (Kiuchi et al., 2015), and it did not include
any treatment of the neutrinos. In the absence of cooling, it
predicted massive outflows from the forming disk (50% of the
disk mass, an amount comparable to the dynamical ejecta).
Lower-resolution simulations including neutrino cooling did
not observe significant outflows at this stage (Deaton et al.,
2013; Foucart et al., 2015), but lacked the heating provided
by the Kelvin-Helmholtz instability. The physical answer lies
somewhere in between these two extremes, leaving a large
uncertainty regarding the mass of hot, mildly relativistic matter
that may be ejected during the circularization of the accretion
disk. This is particularly problematic because these early post-
merger outflows could be the main source of optical kilonovae
in BHNS systems.

A second important source of uncertainty is the large scale
structure of the magnetic field after merger. Merger simulations
have produced jets when a strong dipolar magnetic field was
initialized outside of the neutron star before merger (Paschalidis
et al., 2015; Ruiz et al., 2018), but no simulation has resolved
the growth of a large-scale magnetic field from realistic initial
field strengths. On the other hand, simulations of post-merger
remnants show that the large scale structure of the magnetic
field has a significant impact on the jet power and the ejected
mass (Christie et al., 2019). This leaves us with important open
questions regarding the connection between SGRB properties
and the pre-merger characteristics of a BHNS binary, as well as
regarding the mechanism for the production of relativistic jets,
e.g., whether a strong magnetic field outside of the neutron star
leads to the production of a jet∼100 ms after merger (Paschalidis
et al., 2015; Ruiz et al., 2018), or a dynamo mechanism within the
disk creates a jet later on Christie et al. (2019).

One reliable constant in post-merger studies of BHNS systems
is that a large fraction∼(15–50)% of the boundmatter remaining
around the black hole after the disruption of a neutron star
is ejected in mildly relativistic outflows. There is, however, a
wide range of outflow mechanisms. We observe early outflows
(.1 s post-merger) due to turbulent heating at the disk-tail
interface (Kiuchi et al., 2015) and in the inner regions of the
disk (Siegel and Metzger, 2017; Fernández et al., 2019), as well
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as delayed outflows due to viscous heating and recombination
of alpha-particles in the disk (Fernández and Metzger, 2013;
Christie et al., 2019; Fernández et al., 2019). The former have
highly uncertain masses, velocities and compositions, in part due
to uncertain initial conditions in the post-merger remnant, and
in part due to missing physics in the simulations (particularly
neutrino radiation transport). The latter are better understood:
they are relatively slow (v . 0.05c), and formed of ∼20–
30% protons.

As post-merger outflows in BHNS mergers have a total mass
roughly similar to that of the dynamical ejecta, they have a
large impact on the properties of BHNS-powered kilonovae.
Uncertainties in their mass (by a factor of 2–3), velocity, and
composition (neutron rich/neutron poor) are the main source
of error in the construction of theoretical models of BHNS
outflows today. A better understanding of the post-merger winds,
along with better nuclear models and improved understanding
of the heating rate of merger outflows (Barnes et al., 2016),
are critical to the production of reliable kilonova models for
BHNS binaries. Currently, models either ignore the post-merger
ejecta (Kawaguchi et al., 2016), take only some of the post-merger
outflows into account (Barbieri et al., 2020), or suffer from large
uncertainties due to our lack of understanding of the post-merger
ejecta (Andreoni et al., 2019; Coughlin et al., 2019).

Finally, let us comment briefly on our understanding of BHNS
binaries as engines for SGRBs. Relativistic jets have now been
produced in simulations of BHNS merger (Paschalidis et al.,
2015; Ruiz et al., 2018)4 and/or of their post-merger remnant
disks (Siegel and Metzger, 2017; Christie et al., 2019). We also
know that the properties of the jet depend on the large scale
structure of the post-merger magnetic field. However, connecting
that large scale structure to the pre-merger properties of the
system remains an important unsolved problem. It is unclear
whether observations or simulations will first constrain the
magnetic field structure of the remnant of a BHNS merger. At
the moment, the most reliable information that comes from the
joint observation of a SGRB and GW signal from a BHNS binary
is that the neutron star was disrupted.

5. DISCUSSION

With the advent of GW astronomy, the study of BHNS mergers
is undergoing a rapid transformation. More efforts are now
being directed toward the modeling and interpretation of multi-
messenger observations of binary mergers. It has also become
clear that the study of BHNS systems suffers from significant

4“Jets” here are outflow regions with large Poynting flux, that cannot reach Lorentz
factor of more than a few due to the limits of existing merger simulations.

complications when compared with BNS systems: statistical
uncertainties in the individual masses of the merging compact
objects make it difficult to unequivocally characterize a GW event
as a BHNS binary, and many BHNS binaries likely involve high-
mass and/or low-spin black holes for which the neutron star
plunges whole into the black hole, preventing the emission of
detectable post-merger EM signals.

To make optimal use of the available observational data,
reliable models of the GW and EM signals powered by
BHNS binaries are required. On the GW side, a number
of models including finite-size effects for BHNS and/or BNS
systems have been developed (Lackey et al., 2014; Bernuzzi
et al., 2015; Hinderer et al., 2016; Dietrich et al., 2017; Nagar
et al., 2018). Before merger, these models agree with numerical
simulations of BHNS binaries within current numerical errors,
except in the most extreme cases tested so far (Foucart
et al., 2019). Models for the impact on the GW signal
of the disruption of the neutron star have more room to
improve: they remain only order-of-magnitude accurate, and
typically limited in their coverage of the BHNS parameter
space (Lackey et al., 2014; Pannarale et al., 2015).

On the EM side, a first model combining information
from SGRBs and kilonovae was recently developed by Barbieri
et al. (2020), adding to a previously developed model for the
kilonova signals powered by the dynamical ejecta of BHNS
mergers (Kawaguchi et al., 2016). Existing models remain
however limited by our lack of understanding of post-merger
outflows, as well as by nuclear physics and radiation transport
uncertainties (Barnes et al., 2016). In particular, the large scale
structure of magnetic fields within and outside of the post-
merger accretion disk is not, at this point, well-constrained
by merger simulations, despite its large impact on post-merger
outflows and on the properties of SGRBs (Christie et al., 2019).
To make optimal use of upcoming multi-messenger observations
(or even non-detections), it is thus important to develop
improved kilonova and SGRB models, and properly characterize
model uncertainties.
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Only a few years after the first detection of gravitational waves from coalescing

stellar-mass black holes, the field of gravitational-wave astronomy is now firmly

established after the detection of several more. These discoveries have opened up

a new window onto the universe, which allows us to probe gravity and astrophysics

in some of the most extreme environments in the universe. The detection and, in

particular, the subsequent inference of the binaries’ properties rely heavily on theoretical

models of the signals. In this review, we first discuss the techniques used to model

the gravitational-wave signals from coalescing black holes, before we summarize the

observations made to date. We conclude with a brief outlook onto the prospects for

binary black hole observations in the future.

Keywords: gravitational waves, compact binaries, black holes, modeling, observations

1. INTRODUCTION

The first detection of gravitational waves (GWs) from the coalescence of two stellar-mass black
holes (BHs) in 2015 by the Advanced LIGO GW-detectors (Abbott et al., 2016d) marked the
beginning of a new area: GW astronomy. Since then, more than ten binary black hole (BBH)
mergers have been identified (Abbott et al., 2019c, 2020; Nitz et al., 2019a; Venumadhav et al.,
2019a). First predicted in the 1910s by Einstein’s General Theory of Relativity (GR) (Einstein,
1915, 1918), the hunt for these perturbations of spacetime itself spanned many decades and was
ultimately enabled by tremendous technological and theoretical advances.

Stellar mass BBHs with a total mass between one and a few hundred solar masses, are
prime GW sources for the currently operating ground-based interferometric GW detectors
Advanced LIGO (Aasi et al., 2015) and Virgo (Acernese et al., 2015) as well the Japanese detector
KAGRA (Akutsu et al., 2019), set to join the global GW detector network shortly. These detectors
are sensitive to GWs with frequencies between 10 Hz to a few kHz. In order to detect GWs in
lower frequency bands, such as from the collisions of supermassive black holes in the centers of
galaxies, the Earth’s seismic wall needs to be overcome, which will be achieved with space-based
GWmissions expected to commence operation in the next decade.

The observation of GWs from inspiralling BBHs provides us with a unique means to study black
holes, allowing us to perform precision tests of GR in the high-curvature, strong-field regime and
shedding light on the astrophysical origin and nature of entire populations of black holes.
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Schmidt Gravitational Waves From Binary Black Holes

Gravitational waves from BBHs carry characteristic
information about the astrophysical properties of the BHs,
such as their masses and spins. These properties can be inferred
via Bayesian inference (Bayes, 1764) by using highly accurate
general-relativistic waveform models, which describe the last
stages of the gravitationally-driven BBH evolution: the inspiral,
the merger and the ringdown of the remnant black hole.
This allows us to constrain the mass and spin distributions of
stellar-mass black holes, which has implications for their possible
formation history, and put constraints on the rate of such merger
events in the universe.

In this review, we will first summarize the current avenues of
modeling GWs from binary black holes (section 2), then discuss
the current status of observations (section 3), before concluding
with a very brief outlook onto the future of BBH GW astronomy
in section 4.

2. MODELING BINARY BLACK HOLES

Compact binaries, such as two black holes, on quasi-spherical
orbits, lose orbital energy due to the emission of GWs, which
causes their orbital separation to shrink until the two black holes
plunge, merge and, in General Relativity, form a Kerr black
hole. Intrinsically, a BBH is characterized by seven parameters:
the mass ratio, q = m1/m2 ≥ 1, where m1 ≥ m2,
and the two (dimensionless) spin angular momenta Eχ1 and
Eχ2. We note that the total mass M = m1 + m2 of the
binary is not relevant intrinsically but determines the GW
frequency in physical units and is therefore relevant for detection.
Moreover, for astrophysical black holes one commonly assumes
charge neutrality.

Two black holes in orbit undergo a purely gravitationally-
driven evolution, which is characterized by three distinct stages:
the inspiral, the merger and the ringdown of the remnant black
holes. The emission of gravitational radiation causes the orbital
separation to shrink. If the spin angular momenta of the two
black holes are (anti-)parallel to the orbital angular momentum
of the binary motion, the orbital motion is confined to a two-
dimensional plane whose orientation is fixed in time. In this case,
the emitted GW signal is the characteristic chirp signal, a wave
with monotonically increasing amplitude and frequency until the
merger is reached. An example of such a waveform is shown in
Figure 1. The largest amount of radiation is emitted along the
direction of the orbital angularmomentum (O’Shaughnessy et al.,
2011; Schmidt et al., 2011), and the signal is well-described by the
dominant (quadrupole) harmonic, h22.

Any misalignment between the spins and the orbital angular
momentum, however, induces relativistic precession effects,
which cause the orbital plane to change its spatial orientation
as the binary evolves (Apostolatos et al., 1994; Kidder, 1995).
This more complex dynamics is directly reflected into the
emitted GW signal, which, depending on the relative orientation
w.r.t. the observer, can show strong amplitude and phase
modulations (Apostolatos et al., 1994; Kidder, 1995; Schmidt
et al., 2012). Further, due to the time-dependent orientation of
the binary, the quadrupole approximation may no longer be
sufficient to describe the radiation and higher-order harmonic
modes need to be taken into account.

Due to the lack of analytic solutions of the general relativistic
two-body problem, the dynamics and the corresponding GW
signal must be approximated using a variety of analytic and
numerical techniques. During the inspiral stage, where the orbital
separation between two black holes is much larger than their
extent, the BHs can be treated as point particles and their
motion as well as the GW signal can be described using the
post-Newtonian (PN) formalism. At small separations, however,
the PN approximation is no longer valid and the Einstein field
equations must be solved numerically to obtain the late-time
dynamics and GW signal. In GW data analysis applications,
such as matched-filter searches (Allen et al., 2012; Usman et al.,
2016; Messick et al., 2017; Nitz et al., 2017; Venumadhav et al.,
2019b) and Bayesian inference (Veitch et al., 2015; Zackay et al.,
2018; Biwer et al., 2019), semi-analytic models with a continuous
dependence on the binary parameters are most commonly used.
This requires the smooth connection between PN and numerical
relativity results. We briefly summarize the main modeling
strategies below.

2.1. Post-Newtonian Theory
The post-Newtonian (PN) formalism is an approximation to
GR valid in the slow-motion, weak-field regime (see Blanchet,
2014 and references therein for an extensive review). It is
well-suited for describing the motion of compact binaries
and their GW emission in the inspiral regime. In PN
theory, relativistic corrections to the Newtonian solution are
incorporated systematically order-by-order in the expansion
parameter ǫ = v2/c2, where v is the orbital velocity and c the
speed of light. The PN formalism starts to break down when the
orbital velocity of the black holes becomes comparable to the
speed of light, i.e., v ∼ c. At this point, one requires numerical
solutions to the Einstein field equations.

2.2. Numerical Relativity
Solving the general relativistic two-body problem in its
full generality was considered the holy grail of numerical
relativity (NR) for many decades. It is only possible since the
breakthroughs in 2005 (Pretorius, 2005; Campanelli et al., 2006b;
Baker et al., 2007) to simulate two merging black holes and
obtain the GW signal emitted in the highly dynamical, non-linear
merger regime. Since the initial breakthroughs, the simulations
of BBHs have become a standard tool in GW astrophysics, with
ever improving accuracy and also aided by faster compute cores.
To date thousands of NR simulations across the BBH parameter
space have been performed (Mroue et al., 2013; Husa et al.,
2016; Jani et al., 2016; Boyle et al., 2019; Healy et al., 2019),
but the sampling is still very sparse mainly due to the high
computational cost. Moreover, large mass ratio (q ≥ 20) and
high spin magnitudes (| Eχi| ≥ 0.9) pose particularly challenging
problems that are yet to be overcome.

Since the initial breakthrough in 2005, significant progress
has been made: While the first successful simulations were those
of equal-mass non-spinning BBHs spanning only the last few
orbits, today simulations of aligned-spin as well as precessing
quasi-circular binaries, eccentric-orbit binaries (Sperhake et al.,
2008; Gold and Brügmann, 2013; Lewis et al., 2017; Hinder et al.,
2018; Huerta et al., 2019; Ramos-Buades et al., 2020), and even
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FIGURE 1 | The gravitational waveform of a non-spinning 30+ 30M⊙ binary black hole at a distance of 400 Mpc generated from the phenomenological waveform

model IMRPhenomX (Pratten et al., 2020b). The top panel shows the frequency-domain GW strain starting at 10 Hz when viewed face-on. The vertical dashed lines

indicate three characteristic frequencies: the frequency of the innermost stable circular orbit (fISCO), the minimal energy circular orbit (fMECO) and the ringdown

frequency (fRD). The bottom panel shows the corresponding time-domain GW, where the smaller right panel shows a close-up of the last few inspiral cycles, the

merger, and ringdown waveform.

evolutions that are long enough to reach into the early-inspiral
regime (Szilágyi et al., 2015) are performed. Today, several
codes based on different numerical techniques and formulations
are capable of stably evolving BBHs and extracting their GW
signal (Campanelli et al., 2006a; Scheel et al., 2006; Sperhake,
2007; Vaishnav et al., 2007; Brügmann et al., 2008; Loffler et al.,
2012; Babiuc-Hamilton et al., 2019).

Numerical relativity does not only provide the waveform
through merger but also for the ringdown. The quasi-
normal mode spectrum emitted during this last stage of
the binary evolution is analytically described by black hole
perturbation theory (Teukolsky, 1973; Kokkotas and Schmidt,
1999). While the analytic prescription provides the mode
frequencies and mode damping times (Berti et al., 2006),
it does not provide the amplitude of the waves. Numerical
relativity simulations, on the other hand, provide this crucial
information, which, in combination, allows for the construction
of parameter space fits (Kamaretsos et al., 2012; London et al.,
2014).

The merger-ringdown waveforms obtained from NR are a
key ingredient in the construction and verification of accurate
waveform models used in GW data analysis. These applications,
however, often require a continuous sampling across the
parameter space, hence semi-analytic models or interpolants are
paramount. In current analyses, waveforms from three families
are most commonly employed: effective-one-body waveforms,
phenomenological waveforms, and NR surrogates.While the first
two paradigms model the complete inspiral-merger-ringdown
(IMR) signal, NR-based surrogates are commonly restricted to a
few GW cycles before the merger, the merger, and the ringdown.

2.3. Effective-One-Body
The effective-one-body (EOB) formalism combines information
from the test particle limit as well PN results to obtain a complete
description of the two-body dynamics as well as the IMR GW
signal (Buonanno and Damour, 1999, 2000). It is based on a
Hamiltonian map of the conservative dynamics of the two bodies
to an effective one-body prescription, where a test particle with
the reduced mass µ of the two-body system moves in an effective
Kerr background spacetime characterized by the total mass M,
the symmetric mass ratio η and the total spin ES:

H = M

√

√

√

√1+ 2η

(

Heff

µ
− 1

)

. (1)

The EOB prescription requires that the test particle limit reduces
to the motion of a particle in a Kerr spacetime and that the
EOB Hamiltonian reduces to the PN Hamiltonian in the weak-
field, slow-motion limit. While the Hamiltonian encapsulates the
inspiral dynamics, one additionally requires a prescription for
the calculation of the GWs and the radiation reaction forces as
well as a smooth transition to the ringdown of a perturbed black
hole. The radiative degrees of freedom are described by factorized
waveforms, which include a calibration to NR simulations.
We note that the EOB formalism is inherently time-domain
and requires solving a system of coupled ordinary differential
equations, which makes the waveform generation rather costly.

The EOB waveform family includes highly accurate
quadrupolar models for non-spinning and aligned-spin
binaries (Bohé et al., 2017; Nagar et al., 2018), NR-calibrated
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extensions to higher-order harmonics (Cotesta et al., 2018; Nagar
et al., 2020a,b), and extensions to precessing BBH (Pan et al.,
2014; Ossokine et al., 2020). Recently, extensions to include
eccentric motion have been presented (Cao and Han, 2017;
Hinderer and Babak, 2017).

2.4. Phenomenological Waveforms
The phenomenological framework takes a different approach:
The focus here is exclusively on modeling the IMR GW signal
itself without providing equations of motions for the BH
dynamics (Ajith et al., 2007). The aim is to provide a fast-
to-evaluate, closed-form expression of the GW signal in the
frequency domain by splitting the signal into an amplitude and
a phase, assuming the following schematic form:

h̃(f ; Eλ, Eθ) = Ã(f ; Eλ)ei9̃(f ;Eθ), (2)

where Eλ are (phenomenological) parameters in the amplitude
and Eθ in the phase respectively.

The amplitude and phase are modeled separately, where each
part is subdivided into three regions: the inspiral (fGW ≤ fMECO,
where MECO denotes the minimum-energy circular orbit), an
intermediate region and the ringdown. The inspiral is modeled
based on analytic PN information augmented with an artificial
extension (pseudo PN terms), which are calibrated to analytic,
e.g., EOB, results. The intermediate region, which governs the
merger phase, is modeled as a polynomial, while the ringdown
is well-described by a deformed Lorentzian. These latter two
regions are calibrated to NR information. For further details
see (Santamaría et al., 2010; Khan et al., 2016; Pratten et al.,
2020b).

Phenomenological waveform model are constructed in the
frequency domain, which makes them computationally fast
to evaluate and hence particularly attractive for data analysis
applications. We emphasize, however, that the validity range
of any NR-calibrated waveform model depends strongly on the
calibration region, which, due to the lack of NR simulations
for q ≥ 10, is limited. The most recent waveform family,
PhenomX (Garcia-Quiros et al., 2020; Pratten et al., 2020b),
also includes extreme mass-ratio information which allows for a
smooth evaluation up to q ≃ 1,000 (Harms et al., 2016), although
the accuracy of waveforms between 19 ≤ q ≤ 1,000 cannot
be assessed. The current Phenom waveform families include
aligned-spin models with and without higher-order modes as
well as precessing ones (Hannam et al., 2014; Khan et al., 2019;
Pratten et al., 2020a). An example of the IMR waveform of an
equal-mass non-spinning BBH in the both the frequency and the
time domain is shown in Figure 1.

2.5. Numerical Relativity Surrogates
In recent years it has become possible to produce thousands of
NR simulations for restricted parameter ranges. These relatively
short waveforms can then directly be used to construct an NR-
based interpolant, i.e., a surrogate model, across a (limited)
volume of the binary parameter space (Field et al., 2014;
Blackman et al., 2017; Varma et al., 2019a,b). Such NR-based
surrogates are considered the most accurate merger models but

due to their restrictions in length and parameter space coverage,
their usage is currently limited.

2.6. Gravitational Self-Force
While moderate to high mass ratio NR simulations remain a
challenge, and therefore limit the accuracy of NR-calibrated
waveform models in this regime, in the extreme mass ratio
limit (q ≥ 104) and possibly even the intermediate mass ratio
regime (q ∼ 100), a perturbative approach, often referred to as
gravitational self-force (GSF), can be used to obtain an accurate
approximation (see Poisson et al., 2011; Barack and Pound, 2019
for detailed reviews). Recent progress has seen the first second-
order calculations (Pound et al., 2020), which will be crucial in
order to fulfill the waveform accuracy requirements for future
ground- and space-based GW observations of intermediate and
extreme mass ratio binary black holes (Berry et al., 2019).

3. OBSERVATIONS OF BINARY BLACK
HOLES

The first observation of GWs from a coalescing BBH by the
Advanced LIGO – Virgo detector network, GW150914, in
September 2015, marked the beginning of the GW discovery
era. The LIGO Scientific and Virgo Collaborations have
since announced a total of eleven confident detections
of GWs from merging BBHs (Abbott et al., 2019c):
GW150914 (Abbott et al., 2016d), GW151012 (Abbott et al.,
2016b), GW151226 (Abbott et al., 2016c), GW170104 (Abbott
et al., 2017a), GW170608 (Abbott et al., 2017b), GW170729,
GW170809 (Abbott et al., 2019c), GW170814 (Abbott et al.,
2017c), GW170818, GW170823 (Abbott et al., 2019c), and most
recently GW190412 (Abbott et al., 2020). Moreover, several tens
of BBH candidates have been identified in the currently ongoing
third observing run (LIGO Scientific, Virgo Collaboration).
Independent analyses of the publicly available GW strain
data (LIGO Scientific Collaboration, Virgo Collaboration, 2018)
have claimed the detection of additional eight binary black
hole events (Nitz et al., 2019a; Venumadhav et al., 2019a;
Zackay et al., 2019): Nitz et al. (2019a) reported GW170121,
GW170304, GW170727, and GW151205; Venumadhav et al.
(2019a) and Zackay et al. (2019) also reported GW170121,
GW170304, GW170727 as well as GW151216, GW170202,
GW170403 and GW170425. These observations allow us to
put GR to the test in the strong-field regime (Abbott et al.,
2016e, 2019d; Yunes et al., 2016), probe the astrophysics
of black holes in previously unexplored mass regimes and
shed light on the possible formation scenarios of black holes
(Abbott et al., 2016a, 2019b).

The majority of GW events was identified via matched
filtering (Sathyaprakash and Dhurandhar, 1991; Allen et al.,
2012), the optimal method to extract GW signals from
compact binary coalescences from noise, by comparing GR-based
waveform models (see section 2) to the data. Very high-mass
short-duration signals have also been identified by unmodeled
searches (Klimenko et al., 2016), i.e, searches that do not rely on
waveforms models but rather look for generic features.
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The black hole binaries observed through GWs to date
span a wide range of total masses from just under 20M⊙ for
GW170608 (Abbott et al., 2017b), to more than 100M⊙ for
GW151205 (Nitz et al., 2019a)1 at the 90% credible level as shown
in Figure 2. In particular, the heavier black holes have masses not
previously seen in x-ray binaries (Corral-Santana et al., 2016),
and they raise interesting questions regarding their possible
formation process and history such as secondarymergers (Gerosa
and Berti, 2017). So far, no black holes in either the lower
mass gap between observed neutron star and BH masses (Özel
et al., 2010; Farr et al., 2011), and the upper mass gap due
to pair instability supernovae (Woosley, 2016; Marchant et al.,
2018), have been identified. Further, most BBH observations
are consistent with equal mass or marginally unequal mass
binaries (Abbott et al., 2019c; Nitz et al., 2019a; Venumadhav
et al., 2019a) but recently, the first BBH with an asymmetric mass
ratio (q ∼ 0.28) has been reported (Abbott et al., 2020).

Placing precise constraints on the spins of the black holes
is more difficult with the best measured spin parameter being
χeff, a mass-weighted linear combination of the dimensionless
spin components along the orbital angular momentum direction
L̂ (Racine, 2008; Ajith et al., 2011),

χeff = (m1 Eχ1 +m2 Eχ2) · L̂
m1 +m2

. (3)

The majority of observations is consistent with χeff = 0 at the
90% credible level as shown in Figure 2, with the exceptions
of: GW151226 (Abbott et al., 2016c), GW170729 (Abbott et al.,
2019c), GW190412 (Abbott et al., 2020), GW151216, and
GW170403 (Venumadhav et al., 2019b; Zackay et al., 2019).
It should be noted, however, that the latter two events were
analyzed under different spin prior assumptions. A recent re-
analysis suggests that the χeff-values reported in Venumadhav
et al. (2019b) and Zackay et al. (2019) for those two events may
not be robust (Huang et al., 2018).

The individual black hole spin magnitudes are more difficult
to constrain due to the strong dependence of the GW phase
on χeff. However, a few observations find a net positive spin
in the binary, implying that at least one of the two BHs
must have a positive, non-zero spin angular momentum.
Misalignment between the orbital angular momentum and
the black holes spins induces relativistic precession, which
is directly reflect into the GW signal (Apostolatos et al.,
1994; Kidder, 1995). The observation of such precessional
signatures is considered to be of key importance for
distinguishing different BBH formation channels (Mandel
and O’Shaughnessy, 2010; Rodriguez et al., 2016; Stevenson
et al., 2017): BBHs formed in the field are expected to have
predominantly aligned spins (Kalogera, 2000), while BBHs
formed dynamically in dense environments are expected to
have a more isotropic spin distribution (Rodriguez et al., 2016).
In the GW observations made to date, spin misalignment
remains unconstrained but it is anticipated that future

1We note that this event is considered marginal. The most significant high-mass
BBH discovered to date is GW170729 (Abbott et al., 2019c).

FIGURE 2 | Inferred total source-frame masses and effective inspiral spin of

BBH observations. The error bars indicate the 90% credible interval of the 1D

posterior probability. Blue square markers: Ten BBH events from

GWTC-1 (Abbott et al., 2019c); purple square marker: GW190412 (Abbott

et al., 2020); green triangular markers: events from Zackay et al. (2019) and

Venumadhav et al. (2019a); red round marker: event GW151205 from Nitz

et al. (2019a). Posterior samples were obtained from LIGO Scientific

Collaboration, Virgo Collaboration (2018), Nitz et al. (2019b), Venumadhav

et al. (2019c), and Abbott et al. (2020). The conversion from detector-frame to

source-frame masses assumes a flat 3CDM cosmology (Ade et al., 2016).

observations will yield the first concrete measurements
of precession.

Gravitational waves from merging black holes are a unique
probe of GR in the strong-field high-curvature regime, and
hence these observations can be used to test their consistency
with the predictions from GR (Berti et al., 2015). Due to the
absence of complete IMR waveforms derived in alternative
theories of gravity2, we cannot directly test the validity of GR
by comparison against these other theories but can perform
a variety of consistency tests. One possibility is to introduce
ad hoc parameterized modifications to the GR waveforms,
representing either modifications in the strong-field regime or
the wave propagation (Yunes and Pretorius, 2009; Mirshekari
et al., 2012; Agathos et al., 2014; Berti et al., 2018b; Abbott
et al., 2019d). One can then determine to which degree
the inferred values of these modifications agree with the
values predicted by GR. For binaries where the complete
IMR signal is observed, one can further test the consistency
of the inferred final mass and spin of the remnant black
hole with the parameters inferred from the low- and high-
frequency regimes of the signal (Hughes and Menou, 2005;
Ghosh et al., 2016a,b). A detector network with non co-
aligned detectors allows us to investigate the presence of
additional polarization states as predicted in some alternative
metric theories of gravity (Eardley et al., 1973; Corda, 2009).

2Although recent progress has beenmade in simulating BBHmergers in alternative
theories of gravity (Okounkova et al., 2019; Witek et al., 2019) and there is also
ongoing effort in deriving inspiral waveforms (Sennett et al., 2016), which allow
for concrete tests of alternative predictions beyond all-violations encompassing
parameterized tests.
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Current observations show significant preference for purely
tensor polarizations over purely scalar or vector polarizations
respectively (Abbott et al., 2017c, 2019d). To date, all tests
of GR using BBHs yield results that are consistent with
GR. For current observations, the limits on deviations from
GR are dominated by the statistical uncertainty due to the
detector noise. Improved detector sensitivities will allow for
these constraints to tighten but the impact of systematic
modeling errors, such as the neglect of eccentricity (Moore
and Yunes, 2020), must be carefully taken into account
(Berti et al., 2015).

4. OUTLOOK

The observation of GWs from coalescing black holes has opened
a new window onto the electromagnetically dark universe. The
observations to date have already revealed the existence of black
holes in previously unexplored mass regimes and have allowed
us to perform the first tests of GR in a novel regime. The next
generation of ground-based facilities will be significantly more
sensitive than current detectors (Punturo et al., 2010; Reitze et al.,
2019), allowing for even tighter measurements of black hole
masses and spins, and probing the existence of stellar mass black
holes throughout the history of the universe. Moreover, future
observations will enable us to perform black hole spectroscopy
by measuring individual quasi-normal modes (Berti et al., 2006,
2018a), probe the Kerr nature of astrophysical black holes and
constrain parameterized deviations from GR in the strong-field
regime to unrivaled precision (Sathyaprakash et al., 2012). Recent
progress has been made calculating gravitational waveforms in
alternative theories of gravity, which will allow for concrete tests
of predictions beyond all-violations encompassing parameterized
tests as are performed at the moment.

The detection of hundreds of BBH will allow for the cross-
correlations between the GW signals and galaxy catalogs will

allow for an independent, precise measurement of Hubble
constant H0 (Abbott et al., 2019a), which can help shed
light on the current tensions between early-time and late-time
cosmological probes (Verde et al., 2019).

Furthermore, observing the mergers of BBHs throughout the
history of the universe will allow us to probe fundamental physics
at a range of energy scales (Barack et al., 2019; Barausse et al.,
2020). Intermediate mass black holes, in particular, have the
potential to provide us with important evidences as to what the
nature of dark matter may be (Eda et al., 2015; Bertone et al.,
2019).

Planned space-based missions such as LISA will see a fraction
of stellar mass BBHs that will later be detected by ground-
based observatories while they are still in the early inspiral
stage, enabling multi-band GW astronomy and providing early-
warnings to both GW and electromagnetic observatories (Sesana,
2016). This will allow us to pin-point telescopes and detect any
coincident electromagnetic emission.

Gravitational-wave science has already delivered key
insights into the nature and astrophysics of black holes
and future observations will continue to nurture and
improve our understanding of these fundamental objects in
the universe.
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Short Duration Gamma-Ray Bursts
and Their Outflows in Light of
GW170817
Davide Lazzati *

Department of Physics, Oregon State University, Corvallis, OR, United States

The detection of GW170817, it’s extensive multi-wavelength follow-up campaign, and the
large amount of theoretical development and interpretation that followed, have resulted in a
significant step forward in the understanding of the binary neutron star merger
phenomenon as a whole. One of its aspects is seeing the merger as a progenitor of
short gamma-ray bursts (SGRB), which will be the subject of this review. On the one hand,
GW170817 observations have confirmed some theoretical expectations, exemplified by
the confirmation that binary neutron star mergers are the progenitors of SGRBs. In
addition, the multimessenger nature of GW170817 has allowed for gathering of
unprecedented data, such as the trigger time of the merger, the delay with which the
gamma-ray photons were detected, and the brightening afterglow of an off-axis event. All
together, the incomparable richness of the data from GW170817 has allowed us to paint a
fairly detailed picture of at least one SGRB. I will detail what we learned, what new
questions have arisen, and the perspectives for answering them when a sample of
GW170817-comparable events have been studied.

Keywords: gamma-ray bursts, relativistic astrophysics, hydrodynamics, gravitational waves, binary mergers,
transient sources

1 INTRODUCTION

Gamma-ray bursts (GRBs) are some of the most energetic explosions in the present day Universe,
characterized by the release of large amounts of energy, within a few milliseconds to tens of seconds,
resulting in the acceleration of relativistic outflows and the release of high-energy photons (Fishman
and Meegan, 1995; Piran, 1999; Mészáros, 2002; Gehrels et al., 2009; Kumar and Zhang, 2015). They
can be divided in at least two classes, based on the duration of their prompt phase, in which their
emission is concentrated in the hard X-ray and gamma-ray bands and is characterized by fast
variability (Kouveliotou et al., 1993). Long duration GRBs last 2 s or more, while short duration
GRBs (SGRBs) last between a few milliseconds and 2 s. Alternative classifications have also been
introduced, considering, e.g., short GRBs with extended emission (Norris and Bonnell, 2006;
Dainotti et al., 2010; Norris et al., 2010; Barkov and Pozanenko, 2011; Dainotti et al., 2017), or
attempting a more physical classification based on inferred progenitor properties (Lü et al., 2010;
Bromberg et al., 2013).

In the last two and a half decades, the study of GRBs has concentrated on long duration GRBs, and
a general consensus has grown around a model in which these events are associated with the collapse
of the core of massive stars (Woosley and Bloom, 2006). While the collapse of most massive stars
would ignite a core-collapse supernova, those that are fastly spinning and metal poor could
also trigger a long duration GRB, powered by a compact central engine (Woosley, 1993;
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Woosley and Heger, 2006; Yoon et al., 2006). Whether the central
engine is a fastly spinning, highly magnetized neutron star (NS)
(Bucciantini et al., 2008; Bucciantini et al., 2009; Metzger et al.,
2011) or an accreting black hole (BH) (Woosley, 1993; Lee et al.,
2000; Lei et al., 2013) is the matter of open debate.

The interest on SGRBs had increased in the last decade,
initially as a consequence of the launch of the Fermi satellite,
which had a higher efficiency for detecting and localizing them
compared to its predecessors (Meegan et al., 2009). More
recently, the theoretical expectation that SGRBs had to be
associated with the merger of binary NS systems (or, perhaps,
system made by a BH and a NS) (Belczynski et al., 2006; Lee
and Ramirez-Ruiz, 2007; Fong and Berger, 2013; Giacomazzo
et al., 2013; Ruiz et al., 2016; Ciolfi, 2018) has made them the
expected and highly anticipated high-frequency counterparts
of gravitational wave sources (Nakar et al., 2006; Kiuchi et al.,
2010; Schutz, 2011). Such expectations were supported by
energetic and temporal arguments. Powering a GRB
requires a large amount of energy, comparable to the rest
mass of a stellar object converted to energy. In addition, said
energy needs to be released in a matter of a fraction of a second,
at least for SGRBs. Naked compact objects (NS and BH) are the
only available candidates that can offer the required energy
within a region of less than a light second. However, isolated
NS and BH are unlikely progenitors, since some catastrophic
event needs to take place to cause the sudden release of a large
fraction of their total energy. Binary mergers are therefore a
natural candidate, when at least one of the two members is a
NS, since a binary BH system would merge in a bigger BH that
would swallow all the matter and energy, instead of ejecting
them as a relativistic outflow.1

All these expectations were confirmed by the detection of
GW170817 (Abbott et al., 2017a) and its associated GRB

GRB170817A (Abbott et al., 2017b; Goldstein et al., 2017;
Savchenko et al., 2017; Zhang et al., 2018), afterglow, and
kilonova (KN) (Abbott et al., 2017c; Abdalla et al., 2017;
Alexander et al., 2017; Arcavi et al., 2017; Coulter et al., 2017;
Cowperthwaite et al., 2017; Evans et al., 2017; Haggard et al.,
2017; Hallinan et al., 2017; Kasen et al., 2017; Kim et al., 2017;
Margutti et al., 2017; Pian et al., 2017; Siebert et al., 2017; Smartt
et al., 2017; Soares-Santos et al., 2017; Tanvir et al., 2017;
Troja et al., 2017; Valenti et al., 2017; D’Avanzo et al., 2018;
Margutti et al., 2018; Mooley et al., 2018a; Mooley et al., 2018c;
Lyman et al., 2018; Resmi et al., 2018; Villar et al., 2018; Ghirlanda
et al., 2019; Lamb et al., 2019a). In this contribution I will review
the key observations of GW170817 as a SGRB (also known as
GRB170817A), the questions that were answered, and the new
ones that were spurred, and briefly discuss what more insight is
expected from the detection of more systems akin to GW170817
in future GW observing runs.

2 BEFORE THE PROMPT EMISSION

In this Section 1 will review the physics of the SGRB outflow
before the prompt emission phase begins, as it happened in
GW170817. First of all, there is little doubt that the GW
signal of GW170817 came from a binary compact merger, and
that the masses of the two compact objects are compatible with
being NS (Abbott et al., 2017a; Abbott et al., 2017b; Abbott et al.,
2017c). The GW signal by itself does not allow to distinguish
between NSs and BHs, but the richness of the electromagnetic
signal that followed requires the presence of baryonic matter, and
therefore at least one of the two components of the binary had to
be a NS. Most likely they were both NSs (Coughlin and Dietrich,
2019).

2.1 The Time Delay
Besides the identification of the progenitor, a very important
piece of information that GW170817 provided is the merger time,

FIGURE 1 | The two possible timelines with all the phases that may contribute to the detected delay ΔtGW−c. Due to the presence of a structured outflow,
GW170817 most likely followed the top timeline. The relative contribution of the various phases is a matter of debate, but consensus is growing around Δtwind <Δtjet ≪ 1
s, Δtbo ≪ 1 s, Δtc ∼ 0, and Δtph ∼ ΔtGW−Γ. The meaning of all the symbols is explained in Section 2

1Some have suggested, however, that even binary BH mergers could produce a
weak electromagnetic transient, under certain conditions (Perna et al., 2016; Liu et
al. 2016; Zhang, 2016).
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which allowed for the measuring of the time delay between the
GWs and the gamma-ray signals. This delay, which we indicate as
ΔtGW−c can be due to several reasons, as detailed below and shown
in Figure 1 (Granot et al., 2017; Lin et al., 2018; Zhang, 2019;
Lazzati et al., 2020; Lucca and Sagunski 2020).

• Engine Delay—While the time of the merger is the earliest
time at which the jet from the central engine can be
produced, there is the possibility of some delay (Cook
et al., 1994; Lasota et al., 1996; Vietri and Stella, 1998;
Ciolfi and Siegel, 2015). Such delay is difficult to predict
theoretically but can be likely due either to the need of a
transition in the engine itself or to the need of amplifying the
magnetic field to a value large enough to launch a jet. The
former can be quite long, up to years, and usually invokes a
metastable, fastly spinning NS that collapses into a BHwhen
its rotation period is increased by either internal or external
torques. We indicate this delay time as Δteng.

• Wind Delay—Owing to the detection of a KN and an off-
axis SGRB from a structured outflow, we know that
GW170817 ejected a non-relativistic wind. There can be
a delay in launching such a wind as well, and we indicate it
as Δtwind. It should be noted, however, that this delay can in
principle be negative since the NS surfaces are tidally
shredded in the last few orbits before the merger.

• Breakout delay—If the wind is ejected before the jet, then
the jet has to propagate through the wind. The propagation
happens at sub-relativistic speed, causing a delay of the head
of the jet with respect to the GW signal that travels at the
speed of light (Matzner, 2003; Morsony et al., 2007;
Bromberg et al., 2011; Lazzati and Perna, 2019). We
indicate the time it takes for the jet head to cross the
wind as Δtbo. The jet-wind interaction also causes the
development of a cocoon (Ramirez-Ruiz et al., 2002),
confined by the surrounding wind. This leads to the
development of a structured outflow that maintains a
bright core but develops wide, energetic wings at large
polar angles (Lazzati et al., 2017a; Lazzati et al., 2017b).

• Photospheric delay—After the outflow has broken out of the
leading edge of the wind, it needs to propagate out to the
photospheric radius. At this point the jet becomes
transparent and the necessary conditions for the release
of the prompt gamma-ray radiation are met. We indicate
the delay due to the propagation from the break out radius
to the photospheric radius as Δtph.

• Dissipation delay—While at the photospheric radius the
prompt emission can be radiated, it does not mean it is. In
some models, such as the popular internal shock synchrotron
model, the outflowneeds to propagate out to the internal shock
radius before the bulk energy of the flow is dissipated and
turned into radiation. We indicate this additional delay as Δtc.

For the first time, a measurement of the sum of all these possible
delays was available for GW170817 (Abbott et al., 2017b). The
prompt gamma-ray radiation was detected with a delay
ΔtGW−cx1.75 s. Several attempts have been made to constrain the
various individual contributions, but a general consensus has not been

achieved (Shoemaker and Murase, 2018; Gill et al., 2019b; Beniamini
et al., 2020a; Hamidani et al., 2020). A few robust inferences can
however be made (Lazzati et al., 2020). Overall, the measured delay
was fairly small, since GW170817 ejected a significant amount of
energy toward the observer but its Lorentz factor could be at most
moderate (Γ< 7) (Beniamini et al., 2020b). These combine to a large
photospheric radius and a photospheric delay

Δtph ∼
Rph

cΓ2 � 1.4
Rph

2 × 1012 cm
(7Γ)

2

s (1)

The photospheric delay therefore had to contribute to a sizable
part of the delay, since any other non-photospheric emission
mechanism would require a longer delay (this allows to use the
above equation to put a Lower limit on Γ (Beniamini 2020a). The
wind delay, if there was any, had to be smaller than the jet delay,
so that the jet-wind interaction could generate a structured
outflow, as requested for modeling the afterglow emission. For
the same reason, the jet delay itself could be fairly small but could
not be null. Finally, the breakout and dissipation delays had to be
small in order to accommodate the large expected photospheric
delay. Note, however, that the prompt emission spectrum had a
non-thermal shape, a property that is not expected form a simple
photospheric emission model (see Section 3 for a more thorough
discussion).

2.2 The Shaping of the Outflow
GW170817 was also the first GRB for which evidence of a
structured outflow could be unequivocally determined. The
structure of the outflow could be intrinsic, as the jet itself could
have been launchedwith a non-uniformpolar structure (Aloy et al.,
2005; Kathirgamaraju et al., 2019). However, the relatively large
energetics of GW170817 in gamma-rays and the shape of its
afterglow lightcurve (see Section 4) suggest a wide structure,
most likely brought about by the jet interaction with the wind
from the merger (Lazzati and Perna, 2019; Salafia et al., 2020).

A typical SGRB jet with isotropic equivalent energy Eiso � 1053

erg and asymptotic Lorentz factor η � 100 has a baryon rest mass
M0 � Eiso/ηc2 ∼ 10−4M⊙. If it encounters a wind mass
Mwind ≥M0/η ∼ 10−6M⊙ it is shocked and the velocity of
propagation of its head is slowed until the working surface of
the jet head is in causal contact, allowing for the wind material
and the shocked jet material to move to the side instead of
accumulating in front of the jet and thereby slowing it down
(Matzner, 2003; Morsony et al., 2007; Bromberg et al., 2011;
Lazzati and Perna, 2019). As a consequence, a high-pressure
cocoon inflates around the jet, composed by partially mixed jet
and wind material. As the jet breaks out of the wind leading edge,
the cocoon loses the confining effect of the wind material and is
released. Since it has large pressure, it accelerates creating a broad
structure around the jet with decreasing energy and Lorentz
factor for increasing polar angle. This process therefore turns
a collimated jet into a structured outflow. It requires a small wind
mass that is well below the expected amount of baryons ejected in
a binary NS merger. The cocoon structure can be studied
analytically, by enforcing pressure balance between the jet,
cocoon, and wind material at their respective contact surfaces,
or through numerical simulations. Despite its importance for
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predicting burst/merger observability and understanding the
structure and composition of the merger wind and jet, the
polar profile of the outflow is highly debated. Analytic
functions ranging from Gaussian, power-law, and exponential
have been tested, and even numerical simulations do not provide
an unequivocal answer (Murguia-Berthier et al., 2014; Nagakura
et al., 2014; Lazzati et al., 2017b; Murguia-Berthier et al., 2017a;
Murguia-Berthier et al., 2017b; Duffell et al., 2018; Granot et al.,
2018a; Wu and MacFadyen, 2018; Xie et al., 2018; Geng et al.,
2019; Gill et al., 2019a; Kathirgamaraju et al., 2019; Hamidani
et al., 2020; Hamidani and Ioka, 2020; Murguia-Berthier et al.,
2020; Takahashi and Ioka 2020a; Takahashi and Ioka 2020b).

3 THE PROMPT EMISSION

Approximately 1.75 s after the GW chirp, a gamma–ray pulse was
observed by both the Fermi and INTEGRAL satellites from a
position compatible with the direction from which the GWs
arrived (Goldstein et al., 2017; Savchenko et al., 2017). The
pulse was made by an initial spike of about half a second
followed by a broader, less intense tail, for an overall duration
of ∼ 2 s. Two characteristics make this gamma-ray pulse different
from the population of previously observed SGRBs: it is markedly
less energetic than an average cosmological SGRB and, given its
energetics, it has a very high peak frequency (Fong et al., 2015). As a
matter of fact, the detection itself was surprising because the chance
of having a SGRB jet pointing along the line of sight for the first
GW-selected binary merger was expected to be small (Metzger and

Berger, 2012; Ghirlanda et al., 2016). That is because the amplitude
of the GWs depend only mildly on the orientation of the binary,
while the intensity of the radiation from a narrow, relativistic jet
drops quickly for any line of sight outside the jet itself. Such an
expectation was based, however, on the properties of a narrow jet
and not on the possibility that the jet-wind interaction would cause
a structured outflow to form. Predictions from models with
structured outflows had indeed shown that, for moderately large
off-axis angles, a detectable signal would be expected from a GW-
detected merger (Lazzati et al., 2017a; Lazzati et al., 2017b). A
similar effect might be responsible for X-ray flashes, when a long
duration GRB is seen off-axis (Yamazaki 2020, Yamazaki 2003).

The structured outflowmodel was successful at predicting that
a SGRB would be detectable even at large off-axis angles (Lazzati
et al., 2017a; Lazzati et al., 2017b). It correctly predicted the off-
axis burst energetics and its duration. It could also successfully
explain the detected delay between the GWs and the γ-rays. A
comparison between the Fermi data and the bolometric
photospheric emission (Lazzati et al., 2017b) is shown in the
left panel of Figure 2. The one aspect of GW170817 that cannot
be accounted for by the simple photospheric cocoon emission is
the γ-ray spectrum of the prompt emission. At least in first
approximation, the photosphere of an off-axis structured outflow
is expected to produce a thermal pulse with temperature (Lazzati
et al., 2017a; Lazzati et al., 2017b)
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FIGURE 2 | Left panel (A): the prompt emission of GW170817. The blue step-line shows the Fermi data (Goldstein et al., 2017), while the orange solid line is the
prediction from a theoretical simulation that assumes a structured outflow from the jet-wind interaction (Lazzati et al., 2017b). The radiation is assumed to be released at
the photosphere.Right panel (B): Afterglow of GW170817. Symbols with error-bars show observations in the radio, optical, and X-ray bands. Solid lines show the best
fit result for an afterglow model with a structured outflow and an observer located at θo � 35° from the line of sight. Additional data at different radio frequencies
were used to constrain the model, but only two radio bands are shown for clarity. Adapted from Makhathini et al. (2020).
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which would produce a spectrum peaked at a few KeV, in
severe tension with the observed peak frequency at ∼ 150 keV
(Goldstein et al., 2017). This is due to the fact that the cocoon,
which energized the outflow at large off axis, is not expected to
be radially structured, and therefore no significant dissipation
is expected to occur around the photospheric radius,
differently from the photospheres of long GRBs (Lazzati
et al., 2009; Parsotan et al., 2018). One possible explanation
is that the prompt radiation was due to an external shock
(Veres et al., 2018). However, given the low Lorentz factor and
low interstellar medium densities expected in the surroundings
of GW170817, the timing of the prompt emission, less than 2 s
after the launching of the jet, is difficult to explain.
Alternatively, the prompt emission could be due to the
breakout of the cocoon from the leading edge of the wind
(Kasliwal et al., 2017; Bromberg et al., 2018; Gottlieb et al.,
2018; Nakar et al., 2018). The shock breakout model can
explain the energetics and spectrum of the prompt emission
(Nakar and Sari, 2012) but requires a finely tuned setup in
which the wind is very fast, so that it can reach a large enough
radius at the breakout time. The origin of the prompt emission
spectrum is therefore not been explained in a completely
satisfactory way, yet (Kisaka et al., 2018; Meng et al., 2018;
Pozanenko et al., 2018; Ioka and Nakamura, 2019; Matsumoto
et al., 2019). The observation of more SGRBs from GW-
detected mergers will offer further observational constraints
to shed light on this remaining riddle.

4 THE AFTERGLOW

The afterglow of GW170817 had its own share of unique features. To
begin with, it was not detected for more then a week, until it was
bright enough to be seen first in X-rays (Margutti et al., 2017; Troja
et al., 2017) and, at around the two weeks mark, in radio waves
(Hallinan et al., 2017; Troja et al., 2017). The detection of the
afterglow at optical wavelengths had to wait for the dimming of
the associated KN, and was performed only around day 110 with the
Hubble Space Telescope (Lyman et al., 2018). Such late appearance
of an afterglow is unprecedented, since the typical behavior is that the
afterglow peaks very early, minutes to hours after the burst, and only
dims with time afterward (van Paradijs et al., 2000; Nousek et al.,
2006). A second unique feature of the afterglow of GW170817 was
that, even after it was detected, it sustained a slow brightening at all
wavelengths (Margutti et al., 2017; Mooley et al., 2018c; Ruan et al.,
2018; Troja et al., 2019b), eventually peaking ∼ 150 days after the
GWdetection and dropping in luminosity steeply afterwords (Dobie
et al., 2018; Makhathini et al., 2020) (see the right panel of Figure 2).

The outflow from GW170817 along the direction toward
Earth was under-energetic by a factor 10,000 to 100,000 times
with respect to a typical SGRB (Fong et al., 2017). An
outstanding question was therefore whether GW170817 had
a misaligned, SGRB-like jet pointing in a different direction or
not (Lazzati et al., 2018; Mooley et al., 2018a; Salafia et al.,
2018). If it did, then the identification of the SGRB progenitors
with binary NS mergers would be secured. If did not, then what
GW10817 was associated with would be a new class of dim,

possibly isotropic, γ-ray transients. Unfortunately, telling
whether a misaligned relativistic jet is present is not easy,
since all the radiation is relativistically beamed away from the
line of sight. The slow but steady brightening was shown to be
consistent with the presence of a jet, its energy contribution
along the line of sight growing with the deceleration of the
external shock (Xiao et al., 2017; De Colle et al., 2018; Finstad
et al., 2018; Granot et al., 2018b; Lamb and Kobayashi, 2018;
Lazzati et al., 2018; Nakar et al., 2018; Fraija et al., 2019a; Fraija
et al., 2019b; Beniamini et al., 2020b; Oganesyan et al., 2020).
However, a radially stratified spherical outflow could
reproduce the observations as well, albeit at the price of
adding a never observed before component to the models
(Li et al., 2018; Mooley et al., 2018c; Nakar et al., 2018;
Nakar and Piran, 2018; Salafia et al., 2018). Some evidence
in favor of a jet was provided by the steep post-peak decay at all
wavelengths (Alexander et al., 2018; Jin et al., 2018; Lamb et al.,
2018; Mooley et al., 2018b; Nynka et al., 2018; Fong et al., 2019;
Hajela et al., 2019). In addition, it was soon realized that either
a relatively large linear polarization (Gill and Granot, 2018) or
a small but detectable proper motion of the radio transient
could potentially give the final clue. Both observations were
carried out. Polarization turned out to be small (Corsi et al.,
2018), and only an upper limit of 12 per cent was obtained, still
consistent with either explanation. Long baseline radio
interferometry turned out to be the key. In one experiment,
a small but significant proper motion was detected (Mooley
et al., 2018a), while in a second experiment the radio source
was confirmed to be point-like (Ghirlanda et al., 2019). Both
these characteristics are incompatible with a spherical
expansion. In the future, the detection of the counter-jet
emission might give additional evidence (Yamazaki 2018).

To date, despite the very high quality of the available data,
the unique afterglow of GW170817 can be modeled
successfully with the good old external shock synchrotron
model (Mészáros and Rees, 1997; Sari et al., 1998), with the
only required addition of considering off-axis observers
(Granot et al., 2002) and allowing for some structure in the
polar direction (Lazzati et al., 2017b; Lazzati et al., 2018). The
type of polar stratification is not univocally constrained, since
Gaussian, power-law, and exponential profile seem all to give
an adequate fit to the data (Lazzati et al., 2018; Troja et al.,
2018a; Xie et al., 2018; Ghirlanda et al., 2019). Numerical
simulations are also ambiguous, different codes yielding
different polar structures, including the three mentioned
above (Murguia-Berthier et al., 2014; Nagakura et al., 2014;
Lazzati et al., 2017b; Murguia-Berthier et al., 2017a; Murguia-
Berthier et al., 2017b; Duffell et al., 2018; Granot et al., 2018a;
Wu and MacFadyen, 2018; Xie et al., 2018; Geng et al., 2019;
Gill et al., 2019b; Kathirgamaraju et al., 2019; Hamidani et al.,
2020). Constraints can be obtained from the lack of a large
populations of cosmological off-axis bursts (Beniamini
2019). More observations and further theoretical work are
needed to pin down this important aspect that has
implications not only on the detectability of bursts but
also on the nature of the inner engine and the
composition of the ejected jet and wind.
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5 SUMMARY, DISCUSSION, AND A LOOK
AT THE FUTURE

GW170817 was a rich event, a cornerstone detection in our
understanding of SGRBs. It confirmed that binary NSmergers are
the progenitor of at least some short bursts, it showed us that the
top-hat jet model is woefully inadequate for describing the
relativistic outflows of SGRBs (and possibly long duration
GRBs as well) and it gave us, for the first time ever, a measure
of the trigger time and of the delay between the launching of the
jet and the detection of the prompt emission radiation.

We now know that the burst associated with GW170817 was a
fairly canonical SGRB (Salafia et al., 2019), with a powerful
relativistic jet that, after interacting with the merger wind,
turned into a structured outflow (Lazzati et al., 2017b; Lazzati
et al., 2018). Our line of sight lied somewhere between 15° and 35°

away from the jet axis, the lower value obtained by high resolution
radio imaging (Mooley et al., 2018c; Ghirlanda et al., 2019), while
the larger value being favored by multi-band afterglow modeling
and ejecta considerations (Lazzati et al., 2018; Mandel, 2018; Zou
et al., 2018). The prompt emission was powered by an energetic
cocoon inflated by the interaction of the jet with the merger wind.
The gamma-ray radiation was likely released at or near the
photosphere, either by a shock breakout (Nakar and Sari,
2012; Kasliwal et al., 2017; Gottlieb et al., 2018) or by other
non-thermal mechanisms (Savchenko et al., 2017; Veres et al.,
2018). The external shock developed later than usual due to the
lower than customary Lorentz factor of the outflow along the line
of sight and the afterglow was unusual, characterized by an initial
increase in luminosity that lasted for a fewmonths before peaking
and beginning a steep declining phase. This behavior is understood
to be due to the structure of the outflow, characterized by a polar
stratification with a steep decline as a function of angle in both the
energy per unit solid angle and the Lorentz factor.

Despite the large amount of observational evidence that
allowed us to paint a detailed picture of the dynamic of the
relativistic ejecta of GW170817 and their electromagnetic
signatures, some questions remain open. First, we do not
know the nature of the compact object that launched the
relativistic jet. It could have been either a meta-stable NS or
a BH, and consensus in this respect hasn’t been reached (Piro
et al., 2019; Metzger et al., 2018; Pooley et al., 2018; Abedi and
Afshordi, 2019). A related mystery is the origin of the observed

1.75 s delay between the GW and the prompt emission. As
discussed in Section 2.1 the delay is the sum of many
components and it is unclear which dominates, or if several
of them have comparable magnitude. Since the photospheric
delay is strongly dependent on the viewing angle, observation
of several SGRBs from a diverse set of angles will help better
understand the origin of the delay. Still unclear is also the
physics of the dissipation that powered the prompt emission
and the prompt emission mechanism itself. Shock breakouts,
internal dissipation such as internal shocks, and even external
shocks have been proposed (see Section 3).

Finally, we still do not know how typical GW170817 was. The
fact that most likely it originated from a binary NS merger does
not exclude the possibility that some—if not most—SGRB are
made in NS-BH mergers. It might even be that GW170817 itself
was a NS-BH merger (Coughlin and Dietrich, 2019; Kyutoku
et al., 2020). Re-analysis of several past bursts have yielded some
support the presence of kilonovae in their light curves (Troja
et al., 2018b; Beniamini et al., 2019; Lamb et al., 2019b; Troja
et al., 2019a) or similarities in their prompt emission (Burns
2018, von Kienlin 2019), showing that GW170817 was not
unique. However, there might be cases in which the jet is not
successful in breaking out of the wind leading edge, and a
weaker transient would be produced (Kasliwal et al., 2017;
Mooley et al., 2018c; Salafia et al., 2018). Future GW
detections with the power of multimessenger observations
will allow to better understand the connection between
binary NS mergers, binary NS-BH mergers, and SGRBs.
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The Physics of Kilonovae
Jennifer Barnes*

Department of Physics and Columbia Astrophysics Laboratory, Columbia University, New York, NY, United States

The science returns of gravitational wave astronomy will be maximized if electromagnetic

counterparts to gravitational-wave sources can be identified. Kilonovae are promising

counterparts to compact binary mergers, both because their long timescales and

approximately isotropic emission make them relatively easy to observe, and because

they offer astronomers a unique opportunity to probe astrophysical heavy-element

nucleosynthesis and merger-driven mass ejection. In the following, I review progress

in theoretical modeling that underpinned advances in our understanding of kilonovae

leading up the first detection of a neutron star merger, GW170817. I then review the

important lessons from this event and discuss the challenges and opportunities that

await us in the future.

Keywords: gravitational wave astronomy, kilonovae, kilonovae: TNS 2017 gfo, DLT17ck, SSS17a, r-process

nucleosynthesis, neutron star binaries

1. INTRODUCTION

Multi-messenger astronomy refers to the revolutionary possibility of combining electromagnetic
(EM) and gravitational-wave (GW) observations to gain new insight into astrophysical phenomena.
In the current era of ground-based gravitational-wave detectors, the mergers of compact objects—
black holes (BHs) and neutron stars (NSs)—are the systems most accessible to multi-messenger
astronomy, and their routine observation promises to teach us more about stellar binary evolution,
dynamics in the strong gravity regime, the production and evolution of astrophysical jets, the NS
equation of state (EOS), and the origin of the heavy elements. Among mergers’ EM counterparts,
“kilonovae,” radioactively-powered, quasi-isotropic transients that shine at optical and infrared
wavelengths and evolve on timescales of days to weeks, are unique in their ability to shed light
on merger-driven mass ejection and nucleosynthesis.

2. BACKGROUND ON R-PROCESS TRANSIENTS

The idea that compact object mergers produce radioactively-powered EM emission in addition to
gravitational wave signals is rooted in the realization [1–3] that mergers could synthesize unstable
nuclei whose decays would power an electromagnetic transient [4].

More specifically, the partial disruption of a NS in a NS2 or NSBH merger produces a neutron-
rich outflow capable of assembling a broad range of heavy, unstable nuclei via rapid neutron
capture, or the r-process. As first outlined by [5] and [6], the r-process occurs in explosive
environments featuring a high flux of free neutrons, which allows successive captures of free
neutrons onto light seed nuclei on timescales shorter than typical β-decay lifetimes. This drives
the composition of the gas toward heavy, neutron-rich regions of the chart of the nuclides, in many
cases close to the neutron drip line. When neutron capture ceases, the newly-born nuclei decay
toward stability, producing an abundance pattern with characteristic peaks around mass numbers
A = 82, 130, 196. The stable and long-lived daughters account for about half of the elements in the
Periodic Table more massive than Iron.
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FIGURE 1 | The impact of nuclear physics and astrophysical uncertainties on

predicted r-process abundances. The reference case (black curve) was

calculated using the FRDM mass model [15] for a low-entropy, neutron-rich

gas. Every other curve differs from the reference case in only one way. The

orange curve shows the impact of decreasing the expansion time, while the

purple curve demonstrates the much stronger effect of raising Ye. The

influence of the choice of nuclear mass model is illustrated by the light blue

curve. Scaled solar r-process abundances from [16] are plotted as

black diamonds. This figure was adapted from Figure 1 of [17] with

permission from J. Barnes.

The complexity of r-process nucleosynthesis allows for
variation in the final abundance pattern. While a lack of relevant
experimental data (e.g., nuclear masses and neutron-capture
cross sections) for many nuclei involved in the r-process present
a challenge for theoretical r-process simulations [7, 8], even if
nuclear physics uncertainties were eliminated, abundance yields
would still be sensitive to conditions when nucleosynthesis
begins. Traditionally [9, e.g.], gasses with the potential to undergo
an r-process have been parametrized in terms of three variables:
expansion timescale (τexp), entropy per baryon (sB), and initial
electron fraction (Ye), which is defined as the number of protons
per baryon and quantifies the relative number of free neutrons
available to build up heavy nuclei.

The final abundance pattern depends on the interplay of all
these factors [e.g., [10]]. However, for conditions expected for
compact object mergers (i.e., neutron-rich, low-entropy gasses),
abundances appear from simulations to be particularly sensitive
to Ye, with Ye ≈ 0.25 emerging as a threshold above which
the r-process fails to burn nuclei beyond the second r-peak
[11, 12]. Such a truncated r-process is termed a “light” r-process,
as opposed to the “heavy” r-process, which takes place under very
neutron-rich conditions and synthesizes stable and semi-stable
nuclei up to A ∼ 260. In a merger, the NS material that forms
the expanding gas is very neutron rich [13], and will remain so
unless weak-current interactions are strong enough to push the
composition toward a more moderate Ye [14]. The potential for
r-process variability is illustrated in Figure 1.

The role of r-process nucleosynthesis and decay in generating
EM signals associated with compact object mergers was first

discussed by [4], who derived the earliest theoretical model of r-
process-powered transient emission. Since this groundbreaking
work, the community has undertaken increasingly detailed
studies of all the major parameters governing the nature of r-
process transients, from the energy supplied by the r-process,
to the ejected mass, to the optical properties of r-process atoms
and ions.

3. KEY PARAMETERS

While detailed computational models are required to fully
explain the evolution of radioactive astrophysical transients,
the basic character of these systems are functions of a few
physical parameters whose relationships to the emission can be
understood from basic physical principles.

In simple (semi-)analytic models [à la, [18]], a transient’s
luminosity peaks when the expansion time t equals the timescale
for photons to diffuse through the ejecta, tdiff ∝ (Mejκ/v)1/2,
where Mej and vej are the mass and characteristic velocity
of the ejecta, respectively, and κ is its effective opacity. The
luminosity at peak is roughly equivalent to the instantaneous
rate at which radioactive decay is heating the ejecta. This
correspondence reappears on the tail of the light curve, when the
ejecta is mostly transparent and the luminosity directly reflects
radioactive heating. Consideration of the above reveals that the
energy released (per unit mass) in the radioactive decays of r-
process nuclei is a crucial determinant of kilonova emission, as
are themass, velocity, and opacity ofmerger-driven outflows. The
effects of these parameters on kilonovae’s bolometric light curves
are presented in Figure 2.

3.1. R-Process Heating and Radioactivity
The dominant decay channel for unstable r-process nuclei is β-
decay [(Z,N) → (Z+1,N−1); 20], which emits high-energy
β-particles, neutrinos, and γ -rays. In most realizations of the
r-process, select nuclei will also undergo α-decay ((Z,N) →
(Z−2,N−2)) and fission, releasing energy in the form of more
massive α-particles and fission fragments. [17, 21–23]. These
suprathermal particles and photons transfer heat the ejecta as
they interact with it, and the thermal photons produced by the
heated gas diffuse outward to form the light curve. The emerging
luminosity, as well as the relationship between luminosity and
ejected mass, depend both on the rate at which the r-process
produces energy and the efficiency with which that energy is
converted to thermal photons.

When [4] constructed the first kilonova models, they treated
the overall normalization of energy from r-process decay as a free
parameter proportional to the rest mass energy of the ejected
material. In other words, the sum of all the energy released
from radioactivity was taken to equal fMejc

2, with f allowed to
vary. Despite this simplification, their model of the r-process
uncovered what turned out to be a robust feature of r-process
radioactivity. By assuming the lifetimes τ of decaying nuclei were
evenly distributed logarithmically and ignoring the correlation
between τ and decay energy, Li et al. [4] calculated that r-process
decay should release energy like Ėrad ∝ 1/t. More rigorous
calculations using full r-process nuclear reaction networks [20,
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FIGURE 2 | Toy-model bolometric kilonova light curves, similar to those of [19], illustrating the effects of ejecta mass (left), velocity (middle), opacity (right) on

emission. R-process heating has been approximated as a simple power law with ζ = 1.3. In the middle and right panels, Mej is set to 0.01M⊙. The value of κeff is 10

cm2 g−1 in the left and middle panels, and vej is 0.2c in the left and right panels. Thermalization has been estimated from the numerical results of [17].

24, 25] as well as more robust analytic treatments [26] modified
this picture, finding that, when heating is dominated by the β-
decays of a broad ensemble of nuclei, the energy production
is well-approximated by a steeper power-law, Ėrad ∝ t−ζ

with ζ = 1.2− 1.4.
However, while power-law heating is a useful model,

uncertainties in r-process calculations resulting from
unmeasured quantities, as well as the sensitivity of the r-
process to its astrophysical environment, leave room for
variability in nucleosynthesis and decay, and therefore Ėrad.
In particular, the behavior of Ėrad is likely to deviate from a
power-law if α-decay or fission becomes dominant over β-decay,
or if only a small number of nuclei are contributing to the
heating [22, 23, 27].

More detailed nuclear calculations also revealed the absolute
scale of the energy released by r-process decay, allowing [20] to
predict that the peak luminosity of transients from NS2 mergers
would be about a thousand time brighter than a classical nova,
motivating the term “kilonova.”

Metzger et al. [20] was also the first to estimate the fraction
of the energy from r-process decay able to effectively heat the
gas (the “thermalization fraction”). More detailed numerical
work on thermalization was carried out by [17], who found that
thermalization increased for denser ejecta configurations, lower-
energy decay spectra, and radioactivity profiles that favored α-
decay or fission relative to β-decay. These themes were revisted in
[28]. Later analytic work [27, 29], showed that thermalization also
depends on how the decay spectrum and Ėrad evolve with time.
The potential variation in r-process heating [see e.g., [23]], and
the sensitivity of the thermalization efficiency to that variation,
suggest that further detailed numerical studies may be useful

for understanding the true allowed range of kilonova heating
and luminosity.

3.2. Mass Ejection
There are three main channels through which merging compact
objects ejecta mass [see reviews by [30, 31]]. All produce an
outflow neutron rich enough to support at least a light r-process.

High-velocity tidally shredded outflows are produced during
the final stages of inspiral when a NS is disrupted by the
differential gravitational field of its binary companion. While
the quantity of ejected mass depends on the NS EOS (less
compact EOSs are more easily shredded) as well as the mass
ratio of the binary and the spins of the component stars
[32–35], it is generally expected to be small [∼10−4M⊙; [36,
37]] for a NS2 merger, though it can be substantially larger
(∼0.1M⊙) for a NSBH merger provided the NS disrupts outside
the innermost stable circular orbit [38, 39]. Tidal shredding
produces a cold, low-entropy outflow with an abundance
of free neutrons. It is therefore expected to undergo a
robust r-process with nucleosynthesis beyond the third peak
[e.g., [13]].

In contrast, dynamically squeezed matter is subject to enough
weak interactions to inhibit the synthesis of the heaviest elements.
Dynamical squeezing occurs when merging NSs finally collide
[36, 37, 40]. The violence of the collision expels material from
the contact interface via shocks, which accelerate the resulting
outflow to high velocities and heat it to high temperatures,
allowing the production of thermal electron/positron pairs and
neutrinos. Absorption of these particles then raises the Ye of the
gas [41, 42].

Frontiers in Physics | www.frontiersin.org 3 October 2020 | Volume 8 | Article 35551

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Barnes Kilonovae

The mass of this component increases with NS compactness
[36], since NSs with smaller radii make contact at a smaller
separation, and therefore a higher velocity, leading to more
energetic collisions capable of unbinding more matter (this
trend holds only up to a point; mass ejection is minimal if
the colliding NSs are compact enough to collapse promptly
to a BH [43], though mass asymmetry can offset this
effect [37]).

Some simulations [36, 44] suggest that, in certain cases, this
outflow will feature a high-velocity, low-mass (∼ 10−5M⊙) tail
of material whose rapid expansion hinders neutron capture,
resulting in a composition dominated by lighter nuceli and
leftover free neutrons [21]. Under such conditions, the free-
neutron decay could power a short-lived transient peaking on
timescales close to the free-neutron half life [45].

The most robust mass ejection channel may be winds from

accretion disks surrounding themergers’ central remnants (CRs).
In NSBH mergers, the disk is formed from disrupted NS matter
that remains gravitationally bound. For NS2 mergers, the primary
source of disk material is a NS CR, which pushes material
off its surface as it transitions from differential to solid-body
rotation [46] (The prompt collapse of a CR therefore inhibits disk
formation for NS2 mergers.) Disk material is unbound through
some combination of viscous heating [47], magnetic turbulence
[48], α-recombination [49], and ν-absorption [50, 51].

The effect of weak interactions on the disk composition is
uncertain, and likely depends strongly on the CR.While a central
NS would be strong source of neutrinos [e.g., [52]], a central
BH would not be; in the latter case, weak interactions in the
disk would be limited to those driven by thermal neutrinos and
positrons produced by the disk itself [53]. Many studies [48, 54,
55] have found that, for a BH CR, the accretion disk regulates
its composition to a low Ye, though the exact distribution of Ye

appears to be sensitive to the neutrino transport method adopted
[e.g., [56]].

As with other mass ejection methods, the mass of the disk
(and therefore the disk wind) depends on the binary parameters
and NS EOS [e.g., [40]]. Less compact NS EOSs produce more
massive disks, and therefore more massive disk outflows. The
EOS also affects the composition (at least for NS2 mergers) by
controlling the fate of the CR, and the exposure of the disk to
neutrino irradiation [57–59].

3.3. Opacity
The distinct compositions burned in the various outflows
generated in NS2 and NSBH mergers have major effects on
kilonova emission because the composition of the gas determines
the opacity of the ejecta, which in turn influences the light curve
and the spectral energy distribution (SED).

As the gas expands, it cools to temperatures (∼few ×103 K)
that support low levels of ionization. Under these conditions,
the dominant source of opacity is bound-bound (“line”) opacity
[60]. In the bound-bound regime, the absorption of photons
by atoms results not in ionization, but in the excitation of its
bound electrons to a higher-energy configuration. While the
probability that any particular absorption will occur is a function
of the many-body quantum mechanics governing the absorbing

atom, the effective continuum opacity depends on the number
of opportunities for a photon of a given energy to suffer an
absorption—i.e., on the density of moderate to strong lines in
wavelength space.

Determining bound-bound opacity is particularly challenging
for r-process compositions, since there is limited experimental
data on energy levels and absorption probabilities for many of
the species burned by the r-process. Nevertheless, general trends
can be deduced from simple heuristics. First, the more unique
species are present in a composition, the greater the number of
lines, and the higher the opacity. Second, and more significantly,
the presence of atomic species with a high degree of complexity
(i.e., with a greater number of distinct electronic configurations)
will increase opacity.

Atomic complexity is a function of the size of an atom’s
valence electron shell. A valence shell that accommodates a
larger number of electrons allows for more distinct electronic
configurations; each configuration has a slightly different energy,
so the net effect is a greater number of energy levels, more
transitions between energy levels, and a higher opacity [see
e.g., [61]]. This picture has been borne out both by available
experimental data [62] and by atomic structure calculations,
with groups using different atomic structure modeling codes all
finding a striking increase in opacity as valence shell size increases
[61, 63, 64].

The relationship between atomic complexity and opacity
has profound implications for kilonovae. Lanthanides and
actinides are the most complex elements in the Periodic
Table. These species have a high number of closely spaced
energy levels, resulting in an abundance of low-energy bound-
bound transitions and a high opacity that extends out into
the near infrared (NIR). While lanthanides and actinides are
easily synthesized by the heavy r-process, they are produced
in negligible quantities in a light r-process event [11, 12]. The
opacity of the kilonova ejecta—and the color of its emission—
therefore depend sensitively on the nucleosynthesis that took
place in its ejecta.

As first explained in [65], the high opacity of a lanthanide-
rich (heavy r-process) ejecta delays and dims the light curve
peak, while the extreme density of lines at optical wavelengths
pushes the emission redward, causing the spectrum to peak in
the NIR [see also [62]]. Of course, not all outflows from compact
object mergers will undergo a heavy r-process. Light r-process
compositions, will have a lower opacity. The emission associated
with these outflows will have a faster rise; a sharper, brighter light-
curve peak; and an SED concentrated at blue/optical wavelengths,
similar to the original predictions of [20].

Kilonova emission may be due to a combination of signals
from multiple outflows characterized by different histories of
nucleosynthesis: a “red” component associated with a lanthanide-
rich outflow, and a “blue” component from a composition that
failed to burn lanthanides [58, 65]. The outcome of the r-process
is closely tied to the manner of mass ejection and, in the case
of disk winds, the nature or lifetime of the CR. The presence
or relative prominence of red or blue kilonova components can
therefore reveal the mass ejection mechanisms at play, and even
shine an (indirect) light on the NS EOS.
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4. LESSONS FROM GW170817

The theory outlined above was established before a compact
object merger was definitively detected, but was corroborated
by the first such detection. On August 17, 2017, the LIGO*-
Virgo network picked up a signal consistent with the inspiral
of a merging neutron star binary [66]. A spatially-coincident
short-gamma ray burst was observed contemporaneously [67–
69], increasing confidence in the signal and triggering a
worldwide search by observational astronomers for a radioactive
counterpart, which was soon identified in a galaxy a mere 40
Mpc distant [70–77]. These observations yielded a wealth of
data which, in combination with theory, crystallized into a fairly
coherent picture of the post-merger system.

The bolometric light-curve evolution was consistent with an
approximately power-law injection of energy, as expected from
the decay of a large ensemble of r-process nuclei [78]. The
transient’s broadband evolution showed signs of two distinct
components, with the blue and optical bands rising to an early
peak and declining swiftly thereafter, while emission in the
redder bands evolved on a much longer (∼2 week) timescale
[e.g., [70, 72, 72, 78, 79]]. The disparate behavior at red and
blue wavelengths was interpreted by most groups [72, 80–82] to
require two separate outflows [but see [83]]: a lanthanide-poor
one driving the early blue component, and a lanthanide-rich one
powering the extended red and NIR emission.

Since long-lived red emission is difficult to explain without
invoking the uniquely high opacity of the lanthanides and
actinides produced in abundance by the heavy r-process [84,
85], the broadband light curves confirmed that GW170817 had
indeed triggered r-process nucleosynthesis, and that its optical
counterpart was in fact a kilonova.

The identification of kilonova spectral features with particular
r-process ions would further corroborate this conclusion, and
early work on GW170817 demonstrated the promise of such
an approach. For example, [86] linked one feature of the
kilonova spectrum to singly-ionized Strontium, thus claiming
the first detection of an individual r-process element in an
electromagnetic transient. Future studies of kilonova spectra will
increase confidence in such identifications and improve our
ability to constrain compositions from spectral analysis.

In the meantime, kilonova spectra encode information critical
for a rigorous reconstruction of the outflow(s) that produced
their electromagnetic emission. The spectrum of the GW170817
kilonova was originally dominated by a smooth blue blackbody
[73, 87–89], which was replaced after a few days by pseudo-
blackbody peaking in the NIR and exhibiting broad absorption
features [74, 90]. While the dramatic shift from blue to
redder wavelengths is consistent with the kilonova’s broadband
evolution, the spectrum provided additional information on the
velocities of the outflows associated with each component of the
emission. The lack of features in the blue spectrum suggested
velocities high enough to smooth out any absorption lines, vej ∼
0.3c [e.g., [73, 80]]. In contrast, the broad absorption troughs in
the red spectrum indicate a slower outflow with vej ∼ 0.1c.

The combination of spectral and photometric data suggested
that the merger launched a high-velocity, lanthanide-poor

outflow in addition to a lower-velocity outflow rich in
lanthanides. Some authors [e.g., [80, 85, 87]] have attributed
the “blue” component to shock-heated, dynamically “squeezed”
ejecta. However, the mass required to explain the luminosity
(Mblue ≈ 0.01M⊙) is higher than predicted by numerical
relativity simulations [36, 37, 41, 91], motivating others to
consider alternate scenarios [92, 93].

The kilonova’s red component has been somewhat more
securely associated with a wind unbound from the accretion disk
surrounding the CR. The mass (Mred ≈ 0.04M⊙ and velocity
inferred for this component are consistent with expectations
from simulations [48, 55], and the conditions in the disk are
thought to be favorable for heavy r-process nucleosynthesis as
long as the CR collapses instantly to a BH or survives for only
a limited time as a hyper- or supramassive NS [although see [56]
for an illustration of the how the treatment of neutrino transport
in disks can alter the predicted nucleosynthetis].

5. OPEN QUESTIONS AND A LOOK TO THE
FUTURE

GW170817 allowed the astronomy community to make inroads
on some of most pressing questions multimessenger astronomy
promises to help untangle. First, it demonstrated a long-
theorized [94–99] association between short gamma-ray bursts
and compact object mergers. Second, it allowed the derivation
of the first multi-messenger constraints on the NS EOS [e.g.
[100, 101]]. It also allowed an entirely original and independent
calculation of the Hubble Constant H0 [102, 103]. Finally, it
conclusively identified mergers as an astrophysical site of r-
process nucleosynthesis [70, 72, 80, 90, among many others].
However, the mysteries surrounding mergers and post-merger
phenomena are far from resolved.

One major remaining question is related to the source of
the blue kilonova component. While the emission seems to be
powered by radioactivity, the NS EOS required to produce such
a massive outflow via dynamical squeezing is seemingly too
compact to simultaneously explain the similarly high mass of
the red disk wind component. (Recall that disk wind represents
a fraction of the total disk mass, and that less compact EOS’s
favor heavier accretion disks.) Further observations of kilonovae,
especially at early times, will be instrumental in revealing the
nature of the blue component and providing additional tools for
evaluating the NS EOS [104].

A second question is the role of mergers in astrophysical r-
process production. GW170817 proved that NS2 mergers are
a site of the r-process nucleosynthesis, and simple estimates
suggest that the entire r-process content of the Universe may
originate in compact object mergers [80, 105]. However, these
arguments hinge on the (still very uncertain) merger rates and
average r-process mass per event, not to mention the largely
unconstrained contribution from NSBH mergers.

In addition to these uncertainties, there are concerns about
whether mergers can explain r-process enrichment everywhere
it is observed [106]. For example, r-process-enriched extremely
metal poor stars seem to require an early-Universe source of the
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r-process, while mergers typically occur at a delay of hundreds
of millions or even billions of years relative to star formation
[e.g., 107]. Likewise, it is difficult to explain enrichment in ultra-
faint dwarf galaxies [108] with mergers, given that the velocities
pre-merger binaries acquire when their component stars go
supernova generally exceed the low escape velocities of these low-
mass galaxies [109]. A variety of alternative r-process sites have
been proposed [110–113]; however, a complete census ofmerging
systems will clarify rates and ejected mass, and illuminate the role
of mergers in burning the heaviest elements.

Additional observations will also unveil the full diversity of
merging systems and kilonovae (this is an especially enticing
prospect given how distinct the second NS2 merger, GW190425,
was from the first [114]). Neutron star-black hole (NSBH)
mergers, which have not yet been observed, should provide
an additional source of heterogeneity, as they are expected to
produce ejecta that is more massive [32], more neutron-rich
[115], and less isotropic [39] than a typical NS2 merger. There
is also likely to be substantial diversity among kilonovae from
NSBH mergers, since mass ejection is sensitive to parameters
such as mass ratio and component star spin [e.g., [116]].
Observations of NSBHmergers and their kilonovae are therefore
crucial for documenting the full range of compact objects
mergers’ radioactively powered EM emission.

We can hope, in the next several years, to better constrain
merger rates, and to understand how merging systems are
distributed by total binary mass, mass ratio, and binary type

(NS2 v. NSBH). We can map out the relationship between
binary and kilonova parameters, a map that will become
increasingly accurate as parallel advances and theory and
nuclear physics experiment (e.g., the Facility for Rare Isotopes
Beams; [117]) allow us to more confidently infer ejected mass
from observations. We can determine how common various
components are (and we can hope to observe as-yet unseen
components, like tidal tails or neutron precursors) and assess
whether the net enrichment from these components is consistent
observed stellar r-process abundances (and variations in those
abundances). Ideally, we will develop the tools to measure or
constrain abundance yields from the spectra of individual merger
events. Our deeper understanding of kilonovae will allow us
to confidently progress on the questions—r-process origins, NS
EOS, H0—that multi-messenger astronomy is uniquely well-
poised to address.
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We review the main physical processes that lead to the formation of stellar binary black

holes (BBHs) and to their merger. BBHs can form from the isolated evolution of massive

binary stars. The physics of core-collapse supernovae and the process of common

envelope are two of the main sources of uncertainty about this formation channel.

Alternatively, two black holes can form a binary by dynamical encounters in a dense

star cluster. The dynamical formation channel leaves several imprints on the mass, spin

and orbital properties of BBHs.

Keywords: stars: black holes, black hole physics, Galaxy: open clusters and associations: general, stars:

kinematics and dynamics, gravitational waves

1. BLACK HOLE FORMATION FROM SINGLE STARS: WHERE WE
STAND NOW

About 4 years ago, the LIGO detectors obtained the first direct detection of gravitational waves,
GW150914 (Abbott et al., 2016; Abbott et al., 2016a,b), associated with themerger of two black holes
(BHs). This event marks the dawn of gravitational wave astronomy: we now know that binary black
holes (BBHs) exist, can reach coalescence by gravitational wave emission, and are composed of BHs
with mass ranging from few solar masses to∼ 50 M⊙. Here, we review the main physical processes
that lead to the formation of BBHs and to their merger. We restrict our attention to stellar-born
BHs. As to primordial BHs, which might form from gravitational instabilities in the early Universe,
we refer the reader to Carr et al. (2016) and Belotsky et al. (2019), and references therein. Before
we start discussing binaries, we must briefly summarize the state-of-the-art knowledge about
stellar-origin BHs: this is a necessary step to understand their pairing mechanisms.

Stellar-mass BHs are thought to be the final outcome of the evolution of a massive star (zero-age
main sequence mass mZAMS & 20 M⊙). Hence the mass of the BH should be affected by the two
main processes that influence the evolution of a single star: (i) mass loss by stellar winds and (ii)
the final collapse.

1.1. Stellar Winds
Hot (> 104 K) massive stars (mZAMS & 30 M⊙) lose a non-negligible fraction of their mass by
line-driven winds. This process depends on metallicity (Z): the mass-loss rate by stellar winds
can be described as ṁ ∝ Zβ , where Z is the absolute metallicity (see e.g., Vink et al., 2001 and
references therein). The most recent models suggest that β is not constant, but depends at least on
the luminosity of the star (Gräfener and Hamann, 2008; Vink et al., 2011; Chen et al., 2015): the
closer the luminosity L∗ is to the Eddington value LEdd, the higher the mass loss, basically canceling
the dependence on metallicity when L∗ & LEdd.

In single stars, stellar winds uniquely determine the final mass of the star at the onset of collapse.
If we consider a star with mZAMS = 90 M⊙ and metallicity Z = 0.02 (i.e., approximately solar), its
final mass will be only mfin ∼ 30 M⊙; while the same star with Z < 0.0002 has mfin & 0.8mZAMS.
The final mass of a starmfin is the strongest upper limit to the mass of the BH.
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1.2. Core-Collapse Supernovae
For example, Fryer (1999) and Fryer and Kalogera (2001) suggest
that if the final mass of the star is mfin & 40 M⊙, the fate of the
star is to collapse to a BH directly, without supernova, because the
binding energy of the outer stellar layers is too big to be overcome
by the explosion. Fryer et al. (2012) elaborate on these early
results proposing that themass of the compact object depends not
only onmfin but also on the final mass of the carbon-oxygen core.
Alternatively, O’Connor and Ott (2011) proposed the role of the
compactness parameter ξM = M/M⊙

R(≤M)/1000 km : if the compactness

is small (e.g., ξ 2.5 ≤ 0.2 − 0.4), the SN explosion is successful,
otherwise we expect the star to collapse directly. All of these
simplified models as well as more sophisticated ones (e.g., Ertl
et al., 2016) point toward a similar direction: if the star ends its
life with a large final mass, its carbon-oxygen core grows larger, its
compactness is generally higher, and so on. Hence, we expect that
metal-poor stars, which retain a larger fraction of their mass to
the very end and develop larger cores, are more likely to collapse
to BHs directly, producing larger BHs (e.g., Mapelli et al., 2009,
2010; Zampieri and Roberts, 2009; Belczynski et al., 2010). This
simplified picture seems to agree with observations, but must be
taken with several grains of salt: we need a vigorous step forward
in core-collapse SN simulations and theoretical models, before
we can draw robust conclusions (e.g., Burrows et al., 2018).

1.3. Pair Instability
Core-collapse SNe are not the only mechanism that can end the
life of a massive star. When the helium core of a star grows to
≥ 60 M⊙ and the central temperature reaches ∼ 109 K, electron
and positron pairs are produced at an efficient rate, leading to
a softening of the equation of state. The star undergoes pair
instability (PI, Ober et al., 1983; Bond et al., 1984; Heger et al.,
2003; Woosley et al., 2007): oxygen, neon, and silicon are burned
explosively and the entire star is disrupted leaving no remnant,
unless its helium core is ≥ 130 M⊙. In the latter case, the gravity
of the outer layers is so big that the star collapses to a massive BH
directly as an effect of PI (Heger et al., 2003). Smaller helium cores
(∼ 30−60M⊙) are associated with a less dramatic manifestation
of PI: the softened equation of state drives oscillations of the core
(pulsational PI, Barkat et al., 1967; Woosley et al., 2007; Chen
et al., 2014; Yoshida et al., 2016); during each oscillation the star
sheds some mass till it finds a new equilibrium to a lower core
mass, but leaves a BH smaller than expected without pulsational
PI (Belczynski et al., 2016a; Spera and Mapelli, 2017; Woosley,
2017, 2019; Marchant et al., 2019; Stevenson et al., 2019; Renzo
et al., 2020).

From the combination of PI, core-collapse SNe and stellar-
wind mass loss prescriptions, we expect the mass spectrum of
BHs to behave roughly as shown in Figure 1. In particular, PI is
expected to carve a gap in the mass spectrum of BHs between
∼ 50(−10,+20) M⊙ and ≈ 120 − 130 M⊙. The uncertainty
on this mass gap is mainly connected with uncertainties nuclear
reaction rates (Farmer et al., 2019), on the collapse of the residual
hydrogen envelope and on the role of stellar rotation (Mapelli
et al., 2020). Within this framework, we predict a reasonable
mass range for stellar-origin BHs to be ∼ 3 − 65 M⊙ (assuming

the most conservative value for the lower edge of pair-instability
mass gap). If exotic metal-poor stars exist with mass mZAMS >

250 M⊙, these might directly collapse to intermediate-mass BHs
(IMBHs) with mass > 100 M⊙.

2. BINARY BH FORMATION IN ISOLATION

The scenario highlighted in the previous section assumes that
the progenitor star is single. But gravitational waves have shown
the existence of BBHs with a very short orbital separation: the
initial separation of a BBH must be of the order of few ten
solar radii for the BBH to merge within a Hubble time by
gravitational-wave emission. This challenges our understanding
of binary star evolution. A close binary star undergoes several
physical processes during its life, which can completely change its
final fate (see e.g., Eggleton, 2006). The most important processes
include mass transfer and common envelope, tides and natal
kicks (Hurley et al., 2002).

Mass transfer and common envelope are crucial in this regard.
After main sequence, a massive star can develop a stellar radius
as large as several thousand solar radii. Hence, if this star is
member of a binary system and its orbital separation is of few
hundred to few thousand solar radii, the binary system undergoes
Roche lobe overflow and possibly common envelope (Ivanova
et al., 2013). If common envelope occurs between a BH and a
giant companion star, the BH and the core of the giant star orbit
about each other surrounded by the giant’s envelope: they feel
a strong gas drag from the envelope and lose kinetic energy,
inspiralling about each other. This transfers thermal energy to
the envelope, which might trigger the ejection of the envelope. If
the envelope is not ejected, the binary systemmerges prematurely
giving birth to a single BH. In contrast, if the envelope is ejected,
the final binary system is composed of the BH and the core of
the giant. Because of the spiral-in, the final semi-major axis of
the binary is just few solar radii, much smaller than the initial
one. If the naked core collapses to a BH without receiving a
strong natal kick, the system becomes a BBH with a short orbital
period, able to merge within a Hubble time. Unfortunately, our
understanding of common envelope is still poor (see Fragos
et al., 2019 for a recent simulation) and this uncertainty heavily
affects our knowledge of BBH demography. The left-hand panel
of Figure 2 is a schematic view of the isolated binary evolution
channel through common envelope.

Several alternative scenarios to common envelope have been
proposed (de Mink and Mandel, 2016; Mandel and de Mink,
2016; Marchant et al., 2016). For example, in the over-contact
binary evolution, Marchant et al. (2016) show that, when two
massive stars in a tight binary are fast rotators, they remain fully
mixed as a result of their tidally induced high spin; in this case, the
binary avoids premature merger even if it is overfilling its Roche
lobe and might evolve into a tight BBH.

The isolated binary evolution scenario has several
characteristic signatures. In the common envelope isolated
binary evolution scenario, the masses of the two BHs span from
∼ 3 M⊙ up to ∼ 45 M⊙ (see e.g., Giacobbo and Mapelli, 2018)
and the mass ratios are preferentially close to 1 (although all
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FIGURE 1 | Predicted compact object mass (Mrem) as a function of the zero-age main-sequence (ZAMS) mass of the progenitor star (MZAMS) for 11 different

metallicities, ranging from Z = 2× 10−4 to Z = 2× 10−2, as shown in the legend. The yellow area highlights the pair-instability mass gap. These models are obtained

with the SEVN population synthesis code (Spera et al., 2019), using PARSEC evolutionary tracks (Bressan et al., 2012) and the delayed model from Fryer et al. (2012).

See Spera and Mapelli (2017) for details.

mass ratios q = m2/m1 & 0.1 are possible, see e.g., Giacobbo
and Mapelli, 2018). Most processes in binary evolution tend to
produce aligned spins (e.g., Rodriguez et al., 2016), while the
magnitude of the spin is basically unconstrained (but see Qin
et al., 2018, 2019; Fuller and Ma, 2019 for some recent attempts
to quantify spins). Mass transfer episodes and gravitational-wave
decay are expected to efficiently damp eccentricity, so that
almost all isolated binaries have near zero eccentricity in the
LIGO-Virgo band. Finally, local merger rate densities span from
a few to few thousand events Gpc−3 yr−1, depending on the
details of common envelope and natal kicks (e.g., Dominik et al.,
2013; Belczynski et al., 2016b; Mapelli et al., 2017; Giacobbo and
Mapelli, 2018, 2020; Mapelli and Giacobbo, 2018; Neijssel et al.,
2019; Santoliquido et al., 2020; Tang et al., 2020). The scenarios
which include alternatives to common envelope predict an even
stronger prevalence of systems with q ∼ 1, a preferred mass
range ∼ 25 − 60 M⊙ (Marchant et al., 2016), high and aligned
spins, zero eccentricity in the LIGO-Virgo band, and long delay
times (& 3 Gyr, de Mink and Mandel, 2016). Local merger rate
densities are expected to be ∼ 10 Gpc−3 yr−1 (Mandel and de
Mink, 2016), with large uncertainties.

3. BINARY BH FORMATION IN STAR
CLUSTERS

Star clusters are among the densest places in the Universe. There
is a plethora of star clusters, with their distinguishing features:
(i) globular clusters (Gratton et al., 2019) are old (∼ 12 Gyr)
and massive systems (∼ 104−6 M⊙), (ii) nuclear star clusters
can be even more massive (∼ 107 M⊙) and lie at the center of

many galaxies, in some cases coexisting with the supersessive BH
(Neumayer et al., 2020), (iii) open clusters and young star clusters
(Portegies Zwart et al., 2010) are generally less massive (up to
∼ 105 M⊙) and short lived (less than a few Gyr), but are the main
birthplace of massive stars in the local Universe (Lada and Lada,
2003).

The central density of star clusters is sufficiently high (& 103

stars pc−3) and their typical velocity dispersion sufficiently low
(from a few to a few tens of km s−1, possibly with the exception
of nuclear star clusters) that their central two-body relaxation
time (Spitzer, 1987) is shorter than their lifetime. This has one
fascinating implication: the orbits of stars and binary stars in a
star cluster are constantly perturbed by dynamical encounters
with other cluster members. This process affects the formation
and the evolution of binary BHs in multiple ways (e.g., Portegies
Zwart and McMillan, 2000).

Dynamical Exchanges
Dynamical exchanges occur when a binary system interacts
with a single stellar object and the latter replaces one of the
members of the binary. We have known for a long time that
massive objects are more likely to acquire companions by
dynamical exchanges (Hills and Fullerton, 1980). Since BHs
are among the most massive objects in a star cluster, they are
very efficient in forming new binaries through exchanges (e.g.,
Ziosi et al., 2014).

During a three-body encounter, a binary star exchanges a
fraction of its internal energy with the third body. If the binary is
particularly tight (hard binary), such encounters tend to harden
the binary star, i.e., to increase its binding energy by reducing
its semi-major axis (dynamical hardening). In the case of a BBH,

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 3 July 2020 | Volume 7 | Article 3860

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Mapelli BBH Mergers: Formation and Populations

FIGURE 2 | Left: cartoon of isolated BBH formation through common envelope; Right: cartoon of dynamical BBH formation in star clusters.

this hardening might speed up the merger, because it drives the
semi-major axis of the BBH in the regime where orbital decay
by gravitational waves becomes efficient (see e.g., Figure 10 of
Mapelli, 2018). On the other hand, the least massive BBHs can
even be ionized, i.e., split by strong dynamical encounters with
massive intruders.

Mergers of Massive Stars
Mergers of massive stars are common in dense young star
clusters, because of the short dynamical friction timescale
(Portegies Zwart et al., 2010). Under some assumptions, these
mergers can lead to the formation of massive BHs (mBH > 60
M⊙), with mass in the pair-instability gap (Di Carlo et al., 2019a).
In star clusters, such massive BHs can acquire a companion by
dynamical exchanges, leading to the formation of BBHs in the
mass gap. A fast sequence of stellar mergers in the dense core of
a young star cluster (also known as runaway collision, Portegies
Zwart et al., 2004; Giersz et al., 2015) might even lead to the
formation of intermediate-mass BHs (IMBHs), i.e., BHs with
mass mBH > 100 M⊙, especially at low metallicity (Mapelli,
2016).

The dynamical processes we briefly summarized above (and
in the right-hand panel of Figure 2) leave a clear imprint
on BBHs. First, dynamically formed BBHs extend to higher

masses than isolated BBHs: they might even be in the pair-
instability mass gap or in the IMBH regime (Di Carlo et al.,
2019b; Rodriguez et al., 2019). Secondly, dynamical exchanges
randomize the spin direction, leading to an isotropic distribution
of BH spins. In contrast, isolated BBHs have a preference
for aligned spins (Rodriguez et al., 2016; Gerosa et al., 2018).
Third, dynamics can trigger the merger of BBHs with non-
zero eccentricity even in the LIGO-Virgo band (Samsing et al.,
2014; Rodriguez et al., 2018; Samsing, 2018; Zevin et al., 2019).
These signatures provide an unique opportunity to differentiate
among the isolated and the dynamical formation channel when
the number of gravitational-wave detections will be of the order
of a few hundreds (e.g., Zevin et al., 2017; Bouffanais et al.,
2019).
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Black Hole Science With the Laser
Interferometer Space Antenna
Alberto Sesana*

Department of Physics G. Occhialini, University of Milano - Bicocca, Piazza della Scienza 3, Milano, Italy

The author reviews the scientific potential of the Laser Interferometer Space Antenna
(LISA), a space-borne gravitational wave (GW) observatory to be launched in the early 30s.
Thanks to its sensitivity in the milli-Hz frequency range, LISA will reveal a variety of GW
sources across the Universe, from our Solar neighborhood potentially all the way back to
the Big Bang, promising to be a game changer in our understanding of astrophysics,
cosmology, and fundamental physics. This review dives in the LISA Universe, with a
specific focus on black hole science, including the formation and evolution of massive
black holes in galaxy centers, the dynamics of dense nuclei and formation of extrememass
ratio inspirals, and the astrophysics of stellar-origin black hole binaries.

Keywords: gravitational waves, black hole physics, binary systems, cosmology, tests of gravity

1 INTRODUCTION

Despite the wealth of revolutionary results already delivered (Abbott et al., 2019), gravitational wave
(GW) astronomy is still in its infancy. LIGO (Abbott et al., 2009) and Virgo (Acernese et al., 2015) are
in fact only sensitive to binary systems of (100M⊙ out to z ≈ 1, leaving us still blind to the vast
majority of GW sources in the Universe. This will profoundly change within the next 2 decades,
when GW revelation instruments and techniques will access sources covering a much larger
spectrum of masses (upto 1010M⊙) essentially anywhere in the Universe. The 3G detectors
Einstein Telescope (Punturo et al., 2010) and Cosmic Explorer (Reitze et al., 2019) will cover
the Hz to kilo-Hz frequency range, populated by binaries of compact objects (CO) of different nature,
out to high redshift. Neutron star binaries (NSBs) will be observed out to z > 2 at a rate of tens of
thousands per year, and similar rates are expected for black hole binaries (BHBs) which will be
observable out to z ≈ 20 (Van Den Broeck, 2014). Interestingly, the extension of the sensitivity
window down to few Hz will open up the uncharted land of intermediate mass black holes (Jani et al.,
2019). At the opposite end of the frequency and source mass spectrum, radio millisecond pulsar data,
collected and analyzed by pulsar timing array (PTA, Foster and Backer, 1990) collaborations
(Desvignes et al., 2016; Arzoumanian et al., 2018; Kerr et al., 2020), are the gateway to the μ −Hz to
nano-Hz frequency range. Here, the expectation is to detect a stochastic GW background (GWB)
emerging from the incoherent superposition of signals from a cosmic population of massive black
hole binaries (MBHBs), forming in the aftermath of galaxy mergers occurring along the assembly of
cosmic structures (Sesana et al., 2008; Ravi et al., 2012). The international PTA (IPTA, Verbiest et al.,
2016) is working in this direction and with the advent of the Square Kilometer Array (SKA, Dewdney
et al., 2009), there is also the expectation to resolve the most massive inspiralling individual MBHBs
in the Universe (Sesana et al., 2009; Kelley et al., 2018).

The bridging milli-Hz frequency window will be explored from space, thanks to the Laser
Interferometer Space Antenna (LISA Amaro-Seoane et al., 2017), one of the next large missions of
the European Space Agency with the participation of NASA, to be flown in the early 30s. Being
sensitive to the milli-Hz frequency band, from ≈ 0.1 milli-Hz to 0.1Hz, LISA is ideally suited to
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probe GW sources across the mass and distance scales, from the
Solar neighborhood to the Big Bang. Starting from our backyard,
contrary to ground-based detectors and PTAs, LISA is expected
to observe a bonanza of sources within the Milky Way (MW).
Those include millions of galactic compact objects (COs), mostly
double white dwarfs (DWDs), building up an unresolved
confusion noise around 0.5–2 milli-Hz (Nelemans et al., 2001).
Up to 20 k such DWDs will be individually resolvable (Nissanke
et al., 2012), along with several tens of NSBs (Lau et al., 2020) and
few BHBs (Seto, 2016; Sesana et al., 2020). Moreover, LISA has
the unique potential to detect the presence of planets around
nearby DWDs (Tamanini and Danielski, 2019) and perhaps
dozens of brown dwarfs and substellar objects orbiting SgrA*
(Freitag, 2003), known as X-MRI (Amaro-Seoane, 2019). LISA
will detect many more BHBs outside the MW, being sensitive to
the early inspiral of these systems centuries to weeks before they
enter the ground-based detector sensitivity band, out to z ≈ 0.5
Sesana (2016). COs inspiralling onto MBHs, known as extreme
mass ratio inspirals (EMRIs), can be detected out to z ≈ 2 Babak
et al. (2017), whereas coalescing massive black hole binaries
MBHBs in the mass range 104M⊙ <M < 107M⊙ can be seen
anywhere in the Universe Klein et al. (2016). Last but not
least, the frequency range covered by LISA makes it sensitive
to TeV energy scales, where a stochastic GWBmight be produced
in the early Universe by, e.g., first-order phase transitions or
cosmic defects like strings and loops. A visual summary of
selected LISA sources is depicted in Figure 1, from Amaro-
Seoane et al. (2017). The observation of each class of sources will
provide invaluable insights in astrophysics, cosmology, and
fundamental physics, which is beyond what can be reasonably
tackled within the few pages of this review. We therefore focus on

a subset of sources, specifically MBHBs, EMRIs, and BHBs,
highlighting their astrophysical potential in particular. The
payouts of studying fundamental physics with low frequency
GWs are extensively described in a dedicated LRR article Gair
et al. (2013), whereas a comprehensive review of cosmological
GWBs with much focus on LISA can be found in Caprini and
Figueroa (2018).

2 MASSIVE BLACK HOLE BINARIES

MBHBs are expected to form in large number along the cosmic
history (Volonteri et al., 2003). Pairing in the aftermath of galaxy
mergers, they are tracers of structure formation in the Universe
and can be seen by LISA out to z > 20, beyond the foreseeable
capabilities of any electromagnetic (EM) observation. The poor
knowledge of protogalaxy and black hole seed formation at high
redshift is mirrored in the large uncertainties in detection rate
predictions (e.g., Sesana et al., 2011; Barausse et al., 2020).
Nonetheless, LISA is expected to observe between a few and a
hundred MBHB coalescences per year. The unique potential of
this observatory is shown in Figure 2, where LISA signal-to-noise
ratio (S/N) contours for equal-mass, nonspinning binaries are
superimposed to the differential distribution of mergers
occurring in 4 years (the nominal mission lifetime) in the
chirp mass-redshift plane, as predicted by four selected MBH
evolution models (Bonetti et al., 2019).

In the case of high-mass seeds from direct collapse shown in
the bottom panels of the figure (see Woods et al., 2018, for a
recent review), LISA can see essentially every single merger
occurring within the observable Universe. If instead seeds are

FIGURE 1 | The dimensionless “characteristic strain” of GW sources in the LISA frequency band. The nominal detector sensitivity is shown by the green line. Displayed
are tracks of three equal MBHBs at z � 3 with total masses of 105 ,106 , 107M⊙, the first five harmonics of an EMRI at z � 1.2 (red solid lines), a sample of stellar-mass BHBs
(black solid lines), and several thousands of resolvable galactic binaries (blue dots). The subset of known “verification binaries” is shown with blue asterisks. The “confusion
noise” arising from the millions of galactic binaries that cannot be resolved individually is shown by the gray shaded area (Amaro-Seoane et al., 2017).
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produced as remnants of popIII stars (Madau and Rees, 2001), as
in the top panels of the figure, LISA will miss the first round of
mergers, but it will still probe the subsequent growth history of
MBHs out to z ≈ 20. In the latter case, an intriguing possibility is
to complement LISA with ground-based 3G observations to fully
reconstruct the cosmic history of those systems (see, e.g., Jani
et al., 2019). In any case, LISA will provide a unique sample of up
to several hundred MBHB coalescences: a potential revolution in
physics and astronomy.

2.1 Extracting Information
MBHBs will generally enter the LISA band during their inspiral,
completing thousands of cycles before merging within the
detector’s band. This will allow the accumulation of such high

S/N that the main source of error in the parameter recovery, at
least for the loudest sources, might come from inaccuracies in the
available waveforms rather than from the intrinsic detector noise.
In fact, currently available inspiral-merger-ringdown (IMR)
waveforms (Bohé et al., 2017; Khan et al., 2018) are not even
close to the needed level of accuracy. This is particularly critical
for tests of GR with, e.g., ringdown spectroscopy (Berti et al.,
2006; Gair et al., 2013), which relies on measuring tiny deviations
from the higher multipoles of the ringdown radiation compared
to GR expectations (Baibhav et al., 2018), especially to extract
information from the higher multipoles of the radiation (Baibhav
and Berti, 2019).

Nonetheless, waveforms employed so far include most of the
relevant physics and can therefore provide a reliable estimate of

FIGURE 2 | LISA observational capabilities vs. predicted MBHBmerger rates in the chirpmass-redshift plane. In each panel, gray shaded contours show the S/N of
LISA observations for equal-mass, nonspinning binaries. The superimposed yellow-green color gradient with black dashed contours represents the differential number
of mergers during the planned 4-year mission lifetime. From the upper-left panel, clockwise, we show four different astrophysical models: LS-delayed, LS-stalled, HS-
stalled, and HS-delayed (Bonetti et al., 2019, for details). For eachmodel, the upper and right-side panels show themerger rate (blue line) and detection rate (orange
line) distributions marginalized over redshift and chirp mass, respectively (Bonetti et al., 2019).
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LISA’s capabilities. As an example, Klein et al. (2016) carried out a
comprehensive study based on spinning precessing post-
Newtonian waveforms, corrected for the enhancement in S/N
provided by adding merger and ringdown. They found that LISA
can recover individual redshifted masses, i.e., (1 + z)M, to better
than 1% for loud sources at z < 5. To get the intrinsic mass,
however, one must know the redshift to the source, which is
computed from the DL measurement, by assuming a fiducial
cosmology. At z > 1, LISA will measure DL to a few% accuracy,
and weak lensing will affect theDL − z conversion adding another
few% error (Shapiro et al., 2010). Considering both effects, LISA
will provide an estimate of individual source frame masses within
<10% relative accuracy for sources at z < 5. Note that such precise
measurements are today available only for MBHs in the local
Universe, including SgrA* [Ghez et al. (2008), Gillessen et al.
(2009), M87 Event Horizon Telescope Collaboration et al.
(2019a), Event Horizon Telescope Collaboration et al.
(2019b)], and few systems powering megamaser Miyoshi et al.
(1995). The other relevant property of astrophysical MBHs is
their spin magnitude and orientation, which are notoriously
difficult to measure and are as of today estimated (with large
uncertainties) only for ≈ 20 systems in the low-redshift Universe
(see, e.g., Reynolds, 2014). Moving to the early epoch of structure
formation, estimating parameters of systems at z > 10 will be
more challenging. In particular, the error on DL tends to become
much larger; nonetheless LISA can still place a 95% lower limit to
the source redshift of ≈ 0.66z (Sesana, 2013).

2.2 MBH Cosmic History Reconstruction
Because of its excellent parameter estimation capabilities, LISA
will deliver an unprecedented catalog of MBHB coalescences that
will provide precious information about their formation and
evolution along the cosmic history (Sesana et al., 2011). This
is because the mass, redshift, and spin distribution of LISA events
carry the imprint of the underlying physics driving their
formation and evolution, including the origin, abundance,
mass function, and redshift distribution of the first seeds; the
detailed properties of the subsequent accretion processes driving
their mass growth; the dynamical details of the pairing and
hardening process of MBHBs forming in the aftermath of
galaxy mergers, for example, the seeding mechanism as a
direct impact on the number of observable sources.
Astrophysical low (popIII) and high (direct collapse) mass
seed scenarios have been extensively explored and result in
very different number of mergers in the LISA band.
Furthermore, the MBH seeding process can be connected to
the production of primordial BHs in the early Universe (Khlopov,
2010; Clesse and García-Bellido, 2015), a scenario that can be
tested by LISA as more quantitative predictions of merger rates
become available. On the other hand, measured MBH spins are
mainly determined by the geometry of the accretion flow, with
prolonged accretion in a defined plane resulting in efficient MBH
spin-ups (Thorne, 1974), in contrast to the spin-down caused by
interaction with cold gas clouds incoming from random
directions (King et al., 2005). Mergers also play a role in
determining the magnitude and relative orientation of the
MBH spins: in gas rich environment, interaction with a

putative massive circumbinary disk (Perego et al., 2009) tends
to align individual spins with the binary angular momentum,
whereas spins of MBHBs merging in gas poor environment are
expected to be randomly oriented (Bogdanović et al., 2007).
Moreover, the redshift distribution of detected systems is
strongly affected by the time required for the binary to
complete its journey from kpc scales down to final
coalescence, following the host galaxy merger (Bonetti et al.,
2019; Barausse et al., 2020). One of the main challenges of future
astrophysical modeling will be to make the best out of the LISA
dataset to address the “inverse problem” of reconstructing the
MBHB cosmic history from observations. In a proof-of-concept
study, Sesana et al. (2011) showed that LISA can separate
different seed models (popIII vs. direct collapse) and accretion
geometries (coherent vs. chaotic), with only a handful of events.

2.3 EM Counterparts and Multimessenger
Astronomy
Occurring at the very center of galaxy merger remnants, MBHBs
form and evolve within a dense environment that might favor the
presence of EM signals matching the inspiral and coalescence of
the pair. As mentioned above, in gas rich environments, binaries
are expected to be surrounded by a massive circumbinary disk.
Gas can leak from the inner edge of the disc, feeding minidiscs
around individual MBHs (Farris et al., 2014), resulting in a
number of distinctive EM signals. For example, feeding of the
minidiscs might be modulated over the period of the binary,
eventually resulting in a periodicity of their emission (Tang et al.,
2018); the cavity evacuated by the binary torques, removing a
significant portion of the inner disc, will produce a distinctive
shape of the UV continuum (Tanaka et al., 2012); streams can
produce periodic nonthermal X-ray bursts upon impact onto the
outer edge of the minidiscs (Roedig et al., 2014); finally, the
inverse Compton upscatter of photons in the corona might
produce distinctive double Kα lines (Sesana et al., 2012).The
main challenge will be the detection and identification of all those
putative features. Being an omnidirectional detector, LISA sky
localization capabilities are mostly determined by the evolution of
the antenna response function as it moves along its orbit around
the Sun. For MBHBs this will allow localization of z < 2 sources
within ΔΩ< 10(0.5) deg2 weeks (hours) before coalescence
(McWilliams et al., 2010; Mangiagli et al., 2020). This is a
remarkable feat foe GW astronomy, allowing for searches with
optical, radio, and X-ray wide-field instruments, such as LSST
(LSST Science Collaboration et al., 2009), SKA, and Athena
(McGee et al., 2020). After merger, the high S/N added at
coalescence, LISA sky localization will improve to several
arcminutes; deeper EM observations might then reveal a
number of features related to the postmerger dynamics of the
surrounding medium. These include the birth of a quasar as the
gas in the circumbinary disc refills the cavity and is efficiently
accreted (Milosavljević and Phinney, 2005), the launch of a
relativistic jet (Palenzuela et al., 2010), or nonthermal emission
from shocks prompted within the disk by the sudden change of
the potential due to gravitational recoil (Rossi et al., 2010).
Convincing identification of any such counterpart would be an
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unprecedented milestone in accretion physics, opening up the
study of interaction between gravity and matter in the time-
dependent, strong field regime of a merging binary, as well as
probing accretion onto MBHs of known masses and spins thus
allowing, among other things, testing theoretical conjectures
linking MBH spins to jet launching (Blandford and Znajek,
1977). Last but not least, joint EM and GW detections of
MBHB will provide a unique class of standard sirens,
extending up to z > 5 (Tamanini et al., 2016), thus probing the
expansion history of the Universe in uncharted territory.

3 EXTREME MASS RATIO INSPIRALS

EMRIs are distinct from MBHBs both in their properties and
their origin. As the name indicates, they are binaries involving
objects of very different masses, generally a MBH interacting with
a CO that can be a WD, NS, or stellar-mass BH. Consequently,
their origin is not related to galaxy mergers or, more broadly, to
the hierarchical structure formation paradigm but is rooted in the
relativistic dynamics of dense nuclei. Sitting at galactic centers, in
fact, MBHs are surrounded by a dense distribution of stars and
COs. In such a dense environment, the central MBH can
“capture” a stellar BH as a result of several dynamical
processes, including different flavor of relaxation mechanisms
deflecting BHs onto low angular momentum orbits or the tidal
breakup of a compact binary close to the MBH. The captured BH
will then inspiral onto the central MBH completing millions of
orbits before eventually plunging into it (Amaro-Seoane, 2018).
The detection of the resulting GW signal poses a major challenge
for GW modelers, since it requires matching hundreds of
thousands of cycles with accurate enough waveform templates
(Barack and Cutler, 2004; Barack, 2009; Chua and Gair, 2015;
Chua et al., 2017). But payouts are well worth the investment of
theoretical and computational resources. Upon detection EMRIs
will deliver unprecedented measurements of the system
parameters, including the central MBH mass and spin to a
precision of < 10− 4, a luminosity distance accuracy of a few
percent, and sky localization within ≈1deg2 (Barack and Cutler,
2004; Babak et al., 2017), making them formidable probes of
MBH astrophysics, fundamental physics, and cosmology.

Capable of detecting EMRIs out to z ≈ 2, LISA will detect from
few to thousands of these systems per year (Babak et al., 2017).
Very uncertain rates stem from poorly known underlying physics,
meaning that EMRIs will provide a new wealth of information
about the conditions of dense nuclei, in particular the mass
function and occupation fractions of dormant MBHs in the
mass range 105M⊙ − 106M⊙, difficult to probe by other means
(Gair et al., 2010). Source abundance and individual EMRI
parameters, such as eccentricity and orbital inclination, will
help constrain their formation channel, shedding new light on
extreme dynamics in dense nuclei (Amaro-Seoane, 2018). A
fraction of EMRIs might also form and evolve within AGN
discs (Levin, 2007). If this is the case, drag from the disc will
leave distinctive signatures in the waveform, giving us access to
the conditions of the plasma in the midplane of optically thick
accretion discs, something that is beyond the reach of photon-

based astronomy (Kocsis et al., 2011; Barausse et al., 2014).
Exquisite parameter estimation accuracy makes EMRIs unique
tools for probing space-time. For example, the central MBH
quadrupole moment can be measured to a fractional precision
of < 10− 4, allowing the detection of tiny deviation from Kerr
geometry. Finally, although generally lacking EM counterparts,
the excellent measurement of EMRIs distance and sky location
will allow for effectively determining their redshift via statistical
methods. Estimates suggest that H0 could be measured to an
accuracy of ≈1% with an ensemble of 20 EMRIs detected out to
z ≈ 0.5 (MacLeod and Hogan, 2008).

4 STELLAR-MASS BLACK HOLE BINARIES
AND MULTIBAND DETECTIONS

Last but not least, LISAwill observe stellar-mass BHBs still far from
coalescence, before they enter the ground-based detector band.
This was soon realized after the detection of GW150914, a system
somassive and nearby that would have been observed by LISAwith
S/N ≈ 5 about five years before coalescence (Sesana, 2016).
Subsequent studies have demonstrated that LISA can detect
several tens of BHBs, up to hundreds of years before
coalescence. A fraction of them will be caught in the last few
years of inspiral and will cross all the way to the LIGO-Virgo band,
paving the way to multiband GW astronomy (Kyutoku and Seto,
2016; Sesana, 2017; Gerosa et al., 2019). LISA will localize these
multiband sources within ≈0.1deg2, predicting their coalescence
time with an error of <10s. We will therefore be in the
unprecedented position of knowing exactly where and when a
BHB is going to merge, a condition that will allow prepointing of
EM facilities to search for possible counterparts coincident with the
merger with a depth which is inconceivable with wide-field
monitors (Sesana, 2016). Reconstructing the phase evolution of
the system across 5 decades in frequency, and possibly fine-tuning
the sensitivity of Earth-based detectors, will lead to improved tests
of general relativity [Barausse et al. (2016), Carson and Yagi (2019),
Berti et al. (2019), Chamberlain and Yunes (2017), Tso et al. (2018),
Gnocchi et al. (2019)]. As an example, observations of the same
source in the early and late inspiral will place unique constraints on
additional emission multipoles (Barausse et al., 2016).

Even without multiband observations, detecting stellar-origin
BHBs with LISA may have important astrophysical implications.
Far from coalescence, LISA can measure the eccentricity (e) of
these binaries as long as ea10− 3 at GW frequencies f ∼ 10− 2 Hz
(Nishizawa et al., 2016). Field binaries are expected to have small
eccentricities at these frequencies (Kowalska et al., 2011);
therefore these measurements can be used to discriminate
between the dynamical and field formation channels (Breivik
et al., 2016; Nishizawa et al., 2017; Samsing and D’Orazio, 2018).
Combined with ground-based spin measurements, LISA
eccentricity measurements can have an important role in our
understanding of BHB formation. If the rate turns out to be large,
specific stellar subpopulations could potentially be constrained
(e.g., Gerosa et al., 2019). Cosmology will also benefit. Similar to
EMRIs, the sky location and distance of at least a subset of these
systems can be precise enough that we could use them as standard
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candles, allowing for an independent statistical measurement of
H0 within a few percent accuracy (Kyutoku and Seto, 2017; Del
Pozzo et al., 2018).

5 CONCLUSION

The future of GW astronomy is going to be loud. Building on the
successes of LIGO and Virgo, the GW community is investing in
a number of projects that will tremendously expand our
knowledge of the dark side of the Universe. 3G ground-based
detectors will observe hundreds of thousands CO mergers across
the Universe and PTAs will unveil the most massive black hole
binaries in the Universe. In this context, LISA will be one of our
finest ears on the Universe. By surveying the milli-Hz frequency
band, LISA will detect a variety of GW sources, across several
decades in the mass scale, from the Solar neighborhood back to

the formation of the first cosmic structure, promising an
unprecedented revolution in our understanding of the Universe.
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