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Editorial on the Research Topic

Persistent Activity in the Brain – Functions and Origin

Since Fuster and Alexander first found persistent firing in the prefrontal cortex during delayed-
response performance (Fuster and Alexander, 1971), persistent neuronal activity has been observed
in multiple brain areas and species, in relation to a variety of cognitive activities that require
sustained processing or maintenance of states to bridge different events separated in time or to
control or monitor specific functions. Persistent delay-period activity observed in the prefrontal
cortex has been shown to play important roles to temporarily maintain either retrospective or
prospective information necessary to perform a variety of cognitive behaviors during the delay
interval, which corresponds to the function of working memory. Therefore, persistent activity has
been considered as a neural correlate of workingmemory. Although it is an important phenomenon
to understand neural mechanisms of working memory, planning or cognitive control, debates have
been continued among researchers regarding its meaning, sources, and even relevance. In this
Research Topic, we offered an opportunity to present research outputs carried out with various
approaches including electrophysiology, behavior, and computational modeling, and to further
discuss the origin and functional significance of persistent activity.

The brain uses different timescales to process information. Cavanagh et al. explored the features
of persistent activity based on intrinsic timescales in single neurons for information processing.
As primary sensory areas process momentary sensory inputs regardless of their context, short
neural timescales in turn contribute to processing and representing such information. However,
neural activity in association areas that integrate various information to achieve distant goals,
are characterized by longer timescale. Single neurons display different individual timescales,
which predict the strength of mnemonic encoding. Neurons exhibiting longer timescales play
greater roles for stable maintenance of mnemonic information and for integrating multiple pieces
of task-relevant information. Although neurons exhibiting shorter timescales are also present
within higher cortical areas, the presence of neurons exhibiting heterogeneous timescales could
be important for adapting environmental demands dynamically.

Although persistent activity has been frequently observed in the prefrontal cortex, this activity
has also been observed in many other brain areas and the function and the information represented
by this activity are not always the same across different brain areas, because different brain areas
participate in different information processing. Roussy et al. dissociated neural processes for visual
perception from those of visual working memory based on whether the brain produces mental
representations of the visual stimulus when its physical signals are available or not. In fact, neurons
in early visual areas exhibit persistent activity representing perceptual signals, while neurons in
association areas exhibit the activity representing working memory signals. Persistent activity has
also been observed in human brain imaging studies, although not in all frontal regions observed
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in monkey studies. Curtis and Sprague reviewed these results
obtained with fMRI signals, and showed that the content
of working memory can be decoded from the pattern of
neural activations in several brain areas, suggesting that these
approaches find which of these brain areas contribute to working
memory and what relevant features they represent.

Li et al. showed that persistent activity is observed even in
naïve untrained monkeys, indicating that specific local neural
circuits supporting persistent activity are innately present in
the prefrontal cortex. However, the operation of these circuits
is flexibly modulated by the task demand, the experience, and
the age and also by the effect of neuromodulators. Systemic
muscarinic blockade disrupts working memory performances.
Vijayraghavan and Everling reviewed such neuromodulatory
effects of acetylcholine on persistent activity in the prefrontal
cortex. They showed that muscarinic blockade by local
iontophoretic application caused pronounced suppressive effect
of persistent activity representing remembered information
and that the suppressive effect of persistent activity is dose-
dependent and monotonically through muscarinic M1 receptors.
The observed heterogeneity of muscarinic actions also outlines
unexpected modulatory effects in primate prefrontal cortex when
compared with rodent studies.

Recurrent neural circuit models have been proposed
to explain how sustained representations are generated.
Barbosa et al., Novikov et al., and Sarazin et al. have used
such models of uni—or—multi-area networks to examine
features of persistent or dynamic activity. Models are often
informed by known biological elements and properties of
recurrent circuits reviewed by Li et al., Curtis and Sprague,
Roussy et al., Sarazin et al. used a recurrent neural circuit
model with spike timing-dependent synaptic plasticity and
showed that this model can learn, memorize, and replay
a large-size of continuous dynamical sequences of spiking
activity under asynchronous irregular nature at different
timescales, which replicates the dual dynamical and persistent
aspects of working memory representations observed in the
prefrontal cortex.

Although persistent activity has been observed in single-
neuron studies while monkeys performed delay tasks,
such activity is often unstable along the delay period and
heterogeneous within and across trials, which raises questions
on how it contributes to working memory or to other processes
putatively supported by tonic neural processing. In fact,
dynamic coding and multiplexing during memory delays
have been observed and are proposed to maximize the
dimensionality of neural representations (Amengual and Ben
Hamed; Cavanagh et al.; Curtis and Sprague; Sarazin et al.).
Amengual and Ben Hamed suggested that heterogeneous
features of persistent activity are caused by intrinsic oscillatory
dynamics working at multiple timescales and that these
features allow to dynamically incorporate multiple sources
of information.

When subjects perform working memory tasks, an increase
of gamma-band activity has been observed and is considered to

reflect activation of neural populations representing the content
of working memory. Novikov et al. examined functions of
gamma-band oscillation on persistent activity by investigating
joint effects of gamma-band oscillatory inputs and noise on
the dynamics of the neural circuit with a metastable active
condition. They showed that gamma-band oscillations are able
to preferentially stabilize the active condition of the circuit in
which information is retained in working memory, and that
the synchronization of gamma oscillators affects the ability
of the gamma inputs to stabilize the retention of working
memory, indicating an importance of gamma-band oscillation
for maintaining information in working memory. Importance
of gamma-band oscillation is also shown for maintaining
multiple items in working memory simultaneously. Barbosa et al.
hypothesized that different features of an object (e.g., color and
position) stored in different cortical areas are bound in memory
through synchrony across feature-specific neural populations
and tested this hypothesis using a neural network model
composed of two one-dimensional attractor networks (one for
color and one for position). They found that different memorized
items are held at different phases of the network oscillation,
that binding is accomplished through the synchronization of
parts of bumps across the brain areas, and that encoding
and decoding of object features are accomplished through
rate coding.

Thus, although the debate regarding the meaning, source and
relevance of persistent activity is continued, the maintenance of
information and of neural patterns is still a central phenomenon
to understand the neural mechanisms of working memory.
Further insights might come from understanding whether and
how intrinsic oscillatory dynamics working atmultiple timescales
contribute to generating persistent information. Also, as Curtis
and Sprague suggested, decoding information represented in
persistent activity observed in various brain areas may help
decipher which brain areas are necessary for working memory
and which features are represented and maintained in these
brain areas. Pushing the line even further, Fuster observed in his
opinion paper that “working memory consists in the temporary
activation of an updated cortical network of long-term memory
for the attainment of an objective,” and conceptualize it as a
cognit, an operational memory network. The cognit is distributed
by nature, and thus, a network level approach is crucial to fully
comprehend its functioning.
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Plasticity of Persistent Activity and
Its Constraints
Sihai Li 1, Xin Zhou 1,2, Christos Constantinidis 1 and Xue-Lian Qi 1*

1Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States,
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Stimulus information is maintained in working memory by action potentials that persist
after the stimulus is no longer physically present. The prefrontal cortex is a critical brain
area that maintains such persistent activity due to an intrinsic network with unique
synaptic connectivity, NMDA receptors, and interneuron types. Persistent activity can
be highly plastic depending on task demands but it also appears in naïve subjects,
not trained or required to perform a task at all. Here, we review what aspects of
persistent activity remain constant and what factors can modify it, focusing primarily
on neurophysiological results from non-human primate studies. Changes in persistent
activity are constrained by anatomical location, with more ventral and more anterior
prefrontal areas exhibiting the greatest capacity for plasticity, as opposed to posterior
and dorsal areas, which change relatively little with training. Learning to perform a
cognitive task for the first time, further practicing the task, and switching between learned
tasks can modify persistent activity. The ability of the prefrontal cortex to generate
persistent activity also depends on age, with changes noted between adolescence,
adulthood, and old age. Mean firing rates, variability and correlation of persistent
discharges, but also time-varying firing rate dynamics are altered by these factors. Plastic
changes in the strength of intrinsic network connections can be revealed by the analysis
of synchronous spiking between neurons. These results are essential for understanding
how the prefrontal cortex mediates working memory and intelligent behavior.

Keywords: working memory, prefrontal cortex, training, monkey, neurophysiology

INTRODUCTION

Working memory, the ability to maintain and manipulate information in mind over seconds, is one
of the key components of higher cognitive functions (Baddeley, 2012). Early neurophysiological
studies identified neurons in the lateral prefrontal cortex that generate persistent activity during
working memory tasks (Fuster and Alexander, 1971; Kubota and Niki, 1971). Furthermore, the
activity of individual prefrontal neurons was shown to be sensitive to the identity and location
of remembered stimuli (Fuster and Alexander, 1971; Funahashi et al., 1989; Constantinidis et al.,
2001b), as well as task variables, quantities, and categorical judgments (Freedman et al., 2001;
Crowe et al., 2013; Blackman et al., 2016). As a result, information about all of these variables
can be decoded from the activity of ensembles of prefrontal neurons (Meyers et al., 2008, 2012).
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Working memory is not the only cognitive domain that
persistent neural activity seems to predict (Constantinidis and
Luna, 2019). For example, activity elicited during the preparatory
period of an antisaccade task is correlated with the levels of
working memory activity, on a neuron by neuron basis (Zhou
et al., 2016a). Response preparation is a critical parameter of
inhibitory control (DeSouza et al., 2003; Ordaz et al., 2010) and
baseline activity may thus be tied to working memory, encoding
advance preparation for the upcoming requirement to resist the
stimulus appearance.

In recent years, alternative models have been proposed for
working memory that do not rely on persistent activity, such as
ones that rely on short-term modification of synaptic properties
to maintain information, instead (Stokes, 2015; Mi et al., 2017;
Lundqvist et al., 2018). It has also been suggested that the
rhythmicity of activity generated during working memory is
the critical neural variable for maintenance rather than the
rate of persistent discharges. The magnitude, frequency and the
phase of neural oscillations have indeed been demonstrated to
be modulated as a function of stimuli and task information
(Lundqvist et al., 2016, 2018). While more than one mechanism
may play a role in the representation of information in working
memory, these findings do not contradict the storage of working
memory information in persistent neural activity (Riley and
Constantinidis, 2016; Constantinidis et al., 2018). Modeling
studies in which changes in synaptic plasticity are sufficient to
maintain information in working memory in some tasks also
reveal that persistent discharges are necessary for other, more
complex tasks (Bouchacourt and Buschman, 2019; Masse et al.,
2019). Onlymeasures of persistent activity are strongly predictive
of behavior in working memory tasks (Constantinidis et al.,
2001b; Wimmer et al., 2014). We therefore focus exclusively on
persistent activity in this review.

Although persistent activity maintains stimulus
representations, it is also subject to change, which appears
as a result of learning and development. Such plasticity is
necessary for and provides a foundation for intelligent behavior.
In recent years, neurophysiological and imaging studies have
provided new insights into the effects of training in working
memory tasks on the prefrontal cortex (Qi and Constantinidis,
2013; Constantinidis and Klingberg, 2016). Human and
animal studies have made it possible to investigate how the
prefrontal cortex responds to visual stimuli before and after
behavioral training in a cognitive task, and how new information
is integrated into neural circuits that are simultaneously
maintaining information about the stimuli (Olesen et al., 2004;
Meyer et al., 2011). Plasticity also occurs at different life stages,
for example in adolescence, when the improvement of behavioral
performance is associated with changes in prefrontal cortical
activity (Constantinidis and Luna, 2019).

To understand the mechanisms of plasticity related to
working memory it is necessary to first consider the neural
circuits that generate persistent activity. Neural activity is
thought to be sustained by reverberations of discharges in a
network of neurons with reciprocal and recurrent connections
(Wang, 2001; Wimmer et al., 2014; Riley and Constantinidis,
2016; Zylberberg and Strowbridge, 2017). The past decade has

seen significant gains in our understanding of how persistent
neural activity may change over time. In the current review, we
aim to examine the latest insights on this topic. We focus mainly
on visual-spatial working memory, the ability to maintain the
spatial location of visual stimuli in mind, as this model provides
us with a parametric variable, whose representation in neural
activity is well understood (Riley and Constantinidis, 2016). We
also focus on the lateral prefrontal cortex, the brain region most
intricately implicated in this function, in non-human primates
(Constantinidis and Procyk, 2004). The following sections review
the mechanisms and circuits of persistent activity generation,
how and to what extent these are plastic, and the open questions
in the field, to be addressed in future studies.

MECHANISMS AND MODELS OF
PERSISTENT ACTIVITY GENERATION

Intrinsic Circuits
Persistent activity depends simultaneously upon the properties
of single neurons, the properties of neural networks within
a cortical area, and the properties of long-distance networks
between cortical areas. The influence of intrinsic prefrontal
networks (schematically illustrated in Figures 1A–C) on
neuronal activity can be investigated by physiological means.
Nearby cortical neurons tend to generate near-synchronous
spikes, within 0–2 ms of each other, significantly more often than
would be expected by chance (Constantinidis et al., 2001a; Zick
et al., 2018). These neurons also tend to be positively correlated
at slower time scales, as evidenced by discharge rates averaged
over periods in the order of 0.5–1 s (Constantinidis et al., 2001a;
Kiani et al., 2015; Leavitt et al., 2017b). Cross-correlation analysis
(Figure 1D), quantifying the relative timing of spiking of two
neurons at the millisecond scale reveals that, when present,
millisecond-scale cross-correlation peaks are most often centered
at time 0, indicating synchronous firing (Constantinidis and
Goldman-Rakic, 2002; Zhou et al., 2014). This pattern of cross-
correlation peak is consistent with two neurons receiving input
from common synaptic sources and provides a measure of the
strength of intrinsic connections. The degree of synchronization
is higher for neurons with similar spatial tuning and neurons
active in the same epochs of the behavioral task, as would be
predicted for neurons receiving shared input, which results in
similar functional properties (Constantinidis et al., 2001a). We
rely on cross-correlation measures to make inferences on circuit
organization, and plasticity, below.

Axonal Projections
Reverberating activity through layer II/III horizontal excitatory
connections between neurons with similar stimulus tuning is
currently believed to be the primary mechanism of persistent
discharge generation (Constantinidis andWang, 2004). The basic
circuit is illustrated in Figure 1A. Anatomical studies identified
that prefrontal neurons receive horizontal connections from
clusters of cells arranged in 0.2–0.8 mm wide stripes of the
cortex, providing an anatomical substrate for such reverberation
(Goldman-Rakic, 1984; Levitt et al., 1993; Kritzer and Goldman-
Rakic, 1995; Pucak et al., 1996).
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FIGURE 1 | Schematic illustration of the basic intrinsic circuit that maintains persistent activity in the prefrontal cortex. (A) Different types of neurons are indicated as
follows. P, Pyramidal Neuron; PV, Parvalbumin Interneuron; VIP, Vasoactive Intestinal Polypeptide expressing Interneuron; SST, Somatostatin expressing Interneuron.
Open triangles denote excitatory synapses; black circles indicate inhibitory synapses. Insets on top are meant to illustrate that red-colored neurons on the left side of
the figure are driven by a stimulus at the upper left of the screen, the 135◦ location, whereas blue-colored neurons on the right side of the figure are maximally
activated by a stimulus in the lower left, 225◦ location. Excitatory synapses connect pyramidal neurons with similar preferences in the delay period that follows a
stimulus in the upper left. (B) Heat maps representing the activity of different neurons are plotted by a preference for stimulus location (y-axis), as a function of time
(x-axis). (C) Tuning curves of the same neuronal population, during the delay period. (D) Schematic illustration of cross-correlation analysis for neurons 1, 2, and 3,
indicated in panel (A). Raster plots represent spike time series of each neuron, obtained during a baseline period, before the appearance of stimuli. Synchronous
spikes between neurons 1 and 2 result in a cross-correlation peak, centered at 0-lag. Adapted with permission from Zhou et al. (2012) and Wang et al. (2004)
Copyright 2004 National Academy of Sciences.

Intrinsic connectivity is quantitatively enhanced within the
prefrontal cortex compared to other cortical areas. Prefrontal
pyramidal neurons exhibit the most extensive dendritic trees
and the largest number of spines among cortical neurons
(Elston, 2000, 2003). Physiological signatures of this greater
extent of synaptic inputs into prefrontal neurons have been
found in comparative cross-correlation studies, contrasting
different cortical areas. Prefrontal neurons appear to receive
a greater percentage of their inputs from neurons located
at greater distances (>1 mm), and consequently to share a
greater proportion of their inputs with neurons located at
longer distances; in contrast, the spatial spread of inputs to
posterior parietal neurons is much more limited and neurons
located at shorter distances of each other (in the order
of 0.2–0.5 mm) share a greater proportion of their inputs
(Katsuki et al., 2014).

Other systematic differences between cortical areas in terms
of axonal projections have also been identified recently, such
as the MRI-based T1-weighted/T2-weighted ratio (Burt et al.,
2018). This ratio is indicative of the extent of myelin presence
within gray matter and provides a measure of convergence of
axonal projections (Glasser and Van Essen, 2011; Huntenburg
et al., 2017). This ratio is highest in the primary visual cortex
and lowest (indicating most sparse connections) in the prefrontal
cortex (Burt et al., 2018).

NMDA Receptors
NMDA receptors are critical in any neural circuit that
generates persistent activity (Constantinidis and Wang, 2004).
The relatively slow decay time constant of NMDA receptor-
mediated synaptic currents allows post-synaptic neurons to
remain in a depolarized state for a longer time (Wang, 2001).
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If a network of excitatory neurons contained only AMPA
synaptic receptors, which produce synaptic currents with very
fast decay time constant, unrealistically high firing rates would
be necessary to sustain neural activity during the delay period of
a memory task (Wang, 1999). Experimental results also support
the role of NMDA receptors in the generation of persistent
activity, as NMDA antagonists greatly degrade persistent activity
(Wang et al., 2013; Wang and Arnsten, 2015). For example,
systemic administration of ketamine, a non-specific NMDA
antagonist, decreases the strength of effective connectivity
between prefrontal neurons, as evidenced by a decrease in the
synchronous spiking between simultaneously recorded neurons
(Zick et al., 2018).

NMDA expression is also area-specific. Among the different
subunits that compose NMDARs in the adult brain, GluN2B
has the slowest decay time constant. A gradient of GluN2B
expression exists in the primate brain, with highest levels of
expression observed in the prefrontal cortex (Burt et al., 2018),
consistent with the ideas originally proposed byWang (1999) and
Wang (2001), that the slow decay constant of synaptic NMDARs
is important in models of persistent activity.

Finally, NMDA represents one of the main mechanisms
through which dopamine affects persistent activity.
Iontophoretic application of dopamine agonists onto prefrontal
neurons active during working memory affects firing rate in an
inverted U fashion; at moderate doses, they increase activity
for preferred stimuli and suppress non-preferred responses
(Vijayraghavan et al., 2007; Ott et al., 2014). These agonists
enhance the representation of actively remembered stimuli and
suppress distractors (Jacob et al., 2016). Computational and
experimental studies suggest that dopamine improves the signal-
to-noise ratio of persistent activity mainly via enhancement of
NMDAR currents (Yang and Seamans, 1996; Durstewitz et al.,
2000; Seamans et al., 2001; Chen et al., 2004).

Interneuron Specialization
Inhibitory neurons in the prefrontal cortex exhibit persistent
activity as pyramidal neurons do (Rao et al., 1999, 2000;
Constantinidis and Goldman-Rakic, 2002; Constantinidis et al.,
2002). Computational models suggest that inhibition is essential
for creating stimulus-selective persistent activity (Compte et al.,
2000), and both computational and experimental results suggest
that prefrontal interneurons generally exhibit higher baseline
firing rates and broader tuning than pyramidal neurons
(Constantinidis and Goldman-Rakic, 2002).

A division of labor among cortical interneurons has
been hypothesized, in which multiple types of GABAergic
neurons form a specialized network, to facilitate stimulus-
specific persistent activity (Wang et al., 2004), as illustrated
in Figure 1A. In this scheme, pyramidal neurons would
recruit Parvalbumin (PV) expressing inhibitory interneurons
to suppress the activation of other pyramidal neurons, with
different spatial turning, since PV cells target the cell bodies
of pyramidal neurons. Anatomical evidence that suggests
that PFC neurons with similar memory fields are grouped in
clusters that may be the anatomical substrate for recurrent
excitation (Goldman-Rakic, 1984; Levitt et al., 1993; Kritzer

and Goldman-Rakic, 1995; Pucak et al., 1996) and in such
a scheme, PV interneurons could provide lateral inhibition
by inhibiting neurons in different clusters, as depicted in
the model. Alternatively, PV cells may provide feedback
inhibition to adjacent pyramidal cells that reciprocally excite
the PV cells, as has been demonstrated experimentally in
the rodent cortex (Adesnik et al., 2012; Atallah et al., 2012;
Wilson et al., 2012). Primate interneurons exhibit broader
tuning curves than pyramidal neurons (Constantinidis
and Goldman-Rakic, 2002) and in such as scheme, PV
neurons would facilitate stimulus-specific working memory
by sharpening the tuning function of adjacent pyramidal
neurons and contributing to Excitatory/Inhibitory (E/I)
balance. Without feedback inhibition, recurrent excitation
may shift the E/I balance and bring the network into
an unstable, hyper-excited state, which would also be
deleterious for the maintenance of working memory
(Constantinidis and Wang, 2004).

The second class of inhibitory interneurons, expressing
Vasoactive Intestinal Peptide (VIP), 80% of which also express
Calretinin (Gabbott and Bacon, 1997), would inhibit a third
class of interneurons, those expressing Somatostatin (SST) and
likely Calbindin. VIP neurons are interneuron-targeting cells
and when activated, they would inhibit SST neurons, which are
peridendritic-targeting cells and they tonically inhibit pyramidal
neurons (Pi et al., 2013; Dienel and Lewis, 2019). The model
predicts that SST neurons exhibit a high spontaneous rate
(Figures 1B,C), which during the baseline period, before a
stimulus appearance, inhibits tonically all pyramidal neurons.
The properties of SST inputs have not been investigated in detail
in the primate cortex, but in the rodent cortex, SST neurons are
strongly modulated by acetylcholine (Chen et al., 2015; Urban-
Ciecko et al., 2018). After a stimulus is maintained in working
memory, SST neurons would effectively release from inhibition
pyramidal neurons that have already attained a state of excitation
by the same stimulus. Other populations of SST neurons, not
recruited by the stimulus held in memory would continue
to inhibit non-activated pyramidal neurons, thus suppressing
background noise as well as potential activation by subsequent,
distracting stimuli (Wang et al., 2004).

The activation profiles of these three classes of interneurons
and tuning curves relative to the tuning of pyramidal neurons
they are linked to are schematically depicted in Figures 1B,C.
Direct experimental evidence for the disinhibitory role of VIP
cells has been provided by rodent studies (Pi et al., 2013).
The model is simplified, in that VIP neurons also inhibit PV
neurons, at least in rodent visual cortex. VIP-to-SST and VIP-PV
synapses also show strong short-term synaptic depression,
which suggests that synaptic output from VIP neurons is best
fit to briefly inhibit other interneurons, possibly suppressing
the phasic effect of distracting stimuli, rather than being a
continuous input during the entire delay period (Pi et al.,
2013). Finally, VIP neurons in the mouse barrel cortex are
not well-tuned to stimulus properties, suggesting distant inputs
(Yu et al., 2019).

Nonetheless, the basic circuit of Figure 1 appears to
be conserved in primates. A subset of primate Calretinin
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interneurons preferentially targets Calbindin interneurons
(Meskenaite, 1997; Melchitzky and Lewis, 2008; Fish et al.,
2018), thus creating an analogous circuit. Furthermore,
interneuron-targeting cells are more abundant in association
cortices, and particularly in the prefrontal cortex, compared to
the sensory cortex (Defelipe et al., 1999; Elston and González-
Albo, 2003). At least indirect evidence supports the idea that
a disinhibiting circuit is more pronounced in the prefrontal
cortex: interneurons with high baseline firing rate and inverted
tuning (consistent with the profile of disinhibiting neurons) are
more numerous in the prefrontal cortex than in the posterior
parietal cortex (Zhou et al., 2012). While the basic circuit of
Figure 1A appears to be present across species and cortical areas,
the intrinsic prefrontal circuit is more capable of generating and
sustaining persistent activity than its afferent areas.

Long-Distance Circuits
Although the prefrontal cortex may be the primary source
of persistent activity in working memory, the generation of
persistent activity is not exclusive to the prefrontal cortex alone.
Neurons exhibiting persistent activity have been identified in
several additional brain areas, including the posterior, parietal,
and inferior temporal cortex, thalamic nuclei, particularly the
mediodorsal nucleus of the thalamus, and also the basal ganglia
(Constantinidis and Procyk, 2004). This is not to say that
persistent activity is entirely distributed across areas, either; it
was found to be absent in visual cortical area MT and to emerge
de novo in area MST, in one well-studied paradigm (Mendoza-
Halliday et al., 2014). Long-distance connections between these
areas and the prefrontal cortex have been hypothesized to
provide a larger scale circuit to generate persistent activity
during working memory. Recent modeling efforts suggest that
long-range inter-area reverberation may support the emergence
of persistent activity in areas whose local circuit organization
is not sufficient for its maintenance (Mejias and Wang,
2019). Direct evidence for the necessity of thalamocortical
connections for the generation of persistent activity has been
provided by rodent studies (Guo et al., 2017). Ultimately, this
means that long-distance connections may be essential for the
generation of persistent activity both within and outside of the
prefrontal cortex.

The existence of persistent activity in multiple brain areas
does not necessarily mean that all aspects of working memory
are distributed, either (Leavitt et al., 2017a). Instead, different
areas appear to be involved with during aspects of working
memory (Riley and Constantinidis, 2016). The prefrontal cortex
is uniquely equipped to represent information about the spatial
location of an initial stimulus after distracting information has
been presented, whereas the posterior parietal cortex seems
to track the most recent stimulus (Qi et al., 2010). Neuronal
activity related to executive control of information maintained
in memory is similarly thought to originate in the prefrontal
cortex and be transmitted to the posterior parietal cortex (Crowe
et al., 2013). The distinction between the patterns of activity in
the posterior parietal and prefrontal cortex, however, depends
on the parameters of the specific working memory task that is
being performed. Under some tasks, the posterior parietal and

prefrontal cortex may represent different types of information,
encoding either the initial or subsequent stimuli (Jacob and
Nieder, 2014; Qi et al., 2015; Masse et al., 2017).

Linking Circuit Models With Behavior
Persistent activity recorded in the prefrontal cortex is predictive
of behavior in working memory tasks. Trials in which the
preferred stimulus of a recorded neuron elicits less activity than
average are more likely to result in errors (Funahashi et al., 1989;
Zhou et al., 2013). As a result, a near-linear relationship between
behavioral performance and persistent neural activity has been
revealed in tasks that parametrically modulate the properties
of stimuli held in working memory (Constantinidis et al.,
2001b). Choice probability analysis, comparing the distributions
of firing rates in the delay period of correct and error trials, also
reveals a stronger relationship between persistent activity in the
prefrontal cortex and behavioral outcomes, compared to other
areas (Mendoza-Halliday et al., 2014).

Computational models provide a link between persistent
activity and behavioral performance in working memory tasks.
Persistent activity is sustained in these models by recurrent
connections between neurons with similar tuning for stimulus
properties, thus allowing activation to be maintained past the
presence of the afferent input (Compte et al., 2000; Murray et al.,
2017). The system can be thought of as a continuous attractor.
Drifts in neuronal activity across the network of prefrontal
neurons predict precisely the relationship between firing rate
and the endpoint of the saccade (the spatial location being
recalled by the monkey) in the ODR task (Wimmer et al.,
2014). For example, persistent activity recorded from trials in
which monkeys make eye movements deviating clockwise vs.
counterclockwise relative to the true location of the stimulus
yields slightly different tuning curves, as would be expected if the
location recalled was determined by the peak of activity at the end
of the delay period.

PLASTICITY

The plasticity of neural activity is essential for intelligent
behavior. Persistent activity can be highly plastic and is
influenced by several factors that also impact working memory
performance. This is not to say however that there are no limits
in plasticity. The following sections examine plastic changes and
their constraints as a result of training and age (section 3.1), and
the circuit changes that likely mediate them (‘‘Cellular Substrates
of Plasticity’’ section).

Initial Working Memory Training
Persistent activity appears to be generated automatically, in
subjects not required or even trained to perform a task (Meyer
et al., 2007; Riley et al., 2017). When naïve monkeys are passively
viewing stimuli, some prefrontal neurons become activated and
continue to discharge after the stimuli are no longer present.
Working memory has sometimes been thought to require willful
effort, and/or training in specific working memory tasks (Postle,
2006). In our everyday experience, however, we can track our
environment and recall information even when not explicitly
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FIGURE 2 | (A) Anatomical MRI of the monkey lateral prefrontal cortex with anterior/posterior and dorsal/ventral subdivisions indicated, relative to the Principle and
Arcuate Sulci. (B) Mean firing rate of neurons recorded in these subdivisions in monkeys both before and after they were trained to perform spatial working memory
tasks. Gray bars represent stimulus presentations. Data are shown separately for each prefrontal region. Adapted with permission from Riley et al. (2018).

prompted to do so ahead of time, implying that working memory
may be an automatically generated process. In agreement with
this intuition, a proportion of prefrontal neurons are persistently
active even when the subjects were not assigned to remember
any stimuli (Meyer et al., 2007; Riley et al., 2017). Furthermore,
the rate of persistent discharges in this population is selective for
properties of the stimuli, including spatial location, color, and
shape. It therefore appears that a prefrontal circuit is hardwired
to automatically generate persistent activity once activated by
sensory stimuli. However, there are limits to the information that
may be represented automatically. For example, the identity of a
stimulus generally did not survive a second stimulus presentation
in the experiments discussed above, and information about
whether the shape of two stimuli was the same or not was largely
absent in naïve animals (Meyer et al., 2007; Meyers et al., 2012;
Riley et al., 2017).

Training to perform a working memory task for the first
time does elicit plastic changes in persistent activity (Mendoza-
Halliday and Martinez-Trujillo, 2017; Riley et al., 2018). More
neurons are active after such training and generate a higher level
of persistent activity (Meyer et al., 2007; Riley et al., 2017). The
circuit changes that training induces appear to be lasting and
the difference in firing rate between naïve and trained animals
are evident even when the trained monkeys are tested with the
passive presentation of stimuli, in the same fashion they did
before training. The mean firing rate of persistent discharges is
also higher in the trained than that in naïve monkeys, though
the execution of the task further amplifies persistent activity
compared to the passive viewing of stimuli (Riley et al., 2017).
Plasticity is not all-or-none in terms of exposure to training.
Increases in firing rate tended to accrue with cumulative training
and are reflective of the level of performance in the working
memory task at each point in time (Qi et al., 2011; Tang
et al., 2019). These effects represent average changes in neuronal
activity, sampled from different groups of neurons at different
stages of training. It will be interesting for future experiments to
track the activity of individual neurons as learning of a new task
takes place.

Anatomical Constraints on Plasticity
Anatomical position is an important constraint on the plasticity
of persistent activity. Within the lateral prefrontal cortex, levels
of persistent activity depend on position across the dorsoventral
(Kadohisa et al., 2015; Constantinidis andQi, 2018) and anterior-
posterior axes (Riley et al., 2017, 2018). The lateral aspect of
the prefrontal cortex is subdivided into areas 8a, 46, 8b, and
9 in its dorsal aspect, areas 12 and 45 in its ventral aspect,
and area 10 covering the frontal pole (Walker, 1940). There is
also evidence of a specialization in the anterior-posterior aspect,
with the caudal aspect of area 46 shown to be functionally
dissociable from the anterior aspect; the former is referred to
as area 9/46, whereas the most anterior area is called area 46,
in this nomenclature (Petrides, 2000). Division in more areas
has also been proposed, based on the evidence provided by
fMRI studies probing functional connectivity at rest (Goulas
et al., 2017). Based on physiological evidence, we have recently
proposed dividing the lateral PFC into subdivisions as follows
(Figure 2A): a posterior, mid-, and anterior-dorsal region, a
posterior- and anterior-ventral region, and a frontopolar region
(Riley et al., 2017).

Neurons in different prefrontal subdivisions exhibit different
properties and aptitudes for plasticity (Figure 2B). The posterior
aspect of the prefrontal cortex is the most specialized for stimulus
location (posterior-dorsal) and object information (posterior-
ventral) but is affected relatively little by training (Constantinidis
and Qi, 2018). Little difference in mean persistent firing rate
is observed in the posterior-dorsal prefrontal cortex before and
after training, though more neurons become active (Meyer
et al., 2011; Riley et al., 2018). Instead, most of the plasticity in
persistent activity occurs in the mid-, and anterior-dorsal areas
of the prefrontal cortex (area 46). Across the medio-lateral axis of
the dorsal prefrontal cortex, little or no changes in plasticity are
seen in the most dorsal areas (areas 8b and 9), whereas plasticity
of persistent discharges is evident in the principal sulcus region
(area 46), and more so in the ventrolateral prefrontal cortex
(Meyer et al., 2011). The organization of the prefrontal cortex
has been a matter of debate, with at least some studies failing to
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identify dissociable responses of neurons in different prefrontal
subdivisions (Rao et al., 1997; Lara andWallis, 2014). In terms of
plasticity, however, there seems to bemore agreement, and lesion
studies support the idea of ventral areas being more essential for
the acquisition of new tasks, which implies greater capacity for
plasticity (Buckley et al., 2009).

Plasticity Changes Beyond Firing Rate
Encoding of information in neuronal firing depends not
only on the mean firing rate of neuronal responses, but
also on how variable these responses are from trial to
trial, and on whether firing rates of neurons are positively
correlated with each other, which limits how much information
can be stored in their collective discharges (Moreno-Bote
et al., 2014). The effects of plasticity similarly affect not
only mean firing rate but also the variability of persistent
activity (Qi and Constantinidis, 2012b) and the correlation
of firing rate between simultaneously recorded neurons (Qi
and Constantinidis, 2012a). The Fano factor of spike counts,
a measure of variability, generally decreases after practicing
the task, with the greatest decreases observed in neurons that
exhibit persistent activity, compared to neurons that do not.
This decrease in trial-to-trial variability may be responsible for
increasing the reliability of stimulus property representation after
training. Similarly, the spike-count correlation of persistent firing
rates between pairs of neurons (known as noise correlation)
also decreases after training, which improves the information
that can be decoded from simultaneously active neurons
(Qi and Constantinidis, 2012a).

Task training also alters the time course and dynamics
of persistent activity (Kobak et al., 2014; Tang et al., 2019).
Prefrontal neurons are known to exhibit dynamics during
working memory tasks. For example, the firing rate of some
neurons is known to ‘‘ramp up’’ or decrease during the trial,
so that information about the stimulus is encoded dynamically
at different time points (Romo et al., 1999; Meyers et al., 2012;
Stokes et al., 2013). However, the existence of dynamics does
not undermine the representation of information in working
memory. Recent work (Murray et al., 2017) has revealed a stable
subspace, where information can be maintained in an invariant
fashion (Figures 3A,B). Similar subspaces have been identified
across a variety of working memory tasks (Murray et al., 2017;
Spaak et al., 2017; Parthasarathy et al., 2019). Training in a
working memory task does alter the dynamics of persistent
activity. Neuronal responses recorded in animals trained to
perform a working memory task exhibit more pronounced
increases and decreases of activity during the time course of the
trial than animals passively viewing (Kobak et al., 2014; Tang
et al., 2019). The consequence of this change is that a greater
percentage of firing rate variance is accounted for by components
unrelated to the remembered stimulus location or identity.

Plasticity When Learning to Perform
Additional Tasks
After monkeys have been trained to perform basic cognitive
tasks, it is possible to train them inmore complex tasks, including
ones requiring working memory for multiple stimuli. Training

in tasks with multiple-stimuli can improve working memory
capacity (at least in the task trained) and induces plastic changes
in prefrontal activity (Tang et al., 2019): more neurons become
activated, their baseline firing rate decreases, and although
persistent activity may not change appreciably, the rate of
persistent activity relative to baseline is enhanced after training. A
debate exists in the human imaging literature, with some studies
revealing decreases in activity after training in complex tasks
(Schneiders et al., 2011; Kühn et al., 2013; Schweizer et al., 2013;
Takeuchi et al., 2013) and the decreases are often interpreted
as improvements in efficiency, or strategy (Constantinidis and
Klingberg, 2016). The decrease in baseline activity observed in
the neurophysiological studies may be partially responsible for
such results, particularly when activity is averaged over long
periods, as in fMRI studies. Acquiring data during training in
a variety of tasks will be essential for understanding the full
repertoire of plastic changes.

Like humans, monkeys are known to develop strategies
when attempting to master complex tasks, e.g., suggestive of
a grouping of multiple stimuli in memory based on their
geometric arrangement (Tang et al., 2017). The selectivity
of prefrontal responses for remembered displays containing
multiple stimuli, or sequences of remembered stimuli, is often
very different than for single, identical stimuli (Konecky et al.,
2017; Tang et al., 2019) depending on the corresponding mental
operation performed.

An important finding of the training studies with multiple
stimuli was changed in the dynamics of neuronal activity
(Tang et al., 2019). As was the case with the initial working
memory training, once subjects practiced a new task requiring
memory for multiple stimuli and improved their performance, a
greater percentage of activity could be explained by ‘‘condition-
independent’’ components, not related to the stimuli being
remembered (Figures 3C,D).

Learning to perform multiple tasks also alters the levels of
persistent activity representing the newly acquired information
(Sarma et al., 2016). Modulation of persistent activity depending
on what information needs to be maintained in memory can
take place very rapidly, e.g., within a few trials, when a subject
learns a new sensory-motor association (Asaad et al., 1998) or
on a trial-to-trial basis, when the subject is cued to remember
a particular feature of the stimulus to perform judgment and
ignore others (Mante et al., 2013). The persistent activity can
also be modulated in the course of a single trial during the
execution of dual-task paradigms when the subject temporarily
focuses on the representation of one stimulus in memory before
resuming a task requiring representation of another stimulus
(Watanabe and Funahashi, 2014).

Age
The normal developmental and aging process provides another
opportunity to study plastic changes in the ability of the
prefrontal cortex to generate persistent discharges, regardless
of training and life experiences. Behavioral performance and
neural activity in working memory tasks change markedly
around the time of puberty, a developmental event associated
with the release of sex hormones and significant neurological
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FIGURE 3 | (A) Population trajectories during the delay period projected into the mnemonic subspace, defined via PCA on time-averaged delay activity. Here the x
and y axes display the first and second principal components (PC1 and PC2) of the subspace, respectively. Each trace corresponds to a stimulus condition, roughly
corresponding with the actual stimulus location on the screen. The shading of the traces marks the time during the delay, from early (light) to late (dark). (B) Same
data as in (A), with the z-axis denoting time. (C) Demixed PCA Analysis. The first two condition-independent components of dPCA analysis from low and
high-performance sessions are plotted, based on an experiment requiring monkeys to maintain multiple stimuli in working memory. (D) Histogram representing the
amount of variance accounted by different condition-independent, stimulus, decision, and interaction components. Reproduced with permission from Murray et al.
(2017; A,B) and Tang et al. (2019; C,D).

change (Zhou et al., 2013, 2016b). The performance of working
memory tasks is subtly but significantly higher in adult monkeys
compared to adolescent monkeys that have entered puberty,
just as it improves in humans between these two developmental
stages (Montez et al., 2019). Persistent activity is also higher
in adult animals than adolescent ones (Figures 4A–C). Even
when comparing persistent activity from adolescent and adult
monkeys obtained in sessions equated for performance, the adult
prefrontal cortex is better able to generate persistent activity.
Furthermore, the adult prefrontal cortex can more effectively
filter distracting stimuli during working memory.

In the other end of the life spectrum, advanced age in
monkeys is marked by a significant loss of persistent firing in
the prefrontal cortex. Aged animals exhibit elevated cyclic-AMP
(cAMP) signaling, which reduces persistent activity by opening
Hyperpolarization-activated Cyclic Nucleotide–gated channels
(HCN—nonselective voltage-gated cation channels), and KCNQ
(Potassium voltage-gated channels). The persistent activity can

be partially restored to more youthful levels by inhibiting cAMP
signaling, or by blocking HCN or KCNQ channels (Wang et al.,
2011). Notably, both in the adolescent and aged monkeys it was
the persistent activity that differed from that recorded in adults
(Wang et al., 2011; Zhou et al., 2016b). Prefrontal activity during
the stimulus presentation differed little between age groups,
suggesting that stimulus-driven neuronal responses were fully
mature in puberty and resistant to the effects of aging in old
monkeys. These studies provide some brief snapshots of neuronal
activity at two critical life stages. It will be important for future
studies to reveal the full-time course of persistent discharges from
young to old age.

Cellular Substrates of Plasticity
The observed changes in neural activity through training
and age suggest plasticity in the circuit that generates
persistent discharges. Local-circuit differences are evident
between adolescent and adult monkeys that could explain the
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FIGURE 4 | (A) Anatomical MRI of an adolescent monkey, with the
dorsolateral cortex (areas 8 and 46) indicated. AS, Arcuate Sulcus; PS,
Principal Sulcus. (B) The proportion of neurons with significant differences in
firing rates compared to baseline fixation, at different time points of the ODR
task (color scale represents the probability of a paired t-test), for the
adolescent and adult groups. (C) Average population peri-stimulus time
histogram for neurons that responded to the visual stimulus and were
recorded during the ODR task in the adolescent stage (top) or the adult stage
(bottom). Responses are shown for a stimulus in each neuron’s receptive
field. Gray bar represents an interval of stimulus presentation; the vertical line
represents the time of the fixation offset. Insets schematically display the
stimulus location and direction of eye movement relative to the receptive field
(arc), which varied for each neuron. (D) Averaged, normalized
cross-correlation histogram for adolescent and adult monkeys. (E) Average
value (strength) calculated in the center 5 ms of the cross-correlation
histogram for adolescent and adult monkeys. Adapted with permission from
Zhou et al. (2014, 2016b).

decreased ability of the immature prefrontal cortex to generate
persistent discharges. Zero-lag spiking synchronization based
on cross-correlation analysis of nearby neurons (recorded at
distances between 0.5–1 mm from each other) is markedly
lower in adolescent than in adult monkeys (Figures 4D,E).
This difference is primarily the effect of changes in inhibitory
interactions (Zhou et al., 2014), possibly due to decreases in the

connectivity strength of pyramidal neurons onto interneurons,
which lessens the net output of inhibitory connections as
the prefrontal cortex matures (Gonzalez-Burgos et al., 2015).
Interestingly, a decrease in zero-lag synchrony of prefrontal
neurons has been recently implicated in schizophrenia (Zick
et al., 2018), a condition that, among other pathological
symptoms, compromises working memory.

Neuromodulators have also been implicated in dynamic
changes of persistent activity and are likely to be involved during
learning or the selection of stimulus features. Most notably,
cholinergic stimulation through the iontophoretic application
of cholinergic agonists (Yang et al., 2013; Sun et al., 2017;
Dasilva et al., 2019), or the stimulation of the cholinergic
basal forebrain (Qi et al., 2019) leads to a general increase in
activity of neurons in the prefrontal cortex. Conversely, systemic
administration of the muscarinic antagonist scopolamine (Zhou
et al., 2011) or iontophoresis of muscarinic and nicotinic-
α7 inhibitors seems to depress prefrontal persistent activity
(Yang et al., 2013; Major et al., 2015; Dasilva et al., 2019).
Cholinergic stimulation elicits not only direct changes in neural
activity but also long-term neuroplasticity effects, suggestive of
circuit reorganization (Brzosko et al., 2019).

The reason that plasticity differs between PFC subdivisions
can also be traced to systematic differences between anatomical
connections and cellular mechanisms. Anatomical studies point
to relative segregation of projections from the posterior parietal
cortex, which terminate mostly to the posterior dorsal PFC (areas
8 and 46, including both banks of the principal sulcus), and from
the inferior temporal cortex, which terminate on the posterior
ventral PFC (Petrides and Pandya, 1984; Selemon and Goldman-
Rakic, 1988; Cavada and Goldman-Rakic, 1989). Areas higher in
the sensory and limbic hierarchies projecting to more anterior
prefrontal subdivisions (Gerbella et al., 2013; Barbas, 2015; Borra
et al., 2019). Increasingly anterior prefrontal areas integrate
inputs frommore posterior ones, being activated by higher-order
cognitive operations in a rostral-caudal axis of cognitive control
(Petrides, 2005).

A greater capacity for plasticity after training in a cognitive
task may also point to the specialization of underlying
cellular and molecular mechanisms (Kuboshima-Amemori
and Sawaguchi, 2007), which may vary between prefrontal
subdivisions. Indeed, direct evidence of systematic variation
of plasticity markers between limbic and eulaminate areas has
been recently documented in the prefrontal cortex (García-
Cabezas et al., 2017). Calcium/calmodulin-dependent protein
kinase II (CaMKII), which is essential for plasticity, is more
impoverished in area 46d compared to more anterior limbic
areas, whereas makers of cortical stability, including intracortical
myelin, perineuronal nets, and PV show the reverse pattern.
Changes in neuronal morphology, molecular profiles of the
synaptic apparatus, and the influence of neuromodulator systems
have also been implicated in long-term prefrontal plasticity
(Laroche et al., 2000; McEwen and Morrison, 2013), and may
differ between areas. Finally, short-term synaptic plasticity,
depression or facilitation, has been documented in the prefrontal
cortex, and this too may be critical, particularly for task-related
plasticity (Hempel et al., 2000). Tying these cellular and
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molecular mechanisms to actual changes in neuronal activity
and capacity for plasticity will be an important goal for
future studies.

CONCLUSIONS AND OPEN QUESTIONS

This review summarized the current state of knowledge on the
generation and plasticity of persistent activity during working
memory. Some conclusions emerge from this review. We
conclude that although the prefrontal cortex is not the only
area where persistent discharges are evident, its unique cellular
and circuit organization makes it essential for the generation
of persistent activity. Training in working memory tasks greatly
affects the neuronal circuit of the prefrontal cortex, causing more
neurons to exhibit persistent activity and to have this activity
reach higher discharge rates. Different prefrontal subdivisions
have different capacities for plasticity, with most plastic changes
being evident in anterior and ventral areas. Plasticity may
manifest itself in a variety of ways. Higher firing rate during
the delay period is the most obvious effect of training and the
adult stage of maturation, compared to adolescence and old age.
However, changes in firing rate variability, correlation between
firing rates of different neurons, decreases in baseline firing rate,
and changes in neuronal dynamics have all been identified as
markers of plasticity.

Many questions related to the generation and plasticity of
persistent activity remain open for future research: first, we
hypothesized that the functional circuit of Figure 1 is most
developed in the primate prefrontal cortex. Testing of the
role of identified interneuron populations in different cortical
areas in the context of working memory could provide direct
evidence that this is the case. Second, what are the actual
synaptic changes that occur at the level of intrinsic circuits,
within the prefrontal cortex, as well as in long-range connections

between the prefrontal cortex and other areas when subjects
learn and practice working memory tasks? Addressing this
question will require the interrogation of circuits in subjects
while they learn to perform working memory tasks. Recent
technical developments have brought this aim within reach.
Next, what is the role of different neurotransmitter systems
during learning? It is well understood that dopamine and
acetylcholine play an essential role in neuroplasticity but there
is a gap regarding how these factors affect persistent activity
during training. A final area of unanswered questions has to
do with the generation of object memory. Although spatial
memory can be manipulated parametrically and modeled in
a neural circuit, object memory has proven more elusive.
We therefore ask how objects are maintained in working
memory and the factors that govern plasticity for object
memory. These questions will have to be addressed in
future studies.
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Neural processing occurs across a range of temporal scales. To facilitate this, the
brain uses fast-changing representations reflecting momentary sensory input alongside
more temporally extended representations, which integrate across both short and long
temporal windows. The temporal flexibility of these representations allows animals to
behave adaptively. Short temporal windows facilitate adaptive responding in dynamic
environments, while longer temporal windows promote the gradual integration of
information across time. In the cognitive and motor domains, the brain sets overarching
goals to be achieved within a long temporal window, which must be broken down into
sequences of actions and precise movement control processed across much shorter
temporal windows. Previous human neuroimaging studies and large-scale artificial
network models have ascribed different processing timescales to different cortical
regions, linking this to each region’s position in an anatomical hierarchy determined
by patterns of inter-regional connectivity. However, even within cortical regions, there
is variability in responses when studied with single-neuron electrophysiology. Here,
we review a series of recent electrophysiology experiments that demonstrate the
heterogeneity of temporal receptive fields at the level of single neurons within a cortical
region. This heterogeneity appears functionally relevant for the computations that
neurons perform during decision-making and working memory. We consider anatomical
and biophysical mechanisms that may give rise to a heterogeneity of timescales,
including recurrent connectivity, cortical layer distribution, and neurotransmitter receptor
expression. Finally, we reflect on the computational relevance of each brain region
possessing a heterogeneity of neuronal timescales. We argue that this architecture is
of particular importance for sensory, motor, and cognitive computations.

Keywords: neuronal timescale, autocorrelation, time constant, decision-making, working memory

INTRODUCTION

Imagine you are listening to Beethoven’s 9th symphony. As you listen, neurons in the auditory
cortex are responding to the momentary pitch of the music. In isolation, these momentary
pitches are meaningless. The notes must be contextualized across bars (seconds), melodies (tens
of seconds), and movements (minutes) for the music to be appreciated and understood. The beauty
of the music depends upon melodic expectations that are established over both long and short
timescales. The neural processing of information across a diversity of timescales is not only key
to many aspects of perception, but also cognition and motor control.
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TIMESCALES OF CORTICAL REGIONS
REFLECT HIERARCHY

More formally, we will consider the neural temporal receptive
field as the length of time over which inputs can be
integrated by a neural substrate. Previous work has established
the notion of temporal receptive fields, and characterized
the temporal properties of neural activity in response to
sensory stimuli (Sen et al., 2001; Kiebel et al., 2008; Chen
et al., 2015; Hasson et al., 2015). This work has revealed
many relevant parallels with the more established concept
of spatial receptive fields. It has long been known that
neurons in different cortical areas process sensory information
across different spatial scales. As information becomes more
highly processed, neural representations are based upon larger
physical areas and contain more abstract representations
which require the integration of multiple sources of sensory
information. As a general principle, the size and complexity
of spatial receptive fields increase along a visual hierarchy
(Lennie, 1998). For example, neurons in the early visual
cortex encode the presence of simple features of stimuli
(e.g., orientation) in a small, specific area of the visual
field (Hubel and Wiesel, 1962, 1968). At the other end
of the ventral visual stream, neurons in the inferotemporal
cortex encode high-level information about object identity,
independent of its location in the visual field (Tanaka, 1996;
Brincat and Connor, 2004; Chang and Tsao, 2017). A similar
pattern of representational hierarchies is also present in
the motor domain, with receptive field sizes increasing and
more complex motor representations becoming evident, such
as selectivity for sequences of actions, as you move from
the primary motor cortex more anteriorly to premotor and
prefrontal regions (Luppino et al., 1991; Picard and Strick,
1996; Shima and Tanji, 2000; Nachev et al., 2008; Russo
et al., 2020; but see also, Yokoi and Diedrichsen, 2019).
Furthermore, in the cognitive domain, complex representations
are evident mainly in the prefrontal cortex (Wallis et al., 2001),
which also exhibits a hierarchical anatomical organization of
abstract representations (Koechlin et al., 2003; Badre, 2008;
Nee and D’Esposito, 2016).

When reviewing temporal receptive fields, we will initially
apply a similar framework and consider how representation
size and complexity could vary across neural substrates. In
the temporal domain, as a possible equivalent to the neuronal
diversity in representing spatial scale, neurons may signal an
event (e.g., a sensory stimulus, action, or goal) for varying
lengths of time after it occurs. Some neurons may represent
this information with a fixed pattern of activity, invariant of
how long ago it occurred, within a set temporal window (e.g.,
5 s). The length of this window may vary across neurons, and
the representation carried by other neurons may be restricted
to when the event initially occurs. In higher cortical areas,
the temporal receptive window may also be task-dependent,
as demonstrated (for example) in working memory tasks with
variable delays (Funahashi et al., 1989) or in time estimation
tasks with variable durations (Wang et al., 2018). By possessing
a spectrum of these representations concurrently, it would allow

the brain to hold salient information in working memory while
continuing to monitor fluctuations in the environment.

We can also consider the complexity of information in
the temporal domain. Stimuli often vary across time, and
information must be temporally integrated to enable perception.
Further to the musical symphony analogy presented at the start
of this piece, another good example is language comprehension
(Hasson et al., 2015). To understand speech, the brain integrates
auditory information over tens of milliseconds to detect words,
which in turn are combined over several seconds to form
sentences, which are then integrated across minutes to facilitate
the understanding of discourse. Another example would be
when we take a journey. The overarching goal of the journey,
across many minutes, is to reach a destination. But in order
to reach this goal, we set subgoals which are achieved through
sequences of actions (across seconds). These action sequences
in turn require the precise co-ordination of muscle groups at a
timescale of milliseconds. In both of these examples, different
neural substrates likely underly the processing of information
across different timescales. Therefore, a temporal receptive field
may also constitute the length of time over which inputs can
be combined or outputs organized—with higher complexity
associated with longer integration times.

Recent work has begun to address how different cortical
regions process information across different temporal scales.
Several studies by Hasson and colleagues have utilized
an innovative protocol to demonstrate this with human
neuroimaging (see Hasson et al., 2015 for an in depth
review; Figure 1A). Human subjects passively experienced
a complex stimulus (e.g., listening to a story) across several
minutes, before the stimulus was ‘‘scrambled’’ and presented
again. For the scrambled versions, the original stimulus was
fragmented to different degrees. For instance, some versions
only reorganized the paragraphs of the story, whilst others
shuffled the order of all of the words. Regardless of the
degree of shuffling, fMRI activity recorded in early auditory
cortices showed a high degree of inter-subject reliability.
However, in higher cortical areas, reliable responses were only
observed when scrambled stimuli preserved the structure of
paragraphs (Lerner et al., 2011). The interpretation of these
results was that early cortical regions processed momentary
input regardless of its context, whereas in higher cortical
regions information was processed across a much longer
timescale. These findings have been demonstrated with
various sensory modalities (i.e., auditory, visual, and audio-
visual) and with different neuroimaging techniques (Hasson
et al., 2008; Lerner et al., 2011; Honey et al., 2012). More
recent studies have built on this work to directly infer the
timescale over which activity is structured by applying a Hidden
Markov Model to the time course of neural activity during
movie-watching (Baldassano et al., 2017, 2018). This again
reveals a nested hierarchy of timescales from lower to higher
cortical areas, with responses in higher areas generalising to
an audio description of the same story, while hippocampal
activity demarcates high-level boundaries between distinct
episodes in the movie. It is notable that a similar hierarchy
of timescales can also be found by examining data acquired
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during the resting state (Stephens et al., 2013), linking these
findings to the rich literature on slow timescale interactions
between large-scale brain regions while at rest (reviewed in
Buckner et al., 2013).

In another line of work, researchers have indexed temporal
scales of cortical regions by measuring the spike-count
autocorrelation of single neuron activity recorded from macaque
monkeys (Ogawa and Komatsu, 2010; Murray et al., 2014).
Utilising task independent neural activity recorded during
short (∼1,000 ms) pre-trial fixation periods, the decay rate
of autocorrelation can be captured with an exponential
equation and used to define the cortical region’s intrinsic
timescale (Figure 1B). When results from a large number of
electrophysiological datasets were collated, there was a strong
relationship between a region’s position in the anatomical
hierarchy (Felleman and Van Essen, 1991; Barbas and Rempel-
Clower, 1997) and its intrinsic timescale (Murray et al., 2014;
Figure 1C). Moreover, the potential functional relevance of
resting spike-count autocorrelation was suggested such that
regions with longer intrinsic timescales also contained neurons
with longer task-related maintenance of reward information
across trials (Bernacchia et al., 2011; Spitmaan et al., 2020).

A large-scale network model of interconnected regions,
guided by anatomical data on hierarchical connectivity (Markov
et al., 2014a) and local recurrent connectivity (Elston et al.,
2011), was sufficient to reproduce this variation in intrinsic
timescales (Chaudhuri et al., 2015; Figure 1D). In the model,
individual neurons are embedded within densely interconnected
networks. Areas of the frontal cortex are densely connected
with multiple areas, whereas sensory areas have lower, and
typically more local, connection densities (Chaudhuri et al., 2015;
Wang and Kennedy, 2016). These connection patterns form
cortical hierarchies, defined by asymmetric local (interlaminar)
and extrinsic (long-range) connections (Bastos et al., 2015;
Chaudhuri et al., 2015; Wang and Kennedy, 2016). These
anatomical hierarchies result in long integrative timescales of
neurons in frontal cortex, contrasted with short timescales of
neurons in sensory areas (Romo et al., 1999; Wang, 2001, 2020;
Kiebel et al., 2008; Benucci et al., 2009; Chaudhuri et al., 2015;
Wang and Kennedy, 2016).

Although in this initial work variation in intrinsic timescales
had only been assigned to brain regions as a whole, perhaps
individual neurons within those regions were also capable
of processing information across a diversity of timescales.
For example, previous research on spatial receptive fields has
demonstrated that although there is a general trend of higher
cortical regions exhibiting larger spatial receptive fields (Lennie,
1998), in studies where larger numbers of visual neurons were
recorded, a significant amount of within-region heterogeneity
is also found (Blasdel and Fitzpatrick, 1984; Gur et al., 2005;
Nauhaus et al., 2016; Siegle et al., 2019). It was therefore crucial
to test whether single neurons had individual timescales, which
varied within cortical regions.

If single neurons did indeed have their own temporal
receptive fields, what would this imply for their roles in
cognitive function? It is already established that there is a large
degree of heterogeneity with which neurons in higher brain

regions are involved in cognitive computations (Shafi et al.,
2007; Jun et al., 2010; Wallis and Kennerley, 2010; Meister
et al., 2013). It might therefore be the case that a neuron’s
intrinsic timescale determines its functional role in extended
cognitive processes, such as decision-making and working-
memory—specifically the neuron’s strength and dynamics of
information encoding. This could be examined by relating an
individual neuron’s encoding properties with its own intrinsic
timescale, as opposed to the broader timescale of the brain region
it inhabited.

Several studies have begun to address these questions
with single neuron electrophysiology experiments in macaque
monkeys. Here, we will review this work and consider
its significant implications—specifically what it may tell us
about how neural circuits are organized, how they compute
information, and how we should go about studying them
in future.

A DIVERSITY OF TIMESCALES AT THE
SINGLE NEURON LEVEL

One of the first studies to examine single neuron intrinsic
timescales using spike-count autocorrelation was (Cavanagh
et al., 2016), which utilized electrophysiology data recorded
from macaque monkeys during a value-based decision-making
task (Hosokawa et al., 2013). Before the monkey began to
make a choice, there was a 1,000 ms fixation period on
each trial. The same spike-count autocorrelation analysis was
applied (Murray et al., 2014; Figure 1B), with one important
difference. Instead of pooling the autocorrelograms of all
neurons within a brain region, a timescale was fitted for
each individual neuron. Although this inevitably made the
fitting process more noisy, and some neurons were poorly
described by a simple exponential decay, the majority of
neurons exhibited a decay in autocorrelation structure reliably
quantified by an exponential function (see Figure 2 for
examples). Importantly, this analysis highlighted a striking
degree of within-region variability (Figure 2)—even within
the anterior cingulate cortex (ACC), which sat at the apex
of the hierarchy identified in Murray et al. (2014); there
was a spectrum of timescales including many neurons with
short timescales. Further studies then applied the same single-
neuron analysis to many different brain regions throughout
the cortical hierarchy (Figure 3), including posterior parietal
cortex (Wasmuht et al., 2018), lateral prefrontal cortex (lPFC;
Cavanagh et al., 2016, 2018; Wasmuht et al., 2018; Fascianelli
et al., 2019; Fontanier et al., 2020; Kim and Sejnowski,
2020), orbitofrontal cortex (OFC; Cavanagh et al., 2016,
2018; Fascianelli et al., 2019), cingulate cortex (Cavanagh
et al., 2016, 2018; Fontanier et al., 2020), premotor cortex
(Cirillo et al., 2018), and frontopolar cortex (Fascianelli et al.,
2019). All of these regions contained single neurons with a
diversity of timescales, suggesting that brain regions possessing
a heterogonous distribution of timescales is a generalized
feature of cortical organization. Despite this work predominantly
focussing on higher-level cortical regions, it would be reasonable
to predict that lower-level sensory regions may also contain
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FIGURE 1 | Temporal receptive fields vary across cortical brain regions. (A) Topography of temporal receptive fields defined using fMRI data recorded during the
passive listening to stories. The color in the voxel heatmap depicts the shortest period to which the original auditory story stimulus could be scrambled and a reliable
inter-subject correlation still be obtained (red: story played backward; yellow: a story with word-order scrambled; green: a story with sentence-order scrambled; blue:
a story with paragraph-order scrambled). Early auditory areas (A1+) were reliable across subjects even on the most scrambled stimuli, whereas activity in higher
regions such as the temporal-parietal junction (TPJ) responded reliably only in the least scrambled condition. There was a gradual hierarchical progression of
timescales along the temporal-parietal axis. Data originally published in Lerner et al. (2011), figure reproduced from Hasson et al. (2015), with permission.
(B) Spike-count autocorrelation method for assigning neuronal timescales. Spike counts for each neuron during the pre-trial fixation periods are subdivided into
non-overlapping 50 ms bins. This data from this matrix is correlated across trials to produce a measure of autocorrelation as a function of time-lag between bins. The
data is averaged across all neurons recorded in a cortical region before the rate of decay is captured with an exponential fit. The tau parameter determines the
intrinsic timescale of the cortical region. (C) Intrinsic timescales of seven cortical regions as a function of their position in the anatomical hierarchy. Regions further up
in the hierarchy have longer timescales. Each of the different data points (circles) from each brain region were collected by a different research lab, with the lines
between datapoints indicating multiple brain areas collected by the same research lab. Reproduced with permission from Murray et al. (2014). (D) A large-scale
biophysically-realistic neural network simulation shows a hierarchy of timescales in response to visual input. An important feature of the model is the inclusion of
anatomical data regarding inter-regional connectivity shown here. In the graph, as in panel (B), autocorrelation is plotted as a function of time lag. Brain regions with
more prolonged, stable autocorrelation functions are those at the apex of the cortical hierarchy. Reproduced with permission from Chaudhuri et al. (2015).

heterogenous timescales. This appears likely from single-neuron
autocorrelograms (Murray et al., 2014), and is supported by a
previous study which observed heterogeneity of autocorrelation
decay when recording intracellularly from neurons in cat
striate cortex (Azouz and Gray, 1999). Variability in single-
neuron timescales has also been observed in several early visual
areas of the mouse brain (Siegle et al., 2019), and it will be
interesting to explore this more conclusively in future studies of
primate cortex.

Once it had been established single neurons possessed
different individual timescales, these studies next investigated
whether this variation was functionally significant. A simple way
to approach this question was to test the relationship between
timescales quantified during the resting (fixation) period of the
task with the strength of a neuron’s subsequent task-related
activity. For example, encoding of the value of the chosen option
during a decision making task may arise as a consequence of
the process of evidence integration during a temporally extended
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FIGURE 2 | A Heterogeneity of single-neuron timescales exist within a brain region. Data recorded from the ventrolateral prefrontal cortex (VLPFC) during a working
memory task (Cavanagh et al., 2018). (A) Autocorrelation structure of five VLPFC neurons, plotted as a function of time within the pre-trial fixation period. As in
Figure 1B, these are calculated by correlating the spike count autocorrelation across trials. Despite being recorded in the same brain region, there is a large degree
of diversity. (B) Autocorrelation structure of VLPFC neurons, plotted as a function of the time lag between bins. As in Figure 1B, the data from above have been
sorted by the time lag. Each of the lines corresponds to an exponential fit of the decaying autocorrelation of one of the neurons’ heatmaps above (corresponding
color). There is substantial heterogeneity in the individual neurons making up the whole region average. Each neuron has an exponential decay reasonably distinct
from the population average. (C) Histogram showing the single neuron exponential decay time constant assigned to all neurons within VLPFC. The vertical lines mark
the example neurons shown in this figure. The thicker blue line marks the population mean.

decision process (Hunt et al., 2012, 2015), or may also support
maintaining value information until later in the trial when
learning can occur by assigning credit to the chosen option
(Rangel and Hare, 2010; Jocham et al., 2016; Enel et al., 2020).
Because both evidence integration and working memory for
value are temporally extended processes, it might be expected
that single neurons with longer intrinsic timescales are more
involved in these cognitive processes. This relationship could
be explored by correlating timescales with the coding strength
of each neuron, or alternatively by subdividing a brain region’s
entire population by a median split of timescales and comparing
the task-related activity in the two groups (Cavanagh et al.,
2016). Together, these analyses revealed that prefrontal neurons

with longer timescales exhibited stronger chosen value coding
when a decision was being made. Moreover, long timescale
neurons in OFC continued to signal the chosen value until
an outcome was received (Figure 4A). Neurons with longer
timescales were therefore more involved in both choice and
maintaining a representation of the expected outcome across
delays which could support credit assignment processes.

The apparent relationship between intrinsic timescales and
task-related processing can also be extended to another cognitive
process—working memory. Whereas decision-making requires
the gradual integration of evidence across time (Gold and
Shadlen, 2007), working memory involves the maintenance of
task-relevant information in the absence of direct sensory input
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FIGURE 3 | Heterogeneity of single-neuron timescales exist within multiple brain regions across several studies. (A) Histograms of single-neuron timescales for
dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), and anterior cingulate cortex (ACC). Data were recorded during a value-based decision-making
task. Adapted from Cavanagh et al. (2016), where originally published with a CCBY4 licence. (B) Histograms of single-neuron timescales for lateral prefrontal cortex
(lPFC), frontal eye field (FEF), and lateral intraparietal area (LIP). Data were recorded during a change-detection working memory task. Adapted from Wasmuht et al.
(2018), where originally published with a CCBY4 licence. (C) Histogram of single-neuron timescales for DLPFC, VLPFC, OFC, and ACC. Data were recorded during
an oculomotor delayed working memory task. Adapted from Cavanagh et al. (2018), where originally published with a CCBY4 licence. (D) Histogram of
single-neuron timescales for dorsal premotor cortex (PMd), recorded during a rule-based working memory task. Adapted from Cirillo et al. (2018), where originally
published with a CCBY4 licence.

(Goldman-Rakic, 1995). A number of studies demonstrated
that neuronal timescales predicted the strength of mnemonic
encoding on a variety of different working-memory paradigms,
with longer timescale neurons again playing a greater role
in the maintenance of mnemonic information (Nishida et al.,
2014; Cavanagh et al., 2018; Cirillo et al., 2018; Wasmuht
et al., 2018; Fascianelli et al., 2019; Fontanier et al., 2020; Kim
and Sejnowski, 2020; Figure 4B). This effect was present in
multiple brain regions [lPFC, cingulate cortex, frontal eye field

(FEF), premotor cortex], and for multiple different modalities
of mnemonic information (spatial location/response direction,
expected reward size, stimulus color).

While the results discussed so far had uncovered the
relationship between neuronal timescales and the strength of
encoding, they did not address another important computational
property: the pattern with which this information was encoded.
The temporal dynamics of population encoding has become
of increasing interest and controversy in both decision-making

Frontiers in Neural Circuits | www.frontiersin.org 6 December 2020 | Volume 14 | Article 61562626

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Cavanagh et al. Diverse Timescales Underlie Neural Computations

Choice 
onset Low Time Constant

High Time Constant

OFC (n = 99)
Go 
cue

0 500 1000 −1000 −500 0 500 1000 1500 2000 2500

0

0.5

1

1.5

2
C

ho
se

n 
Va

lu
e 

C
PD

Reward
onset

Reward
offset

Time after choice onset (ms) Time after reward onset (ms)

A

-1000 0 1000 2000 3000 4000
Time from Spatial Cue Onset (ms)

0

10

20

30

40

50

60

   Spatial  
     Cue    

  Reward 
     Cue 

Fixation Delay One Delay Two

C
la

ss
ifi

er
 P

er
fo

rm
an

ce
: S

pa
tia

l C
od

in
g 

(%
)

B

r = 0.360

100

200

τ

on
se

t (
m

s)
 

101 102 103

p < 0.001

C

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Sp
at

ia
l D

is
cr

im
in

ab
ilit

y 
In

de
x

Spatial
  Cue  

Spatial
  Cue  

Reward
  Cue 

Reward
  Cue 

Fixation

Delay
One

Delay
Two

Fixation Delay
One

Delay
Two

Go

Go

-1000
0    

1000 
2000 

3000 
4000 

Time from Spatial Cue Onset (ms): Training Set

-1000

0    

1000 

2000 

3000 

4000 

Ti
m

e 
fro

m
 S

pa
tia

l C
ue

 O
ns

et
 (m

s)
: T

es
t S

et

Spatial
  Cue  

Spatial
  Cue  

Reward
  Cue 

Reward
  Cue 

Fixation

Delay
One

Delay
Two

Fixation Delay
One

Delay
Two

Go

Go

-1000
0    

1000 
2000 

3000 
4000 

Time from Spatial Cue Onset (ms): Training Set

-1000

0    

1000 

2000 

3000 

4000 

Ti
m

e 
fro

m
 S

pa
tia

l C
ue

 O
ns

et
 (m

s)
: T

es
t S

et

High Tau Subpopulation Low Tau SubpopulationD

FIGURE 4 | Functional roles of single-neuron timescales during cognitive tasks. (A) Long timescale neurons in the orbitofrontal cortex (OFC) are more involved in
decision-making and the maintenance of value information until the outcome. The graph shows the coefficient of partial determination (CPD) of chosen value coding
for long timescale (blue) and short timescale (red) neurons within OFC. Long timescale neurons have stronger value coding at the time of choice, then throughout the
trial until the end of the outcome period. Adapted from Cavanagh et al. (2016) where originally published with a CCBY4 licence. (B) Long timescale neurons in the
ventrolateral prefrontal cortex (VLPFC) are more involved in the maintenance of spatial working memory information. The graph shows the accuracy with which a
linear classifier could decode the remembered spatial location from a subpopulation of neurons with long (purple) and short (timescales). The neural population with
longer timescales shows stronger signaling of working memory information—specifically during the delay period. The dashed horizontal line shows chance-level
classifier performance. The black horizontal bar shows a significant difference between the two populations. Adapted from Cavanagh et al. (2018) where originally
published with a CCBY4 licence. (C) Correlation between the onset latency of significant stimulus encoding with the intrinsic timescale in the lateral prefrontal cortex.
There is a significant correlation—neurons with shorter timescales encode information more quickly following stimulus onset. Each dot represents one neuron, the
black line indicates a linear fit to the data with the shaded area depicting the 95% confidence interval of the fit. Adapted from Wasmuht et al. (2018) where originally
published with a CCBY4 licence. (D) VLPFC long-timescale neurons have more stable working memory encoding than VLPFC short timescale neurons. The
heatmaps show the cross-temporal stability of spatial coding in the two populations. In the long timescale subpopulation, there is greater stability of spatial coding:
the off-diagonal elements are warm in color, meaning that the same population code persists throughout the delay epoch following the spatial cue. Although a stable
state is reached during delay-one, this is disrupted by the presentation of the distracting reward cue, and there is only a weak non-significant cross-temporal
generalization between delay-one and delay-two. In the low time-constant population, coding is always dynamic (i.e., on diagonal heat), so no stable state is
established. Adapted from Cavanagh et al. (2018) where originally published with a CCBY4 licence.

and working memory research fields (Latimer et al., 2015;
Constantinidis et al., 2018; Lundqvist et al., 2018). Competing
explanations propose that the pattern of neural encoding

is either stable (Constantinidis et al., 2018), time-varying
(Lundqvist et al., 2018) or even activity-silent (Stokes, 2015),
during working memory. While these discrepancies may
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relate to the task paradigm studied, or the brain region
recorded from, it also possibly reflects the inherent neuronal
properties—such as intrinsic timescales—of the cells sampled.
To explore this, two studies compared the cross-temporal
encoding dynamics of short and long timescale neurons
(Cavanagh et al., 2018; Wasmuht et al., 2018). When the
population of lateral prefrontal neurons were split according
to their timescale, the group with longer timescales exhibited
stable mnemonic coding whereas those with shorter timescales
displayed dynamic coding (Figure 4D). These results reveal that
in addition to the strength of encoding, intrinsic timescales
can also explain computational dynamics, which here has
proven useful in reconciling stable and time-varying working
memory theories. While in these two studies the target of
working memory was an object or spatial array, a similar
separation of stable and dynamic subspaces has recently been
found for value-coding neurons in OFC and ACC as well,
suggesting this may be a general property of PFC coding
(Enel et al., 2020).

Surprisingly, although long timescale neurons exhibited a
stable pattern of encoding, this was disrupted by the presentation
of a salient distractor (Cavanagh et al., 2018; Figure 4D). One
may have predicted that the maintenance of stable encoding
would be important to shield mnemonic information from
distraction, and that long timescale neurons would be essential
for this process. This result may instead indicate that the
function of these long timescale neurons is the integration of
multiple pieces of task-relevant information, rather than the
stable maintenance of individual pieces of information. These
alternative hypotheses tie directly in to the ideas proposed at
the start of this review: is the function of a temporal receptive
field to maintain information for a fixed time window, or to
integrate all of the information occurring within that window?
Unfortunately, all of the cognitive paradigms reviewed so far have
been unable to arbitrate between these two hypotheses because
the task-relevant stimuli do not vary sufficiently across time.
Although the decision-making task discussed earlier (Cavanagh
et al., 2016) involves the gradual integration of implicit, noisy
value estimates across time (Gold and Shadlen, 2007; Hunt
and Hayden, 2017), these internal estimates are not accessible
to the experimenter. Future work could utilize a decision-
making paradigm with experimenter controlled time-varying
evidence (Kira et al., 2015; Cavanagh et al., 2020), which requires
the combination of many different stimuli. A paradigm such
as this dissociates individual information from the integrated
total, and would help to determine whether intrinsic timescales
better predict a functional role in information integration
or maintenance.

So far, most of the research in this area has focussed
on how long timescale neurons may be more functionally
important for extended cognitive processes. However, there
has been less evidence presented regarding the possible roles
of short timescale neurons. This has been addressed by a
recent study which demonstrated that during an inter-trial
period neurons with short timescales encoded momentary
feedback information more strongly (Fontanier et al., 2020). This
contrasted with long timescale neurons, which at this point of

the task preferentially encoded information which was relevant
for future decisions which would occur in subsequent trials.
Additionally, there has also been some evidence to suggest
that neurons with shorter timescales may encode information
at a shorter latency (Wasmuht et al., 2018; Figure 4C). It
is unknown whether neuronal timescale varies as a function
of cortical layer, but as we discuss further below, this result
would be consistent with shorter timescale neurons residing in
layer IV (and so receiving earlier input), and longer timescale
neurons residing in layers II and III (where local recurrent
excitation would allow temporally extended computation to
occur). Furthermore, it has been suggested that short timescale
neurons may utilize a time-varying dynamic representation
in order to increase coding dimensionality (Wasmuht et al.,
2018)—a computational feature which may be crucial for
complex behavior (Rigotti et al., 2013). However, these ideas
will have to explored more specifically in future studies (see also
section on ‘‘Computational Advantages of a Diversity of Within-
Region Neuronal Timescales’’).

In addition to quantifying the rate of exponential decay
of spike-count autocorrelation, it is important to consider
other features of the autocorrelograms. Single-neuron
autocorrelograms also significantly vary in their offset, and
the importance of this parameter has yet to be explored. One
recent study also identified important heterogeneity in the
initial time-lag before autocorrelation begins to decay as a
function of time (Fontanier et al., 2020), a feature which was
particularly prominent in cingulate cortex (Murray et al.,
2014; Cavanagh et al., 2016, 2018; Fontanier et al., 2020).
Related to the time-lag of autocorrelograms, other studies
in rodents have demonstrated diversity in the time-lag of
stimulus representations (Harvey et al., 2012; Morcos and
Harvey, 2016; Scott et al., 2017). This pattern of activity could
arise from network architectures facilitating the sequential
activation of individual neurons, and may be a mechanism
through which a dynamic population code could underlie the
retention of information in working memory (Goldman, 2009;
Rajan et al., 2016).

Aside from analyzing resting spike-count autocorrelation,
other researchers have devised different methods to quantify
single neuron temporal receptive fields (Bernacchia et al., 2011;
Scott et al., 2017; Dragomir et al., 2020; Hart and Huk, 2020;
Spitmaan et al., 2020). The majority of these have focussed on
the temporal dynamics of task-related encoding—highlighting
a heterogeneity for the duration of information maintenance
across neurons within the same brain region. An advantage
of the autocorrelation approach is that by considering resting
activity, it can quantify the intrinsic properties of the neuron,
and then determine how these intrinsic properties influence the
neuron’s role in computations. Hence, this approach can provide
broader insights about the underlying cortical architecture (see
also later section on ‘‘The Anatomical and Biophysical Basis of
Single Neuron Timescales’’). Furthermore, during the pre-trial
fixation period, the subjects are in a controlled, attentive state
without eye movements or knowledge of the forthcoming
task stimuli. This minimizes the potential confounds of any
task-related responses, and facilitates an analysis method that
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can be applied and compared across many datasets. However,
there are also important advantages to quantifying timescales
using patterns of task selectivity—such as having access to
a greater amount of data than that limited to the fixation
period. This may help to identify neurons with timescales much
longer than can be captured with an exponential limited to a
1,000 ms fixation window. A further advantage of this method
is being able to relate the extracted timescales more directly
to behavior. These timescales may be far longer than those
quantified using resting autocorrelation (Bernacchia et al., 2011;
Spitmaan et al., 2020), and the two may or may not be directly
related (Spitmaan et al., 2020). While quantifying timescales
directly using task selectivity has provided interesting results,
a more detailed discussion of these is outside the scope of
this review.

THE ANATOMICAL AND BIOPHYSICAL
BASIS OF SINGLE NEURON TIMESCALES

This section will set out to address what factors contribute to the
diversity of single neuron timescales (Figure 5A). As a starting
point, it will consider factors which have already been suggested
to contribute to the diversity of timescales at the level of cortical
regions, and try to apply these at a more local level.

Local Connection Patterns
When addressing the biophysical basis of intrinsic timescales at
the single neuron level, it is helpful to first consider existing
work probing the determinants of timescales at the level of
cortical regions (Chaudhuri et al., 2015). Chaudhuri et al. (2015)
developed a large-scale dynamical model of macaque neocortex
where each brain area is described by a recurrent network
(Figure 1D). Both local and inter-regional circuit mechanisms
contributed to a hierarchy of timescales across cortical areas
(Figure 5B), which closely resembled the experimental timescales
derived from autocorrelation (Murray et al., 2014). A particularly
important feature of the model was that regions higher in the
cortical hierarchy were endowed with stronger local excitatory
connection strength, motivated by the empirical observation that
pyramidal neurons in these regions possess a greater number of
dendritic spines (Elston, 2000, 2003). However, the experimental
evidence suggests there is widespread heterogeneity in spine
density within cortical regions (Elston, 2003)—mirroring the
variability in single neuron timescales presented in this review. It
is therefore important to consider whether local, within region,
differences in excitatory connection strength contribute to single
neuronal timescales.

By extending the inferences made at the level of cortical
regions (Chaudhuri et al., 2015), it is likely that neurons
with the longest timescales have the strongest levels of local
recurrent connections. One way to examine this hypothesis is
to consider noise correlations—the spike count correlation
between pairs of simultaneously recorded neurons—as
an indirect measure of connection strengths (Cohen and
Kohn, 2011). Intriguingly, initial analyses suggest longer
timescale cells exhibit higher noise correlations—and hence
stronger local connection strengths (Wasmuht et al., 2018;

Figure 5C). There is also evidence suggesting that the
stable population codes generally observed in higher cortical
areas are supported by stronger coupling between neurons
(Runyan et al., 2017). In addition to the strength of local
connectivity, the architecture of those connections may be
of relevance. Aside from the temporal domain, it has been
shown directly that neurons in mouse primary visual cortex
with stronger connectivity share more similar spatial receptive
fields (Cossell et al., 2015; Lee et al., 2016). Future studies
could examine whether there is a similar association for
temporal receptive fields. Interestingly, theoretical work has
proposed classes of network architecture that could facilitate
a diversity of timescales differentially concentrated in separate
parts of the wider network. This can be realised through
localized eigenvectors in the network’s connectivity matrix
(Chaudhuri et al., 2014).

Significant insights into the role of local connectivity in single
neuron timescales have also been provided by computational
modeling. Computational accounts have stressed the importance
of heterogeneous local connection weights for producing a
diversity of single neuron timescales (Bernacchia et al., 2011;
Chaudhuri et al., 2014). A separate body of theoretical work
has also investigated how a closely related temporal feature of
neural activity, population sequences where individual neurons
have dynamic responses with heterogenous latencies, may arise
(Goldman, 2009; Harvey et al., 2012; Rajan et al., 2016). This
may be through a highly structured feedforward architecture
(Goldman, 2009), or a random network with minimally adjusted
connections (Rajan et al., 2016). It is plausible that such
architectures could also account for a heterogeneity of timescales.
For instance, neurons at different positions in a feedforward
network may have a different timescale as well as latency,
although this has yet to be explored.

Recent work employing artificial spiking recurrent neural
networks (RNN) has also provided further evidence of
the importance of local connection patterns in determining
neuronal timescales (Kim and Sejnowski, 2020). RNNs trained
to perform working memory tasks were shown to contain
neurons with a heterogeneity of timescales (Figure 5D). As in
the electrophysiological data, neurons with longer timescales
exhibited stronger and more stable encoding. Interestingly,
a heterogeneity of timescales only emerged once RNNs
had been trained to perform a temporally extended task
(as opposed to a task not requiring the maintenance of
information across time; Figure 5D), and was most dependent
upon local connection strengths. Surprisingly, the connection
strengths between pairs of inhibitory neurons were particularly
important. Despite the fact that the networks were trained
with a biologically implausible gradient descent learning
algorithm, it will be important to explore these insights with
more biophysically realistic network architectures along with
experimental data.

Inter-regional Connection Patterns and
Cortical Layer
In addition to local connectivity, the other vital architectural
feature facilitating heterogenous timescales across brain areas
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task, an untrained RNN, and an RNN trained to perform a similar choice task without a working memory delay. The RNN trained to perform the temporally extended
cognitive process exhibits a diversity of single unit timescales most in keeping with the experimental data. Reproduced from Kim and Sejnowski (2020).
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in a biophysical circuit model was the pattern of inter-
regional connectivity (Chaudhuri et al., 2015; Figures 1D,
5B). The specific constellation of inputs and outputs to
a brain region was critically important in determining its
timescale. In short, the higher a brain region is located in an
anatomical hierarchy, as defined by its inter-areal connections
(Markov et al., 2014a), is strongly predictive of its average
neuronal time-constants (reviewed in Wang, 2020). When
applying this insight to single neurons, we should consider
connectivity profiles at the level of cortical regions merely a
helpful sketch of an infinitely more detailed neural architecture.
Within a given brain region, the incoming and outgoing
projections from each neuron are inevitably varied. A minority
of neurons may receive direct projections from other regions,
or be closely connected with other cells that do, whereas
further neurons may be relatively distant from extra-regional
input. Therefore, it is possible this heterogeneity in inter-areal
projections may be another contributor to determining single
neuron timescales.

The inter-region connectivity profile may relate to the
cortical layer within which the neuron is situated. For instance,
neurons with feedforward connections typically reside in
supragranular layers, while those with feedback connections
inhabit the infragranular layers (Felleman and Van Essen, 1991;
Markov et al., 2014b). Interestingly, the cortical layer may
also determine the degree of local connectivity, with neurons
in layer III of prefrontal cortex thought to have particularly
strong recurrent connections (Goldman-Rakic, 1995; Kritzer
and Goldman-Rakic, 1995) reflected by an increase in spine
density in prefrontal and parietal cortices relative to early sensory
areas (Elston, 2003; Elston et al., 2011; Gilman et al., 2017).
Recent studies have leveraged new technologies to demonstrate
that task-related working memory activity mainly resides in
supragranular layers (Markowitz et al., 2015; Bastos et al., 2018;
Finn et al., 2019), providing experimental evidence that recurrent
circuitry may be important for generating persistent activity.
In future studies, laminar electrode probes may also provide
insight into the relationship between neural timescales and
cortical layer.

Beyond single neuron electrophysiology studies, recent work
has shown that the functional connectivity between brain
regions, as determined by resting state fMRI BOLD signal
or magnetoencephalography (MEG), is also closely related
to the hierarchical heterogeneity in local circuit properties
(Demirtas̨ et al., 2019). A large-scale biophysical model of
cortex, with the intrinsic properties such as the levels of
excitation and inhibition of individual brain regions varied
according to their hierarchical position (Burt et al., 2018),
was able to closely mirror human resting state functional
connectivity measures (Demirtas̨ et al., 2019). It was also
able to predict a hierarchical topography of spectral features
of resting-state MEG. An important advance of this study
was that it accounted for heterogenous circuit properties
between regions (although not within them). This suggests
that at a more local level, the within-region heterogeneity
we have discussed in this article (which we posited to be
important in determining timescale) may also have an important

influence on functional connectivity and oscillatory activity. This
provides a link between neuronal timescales and large scale
brain networks.

Cell Type and Receptor Expression
The neuron type, for instance whether it is excitatory or
inhibitory, likely has an impact on a cell’s timescale. In prominent
spiking circuit models for extended cognitive processes, such
as decision-making and working memory, pyramidal cells
and interneurons play different functional roles (Brunel and
Wang, 2001; Wang, 2002). Subgroups of pyramidal cells
exhibit stimulus-specific persistent activity for particular choice
options or memoranda, while interneurons provide non-selective
inhibition. If this architecture is indeed present in primate cortex,
it is likely excitatory neurons embedded within richly reverberant
pools should have longer timescales than interneurons, as
well as other non-selective pyramidal neurons. Some recent
experimental evidence using neuronal spike width as a proxy
for cell type suggests that the ratio of putative pyramidal
to inhibitory neurons increases progressively up the cortical
hierarchy, possibly facilitating stronger persistent dynamics
(Torres-Gomez et al., 2020). Although using this technique could
reveal information about the biophysical basis of single neuron
timescales, a more reliable investigation of the role of different
cell types may require experimental techniques currently
only available in rodents. This may also uncover dissociable
timescales in different types of GABAergic interneurons which
are hypothesized to play distinctive roles in persistent activity
(Wang et al., 2004).

Another important determinant of neuronal timescales
may be neurotransmitter receptor expression. Slow decaying
NMDA receptor (NMDA-R) synaptic currents, which allow
post-synaptic neurons to remain depolarized for a greater length
of time, are thought to be critical for the stability of neural activity
(Wang, 2001). NMDA-R expression is variable across neurons,
and given its importance for persistent activity, likely contributes
to a neuron’s timescale. This could be tested empirically using
iontophoresis of NMDA-R antagonists (Wang et al., 2013). The
specific subunit combination of the NMDA-R may also be of
relevance. NMDA-R are heterotetramers, meaning they are the
assembly of four distinct subunits. Each NMDA-R typically
consists of two NR1 subunits, together with two NR2 subunits.
While the eight possible splice variants of the NR1 subunit are
relatively similar, the four varieties of NR2 subunits (NR2A,
NR2B, NR2C, NR2D) are more heterogeneous. The NR2 subunit
expressed in each receptor is therefore important in determining
its kinetic properties (Monyer et al., 1994; Vicini et al., 1998).
The NR2 subunits are differentially expressed across different
cell types, brain regions, and at different stages of development
(Watanabe et al., 1992; Monyer et al., 1994). Interestingly, recent
work has shown that the NR2B subunit is increasingly expressed
further up the anatomical hierarchy, with the greatest expression
in prefrontal cortex (Wang et al., 2008; Burt et al., 2018).
Therefore, at a more local level, the degree to which a neuron
expresses the NR2B subunit may be important in determining its
timescale. In addition to the NMDA-R, other neurotransmitter
systems may be relevant, particularly those exerting ascending
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neuromodulation such as dopamine (Arnsten et al., 2015) and
acetylcholine (Croxson et al., 2011).

In summary, we have discussed a broad range of factors
which may contribute to a neuron’s timescale—namely cellular
morphology, connectivity profile, and receptor expression
(Figure 5A). When randomly sampling neurons within the
macaque prefrontal cortex, the morphology, cell-type, cortical
layer and synaptic features are unknown. Recorded neurons
are therefore likely sampled from separate subnetworks
with differing underlying properties. This may explain the
heterogeneity observed in neuronal timescales.

COMPUTATIONAL ADVANTAGES OF A
DIVERSITY OF WITHIN-REGION
NEURONAL TIMESCALES

The general advantages of processing information across a
range of temporal scales at the whole brain level are clear.
Short timescales allow one to respond rapidly to important
changes in the environment, while long timescales facilitate the
integration of information to improve the signal-to-noise of
working-memory and decision-making computations. Previous
perspectives have addressed the computational advantages of a
diversity of processing timescales in detail, and suggested these
processes may occur in different brain areas. However, here
we will specifically consider why it would be computationally
advantageous for individual brain regions to also possess their
own diversity of timescales.

While the distinction of neuronal timescales at the level of
cortical regions has proven important, this has most commonly
been framed in the context of processing simple sensory stimuli.
In reality, the brain must also process much more complex
features of the environment across a range of timescales. The
computation of many of these complex features is limited to
cortical association areas, as neural computations are constrained
by a region’s anatomy. These computations often require the
integration of many different attributes, but not necessarily
across time. To compute the value of a reward—its probability,
magnitude, any delay before receiving it, and the acquisition
costs must be integrated. Like transient sensory stimuli, values
can also evolve sporadically. It is thus important that values are
dynamically tracked to facilitate rapid responses to the sudden
appearance of a highly rewarding stimulus that is too good
to miss, but also integrated gradually across time to improve
signal-to-noise ratio and maximize decision-making accuracy.
By extension, if the computation of complex features such
as value are limited to higher cortical regions, it would be
advantageous if neural populations within cortical association
regions also had a range of diverse timescales for processing
value. There is now some experimental evidence showing how
this may occur—with neurons in cingulate cortex showing
different responses according to their timescale. During an inter-
trial period, short timescale neurons signalled the outcome from
the immediately preceding trial, whereas long time scale neurons
encoded a separate piece of information which was relevant to
future decisions on subsequent trials (Fontanier et al., 2020).

Another useful implementation for this diversity of timescales
would be in reinforcement learning (Sutton and Barto, 1998).
Here, agents compute reward expectation by using a temporal
filter to weigh previous outcomes. The optimal timescale for
the filter is dependent upon the volatility of the environment;
in a stable setting a long temporal filter allows more accurate
predictions, whereas in a dynamic setting a short temporal
filter should be employed to track changing payoffs (Behrens
et al., 2007). Through applying a differential weighting to
neurons with different reward timescales in response to changes
in environment volatility, efficient reward expectations could
be estimated. There is already experimental evidence for
heterogenous reward timescales, with neurons integrating to
different degrees across previous outcomes (Bernacchia et al.,
2011). A similar concept has been explored in a recent
neuroimaging study, where ACC was shown to possess a
range of learning rates when humans made decisions in
a volatile environment (Meder et al., 2017). It would be
interesting for future studies to explore how these timescales
are utilized. Specifically, whether the outputs of neurons
with different timescales are indeed weighted differently by a
decoder somewhere within the brain according to the current
environmental volatility. This would be in line with similar
previous observations of how neural population activity can
be flexibly weighted according to current behavioral demands
(Raposo et al., 2014), and shed light on how a brain region may
utilize its diversity of timescales.

A brain region potentially capable of implementing these
ideas is the ACC. ACC neurons not only encode choice and
reward history (Seo and Lee, 2007), ACC activity encodes
reward information and learning rates over diverse temporal
scales (Bernacchia et al., 2011; Meder et al., 2017). Moreover,
in the case of both the anatomical connection density patterns
(Chaudhuri et al., 2015) and intrinsic neuronal time constants
(Murray et al., 2014; Cavanagh et al., 2016), ACC is at the top of
the cortical hierarchy, potentially organized in local anatomical
gradients (Meder et al., 2017). The simultaneous representation
of multiple time constants in ACC may allow the computation
of reward trajectories by comparing estimates of recent and past
reward rates.

In addition to adaptively weighting neurons according to their
timescales, the temporal dimensionality of neural representations
is also relevant for decoding. When encoding an item in
working-memory, one computational perspective suggests that
a stable pattern of neural population activity is preferable—as
irrespective of the passage of time, a downstream decoder can
utilize the same readout weights for the interpretation of a
mnemonic representation (Murray et al., 2017). As we have
shown earlier in this piece, neurons with long timescales may
be particularly adapted to perform this stable maintenance
function (Cavanagh et al., 2016, 2018). A recently emerging,
and highly influential, concept in computational neuroscience
has been the importance of mixed selectivity in maximizing
the dimensionality of neural representations (Rigotti et al.,
2013; Fusi et al., 2016; Stringer et al., 2019). In tasks with
multiple features, prefrontal neurons generally encode these
features with non-linear interactions, and this in turn maximizes
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the number of different available linear classifiers which could
be utilized for readout. In addition to mixing the activity
across neurons, varying the activity across time would further
increase the dimensionality (Wasmuht et al., 2018). Therefore,
while the stable coding schema offers some advantages, this
is at the expense of minimizing the possible dimensionality of
encoding relative to a population whose activity varies across
time. By possessing subpopulations of neurons with different
timescales, the prefrontal cortex is simultaneously providing
easily-interpretable readout, as well as a high dimensional
one—dependent upon which neurons a downstream decoder
chooses to listen to at any given time. This would appear an
important advantage of individual brain regions being capable of
processing information across different timescales.

In addition to determining the value of stimuli, flexibly
applying abstract rules is another important aspect of higher-
level cognition (Miller and Cohen, 2001). It requires an agent
to modify their response to a stimulus according to dynamically
changing contexts or goals. Similar to value computations,
experimental evidence suggests the neural substrates for rule
based processing reside within higher cortical areas such as
prefrontal cortex (Buckley et al., 2009); with neurons encoding
abstract rules and rapidly altering how stimulus features are
mapped onto actions (Wallis et al., 2001; Buschman et al.,
2012; Mante et al., 2013). These rules are often implemented in
a hierarchical fashion (Botvinick et al., 2009) which naturally
necessitates the organization of behavior at a range of different
timescales. Such behaviors often need to be applied rapidly based
upon a single salient piece of information, and this would not
be possible if prefrontal cortex was only capable of processing
information across long timescales as suggested from previous
studies (Murray et al., 2014; Hasson et al., 2015).

Another cognitive process which may involve a diversity
of neuronal timescales is evidence accumulation. Evidence
accumulation refers to the process by which information favoring
alternative hypotheses is gradually integrated over time, and has
been proposed to underlie perceptual, value-based, and many
other forms of decision (Gold and Shadlen, 2007; Krajbich et al.,
2010; Shadlen and Kiani, 2013). A series of recent behavioral
studies have revealed that the timescale across which evidence
is accumulated can be flexibly adjusted according to features of
the stimulus or environment (Ossmy et al., 2013; Glaze et al.,
2015; Bronfman et al., 2016; Levi et al., 2018; Piet et al., 2018;
Ganupuru et al., 2019). For instance, in change detection tasks,
humans weigh evidence differently according to how long they
expect the intervening ‘‘change’’ in a noisy background stimulus
to last (Ossmy et al., 2013). By adopting a shorter accumulation
timescale for expected signals with a briefer duration, humans
can perform this challenging task effectively. One mechanism
by which the decision timescales could be adjusted is through
individual brain regions having access to neural representations
accumulating evidence across a diversity of timescales- as we
have proposed in this review. This solution would provide a
flexibility which could solve many more complex problems
faced in the real world. For instance, Ossmy et al. (2013)
contemplate a real-world example whereby a radar operator must
interpret whether signal fluctuations may represent a missile,

a passenger plane, or noise. In this problem, the brain must
simultaneously accumulate evidence to detect the two important
features (missile and plane), which may have different signal
patterns/durations. A brain region utilizing a heterogeneity of
timescales and applying them to integrate the same visual signal
would be well suited to solve this problem. Another example
of where this may be useful is situations where different types
of decisions, which may use different criteria, must be made
based on the same stimulus. A recent study suggested that
during a similar change detection task, humans used separate
timescales for the initial decision that they had detected a
stimulus change, and a second decision to gauge their confidence
(Ganupuru et al., 2019). This provides further evidence to
suggest that the brain simultaneously has access to multiple
neural representations of accumulated evidence across different
timescales. These concepts will need to be explored further in
future neurophysiological studies probing flexible timescales in
evidence accumulation.

Interestingly, work from computational modeling studies
suggests that a heterogeneity of timescales is not a default
property of neural networks (Kim and Sejnowski, 2020). This
heterogeneity only begins to emerge after the network is trained
to perform a temporally extended task. Networks trained to
perform a simpler response-based task, without any temporal
component, had shorter and less heterogenous timescales. This
is further evidence that this heterogeneity is present to support
the computations discussed in this review: decision-making and
working-memory.

Although many of the studies above focus on the processing
of task-relevant stimuli, it is also likely that a similarly
broad range of timescales of operation may be needed when
performing motor control; in particular for temporally extended
sequences of complex actions. For example, a recent theoretical
account of motor cortex dynamics used a network model
with balanced excitation and inhibition to generate ‘‘stability-
optimized circuits’’ (SOCs) that could generate complex
movements (Hennequin et al., 2014). The authors found that
in order to generate such movements, the time constant of
membrane and synaptic dynamics in the SOCs (∼200 ms)
had to be set to match the dominant timescale in the data
they were trying to model (Churchland et al., 2012), giving
these connections a slower time-constant than other randomly
connected synapses in the same model. They argued that such
segregation of fast and slow time-constants may even arise within
the same neuron, via the respective contribution of proximal
and distal synapses in the dendritic arbor. Further evidence
supporting a diversity of timescales within a single motor control
region comes from functional MRI studies of sequential skilled
motor performance in humans (Yokoi and Diedrichsen, 2019).
Here, contrary to the common hypothesis of an anatomical
division of labor between different levels of a motor control
hierarchy, it was instead found that the representation of (short-
timescale) movement ‘‘chunks’’ and (long-timescale) movement
‘‘sequences’’ can be spatially overlapping in premotor and
parietal areas.

One important consideration is how the resting
autocorrelation time constants of individual neurons (generally
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ranging from tens to hundreds of milliseconds) can be related
with behaviors that occur across timescales which are orders
of magnitude longer. Many of the behaviors discussed in this
section occur across timescales much greater than the longest
individual neuronal timescale measured. This likely reflects that
these behaviors are generated by network-level states, to which
the contribution of individual neurons is at least somewhat
redundant. Furthermore, as the timescales are assigned during
a short window of resting activity, their values likely reflect
only a fraction of the duration of persistent activity which could
potentially be supported. It is also important to remember this
same challenge applies to current circuit models which have
assigned timescales of similar magnitudes to cortical regions
(Chaudhuri et al., 2015).

IMPLICATIONS FOR FUTURE
ELECTROPHYSIOLOGY STUDIES

In this review, we have demonstrated that an individual
neuron’s intrinsic timescale while at rest provides insight into its
functional properties and roles during cognitive tasks. This has
important implications for how neurophysiological datasets are
collected and analyzed. For instance, one commonly employed
tactic in neurophysiology recordings in areas such as the lateral
intraparietal sulcus has been to preselect which neurons to
record from based upon their properties during a memory-
guided saccade task (Gnadt and Andersen, 1988), in order
to establish that neuron’s receptive field. When using this
technique, investigators select neurons which exhibit stable,
persistent activity before examining their properties during a
cognitive task of interest. It is therefore likely that they are
predominantly sampling neurons with longer timescales. While
this approach has proven fruitful, and it is understandable
given the technological challenges of recording from sufficient
numbers of neurons, it has likely led to a biased perspective of
the overall neural dynamics. For instance, it may have overstated
the proportion of neurons exhibiting stable activity during
working-memory tasks and gradual ramping activity during
perceptual decision-making (Goldman-Rakic, 1995; Gold and
Shadlen, 2007). This is important because it entirely overlooks
the roles of neurons with non-classical response profiles. It
also has arguably led to an over-emphasis of the capabilities of
individual neurons, supported by idealised examples, and the
disregarding of more sophisticated population-level solutions
to computational problems (Rigotti et al., 2013). A more
complete understanding of neural computations requires us to
understand the roles of all of the neurons in these cognitive
processes, and the recording of as representative a sample as
possible in order to appreciate how neurons function together
as a population. Fortunately, new technologies are becoming
increasingly available that will allow investigators to record from
many neurons simultaneously across each cell layer (Sofroniew
et al., 2016; Jun et al., 2017). This should hopefully facilitate a
more unbiased characterization of the heterogeneity of neuronal
responses. If researchers are particularly interested in a certain
subpopulation of neurons with stable activity, they will still
be able to find these neurons post hoc using the timescale

method discussed in this review. However, they will also have
access to a plethora of extra information about what neurons
with other timescales are doing, and how the population as a
whole behaves.

Although this review has primarily focussed on macaque
neurophysiology studies, future work may also seek to apply
the timescale analyses to high-density electrophysiological
recordings collected from rodents (Siegle et al., 2019); where
cognitive processes are being studied with an increasingly
sophisticated repertoire of techniques. These include the
precise perturbation of neural circuits, recording from
genetically identifiable neurons and the implementation of
neuropsychiatric disease models. These experiments would
provide some more concrete insights into the determinants of
single neuron timescales.

One important limitation of the majority of
neurophysiological datasets considered in this review is
that they study a behavior which requires the prolonged
maintenance/integration of information. It therefore makes
sense that a prominent role for long timescale neurons in these
computations was established. However, to fully explore the
functional importance of a diversity of timescales, tasks which
require tracking information (and modulating behavior) over
both short and long timescales should be explored (Behrens
et al., 2007; Daw et al., 2011; Massi et al., 2018). Future work
should try to establish if there is an important role for neurons
with shorter timescales in such tasks. Another important
consideration is to study a task which simultaneously requires
the dynamic tracking of complex information, as well as its
gradual integration. As suggested earlier in this piece, one
possibility would be to record neurophysiological activity on an
evidence integration task, where subjects must combine many
samples with unique characteristics. This would make clearly
dissociable predictions for the neural representations to expect
in shorter timescale (momentary evidence) and longer timescale
(integrated evidence) neurons.

Furthermore, while the partition of neurons into short
and long timescale provides intuition and is necessary when
analyzing the patterns of coding at the population level, it
is a relatively coarse simplification of the underlying concept
of a heterogeneity of single-neuron timescales. Ideally, a task
design would demonstrate the utility of a diverse continuum of
timescales. For instance, subjects could be trained to temporally
filter previous rewards across a different number of trials
according to a cue presented each trial. This should require
the processing of reward across a range of timescales, and
the trial-wise adaptive weighting of each timescale population
dependent on the behavioral cue.

CONCLUSION

In summary, we have reviewed important electrophysiological
evidence from a series of recent studies that convincingly
demonstrate the heterogeneity of timescales at the level of
single neurons within a cortical region. This heterogeneity is
functionally relevant for the computations that neurons perform
during decision-making and working memory. A neuron’s
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timescale is likely determined by the neurotransmitter it releases,
its local connectivity pattern, receptor expression, and cortical
layer. It is important for individual brain regions to have
neurons with a heterogeneity of timescales, as many high-level
cognitive processes such as learning, planning, and rule-based
behavior require making adaptive decisions to changing
environmental demands. These computations generally occur
in higher cortical regions which have a long timescale when
considered as a whole-brain region, but individual neurons in
these areas display a diversity of timescales. A heterogeneity
of timescales also offers a compromise between robust stable
representations that are easy to read out and those which
are most efficient and high dimensional. Future experimental
work further demonstrating some of the advantages of short
timescale neurons in higher cortical areas, and how a population
may effectively utilize a whole distribution of timescales, will
further strengthen our arguments about their computational
role. The method we have outlined has already provided
important computational insights and will prove an increasingly
valuable tool as researchers start to record from more
neurons simultaneously.
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Neuromodulation by acetylcholine plays a vital role in shaping the physiology
and functions of cerebral cortex. Cholinergic neuromodulation influences brain-state
transitions, controls the gating of cortical sensory stimulus responses, and has been
shown to influence the generation and maintenance of persistent activity in prefrontal
cortex. Here we review our current understanding of the role of muscarinic cholinergic
receptors in primate prefrontal cortex during its engagement in the performance of
working memory tasks. We summarize the localization of muscarinic receptors in
prefrontal cortex, review the effects of muscarinic neuromodulation on arousal, working
memory and cognitive control tasks, and describe the effects of muscarinic M1
receptor stimulation and blockade on the generation and maintenance of persistent
activity of prefrontal neurons encoding working memory representations. Recent
studies describing the pharmacological effects of M1 receptors on prefrontal persistent
activity demonstrate the heterogeneity of muscarinic actions and delineate unexpected
modulatory effects discovered in primate prefrontal cortex when compared with studies
in rodents. Understanding the underlying mechanisms by which muscarinic receptors
regulate prefrontal cognitive control circuitry will inform the search of muscarinic-based
therapeutic targets in the treatment of neuropsychiatric disorders.

Keywords: muscarinic acetylcholine receptor, M1 receptor, M2 receptor, working memory, persistent activity,
prefrontal cortex, antisaccade, primate

INTRODUCTION

The ability to maintain and manipulate information about the sensory world, motor actions,
and previously learned experience is central to cognition and flexible behavior. Persistent,
short-term elevated activity in cortical circuits has been proposed to Fuster and Alexander
(1971) and Goldman-Rakic (1995) underlie the capacity to actively maintain such knowledge,
or “working memory” (WM). The prefrontal cortex (PFC) in primates plays a pivotal role in
the neural circuitry that processes such behaviorally relevant mental representations that are
deployed to guide imminent choices and actions (Fuster and Alexander, 1971; Fuster, 1992, 1993;
Miller and Cohen, 2001).
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All major ascending neuromodulatory systems innervate the
cerebral cortex, including the PFC and influence the dynamics
of persistent activity and cortical WM circuitry (Arnsten et al.,
2012). The modulatory actions of acetylcholine (ACh) on cortical
function have been of long-standing interest partly because
cholinergic dysfunction has been implicated in cognitive and
WM deficits that manifest in psychiatric and neurological
disorders including Alzheimer’s disease (Hampel et al., 2018,
2019), dementia associated with Parkinson’s disease (Noufi et al.,
2019), major depressive disorder (Dagytë et al., 2011), and
schizophrenia (Sarter and Bruno, 1998; Dean et al., 2003).
Progressive cortical cholinergic deafferentation is a hallmark of
Alzheimer’s dementia and cholinergic pathology accompanies
the cognitive disruption that manifests in the disease (Hampel
et al., 2018). Inhibitors of acetylcholinesterase, which breaks
down released acetylcholine, is a standard component of the
treatment regimen in Alzheimer’s dementia, although its efficacy
in ameliorating cognitive deficits in patients has been questioned
(Marucci et al., 2020). Decreased muscarinic receptor density
has been reported in patients with schizophrenia (Dean et al.,
2002; for detailed review see Dean et al., 2003). Further,
xanomeline, a muscarinic agonist has shown clinical promise and
improves short-term memory and other cognitive functions in
schizophrenic patients (Shekhar et al., 2008).

Acetylcholine mediates its neuromodulatory influence via
the ionotropic nicotinic and metabotropic G-protein coupled
muscarinic receptor families (Picciotto et al., 2012). Subtypes
from both cholinergic receptor families function in cortical
WM circuitry, including in the PFC. There has recently
been considerable interest in how ACh, acting through these
receptors, influences neurophysiology of primate PFC during
the performance of WM tasks (Baxter and Crimins, 2018;
Galvin et al., 2018, 2020a; Vijayraghavan et al., 2018). Here,
we will review studies of cortical muscarinic neuromodulation
of WM performance and recapitulate recent work from our
laboratory and others exploring muscarinic neuropharmacology
of persistent activity and WM representations in primate PFC.
Whereas there are several excellent published synopses regarding
the functions of cortical ACh (McCormick, 1993; Steriade, 2004;
Picciotto et al., 2012; Venkatesan et al., 2020), nicotinic and
muscarinic neuromodulation of cognition and WM (Sarter and
Bruno, 1997; Robbins and Arnsten, 2009; Klinkenberg and
Blokland, 2010; Wallace and Bertrand, 2013), we will primarily
focus on neurophysiological and pharmacological studies in
dorsolateral PFC of non-human primates in this review.

LOCALIZATION OF MUSCARINIC
RECEPTORS IN PRIMATE PFC

Among several cholinergic nuclei in the brainstem and basal
forebrain, the nucleus basalis of Meynert is the principal source
of ACh in the primate cerebral cortex (Mesulam et al., 1983;
Lewis, 1991; Smiley et al., 1997). Additionally, in rodents,
a fraction of cortical interneurons that express vasoactive
intestinal peptide, also coexpress choline acetyltransferase, an
enzyme that synthesizes ACh (Eckenstein and Baughman, 1984).

However, hitherto such putatively cholinergic and GABAergic
interneurons have not been shown in primate cerebral cortex
(Mesulam et al., 1983), and the basal forebrain appears to be
the only source of cholinergic innervation of cortex in primates.
Corticopetal cholinergic afferents from the nucleus basalis
innervate superficial and deep layers of macaque PFC, forming
both symmetric synapses and boutons in proximity to symmetric
and asymmetric synapses near dendritic spines (Mrzljak
et al., 1995). Interestingly, the fraction of cortical cholinergic
varicosities exhibiting synaptic specializations increases in
primates when compared with rodents and is further augmented
in humans (Smiley et al., 1997) versus monkeys (Mrzljak
et al., 1995). Thus, ACh innervation of primate PFC has the
capacity to act through both synaptic specialization and volume
transmission (Mrzljak et al., 1995).

The prominent nicotinic receptor subtypes expressed in
macaque cortex, including PFC, are α4β2 and α7 receptors
(Wallace and Bertrand, 2013; Galvin et al., 2018). The muscarinic
ACh family is comprised of Gq-coupled M1, M3, and M5
receptors and Gi/o-coupled M2, and M4 receptor families
(Caulfield and Birdsall, 1998; Brown, 2010; Jones et al., 2012). Of
these, M1 and M2 receptors are prominently expressed in PFC
in primates. M1 receptors (M1Rs) and M2 receptors (M2Rs) are
present in PFC in rodents (Levey et al., 1991), primates (Mrzljak
et al., 1993; Medalla and Barbas, 2012) and humans (Scarr et al.,
2009; Bubser et al., 2011; Dean and Scarr, 2016). M3 receptor
expression has been examined in rats and is mainly expressed
in the hippocampus and to a lesser extent in cerebral cortex,
where it is absent in cortical layer III/IV (Levey et al., 1994;
Bubser et al., 2011). However, M3 receptor expression has not
been examined thus far in primate cerebral cortex owing to lack
of selective immunohistochemical tools in primates. Expression
patterns of other muscarinic receptor subtypes in monkey PFC
are hitherto unknown.

In rodents, cortical M1 receptors are predominantly expressed
postsynaptically (Levey, 1996) and are presumed to mediate the
excitatory effect of muscarinic agonists on cortical activity in
brain slices (McCormick, 1989, 1993; McCormick et al., 1993).
Autoradiography using M1R- and M2R-preferring compounds
suggests that M1R laminar expression in monkey PFC is present
in all layers with strong bands of expression in layers III and
V, while M2Rs are enriched in layer III and V/VI in the PFC,
with the exception of Walker’s area 46, where the expression is
predominantly in layer V (Lidow et al., 1989; Mrzljak et al., 1993).

M1 receptor expression in monkey cortex was examined
with immunohistochemistry and mRNA expression in a series
of studies by Mrzljak and colleagues (Lidow et al., 1989;
Mrzljak et al., 1993, 1996, 1998). In area 46 (dorsolateral PFC)
of the macaque, M1Rs were expressed throughout all layers
with greatest expression found in supragranular layer III and
infragranular layers V/VI. Conspicuous M1R expression was
found in the soma, dendrites, dendritic spines, and in close
association with both asymmetric (presumably glutamatergic)
and symmetric synapses (presumably GABAergic or cholinergic).
The presence of M1Rs in conjunction with asymmetric
synapses in PFC circuitry points to a role in modulating
thalamocortical and corticocortical excitatory transmission. Early
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studies indicated that M2Rs serve as autoreceptors on cholinergic
efferents, inhibiting ACh release from terminals (Dudar and
Szerb, 1969; Mash et al., 1985; Mash and Potter, 1986), and
muscarinic inhibition of the release of tritiated ACh does
not occur in M2R knock-out mice (Zhang et al., 2002).
Further decline in cortical M2R expression in Alzheimer’s
disease has been attributed to the degeneration of cholinergic
afferents from the basal forebrain (Flynn et al., 1995; Levey,
1996). Remarkably, immunohistochemical examination of the
cortical M2Rs in monkey PFC (Mrzljak et al., 1993, 1998)
and primary visual cortex (Mrzljak et al., 1996; Disney et al.,
2006; Disney and Aoki, 2008) revealed a more complex profile
of M2R expression. PFC M2R expression was found in both
pre-and postsynaptic specializations, and in both cases, the
expression was associated with both symmetric and asymmetric
synapses in pyramidal and non-pyramidal neurons (Mrzljak
et al., 1993). In primary visual cortex, M2R expression forms
interdigitated patches of dense and sparse expression that
coincide, respectively, with interblobs and blobs defined by
cytochrome oxidase staining (Mrzljak et al., 1996; Disney et al.,
2006). M2R expression was more prominent in the parvocellular
inferotemporal channel of the visual stream wherein neurons
possess orientation tuning but lack color opponency. Thus, M2R
expression in primary visual cortex constitutes an intriguing
example of convergence between neuromodulatory specialization
and functional segregation. Associational and cross-callosal
projections also form interdigitated stripes in dorsolateral PFC
(Goldman-Rakic and Schwartz, 1982; Schwartz and Goldman-
Rakic, 1984; Pucak et al., 1996). However, it is hitherto unknown
if muscarinic receptor expression demonstrates congruence with
these hodological features in PFC. Mrzljak et al. (1993) did not
comment on whether anisotropy was observed in the larger scale
distribution of M1Rs or M2Rs in their reports on muscarinic
receptors in dorsolateral PFC.

However, other elegant work from the Barbas group
demonstrated hodological specificity in M2R expression in
dorsolateral PFC (Medalla and Barbas, 2012). The cholinergic
arousal system remains active during waking and rapid eye
movement sleep (REM, “paradoxical sleep”), but not during
the slow wave non-REM phase of sleep, in contrast to
norepinephrine, the other major neuromodulatory system
involved in arousal (Aston-Jones and Bloom, 1981; Lee and Dan,
2012). Additionally, while the cerebral cortex is in a deactivated
state during non-REM sleep, positron emission tomography
studies have shown that certain limbic prefrontal areas are
reactivated earlier upon the transition to REM sleep, while
dorsolateral PFC remains deactivated (Muzur et al., 2002). Muzur
et al. (2002) proposed that this was due to selective cholinergic
inhibition of dorsolateral PFC. Medalla and Barbas (2012) tested
this hypothesis in the context of the anterior cingulate cortex
(ACC; area 32) and areas 9 and 46 of the dorsolateral PFC.
Cholinergic innervation of the ACC is dense in comparison to
dorsolateral PFC, and the ACC sends a substantial glutamatergic
projection to the latter (Johnston et al., 2007). The ACC is
reactivated earlier during REM sleep, and the question remains
as to how the dorsolateral PFC does not also get activated
concomitantly, given the strong excitatory projection from ACC

and restored cholinergic tone in the dorsolateral PFC during
REM sleep. Medalla and Barbas (2012) hypothesized that the
distribution of M2Rs on ACC projections and their postsynaptic
targets could account for the lack of REM sleep activation of
dorsolateral PFC. Using serial electron microscopy, fluorescent
immunohistochemistry and pathway tracing, Medalla and Barbas
(2012) examined M2R expression in area 9 of the PFC. They
found that presynaptic M2R expression was enriched in the
glutamatergic afferents from ACC to area 9 when compared
with associational fibers from PFC area 46. These presynaptic
M2Rs, when activated by ACh release in PFC area 9, would
lead to presynaptic suppression of glutamate release (Kimura
and Baughman, 1997), thus nullifying the strong excitatory drive
from the ACC during REM sleep when ACh is being released
in the cortical mantle. M2Rs were also found the dendritic
shafts of putative inhibitory neurons targeted by the ACC
projection, while M2Rs were localized primarily on dendritic
spines of pyramidal neurons that were targets of the associational
fibers from neighboring PFC area 46. PFC areas 9 and 46
share functional congruence in the generation and maintenance
of persistent activity and WM in the cognitive circuitry of
dorsolateral PFC, and therefore M2R postsynaptic expression
in area 9 pyramidal neurons receiving inputs from area 46
may have facilitatory physiological effects. Similarly, cholinergic
suppression in the rat piriform cortex occurs only in synapses
associated with intrinsic projections, and not afferent inputs
(Hasselmo and Bower, 1992). Thus, M2R expression shows
remarkable specificity and correspondence with functional and
hodological attributes.

NEUROPHARMACOLOGY OF CORTICAL
MUSCARINIC RECEPTORS IN AROUSAL

The ascending reticular activating system, including the
cholinergic and noradrenergic systems, regulate the sleep-arousal
cycle and transitions between the different brain states (Moruzzi
and Magoun, 1949; Lee and Dan, 2012). During slow-wave sleep
(Non-REM sleep), thalamocortical circuitry is in a relatively
quiescent slow oscillation with synchronized transitions between
silent and active states (Steriade et al., 2001; Constantinople
and Bruno, 2011). Signatures of this oscillation are manifest
across different physiological scales: the activity of individual
neurons and their membrane potential, the local field potential
(LFP) and in the scalp electroencephalogram (EEG). Upon
transitioning to REM sleep and the wake state, overall activity of
individual neurons becomes desynchronized, with concomitant
desynchronization in the other electrophysiological signatures
of brain states, including the LFP and scalp EEG. The bistable
activity seen during slow wave sleep, comprising of brief
interludes of quiescence and activity have been termed down-
and up-states (Contreras and Steriade, 1995). Isolated cortical
slices can spontaneously replicate this mode of bistable activity,
termed the slow oscillation (Sanchez-Vives and McCormick,
2000). Indeed, this low frequency (0.1–0.5 Hz) oscillation can be
expressed in cultured random cortical networks and deafferented
cortical slabs (Sanchez-Vives et al., 2017) and is a unifying feature
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of cortical activity under different anesthetic regimes (Lewis et al.,
2012). It has been proposed that this is a default activity pattern
and emergent property of cortical networks (Sanchez-Vives
et al., 2017). It has also been speculated that the wake state may
be akin to a persistent up-state (Constantinople and Bruno,
2011), where oscillatory transitions to quiescence do not occur.
In vivo, the dynamics of ascending neuromodulatory arousal
systems engender these transitions (Moruzzi and Magoun, 1949;
Constantinople and Bruno, 2011; Jones, 2020).

The ascending brainstem and basal forebrain cholinergic
systems causally contribute to regulating these physiological
transitions accompanying brain state transitions (Metherate
et al., 1992; Jones, 2008). A brief discussion of this subject may be
useful here, since the physiological mechanisms that are at play
in cholinergic modulation of arousal may have commonalities
with cholinergic neuromodulation of cortical neurophysiology
during cognitive control and WM. Interestingly, as noted
previously, cholinergic nuclei are active during REM sleep,
when cortical activity, LFP and the EEG are indistinguishable
from the wake state, which is not the case for the monoamine
arousal systems, which are very active during wakefulness,
possess low activity during non-REM sleep, but are completely
quiescent during REM sleep. Basal forebrain stimulation in
rodents can depolarize auditory cortical neurons, desynchronize
their activity with shifts in subthreshold membrane potential
oscillations from low (≤5 Hz) to high (20–40 Hz) oscillations
(Metherate et al., 1992). Optogenetic activation of basal forebrain
cholinergic neurons, or of terminal projections thereof in the
primary visual cortex, desynchronize the LFP and visual cortical
neuronal activity. Lee and Dan (2012) proposed that two
effects of muscarinic modulation, viz., muscarinic suppression of
intracortical synaptic transmission (Gil et al., 1997; Hsieh et al.,
2000; Medalla and Barbas, 2012) and muscarinic depolarization
of cortical neurons may be instrumental in ACh-induced
depolarization during brain state transitions. In mice, ACh
neuromodulation of somatostatin-positive interneurons, that
participate in a disynaptic disinhibitory relay through their
inhibition of parvalbumin positive interneurons, has been
shown to be necessary for the desynchronization of neuronal
firing and the LFP in somatosensory cortex (Chen et al.,
2015). Muscarinic agonists increase REM state duration and
decrease the onset latency of REM sleep induction (Sitaram
et al., 1976; Hohagen et al., 1993), while muscarinic receptor
antagonists decrease the duration of REM sleep (Velazquez-
Moctezuma et al., 1990; Gillin et al., 1991; Kim and Jeong,
1999). A recent study showed that a double knockout
of M1Rs and M3Rs in mice almost completely abolishes
REM sleep, indicating that Gq coupled muscarinic receptors
were essential in regulating this epoch of the sleep rhythm
(Niwa et al., 2018).

There are tonic and phasic components to the activity
of cholinergic neurons and ACh fluctuations in vivo can be
measured by amperometric methods (Parikh et al., 2004, 2007).
Amperometric monitoring of ACh has revealed that tonic
ACh release is coordinated across multiple brain areas during
REM sleep, while phasic ACh release is synchronized during
performance of a WM task (Ruivo et al., 2017).

To summarize, the cholinergic system is essential in the
regulation of states of cortical arousal, and neuromodulation by
muscarinic receptors, particularly of the M1R family, are essential
in the generation of desynchronized states during REM sleep and
awake behavior. Some of the physiological mechanisms that elicit
the transitions to wake-like desynchronized cortical activity may
also be involved in the neuromodulation of persistent activity in
awake cortical circuits engaged in active behavior.

MUSCARINIC MODULATION OF WM
AND COGNITIVE CONTROL CIRCUITRY

A substantial body of work has examined the role of
the cholinergic system in cognitive performance in rodents,
monkeys, and humans (Fibiger, 1991). Early clues about the
importance of muscarinic receptor function in WM performance
came from Bartus and Johnson (1976), who found that systemic
muscarinic blockade with muscarinic antagonist scopolamine
caused a delay-dependent deficit in a match-to-sample WM task,
wherein the deficits were pronounced only at longer delays.
Thereafter, many studies have replicated and elaborated upon this
deficit in WM performance in monkeys (Rusted and Warburton,
1988; Rupniak et al., 1991; Rusted et al., 1991; Spinelli et al., 2006).
Interestingly, Rupniak et al. (1991) found that the cholinesterase
inhibitor, physostigmine, could reverse pro-amnestic deficits
caused by systemic scopolamine, but physostigmine could
not improve WM performance in aged monkeys or when
distractor load was increased in the task. Moreover, they reported
that stimulus luminance did not interact with scopolamine-
induced deficits in delayed response performance, whereas
increasing attentional load by reducing stimulus presentation
time exacerbated scopolamine’s effects independent of the length
of the delay, leading the authors to argue that systemic muscarinic
blockade may affect attentional aspects of task performance,
instead of WM. Nevertheless, a gamut of studies have shown
that systemic muscarinic blockade caused WM, delayed match-
to-sample, recognition memory and other cognitive deficits and
pro-psychotic states (Penetar and McDonough, 1983; Aigner
et al., 1987; Aigner and Mishkin, 1993; Barak and Weiner, 2006,
2009; Buccafusco et al., 2008; Plakke et al., 2008; Barak, 2009).
This has led to the identification of a collection of cognitive
deficits and psychosis-like symptoms termed the anti-muscarinic
syndrome (Yeomans, 1995). Scopolamine has been shown to
affect sensory discrimination, acoustic startle reflex, prepulse
inhibition, recognition memory, short-term memory, delayed
match-to-sample, set shifting, and attentional performance in
rodents (Dunnett et al., 1990; Jones and Shannon, 2000; Ukai
et al., 2004; Barak and Weiner, 2006). Systemic muscarinic
blockade causes deficits in the WM performance and executive
function in humans (Green et al., 2005; Ellis et al., 2006).
Muscarinic blockade also produces deficits in the learning of rules
specifying outcome-based odor discrimination in rodents (Saar
et al., 2001). Lesions of the basal forebrain cholinergic system in
monkeys have reported conflicting effects on cognitive tasks. In
one study basal forebrain ibotenic acid lesions cause recognition
memory and delayed non-match-to-sample performance deficits
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(Aigner et al., 1991). Contrastingly, in another study, lesions
of the nucleus basalis of Meynert in monkeys appear to spare
delayed response performance with short delays and instead
cause attentional performance deficits (Voytko et al., 1994).
Since systemic drug administration or lesions cholinergic nuclei
innervating cerebral cortex could have manifold effects on the
distributed brain circuitry that subserves various components
of these behavioral tasks, deficits in cognitive control and WM
highlighted by the studies summarized above do not necessarily
indicate deficits in WM circuitry in the PFC or alterations in PFC
persistent activity that maintains WM representations.

However, other reports have addressed the role of cholinergic
innervation locally in the PFC in WM and other PFC-dependent
cognitive tasks. Baxter’s group reported an intriguing finding:
cholinergic deafferentation, by injection of an immunotoxin
based on saporin in the PFC of rhesus monkeys, resulted
in a specific and selective deficit in spatial delayed response,
but not in other demanding tasks that engaged attention
but did not require WM, such as strategy implementation,
object-in-place scene learning, or reward-based decision-making
as assessed by reinforcer devaluation (Croxson et al., 2011).
Other evidence about the role of ACh neuromodulation during
delayed response tasks comes from the neurophysiology of
the nucleus basalis. In monkeys engaged in spatial delayed
responses, most nucleus basalis neurons were active only during
the choice and reward phases of the task, and the proportion
of neurons responding during the delay period was far less
prominent (Richardson and DeLong, 1986). Richardson and
DeLong further reported that nucleus basalis neuronal activity
in response to stimuli depended on the task context, but
that the activity of these neurons was related to rewarding
or aversive stimuli and cues that predict them (Richardson
and DeLong, 1991). Interestingly, in macaques, intermittent
stimulation of the nucleus basalis improves performance in a
WM task, while continuous stimulation degrades performance
(Liu et al., 2017). A brief stimulation of cholinergic fibers has
been shown to cause long lasting modulation of hippocampal
and cortical activity stimulation (Krnjević et al., 1981; Cole
and Nicoll, 1983; McCormick and Prince, 1986), mediated by
the modulation of the M-current, so named because of its
inhibition by muscarinic stimulation (Brown and Adams, 1980).
The M-current is generated by voltage-gated KCNQ potassium
channels and it counteracts overexcitability upon neuronal
depolarization; its inhibition by muscarinic receptors causes an
increase in excitability of neurons.

MUSCARINIC MODULATION OF PFC
NEUROPHYSIOLOGY AND PERSISTENT
ACTIVITY

There have been fewer studies describing the neurophysiological
effects of muscarinic modulation in primates. Muscarinic
blockade disrupts attentional modulation of cortical activity in
primary visual cortex but nicotinic blockade, while reducing
V1 excitability, did not affect attentional modulation (Herrero
et al., 2008). Herrero et al. (2008) also reported that muscarinic

antagonist scopolamine, in addition to reducing the overall
activity of PFC neurons, reduced the attentional component
of V1 neuronal firing. Herrero et al. (2008) also found that
ACh increased the activity of V1 neurons, and at low doses,
enhanced neuronal attentional selectivity. However, at higher
doses ceiling effects appeared due to non-specific increase in
activity that disrupted attentional modulation. One point that
emerges from this is that the actions of ACh in V1 appear to
be uniformly excitatory, an observation that will be pertinent
to our discussion of ACh actions in PFC later. Consistent with
this effect of muscarinic receptors in attentional modulation,
muscarinic receptor blockade by systemic and local infusion
of scopolamine in macaque intraparietal cortex, including the
lateral intraparietal area and area 7a, produced a deficit in covert
orienting in a cued stimulus detection task (Davidson et al., 1999;
Davidson and Marrocco, 2000). A salient stimulus appeared in
one of two previously cued locations and monkeys were trained
to manually respond to the stimulus onset for reward. Attention
was captured by changing the luminance of one of the cues prior
to the appearance of the stimulus. Analysis of reaction times
after scopolamine infusion demonstrated that covert attentional
orienting was compromised.

Miller and Desimone (1992) recorded neuronal activity with
systemic muscarinic blockade in the inferotemporal cortex
during the performance of a delayed match-to-sample recency
memory task with sequential delayed presentations of multiple
stimuli after a test stimulus. The rewarded response was a
lever release when a succeeding stimulus matched the test
stimulus. Systemic scopolamine administration was deleterious
to task performance, demonstrating the ACh actions through
muscarinic receptors promoted recency memory. Surprisingly,
this performance deficit was not accompanied by commensurate
changes in the stimulus related activity of inferotemporal
neurons. The number of neurons that showed selectivity for
match vs. non-match stimuli was not significantly affected by
muscarinic blockade. However, when compared with placebo,
scopolamine administration caused paradoxical increases in
stimulus responsive neuronal activity compared with baseline
activity (Miller and Desimone, 1992). This increased stimulus
responsivity did not change quantifiable task-related information
in the neuronal activity. Thus, it appears that the effects of
muscarinic blockade on task performance were not explained by
changes in inferotemporal cortical activity.

Another study examined the effects of systemic injections of
scopolamine on the activity of macaque PFC neurons (Zhou
et al., 2011) engaged in an oculomotor delayed response task
(Hikosaka and Wurtz, 1983; Funahashi et al., 1989) with varying
distractor load (Figure 2). Delay period activity was suppressed
after scopolamine administration, and behavioral performance
degraded (Figure 2A) with small increases in saccade reaction
times and saccade end-point dispersion. Interestingly, the
performance degradation due to scopolamine was independent
of distractor load during the trial (Figure 2A). The effects of
muscarinic blockade were contingent upon the presence of a
delay, whereby visually guided saccade performance (zero second
delay) was unaffected. While scopolamine had modest effects
on overall neuronal activity in the PFC, it significantly affected
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FIGURE 1 | Schematic showing the localization of muscarinic receptors on PFC neurons and their relationship to cholinergic and glutamatergic innervation based on
data from Mrzljak et al. (1993) and Medalla and Barbas (2012). M1Rs are localized on dendritic shafts of pyramidal and interneurons, and on the spines of pyramidal
neurons where they are apposed to glutamatergic synapses. Cholinergic synapses are mainly found on dendritic shafts, while extrasynaptic cholinergic release sites
on cholinergic axons result in diffuse volume transmission to influence muscarinic receptors on PFC neurons. M2Rs are found on postsynaptic dendritic spines of
pyramidal neurons and on dendritic shafts of interneurons. M2Rs are also found on presynaptic terminals of glutamatergic afferents in PFC and as autoreceptors on
cholinergic terminals.

the delay period activity after visual stimulus presentation
(Figure 2B). The authors also found that stimulus-related activity
during the presentation of the peripheral cue in the delayed
response task was comparatively unaffected, indicating that
sensory stimulus processing in the PFC was not affected. Zhou
et al. (2011) also tested the effects of scopolamine on PFC
activity and performance in a delayed match/non-match-to-
position task. The monkeys reported whether a second cue,
presented after a short delay, was at the same or different location
with respect to the first cue. They found that scopolamine’s
effects were not idiosyncratic to the oculomotor delayed response
paradigm and manifested in the delayed match-to- position
task also, whereby memory period persistent activity encoding
the position of the first cue was diminished by systemic
muscarinic blockade. Further, in this task, the authors found
that, when the first stimulus was presented outside the neuron’s

response field and the second stimulus appeared within the
neuron’s response field, there was elevated activity in the delay
period prior to the appearance of the second stimulus which
reflected covert anticipation of the onset of the second stimulus
in the response field. Muscarinic blockade diminished this
anticipatory memory period activity. Thus, systemic muscarinic
blockade had pronounced effects on PFC persistent activity
representing the remembered location of a target and disrupted
mnemonic performance.

The results of Zhou et al. (2011) indicated that muscarinic
blockade reduces activity in PFC, but since that study employed
systemic injections, it could not be determined if this effect
was due to blockade of local PFC muscarinic receptors or
due to network consequences of muscarinic blockade elsewhere
in the brain. Our group has conducted experiments on the
effects of local muscarinic blockade using microiontophoresis
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FIGURE 2 | Effects of systemic scopolamine administration on oculomotor delayed response performance and delay activity of PFC units. Adapted from Zhou et al.
(2011). (A) Behavioral performance in the oculomotor delayed response task for two monkeys after scopolamine infusion at various doses. Purple, visually guided
saccades (0 s delay); Blue, 0 distractors during delay; Red, 1 distractor during delay; Green, 2 distractors during delay. (B) Systemic scopolamine administration
reduces delay period persistent activity of PFC neurons. Modified with permission from Journal of Neurophysiology.

on PFC neuronal activity while monkeys performed randomly
interleaved pro- and antisaccades (Figure 3A), where the current
trial rule had to be maintained in WM (Major et al., 2015).
The pro- and antisaccade task is dependent of the integrity
of dorsolateral PFC (Condy et al., 2007; Koval et al., 2011),
and deficits in antisaccade performance are diagnostic indicator
of the integrity of the PFC (Everling and Fischer, 1998). In

the version of the task employed by Major et al. (2015), the
rule cue was briefly presented, and had to be remembered
through the memory period (Figure 3A). Persistent activity
of PFC neurons encodes the task rule through this memory
period (Skoblenick and Everling, 2012; Vijayraghavan et al.,
2017). Microiontophoresis employs small electrical currents to
eject charged moieties and drugs from the recording electrode
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FIGURE 3 | Effects of local delivery of muscarinic antagonist scopolamine by microiontophoresis on PFC activity during pro- and antisaccade task. Adapted from
Major et al. (2015). (A) Pro- and antisaccade task structure is shown. After central fixation, the fixation spot changes to a colored rule cue which flashes briefly.
Subsequently the spot becomes white again. After a delay wherein the trial rule, based on the color of the rule cue, is maintained in WM, the fixation spot
disappears, and after a brief gap, the peripheral stimulus appears left or right of the fixation spot. The subject makes a saccade toward (prosaccade) or away
(antisaccade) from the spot, based on the current trial rule. Trial temporal structure are also shown. Illustration on the right shows the recording and iontophoresis
technique. (B) Microiontophoresis of increasing doses of scopolamine cause increasing suppression of the activity of a PFC neuron that has delay-period activity
preferring the pro-saccade rule. Right panel shows recovery after cessation of drug application.

(Hicks, 1984). The currents employed in these in vivo studies
are on the order of ∼100 nA and are not expected to elicit
extraneous electrophysiological effects on the recorded neurons.
Moreover, usually, the quantities of drugs ejected are not
enough to elicit behavioral effects. Major et al. (2015) found
that local stimulation of muscarinic receptors dose-dependently
and monotonically suppressed the activity of a majority of
PFC neurons recorded during the rule WM task performance,
and concomitantly degraded all forms of task-related neuronal

selectivity, including WM for the rule (Figure 3B), peripheral
stimulus selectivity and perisaccadic activity. Thus, some of
the effects of systemic muscarinic blockade described by Zhou
et al. (2011) would appear to be explained by local blockade of
muscarinic receptors in PFC. In contrast to Zhou et al. (2011), we
found that peripheral visual stimulus selectivity was also reduced
upon local scopolamine application. These differences could be
due to concentration differences due to systemic application
versus local drug ejection or differences in the behavioral task
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structure. In the interleaved rule-based antisaccade task, activity
of PFC neurons is differentially modulated by the rule prior to
the onset of the peripheral stimulus. These prestimulus activity
differences are, perhaps in some respects, analogous to the
anticipatory activity observed in the delayed match-to-position
task in Zhou et al. (2011) and may convolve with visual stimulus
responsivity accordingly.

Recently, stimulation of nicotinic α4β2 receptors was also
examined in monkey PFC during spatial delayed response task
performance (Sun et al., 2017). The authors found α4β2 receptor
stimulation also augmented PFC delay period persistent activity
in the oculomotor delayed response task and improved the
memory period spatial tuning of these neurons in that period.
Moreover, in a variant of that task where a distractor was
presented during the delay period, α4β2 receptor stimulation
shielded neuronal spatial tuning during the delay period from
the effects of the distractor. α4β2 receptor stimulation did not
affect sensory activity related to the peripheral visual stimulus
or response-related perisaccadic activity at the end of the trial.
However, α4β2 agonism also enhanced the activity of neurons
that had activity related to central gaze fixation. Another report
from the Arnsten group showed that iontophoretic stimulation
of α7 nicotinic receptors enhanced NMDA-dependent persistent
activity of PFC neurons (Yang et al., 2013). An α7 receptor agonist
augmented delay period activity and spatial tuning of monkey
PFC neurons during spatial delayed response, an effect which
could be reversed by an α7 receptor antagonist. Interestingly,
α7 receptor stimulation did not have appreciable effects on
peripheral stimulus-related activity and instead facilitated and
synergized with the actions of NMDA NR2B receptors on PFC
neurons to influence delay period persistent activity.

Thus, the findings regarding muscarinic blockade of neuronal
selectivity for the peripheral visual stimulus and perisaccadic
selectivity in Major et al. (2015) contrast with analysis of the
effects of α4β2 nicotinic receptor stimulation on stimulus-
selective and perisaccadic neurons in Sun et al. (2017) and
stimulus-selective activity after α7 receptor stimulation from
Yang et al. (2013). We found that muscarinic blockade
reduces selectivity for all task attributes in PFC neurons,
including visual stimulus and saccade direction selectivity,
having a comprehensive disruptive effect on PFC neuronal task
engagement. Thus, nicotinic receptor subtypes in PFC appear to
be more specialized in their actions on prefrontal circuitry that
generates and maintains persistent delay activity, whereas general
muscarinic receptor modulation appears to affect the gamut of
observable PFC task-related activity.

Since muscarinic antagonism engendered such pronounced
suppression of the activity of PFC neurons during WM, it
would be expected that muscarinic and cholinergic agonists may
enhance persistent activity and WM representations. There is
some evidence that muscarinic stimulation can sustain persistent
activity through intrinsic mechanisms (Egorov et al., 2002). Rat
entorhinal cortical neurons, in the presence of the cholinergic
agonist carbachol, respond to current pulse stimulation with
long lasting activity that is reminiscent of persistent activity
displayed by cortical neurons in WM tasks (Figure 4A). This
carbachol-induced response is graded with increasing discharge

rate after successive stimulations. The persistent responses could
be blocked by general muscarinic blockade (Figure 4A) or
by pirenzepine, an antagonist preferentially blocking M1Rs.
Synaptic stimulation in concert with carbachol application also
generated persistent spiking accompanied by the generation
of nifedipine-sensitive Ca2+ plateau potentials. Thus, ACh,
through muscarinic mechanisms, could facilitate persistent
activity in cortical neurons through cell-autonomous intrinsic
mechanisms that, in concert with stimulus evoked responses,
could engender WM representations. However, traditionally,
WM persistent activity is thought to be a network phenomenon,
generated by slow reverberatory synaptic activity in a network
of neurons (Wang, 2001). Whether this intriguing phenomenon
that manifested in rodent entorhinal cortical slices would also
occur in vivo in primate PFC was not clear.

To clarify whether carbachol could induce or augment
persistent activity in PFC during WM task performance, our
group conducted experiments where we microiontophoretically
applied carbachol on PFC neurons in rhesus monkeys
performing the rule-memory guided pro- and antisaccade
task (Major et al., 2018). Surprisingly, we found that carbachol
had mixed effects on neuronal physiology and persistent activity
(Figure 4B). Carbachol application significantly excited roughly
half the PFC neurons recorded, while ∼40% of neurons were
inhibited. Moreover, carbachol increased the activity of broad-
spiking presumed excitatory pyramidal neurons, while effects on
excitability of narrow-spiking presumed mainly parvalbumin-
positive interneurons were more varied. Rule encoding in the
persistent activity during the delay epoch was diminished by
carbachol application, especially at higher doses. This decrease
in rule selectivity occurred notwithstanding the direction of
changes in excitability of the neurons. It is noteworthy that
carbachol is a general cholinergic agonist that has agonist
activity at both muscarinic and nicotinic receptors. However, as
discussed earlier, studies heretofore report that stimulation of the
major nicotinic receptor subtypes in PFC appear to be generally
excitatory (Yang et al., 2013; Sun et al., 2017), suggesting that
the physiological actions of carbachol in Major et al. (2018) were
mediated by muscarinic receptors.

NEUROMODULATION OF PFC
PERSISTENT ACTIVITY BY MUSCARINIC
RECEPTOR SUBTYPES

Given the pervasiveness of scopolamine-induced suppression of
PFC neurons described above (Major et al., 2015), and that some
or all of the effects of PFC carbachol stimulation were mediated
by muscarinic receptors (Major et al., 2018), the question arises as
to which muscarinic receptor subtypes contributed to the various
physiological effects on persistent activity and task-selectivity
changes caused by these cholinergic manipulations.

As discussed previously, M1Rs are the dominant muscarinic
receptor subtype expressed in PFC. Since they are localized
postsynaptically at asymmetric synapses on dendritic spines of
pyramidal neurons, M1R constitutes an attractive candidate
for mediating the general suppression of PFC by muscarinic
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FIGURE 4 | Influence of cholinergic agonist carbachol on persistent activity. (A) adapted from Egorov et al. (2002); (B) adapted from Major et al. (2018). (A) Example
of persistent activity evoked in a rat entorhinal cortical neuron by a current pulse in the presence of carbachol. Neuronal discharge persists after cessation of
stimulus, and after muscarinic blockade, and after muscarinic blockade. Neuronal discharge persists after cessation of stimulus in the presence of carbachol, but not
during blockade of muscarinic receptors. (B) Illustration on the right shows experimental design of neuronal recording and carbachol iontophoresis. Shown on the
left is the activity of two PFC neurons (top and bottom panels) with persistent rule-selective activity during the delay period is shown during control (left) and
during carbachol (right) application. Carbachol attenuated WM activity for the antisaccade rule in the neuron shown in the top panel, while the activity of the neuron
in the bottom panel was augmented by carbachol, but selectivity for the trial rule in the delay period was nevertheless diminished. Gray area shows the last 600 ms
of the delay period prior to fixation offset. Reproduced with permission from Nature Publishing group.
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blockade. M1R stimulation inhibits the M-current and can
thereby increase cortical neuronal excitability (McCormick and
Prince, 1986; Marrion, 1997; Shirey et al., 2009; Young and
Thomas, 2014). M1Rs and KCNQ channels are both expressed
on dendritic spines and dendrites in layer III pyramidal neurons
of PFC (Galvin et al., 2020b). An allosteric potentiator of M1R
signaling increased the activity of medial PFC neurons in rodents
in vivo and restored reversal learning in a transgenic model
of Alzheimer’s disease (Shirey et al., 2009). A selective M1R
antagonist and scopolamine both produce antidepressant actions
in rodents due to actions in medial PFC (Navarria et al., 2015).
M1R knockout mice have been found to have selective deficits
in non-match-to-sample tasks while, surprisingly, showing
performance enhancement in match-to-sample tasks, with a
reduction in theta burst stimulation, and long-term potentiation
in mice (Anagnostaras et al., 2003). An M1R positive allosteric
modulator was found to enhance cognitive task performance
in macaques, including self-ordered spatial search, and an
object retrieval detour task (Uslaner et al., 2013). M1R also
mediates long-term excitability changes in striatal neurons (Lv
et al., 2017). KCNQ channels that generate the M-current are
active near the action potential threshold (Brown and Adams,
1980), and inhibition of the M-current by pharmacological
blockade of KCNQ channels increases PFC delay period activity
during oculomotor delayed response (Wang et al., 2011). The
M-current is dependent on PIP2 levels, which are regulated by
phospholipase C, downstream of Gq signaling (Suh and Hille,
2002, 2005, 2007; Suh et al., 2006). Since M1R is coupled to Gq
signaling and the inositol phosphate pathway (Popiolek et al.,
2016; Maeda et al., 2019), it may be the main conduit for
increasing neuronal excitability in primate PFC by inhibiting the
M-current.

On the other hand, M1R could have inhibitory influences by
direct activation of parvalbumin-positive interneurons (Yi et al.,
2014). In rhesus macaque areas V1 and MT, the majority of
parvalbumin-positive interneurons are found to express M1Rs
(Disney and Aoki, 2008; Disney and Reynolds, 2014), although
it is not clear if this is also the case in PFC. M1R activation
leads to Ca2+ mobilization from intracellular stores through
the IP3 receptor and this release of Ca2+ can transiently
hyperpolarize neocortical neurons through the activation of
calcium-activated SK potassium channels (Gulledge and Stuart,
2005). The transient suppression is usually followed by long
lasting depolarization of the neuron. Metabotropic glutamate
receptors also mobilize this IP3-receptor and SK channel-
dependent mechanism to cause transient suppression of cortical
neurons as well (Hagenston et al., 2008). One confound in the
interrogation of subtype-selective muscarinic actions has been
the lack of subtype selectivity of orthosteric muscarinic agonists
and antagonists, the ACh binding motif is conserved among the
receptor subtypes (Jones et al., 2012; Jiang et al., 2014). Among
the older generation of orthosteric compounds, some, such as
the agonist McN-A-343 and the antagonist pirenzepine have a
pharmacological preference for M1Rs (Mitchelson, 2012) but
are not highly subtype-selective (Giachetti et al., 1986; Davies
et al., 2001). Recently, however, a new class of M1R agents
have been synthesized that show pharmacological activity by

binding at allosteric sites on the receptor and show considerable
subtype selectivity and clinical promise (Bubser et al., 2011).
These comprise allosteric agonists and antagonists, that act on
non-ACh receptor sites and activate or inhibit the receptor
directly, and positive allosteric modulators, that do not activate
the receptor alone, but in concert with endogenous ACh can
augment the ACh response.

Recently, our group has tested the effects of M1Rs on
persistent WM activity for rules in monkey PFC (Vijayraghavan
et al., 2018). Microiontophoresis of a selective M1R allosteric
agonist, VU0357017 (Lebois et al., 2010; Digby et al., 2012), M1R-
preferring agonist McN-A-343 and M1R-preferring antagonist
pirenzepine were performed on PFC neurons engaged in the
rule-memory guided pro- and antisaccade task described earlier
(Figure 5A). Surprisingly, we found that M1R-selective allosteric
agonist VU0357017 dose-dependently and strongly suppressed
PFC neurons during task performance (Figure 5A). At lower
dose ranges, about half of the PFC neurons tested were inhibited
by the allosteric agonist, while at higher dose ranges, almost
all (81%) of neurons tested were inhibited. Application of
the orthosteric agonist, McN-A-343, also induced substantial
suppression of ∼60% of PFC neurons. Furthermore, application
of the allosteric M1R agonist disrupted the rule selectivity of
the persistent delay activity of many PFC neurons (Figure 5B),
while a few neurons showing increases in persistent activity
and increase in rule representation (Vijayraghavan et al., 2018).
Interestingly, M1R blockade with pirenzepine (Figure 5B) also
suppressed the activity of many PFC neurons (Vijayraghavan
et al., 2018). However, the proportion of neurons that displayed
suppression did not increase with higher doses and, at the
population level was pirenzepine induced suppression was
milder than that observed previously with general antagonist
scopolamine and milder than the suppression with the high doses
of the M1R-selective allosteric agonist. Moreover, in contrast to
the effects of scopolamine, although application of the M1R-
selective antagonist altered the rule-selectivity in the delay period
activity in some individual PFC neurons, the rule selectivity at
the level of the population was not significantly altered. M1R
stimulation did not differentially affect narrow-spiking putative
interneurons and regular-spiking putative pyramidal neurons,
indicating that increased inhibition from parvalbumin-positive
interneurons could not explain the physiological suppression
caused by the agonist or antagonist.

In summary, these results indicated that M1R blockade
could not account for the pervasive neuronal suppression and
general disruption of task selectivity that was observed with
general muscarinic blockade with scopolamine (Major et al.,
2015). Further, M1R overstimulation unexpectedly has strong
suppressive effects on WM activity in PFC.

Another recent study examined M1R modulation of PFC
WM activity during oculomotor delayed response performance
in aged monkeys (Galvin et al., 2020b). This study also found
that high doses of the same allosteric M1R agonist, VU0357017,
suppressed PFC WM activity, but in contrast with Vijayraghavan
et al. (2018), low doses of the allosteric agonist enhanced PFC
persistent activity (Figures 6A,C). Galvin et al. (2020b) also
reported that systemic administration of another M1R positive
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FIGURE 5 | Muscarinic M1R modulation of rule WM in monkey PFC. Adapted from Vijayraghavan et al. (2018). (A) Experimental design of iontophoresis and
recording experiments shown on the left. Effects of M1R allosteric agonist, VU0357017 (top panel) and M1R antagonist pirenzepine on neuronal physiology in PFC.
Pie-charts show number of neurons in the population that were significantly inhibited, excited or unaffected by drug application. Left-most panel shows the net drug
effect on neurons tested at any (both low and high) doses of the M1R agonist. Middle panel, low doses; Right panel, High doses. (B) Left panel shows the
effects of two doses of the M1R agonist on a PFC neuron with delay period activity selective for antisaccades over prosaccades. High dose of the M1R agonist
strongly suppresses the neuron and disrupts rule selectivity in the delay period. Recovery shown in bottom left panel. Right panel shows the activity of a PFC
neuron before and during application of M1R antagonist pirenzepine. This neuron showed ramping persistent activity during the delay period that was selective for
prosaccades. M1R blockade inhibited this neuron and also diminished rule selectivity. Modified with permission from Elsevier (Neuron).
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FIGURE 6 | Effects of M1R stimulation on spatial delayed response performance and delay period persistent activity. Adapted from Galvin et al., 2020b.
(A) Schematic of trial structure of oculomotor delayed response and iontophoresis technique from Galvin et al. (2020b). After central fixation, a peripheral cue briefly
flashes at one of eight locations. The cue location is maintained in WM during the delay period, when central fixation continues to be maintained. At the end of the
delay indicated by fixation spot offset, the subject makes a saccade to the remembered location. (B) Behavioral dose response curves for systemic administration of
M1R positive allosteric modulator VU0453595 during spatial delayed response performance in by an aged monkey. M1R stimulation has an inverted-U effect on WM
performance. WM performance degrades at doses higher than the optimal dose. (C) Microiontophoresis of increasing doses of M1 allosteric agonist, VU0357017 on
persistent spatially tuned delay period activity of a PFC neuron. Left panel shows rasters and histograms for neurons preferred direction. Right panel shows
rasters and histograms for neurons non-preferred direction. M1R agonist application at low dose enhances WM activity, while higher dose application suppresses
the neuron. Reproduced with permission from Elsevier (Neuron).
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allosteric modulator in aged monkeys improved WM behavioral
performance at low doses but disrupted performance at high
doses (Figure 6B). They further reported that inhibiting the
M-current could restore delay-related firing which had been
suppressed by selective M1R antagonist, telenzepine.

The effects of different muscarinic actions on neuronal
physiology in the PFC from the studies discussed above have
been summarized in Table 1. These surprising results with M1R
agonists point to the possibility that M1R overstimulation in
primate PFC may trigger signaling mechanisms that lead to
neuronal suppression. Thus, the actions of ACh in PFC in alert
behaving primates may involve mechanisms that engender non-
trivial suppression of cortical activity through M1Rs. Further the
results in Vijayraghavan et al. (2018) suggest that the actions
of ACh on M1R do not completely account for the suppressive
effects of general muscarinic blockade on PFC neurons.

Several mechanisms may account for the suppression due to
M1R overstimulation. One possibility is that M1R excitation of
interneurons at high doses of stimulation leads to a suppression
of PFC neurons. However, this is unlikely, as noted above
because Vijayraghavan et al. (2018) reported that narrow-spiking
putative parvalbumin positive interneurons were also equally
suppressed by the agonist. This, of course, does not account for
other classes of interneurons which are not narrow spiking, the
increase in activity of which may well have caused suppression
of the pyramidal neurons. Another possible mechanism for
the inhibition may be SK potassium channel activation by
intracellular Ca2+ mobilization due to M1R stimulation, as
discussed elsewhere in this review (Gulledge and Stuart, 2005).
It is noteworthy, that previous iontophoretic studies examining
Gq protein-coupled receptors have found that stimulating these
receptors has inhibitory effects on PFC neurons in primates
and in some rodent studies. a1 adrenergic receptor stimulation
suppresses delay period activity in a spatial delayed response task
(Birnbaum et al., 2004) and Gq metabotropic glutamate receptor
1 was shown to increase inhibitory transmission in rat medial
PFC, impairing decision-making (Sun and Neugebauer, 2011).

Galvin et al. (2020b) propose that suppression due to
overstimulation of M1Rs could be the result of membrane
hyperpolarization due to increase in the open state of KCNQ2
channels (Jentsch, 2000) due to M1R-mediated protein kinase
C-cyclic AMP-protein kinase A signaling. Indeed, they show
that retigabine, a positive allosteric modulator that preferentially
targets KCNQ2 channels and increases the open state of the
channels reduces persistent activity of PFC neurons. Future
experiments must address the underlying mechanism involved
in the suppression of persistent activity in the PFC by M1R
overstimulation.

Vijayraghavan et al. (2018) also reported that M1R antagonist
application suppressed roughly half of the PFC neurons tested
even at the highest doses tested and did not systematically alter
WM rule selectivity, in contrast with the uniform neuronal
suppression and loss of task selectivity due to scopolamine
(Major et al., 2015). This suggests that there are other muscarinic
excitatory mechanisms independent of M1Rs active in the
PFC. Vijayraghavan et al. (2018) proposed that there may be
excitatory mechanisms based on M2R activation which may TA
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explain why M1R blockade does not replicate the efficacy
of general muscarinic blockade in neuronal suppression and
task selectivity. As discussed in this review, M2R is present
postsynaptically in both pyramidal neuron dendritic spines
and in the dendrites of interneurons. M2Rs are Gi/o-coupled
receptors, and previous microiontophoretic studies in monkey
PFC have shown that stimulation of the dopamine D2 receptor,
which is also coupled to Gi/o, can augment the activity of
specific classes of PFC neurons during WM tasks (Wang et al.,
2004; Vijayraghavan et al., 2016, 2017; recently reviewed by Ott
and Nieder, 2019). Thus, in addition to their documented role
in autoinhibition and heteroinhibition as presynaptic receptors
(Murakoshi, 1995), post-synaptic M2R signaling may lead to
increase in PFC neuronal excitability and augmentation of
persistent activity. In support of this hypothesis, preliminary data
from our group suggests that M2R antagonism suppresses the
delay activity of PFC cells engaged in the rule-memory guided
pro- and antisaccade task. Future studies with local application of
M1R-selective allosteric antagonists, like VU0255035, and M2R-
selective agonists and antagonists in PFC will help resolve these
apparent paradoxes of muscarinic actions on PFC WM circuits.

These results with M1R compounds in monkey PFC are
of particular interest, because M1R-selective agents are being
actively investigated for cognitive enhancement and amelioration
of cognitive deficits in neuropsychiatric disorders (Bubser
et al., 2011; Thiele, 2013; Carruthers et al., 2015). M1R
based therapeutics, such as KarXT, a coformulation of M1R
agonist xanomeline and trospium, a peripheral muscarinic M2R
antagonist that ameliorates non-target side effects of xanomeline,
are showing promising results in clinical trials for the treatment
of schizophrenia (Brannan et al., 2019).

CONCLUSION

In this review, we have discussed the neuromodulatory influence
of the corticopetal cholinergic system through muscarinic
receptors on primate PFC WM circuits that manifest persistent
memory-related activity. The anatomical localization of these
receptors shows exquisite specificity and correspondence with
network connections within the PFC. Cortical muscarinic
receptors play a pivotal role in arousal and brain state transitions,
and their activation is necessary for the proper functioning of
recurrent circuits in the PFC that generate persistent activity in
WM tasks. Recent work shows that their role in primate PFC may
be quite different from what would be expected from prior studies
in other model systems like rodents and moreover, diverges
from their role in sensory cortical areas. Further elucidation of
muscarinic neuromodulation of PFC cognitive circuitry promises
to be a rewarding endeavor for translational research and the
development of new targets for the treatment of neuropsychiatric
and neurological disorders.
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According to mechanistic theories of working memory (WM), information is retained
as stimulus-dependent persistent spiking activity of cortical neural networks. Yet, how
this activity is related to changes in the oscillatory profile observed during WM tasks
remains a largely open issue. We explore joint effects of input gamma-band oscillations
and noise on the dynamics of several firing rate models of WM. The considered
models have a metastable active regime, i.e., they demonstrate long-lasting transient
post-stimulus firing rate elevation. We start from a single excitatory-inhibitory circuit
and demonstrate that either gamma-band or noise input could stabilize the active
regime, thus supporting WM retention. We then consider a system of two circuits
with excitatory intercoupling. We find that fast coupling allows for better stabilization
by common noise compared to independent noise and stronger amplification of this
effect by in-phase gamma inputs compared to anti-phase inputs. Finally, we consider
a multi-circuit system comprised of two clusters, each containing a group of circuits
receiving a common noise input and a group of circuits receiving independent noise.
Each cluster is associated with its own local gamma generator, so all its circuits receive
gamma-band input in the same phase. We find that gamma-band input differentially
stabilizes the activity of the “common-noise” groups compared to the “independent-
noise” groups. If the inter-cluster connections are fast, this effect is more pronounced
when the gamma-band input is delivered to the clusters in the same phase rather than in
the anti-phase. Assuming that the common noise comes from a large-scale distributed
WM representation, our results demonstrate that local gamma oscillations can stabilize
the activity of the corresponding parts of this representation, with stronger effect for fast
long-range connections and synchronized gamma oscillations.

Keywords: gamma oscillations, noise, in-phase oscillations, anti-phase oscillations, AMPA, NMDA, working
memory

INTRODUCTION

The concept of working memory (WM) characterizes the ability of the brain to retain in an active
form certain information that is relevant to a current task, but is not perceived at the particular
moment by sensory systems (Baddeley, 2003). One of the main mechanisms supposedly underlying
WM is self-sustained activity of neural populations (Goldman-Rakic, 1995; Compte, 2006), which
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can be turned on or off in a short period of time (about
100 ms) and continue for a time interval of up to tens of
seconds (Wang, 2001). Cells whose activity is maintained at
an elevated level during the retention of information in WM
have been found in various parts of the brain, primarily in
the prefrontal cortex (Fuster and Alexander, 1971; Funahashi
et al., 1989; Miller et al., 1996; Chafee and Goldman-Rakic, 1998;
Constantinidis and Goldman-Rakic, 2002).

The process of retaining information in WM is also associated
with changes in the collective rhythmic activity of brain networks
(which are neuronal oscillations) in various frequency bands
(Sauseng et al., 2009; Siegel et al., 2009; Haegens et al., 2010;
Liebe et al., 2012; Kornblith et al., 2016; Lundqvist et al., 2016,
2018; Wimmer et al., 2016). Among these changes, increase of
the gamma-band activity is of special interest. Gamma activity
usually reflects activation of neural populations and coincides
with episodes of firing rate elevation. In WM tasks, gamma
activity increases most strongly during presentation of stimuli
(Kornblith et al., 2016; Lundqvist et al., 2016; Wimmer et al.,
2016), but in the delay period (i.e., in the time period after
stimulus termination and before an instruction to make a
response) it is still higher than in the baseline (Lutzenberger et al.,
2002; Kaiser et al., 2003; Jokisch and Jensen, 2007; Haegens et al.,
2010; Palva et al., 2011; Kornblith et al., 2016; Lundqvist et al.,
2016; Wimmer et al., 2016). We note that during this delay period,
the subject has to withhold the response, yet needs to retain “on-
line” information necessary to generate the appropriate response.
The delay-period gamma activity presumably reflects activation
of the neural populations that represent the WM content (Roux
and Uhlhaas, 2014). This is supported by the findings that
the delay-period gamma activity is higher than in the passive
observation task (Wimmer et al., 2016), increases with WM load
(Howard et al., 2003; van Vugt et al., 2010; Kornblith et al.,
2016; Lundqvist et al., 2016) and only in the task-relevant regions
(Kaiser et al., 2003; Jokisch and Jensen, 2007) or at those cortical
sites that contain neurons selective to the WM content (Kornblith
et al., 2016; Lundqvist et al., 2016).

Recently, the delay-period gamma oscillations were more
directly linked to activation of WM representations. It was
demonstrated that gamma activity is irregular at the single-trial
level, and the episodes of increased gamma power (“gamma-
bursts”) are associated with elevated firing rates and increased
amount of information about the WM content that could be
decoded from spiking activity (Lundqvist et al., 2016, 2018; Bastos
et al., 2018). It is not fully clear, however, whether the gamma
power increase plays a functional role in WM retention or is
it merely a consequence of transient firing rate increase during
spontaneous reactivations of WM representations.

Besides the gamma power increase, an increase in gamma-
band coherence between different cortical sites during the delay
period was reported (Lutzenberger et al., 2002; Kaiser et al.,
2003; Palva et al., 2010; Kornblith et al., 2016). Furthermore, it
was shown that transcranial gamma-band electrical stimulation
of two distant sites could improve performance in a WM task
(Tseng et al., 2016). Interestingly, the improvement was observed
only under anti-phase (but not under in-phase) stimulation.

This result suggests that gamma-band coherence presumably
plays a functional role in WM retention, and is not merely
an epiphenomenon.

Nowadays, a number of computational WM models exist.
Most of them are based on multistable neural networks. In the
simplest case, a system has two stable states, one of which (with
low firing rates) corresponds to the background regime, and the
other one (with higher firing rates) relates to the active regime,
in which an object is retained in WM. Transition from the
background to the active state occurs under the action of a short
excitatory pulse that mimics the arrival of a to-be-memorized
stimulus. As an alternative, there are models, in which the active
retention regime is metastable, and the system slowly returns
to the background state after a stimulus presentation (Lim and
Goldman, 2013). In many WM models, the self-sustained post-
stimulus firing rate elevation is provided by reverberation of
excitation in the network due to synaptic interactions (Amit
and Brunel, 1997; Brunel and Wang, 2001). In addition, there
are models in which post-stimulus enhancement of synaptic
connections due to short-term plasticity plays a significant role
(Mongillo et al., 2008, 2012; Hansel and Mato, 2013).

Many theoretical papers, following Amit and Brunel (1997),
described WM models with asynchronous spiking activity. It was
shown that if a model contains only fast excitation, then even
slight synchronization returns it to the background state (Gutkin
et al., 2001; Laing and Chow, 2001; Compte, 2006). However,
generation of oscillations (i.e., synchronization) in a WM model
is possible in the presence of slow NMDA receptors (Tegnér et al.,
2002) or in the case of modular structure of the system (Lundqvist
et al., 2010, 2011). Besides investigating the mechanisms of
oscillations’ appearance in WM models (Tegnér et al., 2002;
Roxin and Compte, 2016), several theoretical studies explore
possible functional roles of oscillations in WM (Lisman and
Idiart, 1995; Ardid et al., 2010; Lundqvist et al., 2010, 2011; Kopell
et al., 2011; Chik, 2013; Dipoppa and Gutkin, 2013; Pina et al.,
2018; Schmidt et al., 2018; Sherfey et al., 2020). The methodology,
however, differs substantially between these studies, and a unified
theoretical framework in this field is still lacking.

We follow a paradigm used in Dipoppa and Gutkin (2013);
Schmidt et al. (2018), in which a WM system is resonant and
receives an external oscillatory input that controls its behavior.
Schmidt et al. (2018) showed that gamma-band input could
stabilize WM retention even if the active regime is initially
metastable (which means that the firing rate increases after
stimulus presentation, but then slowly returns to the background
level in the absence of input oscillations). In the present study, we
make a step further and consider systems with metastable active
regime that are comprised of several excitatory-inhibitory circuits
coupled by symmetrical excitatory connections and receiving the
same stimulus-related signal (such systems could serve as models
of a distributed representation of an object in WM). We explore
stabilization of the metastable active regime by external gamma-
band and white-noise inputs, both of which are assumed to come
from neural populations not explicitly included into the model.

We assume that the gamma-band inputs are generated
locally (and thus could have different phases for different
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circuits), and that the noise inputs originate from distributed
networks (that could jointly participate in WM retention,
thus producing correlated activity). The model parameters in
the focus of our research are the following: (1) in-phase or
anti-phase character of the gamma inputs to the circuits,
(2) commonality or independence of the noise inputs to the
circuits, (3) NMDA:AMPA ratio of inter-circuit connections.
By varying these parameters, we aim to understand whether
gamma-band oscillations are able to preferentially stabilize the
active regime in those circuits that participate in collective
WM-related activity (and thus receive a common noise input
rather than independent inputs). Another goal of our study
is to explore whether synchronization of gamma generators
(leading to in-phase gamma inputs to different circuits) affects
the ability of the gamma input to stabilize WM retention,
depending on whether the inter-circuit connection in the system
are fast or slow.

The paper is organized as follows. We start from a single-
circuit model and demonstrate that the active regime could be
stabilized by gamma-band or white-noise input. Next, we explore
joint stabilizing effect of gamma-band and white-noise inputs
in a system of two circuits with mutual excitation. We vary
the NMDA:AMPA ratio of the inter-circuit connections and
parameters of the inputs (including phase difference between the
gamma inputs to the circuits and commonality/independence
of the noise inputs); for each parameter combination we
evaluate the effectiveness of stabilization. Finally, we consider
a multi-circuit system comprised of two local clusters, with
all the circuits in a cluster receiving the same gamma
input. Each cluster, in turn, contains two circuit groups:
the circuits from the first groups receive a common noise
input and the circuits from the second groups – independent
noise inputs. We explored the stabilizing effect of gamma
input on each circuit group, depending on whether it is
delivered to the clusters in the same phase or in the anti-
phase, conditioned on the type (slow/fast) of the inter-
cluster connections.

MATERIALS AND METHODS

Model Description
In this article, we consider firing rate models of WM that
consist of one, two, or many circuits each containing interacting
excitatory and inhibitory neural populations (Figure 1). These
circuits serve as representations of various parts or features
of WM content and are linked by symmetrical excitatory
connections. Each circuit receives an external input consisting
of several components: (1) tonic (constant) input, (2) stimulus-
related input, (3) zero-mean sinusoidal oscillatory input, and
(4) white noise. The stimulus-related input is implemented as a
rectangular pulse whose amplitude and duration are the same
for all circuits in the model. The stimulus input is projected
80% to the excitatory population of a circuit and 20% to the
inhibitory population. The oscillatory input impinges only on the
excitatory populations of circuits and represents a modulatory

signal from the outside of the modeled WM network. White
noise mimics the input produced by activity of a larger network
into which our model is embedded, but which was not modeled
explicitly. We explore different cases, in which the circuits receive
in-phase or anti-phase oscillatory inputs, as well as identical or
independent noisy inputs.

The state of circuit populations is described by the following
dynamical variables: (1) firing rates, (2) mean input currents
(AMPA, NMDA, and GABAA), and (3) population variances
of the input currents (AMPA and GABAA). We further argue
that if the mean values of the AMPA and NMDA currents are
of the same order of magnitude, the NMDA current variance
has to be much smaller than the AMPA variance, since the
NMDA time constant is much larger than the AMPA time
constant. Hence, we set the NMDA current variance to zero.
Thus, our model of interacting circuits is described by the
following equations:
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where, the lower index a denotes a population type (e, excitatory;
i, inhibitory), the upper index p denotes a circuit number. The
variable rpa is the firing rate; µ

p
a is the total mean input current,

µ
p
a,S is the mean input current via the synapses of the type S

(S denotes AMPA, NMDA, or GABAA);
(
σ
p
a,S

)2
is a population

variance of the input current via the synapses of the type S;
τra is the time constant that governs the firing rate dynamics,
τS is the synaptic time constant for the synapses of the type S;

µ̃
p,rec
a,S ,

(
σ̃
p,rec
a,S

)2
are the population mean and variance of the

recurrent (intra-circuit) inputs; µ̃p,cc
a,S ,

(
σ̃
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a,S

)2
are the population

mean and variance of the input from other modeled circuits;

µ̃
p,ext
a,S and

(
σ̃
p,ext
a,S

)2
are the population mean and variance of the

external inputs; Fra are the gain (transfer) functions. Note that
the time constant for the population variance of each current is
twice smaller than the time constant for the population mean
of the same current (due to the properties of linear first-order
stochastic ODE’s; (see Renart et al., 2007) for an example of a
model with dynamical mean and variance of the input current).
Within-circuit excitatory-to-excitatory connections demonstrate
short-term plasticity (Tsodyks and Markram, 1997), see the full
description in the Supplementary Material.

We also need to define the gain functions for the neural
populations. Instead of defining these gain functions Fre and
Fri a priori, we calculate them following an approach similar
to the one previously used in Schaffer et al. (2013) and
Augustin et al. (2017) that allows to match low-dimensional
models with spiking networks, making them more biologically
plausible. According to this approach, the gain functions were
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FIGURE 1 | Schematic representation of the WM model types we explore in this study. (A) Single-circuit system. E, excitatory population; I, inhibitory population. The
excitation is mediated by AMPA and NMDA receptors, inhibition – by GABAA receptors. The excitatory-to-excitatory connections demonstrate short-term plasticity.
White-noise and oscillatory inputs are delivered to the excitatory population. A rectangular stimulus-related signal is delivered to the excitatory and inhibitory
populations in the proportion of 5:1. Both populations also receive constant inputs (not shown). (B) Two-circuit system. The circuits are structurally identical to the
one shown in (A) and intercoupled via excitatory connections with varying NMDA:AMPA ratio. Gamma-band sinusoidal input is delivered to the excitatory
populations of the circuits, either in the same phase or in the anti-phase. White-noise inputs (identical or independently generated) are also delivered to the excitatory
populations. The stimulus-related signal is delivered in the same way as in (A), and it is identical for both circuits. (C) Multi-circuit model. Each circle represents a
circuit, structurally identical to the one shown in (A). The circuits are grouped into two local clusters; each cluster contains two circuit groups. Lines connecting the
circles represent symmetrical excitatory inter-circuit connections. Within-cluster inter-circuit connections are mainly AMPA-mediated (NMDA:AMPA ratio is 0.1),
inter-cluster connections could be predominantly mediated either by AMPA or NMDA. The circuits from the “red” groups (C1 and C2) receive a common white-noise
input; the circuits from the “gray” groups (I1 and I2) receive independent white-noise inputs. All the circuits from each cluster receive gamma-band input in the same
phase; the inputs to the clusters could have the same phase or the opposite phases. The same stimulus-related signal is delivered to each circuit.

pre-calculated on a cubic grid (with the coordinates: total mean
current, AMPA current std., and GABAA current std.) by
numerical simulations of leaky integrate-and-fire (LIF) neurons
having typical properties of the regular-spiking (pyramidal)
neurons and the fast-spiking interneurons of the cortex. For an
arbitrary point, the value of a gain function was obtained by
interpolation between the pre-calculated values at the closest
grid nodes. To show the shape of the gain functions, in
Figures 2C,D we present their projections to the plane of
mean firing rate and total mean input current. The projections

were made for two different combinations of AMPA and
GABAA current std. that correspond to the background and
active states of the bistable single-circuit system (these states
are depicted in Figure 2A; see the next section for details).
Since our model is tuned to operate in a subthreshold regime
[which is typical for cortical neurons; (Compte et al., 2003;
Wang, 2010)], the aforementioned plots have an exponential-
like, concave shape.

The full system of model equations and its detailed description
are given in the Supplementary Material.

Frontiers in Neural Circuits | www.frontiersin.org 4 April 2021 | Volume 15 | Article 64794461

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-15-647944 April 15, 2021 Time: 19:18 # 5

Novikov et al. Gamma Stabilization of Working Memory

FIGURE 2 | Steady states of a single-circuit model. (A) Phase plane for the single-circuit model analyzed in our study. For the points on the blue curve (re-curve), all
the derivatives, except of dri/dt are zero; for the point on the red curve (ri-curve), all the derivatives, except of dre/dt are zero. The system has the single (background)
steady state and the region of slowly decaying activity (metastability region), where the re- and ri-curves are close to each other. (B) Phase plane for a system with
increased recurrent excitation. The system has the background steady state (denoted as 1) and the active steady state (denoted as 2). (C) Two slices of the gain
function of the excitatory population, representing dependence of the excitatory firing rate on the mean input current to the excitatory population. Solid curve – the
slice taken at the constant values of the AMPA- and GABAA-current variance, equal to the values calculated at the steady state 1. Dashed curve – the slice taken at
the variance values calculated at the steady state 2. (D) Same as (C), but for the inhibitory population.

Model Parameters
Single Circuit
We set the parameters of a circuit (Figure 1A) in such way
that: (1) it has a stable background steady state with a low
level of activity, (2) it responds to a stimulus by prolonged
activity increase with subsequent return to the vicinity of the
background state, and (3) it has gamma-band resonance during
the post-stimulus increased activity. We refer to the increased
post-stimulus activity as metastable active regime and refer to a
system with such regime as metastable system.

To obtain the required behavior of the circuit (metastability
and gamma-band resonance), we set the parameters in the
following way. We start by pre-selecting parameters that provide
bistability in a circuit. In this case, there are three equilibria

in the phase space: two stable ones (corresponding to the
background and active states) and a saddle (Figure 2B). We
tuned the parameters in such way that the second (active)
equilibrium has a pair of complex-conjugate eigenvalues with a
small negative real part and an imaginary part corresponding
to the gamma band. An orbit of such a system, when
starting near the active steady state, shows slowly decaying
gamma-band oscillations returning back to the active state (an
example is presented in Supplementary Figure 1B). Then, we
decreased the weight of the excitatory-to-excitatory synaptic
connections, until the upper equilibrium disappears through
a fold bifurcation (see the phase plane with the single steady
state in Figure 2A). In fact, the upper equilibrium leaves a
“ghost” near which the dynamics are slow. Thus, the resulting
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system is metastable, and the slow dynamics near the “ghost”
corresponds to the metastable active regime. This regime inherits
gamma-band resonance from the active steady state that existed
in the bistable system before the bifurcation. An example
orbit of the metastable system showing damped oscillations
with subsequent decay to the background is presented in
Supplementary Figure 1A.

Finally, we explored the ability of white-noise and sinusoidal
inputs to stabilize the metastable active regime.

Two Circuits
We also considered a system of two identical interacting
circuits (Figure 1B). In this case, we symmetrically connect
the circuits using excitatory coupling between their excitatory
populations. At the same time, to compensate this additional
inter-circuit excitation, we decreased the background inputs to
the excitatory populations. In this way, we keep the metastable
behavior in each circuit and could study the influence of input
oscillations and noise.

We varied NMDA:AMPA ratio for the inter-circuit
connections and explored the ability of in-phase/anti-phase
oscillatory inputs and common/independent white-noise inputs
to stabilize the active regime. We used duration of increased
post-stimulus activity as the measure of the active regime
stability. The post-stimulus activity of a circuit was considered to
be terminated when the time-course of its excitatory population
firing rate smoothed with the 100 ms time window fell below
the level of 3 Hz.

Multiple Circuits
Finally, we considered a multi-circuit system schematically
presented in Figure 1C. Each circuit is represented by a
(red or black) circle. Links between the circles correspond
to mutual excitatory connections between the circuits. In the
system considered, there were two circuit clusters that mimic
two spatially separated local networks. All circuits in each
cluster receive input oscillations of the same phase, whereas
the circuits in different clusters may receive either in-phase or
anti-phase oscillations.

Each cluster contains two groups of circuits. Circuits from
the first groups C1, C2 (red-colored circuits in both clusters
in Figure 1C) receive a common noise input. Circuits from
the second groups I1, I2 (gray circuits in Figure 1C) receive
independent noise inputs.

Each group in our model is a random graph with eight nodes
(circuits) having the constant in-degree of three; two groups
within the same cluster (C1–I1 and C2–I2) are connected by
three randomly assigned links; corresponding groups in different
clusters (C1–C2 and I1–I2) are connected by eight randomly
assigned links (with one link per each node); non-corresponding
groups in different clusters (C1–I2 and C2–I1) are not connected.
All links between circuits are bi-directional.

We considered two multi-circuit models: one with the
fast inter-cluster connections (90% AMPA and 10% NMDA),
and the other one with slow inter-cluster connections (100%
NMDA). All other parameters were identical. We simulated

both models in several regimes: (1) no oscillatory input, (2)
only one cluster receives oscillatory input, (3) the clusters
receive in-phase oscillations, (4) the clusters receive anti-phase
oscillations. For each regime, we were interested in the average
duration of post-stimulus activity of each circuit group (C1,
I1, C2, and I2).

RESULTS

Activity of Single-Circuit Model
A single-circuit model consisting of an excitatory and an
inhibitory population (Figure 1A) could be either bistable or
monostable, depending on the strength of the self-excitation.
For strong enough self-excitation, the model has three equilibria
(Figure 2B): two stable steady states and a saddle. The stable
equilibria correspond to two types of activity: the background
(low-rate) and active (high-rate) regimes, while the saddle
manifold separates their basins of attraction. For weaker self-
excitation, the equilibria that correspond to the active state
and the saddle disappear through the fold bifurcation, and
a metastable active regime (with high firing rate) remains
as a ghost of the active state (Figure 2A). In this case,
the circuit could be excited from the background state by a
stimulus and demonstrate relatively long transient high-firing-
rate activity.

The metastable active regime can be stabilized (i.e., the decay
of the post-stimulus activity could be slowed or prevented)
either by an oscillatory signal (Figure 3), or by a noisy
input (Figure 4). In the case of oscillatory input, there is
a range of its amplitudes, for which the stabilization occurs
only if the input frequency falls into the lower gamma
band (middle part of Figure 3A). For lower amplitudes, the
stabilization does not occur (gray region in Figure 3A). For
higher amplitudes, the frequency range of stabilization expands
to the high gamma and beta bands. If the input amplitude
is too high (above the dashed red line in Figure 3A), the
background regime disappears, i.e., the oscillations put the
system into the active (high-firing-rate) regime even without
stimulus presentation.

We found that noisy input is also able to stabilize the
metastable state (Figure 4). The purple curve represents the mean
firing rate observed in the absence of a stimulus, as a function
of the noise standard deviation. The green curve represents the
mean post-stimulus firing rate. At low intensity, the noise was
unable to stabilize the active regime, while at high intensity, the
noise put the system to the active regime even without stimulus
presentation. Thus, an intermediate range of noise intensities
is appropriate for WM functioning; it is seen in Figure 4A as
the range in which the green line goes considerably above the
purple line. For a value from this range, the persistent activity
is initiated by a transient stimulus, and the WM trace is then
kept “alive” by the noise input (Figure 4B). At the same time,
the system stays in the background regime if the stimulus is not
presented (Figure 4C).
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FIGURE 3 | Resonant stabilization of the metastable activity by a sinusoidal signal (without noise) in the single-circuit model. In panel (A), there is a diagram showing
the mean excitatory firing rate for different values of the amplitude and frequency of the signal. Simulation was performed for 10 s, and the firing rate was averaged
over the last period of the input signal. Above the solid red curve, the active (initially metastable) regime is persistent; above the dashed red curve, there is no
background regime. (B–D) Examples of the activity traces. Blue, excitatory firing rate; red, inhibitory firing rate. The system was shifted to the metastable active
regime by a transient constant input (stimulus), after which an oscillatory input was turned on (20, 40, or 60 Hz zero-mean sinusoid). Note that the 40 Hz periodic
input (C) provided a persistent active regime.

FIGURE 4 | Stabilization of the single-circuit metastable activity by a noisy input. (A) Mean excitatory firing rate, averaged over the interval 1–10 s. Green, the result
for post-stimulus activity; purple, for background activity (without stimulus presentation). The stimulus presentation interval was 200–450 ms. The noise was
delivered during the whole simulation time. Examples of the post-stimulus and the background activity traces (Aex,NOISE = 3× 10−2µA/cm2) are presented in (B,C),
respectively. Blue curves, excitatory firing rate; red curves, inhibitory firing rate.

Activity of Two-Circuit Model
In this section, we explore joint stabilizing effect of input noise
and oscillations on the system of two circuits with mutual

excitatory connections (Figure 1B). We investigate different cases
when circuits receive in-phase or anti-phase oscillations, as well
as common or independent noise. The inter-circuit connections
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contain both fast AMPA and slow NMDA components. We
varied the proportion of the inter-circuit current that flows via
NMDA receptors (which we denoted as kcross

NMDA), while keeping
the total inter-circuit connection strength at the constant level.

Dependence of the post-stimulus activity duration (which we
use as the measure of the active regime stability) on kcross

NMDA
value and the amplitude of the input oscillations is presented in
Figure 5. In the case of fast (AMPA) inter-circuit connections
(kcross

NMDA = 0), the in-phase oscillatory input to both circuits
leads to stabilization of the active regime with high efficiency
(Figure 5, lower part of the left panel). Anti-phase input
oscillations in this case need to have a very high amplitude to
stabilize the active regime (Figure 5, lower part of the right
panel). With increasing kcross

NMDA (i.e., the portion of the slow
NMDA component of the inter-circuit current), effectiveness
of the in-phase input deteriorates, while effectiveness of the
anti-phase input increases (see the opposite trends in the left
and right panels of Figure 5). For kcross

NMDA
∼= 1, both types of

the input have approximately the same effect (Figure 5, upper
parts of the panels).

In the presence of noise, our system generates irregular
gamma-band quasi-oscillations. They act together with the
external gamma-band input in stabilizing the active regime.
The joint dependence of the post-stimulus activity duration
on the input oscillations’ amplitude and on the noise standard
deviation is presented in Figure 6. In general, the activity
duration increases when either the oscillations or the noise
become stronger.

In the case of fast inter-circuit connections (kcross
NMDA =

0, Figures 6A,B), common noise has stronger stabilizing

effect than independent noise (compare the left and middle
panels of Figures 6A,B). This is true in the presence of
either in-phase or anti-phase oscillations, but in the case
of anti-phase oscillations, the stabilizing effect occurs at
much higher amplitudes compared to in-phase oscillations
(see different horizontal scales in Figures 6A,B). The yellow
region in the right panels of Figures 6A,B contains the
combinations of oscillations’ amplitude and noise standard
deviation, for which there is an evident difference in the
post-stimulus activity duration between the common-noise
and the independent-noise cases (within our simulation time).
Importantly, for intermediate noise intensities, an evident
difference is observed only if the oscillations are sufficiently
strong (see the horizontal black lines in the right panels of
Figures 6A,B cross the yellow region near the right parts of
the diagrams). In other words, an external gamma-band input
with an appropriate amplitude stabilizes the active regime (i.e.,
WM retention) only when the two circuits receive a common
noise input (e.g., when they belong to the same distributed
representation), but not when they receive independent noise
inputs of the same strength (e.g., when they are parts of
different representations).

In the case of slow inter-circuit connections (kcross
NMDA =

1, Figures 6C,D), common noise has weaker stabilizing effect
than independent noise (compare the left and middle panels
of Figures 6A,B). This difference, however, is less pronounced
than in the case of fast inter-circuit connections (compare
the right panels of Figures 6A–D). Furthermore, in-phase
and anti-phase gamma-band inputs have almost the same
effect (compare Figures 6C,D, note that the horizontal scale

FIGURE 5 | Dependence of post-stimulus activity duration of the two-circuit system on the amplitude of input sinusoidal oscillations and the NMDA-to-total
inter-circuit current ratio (kcross

NMDA). Left panel: the oscillations are delivered to the circuits in the same phase, right panel: oscillations are delivered in the antiphase.
Oscillation frequency: 40 Hz, noise amplitude: 0.014 µA/cm2. Note that increasing of kcross

NMDA reduces the stabilizing effect of the in-phase input, but increases the
effect of the anti-phase input.
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FIGURE 6 | Dependence of the post-stimulus activity duration in the two-circuit system on the amplitude of the input oscillations and the strength of the input noise
for the in/anti-phase oscillations and two values of the NMDA connections strength. (A,B) Fast inter-circuit connection, (C,D) slow inter-circuit connections. (A,C)
The circuits receive oscillatory signals in the same phase, (B,D) the circuits receive oscillatory signals in the opposite phases. Left column – each circuit receives an
independent noise input; middle column – the circuits receive a common noise input; right column – the difference between these two cases. Red curve denotes the
border of the saturation region: above this curve, the activity duration either for the common or for the independent noise case equals to the simulation time (i.e.,
above this curve comparison between the noise types does not make sense). Horizontal black lines denote the noise level of 0.01 (used further in the text). When the
inter-circuit connections are fast, the activity is more robust (its duration is longer) in the case of common noise (yellow regions in the right panels of (A,B)). When the
connections are slow, the activity is slightly more robust in the case of independent noise (blue regions in the right panels of (C,D)).
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is the same). This is in contrast with the kcross
NMDA = 0 case,

in which in-phase input had much stronger effect than the
anti-phase input. Such difference between kcross

NMDA = 0 and
kcross

NMDA = 1 is in agreement with the result presented in
Figure 5 for a constant noise intensity. Let us, again, select
a certain intermediate noise intensity (horizontal black lines
in Figures 6C,D), and start to increase the gamma-band
input amplitude. When the amplitude becomes high enough,
the gamma-band input begins to stabilize the activity regime.
This happens at slightly smaller amplitudes if the noise is
independent, but irrespectively of whether the oscillatory input
is in-phase or anti-phase.

Oscillatory Control of Multi-Circuit
System
In this section, we show how the behavior of a multi-
circuit system can be controlled by various types of oscillatory
inputs. The results presented here are, in a large part,
based on the effects of oscillations on two-circuit models
described in the previous section. The multi-circuit system
under consideration contains two clusters of circuits. Each
cluster contains a group of circuits receiving a common noise
input (the same signal for both clusters) and a group of
circuits receiving independent noise inputs (we denote the
“common-noise” groups of the first and second cluster as C1
and C2, respectively, and the “independent-noise” groups as
I1 and I2). We consider two models – with fast and slow
inter-cluster connections, respectively. We explore the behavior
of the models in four conditions: (1) no oscillatory input
(“NONE” condition), (2) only one cluster receives oscillatory
input (“1CLUST” condition), (3) the clusters receive in-phase
oscillations (“SYNC” condition), (4) the clusters receive anti-
phase oscillations (“ANTI” condition). Each simulation was
performed 25 times, and the statistics of group-averaged post-
stimulus activity duration were collected for each of the four
groups (C1, C2, I1, and I2) separately.

Figure 7 summarizes the results on the multi-circuit system
behavior under the various oscillatory input conditions. The
range of post-stimulus activity durations of the “common-noise”
groups (C1 and C2) is represented by vertical red bars; the
range of activity durations of the “independent-noise” groups
(I1 and I2) – by vertical black bars. The horizontal dash in the
middle of a bar marks the corresponding median value. Medians
of the black and red bars obtained in the same condition are
connected by black lines; a slope of such line demonstrates the
difference in activity durations between the “common-noise” and
“independent-noise” groups.

Without an oscillatory input (“NONE” condition), the groups
receiving common noise input (C1 and C2) stay active for
slightly longer time than the groups receiving independent noise
inputs (I1 and I2). When the oscillatory input is delivered to
the first cluster (“1CLUST” condition), it increases post-stimulus
activity duration of both groups that belong to this cluster (C1
and I1). Importantly, the activity duration difference between
the “common-noise” group (C1) and the “independent- noise”
group (I1) also increases. These effects are almost absent for

the second cluster (groups C2 and I2) due to relatively weak
inter-cluster interaction.

When the oscillations are delivered to both clusters, either
in the same phase or in the antiphase (“SYNC” and “ANTI”
conditions, respectively), they produce similar effects to one-
cluster oscillatory input, but these effects are stronger and involve
both clusters. Thus, post-stimulus activity duration for all the
groups (C1, I1, C2, and I2), as well as activity duration difference
between the “common-noise” and “independent-noise” groups
(C1–I1 and C2–I2) are increased. In Figure 7, we can see that
the activity duration is higher in “SYNC” and “ANTI” conditions,
compared to “NONE” and “1CLUST” conditions for all noise
input types (red and black), clusters (1 and 2) and model types
(slow and fast inter-cluster connections). It is also seen that the
links between the red and black boxes in both clusters (C1–I1
and C2–I2) are steeper in “SYNC”/“ANTI” conditions than in
“NONE”/“1CLUST” conditions (for both model types), which
reflects increased duration difference between the “common-
noise” and “independent-noise” groups.

The models with fast and slow inter-cluster connections differ
in their response to in-phase and anti-phase oscillatory inputs.
In the model with fast connections, the in-phase input provides
strong increase both in the activity duration and in the duration
difference between the “common-noise” and “independent-
noise” groups, while both these effects are considerably weaker
in the case of the anti-phase input. On the contrary, in the model
with slow inter-cluster connections, the in-phase and anti-phase
oscillatory inputs lead to the effects of roughly the same strength.
This difference between the two models is best visible in the
results averaged over the clusters (right panels in Figures 7A,B).
It is seen that the median levels and the slopes of the “red-black”
links are higher for “SYNC” condition than for “ANTI” condition
in the right panel of Figure 7A. At the same time, both the median
levels and the slopes for “SYNC” and “ANTI” conditions are close
to each other Figure 7B.

DISCUSSION

In this study, we considered several WM model variants,
comprising of one, two, or many excitatory-inhibitory metastable
circuits having mutual excitatory connections and receiving the
same stimulus-related signal. First, we explored a single-circuit
system and demonstrated that input gamma oscillations or white
noise could stabilize (i.e., prolong) post-stimulus metastable
activity. Next, we considered a two-circuit model and found
that: (1) fast (AMPA) inter-circuit connections provide better
stabilization by common-noise input compared to independent-
noise inputs, (2) this difference could be further amplified by
oscillatory inputs, (3) in-phase oscillatory inputs to the circuits
produce better stabilization than anti-phase inputs in the case
of fast (AMPA) connections, (4) in-phase and anti-phase inputs
produce similar effects in the case of slow (NMDA) connections.

Finally, we developed a more realistic, multi-circuit system
able to align with the effects observed in the two-circuit model.
The system comprised of two clusters receiving in-phase or
anti-phase oscillations and linked by fast (AMPA) or slow
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FIGURE 7 | Duration of post-stimulus activity for various circuit groups in the multi-circuit model, depending on the type of oscillatory input. (A) The model with fast
inter-cluster connections, (B) the model with slow inter-cluster connections. The connected pairs of red and black vertical bars correspond to pairs of circuit groups
within the same cluster. Red bars correspond to the groups that receive a common noise input (C1 and C2), black bars – to the groups that receive independent
noise inputs (I1 and I2). Each bar represents statistics of group-averaged post-stimulus activity durations (obtained in 25 simulation runs): horizontal dash – the
median, thick vertical line – two middle quartiles, thin vertical line – range between the minimal and maximal values. Left panel: cluster 1 (groups C1, I1), middle
panel: cluster 2 (groups C2 and I2), right panel – average over the two clusters (C1+C2 and I1+I2). Four pairs of boxes in each panel correspond to four types of the
oscillatory input: NONE – no oscillations, 1CLUST – oscillations are delivered to one cluster only, SYNC – oscillations are delivered to both clusters in the same
phase, ANTI – oscillations are delivered to both clusters in the opposite phases (schematic representations on the input types are presented in the bottom part of the
figure). It is seen that oscillatory input increases the activity duration, as well as the difference in activity duration between the “common-noise” and
“independent-noise” groups; these effects are stronger when oscillations are delivered to both clusters. The effects of the in-phase input are more prominent than of
the anti-phase input for the model with fast inter-cluster connections. For the model with slow inter-cluster connections, the in-phase and anti-phase inputs produce
the effects of the same strength.

(NMDA) connections. Each cluster contained a group of circuits
that receive a common noise input (representing activity of a
distributed WM representation this group is embedded into) and
a group of circuits that receive independent inputs (and, thus,
do not participate in the distributed WM retention). We found
that: (1) oscillatory inputs stabilize activity of all circuits, (2) this
stabilization is more pronounced for the “common-noise” groups
compared to “independent-noise” groups, (3) in the case of fast

inter-cluster connections, both the stabilization and separation
between the “common-noise” and “independent-noise” groups
are more pronounced for in-phase input compared to anti-phase
input, (4) in the case of slow connections, in-phase and anti-phase
inputs produce comparable effects.

In summary, we demonstrated that gamma oscillations are
able to selectively stabilize activity of the circuits that receive
common noise input, thus supporting coherent activity of a
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distributed WM representation. If long-range connections are
fast, a part of this representation could be further highlighted
by synchronizing gamma activity within this part. If these
connections are slow, the distributed representation is uniformly
stabilized, irrespective of phase differences between gamma
oscillations in its local parts.

Single-Circuit System
We started from a single-circuit system and demonstrated that,
with an appropriate parameter selection, both the noise and the
gamma-band input alone could stabilize WM retention, without
affecting the background regime. To explain these effects, we note
that our model was tuned to operate in a subthreshold regime,
in which the gain functions of the populations (excitatory and
inhibitory) were concave. Consequently, even a zero-mean input
(noisy or oscillatory) produced additional mean excitation to the
populations. In our system, the mean effect of oscillations on the
excitatory population outweighed their effect on the inhibitory
population, which resulted in oscillation-induced/noise-induced
mean firing rate increase and, consequently, to stabilization of
the active regime.

A similar effect – stabilization of initially metastable active
regime in a WM model by gamma-band input – was previously
demonstrated by Schmidt et al. (2018). In this study, the authors
considered a purely excitatory system, but took into account the
effect of spike-to-spike synchronization, which allowed to achieve
resonant behavior without inhibitory population. The system
had a resonance in the beta band, but the stabilization occurred
under high-gamma input, while beta-band input, on the contrary,
switched the system to the background state. A similar switching
to the background state by a resonant input was also reported by
Dipoppa and Gutkin (2013). In our model, we do not observe this
effect, presumably due to the presence of slow NMDA currents
ant short-term plasticity, which make the activity more robust to
transient episodes of synchronization. As a result, the effect of
input oscillations is always excitatory in our model.

We should note that our model is more biologically realistic,
compared to Dipoppa and Gutkin (2013) and Schmidt et al.
(2018). First, it contains both an excitatory and an inhibitory
population. Second, it operates in a subthreshold regime [which
is typical for cortical networks during WM retention, (Compte
et al., 2003)], while in the aforementioned models, the neurons
operated mostly in a suprathreshold regime with regular spiking
activity. Third, both these models used highly non-linear pulse-
like periodic inputs, while in our case, the oscillatory input
was sinusoidal [which is, again, closer to the situation in the
neocortex; (see Wang, 2010)].

Two-Circuit System
In the two-circuit system, under a constant noise intensity, we
demonstrated that in-phase gamma-band input stabilizes WM
retention much more effectively than anti-phase input when
inter-circuit interaction is fully mediated by fast AMPA receptors
(kcross

NMDA = 0). With increasing NMDA:AMPA ratio of the inter-
circuit connections, effectiveness of the in-phase gamma-band
input decreased, while effectiveness of the anti-phase input
increased. When the interaction was fully mediated by slow

NMDA receptors (kcross
NMDA = 1), effectiveness of in-phase and

anti-phase input was about the same.
The observed effects could be explained by the fact that the

eigenmode of the system is in-phase if kcross
NMDA = 0 and anti-

phase if kcross
NMDA = 1. This fact is illustrated in Supplementary

Figures 2E, 3E. Without oscillatory input, independent noise
inputs lead to in-phase quasi-oscillations if kcross

NMDA = 0 (left
part of Supplementary Figure 2E, black curve); however, if
kcross

NMDA = 1, then the noise-induced quasi-oscillations have
the average phase difference between the circuits closer to
π (left part of Supplementary Figure 3E, black curve). The
most effective entrainment (and, thus, the most effective
stabilization) occurs when the phase difference between the
inputs to the circuits matches the eigenmode of the system.
In the case of kcross

NMDA = 0, anti-phase input should change
activity of the system from the in-phase to the anti-phase
mode to fully entrain it (Supplementary Figure 2F), which
is accompanied by oscillation-induced desynchronization at
certain input amplitudes (Supplementary Figure 2D); in the
case of kcross

NMDA = 1, the anti-phase entrainment is much
easier (Supplementary Figures 3D,F). On the contrary, in-
phase oscillations more easily entrain the system if kcross

NMDA =

0 (Supplementary Figures 2C,E), rather than if kcross
NMDA = 1

(Supplementary Figures 3C,E).
We next considered how the duration of post-stimulus

activity (i.e., effectiveness of the active regime stabilization)
jointly depends on noise intensity and gamma-band input
amplitude. For the fast inter-circuit connections (kcross

NMDA =

0), common noise stabilized the active regime more effectively
than independent noise. On the contrary, for the slow inter-
circuit connections (kcross

NMDA = 1), independent noise was
slightly more effective. Importantly, for intermediate noise
intensities, there was a range of gamma amplitudes, in which
the gamma-band input stabilized the active regime with
considerably different effectiveness depending on the noise type
(common / independent). We used this effect as the basis for
selective oscillatory control of activity robustness in the multi-
circuit system.

The higher effectiveness of the common noise in the case
of kcross

NMDA = 0 could be, again, explained by the fact that the
system’s eigenmode in this case is in-phase. Common noise
fully projects to this mode, while independent noise projects to
it only partially. Thus, entrainment of the in-phase mode by
independent noise is weaker, which leads to smaller stabilizing
effect. On the contrary, independent noise partially projects to
the anti-phase mode (which is the eigenmode of the system with
kcross

NMDA = 1), while common noise is orthogonal to this mode,
so independent noise is more effective when kcross

NMDA = 1.
There is another effect that possibly participates in the

link between kcross
NMDA and activity robustness. Since slow

NMDA receptors provide low-pass filtering of activity, they
make the system less resonant. Consequently, increase of
kcross

NMDA decreases the amplitude of entrained oscillations
or noise-induced quasi-oscillations (compare left parts of
Supplementary Figures 2G, 3G). This effect presumably sums
up with the aforementioned effects of eigenmode matching by
external inputs.
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We note that worsening of the stabilization by in-phase
oscillations for higher NMDA:AMPA ratio seemingly contradicts
earlier results suggesting the stabilizing role of NMDA receptors
in WM retention in the presence of oscillatory activity (Tegnér
et al., 2002). This discrepancy could be explained by the fact
that the model used in Tegnér et al. (2002) is bistable, but does
not contain any slow variables except of the NMDA current.
Consequently, the system in the active state is stable in the
absence of fluctuations, but fast fluctuations (such as gamma
oscillations) make it fall down to the background state if the
NMDA:AMPA ratio is too small. On the contrary, our model is
metastable, so it spontaneously returns from the active regime
to the background state in the absence of fluctuations. At the
same time, our system contains slow variables besides the inter-
circuit NMDA current – namely, within-circuit NMDA currents
and coefficients of within-circuit short-term plasticity. As the
result, our system is resistant to fast fluctuations (i.e., it survives
fluctuation-induced “gaps” in the activity), even if the within-
circuit NMDA:AMPA ratio is zero. Fast fluctuations, instead,
increase the level of activity (thus stabilizing it) due to concavity
of the gain functions. Notably, the ability of periodic input
to stabilize metastable regime even in a model without slow
variables was previously demonstrated by Schmidt et al. (2018).
We suggest that the stabilizing effect of NMDA current described
in Tegnér et al. (2002) could be also present in our model, but it
is weak compared to the other effects we described.

Multi-Circuit System
In the analysis of the two-circuit system, we observed two
important effects. First, in the case of fast connections and
intermediate noise level, input oscillations could strongly
stabilize WM retention in a pair of circuits receiving a
common noise input, while producing much weaker effect
on circuits receiving independent noise inputs. Second, if the
connections between two circuits are fast, then the stabilizing
effect of oscillations is considerably stronger when oscillations
are delivered to the circuits in the same phase rather than in
the opposite phases; however, this difference is mitigated if the
inter-circuit connections are slow.

In order to demonstrate how these effects could be scaled
up and utilized for oscillatory control of WM retention,
we developed a multi-circuit system. We assumed that WM
retention is based on distributed neural activity, and that local
cortical patches could contain circuits involved in this activity,
as well as circuits not involved in it (a similar scheme was used
in Lundqvist et al. (2011), in which local modules contained
parts of various representations, and corresponding parts in
different modules were connected by long-range projections).
We explicitly included two local patches (referred to as clusters)
into our WM system and modeled the inputs from other parts
of the cortex as white-noise signals. The circuits in each cluster
formed two groups, named C1, I1 in the first cluster, and C2,
I2 – in the second one. The groups C1, C2 were considered to
participate in the coherent distributed activity related to WM
retention, so the circuits from these groups received common
noise input. The groups I1, I2 did not participate in this activity,
so their circuits received independent noise inputs. We note that,

unlike most WM models (e.g., Brunel and Wang, 2001; Lundqvist
et al., 2011), participation of a group in the WM representation is
not determined at the stimulus presentation stage, since all the
circuits in our model receive the same stimulus signal. Instead, a
group is considered to be a part of the WM representation if its
circuits receive common noise input.

We demonstrated that, as in the two-circuit case, gamma-
band input can stabilize WM retention, i.e., increase post-
stimulus activity duration. Importantly, this stabilization was
more prominent for the “common-noise” groups (C1 and
C2), compared to the “independent-noise” groups (I1 and I2).
Thus, the gamma-band input also increased “selectivity” of
WM retention, predominantly stabilizing those circuits that
participate in WM-related distributed coherent activity. This
behavior is in agreement with the reported increase in both the
firing rates and stimulus selectivity that occurs on top of elevated
gamma activity episodes during WM retention (Lundqvist et al.,
2016, 2018; Bastos et al., 2018). Such functionality of gamma-
input in our model is achieved due to high AMPA-based
within-group connectivity and low inter-group connectivity.
As a consequence of this, circuit pairs with common noise
input and pairs with independent inputs are mostly separated
from each other, so the results obtained for the two-circuit
system are still applicable. If the inter-group connections are too
dense, correlations would spread across the whole system, and
the difference between the “common-noise” and “independent-
noise” circuits would be diminished.

We suggest that the dense within-group and sparse inter-
group connectivity follows naturally from the Hebbian plasticity
principles: the circuits that receive the same input (members
of C1 and C2) would instantiate links between each other.
We assume that the “independent-input” circuits (members
of I1 and I2) could also participate in the dominant active
representation (and thus receive a common input) in certain
cases that we do not model explicitly here: e.g., for different
WM content or different task rules. On the contrary, since
the groups C1 and I1 (as well as C2 and I2) participate in
different representations, their circuits do not usually receive
common inputs, which justifies sparse inter-group (C1–I1 and
C2–I2) connections.

We also confirmed in the multi-circuit module the influence
of NMDA:AMPA ratio on the system’s tendency to respond
differently depending on the phase between gamma-band
oscillatory inputs delivered to its parts. We demonstrated that
the stabilizing effect of the input oscillations (i.e., oscillation-
induced prolongation of post-stimulus activity) in the system
with fast (AMPA-based) inter-cluster connections is stronger
when the oscillations are delivered to the clusters in the same
phase rather than in the opposite phases. On the contrary,
the stabilizing effect of the in-phase and anti-phase inputs
to the clusters was the same in the case of slow (NMDA-
based) inter-cluster connections. This difference between the
slow ant fast inter-cluster connections was observed only when
the connectivity between the corresponding groups of different
clusters (C1–C2 and I1–I2) was weaker than the within-group
connectivity. We suggest that such layout is biologically plausible,
due to presumed small-world character of the cortical topology
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(Bullmore and Sporns, 2009; Bassett and Bullmore, 2017), with
long-range connections being, in general, sparser than short-
range connections (Ercsey-Ravasz et al., 2013).

Thus, fast and slow inter-cluster connections provide
different functionality. Fast connections allow to selectively
increase retention robustness in a part of an active distributed
representation by synchronizing it in the gamma-band (e.g., by
providing common gamma-band input from a controller cortical
or subcortical network). In turn, slow inter-cluster connections
provide a basis for robust WM retention by a distributed
network with local gamma generators, which do not need to
be synchronized. We note that the local character of gamma
oscillations is experimentally supported (Donner and Siegel,
2011), and it was also assumed in previous multi-modular models
of WM (Lundqvist et al., 2011).

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

NN carried out the research. NN, DZ, and BG conceived the
research. NN, DZ, VM, and BG discussed the results and
wrote the manuscript. All authors contributed to the article and
approved the submitted version.

FUNDING

This article is an output of a research project implemented as
part of the Basic Research Program at the National Research
University Higher School of Economics (HSE University). BG
acknowledges support from CNRS, INSERM, ANR-17-EURE-
0017, and ANR-10-IDEX-0001-02.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncir.
2021.647944/full#supplementary-material

REFERENCES
Amit, D. J., and Brunel, N. (1997). Model of global spontaneous activity and local

structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7,
237–252. doi: 10.1093/cercor/7.3.237

Ardid, S., Wang, X. J., Gomez-Cabrero, D., and Compte, A. (2010). Reconciling
coherent oscillation with modulation of irregular spiking activity in selective
attention: gamma-range synchronization between sensory and executive
cortical areas. J. Neurosci. 30, 2856–2870. doi: 10.1523/JNEUROSCI.4222-09.
2010

Augustin, M., Ladenbauer, J., Baumann, F., and Obermayer, K. (2017). Low-
dimensional spike rate models derived from networks of adaptive integrate-
and-fire neurons: comparison and implementation. PLoS Comput. Biol.
13:e1005545. doi: 10.1371/journal.pcbi.1005545

Baddeley, A. (2003). Working memory: looking back and looking forward. Nat.
Rev. Neurosci. 4, 829–839. doi: 10.1038/nrn1201

Bassett, D. S., and Bullmore, E. T. (2017). Small-world brain networks revisited.
Neuroscientist 23, 499–516. doi: 10.1177/1073858416667720

Bastos, A. M., Loonis, R., Kornblith, S., Lundqvist, M., and Miller, E. K. (2018).
Laminar recordings in frontal cortex suggest distinct layers for maintenance
and control of working memory. Proc. Natl. Acad. Sci. U.S.A. 115, 1117–1122.
doi: 10.1073/pnas.1710323115

Brunel, N., and Wang, X. J. (2001). Effects of neuromodulation in a cortical
network model of object working memory dominated by recurrent inhibition.
J. Comput. Neurosci. 11, 63–85. doi: 10.1023/a:1011204814320

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical
analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.
doi: 10.1038/nrn2575

Chafee, M. V., and Goldman-Rakic, P. S. (1998). Matching patterns of activity
in primate prefrontal area 8a and parietal area 7ip neurons during a spatial
working memory task. J. Neurophysiol. 79, 2919–2940. doi: 10.1152/jn.1998.79.
6.2919

Chik, D. (2013). Theta-alpha cross-frequency synchronization facilitates working
memory control – a modeling study. Springerplus 2:14. doi: 10.1186/2193-1801-
2-14

Compte, A. (2006). Computational and in vitro studies of persistent activity: edging
towards cellular and synaptic mechanisms of working memory. Neuroscience
139, 135–151. doi: 10.1016/j.neuroscience.2005.06.011

Compte, A., Constantinidis, C., Tegnér, J., Raghavachari, S., Chafee,
M. V., Goldman-Rakic, P. S., et al. (2003). Temporally irregular

mnemonic persistent activity in prefrontal neurons of monkeys during a
delayed response task. J. Neurophysiol. 90, 3441–3454. doi: 10.1152/jn.0
0949.2002

Constantinidis, C., and Goldman-Rakic, P. S. (2002). Correlated discharges among
putative pyramidal neurons and interneurons in the primate prefrontal cortex.
J. Neurophysiol. 88, 3487–3497. doi: 10.1152/jn.00188.2002

Dipoppa, M., and Gutkin, B. S. (2013). Flexible frequency control of cortical
oscillations enables computations required for working memory. Proc. Natl.
Acad. Sci. U.S.A. 110, 12828–12833. doi: 10.1073/pnas.1303270110

Donner, T. H., and Siegel, M. (2011). A framework for local cortical oscillation
patterns. Trends Cogn. Sci. 15, 191–199. doi: 10.1016/j.tics.2011.03.007

Ercsey-Ravasz, M., Markov, N. T., Lamy, C., Van Essen, D. C., Knoblauch, K.,
Toroczkai, Z., et al. (2013). A predictive network model of cerebral cortical
connectivity based on a distance rule. Neuron 80, 184–197. doi: 10.1016/j.
neuron.2013.07.036

Funahashi, S., Bruce, C. J., and Goldman-Rakic, P. S. (1989). Mnemonic coding of
visual space in the monkey’s dorsolateral prefrontal cortex. J. Neurophysiol. 61,
331–349. doi: 10.1152/jn.1989.61.2.331

Fuster, J. M., and Alexander, G. E. (1971). Neuron activity related to short-term
memory. Science 173, 652–654.

Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron 14,
477–485.

Gutkin, B. S., Laing, C. R., Colby, C. L., Chow, C. C., and Ermentrout, G. B.
(2001). Turning on and off with excitation: the role of spike-timing asynchrony
and synchrony in sustained neural activity. J. Comput. Neurosci. 11, 121–134.
doi: 10.1023/A:1012837415096

Haegens, S., Osipova, D., Oostenveld, R., and Jensen, O. (2010). Somatosensory
working memory performance in humans depends on both engagement and
disengagement of regions in a distributed network. Hum. Brain Mapp. 31,
26–35. doi: 10.1002/hbm.20842

Hansel, D., and Mato, G. (2013). Short-term plasticity explains irregular persistent
activity in working memory tasks. J. Neurosci. 33, 133–149. doi: 10.1523/
JNEUROSCI.3455-12.2013

Howard, M. W., Rizzuto, D. S., Caplan, J. B., Madsen, J. R., Lisman, J.,
Aschenbrenner-Scheibe, R., et al. (2003). Gamma oscillations correlate with
working memory load in humans. Cereb Cortex 13, 1369–1374. doi: 10.1093/
cercor/bhg084

Jokisch, D., and Jensen, O. (2007). Modulation of gamma and alpha activity during
a working memory task engaging the dorsal or ventral stream. J. Neurosci. 27,
3244–3251. doi: 10.1523/JNEUROSCI.5399-06.2007

Frontiers in Neural Circuits | www.frontiersin.org 14 April 2021 | Volume 15 | Article 64794471

https://www.frontiersin.org/articles/10.3389/fncir.2021.647944/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fncir.2021.647944/full#supplementary-material
https://doi.org/10.1093/cercor/7.3.237
https://doi.org/10.1523/JNEUROSCI.4222-09.2010
https://doi.org/10.1523/JNEUROSCI.4222-09.2010
https://doi.org/10.1371/journal.pcbi.1005545
https://doi.org/10.1038/nrn1201
https://doi.org/10.1177/1073858416667720
https://doi.org/10.1073/pnas.1710323115
https://doi.org/10.1023/a:1011204814320
https://doi.org/10.1038/nrn2575
https://doi.org/10.1152/jn.1998.79.6.2919
https://doi.org/10.1152/jn.1998.79.6.2919
https://doi.org/10.1186/2193-1801-2-14
https://doi.org/10.1186/2193-1801-2-14
https://doi.org/10.1016/j.neuroscience.2005.06.011
https://doi.org/10.1152/jn.00949.2002
https://doi.org/10.1152/jn.00949.2002
https://doi.org/10.1152/jn.00188.2002
https://doi.org/10.1073/pnas.1303270110
https://doi.org/10.1016/j.tics.2011.03.007
https://doi.org/10.1016/j.neuron.2013.07.036
https://doi.org/10.1016/j.neuron.2013.07.036
https://doi.org/10.1152/jn.1989.61.2.331
https://doi.org/10.1023/A:1012837415096
https://doi.org/10.1002/hbm.20842
https://doi.org/10.1523/JNEUROSCI.3455-12.2013
https://doi.org/10.1523/JNEUROSCI.3455-12.2013
https://doi.org/10.1093/cercor/bhg084
https://doi.org/10.1093/cercor/bhg084
https://doi.org/10.1523/JNEUROSCI.5399-06.2007
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-15-647944 April 15, 2021 Time: 19:18 # 15

Novikov et al. Gamma Stabilization of Working Memory

Kaiser, J., Ripper, B., Birbaumer, N., and Lutzenberger, W. (2003). Dynamics
of gamma-band activity in human magnetoencephalogram during auditory
pattern working memory. Neuroimage 20, 816–827. doi: 10.1016/S1053-
8119(03)00350-1

Kopell, N., Whittington, M. A., and Kramer, M. A. (2011). Neuronal assembly
dynamics in the beta1 frequency range permits short-term memory. Proc. Natl.
Acad. Sci. U.S.A. 108, 3779–3784. doi: 10.1073/pnas.1019676108

Kornblith, S., Buschman, T. J., and Miller, E. K. (2016). Stimulus load and
oscillatory activity in higher cortex. Cereb. Cortex 26, 3772–3784. doi: 10.1093/
cercor/bhv182

Laing, C. R., and Chow, C. C. (2001). Stationary bumps in networks of spiking
neurons. Neural Comput. 13, 1473–1494. doi: 10.1162/089976601750264974

Liebe, S., Hoerzer, G. M., Logothetis, N. K., and Rainer, G. (2012). Theta
coupling between V4 and prefrontal cortex predicts visual short-term memory
performance. Nat. Neurosci. 15, 456–462. doi: 10.1038/nn.3038

Lim, S., and Goldman, M. S. (2013). Balanced cortical microcircuitry for
maintaining information in working memory. Nat. Neurosci. 16, 1306–1314.
doi: 10.1038/nn.3492

Lisman, J. E., and Idiart, M. A. P. (1995). Storage of 7 ± 2 short-term memories in
oscillatory subcycles. Science 267, 1512–1515. doi: 10.1126/science.7878473

Lundqvist, M., Compte, A., and Lansner, A. (2010). Bistable, irregular firing and
population oscillations in a modular attractor memory network. PLoS Comput.
Biol. 6:e1000803. doi: 10.1371/journal.pcbi.1000803

Lundqvist, M., Herman, P., and Lansner, A. (2011). Theta and gamma power
increases and alpha/beta power decreases with memory load in an attractor
network model. J. Cogn. Neurosci. 23, 3008–3020. doi: 10.1162/jocn_a_00029

Lundqvist, M., Herman, P., Warden, M. R., Brincat, S. L., and Miller, E. K. (2018).
Gamma and beta bursts during working memory readout suggest roles in its
volitional control. Nat. Commun. 9:394. doi: 10.1038/s41467-017-02791-8

Lundqvist, M., Rose, J., Herman, P., Brincat, S. L. L., Buschman, T. J. J., and Miller,
E. K. K. (2016). Gamma and beta bursts underlie working memory. Neuron 90,
152–164. doi: 10.1016/j.neuron.2016.02.028

Lutzenberger, W., Ripper, B., Busse, L., Birbaumer, N., and Kaiser, J. (2002).
Dynamics of gamma-band activity during an audiospatial working memory
task in humans. J. Neurosci. 22, 5630–5638. doi: 10.1523/JNEUROSCI.22-13-
05630.2002

Miller, E. K., Erickson, C. A., and Desimone, R. (1996). Neural mechanisms of
visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16,
5154–5167. doi: 10.1523/JNEUROSCI.16-16-05154.1996

Mongillo, G., Barak, O., and Tsodyks, M. (2008). Synaptic theory of working
memory. Science 319, 1543–1546. doi: 10.1126/science.1150769

Mongillo, G., Hansel, D., and van Vreeswijk, C. (2012). Bistability and spatio-
temporal irregularity in neuronal networks with nonlinear synaptic trans-
mission. Phys. Rev. Lett. 108:158101. doi: 10.1103/PhysRevLett.108.158101

Palva, J. M., Monto, S., Kulashekhar, S., and Palva, S. (2010). Neuronal synchrony
reveals working memory networks and predicts individual memory capacity.
Proc. Natl. Acad. Sci. U.S.A. 107, 7580–7585. doi: 10.1073/pnas.0913113107

Palva, S., Kulashekhar, S., Hämäläinen, M., and Palva, J. M. (2011). Localization
of cortical phase and amplitude dynamics during visual working memory
encoding and retention. J. Neurosci. 31, 5013–5025. doi: 10.1523/JNEUROSCI.
5592-10.2011

Pina, J. E., Bodner, M., and Ermentrout, B. (2018). Oscillations in working memory
and neural binding: a mechanism for multiple memories and their interactions.
PLoS Comput. Biol. 14:e1006517. doi: 10.1371/journal.pcbi.1006517

Renart, A., Moreno-Bote, R., Wang, X. J., and Parga, N. (2007). Mean-driven and
fluctuation-driven persistent activity in recurrent networks. Neural Comput. 19,
1–46. doi: 10.1162/neco.2007.19.1.1

Roux, F., and Uhlhaas, P. J. (2014). Working memory and neural oscillations: α-
γ versus θ-γ codes for distinct WM information? Trends Cogn. Sci. 18, 16–25.
doi: 10.1016/j.tics.2013.10.010

Roxin, A., and Compte, A. (2016). Oscillations in the bistable regime of
neuronal networks. Phys. Rev. E 94:012410. doi: 10.1103/PhysRevE.94.01
2410

Sauseng, P., Klimesch, W., Heise, K. F., Gruber, W. R., Holz, E., Karim,
A. A., et al. (2009). Brain oscillatory substrates of visual short-term
memory capacity. Curr. Biol. 19, 1846–1852. doi: 10.1016/j.cub.2009.08.
062

Schaffer, E. S., Ostojic, S., and Abbott, L. F. (2013). A complex-valued firing-rate
model that approximates the dynamics of spiking networks. PLoS Comput. Biol.
9:e1003301. doi: 10.1371/journal.pcbi.1003301

Schmidt, H., Avitabile, D., Montbrió, E., and Roxin, A. (2018). Network
mechanisms underlying the role of oscillations in cognitive tasks. PLoS Comput.
Biol. 14:e1006430. doi: 10.1371/journal.pcbi.1006430

Sherfey, J., Ardid, S., Miller, E. K., Hasselmo, M. E., and Kopell, N. J. (2020).
Prefrontal oscillations modulate the propagation of neuronal activity required
for working memory. Neurobiol. Learn. Mem. 173:107228. doi: 10.1016/j.nlm.
2020.107228

Siegel, M., Warden, M. R., and Miller, E. K. (2009). Phase-dependent neuronal
coding of objects in short-term memory. Proc. Natl. Acad. Sci. U.S.A. 106,
21341–21346. doi: 10.1073/pnas.0908193106

Tegnér, J., Compte, A., and Wang, X. J. (2002). The dynamical stability of
reverberatory neural circuits. Biol. Cybern. 87, 471–481. doi: 10.1007/s00422-
002-0363-9

Tseng, P., Chang, Y.-T., Chang, C.-F., Liang, W.-K., and Juan, C.-H. (2016). The
critical role of phase difference in gamma oscillation within the temporoparietal
network for binding visual working memory. Sci. Rep. 6:32138. doi: 10.1038/
srep32138

Tsodyks, M. V., and Markram, H. (1997). The neural code between neocortical
pyramidal neurons depends on neurotransmitter release probability. Proc. Natl.
Acad. Sci. U.S.A. 94, 719–723. doi: 10.1073/pnas.94.2.719

van Vugt, M. K., Schulze-Bonhage, A., Litt, B., Brandt, A., and Kahana, M. J. (2010).
Hippocampal gamma oscillations increase with memory load. J. Neurosci. 30,
2694–2699. doi: 10.1523/JNEUROSCI.0567-09.2010

Wang, X. J. (2001). Synaptic reverberation underlying mnemonic
persistent activity. Trends Neurosci. 24, 455–463. doi: 10.1016/s0166-223
6(00)01868-3

Wang, X. J. (2010). Neurophysiological and computational principles of cortical
rhythms in cognition. Physiol. Rev. 90, 1195–1268. doi: 10.1152/physrev.00035.
2008

Wimmer, K., Ramon, M., Pasternak, T., and Compte, A. (2016). Transitions
between multiband oscillatory patterns characterize memory-guided perceptual
decisions in prefrontal circuits. J. Neurosci. 36, 489–505. doi: 10.1523/
JNEUROSCI.3678-15.2016

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Novikov, Zakharov, Moiseeva and Gutkin. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neural Circuits | www.frontiersin.org 15 April 2021 | Volume 15 | Article 64794472

https://doi.org/10.1016/S1053-8119(03)00350-1
https://doi.org/10.1016/S1053-8119(03)00350-1
https://doi.org/10.1073/pnas.1019676108
https://doi.org/10.1093/cercor/bhv182
https://doi.org/10.1093/cercor/bhv182
https://doi.org/10.1162/089976601750264974
https://doi.org/10.1038/nn.3038
https://doi.org/10.1038/nn.3492
https://doi.org/10.1126/science.7878473
https://doi.org/10.1371/journal.pcbi.1000803
https://doi.org/10.1162/jocn_a_00029
https://doi.org/10.1038/s41467-017-02791-8
https://doi.org/10.1016/j.neuron.2016.02.028
https://doi.org/10.1523/JNEUROSCI.22-13-05630.2002
https://doi.org/10.1523/JNEUROSCI.22-13-05630.2002
https://doi.org/10.1523/JNEUROSCI.16-16-05154.1996
https://doi.org/10.1126/science.1150769
https://doi.org/10.1103/PhysRevLett.108.158101
https://doi.org/10.1073/pnas.0913113107
https://doi.org/10.1523/JNEUROSCI.5592-10.2011
https://doi.org/10.1523/JNEUROSCI.5592-10.2011
https://doi.org/10.1371/journal.pcbi.1006517
https://doi.org/10.1162/neco.2007.19.1.1
https://doi.org/10.1016/j.tics.2013.10.010
https://doi.org/10.1103/PhysRevE.94.012410
https://doi.org/10.1103/PhysRevE.94.012410
https://doi.org/10.1016/j.cub.2009.08.062
https://doi.org/10.1016/j.cub.2009.08.062
https://doi.org/10.1371/journal.pcbi.1003301
https://doi.org/10.1371/journal.pcbi.1006430
https://doi.org/10.1016/j.nlm.2020.107228
https://doi.org/10.1016/j.nlm.2020.107228
https://doi.org/10.1073/pnas.0908193106
https://doi.org/10.1007/s00422-002-0363-9
https://doi.org/10.1007/s00422-002-0363-9
https://doi.org/10.1038/srep32138
https://doi.org/10.1038/srep32138
https://doi.org/10.1073/pnas.94.2.719
https://doi.org/10.1523/JNEUROSCI.0567-09.2010
https://doi.org/10.1016/s0166-2236(00)01868-3
https://doi.org/10.1016/s0166-2236(00)01868-3
https://doi.org/10.1152/physrev.00035.2008
https://doi.org/10.1152/physrev.00035.2008
https://doi.org/10.1523/JNEUROSCI.3678-15.2016
https://doi.org/10.1523/JNEUROSCI.3678-15.2016
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


REVIEW
published: 30 June 2021

doi: 10.3389/fncir.2021.679796

Frontiers in Neural Circuits | www.frontiersin.org 1 June 2021 | Volume 15 | Article 679796

Edited by:

Shintaro Funahashi,

Kyoto University, Japan

Reviewed by:

Julio Martinez-Trujillo,

Western University, Canada

Liya Ma,

Radboud University

Nijmegen, Netherlands

*Correspondence:

Julian L. Amengual

Julian.amengual@isc.cnrs.fr

orcid.org/0000-0002-8613-6325

Suliann Ben Hamed

benhamed@isc.cnrs.fr

orcid.org/0000-0003-1510-7284

Received: 12 March 2021

Accepted: 03 June 2021

Published: 30 June 2021

Citation:

Amengual JL and Ben Hamed S

(2021) Revisiting Persistent Neuronal

Activity During Covert Spatial

Attention.

Front. Neural Circuits 15:679796.

doi: 10.3389/fncir.2021.679796

Revisiting Persistent Neuronal
Activity During Covert Spatial
Attention

Julian L. Amengual* and Suliann Ben Hamed*

Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon I, 67 Boulevard Pinel,

Bron, France

Persistent activity has been observed in the prefrontal cortex (PFC), in particular

during the delay periods of visual attention tasks. Classical approaches based on the

average activity over multiple trials have revealed that such an activity encodes the

information about the attentional instruction provided in such tasks. However, single-trial

approaches have shown that activity in this area is rather sparse than persistent and

highly heterogeneous not only within the trials but also between the different trials.

Thus, this observation raised the question of how persistent the actually persistent

attention-related prefrontal activity is and how it contributes to spatial attention. In

this paper, we review recent evidence of precisely deconstructing the persistence of

the neural activity in the PFC in the context of attention orienting. The inclusion of

machine-learning methods for decoding the information reveals that attention orienting is

a highly dynamic process, possessing intrinsic oscillatory dynamics working at multiple

timescales spanning from milliseconds to minutes. Dimensionality reduction methods

further show that this persistent activity dynamically incorporates multiple sources of

information. This novel framework reflects a high complexity in the neural representation

of the attention-related information in the PFC, and how its computational organization

predicts behavior.

Keywords: spatial attention, prefrontal cortex, mixed-selectivity, population activity, decoding, neurophysiology,

persistent activity, alpha oscillations

INTRODUCTION

Numerous studies report an increase of spiking activity in different brain areas during the
performance of visual delayed tasks [see Fuster and Alexander (1971), Goldman-Rakic (1995), Shafi
et al. (2007), Barak et al. (2010), Watanabe and Funahashi (2014), Chaudhuri and Fiete (2016),
Zylberberg and Strowbridge (2017), Manohar et al. (2019), for a review]. The general structure of
the tasks consists of the presentation of an informative visual cue about how the subject should act
afterward. After the presentation, there is a delay period in which the subject must keep in mind the
information provided by the cue to appropriately respond to the task demands. This information
can be spatial (e.g., left vs. right), feature-based (e.g., blue vs. red), or symbolic (e.g., left-pointing
arrow vs. right-pointing arrow).

Pioneering electrophysiological studies employing intracortical recordings in non-human
primates have identified neurons that not only show activity associated with the sensory
stimuli serving as a cue but also show activity in the delay period after the cue

73
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when it is no longer present and the task instructions are
being processed (Fuster and Alexander, 1971; Fuster, 1973;
Funahashi et al., 1989; Miller et al., 1993). These findings have
been extensively corroborated by using different protocols and
techniques in humans and non-human primates (Constantinidis
et al., 2018 for review). Classically, persistent activity in the
prefrontal cortex (PFC) has been considered as a signature
of specific cognitive processes such as working memory
(Constantinidis et al., 2018). However, working memory
interplays with other cognitive functions such as perception
or attention. For example, previous studies have succeeded
in discriminating perceptual and mnemonic representations
of visual features (Mendoza-Halliday and Martinez-Trujillo,
2017a). How the interaction between working memory
and attention is theorized depends on whether attention
is conceptualized as the processing of a limited source of
information (a perception of low-salience visual information)
or the selection of information for processing [covert attention:
Oberauer (2019)]. In the present review, we will focus on covert
attentional processes defined as the a priori top-down selection
and maintenance of the sensory information for prioritization
(e.g., based on its spatial location), in anticipation of its
presentation and processing. In this context, covert attention
can be considered as an instance of working memory as the
information needed to be prioritized, whether feature-based or
spatial, is by definition sustained, i.e., held in working memory
(Desimone and Duncan, 1995). We will describe the structure
and informational content of the observed neuronal activity in
the deployment of covert attention, and discuss it in relation
to the current views on the dynamic and rhythmic nature of
attention [see Gaillard et al. (2020), Gaillard and Ben Hamed
(2020) for a review].

Persistent activity during visuospatial attention tasks has
been reported both in parietal (Colby et al., 1996; Gottlieb
et al., 1998; Ibos et al., 2013) and prefrontal cortices (Moore
and Armstrong, 2003; Moore and Fallah, 2004). The tasks
involve maintaining a sustained level of information relative
to where (spatial attention) or what (feature-based attention)
relevant task-related events will need to be processed (Posner and
Petersen, 1990). Attention orienting can be driven by bottom-
up or stimulus-driven processes, triggered by the salience of the
incoming visual stimuli (i.e., their shape or color), and a top-
down process that is guided by the relevance of the stimulus (i.e.,
how much it is useful to the task) defining our internal goals
or expectations (Pinto et al., 2013; Katsuki and Constantinidis,
2014). Studies on humans have highlighted the importance of
a frontoparietal network in the control of attention, showing
the involvement of the parietal cortex and the PFC (Corbetta
and Shulman, 2002). In macaque monkeys, the most commonly
used model to study the attentional system in non-human
primates, a homologous frontoparietal attention network is
identified (Figure 1A), involving the lateral intraparietal (LIP)
area (Gottlieb et al., 1998) and the frontal eye field (FEF;
Armstrong et al., 2009; Monosov and Thompson, 2009). The
two cortical regions are highly interconnected (Cavada and
Goldman-Rakic, 1989; Stanton et al., 1995; Buschman and
Miller, 2007; de Schotten et al., 2011; Ibos et al., 2013; Marek,

FIGURE 1 | Physiology of the attentional system. (A) Anatomical localization

of the two core brain regions engaged during spatial attention orienting in the

macaque [shaded in gray; see Cohen and Andersen (2002), Ibos et al. (2013),

Paneri and Gregoriou (2017), for a review], the FEF and the LIP sulcus. (B) The

average multiunit activity (MUA; ± s.e.) recorded from the FEF in one monkey

when a cue is orienting attention toward the preferred (black) or the

anti-preferred (gray) spatial location locked to cue (left) and target (right)

onsets. X-axis represents the time around cue or target onsets. (C) Functional

hierarchy in a frontoparietal network during attentional processes. Exogenous

processes start in the LIP and project to the FEF. Cue interpretation takes

place in the FEF, and the selection of the spatial location and subsequent

endogenous processing is projected from the FEF to the LIP.

2018). Reversible inactivation of the two cortical regions results
in behavioral impairments both in easy visual search tasks
that rely on bottom-up attentional processes (Wardak et al.,
2002; Wardak, 2006) and in conjunction with the search tasks
that involve top-down attentional processes (Theeuwes, 1993).
Although persistent activity has also been described in other
regions, including the regions where it is more prevalent
compared to the FEF and LIP (Leavitt et al., 2017), we focus on
neuronal activity in these two regions in the context of persistent
activity during attention orienting.

PERSISTENT NEURONAL ACTIVITY

DURING SPATIAL ATTENTION ORIENTING

Persistent activity during sustained attentional processes is
classically described in both the FEF and LIP. Figure 1B shows
the average neuronal responses of a sample of FEF attention-
related neurons recorded during the cue-to-target interval of
a spatial attention task. A higher activation is observed when
the cue is orienting attention toward the preferred spatial
position of the neuron (black) compared to when attention
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is oriented away from the preferred spatial position (gray).
Preferred spatial positions coincide with both enhanced visual
cue-related responses as well as enhanced visual target detection
responses. Such neuronal response patterns are typical of both
FEF and LIP neurons (Ibos et al., 2013). As a result, an important
question in the field has been to understand whether parietal
and prefrontal attentional responses were functionally identical
or not. Simultaneous recordings from both cortical regions
allow addressing this question. In the following sections, we will
first review this question from the point of view of a single
neuron persistent activity and then from the perspective of the
neuronal population.

Attention-Related Persistent Responses in

Single Neurons
Several studies have addressed the functional interactions
between the PFC and the parietal cortex during attentional
processes. In easy visual search tasks (e.g., detecting a red square
among the green squares), which have been shown to rely on
bottom-up attentional processes (Treisman and Gelade, 1980),
parietal neurons are activated earlier than prefrontal neurons
(Buschman andMiller, 2007). In striking contrast, in conjunction
with the visual search tasks (e.g., detecting an orange vertical
bar among the red vertical bars and red and orange horizontal
bars), which have been shown to rely on top-down attentional
processes (Treisman and Gelade, 1980), the reverse is observed
(Buschman and Miller, 2007). This suggests that spatial attention
or spatial selection mechanisms flow from the parietal cortex
to the PFC and the PFC to the parietal cortex when driven by
the environment and the subject’s internal goals, respectively.
However, visual search tasks do not allow researchers to
dissociate the neuronal processes related to attention orientation
from those related to perceptual cue processing. In order to
address this limitation, Ibos et al. (2013) designed a task that
allows to temporally dissociate between cue processing, cue
interpretation and attention orientation, and target selection.
This task had two features (Supplementary Figure 1). It was
based on a modified version of a rapid serial visual presentation
(RSVP) task (Potter, 2018) such that, on each trial, the cue
and the target are embedded in two parallel continuous streams
(succession) of isoluminent distractors. In such a context, both
parietal and prefrontal neurons do not respond to the visual
transients between one visual stimulus and the next. Thus,
any specific enhancement of neuronal responses to the cue or
to the target or in between the cue and the target can be
interpreted as an attention orientation signal or a perceptual
signal. The second specificity of this task lies in the fact that
the attentional orientation cues are highly symbolic. The green
cues indicate that the target will appear in the same visual
stream as the normal cue while the red cues indicate that
the target will appear in the opposite visual stream. In other
words, both the left red cues and right green cues oriented
attention to the right while both the right red cues and left
green cues oriented attention to the left. While both parietal
and prefrontal neurons showed an enhanced processing of
the cues and targets embedded in the RSVP streams, the

cue-related responses had shorter latencies in the parietal
cortex than in the PFC, and the target-related responses had
shorter latencies in the PFC than in the parietal cortex. Thus,
this confirms the idea that spatial selection mechanisms flow
from the parietal to the PFC and the PFC to the parietal
cortex when driven by the environment and by the subject’s
internal goals, respectively (Figure 1C). In addition, neurons
explicitly encoding the instruction for the spatial attention
orientation independently of the color and location of a cue
were only identified in the PFC and had longer response
latencies than the cue-related parietal responses, indicating that
the attentional cue interpretation was performed within the
PFC (Figure 1C). Overall, this thus defined a clear hierarchical
functional organization within the parietofrontal network in
which the processing of high-saliency stimuli initiates in the LIP;
and the active attention orientation control according to the
subject’s goals takes place in the FEF, thus driving a perception
of low-saliency stimuli.

As shown by Ibos et al. (2013) and with relevance to the
present review, the prefrontal attention orientation neurons
encoded the attention instruction in a sustained manner. This
was also the case of a substantial proportion of the cue-related
neurons of both cortical regions that responded to one specific
category of cues such as cue color or cue position. Thus,
these neurons are also expected to contribute to the coding
of attention orientation instructions when combined across the
population. The fact that FEF neurons explicitly encode the
cue instruction suggests functional differences of how both
the FEF and LIP represent a spatial orientation signal in the
population level and sustain these representations in time. It
has been hypothesized that the ability of individual neurons in
a recurrent neuronal network to sustain the information over
time depends on the correlated fluctuations of activity within
the local neuronal microcircuitry (Maimon and Assad, 2009).
The recurrent fluctuations of neuronal activity occur over a
wide range of timescales depending on the local properties
of the brain region (Murray et al., 2014). To measure the
timescales of these fluctuations, the time lag autocorrelogram
of the spike count of individual neurons is calculated. As this
time lag increases, the autocorrelation decays as a function
of the fluctuation timescales (Churchland et al., 2011). The
timescale of these fluctuations is mathematically characterized
by the decay of autocorrelation as a function of the time lag
(τ ), which corresponds to the fitting of the autocorrelogram
with an exponential decay and an offset. The intrinsic timescales
differ across the brain areas, showing shorter timescale values
in the parietal cortex and longer timescale values in the PFC
(Murray et al., 2014). The observation points in the direction
of favoring a temporal hierarchical organization between the
parietal and the PFC (Murray et al., 2014). One question
is whether and how this impacts the functional coding of
the neuronal populations as a whole. This is explored in the
next section.

Population Activity
Single-neuron responses support an idea of the
sustained/persistent neuronal activity (quantified as the
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sustained average spiking rate in time when computed across
the trials) during delay epochs in cognitive tasks. What is the
nature and origin of this “persistence” of persistent activity?
Classical models of persistent activity propose that the observed
spiking activity of a given neuron during the delay periods of
a task is a marker of an active state of the neural ensemble
it belongs to, which keeps the neural population available
for processing the encoded information (Lundqvist et al.,
2018a for a review). However, a closer inspection of the single
neuron persistent activity reveals that a spiking activity is better
characterized by sparsity than by persistence, suggesting that the
information might be held within the local functional network
by the changes in synaptic weights rather than in the spiking
activity per se (Zucker and Regehr, 2002; Lundqvist et al.,
2016). It is proposed that this type of information encoding
during the delay period might be more long-lasting and more
resistant to the disruption by additional inputs compared to
a purely persistent spiking activity (Lundqvist et al., 2018b).
This observation has been supported by the computational
models that predict the sustainability of persistent activity
through virtue of recurrent connections between the neurons
that have an affinity for shared specific stimulus properties
(Compte, 2000; Compte et al., 2003). However, it must be
acknowledged that the absence of persistent activity can also
be accounted for by analytical and experimental biases. For
instance, one must take into account that each cortical neuron
receives inputs from several other neurons (up to several
thousands), which might cause a high response variability at
small timescales but less so at longer timescales. Corroborating
this view, Leavitt et al. (2017) show evidence of persistent
activity during a working memory task using the temporal
scales larger than 400ms whereas the smaller timescales did not
show such an effect. Another possible reason for the absence
of persistent activity is the use of single-cell approaches, which,
during the mapping of a given cortical area, might miss a
specific region in which the persistent activity takes place. In
this respect, it is, however, worth noting that sparsity in the
spiking activity has been observed in the studies by using dense
multielectrode recordings.

Thus, one of the implications of the above framework is that
persistent activity is best understood in the level of the neuronal
population rather than in the level of individual neurons. This
view assumes, among other things, that information coding
cannot be unambiguously read out (i.e., decoded) from the
spiking rate of a single neuron, but is best characterized by
the patterns of activation and connectivity across a population
of neurons. That is to say, quoting from Averbeck et al.
(2006), “As in any good democracy, individual neurons count
for little; it is population activity that matters.” Accordingly,
there is increasing evidence that individual neuronal response
profiles do not fully mirror the dynamics of the functional
neuronal population they belong to and that the dynamics of
the connection weights between the individual neurons must be
taken into account (Barak et al., 2010; Crowe et al., 2010; Stokes
et al., 2013).

When using the cued target detection tasks to orient attention,
it is often assumed that attention is behaviorally allocated in a

stable and sustainable manner in the cued location. Likewise,
it is assumed that the neurons that encode this information
do so in a stable manner, i.e., with a constant number of
spikes in time. However, the evidence points that neither of
these assumptions might be correct (see the next section). One
way to assess code stability in time is to use cross-temporal
decoding approaches (King and Dehaene, 2014; Astrand et al.,
2015; Varoquaux et al., 2017). These approaches assume that
the attention orientation code is implemented by the neuronal
population locked to the cue presentation. Thus, a decoder is
trained at identifying whether attention is oriented toward one
among multiple spatial locations (e.g., left vs. right) based on
the neuronal population activities collected in a given (typically
short, ∼100ms) time interval at a fixed delay from the cue
presentation. The decoder is then tested at decoding attention
orientation on the novel activities sampled all throughout the
cue-to-target interval. If the decoder maintains a high decoding
performance at all times (Figure 2A), then this indicates a
stable code. Alternatively, if the decoder only achieves maximal
decoding from the neuronal activities sampled at the same delay
from the cue as the training activities, then this indicates a
dynamic recurrent coding of attention orientation (Figure 2B).
This means that the same cascade of neuronal activities unfolds
throughout the cue-to-target activity from one trial to the next,
reliably encoding spatial attention at each time but with a
different neuronal code. Both a stationary regime and a dynamic
regime can coexist in a given neuronal population, leading to
a mixed cross-temporal decoding map (Figure 2C). Using a
regularized linear regression classifier as a decoder (Astrand et al.,
2014a), training on 70% of the available trials and testing it
on the remaining 30% over multiple random draw repetitions
(Ben Hamed et al., 2003), Astrand et al. (2015) show that, in
the PFC, the neuronal population composed of the attention
orientation cells represents the spatial attention orientation
in a sustainable manner (Figure 2A). The entire task-related
FEF neuronal population expresses a mixed cross-temporal
decoding map, suggesting the combination of both stationary
and dynamic processes (Figure 2C). Thus, this indicates that the
functional characterization of the individual neuronal responses
does not fully account for how the information is encoded
in a given area. In contrast, the parietal neuronal population
expresses a highly dynamic coding of the spatial attention
orientation (Figure 2B). In other words, a parietal code for
the spatial attention orientation changes from one time to
the next.

Additionally, in the PFC, the mixed attention orientation
coding coexists with a stationary code for a cue position and a
highly dynamic code for a cue color. This indicates that a given
functional neuronal population can concurrently code different
sources of information in multiple coding regimes, respectively.
In other words, the information is multiplexed, and the system
is able to simultaneously process (multiplex) the different driving
inputs that involve different neuromodulatory sensitivities and
synchronization influences (Liu and Hou, 2013; Feng et al.,
2014). At this point, it is important to disambiguate multiplexing
of information from coding generalization. Whereas, the first
refers to the ability of the neural population to simultaneously
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FIGURE 2 | Temporal dynamics of a spatial attention signal. Full cross-temporal classification analysis of the attention-specific FEF population (A), entire LIP

population (B), and entire FEF population (C). Classifiers are trained to classify spatial attention from the population activities at every time step within 600ms following

a cue onset and prior to a target onset (x-axis, thick black line corresponds to the cue presentation). The performance of each classifier is tested from the population

activities obtained from naïve trials at every time step within the same time period relative to the cue. Red colors represent high performance whereas the blue-colored

regions represent low performance [chance level at 50%, figure adapted from Astrand et al. (2015)].

encode the different sources of information in multiple coding
regimes, the second refers to the ability to decode the different
sources of information by using the same code. Prior studies
have shown evidence that the PFC neural population codes
associated with one specific source of information do not
fully generalize (Tremblay et al., 2015b; Mendoza-Halliday and
Martinez-Trujillo, 2017b).

In a given cortical region, the specific neuronal coding
regime (stationary vs. dynamic) might fully depend on the
information to be encoded (e.g., attention orientation would
always be encoded in a stationary manner while the color in

a dynamic manner), as an intrinsic property of the neuronal

population. Alternatively, this could actually be task-dependent

(e.g., attention orientation would be encoded in a stationary
manner in the cued target detection task, but dynamically
in a spontaneous visual exploration task). This remains to
be tested. Likewise, how these cortical areas read out these
multiple codes and exploit them is a topic of future research.
Multiple mechanisms might be at play. For example, similar
to the previous working memory studies (Fujisawa et al., 2008;
Mongillo et al., 2008), Astrand et al. (2015) propose that
the active mechanisms that sustain the attentional information
in the neural population might involve short-term plasticity
mechanisms. In contrast, the constant inputs to the neuronal
population might result in time-dependent response patterns if
the synaptic weights that represent the connectivity across the
neurons are continuously being changed by the influence of the
input pattern of activity (Buonomano and Maass, 2009).

In this section, we have shown that whereas individual
neurons in the PFC show a persistent average activity and the
underlying neural population encodes the information using
different regimes spanning from fully stationary to dynamic
and mixed. This calls for a reinterpretation of the persistent
activity at a single-neuron level during spatial attention orienting.
In the next section, we show that, at the single-trial level,
neither the single-neuron responses nor the neuronal population
information is persistent.

IS PERSISTENT ATTENTION-RELATED

INFORMATION ACTUALLY PERSISTENT?

Single Trial, Spatially, and Temporally

Resolved Access to Attention Selection

Signals
The use of classification procedures to decode the brain activity
associated with specific aspects of human behavior forms the
basis of one of the greatest technological achievements in
neuroscience for the last two decades, namely brain–computer
interfaces (BCIs) (Chapin et al., 1999; Wolpaw et al., 2002).
These methods are based on the use of simultaneous neuronal
population activities from a given cortical region in order to drive
the devices that can help patients with specific dysfunctions or
deficits to improve their quality of life. Most BCI technologies are
designed to address motor-related dysfunctions such as motor
prosthesis or driving external palliative devices such as cursors
(Trejo et al., 2006) or robotic arms (Sunny et al., 2016), among
others. Little research has been directed to develop the BCI
devices that rely on decoding higher-order cognitive processes
such as attention (Andersen et al., 2010; Astrand et al., 2014b),
due to the fact that such a cognitive content is internally
generated by the neuronal signals that are often multiplexed
with different types of information, including sensory and motor
information. This renders their real-time access very challenging.

Non-human primate studies addressing this question have
specifically targeted the cortical regions in which spatial attention
has been shown to be sustained, thus favoring the PFC over the
parietal cortex. Astrand et al. (2014a) first demonstrated a single-
trial left/right attention classification for comparing multiple
classifiers. Tremblay et al. (2015a) extended these observations
to a four-quadrant classification of attention. Astrand et al.
(2016) push this decoding procedure one major step forward,
introducing the highly spatially resolved (x, y) tracking of the
attentional spotlight [i.e., the actual portion of space being
selected (Posner and Petersen, 1990)], at a spatial resolution of
the order of 0.1◦ (see Supplementary Figure 2 for a description
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of the methods). Specifically, a regularized optimal linear
estimator is used to associate the recorded bilateral response
patterns produced during the correct target detection trials
shortly before a target onset with the cued two-dimensional (x,
y) spatial location of attention. This decoder is used to predict
the (x, y) location of the attentional position inferred from the
bilateral prefrontal response patterns recorded in novel trials
naïve to the decoder. Decoding is applied at multiple time steps,
thus allowing to track the attentional spotlight in time during
the cue-to-target period. Using this methodological approach,
attention could be decoded everywhere on the workspace during
the cue-to-target presentation interval, and not necessarily static
at the cued location prior to the target presentation (Astrand
et al., 2016, 2020). This corresponds to the distinct neuronal
response patterns on successive trials. Therefore, although the
average neuronal response patterns might seem to be sustained
(Figure 3A), on individual trials, spiking probability varies
from one trial to the next (Figure 3B), corresponding to a
different attentional exploration trace from one trial to the next
(Figures 3C,D).

Importantly, Astrand et al. (2016) show that attention had a
higher probability of being closer to the target on the correct
target detection trials than on the trials in which the target is
missed. Likewise, attention had a higher probability of being
closer to a distractor when a false response to the distractor
(as opposed to being closer to the target) was performed. This
observation was further confirmed on other tasks (Di Bello et al.,
2020; Gaillard et al., 2020). In this context, De Sousa et al. (2021)
further enhance a correlation between the decoded attention and
overt behavior using a novel two-step decoder, the essence of
which is to refine the decoder training on only those trials that
were initially identified as trials in which attention was oriented
close to the target. All in all, the abovementioned studies confirm
the association between the decoded readout of spatial attention
and the observed task-related behavior of the subject. Despite the
clarity of this relationship between the distance of the decoded
attention to the real target (or distractor) position and the
probability to respond to a target (or distractor), one intriguing
question is why trials that are characterized by attention decoded
at a similar distance from a target (or distractor) sometimes result
in a correct detection (or a false alarm) and other times in a miss
(or distractor rejection). Inter-neuronal correlations turn out to
be significantly lower on the correct trials than on the miss or
false alarm trials, suggesting that error trials might arise when
the neuronal population is in a lower informational capacity state
characterized by higher noise correlation values (Astrand et al.,
2016; Ben Hadj Hassen and Ben Hamed, 2020), which will be
explored in Section Noise correlation and neuronal population
information capacity. Overall, this work thus demonstrates
that, from one trial to the next, although attention is often
assumed to be stable at the cued location, it is not quite often.
Rather, attention explores space dynamically, shifting from one
location to the next every 100ms or so. Because the attentional
dynamics is revealed through the decoding of attention-related
information from population neuronal activity, this indicates
that the attentional dynamics is subserved by rapid changes in
the spiking rates of individual neurons, during the attention

orienting delay, as shown in Figure 3C. Thus, while stable
attention was generally assumed to be subserved by persistent
neuronal responses, this section demonstrates that attention is
dynamic and is subserved by dynamic neuronal responses and
not by persistent neuronal activity.

Attention Explores the Space Rhythmically
Classically, the spotlight theory of attention assumes that
attention is only focused at one location of space at a time
[Eriksen and St. James, 1986; see the discussion in Posner and
Petersen (1990), Gaillard and Ben Hamed (2020)]. This view
posits that it is possible to shift the spotlight of attention from
one location to another, independent of the eye position and
adjustment of its size to the attended location like a zoom lens.
Thus, it intrinsically assumes a certain degree of flexibility of
attention. Recent behavioral evidence (Venables, 1960; Landau
and Fries, 2012; Dugue and VanRullen, 2014; Song et al., 2014)
shows that, instead of a smooth and continuous behavior,
spatial attention samples the visual environment rhythmically,
leading to fluctuating periods of perceptual sensitivity [see
VanRullen (2016) for a review]. In other words, these studies
suggest that attention and perception might not be attached
to a specific location in space (e.g., the cued location), but
rather exhibit a temporal rhythmicity between relevant spatial
locations [but see Brookshire (2021) for a critical perspective on
these observations].

In agreement with these behavioral studies,
neurophysiological evidence indicates that the brain activity
underlying visual attention, as measured from the local field
potentials (LFPs), is rhythmic in the theta band (4–8Hz)
(Lakatos et al., 2008; VanRullen, 2013, 2016; Fiebelkorn et al.,
2018; Spyropoulos et al., 2018). For example, Fiebelkorn et al.
(2018) show that, in the execution of a cued detection task,
monkeys’ ability to detect a target fluctuates rhythmically as
a function of the time from cue onset, at a rhythm of 4Hz.
Importantly, the likelihood to correctly respond to the target
is predicted by the phase of the ongoing oscillations in the
prefrontal LFPs in the same frequency band with respect to
the cue onset.

Fluctuations in the behavioral attentional performance and in
the prefrontal LFP power are in sharp contrast with the notion
of a stable prefrontal attentional code following a cue orientation
(Astrand et al., 2015). In order to directly address this question,
Gaillard et al. (2020) extend the work by Astrand et al. (2016)
to a temporally highly resolved decoding of spatial attention
(over 50ms neuronal recording windows, instead of 150ms). At
this temporal resolution, rhythmic fluctuations in the prefrontal
attentional information are observed in the 7–12Hz alpha range.
As described in Figure 3, these attentional oscillations are not
observed at an individual cell level; however, they become
apparent when averaging on multiple simultaneously recorded
signals (Figure 3C). The rhythmic fluctuations in the prefrontal
attentional information are decoded as spatio-temporal (x, y)
attentional traces, and systematic changes in the location of the
decoded attentional spotlight (or attentional saccade) can be
seen at a frequency of ∼8Hz. These traces clearly show that,
during the cue-to-target interval, attention explores both the
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FIGURE 3 | Persistent activity is not persistent from one trial to the next. (A) Mean spiking rate activity across 100 trials is recorded from the FEF. Activity is locked to

the cue presentation in the preferred location of the neuron. The spiking rate shows an average and sustained increase during the cue-to-target interval. (B) Raster

plot showing the multiunit activity (MUA) locked to the cue onset for each of the 100 trials used for the average spiking rate shown in (A). Represented individual trial

spiking probability sets at a threshold of 65%. Trials 40 and 65 are indicated by a leftward-pointing gray triangle to show a different pattern of temporal activation.

These trials are also considered in (C,D). (C) The average MUA activity was obtained by averaging the activity recorded from all channels of the same electrode [super

MUA, left FEF see Gaillard et al. (2020)] for trials 40 and 65 [indicated in (B)]. (D) Attentional traces were obtained from high-resolution x-, y-coordinate decoding of the

position of the attentional spotlight from the population neuronal activity, for trials 40 and 65, during the cue-to-target interval. Color code shows the time point along

the cue-to-target interval of the decoded position of attention (blue to yellow, 700ms). Red dot indicates the position of the target stimulus in these trials.

cued locations but also uncued spatial locations. Importantly,
this spatial exploration of space by attention also exists prior to
attentional cueing, suggesting that the rhythmicity of attention
is a default mode. In addition, how the prefrontal attentional
trace explores the space varying from one behavioral task to
another, indicating that it is under a top-down control. Overall,
Gaillard et al. (2020) propose that the rhythmic variations in the
attentional exploration subtend an efficient compromise between
the exploitation of the prior information and the exploration of
the novel information within a given trial.

All these abovementioned studies work under the assumption
that the attentional spotlight is unique, a paradigm that has been
driving most neurophysiological studies (Moran and Desimone,
1985; Niebur and Koch, 1994; Lee et al., 1999; Martínez et al.,
1999; Reynolds et al., 2000; Corchs, 2002). However, this model
of attention is limited when one needs to attend to more than one
object at a time. In this context, other models of attention have
been proposed. One of them is the zoom lens hypothesis, which
considers a single attentional spotlight that is able to select the
information frommultiple locations by adjusting its size (Eriksen
and Yeh, 1985; Eriksen and St. James, 1986). Another model
proposes that the spotlight can be split, and attention may be

simultaneously deployed to multiple spatial regions (Awh and
Pashler, 2000; McMains and Somers, 2004; Niebergall et al., 2011;
Mayo and Maunsell, 2016). Of utmost interest and relevance,
current neurophysiological paradigms do not allow a direct
evaluation of these concurrent theoretical models of attention.

All this taken together support the idea that seemingly
persistent prefrontal single neuronal and population activity is
actually highly dynamic, reflecting complex ongoing endogenous
(i.e., covert) processes. These dynamic processes can only be
accessed at the single-trial level because they (and their specific
associated informational content) vary from one trial to the next.
When averaged, these trial-to-trial variations are wiped out.

STATE DEPENDENCE OF PREFRONTAL

NEURONAL ACTIVITY

In the previous section, we address the sources of neuronal
response variability that correlate with the dynamic nature of
attention at the single-cell level and at the population level.
In contrast, in this section, we consider the neurophysiological
markers that impact the neuronal population information
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capacity and overt behavior irrespective of individual neuronal
spiking rates and also irrespective of whether neuronal activity
is persistent or not. We first discuss the noise correlation
across the neuronal population and how it impacts the
neuronal population informational capacity. Then, we discuss
global fluctuations in the neuronal population attentional
information that occur irrespective of ongoing attentional
processes but directly impact both attentional neuronal responses
and behavior.

Noise Correlation and Neuronal Population

Information Capacity
Noise correlations have been shown to critically impact both
cortical signal processing and behavioral performance in different
domains such as learning and attention (Ben Hadj Hassen
and Ben Hamed, 2020). Shared neuronal variability across
all recorded neurons is independent of the shared neuronal
variability induced by the signal (Ben Hadj Hassen et al.,
2019). The accuracy of a population code depends on not only
the neuronal correlation arising from a common input (such
as sensory information or cognitive control information) but
also on the neural correlations that arise from a stimulus-
independent activity. Indeed, a noise correlation is shown
to interfere with the informational capacity of neuronal
populations to represent a given variable and the resilience of
this neuronal population to noise interference [see Averbeck
et al. (2006), for a review]. For example, Froudarakis et al.
(2014) show that the less correlated the firing pattern in V1
neurons, the higher the discriminability of the population
code between the different visual stimuli. Likewise, lower noise
correlations have also been associated with more efficient
memory storage (Olshausen and Field, 2004). However, the
relationship between the noise correlation and informational
capacity is not straightforward. Indeed, it has been shown that
inter-neuronal noise correlations can either improve the overall
informational capacity, and hence decoding accuracy or, on
the opposite, degrading decoding accuracy mostly depending
on how the strength of noise correlations is compared to the
strength of signal correlations (Averbeck et al., 2006; Moreno-
Bote et al., 2014; Ben Hadj Hassen and Ben Hamed, 2020).
How much decoding benefits from the decorrelated neuronal
activities thus depends on a variety of experimental and
neurophysiological factors (Ben Hadj Hassen and Ben Hamed,
2020).

Astrand et al. (2016) show that the noise correlation in
prefrontal neuronal populations is predictive of the overall
behavioral performance, which is lower on upcoming correct
trials than on upcoming misses or false alarms. They further
show that the fluctuations in noise correlations are very
slow as noise correlations are globally lower on a given
trial either on correct or error trials when the previous
trial was a correct trial. In contrast, noise correlations
are globally higher in a given correct of error trial when
the previous trial was a miss trial. This strongly indicates
that more global mechanisms are mediated among other
things by a noise correlation, interact with spatial attention

processes, and significantly contribute to overt behavioral
performance. Importantly, the slow fluctuations in noise
correlations are independent of variations in the overall spiking
level, confirming that they reflect the state of connectivity of a
given neuronal population.

Fluctuations in a noise correlation (and thus in the overall
population informational capacity) are also observed at slower
timescales than at a trial level. Indeed, Ben Hadj Hassen
et al. (2019) show that noise correlations are lower on
difficult tasks as compared to easy tasks. This suggests that an
active mechanism might contribute to adjusting the neuronal
noise correlation to ongoing behavioral demand, thus high-
noise correlation states corresponding to a default “relaxed”
population state.

In addition, fluctuations in a noise correlation are also
characterized at faster timescales. For example, Ben Hadj
Hassen et al. (2019) show that prefrontal noise correlations
fluctuate within two distinct frequency bands, a high alpha
frequency range (10–16Hz) and a beta frequency band
(20–30Hz). These fluctuations that are independent of
fluctuations in neuronal spiking rates are shown to impact
behavioral performance and are reproduced in three different
behavioral tasks. The authors propose that selective changes
of frequency in spike-LFP phase coherence might account
for these fluctuations in a noise correlation. Likewise,
Womelsdorf et al. (2012) show the fluctuations in V1 noise
correlation at an even higher gamma frequency (60–80Hz),
correlating both with the changes in performance and with
orientation selectivity as a function of the phase in the
gamma cycle.

Overall, the results suggest that noise correlations vary
at different timescales, from a very slow to fast, suggesting
fluctuations in the overall neuronal population capacity in the
same timescale. This is actually confirmed by the observation
that the variations in behavioral performance correlate with
the variations in noise correlation. The studies cumulatively
indicate that the information capacity in a given neuronal
population is not only determined by spiking patterns, as
described in the previous section but also by inter-neuronal noise
correlations, a neurophysiological metric, which is decoupled
from the firing rates and still anticorrelated with the attentional
information and fluctuates in time in multiple scales. Thus,
this further weakens the link between attentional processes and
persistent activity.

However, other statistical features of the neural population
are also reported to impact the amount of encoded information,
such as changes in the network state, neuronal tuning,
and global activity modulations (Cohen and Newsome, 2008;
Harris and Thiele, 2011; Gutnisky et al., 2017; Verhoef
and Maunsell, 2017). In addition, there is no consensus on
whether the statistical features of population responses that
affect the amount of information encoded in the neural
populations also impact behavior (Arandia-Romero et al., 2017;
Panzeri et al., 2017). In a very recent paper, Nogueira et al.
(2020) have investigated which features of neural population
responses most determine the overall amount of encoded
information and behavioral performance. Examining neurons

Frontiers in Neural Circuits | www.frontiersin.org 8 June 2021 | Volume 15 | Article 67979680

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Amengual and Ben Hamed Non-Persistent Activity During Spatial Attention

in two different brain areas (the middle temporal area and
the lateral PFC), they found that the amount of information
encoded in a population and behavioral performance was highly
determined by the two statistical features: (1) the length of
the vector joining the mean population responses in different
experimental conditions [population signal (PS), corresponding
to the distance, in lower-dimensional space, between the
neuronal response patterns in different conditions] and (2) the
inverse population co-variability projected onto the direction
of the PS vector [projected prevision (PP), corresponding
to the degree of alignment between the low-dimensional
representation of the neuronal responses of each experimental
condition]. Importantly, keeping the two parameters fixed, the
authors did not find a clear relationship between the noise
correlation and the amount of encoded information; however,
they found a covariation between the latter parameter with
PP and PS that could explain the observed effects of noise
correlation in the amount of encoded information in the
prior studies.

Very Slow Fluctuations in Prefrontal

Information Capacity
Until now, we have shown that prefrontal activity during the
processing of the attention information is highly dynamic,
showing rhythmic fluctuations in the attentional information
in the alpha range (∼10Hz). The fluctuations are associated
with a behavioral outcome of the subject, shedding new light
on how the attentional system holds the information in a
short timescale. However, little is known about the dynamics
of the attention information in longer timescales (in the range
of minutes and even hours). In this context, previous studies
have shown that when attention is actively sustained in time,
such as in the context of long-lasting cognitive demands,
and the performance seems to decrease (Proctor et al., 1996;
Lockley et al., 2004; Bonnefond et al., 2010; Virtanen and
Kivimäki, 2018). A recent work by Gaillard et al. (2021)
suggests that this might not always be the case. Indeed, they
report that behavioral performance in a visual attentional
task fluctuates by up to 10% at an ultra-slow rhythm of 4–
7 cycles per hour (every 9–15min), coinciding with phase-
locked rhythmic fluctuations in the accuracy of visual and
spatial attention information in the PFC. The behavioral and
neuronal information fluctuations were not associated with
concurrent variations in the spiking rate. However, an enhanced
theta (∼6Hz) and beta (∼24Hz) oscillatory activity in LFP
and an enhanced alpha (∼10Hz) in LFP coherence were
observed during high behavioral performance epochs. Overall,
this thus adds a level of complexity to prefrontal activity, in
particular during cognitive processing (spatial attention delays),
as prefrontal attentional population coding appears to be
impacted by long-range distal signals (possibly related to states
of vigilance and/or of fatigue and energy depletion), shifting
from a high processing efficiency state (associated with enhanced
visual and attentional coding accuracies), and a low processing
efficiency state (associated with degraded visual and attentional
coding accuracies).

PREFRONTAL NEURONAL POPULATION

ACTIVITY REFLECTS MULTIPLE

PROCESSES

Prefrontal Cortical Population Activity and

Mixed Selectivity
We have already described the different population activity
regimes that were region-specific but also dependent on the
source of encoding information (e.g., position or color of the
cue, Section 2.2). Prior studies have demonstrated a specific
property of PFC neurons (specifically, the neurons from area 46
in the lateral PFC) called mixed selectivity (Rigotti et al., 2013;
Parthasarathy et al., 2017). This property, which has also been
reported in the FEF (Brincat et al., 2018; Khanna et al., 2020),
allows that the neurons exhibit complex patterns of responses
reflecting simultaneously different task-related parameters. Due
to the complex functional pattern of activation, single-neuron
recording studies on the PFC have found difficulties in relating
the parameters to a specific neural activity, since the neurons
will encode multiple parameters simultaneously, and the given
spiking rate cannot unambiguously be assigned to the specific
state of a given function. Approaches based on the average
activity from the pre-selected neurons based on the specific
criteria across multiple trials have been extensively used as a
state-of-the-art in multiple neurophysiological studies (e.g., Ibos
et al., 2013). However, these approaches, even though useful in
identifying some specific information processes, elude most of
the structure of the single-cell responses (Wohrer et al., 2013).
This is because complex patterns of behavior might rely on the
coordination of different neural mechanisms at a population level
rather than on the activity of single neurons. In this context,
the analysis of the neural population as a whole allows the
extraction of features in the data using dimensionality reduction
methods [see Cunningham and Yu (2014), for a review]. One of
the methods is the principal component analysis (PCA), which
consists of extracting an ordered set of orthogonal directions
capturing the greatest variance in data. An important caveat
of this method is that the obtained low-dimensional space
captures all types of variances—without unmixing the underlying
sources. Therefore, mixed selectivity remains in the data after the
reduction of dimensionality, preventing from associating a task-
or even behavior-specific variance to individual components.
This issue has recently been solved by addressing dimensionality
reduction methods with explicit information about the variance
related to the parameters (Machens, 2010; Mante et al., 2013;
Kobak et al., 2016). Specifically, demixed PCA (dPCA; Machens,
2010) is a dimensionality reduction method that aims to
decompose the data into features easily interpretable with respect
to specific parameters while preserving the original data as much
as possible (Kobak et al., 2016).

Unmixing Spatial Attention and States of

Inattention (or Attentional Lapses) From

Prefrontal Population Activity
One open question in the attention research is to what extent
the readout of the attention information fully accounts for
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the reported behavior of the subject. Previously, it has been
shown that the position of attention with respect to the
actual position of the stimulus to be processed accounted
for behavior, such that the closer the decoded attentional
spotlight to the stimulus (or distractor) prior to the stimulus
onset, the more likely the behavioral response to this stimulus
(or distractor) (Astrand et al., 2016, 2020). However, these
studies show that in trials with a similar distance between the
decoded position of attention and the actual cued position, the
behavioral outcome could be different, the subject sometimes
producing a correct response, and other times producing an
error response. This suggests that, on top of the attentional
dynamics, different neural states of activity might influence
how the system is able to exploit the attention information.
In a very recent study, Amengual et al. (2021) isolate, from
the PFC population activity, components specifically associated
either to the position of the decoded attentional spotlight
relative to the expected target position or to the behavioral
outcome (hit vs. miss) using dPCA. They consistently find
that the components encoded the specific information from
each parameter, respectively (attention and reported behavior).
Interestingly, they find that the information about the two
components partially overlapped (they are not orthogonal), the
smaller the overlap the higher the behavioral gain associated with
an efficient attention orientation. In other words, the smaller the
overlap, the lower the interference at the behavioral level between
the spatial attention orientation and the state of inattention
encoded by the prefrontal neuronal population.

The results shed new light on the extent to which the system
is able to use this information to optimize behavior. It suggests
that an accurate performance involving an active engagement in
an attentional task depends not only on the active attentional
control and readout of the attended information but also on
its integration with the activity associated with more general
neural states that might correspond to levels of distractibility
or impulsivity that allow access to the attended information.
In addition, the results call for a functional reconsideration
of persistent activity. Indeed, the multiplexing of the multiple
states or features in a single population results in an apparent
sustained activity. However, the precise informational content of
this persistent activity can only be accessed by splitting it into
well-defined functional components.

CONCLUSION AND PERSPECTIVES

Electrophysiological studies employed for recording individual
cells of the primate PFC have shown clear evidence of persistent
spiking activity for visual delay tasks associated with different
aspects of cognition. In the present work, we have reviewed
the role of the so-called persistent activity in the domain of
attention orienting during the delayed visual attention tasks. In
this context, classical approaches in the field mostly based on the
analysis of single-cell recordings in the FEF- and LIP-averaging
neuronal activity across multiple trials have shown that the
sustained neuronal spiking activity during the cue-to-target time
interval depends on the spatial preference of the cell, being

higher when attention is located in the preferred spatial position
of the neuron from both areas. However, the “persistence”
of the persistent activity has been repeatedly questioned [see
Constantinidis et al. (2018), Lundqvist et al. (2018a)].

Accordingly, we have shown clear evidence that, at a single-
trial level, the spiking activity of individual neurons is sparse
and very heterogeneous across successive trials. In particular,
we show that this applies to spatial attention, and that spatial
attention is not attached to a specific cued location in space,
but rather expresses intrinsic oscillatory dynamics covering the
whole visual space in a rhythmic manner at approximately
8Hz, impacting behavioral performance (Lakatos et al., 2008;
Dugue and VanRullen, 2014; VanRullen, 2016; Fiebelkorn et al.,
2018; Spyropoulos et al., 2018; Gaillard et al., 2020). In
addition, we also show that the neuronal population codes
for spatial attention vary at a very slow rhythm of a few
cycles per hour. Although the impact of the oscillations on
behavioral performance is very strong, their origin is still
unknown. The fluctuations in the prefrontal spatial attention
codes cannot be tracked on the single neuronal responses, and
only become apparent when a larger neuronal population is
considered. Lastly, using dimensionality reduction techniques,
we consider an additional degree of complexity of delay-
related prefrontal activity, identifying specific neuronal sources
of variance associated with overt behavioral performance (correct
vs. errors) and attention, respectively (Amengual et al., 2021).
While most studies on mixed selectivity in the prefrontal
neuronal population have focused on task-related information
coding, here we consider a condition in whichmixed selectivity is
associated with a task-independent variable (a state of inattention
or attentional lapse) that dynamically and transiently interferes
with task-related processes.

Overall, we thus provide a systematic deconstruction of the
idea of the persistence of the neuronal activity in the context of
attention orienting, and we describe multiple sources of neuronal
dynamic processes in the “silent” epochs of cognitive tasks in
multiple time scales. An important challenge that remains to
be addressed is how this dynamic is organized both at the
mesoscopic level of the cortical area and its layers and at the level
of the functional network.
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Supplementary Figure 1 | Description of the rapid serial visual presentation

(RSVP) task (Ibos et al., 2013). Monkeys have to fixate a central point while a first

stream of visual stimuli is presented (stimuli changing every 200ms). After a few

stimuli, a second stream of visual stimuli is presented contralateral to the first

stream. A cue is then presented in the first visual stream. The cue can either be

green instructing the monkey to maintain attention on this first visual stream (stay

cue) because the target will be presented in this stream. Alternatively, the cue can

be red, instructing the monkey to shift attention to the second visual stream (shift

cue) because the target will be presented in this stream. The cue can thus be red

or green (color dimension), presented in the left or in the right visual streams

(position dimension), or instruct attention to be oriented to the left or to the right

visual streams (attention dimension). Monkeys are rewarded to maintain fixation all

throughout the trial and respond to the target presentation with a manual

response as fast as possible.

Supplementary Figure 2 | Schema of the construction of a classifier for

two-dimensional (2D; x,y) readout of the attention information. (A) Schema of an

electrode with two contacts recording multiunit activity (MUA) activity obtained

from two different neurons. Each of the two neurons is tuned to two classes of

information (different positions), represented by red and blue colors. (B) To

quantify the amount of information in the data, a regularized linear regression is

applied. R: mean neural response in a specific sliding window [shaded gray in (A)],

W is the synaptic weights representing the contribution of each cell to the final

readout and C is a 2D vector describing the two possible classes. A

Tikhonov-regularized version is used in order to minimize the cost function to

avoid overfitting. A linear decoder estimates a decision boundary of the classifier

when discriminating between the population response to class 1 or to class 2

events. (C) Each output of the decoder represents an (x,y) position relative to the

decision boundary, representing the decoded position of the attentional locus in

the visual space. (D) Decoding procedure applied along the whole cue-to-target

interval provides time-resolved decoding of the attentional trajectory associated

with each class (position).
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In the prefrontal cortex (PFC), higher-order cognitive functions and adaptive flexible

behaviors rely on continuous dynamical sequences of spiking activity that constitute

neural trajectories in the state space of activity. Neural trajectories subserve diverse

representations, from explicit mappings in physical spaces to generalized mappings in

the task space, and up to complex abstract transformations such as working memory,

decision-making and behavioral planning. Computational models have separately

assessed learning and replay of neural trajectories, often using unrealistic learning rules

or decoupling simulations for learning from replay. Hence, the question remains open

of how neural trajectories are learned, memorized and replayed online, with permanently

acting biological plasticity rules. The asynchronous irregular regime characterizing cortical

dynamics in awake conditions exerts a major source of disorder that may jeopardize

plasticity and replay of locally ordered activity. Here, we show that a recurrent model of

local PFC circuitry endowed with realistic synaptic spike timing-dependent plasticity and

scaling processes can learn, memorize and replay large-size neural trajectories online

under asynchronous irregular dynamics, at regular or fast (sped-up) timescale. Presented

trajectories are quickly learned (within seconds) as synaptic engrams in the network,

and the model is able to chunk overlapping trajectories presented separately. These

trajectory engrams last long-term (dozen hours) and trajectory replays can be triggered

over an hour. In turn, we show the conditions under which trajectory engrams and

replays preserve asynchronous irregular dynamics in the network. Functionally, spiking

activity during trajectory replays at regular timescale accounts for both dynamical coding

with temporal tuning in individual neurons, persistent activity at the population level,

and large levels of variability consistent with observed cognitive-related PFC dynamics.

Together, these results offer a consistent theoretical framework accounting for how

neural trajectories can be learned, memorized and replayed in PFC networks circuits

to subserve flexible dynamic representations and adaptive behaviors.

Keywords: prefrontal cortex, neural trajectory, attractor, persistent and dynamical coding, working memory,

learning, replay, asynchronous irregular state
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INTRODUCTION

As when a few introductory notes recall a melody, in the
immense space of known melodies, cerebral networks are able
to memorize and replay complex temporal patterns in a flexible
way. Such temporal patterns rely on continuous dynamical
sequences of spiking activity, i.e., neural trajectories, that occur
in recurrent neural networks of the prefrontal cortex (PFC)
(Bakhurin et al., 2017; Paton and Buonomano, 2018; Wang et al.,
2018). These neural trajectories emerge with learning, relying
on dynamical engrams, which distinguish them from classical
static engrams underlying Hebbian neuronal assemblies. In turn,
these engrams likely arise through activity-dependent synaptic
plasticity (Goto et al., 2010; Bittner et al., 2017). Hence, a robust
understanding of the interplay between prefrontal dynamics
and biological plastic processes is necessary to understand the
emergence of functional neural trajectories and engrams. In the
PFC of behaving animals, neural trajectories are embedded in
an asynchronous and irregular background state activity that is
markedly disordered (Destexhe et al., 2003; London et al., 2010).
However, how synaptic plasticity builds engrams that are not
erased by spontaneous activity and yet are not strong enough to
alter irregular PFC dynamics remains an open question.

Neural trajectories correspond to organized spatio-temporal
representations that peregrinate within the neural space (Shenoy
et al., 2013). They are prominent in prefrontal cortices (Mante
et al., 2013), where they subserve higher-order cognitive
functions at diverse levels of abstraction (Wutz et al., 2018).
In prefrontal areas, at the lowest levels of abstraction, neural
trajectories can map the actual animal’s position during effective
trajectories within explicit spaces during visual perception
(Mante et al., 2013) or navigation (Fujisawa et al., 2008; Zielinski
et al., 2019). Beyond spatial mapping, neural trajectories can also
depict generalized topological locations that are isomorphic to
the task space, by multiplexing position, representation of goal
locations and choice-related information (Fujisawa et al., 2008;
Mashhoori et al., 2018; Yu et al., 2018; Kaefer et al., 2020).
Neural trajectories have also been shown to subserve dynamical
coding and manipulation of information during delay activities
in working memory tasks involving the PFC (Lundqvist et al.,
2018). In this context, neural trajectories do not represent explicit
trajectories in external spaces, but implicit representations—of
ongoing information and cognitive operations—that may prove
useful for the task.

Rather than static maintenance of persistent activity in a
group of cells, many working-memory representations unfold
in the space of neural activity under the form of continuous
trajectories, as neurons successively activate in “relay races”
sequences of transient activity (Batuev, 1994; Brody et al.,
2003; Cromer et al., 2010; Yang et al., 2014; Schmitt et al.,
2017; Enel et al., 2020). In the PFC, neural trajectories can
form the substrate for dynamic (Sreenivasan et al., 2014) but
also, counterintuitively, for stable representations (Druckmann
and Chklovskii, 2012). Neural trajectory-mediated dynamical
representations can subserve the retrospective working memory
of spatial (Batuev, 1994; Yang et al., 2014) or quantitative (Brody
et al., 2003) cues, symbolic categories (Cromer et al., 2010), values

(Enel et al., 2020), or behavioral rules (Schmitt et al., 2017). They
can also serve prospective working memory in computational
processes transforming previously encoded information, such as,
for e.g., in visuo-motor transformations (Spaak et al., 2017), in
the representation of elapsed time (Tiganj et al., 2017) or in the
encoding of forthcoming behaviors (Fujisawa et al., 2008; Ito
et al., 2015; Nakajima et al., 2019; Passecker et al., 2019). Neural
trajectories in the neural space can also appear as sequences of
states that involve combinations of active neurons (Batuev, 1994;
Abeles et al., 1995; Seidemann et al., 1996; La Camera et al., 2019).
Thus, neural trajectories appear in diverse forms and in different
functional contexts where they can map actual trajectories in
external spaces, remember previously encountered trajectories,
or predict forthcoming trajectories during active computational
processes requiring dynamical representations.

Neural trajectories in the PFC are adaptive (Euston et al.,
2012; Mante et al., 2013): they are learned and memorized,
to be “replayed” later. The timescale of the replay depends
on the behavioral context. Regular timescale replays operate
at the behavioral timescale, lasting seconds (Batuev, 1994;
Fujisawa et al., 2008; Cromer et al., 2010; Mante et al., 2013;
Yang et al., 2014; Ito et al., 2015; Schmitt et al., 2017; Tiganj
et al., 2017; Nakajima et al., 2019; Passecker et al., 2019;
Enel et al., 2020). Thus, such replays unfold online as current
behavior is executed in interaction with the external world, to
subserve retrospective working memory of past information, on-
going dynamical computations, or prospective representation of
forthcoming behaviors. Typically, regular replays are triggered by
behaviorally–relevant external events (e.g., cues or go signals in
working memory tasks, or the current position in navigational
tasks). Some replays that may appear as spontaneous can be
presumably triggered by internal self-paced decision signals
within the PFC (e.g., choices). In all cases, such triggered regular
replays rely on internal mechanisms within PFC circuits allowing
for the autonomous propagation of proper sequences of activity,
once initial neurons of the neural trajectory have been triggered.
A major goal of the present study is to decipher how plastic
processes allow PFC circuits to learn and replay trajectories, i.e.,
autonomously generate neural trajectory completion, based on
an initial trigger.

Besides, fast timescale replays exist that last a few hundred
milliseconds during awake (Jadhav et al., 2016; Mashhoori
et al., 2018; Yu et al., 2018; Shin et al., 2019; Kaefer et al.,
2020) and sleeping (Euston et al., 2007; Peyrache et al., 2009)
states. Beyond their much shorter duration, PFC fast replays
are distinct from regular ones, in that they typically operate
offline and often co-occur with fast replays in the hippocampal
CA1 field (Jadhav et al., 2016). Replay activity in PFC and CA1
presents high degrees of task-dependent spatial and temporal
correlations (Jadhav et al., 2016; Yu et al., 2018; Shin et al.,
2019), subserving functional coordination combining metric
(hippocampus) and task-related (PFC) spatial representations
(Pfeiffer and Foster, 2013; Zielinski et al., 2019). These fast
replays occur during sharp-wave ripples (SWR) episodes (Jadhav
et al., 2016; Yu et al., 2018; Shin et al., 2019), which represent
critical events for behavioral learning (Jadhav et al., 2012) and
during which animals forge forthcoming decisions (choices,
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trajectories, for e.g., Jadhav et al., 2016; Mashhoori et al., 2018;
Kaefer et al., 2020), based on the recall of past experiences
(actions, trajectories, outcomes, for e.g., Jadhav et al., 2012;
Mashhoori et al., 2018). Such coordination across both structures
presumably emerges through their reciprocal, direct and indirect,
synaptic interactions (Witter and Amaral, 2004). Different
studies have pointed out information flow biases from CA1
to PFC (Jadhav et al., 2016) or from PFC to CA1 (Ito et al.,
2015) directions, depending on behavioral contexts. However,
SWR-related replays in the hippocampus correlate with fast
replays in reduced subsets of PFC neurons (Jadhav et al., 2016;
Yu et al., 2018) that carry generalized spatial representations
but not specific trajectories (Yu et al., 2018). Moreover, fast
timescale PFC replays are independent of hippocampal replays
during computational processes inherent to the PFC, such as
rule switching tasks (Kaefer et al., 2020). Therefore, as for
regular replays, we examined how plastic processes allow for the
emergence of fast timescale replays autonomously within local
recurrent PFC circuits.

Neuronal trajectories consist of robust forms of ordered local
activity occurring within a disordered global activity, i.e., the
chaotic, asynchronous irregular (AI) state characteristic of the
prefrontal cortex in the waking state (Destexhe et al., 2003;
London et al., 2010). This coexistence poses a problem at
the plasticity level, because the noisy AI regime constitutes
a potential source of perturbation for synaptic engrams
(Boustani et al., 2012; Litwin-Kumar and Doiron, 2014), whereas
strengthened connectivity pathways may exert a synchronizing
influence on the network, dramatically altering the chaotic
nature of background activity. However, there is currently no
biophysically-grounded theoretical framework accounting for
the way neural trajectories are learned, memorized and replayed
within recurrent cortical networks. In principle, synaptic
plasticity, a major substrate of learning, may sculpt oriented
connective pathways promoting the propagation of neuronal
trajectories, because modifications of synaptic connections are
activity-dependent. Specifically, the sequential activation of
differentially tuned neurons during successively crossed spatial
positions (during navigational trajectories) or representational
states (during dynamical cognitive processes) could strengthen
connections between neurons, creating oriented pathways
(referred to as trajectory engrams hereafter) within recurrent
cortical networks. If sufficiently strengthened, engrams could
allow the propagation of packets of neuronal activity along them.
From an initial stimulation of neurons located at the beginning
of the engram, due to the strong connections linking them in the
direction of the trajectory, neurons could reactivate sequentially,
i.e., perform trajectory replay.

Recurrent neural network models have shown that activity-
dependent synaptic plasticity rules can enable the formation
of trajectory engrams due to long-term potentiation (LTP) and
depression (LTD) together with homeostatic scaling (Liu and
Buonomano, 2009; Clopath et al., 2010; Fiete et al., 2010;
Klampfl and Maass, 2013). Moreover, trajectory engrams can
propagate neuronal trajectories through sequential activation of
neurons in recurrent model networks (Liu and Buonomano,
2009; Fiete et al., 2010; Klampfl and Maass, 2013; Laje and

Buonomano, 2013; Chenkov et al., 2017). However, the above
models of neural trajectories do not elucidate the biological
basis of learning and replay in neurophysiological situations
encountered by PFC networks for several reasons. First, in
these models, trajectory learning is either ignored (hard-written
trajectory engram; Chenkov et al., 2017), unrelated to behavior
(random formation of arbitrary trajectory; Liu and Buonomano,
2009; Fiete et al., 2010), based on artificial learning rules (Laje
and Buonomano, 2013) or on biophysically unrealistic rules in
terms of neuronal activity and synaptic plasticity constraints (Liu
and Buonomano, 2009; Fiete et al., 2010; Klampfl and Maass,
2013). Moreover, trajectory replay is absent (Clopath et al., 2010)
or unable to operate from an initial trigger (Klampfl and Maass,
2013), or the ability to memorize and replay trajectory engrams
and replays long-term is not tested (Liu and Buonomano, 2009;
Clopath et al., 2010; Fiete et al., 2010; Klampfl and Maass, 2013;
Laje and Buonomano, 2013; Chenkov et al., 2017). Finally, none
of these models evaluate the capacity for trajectory learning and
replay in the realistic context where network activity undergoes
AI dynamics, whereas it is characteristic of the awake state in
the cortex (Destexhe et al., 2003; London et al., 2010). The
interactions between synaptic plasticity and AI dynamics has so
far only been assessed for static Hebbian engrams (Morrison
et al., 2007; Boustani et al., 2012; Litwin-Kumar and Doiron,
2014) but not for dynamic trajectories.

The disordered activity of AI cortical dynamics represents
a potentially important source of disturbance at many stages.
Indeed, AI regime activity may spontaneously engage plastic
processes (before any trajectory presentation), affecting the
synaptic network matrix, and leading to altered network
dynamics with divergence toward silence or saturation (Siri et al.,
2007). Noisy activity may also interfere with the learning of
the trajectory engram, by adding erratic entries of calcium to
trajectory presentation-induced calcium, leading to jeopardized
downstream decoding of calcium as well as erratic switches
between long-term potentiation (LTP) and long-term depression
(LTD) of synaptic weights. After learning, the continuous effects
of AI regime activity-induced plastic processes (LTD or scaling)
might erase the trajectory engram during memorization and
jeopardize trajectory replay through the destabilizing influence
of activity noise. On the other side of the interaction, trajectory
learning through Hebbian synaptic plasticity may potentially,
in turn, seriously disrupt AI regime activity (Morrison et al.,
2007; Siri et al., 2007). Therefore, it remains uncertain whether
realistic biological synaptic plasticity rules are well-suited for
proper learning and memorizing of trajectory engrams as well as
replay of learned trajectories in PFC physiological conditions.

Here, we assessed how learning, memorization and replay of
trajectories can arise from biologically realistic synaptic learning
rules in physiological PFC networks displaying disordered AI
regime activity. To do so, we built a local recurrent biophysical
network model designed to capture replay events like those
observed in the PFC. Although designed to fit PFC collective
spontaneous and triggered neural dynamics, its intrinsic,
synaptic and architectural properties are shared across other
cortices, allowing for generalization of the results to other non-
PFC cortical areas displaying replays. The model displayed AI
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dynamics and was endowed with realistic Hebbian (Hebb, 1949)
spike timing-dependent plasticity (STDP) of excitatory synapses
(Bi and Poo, 1998). Synaptic modifications operate through
calcium-signaling dynamics capturing NMDA-dependent non-
linear pre- to post-synaptic associativity (Graupner and Brunel,
2012) and calcium-dependent phosphorylation of synaptic
weights with realistic activity-dependent kinase/phosphatase
(aKP) dynamics, conferring a rapid, graded and bidirectional
induction together with slow maintenance, consistent with
learning and memory timescales observed in animal and human
(Delord et al., 2007). Moreover, the model incorporates synaptic
scaling, which ensures normalization of pre-synaptic weights, as
found in the cortex (Turrigiano et al., 1998;Wang and Gao, 2012;
Sweatt, 2016). We show, that, in this realistic model, presenting
a stimulus trajectory allowed for rapid learning of a trajectory
engram as well as long-term memorization of the trajectory
engram despite the disturbing influence of the AI regime. In turn,
the STDP learning rule and trajectory engram did not affect the
spontaneous AI regime despite their influence on all excitatory
neurons from the network. Moreover, we show that trajectory
replay accounted for essential aspects of information coding
in the PFC, including robustness of replays at the timescale
of seconds, fast and regular replays, chunking, large inter-trial
variability, and the ability to account for the dual dynamical and
persistent aspects of working memory representations.

MATERIALS AND METHODS

Model of Biophysical Local Recurrent

Neural Network
We built a biophysical model of a prefrontal local recurrent
neural network, endowed with detailed biological properties of
its neurons and connections. While the model is presented as
PFC, its synaptic and neural properties are generally preserved
across cortical areas, allowing for generalization of the results
to non-PFC cortical areas. The network model contained N
neurons that were either excitatory (E) or inhibitory (I) (neurons
projecting only glutamate or GABA, respectively; Dale, 1935),
with probabilities pE and pI = 1 − pE, respectively, and
pE
pI

= 4 (Beaulieu et al., 1992). Connectivity was sparse (i.e.,

only a fraction of all possible connections exists, see pE→E,
pE→I , pI→E, pI→I parameter values; Thomson, 2002) with no
autapses (self-connections) and EE connections (from E to E
neurons) drawn to insure the over-representation of bidirectional
connections in cortical networks (four timesmore than randomly
drawn according to a Bernoulli scheme; Song et al., 2005; Wang
et al., 2006). The synaptic weights w(i,j) of existing connections
were drawn identically and independently from a log-normal
distribution of parameters µw and σw (Song et al., 2005).

To cope with simulation times required for the massive
explorations ran in the parameter space, neurons were modeled
as leaky integrate-and-fire (LIF) neurons. The membrane
potential of neuron j followed

{

C
dV

(j)

dt
= −(IL(j) + ISyn.Rec(j) + ISyn.FF(j))

V
(j) > θ → V

(j) = Vrest

where neurons spike when the membrane potential reaches the
threshold θ , and repolarization toVrest occurred after a refractory
period 1 tAP.

The leak current followed

IL(j) = gL
(

V(j) − VL

)

where gL is the maximal conductance and VL the equilibrium
potential of the leak current.

The recurrent synaptic current on post-synaptic neuron
j, from—either excitatory or inhibitory—pre-synaptic neurons
(indexed by i), was

ISyn.Rec(j) =

∑

i

(

IAMPA(i,j) + I
NMDA(i,j)

+IGABAA(i,j)

+IGABAB(i,j)

)

The delay for synaptic conduction and transmission, 1tsyn, was
considered uniform across the network (Brunel andWang, 2001).
Synaptic recurrent currents followed

Ix(i,j) = gx w(i,j) px(i)
(

V(j) − Vx

)

where w(i,j) is the synaptic weight, px(i) the opening probability
of channel-receptors and Vx the reversal potential of the current.
The NMDA current followed

INMDA(i,j) = gNMDA w
(i,j)

pNMDA(i) xNMDA

(

V
(j)

)

(

V(j) − VNMDA

)

incorporating the magnesium block voltage-dependence
modeled (Jahr and Stevens, 1990) as

xNMDA (V) =
(

1+
[

Mg2+
]

e−0.062 V
/3.57

)−1

The channel rise times were approximated as instantaneous
(Brunel and Wang, 2001) and bounded, with first-order decay

dpx(i)

dt
= −

px(i)

τx
+ px

(

1− px(i)
)

δ

(

t − t(i)
)

where δ is the dirac function and t(i) the times of the pre-
synaptic action potentials (APs).

Recurrent excitatory and inhibitory currents were balanced
in each post-synaptic neuron (Shu et al., 2003; Haider et al.,
2006; Xue et al., 2014), according to driving forces and
excitation/inhibition weight ratio, through







gGABAA
= gGABAA

−(Vmean−VAMPA)

(Vmean−VGABAA)

∑

i∈Exc w(i,j)
∑

i∈Inh w(i,j)

gGABAB
= gGABAB

−(Vmean−VAMPA)

(Vmean−VGABAB)

∑

i∈Exc w(i,j)
∑

i∈Inh w(i,j)

with Vmean =
(θ+Vrest)

2 being an approximation of the average
membrane potential.
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Furthermore, all recurrent maximal conductances were
multiplied by gRec, and by gE→E, gE→I , gI→E or gI→I according
to the excitatory or inhibitory nature of pre- and post-
synaptic populations.

The feed-forward synaptic current ISyn.FF(j) (putatively
arising from sub-cortical and cortical inputs) consisted of an
AMPA component.

ISyn.FF(j) = gAMPA pAMPA.FF

(

V(j) − VAMPA

)

with a constant opening probability pAMPA.FF .

Synaptic Spike Timing-Dependent

Plasticity (STDP)
We used a biophysical model of spike timing-dependent
plasticity of excitatory synapses of the network. This rule
operated constantly on the weights of the excitatory synapses
during simulations. Synaptic weights evolved according to a first-
order dynamic (Shouval et al., 2002; Delord et al., 2007) under
the control of intra-synaptic calcium (Graupner and Brunel,
2012) through

ẇ(i,j)(t) = Kmax
Ca (t)nH

KCa
nH

+ Ca (t)nH

−Pmax
Ca (t)nH

PCa
nH

+ Ca (t)nH
wij

where the plastic modifications of the synapses, i.e., the
phosphorylation and dephosphorylation processes of the
synaptic receptor channels, depended on a kinase (e.g.,
PKC type) and a phosphatase (e.g., calcineurin type) whose
allosteric activation was dependent on calcium. Here, Kmax

represents the maximum reaction rate of the kinase, Pmax that
of the phosphatase, KCa and PCa the calcium half-activation
concentration, Ca the synaptic calcium concentration and nH
is the Hill’s coefficient. The term t-LTP, kinase-related, was
independent of synaptic weight (“additive” t-LTP) while t-LTD,
phosphatase-related, was weight-proportional (“multiplicative”
t-LTD), consistent with the literature (Bi and Poo, 1998; van
Rossum et al., 2000). This model of STDP is extremely simple,
but a detailed implementation would be prohibitive in an RNN
of the order of a thousand neurons. There was no term related
to the auto-phosphorylation of CaMKII present in many models
to implement a form of molecular memory, because on one
hand it is not actually involved in the maintenance of memory
of synaptic modifications (Chen et al., 2001), and on the other
hand memory is ensured here by the dynamics of kinase and
phosphatase at low calcium concentration (Delord et al., 2007).

The time dependence of the APs (Bi and Poo, 1998; He
et al., 2015) came from calcium dynamics, according to the
model of Graupner and Brunel (2012). In this model, synaptic
calcium followed

Ca (t) = Ca0 + Capre(t)+ Capost (t)

where the total calcium concentration takes into account pre- and
post-synaptic calcium contributions.

Pre-synaptic spiking mediated calcium dynamics followed

Ċapre(t) = −
Capre(t)

τCa
+ 1Capre

∑

i

δ

(

t − t(i) − D
)

where the first term corresponds to calcium extrusion/buffering
with time constant τCa and the second term to voltage-dependent
calcium channels (VDCC)-mediated calcium entry due to pre-
synaptic spiking, with Capre the amplitude of calcium entering
at each AP of the presynaptic neuron, t(i) the times of the
pre-synaptic APs, and D a delay modeling the time required
for the activation of AMPA channels, the depolarizing rise of
the associated excitatory post-synaptic potential (EPSP) and the
subsequent opening of VDCC that induces this calcium entry.

Post-synaptic spiking-mediated calcium dynamics evolved
according to

Ċapost(t) = −
Capost(t)

τCa
+ 1Capost

∑

j

δ

(

t − t(j)
)

+ ξPrePost

∑

j

δ

(

t − t(j)
)

Capre(t)

and modeled extrusion/buffering (first-term) as well as calcium
entries due to post-synaptic, back-propagated spiking from the
post-synaptic soma along the dendritic tree to the synapse,
opening VDCC (central term) and NMDA channels (right term).
ξPrePost is an interaction coefficient and t(j) corresponds to the AP
time of the post-synaptic neuron. NMDA activation is non-linear
and depends on the product of a pre- and a post-synaptic term,
representing the dependence of NMDA channel openings on
the associative conjunction of pre-synaptic glutamate and post-
synaptic depolarization, which releases the magnesium blockade
of NMDA channels.

Synaptic Scaling
Synaptic weights were subjected to a homeostatic form of
synaptic normalization, present in the cortex (Turrigiano et al.,
1998; Wang and Gao, 2012; Sweatt, 2016), which was modeled in
a simplified, multiplicative and instantaneous form (Zenke et al.,
2013), following at each time step

w
(ij)(t + dt) = w

(ij)(t)

∑

i wij(t = 0)
∑

i wij(t)

This procedure ensured that the sum of the incoming weights
on a post-synaptic neuron remained constant despite the plastic
modifications due to STDP.

Estimation of the Time Constant of STDP

With Synaptic Scaling
Without synaptic scaling, ẇij = ẇSTDP = K (Ca) − P (Ca)w.
However, synaptic scaling plays an important role in the slow
decay of weights, so to study the time constant of this decay we
needed to incorporate the effect of synaptic scaling. Considering
n weights of average value µw incoming upon a post-synaptic
neuron, where a proportion p of weights undergo STDP of value
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FIGURE 1 | Network structure and plastic properties. (A) Scheme of the recurrent network model of the local prefrontal cortex circuit with 484 excitatory (red) and 121

inhibitory (blue) integrate and fire (IAF) neurons. (B) Scheme of excitatory synaptic plastic processes. In the post-synaptic compartment, calcium dynamics originates

from two distinct sources (CaPre and CaPost ), as well as from extrusion/buffering (Graupner and Brunel, 2012). CaPre arises from pre-synaptic spiking mediated through

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) depolarization and the subsequent activation of voltage-dependent calcium (VDCC) channels. CaPost
models calcium entries due to post-synaptic spiking back-propagated from the post-synaptic soma to the synapse, opening VDCC and N-methyl-D-aspartate

(NMDA) channels. NMDA activation is non-linear and depends on the interaction of pre- and post-synaptic spiking to account for the associative dependence of

NMDA channel openings on the conjunction of pre-synaptic glutamate and post-synaptic depolarization that releases magnesium blockade. Plastic modifications

operate through calcium-dependent phosphorylation and dephosphorylation of channel AMPA receptors that determine the synaptic weight (aKP model; Delord et al.,

2007). Synaptic scaling continuously normalizes weights so as to insure the homeostatic regulation of the sum of incoming (pre-synaptic) weights for each individual

neuron (Turrigiano et al., 1998). (C) Both long-term spike timing-dependent potentiation (t-LTP) and long-term spike timing-dependent depression (t-LTD) increase

non-linearly with pre- and post-synaptic spiking frequency (νPre = νPost = ν), due to the allosteric calcium-activation of both enzymes. Kinase-mediated t-LTP is

additive, i.e., independent of synaptic weight, while phosphatase-mediated t-LTD is multiplicative, i.e., weight-proportional (Bi and Poo, 1998; van Rossum et al.,

2000). (D) Because of the associative dependance of NMDA-mediated calcium entry to pre- and post-spiking, synaptic calcium depends multiplicatively on pre- and

post-synaptic spiking frequencies. (E) In the spontaneous AI regime, plastic modifications are virtually null because STDP plasticity occurs similarly at all synapses,

with synaptic scaling compensating STDP (see Results). (F). In synapses connecting neurons in the engram of a learned trajectory, where plasticity has occurred in a

subset of synapses, Hebbian t-LTP dominates at large multiplicative pre-/post- frequencies and Hebbian t-LTD at lower frequencies (separated by the red curve for

which plasticity is null, see Results).

ẇSTDP at time step t followed by scaling, then for a given weightw
within the proportion p,

w (t + 1t) = (w (t) + ẇSTDP1t)

(

nµw

nµw + npẇSTDP1t

)

so that after algebra, one obtains

w (t + 1t) − w (t)

1t
=

(

1− p
w (t) + ẇSTDP1t

µw + pẇSTDP1t

)

ẇSTDP

Passing to the limit 1t → 0, one finds:

ẇ =

(

1− p
w

µw

)

ẇSTDP

i.e.

ẇ =

(

1− p
w

µw

)

(

K(Ca)− P(Ca)w
)

To find an estimate of the time constant of plasticity, linearization
aroundµw gives

ẇ ∼

(

P(Ca)
(

2p− 1
)

−
K(Ca)p

µw

)

w+ K(Ca)− pP(Ca)µw

so that

τ ∼
µw

∣

∣pK (Ca) −
(

2p− 1
)

P (Ca) µw

∣

∣
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Theoretical Dependences Under

Asynchronous Irregular Dynamics
The steady-state theoretical concentration of calcium in
individual synapses was obtained from fixed-points of CaPre and
CaPost , which yielded

Ca
∗

(νPre, νPost) ∼ Ca0 + τCa(1CaPreνPre

+1CaPostνPost + ξPrePost1CaPreνPreνPost)

which was used to determine STDP modification rates

ẇ = K(Ca
∗

)− P(Ca
∗

)w

and to determine the time constant for plasticity, in the case of the
network asynchronous irregular regime at low frequency, where
p = 1, i.e.

τ ∼
µw

∣

∣K
(

Ca
∗
)

− P
(

Ca
∗
)

µw

∣

∣

Weights Within and Outside the Engram
Initial excitatory weights (before the 1 h simulation) were
convolved with a centered normalized Gaussian function (σ =

5 neurons). Convolved weights with values above 0.1 (times
pE→E = 0.35 to take into account inexistent weights) were
considered within the engram, the other weights were considered
outside the engram. Both weight populations were kept constant
and their evolution was studied across time (see Figures 6, 7).

Trajectory Replay Detection
In order to detect coherent propagating activity pulse packets
along the synaptic pathway, we convolved spiking activity across
time and neurons with centered normalized Gaussian functions
(σ = 30 ms and σ ∼ 10 neurons). Neurons were considered
“active” when at least 40% of the convolved frequencies which
include them (>5% of normalized Gaussian function maximum)
are above 12.5Hz. We considered the emergence of an activity
packet when it contained more than 20 neurons.

Spiking Irregularity
To capture spiking irregularity, we quantified the CV (coefficient
of variation), CV2 and Lv (time-local variation) of the inter-spike
interval (ISI) distribution of the spiking trains of neurons in the
network (Compte, 2003; Shinomoto et al., 2005) according to

CV =
σISI

< ISI >

CV2 =< 2

∣

∣ISIk+1 − ISIk
∣

∣

ISIk+1 + ISIk
>k

Lv =< 3

(

ISIk − ISIk+1

)2

(

ISIk + ISIk+1

)2
>

k

where CV = CV2 = Lv = 1 for a homogeneous Poisson spike
train and = 0 for a perfectly regular spike train where all ISI are

equal. CV stands around 1 to 2 in vivo (Compte, 2003; Shinomoto
et al., 2005), representing the global variability of an entire ISI
sequence, but is sensitive to firing rate fluctuations. CV2 and Lv
stand around 0.25 to 1.25 and 0 to 2, respectively in vivo (Compte,
2003; Shinomoto et al., 2005), evaluating the ISI variability locally
in order to be less sensitive to firing rate fluctuations. The CV
was calculated on every ISI across neurons, while the CV2 and Lv
were calculated for each excitatory neuron and averaged across
the whole population.

Spiking Synchrony
Three measures of synchrony were adopted, a synchrony
measure S (Golomb et al., 2001), pairwise correlation coefficient
averaged over all pairs of excitatory neurons < ρ >

(Tchumatchenko et al., 2010), and Fano factor F. The first two
were calculated on the estimated instantaneous neural frequency
f (Gaussian convolution of spikes, σ = 30ms), while the last was
calculated on the population sum of spike counts s, following

S =

√

Var
(

< f >n

)

< Var
(

f(n)
)

>n

< ρ >=
1

N(N − 1)/2

∑

i

∑

j>i

cov
(

f(i), f(j)
)

√

Var
(

f(i)
)

Var
(

f(j)
)

F =
Var

(
∑

n sn
)

<

∑

n sn >t

These measures equal S =
1

√
nE

∼ 0.0455, < ρ >= 0 and F = 1

for perfectly asynchronous network activity, and S =< ρ >= 1
while F increases for perfectly synchronous network activity.

Procedures and Parameters
Models were simulated and explored using custom developed
code (MATLAB) and were numerically integrated using the
forward Euler method with time-step 1t = 0.5ms in network
models. Unless indicated in the text, standard parameter values
were as following. Concerning the network architecture, N =

605 neurons, nE = 484 neurons, nI = 121 neurons, pE→E = 0.35,
pE→I = 0.2056, pI→E = 0.22, pI→I = 0.25, µw = 0.03,
σw = 0.02. Concerning the Integrate-and-Fire neural properties,
C = 1 µF.cm−2, θ = −52 mV , Vrest = −67 mV , 1tAP = 3 ms.
Concerning currents, gL = 0.05 mS.cm−2, VL = −70 mV ,
1tsyn = 0.5ms, gAMPA = 0.23mS.cm−2, gNMDA = 0.9mS.cm−2,
gGABAA = 0.3 mS.cm−2, gGABAB = 0.017 mS.cm−2, VAMPA =

VNMDA = 0 mV , VGABAA = −70 mV , VGABAB = −90 mV ,
[

Mg2+
]

= 1.5 mM, τAMPA = 2.5 ms, τNMDA = 62 ms, τGABAA =

10 ms, τGABAB = 25 ms, pAMPA = pNMDA = pGABAA
= pGABAB

=

0.1, gRec = 0.65, gE→E = gE→I = gI→E = 1, gI→I = 0.7,
pAMPA.FF ∼ 0.0951. Concerning synaptic properties, Kmax =

3.10−3 ms−1, KCa = 3 µM, Pmax = 3.10−3 ms−1, PCa =

2 µM, nH = 4, Ca0 = 0.1 µM, τCa = 100 ms, 1Capre =

0.02 µM, D = 10ms, 1Capost = 0.02 µM, ξPrePost = 4ms−1.
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FIGURE 2 | Stability of spontaneous irregular asynchronous (AI) network dynamics under synaptic plasticity. (A1–A3) Membrane potential of network neurons during

3 s of spontaneous AI regime in the absence of plasticity (A1), after 1 h of plasticity (A2) and after full convergence of synaptic weights due to plasticity (A3). The same

initial random connectivity matrix is used for simulations in (A1–A3). Spikes indicated by black dots. Full convergence of the synaptic matrix was obtained by

simulating the networks with very fast kinetic constants. (B1–B3) Synaptic weights between excitatory neurons of the network at the end of each of simulations

presented in A1–A3. (C) Convergence of synaptic weights toward the mean weight of their post-synaptic neuron as a function of time, due to synaptic scaling

normalization (black curves, see Results). Time evolution of the mean (red curve) and standard deviation (blue curve) of synaptic weights. For sake of clarity, only a

random selection of synapses is shown. The mean is constant and the standard deviation decreases with time, due to scaling. (D). Average excitatory neural spiking

frequency (D1) and irregularity (D3) and excitatory population synchrony (D2) quantifiers, as a function of time, for five different simulations of the network with

different realizations of the initial random synaptic matrix. Dots on the right indicate values obtained from network simulations after full convergence of synaptic

weights. Shaded areas represent 95% confidence intervals of the mean.

RESULTS

Predicting Fundamental Plastic Properties

of PFC Recurrent Networks
To evaluate neural trajectory learning, memorization and replay,
we studied a local prefrontal cortex (PFC) recurrent network
model, with 484 excitatory and 121 inhibitory integrate and
fire (IAF) neurons with topographically tuned feed-forward
inputs. Synaptic connections were constrained by cortical
connectivity data, following Dale’s law, sparseness and log-
normal weight distributions, and α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate
(NMDA) excitatory and γ-aminobutyric acid (GABA-A and
GABA-B) inhibitory synaptic currents (Figure 1A; see Materials
andMethods). Most synaptic and neural properties, while present
in PFC, are generic across cortex, such that the following results
can be generalized to non-PFC cortical areas.

Excitatory synapses were plastic, i.e., endowed with realistic
calcium dynamics (Graupner and Brunel, 2012) accounting for
linear voltage-dependent calcium channels (VDCC)-dependent
and non-linear NMDA calcium entries, as well as for linear
extrusion and buffering (Figure 1B). These calcium dynamics
are responsible for the temporal asymmetry of pre- and post-
synaptic spike-timing dependent (STDP) plastic modifications
(Bi and Poo, 1998; He et al., 2015). Note, however, that with
these realistic calcium dynamics, plasticity essentially depends
on firing frequency rather than on the precise timing of spikes,
because of the frequency and variability of in vivo-like spiking
(Graupner et al., 2016).

Plastic modifications operated through calcium-dependent
kinase-phosphatase kinetics (Delord et al., 2007), which accounts
for their fast induction and slower maintenance dynamics
(Figure 1B). No Ca2+/calmodulin-dependent protein kinase
II (CaMKII) auto-phosphorylation was present because it
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FIGURE 3 | Learning a trajectory stimulus into a trajectory engram. (A). Synaptic matrix between excitatory neurons prior to stimulus presentation. (B). Membrane

potential of network neurons in response to the presentation of a trajectory stimulus (stimulus in red) that successively activates all excitatory neurons over a duration

of 1,350ms. Spikes indicated by black dots. (C). Synaptic matrix between excitatory neurons after stimulus presentation. (D1–D4). Weight modifications resulting,

after trajectory presentation, from t-LTP (D1), t-LTD (D2), scaling (D3), and their sum (D4). (E–H) Membrane potential (E), calcium (F), plastic rates (G) and synaptic

weight dynamics (H) during the passage of the trajectory stimulus in a pair of neurons with nearby topographical tuning #102 (E1) and #112 (E2) and their reciprocal

connections 102→112 (F1-H1) and 112→102 (F2-H2), and in a pair of neurons with more distant topographical tuning #102 (E3) and #202 (E4) and their reciprocal

connections 102→202 (F3-H3) and 202→102 (F4-H4).

is actually not involved in the maintenance of synaptic
modifications (Chen et al., 2001; Lengyel et al., 2004).
Rather, the long-term maintenance of plastic modifications
emerges from kinase and phosphatase dynamics at low calcium
concentrations (see below; Delord et al., 2007). Besides, synapses
underwent synaptic scaling (Figure 1B), which ensures total
weight normalization at the neuron level, as observed in the
cortex (Turrigiano et al., 1998; Wang and Gao, 2012; Sweatt,
2016) and, as a consequence, introduces competition between

synaptic weights within each neuron (intra-neuronal inter-
synaptic competition).

Most importantly, plasticity operated online—i.e.,
permanently, without offline learning periods—on excitatory
synaptic weights, as a function of neuronal activity in
the network, whether it corresponds to the spontaneous,
asynchronous and irregular (AI) activity of the network, the
activity evoked by the feed-forward currents during the input
presentation of an example trajectory, or the replay activity
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after learning (see below). Both kinase-mediated long-term
spike timing-dependent potentiation (t-LTP) and phosphatase-
mediated long-term spike timing-dependent depression (t-LTD)
increased non-linearly with pre- and post-synaptic spiking
frequency, due to the allosteric activation of enzymes by
calcium (Figure 1C). However, they differed in that kinase-
mediated t-LTP was independent of synaptic weight (additive
or hard-bounded) while phosphatase-mediated t-LTD was
weight-proportional (multiplicative or soft-bounded), consistent
with the literature (Bi and Poo, 1998; van Rossum et al.,
2000; Figure 1C). In the model, the steady-state theoretical
concentration of calcium in individual synapses depended
multiplicatively upon pre-synaptic and post-synaptic spiking
activity (Figure 1D), from which one could compute the rate of
STDP as a function of pre- and post-synaptic spiking frequency
(Figures 1E,F) see Materials and Methods). In conditions
with weak synaptic weights, such as prior to learning, t-LTP
dominated at all frequencies because t-LTD is multiplicative
and thus scaled by, here, very low synaptic weights. Thus, STDP
effects were always positive and depended multiplicatively on
pre- and post-synaptic frequencies (Figure 1E). By contrast,
when plasticity had previously occurred (w = 0.2), such as in the
engram of a learned trajectory (see below), t-LTD was stronger
due to the stronger weights, and the model predicted Hebbian
t-LTP at large multiplicative pre-/post-frequencies and t-LTD at
lower frequencies (Figure 1F). In the following, we explore the
extent to which these predictions are correct in simulations of
the whole network model under spontaneous AI dynamics with
synaptic scaling, and when assessing learning and memorization
upon trajectory presentation.

Stability of Network AI Dynamics Under

Synaptic Plasticity
A potential issue of synaptic plasticity in networkmodels remains
its sensitivity to spontaneous activity. Hence, before testing the
possible role of STDP in trajectory learning and replay, we first
studied the effect of STDP on the spontaneous regime, with
the aim of verifying that network activity remained stable over
the long term and that neurons always discharged in the AI
regime. Indeed, Hebbian or post-Hebbian rules of the STDP
type, by modifying the matrix of synaptic weights, may lead to
saturation of neuronal activity and a collapse of the complexity
of the dynamics, from initially AI chaotic activity characteristic
of the waking state (Destexhe et al., 2003; London et al., 2010), to
activity of the limit-cycle or fixed point type (Siri et al., 2007).
We considered here as long term the 1 h time scale, which is
the scale classically used experimentally to test the memory of
synaptic plasticity modifications (Bi and Poo, 1998). Moreover,
a duration of 1 h extends way beyond the classical time scales
used in models (Morrison et al., 2007; Boustani et al., 2012;
Litwin-Kumar and Doiron, 2014). For this purpose, we have
observed the activity (Figure 2A) and connectivity (Figure 2B)
of the network at different time scales, in order to reveal possible
modifications in the network behavior.

Simulations showed that the spontaneous activity of the
network was identical without plasticity (Figure 2A1), after

1 h in the presence of plasticity (Figure 2A2) and after full
convergence (Figure 2A3) of weight matrix dynamics. This
observation is consistent with the absence of changes in the
connectivity matrix in the presence of STDP, even after 1 h
of simulation (Figures 2B2,B3), compared to the condition
without STDP (Figure 2B1). Mechanistically, the low spiking
frequency of neurons resulted in moderate average elevations of
calcium above its basal concentration in synapses, so that kinase
and phosphatase were only very weakly activated. Therefore,
weights underwent extremely slow plastic modifications where
additive t-LTP (which dominated the multiplicative t-LTD at
weak weights) was compensated by synaptic scaling. Due to
these effects, weights converged toward the mean initial weight
of their post-synaptic neuron (Figure 2C) with an apparent
time constant of 2 h, close to the theoretical estimation of the
time constant of plasticity (see Materials and Methods and
Discussion), which predicts a time constant of 1.95 h during
learning at low spiking frequencies and calcium concentrations
(Ca ∼ Ca0) in the AI regime. These steady-state values were
normally distributed, with a constant mean value (due to the
synaptic scaling) and a decreasing standard deviation, due to
the homogenization of weights within each post-synaptic neuron
(Figure 2C). Even with this more homogeneous synaptic matrix
(Figure 2B3), AI dynamics were preserved (Figure 2A3). Indeed,
excitatory frequency was stable (Figure 2D1), as well as markers
of synchrony (Figure 2D2) and irregularity (Figure 2D3). Thus,
overall, the activity regime of the network was not altered
by the presence of plastic processes. Note that in PFC
circuits experiencing dynamically changing feed-forward inputs,
convergence of the synaptic matrix may be attenuated or
even non-existent.

Learning Trajectory Engrams Under AI

Dynamics
Trajectory learning during network activity has already been
investigated in the theoretical literature, but either without
chaotic dynamics or using biologically unrealistic learning
rules (see Introduction). To test for the possibility of learning
trajectories within physiologically irregular activity, we presented
to the network a moving stimulus (Figure 1A, feedforward
connections) that successively activated all the excitatory neurons
over 1,350ms (Figure 3B). Such a stimulation corresponds to a
displacement speed of ∼0.3 neurons/ms, where each excitatory
neuron was stimulated for ∼100ms and discharged at ∼100Hz.
This single stimulus presentation triggered neural activity much
stronger than the spontaneous activity, sufficient to modify
the matrix of synaptic weights. Indeed, whereas the synaptic
matrix was initially formed of low random weights (Figure 3A),
after presentation, the weights of synapses connecting neurons
activated by the stimulus at close successive times were increased
(Figure 3C). This diagonal band of increased weights formed
an oriented connectivity path along stimulus-activated neurons
and is referred to as the trajectory engram hereafter. Weight
modifications inside and outside this trajectory engram resulted
from increases due to t-LTP (Figure 3D1, 1wLTP) and decreases
due to t-LTD (Figure 3D2, 1wLTD). Moreover, the homeostatic
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process of synaptic scaling, which ensures the constancy of the
sum of the incoming weights of the cortical neurons, decreased
the total incoming synaptic weights on post-synaptic neurons,
in order to compensate for weight modifications due to STDP
(Figure 3D3, 1wScaling). In fine, STDP and scaling led together
to an increase in engram weights and a slight decrease in off-
engram weights (Figure 3D4, 1wTotal; also observe the darker
area in Figure 3C, compared to Figure 3A).

The observation, on a local scale, of the details of the
processes at work for the synapses linking the neurons of the
engram allowed for a better understanding of these network
effects. For illustration, neurons #102 and #112, with close
spatial topographical tuning, discharged one following the
other with partial overlap during the stimulus (Figure 3E).
At the level of the synapse between neurons #102 and #112
(102→112), whose orientation was that of the trajectory, the
arrival of pre-synaptic action potentials (APs) was followed by
that of postsynaptic APs (pre #102 then post #112 neuron,
Figures 3E1,E2), which triggered a massive input of calcium
via the VDCC channels and the NMDA receptor channels
(Figure 3F1). Conversely, in the synapse 112→102, for which
the sequence of arrival of the APs was reversed (pre #112
then post #102 neuron), NMDA channels did not open (see
above), such that the calcium input resulted only from the
VDCC channels and was thus moderate (Figure 3F2). These
calcium elevations activated the kinases and phosphatases, which,
respectively, phosphorylated and dephosphorylated AMPA
channels, increasing (t-LTP) and decreasing (t-LTD) synaptic
weights (only phosphorylated AMPA channels are functional and
ensure synaptic transmission). These kinase and phosphatase
activations were important for synapse 102→112 (Figure 3G1),
but less so for the synapse 112→102 (Figure 3G2). For both
synapses (Figures 3G1,G2), the phosphatase was more strongly
activated (lower half-activation; Delord et al., 2007), but the
resulting t-LTD modification rate was low, because it is
multiplicative, i.e., it scales with synaptic weight, which was low.
Conversely, the rate of modification due to t-LTP was higher
because it is additive and depends only on kinase activation
(van Rossum et al., 2000). These STDP effects, cumulated with
those of scaling, resulted in a positive speed (increase in weight),
which was strong for synapse 102→112 (Figure 3G1) and
very weak for synapse 112→102 (Figure 3G2). Together, these
plastic processes increased the weight of the synapse oriented
in the same direction as the stimulus (Figure 3H1) leaving the
weight of the synapse of opposite orientation almost unchanged
(Figure 3H2).

For neurons whose receptive fields weremore spatially distant,
activation by the stimulus occurred at more temporally distant
times (for example, neurons #102 and #202, Figures 3E3,E4). In
this case, regardless of the sequence of arrival of the APs in both
neurons, their succession was too distant in time to open NMDA
channels, so that incoming calcium came only from the VDCC
channels and was therefore low (Figures 3F3,F4). Consequently,
kinase and phosphatase were weakly activated, resulting in
virtually null STDP velocity (Figures 3G3,G4). Synaptic scaling
(Figures 3G3,G4), induced by the increase of weights in the
engram (Figures 3H1,H2), ultimately decreased synaptic weights

(Figures 3H3,H4). As such, there was no learning of any
trajectory between distant neurons, contrary to what happened
between closer neurons.

Trajectory Replays From Learned

Trajectory Engrams
In behaving animals, learnt trajectories are replayed later
in appropriate behavioral conditions. In the model, we
assessed whether trajectories could be replayed, the dynamics
of trajectory replays and the way they affect the network
connectivity compared to before they occur (Figure 4A).
Trajectory replay was defined as the reactivation of neurons
of the entire trajectory engram, after temporarily stimulating
only initial neurons at the beginning of the engram. To
assess trajectory replay in the network, we applied a stimulus
of 100ms to the first 50 neurons of the engram, 500ms
after trajectory learning was completed (Figure 4B). We
found that the network was able to replay the trajectory
entirely after learning (Figure 4B1). Fundamentally, the
replay emerged because neurons were linked by strong
synapses so that preceding neurons activated subsequent
neurons in the engram, forming an oriented propagating wave
(Figure 4B2).

Because it activated neurons at several tens of Hz, the
replay could have brought into play plastic processes at
the synapses forming the engram, and, in doing so, either
reinforce or diminish their weights, possibly disturbing or
even destroying the engram. To evaluate these possibilities,
we observed the variation of synaptic weights before and
after the replay. We found that after replay, the engram
was still present (Figure 4C) and its structure identical to
that before replay (Figure 4A). However, when dissecting
the effects at work, we found that the engram had slightly
thickened during the trajectory replay, due to the combined
effect of t-LTP (Figure 4D1 1wLTP), t-LTD (Figure 4D2

1wLTD) and scaling (Figure 4D3 1wScaling). Weights
above and below the engram increased, whereas weights
slightly decreased within the engram (Figure 4D4, 1wTotal,
red fringes).

Up to this point, the neural trajectory was presented as a
whole. However, whole trajectories are generally not accessible
directly to the PFC. Rather, PFC circuits generally encounter
elementary trajectory fragments at separate points in time to
produce prospective planning of future behaviors (Ito et al.,
2015; Mashhoori et al., 2018; Kaefer et al., 2020), as well as
learn transitions between them and chunk fragments together
as whole trajectories independently of their presentation order
(ordinal knowledge) (Ostlund et al., 2009; Dehaene et al., 2015).
We trained the network with four fragments of the whole
trajectory, noted A-D, that overlapped at their extremities and
which were presented sequentially every 2 s, so as to learn
separately different parts of the trajectory (Figure 4E). We found
that, once fragments were presented in forward order (ABCD),
stimulating neurons at the beginning of the A fragment induced
propagation of activity that recapitulated the whole trajectory,
by subsequently recalling ABCD fragments in the forward order
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(Figure 4E1). Therefore, the network was able to learn trajectory
fragments themselves and the transitions between fragments
so as to chunk them into a whole trajectory. Moreover, we
found that chunking was possible even when fragments had
been learned in reverse order (DCBA; Figure 4E2). Hence, the
network was able to replay a chunked trajectory based on the
presentation of overlapping stimuli, independently of their order
of presentation.

Functional Diversity of Trajectory Replays
Neural activity during the replay was less focused than the
stimulus trajectory (Figure 4B), i.e., it involved more (∼90 vs.
35) neurons, spiking at a lower (∼65 vs. 100Hz) discharge
frequency. The replay also unfolded at a faster speed, lasting
∼750 ms—for a stimulus of 1,350 ms—so that it exhibited a
temporal compression factor (tCF) of ∼1.8, which is situated
between fast and regular timescale replays observed in animals.
Regular timescale replays operate at the timescale of behaviors
they were learnt from, i.e., a few seconds (in navigation or
working memory tasks, e.g.), hence typically displaying tCF∼1.
By contrast, fast timescale replays last several hundred ms in
the awake PFC (200–1,500ms; Jadhav et al., 2016; Mashhoori
et al., 2018; Kaefer et al., 2020), yielding several-fold compression
factors (tCF∼2–15). We assessed whether varying biophysical
parameters of the network could account for durations and
tCF ranges characterizing regular and fast replays. As regular
and fast timescale replays frequently alternate within trials in
behavioral tasks, we discarded trivial replay speed control that
can be readily obtained by scaling structural parameters that
vary at extremely slow timescales (e.g., number of neurons
in the trajectory, synaptic delay, etc., not shown). Rather, we
focused on synaptic and intrinsic neuronal properties likely to
be rapidly regulated by ongoing neuromodulation in the PFC,
as attentional demands or reward outcomes vary at the trial
timescale. Among passive and synaptic neuronal parameters
tested, the NMDA conductance decay time constant (τNMDA)
emerged as a critical factor controlling the duration and tCF of
replays. Hence, the same network, taught with the same trajectory
and stimulated with the same initiation stimulus, could generate a
large range of replay timescales spanning from regular (duration
1,680ms, tCF = 0.8; Figure 5A1) to fast (duration 375ms,
CF∼3.6; Figure 5A2) replays, when the decay time constant
of NMDA, τNMDA, was varied. Consistently, dopaminergic
neuromodulation, the major determinant of reward signaling,
rapidly slows the decaying dynamics of NMDA currents in
PFC circuits (Chen et al., 2004; Onn and Wang, 2005; Onn
et al., 2006). Such neuromodulatory effects, as well as others
forms of neuromodulation of NMDA dynamics (Lutzu and
Castillo, 2021) may control the duration and compression
factor of trajectory replays, as well as the relative rate of
occurrence of regular vs. fast timescale replays. Inspecting
neuronal activity during replays in terms of firing frequency,
we found that in single replays individual neurons displayed
a sequence of overlapping transient bumps of activity of a
few hundred milliseconds (Figure 5B1) resembling “relay race”
of PFC individual activities during regular replays in working
memory tasks (Batuev, 1994; Brody et al., 2003; Cromer et al.,

2010; Yang et al., 2014; Schmitt et al., 2017). By contrast, the
averaged frequency over the population of excitatory neurons
displayed a persistent decaying activity pattern that lasted at
the second time scale (Figure 5B2) and mimicked population-
level working memory maintenance in the PFC (Murray et al.,
2017; Cavanagh et al., 2018; Enel et al., 2020). This dichotomy
recalls that found in the PFC, whereby individual neurons
encode information at short timescale while the population
holds stabilized persistent representations on longer timescales
(Meyers et al., 2008; Murray et al., 2017; Cavanagh et al., 2018).
Moreover, we found that inter-trial variability for each neuron
was important, due to disordered network AI dynamics, and
that it increased as activity traveled later in the trajectory in
individual neurons (Figure 5B3) and at the population level
(Figure 5B4), as found experimentally (Compte, 2003; Shafi et al.,
2007; Tiganj et al., 2017).

Globally, the model thus not only indicated that it was
possible to learn trajectories online by creating synaptic engrams,
thanks to the STDP-type plasticity rule. It also showed that
learned trajectories were functional as a memory process, in
the sense that their replay was possible and globally preserved
the synaptic structure of the learned engram. Finally, the model
accounted for the large functional diversity of replays observed
in behaving animals, both with regard to the timescale (fast vs.
regular) they exhibit, as well as to the type of coding (dynamical
vs. stable) they may subserve in navigational or working
memory tasks.

Stability of Network AI Dynamics in the

Presence of Trajectory Engrams
After evaluating the stability of the learned trajectory in the
presence of AI network activity, we asked the symmetrical
question, i.e., whether the engram of a previously learned
trajectory could alter the irregular features of spontaneous
network dynamics. Indeed, the altered synaptic structure
(which implies large weights in all neurons of the recurrent
network) may induce correlated activations of neurons
(e.g., partial replays) resulting in runaway activity-plasticity
interactions and drifts in network activity and synaptic
structure. We monitored network connectivity (Figure 6A)
and activity dynamics (Figures 6B1–B3) for 1 h to assess
the stability of the spontaneous AI regime in the presence
of the engram. We observed that following learning of the
engram, synaptic weights outside the engram (i.e., responsible
for the AI dynamics) increased exponentially toward their
new steady-state in a very slow manner (Figure 6A) with an
apparent time constant of 1.91 h, consistent with the theoretical
estimation of 1.95 h (see above). This increase resulted from
the decrease of within-engram large synaptic weights via
synaptic scaling (Figure 6E1, see above). Despite this slow
and moderate structural reorganization, AI dynamics were
preserved with stable frequency (Figure 6B1), synchrony
(Figure 6B2), and irregularity (Figure 6B3). Thus, overall,
both the synaptic structure outside the engram as well as the
spontaneous AI regime remained stable in the presence of
the engram.
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FIGURE 4 | Replay of learned trajectories. (A). Synaptic matrix between excitatory neurons after stimulus presentation but prior to trajectory replay. (B). Membrane

potential of network neurons (B1, spikes indicated by black dots) in response to the trajectory stimulus, followed by a transient trajectory replay triggered by

stimulating the start of the trajectory (neurons #1–50, stimulus in red). Membrane potential of a selected subset of neurons along the trajectory (B2, arbitrary colors).

(C). Synaptic matrix between excitatory neurons after stimulus and replay. (D). Weight modifications resulting, after compared to before trajectory replay, from t-LTP

(D1), t-LTD (D2), scaling (D3), and their sum (D4). (E) Recapitulation of the whole trajectory after separately learning four individual trajectory fragments (ABCD) in the

forward order (E1; chunking) or backward order (E2; ordinal knowledge). Each fragment corresponds to 180 neurons. Fragments overlap over 65 neurons.

Memory of Trajectory Engrams in the

Presence of Network AI Dynamics
We then studied whether the spontaneous AI activity could
disrupt the engram of the learned trajectory and the possibility

for trajectory replay. Indeed, the trajectory engram may be
gradually erased, due to AI activity at low frequency favoring
t-LTD, or even amplified, due to the activity in the trajectory
engram caused by plasticity (resulting in further plasticity
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FIGURE 5 | Functional diversity of trajectory replays. (A) Trajectory replay duration (upper left white bar) and compression factor (tCF; lower right) depend on the

NMDA conductance decay time constant (τNMDA, range 30–150ms). NMDA maximal conductance was scaled (range 0.475–1.8) so as to insure similar levels of firing

frequency drive during trajectory replays. Regular (A1) and fast (A2) timescale replay are due to slower and faster NMDA dynamics. (B). Single-trial (B1, B2) and

inter-trial variability (B3,B4) of firing frequency of individual neurons (B1,B3) and of the population (B2,B4) for 10 different simulations similar to the replay shown

Figure 4B. Lines represent mean values, shaded regions represent 95% confidence intervals of the mean.

runaway). To do so, we assessed the timescale of potential drifts
in engram connectivity and activity following learning, and of the
network ability to replay the engram. Intuitively, engram erasure,
runaway or stability probably depended on network dynamics
after learning: spontaneous AI regime, spontaneous replays, or
other forms of activity.

To address these questions, we simulated the network for
1 h after trajectory learning and recorded “snapshots” of the
continuous evolution of the synaptic matrix every minute.
Using these successive recorded matrices as initial conditions
for independent simulations of replays, we were able to quantify
network ability for trajectory replay, at different times of the
evolution of the network. We found that while trajectory replay
occurred in full after 1 s, activating all neurons of the trajectory
(Figure 6C1), it was slightly attenuated after 1min (last neurons

spiking at lower frequency; Figure 6C2) and failed after 1 h
(Figure 6C3). Observing the synaptic matrix at these three
moments allowed us to understand the origin of this degradation
in replay ability. Indeed, whereas after 1min (Figure 6D2), the
synaptic weights of the engram changed only a little compared
to 1 s (Figure 6D1), the engram was narrowed and weights
attenuated after 1 h (Figure 6D3). Such degradation of the
engram was probably the cause of the failure to replay the
trajectory 1 h after learning.

To more precisely monitor degradation of the trajectory
engram and replay, we measured averaged engram weights as
well as replay frequency and duration across time. We found
that the engram weights declined exponentially with a fitted time
constant of 1.91 h (Figure 6E1), very close to that predicted by
the theory (1.95 h). The measures of trajectory replay decreased
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FIGURE 6 | Stability of the spontaneous AI regime in the presence of the engram. (A). Average synaptic weights outside the engram after learning for 1 h. Shaded

areas represent 95% confidence intervals of the mean for 5 network simulations. (B). Networks dynamics after learning for 1 h: frequency (B1), synchrony (B2), and

irregularity (B3) of excitatory neurons. Shaded areas as in (A). (C). Membrane potential of neurons in the neural network for 3 s following a replay stimulation of the 50

first neurons at 1 s (C1), 1min (C2) or 1 h (C3) after trajectory learning. (D) Synaptic matrices between excitatory neurons of the network, at the end of the simulations

presented in (C). (E) Network engram synaptic weight average (E1) as well as frequency (E2) and duration (E3) of trajectory replays during 1 h after trajectory learning.

Shaded areas as in (A).

faster than the engram weights, with time constants of ∼54min
for mean frequency during the replay (Figure 6E2) and∼13min
for replay duration (Figure 6E3). Specifically, replay of the full
trajectory lasted 4min. The degradation of trajectory replay was
mainly due to progressive replay failure in the neurons located
later in the trajectory engram. The faster decrease in trajectory
activity, compared to the average engram weights, was probably
a consequence of a cooperative mechanism of propagation in
the engram: the non-linearity in NMDA current activation,
requiring synergistic activation of pre- and post-synaptic neurons
in the engram, rendered the propagation of activity non-linearly
sensitive to decreases in engram weights.

Repeated Trajectory Replays Can

Destabilize Trajectory Engrams and

Replays
We have observed that a single replay of the trajectory only
marginally modified the engram (Figure 4C vs. Figure 4A).
However, we assessed whether replay repetitions could
strengthen the engram significantly further. Such strengthening
through repetition could compensate for the engram erasure
due to spontaneous activity after the learning (Figure 6E1) and
its functional consequence, the relatively rapid loss of replay
capacity (Figures 6E2,E3). Intuitively, the partial increase in
weight at the border of the trajectory engram after one replay
(Figure 4D4 1wTotal, red fringes) could, after repeated replays,
be strong enough to counteract the decrease observed outside

replays during memorization (Figure 6D3, light blue fringe).
To test this possibility, we repeated the replay stimulus every 3 s
for 30 s after the presentation of the initial trajectory stimulus
(Figure 7A). We observed, from the very first seconds, and even
before we could test the effect of the protocol at larger timescales,
that these successive stimuli, initially triggering correct trajectory
replays, rapidly led to hyperactivity involving most of the
neurons in the network (Figure 7A1). Such paroxysmal activity
typically appeared via avalanche dynamics activating neurons at
the end of the trajectory (a fraction of the network, therefore),
which propagated to the whole network at increasingly higher
discharge frequencies (up to tens of Hz). Moreover, this activity
had an oscillatory component, visible on the time course of the
frequency of the excitatory and inhibitory neurons (Figure 7A2).
This paroxysmal activity partially erased the engram of the
learned trajectory via synaptic scaling (Figure 7B), making it
impossible to replay the trajectory following this seizure (see last
stimulus, Figure 7A1), consistent with similar effects found in
empirical observation during epileptic seizures (Hu et al., 2005;
Meador, 2007; Truccolo et al., 2011).

Slow Learning Stabilizes Trajectory

Engram and Replays
As the repetition of replay learning led to over-activation of the
trajectory with plasticity speed parameters sufficiently fast for
a single stimulus presentation to be learned and replayed, we
investigated how slower STDP kinetic coefficients could prevent
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FIGURE 7 | Unstable engram and network dynamics after repeated trajectory

replays. (A). Membrane potential of neurons in the neural network (A1) for 30 s

during which a replay stimulus is performed on the first 50 neurons every 3 s.

Mean activity of excitatory (red) and inhibitory (blue) neurons (A2). (B). Matrix

of synaptic weights between excitatory neurons before (left) and after (right)

paroxysmal network activity.

paroxysmal activity during stimulus presentations and replays.
For this, we used smaller values of Kmax and Pmax, i.e., here,
divided by a factor of 6. With these values, 4 presentations of
the trajectory stimulus were necessary for increasing the engram
weights enough to sustain trajectory replays (Figure 8A). After
such a learning protocol, the replay of the full trajectory was
possible even beyond 1 h after learning (Figure 8B), whereas
replay ability lasted only a few minutes with previous parameters
(Figures 6E2,E3). This increase in replay memory timescale is
consistent with that of the engram time constant, which was
11.5 h (Figure 8C), of the order of its theoretical estimation
∼11.7 h, i.e., it was increased by a factor 6 compared to that
obtained with previous parameters (1.91 and 1.95 h, respectively
Figure 6E1). Remarkably, the memory of trajectory replay was
increased by a factor >20 (trajectory completely replayed at
>1.4 h vs. 4min with previous parameters), so that, relatively
to the timescale of the trajectory engram, the timescale for
trajectory replay was further increased by a factor 3.5. Indeed,
the presentation of several stimuli recruited a thicker-tailed
weight distribution, with higher probability of large weights
(blue curve above the red one in ∼0.05–0.125; Figure 8D) but

lowered probabilities of highly-weighted synapses (blue curve
with negligible probabilities above 0.15; Figure 8D), because
successive trajectory stimuli simultaneously evoked progressively
stronger trajectory replays, recruiting more neurons at lower
frequencies (Figure 8A), therefore imprinting larger engrams.
Thus, slower plasticity kinetics required a larger number of
successive presentations to learn the trajectory, but ensured a
more robust engram involving more synapses, resulting in a
better resilience to forgetting, i.e., a better quality of learning.

Finally, we assessed whether slow plasticity with multiple
stimulus presentations also preserved network dynamics. AI
dynamics were preserved with stable frequency (Figure 8E1),
synchrony (Figure 8E2), and irregularity (Figure 8E3). We
then repeated the replay stimulus every 3 s for 30 s after the
presentation of the initial trajectory stimulus, a protocol which
led to paroxysmal activity when considering fast plasticity.
With slower kinetics, multiple replay stimuli triggered correct
trajectory replays for the whole duration of the simulation
(Figure 8F). We then asked whether a threshold of plasticity
speed exists above which paroxysmal activity is triggered, or,
conversely, the risk of paroxysmal activity linearly scales with
the ability to learn fast. To do so, we parametrically explored
simulations with plasticity rate divided by a slowdown factor in
the range 1–10. The minimal number of stimulus presentations
required to form a strong enough engram (i.e., allowing a replay)
increased slowly with slower plasticity kinetics (Figure 8G, red).
In parallel, the increase in the maximal number of replays
before turning network dynamics into paroxysmal activity
was much larger (Figure 8G, black), so that slowing plasticity
kinetics increased the physiological range allowing learning
while preserving network dynamics from paroxysmal activity.
Hence, plasticity slow enough to preserve healthy dynamics
may constitute a key constraint on the ability to learn rapidly.
Furthermore, if the product of plasticity speed with the number
of stimulus presentation was constant, it would indicate a linear
summation of plastic effects arising from each presentation. By
contrast, the number of stimulus presentations necessary for
replay was lower than the factor of plasticity slowdown (5 stimuli
for 10x plasticity slowdown instead of 10 stimuli, Figure 8G).
This is due to successive stimulations overlapping with replays
(i.e., stimulus presentations after the first one induce replays,
Figure 8A), suggesting progressive facilitation of learning at slow
plasticity speeds.

DISCUSSION

Here, we show that it is possible to learn neural trajectories
(dynamical representations) using a spike timing-dependent
plasticity (STDP) learning rule in local PFC circuits displaying
spontaneous activity in the asynchronous irregular (AI) regime.
We used a physiological model of plasticity (Delord et al.,
2007; Graupner and Brunel, 2012; He et al., 2015) continuously
occurring online, i.e., without decoupling simulations of learning
and activity. Presentation of a dynamic stimulus, the trajectory,
resulted in the writing of a synaptic engram of the trajectory on
a rapid timescale (seconds), as well as its long-term storage at
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FIGURE 8 | Slower learning stabilization of the engram and network dynamics. (A). Membrane potential of the neural network in response to the presentation of 4

trajectory stimuli in the presence of slower STDP learning kinetics. (B). Membrane voltage of the neural network for 3 s following a replay stimulation on the first 50

neurons at 1 s, 1 h after trajectory learning. (C). Average weight of all engram synapses after learning for 1 h. (D). Probability distribution of the synaptic weights of the

excitatory synapses after 4 presentations of the trajectory stimulus during slow learning (blue), and after one presentation of the trajectory stimulus during learning with

faster (standard) parameters (red). (E) Networks dynamics after learning with slow plasticity: frequency (E1), synchrony (E2), and irregularity (E3) of excitatory neurons.

Shaded areas represent 95% confidence intervals of the mean for five network simulations. (F) Membrane potential of the neural network for 38 s during which a

replay stimulus is performed on 50 neurons every 3 s for 10 total repetitions (as in Figure 7A) after 4 trajectory stimuli in the presence of slower STDP learning kinetics

(as in Figure 8A). (G) Minimal number of stimulus presentations required to learn a replay (red) and maximal number of replays before paroxysmal activity (black), as a

function of the plasticity slowdown factor expressed in units of plasticity standard time constant (i.e., by which slowdown factor plasticity rates are divided). The

number of replays until explosion is evaluated with the same weight matrix (learned at standard plasticity speed or x1 slowdown) across different plasticity speeds, for

better comparison of the effect of plasticity speeds on replay. Shaded areas represent 95% confidence intervals of the mean for 10 network simulations.

the timescale of the order of several hours. The network replayed
the trajectory upon stimulation of a subset of the engram at the
timescale of the order of dozens of minutes. These results indicate
that disordered AI activity does not necessarily jeopardize the
encoding and replay of neural trajectories. Conversely, the
weak but continuous plastic processes that noisy AI produces
did not erase the synaptic engram of neural trajectories, at
least before several hours. In turn, the learning of a trajectory

engram within network synapses was not found to alter the AI
characteristics of PFC activity. From a functional perspective,
we show that trajectory activity accounted for both types of
dynamics subserving working-memory in the PFC, i.e., persistent
activity (Constantinidis et al., 2018) and dynamical coding
(Lundqvist et al., 2018), and help understanding how they can
be reconciled (Murray et al., 2017; Cavanagh et al., 2018; Enel
et al., 2020). Together, these results offer a consistent theoretical
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framework accounting for how dynamical representations can
be learned, memorized and replayed in PFC circuits in
physiological conditions.

This model was built to reproduce functional phenomenology
of the PFC (learning, replays at different timescales, dynamic or
persistent coding, see below), based on biophysical constraints
from the experimental literature at the molecular, cellular and
network levels, rather than by artificial training. If overall
architectural properties of the model are observed in the
PFC, such properties are also compatible with other non-
prefrontal cortices with trajectory replays, lending strength to
the genericity of the current study’s results. For example, the
excitatory/inhibitory network balance, observed in the PFC
(Shu et al., 2003; Haider et al., 2006), is also observed and
essential to computations across non-PFC structures (Isaacson
and Scanziani, 2011). Similarly, the over-representation of
bidirectional connections in the PFC (Wang et al., 2006) is
a general property in cortical networks (Song et al., 2005).
While the PFC has been less subject to the investigation of
synaptic scaling compared to other structures, its presence across
many non-PFC cortical structures (for e.g., sensory cortices,
hippocampus, motor cortex) and crucial role for synaptic
learning stabilization (Keck et al., 2017) makes it a plausible
mechanism in PFC. Certain lines of evidence suggest its presence
in PFC (Wang and Gao, 2012; Sweatt, 2016), although further
confirmation is needed.

In the model, external feedforward inputs are constant, as in
previous models of characteristic PFC activity (for e.g., Brunel,
2000). Therefore, the variability of neuronal discharge observed
in the network entirely arises from internal dynamics among
recurrent connections, as the network is in the asynchronous
irregular regime (Destexhe et al., 2003; London et al., 2010).
It would be interesting to study versions of the model with
feedforward inputs variability, as occurring in real PFC circuits.
However, this option was out of scope as we focused on
the internal interactions between the spontaneous AI regime,
learning processes affecting the synaptic matrix and trajectory
replays. As another potential extension to our study, one could
explore the influence of rhythmic inputs from the hippocampus
(theta rhythms, Siapas et al., 2005; Benchenane et al., 2011) or
from the olfactory pathways (delta rhythms,Moberly et al., 2018),
which are known to be important for behaviorally-relevant neural
activity and memory replays.

Molecular Plasticity and Memory in the

PFC
In the PFC, e-STDP necessitates more than the pre-post
synaptic pairings used in spike-timing protocols, as long-term
potentiation (t-LTP) emerges in the presence of dopaminergic or
cholinergic tonic neuromodulation, or when inhibitory synaptic
transmission is decreased (Couey et al., 2007; Xu and Yao,
2010; Ruan et al., 2014). Moreover, Hebbian STDP (i.e., t-
LTP for pre-then-post and t-LTD for post-then-pre spiking) is
observed when followed by phasic noradrenergic, dopaminergic
or serotoninergic neuromodulation (He et al., 2015). Hence,
we assumed that t-LTP and t-LTD co-exist, and STDP is thus
Hebbian, in the PFC of behaving animals, where both phasic
and tonic neuromodulation are encountered during behaviorally

relevant learning (Dembrow and Johnston, 2014). The present
study did not incorporate noradrenergic, serotoninergic and
dopaminergic transformation of eligibility traces into effective
plastic modifications found at PFC excitatory synapses (He
et al., 2015), a possible substrate of context- and reward-
modulated learning in PFC circuits (Ellwood et al., 2017).
The present work also did not consider alternative biophysical
processes that may participate to sculpt dynamical and flexible
neural representations in the PFC (Buonomano and Maass,
2009; Stokes, 2015). For instance, short-term synaptic plasticity
(Mongillo et al., 2008)may affect network dynamics through slow
hidden (e.g., biochemical) variables. Such a silent-based coding
of past activity could possibly account for the near-complete
disappearance of activity observed sometimes during working
memory (Stokes, 2015) and its interaction with activity-based
working-memory in the PFC (Barbosa et al., 2020) remains
to be elucidated. Similarly, inward current-mediated bistability
such as with persistent sodium, or calcium-activated non-
specific currents (Delord et al., 1997; Rodriguez et al., 2018),
can produce cellular forms of memory that may take part in
dynamic representations in the PFC, either through retrospective
memory of past information or in prospective computations of
forthcoming decisions and actions. Finally, the present study
did not consider anti-homeostatic forms of intrinsic plasticity
(i.e., the plasticity of intrinsic properties) which may represent
an essential mean to learn and regulate dynamic representations
(Zhang and Linden, 2003).

Stable Spontaneous AI Dynamics in the

PFC in the Presence of Plasticity and

Learning
Hebbian forms of plasticity (Abbott and Nelson, 2000), such as
the STDP of excitatory synapses (Markram et al., 2012) modeled
here, increase weights between neurons that are frequently
co-activated. Stronger synapses potentiated by STDP, in turn,
statistically increase the frequency of future co-activations. These
rules thus constitute positive feedback loops (anti-homeostatic)
between activity and connectivity. As a consequence, synaptic
runaway (Keck et al., 2017; Zenke et al., 2017) produces
network instability toward saturated or quiescent activity and
connectivity. In recurrent network models, synaptic plasticity
typically decreases the dynamics complexity toward regular
activity such as limit-cycle or quasi-periodic attractors (Morrison
et al., 2007; Siri et al., 2007; Litwin-Kumar and Doiron, 2014)
that resembles neural dynamics encountered during sleep or
paroxysmal crises. However, activity in the PFC and other
cortices during wakefulness is characterized by asynchronous
irregular spiking at low frequency (Ecker et al., 2010; Renart
et al., 2010), due to the balance between strong excitatory
and inhibitory synaptic currents (Destexhe et al., 2003). AI
spiking is compatible with critical or even chaotic dynamics
(Beggs and Plenz, 2003; Hahn et al., 2010; London et al.,
2010), which may benefit temporally complex computations
(Bertschinger andNatschläger, 2004) believed to be performed by
the PFC (Compte, 2003).

Many studies show that e-STDP rules are deleterious to AI
dynamics such that compensating homeostatic mechanisms are
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required to control neuronal activity, for e.g., a metaplastic
e-STDP rule with sliding-threshold (Boustani et al., 2012),
synaptic scaling (which keeps the sum of pre-synaptic excitatory
weights constant, Zenke et al., 2013), STDP of inhibitory
synapses (i-STDP; ensuring excitation-inhibition balance, Vogels
et al., 2011) or intrinsic plasticity of ionic conductances
(regulating action potential threshold, Naudé et al., 2013).
In the present detailed biophysical model, we found that a
combination of e-STDP where all pre-/post- pairings were
taken into account (all-to-all STDP), together with synaptic
scaling, preserves AI dynamics. All-to-all e-STDP without
scaling can also preserve AI dynamics, but at the price of
unstable fluctuating synaptic weights (Morrison et al., 2007),
while weight distributions were stable here. Moreover, the
present study shows that network stability held not only with
random recurrent connections, but also in the presence of an
engram involving a significant fraction of strong, potentiated
synapses in all excitatory neurons. In the absence of synaptic
scaling, learning static patterns into synaptic engrams with e-
STDP disrupts AI dynamics toward pathological high-frequency
oscillations (Morrison et al., 2007; Litwin-Kumar and Doiron,
2014), or with i-STDP leads to AI activity with unrealistic
high firing frequency states and sharp state transitions (Litwin-
Kumar and Doiron, 2014), at odds with PFC dynamics in
awake animals (Compte, 2003). A metaplastic form of e-STDP
conserves AI dynamics on a short-timescale (one second) but
AI stability remains unchecked at longer timescales (Boustani
et al., 2012). This is only the case with static stimulus, as
learning receptive fields using dynamical stimulus leads to
a catastrophic decrease in the complexity of the AI regime
(Boustani et al., 2012). Altogether, our study thus suggests that
synaptic scaling represents a more efficient form of homeostatic
compensation (rather than metaplastic e-STDP, or i-STDP) for
learning trajectory engrams without the deleterious effects of
STDP disrupting AI dynamics. We used here an instantaneous
synaptic scaling, because our model, like most models, requires
synaptic scaling at faster or equal timescales than synaptic
plasticity for stable learning, far from the experimentally
observed homeostatic or metaplastic timescales of hours to
weeks (Zenke et al., 2017). This constraint suggests the existence
of as yet unidentified rapid compensatory processes, potential
candidates being heterosynaptic plasticity (Fiete et al., 2010),
intrinsic plasticity (Zhang and Linden, 2003; Naudé et al., 2013),
input normalization by feed-forward inhibition (Pouille et al.,
2009; Keck et al., 2012), and the implication of astrocytes
(Papouin et al., 2017). Additionally, at slower timescales,
sleep-dependent consolidation mechanisms may provide global
compensatory synaptic down-scaling offline (Tononi and Cirelli,
2003).

Learning Dynamical Representations in the

PFC Under AI Dynamics
Phenomenological e-STDP models fail to learn engrams in
noisy AI states because of their sensitivity to spontaneous
activity. The absence of STDP weight-dependence forbids
learning and induces the direct loss of engrams (Boustani

et al., 2012), while without synaptic scaling, learning fails
with catastrophic consequences in terms of network dynamics
(see above; Morrison et al., 2007). A weight-dependent e-
STDP rule endowed with homeostatic metaplasticity (instead
of synaptic scaling, as here) allowed learning the engram of a
presented stimulus while preserving AI dynamics, although it
unrealistically left neurons of the engram in a state of permanent
activity (Boustani et al., 2012). Likewise, i-STDP enables learning
of engrams, but with unrealistic AI activity (see above; Litwin-
Kumar and Doiron, 2014). Here, we find that the combination of
a weight-dependent Hebbian e-STDP rule and synaptic scaling
allows for the learning of engrams in local PFC recurrent
networks under conditions of AI dynamics, as found in
behaving mammals.

Phenomenological STDP models based on neighboring spike-
doublet or spike-triplet schemes often produce side effects (either
sensitivity to noisy activity, or runaway plasticity) due to the
temporal bounds of the pre- and post-couplings they consider
(Boustani et al., 2012). The present STDP model describes
continuous post-synaptic biophysical dynamics that account for
all pre-/post-pairings (all-to-all STDP) and is thus more realistic
than phenomenological STDP models. Here, the temporal
asymmetry of the spike-timing dependence of the e-STDP rule
arises from a detailed description of calcium dynamics. Calcium
arises from two different sources of calcium that originate from
the influence of AMPA, NMDA and VDCC channel activations
(see Materials and Methods; Graupner and Brunel, 2012),
which accounts for the relative influence of pre-synaptic evoked
excitatory post-synaptic potentials and of backpropagating post-
synaptic activity. However, this rule remains simple compared to
models describingmore complete signaling scenarios (Manninen
et al., 2010), allowing simulation at the network scale.

In feed-forward networks endowed with this STDP rule,
and for conditions of spiking frequency and irregularity similar
to AI activity, plastic modifications essentially depend on
firing frequency rather than on the precise timing of spikes,
because equivalent probabilities of encountering pre-then-post
and post-then-pre spike pairs in conditions of stationary
spiking essentially blurs net spike-timing effects (Graupner
et al., 2016). Moreover, t-LTP dominates t-LTD, because t-
LTD is multiplicative (Bi and Poo, 1998; van Rossum et al.,
2000), i.e., scaled by weak weight values (Graupner et al.,
2016). Consistent with these observations, in the present PFC
recurrent network model, plasticity was essentially frequency-
dependent under conditions of stationary spiking, and t-
LTP dominated t-LTD under spontaneous AI dynamics, being
principally compensated by synaptic scaling. However, during
trajectory presentation or trajectory replay, i.e., when pre-
post spiking was enforced to be temporally asymmetric, t-LTD
nevertheless contributed to compensate t-LTP and determined
overall resulting modifications on the same order than scaling.

The previous studies that have addressed the possibility
of engram learning in recurrent networks with AI dynamics
focused on static stimuli (Morrison et al., 2007; Boustani et al.,
2012; Litwin-Kumar and Doiron, 2014). By contrast, our study
demonstrates engram learning and activity replay of dynamical
stimuli, such as the sequences or trajectories of activity that
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occur during cortical AI dynamics in behaving animals (Kaefer
et al., 2020). Standard static Hebbian assemblies, which learn
static stimuli through strong bidirectional connections between
neurons of the assembly and replay the static activity through
pattern completion, induce avalanche-like convergent dynamics
toward a static attractor, which are too low-dimensional to
account for physiological data. Remarkably, the present study
demonstrates the possibility for engrams of dynamic stimuli in
the disordered AI state, despite the fact that they relied on mono-
directional strengthening of synaptic connections, which favors
propagation of activity, but does not allow for the convergent
effect of static patterns and the positive feedback inherent to it.

Long-Term Memory of Dynamical

Representations in the PFC Under AI

Dynamics
The present study underlines the importance of slow plasticity
kinetics together with repeated presentations for learning
dynamic representations in PFC networks. Faster kinetics
allowed one-shot learning of trajectory engrams, but extensive
training could then induce paroxysmal activity during the
trajectory replays that partly erased the engram, which was
ultimately detrimental to the learning and replay process. This
synchronous increase in neuronal activity in the model is
reminiscent of epileptic seizures (Truccolo et al., 2011), which
have been found to cancel out the plasticity effects of synaptic
weights (Hu et al., 2005), and affect memory (Meador, 2007),
as we found here. By contrast, slower kinetics resulted in more
stable engrams, while highlighting the importance of repeated
presentations of the dynamic stimulus, similarly to observations
with static patterns (Boustani et al., 2012). Parametric exploration
of plasticity kinetics showed a tradeoff between the number
of stimulus repetitions required to form an engram and the
risk of paroxysmal activity. However, slowing down plasticity
decreased the risk of over-activation while preserving the ability
to learn fast (even though not through one-shot learning).
Consistent with our results, learning occurs gradually in the
PFC, and at a slower pace than in the hippocampus and basal
ganglia (Pasupathy and Miller, 2005; Buschman and Miller,
2014). The tradeoff between fast learning and paroxysmal risk
may constitute a constraint for the PFC, with the preservation of
asynchronous irregular dynamics preventing one-shot learning
based on synaptic plasticity alone. One-shot learning, which
occurs in well-trained animals, may thus require additional
mechanisms for structural learning (Gallistel and Matzel, 2013).

Fast learning together with stable memory is considered
in many synaptic plasticity models to rely on auto-
phosphorylation of the calmodulin-dependent protein kinase
II (CaMKII). CaMKII auto-phosphorylation is appealing
because it constitutes a positive-feedback loop (inducing
fast plasticity) underlying bistable dynamics (providing
infinite memory of a single potentiated synaptic state).
However, we did not consider CaMKII in the present model,
because CamKII is not necessary to the maintenance of
synaptic modifications (Chen et al., 2001; Lengyel et al.,
2004). Moreover, activity-dependent synaptic modifications

are not systematically bistable (i.e., they can be graded;
Montgomery and Madison, 2002; Tanaka et al., 2008; Enoki
et al., 2009) and they can fade with time scales from seconds
to minutes (Hempel et al., 2000).

Here, the stability of molecular memory originated from
extremely slow synaptic weight dynamics, resulting in slow
exponential forgetting of the engram. Slow weight dynamics
arose from activity-dependent kinase and phosphatase (aKP,
Delord et al., 2007), which are weakly activated at near-basal
calcium concentrations associated with low spiking frequency
during AI dynamics. Such aKP signaling processes are ubiquitous
(e.g., PKA, PKC, calcineurin) and confer an activity-dependent
control over the rate of plasticity and memory (Delord et al.,
2007), which is essential for flexible learning in the PFC (Fusi
et al., 2005). Alternatively, when implemented with low copy
molecule numbers at individual synapses, bistable models faced
with noise also exhibit exponential forgetting of memory when
averaged over synapses and trials (Fusi et al., 2005). Here, the
memory of the trajectory engram admitted an effective time
constant of the order of 2 h in network simulations, consistent
with its theoretical prediction (see Materials and Methods), but
longer memories could be expected for lower values of Pmax

and Kmax, the maximum phosphatase and kinase activations.
However, the time constant for plasticity would also increase,
slowing learning too, while its current value is compatible with
induction times of synaptic plasticity (Malenka et al., 1992).
Alternatively, a higher calcium phosphatase half-activation (PCa),
which is physiologically possible (Delord et al., 2007), would
allow for a longer memory timescale while preserving rapid
learning (at large calcium, the time constant of plasticity is
independent of PCa). Hence, specifying biophysical models
with precise kinetic parameters is essential because they have
huge consequences on the stability of network dynamics,
learning and the time scale of memory (Zenke et al., 2013).
Specifically, homeostatic scaling appeared important here as
for learning, since its absence was reported to forbid the
memory of static patterns in recurrent network models because
of catastrophic forgetting due to fluctuating synaptic weights
(Morrison et al., 2007).

The timescale of trajectory replay scaled with that of the
engram. This is because replay requires a sufficiently preserved
engram to emerge from synaptic interactions between neurons.
However, the lifetime of trajectory replay was an order of
magnitude smaller than that of the trajectory engram, because
replay requires neuronal interactions that are non-linear and
therefore sensitive to decreases in synaptic weights. Interestingly,
the long-term degradation of trajectory replay was due to
incomplete replay at the end of the trajectories learned, in a
manner consistent with the primacy effect of medium-term
learned sequences (Greene et al., 2000). Besides, the memory
of trajectory replay did not only rely on biophysical parameters
but also on the learning protocol. Indeed, slower learning
with repetitions increased the quality of engram by better
anchoring the learned trajectory, through a larger number of
synapses. Slow plasticity of a large number of synapses from
a recurrent network, through repetition, may thus underlie
the robustness of PFC-dependent memories (Buschman and
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Miller, 2014). In addition to extensive training, the maintenance
of trajectory engrams over longer timescales may be reached
by regular replays, as observed in PFC-dependent active
executive processes such as trajectory reactivations (Stokes,
2015), spontaneous replays (Kaefer et al., 2020), rehearsal and
refreshing (Raye et al., 2007), or consolidations (Dudai, 2012).
At the molecular scale, the possibility of synaptic tagging
could be incorporated in the model (Clopath et al., 2008)
in order to stabilize the engram and account for longer
memory timescales.

Humans or animals generally learn complex navigational
paths such as sensory, motor or behavioral sequences in a
progressive manner. Thus, PFC circuits are often challenged
with the necessity to process several parts of whole neural
trajectories that are discovered as sequences of elementary parts
encountered at separate points in time. Moreover, prospective
processes in the PFC require recombining elementary neural
trajectories into new trajectory representations serving the
planning of future actions, choices or navigational paths, for e.g.,
during rule switching and behavioral adaptation (Ito et al., 2015;
Mashhoori et al., 2018; Kaefer et al., 2020). Besides, sequences of
non-spatial items have been shown to be processed in a spatial
frame in primates (Jensen et al., 2013), likely involving neural
trajectories. We found that STDP-based trajectory learning and
replay in the network was able to learn trajectory fragments,
transitions between fragments, and to chunk them into a whole
trajectory, as found in the PFC (Ostlund et al., 2009; Dehaene
et al., 2015). Moreover, the network displayed the ability to
reconstitute a whole trajectory (i.e., a macroscopic sequence)
based on trajectory fragments (i.e., overlapping microscopic
sequences), independently of their order of presentation, i.e.,
to acquire ordinal knowledge about sequences of trajectory
fragments (Jensen et al., 2013; Dehaene et al., 2015). However,
STDP-based trajectory learning in our PFC network model
was unable to learn higher-order representations of algebraic
patterns or more complex nested structures (Dehaene et al.,
2015), or to categorize sequences into specific classes (Shima
et al., 2007). Assessing such possibilities using more elaborated,
reward-dependent, forms of STDP learning rules might
deserve future explorations.

Multiple Functional Relevance of

STDP-Based Neural Trajectories in the PFC
We found in our model that the same network, taught with
the same stimulus, could generate a large range of replay
duration and compression factors, including those characterizing
regular (Batuev, 1994; Fujisawa et al., 2008; Cromer et al.,
2010; Mante et al., 2013; Yang et al., 2014; Ito et al., 2015;
Markowitz et al., 2015; Schmitt et al., 2017; Tiganj et al., 2017;
Nakajima et al., 2019; Passecker et al., 2019; Enel et al., 2020)
and fast (Jadhav et al., 2016; Tiganj et al., 2017; Mashhoori
et al., 2018; Yu et al., 2018; Shin et al., 2019; Kaefer et al.,
2020) timescale replays in behaving animal. We found that
the time constant of NMDA decay dynamics was essential in
controlling the duration and compression factor of trajectory
replays. In PFC circuits, dopamine slows decaying dynamics

of NMDA-mediated EPSPs through D1-receptors (Chen et al.,
2004; Onn et al., 2006) in an almost instantaneous manner (Onn
and Wang, 2005). In addition to dopaminergic regulation, other
forms of neuromodulation affect NMDA dynamics (Lutzu and
Castillo, 2021). Our results suggest that rapid and bidirectional
regulation of biophysical parameters in PFC networks by ongoing
neuromodulation—as attentional demands and reward outcomes
vary at the trial timescale—may control replay duration,
compression factors, and the relative rate of regular vs. fast
timescale replays.

Besides, individual neuronal activity displayed lower firing
frequency during replay compared to the activity induced by
the stimulus, consistent with sparse coding of representations
after learning. Firing rates of individual neurons during stimuli
or delays in working memory tasks, as well as in navigation
tasks, vary considerably across species and behavioral contexts,
spanning two orders of magnitude from ∼1 to ∼100Hz (Fuster
and Alexander, 1971; Batuev, 1994; Romo et al., 1999; Baeg
et al., 2003; Yang et al., 2014; Markowitz et al., 2015; Tiganj
et al., 2017). Frequencies of dozens Hz are common in individual
PFC neurons (Funahashi et al., 1989; Romo et al., 1999; Brody
et al., 2003; Fujii and Graybiel, 2003; Shinomoto et al., 2003; Jun
et al., 2010; Tiganj et al., 2017; Enel et al., 2020). In the present
model, frequencies of individual neurons were actually ∼100Hz
during stimuli and presentations, and 20–60Hz during replays
(Figures 5B1,B3). Thus, although larger than those observed
during stimuli, individual frequencies were globally of the order
of magnitude of those empirically observed. Mean frequencies
in our network ranged below 10Hz (Figures 5B1,B3), (7A2),
in accord with experimental literature (Funahashi et al., 1989;
Romo et al., 1999; Brody et al., 2003; Fujii and Graybiel, 2003;
Shinomoto et al., 2003; Jun et al., 2010; Tiganj et al., 2017; Enel
et al., 2020).

In the PFC, representations for executive functions and
cognition can present less explicit dynamic coding schemes
than regular timescale neural trajectories presented here. For
instance, working memory can display intricate patterns of
complex (heterogeneous but non-random) dynamic activities
that can hardly be disentangled into simpler well-separate
transient patterns of activity (Jun et al., 2010). However, during
working memory tasks, PFC persistent delay activity is selective
and maintains online content-specific representations. Working
memory does often, but not systematically, require underlying
persistent activities, often in a stable activity state (Goldman-
Rakic, 1995; Compte et al., 2000; Durstewitz et al., 2000; Wang,
2001; Constantinidis et al., 2018). It can also rely on dynamical
sequences of activities disappearing and reappearing, depending
on instantaneous computational task-relevant requirements
(Sreenivasan et al., 2014; Stokes, 2015; Lundqvist et al., 2018).
The coexistence of stable population coding together with
heterogeneous neural dynamics has been observed in the PFC
during working memory tasks (Murray et al., 2017).

Here, trajectory replays offer a possible unified framework
that can participate to reconcile opposite views regarding the
nature of information persistent vs. dynamic coding in the PFC
(Constantinidis et al., 2018; Lundqvist et al., 2018). Indeed, we
find that while individual neurons displayed transient (hundreds
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of milliseconds) overlapping bumps of activity, implementing
a “relay race” form of explicit dynamic coding (Batuev, 1994;
Brody et al., 2003; Cromer et al., 2010; Yang et al., 2014; Schmitt
et al., 2017), their population activity persisted at the second
timescale, ensuring the maintenance of the representation across
time (Murray et al., 2017; Cavanagh et al., 2018; Enel et al., 2020).
Depending on the functional context, neural trajectories learned
here could be interpreted as the actual explicit representation
of a trajectory unfolding online, granted that the decoding
downstream neural structure can resolve individual activities
of the network. Alternatively, if the downstream decoding
neural structure only globally decodes the population average
of network dynamics, activity would then be interpreted as an
integrated and stable persistent representation of the trajectory as
a whole (i.e., as a symbolic entity). This dichotomy is congruent
with that found in the PFC, whereby individual neurons encode
information at short timescales while the population as a whole
persistently maintains information at longer time scales (Meyers
et al., 2008). In this scheme, working memory representations
would rely on individual neurons collectively stabilizing a
dynamic population-level process (Murray et al., 2017; Cavanagh
et al., 2018; Enel et al., 2020).

Interestingly, we found that the population activity of
trajectory replays accounted for the decreasing pattern of activity

that can be observed in the PFC (Cavanagh et al., 2018; Enel
et al., 2020). Trajectory replays also displayed strong variability,
as observed in the PFC during delay activities (Compte, 2003;
Shafi et al., 2007). While within-trial variability across neurons
essentially came from the fact that neurons spiked at distinct
periods along the trajectory, inter-trial variability for each neuron
originated from the noisy AI dynamics. Inter-trial variability
accumulated over time for neurons situated later in the trajectory,
henceforth the temporal tuning of neurons widened with their
position in the sequence (Tiganj et al., 2017).
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Working memory (WM) extends the duration over which information is available for
processing. Given its importance in supporting a wide-array of high level cognitive
abilities, uncovering the neural mechanisms that underlie WM has been a primary goal of
neuroscience research over the past century. Here, we critically review what we consider
the two major “arcs” of inquiry, with a specific focus on findings that were theoretically
transformative. For the first arc, we briefly review classic studies that led to the canonical
WM theory that cast the prefrontal cortex (PFC) as a central player utilizing persistent
activity of neurons as a mechanism for memory storage. We then consider recent
challenges to the theory regarding the role of persistent neural activity. The second
arc, which evolved over the last decade, stemmed from sophisticated computational
neuroimaging approaches enabling researchers to decode the contents of WM from
the patterns of neural activity in many parts of the brain including early visual cortex.
We summarize key findings from these studies, their implications for WM theory, and
finally the challenges these findings pose. Our goal in doing so is to identify barriers to
developing a comprehensive theory of WM that will require a unification of these two
“arcs” of research.

Keywords: working memory, saccades, PFC, FEF, Lip, fMRI, decoding, visual cortex

INTRODUCTION

The ability to store information for brief periods of time, so-called working memory (WM), is a
building block for most of our higher cognitive functions, and its dysfunction is at the heart of a
variety of psychiatric and neurologic symptoms. In the history of study into the neural mechanisms
that support WM, an imperative goal of neuroscience, we would argue that there have been
two main arcs. One began almost 50 years ago when Joaquin Fuster first reported that spiking
measured from neurons in the macaque prefrontal cortex (PFC) persisted during a WM delay
(Fuster and Alexander, 1971). Following this seminal publication, many researchers have measured
this persistent activity with the goal of understanding how WM representations are stored by neural
activity (Curtis and D’Esposito, 2003). The vast majority of the work has been focused on the PFC.
The other arc began more recently, over the last decade, but has already made a tremendous impact
on WM theory. Utilizing sophisticated computational neuroimaging approaches (e.g., machine
learning, encoding models, etc.), researchers demonstrated that one can decode the contents of WM
from the patterns of neural activity in early visual cortex (e.g., Harrison and Tong, 2009; Serences
et al., 2009). This was surprising because at the time no existing data, and surely no WM theory,
suggested that sensory cortices played a role in WM storage. The so-called sensory recruitment
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theory of WM emerged from the ever-growing body of research
suggesting a potential role for early visual cortex in visual WM.
To a large extent, these two arcs have existed independently of one
another. Here, we concisely review each arc along with challenges
to the relevant theories, with the goal of identifying barriers
that future research needs to address if an integrative theory of
WM might develop.

NEURAL ACTIVITY PERSISTS IN THE
PREFRONTAL CORTEX

Following a century of studies investigating the effects of
experimental lesions of the non-human primate cortex,
researchers honed in on the principal sulcus in lateral PFC (from
here on we will simply refer to this region as PFC) as a critical
structure supporting WM functions (for a review see Curtis
and D’Esposito, 2004). By 1971, an American lab (Fuster and
Alexander, 1971) and a Japanese lab (Kubota and Niki, 1971)
began recording extracellular neurophysiological signals from
the PFC while macaques performed WM experiments. They
reported that some neurons in the PFC tended to maintain an
elevated rate of spiking, relative to pre-trial baseline firing rates,
during WM retention intervals. Adapting an oculomotor version
of the delayed response task, along with other experimental
refinements, allowed Funahashi, Bruce, and Goldman-Rakic
(Funahashi et al., 1989) to clarify several features of the persistent
activity. First, they demonstrated that persistent activity in PFC
neurons was memory stimulus selective in that, for a given
neuron, it was typically restricted to one or two of the target
positions in the contralateral hemifield (Figure 1A). This meshed
well with a later report that experimental lesions of the PFC
tended to impact memory for targets in the contralesional
hemifield (Funahashi et al., 1993a). Second, they demonstrated
that activity persisted for the duration of the memory delay
(3 or 6 s) consistent with a mechanism that bridged the time
between the past sensory event and the contingent behavior.
Third, they demonstrated that the amplitude of persistent activity
was reduced prior to memory errors. Because these features
align with our notions of memory so closely, persistent activity
was embraced as the neural basis of WM. It is no wonder,
then, that the discovery of persistent activity is considered the
most important scientific observation with regard to the neural
mechanisms of WM. This now classic finding has been replicated
numerous times and has had a tremendous impact on WM
theory and how we study WM experimentally (as reviewed in
Riley and Constantinidis, 2015).

Following these pioneering studies, the experimental
techniques matured and over the next 30 years our knowledge
about the relationships between persistent activity and WM
accumulated. For example, persistent activity in PFC neurons is
not limited to spatial WM. PFC neurons that show preferences
for both simple (e.g., color) and complex (e.g., face) objects
exhibit activity that persists while monkeys maintain these
objects in WM (Quintana et al., 1988; Miller et al., 1996;
Ó Scalaidhe et al., 1999; Fuster et al., 2000; Panichello and
Buschman, 2021). Assuming that stimulus selective persistent

activity is the mechanism by which WM representations are
stored, PFC neurons appear to store any type of stimulus
feature, including the frequency of tactile flutter (Romo et al.,
1999), the direction of dot motion (Zaksas and Pasternak, 2006;
Mendoza-Halliday et al., 2014), sound location (Fuster et al.,
2000; Kikuchi-Yorioka and Sawaguchi, 2000), and audiovisual
macaque vocalizations (Hwang and Romanski, 2015). Moreover,
they encode memory-guided prospective motor plans (Funahashi
et al., 1993b; Takeda and Funahashi, 2002; Markowitz et al., 2015)
and the prospective sensory features of a delayed paired associate
(Rainer et al., 1999; Fuster et al., 2000). Finally, persistent activity
appears to even encode complex task rules and contexts (Asaad
et al., 2000; Wallis et al., 2001), abstract categories (Freedman
et al., 2001), and selective conjunctions of objects and locations
(Rao et al., 1997; Rainer et al., 1998) that cannot be explained by
simpler stimulus or location specific representations.

CANONICAL PFC MICROCIRCUIT
MODEL OF WM

Once the link between persistent activity in the PFC and WM was
firmly established, many focused on determining the properties
of neurons and circuits in the PFC that give rise to memory
selective persistent activity. Pyramidal neurons in layer III of
the PFC make horizontal connections with clusters of other
pyramidal neurons in regular intervals (Levitt et al., 1993; Lund
et al., 1993; Kritzer and Goldman-Rakic, 1995; Figure 1B). V1
neurons have a similar patchy horizontal connectivity (Gilbert
and Wiesel, 1983) and connected neurons are more likely to have
similar orientation tuning (Gilbert and Wiesel, 1989). By logic
of induction, from these observations Goldman-Rakic theorized
that similarly tuned (i.e., for location) pyramidal neurons in
layer III are the source of glutamatergic excitatory recurrent
connections that give rise to persistent activity (Goldman-
Rakic, 1995; Figure 1C). Indeed, the persistent activity of
PFC neurons with similar visuospatial tuning are correlated
(Constantinidis et al., 2001). These excitatory dynamics are
thought to be balanced by closely synchronized fast spiking
inhibitory interneurons (Constantinidis and Goldman-Rakic,
2002), whose lateral inhibition is theorized to additionally
help sculpt the spatial tuning of PFC pyramidal neurons (Rao
et al., 2000). Goldman-Rakic’s theory was formalized into a
computational model that specified how excitatory recurrent
activity, balanced and tuned by inhibition, could give rise to
memory-specific persistent activity within a PFC microcircuit
(Compte et al., 2000; Wang, 2001; Figures 1D,E). This theoretical
model highlighted the importance of the slow kinetics of NMDA
receptors, compared to the faster kinetics of AMPA receptors
(Wang, 1999). Empirical evidence has generally supported many
aspects of the PFC microcircuit model of WM. Persistent
activity depends on glutamatergic synapses on long, thin spines
connecting PFC neurons in layer III (Wang et al., 2011), and
these excitatory currents depend on the slow kinetics of NMDA
receptors to support persistent activity (Wang et al., 2013).
Moreover, the model hypothesizes that small random drifts in
the bumps of activity cause the seemingly random inaccuracies
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FIGURE 1 | The canonical PFC microcircuit model of WM. (A) Neural activity recorded from the principal sulcus in the macaque dorsolateral PFC. Activity persists
during the delay period of memory-guided saccade tasks. The two insets depict a PFC neuron’s response when the memory target appears in and outside of it’s
receptive or “memory” field. Adapted from data from Figure 3 of Funahashi et al. (1989). (B) Tracers injected into deep Layer III of the macaque PFC (green blob)
revealed the extensive lateral connections of pyramidal cells (Levitt et al., 1993). (C) Goldman-Rakic (1995) hypothesized that these connections reflected similarly
tuned pyramidal neurons, whose reciprocal excitatory and inhibitory connections enabled persistent activity. For instance, when remembering a target at 225◦ polar
angle, recurrent excitation among similarly turned pyramidal neurons (purple triangles) maintains the location in WM through persistent activity. Inhibitory interneurons
(red circle) suppress activity in neurons tuned to far away locations (blue triangles). Adapted from Wang et al. (2013). (D) This hypothesis was formulated into a
computational theory in which both recurrent excitatory and inhibitory interactions were modeled (Wang, 2001). (E) This model produces location-specific persistent
activity similar to that observed in recordings of neurons in macaque PFC. Each red dot is a synthetic “spike” in a population of neurons with different location
preferences, where the target is aligned at 0◦. Location is encoded in the population response and decoding involves a read-out of the peak at any given time point,
curve at right. Adapted from Compte et al. (2000).

in memory (Compte et al., 2000); but see (Standage and Paré,
2018). Evidence for this hypothesis exists, as clockwise or
counterclockwise biases in population estimates of delay activity
in macaque PFC neurons predict small angular errors in memory
(Wimmer et al., 2014).

There are also anatomical properties that suggest advantages
that PFC may have in its capacity for WM storage. These slow
NMDA receptors are densely expressed in PFC, especially when
compared to V1 (Wang et al., 2008). Pyramidal neurons in PFC,
again compared to visual cortex, have larger and more complex
dendritic branching with a greater number of spines (Oga et al.,
2017), have more extensive horizontal collaterals in Layers II and
III (Kritzer and Goldman-Rakic, 1995), and are twice as likely to
form reciprocal connections (Wang et al., 2006). Together, the

excitatory connections theorized to form positive feedback loops
to sustain WM representations (Goldman-Rakic, 1995) may be
better supported by these anatomical features in PFC.

TRANSLATING THE PRIMATE PFC
MODEL OF HUMAN WM

The success and impact of any animal model of human cognition
depends on how well it translates to the species it is meant to
model. It is not surprising then, that when brain imaging methods
became widely available, researchers immediately predicted that
indirect measures of neural activity could be used to measure
persistent activity during WM in the homologous part of the
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human PFC. It turned out not to be so easy. The first human
brain imaging study of spatial WM failed to find that blood flow
measured with Positron Emission Tomography (PET) localized
to the dorsolateral PFC (Jonides et al., 1993). Then, the failure of
several studies to find spatial WM-related delay period activity
in the presumed homologous part of human dorsolateral PFC
became the norm rather than the exception (Smith et al., 1996;
Courtney et al., 1998; Zarahn et al., 1999; Rowe et al., 2000).
A subsequent functional magnetic resonance imaging (fMRI)
study from Goldman-Rakic’s own lab succeeded in evoking
dorsolateral PFC activity but only after increasing the WM load
to five items (Leung et al., 2002). At the time it was assumed
that fMRI did not have enough sensitivity to reliably measure
persistent activity associated with maintaining a single item in
WM. However, as we describe next this is unlikely the case and
suggests alternative explanations.

Measuring neural activity with fMRI while humans perform
spatial WM tasks, including memory-guided saccade WM tasks
like those used to initially study the macaque PFC (Funahashi
et al., 1989), we find that fMRI is perfectly sensitive to WM
representations of single items (Curtis et al., 2004; Curtis and
D’Esposito, 2006; Schluppeck et al., 2006; Srimal and Curtis, 2008;
Tark and Curtis, 2009; Jerde et al., 2012; Sprague et al., 2014;
Saber et al., 2015; Rahmati et al., 2020; Hallenbeck et al., in press).
However, in none of the above cited studies did we find evidence
that neural activity persists in the human dorsolateral PFC during
simple spatial WM tasks. On the other hand, in each one of those
studies we found evidence that activity persists, in a variety of
meaningful ways, in the superior spur of the precentral sulcus
(PCS) in the frontal cortex and/or in the posterior part of the
intraparietal sulcus (IPS) (Figure 2A).

On the face of it, these results conflict between the two species.
In the monkey, neurons in dorsolateral PFC show persistent
activity and lesions cause WM impairments. However, in humans
neural activity only persists in the PCS, not in more anterior
parts of the PFC in areas homologous to the macaque principal
sulcus. We generated two hypotheses to explain these conflicting
results based on the impact that lesions to the PFC and PCS
had on WM (Figure 1A). If lesions to the dorsolateral PFC
that spare the PCS cause WM impairments, like they do in
monkeys, this would indicate that fMRI may not be sensitive
enough to measure persistent activity in that part of the brain
(hypothesis 1). On the other hand, if lesions to the PCS, rather
than PFC, cause WM impairments, this would indicate that
the human dorsolateral PFC is not necessary for WM like it
is in the monkey (hypothesis 2). In support of hypothesis 2,
the accuracy of memory-guided saccades was unimpacted by
dorsolateral PFC resections as long as they spared the PCS
(Figure 2B). PCS lesions increased the magnitude of memory
errors largely when the target was in the contralesional hemifield
(Mackey et al., 2016b, 2017; Mackey and Curtis, 2017). In order
to rule out other factors, like reorganization or compensation
in the lesion patients, we repeated the study using transcranial
magnetic stimulation (TMS) applied to the superior PCS and
the intermediate frontal sulcus in the PFC during the memory
delay in a healthy cohort of participants (Mackey et al., 2016b,
2017; Mackey and Curtis, 2017). The TMS results replicated the

patient study; TMS to the sPCS, but not dorsolateral PFC, caused
an increase in memory-guided saccade errors (Figure 2C). These
results are consistent with previous studies that have investigated
the impact of dorsolateral PFC and/or PCS damage on both
spatial and non-spatial forms of WM (D’Esposito and Postle,
1999; Ploner et al., 1999; Postle et al., 2003).

The question of what BOLD is actually measuring is an
important question to consider with respect to persistent activity.
In the highly influential paper by Logothetis et al. (2001), they
reported that BOLD signals in V1 correlated highly with local
field potentials (LFP) (r2 = 0.91). However, what is less often
recalled is that BOLD also correlated with spiking (multiunit
activity (MUA); r2 = 0.73). At longer timescales, when the MUA
returned to pre-stimulus levels (i.e., adapted) in V1 despite the
enduring visual stimulation, the LFP remained above baseline.
Even in these conditions, the BOLD signal correlated with LFP
(r2 = 0.52), and almost as strongly with MUA (r2 = 0.45). Despite
this, many still believe that BOLD signals do not correlate with
spiking, but instead only reflect the local processing of inputs
to the region. What is correct depends on the question. If one
is interested in the physiological coupling itself–specifically, the
neural causes of the BOLD signal–then yes, the major driver
of the BOLD response is afferent processing, which is better
indexed by LFPs. Indeed, if one blocks the usually strong coupling
between MUA and LFP with the use of a serotonin-agonist to
hyperpolarize afferent membranes and thus block output spiking,
the BOLD signal still correlates with LFP, but not MUA (Rauch
et al., 2008). However, without such unnatural pharmacological
interventions both MUA and LFP are both good predictors of
the BOLD signal. Logothetis and Wandell (2004), made this point
clearly in a review of the nature of the BOLD signal:

“In general, LFPs and MUA vary in a similar manner. Hence, at
those sites where the LFPs predicted the BOLD response, the MUA
did too. Across cortical sites there was a tendency for the LFP-based
estimate to perform slightly better than the MUA-based estimate:
The LFP signal predicted 7.6% more of the variance than the MUA.
The difference, although small, was statistically significant. The
larger variability of MUA was mostly attributable to the stronger
adaptation effects observed in this frequency range of the mEFP
[mean extracellular field potential].” (pg. 747).

If the decoupling between BOLD and spiking is most affected
by the adaptation of firing rate, then in the case of WM, one
would predict a particularly strong coupling between BOLD and
the persistent spiking of neurons (which do not show strong
evidence for adaptation during delay periods, e.g., Funahashi
et al., 1989). As a result, regions with persistent spiking activity
should show strong BOLD signals. Thus, if persistent spiking
activity in PFC supports WM in humans, in our view, this
should be readily detectable in the BOLD signal measured with
fMRI. This is true even if the correlation is indirect through
changes in LFP power (Pesaran et al., 2002). Importantly, the
observation of no persistent BOLD activation in PFC regions
during tasks known to recruit persistent spiking in similar regions
of macaques remains meaningful, and is strongly suggestive that
these regions may not play a similar role in humans.
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FIGURE 2 | Translating the canonical model of WM to humans. (A) Rationale and hypotheses of studies of lesion (Mackey et al., 2016b) and TMS perturbation
(Mackey and Curtis, 2017) of human PFC. Neural activity persists in the monkey dlPFC during the retention interval of memory-guided saccade tasks (Funahashi
et al., 1989). Lesions to the monkey dlPFC cause impaired memory-guided saccades, especially when made into the visual field contralateral to the lesion
(Funahashi et al., 1993a). Hypothesis 1: These monkey data predict that lesions to human dlPFC will impair spatial WM performance, including the accuracy of
memory-guided saccades. However, human neuroimaging studies typically find persistent activity or multivoxel decoding of information restricted to the PCS,
posterior to the likely homolog of the monkey principal sulcus in the dlPFC (Courtney et al., 1998; Srimal and Curtis, 2008; Jerde et al., 2012; Sprague et al., 2014;
Hallenbeck et al., in press; Li et al., in press). Hypothesis 2: These data predict that lesions to human PCS, not dlPFC, will impair WM performance. (B) Human PCS
lesions, but not dlPFC lesions, impact spatial WM (Mackey et al., 2016b). Plot in the upper right depicts the mean (SEM) of memory errors assessed by measuring
the accuracy of memory-guided saccades when the memory targets were in the visual hemifield contralateral and ipsilateral to the lesion. The radial histograms
show the spatial distribution of errors highlighting that the PCS lesions primarily impact memory-guided saccades to the contralesional hemifield, as in Funahashi
et al. (1993a). Colors help identify each patient. (C) TMS applied during the middle of the delay period of a memory-guided saccade task to the retinotopically
defined superior PCS, but not to dorsolateral PFC, induces errors in the accuracy of memory-guided saccades (Mackey and Curtis, 2017). Plot in the lower right
depicts the mean (SEM) of memory errors assessed by measuring the accuracy of memory-guided saccades when the memory targets were in the visual hemifield
contralateral and ipsilateral to the hemisphere in which TMS was applied. UVM, upper vertical meridian; LHM, left horizontal meridian; LVM, lower vertical meridian.
*Denotes statistically significant effect.

Now we return to trying to understand the discrepancy in
WM findings between the human and monkey studies, and in
doing so we need to consider a variety of possible explanations.
First, a single item WM task may be too easy for humans
relative to monkeys. Similar to the load argument discussed
above (Leung et al., 2002), perhaps increasing the number of
items increases the difficulty and thus recruits the human PFC.
Nonetheless, the canonical WM theory does not specify that
the dorsolateral PFC is only needed when the WM system is
taxed with a challenging task. Moreover, other control processes
such as reorganization and compression are necessary when
one must maintain a number of items in WM (Rypma et al.,
2002), especially when these approach or surpass capacity limits
(Cowan, 2001). Second, perhaps a poor understanding of the
homologies in either brain structure or function between the
two species is more complicated than thought (Petrides et al.,
2012). Third, the percentage of neurons in the macaque principal
sulcus that show delay period activity is low (∼10%) relative to
the percentage of neurons in the frontal eye field (FEF) (∼%50),
located down in the anterior bank of the arcuate sulcus, and
the lateral intraparietal (LIP) area (∼%50). Due to very large
receptive fields (RFs), the tuning for location during the memory
delay is coarse in the PFC relative to the FEF and LIP (Mohler
et al., 1973; Blatt et al., 1990; Hamed et al., 2001). Plus, the
horizontally connected clusters of pyramidal neurons in layer

III of the PFC form stripes that are spaced 0.2–0.8 mm apart
(Kritzer and Goldman-Rakic, 1995). Perhaps fMRI is insensitive
because this spatial separation dilutes over voxels the signal from
an already small percentage of poorly tuned neurons persisting
in the PFC. Fourth, there are surely true differences between the
two species that cannot be attributed to the methods with which
neural activity is measured. If we were considering rodent models
of WM (e.g., Goard et al., 2016; Inagaki et al., 2019), we would
be less bothered by possible mismatches in the exact brain areas,
and would instead focus on the advantages of the animal model
to learn about the precise neural mechanisms. One potential
implication is that the mechanisms described in the microcircuit
model of WM might be more applicable to cortical areas other
than the human PFC. Indeed, lesions to the macaque FEF and
LIP, as well as homologous areas in the human brain both impair
WM performance (Dias and Segraves, 1999; Gaymard et al., 1999;
Li et al., 1999; Ploner et al., 1999; Mackey et al., 2016a,b; Mackey
and Curtis, 2017).

NEURAL ACTIVITY PERSISTS BEYOND
PFC

The dorsolateral PFC is not the only brain area housing
neurons that persist during WM (Leavitt et al., 2017).
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Funahashi et al. (1989) also reported that neurons in the FEF
showed spatially tuned persistent activity. As mentioned above,
persistent activity is more common among FEF neurons than
PFC, more robust, and more spatially selective (Goldberg and
Bruce, 1985; Sommer and Wurtz, 2001; Merrikhi et al., 2017;
Hart and Huk, 2020). Activity persists during WM tasks in several
other frontal areas including the dorsal premotor cortex (PMD)
(Rossi-Pool et al., 2017; Bastos et al., 2018), the supplementary eye
fields (SEFs) (Shichinohe et al., 2009; Fukushima et al., 2011), the
anterior cingulate cortex (ACC) (Kamiński et al., 2017), and even
the orbitofrontal cortex (OFC) (Ichihara-Takeda and Funahashi,
2007). Moreover, neurons in LIP and 7a also show spatially
selective and robust persistent activity (Gnadt and Andersen,
1988; Barash et al., 1991; Constantinidis and Steinmetz, 1996;
Chafee and Goldman-Rakic, 1998; Pesaran et al., 2002; Hart
and Huk, 2020). In the temporal lobe, WM selective persistent
activity has been reported in neurons in monkey inferotemporal
(IT) cortex (Fuster and Jervey, 1981; Miyashita and Chang,
1988; Miller et al., 1993; Chelazzi et al., 1998) and even in
hippocampus and nearby entorhinal/perirhinal cortex (Miller
and Desimone, 1994; Suzuki et al., 1997; Wirth et al., 2003).
Evidence also exists that persistent neuronal activity carries
sensory information about object identity in V4 (Hayden and
Gallant, 2013) and motion in area MT (Bisley et al., 2004).
However, these results are controversial (Pasternak and Greenlee,
2005; Leavitt et al., 2017) as other studies have reported an
absence of persistent activity among neurons in MT coding
for the remembered motion direction (Mendoza-Halliday et al.,
2014) and the persistent activity may be limited to the early and
late phases of the delay (Bisley et al., 2004). Whether activity in
individual neurons persists in these sensory areas may depend
on the type of representational format an animal might be using
to store the memory as opposed to the representation formed
during perception. For instance, it is unlikely that memory for dot
motion is a replay of hundreds of dots moving over time. Perhaps,
that temporally evolving percept is compressed or recoded into
something like a single directional vector that does not drive
MT. Remarkably and surprising to many neuroscientists, even
neurons in V1 show activity which persists during WM delays
(Supèr et al., 2001; van Kerkoerle et al., 2017). Finally, neurons
in subcortical areas like the superior colliculus (SC) (Shen et al.,
2011; Dash et al., 2015; Sadeh et al., 2018) and mediodorsal
thalamus (Funahashi, 2013) are spatially tuned and carry location
information during WM delay periods. The point we are trying
to make in this section is that the presumed mechanism that
supports WM–memoranda-specific persistent activity–is not
exclusively localized to the dorsolateral PFC. Rather it appears
to be a mechanism used by many parts of the brain to encode
enduring representations useful for memory-guided decisions.

In humans, measuring delay period activity with fMRI
BOLD supports these non-human primate reports in just how
widely distributed persistent activity appears to be during WM.
There have been a number of reviews recently of human
neuroimaging studies of WM (e.g., Sreenivasan et al., 2014;
D’Esposito and Postle, 2015; Christophel et al., 2017; Sreenivasan
and D’Esposito, 2019) and thus we will instead focus on
instructive examples of persistent activity measured in humans

with fMRI. Moreover, we focus on spatial WM because of its
widespread use in both species and the ease with which neural
encoding properties can be measured in both species. In many
of the monkey electrophysiological studies reviewed above, an
important first step involved characterizing each neuron’s RF
or its preferred stimulus feature. This then allowed researchers
to compare memory responses between stimuli placed within
and outside of each neuron’s RF (or compare between preferred
and non-preferred stimuli). Utilizing the same logic, advances
in population receptive field (pRF) mapping (Dumoulin and
Wandell, 2008; Wandell and Winawer, 2015; Mackey et al.,
2017) allow researchers to compare BOLD estimates of persistent
activity between trials in which the memoranda fall within and
outside of a voxel’s pRF. In Figure 3, the time courses of BOLD
activity during a memory-guided saccade task are shown for
ten visual field maps (Rahmati et al., 2020; Hallenbeck et al.,
in press). Each visual field map contains either an upright or
inverted representation of the contralateral visual field. Within
each map, the location and size of the pRF of each voxel in these
maps can be estimated using non-linear optimization techniques.
Then, averaging BOLD signal over trials can be performed in
a principled way according to the match between voxels’ pRF
positions and the locations of the memorized targets. Overall,
activity persists during the delay period in almost all of these
maps. Moreover, the amplitude of BOLD activity is generally
greater among voxels with pRFs matching the target, compared
to voxels with pRFs 180◦ away from the target (on the opposite
side of fixation).

Based on these data, two major gradients can be seen. One, the
overall amplitude of persistent activity increases moving up the
visual hierarchy from visual cortex to parietal cortex to frontal
cortex. Two, the spatial selectivity (difference between when
the target is in or out of the voxel’s pRF) generally decreases
up that same hierarchy. Even within the parietal cortex, we
can see both of these gradients from IPS0 to IPS3. Of special
interest, many neuroimaging studies have failed to find persistent
activity in V1 [or in early visual cortex for that matter; e.g.,
(Ester et al., 2009; Harrison and Tong, 2009; Offen et al., 2009;
Serences et al., 2009; Riggall and Postle, 2012; Albers et al., 2013)].
These studies, however, typically averaged over all voxels in V1,
likely missing the more localized activity that persists associated
with a given remembered stimulus. Note how the voxels in
V1 with pRFs overlapping the small memory target showed a
brief transient response time-locked to the target stimulus, but
activation does not remain above the pre-trial baseline for the
entire delay period. On the one hand, V1 does not meet the
strict definition of persistent activity. On the other hand, if one
considers the relationship between encoding and decoding from
neural populations, then it does meet the definition of persistent
activity. Namely, the WM representation is clearly encoded in the
population as evident by the difference between the two time-
courses. Moreover, the same decoder applied to read-out the
population response would recover the target location despite
the average signal dipping back down to pre-trial levels. We
reported the same pattern in V1 previously even on trials in
which the location of the visual target was different from the
location of the memory-guided saccade, using an antisaccade
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FIGURE 3 | Stimulus-selective persistent activity across the human brain
measured with fMRI. BOLD activity persists during the retention interval of
memory-guided saccade tasks in many cortical and subcortical brain areas
(Hallenbeck et al., in press). Each region-of-interest was defined using
modified pRF mapping procedures (Mackey et al., 2017; Rahmati et al.,
2020). Solid lines are the average BOLD signal from trials in which the
memory target fell within the pRF of voxels. Dashed lines represent the
averaged signal from trials in which the target was 180◦ away from the target.
Error bands are SEM. Gray vertical lines represent the onset of a brief visual
target and the end of the retention interval. Notice how the general amplitude
of persistent activity increases from early visual cortex to parietal cortex to
frontal cortex, but the spatial selectivity generally decreases. Moreover, BOLD
activity persists in retinotopically organized human superior colliculus (SC)
(Mackey et al., 2017; Rahmati et al., 2020).

procedure (Saber et al., 2015), indicating that the response is
memory related and not solely a residual BOLD response due
to the visual transient. These advances allow for promising and
more direct comparisons between monkey electrophysiology and
human neuroimaging.

DECODING WM CONTENTS FROM
POPULATION-LEVEL ACTIVATION
PATTERNS

As reviewed above in the section on translational studies,
attempts to identify persistent activity in human dorsolateral PFC
during WM tasks that require simple maintenance have largely
been unsuccessful. However, these studies typically leveraged

mass univariate analysis approaches which average responses
across all trials in the experiment and over neighboring voxels by
way of smoothing. As a result, these analyses effectively focus on
the similarities in fMRI activation across all unique remembered
stimuli. That is–to isolate activation related to the maintenance
of information over the delay period, trials corresponding to all
possible WM contents are combined. Such averaging necessarily
masks important differences in activation associated with specific
types of stimuli–for example, the particular location, orientation,
or color held in WM.

Beginning at the turn of the century, human neuroimaging
researchers began considering the possibility that patterns
of brain activation measured with fMRI could discriminate
between different stimulus or task conditions, rather than only
considering elevated or suppressed average activation (Haxby
et al., 2001; Norman et al., 2006). These methods primarily
involve “decoding” which of several stimuli was present using
machine learning tools, such as support vector machines. When
these methods were turned to the early visual system, they
demonstrated a remarkable ability to decode which orientation
was viewed based on visual cortex activation patterns (Haynes
and Rees, 2005; Kamitani and Tong, 2005). This was a surprising
feat–the anatomical organization of orientation selectivity in
the early visual system was thought to be too fine for study
with the relatively coarse spatial resolution of fMRI (on the
order of 2–3 mm per voxel). However, because the coarse
sampling of the fine orientation columns is imperfect and uneven,
the observed pattern of activation differed across stimulus
orientations, enabling the decoding algorithm to detect these
subtle differences and accurately decode which orientation was
viewed (Boynton, 2005; Swisher et al., 2010). It should be noted
that there exists considerable skepticism about the exact signals
driving successful orientation decoding performance in these
studies (Freeman et al., 2011, 2013; Alink et al., 2013; Carlson,
2014; Maloney, 2015; Pratte et al., 2016; Roth et al., 2018).
Regardless of the source of the signals, it remains possible to
recover distinctions in brain activation patterns associated with
visual stimulus features.

Soon thereafter, these methods were applied to WM: Harrison
and Tong (2009) and Serences et al. (2009) each reported
success applying similar decoding techniques to visual cortex
fMRI activation patterns measured during the delay-period
of WM tasks. In each case, the authors demonstrated that
only remembered information could be decoded, and non-
remembered information [e.g., a discarded feature (Serences
et al., 2009), or a discarded stimulus (Harrison and Tong, 2009)]
was not maintained, demonstrating that these results cannot
only be due to lingering sensory-evoked activation present in
the slow hemodynamic signals measured with fMRI. This pair of
studies offered convincing evidence for an important role of early
sensory regions in supporting WM representations, especially
when the features to be maintained are well-represented within
those regions. This sensory recruitment model of WM posits
that the previously identified sustained delay-period activation
observed in association cortex acts to coordinate stimulus-
specific representations in sensory cortex (Curtis and D’Esposito,
2003; Postle, 2006; D’Esposito and Postle, 2015; Serences, 2016).
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In the decade since, dozens of studies have applied similar
methods to decode visual stimulus features such as orientation,
motion direction, color, spatial position, and the identity of
a spatial pattern from brain activation patterns measured
from striate and extrastriate visual cortex (Christophel et al.,
2017). Moreover, modified versions of these decoding methods,
including cvMANOVA (Allefeld and Haynes, 2014; Christophel
et al., 2018a), inverted encoding models (IEMs) (Figure 4A;
Ester et al., 2013; Sprague et al., 2014), and Bayesian decoding
methods (van Bergen et al., 2015; van Bergen and Jehee,
2018, 2021; Brissenden et al., 2021; Li et al., in press) have
increasingly improved the resolution and sensitivity of these
methods to differences between conditions, and, ultimately,
between individual trials. These new methods have revealed
feature-selective representations broadly across visual, parietal,
and frontal cortex (Christophel et al., 2012, 2018a,b; Jerde et al.,
2012; Christophel and Haynes, 2014; Sprague et al., 2014; Ester
et al., 2015; Yu and Shim, 2017; Rahmati et al., 2018; Li et al., in
press), along with subcortical regions including the SC (Rahmati
et al., 2020) and cerebellum (Brissenden et al., 2021). In human
neuroimaging, evidence for stimulus-selective persistent activity
abounds throughout the brain (Figure 4B). One challenge is
to understand why there are so many WM representations
distributed across the cortex. Perhaps they contain different
formats of WM useful for various sensory, motor, and cognitive
functions. Conversely, they might reflect some representation
that is shared with WM. For instance, we found that decoders
trained to predict spatial locations during the delay of a spatial
WM cross-predicted the locations on the other tasks (e.g., covert
attention and saccade planning) in sPCS and in IPS2 (Jerde
et al., 2012). This suggested that the delay period patterns of
activity may be interchangeable across spatial WM, attention,
and saccade planning, and may reflect a common representation
akin to attentional priority (Serences and Yantis, 2004; Fecteau
and Munoz, 2006; Zelinsky and Bisley, 2015). Therefore, future
research needs to investigate what types of information are stored
in persistent activity.

Interestingly, in many cases, when sustained delay-period
activation is compared directly against stimulus-selective
activation patterns, complementary results are found (Postle,
2015). As an example, Riggall and Postle (2012) compared
univariate delay-period activation and decoded information
content for regions responsive to visual stimuli and those
with elevated responses during the delay period of a WM
task. In the stimulus-responsive regions (which were primarily
in extrastriate visual cortex), a decoding algorithm was able
to successfully recover the direction of motion remembered
by the participants, but these regions did not show elevated
delay-period activation. Conversely, in delay period-responsive
regions (which were primarily in the IPS dorsal frontal cortex),
the authors could not decode the remembered stimulus value,
but did observe sustained delay-period activation spanning
the sample and the probe stimulus. In a subsequent study
in which WM load was additionally manipulated, sustained
delay-period activation in frontal and parietal regions was shown
to increase as WM load increased from 1 to 3 items, while a
similar change in average activation was not observed in sensory

FIGURE 4 | Decoding methods reveal stimulus-selective persistent activity
across cortical and subcortical regions in the human brain. (A) Recent studies
have employed “IEMs,” which model the activation of each voxel as a
weighted combination of neural information channels (Brouwer and Heeger,
2009; Ester et al., 2013; Sprague et al., 2018). Applying this method results in
reconstructed channel response profiles for each timepoint of each trial. When
a measured activation pattern contains a representation of the remembered
information, these reconstructed channel response profiles peak at the
corresponding feature value. Right: single example trial illustrating a persistent
representation of the remembered location on that trial based on activation
patterns in V3AB (orange triangle indicates onset of delay period and
remembered feature value). (B) When applied to activation patterns in
retinotopic cortical regions and the superior colliculus while participants
perform a memory-guided saccade task, representations of remembered
positions are universally recovered. For each ROI, we show a timecourse of
reconstructed representations (each row is a single timepoint; average of
reconstructions for all experimental trials aligned to the remembered location),

(Continued)
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FIGURE 4 | Continued
along with the average channel response profile over the final 1.5 s of the
delay period (red line). Data adapted from Hallenbeck et al. (in press) (A,B; all
ROIs except SC) and Rahmati et al. (2020) (B; SC). This Figure depicts the
same data shown in Figure 3 analyzed in a different way.

regions (Emrich et al., 2013). However, the authors could reliably
decode the remembered stimuli from activation patterns in
sensory regions, with accuracy decreasing as WM load increased.
Once again, this has been taken to suggest that regions showing
elevated delay-period activity may not be those which represent
the WM content itself, and that instead there may be a division of
labor between frontal and parietal regions which help coordinate
WM representations and sensory regions which encode stimulus
values themselves (Postle, 2015; Postle and Yu, 2020).

However, when interpreting results from these decoding
studies, it is critical to consider how these various algorithms
operate to discriminate between remembered visual stimuli. The
key feature of any decoding algorithm is that it identifies a
reliable difference between activation patterns associated with
different modeled stimulus values. While different approaches
use different assumptions about the structure of these activation
patterns and their noise covariance, this core feature remains.
Accordingly, if a decoder can reliably pick up on differences
between activation patterns within a region associated with
different stimulus values, this necessarily means that some
neurons (or, at least, signals resulting from neural activity) are
more active than others in a reliable way. That is–the decoders
aren’t magic–they’re just exploiting the structure of signals
measured from neural tissue to optimally extract activation
associated with different stimulus values. And, importantly,
some stimulus values result in increased activation in some
measured units, while other stimulus values result in increased
activation in other measured units. As a trivial example, one could
build a visual stimulus decoder based on a machine learning
algorithm (e.g., support vector machines) to decode which side
of the screen is stimulated by a large flickering checkerboard–a
stimulus that is well-understood to evoke extremely strong and
reliable fMRI signals in contralateral visual cortex. The decoder
would perform extremely well–likely approaching 100% correct
decoding performance. While in this case it wouldn’t be necessary
to apply the decoding algorithm to show that primary visual
cortex encodes the retinotopic location of a stimulus, because a
simple fMRI contrast would reveal strong evidence for such a
result, this example remains illustrative: the decoder would be
basing its judgment on localized increases in activation within a
subset of the population of voxels.

When such an analysis is applied to data acquired during a
memory-guided saccade task analogous to that used in macaques,
greater activation is measured in voxels with spatial RFs near the
remembered location as compared to those voxels with spatial
RFs farther away (Figure 3; Saber et al., 2015; Hallenbeck et al.,
in press). Moreover, this holds for features like orientation:
recent studies which have instead attempted to “localize” voxels
preferring one or another orientation and directly compare
activation between these subpopulations support this notion:

voxels labeled with the orientation remembered on a trial show
elevated activation compared with those labeled with the non-
remembered orientation (Lawrence et al., 2018). These results
track with those observed in the classical studies of macaque
DLPFC which show elevated neural firing for neurons which
prefer the remembered location as compared to those with more
distal preferences (Funahashi et al., 1989).

In our view, the ability to accurately decode which of
several stimuli is held in WM is consistent with the definition
of persistent activity: these results are driven (in large part)
by different activity levels between different stimulus values
during a WM delay period. Thus, decoding studies which
observe stimulus-selective activation patterns in different cortical
and subcortical brain regions should be considered to provide
support for stimulus-selective persistent activity. Decoding of
WM content and elevated delay-period activation may, in many
cases, be considered two sides of the same coin (Figure 3 vs.
Figure 4B). Recent advances in decoding methods described
above (IEM, cvMANOVA, and Bayesian generative models) have
further extended the set of regions from which WM content can
be decoded. Ester et al. (2015) and Yu and Shim (2017) applied
IEMs to decode orientation and color from several parietal
and prefrontal regions, and Christophel et al. (2018b) applied
a non-parametric decoder based on a multivariate ANOVA to
decode remembered orientation from the same regions from a
large sample of fMRI participants (n = 87). Where sustained
delay-period activation is found in humans, successful decoding
of WM content seems to soon follow as the capabilities of
methods advance.

FURTHER CHALLENGES TO THE
CANONICAL PFC MODEL OF WM

So far we have described several findings that challenge the
canonical WM model. In humans, simple WM does not depend
on the dorsolateral PFC. Additionally, the persistent activity of
neurons in PFC that sits at the heart of the canonical WM model
is observed in many other brain regions, including early visual
cortex. Together, these findings suggest that perhaps theories
have tended to overemphasize the unique importance of PFC for
WM. Additionally, further challenges have recently arisen to the
very nature of what role persistent activity plays in WM.

Is Persistent Activity in PFC an Artifact of
Averaging?
First, some have questioned whether persistent activity in PFC
neurons is an artifact of averaging over trials (Shafi et al.,
2007; Stokes and Spaak, 2016; Spaak et al., 2017). Similarly, the
spiking activity of single PFC neurons might be best described
as idiosyncratic bursts rather than persistent, and perhaps PFC
activity is better characterized as “bubbles” of oscillations in LFP
(Lundqvist et al., 2016, 2018). However, even if one accepts this
to be the case, the original theoretical model does not need to
be adjusted. The canonical model put forth by Goldman-Rakic
(1995) and its later formalization as a computational model
(Compte et al., 2000) never specified that WM representations
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were stored by the persistent activity of single neurons. On the
contrary, even the earliest versions of the model were inspired
by the anatomy of layer III PFC neurons that were proposed to
be clustered in pools of similarly tuned neurons with recurrent
excitatory connections. Furthermore, the computational model
clearly encodes WM representations through the overall activity
of a population of neurons where the bump of activity could
result from numerous and changing configurations of neurons.
Perhaps the fact that the evidence for the theory took the form
of averaged recordings of single neurons may have confused the
issue. Nonetheless, the dynamics of single neurons involved in
the population code deserves further investigation both at the
empirical and theoretical level.

Dynamic Codes for WM Content
Second, some have questioned the temporal stability of WM
representations encoded by the delay period activity of PFC
neurons (Parthasarathy et al., 2017, 2019; Spaak et al., 2017;
Cavanagh et al., 2018; Wasmuht et al., 2018). Based on
analyses comparing the activity of groups of neurons across
timepoints within trials, these studies have concluded that in
some circumstances the population activity of PFC neurons that
code for WM representations dynamically changes over time.
This could be a real challenge to the canonical model of WM
because this mechanism is at odds with a stable fixed activity
pattern linking neuronal turning preferences with features stored
in WM. Specifically, if WM representations were primarily
dynamic, a downstream area would have to know about and
track the dynamics of each neuron’s encoding properties (its
mnemonic tuning function as it unfolds over the trial) in order
to read out the represented feature value from the population
response at a given timepoint.

However, recent theoretical and empirical demonstrations
have mitigated these concerns. Even when activity patterns are
somewhat dynamic, such that the correlation between activity
patterns is lower for points further separated in time than
for points nearer in time, the population can be shown to
have the same information content. Specifically, Murray et al.
(2017) demonstrated that dynamic activity patterns that are
occasionally observed in PFC exist within a “stable subspace” of
the full population activity space, such that a downstream region
could apply a fixed linear readout to accurately recover WM
information throughout the delay period. Thus, at least in some
cases, dynamic codes may only appear this way on the surface
(Murray et al., 2017; Parthasarathy et al., 2019).

While there certainly does exist ample evidence that dynamic
responses at the single-unit level can be observed, and that they
can in some cases support a stable population-level neural code,
it is critical to note that these studies do not negate the existence
nor importance of other stable coding mechanisms, some of
which are observed in the same studies. For example, it has
been shown that neurons with dynamic responses and those with
stable responses coexist in PFC, and their response dynamics
can be well-predicted by their intrinsic “time constant” [their
autocorrelation function measured from inter-trial intervals;
(Wasmuht et al., 2018)]. That is–nearby neurons in the same
brain region can either show evidence for dynamic coding

or stable coding. In another study, macaques performed an
oculomotor delayed response task with an intervening irrelevant
distractor stimulus. Activity patterns measured from LPFC
“morphed” following the distractor, but patterns measured from
the FEF of the same animals did not show evidence for such
dynamic morphing (Parthasarathy et al., 2017). These results
show that even when dynamic codes are observed, stable
subspaces (consistent with a fixed readout rule) can account
for a large amount of the response dynamics, and moreover,
that stable coding is simultaneously observed in other neurons
and/or brain regions.

Mixed Selectivity in PFC
Third, PFC neurons appear to have mixed selectivity as they can
change their responsiveness to the same stimulus or behavioral
response depending on subtle contextual changes within a task
(Sigala et al., 2008; Machens et al., 2010; Mante et al., 2013; Rigotti
et al., 2013). This could have several implications, including that
the population response does not encode straightforward task
variables, or that it encodes some latent variables that have yet
to be discovered, or that it is dynamic over time at the timescale
of the recording session. Nonetheless, there are some advantages
to mixed selectivity. For example, the idea that the PFC can
store any type of feature in WM implies that the entire manifold
of encoding mechanisms housed in our sensory cortices might
need to be duplicated just for short term storage, which seems
highly inefficient at best. Mixed selectivity could vastly increase
the encoding capacity of a given population (Rigotti et al., 2013).
However, incorporating this concept into the canonical PFC
model of WM would require altering the theory in ways that
approach the way in which the hippocampus is thought to use
mixed selectivity and sparse coding for long-term memory (Rolls
and Treves, 1990; McClelland et al., 1995). Moreover, perhaps we
have yet to discover the mechanisms by which the population
response in PFC is demixed when it is readout by other brain
areas (Machens, 2010).

“Activity-Silent” WM Representations
Fourth, metabolically economical models propose that persistent
spiking may induce fast-timescale synaptic changes that encode
stimulus properties that can be later retrieved efficiently via
stimulus-agnostic “pinging” of the network (Mongillo et al.,
2008; Stokes et al., 2013; Rose et al., 2016; Wolff et al., 2017),
instructive cues (Lewis-Peacock et al., 2012; Sprague et al., 2016;
LaRocque et al., 2017; Lorenc et al., 2020), and/or spontaneous
internal neural reactivation signals (Lundqvist et al., 2016, 2018).
In the empirical reports, decoding performance reliably drops
around chance levels at one point in the trial, but a subsequent
visual stimulus (Wolff et al., 2015, 2017, 2020a,b), TMS pulse
(Rose et al., 2016), or task instruction (Lewis-Peacock et al.,
2012; Sprague et al., 2016; LaRocque et al., 2017) results in a
“reactivation” of an otherwise “latent” WM representation. This
negative evidence, in the form of poor or at-chance decoding
performance prior to reactivation, has been used to suggest that
currently irrelevant information in WM is not maintained in an
active state accessible to the measured neural signals fed into the
decoding algorithm.
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However, these studies additionally cannot rule out a key role
for persistent activity in supporting WM behavior. When larger
sample sizes and more sensitive analysis techniques are applied,
there appears to be some positive evidence for representations
of irrelevant WM information (Christophel et al., 2018b;
Iamshchinina et al., 2021). While these positive results do not
invalidate the previous negative observations, it does suggest that
it can be possible–with a sufficient sample size–to find evidence
for WM representations that elude studies with smaller sample
sizes. The studies which have “pinged” human participants with
irrelevant visual stimuli or TMS pulses can also not conclusively
demonstrate that there existed no information prior to the
reactivation stimulus. While the information may not have been
accessible with EEG or MEG measurements, it may have existed
as spontaneous oscillations in the electrophysiological recordings
(LaRocque et al., 2013; Foster et al., 2016). A recent reanalysis
of the data shown in Wolff et al. (2017) suggests this latter
possibility (Barbosa et al., 2021). Finally, modeling has shown
that observations of increased information content in IEM-based
stimulus reconstructions following a task cue (Sprague et al.,
2016) are not diagnostic of a transition from a passive to an active
code (Schneegans and Bays, 2017). While this study (Sprague
et al., 2016) found an enhancement in the decodable information
about remembered spatial position following an informative cue,
it remains the case that weak information may have been present
prior to the cue, but was inaccessible to the fMRI signal and/or
decoding algorithm employed (e.g., Christophel et al., 2018b).

Distractors Impact WM Representations
in Sensory Regions
Cognitive theories about the nature of WM representations have
long been informed by behavioral studies of the distracting
effects of material presented during WM retention intervals
(Baddeley, 1986). Intervening information is more disruptive
when its features match the contents of WM. For instance,
intervening phonological but not visual information impairs
one’s ability to maintain visually presented strings of letters,
suggesting an important role of articulatory processes for
items that are verbalizable (Logie et al., 1990). Similarly,
intervening visuospatial processing and oculomotion selectively
impacts spatial WM (Postle et al., 2006). In general, many
conclusions about the formats of WM representations depend
on the logic that the effectiveness of distraction depends on
how well the representational formats of the distractor and
memoranda are matched. Neuroscientific studies have also
relied on a similar logic, assuming that the competition or
interaction between the neural representations of the memoranda
and the intervening distractor disrupts memory. As reviewed
above, early electrophysiology and neuroimaging studies focused
primarily on the importance of persistent activity in the PFC.
Until recently, the potential importance of posterior cortical
areas in WM had been largely neglected. Indeed, neural
activity in monkey inferotemporal cortex is less robust during
memory delays and the selectivity of activity appears to be
disrupted by intervening distractors, while PFC representations
appear resistant to distraction (Miller et al., 1996). Similarly,

memoranda-specific delay period activity of neurons in the
monkey PFC resists the effect of distractors, especially when
compared to neurons in posterior parietal cortex (di Pellegrino
and Wise, 1993; Constantinidis and Steinmetz, 1996; Suzuki and
Gottlieb, 2013). Inferences stemming from the underlying logic of
these distractor studies imply that the PFC, rather than posterior
cortical areas, is critical for WM storage.

Recent human neuroimaging studies have further addressed
this issue using various decoding methods, with a primary focus
on whether information about remembered features can be found
in visual cortex in the presence of an intervening distracting
stimulus. Bettencourt and Xu (2016) decoded orientations held
in visual WM using activation patterns in visual and parietal
cortex on trials with and without distracting visual stimuli
during the delay period (faces and gazebos). When it was
predictable whether a distractor would or would not appear on
a given trial, remembered orientations could not be decoded
based on visual cortex activation patterns, but decoding from
parietal cortex was successful. However, when distractor presence
was unpredictable, both visual and parietal cortex represented
remembered orientations during both distractor-present and -
absent trials. Several subsequent commentaries (Ester et al.,
2016; Gayet et al., 2018; Scimeca et al., 2018; Postle and Yu,
2020; Lorenc and Sreenivasan, 2021) and empirical reports
(Lorenc et al., 2018; Rademaker et al., 2019; Hallenbeck et al.,
in press) contested the theoretical importance of the null
decoding performance in visual cortex for predictable distractors
observed in Bettencourt and Xu (2016). The empirical studies
largely replicated the finding in Bettencourt and Xu (2016)
that activation patterns in parietal cortex contained information
about WM content regardless of whether or not a distractor was
present during the delay. However, decoded activation patterns
in visual cortex do seem to depend on distractor presence,
and alterations in these representations predict behavioral errors
(Lorenc et al., 2018; Rademaker et al., 2019; Iamshchinina et al.,
2021; Hallenbeck et al., in press). Thus, persistent activity, as
indexed by successful decoding of remembered information,
survives visual distraction in many regions, and the impact
of distraction on measured persistent activity in visual cortex
is reflected in behavioral performance errors. These results
across several studies suggest a critical role for stimulus-
selective persistent activity in sensory cortex–it is often observed
during delay periods, it appears unaffected by distractors when
behavioral performance remains intact, and changes in persistent
activity are reflected in changes in behavioral responses.

CONCLUDING REMARKS: PERSISTENT
ACTIVITY PERSISTS

Remarkably, for the past 50 years researchers studying the
mechanisms of WM have used a variety of tools to characterize
persistent activity across numerous types of memory tasks, across
species, and across brain areas. It continues to stand as the central
neural mechanism that supports WM. We have seen two arcs
of research into persistent activity. One began in the front of
the brain with single neuron recordings from the macaque PFC
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and led to what we have referred to as a canonical model of
WM–a rich and mechanistically explicit computational model
based in physiology and anatomy. The other began in the back
of the brain using sophisticated machine learning algorithms
that could precisely decode the contents of WM based on the
patterns of neural activity in the human visual system. Here, we
argue that such decoding is itself a manifestation of stimulus-
selective persistent activity, just at a smaller scale than entire
brain regions. Accordingly, persistent activity can be inferred
not just from sustained elevated spiking of neurons, but from
population level activity of fMRI BOLD signals sculpted by the
content of memory.

The recent challenges to the canonical model include the
various coding schemes (e.g., dynamic coding, mixed selectivity)
and concerns about the evidence for persistent activity itself (e.g.,
artifacts, activity silent mechanisms). Another implicit challenge
revolves around how “PFC-centric” the field has been when
considering the neural mechanisms of WM. For instance, even
if we accept each of these criticisms, the canonical model in its
simplest form would need no revision if it was merely applied
to brain areas other than the PFC. For instance, translating
the classic findings of Funahashi–firing of neurons in macaque
dorsolateral PFC persist over delays (Funahashi et al., 1989) and
damage to this region impacts WM (Funahashi et al., 1993a)–to
humans only requires shifting the locus from dorsolateral PFC
to a brain region a bit more posterior in the precentral/arcuate
sulcus (Mackey et al., 2016b). The various complexities with the
types of coding and reliability of persistent activity in monkey
PFC all disappear if the canonical model is instead applied
to monkey areas like FEF and LIP (Hart and Huk, 2020).
In those areas, single neurons clearly persist on single trials
and the neurons form populations that represent WM features
exactly as modeled (Wang, 2001) without the complexity of
mixed selectivity and dynamic coding. Perhaps while we attempt
to reconcile new discoveries about the PFC, we do not need
to update our canonical model of WM. Overwhelmingly, the
evidence indicates that simple, stable persistent activity among
neurons in stimulus selective populations is one fundamental
mechanism by which we maintain WM representations.

Moving forward, there are a number of questions that we
instead need to address. Most relevant is: what, then, is the role
of the dorsolateral PFC? Note that persistent activity is simply
an observation and is not synonymous with WM maintenance
(Curtis and Lee, 2010). Perhaps persistent activity in PFC reflects
not the storage of WM features, but rather some mechanism
related to the control of WM representations stored elsewhere,
maybe by their own persistent activity (Miller and Cohen, 2001;

Curtis and D’Esposito, 2003; Emrich et al., 2013; D’Esposito and
Postle, 2015; Postle and Yu, 2020). Also, why do we see evidence
of persistent activity, even for a simple single item WM task,
in so many cortical and subcortical brain areas (Christophel
et al., 2017; Leavitt et al., 2017)? Redundancy is good to a
point, but future research should try to figure out which of
these numerous areas are necessary, what types of features they
might be representing, and if they might be encoding different
representational formats of WM. For example, disrupting
persistent activity with intervening distraction (Lorenc et al.,
2018; Rademaker et al., 2019; e.g., Hallenbeck et al., in press)
or TMS (e.g., Mackey and Curtis, 2017; Rademaker et al., 2017)
may be able to disentangle the relative roles of different cortical
regions. However, such efforts are tricky, as a distractor may
not affect a top-down control signal, especially when passively
viewed. Experiments parametrically manipulating task demands
in concert with visual distraction may help further clarify the
relative role different brain regions play in WM tasks. An
especially promising avenue for future exploration is comparing
decoded feature values from single trials of fMRI activation
to behavioral errors on those same trials (Ester et al., 2016;
Hallenbeck et al., in press; Li et al., in press).

Working memory is one of the few higher-level cognitive
systems that we have made substantial progress toward
understanding its neural implementation. Persistent activity has
been at the heart of this success. While it is inevitable that
additional mechanisms will be discovered, we have little doubt
that persistent activity will persist as a primary explanation
for how neural systems maintain WM representations. Future
empirical research should focus on understanding the degree
to which mechanisms are shared between the canonical and
sensory recruitment models of WM, and the degree to which
the challenges we highlighted in this review require revising the
theoretical mechanisms that support WM.
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Kamiński, J., Sullivan, S., Chung, J. M., Ross, I. B., Mamelak, A. N., and Rutishauser,
U. (2017). Persistently active neurons in human medial frontal and medial
temporal lobe support working memory. Nat. Neurosci. 20, 590–601. doi:
10.1038/nn.4509

Kamitani, Y., and Tong, F. (2005). Decoding the visual and subjective contents of
the human brain. Nat. Neurosci. 8, 679–685. doi: 10.1038/nn1444

Kikuchi-Yorioka, Y., and Sawaguchi, T. (2000). Parallel visuospatial and
audiospatial working memory processes in the monkey dorsolateral prefrontal
cortex. Nat. Neurosci. 3, 1075–1076. doi: 10.1038/80581

Kritzer, M. F., and Goldman-Rakic, P. S. (1995). Intrinsic circuit organization of
the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus
monkey. J. Comp. Neurol. 359, 131–143. doi: 10.1002/cne.903590109

Kubota, K., and Niki, H. (1971). Prefrontal cortical unit activity and delayed
alternation performance in monkeys. J. Neurophysiol. 34, 337–347. doi: 10.
1152/jn.1971.34.3.337

LaRocque, J. J., Lewis-Peacock, J. A., Drysdale, A. T., Oberauer, K., and Postle, B. R.
(2013). Decoding attended information in short-term memory: an EEG study.
J. Cogn. Neurosci. 25, 127–142. doi: 10.1162/jocn_a_00305

LaRocque, J. J., Riggall, A. C., Emrich, S. M., and Postle, B. R. (2017). Within-
category decoding of information in different attentional states in short-term
memory. Cereb. Cortex 27, 4881–4890.

Lawrence, S. J. D., van Mourik, T., Kok, P., Koopmans, P. J., Norris, D. G., and de
Lange, F. P. (2018). Laminar organization of working memory signals in human
visual cortex. Curr. Biol. 28, 3435.e4–3440.e4.

Leavitt, M. L., Mendoza-Halliday, D., and Martinez-Trujillo, J. C. (2017). sustained
activity encoding working memories: not fully distributed. Trends Neurosci. 40,
328–346. doi: 10.1016/j.tins.2017.04.004

Leung, H.-C., Gore, J. C., and Goldman-Rakic, P. S. (2002). Sustained mnemonic
response in the human middle frontal gyrus during on-line storage of spatial
memoranda. J. Cogn. Neurosci. 14, 659–671. doi: 10.1162/08989290260045882

Levitt, J. B., Lewis, D. A., Yoshioka, T., and Lund, J. S. (1993). Topography of
pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex
(areas 9 and 46). J. Comp. Neurol. 338, 360–376. doi: 10.1002/cne.903380304

Lewis-Peacock, J. A., Drysdale, A. T., Oberauer, K., and Postle, B. R. (2012).
Neural evidence for a distinction between short-term memory and the
focus of attention. J. Cogn. Neurosci. 24, 61–79. doi: 10.1162/jocn_a_
00140

Li, C.-S. R., Mazzoni, P., and Andersen, R. A. (1999). Effect of reversible
inactivation of macaque lateral intraparietal area on visual and memory
saccades. J. Neurophysiol. 81, 1827–1838. doi: 10.1152/jn.1999.81.4.1827

Frontiers in Neural Circuits | www.frontiersin.org 14 July 2021 | Volume 15 | Article 696060126

https://doi.org/10.1523/jneurosci.5160-10.2011
https://doi.org/10.1523/jneurosci.5160-10.2011
https://doi.org/10.1523/jneurosci.0889-13.2013
https://doi.org/10.1093/cercor/bhq261
https://doi.org/10.1093/cercor/bhq261
https://doi.org/10.3389/fnsys.2013.00036
https://doi.org/10.1152/jn.1989.61.2.331
https://doi.org/10.1523/jneurosci.13-04-01479.1993
https://doi.org/10.1523/jneurosci.13-04-01479.1993
https://doi.org/10.1038/365753a0
https://doi.org/10.1126/science.173.3997.652
https://doi.org/10.1038/35012613
https://doi.org/10.1038/35012613
https://doi.org/10.1126/science.7233192
https://doi.org/10.1016/j.tics.2017.09.011
https://doi.org/10.1016/j.tics.2017.09.011
https://doi.org/10.1007/s002210050899
https://doi.org/10.1007/s002210050899
https://doi.org/10.1523/jneurosci.03-05-01116.1983
https://doi.org/10.1523/jneurosci.09-07-02432.1989
https://doi.org/10.1016/0042-6989(85)90072-0
https://doi.org/10.1016/0896-6273(95)90304-6
https://doi.org/10.1007/s002210100785
https://doi.org/10.1038/nature07832
https://doi.org/10.1038/nature07832
https://doi.org/10.7554/eLife.52460
https://doi.org/10.7554/eLife.52460
https://doi.org/10.1126/science.1063736
https://doi.org/10.3389/fnins.2013.00018
https://doi.org/10.1038/nn1445
https://doi.org/10.1038/nn1445
https://doi.org/10.1523/jneurosci.1328-14.2015
https://doi.org/10.1523/jneurosci.1328-14.2015
https://doi.org/10.1080/13506285.2021.1915902
https://doi.org/10.1007/s00221-007-0941-0
https://doi.org/10.1007/s00221-007-0941-0
https://doi.org/10.1038/s41586-019-0919-7
https://doi.org/10.1523/jneurosci.3810-12.2012
https://doi.org/10.1038/363623a0
https://doi.org/10.1038/nn.4509
https://doi.org/10.1038/nn.4509
https://doi.org/10.1038/nn1444
https://doi.org/10.1038/80581
https://doi.org/10.1002/cne.903590109
https://doi.org/10.1152/jn.1971.34.3.337
https://doi.org/10.1152/jn.1971.34.3.337
https://doi.org/10.1162/jocn_a_00305
https://doi.org/10.1016/j.tins.2017.04.004
https://doi.org/10.1162/08989290260045882
https://doi.org/10.1002/cne.903380304
https://doi.org/10.1162/jocn_a_00140
https://doi.org/10.1162/jocn_a_00140
https://doi.org/10.1152/jn.1999.81.4.1827
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-15-696060 July 15, 2021 Time: 18:22 # 15

Curtis and Sprague WM From Front to Back

Li, H.-H., Sprague, T. C., Yoo, A. H., Ma, W. J., and Curtis, C. E. (in press). Joint
representation of working memory and uncertainty in human cortex. Neuron.

Logie, R. H., Zucco, G. M., and Baddeley, A. D. (1990). Interference with visual
short-term memory. Acta Psychol. 75, 55–74. doi: 10.1016/0001-6918(90)
90066-o

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., and Oeltermann, A. (2001).
Neurophysiological investigation of the basis of the fMRI signal. Nature 412,
150–157. doi: 10.1038/35084005

Logothetis, N. K., and Wandell, B. A. (2004). Interpreting the BOLD signal. Annu.
Rev. Physiol. 66, 735–769. doi: 10.1146/annurev.physiol.66.082602.092845

Lorenc, E. S., Sreenivasan, K. K., Nee, D. E., Vandenbroucke, A. R. E.,
and D’Esposito, M. (2018). Flexible coding of visual working memory
representations during distraction. J. Neurosci. 38, 5267–5276. doi: 10.1523/
jneurosci.3061-17.2018

Lorenc, E. S., Vandenbroucke, A. R. E., Nee, D. E., de Lange, F. P., and D’Esposito,
M. (2020). Dissociable neural mechanisms underlie currently-relevant, future-
relevant, and discarded working memory representations. Sci. Rep. 10:11195.

Lorenc, E. S., and Sreenivasan, K. K. (2021). Reframing the debate: the distributed
systems view of working memory. Vis. Cogn. 29, 1–9. doi: 10.1080/13506285.
2021.1899091

Lund, J. S., Yoshioka, T., and Levitt, J. B. (1993). Comparison of intrinsic
connectivity in different areas of macaque monkey cerebral cortex. Cereb.
Cortex 3, 148–162. doi: 10.1093/cercor/3.2.148

Lundqvist, M., Herman, P., Warden, M. R., Brincat, S. L., and Miller, E. K. (2018).
Gamma and beta bursts during working memory readout suggest roles in its
volitional control. Nat. Commun. 9:394.

Lundqvist, M., Rose, J., Herman, P., Brincat, S. L., Buschman, T. J., and Miller, E. K.
(2016). Gamma and beta bursts underlie working memory. Neuron 90, 152–164.
doi: 10.1016/j.neuron.2016.02.028

Machens, C. K. (2010). Demixing population activity in higher cortical areas. Front.
Comput. Neurosci. 4:126. doi: 10.3389/fncom.2010.00126

Machens, C. K., Romo, R., and Brody, C. D. (2010). Functional, but not anatomical,
separation of “what” and “when” in prefrontal cortex. J. Neurosci. 30, 350–360.
doi: 10.1523/jneurosci.3276-09.2010

Mackey, W. E., and Curtis, C. E. (2017). Distinct contributions by frontal and
parietal cortices support working memory. Sci. Rep. 7:6188.

Mackey, W. E., Devinsky, O., Doyle, W. K., Golfinos, J. G., and Curtis, C. E. (2016a).
Human parietal cortex lesions impact the precision of spatial working memory.
J. Neurophysiol. 116, 1049–1054. doi: 10.1152/jn.00380.2016

Mackey, W. E., Devinsky, O., Doyle, W. K., Meager, M. R., and Curtis, C. E.
(2016b). Human dorsolateral prefrontal cortex is not necessary for spatial
working memory. J. Neurosci. 36, 2847–2856. doi: 10.1523/jneurosci.3618-15.
2016

Mackey, W. E., Winawer, J., and Curtis, C. E. (2017). Visual field map clusters in
human frontoparietal cortex. eLife 6:e22974. doi: 10.7554/eLife.22974

Maloney, R. T. (2015). The basis of orientation decoding in human primary visual
cortex: fine- or coarse-scale biases? J. Neurophysiol. 113, 1–3. doi: 10.1152/jn.
00196.2014

Mante, V., Sussillo, D., Shenoy, K. V., and Newsome, W. T. (2013). Context-
dependent computation by recurrent dynamics in prefrontal cortex. Nature 503,
78–84. doi: 10.1038/nature12742

Markowitz, D. A., Curtis, C. E., and Pesaran, B. (2015). Multiple component
networks support working memory in prefrontal cortex. Proc. Natl. Acad. Sci.
U.S.A. 112, 11084–11089. doi: 10.1073/pnas.1504172112

McClelland, J. L., McNaughton, B. L., and O’Reilly, R. C. (1995). Why there
are complementary learning systems in the hippocampus and neocortex:
Insights from the successes and failures of connectionist models of learning
and memory. Psychol. Rev. 102, 419–457. doi: 10.1037/0033-295x.102.
3.419

Mendoza-Halliday, D., Torres, S., and Martinez-Trujillo, J. C. (2014). Sharp
emergence of feature-selective sustained activity along the dorsal visual
pathway. Nat. Neurosci. 17, 1255–1262. doi: 10.1038/nn.3785

Merrikhi, Y., Clark, K., Albarran, E., Parsa, M., Zirnsak, M., Moore, T., et al.
(2017). Spatial working memory alters the efficacy of input to visual cortex. Nat.
Commun. 8:15041.

Miller, E. K., and Cohen, J. D. (2001). An integrative theory of prefrontal cortex
function. Annu. Rev. Neurosci. 24, 167–202. doi: 10.1146/annurev.neuro.24.1.
167

Miller, E. K., and Desimone, R. (1994). Parallel neuronal mechanisms for short-
term memory. Science 263, 520–522. doi: 10.1126/science.8290960

Miller, E. K., Erickson, C. A., and Desimone, R. (1996). Neural mechanisms of
visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16,
5154–5167. doi: 10.1523/jneurosci.16-16-05154.1996

Miller, E. K., Li, L., and Desimone, R. (1993). Activity of neurons in anterior inferior
temporal cortex during a short-term memory task. J. Neurosci. 13, 1460–1478.
doi: 10.1523/jneurosci.13-04-01460.1993

Miyashita, Y., and Chang, H. S. (1988). Neuronal correlate of pictorial short-term
memory in the primate temporal cortex. Nature 331, 68–70. doi: 10.1038/
331068a0

Mohler, C. W., Goldberg, M. E., and Wurtz, R. H. (1973). Visual receptive fields of
frontal eye field neurons. Brain Res. 61, 385–389. doi: 10.1016/0006-8993(73)
90543-x

Mongillo, G., Barak, O., and Tsodyks, M. (2008). Synaptic theory of working
memory. Science 319, 1543–1546. doi: 10.1126/science.1150769

Murray, J. D., Bernacchia, A., Roy, N. A., Constantinidis, C., Romo, R., and
Wang, X.-J. (2017). Stable population coding for working memory coexists
with heterogeneous neural dynamics in prefrontal cortex. Proc. Natl. Acad. Sci.
U.S.A. 114, 394–399. doi: 10.1073/pnas.1619449114

Norman, K. A., Polyn, S. M., Detre, G. J., and Haxby, J. V. (2006). Beyond
mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10,
424–430. doi: 10.1016/j.tics.2006.07.005

Ó Scalaidhe, S. P., Wilson, F. A. W., and Goldman-Rakic, P. S. (1999). Face-
selective neurons during passive viewing and working memory performance of
rhesus monkeys: evidence for intrinsic specialization of neuronal coding. Cereb.
Cortex 9, 459–475. doi: 10.1093/cercor/9.5.459

Offen, S., Schluppeck, D., and Heeger, D. J. (2009). The role of early visual cortex
in visual short-term memory and visual attention. Vis. Res. 49, 1352–1362.
doi: 10.1016/j.visres.2007.12.022

Oga, T., Elston, G. N., and Fujita, I. (2017). Postnatal dendritic growth and
spinogenesis of layer-v pyramidal cells differ between visual, inferotemporal,
and prefrontal cortex of the macaque monkey. Front. Neurosci. 11:118. doi:
10.3389/fnins.2017.00118

Panichello, M. F., and Buschman, T. J. (2021). Shared mechanisms underlie the
control of working memory and attention. Nature 592, 601–605. doi: 10.1038/
s41586-021-03390-w

Parthasarathy, A., Herikstad, R., Bong, J. H., Medina, F. S., Libedinsky, C., and Yen,
S.-C. (2017). Mixed selectivity morphs population codes in prefrontal cortex.
Nat. Neurosci. 20, 1770–1779. doi: 10.1038/s41593-017-0003-2

Parthasarathy, A., Tang, C., Herikstad, R., Cheong, L. F., Yen, S.-C., and Libedinsky,
C. (2019). Time-invariant working memory representations in the presence of
code-morphing in the lateral prefrontal cortex. Nat. Commun. 10:4995.

Pasternak, T., and Greenlee, M. W. (2005). Working memory in primate sensory
systems. Nat. Rev. Neurosci. 6, 97–107. doi: 10.1038/nrn1603

Pesaran, B., Pezaris, J. S., Sahani, M., Mitra, P. P., and Andersen, R. A. (2002).
Temporal structure in neuronal activity during working memory in macaque
parietal cortex. Nat. Neurosci. 5, 805–811. doi: 10.1038/nn890

Petrides, M., Tomaiuolo, F., Yeterian, E. H., and Pandya, D. N. (2012). The
prefrontal cortex: comparative architectonic organization in the human and the
macaque monkey brains. Cortex 48, 46–57. doi: 10.1016/j.cortex.2011.07.002

Ploner, C. J., Rivaud-Péchoux, S., Gaymard, B. M., Agid, Y., and Pierrot-
Deseilligny, C. (1999). Errors of memory-guided saccades in humans with
lesions of the frontal eye field and the dorsolateral prefrontal cortex.
J. Neurophysiol. 82, 1086–1090. doi: 10.1152/jn.1999.82.2.1086

Postle, B. R. (2006). Working memory as an emergent property of the mind and
brain. Neuroscience 139, 23–38. doi: 10.1016/j.neuroscience.2005.06.005

Postle, B. R. (2015). The cognitive neuroscience of visual short-term memory. Curr.
Opin. Behav. Sci. 1, 40–46. doi: 10.1016/j.cobeha.2014.08.004

Postle, B. R., Druzgal, T. J., and D’Esposito, M. (2003). Seeking the neural substrates
of visual working memory storage. Cortex 39, 927–946. doi: 10.1016/s0010-
9452(08)70871-2

Postle, B. R., Idzikowski, C., Sala, S. D., Logie, R. H., and Baddeley,
A. D. (2006). The selective disruption of spatial working memory by eye
movements. Q. J. Exp. Psychol. 59, 100–120. doi: 10.1080/17470210500
151410

Postle, B. R., and Yu, Q. (2020). Neuroimaging and the localization of function in
visual cognition. Vis. Cogn. 28, 447–452. doi: 10.1080/13506285.2020.1777237

Frontiers in Neural Circuits | www.frontiersin.org 15 July 2021 | Volume 15 | Article 696060127

https://doi.org/10.1016/0001-6918(90)90066-o
https://doi.org/10.1016/0001-6918(90)90066-o
https://doi.org/10.1038/35084005
https://doi.org/10.1146/annurev.physiol.66.082602.092845
https://doi.org/10.1523/jneurosci.3061-17.2018
https://doi.org/10.1523/jneurosci.3061-17.2018
https://doi.org/10.1080/13506285.2021.1899091
https://doi.org/10.1080/13506285.2021.1899091
https://doi.org/10.1093/cercor/3.2.148
https://doi.org/10.1016/j.neuron.2016.02.028
https://doi.org/10.3389/fncom.2010.00126
https://doi.org/10.1523/jneurosci.3276-09.2010
https://doi.org/10.1152/jn.00380.2016
https://doi.org/10.1523/jneurosci.3618-15.2016
https://doi.org/10.1523/jneurosci.3618-15.2016
https://doi.org/10.7554/eLife.22974
https://doi.org/10.1152/jn.00196.2014
https://doi.org/10.1152/jn.00196.2014
https://doi.org/10.1038/nature12742
https://doi.org/10.1073/pnas.1504172112
https://doi.org/10.1037/0033-295x.102.3.419
https://doi.org/10.1037/0033-295x.102.3.419
https://doi.org/10.1038/nn.3785
https://doi.org/10.1146/annurev.neuro.24.1.167
https://doi.org/10.1146/annurev.neuro.24.1.167
https://doi.org/10.1126/science.8290960
https://doi.org/10.1523/jneurosci.16-16-05154.1996
https://doi.org/10.1523/jneurosci.13-04-01460.1993
https://doi.org/10.1038/331068a0
https://doi.org/10.1038/331068a0
https://doi.org/10.1016/0006-8993(73)90543-x
https://doi.org/10.1016/0006-8993(73)90543-x
https://doi.org/10.1126/science.1150769
https://doi.org/10.1073/pnas.1619449114
https://doi.org/10.1016/j.tics.2006.07.005
https://doi.org/10.1093/cercor/9.5.459
https://doi.org/10.1016/j.visres.2007.12.022
https://doi.org/10.3389/fnins.2017.00118
https://doi.org/10.3389/fnins.2017.00118
https://doi.org/10.1038/s41586-021-03390-w
https://doi.org/10.1038/s41586-021-03390-w
https://doi.org/10.1038/s41593-017-0003-2
https://doi.org/10.1038/nrn1603
https://doi.org/10.1038/nn890
https://doi.org/10.1016/j.cortex.2011.07.002
https://doi.org/10.1152/jn.1999.82.2.1086
https://doi.org/10.1016/j.neuroscience.2005.06.005
https://doi.org/10.1016/j.cobeha.2014.08.004
https://doi.org/10.1016/s0010-9452(08)70871-2
https://doi.org/10.1016/s0010-9452(08)70871-2
https://doi.org/10.1080/17470210500151410
https://doi.org/10.1080/17470210500151410
https://doi.org/10.1080/13506285.2020.1777237
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-15-696060 July 15, 2021 Time: 18:22 # 16

Curtis and Sprague WM From Front to Back

Pratte, M. S., Sy, J. L., Swisher, J. D., and Tong, F. (2016). Radial bias is not necessary
for orientation decoding. Neuroimage 127, 23–33. doi: 10.1016/j.neuroimage.
2015.11.066

Quintana, J., Yajeya, J., and Fuster, J. M. (1988). Prefrontal representation of
stimulus attributes during delay tasks. I. Unit activity in cross-temporal
integration of sensory and sensory-motor information. Brain Res. 474, 211–221.
doi: 10.1016/0006-8993(88)90436-2

Rademaker, R. L., Chunharas, C., and Serences, J. T. (2019). Coexisting
representations of sensory and mnemonic information in human visual cortex.
Nat. Neurosci. 22, 1336–1344. doi: 10.1038/s41593-019-0428-x

Rademaker, R. L., van de Ven, V. G., Tong, F., and Sack, A. T. (2017). The impact of
early visual cortex transcranial magnetic stimulation on visual working memory
precision and guess rate. PLoS One 12:e0175230. doi: 10.1371/journal.pone.
0175230

Rahmati, M., DeSimone, K., Curtis, C. E., and Sreenivasan, K. K. (2020). Spatially
specific working memory activity in the human superior colliculus. J. Neurosci.
40, 9487–9495. doi: 10.1523/jneurosci.2016-20.2020

Rahmati, M., Saber, G. T., and Curtis, C. E. (2018). Population dynamics of early
visual cortex during working memory. J. Cogn. Neurosci. 30, 219–233. doi:
10.1162/jocn_a_01196

Rainer, G., Asaad, W. F., and Miller, E. K. (1998). Selective representation of
relevant information by neurons in the primate prefrontal cortex. Nature 393,
577–579. doi: 10.1038/31235

Rainer, G., Rao, S. C., and Miller, E. K. (1999). Prospective coding for objects in
primate prefrontal cortex. J. Neurosci. 19, 5493–5505. doi: 10.1523/jneurosci.
19-13-05493.1999

Rao, S. C., Rainer, G., and Miller, E. K. (1997). Integration of what and where in the
primate prefrontal cortex. Science 276, 821–824. doi: 10.1126/science.276.5313.
821

Rao, S. G., Williams, G. V., and Goldman-Rakic, P. S. (2000). Destruction and
creation of spatial tuning by disinhibition: GABAABlockade of prefrontal
cortical neurons engaged by working memory. J. Neurosci. 20, 485–494. doi:
10.1523/jneurosci.20-01-00485.2000

Rauch, A., Rainer, G., and Logothetis, N. K. (2008). The effect of a serotonin-
induced dissociation between spiking and perisynaptic activity on BOLD
functional MRI. Proc. Natl. Acad. Sci. U.S.A. 105, 6759–6764. doi: 10.1073/pnas.
0800312105

Riggall, A. C., and Postle, B. R. (2012). The relationship between working memory
storage and elevated activity as measured with functional magnetic resonance
imaging. J. Neurosci. 32, 12990–12998. doi: 10.1523/jneurosci.1892-12.2012

Rigotti, M., Barak, O., Warden, M. R., Wang, X.-J., Daw, N. D., Miller, E. K., et al.
(2013). The importance of mixed selectivity in complex cognitive tasks. Nature
497, 585–590. doi: 10.1038/nature12160

Riley, M. R., and Constantinidis, C. (2015). Role of prefrontal persistent activity in
working memory. Front. Syst. Neurosci. 9:181. doi: 10.3389/fnsys.2015.00181

Rolls, E. T., and Treves, A. (1990). The relative advantages of sparse versus
distributed encoding for associative neuronal networks in the brain. Network
1, 407–421. doi: 10.1088/0954-898x_1_4_002

Romo, R., Brody, C. D., Hernández, A., and Lemus, L. (1999). Neuronal correlates
of parametric working memory in the prefrontal cortex. Nature 399, 470–473.
doi: 10.1038/20939

Rose, N. S., LaRocque, J. J., Riggall, A. C., Gosseries, O., Starrett, M. J., Meyering,
E. E., et al. (2016). Reactivation of latent working memories with transcranial
magnetic stimulation. Science 354, 1136–1139. doi: 10.1126/science.aah7011

Rossi-Pool, R., Zainos, A., Alvarez, M., Zizumbo, J., Vergara, J., and Romo, R.
(2017). Decoding a decision process in the neuronal population of dorsal
premotor cortex. Neuron 96, 1432.e7–1446.e7.

Roth, Z. N., Heeger, D. J., and Merriam, E. P. (2018). Stimulus vignetting and
orientation selectivity in human visual cortex. eLife 7:e37241. doi: 10.7554/eLife.
37241

Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S., and Passingham, R. E. (2000).
The prefrontal cortex: response selection or maintenance within working
memory? Science 288, 1656–1660. doi: 10.1126/science.288.5471.1656

Rypma, B., Berger, J. S., and D’Esposito, M. (2002). The influence of working-
memory demand and subject performance on prefrontal cortical activity.
J. Cogn. Neurosci. 14, 721–731. doi: 10.1162/08989290260138627

Saber, G. T., Pestilli, F., and Curtis, C. E. (2015). Saccade planning evokes
topographically specific activity in the dorsal and ventral streams. J. Neurosci.
35, 245–252. doi: 10.1523/jneurosci.1687-14.2015

Sadeh, M., Sajad, A., Wang, H., Yan, X., and Crawford, J. D. (2018). The influence
of a memory delay on spatial coding in the superior colliculus: is visual always
visual and motor always motor? Front. Neural Circuits 12:74. doi: 10.3389/fncir.
2018.00074

Schluppeck, D., Curtis, C. E., Glimcher, P. W., and Heeger, D. J. (2006). Sustained
activity in topographic areas of human posterior parietal cortex during
memory-guided saccades. J. Neurosci. 26, 5098–5108. doi: 10.1523/jneurosci.
5330-05.2006

Schneegans, S., and Bays, P. M. (2017). Restoration of fMRI decodability does
not imply latent working memory states. J. Cogn. Neurosci. 29, 1977–1994.
doi: 10.1162/jocn_a_01180

Scimeca, J. M., Kiyonaga, A., and D’Esposito, M. (2018). Reaffirming the sensory
recruitment account of working memory. Trends Cogn. Sci. 22, 190–192. doi:
10.1016/j.tics.2017.12.007

Serences, J. T. (2016). Neural mechanisms of information storage in visual short-
term memory. Vis. Res. 128, 53–67. doi: 10.1016/j.visres.2016.09.010

Serences, J. T., Ester, E. F., Vogel, E. K., and Awh, E. (2009). Stimulus-specific
delay activity in human primary visual cortex. Psychol. Sci. 20, 207–214. doi:
10.1111/j.1467-9280.2009.02276.x

Serences, J. T., and Yantis, S. (2004). Attentional priority maps in human cortex.
PsycEXTRA Dataset [Preprint]. doi: 10.1037/e537052012-668 [

Shafi, M., Zhou, Y., Quintana, J., Chow, C., Fuster, J., and Bodner, M. (2007).
Variability in neuronal activity in primate cortex during working memory tasks.
Neuroscience 146, 1082–1108. doi: 10.1016/j.neuroscience.2006.12.072

Shen, K., Valero, J., Day, G. S., and Paré, M. (2011). Investigating the role of the
superior colliculus in active vision with the visual search paradigm. Eur. J.
Neurosci. 33, 2003–2016. doi: 10.1111/j.1460-9568.2011.07722.x

Shichinohe, N., Akao, T., Kurkin, S., Fukushima, J., Kaneko, C. R. S., and
Fukushima, K. (2009). Memory and decision making in the frontal cortex
during visual motion processing for smooth pursuit eye movements. Neuron
62, 717–732. doi: 10.1016/j.neuron.2009.05.010

Sigala, N., Kusunoki, M., Nimmo-Smith, I., Gaffan, D., and Duncan, J. (2008).
Hierarchical coding for sequential task events in the monkey prefrontal cortex.
Proc. Natl. Acad. Sci. U.S.A. 105, 11969–11974. doi: 10.1073/pnas.0802569105

Smith, E. E., Jonides, J., and Koeppe, R. A. (1996). Dissociating verbal and spatial
working memory using PET. Cereb. Cortex 6, 11–20. doi: 10.1093/cercor/6.1.11

Sommer, M. A., and Wurtz, R. H. (2001). Frontal eye field sends delay
activity related to movement, memory, and vision to the superior colliculus.
J. Neurophysiol. 85, 1673–1685. doi: 10.1152/jn.2001.85.4.1673

Spaak, E., Watanabe, K., Funahashi, S., and Stokes, M. G. (2017). Stable and
dynamic coding for working memory in primate prefrontal cortex. J. Neurosci.
37, 6503–6516. doi: 10.1523/jneurosci.3364-16.2017

Sprague, T. C., Adam, K. C. S., Foster, J. J., Rahmati, M., Sutterer, D. W.,
and Vo, V. A. (2018). Inverted encoding models assay population-level
stimulus representations, not single-unit neural tuning. eNeuro 5, ENEURO.98-
ENEURO.2018. doi: 10.1523/ENEURO.0098-18.2018

Sprague, T. C., Ester, E. F., and Serences, J. T. (2014). Reconstructions of
information in visual spatial working memory degrade with memory load. Curr.
Biol. 24, 2174–2180. doi: 10.1016/j.cub.2014.07.066

Sprague, T. C., Ester, E. F., and Serences, J. T. (2016). Restoring latent visual
working memory representations in human cortex. Neuron 91, 694–707. doi:
10.1016/j.neuron.2016.07.006

Sreenivasan, K. K., Curtis, C. E., and D’Esposito, M. (2014). Revisiting the role of
persistent neural activity during working memory. Trends Cogn. Sci. 18, 82–89.
doi: 10.1016/j.tics.2013.12.001

Sreenivasan, K. K., and D’Esposito, M. (2019). The what, where and how of delay
activity. Nat. Rev. Neurosci. 20, 466–481. doi: 10.1038/s41583-019-0176-7

Srimal, R., and Curtis, C. E. (2008). Persistent neural activity during the
maintenance of spatial position in working memory. Neuroimage 39, 455–468.
doi: 10.1016/j.neuroimage.2007.08.040

Standage, D., and Paré, M. (2018). Slot-like capacity and resource-like coding
in a neural model of multiple-item working memory. J. Neurophysiol. 120,
1945–1961. doi: 10.1152/jn.00778.2017

Frontiers in Neural Circuits | www.frontiersin.org 16 July 2021 | Volume 15 | Article 696060128

https://doi.org/10.1016/j.neuroimage.2015.11.066
https://doi.org/10.1016/j.neuroimage.2015.11.066
https://doi.org/10.1016/0006-8993(88)90436-2
https://doi.org/10.1038/s41593-019-0428-x
https://doi.org/10.1371/journal.pone.0175230
https://doi.org/10.1371/journal.pone.0175230
https://doi.org/10.1523/jneurosci.2016-20.2020
https://doi.org/10.1162/jocn_a_01196
https://doi.org/10.1162/jocn_a_01196
https://doi.org/10.1038/31235
https://doi.org/10.1523/jneurosci.19-13-05493.1999
https://doi.org/10.1523/jneurosci.19-13-05493.1999
https://doi.org/10.1126/science.276.5313.821
https://doi.org/10.1126/science.276.5313.821
https://doi.org/10.1523/jneurosci.20-01-00485.2000
https://doi.org/10.1523/jneurosci.20-01-00485.2000
https://doi.org/10.1073/pnas.0800312105
https://doi.org/10.1073/pnas.0800312105
https://doi.org/10.1523/jneurosci.1892-12.2012
https://doi.org/10.1038/nature12160
https://doi.org/10.3389/fnsys.2015.00181
https://doi.org/10.1088/0954-898x_1_4_002
https://doi.org/10.1038/20939
https://doi.org/10.1126/science.aah7011
https://doi.org/10.7554/eLife.37241
https://doi.org/10.7554/eLife.37241
https://doi.org/10.1126/science.288.5471.1656
https://doi.org/10.1162/08989290260138627
https://doi.org/10.1523/jneurosci.1687-14.2015
https://doi.org/10.3389/fncir.2018.00074
https://doi.org/10.3389/fncir.2018.00074
https://doi.org/10.1523/jneurosci.5330-05.2006
https://doi.org/10.1523/jneurosci.5330-05.2006
https://doi.org/10.1162/jocn_a_01180
https://doi.org/10.1016/j.tics.2017.12.007
https://doi.org/10.1016/j.tics.2017.12.007
https://doi.org/10.1016/j.visres.2016.09.010
https://doi.org/10.1111/j.1467-9280.2009.02276.x
https://doi.org/10.1111/j.1467-9280.2009.02276.x
https://doi.org/10.1037/e537052012-668
https://doi.org/10.1016/j.neuroscience.2006.12.072
https://doi.org/10.1111/j.1460-9568.2011.07722.x
https://doi.org/10.1016/j.neuron.2009.05.010
https://doi.org/10.1073/pnas.0802569105
https://doi.org/10.1093/cercor/6.1.11
https://doi.org/10.1152/jn.2001.85.4.1673
https://doi.org/10.1523/jneurosci.3364-16.2017
https://doi.org/10.1523/ENEURO.0098-18.2018
https://doi.org/10.1016/j.cub.2014.07.066
https://doi.org/10.1016/j.neuron.2016.07.006
https://doi.org/10.1016/j.neuron.2016.07.006
https://doi.org/10.1016/j.tics.2013.12.001
https://doi.org/10.1038/s41583-019-0176-7
https://doi.org/10.1016/j.neuroimage.2007.08.040
https://doi.org/10.1152/jn.00778.2017
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-15-696060 July 15, 2021 Time: 18:22 # 17

Curtis and Sprague WM From Front to Back

Stokes, M., and Spaak, E. (2016). The importance of single-trial analyses in
cognitive neuroscience. Trends Cogn. Sci. 20, 483–486. doi: 10.1016/j.tics.2016.
05.008

Stokes, M. G., Kusunoki, M., Sigala, N., Nili, H., Gaffan, D., and Duncan, J. (2013).
Dynamic coding for cognitive control in prefrontal cortex. Neuron 78, 364–375.
doi: 10.1016/j.neuron.2013.01.039

Supèr, H., Spekreijse, H., and Lamme, V. A. (2001). A neural correlate of working
memory in the monkey primary visual cortex. Science 293, 120–124. doi:
10.1126/science.1060496

Suzuki, M., and Gottlieb, J. (2013). Distinct neural mechanisms of distractor
suppression in the frontal and parietal lobe. Nat. Neurosci. 16, 98–104. doi:
10.1038/nn.3282

Suzuki, W. A., Miller, E. K., and Desimone, R. (1997). Object and place memory in
the macaque entorhinal cortex. J. Neurophysiol. 78, 1062–1081. doi: 10.1152/jn.
1997.78.2.1062

Swisher, J. D., Gatenby, J. C., Gore, J. C., Wolfe, B. A., Moon, C.-H., Kim, S.-G.,
et al. (2010). Multiscale pattern analysis of orientation-selective activity in the
primary visual cortex. J. Neurosci. 30, 325–330. doi: 10.1523/jneurosci.4811-09.
2010

Takeda, K., and Funahashi, S. (2002). Prefrontal task-related activity representing
visual cue location or saccade direction in spatial working memory tasks.
J. Neurophysiol. 87, 567–588. doi: 10.1152/jn.00249.2001

Tark, K.-J., and Curtis, C. E. (2009). Persistent neural activity in the human frontal
cortex when maintaining space that is off the map. Nat. Neurosci. 12, 1463–1468.
doi: 10.1038/nn.2406

van Bergen, R. S., and Jehee, J. F. M. (2018). Modeling correlated noise is necessary
to decode uncertainty. Neuroimage 180, 78–87. doi: 10.1016/j.neuroimage.
2017.08.015

van Bergen, R. S., and Jehee, J. F. M. (2021). TAFKAP: an improved method for
probabilistic decoding of cortical activity. bioRxiv [Preprint]. doi: 10.1101/2021.
03.04.433946

van Bergen, R. S., Ma, W. J., Pratte, M. S., and Jehee, J. F. M. (2015). Sensory
uncertainty decoded from visual cortex predicts behavior. Nat. Neurosci. 18,
1728–1730. doi: 10.1038/nn.4150

van Kerkoerle, T., Self, M. W., and Roelfsema, P. R. (2017). Layer-specificity in the
effects of attention and working memory on activity in primary visual cortex.
Nat. Commun. 8:13804.

Wallis, J. D., Anderson, K. C., and Miller, E. K. (2001). Single neurons in prefrontal
cortex encode abstract rules. Nature 411, 953–956. doi: 10.1038/35082081

Wandell, B. A., and Winawer, J. (2015). Computational neuroimaging and
population receptive fields. Trends Cogn. Sci. 19, 349–357. doi: 10.1016/j.tics.
2015.03.009

Wang, H., Stradtman, G. G., Wang, X.-J., and Gao, W.-J. (2008). A specialized
NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat
prefrontal cortex. Proc. Natl. Acad. Sci. U.S.A. 105, 16791–16796. doi: 10.1073/
pnas.0804318105

Wang, M., Gamo, N. J., Yang, Y., Jin, L. E., Wang, X.-J., Laubach, M., et al. (2011).
Neuronal basis of age-related working memory decline. Nature 476, 210–213.
doi: 10.1038/nature10243

Wang, M., Yang, Y., Wang, C.-J., Gamo, N. J., Jin, L. E., Mazer, J. A., et al. (2013).
NMDA receptors subserve persistent neuronal firing during working memory
in dorsolateral prefrontal cortex. Neuron 77, 736–749. doi: 10.1016/j.neuron.
2012.12.032

Wang, X. J. (1999). Synaptic basis of cortical persistent activity: the importance
of NMDA receptors to working memory. J. Neurosci. 19, 9587–9603. doi:
10.1523/jneurosci.19-21-09587.1999

Wang, X. J. (2001). Synaptic reverberation underlying mnemonic persistent
activity. Trends Neurosci. 24, 455–463. doi: 10.1016/s0166-2236(00)01868-3

Wang, Y., Markram, H., Goodman, P. H., Berger, T. K., Ma, J., and Goldman-Rakic,
P. S. (2006). Heterogeneity in the pyramidal network of the medial prefrontal
cortex. Nat. Neurosci. 9, 534–542. doi: 10.1038/nn1670

Wasmuht, D. F., Spaak, E., Buschman, T. J., Miller, E. K., and Stokes, M. G. (2018).
Intrinsic neuronal dynamics predict distinct functional roles during working
memory. Nat. Commun. 9:3499.

Wimmer, K., Nykamp, D. Q., Constantinidis, C., and Compte, A. (2014). Bump
attractor dynamics in prefrontal cortex explains behavioral precision in spatial
working memory. Nat. Neurosci. 17, 431–439. doi: 10.1038/nn.3645

Wirth, S., Yanike, M., Frank, L. M., Smith, A. C., Brown, E. N., and Suzuki,
W. A. (2003). Single neurons in the monkey hippocampus and learning of new
associations. Science 300, 1578–1581. doi: 10.1126/science.1084324

Wolff, M. J., Ding, J., Myers, N. E., and Stokes, M. G. (2015). Revealing hidden
states in visual working memory using electroencephalography. Front. Syst.
Neurosci. 9:123. doi: 10.3389/fnsys.2015.00123

Wolff, M. J., Jochim, J., Akyürek, E. G., Buschman, T. J., and Stokes, M. G. (2020a).
Drifting codes within a stable coding scheme for working memory. PLoS Biol.
18:e3000625. doi: 10.1371/journal.pbio.3000625

Wolff, M. J., Kandemir, G., Stokes, M. G., and Akyürek, E. G. (2020b). Unimodal
and bimodal access to sensory working memories by auditory and visual
impulses. J. Neurosci. 40, 671–681. doi: 10.1523/jneurosci.1194-19.2019

Wolff, M. J., Jochim, J., Akyürek, E. G., and Stokes, M. G. (2017). Dynamic
hidden states underlying working-memory-guided behavior. Nat. Neurosci. 20,
864–871. doi: 10.1038/nn.4546

Yu, Q., and Shim, W. M. (2017). Occipital, parietal, and frontal cortices selectively
maintain task-relevant features of multi-feature objects in visual working
memory. Neuroimage 157, 97–107. doi: 10.1016/j.neuroimage.2017.05.055

Zaksas, D., and Pasternak, T. (2006). Directional signals in the prefrontal cortex
and in area MT during a working memory for visual motion task. J. Neurosci.
26, 11726–11742. doi: 10.1523/jneurosci.3420-06.2006

Zarahn, E., Aguirre, G. K., and D’Esposito, M. (1999). Temporal isolation
of the neural correlates of spatial mnemonic processing with fMRI.
Brain Res. Cogn. Brain Res. 7, 255–268. doi: 10.1016/s0926-6410(98)
00029-9

Zelinsky, G. J., and Bisley, J. W. (2015). The what, where, and why of priority maps
and their interactions with visual working memory. Ann. N. Y. Acad. Sci. 1339,
154–164. doi: 10.1111/nyas.12606

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Curtis and Sprague. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neural Circuits | www.frontiersin.org 17 July 2021 | Volume 15 | Article 696060129

https://doi.org/10.1016/j.tics.2016.05.008
https://doi.org/10.1016/j.tics.2016.05.008
https://doi.org/10.1016/j.neuron.2013.01.039
https://doi.org/10.1126/science.1060496
https://doi.org/10.1126/science.1060496
https://doi.org/10.1038/nn.3282
https://doi.org/10.1038/nn.3282
https://doi.org/10.1152/jn.1997.78.2.1062
https://doi.org/10.1152/jn.1997.78.2.1062
https://doi.org/10.1523/jneurosci.4811-09.2010
https://doi.org/10.1523/jneurosci.4811-09.2010
https://doi.org/10.1152/jn.00249.2001
https://doi.org/10.1038/nn.2406
https://doi.org/10.1016/j.neuroimage.2017.08.015
https://doi.org/10.1016/j.neuroimage.2017.08.015
https://doi.org/10.1101/2021.03.04.433946
https://doi.org/10.1101/2021.03.04.433946
https://doi.org/10.1038/nn.4150
https://doi.org/10.1038/35082081
https://doi.org/10.1016/j.tics.2015.03.009
https://doi.org/10.1016/j.tics.2015.03.009
https://doi.org/10.1073/pnas.0804318105
https://doi.org/10.1073/pnas.0804318105
https://doi.org/10.1038/nature10243
https://doi.org/10.1016/j.neuron.2012.12.032
https://doi.org/10.1016/j.neuron.2012.12.032
https://doi.org/10.1523/jneurosci.19-21-09587.1999
https://doi.org/10.1523/jneurosci.19-21-09587.1999
https://doi.org/10.1016/s0166-2236(00)01868-3
https://doi.org/10.1038/nn1670
https://doi.org/10.1038/nn.3645
https://doi.org/10.1126/science.1084324
https://doi.org/10.3389/fnsys.2015.00123
https://doi.org/10.1371/journal.pbio.3000625
https://doi.org/10.1523/jneurosci.1194-19.2019
https://doi.org/10.1038/nn.4546
https://doi.org/10.1016/j.neuroimage.2017.05.055
https://doi.org/10.1523/jneurosci.3420-06.2006
https://doi.org/10.1016/s0926-6410(98)00029-9
https://doi.org/10.1016/s0926-6410(98)00029-9
https://doi.org/10.1111/nyas.12606
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-15-716965 September 14, 2021 Time: 19:23 # 1

BRIEF RESEARCH REPORT
published: 20 September 2021
doi: 10.3389/fncir.2021.716965

Edited by:
Shintaro Funahashi,

Kyoto University, Japan

Reviewed by:
Leonid L. Rubchinsky,

Indiana University, Purdue University
Indianapolis, United States

Shoji Tanaka,
Sophia University, Japan

Louis Kang,
RIKEN Center for Brain Science

(CBS), Japan

*Correspondence:
Albert Compte

acompte@clinic.cat

Received: 29 May 2021
Accepted: 11 August 2021

Published: 20 September 2021

Citation:
Barbosa J, Babushkin V,

Temudo A, Sreenivasan KK and
Compte A (2021) Across-Area

Synchronization Supports Feature
Integration in a Biophysical Network

Model of Working Memory.
Front. Neural Circuits 15:716965.

doi: 10.3389/fncir.2021.716965

Across-Area Synchronization
Supports Feature Integration in a
Biophysical Network Model of
Working Memory
Joao Barbosa1,2, Vahan Babushkin3, Ainsley Temudo3, Kartik K. Sreenivasan3 and
Albert Compte1*

1 Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, 2 Laboratoire de Neurosciences
Cognitives et Computationnelles, INSERM U960, Ecole Normale Supérieure – PSL Research University, Paris, France,
3 Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

Working memory function is severely limited. One key limitation that constrains the ability
to maintain multiple items in working memory simultaneously is so-called swap errors.
These errors occur when an inaccurate response is in fact accurate relative to a non-
target stimulus, reflecting the failure to maintain the appropriate association or “binding”
between the features that define one object (e.g., color and location). The mechanisms
underlying feature binding in working memory remain unknown. Here, we tested the
hypothesis that features are bound in memory through synchrony across feature-specific
neural assemblies. We built a biophysical neural network model composed of two
one-dimensional attractor networks – one for color and one for location – simulating
feature storage in different cortical areas. Within each area, gamma oscillations were
induced during bump attractor activity through the interplay of fast recurrent excitation
and slower feedback inhibition. As a result, different memorized items were held at
different phases of the network’s oscillation. These two areas were then reciprocally
connected via weak cortico-cortical excitation, accomplishing binding between color
and location through the synchronization of pairs of bumps across the two areas.
Encoding and decoding of color-location associations was accomplished through
rate coding, overcoming a long-standing limitation of binding through synchrony. In
some simulations, swap errors arose: “color bumps” abruptly changed their phase
relationship with “location bumps.” This model, which leverages the explanatory power
of similar attractor models, specifies a plausible mechanism for feature binding and
makes specific predictions about swap errors that are testable at behavioral and
neurophysiological levels.

Keywords: working memory, binding, oscillations, multi-area, attractor network

INTRODUCTION

Working memory, our ability to hold information in mind for short time periods, is a hallmark of
cognition but is severely limited on several fronts (Ma et al., 2014). Some of its limitations, such as its
capacity, precision, or specific quantitative biases have been successfully accounted for by a family
of biophysically-constrained models, mostly on the basis of a ring attractor network that maintains
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memoranda through sustained reverberatory neural activity
(activity bumps) (Compte et al., 2000; Edin et al., 2009; Wei et al.,
2012; Wimmer et al., 2014; Almeida et al., 2015; Papadimitriou
et al., 2015; Nassar et al., 2018; Bouchacourt and Buschman,
2019; Qi et al., 2019; Barbosa et al., 2020). A feature of working
memory that constrains the simultaneous storage of several
items is the presence of swap errors (Schneegans and Bays,
2019). These errors occur when an inaccurate response to the
target item is in fact accurate relative to a non-target item,
reflecting the failure to maintain the appropriate association or
“binding” between the separate features that define each item
(e.g., color and location). The neural mechanisms supporting
feature binding remain unclear, with different computational
models implementing two alternative hypotheses (Raffone and
Wolters, 2001; Swan and Wyble, 2014; Matthey et al., 2015;
Schneegans et al., 2016; Pina et al., 2018; Schneegans and Bays,
2019).

The first type of models are based on selective synchronization
(Raffone and Wolters, 2001; Pina et al., 2018). In these models,
different neuronal populations selective to each feature that
define an object are bound together through synchronized
oscillatory activity. This would answer the longstanding question
of how independently encoded features could be flexibly encoded
as a single concept (Singer, 1999). Thanks to this flexibility, at
least conceptually, these models do not suffer from combinatorial
explosion as an increasing number of feature combinations
are considered. There are, however, important questions about
the biological plausibility of this hypothesis. Crucially, such a
framework would need a temporal encoder that tags bound
features by a “temporal code” and a temporal decoder that is
able to distinguish which features are associated by detecting
ensembles oscillating in precise synchrony. Both the encoder and
decoder would thus depend on undefined biological mechanisms
for spike coincidence detection (Shadlen and Movshon, 1999),
which would struggle with the known high variability of neural
spiking in sustained activity (Compte et al., 2003; Shafi et al.,
2007). However, there is ample evidence for oscillatory dynamics
during working memory. For instance, oscillatory activity in
the gamma band (roughly defined between 30 and 100 Hz)
increases during the mnemonic periods, both locally (Pesaran
et al., 2002; Wimmer et al., 2016) and across sites (Lutzenberger
et al., 2002; Kaiser et al., 2003; Palva et al., 2011; Kornblith et al.,
2016), and further increases with memory load (Howard et al.,
2003; van Vugt et al., 2010; Kornblith et al., 2016; Lundqvist
et al., 2016). Importantly, gamma-band activity seems to play
a functional role, as working memory binding performance is
increased when transcranial stimulation at gamma frequency
(40 Hz) is applied at two different sites (left temporal and
parietal), but only when in anti-phase (Tseng et al., 2016) in line
with monkey electrophysiology showing that different items are
stored in different oscillatory phases (Siegel et al., 2009) and the
more general framework of phase-coding in working memory
(Fell and Axmacher, 2011).

Another class of models achieve feature binding through
“conjunction neurons” – neurons that are selective to all features
being bound. Since neurons with mixed selectivity are ubiquitous
in the brain (Rigotti et al., 2013; Fusi et al., 2016), these

models seem more biologically plausible than those relying
on unrealistically precise spike synchronization. Nevertheless,
they suffer from some important limitations. First, the number
of possible combinations explode quickly with an increasing
number of features (Matthey et al., 2015; Schneegans et al., 2016;
Schneegans and Bays, 2017, 2019; but see Swan and Wyble,
2014). Second, these models do not have independent storage
systems for each feature that define an object, to which there
is converging evidence (Olson and Jiang, 2002; Wheeler and
Treisman, 2002; Xu, 2002; Delvenne and Bruyer, 2004; Bays et al.,
2011b; Fougnie and Alvarez, 2011; Parra et al., 2011). See Ma
et al. (2014) and Schneegans and Bays (2019) for recent reviews
on the experimental evidence that should constrain multi-item
working memory models, in particular those aiming to explain
feature binding.

Here, we propose a hybrid model that overcomes several
limitations from both types of models. We connected two ring
attractor networks – one ring representing and memorizing
colors and another ring storing locations – via weak excitation.
This is an explicit implementation of the independent storage
of individual features, where each feature might be represented
in different cortical areas (e.g., color in inferior temporal
cortex and location in posterior parietal cortex). Within each
area, oscillatory mnemonic activity occured naturally through
the interplay between fast recurrent excitation and slower
inhibitory feedback. Feature binding was accomplished through
the selective synchronization of pairs of bumps across the two
networks. Furthermore, encoding and decoding of specific color-
location associations was accomplished through rate coding. Our
hybrid model of rate/temporal coding shares the rich explanatory
power of classical ring-attractor models of working memory
(Edin et al., 2009; Wei et al., 2012; Wimmer et al., 2014;
Almeida et al., 2015; Papadimitriou et al., 2015; Nassar et al.,
2018; Bouchacourt and Buschman, 2019; Qi et al., 2019; Barbosa
et al., 2020) and derives new predictions that can be tested on
multiple levels.

MATERIALS AND METHODS

Neural Network Model
We extended a previously proposed computational model
(Compte et al., 2000). In particular, we connected two one-
dimensional ring networks via weak, cortico-cortical excitatory
synapses governed by AMPAR-dynamics. Each network consists
of 2,048 excitatory and 512 inhibitory leaky integrate-and-
fire neurons fully connected through AMPAR-, NMDAR-,
and GABAAR-mediated synaptic transmission as in Compte
et al. (2000). Moreover, excitatory and inhibitory neurons were
spatially distributed on a ring so that nearby neurons encoded
nearby spatial locations. All connections were all-to-all and
spatially tuned, so that nearby neurons with similar preferred
directions had stronger than average connections, while distant
neurons had weaker connections. Inhibitory-to-inhibitory and
across-network connectivity was untuned. Intrinsic parameters
for both cell types and all the connectivity parameters were taken
from Compte et al. (2000), except the following for networks
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holding up to two stimuli or capacity-2 networks (notation
consistent with Compte et al., 2000):

GEE, AMPA = 0.09 nS, GEI, AMPA = 0.256 nS,

GEE, NMDA = 0.24 nS, GEI, NMDA = 0.11 nS,

GII, GABA = 2 nS, GIE, GABA = 3 nS,

gext, I = 2.74 nS, gext, E = 3.5 nS,

J+EE = 10, σEE = 9, J+EI = J+IE = 2.4, σEI = σIE = 18.

For networks holding up to three stimuli (capacity-3
networks),

GEE, AMPA = 0.126 nS, GEI, AMPA = 0.256 nS,

GEE, NMDA = 0.2 nS, GEI, NMDA = 0.11 nS,

GII, GABA = 2 nS, GIE, GABA = 3 nS,

gext, I = 2.8 nS, gext, E = 3.58 nS,

J+EE = 11, σEE = 9, J+EI = J+IE = 2.6, σEI = σIE = 30.

Connectivity across networks was determined by the following
conductances (for unconnected simulations, these conductances
were set to zero):

GEE, AMPA, across = 0.45 nS, GEI, AMPA, across = 0.18 nS,

GEE, NMDA, across = GEI, NMDA, across = 0 nS.

These parameters were adjusted to have within-network
oscillations, which was accomplished by increasing the ratio
between fast and slow excitation, supported, respectively, by
AMPAR and NMDAR channels, as previously shown (Compte
et al., 2000). The main dynamics described in this study were
robust to a broad range of parameter values (Figures 1–4).

Cross-Correlations
For the cross-correlation analyses, we computed spike counts
in bins of 5 ms, collapsing all neurons around the stimulus
presentation location (here called a bump, ±340 neurons).
Moreover, we computed within- and across-network correlations
by, respectively, considering neurons in bumps from the same or
different circuits. For the cross-frequency correlation plots (e.g.,
Figure 2B), we further computed the power spectrum of the
resulting cross-correlation functions, averaged across all possible
(only within- or only across-) pairs of bumps.

Conversion of Spikes Into Local Field
Potentials
For the conversion of simulated spike trains into local field
potentials, we convolved the aggregated spike times (ts) of all the
neurons engaged in a bump (or in the network, depending on the
analysis) with an alpha-function synaptic kernel:

LFP(t) =
∑

ts

2(t − ts)
t − ts

τ
exp

(
−

t − ts

τ

)
with2(t) being the Heaviside theta function, and τ = 5 ms.

Phase-Preservation Index
To measure how an oscillating activity bump kept its oscillatory
phase over multiple trials (k = 1,. . .,N) of our simulation, we
first converted spike times into local-field potentials (see above).
Through wavelet analysis, we determined the phase φk(f0, t) of
the LFP at f0 = 30 Hz (the approximate frequency of oscillations
in the network) at all time points t of the simulation, and then
we used the phase-preservation index (PPI), a method originally
developed by Mazaheri and Jensen (2006) for EEG data.

The PPI is defined by taking a reference time point (in
our case tref = stimulus offset), and then computing the average
consistency of the phases at the specific frequency of interest
f0with the rest of the time points:

PPI(f0, t) =
1
N

∣∣∣∣∣
N∑

k=1

eiφk(f0,tref )−iφk(f0,t)

∣∣∣∣∣
Phase-preservation index values thus vary between 0 and 1, with
1 indicating perfect phase consistency.

Extracting Behavioral Output With a
Mixture of Gaussians
The final behavioral output, for simplicity, was extracted by fitting
a mixture of two gaussians to the late-delay average activity of the
color network. We then selected the central value (color) of the
gaussian component with larger amplitude, or stronger mixture
component. We fit the mixture of gaussians using the Python
function sklearn.mixture.GMM. This algorithmic read-out could
be replaced by a biologically plausible downstream network
connected to the color circuit, and tuned to be in a winner-take-
all regime – i.e., only able to maintain one bump at a time.

RESULTS

Working Memory Load Modulates
Oscillation Power and Frequency
We built a computational network model of a local neocortical
circuit, with excitatory and inhibitory spiking neurons (leaky
integrate-and-fire neuron model) connected reciprocally via
excitatory AMPAR-mediated and NMDAR-mediated synapses
and inhibitory GABAAR-mediated synapses (see “Materials and
Methods”). The ring-attractor network model was adjusted to
support bump attractor dynamics with up to three simultaneous
bumps (Edin et al., 2009), and further adjustment of the
relative weights of AMPAR- and NMDAR-mediated currents
was performed to set active reverberant neurons in the
oscillatory regime (Wang, 1999). Using this computational
model we started by investigating the dynamics that originated
within each network.

In our model, multiple bumps showed anti-correlated
oscillatory activity (Figure 1). As we stored more bumps in
the network, lateral inhibition originating from simultaneous
memories established anti-phase oscillatory dynamics during the
memory period. These oscillatory dynamics were irregular, as
illustrated in quickly dampened correlation functions (Figure 1A,
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FIGURE 1 | Multiple bumps are spontaneously anti-correlated. (A) Raster plots of three sample simulations of load 1–3 (top) and delay-period zooms (middle) show
clear bump oscillatory activity, confirmed by correlation functions (bottom). Notably, irregular activity coexists with oscillatory dynamics. (B–D) Anti-correlated
oscillatory dynamics as excitation is manipulated in the network (AMPAR conductance for excitatory to inhibitory connections, Y-axis, and for excitatory to excitatory
connections, X-axis) in simulations with load 2 for the capacity-2 network used in Figures 3, 4 (to facilitate comparisons). (B) Anti-phase dynamics as measured by
zero-lag cross-correlation between bumps. (C) Dominant frequency of the auto-correlation function computed independently for each bump (computed with Fourier
analysis). (D) Dominant frequency of the cross-correlation between the two bumps. Red stars mark the parameter values of model simulations used throughout the
study. Plots in panels (B–D) summarize the dynamics of ∼10,000 simulations (total) of 100 different networks.

bottom). Moreover, we found that the anti-phase behavior was
robust in a wide range of values for AMPAR conductances
(Figure 1B), consistently in the gamma range of frequencies
(Figures 1C,D). Having seen these anti-phase dynamics between
simultaneous bumps, we sought to contrast two opposite
scenarios as we increased the number of stored memories
(memory load). Under one alternative, bumps may oscillate
at a fixed frequency irrespectively of load, so that the global
network oscillation (adding up the activity of fixed-frequency

out-of-phase bumps) would have a frequency that should
increase linearly with memory load (scenario 1, dashed line
Figure 2C). Alternatively, the network global oscillation could
have a fixed frequency for different loads, and simultaneous
bumps would take turns to fire in the available active periods.
This would lead to halving each bump’s oscillation frequency
as we double the memory load (scenario 2, dashed line in
Figure 2D). We tested our model simulations to identify if
our biophysical model adhered to one of these scenarios. To
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FIGURE 2 | Load-modulation of network and bump oscillatory dynamics.
Power spectrum of LFPs computed from simulations with increasing load
(1–3), using the activity of the whole network (A) or of each bump’s activity
(B). (C,D) Peak-frequency fk computed from simulations with increasing load
k, normalized to frequency f1 from simulations with a single bump and
computed from LFPs of the whole network activity (C) and from LFPs of each
individual bump’s activity (D).

this end, we ran multiple simulations with three different
loads (presenting 1–3 separate bumps during the encoding
cue period) and we computed power spectra from either the
aggregate activity of the whole network (network power) or
from separate populations centered around each presented target
(bump power). We then extracted the frequency of the peak
network and bump power to study their dependency with load.
We found signatures of both scenarios (Figures 2A,B). As we
increased the memory load, the overall network activity oscillated
at slightly increasing frequencies (Figures 2A,C). In contrast,
each bump, corresponding to different memories, oscillated at
markedly slower frequencies as load increased (Figures 2B,D).
We quantified which were the dominant dynamics by plotting
both the network’s and each bump’s oscillating frequency
against memory load. For better comparison, we normalized
the frequency associated with different loads to the one of load
1. Moreover, we compared the effect of memory load against
scenario 1 and 2 (dashed lines in Figures 2C,D). Qualitatively,
we found that our network dynamics was more consistent
with the latter.

We therefore conclude that our biophysical network
maintains a relatively constant global oscillation as more items
are loaded into memory, and individual memory oscillations
instead start skipping cycles to sustain out-of-phase dynamics
with other memories. Thus, the interplay between recurrent
(fast) excitation and (slower) feedback inhibition acting locally
is the basis of the oscillatory bump behavior. Moreover, we now
show that anti-phase dynamics of simultaneous bumps occurs
due to bump competition, accomplished by lateral inhibition.
This competition increases with memory load, leading to longer

periods of silence during the delay-activity of each bump. These
dynamics generalize previous findings in simplified rate models
(Pina et al., 2018), and extend them to biologically realistic ring
attractor networks.

Uniform Coupling Achieves Feature
Binding
The binding between color and location is accomplished through
the spontaneous synchronization of pairs of bumps across
two networks connected via weak cortico-cortical excitation
(Figure 3). In particular, we connected two ring-attractors in
the regime described above with all-to-all, untuned excitatory
connectivity. This connectivity was weak and it was mediated
exclusively by AMPARs (Figure 3A), acting on all excitatory and
inhibitory neurons. Interestingly, anti-phase dynamics within
each network (as described above) was maintained robustly for
a wide range of connectivity strength values (Figures 3E,F).
Across networks, each bump’s activity was in phase with one
bump in the other network (Figures 3B,C, black) but out of
phase with the other (Figures 3B,C, red). On the majority of
the simulations, this selective synchronization was maintained
through the whole delay period (see Figures 3C,D for an example
simulation). This set of dynamics is an interesting possible
mechanism that binds and maintains the information of each
presented stimulus. To this end, however, there are several aspects
to resolve in relation to the encoding and decoding of this
bound information.

On the one hand, synchronization selection was noise-
induced in our simulations, resulting in across-networks
associations between random pairs of bumps for different
simulations. To control this association at the time of stimulus
encoding, we stimulated strongly (7.5 times the intensity of
sensory stimuli) and simultaneously one bump in each network
for a brief period of 50 ms (Figures 3B, 4A, green period),
forcing these two bumps (one in each network) to engage in
correlated activity during the delay period. Nevertheless, this
phase-locked dynamics could be broken by noisy fluctuations,
leading to possible misbinding of memorized features and swap
trials (Figures 4A,B).

On the other hand, our model raised the question of
how this binding of information could reasonably be decoded
without resorting to complex mechanisms for spike coincidence
detection. In our task, the “behavioral” output consisted in
answering which “color” was initially associated with a particular
“location,” and this was accomplished by evaluating which bump
of the color network maintained in-phase synchronization with
the bump of the probed location at the end of the delay. We
found that this did not require complex coincidence detection,
but could instead be simulated in a rate formalism as follows.
For each trial, we probed one location by stimulating weakly
( 1

4 of stimulus intensity) corresponding neurons in the location
network at the end of the delay. This simulated the visual
presentation of a location probe at the end of the delay.
This increased the firing rate of the corresponding location
bump, and we found that it also resulted in an increase of
activity of the associated, in-phase color bump. Finally, we
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FIGURE 3 | Feature-binding through weak, uniform coupling of 2 ring attractors. (A) Left, schematics of within-network excitatory (black) and inhibitory (blue)
connectivity to excitatory (solid) and inhibitory (dashed) neurons. Neurons with similar selectivity were strongly connected as illustrated by the line width. Right,
schematics of the 2-network architecture, consisting of 2 ring-attractors with all-to-all, uniform connectivity. Each ring is able to store memories from one feature
space (e.g., color or location) as activity bumps (Figure 1). (B) One example simulation for the two networks. The pink-shaded area marks the period in which we
read out the activity of the entire color network, while injecting current at one specific location in the location network (right gray-shaded area in the location
rastergram, see main text for details about encoding/decoding). (C) Cross-correlation computed between 2 pairs of bumps across networks [as marked with dashed
red and black lines in panel (B)]. Across networks, oscillating bumps synchronize in phase (black, positive zero-lag cross-correlation) or out of phase (red, negative
zero-lag cross-correlation). (D) Spike count correlation (in count bins of 5 ms and correlation windows of 100 ms) of both associations through the memory delay is
stable for this simulation. (E,F) Similar to Figures 1B,D, but manipulating AMPAR conductances across networks. (E) Robustness of anti-phase dynamics within
each network as measured by spike count correlation between bumps (Figure 1B). (F) Dominant frequency of cross-correlation between the two bumps within
each network (Figure 1D). (G) Bump strength measured as standard deviation of spike-counts across model neurons at the end of the delay. (E–G) summarize the
dynamics of 22,000 simulations (total) of 100 × 2 networks. Stars indicate parameters and dynamical regime of network simulations shown in panels (B–D).

extracted the behavioral output by fitting a mixture of gaussians
(“Materials and Methods”) applied to the mean firing rate activity
across the color network during the location-probing period
(0.5 s). Figure 4B shows color readouts from 1,000 of such
simulated trials. Applying our encoding/decoding method to
our simulations, resulted in 30% of trials wrongly associated
with the non-target color (swap trials, Figure 4B). We then
separated swap trials from on-target trials and computed the
spike-count correlation in windows of 5 ms through the whole

trial period (Figure 4D), and confirmed that on-target trials
were in fact characterized by stable phase-locked activity, while
the correlation between bumps in swap trials progressively
approached the opposite dynamics (in-phase/anti-phase for
the bound/unbound items, Figure 4D). Importantly, networks
maintained synchronized in-phase dynamics for bound features
robustly over a broad range of inter-network connectivity
parameter values (Figures 4E,F). Additionally, we identified
three sources of swap errors in our simulations, classified as

Frontiers in Neural Circuits | www.frontiersin.org 6 September 2021 | Volume 15 | Article 716965135

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-15-716965 September 14, 2021 Time: 19:23 # 7

Barbosa et al. Oscillatory Feature Binding

FIGURE 4 | Encoding and decoding without temporal precision. (A) Spike-count correlation (in count bins of 5 ms and correlation windows of 100 ms) during the
delay for 20 sample simulations. During the encoding period (green), immediately after the stimulus presentation, we bound two bumps, one from each network, by
simultaneously stimulating them strongly. This ensured those two bumps were correlated through the trial more often than chance (black lines in the figures), and the
other cross-network association synchronized mostly out-of-phase (red lines). On some trials (only one in a), noisy fluctuations reversed these correlations suddenly
(swap trials). During the decoding period (light gray, on the right) we simulated the probe period of a working memory task, by stimulating the cued location (0.5 s) of
one network, while decoding mean firing rates from the color network. (B) Color readout histogram in 1,000 simulations. Bumps bound during encoding (target,
centered at neuron 520 out of 2,048) were more likely to be read-out than unbound bumps (non-target, centered at 1,480). (C) Three types of swaps: memory
swaps (top), attentional swaps (middle), or decoding swaps (bottom). (D) Same as panel (A), averaging across all trials separately for swap and on-target trials, as
defined by the decoder, shown in panel (B). (E,F) summary of the dynamics of 22,000 simulations (total) of 100 connected (×2) networks as a function of
inter-network connectivity. (E) Binding stability measured as the average spike-count correlation between initially bound bump pairs during the delay (black, in
figures). (F) Dominant frequency of the cross-correlation between bound bump pairs. Red stars mark the parameter values of the model used for sample
simulations. (G) Swap errors increase with delay duration and (H) simulations (3 s delay) where target (T) and non-target (NT) bumps are stored close-by (varying

(Continued)
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FIGURE 4 | (Continued)
distance) increase swap error probability, relative to when they are further apart. (I) Swap-error trials (red, n = 3,000), compared with on-target trials (green,
n = 3,000) in the model are associated with a lower phase consistency of oscillatory activity in the delay period, as measured with phase-preservation index (PPI,
“Materials and Methods”) using early delay as the reference time point. Error-bars are bootstrapped standard errors (n = 500).

memory swaps if the correct association based on in-phase bump
synchronization changed abruptly during the delay (51% of
the swap trials), attentional swaps if the wrong association was
encoded during the encoding period (22%) or decoding swaps if
the correct association was encoded and maintained during the
memory period, but the decoding failed (27%). See Figure 4C for
example simulations.

Together, our biologically-constrained simulations
demonstrate that feature-binding can be robustly accomplished
through selective synchronization. Crucially, encoding/decoding
location-color associations was done without a temporally
precise code, a long-standing limitation in the binding by
synchrony framework (Shadlen and Movshon, 1999). Moreover,
we identified three sources of swap errors. Based on these
computational findings, we investigated model predictions
that could be compared with existing data or could generate
hypotheses for new experimental studies.

Swap Errors Increase With Delay and
Item Competition
In our model, swap errors are induced by noisy fluctuations.
This results in two behavioral predictions, congruent with
previous findings (Emrich and Ferber, 2012; Pertzov et al., 2017;
Schneegans and Bays, 2017). First, longer memory delays should
increase the probability of a noisy fluctuation that is sufficiently
large to induce a swap (Figure 4G). Second, Figure 4H shows
how swap errors decrease with target to non-target distances.
For very close locations, feedback inhibition is strongest, leading
to strong competition between nearby bumps, explaining an
increase of swap errors for such distances. This is similar to
previous studies (Wei et al., 2012; Almeida et al., 2015; Nassar
et al., 2018), in which simultaneous bumps interfere (repulsively
and through their phase relationship, which is in this case less
stable through the delay). Experimentally, these two regimes
correspond to different scenarios. In the first case, one color
is forgotten, while in the second scenario, there is an actual
swap error. This prediction could be tested experimentally by
probing the subject’s memory on all items, instead of just one
(Adam et al., 2017).

In sum, our model is able to describe a previously found
dependence of swap errors with delay duration and with target
to non-target distance, and it offers mechanistic explanations for
such dependencies.

Neural Prediction: Swap Trials Show
Less Phase Preservation Through the
Delay
Finally, abrupt changes in the phase relationship between
oscillating bumps is the central mechanism of swap errors in
our model (Figures 4A,B). Therefore, it is worth deriving a

testable neurophysiological prediction from this mechanism.
Additionally, because these changes in phase relationships are
abrupt, they require experiments using techniques with high
temporal resolution such as MEG or EEG. Intuitively, swap
errors in our model simulations are characterized by inconsistent
phase relationships between brain signals when comparing the
beginning and the end of the delay period. We therefore
considered applying an analysis that has been proposed to test
phase consistency in EEG/MEG: the phase-preservation index
(PPI, Mazaheri and Jensen, 2006). We first derived LFP signals
from our network’s spiking activity (“Materials and Methods”).
We then calculated the phase-preservation index (PPI, see
Mazaheri and Jensen, 2006 and “Materials and Methods”) at the
end of the delay, relative to the beginning of the delay, and
separately for on-target and swap trials defined “behaviorally”
(Figure 4B). As we expected based on our model simulations
(Figure 4), this analysis applied to our simulated data showed
that trials containing swap errors had a lower PPI, compared to
on-target trials (Figure 4I). This prediction can be tested with
MEG/EEG data recorded from humans performing this task,
based on an analysis of behavioral responses able to discriminate
swap and correct error trials (Bays et al., 2009).

DISCUSSION

Aiming to account for swap-errors, a prominent source of multi-
item working memory interference (Schneegans and Bays, 2019),
we extended the ring-attractor model (Compte et al., 2000).
Our biologically-constrained model offers a plausible mechanism
for feature-binding. Briefly, the encoding and decoding of
associations is accomplished through rate-coding, while their
maintenance is accomplished through selective synchronization
of oscillatory mnemonic activity. Oscillatory dynamics emerges
naturally from bump competition, which increases with memory
load and is in line with previous EEG experiments in humans
(Roux et al., 2012) and LFP recordings from monkey PFC
(Lundqvist et al., 2018). Finally, our model reveals different
origins of swap errors (Mitchell et al., 2018; Pratte, 2019), how
they depend on delay duration and inter-item distances (Emrich
and Ferber, 2012; Pertzov et al., 2017; Schneegans and Bays,
2017), and predicts that phase-locked oscillatory activity during
the memory periods should reflect swap errors.

Other Multi-Area Models for Working
Memory
Our multi-area model adds to a large body of computational
work (Ardid et al., 2007, 2010; Edin et al., 2009; Engel and
Wang, 2011; Murray et al., 2017; Bouchacourt and Buschman,
2019; Mejias and Wang, 2019; Froudist-Walsh et al., 2020;
Min et al., 2020; Novikov et al., 2021) attempting to account for
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the distributed nature of working memory (Christophel et al.,
2017). While several of these models have implemented across-
area interactions through oscillatory dynamics (Ardid et al., 2010;
Novikov et al., 2021), they did not attribute a clear mechanistic
role to inter-area synchronization dynamics. This is in contrast
to our model, where feature-binding in working memory is
accomplished through selective synchronization of oscillatory
activity in different brain areas.

Comparison With Previous Binding
Models
Previously proposed models by Pina et al. (2018) and Raffone and
Wolters (2001) as well as our model are explicit implementations
of the synchronization mechanism for feature binding in working
memory. While similar in the approach, there are important
differences. As argued by Schneegans and Bays (2019), a major
difficulty with previous synchronization models was that they
were unable to show their capacity of reproducing the rich
phenomenology of working memory behavior that other models
can explain. Our model, on the basis of its architecture with
ring attractor models of spiking neural networks, overcomes the
limitation of earlier discrete population models (Raffone and
Wolters, 2001; Pina et al., 2018) and keeps all the demonstrated
explanatory power that is characteristic of these attractor models,
such as explaining several behavioral working memory biases in
humans (Almeida et al., 2015; Kiyonaga et al., 2017; Barbosa and
Compte, 2018; Kilpatrick, 2018; Nassar et al., 2018; Stein et al.,
2020) and monkeys (Papadimitriou et al., 2015; Barbosa et al.,
2020); as well as explaining key neurophysiological dynamics
during working memory maintenance periods (see Barbosa, 2017
for a short review) in humans (Edin et al., 2009; Kamiński et al.,
2017) and monkeys (Wimmer et al., 2014; Sajad et al., 2016). Our
model also goes beyond previous synchronization models in that
(1) by virtue of its 2-ring architecture, it explicitly implements
the storage of different features in independent systems or brain
areas, as shown experimentally (Schneegans and Bays, 2019), and
that (2) it provides a plausible rate-based readout mechanism
of working memory associations without resorting to complex
synchrony detection processes, a major difficulty for this sort
of models (Shadlen and Movshon, 1999). Indeed, we show
that our proposed mechanisms is robust to the noise inherent
in spiking networks, which together with the need of precise
spike coincidence detectors were major concerns of the binding
through synchronized activity hypothesis in general (Shadlen
and Movshon, 1999) and previous implementations in particular
(Raffone and Wolters, 2001; Pina et al., 2018).

Thus, our model now brings back synchronization-based
feature binding in working memory as a plausible alternative
to recent conjunction binding proposals, such as the binding
pool (Swan and Wyble, 2014) and the conjunctive coding model
(Matthey et al., 2015; Schneegans and Bays, 2017). These models
implement binding mechanisms that are fundamentally different
from ours. In these models, binding of separated features is
accomplished through conjunction neurons, which are neurons
selective to mixtures of those features. While there is evidence
for such neurons in the cortex (Rigotti et al., 2013; Fusi

et al., 2016), their role in feature-binding is not clear, given
the consistent evidence for separate feature storage underlying
working memory binding (Olson and Jiang, 2002; Wheeler and
Treisman, 2002; Xu, 2002; Delvenne and Bruyer, 2004; Bays
et al., 2011b; Fougnie and Alvarez, 2011; Parra et al., 2011).
Importantly, such a mechanism scales exponentially with the
number of feature combinations, thus seemingly inconsistent
with our ability to flexibly bind never seen combinations
(Schneegans and Bays, 2019). However, it is to be noted that some
conjunction models have mitigated this scaling problem through
the construction of random conjunctions in an interposed
network (Swan and Wyble, 2014; Bouchacourt and Buschman,
2019).

Encoding With Rate Code
In our hybrid model, only the maintenance of associations is
accomplished through correlated oscillatory activity or, in other
words, relies on a temporal code. Instead, encoding and decoding
of associations is achieved through a rate code. Encoding and
decoding is accomplished by delivering flat pulses (i.e., without
the need to be temporally precise) to both the to-be-bound
features exclusively (encoding) or just to one of them (decoding).

Encoding the association between two different features
through a pulse delivered simultaneously to each corresponding
bump resembles the sequential encoding hypothesis in working
memory (Wolfe, 1994; Bays et al., 2011a). Moreover, there
is evidence that a mechanism combining sequential and
parallel encoding is implemented in the brain when solving
multi-item working memory tasks (Bays et al., 2011a). Our
model implements such a combination. First, information
about independent features arrives simultaneously to memory-
encoding areas from upstream sensory areas. Then, the correct
associations are sequentially encoded by brief excitatory pulses,
possibly as a result of overt selective attention to each
stimulus sequentially (Schoenfeld et al., 2014). Speaking to
this, humans take longer to encode combined features than
they take to encode the same amount of independent features
(Schneegans and Bays, 2019).

Decoding With Rate Code
Works modelling multi-item working memory though the
storage of several bumps in a network (Wei et al., 2012;
Krishnan et al., 2018; Nassar et al., 2018) including our own
(Edin et al., 2009; Almeida et al., 2015) often used approaches
that are biologically implausible to extract the location of
one bump, while ignoring other simultaneously maintained
bumps. Our approach, however, matches closely the “cueing”
period of a multi-item working memory task, which consists of
stimulating the “cued” locations while reading out from the whole
color network population. Moreover, our encoding/decoding
mechanism proposes that swap errors can be of different
origins (attention, memory, or decoding; Figure 4C). Indeed,
experimental designs that require subjects to rate their confidence
on a trial-by-trial basis show that swap errors occur both in high-
and low-confidence trials, suggesting different origins (Mitchell
et al., 2018; Pratte, 2019).
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Future Work: Toward Biological
Plausibility of Binding Through Dynamics
We found anti-phase dynamics within each network and phase-
locking across networks, the central mechanisms for feature-
binding in our model, to occur naturally in a broad range
of parameters, indicating that the mechanisms proposed here
do not require fine-tuning. Because our model is to some
degree biologically constrained, it is a proof of concept that
working memory binding through synchronized activity is at
least possible to occur in the brain. In fact, we simulated
noisy integrate-and-fire neurons, supporting that the central
mechanism implemented in our model has some degree of
robustness to noise.

Our model is, however, limited in several ways that could
be addressed in future studies. First, we did not simulate trials
demanding binding of load 3 or higher. We expect that the main
challenges associated with that improvement will be the encoding
of more associations. We also did not explore conditions
with asymmetric number of bumps (e.g., two colors/locations
at/with one location/color), as this would lead to different
experimental paradigms. Second, we did not investigate how
feature-binding is impacted by incoming distractors. Previous
work has shown that oscillatory activity on different bands
can play a role in filtering distractors (Dipoppa and Gutkin,
2013). Future work combining these models is necessary. Third,
as a proof of concept, we only simulated two connected
networks, while humans can encode and decode the association
of many more features (Schneegans and Bays, 2019). Relatedly,
our two-dimensional network architecture should be taken as
a proof of concept, rather than being a literal anatomical
representation of a specific brain structure. Finally, the oscillatory
regime in which our model is operating, in which neurons are
strongly synchronized with the population rhythm (Figure 4C),
however, derived from biologically constrained neuronal models,
is arguably not biological itself. While there is abundant evidence
that neuronal populations show strong oscillatory dynamics
in working memory (e.g., Pesaran et al., 2002), single neuron
dynamics approaches a Poisson process (Softky and Koch,
1993; Compte et al., 2003) therefore not oscillatory at this

scale (but see Lundqvist et al., 2016). Early theoretical work
(Brunel and Hakim, 1999; Brunel, 2000; Brunel and Wang,
2003) has demonstrated that such oscillatory dynamics at the
population level can coexist with noisy, unsynchronized neurons
when randomly connected. Future work that connects randomly
connected networks that store multiple stable bump-attractors
(Hansel and Mato, 2013), but operating in anti-correlated
oscillatory activity such as in our simulations could be an
appropriate avenue for the future work attempting to overcome
these limitations.
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Visual perception occurs when a set of physical signals emanating from the environment

enter the visual system and the brain interprets such signals as a percept. Visual working

memory occurs when the brain produces and maintains a mental representation of a

percept while the physical signals corresponding to that percept are not available. Early

studies in humans and non-human primates demonstrated that lesions of the prefrontal

cortex impair performance during visual working memory tasks but not during perceptual

tasks. These studies attributed a fundamental role in working memory and a lesser role

in visual perception to the prefrontal cortex. Indeed, single cell recording studies have

found that neurons in the lateral prefrontal cortex of macaques encode working memory

representations via persistent firing, validating the results of lesion studies. However,

other studies have reported that neurons in some areas of the parietal and temporal

lobe—classically associated with visual perception—similarly encode working memory

representations via persistent firing. This prompted a line of enquiry about the role of

the prefrontal and other associative cortices in working memory and perception. Here,

we review evidence from single neuron studies in macaque monkeys examining working

memory representations across different areas of the visual hierarchy and link them to

studies examining the role of the same areas in visual perception. We conclude that

neurons in early visual areas of both ventral (V1-V2-V4) and dorsal (V1-V3-MT) visual

pathways of macaques mainly encode perceptual signals. On the other hand, areas

downstream from V4 and MT contain subpopulations of neurons that encode both

perceptual and/or working memory signals. Differences in cortical architecture (neuronal

types, layer composition, and synaptic density and distribution) may be linked to the

differential encoding of perceptual and working memory signals between early visual

areas and higher association areas.
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1. INTRODUCTION

1.1. Are Working Memory and Perception
Two Distinct Cognitive Functions?
Visual perception is defined as the ability to interpret the
surrounding environment from electromagnetic signals entering
the retinas. Visual perception occurs when neurons across
different areas of the visual system are activated by retinal inputs
and the brain produces “a percept” or interpretation of the
physical reality (e.g., seeing a red shirt) (Chalupa and Werner,
2003). Visual working memory is the ability to remember and
manipulate, for short periods of time, an interpretation of the
physical reality when the corresponding physical signals are no
longer entering the retinas (Baddeley, 2010) (e.g., the mental
image or memory of the same red shirt). Perhaps the best
operational distinction between visual perception and working
memory is that the former is linked to the flow of visual
inputs, while the latter is not. The distinction between perceptual
and mnemonic states seems intuitive. Indeed, a typical human
subject can distinguish when they “see” an image of a red shirt
(perceptual) and when they “remember” an image of a red shirt
(mnemonic). Thus, for typical individuals, the mental states
corresponding to visual perception and working memory are
different and distinguishable.

It is important to clarify that perception is not always a lawful
reflection of the physical properties of stimuli. Phenomena such
as perceptual illusions have taught us that perception is a creative
process, and under particular circumstances of ambiguity, we
could “misinterpret” the physical environment or even interpret
the same environment in multiple ways (Todorović, 2020).
However, we would argue that in general, perception reflects
the physical reality in a predictable manner. Therefore, in the
current review, we refer to perception as a predictable and
stable process and exclude cases of perceptual illusions or
variations (Foster, 2011). We focus on the distinction between
the physical presence of an object (visual perception) and the
mental image of the same object when unavailable to the senses
(mnemonic representation).

A somewhat related review of this topic largely based on
findings from human experiments using non- invasive signal
measurement techniques has been recently published (Dijkstra
et al., 2021). In this current review, we primarily refer to
data collected in experiments using invasive techniques in non-
human primates such as lesion studies and electrophysiological
recordings. We make the reasonable axiomatic assumption that
anthropoid non-human primates with a developed visual system
and brain areas that have human homologs (Petrides, 2005)
use perception and working memory as part of their cognitive
repertoire (Beran et al., 2016).

The distinction between working memory and perceptual
functions can be traced to lesions studies conducted more than
a century ago in humans and animals. They reported that
damage to certain brain areas can produce selective deficits of
working memory while sparing visual perception (reviewed in
the next section). However, more recent studies have reported
co-existence of signal correlates of visual perception and working
memory across brain areas and have questioned the segregation

of the neural substrates for these two functions in the brain
(reviewed in the section “Dissociating Visual Working Memory
and Perception: Electrophysiological Studies of Single Neurons
Across Brain Areas”). Influential in this latter view, have been
findings of functional imaging and EEG/MEG studies in human
subjects (Dijkstra et al., 2021).

On a cautionary note, we have found that the diversity of
techniques used to record brain signals in humans and non-
human primates and that of paradigms (tasks) used to explore
workingmemory and perceptionmakes it difficult to examine the
relationship between the neural correlates of the two functions
across species. This is in part because different techniques used in
humans and non-human primates explore different spatial and
temporal scales of brain activity and record different types of
signals. It is therefore difficult to reconcile the results of studies in
different species. In this review, we have taken a focused approach
to examine reports mainly from studies in non-human primates
using different methodologies to study working memory coding
along areas of the visual processing pathways and its relationship
to visual perception. We also assume that over the short temporal
scales of perception and working memory, action potentials are
the central elements of information coding and transmission
between neurons and neuronal networks over distances that
extend beyond synapses. Therefore, we concentrate on studies
that have directly recorded action potentials from neurons or
neuronal populations during behavioral tasks that involve visual
perception and working memory.

2. MAIN

2.1. Dissociating Visual Working Memory
and Perception: Lesion Studies
The idea that perceptual and mnemonic representations
are separable in the brain originated by investigations into
patients with localized cortical damage. Although they did not
directly measure working memory, early case studies describe
independent impairments in top-down driven representations
(visual imagery) or perception. Charcot and Bernard first
described a patient in 1883 that could identify objects but was
neither able to form mental representations of these objects
nor envision them from memory (Charcot and Bernard, 1883).
The opposite deficit has also been described in which patients
are unable to perceive objects yet can describe them in detail
based on clear mental representations. A well-known case of
this, described in patient C.K, was presented by Behrmann and
colleagues in the early 1990’s. C.K was unable to identify either
simple or complex items but was able to produce clear and
detailed drawings of those same items (Behrmann et al., 1994).

Early lesion studies in non-human primates supported
the dissociation between working memory and perception.
Jacobsen (1936) conducted a series of lesion experiments
in the prefrontal cortex (PFC) of different species of non-
human primates [Macaca mulatta (rhesus macaque), Cercocebus
torquatus (mangabey), and Papio papio (baboon)] and noticed
that the lesions produced selective performance deficits in
delayed response tasks, where animals had to remember the
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locations or features of objects for a short period of time.
Importantly, the animals could perform other perceptual tasks
without major difficulty (Jacobsen, 1936). These results suggested
that lesions of the PFC affect mainly working memory while
sparing perception. In another study, Chow, Blum and Blum
conducted lesion experiments of the posterior association areas
of the parieto-occipital temporal region and the prefrontal areas
close to the frontal pole in macaque monkeys (Chow et al.,
1951). They found that posterior lesions did not substantially
affect performance in a delayed response task. On the other
hand, prefrontal lesions did affect the animals’ performance
without substantially affecting other discrimination abilities.
They concluded that the PFC plays a selective role in the delayed
aspects of the task.

In 1952, Harlow and colleagues reported two distinct deficits
associated with lesions of the posterior cortices and anterior
(prefrontal) cortices in macaque monkeys. The animals with
posterior lesions had stronger deficits in discrimination tasks,
whereas animals with anterior prefrontal lesions had stronger
deficits in delayed response tasks (Harlow et al., 1952). Curiously,
lesions to the posterior parietal cortex have little effect on the
performance of delayed response tasks. In the case of complete
and bilateral posterior parietal cortex lesions, visuospatial
information may possibly arrive to PFC through alternate
connections (i.e., anterior/posterior cingulate cortex) or through
connections to preoccipital regions (i.e., dorsomedial area DP),
via the occipitofrontal fascicle (Selemon and Goldman-Rakic,
1988; Yeterian and Pandya, 2010; Yeterian et al., 2012; Arnsten,
2013).

In 1952, Pribram and coworkers described that lesion of the
PFC in baboons (Papio papio) also produced performance deficits
in delayed response tasks. Dorsolateral lesioned animals had
greater alterations in all tasks compared to ventromedial lesioned
animals (Pribram et al., 1952). In 1969, a study by Butters and
Pandya (1969) reported a more specific finding concerning the
role of the PFC in working memory tasks. They compared the
performance of lesioned and control rhesus macaques in delayed
alternation tasks. Lesions included bilateral inferior parietal
cortex lesions and three types of prefrontal lesions around
the principal sulcus. Animals with lesions of the anterior and
posterior thirds of the principal sulcus as well as periarcuate
and parietal lesions could re-learn the delay alternation task but
animals with lesions of the central part of the arcuate sulcus could
not re-learn the task and showed permanent deficits. A later
study by Warren and Divac (1972) demonstrated that the effect
of principal sulcus lesions extends to delayed response tasks.

Importantly, decades earlier, Malmo (1942) and Orbach
and Fischer (1959) reported the importance of the PFC in
maintaining working memory representations in the presence of
irrelevant incoming visual signals. Without PFC, stored mental
representations can be disrupted by incoming sensory signals.
These studies highlighted the importance of PFC to guard mental
representations from distracters.

In 1960, Miles and Blomquist (1960) reported that lesions
of the PFC in squirrel monkeys (Samiri sciureus), a new
world primate, produced a similar syndrome as the one
observed in the old world species. The syndrome consisted

of hyperactivity, deficits in delayed response tasks, and no
adverse effects on the ability to solve discrimination tasks when
the stimulus was present. This study extends the observed
effects of prefrontal lesions to new world monkeys, with a
relatively less expanded PFC than their old world relatives
(Passingham and Wise, 2012).

More recently, in the second half of the twentieth century,
spatially refined lesion and pharmaceutical inactivation studies in
the PFC of macaque monkeys further demonstrated perturbation
of visuospatial working memory representations and sparing
of perceptual representations (Sawaguchi and Goldman-Rakic,
1991; Funahashi et al., 1993; Iba and Sawaguchi, 2003). This
work introduced the concept of mnemonic scotoma, a deficit in
remembering a certain spatial location during a delayed response
task induced by inactivating small regions in the lateral prefrontal
cortex (LPFC) (Funahashi et al., 1993). However, animals with
mnemonic scotomas are able to make saccades to the region
of the mnemonic scotoma when the target object is visually
available. The latter not only confirmed the results of previous
studies, but also emphasized a major role of the PFC in visual
working memory and a lesser role in visual perception. Thus,
from lesions studies, one may conclude the PFC is needed
for maintaining information in working memory, but it is not
essential for visual perception (i.e., when visual information
remains available). Table 1 shows a summary of studies that
explore the effects of lesions in perceptual and working memory
tasks in non-human primates. Figure 1 provides a graphical
summary of this information.

2.2. Dissociating Visual Working Memory
and Perception Along the Visual Pathways
Departing from the accumulated evidence in early lesion studies
in non-human primates (reviewed above) and the development
of single cell recording techniques in behaving animals (Hubel,
1957), Fuster and Alexander (1971) recorded the responses of
neurons in the LPFC and mediodorsal nucleus of the thalamus
in macaque monkeys during delayed response tasks. They
discovered cells in the LPFC that represent remembered locations
and features of visual stimuli via persistent firing: an increase
in firing rate above baseline tuned for the location of the items
held in working memory. One important feature of persistent
firing is that it occurs in the absence of sensory inputs, when
the cue or sample stimulus disappears from the visual field—
the so-called delay period of working memory tasks. An amount
of controversy has been accumulating around the concept of
persistent firing. For example, whether it is sustained during
the entire delay period by single neurons or populations, or it
has a temporal structure (e.g., oscillations in certain frequency
bands) (Sreenivasan et al., 2014; Lundqvist et al., 2016, 2018;
Constantinidis et al., 2018). In the original report Fuster and
Alexander (1971) do not make considerations about the temporal
structure of persistent firing in individual trials but used trial
averages. Although clarifying the temporal structure of persistent
firing is important to reveal the mechanisms of working memory
coding, this review will not expand on this topic. We will
consider persistent firing as increases in firing rate that encode
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TABLE 1 | Lesion studies.

References Species Main finding

Bianchi (1895) Papio cynocephalus Lesions of the frontal cortex resulted in attentional but not perceptual deficits.

Concludes that the frontal lobes serve to fuse incoming sensory signals and

motor output forming associative representations.

Jacobsen et al. (1935) Pan troglodytes Bilateral lesions of the prefrontal cortex diminished performance on a delayed

response task.

Jacobsen (1936) Macaca mulatta

Cerocebus torquatus

Papio papio

Bilateral lesions of the prefrontal cortex diminished performance on a delayed

response task.

Jacobsen and Nissen

(1937)

Macaca mulatta Bilateral lesions of the prefrontal cortex diminished performance on a delayed

alternation task.

Malmo (1942) Macaca mulatta

Cerocebus torquatus

Bilateral prefrontal lesions made animals more susceptible to extraneous stimuli

occurring during the delay interval of a delayed response task.

Finan (1942) Cerocebus torquatus Bilateral prefrontal lesions decrease performance of a delayed response task.

Pre-rewarded food increased performance.

Spaet and Harlow

(1943)

Macaca mulatta Bilateral prefrontal lesions created greater deficits in delayed reaction problems

(non-spatial delayed reaction, spatial delayed reaction) than in stimulus-object

discrimination problems.

Campbell and Harlow

(1945)

Macaca mulatta Bilateral lesions of the frontal cortex related in reduced performance on a spatial

delayed response task. Performance differed based on recovery time from

surgery.

Pribram (1950) Papio porcarius Bilateral lesion of the prefrontal cortex anterior to FEF decreased performance on

a delayed response task. Insulin administration, cooling and fasting increased

performance likely through increased reward value of the stimulus (food).

Chow et al. (1951) Macaca mulatta Animals with bilateral lesions of the prefrontal cortex showed similar performance

deficits on a delayed reaction test as animals with prefrontal lesions and

additional damage to parietal and temporal regions. Sedative drugs did not

improve performance.

Harlow et al. (1952) Macaca mulatta Anterior and posterior lesions produce predominantly delay response and

discrimination deficits respectively.

Pribram et al. (1952) Papio papio Dorsolateral lesions reduced performance on delayed response-type problems

but showed little effect on visual-discrimination task performance. Two of the

four animals with ventromedial lesions showed no change in task performance.

Blum (1952) Macaca mulatta Lesions to the ventrolateral and dorsal region produced smaller deficits in a

visual and auditory delay reaction tasks while lesions in the midlateral region

(region anterior to the arcuate sulcus) produced large deficits.

Mishkin and Pribram

(1955)

Macaque (unknown) Lesions to the anterolateral frontal cortex resulted in poor performance on a

series of delayed alternation problems.

Mishkin and Pribram

(1956)

Macaca mulatta Animals with bilateral anterolateral prefrontal lesions were tested on a series of

delayed response tasks. Lesions resulted in deficits in the performance of

traditional delayed response tasks, but performance increased when traditional

cues are replaced by non-positional cues.

Orbach (1956) Macaca mulatta Bilateral prefrontal lesions resulted in deficits in a delayed response task within

hours after surgery. This deficit was present 14 days after surgery though there

was a slight recovery in performance.

Rosvold and Delgado

(1956)

Macaca mulatta Stimulation in the region of the head of the caudate nucleus impaired alternation

without affecting visual discrimination, as did tissue destruction in the same site.

Mishkin (1957) Macaca mulatta Lesions of the midlateral region of the prefrontal cortex (anterior to arcuate

sulcus) produced a deficit in a delayed alternation task that was as severe as

total anterior frontal lesions.

Orbach and Fischer

(1959)

Macaca mulatta Bilateral lesions of the frontal granular cortex reduced performance on a delayed

response task. Performance in animals with lesions was further reduced with

added light interruption. Retraining on the task after surgery did improve

performance.

Miles and Blomquist

(1960)

Saimiri sciureus Bilateral frontal lesions result in reduced delayed response performance but

show no change in discrimination learning.

Gross and Weiskrantz

(1962)

Macaca mulatta Lesions surrounding the principal sulcus resulted in greater impairment on

delayed response tasks whereas frontal lesions excluding tissue surrounding the

principal sulcus resulted in greater impairment on auditory-discrimination tasks.

Lesions in either area did not affect performance of a visual-discrimination task.

(Continued)
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TABLE 1 | Continued

References Species Main finding

Tucker and Kling (1967) Macaca mulatta

Macaca speciosa

Bilateral lesions of the dorsolateral frontal granular cortex at either the 35th

postnatal day or 3 years of age showed similar deficits in a delayed alternation

task but performance on a delayed response task was better in animals with

earlier lesions.

Butters and Pandya

(1969)

Macaca mulatta Bilateral lesions were performed in the anterior, middle, or posterior thirds of the

principal sulcus, of the periarcuate prefrontal region, or of the inferior parietal

lobule. Lesions within the middle third of the principal sulcus produced deficits

on a delayed alternation task whereas lesions in other regions had little effect.

Fuster and Alexander

(1970)

Macaca mulatta Performance of a delayed response task was impaired by bilateral cooling of the

dorsolateral prefrontal cortex.

Goldman and Rosvold

(1970)

Macaca mulatta Lesions around the principal sulcus impaired performance on the spatial task

with delay and lesions around the arcuate impaired performance on the spatial

task without delay.

Goldman et al. (1971) Macaca mulatta Lesions to the dorsolateral prefrontal cortex and to regions along the principal

sulcus resulted in deficits in both a spatial discrimination task and spatial delayed

response task.

Stamm and

Weber-Levine (1971)

Macaca mulatta Total bilateral lesions of the dorsolateral prefrontal cortex and lesions of the

banks and floor of the principal sulcus produced the greatest deficits on a

delayed alternation task while lesions to the surrounding dorsolateral cortical

strips produced smaller deficits.

Butters et al. (1971) Macaca mulatta Lesions were made in the superior and/or inferior banks of the middle third of

principal sulcus. Lesions which involved both banks led to greater deficits in a

spatial delayed alternation and place reversal task than lesions to either bank

alone.

Warren and Divac

(1972)

Macaca mulatta Lesions of the middle third of principal sulcus decrease performance of a

delayed response and delayed alternation task.

Fuster and Bauer

(1974)

Macaca mulatta Cooling of the prefrontal cortex reduced performance of a delayed

matching-to-sample task with bilateral cooling having a greater effect than

unilateral cooling. Cooling of the parietal cortex did not produce a deficit.

Oscar-Berman et al.

(1975)

Macaca mulatta Lesions to the dorsolateral prefrontal cortex produced greater deficits in a

delayed response task than lesions to the ventrolateral orbito-frontal cortex but

had a smaller impact on visual and auditory discrimination tasks.

Passingham (1975) Macaca mulatta Dorsal prefrontal lesions decreased performance of a spatial delayed alternation

task but had little impact on a delayed matching task for colors. Ventral prefrontal

lesions impaired performance on the delayed matching task for colors.

Bauer and Fuster

(1976)

Macaca mulatta Delayed matching and delayed response deficit from cooling dorsolateral

prefrontal cortex in monkeys.

Mishkin and Manning

(1978)

Macaca mulatta Lesions surrounding the principal sulcus resulted in deficits on delayed spatial

memory tasks but had little effect on three non-spatial tasks such as delayed

object matching, and delayed color matching.

Brozoski et al. (1979) Macaca mulatta Depletion of prefrontal dopamine leads to deficits on delayed alternation but not

visual pattern discrimination.

Sawaguchi and

Goldman-Rakic (1991)

Macaca mulatta Local injections of selective D1 receptor antagonists into the prefrontal cortex

reduced performance of an oculomotor delayed response task but had no effect

on performance of a visually guided saccade task.

Funahashi et al. (1993) Macaca mulatta Unilateral lesions of the dorsolateral prefrontal cortex produced the greatest

deficits in an oculomotor delayed response task for contralateral targets. Deficits

were not seen for a visually guided saccade task suggesting the existence of

mnemonic scotomas.

Petrides (1995) Macaca nemestrina Lesions of the mid-dorsal part of the lateral produced deficits in non-spatial

self-ordered and externally ordered working memory tasks. The number of

remembered items influenced performance. Deficits were not seen after lesions

of the posterior dorsolateral frontal cortex (surrounds the arcuate sulcus).

Petrides (2000) Macaca nemestrina Increasing the number of stimuli to be remembered during a visual working

memory task impaired performance after mid-dorsolateral lesions but not after

anterior inferotemporal lesions whereas the opposite was true after extending the

duration of the delay period. Full lesion of the mid-dorsolateral region created

greater deficits than lesions on area 9 alone.

(Continued)
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TABLE 1 | Continued

References Species Main finding

Sawaguchi and Iba

(2001)

Macaca mulatta Local injection of muscimol into the dorsolateral prefrontal cortex produced

deficits in an oculomotor delayed response task to specific and typically

contralateral target locations. No deficits we identified for a visually guided

saccade task.

Croxson et al. (2011) Macaca mulatta Selective lesions of cholinergic input to prefrontal cortex severely impaired on a

spatial working memory task while leaving unimpaired decision-making and

episodic memory.

Upright et al. (2018) Macaca mulatta Reversible chemogenetic inhibition of only 3% of prefrontal neurons is sufficient

for impairing performance on a spatial delayed response task.

FIGURE 1 | Summary of lesion studies.

the contents of working memory. The temporal structure
of such changes may be variable in individual neurons and
across tasks.

It must be noted that rodent models are commonly used to
study short-term memory and delay activity has been reported
in areas associated with rodent cognition, in particular the
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medial prefrontal cortex (Park et al., 2019; Ozdemir et al., 2020).
Although experiments using rodent models have enriched our
understanding of short-term memory mechanisms, the rodent
visual system diverges from that of primates: rodents lack a
granular prefrontal cortex making the comparison with primate
brain regions problematic (Uylings et al., 2003; Passingham
and Wise, 2012). Interareal connectivity between rat medial
prefrontal cortex also diverges from primate lPFC in which it was
shown to be more similar to primate premotor regions (Schaeffer
et al., 2020), further complicating direct comparisons. The topic
of similarities and differences between short term or working
memory mechanisms in rodents (mice and rats) and primates
necessitates an extensive discussion. Our review will therefore
focus on experiments in primates.

We must also indicate here that we are not distinguishing
different aspects of working memory in this review. What
some believe makes working memory distinct is that it implies
manipulation of information and not simply maintenance in its
original form (Baddeley, 2010) (e.g., a mental rotation of an
object or a reference frame transformation from retina-centered
to space centered). However, physiological studies in non-human
primates have not classically made that distinction, and refer
to working memory in its maintenance aspect (Goldman-Rakic,
1995). We will continue this tradition here and acknowledge that
work needs to be done to clarify this issue.

The initial results of Fuster and Alexander in the LPFC
were confirmed by other studies (Kubota and Niki, 1971), thus
supporting the hypothesis that the neural substrates of working
memory is allocated to the LPFC in primates (areas 46/9, around
the principal sulcus). Importantly, the existence of persistent
firing pointed toward a different mechanism for working
memory coding compared to the mechanisms of permanent
synaptic storage for long-term memory (Eccles, 1986). The
fundamental idea is that the memory is maintained as long
as persistent firing is maintained; therefore, it dissipates when
neurons stop firing. This matches the behavioral observations
of working memory as a mechanism susceptible to temporal
decay (Baddeley, 2010). It also agrees with the fact that most
representations held in working memory are not transferred into
long-termmemory. Such a continuous transfer would be wasteful
in many situations since many items held in working memory
are “temporally useful” and therefore not needed to be kept in
long-termmemory (e.g., the location of a car in a parking lot after
driving out of the parking lot).

Fuster and Alexander also reported in their seminal work that
a number of neurons in the LPFC were activated during the cue
period of the delayed response task, whereas others were active
only when the cue stimulus disappears. They suggested that the
activity during the cue period may be related to attention since
many neurons did not show selectivity for the position of the cue
(Fuster and Alexander, 1971). Importantly, the fact that a group
of neurons show activity exclusively during the delay period
(mnemonic cells) suggests that, at the level of individual neurons,
the neural correlates of working memory can be dissociated from
those of visual perception (Figure 2A).

After this initial report, several studies have reported that
persistent firing representing the contents of working memory

can also be found in association areas of the frontal, parietal
(Andersen et al., 1985), and temporal lobes (Mikami and
Kubota, 1980; Fuster and Jervey, 1981); for a review see (Leavitt
et al., 2017a). These findings sparked the debate on what the
role of association areas outside the LPFC in WM coding is
(Riley and Constantinidis, 2015). This question remains mostly
unanswered but something that is common to studies in the
PFC and posterior association cortices is the existence of neurons
that represent information during different task periods. Thus,
no matter where persistent firing has been reported, neurons
showing selectivity for a visual cue are not necessarily the same
as neurons showing persistent firing when a representation of a
cue is held in working memory. The latter could be interpreted
as evidence in favor of the hypothesis that the substrates for
perception and working memory are at least partially segregated
within areas such as the LPFC.

One study has reported that the proportion of neurons
encoding information during the cue and delay period of a
delayed match-to-sample task changes as one moves along
the hierarchy of visual processing from area MT (neurons
almost exclusively encode during the sample period) to MST
(neurons predominantly encode information during the sample
period but a proportion of cells also encode information during
the delay period) to LPFC (a similar proportion of neurons
encode information during the sample and delayed period) (see
Figures 2B–D) (Mendoza-Halliday et al., 2014). Bisley et al.
(2001) reported that microstimulation of area MT during the
encoding stage of a working memory task for motion direction
biased the neural response to direction but stimulation during
the delay period did not. The latter supports the hypothesis that
although sensory areas are recruited during visual processing
and perception, which is require for encoding information
during working memory tasks, they may play a lesser role
in maintaining working memory representations. These results
match the pattern revealed by lesion studies with neurons
in the posterior early sensory and association areas encoding
predominantly perceptual information and neurons in the PFC
encoding mnemonic signals (Figures 2B–D). One may also
conclude that a population of neurons in areas such as LPFC
seem to encode information about the cue during all task periods
(Mendoza-Halliday and Martinez-Trujillo, 2017).

Although we, as most researchers, discuss independent
properties of various brain regions, it is important to expand
beyond the local-circuit model and recognize the impact that
cortical—cortical connections have in generating persistent
activity. In 1998, Chafee and Goldman-Rakic made the
observation that patterns of neuronal activity in the dorsolateral
prefrontal cortex and parietal area LIP/7a were remarkably
similar including their spatial tuning and ability to generate
persistent activity (Chafee and Goldman-Rakic, 1998). They later
demonstrated, using cortical cooling, that WM memory related
activity in both regions were dependent on shared reciprocal
activity (Chafee and Goldman-Rakic, 2000). Synchronized
activity between PFC and PPC underlying working memory has
since been substantiated (Salazar et al., 2012). The prefrontal
and parietal cortices thus represent two regions in which
persistent activity is frequently observed but the role of their
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FIGURE 2 | (A) Different response profiles of neurons in the LPFC of macaque monkeys during the sample and delay periods of a delayed response task. (B)

Recording locations in the study of Mendoza-Halliday et al. (2014). MT (green), MST (blue), LPFC areas 8A/46 (red) during a match-to-sample task for motion direction

(C). (D) The proportion of neurons showing encoding of motion direction during the sample and delay period of the task in the three areas. The color scale represents

the strength of direction selectivity quantified by the area under the receiver operating characteristic curve (auROC).

reciprocal connections is still debated (Christophel et al., 2017;
Constantinidis et al., 2018).

To explore the function of these prefrontal- parietal
connections, Murray et al. (2017) developed a computational
model of two bidirectionally connected modules that
biophysically represented local networks of PFC and PPC.
This model shows that PPC functions in a weak attractor state
and transiently encodes the stimulus and propagates this sensory
signal to PFC. Although both maintain the WM representation
after stimulus offset, the attractor state is stronger in PFC
module, allowing for robustness against distractors. Feedback
projections from PFC can additionally switch PPC neurons
back to encoding target stimuli after distractor presentation.
Therefore, in this model, persistent activity was supported by
both local and long-range network connections.

Synchronized activity was also identified between area MT
and LPFC through observations of phase- coherent local field
potential oscillations during a motion direction match to sample
task. This observation suggests that persistent activity in LPFC
modulates synaptic activity in MT, again showing a top-down
mechanism by whichmemory signals in LPFC influence stimulus
processing (Mendoza-Halliday et al., 2014).

Regarding the neural correlates of visual perception, there
is a large body of literature starting as early as when single
cell recording techniques became popular (Hubel, 1957). Early
studies of Hubel and Wiesel demonstrated that neurons in the
monkey primary visual cortex (V1) encode the features of sensory

stimuli shown inside their receptive field (RF) (Hubel andWiesel,
1968). Later studies discovered similar selectivity in other brain
areas of both the dorsal and ventral visual pathways (Mikami
et al., 1986). The selectivity for features and their conjunction
becomes more complex in areas downstream from V1 (e.g.,
linear motion in MT and complex optic flow motion in MST, or
color and orientation selectivity in V4 and face selectivity in IT)
(Felleman and Van Essen, 1991). However, most of these studies
focused on the specific role of brain areas in conscious visual
perception rather than in the distinction between perception
and mnemonic processes. For example, lesions of area V1
leaves subjects cortically blind; however, lesioned individuals may
show some residual vision or blindsight, likely suggesting that
some perception can happen without V1 (reviewed in Leopold,
2012). Nevertheless, many agree that visual perception is deeply
impaired after V1 lesions, suggesting that V1 is a bottleneck for
visual signals entering higher level areas of the visual pathways
(Leopold, 2012).

Remarkably, selective deficits in motion perception without
affecting contrast thresholds can be observed after lesions of
area MT (Newsome and Pare, 1988). Area MT contains a high
proportion of direction selective neurons that receive inputs from
direction selective neurons in area V1 (Born and Bradley, 2005).
These observations suggests that V1 is not sufficient for motion
perception but necessitates area MT. This hypothesis has been
supported by reports of electrical microstimulation in area MT
neurons, biasing motion perception (Salzman and Newsome,
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FIGURE 3 | Encoding of perceptual and working memory representations by subpopulations of neurons within the LPFC. (A) Memory and perception tasks. Panels

illustrate stimuli and monitor setup. Animals fixate a dot at the center of a computer screen and press a button. Then a sample Random Dot Pattern (RDP) appears

moving in one of four directions. In the memory task (left) the sample disappears after 1,000ms. A delay period of 1,200 to 2,000ms then occurs in which only the

fixation point is on the screen. At the end of the delay period two patterns, a test RDP moving in either the same or different direction as the sample, and a distracter

RDP that contains dots moving in random directions are presented. The animal releases a button if the test matches the direction of the sample or waits until the test

disappears, and a second test RDP is presented after a 590-ms delay period. During the perceptual (right) task the sample RDP does not disappear but stays on

during the duration of the trial. (B) Recording locations in the LPFC. The dots indicate the location of units with selectivity during the memory (blue) and perceptual

(red) tasks. (C) Firing rate (y axis) over time (x axis) for three example neurons (left, center, and right columns) during the working memory task (top row) and perceptual

task (bottom row). The task periods are indicated on top. (D) left bar graph: Accuracy of a linear classifier to decode, from the population of recorded neurons, the

task (working memory vs. perceptual tasks, gray bar), the direction of the stimulus in each task in trials with correct and incorrect task decoding (red and blue bars).

Right panel: confusion matrix for the classification of perceived and memorized direction corresponding to the correct trials.

1994). On the ventral pathways, damage to areas of the temporal
lobe, such as the fusiform face area, leads to prosopagnosia:
a selective deficit in face perception (Barton, 2003). Cells
selective for faces have been extensively reported in the macaque
inferiortemporal cortex (Perrett et al., 1984; Freiwald and Tsao,
2012). One influential study used visual rivalry, a phenomenon
in which two different images are presented separately to each
eye, the subject experiences alternating percepts of each image
and periods of fusion of the two images. Single neuron activity
is reported to more accurately reflect the percept downstream
from area V1 (Leopold and Logothetis, 1996). The latter
suggests that although V1 activity is essential to perception, the
phenomenology that triggers perceptual awareness may occur or
at least be triggered in downstream areas such as MT or MST,
where neurons selective for the perceived features exist.

A central question to this review is whether the neural
substrates that support visual perception and those that support
working memory are the same or different. From the previous
sections we may conclude that: (1) there is a set of areas in
which neurons represent visual attributes such as motion (Duffy
and Wurtz, 1991) and complex shapes (Rolls, 1984) during
both perception and working memory tasks (Miller et al., 1991;

Mendoza-Halliday et al., 2014), (2) there is a set of areas where
neurons encode perceptual but not mnemonic representations
of visual attributes, mainly early areas in the hierarchy of visual
processing (i.e., V1 to MT in the dorsal pathway, and V1 to
V4 in the ventral pathway), and (3) the relative proportion
of neurons showing selectivity for perceptual and mnemonic
visual attributes changes along the hierarchy of visual processing
(i.e., the proportion of cells encoding mnemonic relative to
perceptual representations is lower in MST than in LPFC),
and (4) there are different subpopulations of neurons encoding
perceptual and mnemonic representations in association areas,
as well as a subpopulation of neurons that encode both types
of representations.

2.3. Coding of Perceptual and Working
Memory Representations by
Subpopulations of Neurons Within Brain
Areas
The exclusive role of the PFC and association cortices in working
memory coding has recently been put into question (Pasternak
and Greenlee, 2005; Christophel et al., 2017; Scimeca et al., 2018).
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FIGURE 4 | Cortical architectures for perception and working memory. (A) Diagram showing the structure of two nearby cortical columns and the four main cell types

(see inset). Observe pyramidal cells have at least two distinct compartments, the apical (distal) dendrites (gray rectangles) and the cell body. (B,C) different

architectures based on the proportion of CR and PV interneurons and the ability to produce persistent firing. Lower panel shows a side view of the macaque brain and

the different lobes in different colors. (D) Percentages of the 4 main cell types in areas MT, MST, and the LPFC (from Torres-Gomez et al., 2020). Distribution of

Dopamine D1 receptors in the macaque brain. The color scale indicates the receptor density. (F) Correlation between position of a brain area in the hierarchy of visual

processing and D1 receptor density. Each data point represents a brain area. The correlation coefficient and associated p-value are indicated courtesy of

Froudist-Walsh et al. (2020). (E) D1 receptor density across the macaque cortex.
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Some studies have proposed that neurons in sensory areas such as
V1 and V4 encode working memory representations (Pasternak
and Greenlee, 2005; Tong and Pratte, 2012). One argument in
favor of this idea is that single neurons and neuronal populations
in early sensory areas contain precise maps of visual attributes
(Hubel and Wiesel, 1968; Albright, 1984; Born and Bradley,
2005). Thus, these populations must be recruited for perceiving
such attributes accurately (Ester et al., 2013). However, encoding
of visual attributes by single neurons and populations does not
exclusively occur in early sensory areas such as V1, MT, and V4
but also occurs in downstream association areas where the neural
correlates of working memory have been isolated. One example
is coding of linear motion direction, which has been found not
only in MT, but also in MST and LPFC (Bisley et al., 2004; Zaksas
and Pasternak, 2006; Mendoza-Halliday et al., 2014; Mendoza-
Halliday and Martinez-Trujillo, 2017), as well as in areas such
as the Lateral Intraparietal (LIP) area (Freedman and Assad,
2006). Another example is encoding of color which has been
reported not only in area V4, but also in the LPFC (Schwedhelm
et al., 2020). Something to point out is that feature-selective
neurons in the LPFC do not exhibit the retinotopic or feature-
topic organization observed in early sensory areas (see Figure 3B;
Mendoza-Halliday and Martinez-Trujillo, 2017). Thus, human
studies using functional imaging techniques or EEG/MEG, that
pool activity over cubic millimeters of cortical tissue, may
underestimate selectivity for individual features or locations.

One important detail we have already mentioned is that
feature selectivity in association areas does not only occur
during delayed response tasks, but also during perceptual
tasks when a stimulus remains visible (Mendoza-Halliday and
Martinez-Trujillo, 2017). Interestingly, single unit responses to
the same visual attribute becomemore correlated with behavioral
outcomes as one advances downstream from V1 in the hierarchy
of visual processing, for example from MST to LPFC (Freedman
et al., 2001; Freedman and Assad, 2006; Mendoza-Halliday et al.,
2014). Thus, association areas are equipped with “copies” of
perceptual representations likely inherited from upstream areas,
as well as with mnemonic representations that may emerge as a
result of local processing. Unlike in visual areas, such “copies”
are sensitive to the statistics of the environment and can form
categories within a single feature dimension (Freedman et al.,
2001).

Indeed, association areas in the frontal lobe such as the
LPFC (around the posterior third of the principal sulcus)
contain neurons that encode motion direction during a delayed
match-to-sample task as well as neurons that encode memory
representations of the samemotion direction (Mendoza-Halliday
and Martinez-Trujillo, 2017) (Figures 3A,B). A study found that
about 1/3 of the neurons encoded perceptual representations of
motion direction but not mnemonic representations, another
1/3 encoded mnemonic representations but not perceptual
representations, and another 1/3 encoded a mix of both
perceptual and mnemonic representations (Mendoza-Halliday
and Martinez-Trujillo, 2017). Importantly, mnemonic cells are
selective for motion direction only during the delay period
and not during the visual presentation of the same motion
direction (Figure 3C middle panel). Perceptual cells show

the opposite pattern. Perceptual and mnemonic cells show a
concentration within the posterior end of the principal sulcus
and were also found to be spread within area 9/46 but without
any apparent clustering by the type of representation (perceptual
or mnemonic) or the feature they encode (Figure 3B). The
latter deviates from observations in early sensory areas
such as MT where neurons are topographically organized
according to their RF location and motion direction they
encode (Born and Bradley, 2005). As mentioned before,
exploring the fine granulated functional architecture of
the LPFC using BOLD signal measurement or EEG/MEG
with spatial resolution of millimeters may cause an under
estimation of feature selectivity or selectivity for perceptual and
mnemonic representations.

The segregation of the different populations (perceptual and
mnemonic) within LPFC allows a linear decoder to use single
neuron activity to estimate whether a direction of motion is held
in working memory or is visually presented (perception-memory
decoder) as well as which direction is perceived or memorized
(direction decoder) (Figure 3D). This indicates that perceptual
and mnemonic signals as well as the features they encode can
be discriminated, with reasonable accuracy, from the activity of
neurons within the LPFC circuitry.

The existence of subpopulations of perceptual and mnemonic
neurons within the LPFC circuitry may be considered as
evidence in favor of separate substrates for perception and
working memory “concentrated” within a single brain area
microcircuit. One potential functional relevance of such a
concentration is that a “read-out” of the population activity
in the LPFC can provide a substrate for rapidly “identifying”
the nature of the representation—perceptual or mnemonic—as
well as its content. In the language of dynamical systems, the
different activity profiles during the perceptual and mnemonic
states could serve as attractors for corresponding cognitive
states respectively (Wimmer et al., 2014). Interestingly, in
patients with schizophrenia that lose the ability to differentiate
between perceptual and mental representations (e.g., during
hallucinations and delusions), abnormal patterns of activity
are commonly reported in areas such as the LPFC (Callicott
et al., 2000). Working memory deficits are also common
in patients with schizophrenia and abnormal LPFC activity
is consistently reported (Glahn et al., 2005; Forbes et al.,
2009). In favor of this hypothesis, we have recently reported
that systemic administration of ketamine, a drug often used
to model symptoms of schizophrenia, modulates the activity
landscape in the LPFC of macaques. In this experiment, ketamine
drastically reduced performance during a working memory task
by destroying the tuning of prefrontal neuron delay activity for
remembered locations but had no effect on a perceptual control
version of the same task (Roussy et al., 2021).

Another possible functional relevance to the coexistence
of perceptual and mnemonic signals in the LPFC, is that
information transfer from perceptual to mnemonic neurons
can happen locally through short range connections within the
area microcircuit, without the need for transfer through long
range connections (e.g., perceptual neurons in MST transferring
information about the cue to mnemonic cells in LPFC). For
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example, during delayed matched-to-sample tasks, a read-out
from sensory areas can be “loaded” into the perceptual cells and
transferred “internally” to mnemonic cells that will “maintain”
the representation via persistent firing. The role of perceptual
and mnemonic cells in the generation of feedback signals that
influence processing in early sensory areas is not clear. One
study has documented synchrony between spikes in LPFC and
local field potentials (LFPs) in MT during the delay period of a
memory task (Mendoza-Halliday et al., 2014). Other studies have
documented that microstimulation of areas such as the Frontal
Eye Fields (FEF), posterior to LPFC, produces a modulation of
responses in area V4 (Moore and Armstrong, 2003). Thus, it
is possible that perceptual and mnemonic cells in LPFC play
a critical role in modulating the activity of neurons in early
visual areas during tasks that require attention either to sensory
(perceptual) or mnemonic representations.

Finally, a concentration of neurons holding different
representations of space, objects, and their attributes within a
relatively small brain volume may facilitate the implementation
of other cognitive operations such as attention. The predominant
hypothesis of how attention is implemented is through
competition via inhibitory interactions between neurons
encoding representations of targets and distracters (Reynolds
et al., 1999). Studies have reported evidence that the strength
of such competition increases in association areas downstream
from V1 (Buffalo et al., 2010; Lennert and Martinez-Trujillo,
2013). The strength of the competition also increases when
targets and distracters become closer in space (Treue and
Martínez Trujillo, 1999). Interestingly, association areas in the
PFC possess spatial representations of the entire visual field,
which may allow implementing competition between neurons
representing targets and distracters in opposite hemifields via
short range inhibitory connections within a local circuitry
(Lennert and Martinez-Trujillo, 2013; Duong et al., 2019).
Such operations could be more difficult to implement through
short range projections between neurons in areas such as V1 or
MT, where neurons represent stimuli in the opposite hemifield
(Born and Bradley, 2005). Additionally, for the particular
case of V1, with a large surface area, short range connections
may be insufficient to implement operations when targets and
distracters are far apart but still within the same hemifield.
The latter may suggest the reduction in surface area from early
visual areas relative to areas downstream facilitates interactions
between neurons encoding different representations via short
range connections.

2.4. Cortical Architectures for Perceptual
and Mnemonic Coding
The primate cerebral cortex is not homogenous. Cortical
architecture varies between early sensory and association areas
in terms of thickness of cortical layers (Yang et al., 2018),
neuronal densities (Collins et al., 2010), and proportion of
different interneuron types (Torres-Gomez et al., 2020). The
latter has been related to the ability of some local microcircuits
to generate persistent firing in the absence of sensory stimulation
(Leavitt et al., 2017a; Torres-Gomez et al., 2020). Indeed, the

neural basis of persistent firing has been linked to the existence
of recurrent connections between pyramidal cells within a local
area circuitry (Goldman-Rakic, 1995). Empirical evidence shows
more numerous excitatory synapses between pyramidal cells as
well as differences in the distribution of long time constant
NMDA receptors relative to short time constant AMPA receptors
in the LPFC compared to the early visual cortex (Wang, 1999;
Gonza’lez-Burgos et al., 2000; Zaitsev et al., 2012; Yang et al.,
2018). These differences in excitatory synapse numbers and
glutamate receptor types may explain the larger integration
times found in association and executive areas of the visual
processing hierarchy relative to sensory areas (Murray et al.,
2014) and the ability of the former set of areas to encode working
memory representations.

More recently, a larger proportion of interneurons that
disinhibit pyramidal cells (e.g., calretinin positive (CR) cells)
relative to interneurons that directly inhibit pyramidal cell firing
(e.g., parvalbumin (PV) positive cells) have been reported in
the LPFC compared to early visual areas like MT (Torres-
Gomez et al., 2020). Wang has elaborated on a model that
incorporates different cell types within the LPFC circuitry
such as the calretinin positive (CR, sometimes identified as
functionally similar to vasointestinal peptide (VIP)-expressing
neurons in mice) and the calbindin positive neuron (CB,
sometimes identified as functionally similar to somatostatin
(SST)-expressing neurons in mice) (Wang et al., 2004; Wang,
2009). CR cells receive inputs from pyramidal cells and inhibit
CB cells. The CB cells inhibit inputs into the dendrites of
pyramidal cells (Figure 4A). Thus, an increase in the number
or activation strength of CR neurons or their synapses onto
CB cells would have a positive impact on the activation of
the pyramidal cells (Figure 4B). A decrease in CR numbers or
synaptic strength on their targets may have the opposite effect
(Figure 4C). On the other hand, for PV neurons, an increase
in their proportion or relative synaptic strength would increase
the inhibition of pyramidal cells. A high ratio of CR to PV cells
in LPFC relative to sensory areas may favor the emergence of
persistent firing encoding working memory via facilitation of
recurrent excitatory dynamics amongst pyramidal cells (Torres-
Gomez et al., 2020) (Figure 4D). A low ratio of CR to PV cells
(e.g., a relatively high proportion of PV cells or synaptic strength
onto their target pyramidal cells) may cause strong inhibition
of pyramidal cell firing and dampening of recurrent excitatory
dynamics (perceptual encoding).

Supporting the idea that cortical architectures differ in their
interneuron type proportions, a recent study has compared
transcriptomic profiles of different neuronal types [PV, SST,
VIP, and LAMP5 (Lysosome associated membrane protein 5
expressing interneurons)] in areas V1 and PFC of different
species of primates (common marmosets, rhesus macaques, and
humans). SST and PV originate from the Medial Ganglionic
Eminence (MGE), while the VIP and LAMP5 originate from
the Caudal Ganglionic Eminence (CGE). Neurons originating
from the MGE tend to be more numerous in the deep layers
while those originating in the CGE tend to be more numerous
in the superficial layers. The study found that whereas PV and
SST cells are more abundant in area V1, VIP, and LAMP5
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are relatively more abundant in PFC. These differences may
be due to the expansion of superficial (supragranular) cortical
layers in primate association cortices, better documented in
LPFC (Arnsten et al., 2012). Interestingly, such differences in the
proportion of interneuron types were not found in the mouse
(Krienen et al., 2020; but see Kim et al., 2017). This suggests that
gradients of interneuron types may have become pronounced in
primate neocortex, which is compatible with studies reporting a
larger proportion of interneurons in primates relative to rodents
(Džaja et al., 2014), as well as a larger proportion of CR cells in
LPFC relative to sensory areas (Torres-Gomez et al., 2020).

One issue that remains unclear is why areas such as MST,
where neurons show persistent firing during working memory
tasks, do not show the same increase in the ratio of CR to
PV neurons observed in the LPFC. There may be two possible
explanations for this result. First, that persistent firing in areas
such as MST is not intrinsic to the area circuitry and needs
strong feedback signals from LPFC. Second, it is possible that the
differences in CR interneurons proportion described in previous
studies (Torres-Gomez et al., 2020) is not directly related to the
ability to produce persistent firing, but to the ability of a local area
circuitry to make persistent firing encoding working memory
representations less disrupted by incoming distracting sensory
signals (e.g., sensory signals unrelated to the representation
held in working memory but co-occurring during the period
of memory maintenance). In favor of the latter explanation,
inactivation of the LPFC, where CR interneurons are abundant,
increases distracter interference during working memory tasks
and activity in LPFC is less disrupted by incoming distracting
signals than in areas such as LIP (Suzuki and Gottlieb, 2013).

Wang and Yang have proposed a model circuit motif
composed of the same cell types referred to earlier (pyramidal,
CB, CR, and PV). Here the dendrite targeting CB neurons can
regulate the flow of signals into dendritic trees. These neurons
are controlled by CR interneurons. An increase in these cell
type proportions and their control by cognitive signals encoding
the behavioral relevance of stimuli in the environment in areas
like LPFC where the filtering of distracter signals is particularly
strong (Lennert and Martinez-Trujillo, 2011), may allow flexible
“gating” of inputs into a pyramidal cell network. An increase in
the proportion of SST neurons, a putative functional homolog of
CB neurons in primates, has been reported in association areas of
the mouse neocortex (Kim et al., 2017). One issue that remains
unclear is how the gating of sensory inputs from upstream areas
interplay with the gating of recurrent excitatory inputs from
neighboring cells within the area. Further exploration will clarify
apparent contradictions between the aforementioned hypotheses
regarding cell type gradients.

Another difference between early sensory and association
cortices concerns the distribution of receptors for
neuromodulators that have been classically involved in
working memory functions (Brozoski et al., 1979). Froudist-
Walsh and coworkers have recently shown that receptors for
neuromodulators that regulates working memory function such
as the dopamine D1 receptor (D1R) (Williams and Goldman-
Rakic, 1995) has an unequal distribution in the macaque
cerebral cortex (Froudist-Walsh et al., 2020) (Figures 4E,F).

D1 dopamine receptors action have been associated with
the ability to filter distracter stimuli (Jacob et al., 2016). The
concentration of D1 receptors increases along the hierarchy
of visual processing reaching their maximal concentration
in the parietal and prefrontal cortices. Froudist-Walsh and
coworkers elaborated on a computational model in which release
of dopamine favors persistent firing and resilience to distracters
in association areas via its action on D1 receptors. Insufficient or
excessive dopamine release on the other hand, makes persistent
firing less robust to distracter interference (Froudist-Walsh
et al., 2020). One relevant detail is that the model makes the
prediction that dopamine increases the synaptic strength of the
inhibition to the apical dendrites of pyramidal cells. Because
recurrent excitatory connections between pyramidal cells
target the soma and proximal dendrites, which are NMDA
dependent and facilitated by D1R, and inhibitory connections
from calbindin-expressing interneurons target the apical
dendrites and are also facilitated by D1R, the next effect for
dopamine release is to facilitate persistent firing via recurrent
excitation. Additional details of this model can be found
in Froudist-Walsh et al. (2020).

Despite an accumulating body of evidence in favor of
different cortical architectures that support perception and
working memory, several issues remain unexplained. For
example, studies have reported that a noticeable proportion
of neurons in areas of the LPFC encode perceptual but not
mnemonic representations (see Figure 3; Mendoza-Halliday and
Martinez-Trujillo, 2017). Here one may conceive the possibility
that the LPFC microcircuitry is heterogeneous in composition
and may contain features of both perceptual and mnemonic
microcircuits. One may speculate that perceptual neurons inherit
and “echo” the responses and selectivity from perceptual neurons
in upstream visual areas (e.g., MT) via feed-forward inputs,
processing these signals within circuits that do not include
mnemonic neurons. During working memory, perceptual LPFC
neurons then transfer such signals to mnemonic neurons,
which are in turn capable of maintaining them via local
recurrent excitatory networks that do not necessarily include
perceptual neurons.

Is it possible the LPFC is a mosaic of perceptual and
mnemonic cortical architectures that differ in basic features
such as proportion of interneuron types, or the number of
synapses that enable recurrent connections? If that were the case,
one may conceive evolution of the neocortex produced such a
hybrid architecture for a “purpose”: compressing information
about the nature of a representation (perceptual or mnemonic)
within a brain area. One possibility is that such architecture
originates, at least partially, during migrations of interneurons
from MGE (e.g., PV) and CGE (e.g., CR/VIP) that produce
cortical columns of different composition in areas such as
LPFC. It may also be shaped by patterns of inputs and
activity during development. As we have proposed earlier, this
hybrid architecture may facilitate computations and information
transfer within local microcircuits in an efficient manner. On
the other hand, it may also make the brain more vulnerable
to disorders of perception/imagination when such a circuit
undergoes certain deviations from typical development in early
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life, as can be seen in schizophrenia. This idea, however, needs to
be tested experimentally.

An interesting question related to the possible existence of a
hybrid architecture of perceptual or mnemonic “blocks” in the
LPFC, is what the resolution of such blocks would be. Some
studies have pointed out the existence of a non-retinotopic
topography for mnemonic representations of visual space in
the macaque monkey LPFC (Leavitt et al., 2017b). Another
study found that neurons with the strongest selectivity for
perceived and memorized motion directions were concentrated
within a small subregion of LPFC near the posterior end
of the principal sulcus (Mendoza-Halliday and Martinez-
Trujillo, 2017). Moreover, a previous study has described a
pattern of stripe-like areas in the LPFC that connects to the
ipsilateral parietal cortex and the contralateral LPFC respectively
(Goldman-Rakic and Schwartz, 1982). Could such a pattern be
related to subregions of LPFC with perceptual and mnemonic
architectures such as the ones illustrated in Figures 4B,C?
One possibility is that neurons in perceptual blocks receive
projections from the parietal cortex, while neurons in the
mnemonic blocks receive projections from perceptual blocks
within the same hemisphere and contralateral blocks in the
opposite hemisphere. The latter may allow manipulation of
spatial information in working memory (e.g., interhemispheric
transfer of information; Brincat et al., 2021). However, this
proposal remains speculative and future studies must clarify
this issue. With the advent of modern techniques for high-
yield electrophysiological recordings and 2-photon imaging of
neuronal activity using calcium indicators (Yang and Yuste,
2017), it may be possible to test some of the hypotheses
mentioned or proposed here.

2.5. The Case for Overlapping Substrates
of Visual Working Memory and Perception
With the advent of modern functional imaging, it has been
possible to measure Blood Oxygenation Level Dependent
(BOLD) signals in humans performing perceptual and working
memory tasks. One common finding is that it is possible to
decode the contents of working memory from BOLD signals
in early visual areas (V1-V4) (Tong and Pratte, 2012). Yet,
electrophysiological studies in monkeys find little evidence of
persistent firing of action potential by single neurons (see Leavitt
et al., 2017a for a review). These functional imaging findings
have been the motivation of a popular hypothesis that proposes
early sensory areas are recruited, and may be necessary, for the
maintenance of working memory representations (Postle, 2006;
Ester et al., 2013; Scimeca et al., 2018). This hypothesis is known
as the “sensory recruitment” hypothesis, and has been a matter of
debate amongst neuroscientists investigating the topic (Scimeca
et al., 2018). At first glance, the sensory recruitment hypothesis
does not fully match the results of electrophysiological and lesion
studies in non-human primates we have reviewed above. Below,
we consider a few explanations for this mismatch.

Boynton (2011) outlines several hypotheses to understand the
identified discrepancies between single neuron electrophysiology
and fMRI findings. The first outlines that the BOLD signal

more closely represents local field potential activity rather than
spiking activity. It is possible that sensory areas are not recruited
during working memory maintenance and the results of fMRI
studies reflect feedback signals from higher-order association
areas into early sensory areas. Such signals would increase
synaptic activity and oxygen consumption in early visual cortex
in a retinotopic or feature-topic fashion, which is sufficient
to produce BOLD signals that provide information about
remembered locations/features, but insufficient to significantly
evoke action potentials from single neurons. In favor of this
hypothesis, at least one study in monkeys has reported the
direction of a stimulus held in working memory can be decoded
from LFP signals recorded in area MT but cannot be decoded
from spiking activity of neurons within the area (Mendoza-
Halliday et al., 2014). Indeed, previous studies have shown that
in certain experimental conditions, it is possible to dissociate
between the inputs into a cell and the spiking outputs: BOLD
signals are better correlated with LFP signals (as a measure
of synaptic inputs) than with spikes (Logothetis and Wandell,
2004). The feedback signals into early visual cortex would
help implement top-down attention, facilitating or prioritizing
the processing of incoming stimuli that match the features or
locations held in working memory (Mendoza et al., 2011). Such
effects are commonly found in visual search paradigms (Bichot
et al., 2019) and have been interpreted as top-down modulation
of neuronal activity in early visual areas by attentional templates
(working memory signals) originating in executive control areas
of the parietal and PFC.

One issue that also needs clarification is why classification
accuracy during working memory tasks is poorer using BOLD
signals recorded in parietal areas and the LPFC compared to
early visual cortex (e.g., V1, V4, MT) (Bettencourt and Xu,
2016; Ester et al., 2016). One possible explanation is that the
retinotopy of visual space is weaker in high-order association
cortices, leading to reduced decoding performance for working
memory using BOLD signals (Xu, 2017). Here, one may consider
that decoding methods used in fMRI rely on the selectivity of
voxels for remembered features or locations. Such voxels are
usually isotropic and distributed in a way that map BOLD signals
in the cortex homogeneously. Although a voxel in areas like V1
andMTmay include neurons with similar selectivities (Born and
Bradley, 2005), this is not the case in late association areas such
as the LPFC, where retinotopic and feature-topic maps are not
homogenous (Leavitt et al., 2017b) (see Figure 3).

Boynton (2011) also suggest that discrepancies are caused by
differences in experimental design including the use of different
species. The same research group is unlikely to study both
macaques and humans and use both fMRI and single neuron
recording techniques. Differences in experimental approach and
design and interpretation of results could certainly contribute to
the observed discrepancies. Another possible explanation is that
humans differ from other primates such as macaque monkeys in
the way in which working memory networks encode information
in the brain. The recruitment of early sensory areas could be
a feature of the human cortex that is not present in macaques
and other species of monkeys. This hypothesis is difficult to
test. We did not find any study in humans recording neuronal
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activity in early visual areas during working memory tasks.
Methods such as fMRI, EEG, and MEG do not have sufficient
spatial resolution to measure spikes in single neurons. They
are most sensitive to transient changes in sensory inputs or
behavioral states. Recordings of single neurons from areas such
as V1 in human subjects during working memory tasks would
clarify the issue. However, these experiments are difficult due
to ethical constraints, and are exclusively performed in patients
with clinically-implanted electrodes for epilepsymapping, almost
all of which do not target early visual areas. Although we
cannot fully discard this hypothesis, it would assume that
humans have undergone a major step in the evolution of
working memory mechanisms and cortical architectures. Beside
the expansion of the PFC and the more pronounced folding of
the brain surface in humans, there is no evidence in favor of
fundamental changes in circuitry betweenmacaques and humans
(Passingham and Wise, 2012). Future studies in humans may
clarify this issue.

3. CONCLUSION

We conclude that the neural substrates of working memory
and perception are segregated in the non-human primate
neocortex. Neurons and neuronal populations in early visual
areas mainly encode perceptual signals. In areas downstream,
there are populations of neurons that encode both perceptual
and working memory signals, with the relative proportion of
neurons encoding the latter increasing from early association
areas to the PFC. In the LPFC, the activity of neuronal
populations can provide a neural substrate for the distinction
between perceptual and mnemonic states via population activity
profiles that can be translated into attractor landscapes. Changes
in the architecture of microcircuits across the hierarchy of

visual processing in terms of pyramidal cell morphology and
connectivity, proportion of different interneuron types, and
distribution of receptors (i.e., NMDA, AMPA, and dopaminergic)
also reflect the changes in electrophysiological signals supporting
perception and working memory. This suggests a parallel degree
of heterogeneity between anatomy and physiology. Finally, the
results from non-human primate studies do not match the
proposition of a sensory recruitment hypothesis for working
memory. The latter could be due to the heterogeneity of signal
measurements and their interpretation across studies in humans
and non-human primates, or to evolutionary changes in the
mechanisms by which humans encode perceptual and working
memory signals.
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Todorović, D. (2020). What are visual illusions? Perception 49, 1128–1199.

doi: 10.1177/0301006620962279

Tong, F., and Pratte, M. S. (2012). Decoding patterns of human brain activity.

Annu. Rev. Psychol. 63, 483–509. doi: 10.1146/annurev-psych-120710-100412

Torres-Gomez, S., Blonde, J. D., Mendoza-Halliday, D., Kuebler, E., Everest, M.,

Wang, X.-J., et al. (2020). Changes in the proportion of inhibitory interneuron

types from sensory to executive areas of the primate neocortex: implications

for the origins of working memory representations. Cereb. Cortex 9:557.

doi: 10.1093/cercor/bhaa056

Treue, S., and Martínez Trujillo, J. C. (1999). Feature-based attention influences

motion processing gain in macaque visual cortex. Nature 399, 575–579.

doi: 10.1038/21176

Tucker, T., and Kling, A. (1967). Differential effects of early and late

lesions of frontal granular cortex in the monkey. Brain Res. 5, 377–389.

doi: 10.1016/0006-8993(67)90045-5

Upright, N. A., Brookshire, S. W., Schnebelen, W., Damatac, C. G., Hof, P. R.,

Browning, P. G. F., et al. (2018). Behavioral effect of chemogenetic inhibition is

directly related to receptor transduction levels in rhesus monkeys. J. Neurosci.

38, 7969–75. doi: 10.1523/JNEUROSCI.1422-18.2018

Uylings, H. B., Groenewegen, H. J., and Kolb, B. (2003). Do rats have a

prefrontal cortex? Behav. Brain Res. 146, 3–17. doi: 10.1016/j.bbr.2003.

09.028

Wang, X.-J. (1999). Synaptic basis of cortical persistent activity: the importance

of NMDA receptors to working memory. J. Neurosci. 19, 9587–9603.

doi: 10.1523/JNEUROSCI.19-21- 09587.1999

Wang, X.-J. (2009). “A microcircuit model of prefrontal functions: ying and yang

of reverberatory neurodynamics in cognition,” in The Frontal Lobes, eds J.

Risberg and J. Grafman (Cambridge: Cambridge University Press), 92–127.

doi: 10.1017/CBO9780511545917.006

Wang, X.-J., Tegne’r, J., Constantinidis, C., and Goldman-Rakic, P. S. (2004).

Division of labor among distinct subtypes of inhibitory neurons in a cortical

microcircuit of working memory. Proc. Natl. Acad. Sci. U.S.A. 101, 1368–1373.

doi: 10.1073/pnas.0305337101

Warren, J. M., and Divac, I. (1972). Delayed response performance by

rhesus monkeys with midprincipalis lesions. Psychon. Sci. 28, 146–148.

doi: 10.3758/BF03328689

Williams, G. V., and Goldman-Rakic, P. S. (1995). Modulation of memory

fields by dopamine D1 receptors in prefrontal cortex. Nature 376, 572–575.

doi: 10.1038/376572a0

Wimmer, K., Nykamp, D. Q., Constantinidis, C., and Compte, A. (2014). Bump

attractor dynamics in prefrontal cortex explains behavioral precision in spatial

working memory. Nat. Neurosci. 17, 431–439. doi: 10.1038/nn.3645

Xu, Y. (2017). Reevaluating the sensory account of visual workingmemory storage.

Trends Cogn. Sci. 21, 794–815. doi: 10.1016/j.tics.2017.06.013

Yang, S.-T., Wang, M., Paspalas, C. D., Crimins, J. L., Altman, M. T., Mazer,

J. A., et al. (2018). Core differences in synaptic signaling between primary

visual and dorsolateral prefrontal cortex. Cereb. Cortex 28, 1458–1471.

doi: 10.1093/cercor/bhx357

Yang, W., and Yuste, R. (2017). In vivo imaging of neural activity. Nat. Methods 14,

349–359. doi: 10.1038/nmeth.4230

Yeterian, E., and Pandya, D. (2010). Fiber pathways and cortical connections

of preoccipital areas in rhesus monkeys. J. Comp. Neurol. 518, 3725–3375.

doi: 10.1002/cne.22420

Yeterian, E. H., Pandya, D. N., Tomaiuolo, F., and Petrides, M. (2012). The cortical

connectivity of the prefrontal cortex in the monkey brain. Cortex 48, 58–81.

doi: 10.1016/j.cortex.2011.03.004

Zaitsev, A. V., Povysheva, N. V., Gonzalez-Burgos, G., and Lewis, D. A. (2012).

Electrophysiological classes of layer 2/3 pyramidal cells in monkey prefrontal

cortex. J. Neurophysiol. 108, 595–609. doi: 10.1152/jn.00859.2011

Zaksas, D., and Pasternak, T. (2006). Directional signals in the prefrontal

cortex and in area MT during a working memory for visual motion

task. J. Neurosci. 26, 11726–11742. doi: 10.1523/JNEUROSCI.3420-06.

2006

Frontiers in Neural Circuits | www.frontiersin.org 18 November 2021 | Volume 15 | Article 764177159

https://doi.org/10.1523/JNEUROSCI.20-19-07496.2000
https://doi.org/10.1098/rstb.2005.1631
https://doi.org/10.1016/j.neuroscience.2005.06.005
https://doi.org/10.1152/jn.1950.13.5.373
https://doi.org/10.1037/h0061240
https://doi.org/10.1523/JNEUROSCI.19-~05-01736.1999
https://doi.org/10.3389/fnsys.2015.00181
https://doi.org/10.1016/0166-4328(85)90062-2
https://doi.org/10.1037/h0087991
https://doi.org/10.1038/s41380-021-01082-5
https://doi.org/10.1126/science.1224000
https://doi.org/10.1126/science.8146653
https://doi.org/10.1126/science.1825731
https://doi.org/10.1152/jn.2001.86.4.2041
https://doi.org/10.1073/pnas.2003181117
https://doi.org/10.1038/s41598-020-61171-3
https://doi.org/10.1016/j.tics.2017.12.007
https://doi.org/10.1037/h0058008
https://doi.org/10.1016/j.tics.2013.12.001
https://doi.org/10.1016/0014-~4886(71)90020-3
https://doi.org/10.1038/nn.3282
https://doi.org/10.1177/0301006620962279
https://doi.org/10.1146/annurev-psych-120710-100412
https://doi.org/10.1093/cercor/bhaa056
https://doi.org/10.1038/21176
https://doi.org/10.1016/0006-8993(67)90045-5
https://doi.org/10.1523/JNEUROSCI.1422-18.2018
https://doi.org/10.1016/j.bbr.2003.09.028
https://doi.org/10.1523/JNEUROSCI.19-21-~09587.1999
https://doi.org/10.1017/CBO9780511545917.006
https://doi.org/10.1073/pnas.0305337101
https://doi.org/10.3758/BF03328689
https://doi.org/10.1038/376572a0
https://doi.org/10.1038/nn.3645
https://doi.org/10.1016/j.tics.2017.06.013
https://doi.org/10.1093/cercor/bhx357
https://doi.org/10.1038/nmeth.4230
https://doi.org/10.1002/cne.22420
https://doi.org/10.1016/j.cortex.2011.03.004
https://doi.org/10.1152/jn.00859.2011
https://doi.org/10.1523/JNEUROSCI.3420-06.2006
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Roussy et al. Perception and Working Memory

Conflict of Interest: The authors declare that the research

was conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s Note: All claims expressed in this article are solely those

of the authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers.

Any product that may be evaluated in this article, or claim that may

be made by its manufacturer, is not guaranteed or endorsed by the

publisher.

Copyright © 2021 Roussy, Mendoza-Halliday and Martinez-Trujillo. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neural Circuits | www.frontiersin.org 19 November 2021 | Volume 15 | Article 764177160

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


REVIEW
published: 18 January 2022

doi: 10.3389/fncir.2021.790691

Edited by:

Kenichi Ohki,
The University of Tokyo, Japan

Reviewed by:
Masamichi Sakagami,

Tamagawa University, Japan
Guilhem Ibos,

UMR7289 Institut de Neurosciences
de la Timone (INT), France

*Correspondence:
Joaquín M. Fuster
joaquinF@ucla.edu

Received: 07 October 2021
Accepted: 13 December 2021
Published: 18 January 2022

Citation:
Fuster JM (2022) Cognitive Networks

(Cognits) Process and Maintain
Working Memory.

Front. Neural Circuits 15:790691.
doi: 10.3389/fncir.2021.790691

Cognitive Networks (Cognits)
Process and Maintain Working
Memory
Joaquín M. Fuster*

University of California, Los Angeles, Los Angeles, CA, United States

Ever since it was discovered in the monkey’s prefrontal cortex, persistent neuronal
activity during the delay period of delay tasks has been considered a phenomenon
of working memory. Operationally, this interpretation is correct, because during that
delay those tasks require the memorization of a sensory cue, commonly visual. What
is incorrect is the assumption that the persistent activity during the delay is caused
exclusively by the retention of the sensory cue. In this brief review, the author takes the
position that the neural substrate of working memory is an array of long-term memory
networks, that is, of cognitive networks (cognits), updated and orderly activated for the
attainment of a behavioral goal. In the case of a behavioral task, that activated array
of cognits has been previously formed in long-term memory (throughout this text, the
expression “long-term memory” refers to all experiences acquired after birth, including
habits and so-called procedural memory, such as the learning of a behavioral task). The
learning of a task is the forming of synaptic associations between neural representations
of three cognitive components of the task: perceptual, motor, and reward-related.
Thereafter, when needed, the composite cognit of the task is activated in an orderly
fashion to serve working memory in the perception-action cycle. To make his points on a
complex issue, which has been the focus of his work, and to delineate a frontier for future
research, the author refers to several of his own publications and previously published
reviews.

Keywords: cognits, phyletic memory, long-term-memory, perception-action cycle, delay tasks, neuroplasticity

INTRODUCTION

Hughlings Jackson (1958) noted that the very same neural elements that represent a
movement in the motor cortex are in charge of its execution. A similar statement can
be made on sensation in the sensory cortex with regard to sensory representation and
perception. Here I extend that principle to the entirety of the nervous system, from genetic
‘‘representations’’ (phyletic memory), like the anatomical structure of primary motor, sensory,
and reward systems, to the representation of personal memories in the cortex of association.
Memory is recalled or put to work by activation of the neural structure that represents it1.

1The analogy with immune systems is remarkable. ‘‘Memory T-cells’’ are characterized by their long immunological memory.
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According to this view, a learned delayed-response task, with
all its component operations, including working memory, is
represented and executed by a vast network of cortical memory
that represents sensory stimuli, motor responses, and reward (or
approval). Whenever the task requires the mediation of a cross-
temporal contingency, as in the delay period, persistent activity
links representations of temporally separate task components to
bridge time across the contingency between them. If we replace
the word representation by the word memory, in this as in other
conditions of the organism, we may reach the conclusion that in
the brain there are no systems ofmemory but there is thememory
of systems, and working memory is the temporary activation
of perceptual, executive and reward systems’ memory toward
a goal.

The interpretation of a cortical cell’s persistent activity as
a phenomenon of working memory is entirely in accord with
Baddeley’s (1983) basic definition of working memory: the
temporary retention of information for a behavioral choice or
the solution of a problem. Unfortunately, this future aspect of
working memory, that is, its ‘‘teleonomic’’ aspect (Monod, 1971),
is generally ignored in discussions of persistent activity in the
prefrontal cortex.

One clear neural manifestation of the ‘‘teleonomic’’
nature of working memory is the evidence of prefrontal
cells whose persistent delay activity is attuned to the
animal’s approaching motor response to the cue (Niki,
1974; Quintana and Fuster, 1999). Further, in prefrontal
area 8 or its proximity, where a visual directional
cue is integrated across a delay with a directional eye
movement, persistent delay activity reveals their cross-
temporal sensory-motor integration in working memory
(Funahashi et al., 1989).

The presence of motion-related neurons in the prefrontal
cortex is in harmony with the general notion that this
cortex is involved in orderly goal-directed behavioral
actions. However, the organization of all such actions
requires inputs from sensory areas of the posterior cortex
engaged with them in the perception-action cycle. Hence,
some prefrontal cells exhibit persistent delay activity that
discriminates two stimuli of different modalities—e.g.,
visual and auditory—if they are associated with each other
(behaviorally induced ‘‘synesthesia’’) across the delay in
the performance of a cross-modal delayed matching task
(Fuster et al., 2000). Furthermore, in the expectation of a
good behavioral outcome or reward, persistent activity can be
observed in the orbito-medial areas of the prefrontal cortex
(Moorman and Aston-Jones, 2014), which are intimately
connected with limbic structures, notably the amygdala and
the hypothalamus.

In contrast to the frontal cortex, vigorous sensory-
discriminant delay activity can be observed in the temporal
(Fuster and Jervey, 1982; Miller et al., 1993) and parietal
(Zhou and Fuster, 1996) cortex. Thus we may draw the
general conclusion, as others have done (Christophel et al.,
2017), that cells in frontal cortices receive multiple sensory
and drive-related inputs from posterior sensory cortices and
limbic structures for the performance and monitoring of

a working-memory task. During the delay, these multiple
inputs of diverse origin, which are part of working memory
and dispersed in time and cortical space, may average across
trials to a semblance of persistent activity. That appearance,
however, hides considerable variability from trial to trial
(Shafi et al., 2007), as would be expected, though it is not
yet proven, from the asynchronous convergence on the
prefrontal cortex of task-related inputs from multiple sources,
cortical and subcortical. Probably, that prefrontal activity
during the delay is driven alternatively by several inputs from
the memory of the task, including the cue, the impending
motor response, and the expected reward. These inputs from
multiple cognitive sub-networks (component cognits) upon
prefrontal cell populations can be computationally considered
and dealt with as multiple attractors (Roussy et al., 2021;
Wang, 2021).

That cortical inputs are important for the maintenance
of working memory and performance of a delay task is
evident because the cooling of posterior cortical areas leads
to a reversible deficit in the performance of delay tasks and
concomitant deficits of activation of frontal cells (Quintana
et al., 1989); conversely, the cooling of lateral prefrontal cortex
leads to working-memory deficits and disturbance of cell
activity in posterior association cortex. Both these phenomena
would be manifestations of impaired frontal ‘‘cognitive control’’
(Miller and Cohen, 2001).

The purpose of this review is to emphasize the intimate
dependence of working memory from long-term memory and
to defend the hypothesis of a common anatomical substrate
for both. A related purpose, largely dependent on the validity
of that hypothesis, is to defend the corollary that working
memory and the persistent neuronal activity that serves it
are highly distributed cortical functions of the perception-
action cycle.

DISTRIBUTED MEMORY

After the discovery of persistent delay activity as a neuronal
manifestation of working memory (Fuster, 1973; Niki,
1974), there was a large number of single-unit studies
conducted on primates during the performance of delay
tasks. The principal anatomical targets of those studies
were the associative areas of the frontal, parietal and
temporal cortices. To this reviewer, several general facts
became gradually apparent with regard to the task-related
cell activity—persistent or not—during those tasks,
especially in the light of observations in the human after
cortical damage:

(a) In all cortical regions explored with microelectrodes, a large
contingent of cells does not alter their discharge in relation
to any of the delay-task components. But those cells that
do, usually exhibit considerable variability from trial to
trial, consistent with temporal variability in the synaptic
associative inputs and outputs related to the task. That is also
consistent with the expected fluctuations in the perceptual
and executive attention (Amengual and Ben Hamed, 2021)
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devoted by the animal to components of the delay-task habit,
which in the trained animal can be safely assumed to be part
of long-term memory.

(b) Cue-related activity (sensory) is most prominent in areas
of the posterior association cortex, whereas choice-related
(motor) activity is most prominent in the prefrontal cortex
(especially lateral aspects of it). However, in prefrontal areas
heavily involved in sensory-motor integration, such as in
haptics (Romo et al., 1999) or in oculomotor behavior
(Funahashi et al., 1989), remarkable parametric relationships
have been observed between neuronal discharge and
stimulus and/or motor response, always within the context
of the task previously learned, thus of long-term memory.

(c) The cortical regions from which delay-task activity can
be recorded have been implicated by lesion studies in
the perceptual or motor memory of the task that the
activity is correlated with. For instance, the inferior temporal
cortex, from which persistent discriminating cells have
been recorded during the delay of visual working memory
(Fuster and Jervey, 1982; Miller et al., 1993), has been
shown by lesion studies to be a focus of long-term memory
of visual discriminations. The same can be said for the
posterior parietal cortex with regard to spatial working and
long-term memory. Lesions of the prefrontal cortex impair
the performance of all delay tasks, as well as of other tasks
that, like them, require temporal order of actions and/or the
mediation of cross-temporal contingencies (Fuster, 2001).
All these tasks are in the long-term memory of the trained
animal.

(d) It is in the human brain where, thanks to clinical
lesion studies, the most direct relations have been
shown between cortical damage and memory deficit
(Fuster, 1995, 2009, 2015). Thus, posterior lesions result
primarily in deficits of perceptual memory (e.g., agnosias,
semantic aphasias, and episodic amnesias), whereas
frontal lesions result primarily in deficits of executive
memory and functions (e.g., executive neglect, motor
aphasia, and problems with executive memory, attention,
and planning). In the monkey, lesions of homologs of
some of the areas involved in human amnesias and
other deficits lead to comparable deficits of perceptual
and executive memory, including of course working
memory.

The aggregate of these facts provides strong evidence for the
following conclusions:

1. All the experimental phenomena of working memory,
including persistent delay activity, are phenomena of the
processing of the testing task, and therefore of the temporary
and orderly activation of the associated components of the
long-term memory of the task.

2. Persistent delay activity is an expression of the brain’s
necessity to transfer information across time between two or
more of those components if they are mutually contingent
on one another (perceptual cue, motor choice, and reward).

3. Working memory and long-term memory share the same
neural substrate and mnemonic content; working memory

is a portion of the long-term memory activated from its
resting state and updated in order to mediate cross-temporal
contingencies, and thus to conduct the subject to the goal of
a task or the approval of the experimenter, or both.

CORTICAL ORGANIZATION OF MEMORY

The facts above support the general principle that working
memory consists of an updated cognitive network of long-term
memory selectively and orderly activated to attain a goal.
Persistent activity is the prime manifestation of it when the
attainment of that goal requires the reconciliation of cross-
temporal contingencies between associated items of the activated
network. It follows that the analysis of the cortical organization
of long-term memory should help us understand the neural
infrastructure of working memory and its functional dynamics.
Here we need a note of caution: the debate about the neural
base of memory of any kind or state is often muddled by the
assumption of consciousness, ignoring the fact that memory can
be unconsciously active and operative.

Because of limits in spatial and temporal resolution, current
methods can only provide us with approximate estimates of the
cortical regions harboring the highest densities of the most active
neural elements—cells and fibers—engaged in the representation
of memory, whether this is sensory, motor, emotional, or
associative. Those methods, however, are clearly insufficient
to define the fine grain of memory and the distribution of
specific memories, in other words, what used to be called the
‘‘engrams’’ or ‘‘memory traces’’. The modern connectome reveals
the connective complexity of the cortical substrate of those
memories, but cannot tell us about their content any more than
a roadmap can tell us about the resources or the economy of
a nation. The problem is aggravated by the graded, analog,
and probabilistic nature of transactions in the neural cognitive
domain. A new paradigm is needed, such as the cognit paradigm
below, to account for themicrostructure and dynamics of cortical
memory and cognition.

Nonetheless, as an introduction to the cognit, it is useful
to consider the general organization of cortical memory at
a mesoscopic level, as revealed by the evidence severely
summarized above.

Our brain comes to the world with three inherited systems
to adapt to it: sensation, motion, and emotion. The anatomical
structure of these three systems, which in life are going to
interact intimately with one another, is a form of memory that
we all share and that in the course of evolution our species
has acquired to deal with the physical and social environments.
I call that neural structure of those three systems phyletic
memory or ‘‘memory of the species’’ because it represents in
the form of neural matter, genetically transmitted, the means
by which the species in the ‘‘night of times’’ of evolution has
acquired (‘‘learned’’) to adapt to the environment for subsistence
and procreation. Phyletic memory includes the sensory and
motor systems and the limbic system, with their peripheral,
subcortical, and cortical components. The organism ‘‘recalls’’ and
‘‘rehearses’’ phyletic memory with every sensation, every act, and
every emotion.
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FIGURE 1 | A schema of the hierarchies of cortical memory. The figure portrays in a highly schematic manner a mesoscopic view of the distribution of memory
networks. Two hierarchies of memory are shown spread-out tangentially to the cortical surface of the left hemisphere: one in posterior cortex, perceptual, for
memories acquired through the senses (blue to white) and the other in the frontal cortex, executive, for memories acquired through action (red to white). The two
color gradients mark the ascending hierarchies of memory formation and deposition, from the most concrete, sensory- and motor-related, in the lower levels, to the
most abstract and complex in the higher levels of both hierarchies. Up each hierarchy, as memory networks accrue and find their hierarchical niche, they connect
with preexisting ones at every level by reasons of similarity and common features. As the upper figure implies, the networks of memory and knowledge (semantic
memory) are formed by convergence as well as divergence of associative connections. The two bi-directional arrows, one blue and the other red indicate not only
the ascending and descending connections within each hierarchy but also the heterarchical connectivity in some memories and their networks. The green arrows
symbolize the connections between hierarchies that play such a critical role in the perception-action cycle. From Fuster (2015).

It is on, and from, the basic grounds of phyletic
memory—that is primary sensory and motor cortices,
and limbic structures—that all individual memories
and knowledge will grow into association cortex

to form the long-term memory and habits of the
individual organism. Once formed, those memories
and habits will be available to be activated ad hoc in
working memory.
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In a comprehensive review of primate single-unit studies
of working memory in the visual system of primates, Roussy
et al. (2021) arrive at conclusions that remarkably support the
ideas expressed above about the hierarchical organization of
areal memory networks. The authors conclude as I predict from
my studies, that beginning with the striate cortex (‘‘phyletic
memory’’), successively higher areas in a hierarchy that reaches
the prefrontal cortex engage progressively less in ‘‘perception’’
and more in executive memory. I would object to the use
of the word ‘‘perception’’ instead of sensation (perception is
already individual memory), but the principle is valid: by
ascending the visual hierarchy, vision becomes more memory,
perceptual memory that is, and therefore more specific to the
individual. This is an argument for the increase and expansion
of idiosyncratic connectivity up the hierarchy (symbolized by the
upward diverging cones in Figure 1). It is also an argument for a
common substrate for working and long-term memory.

THE COGNIT

The idiosyncrasy of personal memory can only be understood
by the combinatorial power of some 20 billion cortical neurons
and their connections. To understand the microstructure of
memory, its widespread roots and branches throughout the
cerebral cortex, as well as its dynamics in retrieval and working
memory, we must construct a new paradigm based on two
fundamental principles of neurobiology that apply to all levels of
neural cognition, from phyletic to semantic memory:

(a) Every sensation and every movement defines itself, and
acquires neural function and meaning, in relation to other
stimuli or movements that have been apprehended or
learned together with it, whether in evolution or in the
life of the individual organism. At the evolutionary level,
the ‘‘elementary sensation’’ (Mach, 1885) does not exist
(Hayek, 1952), because every sensory feature, however
simple, has some spatial or temporal dimension and
continuity into itself. The neurocognitive code is basically
a relational code and all memory is associative, even at the
level of the neuronal columns or groups of neurons that
represent minimal sensory or motor features. Excitation
and inhibition—e.g., in the retina or in antagonistic
muscles—provide strength and contrast to each other: this
is true, for example, in the flexors and extensors of the
leg, whether in its innate defensive leg withdrawal or in
normal walking. Context and background provide essential
associations to define the memory of a stimulus or a
movement.

(b) Even at rest, the connectivity of a cortical memory
network, which links neuronal columns or groups together,
is never static. Synaptic weights change with general
metabolism, circadian rhythm, developmental stage, and age.
The synaptic connectivity changes increase markedly with
reactivation of the network in retrieval, new learning, or
new experience. More generally, abrupt synaptic changes
occur by engagement of the network in any kind of
sustained cognitive operation, such as working memory or

consolidation. All these changes take place in large and
specific memory networks that join widely separated cell
groups in the cerebral cortex.

Most empirical or computational models of cortical memory
ignore those two principles and, in addition, the growing
evidence that memory networks serve not only memory
operations but also the other cognitive functions: attention,
perception, language, and intelligence (Fuster, 2003). Memory, of
any kind, is the essential neural substrate those functions operate
on and with. Our attention, both serial and parallel, is guided by
memory. In perception, we project memory on the environment,
‘‘we not only remember what we see but see what we remember’’
(Helmholtz, 1860). Language is essentially based on semantic
memory. Intelligence makes use of all of the above plus executive
memory.

It is the evidence that memory networks are the basic
neural units of all cognitive functions that led me to the
cognit paradigm and to rename those networks cognits. The
new paradigm is founded on a new conceptual methodology to
approach the cognitive brain, the knowing and remembering
brain. Its principal new feature is a Copernican shift of
the basic cognitive unit from the neuron or cortical area
to the widely distributed network of cortical neurons, where
association, connection, and relationship define structure and
mechanisms at the microscopic level within widely distributed
networks.

The cortical cognitive networks that I propose are
considerably different from those in the available literature.
Regardless of their empirical or theoretical base, those
published networks ordinarily link together anatomically
or physiologically defined areas of the cerebral cortex.
Instead, my postulated networks link neuronal groups
within and between multiple cortical areas, some of those
groups widely separated. Here are some of its distinguishing
features:

1. A cognit consists, in and of, a net of cortical nerve cells
and the fibers and synapses that unite them. That structure
contains in itself an item of memory or knowledge acquired
by life experience. Cognits are exquisitely idiosyncratic,
specific for each individual, differing in location, extension,
and synaptic strength, depending on such factors as age,
experience and training, or education.

2. The anatomical outlines of a cognit are diffuse and highly
irregular, as it blends at its margins onto other associated
cognits with weak or unstable connections. Depending on
their synapse and fiber complexity, cognits vary considerably
in size and cortical coverage. Because they share cell groups
and connections representing common associated features,
cognits interconnect and overlap profusely with one another.

3. A cognit develops out of phyletic memory—primary sensory
or motor cortex—and into the associative cortex in accord
with Hebbian principles (Hebb, 1949), by associations of
spatial and temporal coincidence between new sensory
and/or motor—proprioceptive—stimuli. In addition, those
stimuli can activate, and establish connections with,
pre-existing and related cognits, to form with them
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more complex cognits, thus expanding prior memory and
knowledge. This will occur under inputs and influences
from the hippocampus (archicortex)—by still unclear
mechanisms—and the amygdala, the latter contributing
emotional connotations to the new or updated cognits.

As they develop in the course of life, the new and
expanded cognits will occupy progressively larger and
hierarchically higher areas of the associative cortex,
while retaining connections with lower, nested cognits.
Because of the unlimited possibilities of connection
(combinatorial power) between cortical neurons, and
because of the graded (not ‘‘all-or-none’’) strength of their
synaptic interconnections, the higher generated cognits
are profusely distributed over cortex, overlapping and
interconnecting with one another and with the lower ones
nested within them.

By virtue of the practically infinite possibilities of
interconnection between cortical cell groups or modules to
form a cognit, and the interactions between cognits, the size,
location, and synaptic stability of a given cognit varies greatly
over time. Plasticity under personal experience, attrition with
time and age, and anatomical overlap is the norm for all cognits
and what gives them individuality. Furthermore, because of
interactions and overlaps, any cell or group of cells practically
anywhere in the association cortex can be part of many cognits,
thus many memories or items of knowledge.

The new paradigm does not supplant more conventional
memory networks linking cortical areas, but it complements
them with greatly magnifying ‘‘optics’’. Under their view, the
cognit is individualized, much more extensive and intricate than
areal networks, and it serves not only memory but also the other
cognitive functions as well; hence the word cognit.

Recently, Fulvi Mari (2021) has published a computational
model of memory retrieval in a modular associative network with
an architecture extraordinarily similar to that here postulated for
the cognit. The model suggests storage and retrieval mechanisms
across different levels of a memory hierarchy of networks.

Our views of memory leave little room for the traditional
classes of memory (episodic, declarative, implicit, etc.) and
even less room for their anatomical location. Nonetheless, as
indicated in previous sections, there is now sufficient evidence
from humans and monkeys to roughly trace the cortical paths of
formation of the various cognits and the approximate anatomical
location of their foci (nodes) of heaviest associations.

In recent years, physiological animal studies have confirmed
the upward trend toward higher categories of cognits in
the perceptual hierarchy that has long been recognized by
clinical studies in the human brain. That trend culminates in
the prefrontal cortex, where the highest-order sensorimotor
cognits and integrations take place (Brincat et al., 2018;
Reinert et al., 2021).

Connection fibers ascending the two hierarchies, perceptual
and executive, from area to area, are reciprocated every step of
the way by fibers running in the opposite direction (Figure 1).
Some fibers descend directly (through the lateral longitudinal
fasciculus) from the prefrontal cortex to the cortex of association

FIGURE 2 | Perception-action cycle. In a sequence of goal-directed actions,
each action causes a change in the environment, which generates sensory
impulses; these impulses are analyzed in the posterior association cortex (in
perceptual long-term memory), and the result of this analysis informs the
frontal cortex (executive long-term memory) for the next action. And so on
and so forth, cycle after cycle, until the behavioral goal is reached. At every
turn of a cycle, the prefrontal cortex matches percept and action to the
long-term memory of both in the present context, and exerts updated
executive control of them through its executive functions.

beyond sensory cortices (e.g., the inferior temporal cortex).
These fibers evidently engage in what has been called ‘‘cognitive
control’’ (Miller and Cohen, 2001; Goodwin et al., 2012).
Cognitive control is exerted over working memory networks
and generates in them persistent activity when there are
discontinuities in the perception-action cycle.

WORKING MEMORY IN THE
PERCEPTION-ACTION CYCLE

The perception-action cycle is the ultimate evolutionary
development into the cerebral cortex of the innate systems
and mechanisms of the organism to adapt to changes in the
internal and external milieus (Uexküll, 1926). The internal
milieu is stabilized by the autonomic nervous system and
neuroendocrine systems (homeostasis). For adaptation to the
external environment, the organism is born with an array of
reflex arcs in the spinal cord and mesencephalon that serve it
to satisfy immediately vital needs and may be considered part of
phyletic memory. At the level of the cerebral cortex, the cortical
regions for adapting cognitive behavior to the physical and social
environments constitute the highest substrate of the perception-
action cycle. In the aggregate, this substrate forms a highly
plastic and versatile system of adaptation. It is a biocybernetic
system with feed-forward and feedback that governs cognitive
interactions of the organism with the exterior, including such
high cognitive functions as is conversational language (Figure 2).

In order to understand the physiological functions of the
cycle, especially the role of the prefrontal cortex in it, and
persistent activity in its neural circuitry, it is useful to consider
certain general assumptions that derive from the human brain
(Fuster, 2015):
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1. The cortex of the frontal lobe is essential for the temporal
organization of orderly behavior toward a goal, especially if
the behavior and the goal are novel (Luria, 1966).

2. To that effect, the cortex of the frontal lobe necessitates
subcortical inputs of drive and motivation, as well as
the basal ganglia as outputs to accion, together with the
pyramidal system.

3. The cortex of the frontal lobe, especially the lateral and
medial prefrontal cortex, has a predictive, anticipatory
property that allows the organism to become future-oriented,
error-predictive, and ‘‘pre-adaptive.’’

4. The prefrontal cortex, especially its orbital region, is
important for inhibitory control of distractions by interfering
stimuli, impulses, and memories.

None of these global functions of the human frontal cortex
is strictly specific for any frontal region in particular, and there
is considerable individual variability in the dominance of any
of them in any particular region. There is, however, a group
of functions best identified in the prefrontal cortex of the
nonhuman primate, which is somewhat topologically related to
those of the human and that serves the perception-action cycle in
the temporal organization of behavior. These functions (listed on
the lower right of Figure 2) are the so-called executive functions
of the prefrontal cortex, grouped under the heading of executive
control.

Note that the first in the list is attention, a cognitive
function—not necessarily conscious—which supports all other
executive functions and consists in selectively allocating to them
the limited neural resources available. The second executive
function is working memory, so dependent on attention that
Baddeley (1993) was inclined to consider it attention to an
internal representation. The third function, planning, is attention
directed to future actions, including attention to the preparation
of actions in the short term. Decision-making is selective
executive attention by definition. Finally, inhibitory control is
also an aspect of attention, by definition, that is, the exclusionary
form of attention: it is the inhibition of any source of interference,
internal or external that might impede the perception-action
cycle to attain its goal.

In the temporal course of the perception-action cycle
toward that goal, the focus and content of attention
and the role of the prefrontal executive functions over
posterior—perceptual—cortical regions shifts, within the
present context, from one item in long-term memory to
another—updated to the present. That long-term memory can
be, for example, the performance of a delay task. Naturally, in the
case of a trial of such a task, the items that will attract the most
attention in a given trial will be the sensory cue and the motor
response, both of which will be novel for that trial.

The perception-action cycle can be set into motion in any
of its compartments, internal or external. Examples of cycle
starters would be an internal plan with a long-term objective,
an emotional encounter, a biological urge, a sensory experience,
or a combination of any of them. The cycle circulates through
cortical memory, perceptual and executive, and through the
environment. Cycle after cycle, with changing input and output,
though with a consistent goal, the perception-action cycle

epitomizes what could be characterized as the adaptive dynamic
infrastructure of the cortex.

Some parts of the cycle that are constant and repetitive,
such as the habitual actions in every trial of a delay task,
circulate through the cortex and, in addition, through subcortical
reflex arcs, including the basal ganglia (Daw et al., 2005).
The task itself is represented by a high cortical cognit and
its parts by nested subordinate cognits at lower hierarchical
levels. All are sequentially recruited and activated under the
cognitive control of the prefrontal cortex, which ensures order
and guidance to the sequence. But the sequence of active cognits
is essentially self-generated and self-organized by association.
Thus the cognits were initially formed by association, and now
by association are sequentially activated in the perception-action
cycle. Accordingly, the perception of the cue at the beginning of
a delay trial is an act of recall, which by association will evoke
successive cycles in every trial to attain its reward.

In the enforced delay of any delay task, the short-term
memory of the cue and the prospective memory of the response
will dominate, the first in sensory association cortex and the
second in the prefrontal cortex, both probably maintained and
mutually reinforced by reverberating activity between the active
cognits of the two cortical regions. Those activated cognits will
be the two main sources of persistent activity in those cortical
regions.

Figure 3 is the result of a graphic meta-analysis of a large
number of functional neuroimaging studies of human subjects
performing visual delay tasks2, thus in the perception-action
cycle. During the delay, when persistent activity—in averages
or single trials—is most likely to occur, activation is seen
simultaneously in visual association cortex and lateral prefrontal
cortex. As the delay progresses, the prefrontal activation grows
and advances toward the motor cortex, anticipating the choice-
response. The joint activation of the prefrontal and infero-
temporal components of the network representing the task, with
their loop of persistent activity, serves as a bridge of working
memory at the top of the perception-action cycle.

Ascribing to the prefrontal cortex the ‘‘seat’’ of executive
control with its five executive functions (Figure 2) is supported
by a massive amount of data. However, this fact may lead to
the mischaracterization of the prefrontal cortex as the ‘‘central
executive’’ or the ‘‘center of will’’. It is neither, even though it
mediates executive functions, free choice, and creativity. Indeed,
to give to our prefrontal cortex the role of the autonomous origin
of all our decisions and actions leads inevitably to an infinite
regress that should be avoided (‘‘What agency controls the
prefrontal cortex?What other agency controls that one?’’...and so
on ad infinitum). The only reasonable solution to the quandary
is to place the prefrontal cortex in the perception-action cycle,
where the action can originate anywhere, including the cerebral
cortex, prefrontal or other.

2Because of the limitations of neuroimaging, especially in temporal resolution,
as well as differences in the time scales of the studies analyzed (some of them
meta-analyses of others), the time course of activations has been estimated from
unit studies in the monkey. Because of the large number of studies analyzed, the
problem of reverse inference (Poldrack, 2006) is presumably avoided.
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Thus the prefrontal cortex does not escape Jackson’s principle:
the same neural structure harboring the memory of an action
is in charge of its execution. So, we have to pose ourselves
two questions: what kind of memories does the prefrontal
cortex hold for the long-term? What kinds of cognitive
networks does it hold that, under certain circumstances, can
become executive networks by entering the perception-action
cycle? The answer to both questions seems to be that the
prefrontal cortex contains memory networks (cognits) of plans
of action or a series of goal-directed actions, ready to be
activated in working memory. Here we are adding an essential
parameter of prefrontal memories and cognits: time (Fuster,
2001). Associations of timing and order encoded in those
networks, pace and time the executive functions that lead those
activated and operational networks to their objective. What’s
more, the prefrontal cortex can create within itself new cognits,
new memories out of old ones, thus predicting, imagining
and creating future actions (Ingvar, 1985; Addis et al., 2007;
Fuster and Bressler, 2015), in addition to bridging cross-temporal
contingencies with working memory and with persistent activity
of its cognitive neuronal networks or cognits of the cerebral
cortex at large.

Although it can evoke and create a new action, the prefrontal
cortex cannot execute it without the intimate cooperation of
the other cortical and subcortical participants in the perception-
action cycle. A suitable analogy for that cortex would be that of
both composer of the music and director of the orchestra.

DISCUSSION

The cognit paradigm would have to be rejected if it were shown
by reliable methods that a personal memory, a percept, or a
sequence of organized action were localized in its entirety in a
discrete portion of the cortex. Such evidence would negate the
essentially distributed character of a cognit and workingmemory,
in addition to the critical phenomenon of perceptual constancy
(‘‘a rose is a rose, is a rose,’’ regardless of size, color, aroma, or
position in my visual field).

The new paradigm stems in part from the failure of all forms
of cerebral localizationism of memory. Also, it is an attempt to
substantiate by neuroscientific methodology four classic theories
of cognition: associationism, Gestalt psychology, connectionism,
and the Cajal-Hebb synaptic theory. Despite their shortcomings,
all four theories share important properties with the cognit, and
therefore, of the substrate of working memory I postulate.

Associationism, the psychological doctrine introduced in
ancient times by Aristotle and widely advocated by British
empiricists (17th–18th centuries), reduces all mental life to
associations between mental states, ideas, sensations, reflexes,
etc.., dividing the mind into components but ignoring its
unity and the functional relations between those components.
One exceptionally useful concept of associationism is that of
the association between sensation and memory in perception
(‘‘we remember what we see, and see what we remember’’)
With regard to memory, associationism fails to recognize its
hierarchical organization, and of course, there is no place in it
for heterarchical associations.

Associationism and connectionism clearly accommodate
the concepts of synapsis and neural network that serve
cognition in the brain. Any neurophysiological analysis of
cognition based on them, however, must deal with neural
signals that are for the most part analog and probabilistic,
like firing frequency and field potentials. These are not the
most convenient signals for models and machines in the
field of artificial intelligence. Nonetheless, connectionist neural-
network algorithms applied to language can discover certain
categories of grammatical rules based on similarities, much as the
cognit paradigm can uncover hierarchical categories of language
(McClelland and Rumelhart, 1986).

Gestalt psychology (Koffka, 1935) provides the most
proximate property to semantic memory, and with it to
high-category cognits: an object is defined by the relations
between its parts, not by the parts themselves, and certainly
not by the sum of those parts. However, as in the case of
connectionism, the meaning of a Gestalt (‘‘structure’’) lies in
both the relation and the related elements. Given the practically
infinite combinatorial power of over 20 billion neurons, the
potential variability of human memories is immense, like that
of human experience. There are, however, constraints to that
variability dictated by anatomy and physiology. One is the
innate connectivity of the individual brain. Another is the
strength of synaptic connections. These constraints exist at
all levels of the cognitive hierarchy, but are presumably more
stringent at their higher levels, where semantic knowledge
and global action are constituted by convergent affluences
from lower, nested, and more concrete cognits. Hence, by
assumed foci of synaptic strength and fiber convergence, it seems
legitimate to grossly delineate the relative position of the various
categories of knowledge and memory on the cortical surface
(Figure 1).

All three psychological theories mentioned in support of
the cognit paradigm have the most reasonable neurobiological
foundation in the synaptic principles of memory formation first
proposed by (Cajal, 1894) and (Hebb, 1949). These principles
culminate with the idea of the ‘‘neuronal assembly,’’ which
is the theoretical precursor of the ‘‘cognit’’, though the latter
applies to all cognitive functions, not just memory. Further, with
regard to memory, Hebb’s concepts are based on circuitry mostly
circumscribed to the visual and the parastriate cortex, whereas
the cognit extends to association cortex of all sensory and motor
systems. Both conceptions, Cajal’s and Hebb’s fail to explain the
role of the hippocampus, decisive but still poorly understood till
now, on the formation of new neocortical memory.

In recent years, the cognit paradigm has found some support
in the latest investigations of cortical connectionism with the
most advanced techniques available. Among the latest initiatives
based on those techniques is the connectome, the international
research program to expose the entire connectivity of the
human brain. This effort has led to exquisite maps of cortical
connectivity, spectacular for its richness, but so far it has not
helped us much to reveal cortical neuroplasticity, one of the
objectives of the program. Functional resting-state magnetic
resonance imaging (fMRI) is another promising method (Taren
et al., 2011).
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FIGURE 3 | Graphic meta-analysis of cortical activations in the course of a delayed matching-to-sample task, paradigmatic of visual delay tasks in a large number of
functional neuroimaging studies. A trial begins with the presentation of a face (sample), which the subject must remember for a delay of 10–15 s, at the end of which
the subject is presented with two faces and must choose the sample. Little triangles mark the approximate relative timing of the records in the course of a trial. Note
the activation of the visual cortex at the sample (excerpt 1), and of the inferior temporal and prefrontal cortices during the delay (excerpts 2–6). From Fuster (2015).

Future research should be devoted to obtaining better spatial
and temporal resolution than we now have of cerebral processes
in active memory. The dependency of working memory from

long-term memory could be supported by utilizing—in working
memory tasks—stimuli (cues) that activated different levels of the
memory hierarchy. The critical question would be if the same
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cortical hierarchy of memory would be evinced by simple recall
as by working memory of sensory stimuli of differing levels. This
would further confirm my parsimonious proposal of an identical
neural substrate for both conditions of activated memory.

Another issue for future research is the predictive and
prospective executive functions of the prefrontal cortex, such
as planning, executive attention, and working memory, in the
acquisition of memory and knowledge. Training children in
those functions is the key to the success of active learning, the
educational method that capitalizes on the initiative, creativity,
and cooperativeness of the child. This method is at the
foundation of the most successful modern systems of elementary
education, such as the Finnish system.

CONCLUSION

The presence in the primate brain of a system for long-term
memory and another for working memory is at odds with
all the pertinent empirical evidence. Instead, a massive body
of experimental and clinical evidence indicates that working
memory consists of the temporary activation of an updated
cortical network of long-term memory for the attainment of

an objective. That accords with the general principle of this
review: under appropriate circumstances, any memory of the
organism, from the biological to the most abstract, can become
operational in behavior, reasoning, and in the spoken or written
language. Working memory is operational memory by definition
and the epitome of that principle. Its most elementary substrate
is a cortical network of long-term memory, here called cognit,
formed between neurons by associations according to Hebbian
principles. A cognit is specific for a given individual; in working
memory, it is updated for present context The dynamics of
working memory can best be examined and understood in
the perception-action cycle, the biocybernetic loop that engages
the organism with its environment in goal-directed behavior.
Working memory bridges with persistent activity in widely
distributed cortical networks any temporal break or discontinuity
that may occur in the cycle before reaching its goal.
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